
Hierarchical Contextual Reasoning

Serge Autexier

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

Saarbrücken, 2003

Dekan Prof. Dr. Philipp Slusallek
Vorsitzender Prof. Dr. Reinhard Wilhelm

Gutachter Prof. Dr. (PhD) Jörg Siekmann, Universität des Saarlandes
Prof. Dr. (PhD) Frank Pfenning, Carnegie Mellon University, Pittsburgh, USA
Prof. Dr. Gert Smolka, Universität des Saarlandes

Kolloquium 19. Dezember 2003

Contents

Kurzzusammenfassung V

Abstract VII

Zusammenfassung IX

Extended Abstract XI

Acknowledgements XIII

I Introduction 1

1 Introduction 3
1.1 Motivation . 3

1.1.1 Communication of Proof Knowledge . 3
1.1.2 Proof Construction Steps and Proof History 4
1.1.3 Status of Proofs . 7

1.2 The CORE System . 7
1.3 Overview of the Thesis . 9

2 Historical Overview and State of the Art 11
2.1 Foundations of Mechanised Reasoning . 12
2.2 Development of Programs for Mechanised Reasoning 13
2.3 Application of Programs for Mechanised Reasoning 14

II Contextual Reasoning 17

3 Syntax, Semantics and Uniform Notation 19
3.1 Terms and Subterm Occurrences . 19
3.2 Syntax . 22
3.3 Semantics . 23

3.3.1 Semantics for Classical First Order Modal Logic 23
3.3.2 Semantics for Classical Higher Order Logic 24
3.3.3 Unifying Notations . 25

3.4 Uniform Notation . 26
3.5 Preliminary Remarks . 29

3.5.1 Sketch of the CORE Proof-Theory . 30

I

II CONTENTS

4 Indexed Formula Trees 31
4.1 Initial Indexed Formula Trees . 31
4.2 Leibniz’ Equality . 40
4.3 Extensionality . 42
4.4 Boolean ζ-Expansion . 46
4.5 Substitutions . 47
4.6 Binding Generated Variables . 49
4.7 Cut . 50
4.8 Connections and L-Unsatisfiable Paths . 52
4.9 Cut Rule Applications . 52
4.10 Soundness and Completeness . 55
4.11 Increase of Multiplicities . 55
4.12 Soundness and Completeness Revisited . 59
4.13 Summary . 59

5 Free Variable Indexed Formula Trees 61
5.1 Initial Free Variable Indexed Formula Trees . 61

5.1.1 Paths in Free Variable Indexed Formula Trees 66
5.2 Logical Context and Replacement Rules . 67
5.3 CORE Calculus Rules . 70

5.3.1 Contraction . 72
5.3.2 Weakening . 73
5.3.3 Structural Modal Permutation . 73
5.3.4 Replacement Rule Application . 74
5.3.5 Simplification . 78
5.3.6 Leibniz’ Equality . 80
5.3.7 Extensionality . 82
5.3.8 Boolean ζ-Expansion . 83
5.3.9 Instantiation . 85
5.3.10 Increase of Multiplicities . 85
5.3.11 Application of Rewriting Replacement Rules 86
5.3.12 Cut . 89

5.4 Completeness . 91
5.5 A Note on Cut Elimination . 91
5.6 Summary . 92

III Hierarchical Reasoning 93

6 Window Inferencing 95
6.1 Motivation . 96
6.2 Windows, Window Structures and Window Proof States 98
6.3 CORE Window Inference Rules . 101

6.3.1 Window Inference Rules for Window Structures 101
6.3.2 CORE Calculus Window Inference Rules 103

6.4 Summary . 114

CONTENTS III

7 Change of Representation 115
7.1 Examples for Representational Changes . 115
7.2 Concepts and Rules for Representational Change 118

7.2.1 Reasoning Domains . 119
7.2.2 Representational Abstractions . 119
7.2.3 Representational Refinements . 120

7.3 Summary . 121

8 Hierarchical Proof Datastructure 123
8.1 Motivation of the Hierarchical Proof Datastructure 123

8.1.1 CORE Window Inference Rules . 124
8.1.2 Roles of Window Proof Nodes . 131
8.1.3 Hierarchies in Proofs . 132

8.2 Hierarchical Proof Datastructure . 137
8.3 Proof Paths and Dependencies . 140
8.4 Categories of Justifications . 141
8.5 Backtracking . 142
8.6 Summary . 142

IV Applications 143

9 Interface for Reasoning Procedures 145
9.1 The Tactic Language . 145
9.2 Backtracking . 146
9.3 Replacement Rules . 147
9.4 Filters . 147
9.5 Tactic Execution & Hierarchical Proof Datastructure 149
9.6 Summary . 150

10 Sequent Calculus Style Interface 151
10.1 Schütte’s β-Decomposition Rule . 151
10.2 Sequents and Sequent Style Inference Rules . 154

10.2.1 SK Style Axiom Rule . 156
10.2.2 SK Style Weakening Rule . 157
10.2.3 SK Style Contraction Rule . 158
10.2.4 SK Style α-Decomposition Rule . 158
10.2.5 SK Style β-Decomposition Rule . 159
10.2.6 SK Style ν- and π-Decomposition Rules . 160
10.2.7 SK Style Instantiation . 160
10.2.8 SK Style Increase of Multiplicities . 161
10.2.9 SK Style Leibniz’ Equality Introduction . 162
10.2.10 SK Style Extensionality Introduction . 162
10.2.11 SK Style ζ-Expansion Rule . 162
10.2.12 SK Style Cut rule . 163

10.3 A Note on Deduction Modulo . 163
10.4 Summary . 165

IV CONTENTS

11 Sample Proofs in CORE 167
11.1 Higher-Order Logic Proofs . 167

11.1.1 Proof of po→o(ao∧bo)⇒ p(b∧a) . 167
11.1.2 Proof of ∀po→o . λx . p(p(p(x))) = λx . p(x) 169

11.2 Irrationality of Square Root of 2 . 170
11.3 First-Order Modal Logics . 174

11.3.1 Proof of ∃x .�(�ϕ(x)∨ψ(y))⇔�∃x . (�ϕ(x)∨ψ(y)) 174

V Conclusion 177

12 Related work 179
12.1 Contextual Reasoning . 179

12.1.1 Window Inference Reasoning . 180
12.2 Hierarchical Reasoning . 180

12.2.1 Hierarchies of Subproblems . 180
12.2.2 Derivational Hierarchies . 180
12.2.3 Representational Hierarchies . 181
12.2.4 Proof Datastructure in ΩMEGA . 181

12.3 Replacement Rules . 182
12.3.1 Modifiers in INKA . 182
12.3.2 Assertion Level for Proof Presentation . 183
12.3.3 Higher-Order Rewriting . 183
12.3.4 Deduction Modulo . 183
12.3.5 Focusing Proof Construction . 184

12.4 Calculi . 184
12.4.1 Schütte’s Proof Theory . 184
12.4.2 Matrix Calculi . 185
12.4.3 Sequent Calculus . 186
12.4.4 Resolution and Paramodulation based Calculi 187

13 Conclusion 189
13.1 Future Work . 191

References 193

Appendix 207

A Completeness Proof 209

B Sample CORE Window Proofs 213
B.1 Proof of po→o(ao∧bo)⇒ p(b∧a) . 213
B.2 Proof of ∀po→o . λx . p(p(p(x))) = λx . p(x) . 215
B.3 Proof of the Irrationality of Square Root of 2 . 219
B.4 Proof of ∃x .�(�ϕ(x)∨ψ(y))⇔�∃x . (�ϕ(x)∨ψ(y)) 222

Index 225

Kurzzusammenfassung

Das computergestützte Beweisen von Theoremen erfordert den Eingriff des menschlichen Benut-
zers selbst für nach menschlichen Maßstäben einfache Theoreme. Diese Arbeit definiert eine Kom-
munikationsplattform, die eine synergetische Kooperation des Benutzers mit den Beweisverfahren
ermöglicht. Auf der Grundlage einer neuen Beweistheorie für kontextbasiertes Beweisen werden fast
alle Aspekte der Kommunikation abgedeckt, angefangen bei der Präsentation des Beweiszustandes
über die Bereitstellung kontextabhängiger Informationen zur Fortführung des Beweises, bis hin zur
Unterstützung einer hierarchischen Beweisentwicklung. Die für eine ganze Klasse von Logiken ein-
heitliche Beweistheorie beruht auf beweistheoretischen Annotationen in Formeln. Sie unterstützt ei-
ne kontextabhängige Beweisführung, die möglichst intuitiv für den Benutzer und gleichzeitig noch
adäquat für automatische Beweisverfahren ist. Darüberhinaus werden Konzepte zur Unterstützung
hierarchischer Beweismethodiken entwickelt.

V

Abstract

Computer supported development of proofs requires user interaction even for theorems that are simple
by human standards. In this thesis we define a communication infrastructure as a mediator between
the user and the automatic reasoning procedures. It is based on a new uniform meta proof theory for
contextual reasoning and encompasses most aspects of communication from the presentation of the
proof state, via the supply of relevant contextual information about possible proof continuations, to
the support for a hierarchical proof development. The proof theory is uniform for a variety of logics.
It exploits proof theoretic annotations in formulas for a contextual reasoning style that is as far as
possible intuitive for the user while at the same time still adequate for automatic reasoning proce-
dures. Furthermore, concepts are defined to accomodate both the use and the explicit representation
of hierarchies that are inherent in problem solving in general.

VII

Zusammenfassung

Das computergestützte Beweisen von Theoremen erfordert den gezielten Eingriff des menschlichen
Benutzers selbst für nach menschlichen Maßstäben einfache Theoreme. Diese Arbeit definiert eine
Kommunikationsplattform, die eine synergetische Kooperation des Benutzers mit den Beweisverfah-
ren ermöglicht. Die anhand eines idealen Beweissystems erstellte Anforderungsspezifikation ordnet
allgemeine Beweisschritte in zwei informelle Kategorien ein. Die erste Kategorie beinhaltet die Be-
weischritte, die einen Beweis innerhalb einer Abstraktionsebene fortführen und unterscheidet wei-
terhin zwischen nachweisbar korrekten Beweisschritten und spekulativen Beweisschritten. Die zwei-
te Kategorie umfaßt dahingegen hierarchische Beweisschritte. Hierarchische Strukturen sind allge-
genwärtig in jeder Art von Beweismethodik und resultieren aus der Struktur der Formeln, der Ver-
wendung von Abstraktionen sowie der Strukturierung der Beweisverfahren untereinander. Die Anfor-
derungsspezifikation und die Kategorien motivieren die Entwicklung der Kommunikationsplattform
CORE auf der Grundlage eines neuen Beweiskalküls für kontextbasiertes Beweisen. Die Kommuni-
kationsplattform umfaßt dabei fast alle Aspekte der Kommunikation, angefangen mit der Präsentation
des Beweiszustandes über die Bereitstellung relevanter und kontextabhängiger Informationen für
mögliche Fortführungen des Beweises, bis hin zur Unterstützung einer hierarchischen Beweisent-
wicklung.

Im ersten Teil der Arbeit wird die Beweistheorie definiert. Die Hauptanforderung dabei war, dass
der Zustand eines Beweises in einer Form repräsentiert wird, die sowohl adäquat für automatische
Beweisverfahren ist als auch intuitiv für einen menschlichen Benutzer. Dies erfordert eine direkte Un-
terstützung für kontextbasiertes Beweisen auf beliebigen Teilformeln sowie zum Beispiel die unmit-
telbare Entwicklung eines Beweises auf der Fakten-Ebene, welche als adäquate Beweisrepräsentation
zur Präsentation von Beweisen in natürlicher Sprache vorgeschlagen wurde. Die Beweistheorie beruht
auf zwei Säulen: Im ersten Teil wird ein korrekter und vollständiger Matrix-Beweiskalkül für inde-
xierte Formelbäume einheitlich für eine Klasse von Logiken definiert. Indexierte Formelbäume sowie
die verwandten Expansionsbäume für Logik höherer Stufe repräsentieren Quantoren-Abhängigkeiten
auf einheitliche und effiziente Art und Weise. Die indexierten Formelbäume werden durch Zerlegung
der zu beweisende Formeln entlang ihrer Struktur gewonnen, wobei die einzelnen Teile der Formel
mit Polaritäten und einheitlichen Typen annotiert werden. Jede frei instantiierbare quantifizierte Teil-
formel wird dabei in eine beliebige aber feste Anzahl von Instanzen zerlegt, welche als Multiplizitäten
der Teilformeln bezeichnet werden. Zur Vermeidung dieser statischen Festlegung der Multiplizitäten
wird der Beweiskalkül um eine effiziente Beweisregel erweitert, die es erlaubt zu jedem Zeitpunkt
im Beweis die Multiplizitäten dynamisch anzupassen. Der resultierende Beweiskalkül ist korrekt und
vollständig und bildet das Rückgrad der Beweistheorie für die Überprüfung der Zulässigkeit von Sub-
stitutionen. Der zweite Teil der Beweistheorie erweitert den Matrix-Beweiskalkül um intuitive und
kontextbasierte Beweisregeln. Dabei wird der Matrix-Kalkül ergänzt um eine Formel mit freien Va-
riablen, die aus dem indexierten Formelbaum resultiert. Die Formel wird vollständig mit Polaritäten
und einheitlichen Typen annotiert und diese beweistheoretischen Annotationen bilden die Grundlage
für die Definition des logischen Kontextes von Teilformeln sowie der darin enthaltenen Ersetzungs-
regeln. Die definierten Ersetzungsregeln können sowohl als Realisierung von Beweisschritten auf der
Fakten-Ebene angesehen werden, als auch als verallgemeinerte Resolutions- und Paramodulations-

IX

X

Regeln. Die janusköpfigen Ersetzungsregeln unterstützen somit zum einen die Beweisführung auf
der Fakten-Ebene, die ideale Grundlage für Benutzerinteraktion und abstraktes Beweisplanen, und
zum anderen die Implementierung automatischer Beweisverfahren, wie zum Beispiel Taktiken und
ordnungsbasierte Beweisverfahren. Im entwickelten Beweiskalkül besteht ein Beweiszustand aus ei-
nem indexierten Formelbaum und einer Formel mit freien Variablen. Ein Beweis ist abgeschlossen,
wenn diese Formel zu der trivialerweise gütligen Formel True reduziert wurde. Der Kalkül besteht aus
zwölf Beweisregeln, die jede einen Beweiszustand zu genau einem neuen Beweiszustand reduziert.
Somit ist gewährleistet, dass der Zustand eines Beweises zu jedem Zeitpunkt in einer einzigen Formel
repräsentiert werden kann, eine für den Benutzer intuitive Art der Repräsentation.

Der zweite Teil der Arbeit beschäftigt sich mit den hierarchischen Aspekten einer Beweisführung.
Hierarchien in Beweisen entstehen auf drei Arten: Durch die Struktur der Formel eines Beweiszustan-
des, die Verwendung von Abstraktionen, und die Struktur der Beweisverfahren untereinander, wie
zum Beispiel in der Beweisplanung oder rekursiv definierten Taktiken. Die Ausnutzung der Formel-
struktur resultiert in einer hierarchischen Beweisführung, die unter dem Begriff “window inference”
formalisiert wurde. Dabei wird das Fokussieren auf und die logische Transformation von Teilformeln
ermöglicht. Aufbauend auf dem Beweiskalkül für kontextbasiertes Beweisen erweitert der CORE win-
dow Beweiskalkül das bekannte window inference um eine einheitliche Bestimmung von Ersetzungs-
regeln aus einem logischen Kontext sowie eine einheitliche Vererbung der Fokusstrukturen während
der Anwendung einer Beweisregel. Um die Verwendung von Abstraktionen zu unterstützen, wer-
den notwendige Konzepte zur Definition und Verwendung von Abstraktionen definiert. Der Anwend-
barkeitstest einer Abstraktion wird mittels Beweisdomänen explizit repräsentiert, die die Ausgangs-
und Zielbeweisdomäne einer Abstraktion approximieren. Zur Repräsentation von Beweisen auf un-
terschiedlichen Hierarchie-Ebenen wird eine hierarchische Beweisrepräsentation für CORE definiert,
die CORE window Beweisregeln, die Verwendung von Abstraktionen und Hierarchien in den Beweis-
verfahren einheitlich repräsentiert.

Der dritte und letzte Teil der Arbeit beschäftigt sich mit der Anwendung der Kommunikations-
plattform. Die Implementierung von automatischen Beweisverfahren für den CORE Kalkül wird er-
schwert durch die Vielzahl möglicher Ersetzungsregeln für die Teilformeln – ein ansonsten klarer
Hinweis für das durch den Kalkül bereitgestellte hohe Maß an Flexibilität in der interaktiven Be-
weisführung. Dieser Problematik wird mit dem Konzept von Filtern begegnet, die eine zielgerich-
tete Auswahl geeigneter Ersetzungsregeln ermöglichen. Vor der Präsentation von Beispielbeweisen
in CORE, wird vor allem die Implementierung eines Kalküls ähnlich dem Sequenzenkalkül auf der
Grundlage des CORE window Kalküls dargestellt. Neben den CORE window Kalkülregeln wird dabei
eine Regel zur internen Zerlegung von Formeln verwendet, die eine Verallgemeinerung einer entspre-
chenden Regel aus Schütte’s Beweistheorie ist. Die definierten Kalküle zeichnen sich dadurch aus,
dass sie besonders für die interaktive und automatische Beweissuche geeignet sind. Neben anderen
Vorteilen sind vor allem effiziente Beweistransformationen zu nennen, die aus der dynamischen An-
passung von Multiplizitäten resultieren, sowie die Technik des Theorembeweisen Modulo, die durch
die kontextabhängige Auswahl und Anwendung von Ersetzungsregeln subsumiert wird.

Extended Abstract

Computer supported development of proofs requires user interaction even for theorems that are sim-
ple by human standards. In order to enable a synergetic cooperation of the user with the automatic
reasoning procedures this thesis defines a communication infrastructure to mediate between the user
and the reasoning procedures. A requirement analysis conducted along the sketch of an ideal proof
development environment results in a classification of proof construction steps into two informal cat-
egories. The first category consists of the continuation of proofs within one level of abstraction and
is further refined into verifiably sound proof continuations and speculative proof continuations. The
second category of proof steps are those that introduce vertical hierarchies in proofs. The use of hi-
erarchies is inherent in problem solving in general and due to the structure of the formula, the use
of representational abstractions, as well as the structuring of reasoning procedures. The requirement
analysis and the resulting classification motivate the definition of the communication infrastructure
CORE, which is based on a new uniform meta proof theory for contextual reasoning and encompasses
most aspects of the communication that range from the presentation of the proof state, via the supply
of relevant contextual information about possible proof continuations, to the support for a hierarchical
proof development.

The first major part of the thesis is concerned with the definition of the proof theory. Its develop-
ment is conducted under the requirement that it shall allow for a representation of the proof state that
is both intuitive for the user and adequate for automatic reasoning procedures. Furthermore it shall
support reasoning inside formulas by exploiting the logical context of subformulas. Finally, it shall
equally support the integration of automatic reasoning procedures as well as allow for an intuitive rea-
soning style for the user, such as directly reasoning on the assertion level, which has been proposed
as an adequate representation to support natural language presentations of proofs. The proof theory
rests on two pillars: in a first part a sound and complete matrix calculus on indexed formula trees is
defined uniformly for a variety of logics. Indexed formula trees as well as their higher-order logic pen-
dant expansion tree proofs provide a uniform and concise representation of the dependencies between
variable and modal quantifiers. The formula is decomposed along its tree structure and annotated by
polarities and uniform types. Thereby the instantiable variable and modal quantifiers are assigned an
arbitrary but fixed number of instances, so-called multiplicities. In order to overcome the limitation
to assign multiplicities beforehand, the calculus is extended by a rule to dynamically and efficiently
increase the multiplicities of quantifiers at any stage of the proof development. The resulting sound
and complete calculus serves as the soundness backbone of the proof theory with respect to checking
the admissibility of substitutions.

The second part of the proof theory adds intuitive and contextual reasoning capabilities to the
matrix calculus. Intuitively, it extends it by a free variable representation of the complete formula
contained in the indexed formula tree. The entire free variable formula is annotated with polarities
and uniform types and this proof theoretic information is the basis for a uniform notion of logical
context for subformulas as well as replacement rules contained in logical contexts. The replacement
rules are Janus-faced by nature: on the one hand they can be viewed as the operationalisation of
assertion level proof steps. They therefore enable the development of proofs directly at the assertion
level and are the ideal basis for user interaction and high-level proof planning. On the other hand

XI

XII

from a logical point of view they are generalised resolution and paramodulation rules, which is a
suitable representation for automatic reasoning procedures such as tactics or ordering based reasoning
procedures. A proof state in the developed calculus consists of an indexed formula tree to represent
quantifier dependencies and a free variable formula that represents the status of the proof. The proof
is completed when that formula has been reduced to the trivially valid formula True. The complete
calculus consists of twelve calculus rules, each reducing a proof state to exactly one new proof state.
This ensures that the whole status of the proof is always contained inside a single formula, which is
an intuitive representation for the user as it overcomes the use of normalforms and skolemization.

The second major part of the thesis is concerned with the hierarchical aspects of problem solving.
We identify three sources that lead to hierarchies in proofs: the structure of the formula representing
the proof state, the use of representational abstractions during proof development, and the hierarchical
structure induced by the involved reasoning procedures, such as proof planning or recursive defini-
tions of tactics. Exploiting the structure of formulas gives rise to a hierarchical reasoning style that
has been formalised by window inference. Window inference supports the focusing on arbitrary parts
of the formula and supports their manipulation. Due to the contextual reasoning capabilities of the
underlying calculus, the CORE window calculus extends standard window inference by a uniform
determination of replacement rules from a logical context and a uniform principle to inherit window
structures during rule application. The use of representational abstractions is addressed by the for-
malisation of the basic concepts that support their definition as well as their use at any stage of a
proof development. The applicability conditions of abstraction functions are captured by the notion
of reasoning domains, which approximate the source and target domains of representational abstrac-
tions. Finally, we define a hierarchical proof datastructure that accomodates the application of CORE

window calculus rules, the use of representational abstractions, and the representation of derivational
abstractions and refinements.

The third and final major part of the thesis presents applications of the developed communication
infrastructure. The definition of automated reasoning procedures on top of CORE is hampered by
the exponential amount of possible replacement rules for each subformula – a clear indication of the
high flexibility provided by CORE during proof development. To remedy this problem, we introduce
filters to be used for a goal directed selection of appropriate replacement rules. Before the presentation
of some example proofs in the CORE window calculus, we present an implementation of a calculus
that resembles a sequent calculus using CORE. It is based on the CORE window calculus rules
and an admissible subformula decomposition rule which generalises a respective rule from Schütte’s
sentential calculus. Due to the capabilities of the underlying CORE calculus, the adequacy of the
resulting sequent style calculus to support interactive and automated proof search surpasses standard
implementations of this calculus. Beyond other benefits, the most striking advantages are complex
proof transformations that result from the dynamic and efficient increase of multiplicities and the
subsumption of theorem proving modulo by the support of contextual reasoning inside subformulas.

Acknowledgements

First of all I would like to thank my supervisor Jörg Siekmann for all his support during these years.
His enthusiasm paired with critical advise were very valuable for my research and for writing this
thesis. Moreover, I would like to thank him for letting me work in this huge group of high quality
researchers in Saarbrücken which was so beneficial to me and my work.

Second, I would like to thank Frank Pfenning and Gert Smolka for serving on my thesis com-
mittee. In particular, I would like to thank Frank Pfenning for many interesting discussions and his
enlightening comments on earlier versions of this work.

Third, my special thanks goes to Dieter Hutter for his critical advise and discreet guidance over
many years, his openness to discuss new ideas and for always encouraging me. Moreover, I would like
to thank Christoph Benzmüller and Chad Brown for stimulating discussions about the higher-order
logic aspects of the work presented in this thesis. Thanks also to Claus-Peter Wirth for stimulating
discussions, whose enthusiasm also helped me throughout the difficult stages of this thesis. For proof
reading (parts of) this thesis I am indebted to Christoph Benzmüller, Alexander Caviedes, Dieter
Hutter, and Andreas Nonnengart.

Aside from my thesis a lot of effort during the last years went into research only sometimes related
to this thesis and I would like to thank my co-authors for these productive cooperations: Christoph
Benzmüller, Armin Fiedler, Helmut Horacek, Malte Hübner, Dieter Hutter, Bruno Langenstein, Heiko
Mantel, Andreas Meier, Till Mossakowski, Georg Rock, Axel Schairer, Carsten Schürmann, Werner
Stephan, Quoc Bao Vo, Roland Vogt, and Andreas Wolpers.

For many discussions, valuable feedback and pleasant coffee breaks I would like to thank all of my
colleagues at the formal methods and Activemath groups at DFKI and the ΩMEGA group at Saarland
University. In particular, I thank Armin Fiedler, Heiko Mantel, Andreas Meier, Martin Pollet, Axel
Schairer, and Werner Stephan for stimulating discussions. Thanks to Chris for having been such a
pleasant office mate. My work also profited a lot from research visits at the University of Edinburgh,
Carnegie Mellon University, and Yale University. Thanks to Alan Bundy, Frank Pfenning, and Carsten
Schürmann for providing me with these opportunities.

Last but not least, I would like to thank all of my friends and especially my family for their
unconditional loyality and moral support. Above all, I thank Sandra Veeck for her moral and emotional
support during these years and for being a partner in the rough and in the good times.

Il nous faut peu de mots pour exprimer l’essentiel;
il nous faut tous les mots pour le rendre réel.

Eluard Eugène Grindel, dit Paul

XIII

Introduction
–

Part I

Chapter 1

Introduction

Ce qui est le meilleur dans le nouveau est ce qui répond à un désir ancien.
Paul Valéry

Inspite of almost four decades of research on automated theorem proving, mainly theorems con-
sidered easy by human standards can be proved fully automatically without human assistance. For
instance humans must provide guidance information about how to explore the search space or specify
intermediate lemmata. The computer-supported development of proofs for more difficult theorems
requires user interaction and will require it for the foreseeable future. The main application domains
of computer-based theorem proving systems are mathematical assistants, mathematical teaching as-
sistants, and hardware as well as software verification. For these domains, a tight intertwining of user
interaction with the theorem proving system is necessary, to obtain proofs in formal logic – even for
theorems which are relatively simple from a human point of view. In this thesis we propose a com-
munication infrastructure as mediator between the user and the theorem proving system that provides
the basis for a tight integration of the user and the theorem proving system.

1.1 Motivation

1.1.1 Communication of Proof Knowledge

In an ideal proof development environment the user and the theorem proving system can cooperate in a
synergetic manner. Such a theorem proving system consists of one or more reasoning engines, where
“reasoning engine” is a general term that encompasses any kind of automated proof search procedure
by abstracting from the implementation paradigm and denotes specialised automatic theorem provers,
tactics, proof-planners, or computer algebra systems and constraint solving systems. The objective
is to develop formal proofs for theorems where the partners are the user and the theorem proving
system with its reasoning engines. We envision the development of proofs as a synergetic cooperation
of equal partners, in contrast to the current situation of a master/slave relationship between the user
and the theorem proving system. Each partner contributes (implicit) knowledge on how to approach
and solve proof obligations. It is the partner’s decision when to bring in its specific knowledge about
proofs and how to convey the knowledge. This requires that the status of the proof and the means
of knowledge communication are understandable to all partners, even if the user is a mathematician,
scholar or software engineer with no expertise in formal logic.

3

4 CHAPTER 1. INTRODUCTION

In order to efficiently support the user, communication between the user and the theorem proving
system is crucial. In principle each partner can communicate the proof knowledge he incorporates.
However, the specific proof knowledge must be expressed in a manner that is intelligible to the other
partners. This is the bottleneck for the communication of information. A user like a mathematician
or software engineer usually has a semantic representation of the problem domain and exploits it to
approach and solve proof obligations. They usually have little or no knowledge about formal logic.
State of the art automated theorem provers, however, only incorporate deep knowledge about the
search space structure based on the syntax and calculus rules. In interactive theorem provers tactics
are used to incorporate more high-level proof procedures, but these still stick to the syntax and the
basic calculus rules. Proof planning has been designed to overcome these limitations. However,
in practice it also requires an understanding of the underlying calculus from the user and does not
completely overcome the limitations imposed by the lack of abstraction imposed by the underlying
calculus.

Coming back to the ideal proof development environment, the proof knowledge of the partners
includes both the definition of new proof techniques and how and when to use the available proof tech-
niques within an actual proof. Examples of basic proof techniques are calculus rules, computations
to simplify or adapt sentences, small mathematical computations of values or symbolic evaluation of
some formula. Examples for higher proof techniques are abstractions, such as diagrams for conjec-
tures about natural numbers, the diagonalisation method, proofs by induction, a pigeonhole argument
and similar mathematical techniques. Thus, the state of an ideal proof development environment
consists of both the available proof techniques and an actual (partial) proof.

To communicate this knowledge, we propose to use a communication infrastructure that mediates
between the user and the theorem proving system. Its role is on the one hand to represent all the
information about the proof and especially to intelligibly communicate this information to both the
user and the reasoning engines. On the other hand it must support the continuation of the proof by
the user and the reasoning engines, which requires an interaction interface that is, again, intelligible
for both the user and the reasoning engines. This tension between intelligible information for the
user on the one hand and the reasoning engines on the other strongly influences the design of the
communication infrastructure. Resolving this inside the communication infrastructure that is used for
proof construction by both the user and the reasoning engines could lead to a synergetic cooperation
of the partners involved.

The communication infrastructure must provide information about the history of the proof, i.e.
what has been done so far, about the status of the proof, and about the possible next steps to continue
the proof. The manner in which the proof history is represented depends on the kinds of possible
proof steps, which are discussed in the following Section 1.1.2. In Section 1.1.3 we discuss what kind
of information about the status of the proof is required for the ideal proof development environment.

1.1.2 Proof Construction Steps and Proof History

The ideal proof development environment requires a clarification of what a proof is in this context.
In formal logic a proof is a sequence or a proof tree built from the calculus rules of the underlying
logic. In proof planning it is a proof plan, i.e. a sequence of methods, that can be refined to a calculus
proof. In mathematical textbooks a proof can be any natural language justification indicating how a
sentence is inferred from some other sentences. In order to conduct a requirement analysis we need
a notion of proof that encompasses all these different types of proofs. In the following we introduce
different informal categories of proof construction steps to refine the notion of a proof for the ideal
proof development environment.

1.1. MOTIVATION 5

The proof construction steps are the major means to communicate proof knowledge between the
partners. Any kind of communication of proof knowledge adds information to the proof. We view
a proof as a three dimensional object that consists of horizontal and vertical structures. A horizontal
structure is a (partial) proof on a specific level of abstraction, while a vertical structure links proofs at
different levels of abstraction. Each proof within some level consists of a sequence of justifications
relating a goal sentence to subgoals. Proof steps that extend a proof within a level of abstraction
are denoted by intra-level proof construction steps. These proof steps are horizontal and each proof
step relates sentences and is annotated by some justification, like the name of the calculus rule used,
the name of a tactic, a lemma being applied, or simply the description of the proof technique used.
Among those steps, we need to differentiate between those steps that soundly extend a proof, like some
verifiably valid derivation, and those that are speculative, like the formulation of proof intentions as
for example in proof planning. We denote the former by (local) lemma application steps and the latter
by (local) lemma speculation steps.

Each subproof within some level of abstraction can be related to a subproof at a different level
of abstraction. An example for this is to abbreviate a sequence of proof-steps by a single proof-step
describing that sequence of proof steps. Another example is the application of a lemma of the form
H1 . . .Hn ⇒ H , where this “macro-step” can be expanded by its proof. Similarly, the validation of
a speculative proof step by a sequence of concrete proof steps can be see as a refinement, as it also
introduces a lower level of abstraction into the proof. We denote those inter-level proof construction
steps by vertical proof steps. The activity of relating a subproof at some level of abstraction to some
subproof at a higher level of abstraction is called vertical abstraction, and the dual activity is vertical
refinement.

1.1.2.1 Intra-Level Proof Steps

Local Lemma Application. The local lemma application proof steps are those that reduce an open
goal to a possible empty list of new subgoals. The communication infrastructure has to provide the
user and the reasoning engines with information about possible continuations and to subsequently
ease their application. The information about the possible continuations must be intelligible to both
the user and the reasoning engines. The information must be provided for the user in a way that allows
for a semantical interpretation of the information. For example, the user may be told that the group-
property of the set G with operation � occurring in the actual goal can be expanded. This information
must be provided to the reasoning engine in a way that allows for an operational reading, for example
as an inference rule that reduces the conclusion to certain premises. More specifically, it should tell
the reasoning engines the rule or the name of the rule that reduces the actual goal that contains “G
with � is a group” into a subgoal that contains the expanded group-definition.

Furthermore, this information should be derived from the context of the actual goal, such that if
the logical context is changed then this is immediately reflected in the set of choices presented to the
user and reasoning engines.

This requires from the communication infrastructure that it incorporates a mechanism for con-
textual reasoning, which supports a goal-dependent presentation and application of the information
contained in the logical context. Ideally the context should be represented in a uniform manner and
the way this information is provided to the user and the reasoning engines are only different views on
the same information.

Local Lemma Speculation. The local lemma speculation proof steps must allow for speculative
or unverified proof steps. For example, the step may be that the user or the reasoning engine can

6 CHAPTER 1. INTRODUCTION

reduce a goal to some subgoals of their choice, without having to prove that step immediately. This
kind of steps offers a means to express intentions on how the proof could or should proceed and to
communicate these intentions to the other partners. Furthermore, local lemma speculation proof steps
serve to integrate mathematical computations into the proof tree, without having to provide an actual
proof that establishes the soundness of this computation. The communication infrastructure must
support these unverified proof steps and it must keep track of them until later when they are actually
verified.

1.1.2.2 Inter-Level Proof Steps

For an ideal proof development environment we identify two kinds of vertical abstraction and vertical
refinement: those that operate on the proof structure and those that operate on the representation of
objects. The former are denoted by proof abstractions respectively proof refinements, and the latter as
representational abstractions respectively representational refinements.

Vertical Abstractions. Proof abstractions abbreviate sequences of proof steps into a single proof
step. The new proof step is a local lemma speculation proof step at some higher level of abstraction.
Having these steps explicitly represented eases the communication as it shortens the proof to its es-
sential steps. Take as an example a proof procedure performing an induction proof. Abbreviating the
induction proof into a single proof step with an explicit description of the abbreviated proof sequence
captures the implicit knowledge contained in the proof procedure. Furthermore, the abstract and ex-
plicit description is certainly more comprehensible than the whole proof sequence. For instance, the
assertion level introduced by Huang [Huang, 1996] is an abstract proof representation which presents
a proof as a sequence of axiom, lemma and hypothesis applications and is the basis for the natural
language presentation of formal proofs [Huang, 1996, Fiedler, 2001].

Representational abstraction is an important feature not only in mathematical problem solving,
but in problem solving in general. Examples are the use of diagrams to reason about sums and prod-
ucts of natural numbers (cf. [Jamnik et al, 1997]), or the labelled fragment abstraction [Hutter, 1994]
used in inductive theorem proving which abstracts from the specific differences between the induc-
tion conclusion and the induction hypothesis. Those changes of the representation into more adequate
representations are often crucial proof steps and their explicit representation provides important in-
formation about the proof. They must be annotated with specific information about the type of the
representational change. A necessary prerequisite for representational abstractions is that the ideal
proof development environment supports the definition of various representation languages, and espe-
cially, that it supports multiple proof states with respect to different representation languages and has
the means to switch between the representation at any stage of the proof search process.

Vertical Refinements. Proof refinements validate speculative proofs. These can be local lemma
speculation proof steps or proofs performed on a different representation, initiated by a representa-
tional abstraction proof step. They explicitly represent how a formulated proof intention has been
actually realised by relating the proof on some higher level of abstraction to its actual proof. Take as
an example a diagonalisation argument used to abstractly finish a proof. The diagonalisation argument
is represented by a local lemma speculation proof step. However, the proof is not formally closed by
this argument, and only the actual execution of the intended diagonalisation argument completes the
proof. The resulting proof sequence is a validation of the diagonalisation argument, of which it is a
vertical refinement.

1.2. THE CORE SYSTEM 7

Representational refinement is the inverse of representational abstraction. It is required in order
to map back from an abstract representation to the initial source representation of the problem. How-
ever, although representational abstraction is usually computable, representational refinement usually
is not. The reason is that representational abstraction abstracts details in order to obtain a simpler
representation of the problem, which is more concise with respect to the problem domain. Thus,
representational abstraction is usually a “many-to-one” relationship, which hampers its inversion, i.e.
representational refinement. Representational refinement is usually achieved in combination with a
vertical refinement of the proof at the abstract representation. Indicating which abstract proof state
corresponds to which proof state in the source representation provides important information about
the proof, and representational refinement relations serve to represent this information explicitly.

1.1.3 Status of Proofs

The status of the proof is an important information to be provided to the partners. Traditionally in
interactive theorem proving it is a proof tree where the leaves are either goals closed by an axiom
rule or open goals that must still be solved. The open goals are conjunctively related by the proof
tree structure and may share common variables whose instantiation affects several open goals, which
usually causes problems for the design of automated proof procedures, since the instantiation of a
global variable in one conjunct affects the proof of the other conjunct. Although this representation
of the proof status is concise, we argue that it lacks important information: first, alternatives are not
explicitly represented in the proof structure, except for alternatives inside the open goals themselves.
A mathematician has the alternatives to the actual proof goal structure in mind and an ideal proof
development environment should support this more adequate, though more redundant, representation
of the proof status. Secondly, the list of open goals can grow rapidly even for problems that are simple
from a human point of view. A mathematician usually takes a “birds eye view” on large proofs, which
gives a better assessment of the overall proof status. This global view of the proof contains both
all open goals and its alternatives. We argue that a good approximation of this birds eye view is to
represent the proof status as a single formula at any stage of the proof search process. The compact
representation of the proof status as a single formula is a useful information complementary to the
usual lists of open goals. Standard formal calculi do not support this compact representation of a
proof status, since they usually rely on normal forms or formula decomposition, which both hamper
the reconstruction of the proof status as a single formula which resembles the original conjecture.
An ideal proof development environment should support the view of any proof status as a list of
open goals and also provide information about discarded or ignored alternatives, and finally allow the
partners to have a global view of the proof state.

1.2 The CORE System

The main contribution of this thesis is the engineering of the CORE system and the development of
its logical foundations. CORE tries to bridge the gap between the intuitive development of proofs
and supports a synergetic cooperation between reasoning engines and the user. The key idea of the
CORE-system is that the whole proof state is always a formula. Proof construction proceeds by using
information contained in the formula to successively transform (parts of) the formula until the proof
state is a trivially valid formula. Possible case splits are also represented in the formula by means of
logical connectives. Thus, the proof structure is represented in the formula which allows us to view
the proof state on the one hand as structured proof representation with open goals and on the other

8 CHAPTER 1. INTRODUCTION

hand as a single formula which is the birds eye view. Take as an example the following formula about
sums of natural numbers:

(∀n n = 0⇒
n

∑
i=1

i3 = (
n

∑
i=1

i)2)∧ (∀n,m (n > m∧
m

∑
i=1

i3 = (
m

∑
i=1

i)2)⇒
n

∑
i=1

i3 = (
n

∑
i=1

i)2)

The formula as whole represents the whole proof state. However, by fixing the parts we want to
consider as open goals, for instance the occurrences of ∑n

i=1 i3 = (∑n
i=1 i)2, the structure of the formula

above these occurrences allows to present the proof state as the following structured proof:

Case 1: Assume n = 0, prove ∑n
i=1 i3 = (∑n

i=1 i)2.

Case 2: Assume n> m and ∑m
i=1 i3 = (∑m

i=1 i)2, prove ∑n
i=1 i3 = (∑n

i=1 i)2.

Logical contexts are treated as first-class citizens and can be statically determined for any part
of the formula. They are provided as replacement rules, which are a formalisation of the notion of
assertion level rules. The assertion level has been introduced Xiarong Huang in [Huang, 1996] as
an abstraction from the pure natural deduction calculus and it is the basis for the generation of the
proof presentation in natural language [Huang, 1996, Horacek, 1999, Fiedler, 2001]. The idea is to
subsume axioms, definitions, lemmas, and theorems as assertions, and the use of a single assertion
in the proof search corresponds to a whole proof segment in the underlying calculus. Consider the
example assertion taken from [Huang, 1996]:

∀S1,S2 : Set S1 ⊆ S2⇔∀x : Element x ∈ S1⇒ x ∈ S2

This assertion allows us to derive

-- a ∈ S′2 from a ∈ S′1 and S′1 ⊆ S′2;

-- S′1 6⊆ S′2 from a ∈ S′1 and a 6∈ S′2;

-- ∀x : Element x ∈ S′1⇒ x ∈ S′2 from S′1 ⊆ S′2.

Xiarong Huang states in [Huang, 1996] “although introspection seems impossible to reveal the inter-
nal structure of the interpreter applying assertions, every application of an assertion can be associated
with a proof segment [. . .]”, and a procedure to generate the associated proof segments is given in
Chapter 6 of [Huang, 1996].

Replacement rules are a generalisation of assertion level rules that capture concisely the internal
structure of the application of an assertion. They provide the “necessary introspection” and over-
come the need to verify assertion applications by constructing an associated proof segment. Thus,
replacement rules allow for the direct and verified use of assertions already in the proof search. Fur-
thermore, we define a uniform characterisation of replacement rules that are in the logical context of
some subformula.

During the proof search, replacement rules are used to manipulate parts of the formula provided
they are in the logical context of this part. They transform the proof-state formula into a new formula
which represents the new proof state. In this thesis we develop the theoretical foundations for such
a calculus, which are based on the notion of an indexed formula tree and exploit the tree structure of
formulas to annotate each node of the tree with some logical information. The logical information
is an encoding of the proof-theoretic semantics of a formula at some node, which can be statically
determined.

1.3. OVERVIEW OF THE THESIS 9

The logical annotations are the basis for the formal definition of the logical context of a subfor-
mula and the formal definition of replacement rules. The overall reasoning style supported by the
final calculus is based on this information and it enables us to prove uniformly the soundness and
completeness of the calculus for a variety of logics.

The kernel proof system supports the intra-level proof steps of Section 1.1.2.1. The main local
lemma application proof steps are instantiation, contraction, and replacement rule application. Since
the replacement rules are designed to support an intuitive interpretation by the user as well as an
operational interpretation by the reasoning engines, they exactly match the requirements for local
lemma application. Furthermore, the proof system supports local lemma speculation proof steps by
encoding the speculated intermediate goals as logical cut inside the proof state, i.e. the logical cut is
used as a means to keep track of pending open goals.

As a further feature to support intuitive reasoning we add a mechanism inspired by the window
inference technique [Robinson & Staples, 1993, Staples, 1995] which focuses the reasoning process
onto specific subformulas. The subformulas within the focus are then open to manipulation by re-
placement rules from the logical context of the focus.

To support the inter-level proof steps and especially representational abstraction, CORE supports
the explicit definition of domain specific representation languages, called reasoning domains. It sup-
ports also the abstraction functions that formalize switching between different reasoning domains.
Intuitively a reasoning domain consists of a logic and a set of predefined symbols. The kernel proof
system is parametric in the logic, where a logic can be selected from a given set of logics. These logics
are built into the system and can be used for the definition of reasoning domains. Additionally, pre-
defined symbols can be defined for a reasoning domain, which give rise to the respective object-level
type and constant declarations, i.e. the signature.

A change in the representation of a given conjecture is a vertical abstraction that maps a formula
with respect to a source reasoning domain to a formula with respect to a target reasoning domain.
They are similar in nature to the local lemma speculation proof steps. The user can select a target
reasoning domain and provide a formula with respect to the target reasoning domain which is consid-
ered an abstraction of the source formula. Typically the user exploits its semantic understanding of
the problem in order to come up with the right abstraction, i.e. the specified target reasoning domain
and formula. In order to mimic this problem solving behaviour and make it available to the reasoning
engines, abstraction functions that map a source formula from some reasoning domain to a formula
in the target domain can be defined in CORE. They can be used to encode a specific abstraction
methodology, which operationalises the behaviour of the user and at the same time are available to the
reasoning engines.

The remaining inter-level proof steps require an explicit proof object that represents all the more
abstract as well as the more refined proof steps. To this end we introduce a hierarchical proof repre-
sentation which represents the inter-level proof steps that have been introduced so far. Additionally,
we introduce proof steps to represent vertical abstraction and vertical refinement.

1.3 Overview of the Thesis

The thesis is organized into five parts: the first and introductory part ends with Chapter 2 by recapitu-
lating the state of the art. The main contributions of the thesis are presented in Part II and Part III.

Part II presents the proof-theory for contextual reasoning with some preliminary notions and the
definition of the proof theory underlying the CORE reasoning system. Following [Wallen, 1990,
Miller, 1983, Pfenning, 1987] we introduce indexed formula trees based on uniform notation and po-

10 CHAPTER 1. INTRODUCTION

larities for a variety of classical and modal logics, with an emphasis on first- and higher-order logics
(Chapter 4). These can be extended to dynamically increase the multiplicities of formulas and provide
a sound and complete but unintuitive calculus for the whole class of the logics considered. Intuitive-
ness is added in Chapter 5 which defines the actual CORE proof theory. The indexed formula trees
of the preceding chapter are extended by working copies, which are denoted by free variable indexed
formula trees. The basic calculus rules provided by the framework support an intuitive reasoning
style that tries to overcome the need for the user to reason in the specific calculus of some special
logic in order to prove a theorem (Section 5.3). The soundness of the rules is proved along with the
description of the rules, while the completeness with respect to the class of considered logics is proved
in Section 5.4, which completes the definition of the kernel reasoning systems.

Part III is devoted to hierarchical reasoning and addresses the requirements sketched out in Sec-
tion 1.1.2. In Chapter 6 window inference reasoning is added onto the contextual reasoning system in
order to support a hierarchical reasoning style. The kernel reasoning system already provides all nec-
essary features to support window inference. The window inference reasoning rules rely entirely on
the reasoning rules of the kernel system. In Chapter 7 we present the notions underlying the support
for changing representation languages by abstraction during proof search. Finally, the CORE proof
datastructure is defined in Chapter 8

In Part IV we present different applications of CORE. Chapter 9 defines the interface provided by
CORE for the development of automatic reasoning procedures on top of CORE. In order to ease the
comparison between a standard sequent calculus and the CORE calculus we define in Chapter 10 how
a similar calculus is implemented in the CORE calculus and examples are presented in Chapter 11.

In Part V, Chapter 12 quotes related work and, finally, in Chapter 13 we summarise the contri-
butions of this work and present an outlook for future research based on the foundations laid in this
thesis.

Chapter 2

Historical Overview and State of the Art

The area of research on automated and interactive theorem proving may have been inspired by Leib-
niz’ dream of developing a “lingua characteristica universalis” in which every problem should be
expressible together with a “calculus ratiocinator” to mechanise subsequent logical reasoning. The
dream was to provide a basis to solve every logical dispute by encoding it in the “lingua characteris-
tica universalis” and then resolving the dispute by calculation: “CALCULEMUS!” – Let us calculate
the outcome of the dispute.

Risking oversimplification, the research devoted to the realisation of Leibniz’ dream can be di-
vided into three parts: first, the foundational research on mechanised reasoning was and is con-
cerned with the development of formal logic, i.e. the achievement to separate syntax and seman-
tics in the definition of logics [Frege, 1879, Tarski, 1936], the definition of various general but also
domain specific logics along with investigations of their consistency [Zermelo, 1908, Whitehead &
Russell, 1910, Fraenkel, 1922, Von Neumann, 1928, Bernays, 1937, Gödel, 1940, Bernays, 1941],
(un-)decidability results [Church, 1936, Turing, 1937], the (non-)existence of complete calculi for
these logics [Gödel, 1930,Gödel, 1931] and the development of such calculi [Church, 1940,Gentzen,
1969,Robinson, 1965,Andrews, 1989,Miller, 1983,Bachmair et al, 1992]. Despite many throwbacks,
Herbrand’s [Herbrand, 1930] and Gentzen’s work [Gentzen, 1969] and the development of computers
smoothed the way for the second part of research concerned with the actual development of mecha-
nised reasoning systems. The first such system was the logical theorist [Newell et al, 1957]. These
first attempts at fully automatic “logic calculators” made it quickly apparent that the inference rules
defining a calculus were far from sufficient to build an efficient automatic theorem prover. The cen-
tral theme of this second part was – and still is – the development of techniques to guide the proof
search. The research in that area led to the identification of different paradigms of the representation
of guidance information. These proof search paradigms are reflected by the terminology given to the
different theorem proving styles, namely: automatic theorem proving, tactical theorem proving, and
proof planning.

Finally, the third and most recent part is concerned with the actual application of the developed
techniques and systems to mathematics. This emphasis on mathematics is not the least due to Hilbert’s
idea of formalising mathematics as articulated in Hilbert’s program [Hilbert, 1930]. The main objec-
tives with respect to mathematics are its formal representation, the discovery of new theorems, and to
formally prove mathematical properties. However, recent activities are also devoted to the teaching of
mathematics to scholars. Finally, the triumphal procession of the computer and its universal presence
in all domains of our real life has created further application domains for mechanised reasoning, an
important one being formal software development.

11

12 CHAPTER 2. HISTORICAL OVERVIEW AND STATE OF THE ART

In order to support complex tasks in all these application domains the interaction of the user with
the reasoning engine became more and more important. For teaching purposes user interaction is at the
heart of the application scenario and for the other application scenarios it became apparent that both
the complexity of the problems and the size of the proofs still require and will require user interaction
for the foreseeable future. On the other hand, there is a need to develop interfaces for the reasoning
systems that allow for the use of these systems by users that are not familiar with the foundations of
formal logic. Although there has been some research in that direction, this whole area of research is
still in its infancy.

2.1 Foundations of Mechanised Reasoning

Important milestones were the calculus for propositional logic of Boole [Boole, 1847] and the calcu-
lus for first-order logic of Frege in his famous “Begriffsschrift” [Frege, 1879]. Frege was the first to
clearly separate syntax and semantics of formulas, and is today one of the precursors to the develop-
ment of mechanised reasoning systems on a computer.

In the middle of the 19th century, research was also begun to use set theory as a foundation
for mathematics. Cantor defined naive set theory, which turned out to allow for antinomies that
were found by Russell at the beginning of the 20th century. In order to remedy these antinomies
Whitehead and Russell developed the ramified theory of types and used it in their foundation of
mathematics in the “Principia Mathematica” [Whitehead & Russell, 1910]. Other approaches to
remedy Russell’s antinomies were the axiomatic foundations of set theory by Zermelo [Zermelo,
1908] and Fraenkel [Fraenkel, 1922], Von Neumann [Von Neumann, 1928], Gödel [Gödel, 1940],
and Bernays [Bernays, 1937, Bernays, 1941]. An alternative to the axiomatic approach to mathemat-
ics is constructive mathematics propagated by Brouwer [Brouwer, 1914, Brouwer, 1925] and Heyt-
ing [Heyting, 1956]. The constructive or intuitionistic position strictly rejects the axiomatic approach
and the main difference is the rejection of the law of the excluded middle.

The first formulation of higher-order logic by Church [Church, 1940] was based on his theory
of types and the λ-calculus. Henkin introduced the concept of general models [Henkin, 1950] as a
semantic notion for higher-order logic. This was an extension of Tarski’s semantic notion by which
Henkin could define a complete calculus for higher-order logic.

The definition of these logics and the logical formalisation of mathematics was accompanied
by research on their decidability and, if undecidability was established, on their semi-decidability
and the existence of complete calculi. Hilbert was confident that his program [Hilbert, 1930] was
achievable and Gödel’s completeness theorem for first-order logic [Gödel, 1930] seemed to confirm
this expectation. However, Hilbert’s program seemed jeopardised by Gödel’s, Church’s and Turing’s
incompleteness results. Gödel showed that every system that supports the formalisation of arithmetic
[Gödel, 1931] is incomplete, while Church [Church, 1936] and Turing [Turing, 1937] proved the
undecidability of first-order logic. Herbrand’s work proving the semi-decidability of first-order logic
relativised these negative results [Herbrand, 1930]. Furthermore, Herbrand integrated parts of the
syntax into the semantics of quantified formulas. This so-called “Herbrand universe” together with its
properties with respect to any other semantic interpretation of these formulas smoothed the way for
the implementation of computer programs with the capacity for mechanised reasoning.

A similar result to Herbrand was obtained by Gentzen [Gentzen, 1969] in the sharpened version
of his Hauptsatz. Gentzen overcomes the rather unintuitive formulations of logic given by Frege,
Russell, and Hilbert by defining natural deduction and sequent calculi for predicate logic. The natural

2.2. DEVELOPMENT OF PROGRAMS FOR MECHANISED REASONING 13

deduction calculus was reformulated by Beth [Beth, 1965] to obtain the semantic tableau calculus,
a suitable basis for automated reasoning systems. At about the same time Robinson introduced the
resolution calculus [Robinson, 1965], which relied on a normalisation process, the elimination of
quantifiers by “Skolemisation”, and a generalisation of modus ponens. The resolution calculus also
proved to be very suitable for automation and has been extended to treat primitive equality by adding
the paramodulation rule.

Gentzen’s natural deduction and sequent calculi proceed by decomposition of the conjecture tak-
ing the structure of the formula into account and instantiating the quantified variables. The resolution
calculus requires the transformation of the conjecture into a normal form. Beth’s tableau calculus re-
sides somewhere in-between these two approaches. A slightly different approach is taken by Schütte
[Schütte, 1977] by defining a calculus that allows for the decomposition of formulas that are wrapped
inside the whole formula, without actually requiring the decomposition of the whole formula, which
is an approach very much at the heart of what is being proposed in this thesis as well.

2.2 Development of Programs for Mechanised Reasoning

The development of the first computers together with, for instance, the work of Gentzen and Herbrand
made it conceivable that it should be possible to build computer programs that have non-trivial reason-
ing capabilities. The logical theorist [Newell et al, 1957] was the first implementation of this idea and
is one of the ancestors of mechanised reasoning programs. In a first phase research was thus focused
on the development of programs that were able to prove theorems automatically. These implementa-
tions were essentially based on the resolution calculus and unification [Siekmann, 1987]. In the early
seventies a different approach was taken in the AUTOMATH project [De Bruijn, 1973b, De Bruijn,
1973a, De Bruijn, 1980]: the objective here was to build a system where humans can develop proofs
interactively while the system guarantees soundness. This founded the tradition of interactive theorem
proving. However, even in interactive theorem proving there is a clear need to support the automation
of parts of proofs, for instance in order to tackle specific and simple subproblems automatically.

Both in automated and interactive theorem proving it became apparent that the implementation
of the calculus rules alone is not sufficient to build automatic proof procedures. Subsequently, re-
search concentrated on strategic and heuristic organisation of the proof search, the fine graining
and specialisation of calculi, and the analysis of the properties of these systems. Researchers in
automated theorem proving were interested in the design of general problem solvers, and thus the
proof procedures were required to be complete. Examples for this kind of systems are OTTER [Mc-
Cune, 1990], SPASS [Weidenbach, 1999], SETHEO [Letz & Stenz, 1999], VAMPIRE [Riazanov &
Voronkov, 2001], MKRP [Eisinger & Ohlbach, 1986], TPS [Andrews et al, 1990, Andrews et al,
2000], or Twelf [Pfenning & Schürmann, 1999]. Proof procedures in interactive theorem proving
systems were expected to be efficient for specific problems, but not necessarily complete. These sys-
tems are typically based on a natural deduction or sequent calculus such as Isabelle [Paulson, 1989],
NuPrl [Constable et al, 1986], Oyster [Bundy et al, 1990a], or KIV [Heisel et al, 1991].

Different paradigms of how to integrate guidance information into the theorem proving systems
emerged: on the one hand, guidance information was integrated into the search procedures. Prominent
representatives of such procedures are the set-of-support or unit-preference strategies in automated
theorem proving, as well as specific programming languages such as in the NQTHM-system [Boyer
& Moore, 1979] or the “Logic for Computable Functions (LCF)” tactic language used in the meta-
component of NuPrl [Constable et al, 1986]. On the other hand guidance information is integrated
into the calculus rules themselves. This was mainly motivated by the work of Knuth and Bendix for

14 CHAPTER 2. HISTORICAL OVERVIEW AND STATE OF THE ART

pure equational theorem proving, and resulted in the superposition calculus [Bachmair et al, 1992].
Research was also devoted to integrate domain specific knowledge into the theorem proving sys-

tems, which led to the use of sorts [Walther, 1987], the design of decision procedures à la Nelson-
Oppen [Nelson & Oppen, 1977], Rippling [Bundy et al, 1990b,Hutter, 1990] for proofs by induction,
superposition calculi for groups [Stuber, 1996] and monoids [Ganzinger & Waldmann, 1996], and
many more.

All proof procedures mentioned so far, no matter which paradigm dominated their design, stick
to the basic rules of the calculus. In contrast to this, Bundy introduced the notion of proof planning
[Bundy et al, 1990b] as a paradigm advocating top-down proof construction. Proof planning consists
of first finding a proof sketch by using AI planning techniques. Proof plans (or proof sketches) are built
from methods, which are planning operators wrapped around a tactic [Gordon et al, 1979]. The pre-
and postconditions of a method are declarative descriptions of the proof situation in which the tactic
contained in the method should be applied together with an estimation of the new proof situation
without actually having to execute the tactic. A completed proof plan is then refined to a calculus
proof by executing the tactics contained in the methods in the order indicated by the proof plan. The
proof planning technique is the most recent new paradigm to design and manage proof search, a line
of research extensively explored in the context of the ΩMEGA proof planning system [Siekmann et
al, 2002a]. In proof planning high-level domain specific knowledge is encoded as methods, such
as knowledge about how to guide inductive proofs [Bundy, 1988], knowledge about how to do ε-δ-
proofs, or proving the irrationality of square roots [Siekmann et al, 2002b]. Furthermore, the proof
planning technique proved to be very suitable for the integration of external reasoning systems such
as other automated theorem provers or computer algebra systems. Thereby these “external” proofs
and computations are integrated by encoding these proofs as proof planning steps, possibly after
translation [Meier, 2000, Kerber et al, 1998].

2.3 Application of Programs for Mechanised Reasoning

The main motivation for the development of theorem proving systems, no matter which kind, was
and still is to contribute to the realisation of Leibniz’ dream, i.e. to mechanise formal reasoning by
a computer program. At present the most prominent application domains are mathematics, formal
software development, (logical) programming developments, program synthesis, deductive databases,
and teaching mathematics. But logics for “practical reasoning” are abundant and mechanized. Just
as a calculus alone does not provide a theorem proving system, the successful implementation of a
theorem proving system is not sufficient to use these systems for all of these purposes. In order to
provide theorem proving environments that are suitable for practical applications, many additional
techniques need to be developed and integrated into these systems. For example, the theorem proving
system needs to be integrated with the specification of domains and problems, such as mathematical
theories, lemmata and theorems, or specifications of software and their safety and security properties.
Research in that direction has been executed mainly in the context of formal software development
systems [Heisel et al, 1991,Autexier et al, 1998,Hutter, 2000b,Autexier et al, 2002] and the migration
of these techniques into the application domain of mathematics has been realised inter alia in [Franke
& Kohlhase, 1999, Kohlhase, 2000].

Another shortcoming of theorem proving systems is that their use requires specialist knowledge
about the systems, for instance how parameter settings influence the behaviour of the search proce-
dures for the case of automated theorem provers, or how to force the proof steps of the system into
these a user would like to perform in the case of interactive theorem provers. Although there has

2.3. APPLICATION OF PROGRAMS FOR MECHANISED REASONING 15

been some work on the development of such user-interfaces the research on that topic is still in its
infancy. Examples of user-interfaces for theorem proving systems are LΩUI [Siekmann et al, 1999],
XBarnacle [Duncan & Lowe, 1997], IsaWin [Lüth et al, 1999], and they can also be found in systems
like VSE [Autexier et al, 1998], KIV [Heisel et al, 1991], INKA [Hutter & Sengler, 1996], and the
mathematics teaching systems ACTIVEMATH [Melis et al, 2001]. Mechanisms that support the user
by automatically generating suggestions as the possible next steps can be found in [Benzmüller &
Sorge, 1999, Benzmüller & Sorge, 2000]. However, the usability of these interfaces still falls far be-
yond that of computer programs in other domains. Research in that direction is nevertheless essential,
as it is evident that theorem proving for problems arising in real application domains still requires a
great deal of user interaction. There is now a special series of workshops devoted to this topic (User
Interfaces for Theorem Provers).

Finally, the proofs obtained both in automated and interactive theorem proving are usually in the
format imposed by the calculus underlying these systems. This style of proof is far from the style by
which proofs are performed by a mathematician. Work on high-level, natural language presentation
of these proofs, like proofs in mathematical textbooks, can be found in [Fiedler, 2001, Dahn et al,
1997].

Contextual Reasoning
–

Part II

Chapter 3

Syntax, Semantics and Uniform Notation

We will now present the basic notions upon which the CORE proof theory is built. Section 3.1 is
concerned with the definition of the many-sorted, simply typed lambda-calculus as the underlying
representation language for terms and formulas of the logics. The syntax and semantics of all logics
considered in this thesis is presented in Sections 3.2 and 3.3. In order to ease the presentation of
the proof theory (Chapter 4 and 5) we unify the notation of the syntax and semantics into a uniform
terminology. The uniform terminology is further extended in Section 3.4 by recalling the uniform
notation for formulas from [Wallen, 1990, Fitting, 1972, Smullyan, 1968] and extending it for our
purposes. The result is the notion of syntax and semantics of signed formulas, which is the key
technique that smooths the way for a uniform and simple presentation of the proof theory. We will
end with an observation why functional and boolean extensionality needs to be handled in the proof
theory (Section 3.5).

3.1 Terms and Subterm Occurrences

We use a many-sorted, simply typed λ-calculus as our basic representation language, as adequacy
and conciseness of representation is an important aspect with respect to the area of application of the
CORE-system. Sorts are a simple tool to support a consise representation, and we allow for arbitrary
many base types (i.e. sorts) of individuals, instead of using only two types ι for individuals and o for
truth-values. We refrain from using a subtyping concept in order to keep the type inference simple,
avoiding the intrinsic problems with subtyping.

Definition 3.1.1 (Many Sorted Higher order types) Let C be a set of type constants and o not in
C . The set T of many sorted higher order types induced by C is:

-- C ⊆ T the base types,

-- o ∈ T the type for truth values,

-- If τ1,τ2 ∈ T , then τ1→ τ2 ∈ T is a function type.

As usual, we assume that the functional type constructor→ associates to the right, e.g. τ1→ τ2→ τ3
denotes τ1→ (τ2→ τ3). Furthermore, we use τ1× . . .× τn→ τ0 as an abbreviation for τ1→ (. . .→
(τn→ τ0)), where τ0 ∈ C ∪̇{o}.

We say that a type τ is a first-order type if, and only if, either τ ∈ C ∪̇{o} or if it is of the form
τ1→ τ2 where τ1 ∈ C and τ2 is a first-order type.

19

20 CHAPTER 3. SYNTAX, SEMANTICS AND UNIFORM NOTATION

We annotate constants fτ and variables xτ with types τ from T to indicate their type. A higher-
order signature Σ = (T ,F ,V) consists of types T , constants F and variables V , both typed over T .
The typed λ-calculus is standard and is defined over a given higher-order signature of types T , typed
constants F , and typed-variables V .

Definition 3.1.2 (λ-Terms) Let Σ = (T ,F ,V) be a higher-order signature. Then the typed λ-terms
TΣ,V over Σ and V are:

-- For all xτ ∈ V , x ∈ TΣ,V is a term of type τ (also denoted by x : τ). We say that this term x is a
variable term of type τ.

-- For all cτ ∈ C , c ∈ TΣ,V is a term of type τ (also denoted by c : τ). We say c is a constant term
of type τ.

-- If t : τ, t ′ : τ→ τ′ ∈ TΣ,V are typed terms, then (t ′ t) ∈ TΣ,V is an application term of type τ′,

-- if x : τ ∈ V and t : τ′ ∈ TΣ,V , then λxτ t ∈ TΣ,V is an abstraction term of type τ→ τ′. We say t
is abstracted over x.

In the following we assume that terms are always well-typed and terms of type o are also called
formulas.

Definition 3.1.3 (Substitutions) Let Σ = (T ,F ,V) be a higher-order signature. A substitution is a
type preserving function1 σ : V → TF ,V that is the identity function on V except for finitely many
elements from V . This allows for a finite representation of a substitution as a set of pairs:

σ := {t1/x1, . . . , tn/xn}

where σ(y) = y if ∀1≤ i≤ n,y 6= xi. The homomorphic extension of σ to terms, i.e. the application of
σ to a term, is defined by

σ(t) :=

σ(x) if t ∈ V
(σ(t0) σ(t1)) if t = (t0 t1)
λxτ σ[x/x](t ′) if t = λxτ t ′

where σ[x/t] denotes the function that behaves like σ except for x on which it yields t.

Remark 3.1.4 A substitution σ is idempotent if, and only if, its homomorphic extension to terms is
idempotent, i.e. σ(σ(t)) = σ(t) for all t ∈ TΣ,V .

Given a substitution σ we denote by dom(σ) the set of all variables for which σ(x) 6= x, i.e. the
domain of σ.

Throughout the rest of this thesis we assume that every substitution is idempotent, as this can
always be achieved. Higher-order λ-terms usually come with a certain set of reduction rules. We use
the so-called β and η reduction rules (cf. [Barendregt, 1984]), which give rise to the βη long normal
form, which is unique up to renaming of bound variables. Throughout the rest of this thesis we assume
that all terms are in βη long normal form. Application terms in this normal form are always of the
form (c t1 . . . tn) where c is either a constant from F or a variable from V .

1i.e. for all variables x : τ, σ(x) also has type τ.

3.1. TERMS AND SUBTERM OCCURRENCES 21

Lemma 3.1.5 (Properties of Terms in βη Long Normal Form) Let t be a term in βη long normal
form. Then t is of one of the following forms:

-- either t is a typed variable or a typed constant,

-- or it is of the form (c t1 . . . tn), where c is a variable or constant of type τ1× . . .× τn→ τ0, and
all ti are in βη long normal form,

-- or it is of the form λxτ t ′ and t ′ is in βη long normal form.

Proof. Assume t is a subterm in βη long normal form and fails to have any of the properties stated
in the Lemma. The critical case to consider are the application terms. Thus, assume there is such a
subterm s in t. There are two cases to consider:

1. s is of the form (t0 t1 . . . tm), the type of t0 is τ1× . . .× τn → τ0 and n > m. In this case the
η-expansion rule could be applied to obtain the term λxn

τn
. . .λxm+1

τm+1
(t0 t1 . . . tm xm+1 . . . xn)

that is in normal form, which contradicts the assumption that t was in βη long normal form.

2. s is of the form (t0 t1 . . . tn), the type of t0 is τ1× . . .× τn→ τ0, but t0 is an abstraction term. In
this case the β-reduction rule could be applied, which contradicts the assumption that t was in
βη long normal form. ut

Imposing the βη normal form has the advantage that it allows for a straightforward definition of
subterm occurrences for λ-terms.

Definition 3.1.6 (Subterm Occurrences) A subterm occurrence is a possibly empty list of natural
numbers [i0, . . . , in], (i j > 0 for all 0≤ j ≤ n). For any term t in βη long normal form the set of valid
subterm occurrences for t is the smallest set fullfilling the following properties:

-- If t is a typed variable or constant, then [] is the only valid subterm occurrence for t.

-- If t = (c t1 . . . tn) and ρ′ is a valid subterm occurrence for ti then ρ = [i,ρ′] is a valid subterm
occurrence for t, 1≤ i≤ n.

-- If t = λxτ t ′ and ρ′ is a valid subterm occurrence for t ′, then ρ = [1,ρ′] is a valid subterm
occurrence for t.

If ρ is a subterm occurrence for t, we denote by t|ρ the subterm denoted by ρ, i.e.

-- s|[] := s,

-- (t0 t1 . . . tn)|[i,ρ′] := ti|ρ′ , and

-- (λx t ′)|[1,ρ′] := t ′|ρ′ .

For the terms in βη long normal form we define the following notion of subterms.

Definition 3.1.7 (Subterms of βη-Normal Terms) Let t be a term in βη long normal form. The
subterms of t, Subtermst , is the smallest set that contains t and that is closed under the following rules:

-- if (c t1, . . . , tn) ∈ Subtermst , then t1, . . . , tn ∈ Subtermst ,

-- if λxτ t ′ ∈ Subtermst , then t ′ ∈ Subtermst

22 CHAPTER 3. SYNTAX, SEMANTICS AND UNIFORM NOTATION

For the representation of formulas we will use the constants ¬ : o→ o for negation, and ∨ for
disjunction, ∧ for conjunction, ⇒ for implication and ⇔ for equivalence, all of type o× o → o.
Equality over arbitrary types, including o, is denoted by =: τ× τ→ o. We use higher-order abstract
syntax (cf. [Pfenning & Elliott, 1988]) to encode quantification over object variables and introduce
∀,∃ : (τ→ o)→ o for universal and existential quantification for all types τ. To ease readability we
may use ∀x0, . . . ,xn ϕ as an abbreviation for ∀(λx0 . . .∀(λxn ϕ)). Additionally, we use �,♦ : o→ o
for the modal operators “necessarily” and “possibly”.

3.2 Syntax

The CORE-system presented in this thesis is a uniform proof system for a fixed set of logics, namely
classical propositional, first-order and higher-order logics as well as classical propositional and first-
order modal logics K, K4, D, D4, T, and S4 with constant domains. The reason for restricting our-
selves to these logics comes from the context of this thesis, namely theorem proving for mathemat-
ics and formal software engineering. For these application areas, especially higher-order logic as
well as first-order classical and modal logics are of interest. Aspiring at a uniform framework for
contextual reasoning for all these logics led to the matrix characterisations for classical and modal
logics by Wallen [Wallen, 1990] and for classical higher-order logics by Andrews [Andrews, 1981],
Miller [Miller, 1983] and Pfenning [Pfenning, 1987]. Although the class of modal logics considered
by Wallen is slightly larger, we restrict ourselves to the aforementioned in order to keep the definition
of the proof theory simple.

In this section we introduce the syntax of the formulas for those logics. Since the underlying term
language is the many-sorted λ-calculus with βη-equality the definition of the logic specific syntax
consists of the definition of the admissible signatures and terms.

Definition 3.2.1 (Syntax) For each of the logic L we define the signatures ΣL = (TL ,FL ,VL) con-
sisting of the base types TL , the predefined constants FL , and the set VL of typed variables for L .

CPL - Classical Propositional Logic: A CPL signature is ΣCPL := ({o},{True,False : o,¬ : o →
o,∨,∧,⇒,⇔: o×o→ o}∪̇C}, /0), where C contains only constants of the form A : o. The CPL
terms are the subset of the λ-terms over ΣCPL for which all subterms (cf. Definition 3.1.7) are
of base type o.

CPML - Classical Propositional Modal Logic: A CPML signature is the pairwise disjoint union of
ΣCPL with (/0,{�,♦ : o→ o}, /0), i.e. ΣCPML := ΣCPL∪̇(/0,{�,♦ : o→ o}, /0). The CPML terms
are the subset of the λ-terms over ΣCPML for which all subterms (cf. Definition 3.1.7) are of base
type o.

CFOL - Classical First Order Logic: A CFOL signature is ΣCFOL := ({o}∪̇S ,{¬ : o→ o,∨,∧,⇒
,⇔: o×o→ o,∀,∃ : (τ→ o)→ o and =: τ× τ→ o for all τ ∈ S}∪̇C},V) where the constants
in C have only first-order types and the variables in V have only base types from S . The CFOL
terms are the subset of the λ-terms over ΣCFOL for which all subterms (cf. Definition 3.1.7) are
of some base type from {o}∪̇S , except the direct subterms t of ∀(t) and ∃(t) which are of type
τ→ o where τ is from S .

CFOML - Classical First Order Modal Logic: A CFOML is the pairwise disjoint union of ΣCFOL
with (/0,{�,♦ : o→ o}, /0), i.e. ΣCPML := ΣCFOL∪̇(/0,{�,♦ : o→ o}, /0). The CFOML terms are
the subset of the λ-terms over ΣCFOML for which all subterms (cf. Definition 3.1.7) are of some

3.3. SEMANTICS 23

L Condition on R
K no conditions
K4 transitive
D seriality
D4 seriality, transitive
T reflexive
S4 reflexive, transitive

Table 3.1: Conditions on accessibility relations.

base type from {o}∪̇S , except the direct subterms t of ∀(t) and ∃(t) which are of type τ→ o
where τ is from S .

CHOL - Classical Higher-Order Logic: Assume T is the set of higher-order types over an arbi-
trary set of base types S and additional base type o (cf. Definition 3.1.1). Then a CHOL signa-
ture is ΣCHOL := (T ,{True,False : o,¬ : o→ o,∨,∧,⇒,⇔: o×o→ o,∀,∃ : (τ→ o)→ o and =:
τ× τ→ o for all τ ∈ T },V). The CHOL terms are the λ-terms over ΣCHOL.

3.3 Semantics

This section defines the model-theoretic semantics for the logics under consideration as follows: on
the one hand we define the semantics for first-order modal logics with constant domains (CFOML),
which encompass the semantics for CPL, CPML, and CFOL. On the other hand we define higher-order
logic with primitive equality, as well as boolean and functional extensionality.

3.3.1 Semantics for Classical First Order Modal Logic

We follow [Wallen, 1990] for the definition of the semantics of classical first order modal logics. Let
G be a non-empty set and R a binary relation on G. We denote the elements of G as the possible
worlds and R as the accessibility relation. If R satisfies the conditions outlined in table 3.1, then the
pair 〈G,R〉 is an L-frame. Thereby the reflexivity and transitivity properties are standard, i.e. R is
reflexive if, and only if, for all v ∈ G it holds vRv and the transitivity is analogous. The seriality2

property holds for a binary relation R over G if, and only if, for each w ∈ G there is some v ∈ G such
that wRv holds. Note that reflexivity implies seriality.

Assume now that 〈S ,F ,V 〉 is a CFOML-signature. A many sorted first-order frame for this
signature is a 4-tuple 〈G,R,D,D〉 where 〈G,R〉 is an L-frame, D is a sort indexed family of non-
empty sets (Ds)s∈S and D a mapping from G to a sort indexed family of non-empty subsets of the
respective Ds. D(w) is the family of sets of individuals over which range quantifiers of variables with
the respective types. Furthermore we require for every base type s that Ds = ∪w∈GD(w)s. In the rest
of this thesis we stick to the constant domain variants of the modal logics under consideration, i.e. we
consider only first-order frames for which D(w) = D(v) holds for all w,v ∈ G.

Definition 3.3.1 (First Order Kripke Models) A constant domain L-frame M = 〈G,R,D,D〉 is
a first-order Kripke model if, and only if, for all w ∈ G, all assignments ρ of variables of type s to

2Note that in [Wallen, 1990] seriality is called idealisation.

24 CHAPTER 3. SYNTAX, SEMANTICS AND UNIFORM NOTATION

elements of D(w)s the following holds:

1. D(w)o is a binary set {>,⊥}, > for truth and ⊥ for falsehood,

2. Mρ
w(True) =>, Mρ

w(False) =⊥, and the logical functions ¬,∧,∨,⇒,⇔, and = have the clas-
sical interpretation,

3. Mρ
w(λxs to) is the function from D(w)s to D(w)o that maps elements e ∈ D(w)s to Mρ[x/e]

w (t),

4. Mρ
w(∀(ts→o)) =

{
> if for all e ∈ D(w)s Mρ

w(t)(e) =>
⊥ otherwise

5. Mρ
w(∃(ts→o)) =

{
> if there exists an e ∈ D(w)s Mρ

w(t)(e) =>
⊥ otherwise

6. Mρ
w(�(t)) =

{
> if for all v such that wRv it holds Mρ

v (t) =>
⊥ otherwise

7. Mρ
w(♦(t)) =

{
> if there exists v such that wRv and it holds Mρ

v (t) =>
⊥ otherwise

8. Otherwise Mρ
w(c(t1, . . . , tn)) = Mw(c)(Mρ

w(t1), . . . ,Mρ
w(tn)), n ≥ 0, where Mw(cs1×...×sn→s0) ∈

D(w)s1 × . . .D(w)sn → D(w)sn . A constant cs1×...×sn→s0 is rigid if, and only if, for all possible
worlds w,w′ it holds Mw(c) = Mw′(c); otherwise cs1×...×sn→s0 is flexible.

Given a CFOML-formula ϕ and a first-order Kripke model M, we say M satisfies ϕ if, and only if,
for any world w and assignment ρ it holds Mρ

w(ϕ) =>. A CFOML-formula ϕ is valid, if, and only if,
every first-order Kripke model satisfies ϕ.

3.3.2 Semantics for Classical Higher Order Logic

For the semantics of higher-order logic we use the general models from [Henkin, 1950] by taking into
account the corrections from [Andrews, 1972]. It is based on the notion of frames that is a τ-indexed
family {Dτ}τ∈T of nonempty domains, such that Do = {>,⊥}3 and Dτ1→τ2 is a collection of functions
mapping Dτ1 into Dτ2 . The members of Do are called truth values and the members of DS, S ∈ S , are
called S-individuals.

Given a frame {Dτ}τ∈T , an assignment is a function ρ on V such that for each variable xτ holds
ρ(xτ) ∈ Dτ. Given an assignment ρ, a variable xτ and an element e ∈ Dτ we denote by ρ[x/e] that
assignment ρ′ such that ρ′(xτ) = e and ρ′(yτ′) = ρ(yτ′), if yτ′ 6= xτ.

For the definition of the function spaces in a frame we use Λxτ eτ′ to denote a function from Dτ
into Dτ′ in order to distinguish it from the syntax.

Definition 3.3.2 (Extensional General Models) A frame {Dτ}τ is an extensional general model in
the sense of [Andrews, 1972] if, and only if, it satisfies the following conditions:

(a0) For each τ ∈ T , Dτ×τ→o contains the identity relation q on Dτ×τ→o,

(a1) Do→o contains the negation function n such that n(>) =⊥ and n(⊥) =>,

3Analogous to Definition 3.3.1.

3.3. SEMANTICS 25

(a2) Do→o contains Λxo > and Λxo xo. Also, Do→o contains the alternation function a such that
a(>) = Λxo > and a(⊥) = Λxo xo,

(a3) For each τ∈T , D(τ→o)→o contains a function π(τ→o)→o such that for all g∈Dτ→o π(τ→o)→o(g) =
> if, and only if, g = Λxτ >,

(b) For all τ,τ′ and all e ∈ Dτ the function Λxτ′ e is in Dτ′→τ,

(c) For all τ,τ′ the function Λxτ Λyτ′ xτ is in Dτ×τ′→τ,

(d) For all τ,τ′,τ′′, all x ∈ Dτ×τ′→τ′′ and all y ∈ Dτ→τ′ the function Λzτ x(z,y(z)) is in Dτ→τ′′ ,

(e) For all τ,τ′,τ′′ and all x ∈ Dτ×τ′→τ′′ the function Λyτ→τ′ Λzτ x(z,y(z)) is in D(τ→τ′)×τ→τ′′ ,

(f) For all τ,τ′,τ′′ the function Λxτ×τ′→τ′′ Λyτ→τ′ Λzτ x(z,y(z)) is in D(τ×τ′→τ′′)×(τ→τ′)×τ→τ′′ .

The interpretation of a λ-term t by an extensional general model N := {Dτ}τ and with respect to an
assignment ρ is the usual interpretation defined by:

-- M(o) := Do = {>,⊥},

-- Mρ(True) := >,Mρ(False) := ⊥, Mρ(¬) := n, Mρ(=τ×τ→o) := q ∈ Dτ×τ→o, and the logical
functions ∧,∨,⇒, and⇔ have the classical interpretation,

-- Mρ(∀(τ→o)→o) := π ∈ D(τ→o)→o, and Mρ(∃(τ→o)→o) := Mρ(λxτ→o ¬(∀(λyτ ¬(xy)))),

-- Mρ(cτ) ∈Dτ, for any constant cτ,

-- Mρ(xτ) := ρ(xτ) ∈ Dτ, for any variable xτ,

-- Mρ(t0 t1, . . . , tn) := Mρ(t0)(Mρ(t1), . . . ,Mρ(tn)),

-- Mρ(λxτ tτ′) is the function from Dτ to Dτ′ that maps every element e ∈ Dτ to Mρ[e/x](t).

3.3.3 Unifying Notations

For every logic L mentioned in the previous section we assume there is a unique uniform notation
for signed formulas with respect to L . Furthermore, we agree to omit type information on variables
and constants, unless they are required. In order to simplify the presentation of the meta proof theory
for the whole class of logics, the semantics of the different logics are unified to a uniform notion of a
model.

Definition 3.3.3 (L-Models) Let L be one of the logics under consideration. An L-formula ϕ is
L-satisfiable if, and only if, there is an L-model M such that for all variable assignments ρ and all
worlds w it holds Mρ

w(ϕ) = >. An L-formula ϕ is L-valid if, and only if, it is L-satisfiable in all
L-models.

26 CHAPTER 3. SYNTAX, SEMANTICS AND UNIFORM NOTATION

α α0 α1

(ϕ∨ψ)+ ϕ+ ψ+

(ϕ⇒ ψ)+ ϕ− ψ+

(ϕ∧ψ)− ϕ− ψ−

(¬ϕ)+ ϕ− −
(¬ϕ)− ϕ+ −

γ γ0(c)

(∀x ϕ)− (ϕ[x/t])−

(∃x ϕ)+ (ϕ[x/t])+

ν ν0

(�ϕ)− ϕ−

(♦ϕ)+ ϕ+

β β0 β1

(ϕ∧ψ)+ ϕ+ ψ+

(ϕ∨ψ)− ϕ− ψ−

(ϕ⇒ ψ)− ϕ+ ψ−

δ δ0(c)

(∀x ϕ)+ (ϕ[x/c])+

(∃x ϕ)− (ϕ[x/c])−

π π0

(�ϕ)+ ϕ+

(♦ϕ)− ϕ−

Figure 3.1: Uniform notation.

3.4 Uniform Notation

The meta proof-theory for the CORE framework relies on an extension of indexed formula trees which
makes use of the concept of polarities and uniform notation (cf. [Wallen, 1990,Fitting, 1972,Smullyan,
1968]). Polarities are assigned to formulas and subformulas and are either positive (+) or negative
(−). Intuitively, positive polarity of a subformula indicates that it occurs in the succedent of a sequent
in a sequent calculus proof and negative polarity is for formulas occurring in the antecedent of a
sequent.

Formulas annotated with polarities are called signed formulas. Uniform notation assigns uniform
types to signed formulas which encode their “behaviour” in a sequent calculus proof: there are two
propositional uniform types α and β, two types γ and δ for quantification over object variables, and
two types π and ν for modal quantification. A signed formula is of type α if the subformulas obtained
by application of the respective sequent calculus decomposition rule on the formula both occur in the
same sequent. Signed formulas are of type β, if the decomposition of the signed formula gives rise to
a split of the sequent calculus proof and the obtained subformulas occur in different sequents. γ-type
signed formulas indicate that the bound variable is freely instantiable, while δ-type signed formulas
are those for which the Eigenvariable condition must hold. We call γ-variable (resp. δ-variable)
variables bound on some γ-type signed (sub-)formula (resp. δ-type). In Figure 3.1 we give the list of
signed formulas for each uniform type.

The tables indicate also how the polarity of a signed formula is inherited to its respective subfor-
mulas. Furthermore, they define a recursion principle to annotate all subformulas of a signed formula
with a polarity and a uniform type. This recursion principle is the basis for indexed formula trees,
which are signed formulas where each subformula is annotated with its polarity and uniform type.

Polarities and uniform notation are sufficient to define a uniform notion of a logical context and
to determine the usable rules from the logical context. Due to the uniform results in [Wallen, 1990]
the framework can be instantiated to support the intuitive proof search with respect to a variety of
logics, namely propositional, first-order classical logic, and some propositional and first-order modal
logics. Indexed formula trees are closely related to expansion trees from [Andrews, 1981, Miller,
1983, Pfenning, 1987, Andrews, 1989] which allows the treatment of higher-order classical logics.

3.4. UNIFORM NOTATION 27

ε ε0 ε1

(s⇔ t)− s◦ t◦

(s = t)− s◦ t◦

ζ ζ0 ζ1

(s⇔ t)+ s◦ t◦

(s = t)+ s◦ t◦

Figure 3.2: Uniform types for equations and equivalences.

We are mainly interested in first-order versions of the logics as well as in higher-order logic, and
in order to keep the framework simple, we restrict ourselves to first-order and higher-order classical
logic, and first-order modal logics with constant domains.

An important intuitive concept is equality and equivalence and we want to treat those as first-class
citizens by supporting their use as rewrite rules. Example: given an equation s = t and a formula
ϕ(s) it is natural to allow the rewrite of ϕ(s) to ϕ(t). Similarly we want to support the rewriting with
equivalence, i.e. to apply P⇔ Q on ϕ(P) to obtain ϕ(Q). Note that we cannot assign polarities to
P and Q in P⇔ Q, while P in ϕ(P) may well have a polarity. Furthermore, the uniform notion of
rules obtained from uniform notation is restricted to logical refinement rules and does not capture
equivalence rules. In order to capture equations and equivalence we introduce a third polarity ◦,
undefined, and uniform types ε and ζ for negative and positive equations and equivalences.

Definition 3.4.1 (Polarities) We introduce three kinds of polarities: a positive polarity + (intuitively
succedent of a sequent), a negative polarity − (intuitively antecedent of a sequent), and an undefined
polarity ◦. We say that a polarity is defined, if it is either positive or negative.

The definition of the additional uniform types is given in Figure 3.2. The new uniform types extend
the notion of a rule to capture uniformly logical equivalence rules, in contrast to logical refinement
rules.

In the rest of this thesis we are mainly concerned with signed formulas. To ease the presentation
we extend the notion of L-satisfiability to signed formulas. In order to motivate this definition consider
a sequent ψ1, . . . ,ψn ` ϕ. It represents the proof status that we have to prove ϕ from the ψi. In terms of
polarities, all the ψi have negative polarity while ϕ has positive polarity. The ψi are the assumptions
and thus we consider the L-models that satisfy those formulas and prove that those L-models also
satisfy ϕ. Hence, we define that an L-model M satisfies a negative formula ψ−i if, and only if, M
satisfies ψi. From there we derive the dual definition for positive formulas, namely that an L-model
M satisfies a positive formula ϕ+, if, and only if, M does not satisfy ϕ. Formally:

Definition 3.4.2 (L-Satisfiability of Signed Formulas) Let ϕp be a signed L-formula of defined
polarity p and M an L-model. Then:

M|=Lϕ+ if, and only if, M 6 |=L ϕ
M|=Lϕ− if, and only if, M|=L ϕ

From this definition we can infer for each uniform type α,β,γ,δ,ν, and π the relationship between
the satisfiability of a signed formula of this type and the satisfiability of its signed components.

Lemma 3.4.3 Let M be an L-model, ρ a variable assignment, w,v worlds, and ϕ p a signed L-formula
of polarity p. Then it holds:

28 CHAPTER 3. SYNTAX, SEMANTICS AND UNIFORM NOTATION

1. If ϕp = αp(ϕp1
1 ,ϕ

p2
2), then

Mρ
w|=L αp(ϕp1

1 ,ϕ
p2
2) if, and only if, Mρ

w|=L ϕp1
1 and Mρ

w|=L ϕp2
2

2. If ϕp = βp(ϕp1
1 ,ϕ

p2
2), then

Mρ
w|=L βp(ϕp1

1 ,ϕ
p2
2) if, and only if, Mρ

w|=L ϕp1
1 or Mρ

w|=Lϕp2
2

3. If ϕp = γpx ϕp
1 , then

Mρ
w|=Lγpx ϕp

1 if, and only if, for all a ∈Dτ, Mρ[a/x]
w |=L ϕp

1

4. If ϕp = δpx ϕp
1 , then

Mρ
w|=L δpx ϕp

1 if, and only if, there is an a ∈Dτ such that Mρ[a/x]
w |=Lϕp

1

5. If ϕp = νp(ϕp
1), then

Mρ
w|=L νp(ϕp

1) if, and only if, for all v such that wRv and Mρ
v |=L ϕp

1

6. If ϕp = πp(ϕp
1), then

Mρ
w|=Lπp(ϕp

1) if, and only if, there is a v such that wRv and Mρ
v |=L ϕp

1

Proof.

1. α-type formulas: we show the proof if ϕp is of the form (ϕ−1 ⇒ ϕ+
2)+. The other cases can be

proved analogously:

Mρ
w|=L(ϕ1⇒ ϕ2)+ ⇔ Mρ

w 6 |=L(ϕ1⇒ ϕ2)
⇔ Mρ

w 6 |=L¬ϕ1 and Mρ
w 6 |=L ϕ2

⇔ Mρ
w|=Lϕ1 and Mρ

w 6 |=L ϕ2
⇔ Mρ

w|=Lϕ−1 and Mρ
w|=L ϕ+

2

2. β-type formulas: we show the proof if ϕp is of the form (ϕ+
1 ⇒ ϕ−2)−. The other cases can be

proved analogously:

Mρ
w|=L(ϕ1⇒ ϕ2)− ⇔ Mρ

w|=L(ϕ1⇒ ϕ2)

⇔ Mρ
w|=L¬ϕ1 or Mρ

w|=Lϕ2
⇔ Mρ

w 6 |=L ϕ1 or Mρ
w|=L ϕ2

⇔ Mρ
w|=L ϕ+

1 or Mρ
w|=L ϕ−2

3. γ-type formulas: we present the proof when ϕp is of the form ∀−xτ ϕ′−. The case of ∃+xτ ϕ′+
is analogous.

Mρ
w|=L∀−xτ ϕ′−

⇔ Mρ
w|=L∀xτ ϕ′

⇔ For all a ∈Dτ such that Mρ[a/x]
w |=L ϕ′

⇔ For all a ∈Dτ such that Mρ[a/x]
w |=L ϕ′−

3.5. PRELIMINARY REMARKS 29

4. δ-type formulas: we present the proof when ϕp is of the form ∃−xτ ϕ′−. The case of ∀+xτ ϕ′+
is analogous.

Mρ
w|=L∃−xτ ϕ′−

⇔ Mρ
w|=L∃xτ ϕ′

⇔ There exists a ∈Dτ such that Mρ[a/x]
w |=L ϕ′

⇔ There exists a ∈Dτ such that Mρ[a/x]
w |=L ϕ′−

5. ν-type formulas: we present the proof when ϕp is of the form �−ϕ′−. The case of ♦+ϕ′+ is
analogous.

Mρ
w|=L�−ϕ′−

⇔ Mρ
w|=L�ϕ′

⇔ For all v with wRv it holds Mρ
v |=L ϕ′

⇔ For all v with wRv it holds Mρ
v |=L ϕ′−

6. π-type formulas: we present the proof when ϕp is of the form ♦−ϕ′−. The case of �+ϕ′+ is
analogous.

Mρ
w|=L♦−ϕ′−

⇔ Mρ
w|=L♦ϕ′

⇔ There exists v with wRv such that Mρ
v |=L ϕ′

⇔ There exists v with wRv such that Mρ
v |=L ϕ′−

ut

3.5 Preliminary Remarks

Before presenting the formal definition of indexed formula trees we have a quick look at the problems
of rewriting with equations and equivalences as the theories of indexed formula trees [Wallen, 1990]
and expansion trees [Andrews, 1981, Miller, 1983, Pfenning, 1987, Andrews, 1989] do not provide a
direct support for rewriting with equations and equivalences. In [Pfenning, 1987] primitive equality
is handled by expanding an equation sτ = tτ into Leibniz’ equality ∀Pτ→o P(s)⇒ P(t). For rewriting
equations and equivalences the idea is to use Leibniz’ equality in the following manner: assume we
have an equation from the definition of addition over natural numbers

∀(λx ∀(λy (s(x) + y) = s(x + y))) (3.1)

where s is the successor on natural numbers. Rewriting a formula Q(s(a) + b) with this equation
results in P(s(a + b)) and we can encode this by replacing (3.1) with

∀(λx ∀(λy ∀(λP P(s(x) + y)⇒ P(s(x + y))))) (3.2)

and instantiating P with λu Q(u) in order to obtain

Q(s(x) + y)⇒ Q(s(x + y)). (3.3)

Applying (3.3) on Q(s(a) + b) we obtain Q(s(a + b)), which is the desired result. Thus, the idea is to
have rewriting as a primitive rule and to encode it internally as a sequence of expansion, instantiation
and application of Leibniz’ equality. However, this already fails for equations in the presence of
quantified formulas that have undefined polarities. Example: assume we want to apply (3.1) on the
formula

∀(λz R(s(z) + b))⇔ S. (3.4)

30 CHAPTER 3. SYNTAX, SEMANTICS AND UNIFORM NOTATION

Intuitively (3.1) is applicable on (3.4) and it should rewrite it into

∀(λz R(s(z + b)))⇔ S (3.5)

Expanding (3.1) we obtain again (3.2), but we fail to construct an instance t for P such that the βη
long normal form for t(s(x) + y) is unifiable by some σ with ∀(λz R(s(z) + b))⇔ S and the βη long
normal form σ(t(s(x+y))) is equal to (3.5). This problem shows up because we want to rewrite within
the scope of quantifiers without polarity. The way around that problem is to have an extensionality
rule which transforms (3.1) into

∀(λy (λx (s(x) + y) = λx s(x + y))) (3.6)

and to use that equation for the rewriting 4 . The Leibniz’ equality for (3.6) is

∀(λy ∀(λP P(λx (s(x) + y))⇒ P(λx s(x + y)))). (3.7)

Now we can instantiate P with λu (∀(λz u(z)))⇔ S. Applying the instantiation on (3.7) we obtain

∀(λy [∀(λz s(z) + y)⇔ S]⇒ [∀(λz s(z + y))⇔ S]. (3.8)

Now (∀(λz s(z) + y))⇔ S is unifiable with (3.4) by instantiating y with b and we obtain the desired
result from (3.5). Thus, our solution to support intuitive rewriting will be to encode it via a sequence
of extensionality steps, expansion of primitive equality into Leibniz’ equality, and standard logical
refinement.

3.5.1 Sketch of the CORE Proof-Theory

The proof-theoretical framework for CORE relies entirely on the (extended) uniform notation and is
based on a notion of a proof state that consists of two complementary parts: the first is an indexed
formula tree for the initial conjecture and this is used to check the validity of substitutions. The second
part is the working copy of the first indexed formula tree which is actively transformed by the CORE

calculus rules. The working copy is an indexed formula tree with free variables, and there is a one-to-
one mapping between the free variables and binding positions in the first indexed formula tree. The
secondary uniform type of the binding positions in the first indexed formula tree also indicates the
types γ or δ of the free variables.

The uniform notation is the basis for a uniform definition of a logical context and replacement
rules in free variable indexed formula trees. The reasoning rules are (1) contraction, (2) weaken-
ing, (3) permutations of modal quantifiers over logical connectives, (4) resolution replacement rule
application, (5) propositional simplification, (6) expansion of ε- and ζ-type formulas into Leibniz’
equalities, (7) extensionality over γ-variables for particular ε-type signed formulas and δ-variables for
particular ζ-type signed formulas, (8) the boolean ζ-expansion rule that expands positive equivalences
into the conjunction of two implications, (9) instantiation, (10) the increase of multiplicities of γ-and
ν-type quantifiers, (11) the application of rewriting replacement rules, and (12) Cut.

4This extensionality rule is the (ξ)-rule from [Hindley & Seldin, 1986].

Chapter 4

Indexed Formula Trees

A CORE proof state consists of an indexed formula tree and a free variable copy of the indexed
formula tree. This chapter introduces indexed formula trees, which are a combination of the indexed
formula trees in [Wallen, 1990] with a variant of the expansion tree proofs in [Miller, 1983,Pfenning,
1987].

We introduce the notion of an indexed formula tree in two steps: first we define the indexed for-
mula tree obtained initially from a formula, which we denote by initial indexed formula tree. In a
second step we add nodes that represent the introduction of Leibniz’ equality, extensionality introduc-
tion for ε- and ζ-type formulas, boolean ζ-expansion as well as the introduction of cut. Furthermore
we define the application of substitutions as well as the handling of new variables, for instance those
generated by higher-order unification.

In the following we agree to denote by αp(αp1
1 ,α

p2
2) a signed formula of polarity p, uniform type

α, and subformulas αi with respective polarities pi according the tables in Figure 3.1 (p. 26). By abuse
of notation we also allow the replacement of the αi by new formulas. Example: if α+(αp1

1 ,α
p2
2) is

(A−⇒ B+)+, then αp(C,αp2
2) denotes (C−⇒ B+)+. We use an analogous notation for formulas of

the other uniform types. Furthermore we agree to denote by α p(ϕp1
1 , . . . ,ϕ

pn
n) either the single signed

formula ϕp1
1 , if n = 1, and otherwise the signed formula αp(ϕp1

1 ,α
p2(ϕp2

2 , . . . ,ϕ
pn
n)). Analogously we

define β.

4.1 Initial Indexed Formula Trees

Definition 4.1.1 (Initial Indexed Formula Tree) We define initial indexed formula trees inductively
over the structure of formulas. Each node of the tree has a formula as label, a polarity, and a uniform
type. All nodes, except for the root node have also secondary uniform types, which is the uniform
type of their parent nodes.

1. If Ap is a signed atom of polarity p and without uniform type, then Q = Ap
− is an initial indexed

formula tree of polarity p and no uniform type, which is indicated by the subscript −. Those
literal nodes are leaves of indexed formula trees and Label(Q) := A.

2. If ε(s, t)p is a signed formula of polarity p and uniform type ε, then Q = ε(s, t) p
ε is an initial

indexed formula tree of polarity p and uniform type ε. They are also leaves of indexed formula
trees and Label(Q) := ε(s, t).

31

32 CHAPTER 4. INDEXED FORMULA TREES

3. If ζ(s, t)p is a signed formula of polarity p and uniform type ζ, then Q = ζ(s, t) p
ζ is an initial

indexed formula tree of polarity p and uniform type ζ. They are the last kind of leaves of
indexed formula trees and Label(Q) := ζ(s, t).

4. Let Q′ be an initial indexed formula tree of polarity p and Label(Q′) = ϕ and α−p(ϕp) a signed
formula with the opposite polarity −p. Then

Q =
α(ϕ)−p

α

Q′

is an initial indexed formula tree with Label(Q) := α(ϕ), of polarity −p and uniform type α.
The secondary type of Q′ is α1.

5. Let Q1,Q2 be initial indexed formula trees with respective polarities p1 and p2, and assume a
signed formula αp(Label(Q1)p1 ,Label(Q2)p2) of polarity p. Then

Q =
α(Label(Q1),Label(Q2))p

α

Q1 Q2

is an initial indexed formula tree with Label(Q) := α(Label(Q1),Label(Q2), polarity p, and
uniform type α. The secondary types of Q1 and Q2 are α1 and α2.

6. Let Q1,Q2 be initial indexed formula trees with respective polarities p1 and p2, and assume a
signed formula βp(Label(Q1)p1 ,Label(Q2)p2) of polarity p. Then

Q =
β(Label(Q1),Label(Q2))p

β

Q1 Q2

is an initial indexed formula tree with Label(Q) := β(Label(Q1),Label(Q2), of polarity p and
uniform type β. The secondary types of Q1 and Q2 are β1 and β2.

7. Let γpx ϕ(x) be a signed formula of polarity p, and Qi,1 ≤ i ≤ n initial indexed formula trees
with Label(Qi) = ϕ(Xi) where the Xi are new (meta) variables. Then

Q =
γpx ϕ(x)p

γ

Q1 . . . Qn

is an initial indexed formula tree with Label(Q) := γpx ϕ(x), of polarity p and uniform type γ.
All the Qi then have secondary type γ0. The multiplicity of Q is n.
For each 1 ≤ i≤ n we say that Qi is the binding node for Xi. We also call a meta variable Xi a
γ-variable.

8. Let δpx ϕ(x) be a signed formula of polarity p, and Q′ an initial indexed formula trees with
Label(Q′) = ϕ(x) where x is a new parameter. Then

Q =
δpx ϕ(x)

p
δ

Q′

4.1. INITIAL INDEXED FORMULA TREES 33

is an initial indexed formula tree with Label(Q) := δpx ϕ(x), of polarity p and uniform type δ.
The secondary type of Q′ is δ0.
We say that Q′ is the binding position for x. We also call a parameter x a δ-variable.

9. Let Qi,1 ≤ i ≤ n be initial indexed formula trees all with the same labels up to renaming of
bound variables and the same polarity p. Further let νp(Label(Q1)) be a signed formula of
polarity p. Then

Q =
ν(Label(Q1))p

ν

Q1 . . . Qn

is an initial indexed formula tree with Label(Q) := ν(Label(Q1)), of polarity p, and uniform
type ν. All the Qi then have secondary type ν0. The multiplicity of Q is n.

10. Let Q′ be an initial indexed formula trees of polarity p and πp(Label(Q′)) a signed formula of
polarity p. Then

Q =
π(Label(Q))p

δ

Q′

is an initial indexed formula tree with Label(Q) := π(Label(Q′)), of polarity p and uniform
type π. The secondary type of Q′ is π0.

Example 4.1.2 As an example for an initial indexed formula tree we consider the formula about
natural numbers

(∀xNat 0 + x = x)∧ (∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))
⇒∀pNat→o ∀vNat p(s(s(0)) + v)⇔ P(s(s(v)))

where Nat denotes the type of natural numbers, 0Nat is the zero of natural numbers, sNat→Nat and
pNat→Nat denote repsectively the successor and predecessor of some natural number. Then the initial
indexed formula tree for the positive formula is viewed in Figure 4.1 (p. 34). In the following sections
we will use this initial indexed formula tree to illustrate different rules on indexed formula trees.

Notation 4.1.3 (Γ0, ∆0, ν0 and Π0) For a given (initial) indexed formula tree we denote the set of
nodes of secondary type γ0 by Γ0, and analogously we define the sets ∆0, ν0 and Π0.

The proof-theory defined for CORE is a meta proof-theory in that it supports a variety of logics.
To this end (following [Wallen, 1990]) there are two kinds of substitutions: one for the instantiation
of meta variables and one that deals with the modal part of the considered logics. The former is
called a variable substitution, denoted by σQ, and instantiates meta variables bound on nodes of
secondary type γ0. Following [Wallen, 1990,Miller, 1983,Pfenning, 1987] the occur-check is realised
as an acyclicity check of a directed graph obtained from the structure of the indexed formula tree
and additional edges between binding nodes of the instantiated meta variable X and binding nodes of
parameters occurring in σQ(X). We first introduce the structural ordering ≺ induced by the structure
of an indexed formula tree and the quantifier ordering ≺V induced by a variable substitution.

Definition 4.1.4 (Structural Ordering) Let Q be an indexed formula tree. The structural ordering
≺Q is a binary relation among the nodes in Q defined by: Q1 ≺Q Q2 iff Q1 dominates Q2 in Q.

34 CHAPTER 4. INDEXED FORMULA TREES

(∀xNat 0 + x = x)∧ (∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))
⇒∀pNat→o ∀vNat p(s(s(0)) + v)⇔ p(s(s(v)))+

α

(∀xNat 0 + x = x)∧
(∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))−α

(∀xNat 0 + x = x)−γ

0 + X = X−ε

(∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))−γ

(∀yNat ¬(X = 0)⇒ X + y = s(p(X) + y))−γ

(¬(X = 0)⇒ X +Y = s(p(X) +Y))−β

¬(X = 0)+
α

X = 0−ε

X +Y = s(p(X) +Y)−ε

(∀pNat→o ∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

(∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

p(s(s(0)) + v)⇔ p(s(s(v)))+
ζ

Figure 4.1: Initial indexed formula tree for the running example.

Definition 4.1.5 (Quantifier Ordering) Let Q be an indexed formula tree and σ an (idempotent)
substitution for meta variables bound on γ0-type positions in Q by terms containing only meta vari-
ables and parameters bound in Q. The quantifier ordering ≺V induced by σ is the binary relation
defined by: Q0 ≺V Q1 iff there is an X ∈ dom(σ) bound on Q1 and there occurs in σ(X) a parameter
bound on Q0.

The second kind of substitutions is called a modal substitution and is denoted by σM . In order to
define it properly, we introduce the notion of modal prefixes for the modal logics under consideration,
i.e. the modal logics K, K4, D, D4, T, and S4.

For these modal logics the modal prefix is defined for some node in the indexed formula tree and
is the sequence of nodes from ν0 and Π0 that govern that node.

Definition 4.1.6 (Modal Prefix) Let Q be a node in an indexed formula tree. The modal prefix
pre(Q) of Q is a sequence 〈Q1, . . . ,Qn〉 ∈ (ν0∪Π0)∗ and is defined as follows:

pre(Q) :=

〈〉 if Q has no parent node
〈Q′ :: pre(Q′)〉 if Q has parent node Q′ ∈ν0∪Π0
pre(Q′) if Q has parent node Q′ 6∈ν0∪Π0

where 〈Q :: pre(Q′)〉 denotes the sequence obtained from adding Q as first element to the sequence
pre(Q′).

In order to identify two nodes the modal prefixes of both nodes must be equal. To this end the
nodes from ν0 are treated like meta variables and a modal substitution is a substitution of nodes from
ν0 by sequences of nodes from ν0∪Π0. Additionally, a modal substitution must respect the so-called

4.1. INITIAL INDEXED FORMULA TREES 35

Property Condition
general p R0 pu p ∈ (ν0∪Π0)∗,u ∈ (ν0∪Π0)
reflexive p R0 p p ∈ (ν0∪Π0)∗

transitive p R0 pq p ∈ (ν0∪Π0)∗,Q ∈ (ν0∪Π0)+

Table 4.1: Prefix conditions.

L Properties of R0

K, D general
T general, reflexive

K4, D4 general, transitive
S4 general, reflexive, transitive

Table 4.2: Accessibility relations on prefixes.

accessibility relation of the modal logic under consideration, which is given in Tables 4.1 and 4.2
taken from [Wallen, 1990].

Before introducing the notion of modal substitutions we introduce the interpretation of nodes of
type Π0 and the modal assignment for nodes of type ν0. Consider an L-model M for some modal
logic L with accessibility relation R and w a possible world. The interpretation of some node Q ∈Π0
depends on w and denotes the set of all worlds w′ for which wRw′ holds. Thus, Mw(Q) = {w′ | wRw′}.
A modal assignment ρM maps a world w and some node Q ∈ ν0 to some world w′ for which wRw′

holds.
Assume an L-model M, a possible world w, and a modal assignment ρM . The interpretation of

some modal prefix p is a set of possible worlds that are described by the prefix.

Definition 4.1.7 (Semantics of Modal Prefixes) Let M be an L-model, R the L-accessibility rela-
tion, and let w be a possible world. An interpretation of a constant node Q ∈ Π0 with respect to Mw
is the set of all worlds w′ for which wRw′ holds. A modal assignment ρM is a mapping from G×ν0
into G, such that wRρM(w,Q) holds. The interpretation of a modal prefix p with respect to M, w, and
some ρM is a set of possible worlds defined by:

MρM
w (p) =

{w} if p = 〈〉S
w′∈Mw(Q) MρM

w′ (p′) if p = 〈Q :: p′〉 and Q ∈Π0

MρM
ρM(w,Q)(p′) if p = 〈Q :: p′〉 and Q ∈ ν0

Lemma 4.1.8 (Accuracy of Definition 4.1.7) Let M be an L-model, ρQ an assignment of object
variables, ρM a modal assignment, and ϕ an L-formula. For any polarity p and sequence mq of modal
quantifiers from {�,♦} it holds:

MρQ,ρM
w |=L(mq(ϕ))p⇐⇒ for all w′ ∈MρM

w (mp) MρQ,ρM
w′ |=L ϕp

where mp is the modal prefix of ϕ obtained from mq, where each ν-type modal quantifier corresponds
to some (new) variable node and each π-type modal quantifier to some new constant node.

36 CHAPTER 4. INDEXED FORMULA TREES

Proof. We prove the statement by induction over the length n of mq:

n = 0 : In this case the statement trivially holds, since MρM
w (〈〉) = {w}.

n→ n + 1 : There are two cases to consider:

(A) The signed formula (mqϕ)p is of the form (ν{ν,π}∗ϕ)p: let Q∈ν0 be the variable node obtained
for the leading ν-type modal quantifier.

MρQ,ρM
w |=L(ν{ν,π}∗ϕ)p

⇔ there exists w′,wRw′, such that MρQ,ρM
w′ |=L({ν,π}∗ϕ)p

IH⇔ there exists w′,wRw′, such that for all w′′ ∈MρM
w′ (mp) MρQ,ρM

w′′ |=L ϕp

ρM(w,Q) is such a w′⇔ for all w′′ ∈MρM
w (〈Q :: mp〉) MρQ,ρM

w′′ |=L ϕp

(B) The signed formula is of the form (π{ν,π}∗ϕ)p: let Q∈Π0 be the constant node obtained for the
leading π-type modal quantifier.

MρQ,ρM
w |=L(π{ν,π}∗ϕ)p

⇔ for all w′,wRw′ it holds MρQ,ρM
w′ |=L({ν,π}∗ϕ)p

IH⇔ for all w′,wRw′ it holds for all w′′ ∈MρM
w′ (mp) MρQ,ρM

w′′ |=Lϕp

⇔ for all w′ ∈Mw(Q) it holds for all w′′ ∈MρM
w′ (mp) MρQ,ρM

w′′ |=L ϕp

⇔ for all w′′ ∈MρM
w (〈Q :: mp〉) MρQ,ρM

w′′ |=L ϕp

ut

The above semantics of modal prefixes allows the definition of prefixed formulas and their seman-
tics, which is a convenient tool for many soundness and safeness arguments. A prefixed formula of a
node in an indexed formula tree is of the form mp.ϕp where mp is the modal prefix of Q, p the polarity
of Q, and ϕ its label. Its semantics with respect to an L-model M, a possible world w and assignment
ρ is the valuation of ϕp in the possible worlds described by Mρ

w(mp).

Definition 4.1.9 (Modal Substitution) Let Q be an indexed formula tree. A modal substitution is a
mapping σM : ν0→ (ν0∪Π0)∗. The homomorphic extension of σM to sequences p ∈ (ν0∪Π0)∗ is
defined by

σM(p) :=

〈〉 if p = 〈〉
σM(Q)⊕σM(q) if p = 〈Q :: q〉 and Q ∈ ν0
〈Q :: σM(q)〉 if p = 〈Q :: q〉 and Q ∈Π0

where σM(Q)⊕σM(q) denotes the concatenation of the two sequences σM(Q) and σM(q). A modal
substitution σM is idempotent, iff σM is idempotent, i.e. if σM(σM(p)) = σM(p).

Throughout the rest of this thesis we assume that all modal substitutions are idempotent. The
domain of a modal substitution σM is the set ν0 of nodes Q of secondary type ν0, for which σM(Q) 6=
〈Q〉 holds; the domain of σM is denoted by dom(σM). Analogously to substitutions of meta variables,
a modal substitution induces an ordering among nodes (from [Wallen, 1990]):

Definition 4.1.10 (Modal Ordering) Let Q be an indexed formula tree and σM a modal substitution
for Q. The modal substitution σM induces a binary relation≺M∈ν0×(ν0∪Π0) defined by: Q0≺M Q1
iff Q0 ∈ σM(Q1).

4.1. INITIAL INDEXED FORMULA TREES 37

We have now all notions required for the definition of a substitution for each logic L considered
in this thesis and its induced reduction relation CL . We present a unified notion for substitutions, in
order to stress the uniformity of the foundations laid in [Wallen, 1990, Miller, 1983, Pfenning, 1987]
as a basis for the uniformity of the framework proposed in this thesis.

Definition 4.1.11 (L-Substitution & Reduction-Relation CL) Let Q be an indexed formula tree
for some logic L .

CPL: If L is classical propositonal logic (CPL), then there are no substitutions. The reduction rela-
tion CL is the transitive closure of ≺Q, i.e. CL :=≺+

Q .

CPML: If L is classical propositional modal logic (CPML), then an L-substitution consists of a
modal substitution σM . The domain of such a substitution is dom(σM). The reduction relation
CL is the transitive closure of the union of ≺Q and ≺M, i.e. CL := (≺Q ∪≺M)+.

CFOML: If L is classical first-order modal logic (CFOML), then an L-substitution consists of a
variable substitution σQ and a modal substitution σM , denoted by 〈σQ,σM〉. The domain of
such a substitution is the pair 〈dom(σQ),dom(σM)〉. The reduction relation CL is the transitive
closure of the union of ≺Q, ≺V , and ≺M , i.e. CL := (≺Q ∪ ≺V ∪ ≺M)+.

CFOL & CHOL: If L is classical first-order or higher-order logic (CHOL), then an L-substitution
consists only of a variable substitution σQ. The domain of this substitution is dom(σQ). The
reduction relation CL is the transitive closure of the union of ≺Q and ≺V , i.e. CL := (≺Q
∪ ≺V)+.

Remark 4.1.12 Throughout the rest of this thesis we agree that if σ is some L-substitution and Q
is the binding node of some γ-variable X , then if X ∈ dom(σ), we say that Q is instantiated and
otherwise Q is uninstantiated. If Q is instantiated, then we may denote the instance σ(X) also by
σ(Q). Similarly, if Q is some node of secondary type ν0, then if Q ∈ dom(σ) then Q is instantiated
and otherwise Q is uninstantiated.

Based on the uniform notion of an L-substitution, we can uniformly define when an L-substitution
is admissible with respect to the logic L .

Definition 4.1.13 (L-Admissible Substitutions) Let Q be an indexed formula tree for some logic L ,
σL an L-substitution, and CL the respective reduction relation. σL is L-admissible, if and only if

CPL: If L is classical propositional logic, then CL (:=≺+
Q) must be irreflexive. This is always ful-

filled by construction of the indexed formula tree.

CPML: If L is classical propositional modal logic, then σL := σM and it must hold

1. σM respects the L-accessibility relation R0 on (ν0∪Π0)∗; i.e. for all modal prefixes p,q
in Q, p R0 q implies σM(p) R0 σM(q),

2. if L is a K-logic, then for any Q∈ν0, such that σM(Q) 6= 〈Q〉, there must be a Q′ ∈Π0∪ν0
which occurs in σM(Q),

3. and CL := (≺Q ∪≺M)+ must be irreflexive.

CFOML: If L is classical first-order modal logic, then σL := 〈σQ,σM〉 and it must hold

1. σM respects the L-accessibility relation R0 as for CPML,

38 CHAPTER 4. INDEXED FORMULA TREES

2. if L is a K-logic, then for any Q ∈ ν0, such that σM(Q) 6= 〈Q〉, there must be a Q′ ∈ Π0
which occurs in σM(Q),

3. and CL := (≺Q ∪≺V ∪ ≺M)+ must be irreflexive.

CFOL & CHOL: If L is classical first-order or higher-order logic, then CL (:= (≺Q ∪ ≺V)+) must
be irreflexive.

Note that the notion of admissibility of substitutions is equivalent to the notion defined in [Wallen,
1990] if substitutions σ are idempotent. With respect to [Miller, 1983, Pfenning, 1987] our notion
corresponds to the dependency relation among the instances of γ-variables.

Lemma 4.1.14 (Relationship between assignment and substitution) Let Q be an actual indexed
formula tree, and let 〈σQ,σM〉 be an L-admissible L-substitution. Then for every L-model M, every
possible world w, assignment ρQ, and modal assignment ρM:

MρQ,ρM
w (σM(pre(Q)).σQ(Label(Q))) =⇒M

ρ′Q,ρ
′
M

w (pre(Q).Label(Q))

where ρ′Q := ρQ[x/MρQ,ρM
w (σQ(x)) | x ∈ dom(σQ)]

ρ′M := ρM[(w,Q)/MρQ,ρM
w′ (σM(Q)) | Q ∈ dom(σM)] for some w′ ∈MρQ,ρM

w (σM(Q))

Proof. We assume that the statement holds for empty prefixes, i.e. pre(Q) = 〈〉 (this proof is simply
first by structural induction over terms and then over the formula Label(Q). The statement is proved
by induction over the length n of pre(Q).

n = 0:
MρQ,ρM

w (σM(pre(Q)).σQ(Label(Q)))

⇔ MρQ,ρM
w (σQ(Label(Q)))

⇔ M
ρ′Q,ρ

′
M

w (Label(Q))

⇔ M
ρ′Q,ρ

′
M

w (pre(Q).Label(Q))

n→ n + 1: we have two cases to consider:

(A). pre(Q) = 〈Q′ :: p〉 and Q′ ∈ν0:

MρQ,ρM
w (σM(pre(Q)).σQ(Label(Q)))

⇔ MρQ,ρM
w (σM(〈Q′ :: p〉).σQ(Label(Q)))

⇔ MρQ,ρM
w (σM(Q′)⊕σM(p).σQ(Label(Q)))

Lemma 4.1.8⇔ for all w′ ∈MρQ,ρM
w (σM(Q′)) . MρQ,ρM

w′ (σM(p).σQ(Label(Q)))
IH⇔ for all w′ ∈MρQ,ρM

w (σM(Q′)) . M
ρ′Q,ρ

′
M

w′ (p.Label(Q))

⇒ M
ρ′Q,ρ

′′
M

w (pre(Q).Label(Q))

where ρ′′M := ρ′M[w′′/(w,Q)], w′′ ∈M
ρ′Q,ρ

′
M

w (σM(Q)).

(B). pre(Q) = 〈Q′ :: p〉 and Q′ ∈Π0:

MρQ,ρM
w (σM(pre(Q)).σQ(Label(Q)))

⇔ MρQ,ρM
w (σM(〈Q′ :: p〉).σQ(Label(Q)))

⇔ MρQ,ρM
w (Q′ :: σM(p).σQ(Label(Q)))

Lemma 4.1.8⇔ for all w′,wRw′ it holds . MρQ,ρM
w′ (σM(p).σQ(Label(Q)))

IH⇔ for all w′,wRw′ it holds . M
ρ′Q,ρ

′
M

w′ (p.Label(Q))

⇒ M
ρ′Q,ρ

′
M

w (〈Q′′ :: p〉.Label(Q)) ut

4.1. INITIAL INDEXED FORMULA TREES 39

Following [Wallen, 1990, Andrews, 1981] we define (horizontal) paths on indexed formula trees.

Definition 4.1.15 (Paths) Let Q be an indexed formula tree. Then a path in Q is a sequence
� Q1, . . . ,Qn� of α-related nodes in Q. The sets P (Q) of paths through Q is the smallest set con-
taining {� Q�} and which is closed under the following operations:

α-Decomposition: If Q′ is a node of primary type α and subtrees Q1,Q2, and P∪{� Γ,Q′�} ∈
P (Q), then P∪{� Γ,Q1,Q2�} ∈ P (Q).

β-Decomposition: If Q′ is a node of primary type β and subtrees Q1,Q2, and P∪{� Γ,Q′ �} ∈
P (Q), then both P∪{� Γ,Q1�} ∈ P (Q) and P∪{� Γ,Q2�} ∈ P (Q).

γ-Decomposition: If Q′ is a node of primary type γ and subtrees Q1, . . . ,Qn, and P∪{� Γ,Q′�} ∈
P (Q), then P∪{� Γ,Q1, . . . ,Qn�} ∈ P (Q).

δ-Decomposition: If Q′ is a node of primary type δ and subtree Q′, and P∪{� Γ,Q′�} ∈ P (Q),
then P∪{� Γ,Q′�} ∈ P (Q).

ν-Decomposition: If Q′ is a node of primary type ν and subtrees Q1, . . . ,Qn, and P∪{� Γ,Q′�}∈
P (Q), then P∪{� Γ,Q1, . . . ,Qn�} ∈ P (Q).

π-Decomposition: If Q′ is a node of primary type π and subtree Q′′, and P∪{� Γ,Q′�} ∈ P (Q),
then P∪{� Γ,Q′′�} ∈ P (Q).

Note the close relationship between the decomposition rules for paths for the different types of
nodes and the relationship between the satisfiability of the main formulas with respect to its constituent
formulas: a path containing an α-type node is replaced by a path containing both subnodes, while a
path containing a β-type node is decomposed into two paths each containing one of the subnodes.
Analogously the decomposition of γ-, δ-, ν- and π-type nodes corresponds to the relationship between
the satisfiability of the signed formula of the respective type to its constituent formulas. This rela-
tionship together with the side conditions imposed by the requirements (1) that a modal substitution
respects the L-accessibility relation and (2) the acyclicity of the overall ordering CL induced by the
L-substitution entail that whenever we have obtained a set of paths where all paths are unsatisfiable,
then the initial conjecture is L-valid. Indeed, if all paths are unsatisfiable, we can apply the model
satisfiability rules backwards from the constituent formulas to the main formulas and obtain that there
is no L-model M satisfying ϕ+, i.e. ∀M M 6 |=Lϕ+, and thus it holds by definition ∀M M|=Lϕ.
Hence ϕ is L-valid.

Analysing the decomposition rules and the respective satisfiability relations in more detail, we
observe that they are equivalence transformations which is necessary for our soundness and safeness
results. Safeness means intuitively that no possible refutation is lost by such a transformation. The
decomposition rules have this property and this allows to switch freely between the granularity of
the decomposition of paths. However, the definition of further transformations on indexed formula
trees requires a weaker property which only requires the preservation of satisfiable paths during the
transformation, which is the general condition for soundness. Formally:

Definition 4.1.16 (Soundness & Safeness) Let Q, Q′ be two indexed formula trees with respective
L-admissible substitutions σ and σ′, where Q′ has been obtained from Q by some transformation. The
transformation is sound if, and only if, if there is an L-satisfiable path Q then so there is in Q ′. The
transformation is safe if, and only if, if there is an L-satisfiable path in Q ′ then so there is one in Q.

40 CHAPTER 4. INDEXED FORMULA TREES

Indexed formula trees are obtained from an initial indexed formula tree by five additional rules:
introduction of Leibniz’ equality for equations and equivalences (Section 4.2), a rule for functional
and boolean extensionality introduction (Section 4.3), a rule to expand positive equivalences into a
conjunction of implications (Section 4.4), a substitution rule (Section 4.5), a rule to introduce cuts
(Section 4.7), and a rule to increase the multiplicity of nodes of primary type γ or ν (Section 4.11).

4.2 Leibniz’ Equality

The first rule expands an ε- or ζ-node into Leibniz’ equality. This rule changes a given indexed formula
tree by replacing the respective ε- or ζ-node Qe (i.e. Label(Qe) = ε(s, t) or Label(Qe) = ζ(s, t)) by a
so-called Leibniz node, which has the same label and polarity p as Qe, is of primary type α, and has
subtrees Qe and an initial indexed formula tree for (∀P P(s)⇒ P(t))p.

Definition 4.2.1 (Leibniz’ Equality Introduction) Let Qe be a leaf node in some indexed formula
of polarity p, uniform type e∈ {ε,ζ}, such that Label(Qe) = ε(sτ, tτ) or Label(Qe) = ζ(sτ, tτ). Further
let QL be an initial indexed formula tree for the signed formula (∀Pτ→o P(s)⇒ P(t))p. Then we can
replace Qe by

QLeibniz =
Label(Qe)

p
α

Qe QL

We call the new node a Leibniz node.

Example 4.2.2 We illustrate the Leibniz’ equality introduction rule with our running example from
Example 4.1.2 (p. 33). The application of the rule to the ε-type subtree 0 + x = x−ε transforms the
indexed formula tree from Figure 4.1 into the indexed formula tree in Figure 4.2.

Lemma 4.2.3 (Soundness & Safeness of Leibniz’ Equality Introduction Rule) The Leibniz’
equality introduction rule on indexed formula trees from Definition 4.2.1 is sound and safe.

Proof. The rule operates on literal nodes. Since literal nodes are never of type γ,δ,ν, or π, no quanti-
fiers with defined polarity are duplicated by that operation and thus the operation does not affect the
overall substitution σ which remains L-admissible. It remains to be shown for soundness (resp. safe-
ness) that it also preserves the existence (resp. absence) of satisfiable paths. To this end we consider
the paths affected by these transformations.

Let Q = ε
ζ (s, t) be the ε- or ζ-type literal node on which the rule is applied. This rule transforms

the paths as follows

� Γ,ε−(s, t)� into � Γ,ε−(s, t),γ−P β−(P(s)−,P(t)+)� and
� Γ,ζ+(s, t)� into � Γ,ζ+(s, t),δ+P α+(P(s)+,P(t)−)�.

We show that for both transformations the former path is satisfiable if, and only if, the latter is also
satisfiable. For the negative case, i.e. for ε(s, t), we prove it when ε(s, t) is s = t−. The proof for

4.2. LEIBNIZ’ EQUALITY 41

(∀xNat 0 + x = x)∧ (∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))
⇒∀pNat→o ∀vNat p(s(s(0)) + v)⇔ p(s(s(v)))+

α

(∀xNat 0 + x = x)∧
(∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))−α

(∀xNat 0 + x = x)−γ

0 + X = X−ε

0 + X = X−ε (∀qNat→o q(0 + X)⇒ q(X))−γ

(Q(0 + X)⇒ Q(X))−β

Q(0 + X)+
− Q(X)−−

(∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))−γ

(∀yNat ¬(X = 0)⇒ X + y = s(p(X) + y))−γ

(¬(X = 0)⇒ X +Y = s(p(X) +Y))−β

¬(X = 0)+
α

X = 0−ε

X +Y = s(p(X) +Y)−ε

(∀pNat→o ∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

(∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

p(s(s(0)) + v)⇔ p(s(s(v)))+
ζ

Figure 4.2: Indexed formula tree after introduction of Leibniz’ equality.

(s⇔ t)− is analogous.

Mρ
w|=L s = t−

⇔ Mρ
w|=L s = t

⇔ Mρ
w|=L s = t and forall p ∈Dτ→o Mρ[p/P]

w |=L P(s) or Mρ
w 6 |=LP(s)

⇔ Mρ
w|=L s = t and forall p ∈Dτ→o Mρ[p/P]

w |=L P(s) or Mρ
w 6 |=LP(t)

⇔ Mρ
w|=L s = t and forall p ∈Dτ→o Mρ[p/P]

w |=L P(s)− or Mρ
w|=L P(t)+

⇔ Mρ
w|=L s = t and forall p ∈Dτ→o Mρ[p/P]

w |=L β−(P(s)−,P(t)+)

⇔ Mρ
w|=L s = t− and Mρ

w|=L γ−P β−(P(s)−,P(t)+)

For the positive case ζ+(s, t)) we prove it when ζ+(s, t) is s = t+. The proof for (s⇔ t)+ is analogous.

Mρ
w|=L s = t+

⇔ Mρ
w 6 |=L s = t

⇔ Mρ
w 6 |=L s = t and Mρ

w|=Ls = s and Mρ
w 6 |=L s = t

⇔ Mρ
w 6 |=L s = t and Mρ

w|=L(λx s = x)s and Mρ
w 6 |=L λx (s = x)t

⇔ Mρ
w 6 |=L s = t and there exists a p ∈Dτ→o (p = Mρ

w(λx (s = x)))
Mρ[p/P]

w |=LP(s) and Mρ[p/P]
w 6 |=LP(t)

⇔ Mρ
w 6 |=L s = t and there exists a p ∈Dτ→o (p = Mρ

w(λx (s = x)))
Mρ[p/P]

w |=LP(s)− and Mρ[p/P]
w |=L P(t)+

⇔ Mρ
w 6 |=L s = t and there exists a p ∈Dτ→o (p = Mρ

w(λx (s = x)))
Mρ[p/P]

w |=Lα+(P(s)−,P(t)+)

⇔ Mρ
w|=L s = t+ and Mρ

w|=L δ+P α+(P(s)−,P(t)+)
ut

42 CHAPTER 4. INDEXED FORMULA TREES

4.3 Extensionality

The second rule deals with the functional and boolean extensionality of ε and ζ-formulas, and the
respective introduction rule can be sketched as follows:

ε
ζ (s(x), t(x))

ε
ζ (λx s(x),λx t(x))

Ext-I

For this rule we need some additional restrictions to ensure its soundness: if we have an ε-formula
ε(s(X), t(X)), then intuitively we can only abstract over meta variables bound in some γ-type node
and moreover it must be possible to move its quantifier in front of ε(s(X), t(X)). However, in order to
simplify the theorem proving process we refrain from forcing to actually have to move the quantifiers
in front of the ε-formula and rather define a sufficient condition ensuring that the quantifier could in
principle be moved in front of the ε-formula. For ε-formulas ε(s(X), t(X)) with an occurrence of some
γ-variable X the condition expresses that the γ-variable X is local for ε(s(X), t(X)). Analogously, ζ-
formulas can only be abstracted over variables bound in δ-nodes (i.e. parameters) and must also be
“local”. We formalise these conditions by defining the notion of a local variable for ε and ζ formulas
(cf. Definition 4.3.1), and use this as the condition for the rule.

Definition 4.3.1 (Local Variables) Given an indexed formula tree Q and a node Q ′ inside Q whose
label contains a free variable x. If x is bound in some γ-type node in Q, then x is γ-local for Q ′ if, and
only if, Q′ is the binding position for x or Q has a direct parent node Q′′ such that

-- Q′′ is of primary type β, x does not occur in the label of the sibling of Q′, and x is γ-local for
Q′′, or

-- Q′ is of either primary type α or γ and x is γ-local for Q′′.

The dual property of a δ-local variable x for some Q′ is defined for variables bound in a δ-type node
and holds if, and only if, Q′ is the binding node for x or Q′ has a direct parent node Q′′ such that

-- Q′′ is of type α, x does not occur in the label of the sibling of Q′, and x is δ-local for Q′′, or

-- Q′′ is of either type β or δ and x is δ-local for Q′′.

Before presenting the extensionality introduction rule we prove a property about the local variables
that is used in the soundness and safeness proof of the extensionality introduction rule.

Lemma 4.3.2 (Local Variables are Local) Let Q = ϕ(x′)p
t be a subtree of an indexed formula tree

and Qx the parent node of the binding node of x′. If x′ is γ-local to Q, then the label of Qx is of the
form γp′x Ψ(ϕ(x)

p
t) and there is a Ψ′ such that for every L-model M we have:

(i) Mρ
w|=Lγp′x Ψ(ϕ(x)p

t)⇔Mρ
w|=L(Ψ′(γpx ϕ(x)p

t))p′

If x is δ-local to Q, then the label of Qx is of the form δp′x Ψ(ϕ(x)p
t) and there is a Ψ′ such that

for every L-model M:

(ii) Mρ
w|=Lδp′x Ψ(ϕ(x)p

t)⇔Mρ
w|=L(Ψ′(δpx ϕ(x)p

t))p′

4.3. EXTENSIONALITY 43

Proof. The proof of (i) is by induction over the distance from Q to Qx. The proof of (ii) is similar.

Base Case: For the base case we have the situation that Qx is the parent node of Q and has the label
γpx ϕ(x). Hence the statement holds trivially where Ψ′ is λxo x.

Induction Step: Assume the statement holds for the parent node Q p of Q. We proceed by case
analysis over the primary type ut of Qp:

1. ut = β, the label of the parent node Qp is βp0(ϕ(x)p,ψp1) and x does not occur in ψ. Then
by induction hypothesis there is a Ψ′′ such that it holds:

Mρ
w|=Lγp′Ψ (βp0(ϕ(x)p,ψp1))

IH⇔Mρ
w|=LΨ′′(γp0 x βp0(ϕ(x)p,ψp1))

Now x is still local to ϕ(x)p and it remains to prove that

Mρ
w|=L γp0x βp0(ϕ(x)p,ψp1)⇔Mρ

w|=L βp0(γp0 x ϕ(x)p,ψp1)

Mρ
w|=Lγp0 x βp0(ϕ(x)p,ψp1)

⇔ for all a ∈Dτ it holds Mρ[a/x]
w |=Lβp0(ϕ(x)p,ψp1)

⇔ for all a ∈Dτ it holds Mρ[a/x]
w |=Lϕ(x)p or Mρ[a/x]

w |=L ψp1

x6∈ψ⇔ for all a ∈Dτ it holds Mρ[a/x]
w |=Lϕ(x)p or Mρ

w|=L ψp1

⇔ (for all a ∈Dτ it holds Mρ[a/x]
w |=L ϕ(x)p) or Mρ

w|=Lψp1

⇔ Mρ
w|=Lγpx ϕ(x)p or Mρ

w|=Lψp1

⇔ Mρ
w|=Lβp0(γp0 x ϕ(x)p,ψp1)

The Ψ′ for this case is then λFo Ψ′′(βp0(F,ψp1).

2. ut = α, the label of the parent node Qp is αp0(ϕ(x)p,ψp1). Then by induction hypothesis
there is a Ψ′′ such that it holds:

Mρ
w|=L γp′Ψ (αp0(ϕ(x)p,ψp1))

IH⇔Mρ
w|=LΨ′′(γp0 x αp0(ϕ(x)p,ψp1))

Now x is still local to ϕ(x)p and it remains to prove

Mρ
w|=L γp0 x αp0(ϕ(x)p,ψp1)⇔Mρ

w|=L αp0(γp0 x ϕ(x)p,ψp1)

Mρ
w|=L γp0x αp0(ϕ(x)p,ψp1)

⇔ for all a ∈Dτ it holds Mρ[a/x]
w |=L αp0(ϕ(x)p,ψp1)

⇔ for all a ∈Dτ it holds Mρ[a/x]
w |=L ϕ(x)p and Mρ[a/x]

w |=Lψp1

x6∈ψ⇔ for all a ∈Dτ it holds Mρ[a/x]
w |=L ϕ(x)p and

for all a ∈Dτ it holds Mρ[a/x]
w Mρ[a/x]

w |=Lψp1

⇔ Mρ
w|=L γpx ϕ(x)p and Mρ

w|=L γp1 x ψp1

⇔ Mρ
w|=L αp0(γp0 x ϕ(x)p,γp1 x ψp1)

The Ψ′ for this case is then λFo Ψ′′(αp0(F,γp1 x ψp1)).

44 CHAPTER 4. INDEXED FORMULA TREES

3. ut = γ and the label of the parent node Qp is γp0y ϕ(x)p, x 6= y. Then by induction
hypothesis there exists a Ψ′′ such that it holds:

Mρ
w|=L γp′x Ψ(γp0 y (ϕ(x)p))

IH⇔Mρ
w|=L Ψ′(γp′x γp0 y ϕ(x)p)

Now x is still local to ϕ(x)p and it remains to prove

Mρ
w|=Lγp′x γp0 y ϕ(x)p⇔Mρ

w|=L γp0y γp′x ϕ(x)p

Mρ
w|=Lγp′x γp0 y ϕ(x)p

x6=y⇔ for all a,b ∈Dτ it holds Mρ[a/x,b/y]
w |=Lϕ(x)p

⇔ Mρ
w|=Lγp0 y γpx ϕ(x)p

The Ψ′ in this case is λFo Ψ′′(γp0 y F).

4. Otherwise x is not local to Q. ut

The extensionality introduction rule changes a given indexed formula tree by replacing an ε or
ζ-node Qe by a so-called Extensionality-Introduction node, which has the same label and polarity p
than Qe, is of primary type α and with subtrees Qe and an initial indexed formula tree for (λx s(x) =
λx t(x))p. Of course, Ext-I is only applicable if x is local for Qe.

Definition 4.3.3 (Extensionality Introduction) Let Qe be a leaf in some indexed formula of polarity

p, uniform type e ∈ {ε,ζ}, such that Label(Qe) = ε
ζ (s, t). Let further be x a variable that is local for

Qe, and QExt be an initial indexed formula tree for the signed formula (λx s = λx t) p. Then we can
replace Qe by

QExt−I =
Label(Qe)

p
α

Qe QExt

We call the new node an Extensionality introduction node.

Example 4.3.4 We illustrate the extensionality rule with our running example from Example 4.1.2
(p. 33). The application of the rule with the γ-local variable y to the ε-type subtree x+y = s(p(x)+y)−ε
transforms the indexed formula tree from Figure 4.1 into the indexed formula tree in Figure 4.3.

Lemma 4.3.5 (Soundness & Safeness of Extensionality Introduction) The Extensionality-Intro-
duction rule on indexed formula trees from Definition 4.3.3 is sound and safe.

Proof. The rule operates on literal nodes and thus does not affect the substitution which remains L-
admissible. It remains to be shown for soundness (resp. safeness) that it preserves the existence (resp.
absence) of satisfiable paths. To this end we consider the paths affected by these transformations.

Let Q =
ζ
ε (s(x), t(x)) be the ε- or ζ-type literal node on which the rule is applied and x the λ-

abstracted free variable that is local to Q (cf. Definition 4.3.1). This rule transforms the paths as
follows

� Γ,ε(s(x), t(x))� into � Γ,ε(s(x), t(x)),ε(λx s(x),λx t(x))� and
� Γ,ζ(s(x), t(x))� into � Γ,ζ(s(x), t(x)),ζ(λx s(x),λx t(x))�.

4.3. EXTENSIONALITY 45

(∀xNat 0 + x = x)∧ (∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))
⇒∀PNat→o ∀vNat P(s(s(0)) + v)⇔ P(s(s(v)))+

α

(∀xNat 0 + x = x)∧
(∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))−α

(∀xNat 0 + x = x)−γ

0 + X = X−ε

(∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))−γ

(∀yNat ¬(X ′ = 0)⇒ X ′+ y = s(p(X ′) + y))−γ

(¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′))−β

¬(X ′ = 0)+
α

X ′ = 0−ε

X ′+Y ′ = s(p(X ′) +Y ′)−ε

X ′+Y ′ = s(p(X ′) +Y ′)−ε λy X ′+ y = λy s(p(X ′) + y)−ε

(∀pNat→o ∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

(∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

p(s(s(0)) + v)⇔ p(s(s(v)))+
ζ

Figure 4.3: Indexed formula tree after extensionality introduction.

where in the first case x is γ-local to Q and in the second case x is δ-local to Q.
We show that for both transformations the former path is satisfiable if, and only if, the latter is also

satisfiable. For the negative case we prove it when ε(s(x), t(x)) is s(x) = t(x)−. The proof for the case
when ε(s(x), t(x)) is s(x)⇔ t(x)− is analogous. Note however, that for s(x)⇔ t(x)− we introduce the
ε-type signed formula (λx s(x) = λx t(x))−.

Mρ
w|=L s(x) = t(x)− ⇔ Mρ

w|=L s(x) = t(x)

⇔ Mρ
w|=L s(x) = t(x) and Mρ

w|=Ls(x) = t(x)
x is γ-local⇔ Mρ

w|=L s(x) = t(x) and for all a ∈Dτ Mρ[a/x]
w |=L s(x) = t(x)

Extensionality⇔ Mρ
w|=L s(x) = t(x) and Mρ

w|=Lλx s(x) = λx t(x)

⇔ Mρ
w|=L s(x) = t(x)− and Mρ

w|=L λx s(x) = λx t(x)−

For the positive case we prove it when ζ(s(x), t(x)) is s(x) = t(x)+. The proof for the case when
ζ(s(x), t(x)) is s(x)⇔ t(x)+ is analogous. Again, note that for s(x)⇔ t(x)+ we introduce the ζ-type
signed formula (λx s(x) = λx t(x))+.

Mρ
w|=L s(x) = t(x)+

⇔ Mρ
w 6 |=L s(x) = t(x)

⇔ Mρ
w 6 |=L s(x) = t(x) and Mρ

w 6 |=L s(x) = t(x)
x is δ-local⇔ Mρ

w 6 |=L s(x) = t(x) and there is an a ∈Dτ Mρ[a/x]
w 6 |=L s(x) = t(x)

⇔ Mρ
w 6 |=L s(x) = t(x) and not for all a ∈Dτ Mρ[a/x]

w |=Ls(x) = t(x)
Extensionality⇔ Mρ

w 6 |=L s(x) = t(x) and not Mρ
w|=L λx s(x) = λx t(x)

⇔ Mρ
w 6 |=L s(x) = t(x) and Mρ

w 6 |=L λx s(x) = λx t(x)

⇔ Mρ
w|=L s(x) = t(x)+ and Mρ

w|=Lλx s(x) = λx t(x)+ ut

46 CHAPTER 4. INDEXED FORMULA TREES

(∀xNat 0 + x = x)∧ (∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))
⇒∀pNat→o ∀vNat p(s(s(0)) + v)⇔ p(s(s(v)))+

α

(∀xNat 0 + x = x)∧
(∀xNat ∀yNat ¬(x = 0)
⇒ x + y = s(p(x) + y))−α

(∀pNat→o ∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

(∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

p(s(s(0)) + v)⇔ p(s(s(v)))+
ζ (p(s(s(0)) + v)⇒ p(s(s(v))))∧ (p(s(s(v)))⇒ p(s(s(0)) + v))+

β

(p(s(s(0)) + v)⇒ p(s(s(v))))+
α

p(s(s(0)) + v)−− p(s(s(v)))+
−

(p(s(s(v)))⇒ p(s(s(0)) + v))+
α

p(s(s(v)))−− p(s(s(0)) + v)+
−

Figure 4.4: Indexed formula tree after boolean ζ-expansion.

4.4 Boolean ζ-Expansion

The third rule consists of the expansion of positive equations and equivalences ζ(A,B) over formulas
Ao and Bo into ((A⇒ B)∧(B⇒ A))+. The rule replaces the respective ζ-type node Qζ of label ζ(A,B)
with a so-called ζ-expansion node of the same label and polarity than Qζ, but of primary type α and
with the subtrees Qζ and an initial indexed formula tree for the signed formula ((A⇒ B)∧(B⇒ A))+.

Definition 4.4.1 (Boolean ζ-Expansion) Let Qζ be a leaf node in some indexed formula tree of
positive polarity, uniform type ζ, and label ζ(A,B), where A and B are of type o. Let further be QE be
an initial indexed formula tree for the signed formula ((A⇒ B)∧ (B⇒ A))+. Then we can replace
Qζ by

QζExpansion =
Label(Qζ)+

α

Qζ QE

We call the new node a ζ-expansion node.

Note that this rule corresponds to the b-rule in [Benzmüller et al, 2002b].

Example 4.4.2 We illustrate the boolean ζ-expansion rule with our running example from Exam-
ple 4.1.2 (p. 33). The application of the rule on the ζ-type subtree p(s(s(0)) + v)⇔ p(s(s(v)))+

ζ
transforms the indexed formula tree from Figure 4.1 into the indexed formula tree in Figure 4.4.

We now prove the soundness and safeness of the boolean ζ-expansion rule.

Lemma 4.4.3 (Soundness & Safeness of Boolean ζ-Expansion) The boolean ζ-Expansion rule on
indexed formula tree is sound and safe.

Proof.
The rule operates on literal nodes and thus does not affect the substitution which remains L-

admissible. It remains to be shown for soundness (respectively safeness) that it preserves also

4.5. SUBSTITUTIONS 47

the existence (respectively absence) of satisfiable paths. The rule is applied to a literal node
Qζ = ζ(A,B), which is of positive polarity, where A and B are formulas. The new node introduced
by that rule denotes the signed formula ((A⇒ B)∧ (B⇒ A))+, which using uniform notation is
β(α(A−,B+),α(B−,A+)). The rule transforms the paths as follows:

� Γ,ζ(A,B)� into � Γ,ζ(A,B),β(α(A−,B+)+,α(B−,A+)+)+�

We show that the former path is satisfiable if, and only if, the latter path is satisfiable.

Mρ
w|=L ζ(Ao,Bo) ⇔ Mρ

w 6 |=L A = B
⇔ Mρ

w(A) 6= Mρ
w(B)

⇔ (Mρ
w(A) => and Mρ

w(B) =⊥) or
(Mρ

w(A) =⊥ and Mρ
w(B) =>) as Mρ

w(o) = {>,⊥}
⇔ (Mρ

w|=L A and Mρ
w 6 |=LB) or

(Mρ
w 6 |=L A and Mρ

w|=LB)

⇔ (Mρ
w|=L A− and Mρ

w|=L B+) or
(Mρ

w|=L A+ and Mρ
w|=L B−)

⇔ Mρ
w|=L α(A−,B+)+ or Mρ

w|=L α(B−,A+)+

⇔ Mρ
w|=L β(α(A−,B+)+,α(B−,A+)+)+

ut

4.5 Substitutions

The fourth rule is the application of admissible L-substitutions to indexed formula trees. Given an
indexed formula tree Q and an admissible L-substitution σ, we can apply a new L-substitution σ ′ if
and only if dom(σ)∩ dom(σ′) = /0 and σ′ ◦σ is an L-admissible substitution. If σ′ is applicable and
if σ′ contains a variable substitution, we must apply it to all subtrees of Q. This is required especially
for the higher-order logic case when instantiating set variables, i.e. variables of type τ→ o where τ is
arbitrary.

Definition 4.5.1 (Instantiation of Indexed Formula Trees) Let Q be an indexed formula tree and
X a γ-variable that occurs free in Label(Q). The instantiation of X by t in Q is defined as

-- if Q is a leaf node, then we replace Q by an initial indexed formula tree for {t/X}(Label(Q)).

-- Otherwise, apply {t/X} to the label of Q, and recursively apply it to the subnodes of Q.

Definition 4.5.2 (L-Substitution Application on Indexed Formula Trees) Let Q be an indexed
formula tree, σ its actual L-substitution, and σ′ a new substitution. If σ′ is applicable on Q with σ,
then we apply σ′ to Q. The result of the substitution application is the (instantiated) indexed formula
tree together with the new substitution σ′ ◦σ.

Example 4.5.3 Take as an example the indexed formula tree for the positive formula

(∀pι→o ∀qι→o ∃rι→o ∀xι (p(x)∨q(x))⇒ r(x))+.

The initial indexed formula tree is viewed on the left-hand side of Figure 4.5 and the actual substitution
is the empty substitution. Instantiation of the γ-variable Rι→o with λyι p(y)∨ q(y) results in the

48 CHAPTER 4. INDEXED FORMULA TREES

∀p ∀q ∃r ∀x (p(x)∨q(x))⇒ r(x)+
δ

∀r ∃r ∀x (p(x)∨q(x))⇒ r(x)+
δ

∃r ∀x (p(x)∨q(x))⇒ r(x)+
γ

∀x (p(x)∨q(x))⇒ R(x)+
δ

(p(x)∨q(x))⇒ R(x)+
α

(p(x)∨q(x))
β
−

p(x)−− q(x)−−

R(x)−+

∀p ∀q ∃r ∀x (p(x)∨q(x))⇒ r(x)+
δ

∀r ∃r ∀x (p(x)∨q(x))⇒ r(x)+
δ

∃r ∀x (p(x)∨q(x))⇒ r(x)+
γ

∀x (p(x)∨q(x))⇒ p(x)∨q(x)+
δ

(p(x)∨q(x))⇒ p(x)∨q(x)+
α

(p(x)∨q(x))
β
−

p(x)−− q(x)−−

p(x)∨q(x)α
+

p(x)−+ q(x)−+

Figure 4.5: Example substitution application on indexed formula trees.

indexed formula tree on the right-hand side of Figure 4.5. Note how the leaf node R(x)−+ in the initial
indexed formula tree is replaced by an initial indexed formula tree for the positive βη-normalised
formula ({λyι P(y)∨Q(y)/R}R(x)))+.

Lemma 4.5.4 The application of an L-substitution is sound.

Proof. The new overall substitution is L-admissible, i.e. the modal substitution respects the L-
accessibility relation and the overall ordering is CL is irreflexive. It remains to be shown that if
there was an L-satisfiable path before instantiation, then so there is afterwards. To this end consider a
subtree Q of polarity p and label ϕ that has been affected by the instantiation. If Q was a literal node
then it has been replaced by a subtree of label σ′(ϕ); otherwise the label of Q has been replaced by
σ′(ϕ). Thus, in any case the prefixed formula pre(Q).ϕp has been replaced by the prefixed formula
σ′(pre(Q)).σ′(ϕ)p. Assume Q was on an L-satisfiable path, then there exists an L-model M such
that for all w and ρ it holds Mρ

w|=Lpre(Q).ϕp. On the other hand from Lemma 4.1.14 there exists an
ρ′ for σ′, such that for all possible worlds w holds Mρ′

w (pre(Q).ϕp) = Mρ′′
w (σ′(pre(Q)).σ′(ϕ)p). Thus,

if Q was L-satisfiable before, then σ(Q) still is. ut

Obtaining Substitutions. Finding a substitution is essential for automating proof search. For the
instantiation rule two kinds of substitutions must be determined: one for γ-variables in order to in-
stantiate the labels of the nodes and one for node variables in order to adjust the modal prefix of
nodes.

A standard procedure for finding object variable substitutions is a unification procedure which
computes for two terms t1, t2 a substitution σQ such that σQ(t1) and σQ(t2) are syntactically equal. For
the CORE framework we use the higher-order unification procedure from [Snyder & Gallier, 1989].
The procedure generates a list of substitutions σ each possibly accompanied by a set of flex-flex
constraints of the form H(t1, . . . , tn) = G(s1, . . . ,sm), where H and G are higher-order variables. Only
one of these substitutions and flex-flex constraints can be applied. However, undoing of substitution
application is supported in CORE which enables backtraking over unifiers.

4.6. BINDING GENERATED VARIABLES 49

The check for the admissibility of the substitutions is deferred to the acyclicity check of the new
overall substitution. In case the actual logic is CHOL two additional problems must be tackled: first,
the higher-order unification procedure may generate new variables, for which there are no binding
nodes in the actual indexed formula tree. Second, the flex-flex constraints must be taken into account
as additional conditions.

A variable H generated by higher-order unification is a γ-variable, but it is unclear how the binding
node for H structurally relates to existing binding nodes. The exact location for the binding of H can
only be determined when H itself gets instantiated since its location depends on the δ-variables that
occur in H’s instantiation. This instantiation being unknown at the time H is generated requires a
“lazy” mechanism to introduce a binding node for H that is structurally independent of the existing
quantifiers and only becomes related when H is instantiated. This mechanism is defined in Section 4.6.

The flex-flex constraints generated by higher-order unification are constraints that still need to
be proved in order to equalise two formulas or terms. The main problem consists of inserting these
constraints into the indexed formula tree at appropriate nodes. This depends on their role and we
define in Section 4.9 a general technique to integrate flex-flex constraints.

The second part of an L-substitution is a modal substitution. In [Otten & Kreitz, 1996] the idea
of a unification procedure for terms is carried over to (modal) prefixes of indexed formula trees called
the T-string unification procedure. The T-string unification procedure is parameterized over a set of
unification rules that are specific for each modal logic. Each instantiation of the unification procedure
has the property that it generates only substitutions that respect the L-accessibility relation of the
respective modal logic. Thus, the unification procedure already deals with the first conditions for
admissible modal substitutions (cf. the cases CPML and CFOML in Definition 4.1.13). The check
of the other conditions is deferred to the instantiation rule.

4.6 Binding Generated Variables

As discussed in the previous section we want to support the introduction of new variables, e.g. those
generated by higher-order unification. They act like meta-variables, i.e. the same substitution restric-
tions apply to them as for any other γ-variable, and we want to treat them alike.

Assume Q is the root node of an indexed formula tree with label ϕ and polarity p and Hτ is a new
variable, i.e. that is not bound in Q. To integrate a binding position for H we create an initial indexed
formula tree Q′ for the signed formula (∀Hτ True)−. Then Q′ is of the form

(∀H True)−γ

True−−

and the node True−− is the binding node for H . Then we connect Q and Q′ by some new α-type node
of polarity p, and label αp(ϕp,(∀H True)−).

Definition 4.6.1 (Insertion of new variables) Let Q be an indexed formula tree, Hτ a variable not
bound in Q, and let Q′ be an initial indexed formula tree for (∀Hτ True)−. Inserting a binding position
for Hτ transforms Q into

αp(Label(Q)p,(∀H True)−)

Q Q′

50 CHAPTER 4. INDEXED FORMULA TREES

Lemma 4.6.2 (Soundness & Safeness of Insertion of new variables) The insertion of binding
positions for new variables is sound and safe.

Proof. Since the substitution is not affected by the insertion of a new variable, the overall ordering
CL remains irreflexive. It remains to prove that the former indexed formula tree is L-satisfiable if,
and only if, the latter indexed formula tree is L-satisfiable.

Let M be an L-model , w a possible world, and ρ an assignment. Then:

Mρ
w|=L αp(Label(Q)p,(∀H True)−)

⇔ Mρ
w|=L Label(Q)p and Mρ

w|=L(∀H True)−

⇔ Mρ
w|=L Label(Q)p and Mρ

w|=L∀H True

⇔ Mρ
w|=L Label(Q)p and for all a . Mρ[a/x]

w |=LTrue

⇔ Mρ
w|=L Label(Q)p

ut

4.7 Cut

As usual the cut rule can be used in an arbitrary formula ϕ with free variables at some arbitrary subtree
Q′ of the whole indexed formula tree. We introduce the cut on Q′ by α-relating the (signed) β-formula
β−(ϕ+,ϕ−) to Q′. For the free variables in ϕ we additionally universally quantify those that are not
bound on some parent node of Q′ in order to obtain a valid indexed formula tree. Thus, if the free γ-
and δ-variables in ϕ and not bound above Q′ are ~x, let ~x′ be variables of the same type that are new
with respect to Q. Then there is a renaming ρ from ~x to ~x′. The actual cut-formula that is α-inserted
on Q′ is then the negative formula (∀~x′ ρ(β−(ϕ+,ϕ−)))− (respectively (�∀~x′ ρ(β−(ϕ+,ϕ−)))− in
case the actual logic L is a modal logic). In order to “restore” the old variables ~x in that formula, we
instantiate the ~x′ afterwards using ρ−1.

Definition 4.7.1 (Cut) Let Q be an indexed formula tree, Q′ a subtree of Q, ϕ an L-formula with
free γ- and δ-variables ~x that are not bound above Q′ in Q, ~x′ new variables, and ρ = {~x′/~x}. The
insertion of a cut over ϕ consists in creating an initial indexed formula tree Qc for the negative formula
ψ = (∀~x′ ρ(ϕ⇒ ϕ))− (respectively (�∀~x′ ρ(ϕ⇒ϕ))− for modal logics), α-relate Qc to Q′ and apply
the substitution ρ−1.

αp(ψ,Label(Q)p)

Qc Q

The new actual L-substitution is then ρ−1 ◦σ.

Example 4.7.2 We illustrate the cut rule for indexed formula trees with the following axioms about
addition over natural numbers: ∀xIN 0 + x = x and ∀yIN s(0) + y = s(0 + y). The axioms occur
negatively in some larger formula and we initially assign a multiplicity of 2 for the γ-quantifier of x IN .
The initial indexed formula tree is then as follows:

∀xIN 0 + x = x−γ

0 + X = X−ε 0 + X ′ = X ′−ε

∀yIN s(0) + y = s(0 + y)−γ

s(0) +Y = s(0 +Y)−ε

4.7. CUT 51

Assume further we instantiate X with Y which results in the indexed formula tree

∀xIN 0 + x = x−γ

0 +Y = Y−ε 0 + X ′ = X ′−ε

∀yIN s(0) + y = s(0 + y)−γ

s(0) +Y = s(0 +Y)−ε

Note that the actual substitution is now σ := {Y/X}. Finally, we perform a cut on 0 +Y = Y −ε over
the formula Y = 0. To that end we consider the variables in that formula, which are not bound above
0 +Y = Y−ε . The only such variable is Y and thus we create the cut formula ∀y′IN y′= 0∨¬(y′= 0) and
obtain the renaming ρ := {Y ′/Y} where Y ′ is the meta-variable introduced for y′ during the creation
of an initial indexed formula tree for the cut formula. Inserting the cut and applying ρ−1 results in the
indexed formula tree

∀xIN 0 + x = x−γ

(0 +Y = Y ∧∀y′IN y′ = 0∨¬(y′ = 0))−α

0 +Y = Y−ε ∀y′IN y′ = 0∨¬(y′ = 0)−γ

Y = 0∨¬(Y = 0)−β

Y = 0−ε ¬(Y = 0)−α

Y = 0+
ζ

0 + X ′ = X ′−ε

∀yIN s(0) + y = s(0 + y)−γ

s(0) +Y = s(0 +Y)−ε

The new overall substitution is ρ−1 ◦σ = {Y/X ,Y/Y ′}.

Lemma 4.7.3 (Soundness & Safeness of Cut) The insertion of cut over some formula ϕ is sound
and safe.

Proof. Let M be an L-model. To prove soundness and safeness we have to show that (1) the overall
ordering remains irreflexive and (2) M satisfies the signed formula Label(Q ′)p if, and only if, it
satisfies the signed formula αp(ψ−,Label(Q′)p).

1. Assume the ordering CL before rule application is irreflexive. To prove the irreflexivity of the
resulting ordering, observe that the substitution ρ−1 does not introduce dependencies inside
Qc. The only dependencies introduced by ρ−1 are going from adjacent nodes of Qc into Qc.
Furthermore, all parent nodes of Qc are smaller with respect to ≺Q. Thus, if there would be
a cycle after insertion of the Cut, then there must have been a cycle before its insertion, which
contradicts the assumption.

2. For the second part we prove the statement only for the modal logic case, as it contains the other

52 CHAPTER 4. INDEXED FORMULA TREES

case. Thus, Label(Q′) = (�∀~x′ ρ(ϕ⇒ ϕ))−.

Mρ
w|=L αp(ψ−,Label(Q′)p)

⇔ Mρ
w|=L ψ− and Mρ

w|=L Label(Q′)p

⇔ for all v, wRv, for all a1, . . . ,ak . Mρ[x′i/ai]
v |=L(ϕ⇒ ϕ)−

and Mρ
w|=L Label(Q′)p

⇔ for all v, wRv, for all a1, . . . ,ak Mρ[x′i/ai]
v |=Lϕ+ or Mρ[x′i/ai]

v |=L ϕ−
and Mρ

w|=L Label(Q′)p

⇔ Mρ
w|=L Label(Q′)p

ut

Admissibility of Cut. The cut rule is admissible for all logics considered in this thesis, except for
the considered higher-order logic. There it is required to prove the admissibility of the extensionality
rule from [Pfenning, 1987] (see Section 4.9). Its non-admissibility for higher-order logic with Henkin
semantics is further supported by the results from [Benzmüller et al, 2002b]. We will discuss the
non-admissibility of the cut rule for the higher-order logic case in more detail in Section 5.5.

4.8 Connections and L-Unsatisfiable Paths

A connection is a link between two nodes in Q, which are α-related with opposite polarities, have the
same label and the same modal prefix with respect to the actual L-substitution σ.

Definition 4.8.1 (Connections) Let Q be an indexed formula tree. A connection is a pair (Q ′,Q′′)
of nodes with the same label, the same modal prefix, and opposite polarities, such that there is a path
� Γ,Q′,Q′′� in some P ∈ P (Q).

Note that we allow for connections between non-leaf nodes. A set C of connections is spanning
for Q and σ, if there is a set P of paths P (Q), such that each path in P either contains a connection
from C , or contains True+, False− or t = t+. In this case each path in P is said to be L-unsatisfiable
with respect to σ, which is defined as follows:

Definition 4.8.2 (L-Unsatisfiable Paths) Let Q be an indexed formula tree, σ an actual L-admissible
substitution for Q and p ∈ P (P ∈ P (Q)) a path through Q. The path p is L-unsatisfiable if p contains
either a positive node with label True, a negative node with label False, a positive node with label
t = t, or two nodes that form a connection.

4.9 Cut Rule Applications

In this section we present two specific ways the cut rule from Section 4.7 is used, namely (i) that the
extensionality rule from [Pfenning, 1987] is admissible and (ii) how flex-flex constraints that arise
from higher-order unification can be integrated into an indexed formula tree.

The Extensionality Rule from [Pfenning, 1987] is Admissible. The extensionality rule defined
for indexed formula trees in this thesis differs from the extensionality rule in [Pfenning, 1987]. In
order to reduce the completeness proof of our calculus to the completeness proof in [Pfenning, 1987],
we present how the extensionality rule from [Pfenning, 1987] can be simulated by combining our
extensionality rule with the cut rule.

4.9. CUT RULE APPLICATIONS 53

P(f)p γ

β
γ−x f (x) = g(x) δ+x f (x) = g(x)

(a) Original indexed formula tree (b) Cut indexed formula tree

Figure 4.6:

Lemma 4.9.1 The Extensionality rule from [Pfenning, 1987] can be simulated by a combination of
the cut rule, the extensionality introduction rule and Leibniz’ expansion rule.

Proof. The extensionality rule from [Pfenning, 1987] is

P(f1, . . . , fn)p

Q0 Q1
. . . Qn

where Q0 is an indexed formula tree for P(g1, . . . ,gn)p, and the Qi are indexed formula trees for
δpx1, . . . ,xn f (x1, . . . ,xn) = g(x1, . . . ,xn). Without loss of generality we can use for our proof a rule
where n = 1, since every application of the above simultaneous extensionality rule can be simulated
by n applications of the unary extensionality rule.

The proof sketch is as follows: we show that the cut-rule can be used to introduce the required
statement about δpx f (x) = g(x). This can be used to derive ζp(f ,g) with the extensionality intro-
duction rule, and subsequently expanded into the Leibniz equality to obtain P(g) p from P(f)p.

The shape of the whole indexed formula tree before extensionality introduction is showed on the
left-hand side of Figure 4.6: Q is the whole indexed formula tree (not shown) and the subtree on which
we want to apply the extensionality rule is the subtree P(f)p (left-hand side of Figure 4.6). To simulate
the extensionality rule from [Pfenning, 1987] we perform a cut over the formula ∀x f (x) = g(x).
The cut corresponds to the indexed formula tree viewed on the right-hand side of Figure 4.6 and its
insertion results in the following indexed formula tree:

α

P(f)p γ

β
γ−x f (x) = g(x) δ+x f (x) = g(x)

The positive occurrence of ∀x f (x) = g(x), i.e. δ+x f (x) = g(x) represents the additional proof
obligation to prove the cut-formula. The negative occurrence γ−x f (x) = g(x) contains the ε-equation
that is actually used to perform the extensionality proof step. Applying the extensionality introduction

54 CHAPTER 4. INDEXED FORMULA TREES

rule of Definition 4.3.3 to γ−x f (x) = g(x) changes the whole indexed formula tree into

α

P(f)p γ

β
α

λx f (x) = λx g(x) γ−x f (x) = g(x)

δ+x f (x) = g(x)

Now we apply the Leibniz’ equality introduction rule on the ε-equation λx f (x) = λx g(x) to obtain
a subtree for γ−Q β−(Q(λx f (x))−p,Q(λx g(x))p). After instantiation of the new γ-variable Q with
λh P(h) and βη-normalisation we obtain the indexed formula tree

α

P(f)p γ

β
α

α

γ−Q β−(Q(λx f (x))−p,Q(λx g(x))p)

β

P(f)−p P(g)p

λx f (x) = λx g(x)

γ−x f (x) = g(x)

δ+x f (x) = g(x)

Connection

Finally we can draw a connection between the subtrees P(f)p and P(f)−p to obtain the two new sub-
goals P(g)p and δ+x f (x) = g(x), which corresponds to the subgoals we would get when applying
the extensionality rule from [Pfenning, 1987]. ut

Inserting Flex-Flex Constraints. Flex-flex constraints are equations of the form H(~s) = G(~t) that
result from higher-order unification. They represent additional constraints that need to be solved in
order to make two formulas equal. Thus there is a need to adequately represent these additional
goals in an indexed formula tree Q. However, the “exact” position for the constraints depends on its
purpose, i.e. on the subtree from which a connection is to be introduced. This is addressed when we
define the actual CORE reasoning rules. In this paragraph we show only how a flex-flex constraint
can be attached to an arbitrary subtree Q′ of Q by using the cut-rule. Assume ~x is the list of all γ-
and δ-variables that are free in H(~s) = G(~t) and not bound on some parent node of Q′ in Q and ρ a
renaming of these variables into variables ~x′ that are new with respect to Q. Then we introduce the
flex-flex constraint by performing a cut over H(~s) = G(~t), which α-inserts an initial indexed formula
tree for the negative formula ∀~x′ ρ((H(~s) = G(~t))⇒ (H(~s) = G(~t))) on Q′ and results in

αp(γ−~x′ ρ((H(~s) = G(~t))⇒ (H(~s) = G(~t)))−,Label(Q′))

Q′ Qc

4.10. SOUNDNESS AND COMPLETENESS 55

Since only those free variables are bound now that have not been bound above Q ′, the resulting indexed
formula tree is again valid. After application of the cut-rule we apply the inverse substitution ρ−1 on
the indexed formula tree. This is an admissible instantiation since ρ−1 cannot introduce cycles into the
reduction ordering because we have only bound those variables in the constraints that are not bound
above Q′. Hence the resulting indexed formula tree concisely represents the additional subgoal.

4.10 Soundness and Completeness

For any L-valid formula ϕ there is an indexed formula tree for ϕ and an L-substitution σ, which admits
a spanning set of connections, this is the main result from [Andrews, 1981, Miller, 1983, Pfenning,
1987, Wallen, 1990] about proof search with indexed formula trees.

Theorem 4.10.1 (Soundness & Completeness of Indexed Formula Tree proofs) Let ϕ be a for-
mula with respect to one of the logics L of Definition 3.2.1. ϕ is L-valid if, and only if, we construct
for ϕ an indexed formula tree using the rules from Definitions 4.1.1, 4.2.1, 4.3.3, 4.4.1, 4.5.2, and
4.7.1 which admits a spanning set of connections with respect to an L-admissible substitution.

Proof. Follows for each of the considered logics from [Wallen, 1990], except for higher-order logic,
where it follows from [Pfenning, 1987] and Lemma 4.9.1. The boolean ζ-expansion rule from Defi-
nition 4.4.1 is necessary in order to unfold positive equivalences, since equivalences are not treated in
these approaches. There is no need for a negative variant of that rule, since for negative equivalences
the expansion can be simulated by the Leibniz’ equality introduction rule. ut

4.11 Increase of Multiplicities

Proof search in indexed formula trees (cf. [Wallen, 1990, Pfenning, 1987, Andrews, 1981, Andrews,
1989]) proceeds by fixing the multiplicity of nodes of primary type γ and ν, and subsequently search-
ing for an appropriate L-admissible substitution and a spanning set of connections. However, setting
the multiplicity beforehand is not adequate for an interactive proof search where multiplicities of
nodes are determined on the fly. An example is the instantiation of some γ-variable x bound on some
γ0-type node Q of parent node Qγ of label γpy ϕ(y): in order to design a complete proof procedure,
we must be able to “copy” that meta variable before instantiating it. For the higher-order logic case
the multiplicities can be adjusted during proof search by using the technique from [Issar, 1990]. It
allows to increase the multiplicity of some γ-type node and localises its effect to some path for which
no connection exists by copying and renaming that path adequately. However, that technique is not
applicable in our context, since we have to copy the concerned indexed formula tree which prevents
the localisation of the copying to some single path. Furthermore, adding a new initial indexed formula
tree Q′ for ϕ(X ′) for some new meta variable X ′ and attaching it to Q, prevents to carry over all proof
information onto Q′: Leibniz’ equality introductions and extensionality introductions are lost, and all
connections that involved a subnode of Q are not present for subnodes in Q ′. Finally, substitution
information is not carried over onto Q′, say when some γ-variable Z different from X is instantiated
with a term containing X , then there is no copy of that Y which is instantiated with the equivalent term
containing X ′. Thus, all the proof information that was already established for Q must be redone for
Q′. The same reasoning applies when “copying” ν0-type node.

In the following we present a mechanism to constructively increase the multiplicity of some node
which carries over all proof information to the new copy. First, note that the increase of multiplicity of
some node may entail the increase of multiplicity of some other node. This is the case for example if

56 CHAPTER 4. INDEXED FORMULA TREES

a meta variable to be copied occurs in the instance of some other meta variable. Intuitively we need a
notion of self contained set of subtrees with respect to a substitution, in the sense that all γ-, δ-, ν-, and
π-variables x that occur in the instance of some variable y, the set contains both the subtrees binding
x and y.

We formalise this intuition but introducing the notion of a convex set of subtrees with respect to
some L-admissible substitution σ.

Definition 4.11.1 (Convex Set of Subtrees) Let Q be an indexed formula tree with L-admissible
substitution σ, K a set of independent1 subtrees of Q.

Then K is convex with respect to σ if, and only if, for all Q∈K and for all γ-, δ-, ν-, π-variables x
bound in Q we have: if x occurs in some instance σ(y) for some y, then there exists some Q ′ ∈ K in
which y is bound.

A trivial example for such a set is the set that consists of the whole indexed formula tree Q.
A convex set K of subtrees for an actual indexed formula tree Q has the property that it is not

smaller with respect to CL than any other part of Q which is not in K . In other words, there is no
γ- or ν-variable bound outside K that is instantiated with some variable bound in K . Consider the
restriction σK of σ to those γ- and ν-variables that are bound in K . Copying the subtrees in K yields
a new set of subtrees K ′ and a renaming ρ of all2 variables in K . Then the renamed substitution
σK ′ := {ρ(σK (x))/ρ(x) | x ∈ dom(σK)} does not introduce any additional dependencies to parts not
in K ′. Furthermore, if the original substitution was L-admissible, then so is σK ′ ◦σ. In the following
lemma we formalise this observation:

Lemma 4.11.2 (Maximality of Convex Sets of Subtrees) Let Q be an indexed formula tree with
L-admissible substitution σ, K a convex set of subtrees of Q. For all x ∈ dom(σ), if x is not bound in
K , then all variables that occur in σ(x) are also not bound in K .

Proof. The statement is proved by contradiction: assume there is an x not bound in K and a variable
y bound in K that occurs in σ(x). Then by Definition 4.11.1 x should be bound in K , which is a
contradiction. ut

For the increase of multiplicities, we have to determine a convex set of subtrees of which we have
to increase the multiplicities. We introduce a constructive mechanism to determine the minimal set of
nodes whose multiplicities need to be increased when increasing the multiplicity of some given node.

Intuitively, if we have to copy a node Qm, then we must copy Qm and all its children. Furthermore,
if Qm is either the binding node of some γ-variable that occurs in the instance of some γ-variable of
binding position Q′ or it has secondary type ν0 or π0 and occurs in the instance of some other node Q′

of secondary type ν0, then we must copy Q′ as well.

Definition 4.11.3 (Determining Nodes to Increase Multiplicities) Let Q be an indexed formula
tree, and σ an L-admissible substitution. Let Qm be a node of secondary type γ0 or ν0. The subtrees
to copy in order to increase the multiplicity of Qm’s parent are given by the predicate µ(Qm) that is
inductively defined:

µ(Qm) = {Qm} ∪
(S

Q′|Qm≺Q′ µ(Q′)
)
∪
(S

Q′∈InstQ(Qm) µ(Q′)
)

∪
(S

Q′∈InstM(Qm) µ(Q′)
)

1i.e. no nested subtrees.
2i.e. γ, δ-, ν-, and π-variables.

4.11. INCREASE OF MULTIPLICITIES 57

where InstQ(Qm) is the set of binding nodes of variables x, such that y occurs in σ(x) and y is bound
on Qm. If Qm is not a binding node, then InstQ(Qm) = /0. InstM(Qm) is the analogous set for nodes of
secondary type ν0.

We denote by µ(Qm)min the subset of the minimal nodes with respect to CL of µ(Qm).

Lemma 4.11.4 Let Q be an indexed formula tree of secondary type γ0 or ν0, and σ an actual L-
admissible substitution. Then

1. µ(Q)min contains only nodes of secondary type γ0 or ν0.

2. µ(Q)min is a convex set of subtrees with respect to σ.

Proof. Both parts of the lemma are easy consequences of the definition of µ(Q) and µ(Q)min. ut

Having determined the minimal nodes that need to be copied, we copy the subtrees Q whose
roots are these nodes and rename the variables if necessary. Note that we cannot just create initial
indexed formula trees, since we must keep track of the applications of Leibniz’ equality introductions
and extensionality introductions during the copying process. From this copying process we obtain a
renaming ρ of the copied variables and an isomorphic function ι between the original subtrees and
their copies. We agree that ρ is a total function, which is the identity function for all variables not
occurring in Q, and ι is a total function which is the identity function on all nodes, except those
occurring in Q.

The new subtrees are of secondary type γ0 or ν0 and are inserted as further children on the respec-
tive parent node of primary type γ or ν, which increases their multiplicities. The renaming ρ and the
node mapping ι are used in order to carry over the substitution information by enlarging the variable
substitution σQ and the modal substitution σM:

-- From ρ and σQ we create the substitution σ′Q := {ρ(σQ(x))/ρ(x) | x ∈ dom(ρ)}.

-- From ι and σM we create the substitution σ′M := {ι(σM(Q))/ι(Q) | Q ∈ dom(ι)}.

Finally, the information about established connections in C is carried over by enlarging C using ι,
i.e. we add the following connections:

{(ι(c), ι(c′)) | (c,c′) ∈ C ,c or c′ ∈ dom(ι)}

Definition 4.11.5 (Multiplicity Increase) Let Q be an indexed formula tree with actual L-admissible
substitution σ. Furthermore let Qm be a node of secondary type γ0 or ν0. In order to increase the
multiplicity of Qm’s parent we determine the set µ(Qm)min. For each Q′ ∈ µ(Qm)min

1. we copy Q′ to obtain Q′′ together with a variable renaming ρ and an isomorphic mapping from
Q′ to Q′′. Subsequently we add Q′′ to the parent node of Q′;

2. we extend the variable and modal substitutions of σ respectively by

{ρ(σQ(x))/ρ(x) | x ∈ dom(ρ)} and {ι(σM(Q))/ι(Q) | Q ∈ dom(ι)}.

58 CHAPTER 4. INDEXED FORMULA TREES

Example 4.11.6 We illustrate the dynamic increase of multiplicities in indexed formula trees with
the following axioms: ∀xIN 0 + x = x and ∀yIN s(0) + y = s(0 + y). The axioms occur negatively in
some larger formula, and thus the initial indexed formula tree is as follows:

∀xIN 0 + x = x−γ

0 + X = X−ε

∀yIN s(0) + y = s(0 + y)−γ

s(0) +Y = s(0 +Y)−ε

We first instantiate X with Y and therefore want to increase the multiplicity of ∀xIN 0 + x = x−γ . That
node is the only node of which we have to increase the multiplicity according to the determination
of the convex set of subtrees. Increasing its multiplicity and subsequently applying the substitution
{Y/X} results in the following indexed formula tree:

∀xIN 0 + x = x−γ

0 +Y = Y−ε 0 + X ′ = X ′−ε

∀yIN s(0) + y = s(0 + y)−γ

s(0) +Y = s(0 +Y)−ε

Assume now we want to instantiate Y with some constant c and we want to increase the multiplicity
of the parent node of Y ’s binding node. Determining the set of convex subtrees tells us that we have
to increase the multiplicity not only of that node, but also the multiplicity of ∀xIN 0 + x = x−γ , since Y
occurs in the instantiation of a variable introduced by that node. Thus, increasing the multiplicities of
both nodes and subsequently applying the substitution {c/Y} results in

∀xIN 0 + x = x−γ

0 +Y ′ = Y ′−ε 0 + c = c−ε 0 + X ′ = X ′−ε

∀yIN s(0) + y = s(0 + y)−γ

s(0) + c = s(0 + c)−ε s(0) +Y ′ = s(0 +Y ′)−ε

Note that without determining the convex set of subtrees would have resulted in the indexed formula
tree

∀xIN 0 + x = x−γ

0 + c = c−ε 0 + X ′ = X ′−ε

∀yIN s(0) + y = s(0 + y)−γ

s(0) + c = s(0 + c)−ε s(0) +Y ′ = s(0 +Y ′)−ε
where the original, more “general” literal node 0 +Y ′ = Y ′−ε would have been lost, i.e. making the
rule unsafe.

The multiplicity increasing rule is both sound and safe.

Lemma 4.11.7 (Soundness & Safeness of Multiplicity Increase) The constructive increase of
multiplicities is sound and safe.

4.12. SOUNDNESS AND COMPLETENESS REVISITED 59

Proof. The proof is achieved in two steps: first, we prove that the increase of multiplicites preserves
the L-admissibility of the substitution. Secondly, we prove that the indexed formula tree after increase
of multiplicities has an L-satisfiable path, if, and only if, the original indexed formula tree already had.

1. Preservation of L-admissibility of substitution: By Lemma 4.11.4 the set µ(Q)min is a convex
set of subtrees from Q, and by Lemma 4.11.2 it follows that µ(Q)min is maximal with respect to
CL . Thus the copies of µ(Q)min are also maximal with respect to the new overall substitution.
Furthermore, since the substitution before multiplicity increase was L-admissible, the substitu-
tion extension {ρ(σQ(x))/ρ(x) | x ∈ dom(ρ)} and {ι(σM(Q))/ι(Q) | Q ∈ dom(ι)} is irreflexive
among the copies of µ(Q)min. Thus, the new overall substitution is L-admissible.

2. For each Q ∈ µ(Q)min the increase of multiplicities adds the copy Q′ of Q to each path that
contained Q. Thus, if Q has the prefix formula pre(Q).ϕp, then Q′ has the label pre(Q).ρ(ϕp).
Since ρ is simply a renaming of variables, it trivially holds that pre(Q).ϕ p is L-satisfiable if,
and only if, pre(Q).ρ(ϕp) is L-satisfiable. ut

Remark 4.11.8 The multiplicity increasing rule copies all Leibniz’ equality and extensionality intro-
ductions. However, not all of them are necessary, since we are only interested in making an adequate
copy of the actual proof state. The necessary introduction rules are those that introduced new subtrees
in which actually occur connections. If no connection occurs in such a subtree we can disgard the
rule application. However, for the purpose of the framework presented in Chapter 5 the current rule
is adequate, because superflous parts obtained by copying can be removed using the weakening rule
introduced in Chapter 5.

4.12 Soundness and Completeness Revisited

In order to obtain a complete proof procedure we have to search for the right multiplicity of γ- and
ν-type nodes. An example is an iterative deepening over the maximum number of allowed multiplici-
ties. But this means we have to restart the actual matrix proof search each time in every iteration, thus
losing the information about substitutions and already established connections. The rule to increase
the multiplicities overcomes that limitation and supports a demand-driven increase of the multiplic-
ities. Furthermore it not only preserves existing substitutions and connections, but moreover carries
this information over to the new subtrees that result from the increase of multiplicities. As an easy
consequence the calculus that results from the addition of the multiplicity increasing rule is sound and
complete.

Theorem 4.12.1 Let ϕ be a formula with respect to one of logics L of Definition 3.2.1. Then ϕ is L-
valid if, and only if, from an initial indexed formula tree for Q, we can derive an indexed formula tree
Q′ using the rules instantiation, Leibniz’ equality introduction, extensionality introduction, boolean
ζ-expansion, cut, and multiplicity increase such that the overall substitution is L-admissible and there
is some P ∈ P (Q′) such that all paths in P are L-unsatisfiable.

Proof. Follows from Theorem 4.10.1 and Lemma 4.11.7. ut

4.13 Summary

The indexed formula trees introduced in this chapter are a generalised calculus that subsumes both
the indexed formula trees in [Wallen, 1990] and the extensional expansion trees in [Pfenning, 1987].

60 CHAPTER 4. INDEXED FORMULA TREES

The basic rules to manipulate them are the strict minimum to represent and check the L-admissibility
of substitutions for meta variables and node variables for the respective modal formulas, as well as
the rules to deal with the introduction of Leibniz’ equality for primitive equality and equivalence, the
functional and boolean extensionality, the expansion of positive equivalences into implications, cut,
and the dynamic increase of multiplicities.

As a result we obtain a sound and complete proof calculus for a whole class of logics. Although
this calculus is not particularly intuitive, indexed formula trees are used in the proof theory of CORE

to represent quantifier dependencies. This calculus is the backbone of the framework with respect to
the checks of the admissibility of the actual substitution. The intuitive part of the CORE proof theory
consists of free variable indexed formula trees which are added on top of indexed formula trees as
presented in the next chapter.

Chapter 5

Free Variable Indexed Formula Trees

In this chapter we define free variable indexed formula trees on top of the underlying indexed formula
trees. The working copy of an indexed formula tree is initially a free variable representation of the
indexed formula tree. We use a “free variable” representation in order to ease the intuitive reading of
trees. Indeed the application of rules usually requires the instantiation of variables, and it would be odd
to instantiate variables for which there are still quantifiers around and the free variable representation
avoids this. Since all introduced meta variables or parameters that result from γ- and δ-type nodes in
the indexed formula tree are required to be new, this can be done.

Furthermore, free variable indexed formula trees provide support for the generation and applica-
tion of rules from the logical context of some subformula. The working copy is manipulated by rule
applications while still being linked with the original indexed formula tree to keep track of information
about binding nodes of variables and modal prefixes of subformulas.

After the definition of initial free variable indexed formula trees in Section 5.1, we introduce
in Section 5.2 a uniform notion for a logical context of subtrees as well as a uniform notion of a re-
placement rule inside a logical context. Based on these notions, we define in Section 5.3 the CORE

proof state and the actual rules for the manipulation of subtrees, i.e. the CORE calculus. The CORE

calculus consists of 12 rules, namely instantiation, increase of multiplicities, Leibniz’ equality intro-
duction, extensionality introduction, contraction, weakening, modal permutation, an expansion rule
for positive equivalences, resolution and rewriting replacement rule applications, propositional sim-
plification, and cut. The soundness and safeness of the calculus rules is shown together with their
definition. The chapter concludes with the completeness proof in Section 5.4 and a note about cut
elimination in Section 5.5.

5.1 Initial Free Variable Indexed Formula Trees

Let us first introduce initial free variable indexed formula trees and subsequently add the rules to
manipulate them. The reason for this is that we initially start the proof search with the conjecture,
for which an initial indexed formula tree is created to represent the dependencies between quantifiers.
Subsequently we initialise the proof state with that initial indexed formula tree and a working copy for
it, which is an initial free variable indexed formula tree. Afterwards we define the calculus rules for
the manipulation of such a proof state, which transform the working copy and possibly the indexed
formula tree.

The definition of initial free variable indexed formula trees is essentially the straightforward rep-

61

62 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

resentation of an initial indexed formula tree without the object level quantifiers. Multiplicities of
γ-type nodes are represented by α-nodes. However, the representation of modal quantification nodes,
i.e. of ν- and π-type nodes, is less straightforward. Indeed, in order to have an intuitive representation,
modal quantifications shall be explicitly represented – in contrast to object level quantification. Thus,
a �-formula is represented as a �-formula. However, a problem arises from the multiplicities of ν-
type nodes in Q. It is certainly not intuitive to represent e.g. a negative ν-type node of multiplicity n
by a formula �(ϕ1∧ . . .∧ϕn), since the proof theory of indexed formulas assigns to each ϕi a different
(variable) position. In order to represent this a more adequate representation is �(ϕ1)∧ . . .∧�(ϕn).
However, we need to reference the adjoined variable positions to each �(ϕ i), in order to be able to
determine the modal prefix of some subformula.

Definition 5.1.1 (Initial Free Variable Indexed Formula Trees) We define initial free variable
indexed formula trees R inductively over the structure of some given indexed formula tree Q. Each
node of the tree has a formula as label, a polarity, a uniform type, and possibly the indexed formula
tree node for which it is a working copy.

1. If Q = Ap
− is a literal node, then R =

p
−AQ is a free variable indexed formula tree of the same

label, polarity and uniform type than Q and a reference to Q. They are leaves of free variable
indexed formula trees.

2. If Q = ε(s, t)p
ε , then R = p

ε ε(s, t)Q is a free variable indexed formula tree. They are leaves of free
variable indexed formula trees.

3. If Q = ζ(s, t)p
ζ , then R =

p
ζ ζ(s, t)Q is a free variable indexed formula tree. These are also leaves

of free variable indexed formula trees.

4. If

Q =
α(Label(Q′))p

α

Q′

is an indexed formula tree and R′ is a free variable indexed formula tree for Q′, then

R =

p
αα(Label(R′))

R′

is a free variable indexed formula tree for Q.

5. If

Q =
α(Label(Q1),Label(Q2))p

α

Q1 Q2

is an indexed formula tree, R1 and R2 are free variable indexed formula trees for Q1 and Q2
respectively, then

R =

p
αα(Label(R1),Label(R2))

R1 R2

is a free variable indexed formula tree for Q.

5.1. INITIAL FREE VARIABLE INDEXED FORMULA TREES 63

6. If

Q =
β(Label(Q1),Label(Q2))p

β

Q1 Q2

is an indexed formula tree, R1 and R2 are free variable indexed formula trees for Q1 and Q2
respectively, then

R =

p
ββ(Label(R1),Label(R2))

R1 R2

is a free variable indexed formula tree for Q.

7. If

Q =
γpx ϕ(x)

p
γ

Q1 . . . Qn

is an indexed formula tree and R1, . . . ,Rn are free variable indexed formula trees for Q1, . . . ,Qn
respectively, then let R′1 := R1, and

R′i+1 :=

p
αα(Label(R′i),Label(Ri+1))

R′i Ri+1

for 1≤ i≤ (n−1). Then R := R′n is a free variable indexed formula tree for Q. Note that the R′i
do not have a reference to Q.

8. If

Q =
δpx ϕ(x)p

δ

Q′

is an indexed formula tree and R is a free variable indexed formula tree for Q ′, then R is also a
free variable indexed formula tree for Q.

9. If

Q =
ν(Label(Q1))p

ν

Q1 . . . Qn

is an indexed formula tree and R1, . . . ,Rn are free variable indexed formula trees for Q1, . . . ,Qn
respectively, then

R′1 :=

p
νν(Label(Ri))Q1

R1

and R′i+1 :=

α
pα(Label(R′i),ν(Label(Ri+1)))

R′i
p
νν(Label(Ri+1))Qi+1

Ri+1

for 1≤ i≤ (n−1). Then R := R′n is a free variable indexed formula tree for Q.

64 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

+
α (0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α 0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′))

−
ε 0 + X = X −

β ¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
ε X ′+Y ′ = s(p(X ′) +Y ′)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 5.1: Initial free variable indexed formula tree for the running example

10. If

Q =
π(Label(Q))

p
π

Q

is an indexed formula tree and R is a free variable indexed formula tree for Q ′, then

R′ =
p
δπ(Label(R))Q

R′

is a free variable indexed formula tree for Q.

Example 5.1.2 As an example consider the (initial) indexed formula tree from Example 4.1.2 (p. 33):
The corresponding initial free variable indexed formula tree is shown in Figure 5.1.

It is convenient to introduce a notion of equality between free variable indexed formula trees
that is defined over the α-equality of their labels. Note that we need α-equality, as there are still
variable binders in the formula, for instance a usual λ-abstraction in higher-order logic, or universal
quantification inside equivalences, which are not removed since they do not have a defined polarity.

Notation 5.1.3 Let R, R′ be two free variable indexed formula trees. We say that R and R′ are α-equal
if, and only if, their labels are equal up to the renaming of bound variables.

It remains to define the modal prefix of some subtree of a free variable indexed formula tree.

Definition 5.1.4 (Prefix of Free Variable Indexed Formula Trees) Let Q be an indexed formula
tree and R a node in a free variable indexed formula tree that belongs to Q. The modal prefix pre(R)

5.1. INITIAL FREE VARIABLE INDEXED FORMULA TREES 65

of R is a sequence nodes 〈Q1, . . . ,Qn〉 ∈ (ν0∪Π0)∗ from Q and is defined as follows:

pre(R) :=

〈Q〉 if R has no parent node and is of primary type
ν- or π-type and associated node Q ∈ ν0∪Π0

〈〉 if R has no parent node and is not of primary
type ν- or π-type

〈Q :: pre(R′)〉 if R has parent node R′ and is of primary type
ν- or π-type and associated node Q ∈ ν0∪Π0

pre(R′) if R has parent node R′ and is not of primary
type ν- or π-type

The prefixed formula of R is pre(R).ϕ, where ϕ is the label of R.

Remark 5.1.5 There is obviously a close relationship between the structure of a free variable in-
dexed formula tree R and the term structure of Label(R). This allows us to define the subtree
occurrence of a subtree R′ of R as the subterm occurrence ρ of Label(R′) within Label(R), i.e.
Label(R)|ρ = Label(R′). Each subtree R′ of R is uniquely determined by this subterm occurrence
and by abuse of notation we write R|ρ to denote R′. Note that not all subterm occurrences of Label(R)
are subtree occurrences, since the tree structure does not extend below the literal node level.

Definition 5.1.6 (Proved and Disproved Free Variable Indexed Formula Trees) Let R be a literal
free variable indexed formula tree. Then

-- R is proved, if, and only if, either it has negative polarity and its label is False, or it has positive
polarity and its label is True, or it is of primary type a ζ and the label is ζ(t, t).

-- R is disproved, if, and only if, either it has positive polarity and its label is False, or it has
negative polarity and its label is True, or it is of primary type ε and the label is ε(t, t).

Let R be a free variable indexed formula tree. R is proved (resp. disproved), if, and only if,

-- R is a proved (resp. disproved) literal free variable indexed formula tree,

-- or R is of primary type α (resp. β) and some subtree is proved (resp. disproved),

-- or R is of primary type β (resp. α) and all subtrees are proved (resp. disproved),

-- or R is of primary type ν or π and its subtree is proved (resp. disproved).

Lemma 5.1.7 The definition of proved and disproved free variable indexed formula trees is accurate.

Proof. The intuition behind the above definition is that a free variable indexed formula tree R is proved
if, and only if, the prefixed formula of R is L-unsatisfiable. Similarly, R is disproved, if, and only if,
the prefixed formula of R is L-valid. We prove the accuracy by induction over the structure of R.

Base Case: In this case R is a literal. By definition of L-satisfiability of prefixed formulas, the prefixed
formulas pre(R).True+, pre(R).False−, and pre(R).ζ(s,s)+ are not L-satisfiable. Thus, those literal
free variable indexed formula trees are proved. Analogously, the prefixed formulas pre(R).True−,
pre(R).False+, and pre(R).ε(s,s)− are L-valid. Thus those literal free variable indexed formula trees
are disproved.

66 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

Induction Step: We prove the accuracy of “proved” by case analysis over the uniform type of R.

A. Label(R)p = αp(Label(R1)p1 ,Label(R2)p2): for all M, w, ρ :

Mρ
w|=L pre(R).αp(Label(R1)p1 ,Label(R2)p2)

⇐⇒Mρ
w|=L pre(R).Label(R1)p1 and Mρ

w|=L pre(R).Label(R2)p2)

Since pre(R) = pre(Ri), i = 1,2, R is proved, if, and only if, at least one of its subtrees is proved.
B. Label(R)p = βp(Label(R1)p1 ,Label(R2)p2): for all M, w, ρ :

Mρ
w|=L pre(R).βp(Label(R1)p1 ,Label(R2)p2)

⇐⇒Mρ
w|=L pre(R).Label(R1)p1 or Mρ

w|=L pre(R).Label(R2)p2)

Since pre(R) = pre(Ri), i = 1,2, R is proved, if, and only if, both subtrees are proved.
C. Label(R)p = νp(Label(R1)p1): For all M, w, ρ :

Mρ
w|=L pre(R).νp(Label(R1)p1)⇐⇒Mρ

w|=Lpre(R1).Label(R1)p1

Thus, R is proved if, and only if, R1 is proved.
D. Label(R)p = πp(Label(R2)p1): similar to the previous case. ut

5.1.1 Paths in Free Variable Indexed Formula Trees

Similarly to indexed formula trees we define (horizontal) paths for free variable indexed formula trees.
We show that there is a correspondence between the paths through an initial indexed formula tree Q
and the paths through the initial free variable indexed formula tree R for Q. This correspondence is
exploited in order to establish the initial validity relationship between Q and its “working copy” R.

Definition 5.1.8 (Paths in Free Variable Indexed Formula Trees) Let R be a free variable indexed
formula tree. A path in R is a sequence � R1, . . . ,Rn � of α-related nodes in R. The sets P (R)
of paths through R is the smallest set containing {� R�} and which is closed under the following
operations:

α-Decomposition: If R′ is a node of primary type α and subtrees R1,R2, and P∪{�Γ,R′�}∈P (R),
then P∪{� Γ,R1,R2�} ∈ P (R).

β-Decomposition: If R′ is a node of primary type β and subtrees R1,R2, and P∪{� Γ,R′�}∈P (R),
then both P∪{� Γ,R1�} ∈ P (R) and P∪{� Γ,R2�} ∈ P (R).

ν-Decomposition: If R′ is a node of primary type ν and subtree R1, and P∪{� Γ,R′�} ∈ P (R),
then P∪{� Γ,R1�} ∈ P (R).

π-Decomposition: If R′ is a node of primary type π and subtree R1, and P∪{� Γ,R′�} ∈ P (R),
then P∪{� Γ,R1�} ∈ P (R).

Note the absence of decomposition rules for γ and δ-nodes since free variable indexed formula
trees have no such nodes. Thus P (Q) constains sets of paths that do not occur in P (R). Note further
that P (R) contains sets of paths, that contain nodes from R without reference to some node in Q.

Definition 5.1.9 (Connections in Free Variable Indexed Formula Trees) Let R be a free variable
indexed formula tree. A connection is a pair (R′,R′′) of nodes with the same label, the same modal pre-
fix under the actual modal substitution, and opposite polarities, such that there is a path� Γ,R ′,R′′�
in some P ∈ P (R).

5.2. LOGICAL CONTEXT AND REPLACEMENT RULES 67

Definition 5.1.10 (L-Unsatisfiable and L-Satisfiable Paths) Let R be a free variable indexed for-
mula tree and p ∈ P (P ∈ P (R)) a path through R. The path p is L-unsatisfiable if p contains either
a positive node with label True, a negative node with label False, a positive node with label ζ(t, t), or
two nodes that form a connection. If p is not L-unsatisfiable, then p is said to be L-satisfiable.

5.2 Logical Context and Replacement Rules

The free variable indexed formula tree contains all the information necessary to determine statically
the logical context1 logical context for any of its subtrees. Moreover it determines all possible rules
within the logical context to manipulate the subtree under consideration. The key information is
the annotated uniform type and the polarity. Indeed the logical context of some subtree R consists
simply of all those subtrees that are connected with R via a node of uniform type α, and this can
be checked statically from the free variable indexed formula tree. To see this, consider an α-type
formula (A∨B)+: applying the respective decomposition rule on (A∨B)+ in some sequent calculus
corresponds to the following inference step:

Γ ` A,B,∆
Γ ` (A∨B),∆ ∨-R

Obviously the two components A and B of the α-type formula occur in the same sequent and thus are
in the same logical context. Generalising this observation for any two nested subformulas of A and
B it is easy to see that given some subformula ϕ1 in A and some subformula ϕ2 in B, the successive
application of all sequent calculus decomposition rules starting from Γ ` (A∨B),∆ results in, among
others, a sequent of the form Γ′ ` ϕ1,ϕ2,∆′. We say ϕ1 and ϕ2 are α-related. Conversely, we say
that two subformulas are β-related, if they are related by a β-type formula.

However, this is only valid for classical logics. Due to the modal connectives ♦ and � in modal
logics there might not be a sequent containing both formulas, even though they are α-related. But,
nevertheless the converse is true, i.e. if two formulas are not α-related, they can never occur in a same
sequent. Thus, the general pattern is that if two formulas are α-related then and only then can they be
in the same logical context. Whether or not they really are in the same logical context can be statically
checked by comparing the modal prefixes of both formulas: if there is an L-admissible substitution
that unifies both prefixes, then both formulas are indeed in the same logical context.

Having determined the formulas that are in the logical context of some formula, we are now
concerned with the determination of the possible rules which can be generated from this context. To
motivate this, consider the goal sequent A⇒ (B⇒C) `C. Applying A⇒ (B⇒C) to C means that
the goal to prove C is replaced by the goal to prove A and B. In this case both occurrences of C
have opposite polarities and are α-related via `. Furthermore, the new subgoals, i.e. the positive
occurrences of A and B, can be determined statically from the formula by collecting all the formulas
that are β-related to the negative occurrence of C. This enables generating rules from a formula by
fixing the left-hand side, e.g. the negative C. The right-hand side of the rule is then the list of all
formulas that are β-related to the left-hand side, and we write

C+→
〈
A+,B+

〉

to indicate that this rule refines some positive C to the (positive) subgoals A and B. Analogously, if
there is a negative equation or a negative equivalence in the context, i.e. an ε-type formula ε(s, t), we

1Note that by logical context we mean the information beyond for instance the scope of variables which is already
provided by the corresponding indexed formula tree.

68 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

obtain the rule
s◦→

〈
t◦,ϕp1

1 , . . . ,ϕ
pn
n
〉

where the ϕpi
i are, again, the formulas β-related to ε(s, t). This rule contains the information, that

some goal formula ϕ(s) where s has an arbitrary polarity – even no polarity – can be refined to the
subgoals ϕ(t),ϕp1

1 , . . . ,ϕ
pn
n .

Before formalising the notion of replacement rules, we introduce the notion of a weakened signed
formula. It consists of weakening α-connected parts of some indexed formula, and this is motivated
by the following observation: consider the negative formula (A∨B)⇒ C which using the uniform
notation syntax is β−(α+(A+,B+),C−). Applying this rule to some positive C+ would refine C+ to
α+(A,B). However, this is not necessary, since it would also be sound to refine C+ only to either
A+ or B+. These additional possibilities can be obtained from the β-related formula α+(A+,B+)
by weakening some α-parts. In order to include this into the formal definition of replacement rules,
we define for some given free variable indexed formula tree Q with label ϕ p the set of free variable
indexed formula trees that can be obtained from Q by weakening.

Definition 5.2.1 (Weakening of Free Variable Indexed Formula Trees) Let R be a free variable
indexed formula tree. The set Weakened(R) of weakened free variable indexed formula trees for R is
defined recursively over the structure of R:

Weakened(R) = {R} if, and only if, R is a literal node

Weakened(αp(R1,R2)) = {αp(Rw
1 ,R

w
2) | Rw

i ∈Weakened(Ri), i = 1,2}
∪Weakened(R1)∪Weakened(R2)

Weakened(βp(R1,R2)) = {βp(Rw
1 ,R

w
2) | Rw

i ∈Weakened(Ri), i = 1,2}
Weakened(νp(R)) = {νp(Rw) | Rw ∈Weakened(R)}
Weakened(πp(R)) = {πp(Rw) | Rw ∈Weakened(R)}

Lemma 5.2.2 Let R be a free variable indexed formula tree of polarity p and R ′ ∈Weakened(R) of
polarity p′. Then:

Mρ
w|=L pre(R).Label(R)p =⇒Mρ

w|=L pre(R).Label(R′)p

Proof. The proof is by induction over the structure of the formula R.

Base Case: In this case R is a literal and Weakened(R) = {R}. Thus the statement holds trivially.
Induction Step: We consider the four different cases for R:

(A) R = αp(R1,R2): then

Mρ
w|=L pre(R).αp(R1,R2)

Lemma 4.1.8⇔ for all w′ ∈Mρ
w(pre(R))Mρ

w′ |=L αp(R1,R2)

⇔ for all w′ ∈Mρ
w(pre(R))Mρ

w′ |=L R1 and Mρ
w′ |=LR2

IH⇒ for all w′ ∈Mρ
w(pre(R))Mρ

w′ |=L R′1 and Mρ
w′ |=LR′2

(for any R′1 ∈Weakened(R1) and R′2 ∈Weakened(R2))

⇔ Mρ
w|=L pre(R).αp(R′1,R

′
2) and Mρ

w|=L pre(R).R′1
and Mρ

w|=L pre(R).R′2

5.2. LOGICAL CONTEXT AND REPLACEMENT RULES 69

(B) R = βp(R1,R2): then

Mρ
w|=L pre(R).βp(R1,R2)

Lemma 4.1.8⇔ for all w′ ∈Mρ
w(pre(R))Mρ

w′ |=L βp(R1,R2)

⇔ for all w′ ∈Mρ
w(pre(R))Mρ

w′ |=L R1 or Mρ
w′ |=L R2

IH⇒ for all w′ ∈Mρ
w(pre(R))Mρ

w′ |=L R′1 or Mρ
w′ |=L R′2

(for any R′1 ∈Weakened(R1) and R′2 ∈Weakened(R2))

⇔ Mρ
w|=L pre(R).βp(R′1,R

′
2)

(C) R = νp(R′): then

Mρ
w|=Lpre(R).νp(R′)

Lemma 4.1.8⇔ for all w′ ∈Mρ
w(pre(R))Mρ

w′ |=Lνp(R′)
⇔ for all w′ ∈Mρ

w(pre(R)) and for some w′′,w′Rw′′ Mρ
w′′ |=LR′

IH⇒ for all w′ ∈Mρ
w(pre(R)) and for some w′′,w′Rw′′ Mρ

w′′ |=LR′w
(for any R′w ∈Weakened(R′))

⇔ for all w′ ∈Mρ
w(pre(R)) Mρ

w′ |=L νp(R′w)

⇔ Mρ
w|=Lpre(R).νp(R′w)

(D) R = πp(R′): then

Mρ
w|=L pre(R).πp(R′)

Lemma 4.1.8⇔ for all w′ ∈Mρ
w(pre(R))Mρ

w′ |=L πp(R′)
⇔ for all w′ ∈Mρ

w(pre(R)) and for all w′′,w′Rw′′ Mρ
w′′ |=L R′

IH⇒ for all w′ ∈Mρ
w(pre(R)) and for all w′′,w′Rw′′ Mρ

w′′ |=L R′w
(for any R′w ∈Weakened(R′))

⇔ for all w′ ∈Mρ
w(pre(R)) Mρ

w′ |=L πp(R′w)

⇔ Mρ
w|=L pre(R).πp(R′w)

ut

For the definition of replacement rules it is convenient to state the following corollary.

Corollary 5.2.3 (Connectable Free Variable Indexed Formula Trees) Let σ be an actual L-
admissible substitution, and let R and R′ be two free variable indexed formula trees that have the
same modal prefix with respect to σ but opposite polarities. If there exists an Rw ∈ Weakened(R)
which is α-equal (see Notation 5.1.3) to some R′w ∈Weakened(R′), then there exists no L-model M
which satisfies both R and R′. We say that R and R′ are connectable.

Proof. Let the prefixed formulas of R and R′ be respectively w.ϕp and w.ϕ′−p. Then Rw has the
prefixed formula w.ϕp

w while R′w has the prefixed formula w.ϕ−p
w . Assume there is an L-model that

satisfies both w.ϕp and w.ϕ′−p, i.e. for all possible worlds v and all assignments ρ it holds:

Mρ
v |= w.ϕp and Mρ

v |= w.ϕ′−p

By Lemma 5.2.2 it follows
Mρ

v |= w.ϕp
w and Mρ

v |= w.ϕ−p
w

Which is a contradiction. ut

70 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

The consequence of the corollary is that two free variable indexed formula trees form a connection
if, and only if, the intersection of their respective sets of weakened free variable indexed formula trees
are non-empty.

In order to formalise the notion of a replacement rule, we first define the conditions of some
subtree as the formal characterisation of the β-related formulas of some node.

Definition 5.2.4 (Node Conditions) Let R, c be nodes in some free variable indexed formula tree,
such that c governs R. Let R1, . . . ,Rn be all maximal nodes that are below c and β-related to R. Then
the conditions of R are given by the set C c

R := Weakened(R1)× . . .×Weakened(Rn).

Replacement rules are of two kinds: the first kind are those where the left-hand side is a node with
a polarity, and the second kind result from ε-type nodes. The former are called resolution replacement
rules, while the latter are called rewriting replacement rules.

Definition 5.2.5 (Admissible Resolution Replacement Rules) Let R0,R be nodes in some free vari-
able indexed formula tree and σ the actual overall substitution. Then R0→ 〈R1, . . . ,Rn〉 is an admissi-
ble resolution replacement rule for R, if, and only if,

1. R0 and R have opposite polarities and are α-related by a node c,

2. the modal prefixes of R0 and R are equal with respect to σ,

3. and (R1, . . . ,Rn) ∈ C c
R0

.

Definition 5.2.6 (Admissible Rewriting Replacement Rules) Let R0,R be nodes in some free vari-
able indexed formula tree, R0 of primary type ε and label ε(s, t), and σ the actual overall substitution.
Then s→ 〈t,R1, . . . ,Rn〉 and t → 〈s,R1, . . . ,Rn〉 are admissible rewriting replacement rules for R, if,
and only if,

1. R0 and R are α-related by a node c,

2. the modal prefixes of R0 and R are equal with respect to σ,

3. and it holds that (R1, . . . ,Rn) ∈ C c
R0

.

5.3 CORE Calculus Rules

In this section we finally present the basic rules of the CORE framework. We first clarify the notion
of a proof state in CORE before presenting the twelve basic rules.

A CORE proof state is parameterized over the actual logic L and consists of an indexed formula
tree Q, an actual L-substitution σ and a free variable indexed formula tree R. A proof state with respect
to L is denoted by [Q,σBL R]. In order to prove some conjecture ϕ the initial proof state consists of
the initial indexed formula tree QI for ϕ+, the empty substitution, and the initial free variable indexed
formula tree RI for QI . The reasoning rules transform a proof state [Q,σBL R] into a proof state
[Q′,σ′BL R′]. The transformation is sound, if, and only if, σ is L-admissible for Q, σ ′ is L-admissible
for Q′, and whenever there is an L-satisfiable path in R, then there is an L-satisfiable path in R ′.

5.3. CORE CALCULUS RULES 71

(∀xNat 0 + x = x)∧ (∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))
⇒∀pNat→o ∀vNat p(s(s(0)) + v)⇔ p(s(s(v)))+

α

(∀xNat 0 + x = x)∧
(∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))−α

(∀xNat 0 + x = x)−γ

0 + X = X−ε

(∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))−γ

(∀yNat ¬(X ′ = 0)⇒ X ′+ y = s(p(X ′) + y))−γ

(¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′))−β

¬(X ′ = 0)+
α

X ′ = 0−ε

X ′+Y ′ = s(p(X ′) +Y ′)−ε

(∀pNat→o ∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

(∀vNat p(s(s(0)) + v)⇔ p(s(s(v))))+
δ

p(s(s(0)) + v)⇔ p(s(s(v)))+
ζ

. .
+
α (0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α 0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′))

−
ε 0 + X = X −

β ¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
ε X ′+Y ′ = s(p(X ′) +Y ′)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 5.2: Initial proof state composed of the initial indexed formula tree (upper part) and the corre-
sponding initial free variable indexed formula tree (lower part).

Definition 5.3.1 (Proof State, Soundness & Safeness) Let L be one of the logics under consider-
ation, Q an indexed formula tree, σ an L-substitution, and let R be a free variable indexed formula
tree. Then a proof state is denoted by [Q,σBL R]. A proof step is a transformation of some proof state
[Q,σBL R] into another proof state [Q′,σ′BL R′], which is denoted as [Q,σBL R] 7−→ [Q′,σ′BL R′].

Such a proof step is sound if, and only if, if σ is L-admissible with respect to Q and there is an
L-satisfiable path in R then σ′ is L-admissible with respect to Q′ and there is an L-satisfiable path in
R′.

A proof step is safe if, and only if, if σ′ is L-admissible with respect to Q′ and there is an L-
satisfiable path in R′ then σ is L-admissible with respect to Q and there is an L-satisfiable path in
R.

Example 5.3.2 Consider as an example the formula (∀xNat 0 + x = x)∧ (∀xNat ∀yNat ¬(x = 0)⇒
x + y = s(p(x) + y))⇒ ∀pNat→o ∀vNat p(s(s(0)) + v)⇔ P(s(s(v))); the initial proof state for the

72 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

+
α ((0 + X = X ∧0 + X = X)∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α (0 + X = X ∧0 + X = X)∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′))

−
α 0 + X = X ∧0 + X = X

−
ε 0 + X = X −

ε 0 + X = X

−
β ¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
ε X ′+Y ′ = s(p(X ′) +Y ′)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 5.3: Free variable indexed formula tree resulting from contracting −ε 0 + X = X .

positive formula is composed of the indexed formula tree and the free variable indexed formula tree
shown in Figure 5.2. The initial substitution is the empty substitution.

The reasoning rules that manipulate a proof state [Q,σBL R] are of two kinds: there are rules,
like instantiation, Leibniz’ equality introduction, etc., that affect Q,σ, and R and there are those that
affect only R, like for instance the application of a replacement rule. The first kind of rules essentially
change Q and the changes need to be propagated into R. How those changes are propagated depends
on the changes in R by the second kind of rules, which we present first.

5.3.1 Contraction

Given a proof state [Q,σBL R] and Rc a subtree in R, the contraction rule α-inserts a copy of Rc in
R. Copying of a free variable indexed formula tree is the straighforward operation that preserves all
references to Q.

Definition 5.3.3 (Contraction Rule) Let [Q,σBL R] be a proof state, Rc a subtree of polarity p in
R, and R′c a copy of Rc. The application of the contraction rule results in the proof state [Q,σBL R′],
where R′ is obtained from R by replacing the subtree Rc by

p
αα(Label(Rc),Label(R′c))

Rc R′c

Example 5.3.4 Consider as an example the free variable indexed formula tree from Example 5.1.2
(p. 64). Applying the contraction rule to −ε 0 + X = X yields the free variable indexed formula tree
shown in Figure 5.3. Note that the indexed formula tree of the proof state is not affected by that rule.

Lemma 5.3.5 The contraction rule is sound and safe.

Proof. Consider the label on Rc, i.e. the prefixed signed formula pre(Rc).Label(Rc)
p. It is replaced

by the prefixed signed formula pre(Rc).αp(Label(Rc)
p,Label(Rc)

p). Obviously pre(Rc).Label(Rc)
p

is L-satisfiable if, and only if, the prefixed signed formula pre(Rc).αp(Label(Rc)
p,Label(Rc)

p) is
L-satisfiable , since Label(Rc) = Label(R′c). ut

5.3. CORE CALCULUS RULES 73

5.3.2 Weakening

Given a proof state [Q,σBL R] and Rw a subtree in R, the weakening rule replaces Rw by some
R′w ∈ Weakened(Rw).

Definition 5.3.6 (Weakening Rule) Let [Q,σBL R] be a proof state, Rw a subtree in R, and R′w ∈
Weakened(Rw). The application of the weakening rule results in a proof state [Q,σBL R′], where R′

is obtained from R by replacing the subtree Rw by R′w.

Example 5.3.7 As an example consider the free variable indexed formula tree in Figure 5.3: Ap-
plying the weakening rule to one of the −α 0 + X = X we obtain again the initial free variable indexed
formula tree.

Lemma 5.3.8 The weakening rule is sound.

Proof. Follows directly from Lemma 5.2.2. ut

5.3.3 Structural Modal Permutation

We have retained the ν- and π-type modal connectives for intuition. However, during proof search we
must be able to move these connectives over the logical connectives in order to apply the replacement
rules. Take as an example a positive node R1 in the free variable indexed formula tree that has a label
�(A∧B) and a further α-related negative node R2 of label (�A)∧ (�B). In order to apply the rule
from R2 on R1, the labels of these nodes must be equal. Thus, we need a rule to transform the former
node into a positive node R1 of the form (�A)∧(�B). Generally we need a rule that allows us to move
any modal connective over any standard logical connective, i.e. ∧,∨,¬, and⇒. Writing these trans-
formations as axioms results in either unsound or unsafe transformations in general, as for example
the transformations �(A∨B)⇒�(A)∨�(B) or ♦(A∨B)⇒ ♦(A)∨♦(B). However, the information
contained in a free variable indexed formula tree allows for sound and safe transformations: the ν-
and π-type nodes in a free variable indexed formula tree have references to the nodes of secondary
types ν1 and π1 in the indexed formula tree from which they originate. Thus, a modal node R of label
♦(A∨B) is indexed by that node Q in the indexed formula tree, which we write as �Q(A∧B). The
prefixes of A and B are both pre(R) :: 〈Q〉. The transformation of R into a subtree for ♦(A)∧♦(B)
preserves that information, i.e. we obtain an indexed version of that formula that is ♦Q(A)∧♦Q(B).
Now, the prefixes of A and B are still pre(R) :: 〈Q〉. The preservation of the references during the
transformation of the subtrees makes that transformation sound and safe.

Definition 5.3.9 (Structural Modal Permutation Rule) Let R,R1 and R2 be a free variable indexed
formula tree. The structural modal transformations are then defined as

-- Replacing the subtree p
νν(α(R−p))Q by p

αα(ν(R−p)Q),

-- Replacing the subtree p
νν(α(Rp1

1 ,R
p2
2))Q by p

αα(ν(Rp1
1)Q,ν(Rp2

2)Q),

-- Replacing the subtree p
νν(β(Rp1

1 ,R
p2
2))Q by p

αβ(ν(Rp1
1)Q,ν(Rp2

2)Q),

and analogously for π-type nodes.

Lemma 5.3.10 (Soundness & Safeness of the Structural Modal Transformations) The structural
modal transformations are sound and safe.

74 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

Proof. We prove the statement for the two transformations of binary connectives. The proofs for the
other cases are analogous.

Replacing the subtree p
νν(α(Rp1

1 ,R
p2
2))Q by p

αα(ν(Rp1
1)Q,ν(Rp2

2)Q): the paths in the free variable
indexed formula tree are transformed as follows:

� Γ,νQ(α(Rp1
1 ,R

p2
2))� into � Γ,νQ(Rp1

1),νQ(Rp2
2)�

The first path � Γ,νQ(α(Rp1
1 ,R

p2
2))� results by the path decomposition rules in the path �

Γ,Rp1
1 ,R

p2
2 �, where Rp1

1 and Rp2
2 have the same prefix 〈pre(R) :: Q〉. The second path that

results from the structural modal transformation can also be decomposed into� Γ,R p1
1 ,R

p2
2 �,

and Rp1
1 and Rp2

2 again have the same prefix 〈pre(R) :: Q〉 as originally. Thus, the rule application
is sound and safe.

Replacing the subtree p
νν(β(Rp1

1 ,R
p2
2))Q by p

αβ(ν(Rp1
1)Q,ν(Rp2

2)Q): the paths in the free variable in-
dexed formula tree are transformed as follows:

� Γ,νQ(β(Rp1
1 ,R

p2
2))� into � Γ,νQ(Rp1

1)�
and � Γ,νQ(Rp2

2)�

Again, the first path� Γ,νQ(β(Rp1
1 ,R

p2
2))� can be decomposed into the paths� Γ,Rp1

1 � and
� Γ,Rp2

2 �, where Rp1
1 and Rp2

2 have the same prefix 〈pre(R) :: Q〉. The second path that results
from the structural modal transformation can also be decomposed into two paths � Γ,R p1

1 �
and� Γ,Rp2

2 �, and Rp1
1 and Rp2

2 again have the same prefix 〈pre(R) :: Q〉 as originally. Thus,
the rule application is sound and safe. ut

Note that structural modal transformation rules “move” all modal connectives towards the literal
nodes and group them there. This corresponds to the representation of modal prefixes in encodings
of modal logic formulas into first-order logic formulas for resolution theorem proving as presented in
[Nonnengart, 1995].

5.3.4 Replacement Rule Application

In this section we define the application of resolution replacement rules, whereas rewriting style re-
placement rules are presented below in Section 5.3.11.

The application of a resolution replacement rule to some node a consists of replacing the goal
to prove a by the subgoals to prove the values of the rule. Since the values of a replacement rule
may have different modal prefixes than a, a cannot be simply replaced by a conjunction of the values.
Instead we replace a by some trivially proved formula and attach the values (i.e. the subgoals) at some
node that governs a and complies to the modal prefix of the subgoal. In order to β-insert the subgoals
at these nodes, we must be able to find a term that adequately represents the formula resulting from the
insertion. Generally, given any two signed formulas ϕp,ϕ′p′ we need to find a formula βp(ϕp,ϕ′p′).
To this end we introduce the notion of β-terms and prove that those terms always exist.

Definition 5.3.11 (β-terms) Let L be one of the considered logics and p, p1, p2 defined polarities. A
β-term for L with respect to the polarities p, p1, and p2 is a λ-term λϕ1 λϕ2 ϕ of type o→ o→ o,

5.3. CORE CALCULUS RULES 75

+
α ((1≤ 2∧Ord([1]))⇒ Ord([1,2]))⇒ Ord([1,2])

−
β (1≤ 2∧Ord([1]))⇒ Ord([1,2])

+
β 1≤ 2∧Ord([1])

+
−1≤ 2 +

−Ord([1])

−
−Ord([1,2])

+
−Ord([1,2])

+
α ((1≤ 2∧Ord([1]))⇒ Ord([1,2]))⇒ ((1≤ 2∧Ord([1]))∧True)

−
β (1≤ 2∧Ord([1]))⇒ ((1≤ 2∧Ord([1]))∧True)

+
β 1≤ 2∧Ord([1])

+
−1≤ 2 +

−Ord([1])

−
−Ord([1,2])

+
β (1≤ 2∧Ord([1]))∧True

+
β 1≤ 2∧Ord([1])

+
−1≤ 2 +

−Ord([1])

+
−True

Figure 5.4: Free variable indexed formula trees before and after application of the replacement rule.

such that for any formulas ψ1, ψ2, if t is the βη long normal form of ((λϕ1 λϕ2 ϕ) ψ1 ψ2), then the
signed formula t p is of primary type β, ϕ1 and ϕ2 occur uniquely in t with respective polarities p1 and
p2 and the occurrences of ϕ1 and ϕ2 inside t have the same modal prefix as t.

Lemma 5.3.12 (Existence of β-Terms) For any logic L from Definition 3.2.1, for any two formulas
ψ1,ψ2, polarities p, p′, and any prefix m there exists a binary β-term β for p, p, and p′, such that the
prefixes of ψ and ψ′ inside βp(ψp,ψp′) are equal to m.

Proof. To prove this lemma we give for each polarity constellation an example β-term which fulfills
the requirements.

p p′ β-term
+ + λψ1 λψ2 (∧ ψ1 ψ2)

+ − λψ1 λψ2 (¬(⇒ ψ1 ψ2))

− + λψ1 λψ2 (⇒ ψ2 ψ1)

− − λψ1 λψ2 (∨ ψ1 ψ2)

ut

The β-insertion of a subtree on some node consists in replacing the node with a β-type node with
a respective β-term label and of subtrees the given subtree and the original node.

Definition 5.3.13 (Resolution Replacement Rule Application) Let [Q,σBL R] be a proof state,
a a node in R, and u → 〈v′1, . . . ,v′n〉 (n ≥ 0) an admissible resolution replacement rule for a (i.e.
v′i ∈ Weakened(vi), vi β-related to u) such that u and a are connectable (see Corollary 5.2.3). The
application of u→ 〈v′1, . . . ,v′n〉 to a is defined as follows:

-- For each v′i, we determine the node pi which (a) governs a and (b) has the same modal prefix
than v′i with respect to σ and β-insert v′i on pi.

-- subsequently, we replace the subtree a by an initial free variable indexed formula tree for True+,
if a has positive polarity, or otherwise for False−.

Example 5.3.14 Consider as an example the following free variable indexed formula tree obtained
for the (positive) formula about lists of natural numbers

((1≤ 2∧Ord([1]))⇒ Ord([1,2]))⇒ Ord([1,2])

76 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

c : α

β
Γv1

v1 β
Γv2

v2 β
Γv3

β
Γvn

vn u
Γu

β
Γb1

b1 β
Γb2

b2 β
Γb3

β

bm a
Γa

c : α

β
Γv1

v1 β
Γv2

v2 β
Γv3

β
Γvn

vn u
Γu

β
Γb1

b1 β
Γb2

b2 β
Γb3

β

v′1

v′2 β

bm

β

v′n Proved

Figure 5.5: Structures of the free variable indexed formula tree before and after the rule application.

where [1] denotes the singleton list containing 1, [1,2] denotes the list with the elements 1 and 2, ≤
is the usual ordering over natural numbers, and Ord is a predicate for sorted lists. Creating a proof
state for that signed formula yields the initial free variable indexed formula tree shown on the left-
hand side of Figure 5.4. For the positive literal node +

−Ord([1,2]) we obtain the replacement rule
−
−Ord([1,2])→

〈
+
β 1≤ 2∧Ord([1])

〉
, which after application yields the free variable indexed formula

tree shown on the right-hand side of Figure 5.4.

Lemma 5.3.15 (Soundness of Resolution Replacement Rule Application) The resolution replace-
ment rule application is sound.

Proof. Let b1, . . . ,bm be the maximal subtrees, that are below c and β-related to a. The structure of
the subtree rooted at c is shown on the left-hand side of Figure 5.5. The Γvi denote the α-related
parts to vi, that are below vi−1 (or below c in case i = 0). Γu denotes the α-related parts to u, that are
below the β-type node that connects the preceding subtree vn.

Analogously, the Γb j denote the α-related parts to b j, that are below b j−1 (or below c in case
j = 0), and Γa the α-related parts to a that are below bm (or c in case m = 0).

The paths through the subtree are sets of prefixed formulas and are of four kinds

1. Γv1 , . . . ,Γvi ,vi,Γb1 , . . . ,Γb j ,b j , for all 1≤ i≤ n and all 1≤ j ≤ m.

2. Γv1 , . . . ,Γvn ,Γu,u,Γb1 , . . . ,Γb j ,b j , for all 1≤ j ≤ m.

3. Γv1 , . . . ,Γvi ,vi,Γb1 , . . . ,Γbm ,Γa,a, for all 1≤ i≤ n

4. and the path Γv1 , . . . ,Γvn ,Γu,u,Γb1 , . . . ,Γbm ,Γa,a.

We have to show, that if there was an L-satisfiable path before rule application, then there is one
afterwards. The structure of the new subtree is viewed on the right-hand side of Figure 5.5. We do a
case analysis with respect to the above categorization:

5.3. CORE CALCULUS RULES 77

1. If the path was of the kind Γv1 , . . . ,Γvi ,vi,Γb1 , . . . ,Γb j ,b j , then it still exists in the new subtree.

2. If the path was of the kind Γv1 , . . . ,Γvn ,Γu,u,Γb1 , . . . ,Γb j ,b j , then it still exists in the new sub-
tree.

3. If the path was of the kind Γv1 , . . . ,Γvi ,vi,Γb1 , . . . ,Γbm ,Γa,a, we can find in the new subtree the
path Γv1 , . . . ,Γvi ,vi,Γv′i ,v

′
i where Γv′i are the α-related part in the new subtree, that are below c.

Γv′i is a subset of Γb1 , . . . ,Γbm ,Γa, and from Lemma 5.2.2 we know that if vi is L-satisfiable ,
then so is v′i. Thus the new path is a “subset” of the old path, and thus also L-satisfiable.

4. If the path was Γv1 , . . . ,Γvn ,Γu,u,Γb1 , . . . ,Γbm ,Γa,a, then it is not L-satisfiable, since it contains
the connectable nodes u and a (cf. Corollary 5.2.3).

Hence the resolution application of an admissible replacement rule is sound. ut

The application of a resolution replacement rule is not safe, except when u has no β-related sub-
trees. In order to allow for a safe application of the resolution replacement rule, the contraction rule
needs to be applied before applying the resolution replacement rule.

Lemma 5.3.16 The combination of the application of the contraction rule on some node b below c
and that governs all β-insertion nodes for the new subgoals v′i and the subsequent application of the
resolution replacement rule is safe.

Proof. The proof is by induction over the structure of the direct subtree s of c that contains b.

Base Case s = b, i.e. b is a direct subtree of c. The prefixed formula on c is pre(c).α p(ϕ,Label(b)),
where ϕ is the subformula containing the resolution replacement rule. After application
of the contraction rule and the resolution replacement rule we obtain the prefixed formula
pre(c).αp(ϕ,α(Label(b),ϕ′)), where ϕ′ is the subformula obtained from Label(b) by reso-
lution replacement rule application. Obviously it holds for any L-model M, any world w and
assignment ρ:

Mρ
w|=Lpre(c).αp(ϕ,α(Label(b),ϕ′)) =⇒Mρ

w|=L pre(c).αp(ϕ,Label(b)).

Induction Step: The prefixed formula on c is of the form pre(c).αp(ϕ,ψ′(ψ(Label(b)))), where
ψ′(ψ(Label(b))) is the formula containing Label(b) and ψ(Label(b)) is the formula on the
parent node of b. By induction hypothesis we know that applying the contraction rule on the
parent node bp of b and subsequently applying the resolution replacement rule is safe. Thus we
know that for any L-model M, any world w and assignment ρ:

Mρ
w|=Lpre(c).αp(ϕ,ψ′(α(ψ(Label(b)),ψ(ϕ′))))

=⇒Mρ
w|=L pre(c).αp(ϕ,ψ′(ψ(Label(b))))

We prove by case analysis over the uniform type of ψ(Label(b)) that

Mρ
w|=Lpre(bp).ψp(αp(Label(b)p′′ ,ϕ′p′))

=⇒Mρ
w|=L pre(bp).αp(ψp(Label(b)p′′),ψp(ϕ′p′))

78 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

A. ψp = λP αp(ψ′′,Pp), where ψ′′ is some signed formula. Then

Mρ
w|=L pre(bp).ψp(αp(Label(b)p′′ ,ϕ′p′))

⇔ for all w′ ∈Mρ
w(pre(bp)) Mρ

w′ |=Lαp(ψ′′,αp(Label(b)p′′ ,ϕ′p′))
⇔ for all w′ ∈Mρ

w(pre(bp)) Mρ
w′ |=Lψ′′ and Mρ

w′ |=L Label(b)p′′ and Mρ
w′ |=L ϕ′p′

⇔ for all w′ ∈Mρ
w(pre(bp)) Mρ

w′ |=Lψ′′ and Mρ
w′ |=L Label(b)p′′

and Mρ
w′ |=L ψ′′ and Mρ

w′ |=L ϕ′p′

⇔ for all w′ ∈Mρ
w(pre(bp)) Mρ

w′ |=Lαp(ψ′′,Label(b)p′′) and Mρ
w′ |=L αp(ψ′′,ϕ′p′)

⇔ for all w′ ∈Mρ
w(pre(bp)) Mρ

w′ |=Lαp(αp(ψ′′,Label(b)p′′),αp(ψ′′,ϕ′p′))
⇔ Mρ

w|=L pre(bp).αp(ψp(Label(b)p′′),ψp(ϕ′p′))

B. ψp = λP βp(ψ′′,Label(b)p), where ψ′′ is some signed formula. Then

Mρ
w|=L pre(bp).ψp(αp(Label(b)p′′ ,ϕ′p′))

⇔ for all w′ ∈Mρ
w(pre(bp)) Mρ

w′ |=L βp(ψ′′,αp(Label(b)p′′ ,ϕ′p′))
⇔ for all w′ ∈Mρ

w(pre(bp)) Mρ
w′ |=L ψ′′ or (Mρ

w′ |=L Label(b)p′′ and Mρ
w′ |=L ϕ′p′)

⇔ for all w′ ∈Mρ
w(pre(bp)) (Mρ

w′ |=L ψ′′ or Mρ
w′ |=L Label(b)p′′)

and (Mρ
w′ |=L ψ′′ or Mρ

w′ |=L ϕ′p′)
⇔ for all w′ ∈Mρ

w(pre(bp)) Mρ
w′ |=L βp(ψ′′,Label(b)p′′) and Mρ

w′ |=L βp(ψ′′,ϕ′p′)
⇔ for all w′ ∈Mρ

w(pre(bp)) Mρ
w′ |=L αp(βp(ψ′′,Label(b)p′′),βp(ψ′′,ϕ′p′))

⇔ Mρ
w|=L pre(bp).αp(ψp(Label(b)p′′),ψp(ϕ′p′))

C. ψp = λP νp(Label(b)p): analogously.

D. ψp = λP πp(Label(b)p): analogously. ut

5.3.5 Simplification

Definition 5.3.17 (Simplification Rule) Let [Q,σBL R] be a proof state, and let R′ be a subtree of
R. The simplification rule consists of

-- if R′ is proved, replace R by an initial free variable indexed formula tree for True+ if the polarity
of R is positive, and otherwise by an initial free variable indexed formula tree for False−,

-- if R′ is disproved, replace R by an initial free variable indexed formula tree for False− if the
polarity of R is positive, and otherwise by an initial free variable indexed formula tree for True+,

-- if R′ a β-type node β(Rp1
1 ,R

p2
2)p and not proved, but either R1 or R2 is proved, then

– replace R′ by Ri, if Ri is the non-proven subtree and p = pi, or

– replace R′ by α(Rpi
i)p, if Ri is the non-proven subtree and p 6= pi

-- if R′ an α-type node α(Rp1
1 ,R

p2
2)p and not disproved, but either R1 or R2 is disproved, then

– replace R′ by Ri, if Ri is the non-disproven subtree and p = pi, or

– replace R′ by α(Rpi
i)p, if Ri is the non-disproven subtree and p 6= pi

-- Otherwise to leave R unchanged.

5.3. CORE CALCULUS RULES 79

Example 5.3.18 Take as an example the free variable indexed formula tree from Figure 5.4 (p. 75):
applying the simplification rule to the whole tree yields the simplified free variable indexed formula
tree

+
α ((1≤ 2∧Ord([1]))⇒ Ord([1,2]))⇒ (1≤ 2∧Ord([1]))

−
β (1≤ 2∧Ord([1]))⇒ (1≤ 2∧Ord([1]))

+
β 1≤ 2∧Ord([1])

+
−1≤ 2 +

−Ord([1])

−
−Ord([1,2])

+
β 1≤ 2∧Ord([1])

+
−1≤ 2 +

−Ord([1])

Lemma 5.3.19 (Soundness & Safeness of Simplification) The simplification rule is sound and safe.

Proof. The proof is by case analysis over the cases in the definition of the simplification rule. The last
case is trivially sound and safe. For the first two cases of the simplification rule the soundness and
safeness follows directly from Lemma 5.1.7. For the third case we consider how the paths through R
are affected by the simplification rule:

� Γ,β(ϕp,Provedp′)p� into � Γ,ϕp� (5.1)

respectively � Γ,β(ϕ−p,Provedp′)p� into � Γ,α(ϕ−p)p� (5.2)

where Provedp is True+, if p = +, and False− if p =−. For the path transformation (5.1) we have:

Mρ
w|=L pre(R′).β(ϕp,Provedp′)p

⇔ for all w′ ∈Mρ
w(pre(R′))Mρ

w′ |=L β(ϕp,Provedp′)p

⇔ for all w′ ∈Mρ
w(pre(R′))Mρ

w′ |=L ϕp or Mρ
w′ |=L Provedp′

Mρ
w′ 6|=L Provedp′

⇔ for all w′ ∈Mρ
w(pre(R′))Mρ

w′ |=L ϕp

⇔ Mρ
w|=L pre(R′).ϕp

For the path transformation (5.2) we have:

Mρ
w|=L pre(R′).β(ϕ−p,Provedp′)p

⇔ for all w′ ∈Mρ
w(pre(R′))Mρ

w′ |=Lβ(ϕp,Provedp′)p

⇔ for all w′ ∈Mρ
w(pre(R′))Mρ

w′ |=Lϕ−p or Mρ
w′ |=L Provedp′

Mρ
w′ 6|=L Provedp′

⇔ for all w′ ∈Mρ
w(pre(R′))Mρ

w′ |=Lϕ−p

⇔ for all w′ ∈Mρ
w(pre(R′))Mρ

w′ |=Lα(ϕ−p)p

⇔ Mρ
w|=L pre(R′).α(ϕ−p)p

Thus, the simplification rule is sound and safe. ut

To ease the definition of the second kind of rules, i.e. the rules that affect Q and whose effects
need to be propagated into R, we describe the general principle for the propagation of changes in Q to
R. To this end consider the respective rules and how they affect Q:

80 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

-- The introduction of Leibniz’ equality (cf. Definition 4.2.1) essentially inserts an α-related initial

indexed formula tree L for (∀P P(s)⇒ P(t))p to some given literal node ε
ζ (s, t). This can be

propagated to R by α-inserting on each occurrence of ε
ζ (s, t) inside R a respective initial free

variable indexed formula tree for L.

-- The extensionality introduction (cf. Definition 4.3.3) behaves analogously to the previous rule:

it inserts an α-related literal node for (λx s = λx t)p to some given literal node ε
ζ (s, t)p. Again,

this can be propagated to R by α-inserting on each occurrence of ε
ζ (s, t) inside R an initial free

variable indexed formula tree for (λx s = λx t)p.

-- The boolean ζ-expansion rule (cf. Definition 4.4.1) essentially inserts an α-related initial in-
dexed formula tree L for ((A⇒ B)∧ (B⇒ A))+ to some given ζ-type node ζ(Ao,Bo). This is
propagated to R by α-inserting on each occurrence of ζ(Ao,Bo) inside R a respective initial free
variable indexed formula tree for L.

-- The instantiation rule (cf. Definition 4.5.2) instantiates γ-variables and ν-nodes. The instanti-
ation of ν-type nodes does not affect R, except for the determination of the modal prefixes of
subtrees. For the instantiation of a γ-variable X it essentially instantiates the labels of nodes,
and, if X is a set variable, replaces the literal nodes of label X(s1, . . . ,sn)p by an initial indexed
formula tree for σQ(X(s1, . . . ,sn))

p
↓βη. This can be propagated to R by instantiating the labels

of nodes in R and replacing the occurrences of X(s1, . . . ,sn)p by initial free variable indexed
formula trees for σQ(X(s1, . . . ,sn))p

↓βη.

-- The increase of multiplicities (cf. Definition 4.11.5) adds copies of indexed formula trees on
respective γ-type and ν-type nodes and extends the overall substitution. The extension of the
substitution must be handled in combination with the insertion of the new indexed formula
tree. From the copying of the respective indexed formula tree we obtain a renaming ρ and
an isomorphic mapping ι from nodes in the old indexed formula tree Q to nodes in the new
indexed formula tree Q′. Inside R we determine the largest subtrees that contain only nodes
from Q (literals as well as ν- and π-type nodes annotated by nodes from Q of secondary type
ν0 and π0). Then we α-insert a copy of those subtrees by renaming the labels by ρ and the
referenced nodes in Q in accordance with ι.

5.3.6 Leibniz’ Equality

Definition 5.3.20 (Leibniz’ Equality Introduction Rule) Let [Q,σBL R] be a proof state, Re an ε-

or ζ-type subtree in R, Qe its associated subtree in Q of polarity p and label ε
ζ (s, t), and Q′e an initial

indexed formula tree for (∀P P(s)⇒ P(t))p. The application of the Leibniz’ Equality Introduction
rule on Re results in a proof state [Q′,σBL R′]. Thereby Q′ is the result of applying the Leibniz’
equality introduction rule on Qe which consisted in replacing Qe by

QLeibniz =
Label(Qe)

p
α

Qe Q′e

5.3. CORE CALCULUS RULES 81

+
α (((0 + X = X ∧ (Q(0 + X)⇒ Q(X)))∧ (0 + X = X ∧ (Q(0 + X)⇒ Q(X))))∧
(¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α ((0 + X = X ∧ (Q(0 + X)⇒ Q(X)))∧
(0 + X = X ∧ (Q(0 + X)⇒ Q(X))))∧ (¬(X ′ = 0)
⇒ X ′+Y ′ = s(p(X ′) +Y ′))

−
α ((0 + X = X ∧ (Q(0 + X)⇒ Q(X)))∧ (0 + X = X ∧ (Q(0 + X)⇒ Q(X))))

−
α 0 + X = X ∧ (Q(0 + X)⇒ Q(X))

−
ε 0 + X = X −

β Q(0 + X)⇒ Q(X)

+
−Q(0 + X) −

−Q(X)

−
α 0 + X = X ∧ (Q(0 + X)⇒ Q(X))

−
ε 0 + X = X −

β Q(0 + X)⇒ Q(X)

+
−Q(0 + X) −

−Q(X)

−
β ¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
ε X ′+Y ′ = s(p(X ′) +Y ′)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 5.6: Free variable indexed formula tree resulting from introducing Leibniz’ equality for the
ε-type formula −ε 0 + X = X .

Furthermore R′ is the result of replacing all literal nodes RL in R that are annotated by Qe with

p
αα(Label(RL),Label(R′L))

RL R′L

where R′L is an initial free variable indexed formula tree for Q′e.

Example 5.3.21 Consider as an example the proof state for the formula

(∀xNat 0 + x = x)∧ (∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))
⇒∀pNat→o ∀vNat p(s(s(0)) + v)⇔ P(s(s(v)))

after application of the contraction rule; the indexed formula tree for that proof state is shown in
Figure 4.1 (p. 34) and the free variable indexed formula tree is shown in Figure 5.3 (p. 72). The
introduction of the Leibniz’ equality for the ε-type formula −ε 0 + X = X yields on the one hand the
indexed formula tree shown in Figure 4.2 (p. 41). The adaptation of the two occurrences of that
formula in the free variable indexed formula tree yields the free variable indexed formula tree shown
in Figure 5.6.

Lemma 5.3.22 The Leibniz’ equality introduction rule is sound and safe.

Proof. The label of RL is the prefixed formula pre(RL). ε
ζ

p(s, t) and s, t are of type τ. This prefixed

formula is replaced by the formula pre(RL).αp(ε
ζ

p(s, t),∀pP P(s)⇒ P(t)). Let Mρ
w be an L-model

with possible world w and assignment ρ that satisfies pre(RL). ε
ζ

p(s, t). We prove the soundness and

82 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

safeness for the case where ε
ζ

p(s, t) is of the form (s = t)+. The other cases are analogous.

Mρ
w|=L pre(RL).(s = t)+

⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′ |=L(s = t)+

⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′ 6 |=L s = t
⇔ for all w′ ∈Mρ

w(pre(RL)) Mρ
w′(s) 6= Mρ

w′(t)
⇔ for all w′ ∈Mρ

w(pre(RL)) Mρ
w′(s) 6= Mρ

w′(t)
and there exists pMw(τ→o) . (¬p(Mρ

w′(s))) and p(Mρ
w′(t))

P new⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′(s) 6= Mρ
w′(t)

and there exists p ∈Mw(τ→ o) Mρ[p/P]
w′ 6 |=L P(s)⇒ P(t)

⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′(s) 6= Mρ
w′(t)

and not for all p ∈Mw(τ→ o) Mρ[p/P]
w′ |=LP(s)⇒ P(t)

⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′(s) 6= Mρ
w′(t)

and Mρ
w′ 6 |=L∀Pτ→o P(s)⇒ P(t)

⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′ |=L(s = t)+ and Mρ
w′ |=L(∀Pτ→o P(s)⇒ P(t))+

⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′ |=L α+(s = t+,(∀Pτ→o P(s)⇒ P(t))+)

⇔ Mρ
w|=L pre(RL).α+(s = t+,(∀Pτ→o P(s)⇒ P(t))+) ut

5.3.7 Extensionality

Definition 5.3.23 (Extensionality Introduction Rule) Let [Q,σBL R] be a proof state, Re an ε- or

ζ-type subtree in R, Qe its associated subtree in Q of polarity p and label ε
ζ (s, t) with local variable

x, and Q′e an initial indexed formula tree for ε
ζ (λx s,λx t). The application of the extensionality

introduction rule on Re results in a proof state [Q′,σBL R′]. Thereby Q′ is the result of applying the
extensionality introduction rule on Qe which consisted in replacing Qe by

QExt =
Label(Qe)

p
α

Qe Q′e

Furthermore R′ is the result of replacing all literal nodes RL in R that are annotated by Qe with

p
αα(Label(RL),Label(R′L))

RL R′L

where R′L is an initial free variable indexed formula tree for Q′e.

Example 5.3.24 Consider the sample initial proof state shown in Figure 5.2 (p. 71). The introduction
of extensionality for the ε-type node −ε X ′+Y ′ = s(p(X ′) +Y ′) yields the indexed formula tree shown
in Figure 4.3 (p. 45) and the free variable indexed formula tree shown in Figure 5.7.

Lemma 5.3.25 The extensionality introduction rule is sound and safe.

5.3. CORE CALCULUS RULES 83

+
α (0 + X = X ∧ (¬(X ′ = 0)⇒ ((X ′+Y ′ = s(p(X ′) +Y ′))∧ (λy X ′+ y = λy s(p(X ′) + y)))))⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α 0 + X = X ∧ (¬(X ′ = 0)⇒ ((X ′+Y ′ = s(p(X ′) +Y ′))∧ (λy X ′+ y = λy s(p(X ′) + y))))

−
ε 0 + X = X −

β ¬(X ′ = 0)⇒ ((X ′+Y ′ = s(p(X ′) +Y ′))∧ (λy X ′+ y = λy s(p(X ′) + y)))

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
α (X ′+Y ′ = s(p(X ′) +Y ′))∧ (λy X ′+ y = λy s(p(X ′) + y))

−
ε X ′+Y ′ = s(p(X ′) +Y ′) −

ε λy X ′+ y = λy s(p(X ′) + y)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 5.7: Free variable indexed formula tree after extensionality introduction for ε-type formula
−
ε X ′+Y ′ = s(p(X ′) +Y ′) with respect to γ-local variable Y ′.

Proof. The label of RL is the prefixed formula pre(RL). ε
ζ

p(s, t) where s, t are of type τ. This prefixed

formula is replaced by the formula pre(RL).αp(ε
ζ

p(s, t), ε
ζ

p(λx s,λx t)). Let Mρ
w be an L-model

with possible world w and assignment ρ that satisfies pre(RL). ε
ζ

p(s, t). We prove the soundness and

safeness for the case where ε
ζ

p(s, t) is of the form (s = t)+. The other cases are analogous.

For the case (s = t)+ the variable x must be δ-local with respect to (s = t)+. Then it holds:

Mρ
w|=L pre(RL).(s = t)+

⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′ |=L(s = t)+

⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′ |=L s = t+ and Mρ
w′ |=L s = t+

x δ−local &
Lemma 4.3.2⇔ for all w′ ∈Mρ

w(pre(RL)) Mρ
w′ |=L s = t+ and Mρ

w′ |=L(∀xτ′ s = t)+

Extensionality⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′ |=L s = t+ and Mρ
w′ |=L(λxτ′ s = λxτ′ t)+

⇔ for all w′ ∈Mρ
w(pre(RL)) Mρ

w′ |=L α+(s = t+,(λxτ′ s = λxτ′ t)+)

⇔ Mρ
w|=L pre(RL).α+(s = t,λxτ′ s = λxτ′ t) ut

5.3.8 Boolean ζ-Expansion

Definition 5.3.26 (Boolean ζ-Expansion Rule) Let [Q,σBL R] be a proof state, Rζ a ζ-type subtree
in R, and Qζ its associated subtree in Q of label ζ(Ao,Bo). The application of the boolean ζ-expansion
rule on Rζ results in a proof state [Q′,σBL R′], where Q′ is the result of applying the boolean ζ-
expansion rule on Qζ which introduces an intitial indexed formula tree QE for ((A⇒ B)∧ (B⇒ A))+.
Furthermore, R′ is obtained by replacing all literal nodes RL of R annotated by Qζ by

p
αα(Label(RL),Label(R′L))

RL R′L

where R′L is an initial free variable indexed formula tree for QE .

84 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

+
α (0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))
⇒ (p(s(s(v)))⇒ p(s(s(0)) + v))∨ ((p(s(s(0)) + v)⇒ p(s(s(v))))∧ (p(s(s(v)))⇒ p(s(s(0)) + v)))

(p(s(s(v)))⇒ p(s(s(0)) + v))∨
((p(s(s(0)) + v)⇒ p(s(s(v))))∧ (p(s(s(v)))⇒ p(s(s(0)) + v)))

+
ζ p(s(s(0)) + v)⇔ p(s(s(v))) +

β (p(s(s(0)) + v)⇒ p(s(s(v))))∧ (p(s(s(v)))⇒ p(s(s(0)) + v))

+
α (p(s(s(0)) + v)⇒ p(s(s(v))))

−
−p(s(s(0)) + v) +

−p(s(s(v)))

+
α (p(s(s(v)))⇒ p(s(s(0)) + v))

−
−p(s(s(v))) +

−p(s(s(0)) + v)

Figure 5.8: Free variable indexed formula tree after boolean ζ-expansion on +
ζ p(s(s(0)) + v) ⇔

p(s(s(v))).

Example 5.3.27 Take as an example the proof state from Figure 5.2 (p. 71). The application of the
boolean ζ-expansion rule applied to +

ζ p(s(s(0)) + v)⇔ p(s(s(v))) yields the indexed formula tree
already shown in Figure 4.4 (p. 46) and the free variable indexed formula tree of Figure 5.8.

Lemma 5.3.28 The boolean ζ-expansion rule is sound and safe.

Proof. The rule operates on literal nodes and thus does not affect the substitution which remains
L-admissible. It remains to be shown for soundness (respectively safeness) that the rule preserves
the existence (respectively absence) of satisfiable paths. The rule is applied on a literal node Rζ =
ζ(A,B), which is of positive polarity and where A and B are formulas. The new node introduced
by that rule denotes the signed formula ((A⇒ B)∧ (B⇒ A))+, which using uniform notation is
β(α(A−,B+)+,α(B−,A+)+)+. The rule transforms the paths as follows:

� Γ,ζ(A,B)� into � Γ,ζ(A,B),β(α(A−,B+)+,α(B−,A+)+)+�
We show for that transformation that the former path is satisfiable if, and only if, the latter path is
satisfiable.

Mρ
w|=L pre(Rζ).ζ(Ao,Bo)+

⇔ for all w′ ∈Mρ
w(pre(Rζ)) Mρ

w′ |=L ζ(Ao,Bo)
Definition 3.4.2⇔ for all w′ ∈Mρ

w(pre(Rζ)) Mρ
w′ 6 |=L A = B

⇔ for all w′ ∈Mρ
w(pre(Rζ)) Mρ

w′(A) 6= Mρ
w(B)

Mρ
w(o)={>,⊥}⇔ for all w′ ∈Mρ

w(pre(Rζ)) (Mρ
w′(A) => and Mρ

w′(B) =⊥) or
(Mρ

w′(A) =⊥ and Mρ
w′(B) =>)

⇔ for all w′ ∈Mρ
w(pre(Rζ)) (Mρ

w′ |=L A and Mρ
w′ 6 |=LB) or

(Mρ
w′ 6 |=L A and Mρ

w′ |=L B)
Definition 3.4.2⇔ for all w′ ∈Mρ

w(pre(Rζ)) (Mρ
w′ |=L A− and Mρ

w′ |=L B+) or
(Mρ

w′ |=L A+ and Mρ
w′ |=L B−)

Lemma 3.4.3⇔ for all w′ ∈Mρ
w(pre(Rζ)) Mρ

w′ |=L α(A−,B+)+ or Mρ
w′ |=L α(B−,A+)+

Lemma 3.4.3⇔ for all w′ ∈Mρ
w(pre(Rζ)) Mρ

w′ |=L β(α(A−,B+)+,α(B−,A+)+)+

⇔ Mρ
w|=L pre(Rζ).β(α(A−,B+)+,α(B−,A+)+)+ ut

5.3. CORE CALCULUS RULES 85

5.3.9 Instantiation

Let [Q,σBL R] be a proof state. The instantiation rule extends the actual substitution σ by applying
an L-substitution σ′ such that the resulting overall L-substitution σ′ ◦σ is L-admissible. Generally,
an L-substitution consists of an object variable substitution σ′Q and a modal substitution σ′M . The
modal substitution has no direct effect on Q, except for the determination of the equality of prefixes
and for the overall ordering. The object variable substitution affects Q by applying the substitution
to the labels of the non-literal nodes and by replacing literal nodes QL in Q by an initial indexed
formula tree Qσ′

L for σ′Q(Label(QL)). Each such QL may be associated to one or more literal nodes in
R. Thus, while replacing QL by Qσ′

L we need to replace the corresponding literal nodes in R by initial
free variable indexed formula trees for Qσ′

L .

Definition 5.3.29 (Instantiation Rule) Let [Q,σBL R] be a proof state, and σ′ an L-substitution
such that σ′ ◦σ is L-admissible. The instantiation rule results in a proof state [Q′,σ′ ◦σBL R′] where
Q′ results from Q as defined in Definition 4.5.2 and R′ results from R by applying the substitution to
the non-literal nodes and by replacing all literal nodes in R with associated literal node QL in Q that
have been replaced in Q′ by some Qσ′

L with an initial free variable indexed formula tree for Qσ′
L .

Lemma 5.3.30 The instantiation rule is sound.

Proof. The instantiation rule is sound, since the admissibility of the substitution is checked on Q (resp.
Q′). It also preserves the existence of L-satisfiable paths, as is proved as follows: let M be an L-model
of the whole signed formula ϕ in Q before application of the substitution σ ′. If M satisfies ϕp then for
all possible worlds w and all assignments ρ′ it holds: Mρ′

w |=Lϕp. From Lemma 4.1.14 it follows that
for any assignment ρ and substitution σ′ there is a assignment ρ′ such that

Mρ
w|=L σ′(ϕ)p =⇒Mρ′

w |=L ϕp

Hence, M L-satisfies σ′(ϕ)p. ut

New Variables. Higher-order unification may generate new variables. In Section 4.6 we showed
how these additional variables are handled inside Q. Thus the integration of new variables changes a
proof state [Q,σBL R] to [Q′,σBL R] where Q′ contains the additional bindings for the new variables.

5.3.10 Increase of Multiplicities

The increase of multiplicities is necessary for a safe instantiation. This is achieved by increasing the
multiplicities of the parent nodes of the binding nodes of instantiated object variables and variable
nodes, before applying a substitution. In Section 4.11 we showed how the multiplicities are increased
in the indexed formula tree Q. From there we obtain the subtrees of primary type ν0 or Π0 that have
been obtained by copying, as well as a mapping ι from nodes in the old subtrees to nodes in the new
subtree and a renaming θ of object level variables. Assume the overall modal substitution is σM:
then propagating the new multiplicities into the free variable indexed formula tree R is achieved by
considering the subtrees in R that have an associated node Q′ in dom(ι) or where σM(Q′)∩dom(ι) 6=
/0. Those subtrees are either literal nodes or subtrees of type ν with associated node Q ′ such that
σM(Q′)∩dom(ι) 6= /0. Thus, we need to copy those subtrees of type ν by renaming the references into
Q by ι and the object level variables by θ. For the respective literal nodes in R that do not occur in
one of these subtrees we consider the maximal subtrees R that contain only those kind of literal nodes.
The maximal subtrees are also copied by applying the renamings θ and ι.

86 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

Definition 5.3.31 (Increase of Multiplicities) Let [Q,σBL R] be a proof state, and Q a set of sub-
trees from Q of which to increase the multiplicities. The new proof state [Q ′,σ′BL R′] is obtained
by

-- increasing the multiplicities in Q according to Definition 4.11.5 which results in Q ′, a variable
renaming θ and a mapping ι on subtrees of the indexed formula tree Q′.

-- Let RM be the maximal subtrees that have an associated node of type ν0 in dom(ι) and RL the
maximal subtrees that contain only literal nodes in dom(ι) and that do not occur in RM . For
each subtree R0 ∈ RM ∪RL we α-insert a copy of R0 that has been renamed with respect to θ
and ι.

Lemma 5.3.32 The increase of multiplicities is sound and safe.

Proof. By Lemma 4.11.7 the new overall substitution that results from instantiation required for the
increase of multiplicities is still L-admissible. Now consider the maximal subtrees R0 ∈ RM∪RL in R
that have been copied. Each such subtree has a label pre(R0).ϕp and has been replaced by a subtree
of the same prefix and label pre(R0).αp(ϕp,θ(ϕ)p). Since θ is only a renaming of variables it trivially
holds for every L-model M, possible world w and assignment ρ there exists a ρ ′ such that

Mρ
w|=Lpre(R0).ϕp =⇒Mρ′

w |=Lpre(R0).αp(ϕp,θ(ϕ)p)

Conversely, for every L-model M, possible world w and assignment ρ’ it follows from Lemmata 3.4.3
and 4.1.8 that

Mρ′
w |=L pre(R0).αp(ϕp,θ(ϕ)p) =⇒Mρ′

w |=L pre(R0).ϕp
ut

5.3.11 Application of Rewriting Replacement Rules

A resolution replacement rule is always applied to a node of the free variable indexed formula tree,
if the left-hand side of the rule is connectable to that node. A rewriting replacement rule can also be
applied to some node, but may also be virtually applied to some subterm of the label of a literal node.
For the application of a rewrite replacement rule to some node the rewriting step is encoded internally
by a combination of the Leibniz’ equality introduction and the instantiation rule. We call this kind of
rewriting on nodes boolean rewriting, since it consists of the application of an equivalence A⇔ B.

As already presented in Section 3.5, rewriting inside labels of literal nodes also relies on this
combination of Leibniz’ equality and instantiation, but due to the presence of quantifiers or λ-binders
inside labels, it may require an additionally application of the extensionality rule.

Since the rewriting “inside” literal nodes relies on extensionality introduction and rewriting on
nodes we first define the rewriting on nodes.

Definition 5.3.33 (Rewriting Replacement Rule Application On Nodes) Let [Q,σBL R] be a proof
state, a a node in R of polarity p and let u→ 〈v,v′1, . . . ,v′n〉 (n ≥ 0) be an admissible rewriting re-
placement rule for a, where u and v are the left- and right-hand sides of an ε-type position v0. The
application of u→ 〈v,v′1, . . . ,v′n〉 to a is defined as follows:

1. Apply the Leibniz’ equality introduction rule to v0 to obtain

β−(P(Label(v))p,P(Label(u))−p),

5.3. CORE CALCULUS RULES 87

2. Instantiate P by λx x to obtain β−(Label(v)p,Label(u)−p), which results in the resolution
replacement rule

Label(u)−p→ 〈Label(v)p,v1, . . . ,vn〉 .

3. Apply Label(u)−p→ 〈Label(v)p,v1, . . . ,vn〉 to a.

Lemma 5.3.34 The rewriting style replacement rule application on nodes is sound.

Proof. The Leibniz’ equality introduction rule is sound and safe. The resolution style rule application
is sound. ut

As a motivating example for rewriting inside literal nodes we refer to the example from Sec-
tion 3.5. We first state the definition for rewriting inside literal nodes and afterwards give an example
that illustrates the different steps of the definition.

Definition 5.3.35 (Rewriting Replacement Rule Application Inside Literal Nodes) Let [Q,σBL
R] be a proof state, a a literal node of label ϕ in R and of polarity p, π a valid subterm occurrence inside
Label(a), and let u→ 〈v,v′1, . . . ,v′n〉 (n ≥ 0) be an admissible rewriting replacement rule for a, where
u and v are the left- and right-hand sides of an ε-type position v0 of label ε−(s, t). The application of
u→ 〈v,v′1, . . . ,v′n〉 on a at π is defined as follows:

-- Let x1, . . . ,xn be the variables that are free in ϕ|π, but not in ϕ. Let further be σ′ a substitution
such that σ′(s) = σ′(ϕ|π) and xi 6∈ dom(σ′),1≤ i≤ n.

-- Let D := {X ∈ dom(σ′) | ∃xi xi ∈ σ′(X)} be the variables that are instantiated with a term in
which occurs one of the xi. Then σ′ is partitioned into two disjunct substitutions defined by

σ′1 := σ′|D and σ′2 := σ′|dom(σ′)\D

-- Apply the extensionality introduction rule on v0 for the variables in D to obtain v′0 of label
λy1 . . .λyn s = λy1 . . .λyn t.

If this fails the rule application fails.

-- Otherwise apply the Leibniz’ equality introduction on v′0 to obtain the formula

γpP βp(P(λy1 . . .λyn s)−p,P(λy1 . . .λyn t)p).

This results in the resolution replacement rule

P(λy1 . . .λyn s)−p→ 〈P(λy1 . . .λyn t)p,v1, . . . ,vn〉 .

-- Apply the substitution {λ f ϕ|π← f (σ′1(yn),...,σ′1(y1))/P}◦σ′2.

-- Apply the (instantiated) resolution replacement rule.

Lemma 5.3.36 The application of a rewriting replacement rule inside nodes is sound.

Proof. Since the application of rewriting replacement rules is a combination of other CORE calculus
rules, it is sound.

88 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

As an example to illustrate the rewriting inside literal nodes consider the following higher-order
literal Q(λxNat s(s(x)) + y)− , where Q is a predicate, s is the successor function on natural numbers
and + addition on natural numbers. For the rewriting consider the formula ∀u,v s(u) + v = s(u + v),
which gives rise to the rewrite replacement rule s(u) + v→ 〈s(u + v)〉. The application of the rule to
the literal at the subterm s(s(x) + y) is achieved as follows:

1. The bound variable in Q(λx s(s(x)) + y) is x, and the substitution σ′ is {s(x)/u,v/y}.

2. Then D := {u}, σ′1 := {s(x)/u}, and σ′2 := {v/y}.

3. The application of the extensionality introduction rule over u ∈D on s(u)+ v = s(u + v) results
in λu s(u) + v = λu s(u + v).

4. The Leibniz’ equality introduction on λu s(u) + v = λu s(u + v) results in ∀P P(λu s(u) +
v)⇒ P(λu s(u + v)).

5. The γ-variable P is instantiated with λ f Q(λx f (s(x))) which results in Q(λx s(s(x)) + v)⇒
Q(λx s(s(x) + v)).

6. Finally σ′2 is applied which results in Q(λx s(s(x)) + y)⇒ Q(λx s(s(x) + y)), which yields
the required resolution replacement rule Q(λx s(s(x)) + y)→ 〈Q(λx s(s(x) + y))〉. The rule is
applicable on Q(λx s(s(x)) + y) and results in Q(λx s(s(x) + y)).

5.3.11.1 Limitations of Replacement Rule Rewriting

Although the previous rewriting with replacement rules supports rewriting below bindings of vari-
ables, it still is limited. As an example consider the conditional variant ∀u,v u 6= 0 ⇒ u + v =
s(p(u) + v), where p denotes the predecessor function on natural numbers, instead of the equa-
tion ∀u,v s(u) + v = s(u + v). This axiom results in the conditional rewriting replacement rule
[u 6= 0] u + v→ 〈s(p(u) + v)〉. Applying this rule results in the following steps:

1. The bound variable in Q(λx s(s(x)) + y) is x, and the substitution σ′ is {s(s(x))/u,v/y}.

2. Then D := {u}, σ′1 := {s(s(x))/u}, and σ′2 := {v/y}.

The next step that consists of the extensionality introduction over u fails, since u occurs in the
condition u 6= 0 and thus is not γ-local to u+v = s(p(u)+v). Thus, the application of the replacement
rule fails. A way to look at this problem is that it fails because there is no way of moving the condition
of the replacement rule below the binder of x.

One possibility to remedy this problem is to use for each type τ an “if-then-else” function Co×τ×τ→τ
(cf. [Andrews, 2002], p. 235). Having this function would integrate the condition of the rule below
the binder of x and in the above example the result of the replacement rule application would be:

Q(λx C(s(s(x)) 6= 0,s(s(x)) 6= 0,s(p(s(s(x))) + y),s(s(x)) + y))

Instead of using C we could also use the description operator ι : (τ→ o)→ τ, for each type τ. The
function C can be defined by the description operator as follows:

C(A,s, t) = ι(λy (A∧ y = s)∨ (¬A∧ y = t))

5.3. CORE CALCULUS RULES 89

The description operator itself can be defined by the following axiom schemas:

∀yτ ι(λxτ x = y) = y

for every type τ. Using the description operator, the result of the replacement rule application would
be:

Q(λx ι(λz (s(s(x)) 6= 0∧ z = s(p(s(s(x))) + y))∨ (s(s(x)) = 0∧ z = s(s(x)) + y)))

Another solution that avoids the use of the description operator consists of removing the conditions
of the equations by decomposing the problem

(u 6= 0⇒ u + v = s(p(u) + v))⇒ Q(λx s(s(x)) + y)

into

(u + v = s(p(u) + v)⇒ Q(λx s(s(x)) + y))∧ (u 6= 0∧Q(λx s(s(x)) + y))

and subsequently applying the unconditional equation u + v = s(p(u) + v) on Q(λx s(s(x)) + y),
which yields

(u + y = s(p(u) + y)⇒ Q(λx s(p(s(s(x))) + y)))∧ (u 6= 0∧Q(λx s(s(x)) + y))

The CORE calculus rules do not support that kind of decomposition directly. However, in Chap-
ter 10 we present such a β-decomposition rule which is used in [Schütte, 1977] and prove that it is an
admissible rule in the CORE calculus. Thus, it can be used to perform this kind of β-decomposition.

5.3.12 Cut

The cut rule is the basis for different kinds of reasoning steps like speculative proof steps, lemma
introduction, proof by contradiction or case analysis. It consists of replacing a prefixed formula w.ϕ
by

w.βp(αp(Ap,ϕp),αp(A−p,ϕp)).

The new occurrences of ϕp are simple copies of the old subtree. The subtrees for Ap and A−p

are initial free variable indexed formula trees for the respective subtrees in the indexed formula tree
for βp(Ap,A−p) that has been α-inserted in the corresponding indexed formula tree Q to represent the
cut. The problem here is to determine where the cut must actually be performed in Q. The problem
arises since the free variable indexed formula tree ϕp usually does not correspond to a single subtree
in Q, but has been constructed by replacement rule applications. The exact position of the cut formula
however cannot be determined yet, as it depends on how the parts of that cut formula are used later-on
in the proof, i.e. which parts of A are “connected” to parts in ϕp. Thus, we follow a defensive approach
and assume any part of A can in principle be connected to any part in ϕ p. Technically speaking, this
implies that we determine all subtrees of Q that are referenced in ϕ p – either by literal nodes or ν- or
π-type nodes – and determine the smallest subtree in Q that contains all these subtrees. That subtree
is then used to actually perform the cut over A.

Definition 5.3.37 (Cut Rule) Let [Q,σBL R] be a proof state, and let R′ be a subtree of R with
polarity p and label ϕ, and A a formula. Assume further, that Q′ is the smallest subtree of Q that
contains all subtrees referenced in R′. The cut over A on R′ results in a new proof state [Q∗,σ∗BL R∗],

90 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

where Q∗ and σ∗ result from the cut over A on Q′ in Q (cf. Definition 4.7.1). From there two free
variable indexed formula trees RAp and RA−p of respective signed labels Ap and A−p are constructed
from the initial indexed formula trees for Ap and A−p. Finally R∗ is obtained from R by replacing the
subtree R′ with the subtree

p
ββp(αp(Ap,ϕp),αp(A−p,ϕp))

p
ααp(Ap,ϕp)

RAp R′

p
ααp(A−p,ϕp)

RA−p R′′

where R′′ is a copy of R′.

Lemma 5.3.38 The cut rule is sound and safe.

Proof. The L-admissibility of σ∗ with respect to Q∗ has been shown in Lemma 4.7.3. It remains
to prove that the prefixed formula pre(R′).ϕp is L-satisfiable, if, and only if, the prefixed formula
pre(R′).βp(αp(Ap,ϕp),αp(A−p,ϕp)) is L-satisfiable. Let M be an L-model, w a possible world and
ρ an assignment. Then it holds:

Mρ
w|=L pre(R′).βp(αp(Ap,ϕp),αp(A−p,ϕp))

⇔ for all w′ ∈Mρ
w(pre(R′)) Mρ

w′ |=L βp(αp(Ap,ϕp),αp(A−p,ϕp))

⇔ for all w′ ∈Mρ
w(pre(R′)) Mρ

w′ |=L αp(Ap,ϕp) or Mρ
w′ |=L αp(A−p,ϕp)

⇔ for all w′ ∈Mρ
w(pre(R′)) (Mρ

w′ |=LAp and Mρ
w′ |=L ϕp)

or (Mρ
w′ |=LA−p and Mρ

w′ |=Lϕp)

⇔ for all w′ ∈Mρ
w(pre(R′)) (Mρ

w′ |=LAp and Mρ
w′ |=L ϕp)

or (Mρ
w′ 6 |=L Ap and Mρ

w′ |=L ϕp)

⇔ for all w′ ∈Mρ
w(pre(R′)) (Mρ

w′ |=LAp or Mρ
w′ 6 |=L Ap) and Mρ

w′ |=Lϕp)

⇔ for all w′ ∈Mρ
w(pre(R′)) Mρ

w′ |=L ϕp

⇔ Mρ
w|=L pre(R′).ϕp

ut

Flex-Flex Constraints. Higher-order unification may generate flex-flex constraints. In Section 4.9
we presented how those are integrated via the cut-rule into the indexed formula tree. These constraints
arise during higher-order unification, and are directly related to the application of a replacement rule
in order to enable its application. The exact subtree on which the constraints need to be inserted is
thus determined by the subtree a of the free variable indexed formula tree on which the replacement
rule is applied.

Assume the flex-flex constraint is H(~s) = G(~t) and the signed label of the free variable indexed
formula tree a is ϕp. To introduce that constraint we perform a cut over that constraint formula which
replaces the free variable indexed formula tree a by

βp(αp(H(~s) = G(~t)−,ϕp),αp(H(~s) = G(~t)+,ϕp))

αp(H(~s) = G(~t)−,ϕp)

H(~s) = G(~t)− ϕp

αp(H(~s) = G(~t)+,ϕp)

H(~s) = G(~t)− ϕp

This allows to apply the rewriting replacement rule that results from H(~s) = G(~t)− on the left oc-
currence of ϕp, in order enable the application of the actual replacement rule on that formula2. The

2If there are more than one flex-flex constraint, this process needs to be iterated to integrate all flex-flex constraints
before applying the actual replacement rule.

5.4. COMPLETENESS 91

occurrence of H(~s) = G(~t)+ represents the actual new goal that consists of proving the flex-flex con-
straints.

5.4 Completeness

In this section we prove the completeness of the calculus consisting of contraction, weakening, struc-
tural modal permutation, replacement rule applications, simplification, increase of multiplicity, in-
stantiation, Leibniz’ equality introduction, extensionality introduction, boolean ζ-expansion, and cut.

Theorem 5.4.1 (Completeness) Let ϕ be an L-formula, Q an initial indexed formula tree for ϕ+, R
an initial free variable indexed formula tree for Q, and Id the empty substitution. If ϕ is L-valid then
there is a CORE derivation

[Q, IdBL R] 7−→∗ [Q′,σBL
+
−True]

Proof. The completeness proof relies on the soundness and completeness results of Theorem 4.12.1
which is due to [Wallen, 1990, Andrews, 1989, Pfenning, 1987]. The proof sketch is as follows: from
Theorem 4.12.1 we assume that we have guessed the right multiplicities for γ- and ν-type nodes,
the right combined substitution σ, the necessary introductions of Leibniz’ equality, extensionality in-
troductions, boolean ζ-expansions, cut, and have moved any � and ♦-quantifier in front of literal
nodes using the structural modal permutation rule. All paths in the resulting free variable indexed
formula tree RP are (propositionally) L-unsatisfiable. That is from [Q, IdBL R] we can derive a proof
state [QP,σBL RP]. In a second phase we have to prove that from [QP,σBL RP] we can derive
[QP,σBL

+
−True]. The problem [QP,σBL RP] is essentially propositional, since all necessary substitu-

tions have already been applied. In this second phase we prove that the combination of the contraction
rule, resolution replacement rule application, and simplification allows us to simulate the path resolu-
tion rule from [Murray & Rosenthal, 1987a]. Since path resolution is complete the CORE calculus is
also complete. However, while path resolution derives an empty subgraph, we show that in CORE we
obtain the final proof state [QP,σBL

+
−True]. The technical proof is presented in Appendix A. ut

Note that cut is only necessary for completeness for the case of higher-order logic with Henkin
semantics. For any other logic the simulation of the extensionality rule from [Pfenning, 1987] is not
necessary to establish completeness, which is the only case that actually requires the cut rule. We
discuss the issue of cut elimination in that case in the following Section 5.5.

5.5 A Note on Cut Elimination

We have already discussed that cut is not necessary for all logics but higher-order logic with Henkin
semantics. We briefly discuss the fact that cut elimination is probably impossible in the CORE calculus
without loosing completeness of the calculus with respect to that logic. In [Benzmüller et al, 2002b] it
is shown that for higher-order logics with Henkin semantics together with the rules ξ, b (cf. Figure 5.9)
and the βη-normalisation rule, cut elimination is impossible3 (cf. Example 2.2.17 in [Benzmüller et
al, 2002b]). In the CORE calculus we assume all terms to be in βη normal form, so βη-normalisation
is built-in. Furthermore, the ξ-rule corresponds to the CORE extensionality introduction rule and the

3Actually [Benzmüller et al, 2002b] shows the result for a rule f instead of ξ and βη-normalisation. However, f is
admissible in the presence of ξ and βη-normalisation rules.

92 CHAPTER 5. FREE VARIABLE INDEXED FORMULA TREES

Γ ` ∀X M = N,∆
Γ ` λX M = λX N,∆

ξ Γ,A ` B,∆ Γ,B ` A,∆
Γ ` Ao = Bo,∆

b

Figure 5.9: Sequent calculus ξ- and b-rules from [Benzmüller et al, 2002b].

b-rule corresponds to the ζ-expansion rule on booleans. The alternative to the cut-rule presented in
[Benzmüller et al, 2002b] is to use the following two rules:

Γ,A ` A = B,B,∆
Γ,A ` B,∆ Init=

Γ ` A1 = B1,∆ . . . Γ ` An = Bn,∆
Γ ` (hA1, . . .An) = (hB1, . . .Bn),∆ dech

We conjecture that the respective CORE counterparts of both rules are not admissible in the cut
free CORE calculus, and thus cut elimination is not possible in CORE. For future work we propose
to investigate this question in more detail. In particular, we propose to check whether employing
counterparts of Init= and dech instead of the cut rule is sufficient for a Henkin complete and cut-free
variant of the CORE calculus.

5.6 Summary

The proof theory of the CORE system, as presented in this chapter, is actually a meta proof theory as
it encompasses a variety of logics. The central notion is that of a proof state which contains all the
relevant information about the status of the proof. It consists of an indexed formula tree Q, the actual
substitution σ, and a free variable indexed formula tree R. Q is an indexed formula tree (respectively
an expansion tree proof) and this is used to represent the dependencies among variable and modal
quantifiers. It forms the backbone of the proof theory with respect to soundness and ensures the
admissibility of substitutions. The actual interface to the user and reasoning engines is R which is a
free variable formula, the variables being bound in Q. The free variable formula is annotated with
polarities and uniform types and this proof theoretic information is the basis for a uniform notion
of the logical context of subformulas as well as replacement rules. The replacement rules can on
the one hand be viewed as the operationalisation of assertion level proof steps and therefore support
the proof development at the assertion level. On the other hand, from a logical point of view, they
are generalised resolution and paramodulation rules, which is a suitable representation for automatic
reasoning procedures.

The working copy is manipulated by the CORE reasoning rules and the soundness proof ensures
that if R can be transformed to True+ (respectively False−), then the initial conjecture holds. The
CORE calculus consists of 12 rules and its completeness has been proved for the class of logics under
considerations. The set of calculus rules is minimal for the whole class of logics and in Section 5.5 we
presented some evidence for the fact that cut elimination is not possible without loosing completeness
for higher-order logic with Henkin semantics.

Although in principle the calculus enforces the reduction of the initial free variable indexed for-
mula tree to True+ (respectively False−), we refrain from enforcing this in practice. Indeed, as pointed
out in Section 1.2 of the introduction, the free variable indexed formula tree represents possible case
splits by means of logical connectives. Thus, in practice, a proof state is proved, if the free variable
indexed formula tree is trivially provable by simplification, which corresponds to the fact that all cases
represented in the free variable indexed formula tree are proved.

Hierarchical Reasoning
–

Part III

Chapter 6

Window Inferencing

The proof theory introduced in Chapter 5 provides all necessary features to support sound and com-
plete contextual reasoning. The proof state is always a formula, which meets the requirements
sketched in the introduction (Section 1.1.3). However, so far, the open goals are a list with exactly
one element, namely the formula representing the proof state. This signed formula, or rather the free
variable indexed formula tree (FVIF-tree) of the proof state, contains all possible conjunctive subgoals
and all alternatives. Indeed, consider a subtree of the whole FVIF-tree: then each subtree that is β-
related to a given subtree is a conjunctively related side-goal. Analogously, each α-related subtree is
an alternative goal. Thus, instead of dealing with one single formula, it should be possible to focus on
β-related subtrees without actually decomposing the whole formula. Additionally, a focus mechanism
would allow us to mimic the style of proof search enforced by standard sequent calculi. Moreover, in
contrast to these calculi, keeping the whole FVIF-tree would allow us to undo decompositions by sim-
ply retracting the focus to top-level1. A detailed analysis of two presentationally different versions of
a “same” proof is presented in Section 6.1, which further motivates the benefit of a focus mechanism.

This proof search technique of focusing and un-focusing is known as window inferencing (or
window inference as it was originally called) [Robinson & Staples, 1993,Grundy, 1991,Staples, 1995].
In this chapter we define window inferencing on top of the CORE reasoning rules and extend it to
support the variety of reasoning rules provided by the underlying framework. However, while in
[Robinson & Staples, 1993, Grundy, 1991, Staples, 1995] the reasoning on subparts of the formula
gives rise to proof obligations, in our case the CORE framework provides all the contextual reasoning
capabilities required by window inference and no further proof obligations arise.

In Section 6.2 we define the notion of windows for subtrees of FVIF-trees and window trees to
capture the hierarchical structure of windows. Based on these notions we define window proof states
as an extension to CORE proof states. In Section 6.3.1 we present the reasoning rules on windows that
allow us to focus and un-focus on subparts of the FVIF-tree. Those rules only affect the hierarchy of
windows represented in the window tree, but not the FVIF-tree. Finally, the actual window inference
rules that affect the structure of the FVIF-tree are presented in Section 6.3.2. Thereby we define for
each of the CORE reasoning rules a corresponding window inference rule.

1Note, that this would be even possible after having performed some changes on the subtrees, i.e. after having trans-
formed the focused subformula.

95

96 CHAPTER 6. WINDOW INFERENCING

6.1 Motivation

As a motivation for focusing we present two proofs of the following theorem about sums of natural
numbers: ∀n ∑n

i=1 i3 = (∑n
i=1 i)2. The two proofs are essentially the same, although their presentations

differ. The first proof is presented in an intuitive, structured handwritting style.

Example Proof 6.1.1 of ∀n ∑n
i=1 i3 = (∑n

i=1 i)2. The proof is by induction over n:

Base Case n = 0:

1. By n = 0 we obtain ∑0
i=1 i3 = (∑0

i=1 i)2.

2. By definition of ∑ and square (x2) we obtain 0 = 0

Induction Step n = n′+ 1: The induction hypothesis is ∑n′
i=1 i3 = (∑n′

i=1 i)2.

1. By n = n′+ 1 we obtain ∑n′+1
i=1 i3 = (∑n′+1

i=1 i)2.

2. By definition of ∑ we obtain (n′+ 1)3 + ∑n′
i=1 i3 = ((n′+ 1) + ∑n′

i=1 i)2.

3. By (a+b)2 = a2 +2ab+b2 we obtain (n′+1)3 +∑n′
i=1 i3 = (n′+1)2 +2(n′+1)(∑n′

i=1 i)+
(∑n′

i=1 i)2.

4. By Ind. Hyp. it reduces to (n′+ 1)3 = (n′+ 1)2 + 2(n′+ 1)(∑n′
i=1 i).

5. By ∑n′
i=1 = n′(n′+1)

2 we obtain (n′+ 1)3 = (n′+ 1)2 + 2(n′+ 1) n′(n′+1)
2

6. And finally (n′+ 1)3 = (n′+ 1)3 ut

The same proof without explicit proof structure, i.e. where the proof state is contained in a single
formula, is as follows:

Example Proof 6.1.2 of ∀n ∑n
i=1 i3 = (∑n

i=1 i)2. To the goal we apply the (higher-order) induction
axiom for natural numbers ∀P ((∀n n = 0⇒ P(n))∧∀n,n′ (n = n′+ 1∧P(n′)))⇒∀n P(n)) and
obtain

∀n n = 0⇒
n

∑
i=1

i3 = (
n

∑
i=1

i)2∧∀n,n′ n = n′+ 1∧
n′

∑
i=1

i3 = (
n′

∑
i=1

i)2⇒
n

∑
i=1

i3 = (
n

∑
i=1

i)2 (6.1)

We apply the condition n = 0 to the subformula ∑n
i=1 i3 = (∑n

i=1 i)2 which results in

∀n n = 0⇒
0

∑
i=1

i3 = (
0

∑
i=1

i)2∧∀n,n′ n = n′+ 1∧
n′

∑
i=1

i3 = (
n′

∑
i=1

i)2⇒
n

∑
i=1

i3 = (
n

∑
i=1

i)2 (6.2)

To that modified subformula we apply twice the definition of ∑ which results in

∀n n = 0⇒ 0 = 0∧∀n,n′ n = n′+ 1∧
n′

∑
i=1

i3 = (
n′

∑
i=1

i)2⇒
n

∑
i=1

i3 = (
n

∑
i=1

i)2 (6.3)

On the other part of the formula we apply n = n′+1 twice to the subformula ∑n′
i=1 i3 = (∑n′

i=1 i)2 which
reduces to

∀n n = 0⇒ 0 = 0∧∀n,n′ n = n′+ 1∧
n′

∑
i=1

i3 = (
n′

∑
i=1

i)2⇒
n′+1

∑
i=1

i3 = (
n′+1

∑
i=1

i)2 (6.4)

6.1. MOTIVATION 97

Applying the definition of ∑ twice to that formula leaves us with

∀n n = 0⇒ 0 = 0∧∀n,n′ n = n′+ 1∧
n′

∑
i=1

i3 = (
n′

∑
i=1

i)2⇒ (n′+ 1)3 +
n′

∑
i=1

i3 = ((n′+ 1)+
n′

∑
i=1

i)2 (6.5)

By (a + b)2 = a2 + 2ab + b2 we obtain

∀n n = 0⇒ 0 = 0∧
∀n,n′ n = n′+ 1∧∑n′

i=1 i3 = (∑n′
i=1 i)2

⇒ (n′+ 1)3 + ∑n′
i=1 i3 = (n′+ 1)2 + 2(n′+ 1)(∑n′

i=1 i) + (∑n′
i=1 i)2

(6.6)

Applying the induction hypothesis ∑n′
i=1 i3 = (∑n′

i=1 i)2 and subsequent simplification by (a + b = c +
b)⇔ (a = c) we obtain

∀n n = 0⇒ 0 = 0∧
∀n,n′ n = n′+ 1∧∑n′

i=1 i3 = (∑n′
i=1 i)2

⇒ (n′+ 1)3 = (n′+ 1)2 + 2(n′+ 1)(∑n′
i=1 i)

(6.7)

Applying ∑n′
i=1 = n′(n′+1)

2 to ∑n′
i=1 i results in

∀n n = 0⇒ 0 = 0∧∀n,n′ n = n′+1∧
n′

∑
i=1

i3 = (
n′

∑
i=1

i)2⇒ (n′+1)3 = (n′+1)2 +2(n′+1)(
n′(n′+ 1)

2
)

(6.8)
which after some further simple rearrangements results in

∀n n = 0⇒ 0 = 0∧∀n,n′ n = n′+ 1∧
n′

∑
i=1

i3 = (
n′

∑
i=1

i)2⇒ (n′+ 1)3 = (n′+ 1)3 (6.9)

A subsequent simple simplification shows that now the proof is completed. ut

The two proofs are essentially the same, except that the first has a rich proof structure, where
the different cases and assumptions are explicit, while the second proof has a poor proof structure
and everything is contained in a single formula. However, consider the state (6.1) in the sample
proof 6.1.2: the structure of the sample proof 6.1.1 at the same stage is contained in the formula and
we can obtain it by focusing on the respective goal formulas ∑n

i=1 i3 = (∑n
i=1 i)2 and interpreting the

logical connectives according their (uniform) type:

Example Proof 6.1.3 The proof is by induction over n:

Base Case n = 0: The goal is to prove ∑n
i=1 i3 = (∑n

i=1 i)2.

Induction Step n = n′+ 1: The induction hypothesis is ∑n′
i=1 i3 = (∑n′

i=1 i)2. The goal is to prove
∑n

i=1 i3 = (∑n
i=1 i)2.

Similarly, we can obtain any stage of the sample proof 6.1.1 by focusing on the respective sub-
formulas in the corresponding step of the sample proof 6.1.2. The reason for that is that the logical
connectives in the complete formula correlate with the proof structuring concepts.

The CORE proof theory supports the development of proofs in the style presented in the sample
proof 6.1.2. We now introduce window structures that allow us to focus on subparts of the complete

98 CHAPTER 6. WINDOW INFERENCING

formula. The content of the windows, i.e. the subformulas the focus of attention is on, are the visible
parts of the formula to, for instance, the user. The structure of the proof is dictated by the logical
connectives above the windows and the proof can be presented accordingly. Since the proof state is
still a complete FVIF-tree, the formulas in the logical context of a window can still be determined
by the underlying CORE context mechanism. Furthermore, the context formulas can be applied onto
the subformulas, which changes the content of a window. However, we not only allow to focus on
formulas, but also to focus on any subterm below the literal level. This has already been introduced
in the original window inference from [Robinson & Staples, 1993], and proved to be an adequate
mechanism for theorem proving heuristics as Rippling [Bundy et al, 2003,Bundy et al, 1990b,Hutter,
1990] for inductive theorem proving, or its generalized variant for equational theorem proving [Hutter,
1997a, Hutter, 1997b].

6.2 Windows, Window Structures and Window Proof States

In this section we first define the notion of a window and then the hierarchy of windows by introducing
window structures. Intuitively, windows show us a small but currently important part of the FVIF-
tree, and technically they are pointers to subtrees and subterms of the label of a leaf-node of the
FVIF-tree in a proof state. Introducing a window for a subtree allows the reasoning process to focus
on that subtree hiding the surrounding parts of the whole FVIF-tree. The contextual information in
the surrounding parts is still visible in the window and the rules obtained from the logical context can
be used to manipulate the subtree contained in the window.

Clearly it is possible to recursively add windows to subtrees. The subtree relationship in a FVIF-
tree entails a partial ordering among windows, which captures the hierarchical structure of windows.
The maximal windows with respect to that induced ordering are so-called active windows, which are
those that are actually visible to the reasoning engines and the user.

Before defining the notion of windows and window structures we define the target domain of
windows in some FVIF-tree R. As motivated above, a window may denote any subtree of R as well
as any proper subterm of a label of some leaf node of R. Thus, the target domain of some window for
R is defined as follows:

Definition 6.2.1 (Substructures of FVIF-trees) Let R be a FVIF-tree. The substructures of R are
all subtrees of R and all R′π where R′ is a leaf-node of R and π a non-empty valid subterm occurrence
of Label(R′). We denote that set by S(R). Those S ∈ S(R) that are leaf nodes annotated by some π
are called inner substructures.

For convenience we also define S(S) as the set that contains all substructures of S, i.e. S(R) if S is
a FVIF-tree R, and otherwise, if S := Rπ, then S(S) are all Rπ′ , where π′ is a valid subterm occurrence
for Label(R) and π is a prefix of π′.

In the following sections we will have to replace substructures by other substructures, which we
define as follows:

Definition 6.2.2 (Replacement of Substructures) Let S,S′ be substructures of some FVIF-tree, S′ ∈
S(S), and S′′ a substructure of another FVIF-tree. Then we denote by (S|S′←S′′ , ι) the replacement of
S′ with S′′ in S together with a partial mapping ι : S(S)\S(S′) ↪→ S(S|S′←S′′) which are defined by

-- If S′ is a subtree and S′′ is a subtree then it denotes the standard replacement of S′ with S′′; ι is
the mapping of the substructures of S not in S′ to their corresponding substructures in S|S′←S′′ .

6.2. WINDOWS, WINDOW STRUCTURES AND WINDOW PROOF STATES 99

-- If S′ := R′π and S′′ := R′′π, and if the labels of R′ and R′′ are equal up to the subterms denoted by
π, then S|S′←S′′ denotes the replacement of R′ by R′′; ι is the mapping of the substructures of S
that are not in S′ to their corresponding substructures in S|S′←S′′ .

-- Otherwise the replacement is undefined.

Note that in the above definition, if the whole subtree S is replaced, i.e. S ′ = S, then dom(ι) = /0.
Finally, windows are defined as follows:

Definition 6.2.3 (Windows) Let R be a FVIF-tree, W an enumerable set, and f : W ↪→ S(R) a
partial function. We say that f is a window structure for R and each n ∈ dom(f) is a window that
denotes the subtree f (n). The polarity, uniform type and label of n are those of f (n), if f (n) is a
subtree. Otherwise f (n) := Rπ and n has undefined polarity (◦) and uniform type (−), and its label is
Label(R)|π.

We denote by (S, f) the combination of a substructure with a window structure f for S, and say
that S is annotated by f . We say further that f is complete for S if, and only if, there is an n ∈ dom(f)
such that f (n) = S.

The windows in some substructure S with respect to f , denoted by Win(S, f) are all n ∈ dom(f)
such that f (n) ∈ S(S). The restriction of a window structure f to S is the function f↓S defined by

f↓S(n) :=
{

f (n) if f (n) ∈ S(S)
undefined otherwise

Note that f↓S is always a window structure for S. The hierarchy among windows n ∈ dom(f) is
induced by the subtree and subterm relationships of the denoted substructures.

Definition 6.2.4 (Window Hierarchy and Active Windows) Let S be a substructure, f a window
structure for S, and n,n′ ∈ dom(f). Then n is smaller than n′ (we write n≺ f n′ or n′ � f n) if, and only
if,

-- f (n) is a subtree and f (n′) is either a proper subtree of f (n) or f (n′) is a leaf-node R′ annotated
by a subterm occurrence and R′ is a subtree of f (n), or

-- f (n) is a leaf node R annotated by π and f (n′) is that same leaf node R annotated by π′ and π is
a proper prefix of π′.

The parent window with respect to f of some window n is that n′, if it exists, such that n′ ≺ f n
holds, and there is no n′′, such that n′ ≺ f n′′ and n′′ ≺ f n hold. Conversely, the child windows of n
with respect to f are all windows of which n is the parent window.

A window n governs a substructure S if, and only if, S ∈ S(f (n)) and there is no further window
n′ such that n≺ f n′ and for which S ∈ S(f (n′)) holds.

The active windows of f are the windows in dom(f) that are maximal with respect to ≺ f .

Intuitively the active windows denote those substructures of S that are visible to the reasoning
engines and the user. As an example consider the initial FVIF-tree (cf. Figure 5.1, p. 64) for the
formula

(∀xNat 0 + x = x)∧ (∀xNat ∀yNat ¬(x = 0)⇒ x + y = s(p(x) + y))
⇒∀pNat→o ∀vNat p(s(s(0)) + v)⇔ P(s(s(v)))

100 CHAPTER 6. WINDOW INFERENCING

+
α (0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α 0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′))

−
ε 0 + X = X −

β ¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
ε X ′+Y ′ = s(p(X ′) +Y ′)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 6.1: Example window structure for the initial FVIF-tree of the running example.

We introduce windows for the top-level node as well as for the subtrees −ε 0 + X = X and −
ε X ′+

Y ′ = s(p(X ′)+Y ′). In Figure 6.1 (p. 100) we show the FVIF-tree together with the window structure,
where we display graphically the windows on subtrees by putting a box around the root node of that
subtree. In that example, the active windows are those on −ε 0 + X = X and −ε X ′+Y ′ = s(p(X ′) +Y ′),
while the root node is their parent window.

We now define the notion of a window proof state as an extension of a CORE proof state by a
window structure f for the FVIF-tree in the proof state.

Definition 6.2.5 (Window Proof State) Let [Q,σBL R] be a CORE proof state and f a window
structure for R that is complete for R. Then [Q,σBL (R, f)] is a window proof state. Its active
windows are those of f .

Given a window proof state [Q,σBL (R, f)], the visible goals in this proof state are the active
windows of f . Whether those are conjunctive subgoals or alternatives depends on whether those are
β-related or α-related.

For the specification of how the CORE reasoning rules affect the window structure we define the
replacement of a substructure S′′ of (S, f) by (S′, f ′), where f is a complete window structure for S
and f ′ is a window structure for S′.

Definition 6.2.6 (Replacement of Annotated Substructures) Let (S, f),(S ′, f ′) be annotated sub-
structures, f complete for S, and S′′ a substructure of S. The replacement (S, f)|S′′←(S′, f ′) of S′′ by
(S′, f ′) in (S, f) is defined if, and only if, (S|S′′←S′ , ι) is defined and (dom(f)\Win(S′′, f))∩dom(f ′) =
/0 holds. If it is defined, the replacement results in (S∗, f ∗) where S∗ := S|S′′←S′ and f ∗ is defined by

-- If either S′′ 6= S, or S′′ := S and f ′ is complete for S′, then

f ∗(n) :=

ι(f (n)) if n ∈ dom(f)\Win(S′′, f)
f ′(n) if n ∈ dom(f ′)
undefined otherwise

-- Otherwise, if S′′ = S and f ′ is not complete for S′, then assume n0 6∈ dom(f ′) in

f ∗(n) :=

f ′(n) if n ∈ dom(f ′)
S′ if n = n0
undefined otherwise

6.3. CORE WINDOW INFERENCE RULES 101

The above replacement of annotated substructures is the only rule required to define the effects
of CORE reasoning rules on the window structure. A common effect pattern is also the insertion of
an annotated substructure, as for example α-insertion for contraction, Leibniz’ equality introduction,
extensionality introduction, or β-insertion for replacement rule application. However, the insertion of
annotated substructures relies on the previous replacement of annotated substructures. Nevertheless
we present its formal definition, since it is widely used in the subsequent sections. In that definition
we need to combine two partial functions: to this end we introduce the operator ⊕, which is defined
on partial functions g, g′ for which holds ∀n ∈ dom(g)∩dom(g′) g(n) = g′(n), by:

(g⊕g′)(n) :=

g(n) if n ∈ dom(g)
g′(n) if n ∈ dom(g′)\dom(g)
undefined otherwise

Definition 6.2.7 (Insertion of Annotated Substructures) Let (S, f),(S ′, f ′) be annotated substruc-
tures such that f is complete for S and dom(f)∩dom(f ′) = /0, let S′′ be a substructure of S, and both S′

and S′′ are not inner substructures. Then we define the α-insertion (respectively β-insertion) of (S ′, f ′)
on S′′ in (S, f) by the replacement of S′′ with the annotated α-type substructure (α(S′′,S′), f↓S′′ ⊕ f ′)
(respectively the β-type substructure (β(S′′,S′), f↓S′′ ⊕ f ′). We denote the resulting annotated sub-
structures respectively by (S, f)|S′′←(α(S′′,S′), f↓S′′⊕ f ′) and (S, f)|S′′←(β(S′′,S′), f↓S′′⊕ f ′)

6.3 CORE Window Inference Rules

The reasoning rules for window proof states are twofold: firstly, there are rules to manipulate the
window tree, i.e. to open new windows, or to close active windows. More specifically, these rules
support opening of subwindows for active windows, which corresponds to the window opening rule
from [Robinson & Staples, 1993]. Additionally they support opening of windows for windows that
are not active, which allows us to focus on formulas in the logical context of a given window. Also
we may consider alternatives to the actual goal or side-goals to an actual goal, depending on whether
the new window is α- or β-related to existing active windows. Finally, active windows can be closed,
which corresponds roughly to the window closing rule from [Robinson & Staples, 1993]. The first
kind of rules are presented in Section 6.3.1. The second kind of rules are the window inference rules
for all CORE calculus rules, which are presented in Section 6.3.2.

6.3.1 Window Inference Rules for Window Structures

In order to prove a formula, the initial window proof state is [Q,σBL (R,{n 7→ R})], where [Q,σBL R]
is the initial proof state for the formula and n is the initial window denoting the whole subtree R. The
window inference rules to manipulate the window tree are (1) opening subwindows for an active
window, (2) opening further subwindows for non-active windows, and (3) closing active windows.

Definition 6.3.1 (Subwindows for Active Windows) Let [Q,σBL (R, f)] be a window proof state,
n an active window with respect to f , and S1, . . . ,Sk proper and independent2 substructures of f (n).
The opening of subwindows for n on S is defined by

[Q,σBL (R, f)]

[Q,σBL (R,{nS1 7→ S1, . . . ,nSk 7→ Sk}⊕ f])
Subwindows for n on S

2I.e. for each 1≤ i≤ n it holds f (n) 6∈ S(Si) and for each 1≤ i 6= j ≤ n it holds Si 6∈ S(S j).

102 CHAPTER 6. WINDOW INFERENCING

+
α (0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α 0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′))

−
ε 0 + X = X −

β ¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
ε X ′+Y ′ = s(p(X ′) +Y ′)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 6.2: Example for opening a subwindow for a non-active window.

where the nSi are new with respect to dom(f), and {nS1 7→ S1, . . . ,nSk 7→ Sk} denotes the partial func-
tion of domain {nS1 , . . . ,nSk} that maps each nSi to Si.

While the subwindow opening rule introduces subwindows for active windows, it is convenient
to also allow for further subwindows for non-active windows. This is supported by the subwindow
addition rule.

Definition 6.3.2 (Subwindows for Non-Active Windows) Let [Q,σBL (R, f)] be a window proof
state, n a non-active window with respect to f , S a proper substructure of f (n). If dom(f↓S) = /0 and n
governs S, then the opening of a subwindow for n on S is defined by

[Q,σBL (R, f)]

[Q,σBL (R,{nS 7→ S}⊕ f)]
Subwindow for n on S

where nS is new with respect to dom(f).

Consider as an example the window structure for the FVIF-tree shown in Figure 6.1 (p. 100):
Opening a further subwindow for the non-active top-level window results in the window structure
viewed in Figure 6.2. The active windows of that window structure are then −ε 0 + X = X , −ε X ′+Y ′ =
s(p(X ′) +Y ′), and +

ζ p(s(s(0)) + v)⇔ p(s(s(v))).

Finally, we introduce a rule to remove active windows, which allows to un-focus.

Definition 6.3.3 (Window Closing Rule) Let [Q,σBL (R, f)] be a window proof state, n a window
with respect to f with child windows n1, . . . ,nk. If all ni are active windows with respect to f , then
the subwindow closing rule is defined as

[Q,σBL (R, f)]

[Q,σBL (R, f ′)]
Close Subwindows of n

where f ′(n) :=
{

f (n) if n 6∈ {n1, . . . ,nk}
undefined otherwise

Example 6.3.4 For example consider the window structure in Figure 6.2. Closing the window on
+
ζ p(s(s(0))+v)⇔ p(s(s(v))) allows us to come back to the window structure from Figure 6.1 (p. 100).

6.3. CORE WINDOW INFERENCE RULES 103

This completes the reasoning rules that affect the window structure only. In the next section we
show how the standard CORE calculus rules are used as window reasoning rules and how they affect
the window structure.

6.3.2 CORE Calculus Window Inference Rules

We shall now give the window versions of the actual CORE calculus rules by defining an appropriate
window inference rule for each calculus rule.

6.3.2.1 Axiom

The axiom rule closes a proof when the FVIF-tree R of a proof state [Q,σBL R] is proved, i.e. it is a
single node for True+ or False−. We denote this single node tree by Provedp, where p is R’s polarity.
For the window version of that rule we require that the window structure f of the window proof state
[Q,σBL (Provedp,{n 7→ Provedp})] has a single window on Provedp.

Definition 6.3.5 (Window Axiom Rule) Let [Q,σBL (R,{n 7→ R})] be a window proof state. If R
is a FVIF-tree for True+ or False−, then that window proof state is proved.

6.3.2.2 Contraction

The contraction rule is applied to some window proof state [Q,σBL (R, f)] and replaces a subtree R′

of R by some new subtree that contains R′ and its copy R′′. From the copying we obtain an isomorphic
mapping ι : S(R′)→ S(R′′) and together with f↓R′ we define new window structure fR′′ for R′′ such that
there is a mapping ι′ : dom(f↓R′)→ dom(fR′′) and ι ◦ f↓R′ = fR′′ ◦ ι′ holds, i.e. the following diagram
must commute:

S(R′) S(R′′)

=
dom(f↓R′) dom(fR′′)

f↓R′

ι′

ι

fR′′

Then the window contraction rule consists of the α-insertion of (R′′, fR′′) on R′ in (R, f).

Definition 6.3.6 (Window Contraction Rule) Let [Q,σBL (R, f)] be a window proof state, R′ a
subtree of R, R′′ a copy of R′ with mapping ι, a window structure fR′′ obtained from f↓R′ and ι, and a
mapping ι′ : S(R′)→ S(R′′). Then the window contraction rule is defined by

[Q,σBL (R, f)]

[Q,σBL (R, f)|R′←(α(R′,R′′), f↓R′⊕ fR′′)]
Window contraction of R′

if, and only if, ι◦ f↓R′ = fR′′ ◦ ι′ holds.

Example 6.3.7 Consider as an example the window structure of Figure 6.2 (p. 102): The application
of the window contraction rule on −ε 0+X = X duplicates that subtree and inserts a new subwindow for
the copied subtree since there was a window on the original subtree. The resulting window structure
is shown in Figure 6.3 (p. 104).

104 CHAPTER 6. WINDOW INFERENCING

+
α ((0 + X = X ∧0 + X = X)∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α (0 + X = X ∧0 + X = X)∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′))

−
α 0 + X = X ∧0 + X = X

−
ε 0 + X = X −

ε 0 + X = X

−
β ¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
ε X ′+Y ′ = s(p(X ′) +Y ′)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 6.3: Window structure resulting from contracting −ε 0 + X = X .

6.3.2.3 Weakening

The weakening rule replaces a subtree R′ of R by a subtree R′′ ∈Weakened(R′). Some of the subtrees
of R′ are no longer present in the weakened subtree and we need to construct a window structure for
R′′ from R′. To this end we extend the definition of weakened subtrees to annotated subtrees that
return a weakened subtree together with an adequate window structure. In that definition we need the
converse operation 	 to ⊕, which is defined on arbitrary partial functions g,g ′ by

(g	g′)(n) :=
{

g(n) if n ∈ dom(g)\dom(g′)
undefined otherwise

Definition 6.3.8 (Weakening of Annotated FVIF-trees) Let (R, f) be an annotated FVIF-tree. The
set Weakened(R, f) of weakened annotated FVIF-trees for (R, f) is defined recursively over the struc-
ture of R:

-- If R is a leaf node, then
Weakened(R, f) := {(R, f↓R)}

-- If R := αp(R1,R2), then

– if ∃n ∈ dom(f) f (n) = αp(R1,R2), then

Weakened(αp(R1,R2), f) := {(αp(Rw
1 ,R

w
2), f1⊕ f2⊕{n 7→ αp(Rw

1 ,R
w
2)})

| (Rw
i , fi) ∈Weakened(Ri, f), i = 1,2}

∪Weakened(R1,(f 	{n′ 7→ R1 | ∀n′})⊕{n 7→ R1})
∪Weakened(R2,(f 	{n′ 7→ R2 | ∀n′})⊕{n 7→ R2})

– otherwise

Weakened(αp(R1,R2), f) := {(αp(Rw
1 ,R

w
2), f1⊕ f2)
| (Rw

i , fi) ∈Weakened(Ri, f), i = 1,2}
∪Weakened(R1, f)∪Weakened(R2, f)

-- If R := βp(R1,R2), then

6.3. CORE WINDOW INFERENCE RULES 105

– If ∃n ∈ dom(f) f (n) = βp(R1,R2) then

Weakened(βp(R1,R2), f) := {(βp(Rw
1 ,R

w
2), f1⊕ f2⊕{n 7→ βp(Rw

1 ,R
w
2))

| (Rw
i , fi) ∈Weakened(Ri, f), i = 1,2}

– otherwise

Weakened(βp(R1,R2), f) := {(βp(Rw
1 ,R

w
2), f1⊕ f2)
| (Rw

i , fi) ∈Weakened(Ri, f), i = 1,2}

-- If R := νp(R′), then

– If ∃n ∈ dom(f) f (n) = νp(R′) then

Weakened(νp(R′), f) := {(νp(R
′w), f ′⊕{n 7→ νp(R

′w)}) | (R
′w, f ′) ∈Weakened(R′, f)}

– Otherwise

Weakened(νp(R′), f) := {(νp(R
′w), f ′) | (R

′w, f ′) ∈Weakened(R′, f)}

-- If R := πp(R′), then

– If ∃n ∈ dom(f) f (n) = πp(R′), then

Weakened(πp(R′), f) := {(πp(R
′w), f ′⊕{n 7→ πp(R

′w)}) | (R
′w, f ′) ∈Weakened(R′)}

– Otherwise

Weakened(πp(R′), f) := {(πp(R
′w), f ′) | (R

′w, f ′) ∈Weakened(R′)}

Using the weakening of annotated FVIF-trees the window weakening rule is defined over the
replacement of annotated substructures as follows:

Definition 6.3.9 (Window Weakening Rule) Let [Q,σBL (R, f)] be a window proof state, R′′ a
subtree of R. Then the window weakening rule is defined by

[Q,σBL (R, f)]

[Q,σBL (R, f)|R′′←(R′, f ′)]
Window weakening of R′′

where (R′, f ′) ∈Weakened(R′′, f↓R′′).

Example 6.3.10 Consider as an example the window structure of Figure 6.3 (p. 104): Weakening
the −ε 0 + X = X introduced by contraction removes that subtree and its window and we obtain again
the window structure from Figure 6.2 (p. 102).

106 CHAPTER 6. WINDOW INFERENCING

6.3.2.4 Structural Modal Permutations

The structural modal rule replaces for example subtrees of R that have the form νQ(α(R1,R2)) by
α(νQ(R1),νQ(R2)). The window version of that rule replaces the substructure νQ(α(R1,R2)) in (R, f)
with the annotated substructure (α(νQ(R1),νQ(R2)), f ′) for some f ′. For the specification of f ′

we proceed as follows: any window structure inside the Ri is preserved. If there is a window on
νQ(α(R1,R2)) or α(R1,R2), then those are set to α(νQ(R1),νQ(R2)), possibly by merging them.

Definition 6.3.11 (Window Structural Modal Permutation Rule) Let [Q,σBL (R, f)] be a window
proof state, R′ a subtree of R on which the CORE structural modal permutation rule is applicable. The
window structural modal permutation rule is then defined as follows:

1. If R′ = νp(αp(R′′−p)), then

[Q,σBL (R, f)]

[Q,σBL (R, f)|νp(αp(R′′−p))←(αp(ν−p(R′′−p)), f ′)]
Unary window modal permutation on R′

where f ′ is defined by

-- if there is an n such that f (n) = νp(αp(R′′−p)) and an n′ with f (n′) = αp(R′′−p), then
f ′ := f↓R′′⊕{n 7→ αp(ν−p(R′′−p))}.

-- if there is an n′ with f (n′) = αp(R′′−p), but no n with f (n) = νp(αp(R′′−p)), then f ′ :=
f↓R′′⊕{n′ 7→ αp(ν−p(R′′−p))}.

-- otherwise f ′ := f↓R′′ .

2. If R′ = νp(αp(Rp1
1 ,R

p2
2)), then

[Q,σBL (R, f)]

[Q,σBL (R, f)|νp(αp(Rp1
1 ,Rp2

2))←(αp(νp1(R1p1),νp2 (Rp2
2)), f ′)]

Binary window modal permutation on R′

where f ′ is defined by

-- if there is an n such that f (n) = νp(αp(Rp1
1 ,R

p2
2)) and an n′ with f (n′) = αp(Rp1

1 ,R
p2
2),

then f ′ := f↓R1⊕ f↓R2⊕{n 7→ αp(νp1(R1p1),νp2 (Rp2
2))}.

-- if there is an n′ with f (n′) = αp(Rp1
1 ,R

p2
2), but no n with f (n) = νp(αp(Rp1

1 ,R
p2
2)), then

f ′ := f↓R1⊕ f↓R2⊕{n′ 7→ αp(νp1(Rp1
1),νp2(Rp2

2))}.
-- otherwise f ′ := f↓R1⊕ f↓R2 .

The other cases of the rule for the different forms of R′ are analogously.

Example 6.3.12 Consider as an example the formula �(A∧B)⇒ �A and its window structure on
the left-hand side of Figure 6.4, where the subscripts Q and Q′ are the references to the variable
nodes in the corresponding indexed formula tree. The application of the window structural modal
permutation to the subtree −ν�Q(A∧B) moves the modal quantifier inwards and inherits the window
on that node to the new node −α (�Q(A)∧�Q(B)).

6.3. CORE WINDOW INFERENCE RULES 107

+
α�Q(A∧B)⇒�Q′A

−
ν�Q(A∧B)

−
α A∧B

−
−A −

−B

+
π�Q′A

+
−A

+
α (�Q(A)∧�Q(B))⇒�Q′A

−
α (�Q(A)∧�Q(B))

−
ν�Q(A)

−
−A

−
ν�Q(B)

−
−B

+
π�Q′A

+
−A

Figure 6.4: Window structures before and after structural modal permutation on −α A∧B.

6.3.2.5 Resolution Style Replacement Rule Application

The resolution style replacement rule application of u → 〈v′1, . . . ,v′m〉 on some subtree a replaces
the subtree a by a subtree for Proved and β-inserts the (weakened) subtrees v ′i. However, for the
window version of that rule we must accommodate a possible window structure that is inside a and
inherit it in an adequate manner. This is for instance the case if we have a resolution replacement
rule that stems from a rewrite replacement rule. If there is a window structure, say fa, inside a, we
can easily construct a window structure fu for u since a and u have the same label and thus u and
a have isomorphic substructures. Assume now that the label of u can be expressed by Label(u) :=
((λx1, . . . ,xn s(x1, . . . ,xn))u1 . . .un), where the ui correspond to the active windows in u and the xi
denote the positions of these windows and hence occur exactly once in s(x1, . . . ,xn). In order to
adequately inherit that structure during rule application, we need to find a v ′i which label is of the form
((λx1, . . . ,xn s(x1, . . . ,xn))v1 . . .vn). If so, we can inherit the window structure to that vi. Note that
this requirements also ensure that all non-active windows in u can be uniquely assigned to v i as the
context of the u1, . . . ,un and v1, . . . ,vn are equal. In order to formalise that requirement we introduce
the notion of isomorphic substructures up to some substructures and a substitution. We use that notion
afterwards to strengthen the application condition of replacement rules for the window version of the
resolution replacement rule application rule.

Definition 6.3.13 (Isomorphic Substructures up to some Substructures and Substitution) Let
S,S′ be two substructures, σ an L-substitution, and S1, . . . ,Sn ∈ S(S) and S′1, . . . ,S

′
n ∈ S(S′). We say

that S and S′ are isomorphic up to S1, . . . ,Sn and S′1, . . . ,S
′
n and σ if, and only if, σ(Label(S)) =

Label(S′|S′i←Si,i=1...n). If so, then there exists an injective morphism ι : S(S)→ S(S ′|S′i←Si,i=1...n). That
function is the identity function on the Si.

Furthermore, we denote by ιS,S′ the mapping {S1 7→ S′1, . . . ,S1 7→ S′1} ◦ ι, which is an injective
morphism

ιS,S′ : (S(S)\
n[

j=1

S(S j))∪{S1, . . .Sn} → (S(S′)\
n[

j=1

S(S′j))∪{S′1, . . .S′n}

The restriction of the window application of a resolution replacement rule u→ 〈v ′1, . . . ,v′m〉 on
some annotated FVIF-tree (a, f) is then that we must find a v′i that has the same modal prefix than a and
is isomorphic to a up to some v1, . . . vn ∈ S(v′i) and the substructures a1, . . . ,an of a which are denoted

108 CHAPTER 6. WINDOW INFERENCING

+
α (1≤ 2⇒ (Ord([1])⇒ Ord([1,2])))⇒ Ord([1,2])

−
β 1≤ 2⇒ (Ord([1])⇒ Ord([1,2]))

+
−1≤ 2 −

β Ord([1])⇒ Ord([1,2])

+
−Ord([1]) −

−Ord([1,2])

+
−Ord([1,2])

+
α (1≤ 2⇒ (Ord([1]))⇒ Ord([1,2]))
⇒ ((1 ≤ 2∧Ord([1]))∧True)

−
β 1≤ 2⇒ (Ord([1])⇒ Ord([1,2]))

+
−1≤ 2 −

β Ord([1])⇒ Ord([1,2])

+
−Ord([1]) −

−Ord([1,2])

+
β (1≤ 2∧Ord([1]))∧True

+
β 1≤ 2∧Ord([1])

+
−1≤ 2 +

−Ord([1])

+
−True

Figure 6.5: Window structures before and after application of the replacement rule.

by the active windows of f . From the respective mapping ιa,v′i we can construct a window structure f ′

for v′i and an isomorphism ι′ : dom(f)→ dom(f ′) such that the following diagram commutes:

(S(a)\Sn
j=1 S(a j))∪{a1, . . .an} (S(v′i)\

Sn
j=1 S(v′i j))∪{v′i1, . . .v′in}

=
dom(f) dom(f ′)

f

ι′

ι

f ′

For the definition of the window resolution replacement rule application note that we also intro-
duce new windows that denote the additional β-inserted subtrees v′j, j = 1 . . .n, j 6= i that are inserted
by the resolution replacement rule on subtrees R∗ for which f↓R∗ is non-empty.

Definition 6.3.14 (Window Resolution Replacement Rule Application) Let [Q,σBL (R, f)] be a
window proof state, a a subtree of R, and u→ 〈v′1, . . . ,v′m〉 an admissible resolution replacement rule
for a. The rule is window applicable on a in (R, f) if, and only if, there is a v ′i that has the same
modal prefix than a, and has substructures v

′1
i , . . . ,v

′n
i , such that v′i is isomorphic to a with respect to

v
′1
i , . . . ,v

′n
i and the active windows in a with respect to f↓a and results in the mapping ιa,v′i . Then the

window resolution replacement rule application is defined by

[Q,σBL (R, f)]

[Q,σBL (R∗, f ∗)]
Apply u→ 〈v′1, . . . ,v′m〉 on a

where (R∗, f ∗) results from

-- the replacement of a with (Provedp, /0),

-- the β-insertion of (v′i, f ′) on some adequate subtree, and where f ′ is such that there is an iso-
morphism ι′ and it holds ι◦ f = f ′ ◦ ι′.

-- the β-insertion of (v′j, f j) on some adequate subtree R j for j = 1 . . .n, j 6= i, where f j := {n j 7→
v′j}, n j is new, if f↓R j 6= {}; otherwise f j := {}.

Example 6.3.15 Consider as an example the window structure view on the left-hand side of Fig-
ure 6.5, where there is an window on the inner substructure [1,2] of the subtree +

−Ord([1,2]). The

6.3. CORE WINDOW INFERENCE RULES 109

+
α (1≤ 2⇒ (Ord([1]))⇒ Ord([1,2]))⇒ (1≤ 2∧Ord([1]))

−
β 1≤ 2⇒ (Ord([1])⇒ Ord([1,2]))

+
−1≤ 2 −

β Ord([1])⇒ Ord([1,2])

+
−Ord([1]) −

−Ord([1,2])

+
β 1≤ 2∧Ord([1])

+
−1≤ 2 +

−Ord([1])

Figure 6.6: Window structure after simplification of the window structure from Figure 6.5 (p. 108).

application of the resolution replacement rule −−Ord([1,2])→
〈

+
−1≤ 2,+−Ord([1])

〉
to that subtree in-

herits that window to the inner substructure [1] of the inserted subgoal +
−Ord([1]) and adds a new

window for the further subgoal +
−1 ≤ 2. The resulting window structure is shown on the right-hand

side of Figure 6.5.

6.3.2.6 Simplification

The simplification rule replaces a subtree R′ of R by (1) either a subtree R′′ for either True+ or False−

if R′ is proved, or by a subtree R′′ for True− or False+ if it is disproved. Or (2) if R′ is of the form
β(R1,R2) where exactly one of the Ri is proved, by R j, j 6= i, if R j and R′ have the same polarity,
and otherwise by α(R j). Or, finally, (3) if R′ is of the form α(R1,R2) where exactly one of the Ri is
disproved, by R j, j 6= i, if R j and R′ have the same polarity, and otherwise by α(R j).

In the first case, the window structure for R′ is removed and if there was a window on R′, then
it shall denote R′′ afterwards. In the second case any window structure for Ri is deleted, while the
window structure for R j, j 6= i, is preserved. If there are windows n and n′ that respectively denote
β(R1,R2) and R j and the replacing subtree is α(R j), then n′ denotes α(R j) afterwards. Otherwise, if
the replacing subtree is R j, then n is removed. The third case finally is analogously to the last case.

Definition 6.3.16 (Window Simplification Rule) Let [Q,σBL (R, f)] be a window proof state, R′ a
subtree of R.

1. If R′ of polarity p is proved (respectively disproved), then let R′′ be a FVIF-tree for True+

(respectively False+), if p = +, and for False− (respectively True−), if p = −. Then the sim-
plification rule is

[Q,σBL (R, f)]

[Q,σBL (R, f)|R′←(R′′, f ′′)]
Window simplify R′

where f ′′(n) :=
{

R′′ if f(n) = R’,
undefined otherwise.

2. If R′ := β(R1,R2) and not proved (respectively α(R1,R2) and not disproved) and Ri is proved
(respectively disproved), then:

-- If R′ and R j, j 6= i, have the same polarity, then the simplification rule is:

[Q,σBL (R, f)]

[Q,σBL (R, f)|R′←(R j, f j)]
Window simplify R′

110 CHAPTER 6. WINDOW INFERENCING

+
α (((0 + X = X ∧ (Q(0 + X)⇒ Q(X)))∧ (0 + X = X ∧ (Q(0 + X)⇒ Q(X))))∧
(¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α ((0 + X = X ∧ (Q(0 + X)⇒ Q(X)))∧
(0 + X = X ∧ (Q(0 + X)⇒ Q(X))))∧ (¬(X ′ = 0)
⇒ X ′+Y ′ = s(p(X ′) +Y ′))

−
α ((0 + X = X ∧ (Q(0 + X)⇒ Q(X)))∧ (0 + X = X ∧ (Q(0 + X)⇒ Q(X))))

−
α 0 + X = X ∧ (Q(0 + X)⇒ Q(X))

−
ε 0 + X = X −

β Q(0 + X)⇒ Q(X)

+
−Q(0 + X) −

−Q(X)

−
α 0 + X = X ∧ (Q(0 + X)⇒ Q(X))

−
ε 0 + X = X −

β Q(0 + X)⇒ Q(X)

+
−Q(0 + X) −

−Q(X)

−
β ¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
ε X ′+Y ′ = s(p(X ′) +Y ′)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 6.7: Window structure resulting from introducing Leibniz’ equality for the ε-type formula
−
ε 0 + X = X .

where f j := f↓R j .

-- If R′ and R j, j 6= i, have opposite polarities, then the simplification rule is:

[Q,σBL (R, f)]

[Q,σBL (R, f)|R′←(α(R j), f j)]
Window simplify R′

where f j(n) :=

f↓R j (n) if n ∈ dom(f↓R j)

α(R j) if f (n) := R′

undefined otherwise.

Example 6.3.17 Consider as an example the window structure on the left-hand side of Figure 6.5
(p. 108). The window simplification of it results in the window structure shown in Figure 6.6 (p. 109).

6.3.2.7 Leibniz’ Equality

Given a window proof state [Q,σBL (R, f)], let Q′ := ε
ζ (s, t)p be an ε- or ζ-type leaf node in Q of

polarity p, and R1, . . . ,Rn the leaf nodes in R that belong to Q′. Then the Leibniz’ equality introduction
rule for Q′ α-inserts on each Ri a FVIF-tree R′i for (P(s)⇒ P(t))p. For the window version of that
rule the window structure for the Ri remain in place and new windows are added for each R′i.

Definition 6.3.18 (Window Leibniz’ Equality Introduction Rule) Let [Q,σBL (R, f)] be a window

proof state, Q′ := ε
ζ (s, t) a leaf node of polarity p in Q, and R1, . . . ,Rn the leaf nodes in R that belong

to Q′. Let further Q′′ be an indexed formula tree for (∀P P(s)⇒ P(t))p and R′1, . . . ,R
′
n FVIF-trees for

Q′′. Then the window Leibniz’ equality introduction rule is

[Q,σBL R]

[Q|Q′←α(Q′,Q′′),σBL (R, f)|Ri←(α(Ri,R′i), fi),i=1...n]
Window Leibniz’ equality introduction on Q′

where for all 1≤ i≤ n, fi := f↓Ri⊕ f ′i , where f ′i := {} if f↓Ri = {}, and otherwise f ′i := {ni 7→ R′i} and
ni is new.

6.3. CORE WINDOW INFERENCE RULES 111

+
α (0 + X = X ∧ (¬(X ′ = 0)⇒ ((X ′+Y ′ = s(p(X ′) +Y ′))∧ (λy X ′+ y = λy s(p(X ′) + y)))))
⇒ (p(s(s(0)) + v)⇔ p(s(s(v))))

−
α 0 + X = X ∧ (¬(X ′ = 0)⇒ ((X ′+Y ′ = s(p(X ′) +Y ′))∧ (λy X ′+ y = λy s(p(X ′) + y))))

−
ε 0 + X = X −

β ¬(X ′ = 0)⇒ ((X ′+Y ′ = s(p(X ′) +Y ′))∧ (λy X ′+ y = λy s(p(X ′) + y)))

+
α¬(X ′ = 0)

−
ε X ′ = 0

−
α (X ′+Y ′ = s(p(X ′) +Y ′))∧ (λy X ′+ y = λy s(p(X ′) + y))

−
ε X ′+Y ′ = s(p(X ′) +Y ′) −

ε λy X ′+ y = λy s(p(X ′) + y)

+
ζ p(s(s(0)) + v)⇔ p(s(s(v)))

Figure 6.8: Window structure after extensionality introduction for ε-type formula −
ε X ′ + Y ′ =

s(p(X ′) +Y ′) with respect to γ-local variable Y ′.

Example 6.3.19 Consider as an example the window structure obtained by window contraction
shown in Figure 6.3 (p. 104). The application of the window Leibniz’ equality introduction rule
for −ε 0 + X = X inserts for both occurrences the respective Leibniz’ equality subtrees and adds sub-
windows for the introduced subtrees, since there were subwindows on the occurrences of −ε 0+X = X .
The resulting window structure is shown in Figure 6.7.

6.3.2.8 Extensionality

Given a window proof state [Q,σBL (R, f)], let Q′ := ε
ζ (s, t)p be an ε- or ζ-type leaf node in Q of

polarity p, x a variable that is local for Q′ and R1, . . . ,Rn the leaf nodes in R that belong to Q′. Then the
extensionality introduction rule for Q′ with x α-inserts on each Ri a FVIF-tree R′i for (λx s = λx t)p.
For the window version of that rule the window structure for the Ri remain in place and new windows
are added for each R′i.

Definition 6.3.20 (Window Extensionality Introduction Rule) Let [Q,σBL (R, f)] be a window

proof state, Q′ := ε
ζ (s, t) a leaf node of polarity p in Q, x local for Q′, and R1, . . . ,Rn the leaf nodes

in R that belong to Q′. Let further Q′′ be an indexed formula tree for (λx s = λx t)p and R′1, . . . ,R
′
n

FVIF-trees for Q′′. Then the window extensionality introduction rule is

[Q,σBL R]

[Q|Q′←α(Q′,Q′′),σBL (R, f)|Ri←(α(Ri,R′i), fi),i=1...n]
Window extensionality introduction for Q′ with x

where for all 1≤ i≤ n, fi := f↓Ri⊕ f ′i , where f ′i := {} if f↓Ri = {}, and otherwise f ′i := {ni 7→ R′i} and
ni is new.

Example 6.3.21 Consider as an example the window structure from Figure 6.1 (p. 100). The window
extensionality introduction on −ε X ′+Y ′= s(p(X ′)+Y ′) with respect to the γ-local variable Y ′ α-inserts
the subtree −ε λy X ′+y = λy s(p(X ′)+y) and adds a window for that subtree since there was a window
on −ε X ′+Y ′ = s(p(X ′) +Y ′). The resulting window structure is shown in Figure 6.8.

112 CHAPTER 6. WINDOW INFERENCING

+
α (0 + X = X ∧ (¬(X ′ = 0)⇒ X ′+Y ′ = s(p(X ′) +Y ′)))
⇒ ((p(s(s(v)))⇒ p(s(s(0)) + v))∨ ((p(s(s(0)) + v)

⇒ p(s(s(v))))∧ (p(s(s(v)))⇒ p(s(s(0)) + v))))

(p(s(s(v)))⇒ p(s(s(0)) + v))∨
((p(s(s(0)) + v)⇒ p(s(s(v))))∧ (p(s(s(v)))⇒ p(s(s(0)) + v)))

+
ζ p(s(s(0)) + v)⇔ p(s(s(v))) +

β (p(s(s(0)) + v)⇒ p(s(s(v))))∧ (p(s(s(v)))⇒ p(s(s(0)) + v))

+
α (p(s(s(0)) + v)⇒ p(s(s(v))))

−
−p(s(s(0)) + v) +

−p(s(s(v)))

+
α (p(s(s(v)))⇒ p(s(s(0)) + v))

−
−p(s(s(v))) +

−p(s(s(0)) + v)

Figure 6.9: Window structure after boolean ζ-expansion on +
ζ p(s(s(0)) + v)⇔ p(s(s(v))).

6.3.2.9 Boolean ζ-Expansion

Given a window proof state [Q,σBL (R, f)], let Q′ := ζ(Ao,Bo)+ be a ζ-type leaf node in Q of positive
polarity, and R1, . . . ,Rn the leaf nodes in R that belong to Q′. Then the boolean ζ-expansion rule for
Q′ α-inserts on each Ri a FVIF-tree R′i for ((A⇒ B)∧ (B⇒ A))+. For the window version of that rule
the window structure for the Ri remain in place and new windows are added for each R′i.

Definition 6.3.22 (Window Boolean ζ-Expansion Rule) Let [Q,σBL (R, f)] be a window proof
state, Q′ := ζ(Ao,Bo) a positive leaf node in Q, and R1, . . . ,Rn the leaf nodes in R that belong to Q′.
Let further Q′′ be an indexed formula tree for ((A⇒ B)∧ (B⇒ A))+ and R′1, . . . ,R

′
n FVIF-trees for

Q′′. Then the window boolean ζ-expansion rule is

[Q,σBL R]

[Q|Q′←α(Q′,Q′′),σBL (R, f)|Ri←(α(Ri,R′i), fi),i=1...n]
Window boolean ζ-expansion of Q′

where for all 1≤ i≤ n, fi := f↓Ri⊕ f ′i , where f ′i := {} if f↓Ri = {}, and otherwise f ′i := {ni 7→ R′i} and
ni is new.

Example 6.3.23 Consider as an example the window structure after opening an additional subwin-
dow for the non-active top-level window from Figure 6.2 (p. 102). The application of the window
boolean ζ-expansion for +

ζ p(s(s(0)) + v)⇔ p(s(s(v))) α-inserts the new subtree for +
β (p(s(s(0)) +

v)⇒ p(s(s(v))))∧ (p(s(s(v)))⇒ p(s(s(0)) + v)) and adds a window for it since there was a window
on +

ζ p(s(s(0)) + v)⇔ p(s(s(v))). The resulting window structure is shown in Figure 6.9.

6.3.2.10 Instantiation

The instantiation rule replaces each literal in which occurs an instantiated variable by a new FVIF-
tree for the instantiated label. If a higher-order variable is instantiated and somewhere there is a
window structure inside the substructure of an occurrence of that variable, then that window structure
is affected by that instantiation. In these cases we simply remove the window structure that is inside
such a substructure. Formally, we define the window version of the instantiation rule by:

6.3. CORE WINDOW INFERENCE RULES 113

Definition 6.3.24 (Window Instantiation) Let [Q,σBL (R, f)] be a window proof state, and σ′ an
L-substitution, such that σ′ ◦σ is L-admissible. Let further be Q1, . . . ,Qn the leaf nodes in Q that are
affected by σ′, and for each Qi let R1

i , . . . ,R
ni
i be the leaf nodes in R that belong to Qi. Finally, for each

Qi let Q′i be the indexed formula tree for σ′(Label(Qi)) that replaces Qi and R
′k
i be the FVIF-tree for

Q′i that replaces Rk
i . Then the window instantiation rule is

[Q,σBL R]

[Q|Qi←Q′i ,σ
′ ◦σBL (R, f)|Rk

i←(R′ki , f
k
i),1≤i≤n,1≤k≤ni

]
Window instantiation σ′

where the f k
i are defined by: let S1, . . . ,S j be the maximal substructures in Rk

i that contain a higher-
order variable from dom(σ′). They correspond to substructures S′1, . . . ,S

′
j of R

′k
i such that Rk

i and R
′k
i

are isomorphic up to S1, . . . ,S j and S′1, . . . ,S
′
j and σ′. From there we obtain the injective morphism

ιRk
i ,R
′k
i

and together with the restriction of f to the domain of ιRk
i ,R
′k
i

can obtain f k
i and ιk

i such that

ιRk
i ,R
′k
i
◦ f↓dom(ι

Rk
i ,R
′k
i

) = f k
i ◦ ιk

i holds.

6.3.2.11 Increase of Multiplicities

The increase of multiplicities increases the multiplicities of specific subtrees in Q from which we
obtain a variable renaming ρ. Furthermore, the rule α-inserts new subtrees R ′′1, . . . ,R

′′
n respectively on

specific subtrees R′1, . . .R
′
n of R (cf. Definition 5.3.31), and it holds ρ(Label(R′i)) = Label(R′′i), for all

1≤ i≤ n.
For the window version of that rule we copy any window structure inside the R ′i to the respective

R′′i . To this end we use the property that R′i and R′′i are isomorphic up to the substitution ρ. From there
we can obtain an adequate f ′i for R′′i from f↓R′i .

Definition 6.3.25 (Window Increase of Multiplicities) Let [Q,σBL (R, f)] be a window proof state,
Q′ the indexed formula tree that results from the increase of multiplicities in Q, ρ the respective
renaming, ι the respective automorphism on subnodes of Q′, and σ′ the new overall L-substitution.
Furthermore, let R′1, . . .R

′
n be the subtrees of R that are copied modulo ρ and ι to obtain R′′1 , . . . ,R

′′
n .

Then the window rule to increase multiplicities is

[Q,σBL (R, f)]

[Q′,σ′BL (R, f)|R′i←(α(R′i,R
′′
i), f↓R′i

⊕ f ′i),i=1...n]
Window increase multiplicities

where f ′i is obtained from the isomorphic relationship up to ρ of R′i and R′′i which entails the
morphisms ιR′i,R

′′
i

and ιi such that ιR′i,R
′′
i
◦ f↓R′i = f ′i ◦ ιi holds.

6.3.2.12 Rewriting Style Replacement Rule Application

This rule is a specific combination of Leibniz’ equality introduction, instantiation, and resolution style
replacement rule application. During the definition of the window resolution style replacement rule
application we have already taken care that the rewriting replacement rule application is handled in
the appropriate manner.

6.3.2.13 Cut

The Cut over some formula ϕ on some subtree R′ of R and of defined polarity p is achieved by

114 CHAPTER 6. WINDOW INFERENCING

1. α-inserting an initial indexed formula tree Q′ for the closed quantified cut formula (∃~x (ϕ⇒
ϕ))+ (respectively (♦∃~x (ϕ⇒ ϕ))+ for modal logics) together with an L-substitution σ′ and
FVIF-trees R−ϕ and R+

ϕ respectively for the negative and positive subtrees of label ϕ in Q′,

2. copies R′ to R′′ and replaces R′ in R with β(α(R−ϕ ,R
′),α(R+

ϕ ,R
′′)).

For the window version of that rule we inherit any window structure inside R ′ to R′′ and add
windows denoting R−ϕ and R+

ϕ only if there was a window on or inside R′ before rule application, i.e.
if f↓R′ 6= {} where f is the window structure before rule application.

Definition 6.3.26 (Window Cut Rule) Let [Q,σBL (R, f)] be a window proof state, R′ a subtree of
R with defined polarity, Q′ the initial indexed formula tree for (∃~x (ϕ⇒ ϕ))+3, σ′ the substitution to
adequately integrate Q′, R−ϕ and R+

ϕ FVIF-trees respectively for the negative and positive subtrees of
label ϕ in Q′, and R′′ a copy of R′. Then the window cut rule is

[Q,σBL (R, f)]

[α(Q,Q′),σ′ ◦σBL (R, f)|R′←(β(α(R−ϕ ,R′),α(R+
ϕ ,R′′)), f ′)]

Window cut over ϕ

where f ′ is defined by: let f ′′ be the window structure for R′′ obtained from f↓R′ and its isomorphic
relationship to R′. Furthermore, let fϕ := {} if f↓R′ = {} and otherwise fϕ := {n− 7→ R−ϕ ,n

+ 7→ R+
ϕ },

n−,n+ new. Then f ′ := f↓R′⊕ f ′′⊕ fϕ.

6.4 Summary

In this chapter we added further intuitive reasoning capabilities onto the CORE rules to support the fo-
cusing and manipulation of arbitrary subparts of the FVIF-tree. It turned out that window inferencing
is only a technical add-on to support a hierarchical reasoning style which does not provide additional
contextual reasoning capabilities, since the underlying framework already supports all necessary con-
textual reasoning capabilites.

Focusing on subparts of the FVIF-tree supports the user and the reasoning engines to arbitrar-
ily choose a list of open goals, consider alternatives to chosen subgoals, and come back on those
decisions, without having to backtrack.

Finally, the different possibilities to adapt the window tree structure during the application of the
CORE cut rule allows to represent various reasoning methods like case analysis, proof by contradiction
and speculative proof steps. This is the basis to support both classical tactical or fully automatic proof
search procedures and proof planning procedures within the same framework.

3respectively (♦∃~x (ϕ⇒ ϕ))+ for modal logics.

Chapter 7

Change of Representation

Representational change is an important feature not only in mathematical problem solving. It is often
used in order to simplify a given problem posed in some representation language by translating it into a
more adequate representation of the problem. The translation can either by an adequate reformulation
of the problem and hence a proof obtained for the problem in the new representation proves the
original problem. Or the translation is a strict abstraction of the source representation in which case
there is a priori no formal relationship between a proof with respect to the new representation and a
possible proof with respect to the original representation. However, the proof with respect to the new
representation can for instance be used as a plan to guide the search for a proof with respect to the
original representation.

In Section 7.1 we present some changes of representation known from the literature that have
been successfully used in theorem proving, especially proof planning. Based on the requirement
specification we present in Section 7.2 the concepts that underly the infrastructure for representational
change implemented in CORE.

7.1 Examples for Representational Changes

Labelled Fragments in Inductive Theorem Proving. The major task in inductive theorem proving
is to apply the induction hypothesis to the inductive conclusion, i.e. to change the representation such
that this application becomes possible. The key observation to support a goal-directed guidance of
the manipulation of the induction conclusion in order to eventually make the induction hypothesis
applicable is that the latter is contained in the induction conclusion, i.e. it is a skeleton. The differ-
ences between the induction hypothesis and the induction conclusion are then occurrences of function
symbols around the parts that belong to the skeleton. Take as an example the following formula over x
as induction conclusion ϕ(x+s(y)) and let the induction hypothesis be ϕ(x). The differences between
these formulas are the occurrences of +, y, and s. In order to apply ϕ(x) the induction conclusion must
be transformed into a formula of the form Ψ(ϕ(x)). The differences are made explicit by annotating
the function symbols by colours, e.g. white if they belong to the skeleton and gray if they belong to
the differences: ϕ(x + s(y)).

The guidance information that enables the application of the induction hypothesis consists in
applying rules that – from an operational point of view – move the differences towards the top-level
of the formula, while preserving the skeleton parts. An example for this kind of rule is

115

116 CHAPTER 7. CHANGE OF REPRESENTATION

X + (Y + Z) = (X +Y) + Z (7.1)

The labelled fragments representation of [Hutter, 1994] is an abstraction from the concrete func-
tion symbols contained in the differences. Thereby all occurrences of function symbols that form the
differences are abstracted to a new uninterpreted function symbol •. In the above example we obtain:
ϕ(•(x)). Similarly, the axioms are abstracted with respect to the skeleton/context annotations, which
results for example in

X +•(Y) = •(X +Y) (7.2)

This way the abstract space is constructed from the ground space. A proof in the abstract space
does not entail that there is a proof in the ground space. However, it can serve as a proof plan for the
proof in the ground space, and each intermediate step in the abstract space corresponds to some of the
intermediate formulas in the ground space proof. That is, we have

Abstract Space u u u
Ground Space u u u u u

Although the existence of a proof in the abstract space does not imply that there is a proof in the
ground space, the converse holds: if there is no proof in the abstract space, then there ist no proof in
the ground space.

From a logical point of view the abstract space consists, like the ground space, of a set of axioms
and an abstracted conjecture. In order to support the reuse of generic reasoning procedures, the
abstract space should be represented in the same formalism than the ground space.

Diagrammatic Reasoning. Diagrams and geometric operations over diagrams are a formalism
widely used in mathematical problem solving. [Jamnik et al, 1997, Jamnik et al, 1999] investigate
how to support this style of reasoning, especially for reasoning about sums and products over natural
numbers. For instance the product of n and n + 1 can be represented by the following diagram:

n

u u . . . u uu u . . . u u
...

... . . .
...

...u u . . . u uu u . . . u uu u . . . u u
n + 1

Geometric operations over these diagrams correspond to specific mathematical operations over
natural numbers. For example half of the above product diagram is obtained by virtually drawing a
diagonal line in the square that results in two isosceles triangles of height and width n:

7.1. EXAMPLES FOR REPRESENTATIONAL CHANGES 117

n

u u . . . u uu u . . . u u
...

... . . .
...

...u u . . . u uu u . . . u uu u . . . u u
n + 1

−→ n

uu u
...

... uu u . . .u u . . .u u . . . u
n

+

nu . . . u u
. . . u u
. . .

...
...u uu uu

n

Similarly, the product can be decomposed into sub-diagrams which corresponds to the decompo-
sition of the natural number represented by the product into a2,b2,ab, and ba:

b

a

u . . . u . . . u u uu . . . u . . . u u u
...

... . . .
...

...u . . . u . . . u u uu . . . u . . . u u uu . . . u . . . u u u
a b

In order to support this style of reasoning within a theorem prover a language describing the
geometric objects is defined: square(a,b) for squares of height a and width b, and triangle(a,b) for
triangles of height a and width b. The geometric operations are described by further functions like
half(square(n,n+1)) that divides a square into two triangles, “flip” to transform an n×m-square (resp.
triangle) into an m× n-square (resp. triangle), or “+ “for the horizontal and vertical composition of
squares. The semantics of these operations is then defined by the following axioms:

half(square(n,n + 1)) = triangle(n,n) (7.3)

flip(square(n,m)) = square(m,n) (7.4)

square(a,b) + square(c,b) = square(a + c,b) (7.5)

square(a,b) + square(a,c) = square(a,b + c) (7.6)

square(a + b,a + b) = (square(a,a) + square(a,b))

+(square(b,a) + square(b,b)) (7.7)

To use that representation for an actual problem solving task, we first have to determine whether
it is a problem in the domain of natural numbers. If so, the abstract space is constructed from the
ground space by mapping the axioms and conjectures into the diagram representation and adding the
above axioms describing the geometric operations. The problem on the abstract space is then again
composed of a set of axioms and a conjecture. If the mapping is adequate then a proof with respect
to the abstract space entails that there is a proof in the ground space. If the mapping is not adequate,
for instance if the conjecture in the ground space contained properties that could not be represented
by diagrams, then the abstract proof can still be used as a proof plan to guide (parts of) the proof in
the ground space.

118 CHAPTER 7. CHANGE OF REPRESENTATION

Abstracting to Simpler Representations. More classical abstractions than the above are mappings
of problems given with respect to some logic L to a problem with respect to a weaker logic L ′.
Examples are:

-- The mapping of higher-order logic problems to first-order logic problems: either a higher-
order logic problem is reformulated as a first-order logic problem as done in [Kerber, 1992],
or the higher-order logic problem is essentially a first-order order problem, and thus can be
reformulated as such in a canonical way. The advantage of these reformulations is that the proof
search procedures for first-order logic are more efficient respectively more well developed than
those for higher-order logic. In both cases the first-order proof entails the existence of a higher-
order logic proof, if the initial transformation was adequate. Otherwise, it can serve as a proof
plan for those parts of the initial higher-order problem that have been adequately transformed.

-- The mapping of first-order logic problems to propositional logic problems. This is essentially
similar to the previous case. Note that in this case the transformation allows to move from a
semi-decidable domain to a decidable domain.

-- The mapping of (parts of) a problem into a representation suitable to use a decision procedure.
Take as an example a decision procedure for linear arithmetic: if the original problem contains
subproblems that are essentially linear arithmetic problems, then an explicit transformation into
the representation for pure linear arithmetic problems is required in order to enable the appli-
cation of the decision procedure. Again, the proof with respect to the abstract domain implies
the existence of a proof in the original domain only if the mapping is adequate. Otherwise,
the abstract proof can be used as a proof plan to guide (parts of) the proof with respect to the
original domain.

These examples demonstrate the following informal requirement specification for an infrastructure
that efficiently supports the use of abstractions during proof search:

-- Proof search with respect to different representations should be supported in parallel. Although
both proof states should be separated from each other for soundness reasons, the relations be-
tween the proofs with respect to different levels of abstractions should be explicit in order to
communicate this information to all partners involved in the problem solving process.

-- Abstractions should be treated as first-class citizens like other (pure) calculus rules. They should
be provided as such to the different partners analogously to the calculus rules and contextual
information. This requires a mechanism to define the application domains of representational
abstractions in order to allow to check their applicability in some proof state.

7.2 Concepts and Rules for Representational Change

In this section we introduce the basic concepts that underlie the definition and use of change of rep-
resentations, i.e., abstractions, in CORE. Regarding the informal requirement specification in the
previous section, CORE supports multiple simultaneous proof states. Establishing the connection be-
tween proofs that belong to different proof states is a matter of proof representation and it will be
addressed in Chapter 8. It remains to provide the concepts of abstractions, the explicit representation
of the applicability of abstractions, and the treatment of abstractions and refinements as first-class
citizens during proof search.

7.2. CONCEPTS AND RULES FOR REPRESENTATIONAL CHANGE 119

In order to describe the application domain of an abstraction we introduce the notion of a rea-
soning domain in Section 7.2.1. Intuitively a reasoning domain is a signature containing the types
and constants that are required by an abstraction function. Based on this we define the concept of a
representational abstraction in Section 7.2.2.

7.2.1 Reasoning Domains

For the description of representational abstractions, we do not impose a declarative description of
the representational abstractions but rather allow for any kind of description of those transformations,
explicitly including any programming language. In order to support an explicit representation of the
application domain for specific representational abstractions, we introduce the notion of reasoning
domains. The intuition that underlies their definition is that a representational abstraction usually has
built-in knowledge about specific types and constants and exploits that built-in knowledge in order to
compute a new representation. Take as an example the representational abstraction to diagram repre-
sentations: the abstraction exploits the knowledge about functions over the natural numbers. Since its
implementation needs to recognise that type and the respective functions, it must rely on the syntax,
i.e. a base type Nat and function symbols +,×,−,Σ of types Nat×Nat→ Nat as well as the logi-
cal connectives ¬,∧,∨,⇒,⇔. Furthermore, the application domain of a representational abstraction
may be restricted to a specific logic, like the change from a higher-order logic representation to some
first-order domain. Reasoning domains are a mean to make that syntactical and logical requirements
explicit.

Definition 7.2.1 (Reasoning Domains) Let L be a logic and Σ a valid L-signature. Then D := (L ,Σ)
is a reasoning domain. A reasoning domain D := (L ,Σ) is more specific than a reasoning domain
D′ := (L ′,Σ′) if, and only if, L ′ is a sub-logic of L and Σ′ is contained in Σ.

A representational abstraction is then applicable to some proof state if its reasoning domain is less
specific than the reasoning domain of the proof state. Thereby reasoning domain of a (window) proof
state consists of the logic of that proof state together with all types and constants that occur in that
proof state, which is defined as follows:

Definition 7.2.2 (Reasoning Domain of Window Proof States) Let L be logic, WPS a window
proof state with respect to L , and Σ the L-signature that consists of all types and constants in WPS.
Then the reasoning domain of WPS is (L ,Σ).

Given a reasoning domain D we denote by W PSD the set of window proof states that have a
reasoning domain that is equal to or more specific than D.

7.2.2 Representational Abstractions

A representational abstraction is a mapping ℵ that maps window proof states to window proof states.
In order to describe the type of the mapping, the representational abstraction consists of a reasoning
domain describing its application domain and a target reasoning domain. Then the mapping ℵ is a
function from the set of window proof states of the source reasoning domain into the set of window
proof states for the target reasoning domain. The source reasoning domain is thereby a description
that typically only approximates the actual domain of the mapping ℵ. Thus, ℵ is typically only a
partial function. In order to represent the relations between the ground and abstract proof states,
the representational abstraction function must provide the information which active windows of the

120 CHAPTER 7. CHANGE OF REPRESENTATION

[Q′,σ′BL (R′, f ′)] [Q′′,σ′′BL (R′′, f ′′)]

[Q,σBL (R, f)] [Q′′′,σ′′′BL (R′′′, f ′′′)]

Abstraction
A = (D,D′,ℵ)

RA

CORE Derivation

RD

Refinement
A = (D,D′,ℵ)

R
′−1
A

R′D

CORE Derivation
Figure 7.1: Abstraction & refinement.

ground proof state correspond to which active windows of the abstract proof state. This is used to
establish the corresponding proof links in the proof representation in Chapter 8. Thus, the representa-
tional abstraction function ℵ must provide both the new proof state and the relationship between old
and new active windows in the respective window trees. Note that this active window relationship is
indeed a relation and not a mapping, since an active window with respect to the ground proof state
may correspond to more than one active window in the abstract proof state.

Definition 7.2.3 (Representational Abstractions) A representational abstraction is a 3-tuple A =
(D,D′,ℵ) where D,D′ are reasoning domains and ℵ a partial mapping from W PSD into W PSD′×R ,
where R is the set of binary relations between window structures, such that:

-- If ℵ([Q,σBL (R, f)]) = ([Q′,σ′BL (R′, f ′)],R) then for all (n,n′) in R , n is an active window
of f with respect to R and n′ is an active window of f ′ with respect to R′.

We say that D is the source reasoning domain of A and D′ is the target reasoning domain of A.

The representational abstractions can be used at any stage of the proof process to change the
representation. The relation R indicates which active window of the ground proof state is abstracted
to which active windows in the abstract proof state. The actual application of the representational
abstraction consists of first checking the applicability of the abstraction by comparing the source
reasoning domain of the abstraction with the reasoning domain of the actual proof state [Q,σBL
(R, f)]. Secondly, the abstraction function is applied on the proof state which yields the new proof state
[Q′,σ′BL (R′, f ′)]. Thus, instead of having a single proof state at the time, the use of representational
abstractions requires to support the representation and management of multiple proof states.

7.2.3 Representational Refinements

In this section we define the converse of the representational abstraction in order to support the
refinement of an abstract proof state to the original proof state. The situation is as follows: we
started with a proof state WPS = [Q,σBL (R, f)] that has been abstracted to the proof state WPS′ =
[Q′,σ′BL (R′, f ′)]. From that proof state we obtained the proof state WPS′′ = [Q′′,σ′′BL (R′′, f ′′)] by
applying CORE reasoning rules. We now have to map back this new proof state to obtain a successor
proof state for WPS.

We have sketched the situation in Figure 7.1: in the figure, the solid lines describe the actual
situation and the dashed lines describe the additional steps that need to be introduced in order to refine
the abstract proof. Assume RA is the relationship between active windows of WPS and WPS′, and
RD is a relationship between active windows in WPS′ and the derived abstract proof state WPS′′. For

7.3. SUMMARY 121

the moment we assume such a relationship RD exists and we define it in Chapter 8. The refinement
problem consists in determining a proof state WPS′′′ = [Q′′′,σ′′′BL (R′′′, f ′′′)], such that:

1. ℵ(WPS′′′) = (WPS′′,R′A), i.e. WPS′′ is the proof state obtained by representational abstraction
from WPS′′′ and R′A is the relationship between active windows from W ′′′ to W ′′,

2. there is a CORE derivation from WPS to WPS′′′ and R′D is the relationship between active win-
dows in WPS and WPS′′′,

3. and it holds RD ◦RA = R′A ◦R′D, where R◦R′ := {(w,w′′) | ∃w′ (w,w′) ∈ R and (w′,w′′) ∈ R′}.

Note that in the figure the representational refinement relation from WPS ′′ to WPS′′′ is annotated
with the active window relationship R

′−1
A that is the inverse of the relationship obtained by abstraction;

i.e. R
′−1
A := {(w′,w) | (w,w′) ∈ R′A}.

Definition 7.2.4 (Representational Refinement) Let A = (D,D′,ℵ) be a representational abstrac-
tion, WPS,WPS′,WPS′′, and WPS′′′ be window proof states, such that

1. ℵ(WPS) = (WPS′,RA), ℵ(WPS′′′) = (WPS′′,R′A)

2. WPS′ 7−→∗W WPS′′ and WPS 7−→∗W WPS′′′ are valid CORE proofs with respective active window
relationships RD and R′D.

Then WPS′′′ is a representational refinement of WPS′′ by A if, and only if, it holds RD ◦RA = R′A ◦R′D.

In the definition of representational refinement we explicitly refrained to impose a constructive
way to determine the refining proof state WPS′′′. In general there are different ways to find that proof
state: for example if the abstract representation contains enough details in order to compute the proof
state WPS′′′ from WPS′′, then the derivation of WPS to WPS′′′ can be performed by, for instance, using
the cut rule. Or the abstract derivation from WPS′ to WPS′′ can be used to guide the derivation of
WPS′′′ from WPS and subsequently checking whether ℵ(WPS′′′) = (WPS′′,R′A) holds.

7.3 Summary

Reasoning domains have been defined as a declarative approximation for the application domain of
the actual representational abstractions. This information is used in order to check the applicability
of representational abstractions and provide the user and the reasoning engines with the applicable
abstractions, similar to any other contextual information about possible continuations of the proof.
Furthermore, we defined the effect of using a representational abstraction at any stage of the proof
search and the relations between active windows of the original proof state and the abstract proof
state. Finally we defined the invariants for the refinement of (parts of) an abstract proof.

Chapter 8

Hierarchical Proof Datastructure

The framework defined in this thesis aims at a communication infrastructure which mediates between
the user and the reasoning engines. In the design of the framework we distinguished two major parts:
first, the status of the proof as well as the possible next steps must be presented in an intelligible
manner to both the user and the reasoning engines. To this end we introduced in Chapter 6 the notion
of a window proof state that is based on the CORE calculus for intuitive contextual reasoning. The
second major part of the framework is concerned with information about the history of a proof as a
complementary information to the status of a proof. We also envisioned a proof representation with
different types of proofs, namely proofs based on calculus rules, proof plans, or, more generally, any
kind of proof step annotated with a natural language description.

This chapter is concerned with the definition of such a proof representation for CORE. In Sec-
tion 8.1 we motivate the datastructure used for proofs. In the first part of that section we sketch the
proof representation required to adequately encode the CORE window inference rules. The analysis
of these rules leads to the informal definition of the methodological roles of subgoals introduced by
the window inference rules. Finally, we motivate the hierarchical structure of proofs that allows to ab-
breviate portions of proofs, to expand speculative proof steps, or to use representational abstractions
and refinements. The formal definition of the hierarchical proof datastructure is then presented in
Section 8.2 and we show how the informal categories of intra-level and inter-level proof construction
steps from Section 1.1.2 are naturally represented in the hierarchical proof datastructure.

8.1 Motivation of the Hierarchical Proof Datastructure

The goal is to provide a proof representation that deals with all the aspects of proof development
considered so far in this thesis. Ideally, the proof representation should on the one hand adequately
represent the proof history and efficiently support proof continuations and on the other hand be in a
format that is easy to proof check. However, because of the complexity of the CORE window calculus
the latter is not possible, without encoding the complexity in the proof checking rules. The causes
for the complexity are the global effects of some reasoning rules, as for instance replacement rule
applications or the increase of multiplicities, which hampers simple proof checking of CORE window
proofs. Therefore, we concentrate on the first aspects, i.e. to develop a proof representation that
adequately represent the proof history and efficiently supports proof continuations and leave the proof
checking aspects for future work.

123

124 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

8.1.1 CORE Window Inference Rules

The open goals of a window proof state WPS = [Q,σBL (R, f)] are the active windows with respect
to f . Therefore to design the proof datastructure we define a proof node for each active window. Note
that the actual window proof state WPS is shared among these proof nodes for the active windows.
In order to capture the sharing of the window proof state among the proof nodes, we add the window
proof state WPS to each proof node. Thus, a proof node consists of a window proof state WPS and
one of its active windows w ∈ dom(f). For notational convenience we also add labels to proof node.
Thus a (window) proof node is denoted by

Label WPState Window Justification/Abstraction/Refinement

L0 WPS ` w

where L0 is its label, WPS its window proof state with window structure f and w ∈ dom(f) an
active window from WPS.

We now consider the CORE window inference rules. From an operational point of view they either
replace active windows by new windows, close active windows, or add further active subwindows to
non-active windows. We consider the rules in more detail in order to motivate the effect of a window
rule application on the proof nodes.

Active Subwindow Opening Rule. The rule that opens subwindows w1, . . . ,wn for an active win-
dow w relates w’s proof node to the proof nodes for the new windows.

Label WPState Window Justification/Abstraction/Refinement

L0 WPS ` w Subwindow-Open : L1, . . . ,Ln
L1 WPS1 ` w1
...

...
...

Ln WPS1 ` wn

We say that w’s proof node is justified by the proof nodes for the wi’s via the subwindow opening
rule and add that justification to w’s proof node. Note that the new windows belong to a new window
proof state WPS1. We say that a node is open if, and only if, the node has no justification. The
invariant for the proof representation is that the open nodes all have the same window proof state.

Non-Active Subwindow Opening Rule. The rule that opens a subwindow w′ for a non-active win-
dow w is used to focus on subtrees that are surrounding some given window. The rule adds a new
active subwindow for this subtree to w’s list of subwindows. Since w is a non-active window, there is
a proof node for w with justification Subwindow-Open(L1, . . . ,Ln) in the proof representation. Adding
a further subwindow transforms the proof to

Label WPState Window Justification/Abstraction/Refinement

L0 WPS ` w Subwindow-Open : L1, . . . ,Ln,Ln+1
L1 WPS1 ` w1
...

...
...

Ln WPS1 ` wn

Ln+1 WPS2 ` w′

8.1. MOTIVATION OF THE HIERARCHICAL PROOF DATASTRUCTURE 125

The window proof state by the time the additional subwindow is introduced differs from the win-
dow proof states introduced for the other subwindows wi since the window structures differ. In order
to ensure the invariant of the proof representation, we must adapt the window proof states WPS1 for
the open goals to WPS2. To this end we introduce a justification Adapt-Window-Proof-State for each
open node and obtain

Label WPState Window Justification/Abstraction/Refinement

L0 WPS ` w Subwindow-Open : L1, . . . ,Ln,Ln+1
L1 WPS1 ` w1 Adapt-Window-Proof-State : L′1
L′1 WPS2 ` w1
...

...
...

Ln WPS1 ` wn Adapt-Window-Proof-State : L′n
L′n WPS2 ` wn
Ln+1 WPS2 ` w′

Subwindow Closing Rule. The final window reasoning rule that only affects the window structure
is the subwindow closing rule. It closes all active subwindows of some window w and the parent
window gets active again. It introduces a new window proof node for the parent window and justifies
all window proof nodes of its subwindows by the justification Window-Close.

Label WPState Window Justification/Abstraction/Refinement

L0 WPS0 ` w Subwindow-Open : L1, . . . ,Ln,Ln+1
L1 WPS1 ` w1 Adapt-Window-Proof-State : L′1
L′1 WPS2 ` w1 Window-Close : Ln+2
...

...
...

Ln WPS1 ` wn Adapt-Window-Proof-State : L′n
L′n WPS2 ` wn Window-Close : Ln+2
Ln+1 WPS2 ` w′ Window-Close : Ln+2
Ln+2 WPS3 ` w

Window Axiom Rule. The next CORE window inference rule is the Axiom rule. It justifies a win-
dow proof node, whose window proof state is proved and the window is the top-level window. Thus,
it transforms the proof

Label WPState Window Justification/Abstraction/Refinement
...

...
...

L [Q,σBL (Proved,{w 7→ Proved})] ` w

where [Q,σBL (Proved,{w 7→ Proved})] is a proved window proof state and its window structure is
the single window w into

Label WPState Window Justification/Abstraction/Refinement
...

...
...

L [Q,σBL (Proved,{w 7→ Proved})] ` w Axiom

126 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

Window Contraction and Multiplicity-Increase. Both the window contraction rule and the win-
dow multiplicity-increase rule α-insert copies R′′ of some subtrees R′ and, if there is a window struc-
ture inside R′, creates an isomorphic window structure for R′′. Otherwise, the domain of the window
structure is not affected. We present the change of the proof representation for the contraction rule.
The change of the proof representation for the multiplicity increasing rule is analogous.

If the window structure in R′ is empty, i.e. f↓R′ = /0, we can assume that w is the active window
such that f (w) contains the copied subtree as a proper substructure. Then the window contraction
proof step is represented by

Label WPState Window Justification/Abstraction/Refinement
...

...
...

L WPS ` w Contraction(R′) : L′

L′ WPS′ ` w
...

...
...

Otherwise, if there was a window structure f ′ in R′ then we obtain f ′′ as window structure for
R′′ which is isomorphic to f ′. Then for each active window w1, . . . ,wn of f ′ there is a one-to-one
correspondence to the active windows w′1, . . . ,w

′
n of f ′′. Thus, each proof node for wi is justified by

the window contraction rule to a new proof node for wi and a proof node for w′i, both with respect to
the new window proof state. Thus, the resulting proof representation is

Label WPState Window Justification/Abstraction/Refinement
...

...
...

L1 WPS ` w1 Contraction(R′) : L′1,L
′′
1

...
...

...
Ln WPS ` wn Contraction(R′) : L′n,L

′′
n

L′1 WPS′ ` w1
...

...
...

L′n WPS′ ` wn
L′′1 WPS′ ` w′1
...

...
...

L′′n WPS′ ` w′n
...

...
...

In either case in order to ensure the invariant of the proof representation we must adapt the window
proof state of the remaining open goals by using the justification Adapt-Window-Proof-State.

The effect of the window multiplicity increasing rule on the proof representation is in principle like
a multiple application of the contraction rule. Thus, the proof representation is changed accordingly.

Window Weakening, Simplification, and Modal Structural Permutation. The window weaken-
ing rule, the window simplification rule, and the window modal permutation rule replace a subtree R ′

by some subtree R′′, that may contain less structure. If there was a non-empty window structure f ′

inside R′, then in all three cases a weakened window structure f ′′ for R′′ is derived from R′ and f . If
there was no window structure inside R′, then there is no window structure in R′′.

8.1. MOTIVATION OF THE HIERARCHICAL PROOF DATASTRUCTURE 127

In the first case, assume the active windows in R′ with respect to f ′ are w1, . . . ,wn and the active
windows in R′′ with respect to f ′′ are w′1, . . . ,w

′
k. Due to the definition of f ′′ it holds for each w′i that

either it is in w1, . . . ,wn, or it is a parent window of some w j with respect to f ′ in R′. We denote by
Children(w′i, f ′,{w1, . . . ,wn}) all children of w′i with respect to f ′ in {w1, . . . ,wn}. By the structure
of the FVIF-tree and the definition of window structures the sets Children(w ′i, f ′,{w1, . . . ,wn}) are
disjoint sets.

-- Invariant windows: for each wi it holds that it is either in w′1, . . . ,w
′
k and we denote the set of

those wi by I;

-- Closed windows: or there is a w′j such that wi ∈ Children(w′j, f ′,{w1, . . . ,wn}) and we denote
the set of these wi by C;

-- Deleted windows: or, they are in none of the above categories and we denote that set by D.

For each wi there is before rule application a proof node

Label WPState Window Justification/Abstraction/Refinement

L WPS ` wi

If wi ∈ I, then that proof node is justified by a window weakening (or simplification, or modal
structural permutation) justification to obtain

Label WPState Window Justification/Abstraction/Refinement

L WPS ` wi Weakening(R′,R′′) : L′

L′ WPS′ ` wi

where WPS′ is the new window proof state. For each w′j where Children(w′j, f ,{w1, . . . ,wn}) 6= /0 we
introduce a new proof node with respect to the new proof state WPS′.

Label WPState Window Justification/Abstraction/Refinement

Lw′j WPS ` w′j

For each wi ∈ Children(w′j, f ,{w1, . . . ,wn}) we justify wi’s proof node by a window weakening
(or simplification, or modal structural permutation) justification to the proof node of w ′j.

Label WPState Window Justification/Abstraction/Refinement

Lwi WPS ` wi Weakening(R′,R′′) : Lw′j
Lw′j WPS ` w′j

Finally, the proof nodes of the wi ∈ D are justified by a window weakening (or simplification, or
modal structural permutation) justification without successor node.

Label WPState Window Justification/Abstraction/Refinement

Lwi WPS ` wi Weakening(R′,R′′)

Again, all other open goals before rule application are justified by Adapt-Window-Proof-State to

128 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

adapt them to the new window proof state and thus ensuring the invariant of the proof representation.

Window Leibniz’ Equality, Extensionality, and Boolean ζ-Expansion Rules. All these rules α-
insert new subtrees R′′ on subtrees R′. Only if there was a non-empty window structure f ′ in R′, then
an additional window is set to R′. Otherwise, the domain of the overall window structure is unchanged.

If there was a non-empty window structure in R′, then assume w1, . . . ,wn are the active windows
with respect to f ′ in R′ and w is the new window for R′′. Then we justify each proof node of some wi
by a Leibniz’ equality (respectively extensionality introduction and boolean ζ-expansion) justification
to the two new proof nodes for wi and w with respect to the new proof state. Thus, the new proof
representation is:

Label WPState Window Justification/Abstraction/Refinement

L1 WPS ` w1 Leibniz’ equality(R′,R′′) : L′1,L
...

...
...

Ln WPS ` wn Leibniz’ equality(R′,R′′) : L′n,L
L′1 WPS′ ` w1
...

...
...

L′n WPS′ ` wn
L WPS′ ` w

If the window structure inside R′ was empty, let w be the active window that governs R′. Then
its proof node is justified by a Leibniz’ equality (respectively extensionality introduction or boolean
ζ-expansion) justification to a proof node for w with respect to the new proof state. Thus, the new
proof representation is:

Label WPState Window Justification/Abstraction/Refinement

L WPS ` w Leibniz’ equality(R′,R′′) : L′

L′ WPS′ ` w

Again, in both cases, all other open goals before rule application are justified by Adapt-Window-
Proof-State to adapt them to the new window proof state and thus ensuring the invariant of the proof
representation.

Window Instantiation. The window instantiation rule replaces any literal node R ′ in which occurs
an instantiated variable by an initial FVIF-tree R′′ for the instantiated label. In the presence of a non-
empty window structure f ′ inside R′, the window tree structure f ′′ for R′′ is obtained from f ′. If f ′

denoted substructures below an instantiated higher-order variable, then f ′′ is a restriction of f ′. This
is analogous to the construction of the new window structure when applying the window weakening
rule. Otherwise, f ′′ is isomorphic to f ′.

For the definition of how the proof representation is changed, we consider the two cases: (1) the
window structure f ′ inside R′ is empty, and (2) the window structure f ′ inside R′ is non-empty.

In the first case, let w be the active window that governs R′. Then the proof node for w is justified
by an instantiation justification to the new proof node for w.

Label WPState Window Justification/Abstraction/Refinement

Lw WPS ` w Instantiate(σ) : L′w

8.1. MOTIVATION OF THE HIERARCHICAL PROOF DATASTRUCTURE 129

L′w WPS ` w

For the second case, assume the active windows in R′ with respect to f ′ are w1, . . . ,wn and the
active windows in R′′ with respect to f ′′ are w′1, . . . ,w

′
k. Due to the definition of f ′′ either some of

the w′i are either in w1, . . . ,wn or are a parent window of some w j with respect to f ′ in R′. Assume
w′1, . . . ,w

′
l are those contained in w1, . . . ,wn and w′l+1, . . . ,w

′
k are those that are parent windows of some

w1, . . . ,wn. We denote by Children(w′i, f ′,{w1, . . . ,wn}) all children of w′i, i≥ l + 1 with respect to f ′

in {w1, . . . ,wn}. Note that by the structure of the FVIF-tree and the definition of window structures
the sets Children(w′i, f ′,{w1, . . . ,wn}), i≥ l + 1, are disjoint sets.

For each w′i ∈ {w1, . . . ,wl} there is before rule application a proof node

Label WPState Window Justification/Abstraction/Refinement

L WPS ` w′i

That proof node is then justified by an instantiation justification to the new proof node for w ′i with
respect to the new proof state:

Label WPState Window Justification/Abstraction/Refinement

L WPS ` w′i Instantiation(σ,R′,R′′) : L′

L′ WPS′ ` w′i

where WPS′ is the new window proof state. For each w′i, i ≥ l + 1, a new proof node for w′i with
respect to the new proof state WPS′ is introduced.

Label WPState Window Justification/Abstraction/Refinement

Lw′i WPS ` w′i

Furthermore, for all windows wi1 , . . . ,wip ∈ Children(w′i, f ′,{w1, . . . ,wn}) the proof node of wiq is
justified by an instantiation justification to the new proof node for w′i. Thus, we obtain the following
proof representation:

Label WPState Window Justification/Abstraction/Refinement

Lwi1
WPS ` wi1 Instantiation(σ,R′,R′′) : Lw′i

...
...

...
Lwip

WPS ` wi1 Instantiation(σ,R′,R′′) : Lw′i
Lw′i WPS ` w′i

Note that unlike the window weakening rule, for the window instantiation rule there are no deleted
windows; all windows are either preserved or closed to some parent window.

Again all other open goals before rule application are justified by Adapt-Window-Proof-State to
adapt them to the new window proof state and thus ensuring the invariant of the proof representation.

Window Replacement Rule Applications. For the replacement rules we consider only the case
of the resolution style replacement rule, since the rewriting style is a combination of that and other
inference rules. Assume WPS = [Q,σBL (R, f)] is the actual window proof state, u→ 〈v′1, . . . ,v′m〉 is

130 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

the rule to apply on some subtree R′ of R. If the window structure f↓R′ in R′ is non-empty, then the
application condition requires that there is a v′i that is isomorphic to R′ up to some v

′1
i , . . . ,v

′n
m and the

substructures of R′ denoted by the active windows with respect to f↓R′ . If so an f ′ can be constructed
for v′i and there is a one-to-one correspondence of each active window w1, . . .wn of f↓R′ for R′ to an
active window w′i of f ′ for v′i. In addition to v′i and f ′, the other v′j, i 6= j, are β-inserted on a subtree R j,
and new windows are inserted for those if the subtree R j has a non-empty window structure. Without
loss of generality we can assume that windows wv′1

, . . . ,wv′l
are inserted for v′1, . . . ,v

′
l and i > l. Each

proof node for wi is justified by a replacement rule application to a proof node for w′i and the proof
nodes v′1, . . . ,v

′
l :

Label WPState Window Justification/Abstraction/Refinement

L1 WPS ` w1 Apply(u→ 〈v′1, . . . ,v′m〉) : L′1,Lv′1 , . . . ,Lv′l
...

...
...

Ln WPS ` w1 Apply(u→ 〈v′1, . . . ,v′m〉) : L′n,Lv′1 , . . . ,Lv′l
L′1 WPS′ ` w′1
...

...
...

L′1 WPS′ ` w′n
Lv′1 WPS′ ` wv′1
...

...
...

Lv′l
WPS′ ` wv′l

If the window structure f↓R′ in R′ is empty, then the window w that governs R′ also governs v′i in the
new subtree. Like in the first case, in addition to v′i, the other v′j, i 6= j, are β-inserted on a subtree R j,
and new windows are inserted for those if the subtree R j has a non-empty window structure. Again,
without loss of generality we can assume that windows wv′1 , . . . ,wv′l

are inserted for v′1, . . . ,v
′
l and i> l.

The proof node for w is justified by a replacement rule application to a proof node for w with respect
to the new proof state and the proof nodes v′1, . . . ,v

′
l , also with respect to the new proof state:

Label WPState Window Justification/Abstraction/Refinement

L WPS ` w Apply(u→ 〈v′1, . . . ,v′m〉) : L′,Lv′1 , . . . ,Lv′l
L′ WPS′ ` w′

Lv′1 WPS′ ` wv′1
...

...
...

Lv′l
WPS′ ` wv′l

Finally, all other open goals before rule application are justified by Adapt-Window-Proof-State to
adapt them to the new window proof state and thus ensuring the invariant of the proof representation.

Window Cut. The window cut rule replaces a subtree R′ by a subtree RCut which is of the form
β(α(R+

ϕ ,R
′),α(R−ϕ ,R

′′)), where R+
ϕ and R+

ϕ are the subtrees for the cut-formula and R′′ is a copy of R′.
If the window structure on R′ is empty, then no window structure for RCut is introduced. In that case
assume w is the window that governs R′. Then the proof node for w is justified by a cut over ϕ on R′

to a proof node for w with respect to the new proof state. Thus, we obtain:

8.1. MOTIVATION OF THE HIERARCHICAL PROOF DATASTRUCTURE 131

Label WPState Window Justification/Abstraction/Refinement

L WPS ` w Cut(ϕ,R′) : L′

L′ WPS′ ` w

If there was a window structure f 6= {} for R′, then new top-level windows wC
1 ,w

C
2 are intro-

duced for R+
ϕ and R+

ϕ , the window structure on R′ is preserved and an isomorphic window structure
f ′ is defined for R′′. Thus, if w1, . . . ,wn are the active windows of f for R′, these windows are still
active windows in the new proof state. Furthermore, there is a one-to-one correspondence between
w1, . . . ,wn and the active windows w′1, . . . ,w

′
n of f ′ for R′′. That window cut proof step is then repre-

sented as follows:

Label WPState Window Justification/Abstraction/Refinement

L1 WPS ` w1 Cut(ϕ,R′) : L′1,L
′′
1 ,L

C
1 ,L

C
2

...
...

...
Ln WPS ` wn Cut(ϕ,R′) : L′n,L

′′
n ,L

C
1 ,L

C
2

LC
1 WPS′ ` wC

1
LC

2 WPS′ ` wC
2

L′1 WPS′ ` w1
L′′1 WPS′ ` w′1
...

...
...

L′n WPS′ ` wn
L′′n WPS′ ` w′n

And, again, all other open goals before rule application are justified by Adapt-Window-Proof-State
to adapt them to the new window proof state and thus ensuring the invariant of the proof representation.

This completes the list of CORE window inference rules and their effects on the proof representa-
tion. Before motivating the use of hierarchies in the proof representation in Section 8.1.3, we briefly
motivate the methodological role of successor nodes in justifications.

8.1.2 Roles of Window Proof Nodes

Consider the justification introduced by a window cut over some formula ψ of the proof node for w1,
that denotes the formula ϕ. That proof node is related to four proof nodes, namely

Label WPState Window Justification/Abstraction/Refinement

L1 WPS ` w1 := ϕ+ Cut(ψ) : LC
1 ,L

′
1,L

C
2 ,L

′′
1

LC
1 WPS′ ` wC

1 := ψ−
L′1 WPS′ ` w1 := ϕ+

LC
2 WPS′ ` wC

2 := ψ+

L′′1 WPS′ ` w′1 := ϕ+

The windows wC
1 and w1 are α-related between each other as well as the windows wC

2 and w′1. From
a pure logical point of view all successor proof nodes of L1 subgoals, and each pair is an alternative
to prove that subgoal. However, depending on the methodology that underlied the introduction of the
cut, different roles can be attributed to these proof nodes: if the cut was used to perform a case analysis

132 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

over ψ, then wC
1 and wC

2 are the case conditions, while w1 and w′1 are the subgoals. If the cut was used
to perform a speculative proof step to speculate that the goal to prove ϕ+ could be refined to the goal
to prove ψ+, then wC

2 is the major subgoal of that proof step, w′1 plays no (methodological) role, and
wC

2 and w1 represent the local lemma that needs to be proved to validate the speculative proof step.
Thus, wC

2 and w1 form the condition of the speculative step.
If this methodological information about the role of proof nodes within justifications would be

explicit, then it would be visible to the user and the reasoning engines, and thus contribute to a better
understanding of the proof status and the intentions of the proof. Furthermore, it could be exploited
by the user and the reasoning engines to organise their proof search, for example to pursue an of-
fensive proof search strategy by always tackling the “major” subgoals first and, only when the proof
along those lines succeeds, tackling the various “conditions”. Conversely, a defensive strategy can be
designed, that always first tackles the “conditions” and then the “major” subgoals.

Furthermore, this information about the role of proof nodes is not only useful to organise the
proof search, but also for proof presentation. Indeed, the information about “condition” and “major”
subgoals can be fruitfully exploited to explain a completed or partial proof. Also it can be used to
display a concise representation of the proof by omitting the proofs of “conditions” and only viewing
the proofs of “major” subgoals.

Roles of proof nodes can not only be assigned for the window cut rule, but also for other rule
applications, like for instance the application of a replacement rule. Take as an example a replacement
rule Ordered(X :: Y :: L)−→〈(X ≤Y)+,Ordered(Y :: L)+〉 obtained from the definition of a predicate
“Ordered” over lists of natural numbers. Assume an open goal in the proof is

Label WPState Window Justification/Abstraction/Refinement

L0 WPS ` Ordered(1 :: 2 :: 3 :: [])+

where :: is concatenation of natural numbers to lists and [] denotes the empty list. Applying the
rule on that proof node results in the proof state

Label WPState Window Justification/Abstraction/Refinement

L0 WPS ` Ordered(1 :: 2 :: 3 :: [])+ Apply(Ordered(X :: Y :: L)−→
〈(X ≤Y)+,Ordered(Y :: L)+〉) : L1,L2

L1 WPS′ ` (1≤ 2)+

L2 WPS′ ` Ordered(2 :: 3 :: [])+

Although the replacement rule introduces two subgoals, from a methodological point of view the
first subgoal L1 can be seen as a “condition”, while L2 is the “major” subgoal.

Thus, the formal definition of the proof datastructure in Section 8.2 will accommodate the rep-
resentation of methodological information about the role of subgoals within justifications. Although
so far we considered only “condition” and “major” subgoals, other classifications are possible, for in-
stance having a hierarchy for the importance of subgoals. Thus, in the general definition of the proof
datastructure we will simply assume a given set of role descriptions.

8.1.3 Hierarchies in Proofs

The proof datastructure is an important means to communicate information about the proof to the
partners and it is complementary to the information provided by the proof states. Hierarchies in proofs
have been pioneered by the proof planning approach to proof search [Cheikhrouhou & Sorge, 2000]

8.1. MOTIVATION OF THE HIERARCHICAL PROOF DATASTRUCTURE 133

and have recently been formalised for proof planning in [Fiedler, 2001]. Like the role of proof nodes,
the explicit use of hierarchies in proofs serves both the presentation – and thus a better understanding
– of the proof as well as the organisation of the proof search. We distinguish two kinds of hierarchies
in proofs: the derivational hierarchy and the representational hierarchy:

-- Derivational hierarchies are caused by the hierarchies of proof procedures, like for example a
proof procedure that causes the execution of another proof procedure is hierarchically higher
than the latter. Thereby the causal relationship of the calls to reasoning procedures does not
necessarily reflect the chronological order of the executions of the reasoning procedures. In-
deed, while in tactical theorem proving, a hierarchically higher tactic is completed after the
completion of its sub-tactics, in proof planning the high-level method is completed before its
expansion. The former approach can be described by the introduction of abbreviations for
parts of a lower level proof. This is how hierarchies are introduced in tactical theorem prov-
ing, where the portion of the proof obtained by the execution of a tactic is abbreviated by the
name of that tactic. In the latter approach, parts of a proof are constructed beforehand on some
higher level of abstraction by ignoring many logically relevant details. Thereby the refinement
of the high-level proof incrementally tackles all the details that have been ignored in the first
place. The explicit representation of the relationship between high-level proof steps and the
subproof obtained from their refinement is the proof planning approach from which originates
the hierarchical view on proofs.

-- Representational hierarchies result from the use of representational abstractions. Thereby, the
proof with respect to the abstract space is hierarchically higher than the corresponding proof
steps with respect to the ground space. Although these hierarchies have a clear aspect of a
derivational hierarchy, they are mainly due to the change of the representation.

8.1.3.1 Derivational Hierarchies

In this section we briefly sketch how derivational hierarchies are introduced by both proof planning
methods and tactics.

The window cut rule supports the representation of high-level proof steps, thus supports the rea-
soning style advocated by the traditional proof planning paradigm. Taking a risk of over simplification,
we can say that a proof planning method M states that from a given proof situation ϕ we can obtain
a new proof situation ψ by using that method. Proof situations correspond to subtrees denoted by an
active window. Thus given the following proof situation with the open goal to prove ϕ

Label WPState Window Justification/Abstraction/Refinement

L WPS ` ϕ+

we can represent the use of that method by applying a window cut over ψ on ϕ which results in

Label WPState Window Justification/Abstraction/Refinement

L WPS ` ϕ+ Cut(ψ) : LLemma Goal,L′,LSubgoal,LLemma Hyp
LLemma Hyp WPS′ ` ψ−
LLemma Goal WPS′ ` ϕ+

LSubgoal WPS′ ` ψ+

L′ WPS′ ` ϕ+

134 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

Subsequently we apply the window weakening in order to remove the occurrence of ϕ+ in the
proof node L′, and finally obtain

Label WPState Window Justification/Abstraction/Refinement

L WPS ` ϕ+ Cut(ψ) : LLemma Goal,L′,LSubgoal,LLemma Hyp
LLemma Hyp WPS′ ` ψ−
LLemma Goal WPS′ ` ϕ+

LSubgoal WPS′ ` ψ+

L′ WPS′ ` ϕ+ Weakening

The actual proof planning step was to refine ϕ to ψ, i.e. the link from L to LSubgoal, while a
subproof for ϕ+ under the additional hypothesis ψ− justifying the node LLemma Goal will be the so-
called expansion of that proof-planning step. We denote that combination of window cut, window
weakening, and the respective roles of the subwindow as an oracle proof step.

The actual proof planning step is represented by introducing an abstract justification of name M
from L to LSubgoal only, which results into

Label WPState Window Justification/Abstraction/Refinement

L WPS ` ϕ+ M(ψ) : LSubgoal
Cut(ψ) : LLemma Goal,L′,LSubgoal,LLemma Hyp

LLemma Hyp WPS′ ` ψ−
LLemma Goal WPS′ ` ϕ+

LSubgoal WPS′ ` ψ+

L′ WPS′ ` ϕ+ Weakening

Structurally the proof planning justification M(ψ,LSubgoal) is an abstraction of its expansion, i.e.
the lower-level proof that consists of the window cut justification, the subsequent weakening justifica-
tion, and additional further justifications for LLemma Hyp and LLemma Goal. Note that the proof planning
justification contains strictly less successor nodes than the lower-level proof that encodes the proof
planning step. When the lemma that validates the proof planning step will be proved, then the proof
planning step will be verified, i.e. the proof planning step will have an expansion.

We now consider the case of tactics and the hierarchies they introduce into the proof representa-
tion. Consider the following low-level partial proof generated by some tactic T :

Label WPState Window Justification/Abstraction/Refinement

L0 WPS ` Ordered(1 :: 2 :: 3 :: [])+ Apply(Ordered(X :: Y :: L)−→
〈(X ≤Y)+,Ordered(Y :: L)+〉) : L1,L2

L1 WPS′ ` (1≤ 2)+

L2 WPS′ ` Ordered(2 :: 3 :: [])+ Apply(Ordered(X :: Y :: L)−→
〈(X ≤Y)+,Ordered(Y :: L)+〉) : L3,L4

L3 WPS′′ ` (2≤ 3)+

L4 WPS′′ ` Ordered(3 :: [])+ Apply(Ordered(X :: [])→ 〈〉) : L5
L5 WPS′′′ ` True+

This partial proof can be abbreviated by a single justification of name T from L0 to all resulting
subgoals, i.e. L1,L3, and L5. This is represented by

8.1. MOTIVATION OF THE HIERARCHICAL PROOF DATASTRUCTURE 135

Label WPState Window Justification/Abstraction/Refinement

L0 WPS ` Ordered(1 :: 2 :: 3 :: [])+ T : L1,L3,L5
Apply(Ordered(X :: Y :: L)−→

〈(X ≤Y)+,Ordered(Y :: L)+〉) : L1,L2
L1 WPS′ ` (1≤ 2)+

L2 WPS′ ` Ordered(2 :: 3 :: [])+ Apply(Ordered(X :: Y :: L)−→
〈(X ≤Y)+,Ordered(Y :: L)+〉) : L3,L4

L3 WPS′′ ` (2≤ 3)+

L4 WPS′′ ` Ordered(3 :: [])+ Apply(Ordered(X :: [])→ 〈〉) : L5
L5 WPS′′′ ` True+

Note that the abbreviating justification T : L1,L3,L5 contains exactly all open subgoals of the
underlying subproof.

Remark 8.1.1 The abbreviation of proof sequences by single justifications is similar in nature to
the introduction of definitions. However, in our understanding, definitions are used to introduce new
major concepts, while abbreviations are just short-cuts and do not necessarily introduce a new concept.

8.1.3.2 Representational Hierarchies

Representational hierarchies in proofs result from the use of representational abstractions and refine-
ments. Consider as an example the following lemma over the integers:

∀nNat n≥ 0⇒ n× (n + 1) = (
n

∑
i=1

i) + (
n

∑
i=1

i).

After focusing on the relevant parts of that formula, i.e. n≥ 0, n× (n + 1), and (∑n
i=1 i)+(∑n

i=1 i), we
are in the following proof situation:

Label WPState Window Justification/Abstraction/Refinement

L1 WPS ` n× (n + 1)
L2 WPS ` (∑n

i=1 i) + (∑n
i=1 i)

L3 WPS ` n≥ 0−

where WPS is the actual window proof state. Using the abstraction function to diagrams (cf. Sec-
tion 7.1) it maps n× (n + 1) to square(n,n + 1), (∑n

i=1 i) + (∑n
i=1 i) to triangle(n,n) + triangle(n,n),

and does not map n≥ 0−, which is only used, for instance, to ensure the applicability of the abstrac-
tion. The resulting proof situation is then

Label WPState Window Justification/Abstraction/Refinement

L1 WPS ` n× (n + 1) Diagrams : L′1
L2 WPS ` (∑n

i=1 i) + (∑n
i=1 i) Diagrams : L′2

L3 WPS ` n≥ 0−

L′1 WPS′ ` square(n,n)
L′2 WPS′ ` triangle(n,n) + triangle(n,n)

Continuing the proof with respect to the diagrammatic representation transforms the windows to

136 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

equalise their content to obtain the proof situation

Label WPState Window Justification/Abstraction/Refinement

L1 WPS ` n× (n + 1) Diagrams : L′1
L2 WPS ` (∑n

i=1 i) + (∑n
i=1 i) Diagrams : L′2

L3 WPS ` n≥ 0−

L′1 WPS′ ` square(n,n) DiagramProof : L′′1
L′2 WPS′ ` triangle(n,n) + triangle(n,n) DiagramProof : L′′2
L′′1 WPS′′ ` triangle(n,n) + triangle(n,n)
L′′2 WPS′′ ` triangle(n,n) + triangle(n,n)

Finally the abstract proof is refined to a proof with respect to the original representation. That
proof is for instance done by induction, in our case over the positive integers including 0. This
transforms on the one hand n× (n + 1) to both 0× (0 + 1) and (n + 1)× ((n + 1) + 1) which are the
refinements of L′′1 . On the other hand it tranforms (∑n

i=1 i)+(∑n
i=1 i) to 0× (0+1) and (n+1)× ((n+

1) + 1), which are refinements for L′′2 .
For the refinement note that the abstraction relation (RA in Definition 7.2.4) is {(L1,L′1),(L2,L′2)}

and the derivational relation (RD in Definition 7.2.4) is {(L′1,L
′′
1),(L′2,L

′′
2)}. Thus, RD ◦ RA is the

relation {(L1,L′′1),(L2,L′′2)} and the refinements of the abstract proof step DiagrammProof must indeed
refine L′′1 to both L′′′11 and L′′′12, which are the successor nodes of L1 (analogously for L′′2).

Label WPState Window Justification/Abstraction/Refinement

L1 WPS ` n× (n + 1) Diagrams : L′1
DiagProofRefine : L′′′11,L

′′′
12

L2 WPS ` (∑n
i=1 i) + (∑n

i=1 i) Diagrams : L′2
DiagProofRefine : L′′′21,L

′′′
22

L3 WPS ` n≥ 0−

L′1 WPS′ ` square(n,n + 1) DiagramProof : L′′1
L′2 WPS′ ` triangle(n,n) + triangle(n,n) DiagramProof : L′′2
L′′1 WPS′′ ` triangle(n,n) + triangle(n,n) DiagramRefine : L′′′11,L

′′′
12

L′′2 WPS′′ ` triangle(n,n) + triangle(n,n) DiagramRefine : L′′′21,L
′′′
22

L′′′11 WPS′′′ ` (∑0
i=1 i) + (∑0

i=1 i)
L′′′12 WPS′′′ ` (∑0

i=1 i) + (∑0
i=1 i)

L′′′21 WPS′′′ ` (∑n+1
i=1 i) + (∑n+1

i=1 i)
L′′′22 WPS′′′ ` (∑n+1

i=1 i) + (∑n+1
i=1 i)

In the next section we formally define the hierarchical proof datastructure. It accommodates all the
aspects of a hierarchical proof datastructure sketched so far. Additionally it explicitly represents the
direction of the introduction of an abbreviation, like upwards for the abbreviation of a proof sequence
generated by a tactic, or downwards like between a proof planning step and its expansion. This explicit
representation of the directions in the construction of the hierarchy will serve as one formal property
that allows to distinguish top-down proof constructions à la proof planning from bottom-up proof con-
struction à la tactical theorem proving and other automatic proof search procedures. Furthermore, the
distinction between abbreviating justifications that contain all open subgoals of the underlying proof
versus abbreviating justifications that only contain some of them is another formal property which
allows to distinguish between top-down and bottom-up proof construction paradigms. Those two
properties resulting from a proof representation that accommodates both reasoning paradigms while

8.2. HIERARCHICAL PROOF DATASTRUCTURE 137

showing their differences may serve as a starting point for a comparison of the different reasoning
paradigms.

8.2 Hierarchical Proof Datastructure

For the definition of the hierarchical proof datastructure we build upon the formalisation of the proof
planning datastructure from [Fiedler, 2001] and adapt and extend it to fit our context.

The inference rules are the names in justifications: we distinguish between formal and informal
inference rules, where the formal inference rules are the CORE window inference rules while informal
inference rules are names or descriptions, like names of tactics or proof planning methods, or any kind
of description for a portion of a proof provided for instance by the user.

Definition 8.2.1 (Inference Rules) The inference rules are given by a pair I = (F, I) of formal and
informal inference rules. The formal inference rules are the CORE window inference rules. The
informal inference rules are arbitrary descriptions.

As sketched in Section 8.1.2 the successor proof nodes in justifications can have different method-
ological roles. For the general definition of the hierarchical proof datastructure we assume an arbitrary
but fixed set of roles. We do not impose that there must be an order among the roles, for instance to
indicate their relative importance. However, this is possible in order to allow for the distinction be-
tween “conditions” and “major” subgoals as sketched in Section 8.1.2. This can simply be modelled
by using a binary set of roles {Condition,SubGoal} together with the order Condition < SubGoal.

Definition 8.2.2 (Roles) The roles R are given by an arbitrary finite set, possibly with an ordering
(not necessarily total) among the elements of R.

We now introduce the actual objects that define the hierachical proof datastructure. As sketched
in the previous sections, it is composed of window proof nodes that are annotated by justifications.
We first define justifications as follows:

Definition 8.2.3 (Justifications) Let I be a set of inference rules and R a set of roles. A justification
is a 3-tuple J = (R,P,NR), where R is an inference rule from I, P a list of parameters for R, and NR
a list of window proof nodes annotated by roles, called successor nodes. A justification containing a
CORE window calculus rule is called a formal justification.

Definition 8.2.4 (Representational Abstraction & Refinement Applications) Let A be a set of
representational abstractions (cf. Definition 7.2.3). A representational abstraction application is a
3-tuple A = (a,P,N), where a is a representational abstraction from A, P a list of parameters for a,
and N a list of window proof nodes, called abstraction nodes.

A representational refinement application is a 3-tuple R = (a,P,N), were a is a representational
abstraction from A, P a list of parameters for a, and N a list of window proof nodes, called refinement
nodes.

Based on this we define window proof nodes. In this definition we use the notion of directed jus-
tification sequences, which is only introduced afterwards. For the moment we can assume a directed
justification sequence to be a set of justifications.

138 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

Definition 8.2.5 (Window Proof Nodes) A window proof node is a 5-tuple N = (WPS,w,J,A,R),
where WPS is a window proof state, w an active window of WPS, J a directed justification sequence,
A representational abstraction applications, and R representational refinement applications. We say
that any justification J in J justifies N. If N is justified by the axiom rule, i.e. has no successor nodes,
then N is a hypothesis.

The support nodes of N is the transitive closure of all successor nodes of N.

Remark 8.2.6 For the definition of representational refinements (cf. Definition 7.2.4) we assumed
for a derivation WPS 7−→∗W WPS′ the existence of a relationship RD between active windows in WPS
to active windows in WPS′. In the proof representation there is a proof node for each active window in
WPS. During the derivation of WPS′ those are related via justifications to new proof nodes, that belong
to active windows in the new proof state WPS′. For each initial active window the active windows
of the support nodes are all windows in that relation. Thus, the assumed relation RD is statically
determined from the proof representation, and can be used to check the representational refinement
relationships.

Window proof nodes together with their justifications define the graph structure of the hierarchical
proof datastructure. The hierarchies in proof datastructures are based on the following notion of proof
graphs.

Definition 8.2.7 (Proof Graphs) Let N be a set of window proof nodes, let S⊆ N and N ∈ N. N is
a proof graph of N from S if, and only if, one of the following holds:

1. N ∈ S.

2. Let N = (WPS,w,J,A,R).

(a) For each justification J = (R,P,NR) in J and for each successor node N ′ from NR there is
a set N′ (N that is a proof graph of N ′ from S,

(b) For each representational abstraction application A = (a,P,N) in A and for each abstrac-
tion node N ′ from N there is a set N′ (N that is a proof graph of N ′ from S, and

(c) For each representational refinement application R = (a,P,N) in R and for each refinement
node N ′ from N there is a set N′ (N that is a proof graph of N ′ from S.

N is a formal proof graph of N from S if, and only if, N and each support node of N in N have a
formal justification.

Since N′ (N this clearly defines an acyclic graph.
Based on proof graphs we define the derivational hierarchy in a proof datastructure. The hierarchy

is induced by the relationship between justifications and a proof graph for that justification. This
induces an ordering ≺ among justifications, which is used to define directed justification sequences.
Those are pairs of non-disjoint sets of justifications, each being partially ordered with respect to ≺
and their union is required to be totally ordered with respect to ≺. The motivation for having two sets
of justifications is to represent the direction of the hierarchy. For two justifications J,J ′ that are in the
first set and for which J ≺ J ′ holds, then J has been abstracted to J ′. Conversely, if the justifications
are from the second set and J ≺ J ′ holds, then J ′ has been refined to J.

Definition 8.2.8 (Directed Justification Sequences) Let N = (WPS,w,J,A,R) be a window proof
node, J = (R,P,NR) be a justification in J, and S= {N | N in NR}.

8.2. HIERARCHICAL PROOF DATASTRUCTURE 139

NA

...
N ′A

}
SA

NG N ′G . . .︸ ︷︷ ︸
SG

A = (a,P,N)

JA

Figure 8.1: Representational expansion.

1. The derivational expansion of J is a set EJ of window proof nodes that constitutes a proof graph
of N\J from S, where N\J denotes N with J deleted from its directed justification sequence. We
say the expansion EJ refines J. We say the expansion EJ is complete if, and only if, EJ is
a formal proof graph of N from S. If EJ is a complete derivational expansion, we say the
expansion EJ of J proves J.

2. A justification J = (R,P,NR) is more abstract than a justification J ′= (R′,P′,NR′) (we write J�
J′ or J′ ≺ J) if, and only if, there is a justification J ′′ such that J ′′ justifies N in the derivational
expansion of J and either J ′′ = J′ or J′′ � J′.

3. A directed justification sequence is a pair (JA,JR) of sets of justifications, such that JA and JR
are partially ordered with respect to �. For any J,J ′ ∈ JA such that J � J ′ we say that J ′ has
been abstracted to J. Analogously, for any J,J ′ ∈ JR such that J � J ′ we say that J has been
refined to J ′.

We say that a directed justification sequence is complete if, and only if, JA∪JR is totally ordered
with respect to �.

The distinction between complete and incomplete justification sequences in the above definition is
needed, since we are interested in representing intermediate states of the proof, and not only completed
proofs as in [Fiedler, 2001]. The notion of direct justification sequences, more specifically the notions
of derivational expansions and the induced ordering among justifications, represent the derivational
hierarchies in proofs. Analogously to the notion of expansions we define representational expansions
of justifications, which correspond to the representational hierarchies in proofs.

Definition 8.2.9 (Representational Expansions) Let NG = (WPSG,wG,JG,AG,RG) be a window
proof node, A = (a,P,N) from AG, NA = (WPSA,wA,JA,AA,RA) a window proof node in N, JA =
(RA,PA,NRA) a justification in JA, SA = {N ′A | N ′A ∈NRA}, and SG =

S
(WPS’A,w′A,J

′
A,A
′
A,R
′
A)∈SA
{N ′G | N ′G ∈

R′A} (cf. Figure 8.1). Then

1. The representational expansion of JA is a set ERJA of window proof nodes that constitutes a

proof graph of N\(a,P,N)
G from SG, where N\(a,P,N)

G denotes the node NG with (a,P,N) deleted
from its representational abstraction applications.

2. The justification JA is representationally more abstract than a justification J (we write JA �A J
or J ≺A JA) if, and only if, there is a justification J ′ that justifies NG in the representational
expansion of JA and either J ′ = J or J ′ � J.

Finally, we define the hierarchical proof datastructure as follows:

140 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

Definition 8.2.10 (Hierarchical Proof Datastructure) A hierarchical proof datastructure is a 3-
tuple P = (ϕ,C,N), where ϕ is a closed formula with respect to some logic L , N is a set of window
proof nodes, C = (WPS,w,J,A,R) in N is a window proof node where WPS is the initial window
proof state for ϕ with initial root window w. The open goals of P are those window proof nodes from
N that have no directed justifications.

Definition 8.2.11 (Complete Hierarchical Proof Datastructures) Let P = (ϕ,C,N) be a hierar-
chical proof datastructure and H the hypothesis in the support nodes of C. The hierarchical proof
datastructure P = (ϕ,C,N) is complete if, and only if, N constitutes a formal proof graph of C from
H.

Finally, we define the notion of a pure CORE window proof. A CORE window proof is obtained
from a hierarchical proof datastructure by removing all non-formal justifications.

Definition 8.2.12 (Pure CORE Proof Datastructure) Let P = (ϕ,C,N) be a hierarchical proof
datastructure. Then P is a pure CORE proof datastructure if, and only if, all nodes in N have only
formal justifications and no representational abstraction applications.

A pure CORE proof datastructure P is complete if, and only if, P is complete.

8.3 Proof Paths and Dependencies

In this section we introduce the notion of paths between window proof nodes and qualitative descrip-
tions of the dependencies between window proof nodes. These notions are used in Section 9.5 for the
interface between reasoning procedures and the CORE window reasoning rules.

Definition 8.3.1 (Proof Paths) Let P = (ϕ,C,N) be a hierarchical proof datatstructure and N,N ′ ∈
N . A path between N and N ′ is a possibly empty sequence of justifications 〈J1, . . . ,Jn〉, such that

-- if the sequence is empty (n = 0), then it must hold N = N ′,

-- otherwise J1 = (R,P,NR) must be justification of N, and there is an N ′′∈NR, such that 〈J2, . . . ,Jn〉
is a path from N ′′ to N ′.

We say that N depends on N ′ if, and only if, there is a path from N to N ′.

The dependencies between proof nodes can be further categorised: if between two window proof
nodes N,N ′ there is path p from N to N ′ that consists only of Adapt-Window-Proof-State-justifications,
then only the context of the windows along that path has been changed, but never the windows them-
selves. In that case we say that N is passively justified by N ′. Otherwise, we say that N is actively
justified by N ′ via the justifications in p.

Definition 8.3.2 (Active & Passive Proof Paths) Let P = (ϕ,C,N) be a hierarchical proof datat-
structure and N,N ′ ∈N such that there is a non-empty path 〈J1, . . . ,Jn〉 between N and N ′. If all Ji are
Adapt-Window-Proof-State justifications, then N is passively justified by N ′ via that path. Otherwise,
N is actively justified by N ′ via that path.

8.4. CATEGORIES OF JUSTIFICATIONS 141

8.4 Categories of Justifications

In the introduction we motivated a categorisation of proof construction steps. We introduced the cat-
egories of intra-level (respectively horizontal) proof steps and inter-level (respectively vertical) proof
steps. In the following we apply this informal categorisation to the hierarchical proof datastructure
introduced to represent CORE proofs.

The intra-level proof steps where divided into those that verifiably refine a goal into subgoals (local
lemma application) and those that speculate about the subgoals (local lemma speculation). Thus, all
justifications that are introduced by CORE window inference rules, i.e. the formal justifications, are
local lemma application proof steps.

A justification that has been introduced by a proof planning step on some window proof node N is
a local lemma speculation proof step as long as there is no derivational expansion for that justification.
As soon as such a justification has a derivational expansion, the justification turns into a local lemma
application proof step, since it is validated by the expansion. An expansion for a proof planning
step is obtained by proving the condition of the cut proof step that encoded the proof planning step.
Thus, the complete proof of the condition together with the cut justification are an expansion of
the proof planning step. Proving the condition is a vertical refinement proof step, and the vertical
refinement is explicitly represented by putting the window cut rule justification JC and the justification
J representing the proof planning step into the JR set of justifications of N. As soon as the condition
of the proof planning step is proved and thus the cut justification is the starting justification of an
expansion of J, it holds J � JC. Note that the proof of the condition needs not to be a formal proof,
since further speculative steps may be involved in that proof. However, the proof planning step and
its expansion are proof steps on different levels of abstractions, and thus it is legitimate to say that
the proof planning step is a local lemma application proof step on its level of abstraction, which is
validated by the proof graph that defines its expansion.

A justification that has been introduced as an abbreviation for a proof graph for some node N is a
local lemma application proof step on a higher level of abstraction than the abbreviated proof graph.
Examples for such abbreviations are the abbreviation of a portion of a proof that has been generated
by some tactic. Another possibility is that the user abbreviates a portion of the proof by some high-
level description for it. The action of abbreviating a portion of a proof is itself a vertical abstraction
proof step, and thus the starting justification JP of the abbreviated proof graph and the abbreviating
justification J are inserted in the set JA of the justifications of N. Since the proof graph is an expansion
of J by definition of an abbreviation, it holds J � JA.

The above discussion serves as a basis for the following definition of a static categorisation of
justifications contained in a hierarchical proof datastructure.

Definition 8.4.1 (Categories of Justifications) Let P = (ϕ,C,N) be a hierarchical proof datastruc-
ture, N = (WPS,w,(JA,JR)) and J,J ′ justifications from (JA,JR). Then we say

-- J is a local lemma application justification if, and only if, either it is a formal justification or
there is a justification JE in JR such that J� JE , i.e. JE is the starting justification of an expansion
for J.

-- J is a local lemma speculation justification if, and only if, it is not a local lemma application
justification, i.e. it is neither a formal justification nor has an expansion.

-- the pair (J,J ′) is a vertical refinement proof step of J to J ′ if, and only if, J,J ′ are in JR and it
holds J � J ′.

142 CHAPTER 8. HIERARCHICAL PROOF DATASTRUCTURE

-- the pair (J,J ′) is a vertical abstraction proof step of J ′ to J if, and only if, J,J ′ are in JA and it
holds J � J ′.

8.5 Backtracking

Proof attempts may fail and the need arises to resume the proof construction at an earlier stage. In
computer based proof construction, whether interactive or fully automatic, these failures need to be
recognised by the proof procedures and the underlying proof construction system needs to support
backtracking parts of a proof. As usual, backtracking is achieved in CORE via the proof history
back to a specific window proof state. If a justification is pruned from the proof representation, all
justifications that depend on it need to be pruned first. The proof history explicitly represented in
the proof datastructure induces a total ordering among the window proof states. Each window proof
state is a backtracking point and backtracking is achieved along the induced total ordering among
window proof states. That chronological backtracking may remove more proof steps than necessary,
as for instance there may be reasoning rule applications that are not conceptually relevant for the
failed proof attempt. However, whether proof steps belong to a proof attempt or not requires to know
the strategic information that underlied the proof attempts. That knowledge is not always explicitly
represented and thus we leave the decision whether a justification belongs to a proof attempt or not
to specific backtracking procedures. Backtracking procedures can be defined as explicit reasoning
procedures or be part of say the implementation of a tactic programming language with a failure
and success semantics. The backtracking procedure can decide which justifications are not part of
a proof attempt, memorise those proof steps, and, after performing the chronological backtracking,
automatically reconstruct these parts of the proof. This can for example be achieved by a replay
mechanism integrated in the implementation of some tactic language (see also Section 9.1).

8.6 Summary

The explicit representation of the proof history provides complementary information about the proof
to the user and the reasoning engines. The datastructure is a hierarchical proof datastructure that con-
tains CORE window reasoning proof steps as well as the proof hierarchies that are inherent in theorem
proving. Furthermore, the informal categories of intra-level and inter-level proof construction steps
from Section 1.1.2 can be formally defined in a natural way for the hierarchical proof datastructure.
The methodological roles of subgoals introduced by proof steps are represented in the proof datas-
tructure and ease the understanding of the proof. We refrained from giving a general formal definition
of methodological roles as that information is purily heuristical. However, this does not hamper the
formal definition of specific methodological roles for a specific theorem proving procedure. The role
information can be exploited on the one hand to organise the proof search and during the design of
proof search procedures. On the other hand this information provides a further flexibility for an intu-
itive presentation of a proof. For example the main idea of a proof can be presented by only presenting
the “main” subgoals – according to the methodological categorisation – and omit the “conditions”.

Applications
–

Part IV

Chapter 9

Interface for Reasoning Procedures

A theorem prover, whether interactive or fully automatic, consists of a set of reasoning procedures. In
this chapter we describe the interface of CORE to (semi-)automatic reasoning procedures. The major
problem for the design of automatic reasoning procedures is the large number of possible replacement
rules for each subtree. This large number of replacement rules is no surprise and is a sign for the
flexibility during proof search provided by CORE. However, the flexibility must be controlled when
designing reasoning procedures. In order to put the proposed solutions into context, we sketch in
Section 9.1 a sample tactic language [Schairer et al, 2001] implemented on top of CORE which
is used for the implementation of INKA 5.0 [Autexier et al, 1999]. The interplay of backtracking
implemented in the tactic language and backtracking of the proof state and proof representation is
described in Section 9.2. In Section 9.3 we prove that the number of replacement rules is exponential
in the number of α- and β-type connectives, before defining the notion of filters in Section 9.4. Filters
are inspired by heuristic categorisations implemented in [Hutter & Sengler, 1996] and they are the
solution we propose for a flexible definition of control knowledge to restrict the selection of possible
replacement rules. Finally, in Section 9.5 we show how the tactic executions can be represented in the
hierarchical proof datastructure and how thereby the hierarchy among tactics – implicitly induced by
tactic definitions – is made explicit in the hierarchies of the proof datastructure.

9.1 The Tactic Language

The semantics of tactics is defined in continuation passing style which is a standard technique by
now (cf. [Abelson et al, 1996,Graham, 1994,Reynolds, 1993,Norvig, 1992,Elliott & Pfenning, 1991,
Carlsson, 1984]). We only present a brief description of the tactic language here. The idea is to
describe the evaluation of an expression e with respect to a continuation S which represents the future
of the computation after e has been evaluated. A continuation S is a function of one argument. In
order to evaluate e with respect to S, the continuation S is applied to the value of e. Evaluation of
a literal l with respect to S is, therefore, described by S(l). Evaluation of complex expressions is
decomposed in such a way that a part of the expression is evaluated with respect to a new continuation
which combines the rest of the evaluation of the complex expression and also considers the original
continuation. As an example, if e is a list of expressions e1,e2, . . . ,en, its evaluation relative to S can be
described by saying that e1 should be evaluated (assume the result is h) with respect to the continuation
that evaluates e2, . . . ,en (assume the result is t) and then applies the original continuation S to the list
composed of the head h and the tail t. Evaluation of complex expressions can be decomposed until

145

146 CHAPTER 9. INTERFACE FOR REASONING PROCEDURES

the expression to evaluate is a literal or variable and the rest of the evaluation is encoded in the
success continuation. This defines a non-standard interpreter for the tactic programming language
in continuation passing style, i.e. we can view the definition operationally as the way in which a
tactic expression is executed. The general idea is that evaluation is flattened (or sequentialised) into
a sequence of basic evaluation steps. This is in contrast to the standard evaluation strategy, which
evaluates an expression by evaluating its subexpressions along its abstract syntax tree, and does not
explicitly sequentialise the evaluation.

Tactics can be defined and named, for examples as in “tactic f (x) = e”, where the formal parameter
x of the named tactic f may be free in the body e. Tactics may call other named tactics to solve
subgoals of the current goal. Depending on the proof representation this necessitates to focus on the
subproblem before evaluating the body of the called tactic. It may also necessitate cleaning up after
evaluating the body, depending on the concrete proof representation. The semantics has to take care
that setting and cleaning up are done appropriately, i.e. before and after a tactic is called. Note that
the interpreter knows which named tactic is being called and the actual values it is called with when
it sets up the proof state. So it is possible to make the proof state dependent on the tactic that is
called. In Section 9.5 we present how this close relationship between the actual proof state and the
called tactic is made explicit by introducing appropriate tactic justifications into the hierarchical proof
datastructure of CORE.

9.2 Backtracking

The basic tacticals are the window reasoning rules provided by CORE. Further tacticals are defined in
the tactic language that support the combination of named and unnamed tactics to define complex tac-
tics. Among others, the tactic language includes a special operator choose which implements search.
It evaluates its argument, which should be a list of alternatives, and then chooses the first alternative
for which the remaining part of the evaluation is successful, i.e. does not fail. If there is no such alter-
native, choose fails. As usual this is realised by backtracking and can be done straightforwardly in
the setting of continuations by using a second continuation F that encodes the future of the evaluation
if the evaluation of an expression fails. Again this is a standard technique covered in the literature
(cf. [Abelson et al, 1996]). Tactics can explicitly call fail which is an abbreviation for choose([])
and fails straightaway. In order for this to work properly, side effects of tactics need to be restricted
such that they can be backtracked over.

In particular, because there is an interaction between the evaluation of tactic expressions and
the proof representation, the semantics has to ensure that the proof representation is adjusted when
backtracking occurs. This is important in particular when updating the proof representation is done
by destructively updating proof data structures. In this case, since evaluation of a tactic expression
can modify the proof state between the time a choice point is set up and the time the subsequent
computation fails, the proof state has to be remembered before a choice is tried and has to be rewound
to the remembered state before a new alternative is tried. This has been built into the semantics of
choose in such a way that only one computation for each choice point, corresponding to trying the
first successful choice from the list of alternatives, has left modifications in the proof representation.

The net effect is that the proof representation is always well-formed and only contains parts that
correspond to successful evaluation paths. Furthermore, each successful execution of a tactic can be
associated with a well-defined part of the proof representation (cf. Section 9.5).

For each backtracking point the actual proof state is stored. Each proof state corresponds to a set
of proof nodes in the proof datastructure (see Chapter 8). Thus, for the purpose of backtracking it is

9.3. REPLACEMENT RULES 147

sufficient to save the proof state before tactic execution. If a tactic execution is backtracked, the proof
state, and thus the the proof representation, is backtracked to the initial window proof state which
is associated to that tactic (cf. Section 8.5). However, saving a whole proof state before each tactic
execution is expensive, and in the implementation the proof state is transformed by rule applications
and the differences between two proof states are saved. The differences are explicitly maintained in
the proof representation and are used to backtrack to a previous proof state by applying the inverse
differences.

9.3 Replacement Rules

As mentioned above, the basic tacticals are the CORE window reasoning rules. While most of
these rules involve a non-deterministic choice, like the selection of subtrees to open subwindows, the
branching factor for the application of replacement rules has a particularly high complexity. It results
from the worst case analysis for the number of replacement rules for some subtree of the FVIF-tree.
We denote by Rules(R′) the set of all replacement rules for some subtree R′.

Lemma 9.3.1 (Complexity) Let R be a FVIF-tree of depth d and with nα α-type nodes and nβ β-type
nodes. Then the cardinality of Rules(R) is O(d2×2nα+nβ).

Proof. For each subtree R′ the number of possible left-hand sides for a replacement is limited by the
number of α-related subtrees and their depth. A subtree of depth d contains O(d 2) subtrees. For
each of these subtrees RI , there are at most nβ-related subtrees RV to obtain the right-hand sides of
a replacement rule. For each RV there are at most O(2nα) possible weakened subtrees. Thus, for
each RI there are at most O((2nα)nβ) = O(2nα+nβ) possible replacement rules. Hence, the worst case
complexity for the number of replacement rules for each R′ is O(d2)×O(2nα+nβ) = O(d2×2nα+nβ).

This huge number of possible replacement rules must be handled during automatic proof search,
as it is certainly not feasible to always generate all possible replacement rules. For the determination
of a replacement rule from the context, two kinds of information can be used to restrict the search:
first, restrictions can be imposed to determine possible left-hand sides of rules. Examples for this are
that only leaf-nodes are used as left-hand sides, or only those subtrees are considered as left-hand
sides, if their label shares certain constant symbols with the formula denoted by a window. Secondly,
the possible right-hand sides of a rule can be restricted by providing information about how or how
not to weaken the respective subtrees.

9.4 Filters

For the interface to automatic reasoning procedures with introduce the notion of filters that are used to
generate only these replacement rules that fulfill the requirements described in the filter. A filter con-
sists of two parts, one for the description of possible left-hand sides, and a second for the description
how to weaken the β-related subtrees to determine the right-hand sides.

Left-hand sides of replacement rules are either FVIF-trees or left- or right-hand sides of ε-type
leaf nodes. Thus, the description of possible left-hand sides of rules is defined as a predicate over
FVIF-trees and ε-type nodes R of label ε(s, t) together with a subterm occurrence π that denotes either
s or t, i.e. π = [1] or π = [2]. We denote by R the set of all FVIF-trees and by E all ε-type nodes in R

148 CHAPTER 9. INTERFACE FOR REASONING PROCEDURES

annotated by either [1] or [2]. Given R[1] ∈ E its complementary element is R[2] and vice-versa. Then
the description of adequate left-hand side is a predicate over R]E .

Right-hand sides of replacement rules are determined by the left-hand side and the weakening of
the β-related formulas. If the left-hand side is from E , then the right-hand sides contains the com-
plementary element and the weakened subtrees of the β-related subtrees. Otherwise, the right-hand
sides are composed of the weakened subtrees of subtrees β-related to the left-hand side. However, for
each left-hand side there may be several possible lists of right-hand sides, due to weakening. Thus,
the description of the right-hand sides is a binary predicate over (R]E)× (R]E)∗ that holds for
those combination of left- and right-hand sides that are in the domain of the filter.

Definition 9.4.1 (Filter) A filter F := 〈PL,PR〉 is composed of a predicate PL over R]E to filter
admissible left-hand sides and a binary predicate PR over (R]E)× (R]E)∗ to filter admissible
replacement rules with admissible left-hand sides. The filter function for F is the function ∇F that
assigns to each subtree R the set of rules that are admissible with respect to the filter. The function is
defined as follows:

∇F(R) := {u→ 〈v1, . . . ,vn〉 ∈ Rule(R) | both PL(u) and PR(u,{v1, . . . ,vn}) hold}

Each tactic is a specification of a proof search procedure. For instance a simplification tactic tries
to reduce the size of a term according to some given term ordering; an induction tactic tries to apply an
induction axiom that is suitable for a given problem; a rippling tactic tries to enable the application of
the induction hypothesis; or a tactic may implement a superposition strategy [Bachmair et al, 1992].

Each kind of tactic or set of tactics requires specific replacement rules. We view filters as the
primary infrastructure to specify the different classes of replacement rules. For example for the sim-
plification tactics, the required replacement rules u→〈v1, . . . ,vn〉 are either those where the right-hand
side is empty, i.e. n = 0, or that result from ε-type leaf nodes, n = 1 and u is greater than v1 with re-
spect to a well-founded term ordering. For the Rippling tactic the categorisation relies on the notion
of skeletons and the relative occurrences of contexts with respect to the skeleton part. For a super-
position tactic, the left-hand side must be greater than any right-hand side, again, with respect to a
well-founded term ordering.

The filter infrastructure is interfaced to the tactics by having a special operator in the tactic lan-
guage named filters. Furthermore, the tactic language supports the assignment of filters to windows.
The effect is that for each window, the set of replacement rules are determined with respect to all
filters assigned to that window. Having a special operator in the tactic language allows us to integrate
the change of assignments to windows into the description of complex tactics.

The replacement of active windows by new active windows during the application of CORE win-
dow reasoning rules requires a general principle for the inheritance of assigned filters from the original
set of active windows to the new set of active windows. To define this inheritance principle, the proof
datastructure is used, which contains the relationship between the old and the new active windows.
If a CORE reasoning rule justifies a proof node for some window w by a set of proof nodes for new
active windows w1, . . . ,wn, then the filters assigned to w are inherited to each wi. Take as an example
the subwindow reasoning rule (cf. Definition 6.3.2, page 102) that is applied on some active window
w: the rule justifies the window proof node for w by a subwindow justification to the window proof
nodes for the new subwindows:

9.5. TACTIC EXECUTION & HIERARCHICAL PROOF DATASTRUCTURE 149

Label WPState Window Justification/Abstraction/Refinement

L0 WPS ` w Subwindow-Open(L1, . . . ,Ln)
L1 WPS1 ` w1
...

...
...

Ln WPS1 ` wn

Thus, each wi inherits the assigned filters from w. Furthermore, the rule adapts the window proof
state of any other active window w′ by introducing an Adapt-Window-Proof-State to the window proof
node for w′ with respect to the new window proof state:

Label WPState Window Justification/Abstraction/Refinement

L WPS ` w Adapt-Window-Proof-State(L′1)
L′ WPS1 ` w

Thus, the assignment of filters is preserved for these windows.

9.5 Tactic Execution & Hierarchical Proof Datastructure

The hierarchies in proof datastructure for CORE support the representation of a CORE derivation at
different levels of abstractions. Tactics, especially named tactics, defined in the tactic language are a
hierarchical specification of proof search methodologies. Take as an example a tactic of the form

f(t1, ..., tn) = ...g(ti) ...

which is the definition of a named tactic f with formal parameters t1, . . . ,tn, that calls some
further tactic g with ti. When the tactic f is executed it involves the execution of the tactic g. Thus,
that call to f is hierarchically higher than the subsequent call to g, and it is desirable to represent
this fact in the proof datastructure, for example in order to allow a “post-mortem” analysis of the
effectiveness of the used tactics. Note that this is also possible for recursive calls to tactics: in that
case the first call to some tactic f is hierarchically higher than subsequent calls to the same tactic.

In order to represent the hierarchical dependencies between tactic calls, we need to determine
the window proof nodes respectively before and after the call to some tactic f . For those initial
window proof nodes that are actively related (cf. Definition 8.3.2) to window proof nodes N after tactic
execution we introduce for N a new justification that describes that tactic call. The new justification
is an abbreviation of these paths and thus it is added to the set JA of the directed justifications of N.

As already mentioned above, the window proof states before and after the call of a tactic are saved
by the tactic interpreter. Thus, defining the call to a named tactic f with actual parameters t1, . . . , tn we
can assume that the window proof states are known, and called WPS before tactic execution and WPS ′

after tactic execution. Then, let W be the active windows in WPS and W ′ be the active windows in
WPS′. For each w ∈W whose window proof node Nw is actively justified by some window proof
node with respect to WPS′, let Nw be all window proof nodes with respect to WPS′ of which Nw
depends (cf. Definition 8.3.1). Then we introduce an additional abbreviating justification J f (t1,...,tn) :=
(Call f ,{t1, . . . , tn}) : Nw for the window proof node Nw.

Along the same lines abbreviating justifications can be introduced for the tacticals used in the
body of named tactics. Doing so, the hierarchical proof datastructure is an explicit representation
of all levels of abstractions contained in tactics that have contributed to the derivation. This explicit

150 CHAPTER 9. INTERFACE FOR REASONING PROCEDURES

information is not only interesting for the user, but also for the monitoring of tactic executions. The
latter is especially valuable for a user in order to analyse the efficiency of the proof search procedure he
specified in the tactics. Furthermore, it could serve as a basis for optimisation of tactic specifications.

9.6 Summary

In this chapter we have sketched the interface of CORE to automatic reasoning procedures using the
tactic language of [Autexier et al, 1999] to design reasoning procedures. We sketched the relation-
ships between on the one hand proof development and basic tacticals, and on the other hand between
proof backtracking and failure continuations in the implementation of the tactic language. In order
to handle the large number of possible replacement rules, we introduced the notion of a filter for
the selection of replacement rules. Filters and their assignment to windows are further primitives
in the tactic language. Also we described the uniform inheritance mechanism for filters during rule
applications. Finally, we showed how the implicit tactic hierarchies can be made explicit by appro-
priate justifications. Thereby the hierarchy of tactic calls that contributed to the proof is explicitly
represented in the proof datastructure. This representation supports a better understanding of how the
proof was constructed and it can also be exploited to analyse the efficiency of tactics.

Chapter 10

Sequent Calculus Style Interface

In this chapter we show how a sequent style calculus [Gentzen, 1969] can be defined on top of CORE.
The sequents required by these calculi are defined with respect to the active windows of a CORE win-
dow proof state. Roughly, sequents are lists of active windows that are α-related, but the active
windows of a window proof state must satisfy further properties, called the sequentiality property.
The sequentiality property enforces a specific structure of the FVIF-tree of a CORE window proof
state with respect to the active windows. The preservation of that structure during the application of
the sequent calculus style inference rules requires a specific β-decomposition rule that allows for the
decomposition of internal β-type signed formulas, while preserving the context surrounding those for-
mulas. Intuitively, it supports the derivation of the formula β(ϕ(A),ϕ(B)) from a formula ϕ(β(A,B)).
Such a rule has been proposed by Schütte in [Schütte, 1977] and we prove in Section 10.1 the ad-
missibility of this rule in the CORE calculus. Based on a window version of this rule we present
the formal definition of sequents on top of a CORE window proof state and the implementation of
the sequent style calculus in Section 10.2. Finally, we discuss the relationship of this calculus to the
theorem proving modulo calculus [Dowek et al, 1998,Dowek, 2000] and provide some evidence that
the sequent style calculus together with the reasoning capabilities of CORE not only subsumes, but
also extend the features of the calculus.

10.1 Schütte’s β-Decomposition Rule

In this section we present the β-decomposition rule from [Schütte, 1977] and prove that it is a derived
reasoning rule in CORE. The derived reasoning rule is subsequently used in order to define the β-
decomposition rule for the sequent style calculus defined in this chapter.

Exploiting the uniform notation introduced for the representation of signed formulas, the decom-
position of β-type formulas in [Schütte, 1977] is defined as follows:

ϕ(ApA)p ϕ(BpB)p

ϕ(β(ApA ,BpB))p β-Decompose

where ϕ is any higher-order predicate of type o→ o and of the form λxo ψ, such that x occurs
exactly once with a defined polarity in ψp, for any p∈ {−,+}. In [Schütte, 1977] this rule is restricted
to situations where ϕ contains no β-type formulas. However, the rule is sound for the general case,
and its generalised version can be defined for CORE proof states as follows:

151

152 CHAPTER 10. SEQUENT CALCULUS STYLE INTERFACE

Definition 10.1.1 (Schütte β-Decomposition Rule) Let [Q,σBL R(ϕ(β(ApA ,BpB))p)], p ∈ {−,+},
be a proof state with a subtree R′ of label ϕ(β(ApA ,BpB))p and ϕ is of the form λxo ψ, such that x
occurs exactly once with a defined polarity in ψp. Then the Schütte β-decomposition of R′ is the proof
step [Q,σBL R(ϕ(β(ApA ,BpB))p)] 7−→ [Q,σBL R(β(ϕ(ApA),ϕ(BpB))p)].

This β-decomposition rule is admissible in the CORE calculus, i.e. whenever we have a proof
state where in its FVIF-tree occurs a subtree of label ϕ(β(ApA ,BpB))p, then we can find a sequence of
CORE reasoning steps transforming that subtree to a subtree of the form β(ϕ(A pA),ϕ(BpB))p.

Lemma 10.1.2 (Admissibility of Schütte β-Decomposition Rule) Each application of the Schütte
β-decomposition rule can be simulated by a sequence of CORE calculus rules.

Proof. The higher-order predicate ϕ is of the form λx ψ, where x occurs exactly once in ψ and has a
defined polarity whenever ψ has a defined polarity.

The proof of this lemma is by induction over the structure of ψ:

Base Case ψ := x: thus ϕ := λx x and ϕ(β(ApA ,BpB))p is β(ApA ,BpB)p and the proof state is not
changed by the rule.
Induction Step: By induction hypothesis we can assume that the conjecture holds for some ψ ′, resp.
ϕ′ := λx ψ′. We prove the induction step for the case where the polarity p is positive, i.e. p := +. The
proofs for p :=− are analogous. The proof principle for each case is to encode the β-decomposition
proof step in a sequence of CORE proof steps: first, we perform a cut on R′ over the new subformula
β(ϕ(ApA),ϕ(BpB)), prove one side of the formula representing the cut by replacement rule application,
and reduce the subtree to the desired “shape” by simplification and weakening.

1. ψ := ¬(ψ′): thus, ϕ := λx ¬(ψ′)

[Q,σBL R(¬(ϕ′(β(ApA ,BpB)))+)]
I.H.
7−→∗ [Q,σBL R(¬(∨(ϕ′(ApA)−,ϕ′(BpB)−)))]

At this stage we cut over the formula ¬(ϕ′(ApA)) ∧ ¬(ϕ′(BpB)). This introduces a
positive and a negative version of that formula, i.e. ∧(¬(ϕ′(ApA)),¬(ϕ′(BpB)))+ and
∧(¬(ϕ′(A−pA)),¬(ϕ′(B−pB)))−.

Thus, we obtain the proof state:

[Q′,σ′BL R

∧(¬(ϕ′(ApA)+),¬(ϕ′(BpB)−))−∨
Weakening︷ ︸︸ ︷

¬(∨(ϕ′(ApA)−,ϕ′(BpB)−))+

∧
∧(¬(ϕ′(A−pA)+

︸ ︷︷ ︸
R1

),¬(ϕ′(B−pB)+

︸ ︷︷ ︸
R2

))−⇒¬(∨(ϕ′(ApA)−︸ ︷︷ ︸
A1

,ϕ′(BpB)−︸ ︷︷ ︸
A2

))
+

]

(1) (2)
Subsequently, we apply the unconditional replacement rules obtained from R1 and R2 respec-
tively to the subtrees A1 and A2. This replaces these subtrees by False− which allows to prove
this part of the cut-formula by simplification. The upper occurrence of the original signed for-
mula is weakened and final simplification of the whole subtree results in the proof state:

[Q′,σ′BL R(∧(¬(ϕ′(ApA)),¬(ϕ′(BpB)))+)]

10.1. SCHÜTTE’S β-DECOMPOSITION RULE 153

2. ψ := ∧(C,ψ′): thus, ϕ := λx ∧ (C,ψ′):

[Q,σBL R(∧(C,ϕ′(β(ApA ,BpB)))+)]
I.H.
7−→∗ [Q,σBL R(∧(C,∧(ϕ′(ApA)+,ϕ′(BpB)+)))]

At this stage we perform a cut over the formula for ∧(∧(C,ϕ′(ApA)),∧(C,ϕ′(BpB))). This intro-
duces a positive and a negative version of that formula, i.e. ∧(∧(C,ϕ′(ApA)),∧(C,ϕ′(BpB)))+

and ∧(∧(C,ϕ′(A−pA)),∧(C,ϕ′(B−pB)))−

Thus, we obtain the proof state:

[Q′,σ′BL R

∧(∧(C,ϕ′(ApA)),∧(C,ϕ′(BpB)))+∨
Weakening︷ ︸︸ ︷

∧(C,∧(ϕ′(ApA)+,ϕ′(BpB)+))+

∧
∧(∧(C︸︷︷︸

R0

,ϕ′(A−pA)︸ ︷︷ ︸
R1

),∧(C,ϕ′(B−pB)︸ ︷︷ ︸
R2

))−⇒∧(C︸︷︷︸
A0

,∧(ϕ′(ApA)+

︸ ︷︷ ︸
A1

,ϕ′(BpB)+

︸ ︷︷ ︸
A2

))
+

]

(1) (2)
(3)

Subsequently, we apply the unconditional replacement rules obtained from R0, R1 and R2 re-
spectively to the subtrees A0, A1 and A2. This replaces these subtrees by True+ which allows to
prove this part of the cut-formula by simplification. The upper occurrence of the original signed
formula is weakened and final simplification of the whole subtree results in the proof state:

[Q′,σ′BL R(∧(∧(C,ϕ′(ApA)),∧(C,ϕ′(BpB)))+)]

3. ψ := C∨ψ′: thus, ϕ := λx ∨ (C,ψ′):

[Q,σBL R(∨(C,ϕ′(β(ApA ,BpB)))+)]
I.H.
7−→∗ [Q,σBL R(∨(C,∧(ϕ′(ApA)+,ϕ′(BpB)+)))]

At this stage we perform a cut over the formula for ∧(∨(C,ϕ′(ApA)),∨(C,ϕ′(BpB))). This intro-
duces a positive and a negative version of that formula, i.e. ∧(∨(C,ϕ′(ApA)),∨(C,ϕ′(BpB)))+

and ∧(∨(C,ϕ′(A−pA)),∨(C,ϕ′(B−pB)))−

Thus, we obtain the proof state:

[Q′,σ′BL R

∧(∨(C,ϕ′(ApA)),∨(C,ϕ′(BpB)))+∨
Weakening︷ ︸︸ ︷

∨(C,∧(ϕ′(ApA)+,ϕ′(BpB)+))+

∧
∧(∨(C,ϕ′(A−pA)︸ ︷︷ ︸

R1

),∨(C,ϕ′(B−pB)︸ ︷︷ ︸
R2

))−⇒∨(C︸︷︷︸
A0

,∧(ϕ′(ApA)+

︸ ︷︷ ︸
A1

,ϕ′(BpB)+

︸ ︷︷ ︸
A2

))
+

]

(1) (2)

154 CHAPTER 10. SEQUENT CALCULUS STYLE INTERFACE

Subsequently, we apply the replacement rules from R1 and R2 respectively to A1 and A2, which
are both replaced by ¬(C−)+. On these two new subtrees we apply the unconditional replace-
ment rule from A0 to C−, which replaces these subtrees by False− and False−, which allows to
prove this part of the cut-formula by simplification. The upper occurrence of the original signed
formula is weakened and final simplification of the whole subtree results in the proof state:

[Q′,σ′BL R(∧(∨(C,ϕ′(ApA)),∨(C,ϕ′(BpB)))+)]

4. The cases for ψ := C⇒ ψ′ and ψ := ψ′⇒C can be proved analogously.

5. ψ :=♦ψ′, and thus ϕ := λx ♦(ψ′): note that in the FVIF-tree the subtree for ♦Q′ϕ′(β(ApA ,BpB))
has a reference to the subtree Q′ of Q from which stems this modal quantifier. Thus we have:

[Q,σBL R(♦Q′ϕ′(β(ApA ,BpB)))+)]

I.H.
7−→∗ [Q,σBL R(♦Q′(∧(ϕ′(ApA)+,ϕ′(BpB)+)))]

At this stage instead of performing a cut, we apply to ♦Q′(∧(ϕ′(ApA)+,ϕ′(BpB)+)) the modal
structural permutation rule to obtain

[Q,σBL R(∧(♦Q′(ϕ′(ApA)),♦Q′(ϕ′(BpB))))]

which proves that case. The other case where ψ :=�(ψ′) is analogous. ut

We now define a window version of the Schütte β-decomposition rule.

Definition 10.1.3 (Window Schütte β-Decomposition Rule) Let [Q,σBL (R, f)] be a window proof
state, R′ a subtree of R of the form ϕ(β(ApA ,BpB))p. Let further R′′ := β(ϕ(ApA)p,ϕ(BpB)p)p be the
FVIF-tree that replaces R′ in the Schütte β-decomposition rule, and ιA : S(R′) \ S(β(ApA ,BpB))→
S(ϕ(ApA)p) \ S(ApA) and ιB : S(R′) \ S(β(ApA ,BpB)) → S(ϕ(BpB)p) \ S(BpB) the obvious isomor-
phisms. Finally, let f ϕ

A and f ϕ
B be the window structures such that f ϕ

A ◦ ιA = ιA◦ f↓S(R′)\S(β(ApA ,BpB)) and
f ϕ
B ◦ ιB = ιB ◦ f↓S(R′)\S(β(ApA ,BpB)) hold. Then the window Schütte β-decomposition rule is defined by

[Q,σBL (R, f)]

[Q′,σBL (R, f)R′←(R′′, f ′′)]
Schütte β-Decomposition

where if there is an n such that f (n) = R′, then f ′′ := f ϕ
A ⊕ f ϕ

B ⊕ f↓ApA ⊕ f↓BpB ⊕{n→ R′′}; otherwise
f ′′ := f ϕ

A ⊕ f ϕ
B ⊕ f↓ApA ⊕ f↓BpB .

10.2 Sequents and Sequent Style Inference Rules

Let us now introduce the notion of sequents [Gentzen, 1969] on top of the CORE window reasoning
rules. We use the window reasoning capabilities of CORE and define sequents as a list of windows,
that (1) denote subtrees that are α-related, and (2) in the smallest subtree that contains all windows
defining the sequent, there are no β-related subtrees to the windows. Furthermore, in order to ensure
that the sequents only denote formulas and atoms, we require the windows used in sequents to not
denote inner substructures (see Definition 6.2.1).

10.2. SEQUENTS AND SEQUENT STYLE INFERENCE RULES 155

Definition 10.2.1 (Sequents) Let WPS := [Q,σBL (R, f)] be a window proof state and w1, . . . ,wn
active windows, such that w1, . . . ,wi have negative polarity and wi+1, . . . ,wn have positive polarity. Let
further R′ be the smallest subtree that contains all subtrees denoted by w1, . . . ,wn. Then w1, . . . ,wi `
wi+1, . . . ,wn is a sequent with respect to WPS if, and only if,

1. all wi do not denote inner substructures of the R (cf. Definition 6.2.1),

2. all wi are α-related between each other, and

3. there is no subtree in R′ that is β-related to any wi.

We say that a sequent w1, . . . ,wi ` wi+1, . . . ,wn is proved if, and only if, at least one of the wi denotes
a subtree that is proved, i.e. is either True+, False−, or ζ(s,s).

Notation 10.2.2 In the sequel, we agree to denote a sequent w1, . . . ,wi ` wi+1, . . . ,wn also by sim-
ply writing the list of window w1, . . . ,wi,wi+1, . . . ,wn, since the sequent-structure is uniquely deter-
mined up to permutations of windows by the polarities of the windows. Furthermore, we may write
ϕp1

1 , . . . ,ϕ
pn
n to denote a sequent composed of n windows, each denoting a subtree of label ϕ i and

polarity pi.

Based on this definition of sequents we define the sequent-style calculus rules. The decomposition
rules are based on the opening of subwindows, except for the β-decomposition rule, which relies on
the window Schütte β-decomposition rule. Note that there are neither γ- nor δ-rules, since FVIF-trees
do not contain quantified formulas (except for quantifiers without polarities).

A proof state for sequent calculus consists of a standard CORE window proof state [Q,σBL (R, f)]
together with a set of sequents. In order to ensure that the sequents cover all parts of the proof state,
we introduce the notion of a spanning set of sequents. A set of sequents S is spanning with respect to
[Q,σBL (R, f)] if, and only if, any literal node in R is contained in a subtree denoted by one of the
windows in some sequent from S.

Definition 10.2.3 (CORE Sequent Proof State) Let [Q,σBL (R, f)] be valid CORE window proof
state and S a set of sequents with respect to (R, f). Then [Q;σ;(R, f)BL S] is a valid CORE sequent
proof state if, and only if, S is spanning for R, i.e. any literal node in R is contained in a subtree
denoted by one of the windows in some sequent from S. A sequent proof state is proved if, and only
if, all sequents of that sequent proof state are proved.

In order for a set of sequents to be spanning, the active windows in the respective window proof
state must also be spanning, i.e. all leaf nodes of the FVIF-tree must be contained in a subtree denoted
by some active window. Thus, in order to allow for a static determination of a spanning set of sequents,
we aim at the definition of an invariant, which encompasses the invariant that the active windows are
always spanning.

In order to motivate the definition of that invariant assume a given window proof state with a
spanning set of active windows. The sequents with respect to these windows should be uniquely
determined by partitioning the active windows into sets containing an active window and all other
active windows that are (1) α-related to that window and (2) all the windows in a sequent should be
unconditional between each other. The second property means that none of the windows contained in
a sequent has a β-related part in the (smallest) subtree containing all windows that form that sequent.
Thus, we define the invariant as follows by the notion of sequential active windows:

156 CHAPTER 10. SEQUENT CALCULUS STYLE INTERFACE

no α

no β

Γ1

no β

Γ2

. . . no β

Γn−1

no β

Γn

Figure 10.1: Structure of the FVIF-tree enforced by the sequentiality property.

Definition 10.2.4 (Sequential Active Windows) Let [Q,σBL (R, f)] be a window proof state. The
active windows from f are sequential if, and only if, (1) the active windows are spanning for R and
(2) each α-related window w′ of some active window w is unconditional with respect to w′.

The sequentiality property enforces a specific structure of the FVIF-tree, which is shown in Fig-
ure 10.1: the FVIF-tree consist of an upper part, where no α-type node occurs and a list of lower parts
where no β-type node occurs above the subtrees denoted by the active windows. At the bottom of the
lower parts occur the subtrees denoted by the active windows in the Γi. Enforcing this invariant during
sequent style reasoning allows us to statically determine the sequents from the sequential active win-
dows by partitioning these as describe above. Obviously, for each set of sequential active windows
there is only one possible partition and thus the sequents are uniquely determined. In the sequel we
show that this invariant holds in the initial state and that it is preserved during sequent calculus rule
applications. Thus, we can state the following lemma that captures the relationship between window
proof states with sequential active windows and CORE sequent proof states.

Lemma 10.2.5 Let WPS be a window proof state with sequential active windows and S be the se-
quents obtained by partitioning these active windows. Then [Q;σ;(R, f)BL S] is a CORE sequent
proof state.

Proof. Follows directly from the definitions. ut

The initial CORE sequent proof state consists of a single sequent composed of the single initial
top-level window of the window proof state. It holds trivially that this singleton active window forms
a set of sequential active windows, and the only possible sequent for it is ` w. Thus, for some closed
formula ϕ, if [Q, idBL (R,{w 7→ R})] is the initial window proof state for ϕ, then [Q; id;(R,{w 7→
R})BL ` w] is the initial CORE sequent proof state.

10.2.1 SK Style Axiom Rule

The axiom rule in a sequent calculus closes an open sequent of the forms: Γ,A ` A,∆ or Γ ` s = s,∆.
In our representation the first sequent is not yet proved but the latter is. Thus, the axiom rule shall

10.2. SEQUENTS AND SEQUENT STYLE INFERENCE RULES 157

“prove” sequents of the form Γ,A ` A,∆. Due to the structure of sequents, the two windows denoting
the positive and negative occurrences of A are α-related between each other and there are no β-related
formulas to those in the subtree containing both of them. Thus, there is an unconditonal replacement
rule from A− that can be applied on A+ and replaces it by True+ (or vice versa). The application of
that rule transforms the sequent into Γ,A ` True,∆, which is a proved sequent. In order to make that
explicit, the CORE simplification rule is applied on the subtree that contains the sequent Γ,A`True,∆;
it simplifies that subtree to Provedp (i.e. True+ or False−) and closes all the windows on that subtree.
It remains a single active window on Provedp and the sequentiality of the active windows is trivially
preserved.

10.2.2 SK Style Weakening Rule

The sequent calculus weakening rules are respectively1

Γ,∆
Γ,Ap,∆ Weakening

In our setting the weakened parts correspond to the subtrees in the FVIF-tree denoted by the
windows A and B, respectively. According to the definition of the window weakening rule (Defini-
tion 6.3.9) we can achieve the effect of the sequent weakening rule by applying the window weakening
rule to the subtree that contains the denoted window. Thereby, both the subtree and the window are
removed and we end up with the new sequent Γ ` ∆.

For the definition of the weakening rule we must determine a parent node of the subtree R ′ denoted
by the window w that shall be weakened for which it holds: the parent node must have primary type
α and in the subtree containing R′ there occurs no other window than the window w. By the structure
required by sequential active windows, this is only possible if the to-be-weakened window is not the
only window defining the sequent. In other words, we can only weaken A p in Γ,Ap,∆, if either Γ or
∆ are non-empty. This is not a serious restriction, since the weakening of A in a sequent like A ` .
results in the empty sequent . ` ., which is not provable.

Definition 10.2.6 (SK Weakening Rule) Let WPS be a window proof state with sequential active
windows, w an active window and Γ,w,∆ a sequent with respect to WPS, and Γ∪∆ 6= /0. Let further
be R′ the smallest parent node of the subtree Rw denoted by w that contains no other window than w
and whose parent node is of type α. Then the SK weakening rule applies the window weakening rule
on the parent of R′ by weakening R′.

Lemma 10.2.7 (Accuracy of Definition 10.2.6) The SK weakening rule yields a window proof state,
that also has sequential active windows and contains the sequent Γ,∆, Γ∪∆ 6= /0, instead of the sequent
Γ,w,∆.

Proof. Due to the structure of a sequent – ensured by the sequentiality property of active windows – if
there are at least two windows in a sequent, there must be such an α-type parent node R ′. The weak-
ening of that node by replacing it with that subtree not containing the weakened window preserves
the other windows and removes w. Additionally it preserves the sequentiality of the remaining active
windows. Thus, in the new window proof state we have the sequent Γ,∆. ut

1The notation for sequents is defined in Notation 10.2.2.

158 CHAPTER 10. SEQUENT CALCULUS STYLE INTERFACE

10.2.3 SK Style Contraction Rule

The contraction rules in a sequent calculus are

Γ,Ap,Ap,∆
Γ,Ap,∆ Contraction

The contraction formulas correspond to active windows in our setting and the actual contraction
operation corresponds to the application of the window contraction rule on the respective window.
By definition, that rule also creates a new window for the copied subtree. Since the contraction
is performed by α-inserting the copied subtree on the original subtree, this trivially preserves the
sequentiality of the active windows.

Definition 10.2.8 (SK Contraction Rule) Let WPS be a window proof state with sequential active
windows, w an active window, and Γ,w,∆ a sequent with respect to WPS. The SK contraction of w
consists in applying the window contraction rule to w which results in a new active window w ′ and
the sequent Γ,w,w′,∆.

Lemma 10.2.9 (Accuracy of Definition 10.2.8) The SK contraction rule yields a window proof state
that has sequential active windows and contains the sequent Γ,w,w′,∆ instead of Γ,w,∆.

Proof. Follows directly from the definition of the window contraction rule and the sequentiality of the
original window proof state. ut

10.2.4 SK Style α-Decomposition Rule

The sequent calculus rules for α-decomposition are respectively

Γ,ApA ,BpB ,∆
Γ,α(ApA ,BpB)p,∆

α-Binary-Decompose
and

Γ,A−p,∆
Γ,¬(A−p)p,∆

α-Unary-Decompose

In our setting the α(ApA ,BpB)p (respectively ¬(A−p)p) is the content of an active window and
the α-decomposition corresponds simply to the opening of subwindows for the subtrees A pA and BpB

(respectively only for A−p). For the binary case, since the direct parent node α(ApA ,BpB)p of ApA

and BpB is of primary type α, this preserves the sequentiality of the active windows. For the unary
case, the sequentiality is preserved anyway. Furthermore, if the window w denoting α(A pA ,BpB)p

(resp. ¬(A−p)p was in a sequent Γ,w,∆, then the subwindows w1, w2 for ApA and BpB (respectively
the subwindow w′ for A−p) occur in the sequent Γ,w1,w2,∆ (respectively in Γ,w′,∆).

Definition 10.2.10 (SK α-Decomposition Rule) Let WPS be a window proof state with sequential
active windows, and w an α-type window that occurs in a sequent Γ,w,∆. The SK α-decomposition
rule consists of opening subwindows for the direct children of w.

Lemma 10.2.11 (Accuracy of Definition 10.2.10) The SK α-decomposition rule yields a win-
dow proof state, that also has sequential active windows and contains instead of the sequent
Γ,α(ApA ,BpB)p,∆ (respectively Γ,α(ApA)p,∆) the sequent Γ,ApA ,BpB ,∆ (respectively Γ,ApA ,∆).

Proof. Directly from the definition and the sequentiality of the active windows of the window proof
state before rule application. ut

10.2. SEQUENTS AND SEQUENT STYLE INFERENCE RULES 159

R′

no β

Γ β(ApA ,BpB)p ∆

Figure 10.2: Situation before β-decomposition: the smallest subtree R ′ that contains all windows
forming the sequent has no β-type node.

10.2.5 SK Style β-Decomposition Rule

The sequent calculus rule for β-decomposition is

Γ,ApA ,∆ Γ,BpB ,∆
Γ,β(ApA ,BpB)p,∆

β-Decompose

Again, in our setting β(ApA ,BpB)p is the content of an active window. However, simply opening
subwindows on the two child subtrees ApA and BpB like in the α-decomposition case would result in
a window proof state where the active windows are not sequential. The situation is viewed in Fig-
ure 10.2: the sequentiality property ensures that there is a smallest subtree R ′ containing the windows
of the sequent with β(ApA ,BpB)p and that contains no β-type node. After focusing it would contain
the β-type node β(ApA ,BpB)p, which violates the sequentiality condition. In order to remedy that situ-
ation the β-connective must be moved above R′, which his achieved by applying the window Schütte
β-decomposition rule. This rule transforms the subtree R′ into

R′′

β

no β

Γ ApA ∆

no β

Γ BpB ∆

Note that the rule also “copies” all the windows in the appropriate manner in order to obtain the
two new sequents Γ,ApA ,∆ and Γ,BpB ,∆.

Definition 10.2.12 (SK β-Decomposition Rule) Let WPS be a window proof state with sequential
active windows, β(ApA ,BpB)p a β-type active window that occurs in some sequent Γ,β(ApA ,BpB)p,∆
and R′ the smallest subtree that contains all windows of that sequent. The SK β-decomposition rule
consists of applying the window Schütte β-decomposition rule to that window with respect to R ′. It
results in a new window proof state that contains the sequents Γ,A pA ,∆ and Γ,BpB ,∆ instead of the
sequent Γ,β(ApA ,BpB)p,∆.

160 CHAPTER 10. SEQUENT CALCULUS STYLE INTERFACE

Lemma 10.2.13 (Accuracy of Definition 10.2.12) The SK β-decomposition rule results in a proof
state, that also has the sequentiality property and contains the sequents Γ,A pA ,∆ and Γ,BpB ,∆ instead
of the sequent Γ,β(ApA ,BpB)p,∆.

Proof. Directly from the sequentiality of the original proof state and the definition of the window
Schütte β-decomposition rule. ut

10.2.6 SK Style ν- and π-Decomposition Rules

The sequent calculus ν- and π-decomposition rules are

Γ,Ap∆
Γ,ν(Ap)p,∆

ν-Decomposition
and

Γ′,Ap,∆′

Γ,π(Ap)p,∆
π-Decomposition

where Γ′ := {νA | νA ∈ Γ} and ∆′ := {νA | νA ∈ ∆}. In our setting, both rules are realised simply
by opening a subwindow for the respective subtree Ap. However, for the π-rule, instead of obtaining
the sequent Γ′,Ap,∆′ we obtain the sequent Γ,Ap,∆, like in the ν case. Although this may appear
strange, it is perfectly sound, since the applicability of the axiom rule checks the prefixes of the
formulas, and those formulas that should have been removed by the π-rule are simply not applicable.
Furthermore, mimicking the π-rule in that way offers more flexibility during proof search, which is
illustrated by the following example: assume we are given the following modal sequent (�A∧�B) `
�(A). The application of the standard π-decomposition rule on �(A) would leave us with the non-
provable sequent `�(A), which is due to the purely syntactical determination of Γ ′ and ∆′. In order
to avoid that, we should have first applied the α-decomposition rule to obtain �A,�B ` �(A), and
only then apply the π-decomposition rule to obtain the “right” sequent �A,�B ` A. This necessary
detour is avoided by the way we realised the π-decomposition rule, since the π-decomposition on
(�A∧�B) `�(A) results in (�A∧�B) ` A, which is the provable sequent.

Definition 10.2.14 (SK ν- and π-Decomposition Rules) The SK π- and ν-decomposition rules con-
sist of opening a subwindow on the subtree of the active π-type (respectively ν-type) window.

10.2.7 SK Style Instantiation

The CORE instantiation rule applies an admissible (combined) substitution (σQ,σM) on the whole
FVIF-tree and does not affect the structure of the window tree, since there are no windows below the
literal level. Thus, β-type nodes can only be created by instantiating higher-order set variables, which
are all inside the active windows. This ensures that no β-nodes are inserted above the active windows.
The modal part σM of a substitution is applied on the indexed formula tree and affects the prefixes.
The object variable substitution σQ is both applied on the indexed formula tree and the FVIF-tree,
and thereby instantiates the content of the windows. Thus, the sequentiality property of the active
windows is preserved during instantiation and all sequents are instantiated in parallel and the new
window proof state contains the sequents σQ(Γ), where Γ was a sequent in the original window proof
state.

Definition 10.2.15 (SK Instantiation) The SK Instantiation rule consists in the application of a
(combined) substitution (σQ,σM) on the window proof state.

10.2. SEQUENTS AND SEQUENT STYLE INFERENCE RULES 161

10.2.8 SK Style Increase of Multiplicities

Multiplicities are increased in order to preserve uninstantiated formulas. From a standard sequent
calculus perspective it corresponds to an a posteriori insertion in the actual sequent calculus derivation
of a γ-quantifier elimination rule and subsequent application of the analogous sequent decomposition
rules. The a posteriori γ-quantor elimination corresponds to the CORE rule to increase multiplicities,
and more specifically to the change in the indexed formula tree Q of a proof state [Q,σBL (R, f)].
The effects of that rule on the FVIF-tree R together with the copying of respective windows from f
reflects the a posteriori introduction of the sequent decomposition on that new copy, analogously to
the other formulas resulting from that same main γ-type formula.

From a standard sequent calculus perspective this is not the application of a sequent calculus rule,
but rather a proof transformation rule. However, the availability of that kind of rule also increases
the amenities of the sequent style calculus for interactive theorem proving: neither the number of
γ-decomposition rules must be guessed by the time that quantor is eliminated, nor must a quantified
formula be copied before instantiation, but the multiplicities can be ajusted by the needs arising during
further proof search.

Example 10.2.16 We illustrate the benefit of the dynamic increase of multiplicities with the follow-
ing example: consider two axioms about addition (+) over the natural numbers:

∀n,mNat s(n) + m = s(n + m) (10.1)

∀n,mNat n + s(m) = s(n + m) (10.2)

where s denotes the successor function on natural number. The sequent style representation for these
two axioms is

s(N1) + M1 = s(N1 + M1),N2 + s(M2) = s(N2 + M2) `
where the Ni and Mi are the meta-variables introduced for the respective bound variables. From (10.2)
in the sequent we obtain the replacement rule N2 + s(M2)→ 〈s(N2 + M2)〉, which can be applied by
unification (substitution is {N1/N2,s(M2)/M1}) to N1 + M1 to obtain:

s(N1) + s(M2) = s(s(N1 + M2)),N1 + s(M2) = s(N1 + M2) `
The meta-variables in the resulting equation s(N1)+s(M2) = s(s(N1 +M2)) are those of s(N1)+M1 =
s(N1 + M1) and N2 + s(M2) = s(N2 + M2). The increase of multiplicities of the binding nodes of
these meta-variables allows us to generate arbitrary many copies of the derived equation. In order to
have the same convenience in a standard sequent calculus we would have to introduce the formula
∀n,mNat s(n) + s(m) = s(s(n + m)) as a lemma by cut. This requires either to anticipate the result
of the equation application to generate the lemma, or if we devise a derived formula to be used like
a lemma, then we have to transform the proof by introducing it as a lemma at the appropriate place
in order to avoid to have to reprove it again. The increase of multiplicities overcomes these problems
and allows us to simply continue the proof with any derived formula.

The sequentiality property of the active windows is preserved during the increase of multiplicities.
To see this, consider the structure of the FVIF-tree viewed in Figure 10.1 on page 156. This structure
is enforced by the sequentiality property of the active windows. The increase of multiplicities copies
independent subtrees of the whole subtree, where the copying also renames the references into the
indexed formula tree appropriately. If a subtree rooted in the upper part is copied, the sequentiality
is preserved, but additional sequents arise from it. If a subtree rooted in some of the lower parts is
copied, for instance in the β-subtree containing the sequent Γ2, then the sequentiality is also preserved
and new windows are added to the sequent Γ2.

162 CHAPTER 10. SEQUENT CALCULUS STYLE INTERFACE

10.2.9 SK Style Leibniz’ Equality Introduction

The Leibniz’ Equality introduction rule in sequent calculus is simply the expansion of the definition
of equality. Thus, the sequent calculus rules for it are

Γ,(∀P P(A)⇒ P(B))−,∆
Γ,ε(A,B),∆

Leibniz’ Equality
and

Γ,(∀P P(A)⇒ P(B))+,∆
Γ,ζ(A,B),∆

Leibniz’ Equality

The respective CORE reasoning rule α-inserts the new subtree for P(A) ⇒ P(B) on the sub-

tree ε
ζ (A,B). If an active window is on ε

ζ (A,B), then the window version of the CORE rule introduces

a new active window for the new subtree. This obviously preserves the sequentiality of the active win-

dows, and the new sequent obtained from Γ, ε
ζ (A,B)p,∆ is then Γ, ε

ζ (A,B)p,(P(A)⇒ P(B))p,∆.

10.2.10 SK Style Extensionality Introduction

The extensionality rule in CORE corresponds to the ξ-rule2. The sequent calculus rules for the ξ-rule
are:

Γ,ε(λx G,λx H),∆
Γ,γx ε(G,H),∆ Ext. Introduction

and
Γ,ζ(λx G,λx H),∆

Γ,δx ζ(G,H),∆ Ext. Introduction

Analogously to the Leibniz’ equality introduction rule, the CORE extensionality introduction rule

α-inserts the subtree for ε
ζ (λx G,λx H)p on the original equality ε

ζ (λx G,λx H). Note that the

FVIF-tree does not contain the quantifiers. This syntactic requirement in the sequent calculus is sub-
sumed by the locality property of the variable x, which is checked on the indexed formula tree and is

more flexible since it does not require the quantifier to be immediately in front of ε
ζ (G,H). Again,

if an active window is on ε
ζ (G,H), then a new window is introduced for ε

ζ (λx G,λx H) and the

sequentiality property of the active windows is preserved. The application of the CORE window exten-

sionality introduction rule transforms the sequent Γ, ε
ζ (G,H),∆ into Γ, ε

ζ (G,H), ε
ζ (λx G,λx H),∆.

10.2.11 SK Style ζ-Expansion Rule

The sequent calculus ζ-expansion rule is

Γ,(A⇒ B)+,∆ Γ,(B⇒ A)+,∆
Γ,ζ(A,B),∆

ζ-Expansion

The ζ-expansion rule for booleans α-inserts on a subtree of label ζ(Ao,Bo) a subtree for the signed
formula ((A⇒ B)∧ (B⇒ B))+. The window version of that rule adds a new active window for
((A⇒ B)∧ (B⇒ A))+, if there was an active window on ζ(Ao,Bo). Thus, the application of that
CORE window ζ-expansion rule preserves the sequentiality of the active windows. Its application on
the sequent Γ,ζ(Ao,Bo),∆ results in the sequent

2Due to the βη long normal form used in the term representation, this is equivalent to the f -rule, as shown in [Benzmüller
et al, 2002a].

10.3. A NOTE ON DEDUCTION MODULO 163

Γ,ζ(Ao,Bo),((A⇒ B)∧ (B⇒ A))+,∆

From that sequent we can obtain the two sequents required by the above sequent calculus ζ-
expansion rule by first weakening the subtree containing ζ(A,b) and secondly applying the window
Schütte β-decomposition rule to ((A⇒ B)∧ (B⇒ A))+. As already shown this preserves the sequen-
tiality of the active windows and results in the two sequents

Γ,(A⇒ B)+,∆ and Γ,(B⇒ A)+,∆

10.2.12 SK Style Cut rule

The sequent calculus Cut rule is

Γ,A+,∆ Γ,A−,∆
Γ,∆ SK Cut

In order to implement that rule, we use the CORE window cut rule, which must be applied in a
way that the sequentiality of active windows is preserved. To this end we apply the window cut rule
to the subtree that contains all active windows forming the sequent Γ,∆. Assume that subtree has the
label ϕp; then that subtree is replaced by a subtree for β(α(A+,ϕp),α(A−,ϕp)). Since ϕp contains no
β-type node, so do α(A+,ϕp) and α(A−,ϕp). Furthermore, the window structure inside the original
ϕp is copied for both new occurrences of ϕp and new active windows for A− and A+ are inserted.
Thus, the sequentiality of the active windows is preserved and we have obtained the new sequents
Γ,A+,∆ and Γ,A−,∆.

This completes the sequent calculus style reasoning based on CORE window calculus. Except
for the instantiation and the multiplicity increasing rules all rules can be written as sequent calcu-
lus rule, as shown in Figure 10.3. The instantiation and the multiplicity increasing rules are proof
transformation rules and cannot be written as pure sequent calculus rules.

In any case the CORE reasoning rules are still available during sequent style reasoning. Especially
the application of replacement rules inside sequents is naturally supported. This is commented in
more detail in Section 10.3. Finally, we have restricted the window reasoning capabilities of CORE

by forbidding the opening of subwindows below the literal level. However, it is not a surprise that if
we weaken this restriction we obtain the window inference capabilities defined in [Staples, 1995] for
the Isabelle system.

10.3 A Note on Deduction Modulo

Theorem proving modulo [Dowek et al, 1998, Dowek, 2000] is a technique to integrate deduction
with respect to some standard calculus like for example sequent calculus and term rewriting systems.
It extends the calculus rules by an equivalence relation provided by a background theory to check
the equality of formulas and terms during the application of the calculus rules. Take as an example a
standard sequent calculus β-decomposition rule like

Γ ` A,∆ Γ ` B,∆
Γ ` (A∧B),∆ ∧-R

164 CHAPTER 10. SEQUENT CALCULUS STYLE INTERFACE

Proved
Γ,A+,A−,∆ Axiom Proved

Γ,ζ(s,s),∆ Axiom

Γ,∆
Γ,Ap,∆ Weakening

Γ,Ap,Ap,∆
Γ,Ap,∆ Contraction

Γ,ApA ,∆ Γ,BpB ,∆
Γ,β(ApA ,BpB)p,∆

β-Decompose
Γ,ApA ,BpB ,∆

Γ,α(ApA ,BpB)p,∆
α-binary-Decompose

Γ,A−p,∆
Γ,α(A−p)p,∆

α-unary-Decompose Γ,Ap,∆
Γ,(νA)p,∆

ν-Decompose

Γ,Ap,∆
Γ,(πA)p,∆

π-Decompose

Γ, ε
ζ (A,B)p,(P(A)⇒ P(B))p,∆

Γ, ε
ζ (A,B)p,∆

Leibniz

where P is a new free variable, if p is negative;
otherwise P is a new Eigenvariable.

Γ, ε
ζ (A,B)p, ε

ζ (λx A,λx B)p,∆

Γ, ε
ζ (A,B)p,∆

Extensionality Γ,(A⇒ B)+,∆ Γ,(B⇒ A)+,∆
Γ,ζ(A,B),∆

ζ-Expansion

if x is local for ε
ζ (A,B)p

Γ,A+,∆ Γ,A−,∆
Γ,∆ Cut

Figure 10.3: Sequent calculus style reasoning rules supported by CORE.

Assume further that R denotes boolean rewrite rules and E a term rewriting system, both obtained
from a background theory T . The extension of the above calculus rule that takes the theory T into
account is then

Γ `R E A,∆ Γ `R E B,∆
Γ `R E C,∆

∧-R if C ≡R E (A∧B)

where ≡R E is the equivalence relation implemented by the rewrite rules from R and E . The inte-
gration principle thereby relies on the use of standard term rewriting techniques for E and an extended
narrowing and resolution principle for the boolean rewrite rules in R . However, the whole approach
is restricted to unconditional rewrite rules, both for E and R . The main result is the completeness
result of deduction modulo expressed by

Γ `R E A⇔ T ,Γ ` A

The sequent style calculus on top of CORE is an extension of the theorem proving modulo ap-
proach, as we shall see now. The key observation is that the set of rules E and R obtained from T

10.4. SUMMARY 165

are a subset of the CORE replacement rules that result from the theory T . Furthermore, the notion of
replacement rules is not restricted to unconditional rules as in theorem proving modulo. In theorem
proving modulo only boolean rewrite rules of the form Ap → 〈Bp〉 resulting from equivalence and
refinement relations are considered, as for example in the sequent B⇒ A,Γ ` ∆. It is not possible to
use the rule A+→ 〈B+,C+〉 in the sequent C⇒ (B⇒ A),Γ ` ∆. Furthermore, for the rewrite rules
on terms, only unconditional equations can be used, as for example in s = t,Γ ` ∆. The notion of
replacement rules provided by CORE allow further the use of conditional rules like s◦→ 〈t◦,A+〉 in
the sequent A⇒ s = t,Γ `. Finally, the theorem proving modulo approach provided by CORE is
applicable to all logics considered in CORE, namely the modal logics, but also to higher-order logic
with extensionality.

10.4 Summary

The sequent style calculus relies on a β-decomposition rule that is a generalisation of the β-decom-
position defined by Schütte in [Schütte, 1977] and the sequentiality property of active windows in a
CORE window proof state. The sequents are lists of active windows that are α-related, and the sequen-
tiality property ensures the accuracy of these sequent definitions. Sequentiality is preserved by using a
version of the β-decomposition rule from [Schütte, 1977], which is admissible in the CORE calculus.
The infrastructure underlying the sequent style calculus and provided by the CORE calculus supports,
from a sequent calculus perspective, complex proof transformation steps (cf. Example 10.2.16) that
deal with the a posteriori increase of multiplicities of γ- and ν-type formulas. As a result, we obtain
a sequent style calculus that overcomes the well-known problems with fixing the order to eliminate
quantifiers during proof construction in standard formulations of this calculus. Further optimisations
that result from the underlying CORE framework are the support for window inference reasoning style
from [Robinson & Staples, 1993, Staples, 1995] and a built-in support of theorem proving modulo
[Dowek et al, 1998, Dowek, 2000] due to the CORE replacement rule application rules.

The structure of a sequent calculus proof is represented inside a signed formula by using windows
in the appropriate manner. Thus it supports a proofs as formulas paradigm where the proof state can
always be viewed as a single formula which represents the sequent calculus proof structure. Further-
more, the windows used to implement sequents can be closed at any stage of the derivation with the
effect to invert the sequent decomposition rules, without actually having to explicitly reconstruct the
formulas.

Chapter 11

Sample Proofs in CORE

In this chapter we present now some examples of CORE proofs using the proof representation from
Chapter 8. From the hierarchical proof datastructure we can generate an elementary natural language
presentation of a proof. The presentation relies on the idea to group together α-related windows to
form one case of a proof, where the negative windows are the assumptions of that case and the positive
windows the disjunctive goals. The reasoning rules are the focusing rules and the CORE calculus
rules. Thereby focusing below a β-type connective introduces new cases, while focusing below α-
type connectives introduces new assumptions or alternative goals. The basic language constructs for
the proof presentation language are:

-- “Case” to describe the case of a case analysis;

-- “Assume” to list the assumptions of a single case;

-- “by rule” to describe the application of a CORE calculus rule.

Using these constructs allows us to present the sample proofs in a natural language style. Note
that although the language is not formally defined, it extends the language introduced in [Abel et al,
2001] for first-order logic assertion level proofs.

11.1 Higher-Order Logic Proofs

In this section we present the proof for the higher-order logic theorems po→o(ao ∧ bo)⇒ p(b∧ a),
and ∀po→o λx p(p(p(x))) = λx p(x). For the presentation of the proofs, especially for the formulas
in the FVIF-trees, we agree to denote γ-type variables in capital letter, as for example X , and δ-type
variables by lower case letter, for example y.

11.1.1 Proof of po→o(ao∧bo)⇒ p(b∧a)

Example Proof 11.1.1 of po→o(ao∧bo)⇒ p(b∧a)
We have to prove po→o(ao∧bo)⇒ p(b∧a).
By cut over the lemma a∧b = b∧a we obtain the following cases:

Case 1: We have to prove the disjunctive goals (1.1) a∧b = b∧a and (1.2) po→o(ao∧bo)⇒ p(b∧a).

By weakening with discard the goal (1.2).

167

168 CHAPTER 11. SAMPLE PROOFS IN CORE

By ζ-expansion to (1.1) we reduce it to the new goal

((a∧b)⇒ (b∧a))∧ ((b∧a)⇒ (a∧b)) (11.1)

In that formula we apply a−→ 〈True+〉 and b−→ 〈True+〉 to the left occurrence of the subfor-
mula (b∧a), and similarly for the second occurrence of the subformula (a∧b), to obtain

((a∧b)⇒ (True∧True))∧ ((b∧a)⇒ (True∧True)) (11.2)

This goal is trivially simplified to the goal True, which completes the proof of this case.

Case 2: Assume a∧b = b∧a, the goal is to prove po→o(ao∧bo)⇒ p(b∧a).

By the assumption a∧b = b∧a the goal is reduced to po→o(ao∧bo)⇒ p(a∧b).

From the left hand side of the implication we obtain the replacement rule p(a∧b)−→ 〈True+〉
whose application on the right hand side leaves us with po→o(ao∧bo)⇒ True.

This goal is trivially simplified to True, which proves that case. ut

The detailed version of that proof using the hierarchical proof datastructure from Chapter 8 is
given in Appendix B.1.

CORE Sequent Calculus Proof. We now present a proof of that theorem in the CORE sequent
calculus style interface by mixing it with the underlying CORE calculus rules inside the windows that
form the sequents. On the initial sequent ` p(a∧b)⇒ p(b∧a) we perform a cut over a∧b = b∧a,
which results in the two sequents:

` a∧b = b∧a, p(a∧b)⇒ p(b∧a) and a∧b = b∧a ` p(a∧b)⇒ p(b∧a)

The first sequent is proved as follows:
−
` True Axiom

` (a∧b)⇒ (True∧True)
Simplify

` (a∧b)⇒ (b∧a)
Apply

a−→ 〈True+〉 ,
b−→ 〈True+〉

−
` True Axiom

` (a∧b)⇒ (True∧True)
Simplify

` (b∧a)⇒ (a∧b)
Apply

a−→ 〈True+〉 ,
b−→ 〈True+〉

` ((a∧b)⇒ (b∧a))∧ ((b∧a)⇒ (a∧b))
β-Decomposition

` a∧b = b∧a
ζ-Expansion

` a∧b = b∧a, p(a∧b)⇒ p(b∧a)
Weakening

The second sequent is proved as follows:

−
a∧b = b∧a ` True Axiom

a∧b = b∧a ` p(a∧b)⇒ True
Simplify

a∧b = b∧a ` p(a∧b)⇒ p(a∧b)
Apply p(a∧b)−→ 〈True+〉

a∧b = b∧a ` p(a∧b)⇒ p(b∧a)
Apply a∧b→ 〈b∧a〉

11.1. HIGHER-ORDER LOGIC PROOFS 169

11.1.2 Proof of ∀po→o . λx . p(p(p(x))) = λx . p(x)

CORE Window Proof. For the proof of that theorem we use the following lemmata, which can be
easily proven. The first is a simple lemma which states that if a formula is not true, then it is false.
The second lemma is an instance of a boolean extensionality property.

∀xo ¬(x = True) ⇒ x = False (11.3)

∀Q,Po→o (∀xo Q(x)⇒ P(x)) ⇒ λx Q(x) = λx P(x) (11.4)

The proof of the theorem ∀po→o . λx . p(p(p(x))) = λx . p(x) is performed by case analysis over
x = True, and the values of p(True) and p(False).

Example Proof 11.1.2 ∀po→o . λx . p(p(p(x))) = λx . p(x)
By lemma (11.4) to λx . p(p(p(x))) = λx . p(x) we obtain the new goal

p(p(p(x))) = p(x) (11.5)

By cut over x = True we obtain two cases:

Case 1: Assuming x = True we have to prove p(p(p(x))) = p(x).

By the assumption x = True (i.e. the replacement rule x→ 〈True〉) the goal is reduced to

p(p(p(True))) = p(True). (11.6)

By cut over p(True) = True we obtain two cases:

Case 1.a: Assuming p(True) = True we have to prove p(p(p(True))) = p(True).
Applying the assumption four times reduces it to the trivially provable goal True = True,
which completes the proof of this case.

Case 1.b: Assuming ¬(p(True) = True) we have to prove the goal p(p(p(True))) = p(True).
By lemma (11.3) on the assumption we obtain

p(True) = False. (11.7)

Applying (11.7) (i.e. the replacement rule p(True)→ 〈False〉) twice reduces the goal to

p(p(False)) = False. (11.8)

By cut over p(False) = True we obtain two cases:
Case 1.b.i: Assuming p(False) = True, we have to prove p(p(False)) = False.

By the assumptions p(False) = True, p(True) = False this goal is reduced to False =
False, which is trivially provable and thus completes the proof of that case.

Case 1.b.ii: Assuming ¬(p(False) = True), we have to prove p(p(False)) = False.
By lemma (11.3) on the assumption we can derive p(False) = False.
Applying p(False) = False twice to the goal leaves us with the trivial goal False =
False.

Case 2: Assuming ¬(x = True) we have to prove p(p(p(x))) = p(x).

The proof of that case is similar than for the first case using lemma (11.3) and is conducted by
case analysis over p(False) = True and p(True) = True. ut

The detailed version of that proof using the hierarchical proof datastructure from Chapter 8 is
given in Appendix B.2.

170 CHAPTER 11. SAMPLE PROOFS IN CORE

CORE Sequent Calculus Proof. The proof for the same theorem with the CORE sequent cal-
culus style interface of CORE from Chapter 10 is performed as follows: on the initial sequent1

` λx . p(p(p(x))) = λx . p(x) we first apply the lemma (11.4) to obtain the sequent

` p(p(p(x))) = p(x)

By cut over x = True we obtain the two sequents

x = True ` p(p(p(x))) = p(x) (11.9)

` x = True, p(p(p(x))) = p(x) (11.10)

We only show the proof for (11.9); the proof for (11.10) is analogous.
On (11.9) we proceed by case analysis over p(True) = True, which results in

x = True, p(True) = True ` p(p(p(x))) = p(x) (11.11)

x = True ` p(True) = True, p(p(p(x))) = p(x) (11.12)

To (11.11) we apply the rewriting replacements rules obtained from the formulas in the antecedent of
the sequent to reduce that sequent to x = True, p(True) = True ` True, which is trivially provable by
the axiom rule.

To (11.12) we apply the resolution replacement rule from (11.3) at the positive formula p(True) =
True to obtain, after ¬R-elimination,

x = True, p(True) = False ` p(p(p(x))) = p(x)

After final case analysis over p(False) = True this results in the two sequents

x = True, p(True) = False, p(False) = True ` p(p(p(x))) = p(x) (11.13)

x = True, p(True) = False ` p(False) = True, p(p(p(x))) = p(x) (11.14)

The first sequent is trivially provable by using the replacement rules that result from the formulas in
the antecedent of the sequent. For the second sequent we first have to apply again (11.3) to obtain,
after ¬R-elimination,

x = True, p(True) = False, p(False) = False ` p(p(p(x))) = p(x)

which is also trivially provable using the replacement rules from the antecedent formulas.

11.2 Irrationality of Square Root of 2

In this section we present the CORE proofs for the prominent first-order logic theorem about the
irrationality of the square root of 2. The axioms and lemmas we assume for that proof are:

1Note that this sequent does not contain the quantifier for p, since the sequents are implemented via windows which
denote (parts of) the FVIF-tree, while the quantifiers are maintained in the background by the corresponding indexed formula
tree.

11.2. IRRATIONALITY OF SQUARE ROOT OF 2 171

∀x,y,z : ℜ (x > y∧ y> z)⇒ x > z (11.15)

∀x s(x) > x (11.16)

nat(0) (11.17)

∀x : ℜ nat(x)⇒ nat(s(x)) (11.18)

∀x : ℜ nat(x)⇒ nat(x2) (11.19)

∀x : ℜ nat(x)⇒ x≥ 0 (11.20)

∀x : ℜ nat(x)⇒¬(s(x) = 0) (11.21)

2 = s(s(0)) (11.22)

∀r : ℜ rat(r)⇔
(
∃n,m : ℜ nat(n)∧nat(m)∧m× r = n∧
¬(∃d : ℜ nat(d)∧ cd(n,m,d))

)
(11.23)

∀n,m, p : ℜ (¬(n = 0)∧m×n = p×n)⇒ m = p (11.24)

∀m,n : ℜ (m×n2) = (m×n)×n (11.25)

∀m,n : ℜ (m2×n2) = (m×n)2 (11.26)

∀m,m : ℜ m = n⇒ m2 = n2 (11.27)

∀n : ℜ n≥ 0⇒
√

n2 = n (11.28)

∀n,m,d : ℜ cd(n,m,d)⇔
(

nat(n)∧nat(m)∧nat(d)∧∃q1,q2 : ℜ nat(q1)
∧nat(q2)∧n = q1×d∧m = q2×d

)
(11.29)

∀x : ℜ nat(x)⇒ (even(x)⇔∃y nat(y)∧ x = y×2) (11.30)

∀x : ℜ even(x2)⇔ even(x) (11.31)

The conjecture is then ¬(rat(
√

2)).

Example Proof 11.2.1 of ¬(rat(
√

2)) To prove ¬(rat(
√

2)), we assume rat(
√

2) and derive a con-
tradiction.
By (11.23), the definition of rat, we derive from rat(

√
2)

nat(N)∧nat(M)∧M×
√

2 = N∧¬(nat(D)∧ cd(N,M,D)) (11.32)

where N,M, and D are instantiable variables.
By considering nat(D)∧ cd(N,M,D) we obtain:
Assuming nat(N), nat(M), M×

√
2 = N, we have to prove nat(D)∧ cd(N,M,D).

By (11.27), (11.26) and (11.28) we obtain from M×
√

2 = N the new assumption M2× 2 = N2 and
the additional goal 2≥ 0. That goal is proved by using (11.22), (11.15), and (11.16).
We duplicate the new assumption M2×2 = N2 to preserve it for later.
By (11.30) on one of them we derive even(N2) and obtain the new goals nat(N2),nat(M2). These
goals are proved using the assumptions nat(N), nat(M) and lemma (11.19).
By (11.31) and (11.30) to even(n2) we obtain the new assumptions

N = m′×2 (11.33)

nat(m′) (11.34)

172 CHAPTER 11. SAMPLE PROOFS IN CORE

where m′ is a new parameter.
By (11.33) on the assumption M2×2 = N2 we obtain M2×2 = (m′×2)2.
By (11.26), (11.25), and (11.24) we obtain (M2 = m

′2× 2) and the additional goal ¬(2 = 0). This
goal is proved by (11.22), (11.21), and (11.18).
By (11.30) to (M2 = m

′2× 2) we obtain even(M2) and the side-goals nat(M2) and nat(m
′2), which

are easily proven by (11.19) and the assumptions nat(M) and nat(m′).
By (11.31) and (11.30) we obtain the new assumptions

M = m′′×2 (11.35)

nat(m′′) (11.36)

where m′′ is a new parameter.
By (11.29), the definition of cd, to goal nat(D)∧ cd(N,M,D) we obtain

nat(N)∧nat(M)∧nat(D)∧nat(Q1)∧nat(Q2)∧N = Q1×D∧M = Q2×D (11.37)

By instantiation {m′/Q1,m′′/Q2,2/D} and by the assumptions (11.33) and (11.35) the goal is reduced
to True, which completes the proof. ut

The detailed version of that proof using the hierarchical proof datastructure from Chapter 8 is
given in Appendix B.3.

CORE Sequent Calculus Proof. Again we use the CORE sequent calculus from Chapter 10 to-
gether with the underlying contextual reasoning capabilities provided by CORE. The initial sequent
is ` ¬(rat(

√
2)), which is reduced to rat(

√
2) ` by the ¬R-rule. The application of (11.23) reduces

that sequent to
nat(n),nat(m),m×

√
2 = n,¬(nat(D)∧ cd(n,m,D)) `

Further application of the ¬R-rule and application of (11.27) and (11.26) results in

nat(n),nat(m),m2×
√

2
2

= n2 ` nat(D)∧ cd(n,m,D)

The application of (11.28) results in

nat(n),nat(m),(2 ≥ 0⇒ m2×2 = n2) ` nat(D)∧ cd(n,m,D)

which after⇒L-elimination reduces to the two subgoals

1. nat(n),nat(m),m2×2 = n2 ` nat(D)∧ cd(n,m,D), and

2. nat(n),nat(m),` 2≥ 0,nat(D)∧ cd(n,m,D).

The second subgoal can be easily proved by (11.22), (11.20), (11.18), and (11.17). The first
sequent is reduced by contraction of m2×2 = n2 to

nat(n),nat(m),m2×2 = n2,m2×2 = n2 ` nat(D)∧ cd(n,m,D)

By application of (11.30) it is reduced to

nat(n),nat(m),nat(m2)⇒ nat(n2)⇒ even(n2),m2×2 = n2 ` nat(D)∧ cd(n,m,D)

which after elimination of all implications is reduced to the three subgoals

11.2. IRRATIONALITY OF SQUARE ROOT OF 2 173

1. nat(n),nat(m),m2×2 = n2 ` nat(m2),nat(D)∧ cd(n,m,D)

2. nat(n),nat(m),m2×2 = n2 ` nat(n2),nat(D)∧ cd(n,m,D)

3. nat(n),nat(m),even(n2),m2×2 = n2 ` nat(D)∧ cd(n,m,D)

The first two subgoals are easily provable from nat(m) and nat(m) by (11.19). The third subgoal
is reduced into two subgoals as follows:

nat(n),nat(m),n = m′×2,
m2 = m

′2×2
` nat(D)∧ cd(n,m,D)

nat(n),nat(m),n = m′×2,
` ¬(2 = 0),nat(D)∧ cd(n,m,D)

nat(n),nat(m),n = m′×2,¬(2 = 0)⇒ m2 = m
′2×2,` nat(D)∧ cd(n,m,D)

⇒L

nat(n),nat(m),n = m′×2,m2×2 = (m
′2×2)×2,` nat(D)∧ cd(n,m,D)

Apply (11.24)

nat(n),nat(m),n = m′×2,m2×2 = m
′2×22,` nat(D)∧ cd(n,m,D)

Apply (11.25)

nat(n),nat(m),n = m′×2,m2×2 = (m′×2)2 ` nat(D)∧ cd(n,m,D)
Apply (11.26)

nat(n),nat(m),n = m′×2,m2×2 = n2 ` nat(D)∧ cd(n,m,D)
Apply(n = m′×2)

nat(n),nat(m),nat(n)⇒ n = m′×2,m2×2 = n2 ` nat(D)∧ cd(n,m,D)
Apply (nat(n)) + Simplify

nat(n),nat(m),even(n),m2 ×2 = n2 ` nat(D)∧ cd(n,m,D)
Apply (11.30)

nat(n),nat(m),even(n2),m2×2 = n2 ` nat(D)∧ cd(n,m,D)
Apply (11.24)

Again, the second subgoal can be proved by (11.22), (11.21), (11.18), and (11.17). The first
subgoal is further reduced by lemma application as follows:

nat(n),nat(m),n = m′×2,nat(m2)⇒ (nat(m
′2)⇒ (nat(m)⇒ m = m′′×2)) ` nat(D)∧ cd(n,m,D)

nat(n),nat(m),n = m′×2,nat(m2)⇒ (nat(m
′2)⇒ even(m)) ` nat(D)∧ cd(n,m,D)

Apply (11.30)

nat(n),nat(m),n = m′×2,nat(m2)⇒ (nat(m
′2)⇒ even(m2)) ` nat(D)∧ cd(n,m,D)

Apply (11.31)

nat(n),nat(m),n = m′×2,m2 = m
′2×2 ` nat(D)∧ cd(n,m,D)

Apply (11.30)

The resulting sequent reduces to four subgoals by successive elimination of all implications:

1. nat(n),nat(m),
n = m′×2,m = m′′×2 ` nat(D)∧ cd(n,m,D)

2. nat(n),nat(m),
n = m′×2,` nat(m2),nat(D)∧ cd(n,m,D)

3. nat(n),nat(m),
n = m′×2,` nat(m

′2),nat(D)∧ cd(n,m,D)

4. nat(n),nat(m),
n = m′×2,` nat(m),nat(D)∧ cd(n,m,D)

Again, the last three subgoals are easily provable in a few steps and we omit the detailed presen-
tations of those subproofs. The first subgoal is finally proved by

174 CHAPTER 11. SAMPLE PROOFS IN CORE

−
nat(n),nat(m),n = m′×2,m = m′′×2 ` True

Axiom

nat(n),nat(m),n = m′×2,m = m′′×2 ` nat(2)∧nat(2)
(11.22),2× (11.18),(11.17)

nat(n),nat(m),n = m′×2,m = m′′×2
` nat(2)∧nat(n)∧nat(m)∧nat(2)∧nat(m′)
∧nat(m′′)∧n = m′×2∧m = m′′×2

Apply-Context

nat(n),nat(m),n = m′×2,m = m′′×2
` nat(D)∧nat(n)∧nat(m)∧nat(D)∧nat(Q1)
∧nat(Q2)∧n = Q1×D∧m = Q2×D

Inst(m′/Q1,m′′/Q2,2/D)

nat(n),nat(m),n = m′×2,m = m′′×2 ` nat(D)∧ cd(n,m,D)
Apply (11.29)

11.3 First-Order Modal Logics

In this section we present a proof of a theorem in first-order modal logic S4.

11.3.1 Proof of ∃x .�(�ϕ(x)∨ψ(y))⇔�∃x . (�ϕ(x)∨ψ(y))

The theorem is taken from [Hughes & Cresswell, 1996]. Note that ψ(y) is used to indicate that the
variable x does not occur in that subformula, and y is an arbitrary constant. Again, we first present a
high-level CORE proof for that theorem before giving the CORE sequent calculus proof.

Example Proof 11.3.1 We have to prove ∃x �(�ϕ(x)∨ψ(y))⇔�∃x′ (�ϕ(x′)∨ψ(y)).
By the ζ-expansion rule it is reduced to

�(�ϕ(x)∨ψ(y))⇒�(�ϕ(X ′)∨ψ(y))�(�ϕ(x′)∨ψ(y))⇒�(�ϕ(X)∨ψ(y)) (11.38)

We consider the two subformulas on the right hand side of the implication which results in two cases:

Case 1: Assuming �P(�P′ϕ(x)∨ψ(y)) we have to prove �c(�c′ϕ(X ′)∨ψ(y)).

By combined substitution [c/P,c′/P′,x/X ′] and subsequent application of the assumption
�c(�c′ϕ(x)∨ψ(y)) the goal is reduced to the trivially provable formula True.

Case 2: Assuming �P′′(�P′′′ϕ(x′)∨ψ(y)) we have to prove �c′′(�c′′′ϕ(X)∨ψ(y)).

By combined substitution [c′′/P′′,c′′′/P′′′,x′/X] and subsequent application of the assumption
�c′′(�c′′′ϕ(x′)∨ψ(y)) the goal is reduced to the trivially provable formula True. ut

The detailed version of that proof using the hierarchical proof datastructure from Chapter 8 is
given in Appendix B.4.

CORE Sequent Calculus Proof. The sequent calculus proof is analogous to the CORE window
proof. Again, for sequent calculus derivation we use the CORE contextual reasoning capabilities on
subformulas of sequents. The initial sequent is

` ∃x �(�ϕ(x)∨ψ(y))⇔�∃x′ (�ϕ(x′)∨ψ(y))

By application of the ζ-expansion rule and subsequent decomposition of the right-hand side conjunc-
tion we obtain the two subgoals:

11.3. FIRST-ORDER MODAL LOGICS 175

1. �P(�P′ϕ(x)∨ψ(y))⇒�c(�c′ϕ(X ′)∨ψ(y))

2. �c′′(�c′′′ϕ(x′)∨ψ(y))⇒�c′′(�c′′′ϕ(x′)∨ψ(y))

The first sequent is then proved as follows:

−
�c(�c′ϕ(x)∨ψ(y)) ` True Axiom

�c(�c′ϕ(x)∨ψ(y)) `�c(�c′True∨True)
Simplify

�c(�c′ϕ(x)∨ψ(y)) `�c(�c′True∨ψ(y))
Apply ψ(y)→ 〈True〉

�c(�c′ϕ(x)∨ψ(y)) `�c(�c′ϕ(x)∨ψ(y))
Apply ϕ(x)→ 〈True〉

�P(�P′ϕ(x)∨ψ(y)) `�c(�c′ϕ(X ′)∨ψ(y))
Inst{c/P,c′/P′,x/X ′}

`�P(�P′ϕ(x)∨ψ(y))⇒�c(�c′ϕ(X ′)∨ψ(y))
⇒R

The sequent proof for the second subgoal is analogous.

Conclusion
–

Part V

Chapter 12

Related work

12.1 Contextual Reasoning

The representation of context and the formalisation of contextual reasoning has played and still plays
an important role in multi-agent systems and natural language dialogues. Two major perspectives on
the problem of context have emerged: the so-called metaphysical perspective which considers con-
texts as being part of the structure of the world, and the so-called cognitive perspective that considers
contexts as parts of the local cognitive states, such as an agent’s cognitive state. The metaphysical ap-
proaches lie in the model-theoretic tradition from Tarski [Tarski, 1936] to Kaplan [Kaplan, 1978] and
try to model all contexts within a same model, while the cognitive approaches attempt to formalise the
heterogenous combination of distributed models for each local context. The research in the cognitive
modelling paradigm has been initiated by McCarthy [McCarthy, 1993] and has coined the notion of
local model semantics and calculi for these so-called multi-context systems. They are based on two
general logical principles:

The principle of locality which advocates that everything that can be expressed and inferred is local
to a context.

The principle of compatibility which advocates that two contexts may be related in such a way that
reasoning in a context may affect reasoning in other contexts.

The notion of context used in this thesis is not an explicit modelling of contexts as in the ap-
proaches above. It is rather an implicit modelling of contexts that relies on the uniform notation.
Furthermore, compared to the two approaches, the notion of context provided by CORE is a hybrid of
both perspectives. The notion of context for FVIF-trees follows the metaphysical approach since the
contexts are inferred from the structure, and especially the uniform notation and polarities contained
in the FVIF-trees. However, the window structures that are added onto the FVIF-trees are in the tra-
dition of the cognitive perspective. The windows are based on the principle of locality by supporting
the use of contextual information within a window. The logical context of a window is conditioned
into replacement rules by exploiting the global or metaphysical contexts contained in FVIF-trees. Fur-
thermore, the principle of compatibility is observed by the window structure, since derivations with
respect to one window affect the context of other windows, namely those that are α-related. Thus,
reasoning in one context may affect the reasoning in other contexts. However, no explicit rules are
necessary to transfer knowledge from one context to another, since this is implicitly achieved by the
(metaphysical) background representation.

179

180 CHAPTER 12. RELATED WORK

12.1.1 Window Inference Reasoning

Window inference has been proposed in [Robinson & Staples, 1993] as a formalisation of a hierar-
chical structure of practical mathematical reasoning. It supports the temporary focusing on arbitrary
substructures of a formula by the definition of decomposition and recomposition rules, which also ex-
plicitly construct the logical context of the substructures. It results in a hierarchy of subproblems that
co-exist at a single stage of the proof. Window inference [Robinson & Staples, 1993] also allows the
use of context within a window and follows strictly the cognitive approach. Although window infer-
ence rules to focus on formulas in the context of a given window have been defined in [Grundy, 1992],
the context of a window is essentially static and is not directly affected by transformations of α-related
windows. Furthermore, it does not provide a uniform conditioning of the information contained in a
logical context as this is done in CORE by the notion of replacement rule. Each transformation of the
content of an active window results in a local lemma that needs to be tackled afterwards, while the
uniform notion of replacement rule and their application in CORE directly ensures the soundness of
the respective window transformation proof steps in CORE.

12.2 Hierarchical Reasoning

Hierarchies play an important role in any kind of reasoning. Therefore different techniques to support
hierarchical reasoning are integrated in CORE: hierarchies occur in the structure of subgoals which
are addressed by the window inference capabilities. Derivational hierarchies during proof construction
are addressed in the design of the hierarchical proof datastructure that allows the explicit represen-
tation of the abbreviation of partial proofs and the expansion of speculative, high level proof steps.
Finally, hierarchies introduced by changing the problem representation are also taken into account by
supporting the explicit representation of the arising abstraction and refinement relationships between
proofs with respect to different representations. Related work with respect to the three kinds of hier-
archies are discussed in the following three sections. The proof datastructure that plays an important
role in the representation of hierarchies is an extension of the proof datastructure in [Cheikhrouhou
& Sorge, 2000]. The differences are discussed in Section 12.2.4.

12.2.1 Hierarchies of Subproblems

Window inference [Robinson & Staples, 1993] advocates the practical advantage of having a hierarchy
of subproblems without actually having to decompose the original formula. Thus, by revoking the
window hierarchy the original form of the problem is preserved which is suitable for user interaction.
The window inference mechanisms in CORE exhibit the same features as it is inspired by window
inferencing from [Robinson & Staples, 1993]. However, while the hierarchy is preserved by the
window reasoning rules from [Robinson & Staples, 1993], the various reasoning rules in CORE can
change the hierarchical structure of the windows. This allows for a more flexible reasoning style and
we have defined these changes in a uniform manner and designed the effects such that they adequately
support an intuitive reasoning style.

12.2.2 Derivational Hierarchies

Derivational hierarchies are an important information for the communication of intentions about
proofs. They come in two kinds, that can also be mixed at different levels: abstract proof steps
can be refined or expanded into partial proofs for that abstract proof step, and partial proofs can be

12.2. HIERARCHICAL REASONING 181

abbreviated by macro-inference steps that (intuitively) describe the purpose of the proof part. The first
kind of abstraction corresponds to the proof planning approach that speculates on intermediate goals
by using methods, and the refinement of the abstract proof step is achieved by executing the tactic
that is wrapped inside the method. This subsumes the capabilities of the hierarchical proof datas-
tructure [Cheikhrouhou & Sorge, 2000] implemented in the ΩMEGA-proof planner [Siekmann et al,
2002a]. The second kind of abstraction corresponds to abstracting a partial derivation, built by some
tactic T , into a macro-inference step annotated by the name of a tactic and possibly some actual pa-
rameters. This kind of abstraction of proof parts is not possible in [Cheikhrouhou & Sorge, 2000], or
at least it is not possible to distinguish the abstraction relationships from the refinement relationships
in [Cheikhrouhou & Sorge, 2000]. Both kinds of derivational abstractions can be represented in the
hierarchical proof datastructure defined for CORE. It especially accommodates the explicit represen-
tation of the directions in the construction of abstraction relationships, i.e. top-down for the refinement
of abstract proof steps and bottom-up for the abbreviation of partial proofs by macro inference steps.
Thereby, it allows the categorisation of these relationships into vertical abstraction relationships, ver-
sus vertical refinement relationships introduced earlier, as informal categories of proof steps that serve
the communication of information about the proof and proof intentions.

12.2.3 Representational Hierarchies

Representation is typically domain specific and it is often changed in order to simplify a given prob-
lem by mapping it into a different representation. After the mapping, a proof is constructed with
respect to the new representation which can be used as a plan to perform the actual proof with re-
spect to the original representation of the problem. The hierarchical proof datastructure in CORE

supports the explicit representation of the necessary abstraction and refinement steps that occur in
theorem proving by representational abstraction. Furthermore, the formal notion of a proof accom-
modates these relationships. The most similar work in this respect has been conducted in the context
of the ABSFOL system [Giunchiglia & Villafiorita, 1996]. It supports the declarative specification of
representational abstractions by sets of rewrite rules, using them for abstraction based theorem prov-
ing and for refining the proof sketch that results from the abstract proof. With the exception of the
specification of abstractions, the whole scenario is supported by CORE. The specification language
for abstractions in ABSFOL relies on rewrite rules. This results in that only a certain class of ab-
stractions can be described [Plaisted, 1981]. It is insufficient to support the definition of, for instance,
abstractions that take the problem into account, i.e. goal-dependent abstractions such as [Autexier &
Hutter, 1997, Autexier, 1997], or those used in inductive theorem proving that rely on more subtle
information annotated to symbol occurrences [Hutter, 2000a]. For these reasons we have refrained
from fixing a specific specification language for abstraction functions.

12.2.4 Proof Datastructure in ΩMEGA

The hierarchical proof datastructure is an adaptation and extension of the proof datastructure used
in the ΩMEGA proof-planner. Although we have already mentioned some differences between these
proof datastructures in previous sections, we recapitulate all the differences in this section for the sake
of completeness.

Proof Nodes. The ΩMEGA proof-planner is based on a natural deduction calculus for classical
higher-order logic. Thus, the proof nodes are essentially natural deduction sequents while in CORE

they consist of a window proof state and one active window with respect to that proof state. ΩMEGA

182 CHAPTER 12. RELATED WORK

proof nodes are justified by a sequence of justifications, which are annotated by inference rules. This
is essentially the same for CORE proof nodes, though the notion of inference rule differs. Each proof
node may have a sequence of justifications, and the notion of proof graphs induces a hierarchy among
the justifications. However, in the ΩMEGA proof datastructure only the hierarchy of proof steps is vis-
ible, while it is not possible to distinguish whether a hierarchy has been build bottom-up, for instance
by abbreviating a portion of a proof generated by some tactic with the name of the tactic, or top-down,
as for instance the refinement of a speculative proof-planning step. As this is an interesting informa-
tion about the proof and also serves for backtracking purposes, the CORE proof datastructure has been
designed to distinguish between abbreviation and expansion hierarchies. For this purpose the CORE

proof node justifications are split into two sequences of justifications that represent the directions in
the hierarchy: the first set indicates which justification has been abbreviated by another, and the sec-
ond set indicates which justification has been expanded into another. This explicitly distinguishes
bottom-up hierarchies from top-down hierarchies.

In addition to the justifications, the CORE proof nodes may also contain representational abstrac-
tions and refinements that link a proof to proof nodes with respect to a different representation. These
relationships do not exist in the proof datastructure of the ΩMEGA proof-planner.

Inference Rules. The inference rules in ΩMEGA consist of the basic natural deduction inference
rules and the names of proof planning methods together with actual parameters. In CORE we dis-
tinguish between formal and informal inference rules. Formal inference rules are the CORE window
reasoning rules and they correspond to the natural deduction calculus rules in ΩMEGA. The informal
inference rules encompass the names of proof planning methods, but also the names of tactics and
arbitrary descriptions.

Justifications. Justifications in both systems are annotated with inference rules, although the no-
tions of inference rule differ. Furthermore, CORE justifications allow the assignment of so-called
methodological roles to the subgoals of a justification. They can be used to explicitly represent infor-
mation about the methodological role a subgoal plays for a particular justification, such as for instance
that it is a major subgoal or only a condition, which can be used for both proof search strategies and
proof presentation. This does not exist in ΩMEGA justifications.

12.3 Replacement Rules

The replacement rules play a major role in the reasoning style provided by the CORE window rea-
soning calculus. There are several concepts related to the notion of replacement rules which we now
discuss in more detail.

12.3.1 Modifiers in INKA

In a previous version of the inductive theorem prover INKA [Hutter & Sengler, 1996] a large set of
tactics relied on the notion of modifiers. That version of the INKA theorem prover is based on a
resolution and paramodulation calculus for classical first-order logic and used a specific normal form
of clauses. Modifiers were introduced both as an abstract concept that encompasses resolution and
paramodulation rules and as a specification of the operational behaviour of the application of these
rules. They can be thought of as conditional rewrite rules of the form [ϕ1, . . . ,ϕn]u→ v, where u
and v could be any term or literal and the ϕi are the conditions of that rule. The determination of

12.3. REPLACEMENT RULES 183

these rules was based on the syntax of the formulas and their application was based on resolution and
paramodulation.

With respect to the INKA concept of a modifier the replacement rules are a generalisation by
removing the methodological role attributed to the formulas occurring as conditions in the modifiers
and consider all these formulas as normal subgoals like v. Thus we separated the methodological
roles of formulas from the pure logical role of these formulas, lifting the methodological role of
these formulas to the proof datastructure. Additionally, the binary category of roles in INKA, i.e.
“condition” and “subgoal”, has been generalised to support any kind of methodological categorisation.
Finally, while modifiers are restricted to literals and equations, replacement rules are defined for
arbitrary formulas. This was possible due to the use of polarities and uniform notation in FVIF-trees.
The use of the uniform notation was also the basis for the definition of uniform notions of contexts
and replacement rules, which enabled the carrying over of that notion to further logics.

12.3.2 Assertion Level for Proof Presentation

The assertion level has been introduced in [Huang, 1996] as an abstraction from the pure natural
deduction calculus. It relies on the notion of assertion level proof steps, where an assertion subsumes
axioms, definitions, lemmas, and theorems. An assertion level proof step consists of the application
of an assertion in some specific proof situation. Replacement rules are a generalisation of the notion
of an assertion level proof step, and especially provide a concise formalisation for this, solving the
problem that “introspection seems impossible to reveal the internal structure of the interpreter applying
assertions” [Huang, 1996].

The assertion level is the basis for the generation of proof descriptions in natural language. The
net benefit of replacement rules is that they support the construction of a proof directly on the level
of assertions, which overcomes the need to build an assertion level proof by abstraction of a standard
calculus proof, like natural deduction.

12.3.3 Higher-Order Rewriting

Higher-Order rewriting [Nipkow, 1991, Wolfram, 1993, Prehofer, 1994, Baader & Nipkow, 1998] has
been defined for pure unconditional equational theories using a primitive notion of equality while the
technique for rewriting used in this thesis relies on Leibniz’ definition of equality and extensionality.
Furthermore, it is designed for conditional rewriting in arbitrary theories. It is an extension of the
higher-order rewriting technique, though the aspects of term-orderings and completion is outside the
scope of this thesis. Note that the extensionality introduction required to support higher-order rewrit-
ing in this thesis is implicit in the higher-order rewriting techniques from [Nipkow, 1991, Wolfram,
1993,Prehofer, 1994,Baader & Nipkow, 1998] since extensionality introduction is always possible in
unconditional equational theories.

12.3.4 Deduction Modulo

Theorem proving modulo [Dowek et al, 1998,Dowek, 2000] is a technique to integrate deduction with
respect to some standard calculus, such as, for example, sequent or natural deduction calculi and term
rewriting systems. The application of replacement rules is at the heart of the CORE proof theory and
thus the framework is an adequate basis for deduction modulo. Since the notion of replacement rule
includes conditional rewriting as well as logical refinement of formulas to lists of subgoals it is a strict
extension of the deduction modulo approach.

184 CHAPTER 12. RELATED WORK

12.3.5 Focusing Proof Construction

Andreoli [Andreoli, 1992] introduced the notion of focusing proofs for linear logic, in order to reduce
the non-determinism in proof construction by alternating phases of invertible and non-invertible steps.
While focusing proofs where first introduced in [Andreoli, 1992] by means of a “triadic” sequent
system that made explicit the alternating phases, the simpler presentation in [Andreoli, 2000] is better
suited for a comparison with replacement rules. [Andreoli, 2000] defines the Focusing interpretation
of a formula F as a set of derived sequent calculus inference rules. Take as an example the MALL
formula F = a⊥⊗ b⊥((c & d)

&

e)⊗ f . The Focusing interpretation of this formula is the (set of)
inference rules

Γ,c,e Γ,d,e ∆, f
Γ,∆,a,b,F

where Γ and ∆ range over arbitrary multisets of formulas. Thus, the Focusing interpretation can be
viewed as the possible application directions of an assertion F .

The focusing proof construction technique has also been defined, among others, for constructive
first-order logic in [Abel et al, 2001], where it is used for proof checking lemma applications. The
focusing proof steps correspond to the criteria used in the definition of admissible replacement rules.
However, the major difference between the focusing proof steps and the replacement rules introduced
in this thesis is that the inference rules obtained by Focus interpretation can only be determined for
top-level formulas and only applied to top-level formulas, while the replacement rules can be deter-
mined for and applied to subformulas. Furthermore, the replacement rules include the treatment of
conditional equivalences and equations.

12.4 Calculi

12.4.1 Schütte’s Proof Theory

The proof theory presented by Schütte [Schütte, 1977] exploits the same proof theoretic properties of
conjectures that lead to the definition of polarities and uniform notation to define simple calculi for
classical and intuitionistic logic. Compared to sequent and natural deduction calculi it does not enforce
a top-down decomposition approach, but rather supports the inner decomposition of β-type formulas.
The calculus rules rely on the notions of P-forms and N-forms that can be defined as follows by using
polarities: we first define unconditional forms to be U(x) := ϕ(x) where x is a boolean variable that
occurs exactly once in ϕ and if ϕ(x) is assigned a positive polarity, then x has polarity p, and there
are no β-related formulas for x in ϕ(xp)+. All such formulas where p = + are called P-forms (i.e.
ϕ(x+)+, and otherwise N-forms (i.e. ϕ(x−)+ if p =−. Finally, an NP-form is L(x,y) := ϕ(x,y) such
that for any formula ψ, L(ψ,y) is an N-form for y and L(x,ψ) is a P-form for x. The axioms of the
classical sentential calculus from [Schütte, 1977] are L(ψ,ψ), U(⊥−) and the only propositional
inner decomposition rule is

U(Ap)+ U(Bp′)+

U(β(Ap,Bp′)p′′)+
β-Decompose

where the formula denoted by U(Ap)+ is U(¬(Ap))+ if p 6= p′′, and otherwise U(Ap)+.
The axioms are immediately provable with the CORE reasoning rule (simplification only for

U(⊥−) and replacement rule application and simplification for L(ψ,ψ)), while the β-decomposition
rule has been proved to be admissible with respect to CORE reasoning rules in Section 10.1.

12.4. CALCULI 185

(A∧ (A⇒ (A∧B)))⇒ (A∧B)+
α

(A∧ (A⇒ (A∧B)))−α

A−1− A⇒ (A∧B)−β

A+
2− (A∧B)−α

A−3− B−1−

(A∧B)+
β

A+
4− B+

2−

+
α (A∧ (A⇒ (A∧B)))⇒ (A∧B)

−
α (A∧ (A⇒ (A∧B)))

−
−AA1

−
β A⇒ (A∧B)

+
−AA2 (A∧B)−α

−
−AA3

−
−BB1

(A∧B)+
β

+
−AA4

+
−BB2

Figure 12.1: Initial indexed formula tree and initial FVIF-tree for ((A∧ (A⇒ (A∧B)))⇒ (A∧B))+.

The reasoning style provided by the inference rules of the Schütte proof theory is also intuitive
with respect to not enforcing the complete decomposition of the original formula. We believe it is an
essential feature of a calculus for intuitive reasoning to support the transformation of parts of a formula
without actually being forced to decompose the formula. In that respect the inference rules of Schütte’s
proof theory are a clear contribution. However, within this thesis we showed that replacement rules
accommodate theorem proving on the assertion level [Huang, 1996]. Thus replacement rules are
a further key technique to support an intuitive reasoning style. That notion of replacement rules
is entirely absent in Schütte’s proof theory, while the CORE proof theory supports both the use of
replacement rules and a generalisation of the β-formula decomposition of Schütte.

12.4.2 Matrix Calculi

The CORE proof theory and matrix calculi (respectively expansion tree proofs) rely on the same logi-
cal foundations, but the styles of proof construction are inherently different. Consider an initial CORE

proof state [Q, idBL R] for some conjecture. Matrix proof search fixes the initial multiplicities of the
γ- and ν-type nodes in Q and then searches for a spanning set of connections for Q, possibly, in the
case of higher-order logic, by adjusting the multiplicities using Issar’s path-focused duplication pro-
cedure [Issar, 1990]. The CORE style of proof search also supports the increase of multiplicities, but
otherwise consists of transforming R into either True+ or False− rather than searching for a span-
ning set of connections. The path-focused duplication technique from [Issar, 1990] was developed for
higher-order logic and supports the increase of the multiplicity of an arbitrary γ-type node. However,
rather than considering all resulting new paths, the effects are localised to the path that initiated the
copying. Since in our framework we rely on indexed formula trees and not on a path representation,
we cannot localise the effect to some single path, and hence Issar’s technique is not applicable in our
context. The multiplicity increasing rule from Section 4.11 copies and renames a whole subtree and
thus we are forced to consider all resulting paths. Especially, we have to carry over all proof infor-
mation established for the original subtree, which is achieved by determining a convex set of subtrees
before copying. It determines a set of subtrees which have to be copied in order to allow to carry
over all proof information, especially established connections, to the new paths. Note that this is not
necessary for the Issar’s technique, since the path that triggered the adjustment of multiplicities is
assumed to not contain connections.

The instantiation, Leibniz’ equality introduction and extensionality introduction rules are analo-
gous in both approaches. The CORE weakening and contraction rules are unnecessary in a matrix

186 CHAPTER 12. RELATED WORK

proof search. Thus, the major difference is in determining spanning connections versus application of
replacement rules. At first sight there seems to be a relationship between the insertion of a connection
and an application of a replacement rule; indeed, the application of a replacement rule also requires
that the left-hand side of the rule and the subtree the rule is applied to have opposite polarities, the
same modal prefix and the same label. This corresponds to the condition to establish a connection.
The fact that replacement rules do not necessarily operate on literal nodes is not a problem, since both
subtrees have isomorphic structures due to the equality of their labels and thus the relationship can
be inherited along the tree structure. However, the major difference is that while in a matrix proof
search both literals are α-related in Q, in the CORE approach the original literals in Q may be α-
or β-related. This is due to the fact that subformulas that are initially β-related become α-related
in R via rule application. Consider as an example the formula (A∧ (A⇒ (A∧B)))⇒ (A∧B): the
initial indexed formula tree and the corresponding FVIF-tree for the positive formula are shown in
Figure 12.1 (p. 185), where we assigned numbers to the literal nodes in the indexed formula tree to
distinguish them explicitly. On A+

4− we can apply the replacement rule −−AA3 →
〈

+
−AA2

〉
, which results

in the FVIF-tree
+
α (A∧ (A⇒ (A∧B)))⇒ (A∧B)

−
α (A∧ (A⇒ (A∧B)))

−
−AA1

−
β A⇒ (A∧B)

+
−AA2

−
α (A∧B)

−
−AA3

−
−BB1

(A∧B)+
β

+
−AA2

+
−BB2

and introduces a connection between A4 and A3. On the new occurrences if A2 we could again ap-
ply −−AA3 →

〈
+
−AA2

〉
; however we cannot inherit the connection information, since A2 and A3 are

β-related in the indexed formula tree. A similar problem occurs when applying the replacement
rule −α (−−AA3 ∧−−BB1)→

〈
+
−AA2

〉
to +

β (+
−AA2 ∧+

− BB2): While it is possible to inherit the connection to
(B2,B1), it is not possible to inherit it to (A3,A2). Thus, there are two kinds of connections: those be-
tween α-connected literals in Q and those between β-connected nodes in Q. The former corresponds
to a standard matrix connection while the other does not. In the literature both types of relation-
ships are known as c-links and d-links which have been used to define path resolution [Murray &
Rosenthal, 1987a] and path dissolution [Murray & Rosenthal, 1987b]. That relationship has already
been exploited in the completeness proof in Section 5.4, although in a slightly different way. To re-
turn to matrix proof search, the problem persists that we would have to show that by inheriting the
connection information to Q during replacement rule application (in R) we obtain a spanning set of
connections for Q, once R has been reduced to True+ (respectively False−). Due to the fact above,
this is a non-trivial problem and thus is left to future work.

12.4.3 Sequent Calculus

One motivation for the development of the CORE proof theory was to overcome the need for formula
decomposition as enforced by sequent and natural deduction calculi in order to support an intuitive
reasoning style. In Chapter 10 we have presented how a sequent style calculus can be simulated in
CORE. The net benefits are that the underlying CORE proof theory not only provides a natural basis
for deduction modulo for this calculus, but also supports non-trivial and practically convenient sequent
calculus proof transformation operations that result from the flexible increase of multiplicities. The

12.4. CALCULI 187

proof transformation operation is also the major reason why an ongoing CORE derivation can not be
directly translated into a sequent calculus derivation. However, it should be possible to translate a
completed CORE proof into a derivation with respect to these calculi. This would result in a simple
mechanism for independent proof checking of CORE proofs, although the proof development can
be done with the intuitive CORE reasoning rules. For the definition of such a translation we envision
using the techniques to generate sequent calculus proofs from completed matrix proofs, as for instance
given in [Pfenning, 1987]. However, this pre-requires that a complete matrix proof can be obtained
from a CORE proof which, unfortunately, is not yet possible (see previous section).

12.4.4 Resolution and Paramodulation based Calculi

Resolution and paramodulation calculi typically rely on clausal normal form which is obtained by
skolemising the Prenex normal form of the negated conjecture. The major inference rules are reso-
lution, a generalisation of Modus Ponens, and paramodulation that can be viewed as a kind of con-
ditional rewriting. These calculi are machine oriented calculi and they are not particularly suitable
for interactive proof search. The structure of the original conjecture is lost in the normal form. The
CORE replacement rules can be viewed as a generalisation of resolution and paramodulation to quan-
tifier free formulas that are not in normal form. The admissibility of substitutions is ensured by the
quantifier structure which contrasts with the “occur-check” used in these calculi that relies on skolemi-
sation. Due to the relationship between replacement rules and resolution and paramodulation rules, it
should be simple to define ordering based search space restrictions for replacement rule applications
analogous to those in superposition calculi [Bachmair et al, 1992].

Chapter 13

Conclusion

The computer-based development of mathematical proofs requires interaction of the user with the the-
orem proving system. Synergetic cooperation of the user and the reasoning procedures inside a theo-
rem proving system relies especially on the quality of the interface, which must address the different
requirements that arise from both sides. CORE encompasses most aspects of the communication that
range from the presentation of the proof state, via the supply of relevant contextual information about
possible proof continuations, to the support for a hierarchical proof development.

The communication infrastructure has to provide a uniform interface adequate for both human
users and automatic reasoning procedures. The communication infrastructure of CORE implements
this requirement and addresses the aforementioned three aspects of the communication through the
following CORE features:

1. Simultaneous presentation of the proof state as a single formula, or a list of goals and the
possible alternative goals. Either style of presentation of the proof state, and especially the
possibility for their simultaneous presentation, provides a complete and complementary view
on the proof state.

2. Complete, contextual proof continuation information for every part of the proof state in a uni-
form proof construction step format. The proof construction steps allow for an intuitive reading
that subsumes the assertion level proofs from [Huang, 1996] and suits both the user and declar-
ative high-level proof planning procedures. Furthermore, they allow for an operational reading
as a general inference rule, which accommodates the integration of procedural proof procedures
like tactics.

3. Support for hierarchical reasoning, such as (1) the speculation of subgoals as performed, for
instance, in proof planning, (2) the hierarchical reasoning style advocated by window inference,
(3) the change of the representation formalism by abstraction, and (4) the explicit representation
of derivational and representational hierarchies that arise during proof construction in order to
adequately convey the encoded proof intentions to the user and the reasoning procedures.

The key feature for the development of the communication infrastructure is the new (meta) proof
theory CORE for contextual reasoning which is sound and complete for a variety of logics. The
proof theory includes a cut rule which is admissible for all logics but higher-order logic with Henkin
semantics. The pillars of the meta proof theory are:

189

190 CHAPTER 13. CONCLUSION

-- a uniform calculus for indexed formula trees (respectively expansion tree proofs) which is sound
and complete for the whole class of logics and is used as a concise representation of variable
and modal quantifier dependencies. In order to meet the requirements of interactive theorem
proving, we developed a technique to dynamically increase the multiplicities of quantifiers by
preserving any type of proof information. The resulting calculus rule can be used on demand
during proof construction and overcomes the problem that in these calculi the multiplicities of
quantifiers must either be set beforehand or that the proof information is not preserved when
increasing quantifier multiplicities.

-- uniform calculus extended by a free variable representation of the formula contained in an
indexed formula tree and fully annotated by proof theoretic information such as polarities and
uniform types. A CORE proof state is always a pair consisting of an indexed formula tree and
an actual formula with free variables. The meta proof theory consists of 12 proof rules, and
a proof is completed if the formula in the proof state is True+. In this way, a CORE proof
state can always be viewed as a single formula and the uniform types provide all the necessary
information to determine subgoals and alternatives.

-- types that provide the basis for a uniform definition and implementation of the logical context
of any subformula and the replacement rules that result from formulas contained in a logical
context. The notion of context and the derived replacement rules are the major developments
that smoothed the way for supporting a uniform contextual reasoning style. On the one hand,
replacement rules operationalise and subsume the assertion level proof rules and thus support
the direct and intuitive proof development at the assertion level. On the other hand, they are
generalised resolution and paramodulation rules that suit the integration of procedural proof
procedures, such as tactics or superposition based proof procedures. Thus, replacement rules
are the uniform proof construction step format that allow for both an intuitive and an opera-
tional reading. Providing them to the user and the reasoning procedures in the respective format
is the central information about verifiably sound proof continuations. Other proof continua-
tions, whose soundness cannot be immediately verified, such as proof planning steps and, more
generally, any speculative proof construction steps, are represented using the cut rule.

We developed a window calculus to support the focusing on subparts of a formula. The CORE

window calculus supports the hierarchical reasoning style advocated by window inference. Since the
underlying CORE calculus provides all the necessary features to uniformly determine replacement
rules from the logical context of any subformula, it extends previous implementations of window in-
ference by the uniform determination of replacement rules. As an application of that window calculus
we presented the implementation of a sequent calculus based on the window calculus. The result-
ing sequent calculus overcomes the limitations of standard implementations of these calculi, such as
selecting the right order for decomposing formulas and eliminating quantifiers. Furthermore, from
the underlying CORE calculus it inherits the ability to soundly and adequately increase multiplicities
of quantifiers, which corresponds to powerful proof transformation operations in standard sequent
calculi. Finally, the sequent calculus inherits all contextual reasoning capabilities from the CORE cal-
culus and thus subsumes the theorem proving modulo approach [Dowek et al, 1998, Dowek, 2000].

We also provided support for the definition of reasoning domains and representational abstrac-
tions. These concepts are the formal bases supporting representational abstractions at any stage of
the proof construction. Finally, we defined a hierarchical proof datastructure to represent CORE

13.1. FUTURE WORK 191

window proofs together with all derivational and representational hierarchies that arise during proof
construction. It explicitly represents all relations between the different hierarchies and is the central
representation of the history of a (partial) proof. It is the uniform representation of all information
about completed proof parts as well as proof intentions for open goals.

All the techniques and solutions developed in this thesis have been implemented in the CORE

system, which is used as the communication infrastructure to support the integration of the multi-
strategy proof planner MULTI [Melis & Meier, 2000, Meier, 2003], the agent-based proof system
Ω-ANTS [Benzmüller & Sorge, 2000,Hübner, 2003], and the inductive theorem prover INKA [Hutter
& Sengler, 1996, Autexier et al, 1999].

13.1 Future Work

The work presented in this thesis provides a basis for future work in many respects: proof checking,
automation of proof search, user interaction and foundational research.

Proof Checking. Proof checking of proofs constructed within a theorem proving environment is an
important issue in order to independently certify these proofs. The reasoning rules of the CORE meta
proof theory can not easily be checked by pure syntactical properties, as they, for instance, rely on
uniform notation, polarities and may have non-trivial global effects. The CORE proof state contains an
indexed formula tree and thus if it would be possible to construct a matrix proof during a CORE proof
construction, it would in principle allow one to use the techniques that generate sequent or natural
deduction calculus proofs from completed matrix proofs. The formalisation of the close relationship
between replacement rule application and the insertion of connections discussed in Section 12.4.2
together with an appropriate proof ensuring that any completed CORE proof state corresponds to a
spanning set of connections for its indexed formula tree, is the first future work step in the direction
of proof checking. Although the formalisation and the proof are sufficient from a theoretical point of
view, the actual implementation of a procedure that generates a sequent calculus proof still needs to
be done and is a non-trivial task.

An alternative direction towards proof checking is the development of an assertion level proof
representation that is suitable for proof checking. A possible starting point could, for instance, be the
assertion level proof calculus developed for first-order logic proofs in [Abel et al, 2001]. The devel-
opment of variants of this calculus for the logics considered in this thesis would make it conceivable
to define an adequate transformation of a (partial) CORE window calculus proof.

Automation of Proof Search. The embedding of a strong sequent calculus in CORE together with
the replacement rules that behave like assertion level proof steps on the one hand and generalised
resolution and paramodulation proof steps on the other hand, makes it plausible that the proof search
automation techniques developed for these calculi can be adapted to the CORE proof theory. This in-
cludes tactical theorem proving for sequent calculus including the theorem proving modulo approach,
or proof planning over tactics. Furthermore, the assertion level character of replacement rules supports
the definition of proof planning directly on the intuitive and human-oriented assertion level. Also the
term-ordering based automated theorem proving procedures for resolution and paramodulation calculi
should be transferable to the CORE setting. Finally, the close relationship of the internal CORE proof
state representation to matrix calculi gives rise to a further interesting line of research concerned with
the transfer of proof search automation techniques from that area.

192 CHAPTER 13. CONCLUSION

User Interaction. Natural language presentation of proofs translates formal logic proofs into a style
as can be found in a mathematical textbook. The assertion level of [Huang, 1996] is the basis for these
techniques and usually must be reconstructed from the given sequent or natural deduction proofs.
These techniques also support the natural language presentation of partial proofs. The CORE reason-
ing rules and especially the replacement rules allow for a direct construction of proofs at the assertion
level.

Foundational Research. In contrast to the more application oriented research suggested above,
there is also interesting foundational future work. The CORE meta proof theory relies on the exist-
ing Wallen-style matrix characterisations [Wallen, 1990], which hampers the addition of new logics.
Foundational work should therefore support the definition of new logics inside CORE, for example
by specifying the sequent calculus rules for that logic, analogous to the definition of logics in logical
frameworks [Harper et al, 1987, Pfenning, 1996, Pfenning & Schürmann, 1999]. The automatic gen-
eration of a kind of Wallen style matrix characterisation from these descriptions would allow intuitive
and contextual reasoning capabilities for the new logics. But achieving this task is likely as difficult
as it is attractive. However, a good starting point would be to attempt to integrate the logics for which
Wallen style matrix characterisations already exist [Wallen, 1990, Mantel & Kreitz, 1998].

References

[Abel et al, 2001] Abel, Andreas, Chang, Bor-Yuh Evan and Pfenning, Frank. (June
2001). Human-readable machine-verifiable proofs for teaching
constructive logic. In Egly, Uwe, Fiedler, Armin, Horacek, Hel-
mut and Schmitt, Stephan, (eds.), Proceedings of the Workshop
on Proof Transformations, Proof Presentations and Complexity of
Proofs (PTP’01). Universitá degli studi di Siena.

[Abelson et al, 1996] Abelson, H., Sussman, G. and Sussman, J. (1996). Structure and
Interpretation of Computer Programs. MIT Press.

[Andreoli, 1992] Andreoli, Jean-Marc. (1992). Logic programming with focusing
proofs in linear logic. Journal of Logic and Computation, 2(3).

[Andreoli, 2000] Andreoli, Jean-Marc. (2000). Focussing and proof construction.
Annals of Pure and Applied Logic, 107(1):131–163.

[Andrews, 1972] Andrews, Peter B. (June 1972). General models, descriptions, and
choice in type theory. The Journal of Symbolic Logic, 37(2):385–
397.

[Andrews, 1981] Andrews, Peter B. (April 1981). Theorem proving via general
matings. Journal of the Association for Computing Machinery,
28(2):193–214.

[Andrews, 1989] Andrews, Peter B. (1989). On connections in higher-order logic.
Journal of Automated Reasoning, 5:257–291.

[Andrews, 2002] Andrews, Peter B. (2002). An Introduction to Mathematical Logic
and Type Theory: To Truth Through Proof, volume 27 of Gabbay,
Dov M. and Barwise, Jon, editor, Applied Logic Series. Kluwer
Academic Publishers, Dordrecht / Boston / London, second edi-
tion.

[Andrews et al, 1990] Andrews, Peter B., Issar, Sunil, Nesmith, Dan and Pfenning,
Frank. (July 1990). The TPS Theorem Proving System. In Stickel,
Mark E., (ed.), Proceedings 10th International Conference on Au-
tomated Deduction (CADE), volume 449 of LNAI , pages 641–642.
Springer Verlag.

[Andrews et al, 2000] Andrews, Peter B., Bishop, Matthew and Brown, Chad E. (2000).
System Description: TPS: A Theorem Proving System for Type
Theory. volume 1831 of Lecture notes in computer science, pages
164–169. Springer.

193

194 REFERENCES

[Autexier & Hutter, 1997] Autexier, Serge and Hutter, Dieter. (October 1997). Equational
proof-planning by dynamic abstraction. In Bonacina, Maria Paola
and Furbach, Ulrich, (eds.), Proceedings of FTP97: International
Workshop First-Order Theorem Proving, number 97-50 in Report
Series, pages 1–6, Johannes Kepler Universität, 4040 Linz, Aus-
tria. RISC-Linz.

[Autexier, 1997] Autexier, Serge. (June 1997). An abstraction for proof-planning:
The S -abstraction. SEKI Report SR-97-05, Universität des Saar-
landes, Fachbereich Informatik, Postfach 15 11 50, D–66041
Saarbrücken.

[Autexier et al, 1998] Autexier, S., Hutter, D., Langenstein, B., Mantel, H., Rock, G.,
Schairer, A., Stephan, W., Vogt, R. and Wolpers, A. (september
1998). VSE: Formal methods meet industrial needs. International
Journal on Software Tools for Technology Transfer, Special issue
on Mechanized Theorem Proving for Technology, Springer Verlag.

[Autexier et al, 1999] Autexier, Serge, Hutter, Dieter, Mantel, Heiko and Schairer, Axel.
(1999). System description: Inka 5.0 – a logic voyager. In
Ganzinger, H., (ed.), Proceedings of the 16th International Confer-
ence on Automated Deduction (CADE), LNAI 1632, Trento, Italy.
Springer.

[Autexier et al, 2002] Autexier, Serge, Hutter, Dieter, Mossakowski, Till and Schairer,
Axel. (September 2002). The development graph manager MAYA.
In Kirchner, Hélène and Ringeissen, Christophe, (eds.), Pro-
ceedings 9th International Conference on Algebraic Methodology
And Software Technology (AMAST’02), volume 2422 of LNCS.
Springer.

[Baader & Nipkow, 1998] Baader, Franz and Nipkow, Tobias. (1998). Term Rewriting and
All That. Cambridge University Press.

[Bachmair et al, 1992] Bachmair, Leo, Ganzinger, Harald, Lynch, Christopher and Sny-
der, Wayne. (June 1992). Basic paramodulation and superposi-
tion. In Kapur, Deepak, (ed.), Proceedings of the 11th Interna-
tional Conference on Automated Deduction (CADE), volume 607
of LNAI , Saratoga Springs, NY. Springer.

[Barendregt, 1984] Barendregt, Henk P. (1984). The Lambda Calculus – Its Syntax
and Semantics. North Holland.

[Benzmüller & Sorge, 1999] Benzmüller, Christoph and Sorge, Volker. (21–24, September
1999). Critical Agents Supporting Interactive Theorem Proving.
In Barahona, P. and Alferes, J. J., (eds.), Progress in Artificial In-
telligence, Proceedings of the 9th Portuguese Conference on Artifi-
cial Intelligence (EPIA-99), volume 1695 of LNAI, pages 208–221,
Évora, Portugal. Springer Verlag, Berlin, Germany.

REFERENCES 195

[Benzmüller & Sorge, 2000] Benzmüller, Christoph and Sorge, Volker. (2000). Ω-OANTS –
an open approach at combining interactive and automated theo-
rem proving. In Kerber, Manfred and Kohlhase, Michael, (eds.),
Symbolic Computation and Automated Reasoning, pages 81–97.
A.K.Peters.

[Benzmüller et al, 2002a] Benzmüller, Christoph, Kohlhase, Michael and Brown, Chad E.
(2002a). Higher Order Semantics and Extensionality. Technical
report, Carnegie Mellon University, Pittsburgh, PA.

[Benzmüller et al, 2002b] Benzmüller, Christoph, Kohlhase, Michael and Brown, Chad E.
(2002b). Semantic techniques for cut-elimination in higher order
logic. Technical report, Carnegie Mellon University, Pittsburgh,
PA.

[Bernays, 1937] Bernays, Paul. (1937). A system of axiomatic set-theory. Journal
of Symbolic Logic, 2:65–77.

[Bernays, 1941] Bernays, Paul. (1941). A system of axiomatic set-theory. Journal
of Symbolic Logic, 6:1–17.

[Beth, 1965] Beth, Evert W. (1965). The foundations of mathematics : a study
in the philosophy of science. Studies in logic and the foundations
of mathematics. North-holland, 2nd rev. ed. edition.

[Boole, 1847] Boole, George. (1847). The Mathematical Analysis of Logic.
Macmillan, Barclay, Cambridge, UK, Reprinted by Basil Black-
well, Oxford, UK, 1965.

[Boyer & Moore, 1979] Boyer, Robert S. and Moore, J Strother. (1979). A computational
logic. ACM monograph series. Academic Press.

[Brouwer, 1914] Brouwer, Luitzen Egbertus Jan. (1914). Intuitionism and Formal-
ism. Bulletin of the American Mathematical Society, 20:81–96.

[Brouwer, 1925] Brouwer, Luitzen Egbertus Jan. (1925). Zur Begründung der intu-
itionistischen Mathematik. Mathematische Annalen, 93:244–257.

[Bundy, 1988] Bundy, Alan. (1988). The use of explicit plans to guide inductive
proofs. In Lusk, R. and Overbeek, R., (eds.), Proceedings 9th In-
ternational Conference on Automated Deduction (CADE), LNAI ,
pages 111–120. Springer.

[Bundy et al, 1990a] Bundy, A., van Harmelen, F., Horn, C. and Smaill, A. (July 1990).
The Oyster-Clam system. In Stickel, Mark E., (ed.), Proceedings
10th International Conference on Automated Deduction (CADE),
volume 449 of LNAI , pages 647–648. Springer Verlag.

[Bundy et al, 1990b] Bundy, A., van Harmelen, F., Smaill, A. and Ireland, A. (July
1990). Extension to the rippling-out tactic for guiding induc-
tive proofs. In Stickel, Mark E., (ed.), Proceedings 10th Interna-
tional Conference on Automated Deduction (CADE), volume 449

196 REFERENCES

of LNAI , pages 132–146, Kaiserslautern, Germany. Springer Ver-
lag.

[Bundy et al, 2003] Bundy, Alan, Basin, David, Hutter, Dieter and Ireland, Andrew.
(2003). Rippling: Meta-Level Guidance for Mathematical Rea-
soning. Cambridge University Press.

[Carlsson, 1984] Carlsson, M. (1984). On implementing prolog in functional pro-
gramming. New Generation Computing, 2(4).

[Cheikhrouhou & Sorge, 2000] Cheikhrouhou, Lassaad and Sorge, Volker. (march 2000). PDS –
a three-dimensional data structure for proof plans. In Proceedings
of the International Conference on Artificial and Computational
Intelligence for Decision, Control and Automation in Engineering
and Industrial Applications (ACIDCA’2000).

[Church, 1936] Church, Alonzo. (1936). An unsolvable problem of elementary
number theory. American Journal of Mathematics.

[Church, 1940] Church, Alonzo. (1940). A formulation of the simple theory of
types. Journal of Symbolic Logic, 5:56–68.

[Constable et al, 1986] Constable, Robert L., Allen, Stuart F., Bromley, H.M., Cleaveland,
W.R., Cremer, J.F., Harper, R.W., Howe, Douglas J., Knoblock,
T.B., Mendler, N.P., Panangaden, P., Sasaki, James T. and Smith,
Scott F. (1986). Implementing Mathematics with the Nuprl Devel-
opment System. Prentice-Hall, NJ.

[Dahn et al, 1997] Dahn, Bernd Ingo, Gehne, J, Honigmann, Th. and Wolf, A. (1997).
Integration of automated and interactive theorem proving in ILF.
In McCune, W., (ed.), Proceedings of the 14th International Con-
ference on Automated Deduction (CADE), LNAI 1249, pages 57–
60, Townsville, North Queensland, Australia. Springer.

[De Bruijn, 1973a] De Bruijn, Nicolaas Govert. (1973a). AUTOMATH - Ein Projekt
zur Kontrolle von Mathematik. In Braffort, P., (ed.), Proceedings
of the symposium APLASM, volume I, Orsay, France. Talk given
at Innsbrucker Mathematikertag, 1974. German translation of “The
AUTOMATH Mathematics Checking Project”.

[De Bruijn, 1973b] De Bruijn, Nicolaas Govert, (1973b). AUTOMATH, A Lan-
guage for Mathematics. Séminaire de Mathématiques Superieures
52, Département de Mathématiques, Université de Montréal,
Montréal, Canada.

[De Bruijn, 1980] De Bruijn, Nicolaas Govert. (1980). A survey of the project AU-
TOMATH. In Seldin, J. P. and Hindley, J. R., (eds.), To H. B.
Curry - Essays on the Combinatory Logic, Calculus and Formal-
ism, pages 579–606. Academic Press, London, UK.

REFERENCES 197

[Dowek, 2000] Dowek, Gilles. (2000). Automated theorem proving in first-order
logic modulo: on the difference between type theory and set the-
ory. In Cafferra, R and Salzer, G., (eds.), Automated Deduction in
Classical and Non-Classical Logics, number 1761 in LNAI, pages
1–22. Springer-Verlag.

[Dowek et al, 1998] Dowek, Gilles, Hardin, Thérèse and Kirchner, Claude. (April
1998). Theorem proving modulo. Rapport de Recherche 3400,
Institut National de Recherche en Informatique et en Automatique.

[Duncan & Lowe, 1997] Duncan, David and Lowe, Helen. (1997). Xbarnacle: Making
theorem provers more accessible. In McCune, W., (ed.), Proceed-
ings of the 14th International Conference on Automated Deduction
(CADE), LNAI 1249, Townsville, North Queensland, Australia.
Springer.

[Eisinger & Ohlbach, 1986] Eisinger, Norbert and Ohlbach, Hans-Jürgen. (1986). The Mark-
graf Karl Refutation procedure (MKRP). In Siekmann, Jörg, (ed.),
Proceedings of the 8th International Conference on Automated De-
duction (CADE), LNCS , pages 681–682. Springer.

[Elliott & Pfenning, 1991] Elliott, Conal and Pfenning, Frank. (1991). A semi-functional
implementation of a higher-order logic programming language. In
Lee, Peter, (ed.), Topics in Advanced Language Implementation,
pages 289–325. MIT Press.

[Fiedler, 2001] Fiedler, Armin. (2001). User-adaptive Proof Explanation. Phd
thesis, Naturwissenschaftlich-Technische Fakultät I, Universität
des Saarlandes, Saarbrücken, Germany.

[Fitting, 1972] Fitting, Melvin. (1972). Tableau methods of proof for modal log-
ics. Notre Dame Journal of Formal Logic, XIII:237–247.

[Fraenkel, 1922] Fraenkel, Adolf Abraham. (1922). Zu den Grundlagen der Cantor-
Zermeloschen Mengenlehre. Mathematische Annalen, 86:230–
237.

[Franke & Kohlhase, 1999] Franke, Andreas and Kohlhase, Michael. (1999). Mbase: Rep-
resenting mathematical knowledge in a relational data base. In
CALCULEMUS 99, Systems for Integrated Computation and De-
duction. Elsevier.

[Frege, 1879] Frege, Gottlob, (1879). Begriffsschrift, eine der arithmetischen
nachgebildete Formelsprache des reinen Denkens, Halle, Ger-
many, Reprint in: Begriffsschrift und andere Aufsätze, J. An-
gelelli, editor, Hildesheim. See also in Logiktexte, Karel Berka,
Lothar Kreiser, editors, pages 82-112.

[Ganzinger & Waldmann, 1996] Ganzinger, Harald and Waldmann, Uwe. (1996). Theorem prov-
ing in cancellative abelian monoids. In McRobbie, M. A. and

198 REFERENCES

Slaney, J. K., (eds.), Proceedings of the 13th International Con-
ference on Automated Deduction (CADE), volume 1104 of LNCS
, pages 388–402, New Brunswick, N. Y. Springer.

[Gentzen, 1969] Gentzen, Gerhard. (1969). The Collected Papers of Gerhard
Gentzen (1934-1938). Edited by Szabo, M. E., North Holland,
Amsterdam.

[Giunchiglia & Villafiorita, 1996] Giunchiglia, Fausto and Villafiorita, Adolfo. (1996). ABSFOL: A
proof checker with abstraction. In McRobbie, M. A. and Slaney,
J. K., (eds.), Proceedings of the 13th International Conference
on Automated Deduction (CADE), volume 1104 of LNCS , pages
136–140, New Brunswick, N. Y. Springer.

[Gödel, 1930] Gödel, Kurt. (1930). Die Vollständigkeit der Axiome des logischen
Funktionenkalküls. Monatshefte für Mathematik, 37:349–360.

[Gödel, 1931] Gödel, Kurt. (1931). Über formal entscheidbare Sätze der Prin-
cipia Mathematica und verwandter Systeme I. Monatshefte für
Mathematic und Physik, 38:173–198.

[Gödel, 1940] Gödel, Kurt. (1940). The Consistency of the Axiom of Choice and
of the Generalized Continuum-Hypothesis with the Axioms of Set
Theory. Annals of Mathematics Studies, 3.

[Gordon et al, 1979] Gordon, M. J., Milner, A. J. and Wadsworth, C. P. (1979). Edin-
burgh LCF – A mechanised logic of computation. Springer Verlag,
LNCS 78.

[Graham, 1994] Graham, P. (1994). On Lisp – Advanced Techniques for Common
Lisp. Prentice Hall.

[Grundy, 1991] Grundy, Jim. (1991). Window inference in the HOL system. In
Proceedings of the International Workshop on the HOL Theorem
Proving System and its Applications.

[Grundy, 1992] Grundy, Jim. (1992). A window inference tool for refinement. In
Proceedings of the Fifth Refinement Workshop, Workshop in Com-
puter Science, pages 230–254. Springer Verlag.

[Harper et al, 1987] Harper, Robert, Honsell, Furio and Plotkin, Gordon. (June 22-25
1987). A framework for defining logics. In Proceedings of the
Symposium on Logic in Computer Science (LICS ’87), pages 194–
204, Ithaca, New York, USA. IEEE Computer Society Press.

[Heisel et al, 1991] Heisel, M., Reif, W. and Stephan, W. (1991). Formal software
development in the KIV system. In Lowry, M. R. and McCartney,
R. D., (eds.), Automating Software Design, pages 547–574. AAAI
Press, Menlo Park, CA.

[Henkin, 1950] Henkin, Leon. (1950). Completeness in the theory of types. The
Journal of Symbolic Logic, 15:81–91.

REFERENCES 199

[Herbrand, 1930] Herbrand, Jacques. (1930). Recherches sur la théorie de la
démonstration. Sci. Lett. Varsovie, Classes III sci. math. phys.,
33.

[Heyting, 1956] Heyting, Arend. (1956). Intuitionism. North-Holland Publishing
Company, Amsterdam, Netherlands, (1971) third edition.

[Hilbert, 1930] Hilbert, David. (1930). Probleme der Grundlegung der Mathe-
matik. Mathematische Annalen, 102:1–9.

[Hindley & Seldin, 1986] Hindley, J. Roger and Seldin, Jonathan P. (1986). Introduction to
Combinators and λ-Calculus, volume 1 of London Mathematical
Society Student Texts. Cambridge University Press.

[Horacek, 1999] Horacek, Helmut. (1999). Presenting proofs in a human-oriented
way. In Ganzinger, H., (ed.), Proceedings of the 16th International
Conference on Automated Deduction (CADE), LNAI 1632, pages
142–156, Trento, Italy. Springer.

[Huang, 1994] Huang, Xiaorong. (1994). Human Oriented Proof Presentation: A
Reconstructive Approach. Phd thesis, FB 14 Informatik, Saarland
University.

[Huang, 1996] Huang, Xiaorong. (1996). Human Oriented Proof Presentation:
A Reconstructive Approach. Number 112 in DISKI. Infix, Sankt
Augustin, Germany, Also published as [Huang, 1994].

[Hübner, 2003] Hübner, Malte. (2003). Supporting interactive theorem proving in
CORE. Diploma thesis, FR 6.2 Informatik, Saarland University.

[Hughes & Cresswell, 1996] Hughes, G. E. and Cresswell, M. J. (1996). A New Introduction
to Modal Logic. Routledge, 11 New Fetter Lane, London, EC4P
4EE.

[Hutter & Sengler, 1996] Hutter, Dieter and Sengler, Claus. (1996). INKA - The Next Gen-
eration. In McRobbie, M. A. and Slaney, J. K., (eds.), Proceed-
ings of the 13th International Conference on Automated Deduction
(CADE), volume 1104 of LNCS , New Brunswick, N. Y. Springer.

[Hutter, 1990] Hutter, Dieter. (July 1990). Guiding induction proofs. In Stickel,
Mark E., (ed.), Proceedings 10th International Conference on Au-
tomated Deduction (CADE), volume 449 of LNAI . Springer Ver-
lag.

[Hutter, 1994] Hutter, Dieter. (1994). Synthesizing induction orderings for ex-
istence proofs. In Bundy, Alan, (ed.), Proceedings of the 12th In-
ternational Conference on Automated Deduction (CADE), LNAI ,
pages 29–41, Nancy, France. Springer.

[Hutter, 1997a] Hutter, Dieter. (1997a). Colouring terms to control equational
reasoning. Journal of Automated Reasoning, 18:399–442.

200 REFERENCES

[Hutter, 1997b] Hutter, Dieter. (1997b). Equalizing terms by difference reduction
techniques. In Kirchner, H. and Gramlich, B., (eds.), Workshop
on Strategies in Automated Deduction, Townsville, Australia, 14th

International Conference on Automated Deduction, CADE-14.

[Hutter, 2000a] Hutter, Dieter. (2000a). Annotated reasoning. Annals of Mathe-
matics and Artificial Intelligence (AMAI), Special Issue on Strate-
gies in Automated Deduction.

[Hutter, 2000b] Hutter, Dieter. (2000b). Management of change in structured veri-
fication. In Proceedings of Automated Software Engineering, ASE-
2000. IEEE.

[Issar, 1990] Issar, Sunil. (1990). Path-focused duplication: A search procedure
for general matings. In The American Association for Artificial
Intelligence (AAAI), (ed.), Proceedings of the 8th National Con-
ference on Artificial Intelligence (AAAI 90), Vol. 1, July 29 - Au-
gust 3, 1990: Proceedings 5V Vol. 1, pages 221–226, Menlo Park
- Cambridge - London. AAAI Press / MIT Press.

[Jamnik et al, 1997] Jamnik, Mateja, Bundy, Alan and Green, Ian. (1997). Automation
of diagrammatic reasoning. In Pollack, M. E., (ed.), Proceedings
of the 17th International Joint Conference on Artificial Intelligence
(IJCAI), August, volume 1, pages 528–533, San Mateo, CA. Mor-
gan Kaufmann Publisher.

[Jamnik et al, 1999] Jamnik, Mateja, Bundy, Alan and Green, Ian. (1999). On au-
tomating diagrammatic proofs of arithmetic arguments. Journal of
Logic, Language and Information, 8(3):297–321.

[Kaplan, 1978] Kaplan, D. (1978). Logic of demonstratives. Journal of Philo-
sophical Logic, 8.

[Kerber, 1992] Kerber, Manfred. (1992). On the Representation of Mathemat-
ical Concepts and their Translation into First Order Logic. Phd
thesis, Fachbereich Informatik, Universität Kaiserslautern, Kaiser-
slautern, Germany.

[Kerber et al, 1998] Kerber, Manfred, Kohlhase, Michael and Sorge, Volker. (1998).
Integrating computer algebra into proof planning. Journal of Au-
tomated Reasoning, 21(3):327–355.

[Kohlhase, 2000] Kohlhase, Michael. (2000). OMDOC: Towards an Internet Stan-
dard for the Administration, Distribution and Teaching of mathe-
matical Knowledge. In Campbell, John A. and Roanes-Lozano,
Eugenio, (eds.), Proceedings of Artificial intelligence and sym-
bolic computation (AISC-00), volume 1930 of LNCS. Springer.

[Letz & Stenz, 1999] Letz, Reinhold and Stenz, Gernot. (1999). Model elimination and
connection tableau procedures. In Robinson, A. and Voronkov,

REFERENCES 201

A., (eds.), Handbook of Automated Reasoning, chapter 28, pages
2015–2114. Elsevier.

[Lüth et al, 1999] Lüth, Christoph, Tej, H, Kolyang and Krieg-Brückner, Bernd.
(1999). TAS and IsaWin: Tools for transformational program de-
velopment and theorem proving. In Proceedings of the European
Joint Conference on Theory and Practice of Software (ETAPS’99),
number 1577 in LNCS. Springer.

[Mantel & Kreitz, 1998] Mantel, Heiko and Kreitz, Christoph. (October 1998). A Ma-
trix Characterization for MELL. In Dix, J., del Cerro, L. Farinas
and Furbach, U., (eds.), Proceedings of Logics in Artificial Intel-
ligence, European Workshop, JELIA ’98, LNAI 1489, pages 169–
183, Dagstuhl, Germany. Springer.

[McCarthy, 1993] McCarthy, Jon. (August 28 - September 3 1993). Notes on for-
malizing context. In Artificial intelligence (IJCAI-93) : 13th In-
ternational Joint Conference on Artificial Intelligence, volume 2,
Chambéry, France. Morgan Kaufman.

[McCune, 1990] McCune, William. (July 1990). OTTER 2.0. In Stickel,
Mark E., (ed.), Proceedings 10th International Conference on Au-
tomated Deduction (CADE), volume 449 of LNAI , pages 663–664.
Springer Verlag.

[Meier, 2000] Meier, Andreas. (2000). System Description: TRAMP: Transfor-
mation of Machine-Found Proofs into Natural Deduction Proofs at
the Assertion Level. volume 1831 of Lecture notes in computer
science, pages 460–464. Springer.

[Meier, 2003] Meier, Andreas. (2003). Proof Planning with Multiple Strategies.
Phd thesis, FR 6.2 Informatik, Saarland University, forthcoming.

[Melis & Meier, 2000] Melis, Erica and Meier, Andreas. (2000). Proof Planning with
Multiple Strategies. In Loyd, J., Dahl, V., Furbach, U., Kerber,
M., Lau, K., Palamidessi, C., Pereira, L.M. and Stuckey, Y. Sagi-
vand P., (eds.), First International Conference on Computational
Logic (CL-2000), volume 1861 of LNAI, pages 644–659, London,
UK. Springer-Verlag.

[Melis et al, 2001] Melis, Erica, Andrès, Eric, Büdenberger, Jochen, Frischauf,
Adrian, Goguadze, George, Libbrecht, Paul, Pollet, Martin and
Ullrich, Carsten. (2001). Activemath: A generic and adaptive
web-based learning environment. Artifical Intelligence in Educa-
tion, 12(4).

[Miller, 1983] Miller, Dale A. (1983). Proofs in Higher-Order Logic. Phd thesis,
Carnegie Mellon University.

202 REFERENCES

[Murray & Rosenthal, 1987a] Murray, Neil V. and Rosenthal, Erik. (April 1987). Inference with
path resolution and semantic graphs. Journal of the Association of
Computing Machinery, 34(2):225–254.

[Murray & Rosenthal, 1987b] Murray, Neil V. and Rosenthal, Erik. (July 12-17 1987). Path
dissolution: A strongly complete inference rule. In Proceedings of
the 6th National Conference on Artificial Intelligence, pages 161–
166, Seattle, WA.

[Nelson & Oppen, 1977] Nelson, Greg and Oppen, Derek C. (October 1977). Fast decision
algorithms based on union and find. In Proceedings of the 18th

Annual Symposium on Foundations of Computer Science, pages
114–119. American Mathematical Society.

[Newell et al, 1957] Newell, Allen, Shaw, Cliff and Simon, Herbert. (1957). Empirical
explorations with the logic theory machine: A case study in heuris-
tics. In Proceedings of the 1957 Western Joint Computer Confer-
ence, New York, USA. McGraw-Hill. reprinted in Computer and
Thoughts, Edward A. Feigenbaum, Julian Eldman, editors, new
York, USA, 1963.

[Nipkow, 1991] Nipkow, Tobias. (1991). Higher-order critical pairs. In Proceed-
ings of the 6th IEEE Symposium on Logic in Computer Science,
pages 342–349. IEEE Computer Society Press.

[Nonnengart, 1995] Nonnengart, Andreas. (1995). A Resolution-Based Calculus for
Temporal Logics. Phd thesis, Computer Science Department, Saar-
land University.

[Norvig, 1992] Norvig, Peter. (1992). Paradigms of Artificial Intelligence Pro-
gramming: Case Studies in Common Lisp. Morgan Kaufmann.

[Otten & Kreitz, 1996] Otten, Jens and Kreitz, Christoph. (1996). T-string unification:
Unifying prefixes in non-classical proof methods. In Miglioli, P.,
Moscato, U., Mundici, D. and Ornaghi, M., (eds.), Proceedings
of 5th Workshop on theorem Proving with analytic tableaux and
related methods, LNAI 1071, pages 244–260. Springer Verlag.

[Paulson, 1989] Paulson, Lawrence C. (1989). The foundation of a generic theorem
prover. Journal of Automated Reasoning, 5:363–397.

[Pfenning & Elliott, 1988] Pfenning, Frank and Elliott, Conal. (1988). Higher order abstract
syntax. In Proceedings of the ACM SIGPLAN ’88 Symposium on
Language Design and Implementation, pages 199–208.

[Pfenning & Schürmann, 1999] Pfenning, Frank and Schürmann, Carsten. (1999). System descrip-
tion: Twelf - a meta-logical framework for deductive systems. In
Ganzinger, H., (ed.), Proceedings of the 16th International Confer-
ence on Automated Deduction (CADE), LNAI 1632, pages 202–
206, Trento, Italy. Springer.

REFERENCES 203

[Pfenning, 1987] Pfenning, Frank. (1987). Proof Transformation in Higher-Order
Logic. Phd thesis, Carnegie Mellon University.

[Pfenning, 1996] Pfenning, Frank. (April 22-24 1996). The practice of logical
frameworks. In Trees in Algebra and Programming - CAAP’96,
21st International Colloquium, volume 1059 of LNCS, pages 119–
134, Linköping, Sweden.

[Plaisted, 1981] Plaisted, David. (1981). Theorem Proving with Abstractions.
Journal of Artificial Intelligence, 16:47–108.

[Prehofer, 1994] Prehofer, Christian. (1994). Higher-order narrowing. In Proceed-
ings of the 9th Annual IEEE Symposium on Logic in Computer
Science, pages 507–516, Paris, France. IEEE Computer Society
Press.

[Reynolds, 1993] Reynolds, J. C. (1993). The discoveries of continuations. Lisp and
Symbolic Computation, 6.

[Riazanov & Voronkov, 2001] Riazanov, Alexander and Voronkov, Andrei. (2001). Vampire 1.1
(system description). In Goré, Rajeev, Leitsch, Alexander and Nip-
kow, Tobias, (eds.), Automated Reasoning, volume 2083 of LNAI,
pages 376–380.

[Robinson & Staples, 1993] Robinson, Peter D. and Staples, John. (1993). Formalizing a hier-
archical structure of practical mathematical reasoning. Journal of
Logic and Computation, 3(1):47–61.

[Robinson, 1965] Robinson, John Alan. (1965). A machine oriented logic based on
the resolution principle. Journal of the ACM, 12:23–41.

[Schairer et al, 2001] Schairer, Axel, Autexier, Serge and Hutter, Dieter. (June 2001).
A pragmatic approach to reuse in tactical theorem proving. In
Bonacina, Maria-Paola and Gramlich, Bernhard, (eds.), Proceed-
ings of the 4th Workshop on Strategies in Automated Deduction
(STRATEGIES’01), volume TR DII 10/01, pages 75–86. Univer-
sitá degli studi di Siena.

[Schütte, 1977] Schütte, Kurt. (1977). Proof Theory. (Originaltitel: Beweisthe-
orie), volume 255 of Die Grundlehren der mathematischen Wis-
senschaften. Springer, Berlin;Heidelberg;New York.

[Siekmann, 1987] Siekmann, Jörg. (1987). Unification Theory. Journal of Symbolic
Computation.

[Siekmann et al, 1999] Siekmann, Jörg, Hess, Stephan, Benzmüller, Christoph,
Cheikhrouhou, Lassaad, Fiedler, Armin, Horacek, Helmut,
Kohlhase, Michael, Konrad, Karsten, Meier, Andreas, Melis,
Erica, Pollet, Martin and Sorge, Volker. (1999). LΩUI: Lovely
Ωmega user interface. Formal Aspects of Computing, 11:326–342.

204 REFERENCES

[Siekmann et al, 2002a] Siekmann, Jörg, Benzmüller, Christoph, Brezhnev, Vladimir,
Cheikhrouhou, Lassaad, Fiedler, Armin, Franke, Andreas, Ho-
racek, Helmut, Kohlhase, Michael, Meier, Andreas, Melis, Erica,
Moschner, Markus, Normann, Immanuel, Pollet, Martin, Sorge,
Volker, Ullrich, Carsten, Wirth, Claus-Peter and Zimmer, Jürgen.
(2002a). Proof development with OMEGA. In Voronkov, An-
drei, (ed.), Proceedings of the 19th International Conference on
Automated Deduction (CADE-19), number 2392 in LNAI, pages
144–149, Copenhagen, Denmark. Springer.

[Siekmann et al, 2002b] Siekmann, Jörg, Benzmüller, Christoph, Fiedler, Armin, Meier,
Andreas and Pollet, Martin. (2002b). Proof development with
OMEGA:

√
2 is irrational. In Baaz, Matthias and Voronkov, An-

drei, (eds.), Logic for Programming, Artificial Intelligence, and
Reasoning, 9th International Conference, LPAR 2002, number
2514 in LNAI, pages 367–387. Springer.

[Smullyan, 1968] Smullyan, R. M. (1968). First-Order Logic, volume 43 of Ergeb-
nisse der Mathematik. Springer-Verlag, Berlin.

[Snyder & Gallier, 1989] Snyder, Wayne and Gallier, Jean. (July/August 1989). Higher-
order unification revisited: Complete sets of transformations. Jour-
nal of Symbolic Computation, 8(2):101–140.

[Staples, 1995] Staples, Mark. (September 1995). Window inference in isabelle.
In Paulson, Larry, (ed.), Proceedings of the First Isabelle Users
Workshop, Cambridge, UK.

[Stuber, 1996] Stuber, Jürgen. (1996). Superposition theorem proving for abelian
groups represented as integer modules. In Ganzinger, Harald,
(ed.), Rewriting techniques and applications: Intern. conference
(RTA-7): New Brunswick, NJ, USA, July 27-30, 1996; proceed-
ings, volume LNCS 1103, pages 33–47S., Berlin. Springer.

[Tarski, 1936] Tarski, Alfred. (1936). Der Wahrheitsbegriff in den formalisierten
Sprachen. Studia Philosophia, 1:261–405.

[Turing, 1937] Turing, Alan. (1937). On computable numbers, with an appli-
cation to the Entscheidungsproblem. Proceedings of the London
Mathematical Society, 42:230–265. 43:544-546.

[Von Neumann, 1928] Von Neumann, John. (1928). Die Axiomatisierung der Megen-
lehre. Mathematische Zeitschrift, 27:669–752.

[Wallen, 1990] Wallen, Lincoln. (1990). Automated proof search in non-classical
logics: efficient matrix proof methods for modal and intuitionistic
logics. MIT Press series in artificial intelligence.

[Walther, 1987] Walther, Christoph. (1987). A many-sorted calculus based on
resolution and paramodulation. Research notes in artificial intel-
ligence. Morgan Kaufmann.

REFERENCES 205

[Weidenbach, 1999] Weidenbach, Christoph. (1999). SPASS: Combining Superposi-
tion, Sorts and Splitting. In Robinson, A. and Voronkov, A., (eds.),
Handbook of Automated Reasoning. Elsevier.

[Whitehead & Russell, 1910] Whitehead, Alfred North and Russell, Bertrand. (1910). Principia
Mathematica, volume I. Cambridge University Press, Cambridge,
Great Britain, second edition.

[Wolfram, 1993] Wolfram, David A. (1993). The Clausal Theory of Types, volume 2
of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press.

[Zermelo, 1908] Zermelo, Ernst. (1908). Untersuchungen über die Grundlagen der
Mengenlehre. Mathematische Annalen, 65:261–281.

Appendix

Appendix A

Completeness Proof

Theorem 5.4.1 (Completeness) Let ϕ be an L-formula, Q an initial indexed formula tree for ϕ+, let
R be an initial FVIF-tree for Q, and Id the empty substitution. If ϕ is L-valid then there is a CORE

derivation
[Q, IdBL R] 7−→∗ [Q′,σBL

+
−True]

Proof. The completeness proof relies on the soundness and completeness results of Theorem 4.12.1
which is due to [Wallen, 1990, Andrews, 1989, Pfenning, 1987]. The proof sketch is as follows: from
Theorem 4.12.1 we assume that we have guessed the right multiplicities for γ- and ν-type nodes, the
right combined substitution σ, the necessary introductions of Leibniz’ equality, extensionality intro-
ductions, boolean ζ-expansions, cut, and have moved any � and ♦-quantifier in front of literal nodes
using the structural modal permutation rule. All paths in the resulting FVIF-tree RP are (proposi-
tionally) L-unsatisfiable. That is from [Q, IdBL R] we can derive a proof state [QP,σBL RP]. In a
second phase we have to prove that from [QP,σBL RP] we can derive [QP,σBL

+
−True]. The problem

[QP,σBL RP] is essentially propositional, since all necessary substitutions have already been applied.
In this second phase we prove that the combination of the contraction rule, resolution replacement
rule application, and simplification allows us to simulate the path resolution rule from [Murray &
Rosenthal, 1987a]. Since path resolution is complete the CORE calculus is also complete. However,
while path resolution derives an empty subgraph, we show that in CORE we obtain the final proof
state [QP,σBL

+
−True].

The first part of the proof is straightforward since the CORE calculus provides all necessary rules

-- to eliminate positive equivalences and equalities on booleans using the boolean ζ-expansion
rule,

-- to increase the multiplicities, apply substitutions, introduce Leibniz’ equalities and extensional-
ities like in [Pfenning, 1987] by combining the CORE extensionality introduction rule with the
cut rule (cf. Lemma 4.9.1), and

-- to safely group all modal quantifiers that occur in the FVIF-tree around the literal nodes using
the structural modal permutation rule (Definition 5.3.9).

Thus, we can derive [QP,σBL RP] and it remains to prove in the second phase that the combina-
tion of the contraction rule, resolution replacement rule application, and simplification allows us to
simulate path resolution. In order to motivate this we compare how path resolution transforms the

209

210 APPENDIX A. COMPLETENESS PROOF

c : α

β
Γv1

v1 β
Γv2

v2 β
Γv3

β
Γvn

vn u
Γu

β
Γb1

b1 β
Γb2

b2 β
Γb3

β

bm a
Γa

c : α

β
Γv1

v1 β
Γv2

v2 β
Γv3

β
Γvn

vn u
Γu

α
Γb1

β

b1 β

b2 β

β

v′1

v′2 β

bm

β

v′n−1 v′n

β
Γb′1

b′1 β
Γb′2

b′2 β
Γb′3

β

b′m a′
Γa′

Figure A.1: Subtree before and after path resolution on the connectable nodes u and a.

FVIF-tree to how the CORE calculus rule transform the FVIF-tree. Consider the subtree of the actual
overall FVIF-tree in which a replacement rule shall be applied. This situation is shown on the left
hand side of Figure A.1.

In this subtree u and a are connectable subtrees. The path resolution step derives the resolvent

β
b1 β

b2 β
β

v′1
v′2 β

bm

β
v′n−1 v′n

which is then α-inserted on the top-node c, which results in the new subtree viewed on the right
hand side of Figure A.1.

In Figure 5.5 on page 76 the respective replacement rule is applied in the same situation. Com-
paring the resulting trees it is obvious that the subtree containing a is transformed into the resolvent
obtained during path resolution, except for three things:firstly, there is an additional subtree Proved.
Secondly, the α-related Γbi are preserved, while in the resolvent of path resolution they are removed.
Thirdly, the old version of this subtree is missing in comparison to the situation after path resolution.

We now show that the FVIF-tree obtained by path resolution can be obtained by replacement rule
application in combination with weakening, contraction, and simplification.

-- Removing Context: The Γ parts in the subtree are the α-related parts to the b i that remain in

211

c : α

β
Γv1

v1 β
Γv2

v2 β
Γv3

β
Γvn

vn u
Γu

β
Γb1

b1 β
Γb2

b2 β
Γb3

β

bm a
Γa

c : α

β
Γv1

v1 β
Γv2

v2 β
Γv3

β
Γvn

vn u
Γu

α

β
Γb1

b1 β
Γb2

b2 β
Γb3

β

v′1

v′2 β

bm

β

v′n Proved

β
Γb′1

b′1 β
Γb′2

b′2 β
Γb′3

β

b′m a′
Γa′

Figure A.2: Structures of the FVIF-tree before and after copying and the rule application.

place during the replacement rule application. Those can be removed by applying the weaken-
ing rule (cf. Definition 5.3.6) on the connecting α-type nodes.

-- Removing Proved: The subtree Proved can be deleted by applying the simplification rule on
the right-hand side of the last β-type node that governs Proved. If there is no such β-type node,
then the whole subtree rooted on c can be simplified to Proved by the simplification rule.

-- Missing subtree: The subtree containing a can be preserved by applying the contraction rule on
its root node (immediately below c), and applying the replacement rule afterwards. This results
in the subtree shown on the right-hand side of Figure A.2.

The rest of the proof consists on proving formally that indeed the resolvent obtained by path
resolution has the shape as sketched before.

In [Murray & Rosenthal, 1987a] the resolvent of a path resolution step is given by a function WS
computing the weak split graph. This function takes a subgraph H that contains only the connection
partners and the whole graph G. The definition of the function WS(H,G) is given in Figure A.3
(p. 212).

Translating the notation used in [Murray & Rosenthal, 1987a] to our setting, the so-called c-
arcs (X ,Y)c correspond to nodes of primary type α and the so-called d-arcs (X ,Y)d to nodes of
primary type β. Finally, HX denotes the restriction of H to the nodes contained in X . Furthermore,
the disjunction ∨ used to connect the graphs corresponds to nodes of primary type β. Exploiting this
relationship allows to define WS for FVIF-trees. We call this function WSt and it takes as argument
the set C of nodes that form the connections and a FVIF-tree R. Note that for sake of completeness
we also define it for nodes of primary type ν and π.

212 APPENDIX A. COMPLETENESS PROOF

WS(/0,G) = G
WS(G,G) = /0
WS(H,G) = WS(HX ,X)∨WS(HY ,Y) if G = (X ,Y)d
WS(H,G) = WS(HX ,X)∨WS(HY ,Y) if G = (X ,Y)c and

H meets both X and Y
WS(H,G) = WS(H,X) if G = (X ,Y)c and

H is contained in X

Figure A.3: The Function WS that computes the weak split graph.

WSt(/0,R) = R
WSt({R},Rp) = Provedp

WSt(C,βp(R1,R2)) = βp(WSt(CR1 ,R1),WSt(CR2 ,R2))

WSt(C,αp(R1,R2)) = βp(WSt(CR1 ,R1),WSt(CR2 ,R2)) if C meets
both R1 and R2

WSt(C,αp(R1,R2))) = WSt(C,R1) if C is cont-
ained in R1

WSt(C,νp(R)) = νp(WSt(C,R))
WSt(C,πp(R)) = πp(WSt(C,R))

where νp(R) = Proved if R = Proved, and otherwise νp(R) = νp(R), and analogously for πp.
Furthermore βp(R,R′) is defined as follows:

βp(R,R′) =

Provedp if R = R′ = Proved
R if R′ = Proved
R′ if R = Proved
βp(R,R′) otherwise

It is easy to see that applying WSt on the connecting α-type node c in the original FVIF-tree in
Figure A.1 with respect to the connection u and a results in the following FVIF-tree:

β
β

v1 β
v2 β

vn

β
b1 β

b2 β
bm

Obviously this resolvent computed by WSt is equivalent to the resolvent presented before, which
concludes the proof. ut

Appendix B

Sample CORE Window Proofs

B.1 Proof of po→o(ao∧bo)⇒ p(b∧a)

The initial proof node for the positive formula (po→o(ao∧bo)⇒ p(b∧a))+ is

Label WPState Window Justification/Abstraction/Refinement

L0 WPS1 ` po→o(ao∧bo)⇒ p(b∧a)

In order to ease readability, we agree to omit in the presentation of that proof the necessary Adapt-
Window-Proof-State-justifications. The idea for the proof of that theorem is to use the formula a∧b =
b∧a as a lemma to reduce p(b∧a) to p(a∧b), and subsequently use the negative occurrence of that
formula to finish the proof.

The lemma is introduced by window cut, which transforms the FVIF-tree into

(((a∧b) = (b∧a))+

︸ ︷︷ ︸
L10

∨(p(a∧b)⇒ p(b∧a)+)︸ ︷︷ ︸
L20

)∧ (((a∧b) = (b∧a))−︸ ︷︷ ︸
L30

⇒ (p(a∧b)⇒ p(b∧a)+)︸ ︷︷ ︸
L40

)

Thereby the window structure is inherited to the new occurrences of the old goal formula (L20,L40),
and new windows are introduced for the occurrences of the lemma, on the one hand where it is a new
assumption (L30), and on the other hand where it is an additional alternative proof obligation (L10).
This results in the window proof nodes

Label WPState Window Justification/Abstraction/Refinement

L10 WPS2 ` ((a∧b) = (b∧a))+

L20 WPS2 ` p(a∧b)⇒ p(b∧a)+

L30 WPS2 ` ((a∧b) = (b∧a))−

L40 WPS2 ` p(a∧b)⇒ p(b∧a)+

We now consider the two cases ((a∧ b) = (b∧ a)∨ p(a∧ b)⇒ p(b∧ a))+ (L10 and L20) and
((a∧b) = (b∧a)⇒ p(a∧b)⇒ p(b∧a))+ (L30 and L40):

1. L10 and L20: first we remove the proof node L20 by weakening. On L10 we proceed by applying
the ζ-expansion rule, which results in

213

214 APPENDIX B. SAMPLE CORE WINDOW PROOFS

Label WPState Window Justification/Abstraction/Refinement

L11 WPS3 ` ((a ∧ b) ⇒ (b∧a)︸ ︷︷ ︸
(A)

) ∧ ((b ∧ a) ⇒

(a∧b)︸ ︷︷ ︸
(B)

)+

There we obtain for both (A) and (B) the replacement rules a−→ 〈True+〉 and b−→ 〈True+〉
from the logical context of those subformulas. The successive application of these rules results
in

Label WPState Window Justification/Abstraction/Refinement

L15 WPS4 ` (a∧b)⇒ (True∧True)∧((b∧a)⇒
(True∧True))+

which can be simplified to

Label WPState Window Justification/Abstraction/Refinement

L26 WPS4 ` True

2. L30 and L40: we use the rewriting replacement rule a∧b→ 〈b∧a〉 from L30 on L40 to obtain

Label WPState Window Justification/Abstraction/Refinement

L41 WPS ` p(a∧b)⇒ p(a∧b)+

For the positive subformula p(a ∧ b) we obtain the expected resolution replacement rule
p(a∧b)−→ 〈True+〉, whose application reduces L41 to

Label WPState Window Justification/Abstraction/Refinement

L42 WPS ` p(a∧b)⇒ True+

After closing the subwindows and a final simplification we obtain

Label WPState Window Justification/Abstraction/Refinement

L6 WPS14 ` True+

Using the representation of CORE window proofs from Chapter 8 the complete CORE window
proof is then:

Label WPState Window Justification/Abstraction/Refinement

L0 WPS1 ` po→o(ao∧bo)⇒ p(b∧a) Cut(a∧b = b∧a) : L10,L20,L30,L40

We use (a∧b) = (b∧a) as a lemma which we introduce by Cut.

B.2. PROOF OF ∀Po→o . λX . P(P(P(X))) = λX . P(X) 215

1. Subgoal ((a∧b) = (b∧a)∨ p(a∧b)⇒ p(b∧a))+

L10 WPS2 ` (a∧b) = (b∧a)+ ζ-Expansion : L11
L11 WPS3 ` ((a∧b)⇒ (b∧a))∧((b∧a)⇒ (a∧b))+ Apply (b→ 〈True〉) : L12
L12 WPS4 ` (a∧ b) ⇒ (True∧ a)∧ ((b∧ a) ⇒ (a∧

b))+
Apply (a→ 〈True〉) : L13

L13 WPS4 ` (a∧b)⇒ (True∧True)∧((b∧a)⇒ (a∧
b))+

Apply (a→ 〈True〉) : L14

L14 WPS4 ` (a ∧ b) ⇒ (True ∧ True) ∧ ((b ∧ a) ⇒
(True∧b))+

Apply (b→ 〈True〉) : L15

L15 WPS4 ` (a ∧ b) ⇒ (True ∧ True) ∧ ((b ∧ a) ⇒
(True∧True))+

Simplify : L26

L26 WPS4 ` True Close : L5
L20 WPS ` p(a∧b)⇒ p(b∧a)+ Weakening

2. Subgoal ((a∧b) = (b∧a)⇒ p(a∧b)⇒ p(b∧a))+

L30 WPS2 ` ((a∧b) = (b∧a))− Close : L5
L40 WPS2 ` p(a∧b)⇒ p(b∧a)+ Apply (a∧b→ 〈b∧a〉) : L41
L41 WPS ` p(a∧b)⇒ p(a∧b)+ Apply (p(a∧b)→ 〈True〉) : L42
L42 WPS ` p(a∧b)⇒ True+ Simplify : L43
L43 WPS ` True+ Close : L5
L5 WPS ` True∧ ((a∧b) = (b∧a))⇒ True+ Simplify : L6
L6 WPS14 ` True+ Axiom

B.2 Proof of ∀po→o . λx . p(p(p(x))) = λx . p(x)

The proof of the theorem ∀po→o . λx . p(p(p(x))) = λx . p(x) is performed by case analysis over
x = True, and the values of p(True) and p(False). The axioms usd in that proof are given on p. 169.
The initial window proof node is

Label WPState Window Justification/Abstraction/Refinement

L0 ` λx p(p(p(x))) = λx p(x)+

By using the lemma (11.4) we obtain

Label WPState Window Justification/Abstraction/Refinement

L1 ` p(p(p(x))) = p(x)+

We perform the first case analysis over x = True by using the cut rule which results in

Label WPState Window Justification/Abstraction/Refinement

L20 ` x = True−

L30 ` p(p(p(x))) = p(x)+

L40 ` ¬(x = True)−

L50 ` p(p(p(x))) = p(x)+

216 APPENDIX B. SAMPLE CORE WINDOW PROOFS

Thereby L20 and L30 occur in the same logical context as well as L40 and L50.

-- Case L20, L30: to L30 we apply the rewriting replacement rule x→ 〈True〉 obtained from L20
and obtain

Label WPState Window Justification/Abstraction/Refinement

L31 ` p(p(p(True))) = p(True)+

On that proof node we perform a case analysis over p(True) = True using the cut rule, which
results in

Label WPState Window Justification/Abstraction/Refinement

L320 ` p(True) = True−

L330 ` p(p(p(True))) = p(True)+

L340 ` ¬(p(True) = True)−

L350 ` p(p(p(True))) = p(True)+

As before, on the one hand L320 and L330 occur in a same logical context, and on the other hand
L340 and L350. Note for both subgoals L20 is also in the same logical context:

1. Case L320 and L330: to L330 we apply four times the rewriting replacement rule from L320,
which reduces L330 to

Label WPState Window Justification/Abstraction/Refinement

L331 ` True = True+

2. Case L340 and L350: to L340 we apply the resolution replacement rule resulting from (11.3)
to obtain

Label WPState Window Justification/Abstraction/Refinement

L341 ` p(True) = False−

From that proof node we obtain the rewriting replacement rule p(True)→ 〈False〉, which
we apply to L350 and obtain:

Label WPState Window Justification/Abstraction/Refinement

L351 ` p(p(False)) = False

For that proof node we perform the final case analysis over p(False) = True using the cut
rule, which results in

Label WPState Window Justification/Abstraction/Refinement

L3520 ` p(False) = True−

L3530 ` p(p(False)) = False
L3531 ` False = False+

L3532 ` True+

B.2. PROOF OF ∀Po→o . λX . P(P(P(X))) = λX . P(X) 217

(a) Case L3520, L3530: by application of the rewriting replacement rules from L3520 and
L341 on L3530 we obtain

Label WPState Window Justification/Abstraction/Refinement

L3531 ` False = False+

which is trivially provable by simplification.
(b) Case L3540, L3550: by application of (11.3) on L3540 we obtain

Label WPState Window Justification/Abstraction/Refinement

L3541 ` p(False) = False−

To L3550 we apply twice the rewriting replacement rule from L3541 to obtain

Label WPState Window Justification/Abstraction/Refinement

L3551 ` False = False+

which is also trivially provable by simplification.

-- Case L40, L50: the proof of this case is analogously to the other by using the resolution replace-
ment rule from (11.3), and case analysis over p(False) = True and p(True) = True.

The complete CORE window proof for that theorem is presented below:

Label WPState Window Justification/Abstraction/Refinement

L0 ` λx p(p(p(x))) = λx p(x)+ Apply (11.4) : L1
L1 ` p(p(p(x))) = p(x)+ Cut(x = True) : L20,L30,L40,L50

1. Subgoal (x = True⇒ p(p(p(x))) = p(x))+

L20 ` x = True−

L30 ` p(p(p(x))) = p(x)+ Apply (L20) : L31
L31 ` p(p(p(True))) = p(True)+ Cut(p(True) = True) :

L320,L330,L340,L350

A. Subgoal (p(True) = True⇒ p(p(p(True))) = p(True))+

L320 ` p(True) = True− Close : L36
L330 ` p(p(p(True))) = p(True)+ 4×Apply (L320) : L331
L331 ` True = True+ Simplify : L332
L332 ` True+ Close : L36

B. Subgoal (¬(p(True) = True)⇒ p(p(p(True))) = p(True))+

L340 ` ¬(p(True) = True)− Apply (11.3) : L341
L341 ` p(True) = False− Close : L36
L350 ` p(p(p(True))) = p(True)+ Apply (L341) : L351
L351 ` p(p(False)) = False Cut(p(False) = True) :

L3520,L3530,L3540,L3550

218 APPENDIX B. SAMPLE CORE WINDOW PROOFS

i. Subgoal (p(False) = True⇒ p(p(False)) = False)+

L3520 ` p(False) = True−

L3530 ` p(p(False)) = False+ Apply (L3520,L341) : L3531
L3531 ` False = False+ Simplify : L3532
L3532 ` True+

ii. Subgoal (¬(p(False) = True)⇒ p(p(False)) = False)+

L3540 ` ¬(p(False) = True)− Apply (11.3) : L3541
L3541 ` p(False) = False−

L3550 ` p(p(False)) = False 2×Apply (L3541) : L3551
L3551 ` False = False+ Simplify : L3552
L3552 ` True+

L356 ` (p(False) = True⇒ True)∧(p(False) =
False⇒ True)+

Simplify : L357

L357 ` True+ Close : L36
L36 ` (p(True) = True⇒ True)∧ (p(True) =

False⇒ True)+
Simplify : L37

L37 ` True+

2. Subgoal (x = True∨ p(p(p(x))) = p(x))+

L40 ` ¬(x = True)− Apply (11.3) : L41
L41 ` x = False−

L50 ` p(p(p(x))) = p(x)+ Apply (L41) : L51
L51 ` p(p(p(False))) = p(False)+ Cut(p(False) = True) :

L520,L530,L540,L550

A. Subgoal (p(False) = True⇒ p(p(p(False))) = p(False))+

L520 ` ¬(p(False) = True)− Apply (11.3) : L521
L521 ` p(False) = False− Close : L56
L530 ` p(p(p(False))) = p(False)+ 4×Apply (L520) : L531
L531 ` False = False+ Simplify : L532
L532 ` True+ Close : L56

B. Subgoal (p(False) = True⇒ p(p(p(False))) = p(False))+

L540 ` p(False) = True Close : L56
L550 ` p(p(p(False))) = p(False)+ Apply (L540) : L551
L551 ` p(p(True)) = True+ Cut(p(True) = True) :

L5520,L5530,L5540,L5550

i. Subgoal (p(True) = True⇒ p(p(True)) = True+

L5520 ` p(True) = True− Close : L556
L5530 ` p(p(True)) = True 2×Apply (L5520) : L5531
L5531 ` True = True+ Simplify : L5532
L5532 ` True+ Close : L556

B.3. PROOF OF THE IRRATIONALITY OF SQUARE ROOT OF 2 219

ii. Subgoal (¬(p(True) = True)⇒ p(p(True)) = True+

L5540 ` ¬(p(True) = True)− Apply (11.3) : L5541
L5541 ` p(True) = False− Close : L556
L5550 ` p(p(True)) = True Apply (L5541,L540) : L5551
L5551 ` True = True+ Simplify : L5552
L5552 ` True+ Close : L556
L556 ` (p(True) = True⇒ True)∧ (p(True) =

False⇒ True)+
Simplify : L557

L557 ` True+ Close : L56
L56 ` (p(False) = False ⇒ True) ∧

(p(False) = True⇒ True)+
Simplify : L57

L57 ` True+

L6 ` (x = True ⇒ True) ∧ (x = False) ⇒
True)+

Simplify : L7

L7 ` True+ Axiom

B.3 Proof of the Irrationality of Square Root of 2

The theorem is ¬(rat(
√

2)) and the initial window proof node for the positive formula ¬(rat(
√

2))+

is

Label WPState Window Justification/Abstraction/Refinement

L0 ` ¬(rat(
√

2))+

The axioms used in that proof are given on p. 171. By focusing on rat(
√

2) in the initial window
and subsequent application of (11.23) we obtain the following 4 windows, which are all in the same
logical context:

Label WPState Window Justification/Abstraction/Refinement

L20 ` nat(n)−

L30 ` nat(m)−

L40 ` m×
√

2 = n−

L50 ` nat(D)∧ cd(n,m,D)+

To L40 we apply (11.27), (11.26), and (11.28) which results in the two window proof nodes:

Label WPState Window Justification/Abstraction/Refinement

L430 ` 2≥ 0+

L440 ` (m2×2 = n2)−

The proof of L430 is achieved by using (11.22), (11.15), and (11.16). To L440 we apply the con-
traction rule to duplicate that formula which results in

Label WPState Window Justification/Abstraction/Refinement

L450 ` (m2×2 = n2)−

220 APPENDIX B. SAMPLE CORE WINDOW PROOFS

L460 ` (m2×2 = n2)−

To L450 we apply (11.30), which results in the subgoals

Label WPState Window Justification/Abstraction/Refinement

L451 ` nat(n2)+

L452 ` nat(m2)+

L453 ` even(n2)−

The proofs for L451 and L452 are trivial using L20, L30, and (11.19). To L453 we apply (11.31) and
subsequently (11.30) to obtain

Label WPState Window Justification/Abstraction/Refinement

L4550 ` nat(n)+

L4560 ` nat(m′)−

L4570 ` n = m′×2−

Again, L4550 and L4560 are trivially proven by L20 and L30. Then we can apply L4570 to L60 which
results in

Label WPState Window Justification/Abstraction/Refinement

L461 ` (m2×2 = (m′×2)2)−

After application of (11.26), (11.25), and (11.24) this proof node is reduced to

Label WPState Window Justification/Abstraction/Refinement

L4640 ` ¬(2 = 0)+

L4650 ` (m2 = m
′2×2)−

The proof node L4640 is trivially proven by (11.22), (11.21), and (11.18). To L4650 we ap-
ply (11.30), to obtain

Label WPState Window Justification/Abstraction/Refinement

L4660 ` nat(m2)+

L4670 ` nat(m
′2)+

L4680 ` even(m2)−

After application of (11.31) on L4680 and further application of (11.30) we obtain

Label WPState Window Justification/Abstraction/Refinement

L4660 ` nat(m2)+

L4670 ` nat(m
′2)+

L4682 ` nat(m)+

L4683 ` nat(m′′)+

L4684 ` m = m′′×2−

B.3. PROOF OF THE IRRATIONALITY OF SQUARE ROOT OF 2 221

Again, the proof nodes L4660, L4670, L4682, and L4683 are trivially provable. The complete CORE

window proof for the irrationality of
√

2 is presented below. Note that, analogously to the detailed
presentation above, we have omitted the detailed proofs for the trivial subgoals that arise during re-
placement rule application.

Label WPState Window Justification/Abstraction/Refinement

L0 ` ¬(rat(
√

2))+ Subwindow : L1

L1 ` rat(
√

2)− Apply (11.23) : L20,L30,L40,L50
L20 ` nat(n)−

L30 ` nat(m)−

A. Alternatives nat(n)−,nat(m)−,m×
√

2 = n−

L40 ` m×
√

2 = n− Apply (11.27) : L41

L41 ` ((m×
√

2)2 = n2)− Apply (11.26) : L42

L42 ` (m2×
√

2
2

= n2)− Apply (11.28) : L430,L440
L430 ` 2≥ 0+ . . .
L440 ` (m2×2 = n2)− Contraction : L450,L460

i. First alternative (m2×2 = n2)−

L450 ` (m2×2 = n2)− Apply (11.30) : L451,L452,L453
L451 ` nat(n2)+

L452 ` nat(m2)+

L453 ` even(n2)− Apply (11.31) : L454
L454 ` even(n)− Apply (11.30) : L4550,L4560,L4570
L4550 ` nat(n)+ Apply (L20) :
L4560 ` nat(m′)−

L4570 ` n = m′×2−

ii. Second alternative (m2×2 = n2)−

L460 ` (m2×2 = n2)− Apply (L4570) : L461
L461 ` (m2×2 = (m′×2)2)− Apply (11.26) : L462

L462 ` (m2×2 = m
′2×22)− Apply (11.25) : L463

L463 ` (m2×2 = (m
′2×2)×2)− Apply (11.24) : L4640,L4650

L4640 ` ¬(2 = 0)−

L4650 ` (m2 = m
′2×2)− Apply (11.30) : L4660,L4670,L4680

L4660 ` nat(m2)+

L4670 ` nat(m
′2)+

L4680 ` even(m2)− Apply (11.31) : L4681
L4681 ` even(m)− Apply (11.30) : L4682,L4683
L4682 ` nat(m)+

L4683 ` nat(m′′)+

L4684 ` m = m′′×2−

B. Alternative nat(D)∧ cd(n,m,D)+

L50 ` nat(D)∧ cd(n,m,D)+ Subwindow : L51,L52

222 APPENDIX B. SAMPLE CORE WINDOW PROOFS

L51 ` nat(D)+ Apply ([m′/Q1]) : L510
L510 ` nat(2)+ Apply(11.22),2× (11.18),(11.17)
L52 ` cd(n,m,D)+ Apply (11.29) : L53
L53 ` (nat(n) ∧ nat(m) ∧ nat(D) ∧ nat(Q1) ∧

nat(Q2)∧n = Q1×D∧m = Q2×D)+
Apply ([m′/Q1,2/D],L4670)

L54 ` (nat(n) ∧ nat(m) ∧ nat(2) ∧ nat(m′) ∧
nat(Q2)∧True∧m = Q2×2)+

Apply ([m′′/Q2],L4684) : L55

L55 ` (nat(n) ∧ nat(m) ∧ nat(2) ∧ nat(m′) ∧
nat(m′′)∧True∧True)+

Apply (L20,L30,L4660,L4683) : L56

L56 ` (True ∧ True ∧ nat(2) ∧ True ∧ True ∧
True∧True)+

Simplify : L57

L57 ` nat(2)+ Apply(11.22),2× (11.18),(11.17)

B.4 Proof of ∃x .�(�ϕ(x)∨ψ(y))⇔�∃x . (�ϕ(x)∨ψ(y))

The initial window proof state for the theorem is

Label WPState Window Justification/Abstraction/Refinement

L0 ` ∃x �(�ϕ(x) ∨ ψ(y)) ⇔
�∃x′ (�ϕ(x′)∨ψ(y))

Note that the quantifiers are still inside the formula, as they are below the equivalence and thus
cannot be eliminated. However, the expansion of the positive equivalence by the ζ-expansion rule
removes the quantifiers. The complete CORE window proof is then:

Label WPState Window Justification/Abstraction/Refinement

L0 ` ∃x �(�ϕ(x) ∨ ψ(y)) ⇔
�∃x′ (�ϕ(x′)∨ψ(y))

ζ-Expansion : L01

L01 ` �(�ϕ(x)∨ψ(y))⇒�(�ϕ(X ′)∨ψ(y))
�(�ϕ(x′)∨ψ(y))⇒�(�ϕ(X)∨ψ(y))

Subwindow : L1,L2

A. Subgoal �P(�P′ϕ(x)∨ψ(y))⇒�c(�c′ϕ(X ′)∨ψ(y))

L1 ` �P(�P′ϕ(x) ∨ ψ(y)) ⇒ �c(�c′ϕ(X ′) ∨
ψ(y))

Instantiate([c/P,c′/P′,x/X ′]) : L11

L11 ` �c(�c′ϕ(x) ∨ ψ(y)) ⇒ �c(�c′ϕ(x) ∨
ψ(y))

ϕ(x)→ 〈True〉 : L12

L12 ` �c(�c′ϕ(x) ∨ ψ(y)) ⇒ �c(�c′True ∨
ψ(y))

ψ(y)→ 〈True〉 : L13

L13 ` �c(�c′ϕ(x) ∨ ψ(y)) ⇒ �c(�c′True ∨
True)

Simplify : L14

L14 ` True Close : L3

B. Subgoal �P′′(�P′′′ϕ(x′)∨ψ(y))⇒�c′′(�c′′′ϕ(x′)∨ψ(y))

L2 ` �P′′(�P′′′ϕ(x′) ∨ ψ(y)) ⇒
�c′′(�c′′′ϕ(X)∨ψ(y))

Instantiate([c′′/P′′,c′′′/P′′′,x′/X]) :
L21

L21 ` �c′′(�c′′′ϕ(x′) ∨ ψ(y)) ⇒
�c′′(�c′′′ϕ(x′)∨ψ(y))

ϕ(x′)→ 〈True〉 : L22

B.4. PROOF OF ∃X .�(�ϕ(X)∨ψ(Y))⇔�∃X . (�ϕ(X)∨ψ(Y)) 223

L22 ` �c′′(�c′′′ϕ(x′) ∨ ψ(y)) ⇒
�c′′(�c′′′True∨ψ(y))

ψ(y)→ 〈True〉 : L23

L23 ` �c′′(�c′′′ϕ(x′) ∨ ψ(y)) ⇒
�c′′(�c′′′True∨True)

Simplify : L24

L24 ` True Close : L3
L3 ` True∧True Simplify : L4
L4 ` True Axiom

Index

[Q,σBL R], CORE proof state, 70
[Q,σBL (R, f)], CORE window proof state, 101
[Q;σ;(R, f)BL S], CORE sequent proof state,

155
abstraction

vertical, 6
abstraction term, 20
accessibility relation, 35
active window, 99
α, uniform type, 26
α-equality

free variable indexed formula tree, 64
α-related, 67
α0, secondary type, 31
α1, secondary type, 31
annotated substructure

insertion, 101
replacement, 100

application term, 20
assertion level, 8
assertion level rule, 8

backtracking, 146
β, uniform type, 26
β-decomposition rule, 151, 151

admissibility, 152
β-related, 67
β-terms, 74
β0, secondary type, 31
β1, secondary type, 31
βη normal form, 20
boolean ζ-expansion

indexed formula tree, 46
boolean ζ-expansion

free variable indexed formula tree, 83
boolean ζ-expansion rule, 83

CFOL, see classical first-order logic
CFOML, see classical first-order modal logic
CHOL, see classical higher-order logic
classical first-order logic

semantics, see classical higher-order logic
syntax, 22

classical first-order modal logic
semantics, 23
syntax, 22

classical higher-order logic
semantics, 24
syntax, 22

classical propositional logic
semantics, see classical higher-order logic
syntax, 22

classical propositional modal logic
semantics, see classical first-order modal

logic
syntax, 22

completeness
indexed formula tree, 55, 59

complexity
replacement rule, 147

connectable free variable indexed formula trees,
69

connection
free variable indexed formula tree, 66
indexed formula tree, 52

constant term, 20
contraction

free variable indexed formula tree, 72
contraction rule, 72
convex set of subtrees, 56

maximality, 56
CORE

completeness, 91
system, 7

CORE calculus rule
boolean ζ-expansion, 83
contraction, 72
cut, 89
extensionality, 82
increase of multiplicities, 85
instantiation, 85
Leibniz’ equality, 80
resolution replacement rule application, 75
rewriting replacement rule application, 86
safeness, 70

225

226 INDEX

simplification, 78
soundness, 70
structural modal permutation, 73
weakening, 73

CORE proof state, 70
CORE sequent calculus

α-decomposition rule, 158
axiom rule, 156
β-decomposition rule, 159
contraction rule, 158
cut x rule, 163
extensionality introduction rule, 162
instantiation rule, 160
Leibniz’ equality introduction rule, 162
multiplicity increase rule, 161
ν-decomposition rule, 160
π-decomposition rule, 160
weakening rule, 157
ζ-expansion rule, 162

CORE sequent proof state, 155
CORE window calculus rule

close subwindow, 102
create subwindow, 101, 102
window axiom, 103
window contraction, 103
window structural modal permutation, 106
window weakening, 105

CORE window calculus rule, 101
CPL, see classical propositional logic
CPML, see classical propositional modal logic
cut

free variable indexed formula tree, 89
indexed formula tree, 50

cut rule, 89

deduction modulo, 163
δ, uniform type, 26
δ-variable, 26
δ0, secondary type, 31
derivational expansion, 138
derivational hierarchy, 133, 138
directed justification sequence, HPDS, 138
dom, 20

Eigenvariable, 26
ε, uniform type, 27
expansion

derivational, 138
representational, 139

extensionality
free variable indexed formula tree, 82
indexed formula tree, 44

extensionality rule, 82

filter, 148
function, 148

flex-flex constraints, insertion of, 54
formula

prefixed, 65
free variable indexed formula tree

α-equality, 64
boolean ζ-expansion, 83
connectable subtrees, 69
connection, 66
contraction, 72
cut, 89
disproved, 65
extensionality, 82
initial, 62
instantiation, 85
Leibniz’ equality, 80
logical context, 67
modal prefix, 64
multiplicity increase, 85
paths, 66
proved, 65
replacement rule, 67
resolution replacement rule application, 75
rewriting replacement rule application, 86
simplification, 78
structural modal permutation, 73
substructure, 98
weakening, 68
weakeninga, 73

γ, uniform type, 26
γ-variable, 26
γ0, secondary type, 31

hierarchical proof datastructure (HPDS), 123,
139

hierarchy
derivational, 133, 138
in proof, 132
representational, 135

INDEX 227

HPDS, 139
backtracking, 142
complete, 140
directed justification sequence, 138
inference rule, 137
justification, 137
proof graph, 138
proof node role, 137
pure CORE proof, 140
representational abstraction application, 137
representational refinement application, 137
window proof node, 137

increase of multiplicities rule, 85
indexed formula tree

binding new variables, 49
boolean ζ-expansion, 46
completeness, 55, 59
connection, 52
convex set of subtrees, 56
cut, 50
extensionality, 44
initial, 31
Leibniz equality, 40
L-substitution application, 47
L-unsatisfiable path, 52
multiplicity increase, 57
safeness, 39
soundness, 39, 55, 59

inference rule, HPDS, 137
initial free variable indexed formula tree, 62
initial indexed formula tree, 31
inserting flex-flex constraints, 54
instantiation

free variable indexed formula tree, 85
instantiation rule, 85
inter-level proof step, 6
intra-level proof step, 5

justification
categories, 141, 141

justification, HPDS, 137

L-admissible substitution, 37
λ-term, 20
Leibniz equality

indexed formula tree, 40
Leibniz’ equality

free variable indexed formula tree, 80
Leibniz’ equality rule, 80
lemma

application, 5
speculation, 5

L-formula , 25
L-model , 25
local variable, 42
local variable, δ-, 42
local variable, γ-, 42
logical context, 67
L-satisfiable , 25, 27

formula, 25
signed formula, 27

L-satisfiable path
free variable indexed formula tree, 67

L-substitution, 37
L-substitution application

indexed formula tree, 47
L-unsatisfiable path

indexed formula tree, 52
L-unsatisfiable path

free variable indexed formula tree, 67
L-valid , 25

many sorted type, 19
modal assignment, 35
modal ordering (≺M), 36
modal prefix, 34

of free variable indexed formula tree, 64
semantics, 35

modal substitution, 36
multiplicity increase

free variable indexed formula tree, 85
indexed formula tree, 57

node conditions, 70
ν, uniform type, 26
ν0, secondary type, 31

occurrence, 21
oracle proof step, 134
ordering

modal, 36
quantifier, 34
structural, 33

paths

228 INDEX

free variable indexed formula tree, 66
indexed formula tree, 39
proof, 140

π, uniform type, 26
π0, secondary type, 31
prefixed formula, 65
proof

hierarchy, 132
paths, 140

proof abstraction, 6
proof construction step, 4
proof graph, HPDS, 138
proof history, 4
proof node, HPDS,

seewindow proof node137
proof refinement, 6
proof status, 7
proof step

inter-level, 6
intra-level, 5

proof step expansion, 134

quantifier ordering (≺Q), 34

reasoning domain, 9, 119
of window proof state, 119

reduction relation (CL), 37
refinement

vertical, 6
replacement rule, 67

resolution
admissible, 70

rewriting
admissible, 70

replacement rule complexity, 147
representational abstraction, 6, 120
representational abstraction application, HPDS,

137
representational expansion, 139
representational hierarchy, 135
representational refinement, 6, 121
representational refinement application, HPDS,

137
resolution replacement application rule, 75
resolution replacement rule

admissible, 70
resolution replacement rule application

free variable indexed formula tree, 75
rewriting replacement application rule, 86
rewriting replacement rule

admissible, 70
rewriting replacement rule application

free variable indexed formula tree, 86
role of proof nodes, 137
role of window proof node, 131

safeness
indexed formula tree, 39

secondary type, 31
α0, 31
α1, 31
β0, 31
β1, 31
δ0, 31
γ0, 31
ν0, 31
π0, 31

semantics, 23
classical first-order logic (CFOL), see clas-

sical higher-order logic
classical first-order modal logic (CFOML),

23
classical higher-order logic (CHOL), 24
classical propositional logic (CPL), see clas-

sical higher-order logic
classical propositional modal logic (CPML),

see classical first-order modal logic
modal prefix, 35

sequent, 154
sequent calculus, 154
sequential active windows, 155
sequentiality property, 151, 155
simplification

free variable indexed formula tree, 78
simplification rule, 78
soundness

indexed formula tree, 39, 55, 59
structural modal permutation

free variable indexed formula tree, 73
structural modal permutation rule, 73
structural ordering (≺Q), 33
substitution, 20

domain, 20
L-admissible, 37

INDEX 229

modal, 36
substructure

isomorphic, 107
of a free variable indexed formula tree, 98
replacement, 98

subterm occurrence, 21
Subtermst , 21
syntax, 22

classical first-order logic (CFOL), 22
classical first-order modal logic (CFOML),

22
classical higher-order logic (CHOL), 22
classical propositional logic (CPL), 22
classical propositional modal logic (CPML),

22

tactic language, 145
theorem proving modulo, 163
type, 19

uniform type
α,β,γ,δ,ν,π, 26
ε, ζ, 27

variable
δ-, 26
γ-, 26

variable term, 20
vertical

abstraction, 6
refinement, 6

weakening
annotated free variable indexed formula tree,

104
free variable indexed formula tree, 68, 73

weakening rule, 73
window, 99

active, 99
axiom rule, 103
β-decomposition rule, 154
boolean ζ-expansion rule, 112
close subwindow rule, 102
contraction rule, 103
create subwindow rule, 101, 102
cut, 130
cut rule, 114
extensionality introduction rule, 111

hierarchy, 99
instantiation rule, 112, 128
Leibniz’ equality introduction rule, 110
multiplicity increase rule, 113
proof node, (HPDS), 137
proof state, 100
resolution replacement rule application, 129
resolution replacement rule application rule,

108
rewriting replacement rule application, 129
simplification rule, 109
structural modal permutation rule, 106
weakening rule, 105

window proof node, 124
role, 131

window structure, 99

ζ, uniform type, 27

