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Zusammenfassung

Diese Arbeit untersucht die formalen Grundlagen von Merkmalsbeschreibungen, die
partielle Beschreibungen von abstrakten, record-dhnlichen Objekten darstellen. Die
Beschreibungen verwenden funktionale Attribute genannt Merkmale. Merkmalshe-
schreibungen tauchten erstmals in den spaten siebziger Jahren im Zusammenhang mit
sogenannten constraint-basierten Grammatikformalismen auf [Kay79, KB82, Shi86].
In neuerer Zeit wurde die Verwendung von Merkmalsbeschreibungen in Constraint-
Programmiersprachen vorgeschlagen und untersucht [AKN86, AKN89, AKP93, AK-
PS94, ST94]. Eine der wesentlichen Operationen auf Merkmalsbeschreibungen ist die
Unifikation, deren Eingabe zwei Merkmalsbeschreibungen sind und die entweder fehl-
schlagt, falls die Merkmalsbeschreibungen inkompatibel sind, oder als Ergebnis eine

Merkmalsbeschreibung liefert, die die Information der Eingaben kombiniert.

Eine der zentralen Fragestellungen, mit der sich die Literatur iiber Merkmalsbeschrei-
bungen beschéftigt, ist die Definition einer geeigneten Semantik fiir Merkmalsbe-
schreibungen als auch fiir die Unifikationsoperation. Es gab viele und auch sehr diver-
gierende Formalisierungen von Merkmalsbeschreibungen. Diese Arbeit vertritt hierzu
einen klaren Standpunkt. Aufbauend auf den Arbeiten von Johnson [Joh88] und
Smolka [Smo88| betrachten wir Merkmalsbeschreibungen (und deren Erweiterungen)
als Formeln in geeigneten Sprachen erster Ordnung. Die Semantik von Merkmals-
beschreibungen wird {iber eine Merkmalstheorie (also eine Menge von geschlossenen
Formeln (Sétzen)) definiert. Die Unifikationsoperation wird als ein Erfiillbarkeitstest

fiir konjunktiv verkniipfte Merkmalsbeschreibungen interpretiert.

Wir untersuchen in dieser Arbeit verschiedene in der Literatur eingefithrte Merk-
malsbeschreibungssprachen. Fiir die Definition der entsprechenden Merkmalstheori-
en verwenden wir eine Standardmethode der Logik erster Ordnung, die jedoch erst
in jiingster Zeit auch auf Merkmalsbeschreibungen angewendet wurde [BS93a, AK-
PS94, ST94]. Wir definieren fiir eine Merkmalsbeschreibungsprache L eine Standar-
dinterpretation ¥, deren Wertebereich aus sogenannten Merkmalsbdumen besteht.

Merkmalsbaume sind Baume, deren Kanten mit Merkmalen, und deren Blatter mit
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Atomsymbolen beschriftet sind. Fiir die Merkmals- und Atomsymbole verwenden wir
ein gemeinsames, unendliches Alphabet £. Die Element von £* werden im folgenden
Pfade genannt. Die Merkmalstheorie fiir I definieren wir nun als die Menge aller
Sétze, die in Ty, giiltig sind. Diese Vorgehensweise hat den Vorteil, das sie intuitiv ist
und eine vollstandige Merkmalstheorie liefert (das heifit, fiir jeden L-Satz ¢ enthalt
die Theorie von ¥, entweder ¢ oder —¢.)

Unsere Merkmalsbeschreibungssprachen enthalten fiir jedes Symbol aus £ ein ent-
sprechendes Konstantensymbol. Die Konstantensymbole werden in den Standardin-
terpretationen als atomare Merkmalshaume interpretiert (also Merkmalshaume, die
keine Merkmale besitzen und mit einen Atomsymbol markiert sind). Im einzelnen

werden wir folgende Sprachen naher untersuchen:

FT: Die Signatur von FT enthélt ein unidres Relationssymbol atom sowie fiir jedes
Element von £ ein bindres Relationssymbol. Ein Merkmalsconstraint der Form
x fy ist in der Standardinterpretation erfiillt, falls y der Unterbaum von = unter
dem Merkmal f ist. FT wurde (in einer leicht modifizierten Form) in [BS93a,
AKPS94] eingefiihrt. Sie ist eine Basissprache fiir Merkmalsbeschreibungen in
der Hinsicht, daf alle anderen Merkmalssprachen die Ausdrucksmittel von FT

zur Verfligung stellen.

CFT: Neben den Relationssymbolen aus FT enthédlt CFT fiir jede endliche Teil-
menge {fi,...,f.} von L ein unares Relationssymbol. Ein Aritatsconstraint
z{fi,..., fa} ist in der Standardinterpretation von CFT erfiillt, falls  genau
die Merkmale {fi,..., f.} besitzt. Diese Sprache wurde (wiederum leicht mo-

difiziert) in [ST94] eingefiihrt.

In der Literatur iiber Merkmalsbescheibungsprachen wurde fiir die Sprache FT mei-
stens eine andere als die von uns verwendete Standardinterpretation betrachtet. Der
Wertebereich dieser Interpretation besteht aus sogennanten Merkmalsgraphen (das
sind Graphen, deren Kanten mit Merkmalen beschriftet sind; siehe [Smo88, Smo92]).

Die nachsten beide Sprachen verallgemeinern die Merkmalsconstraints in FT zu Un-

terbaumrelationen auf zwei verschiedene Arten:

RFT: : Die Signatur von RFT enthalt fiir jeden regularen Ausdruck L iiber dem Al-
phabeth £ ein entsprechendes bindres Relationssymbol. Ein reguléarer Pfad-
ausruck zLy ist in der Standardinterpretation von RFT erfiillt, falls y ein
Unterbaum von z unter einem Pfad p € £* ist und p in der durch L beschriebe-

nen reguldren Menge von Pfaden enthalten ist. Regulare Pfadausdriicke wurden
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in [KZ88, KM88] unter der Bezeichnung ,functional uncertainty* im Rahmen
des Grammatikformalismus LFG [KB82] eingefiihrt.

F: Neben den Konstantensymbolen enthélt die Signatur von F nur noch ein dreistelli-
ges Relationssymbol -[-]-. Ein generalisiertes Merkmalsconstraint z[y|z ist
in der Standardinterpretation von F erfiillt, falls y einen atomaren Merkmals-
baum denotiert, der mit dem Atomsybol f markiert ist, und z der Unterbaum
von z under dem Merkmal f ist. Constraints dhnlicher Art wurden in [Joh88,

Tre93] betrachtet.

Wir untersuchen in dieser Arbeit die Theorien dieser Sprachen unter den folgenden

Aspekten:

Sind Merkmalsbiume ein addquater Bereich fiir Merkmalsbeschreibungen?
Oder um etwas spezifischer zu sein, wie verhéalt sich unsere Merkmalstheorie von
FT (der Basissprache) zu der Theorie, die man erhalt wenn man die Merkmals-

grapheninterpretation von FT zugrundelegt?

Was ist die Expressivitdt dieser Sprachen?
Zum einen wollen wir hier die Sprachen untereinander vergleichen. Zum andere-
ren interessieren wir uns auch fiir die Frage, inwieweit weitere aus der Literatur

bekannte Konzepte kodierbar sind.

Welche Fragment der Merkmalstheorien sind entscheidbar?
Einige Resultate konnen der Literatur entnommen werden. So ist zum Beispiel
bekannt, dafl die existentiellen Fragmente von F, FT und CFT entscheidbar
sind. Jedoch ist nichts iiber die volle Theorie von FT und CFT bekannt, und

es gibt nur partielle Resultate fiir das existentielle Fragment von RFT.

Beitrige der Arbeit

Die Hauptresultate der Arbeit sind folgende:

e Wir zeigen, daf} die reguldren Pfadausdriicke in der Signatur von RFT in F
definierbar sind. Damit kénnen alle RFT-Formeln in eine dquivalente F-Formel
ibersetzt werden (fiir FT und CFT wurden diese Resultate bereits in [Tre93]
gezeigt). Desweitern zeigen wir, dafl wichtige in der Literatur eingefiihrte Rela-

tionen in F definierbar sind.
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Eine wichtige Klasse von Relationen, die in F kodiert werden koénnen, sind
solche, die mit Hilfe von definite Aquivalenzen definierbar sind. Definite Aqui-
valenzen wurden in [Smo93] eingefithrt. Sie dienen dazu, Relationen in der Art
und Weise zu definieren, wie es im logischen Programmieren iiblich ist [Cla78,
Smo93]. Daneben kénnen auch die von den constraint-basierten Grammatikfor-

malismen her bekannten Typsysteme in definite Aquivalenzen iibersetzt werden.

Wir stellen eine Axiomatisierung der Merkmalstheorien fiir FT und CFT auf.
Da unsere Theorien vollstindig sind, folgt daraus die Entscheidbarkeit dieser
Theorien. Desweiteren zeigen wir, dafl auch die Merkmalsgraphinterpretation
von FT ein Modell der FT-Axiomatisierung ist. Dies bedeutet, das beide Stan-

dardinterpretationen genau die gleiche Semantik fiir F'T liefern.

Wir zeigen, dafl das Erfiillbarkeitsproblem fiir Konjunktionen von reguldren
Pfadausdriicken entscheidbar ist. Dabei betrachten wir zunéchst eine Formel
als erfiillbar, falls sie in irgendeiner Interpetation von RFT erfiillbar ist (die
nicht notwendigerweise unsere Standardinterpretation sein muf}). Dies wurde
in [KM88, BBN*93] als ein offenes Problem beschrieben. Desweiteren zeigen
wir, daf} die Standardinterpretation von RFT kanonisch fiir dieses Problem ist
(das heifit, eine Konjunktion von regulidren Pfadausdriicken ist erfiillbar, falls
sie in der Standardinterpretation von RFT erfiillbar ist). Damit ist auch gezeigt,
daf} das positive existentielle Fragment der Theorie der Standardinterpretation
von RFT entscheidbar ist.
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Chapter 1

Introduction

This thesis investigates the formal foundations of feature descriptions, which are
partial descriptions, by means of functional attributes called features, of abstract
record-like objects. Feature descriptions originated in the late seventies with so-called
constraint-based grammars [Kay79, KB82, Shi86], a by now popular family of declar-
ative grammar formalisms for the description and processing of natural language.
More recently, the use of feature descriptions in constraint programming languages
has been advocated and studied [AKN86, AKN89, AKP93, AKPS94, ST94]. Fig-
ure 1.1 gives an example of a feature description. One of the main operations defined
on feature descriptions is unification, which takes two feature descriptions and yields
either a failure, if the feature descriptions contain conflicting information, or a feature

description that combines the information from both input descriptions.

One of the main problems addressed in the literature is to provide an appropriate
semantics for feature descriptions (and for various extensions of feature descriptions)

as well as for the unification operation. There have been many diverging approach-

sort 1 person
name : firstname . Kim
1. l lastname : Brown ]
home_address : z = | street : Drexel Ave.
l city : Chicago ]
office_address : =z

Figure 1.1: An example of a feature description. It can be interpreted as a person
which works at home.
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es to formalising feature descriptions (see sections 1.2 and 1.3). This thesis takes a
clear position: following [Joh88, Smo88|, we consider feature descriptions and their
extensions as formulae in specific first-order languages. The semantics for feature
descriptions is provided by a feature theory, which is a set of closed formulae (sen-
tences) having at least one model. Unification is interpreted as an operation testing
the satisfiability of conjunctions of feature descriptions.

In this thesis we will investigate several existing feature description languages. For
the definition of the corresponding feature theories we apply a standard first-order
logic method which was used only recently by [BS93a, AKPS94, ST94] in the context
of feature descriptions. Given a feature description language L, we interpret L over
the fixed domain of feature trees resulting in a first-order structure X7, (henceforth
called the standard interpretation of L). Then we take the feature theory for L to
be the set of sentences valid in ¥, (called the theory of ¥1). This approach has the
advantage that it is fairly intuitive. Furthermore, it yields a complete theory (i.e.,
for every L-sentence ¢, either ¢ or —¢ is contained in theory of ¥r).

Feature trees are trees where the edges are labelled by features and the leaves are
labelled by atoms. The labelling is functional, that is, the direct subtrees of a feature
tree are uniquely determined by the features of the edges leading to them. The names
of features and atoms are taken out of a common infinite set of labels £. Formally,
a feature tree is a pair consisting of a prefix-closed subset D of L£* together with a
total mapping A of the leaves of D (i.e., the set of elements p in D with the property
that there is no feature f such that pf is in D) into £. Examples of feature trees are
listed in Figure 1.2. The elements of £* are called paths.

Our feature description languages are first-order languages which do not contain
proper function symbols, but contain for every symbol of £ a corresponding constant
symbol. As described above, every language is associated with a standard inter-
pretation whose domain is the set of all feature trees. In this interpretation, the
constant symbols are interpreted as atomic feature trees (i.e., as feature trees hav-
ing no subtrees). In particular, we will consider the following languages (and their

corresponding standard interpretations) in this thesis:

FT: The signature of FT contains a unary predicate symbol atom, and for every
symbol in £ a binary relation symbol. A feature constraint zfy with f € L
holds in the standard interpretation of F'T iff y is the subtree of x under the
feature f, and atom(x) holds if  denotes an atomic feature tree. This language
was introduced in [BS93a, AKPS94] with minor differences and contains the
descriptional primitives used in every feature description language. Hence, we
call this language the basic feature description language.



Figure 1.2: Examples of Feature Trees.

CFT: The signature of CFT is the signature of FT extended by a unary predicate
symbol for every finite subset of £. An arity constraint z{fi,..., f,} is true
in the standard interpretation of CFT if z has exactly fi,..., f, as features
under its root. This language permits the specification of complete information
for some variable x by specifying the arity of x and the subtrees of  under
the features listed in the arity of x. As we will show, this is not possible in the
language of FT (the feature descriptions in F'T are inherently partial). CFT was
introduced in a slightly different form by [ST94] and combines the expressive
power of FT with Colmerauer’s rational tree constraint system RT for Prolog-II.

The next two languages generalise the feature constraints in F'T to subtree relations

in two different ways, providing additional expressivity:

RFT: The signature of RFT contains, for every regular expression L over the alpha-
bet L, a binary relation symbol. A regular path expression z Ly holds in the
standard interpretation of RFT if y is the subtree of x under some path p, where
p is an element of the regular set of paths denoted by L. Using this language,
it 1s now possible to specify properties of arbitrarily deep subtrees, where the
paths leading to the subtrees can be restricted by a regular expression. Regular
path expressions were introduced as “functional uncertainty” by [KZ788, KM8§]
for handling long-distance phenomena in the context of the grammar formalism

LFG [KBS82].
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F: Beside the constant symbols, the signature of F contains only a ternary relation
symbol -[-]-. A generalised feature constraint z[y|z is true in the standard
interpretation of F if y denotes an atomic feature tree and z is the subtree of x
under the feature f, where f is the label of the atomic feature tree denoted by
y. In this language, features are now first class objects (i.e., it is now possible
to quantify over features). Feature descriptions with first class features have

been considered in [Joh88, Tre93].

Note that for the basic feature description language FT, the literature has mainly
employed a different standard interpretation (see [Smo88, Smo92]). The domain of
this standard interpretation consists of feature graphs, which are directed, labelled

graphs with edges labelled by features.

To obtain a well-investigated theory for these languages, we address the following

questions in our thesis:

Are feature trees an adequate domain for feature descriptions?
More precisely, how does our feature theory for the basic feature description
language F'T relate to the theory we obtain if we use the feature graph inter-

pretation of this language?

What is the expressivity of the different languages?
Here, it is interesting both to compare the languages each other and to consider
whether the languages are expressive enough to encode additional concepts from

the literature.

Which fragments of the feature theories are decidable?
A number of results from the literature apply to this concern. For example, it
is known that the existential fragments of FT, CFT and F are decidable, and
that the full theory of F is undecidable. But there is nothing known about the
full theory of FT and CFT, and only partial results have been obtained for the
existential fragment of RFT.

Concerning the question of the expressivity of feature description languages, only mi-
nor results can be found in the literature, and they are (with a few exceptions) stated
only informally. There does not even exist a fixed definition for the expressivity of
a feature description language. Using the domain of feature trees for the interpreta-
tion of the feature description languages, however, we obtain a simple definition of
expressivity, using a standard first-order technique. The expressivity of a language L

is defined as the set of relations on feature trees that are definable by L-formulae. An
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n-ary relation R over feature trees is said to be definable in L if there is an L-formula
d(x1,. .., x,) with @q1,..., 2, as free variables such that the set of tuples of feature
trees (o41,...,0,) satisfying ¢ in the standard interpretation Tj, of L is exactly R.
Using this definition of expressivity, we follow the work of [Tre93], who showed that
the languages FT and CFT are less expressive than F. Note we can use such a simple
definition of expressivity since we interpret all the languages over the same domain
of feature trees. This is a strong indication that the approach of defining a feature
theory via a standard interpretation is fruitful and should be carried over to other

languages.

1.1 Contribution of this Thesis

The main results of the thesis are the following:

o We show that the descriptive primitives of RF'T are definable in F. Together
with the results of [Tre93], this implies that every FT-, CFT- and RFT-formula
can be translated into an equivalent F-formula. Furthermore, we show that

important additional relations considered in the literature are also definable in

F.

A particularly important class of relations are those that can be described us-
ing definite equivalences over F. Definite equivalences over arbitrary constraint
languages are introduced in [Smo93] and provide a machinery for defining all
recursive relations. Given a set R of relation symbols that are not part of the

signature of F, an equivalence
R(xy,...,2n) < D(x1,...,2,)

with R € R is called definite if D has at most zy,...,z, as free variables and

D is an element of the class of all formulae generated by the production rule
D,D" == R(ti,...,t,) | DAD" | DV D |3zD| ¢,

where ¢ denotes a F-formula. The following definition of a feature tree repre-
sentation of lists and the corresponding append relation is an example of a set

of definite equivalences:

list(z) ¢ x=nil
Vo Fy(a{l, 2} A z[2]y A 1ist(y))
app(z,y,z) < z=nilANy=z
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Vo Ju, v, v (z[1]u A z[1]u A
z[2]v A z[2]v" A app(v, y, v')),

A model of a set of definite equivalences is an interpretation of the extended
language which is a conservative extension of the standard interpretation of F
and which satisfies the equivalences. Note that a set of definite equivalences
does not necessarily define a unique model, but there always exists a least and a
greatest model (see [Smo093]). In the above example, the interpretation of 1ist
in the least model contains all representations of finite lists, whereas in the

greatest model the representations of cyclic and infinite lists are also included.

Definite equivalences are important since they allow to define relations in the
way they are defined by logic programs. A set of definite clauses P can be trans-
lated into an equivalent set of definite equivalences [Cla78, Smo93], whose least
model is the model of P defined by the operational semantics of logic program-
ming. Furthermore, type systems as used for processing modern constraint-
based grammars can be translated into definite equivalences [Bac95b]. Here,

both the least and the greatest model are viewed as the intended semantics.

In general, adding the concept of definite equivalences to a given language L
enlarges the expressivity of .. We show in this thesis that F is expressive enough
even to encode relations definable by the least model of a set of definite equiv-
alences, and, under certain conditions, also the ones definable by the greatest
model. Note that no feature description language having this expressivity was
previously known. Since most of the relations used in applications are definable
via definite equivalences, this implies that F is a universal feature description
language.

We present an axiomatisation of the theories of FT and CFT. Since our feature
theories are complete, this implies that we inherit a decision procedure for valid
FT- and CFT-formulae from predicate calculus. This is by no means trivial,

since until [BS93a], no complete and decidable feature theory was known.

Furthermore, we show that the feature graph interpretation of FT is also a
model of the FT-axiomatisation. Since all models of a complete theory are
elementarily equivalent, this implies that for the basic feature description lan-
guage F'T both the feature tree and the feature graph interpretation yield the
same theory. We will show that the theories of the feature tree interpretation
and the feature graph interpretation of CFT differ. As [ST94] stated, one can
translate every formula ¢ in Colmerauer’s rational tree constraint system RT
into a CFT-formula v such ¢ is valid in the tree interpretation of RT (the stan-
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dard interpretation of RT) iff ¢ is valid in feature tree interpretation of CFT.
This does not hold for the feature graph interpretation of CFT.

Our completeness proofs will exhibit simplification algorithms for the theories
of FT and CFT that compute for every feature description an equivalent solved
form from which the solutions of the description can be read off easily. For a
closed feature description the solved form is either T (which means that the
description is valid) or L (which means that the description is invalid). For a
feature description with free variables the solved form is L if and only if the
description is unsatisfiable. As a by-product, we can use the existence of the
solved form to investigate the properties of the theories. Thus, we can show

that FT is really less expressive than CF'T, which is also a new result.

These results are partially published in [BS93a] and [Bac95a).

We show that the satisfiability problem for conjunctions of regular path expres-
sions is decidable (where we consider a formula satisfiable if it is satisfiable in
some interpretation of RFT, not necessarily our standard feature tree interpre-
tation). This problem has remained open for a long time. Previously, there
were only a partial positive and a negative result for this problem. Kaplan
and Maxwell [KM88] showed that this problem is decidable, provided that a
certain acyclicity condition is met. Baader et al. [BBN*93] showed that this
problem becomes undecidable if we add unrestricted negation. It has, however,
remained an open problem as to whether satisfiability of conjunctions of regular
path expressions is decidable in the absence of additional conditions (such as
acyclicity). We will show that this is indeed decidable, and furthermore, that
the feature tree model of RFT is canonical for satisfiability (i.e., a conjunction
of regular path expressions is satisfiable if it is satisfiable in the standard model
of RFT). This implies that the positive existential fragment of the theory of
the standard interpretation of RFT is decidable.

Even for the fragment of non-cyclic formulae, our algorithm is an improvement
over the algorithm given in [KM88] since it allows for more flexible control in
delaying the evaluation of complex regular path expressions. As [KM88] stated,
delaying the evaluation of regular path expressions is an important method of

gaining efficiency.

This result is partially published in [Bac94].
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Overview

Chapter 2 defines the domain of feature trees and some basic relations and functions
on feature trees. We then define the first-order languages F, FT, CFT and RFT,
and introduce the standard interpretations of these languages and the corresponding
substructures consisting only of the rational feature trees. Chapter 3 investigates
the expressivity of our universal feature description language F. According to our
definition of expressivity, we present for every n-ary relation R over feature trees,
which is encodable in F, a formula ¢(zy,...,2,) (called explicit definition for R)
whose denotation in the standard interpretation is R. Interestingly, we can use the
same definitions if we restrict the relations to the set of rational trees and replace
the standard interpretation by its substructure consisting only of the rational feature
trees. Chapter 4 presents axiomatisations of the theories of the standard interpreta-
tion of FT and CFT and proves their completeness. We show that the feature graph
interpretation of FT is also a model of the axiomatisation of the theory of FT. Fur-
thermore, we show that FT is really less expressive than CFT. Chapter 5 shows that
the satisfiability problem for conjunction of regular path expressions is decidable.
Furthermore, we show that the feature tree interpretation of RFT is canonical for
satisfiability (i.e., a conjunction of regular path expressions of satisfiable if and only
if its is satisfiable in the feature tree interpretation). Thus, the positive existential
fragment of the theory of RFT is decidable.

1.2 Feature Descriptions in Constraint Program-

ming

Feature descriptions are used in several constraint programming languages, where the
main representatives are the languages LIFE [AKP93, AK93, MAK90], which is a con-
straint logic programming language with functions and inheritance, and Oz [HSW93,
HSW95, Smo94a, Smo94c, Smo94b, Smo94d], which is a higher-order object-oriented
concurrent constraint programming language. Others languages using feature de-

scriptions are Le Fun [AKLN87, AKN89] and Login [AKNS6].

The logical sublanguages of both LIFE and Oz are strongly influenced by the con-
straint logic programming scheme of Jaffar and Lassez [JL87]. In this scheme, Prolog’s
first-order constructor terms are replaced by a constraint system (i.e., a constraint
language together with a class of interpretations), and the unification operation of
Prolog is replaced by a satisfiability test of conjunctions of formulae in the constraint

language. Hohfeld and Smolka [HS88| generalise the constraint logic programming
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scheme to definite specifications over arbitrary constraint languages. If the constraint
language is closed under conjunction and renaming of the variables, then both the

operational and declarative semantics can be defined in a uniform way.

Oz is also influenced by Saraswat’s concurrent constraint programming scheme [SR90,
Sar91]. To illustrate the principle of this scheme, we define concurrent agents to be
expressions of the form

if ¢ then © else v,

where ¢, ¥ and ¢’ are formulae in the constraint language. ¢ is called the guard of
the agent. The agents live in a context, which itself is just another formula ¢ of the
constraint language. For reducing an agent in some context one has to test whether
the context entails or disentails the guard in the underlying constraint system. A
formula ¢ entails a formula ¢ if in every interpretation of the constraint system,
every valuation satisfying § also satisfies ¢. If the context § entails the guard ¢ of the
above agent, then v is conjoined to the context. If § disentails ¢ (i.e., entails =),
then @' is conjoined to the context. Otherwise, the agent is suspended. It will be

reawoken if the evaluation of other agents changes the context.

The main motivation for using feature descriptions in these languages is that they
provide the notion of a record, familiar from programming languages such as Pas-
cal, as a basic datatype, in a natural and flexible way. LIFE uses open records
(i.e., records whose arity is not fixed), whereas Oz uses closed records with fixed
arity. This is also reflected by the fact that the basic constraint language of LIFE
is similar to FT, whereas Oz uses CFT as basic constraint language. Oz also in-
corporates extensions of CFT, but the evaluation of these additional constraints is
delayed until enough information has been gathered to transform these constraints
into corresponding CFT-constraints. Besides the satisfiability test on conjunctions of
constraints (which is delayed in the case of Oz for efficiency reasons), the entailment

test is another important operation used in these languages.

The flexibility of feature descriptions arises from the fact that they allow for partial
descriptions. A good example for this flexibility is the language CFT, which combines
the expressivity of FT and RT. The following examples are taken from [ST94]. Given
an RT-formula o

x = point(y, z),

we can translate o into the following equivalent CFT-formula:
x sort point AN x{sort, 1,2} Az 1l yAz 2 z.

But CFT has more expressive power than RT. It is possible to express within CFT
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that a record has some feature without specifying others. A description of the form
x colour y

just states that x has a colour feature, but it does not disallow other features such as
shape, size or position. If the language has a finite signature, the description above

can be defined in RT by a disjunction of the form
= circle(...,y,...) Vo = triangle(...,y,...) V...

enumerating all constructors for which a colour feature is appropriate. But the
computational behaviour of this disjunction is much worse than that of the single
constraint = colour y. In the case of an infinite signature (which we consider here),
such a single feature constraint is not definable in RT (since it would correspond to

an infinite disjunction).

Related Work

Historically, the formal foundation for feature descriptions in constraint programming
languages started with the work of Hassan Ait-Kaci [AK86], who introduced the -
term calculus. 1-terms are equivalence classes of feature descriptions that are closed
under consistent variable renaming. Later, [Smo92| considered feature descriptions as
formulae in a first-order language and introduced feature graphs as an interpretation
for feature descriptions which is canonical for satisfiability (i.e., a feature description
is satisfiable if it is satisfiable in the feature graph interpretation). He also provided

a translation of Ait-Kaci -terms into his language.

The languages FT and CFT were introduced in [AKPS94] and [ST94], respectively.
Each defined the corresponding feature theory via an axiomatisation which is very
similar to the axiomatisation of the standard interpretation of the language as pre-
sented in this thesis (in fact, the axiomatisation in [AKPS94] was taken from [BS93al).
But they didn’t address the problem of proving completeness of their axiomatisations.
And each presented a decision procedure for fragments of these theories, namely an
incremental algorithm for testing simultaneously entailment and disentailment of pos-
sibly existentially quantified conjunctions of constraints. Since the class of interpre-
tations of these languages are determined by a theory, we can reformulate the notion
of entailment. A formula ¢ entails a formula v in some theory T' (written ¢ =7 )
iff
TR (o v).
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and disentails ¢ iff

T V(¢ — ).
Furthermore, both prove the independence property. A theory T' satisfies the inde-
pendence property if for all formulae @, ¢q, ..., ¢, in the positive existential fragment

of the language of T,

WEr V. Vb, = Ti: Er i

If a theory T satisfies the independence property, then an algorithm for testing en-
tallment and disentailment in 7' can be used for deciding the existential fragment of

T.

Since we can decide the full theories of FT and CFT, it is clear that both the entail-
ment and disentailment test can be performed using our simplification algorithms for
these theories. But the ones in [AKPS94] and [ST94] are more efficient since they
are optimised for this purpose. On the other hand, these algorithm apply only to a
very limited fragment. A simple example that is not covered by these algorithms is
to test whether

xfey A zgey

is entailed by
Fyr, y2(a fyr A zgyz Ay # y2).

This can be decided using our simplifications algorithm.

The languages FT and CFT were introduced in [AKPS94] and [ST94] with a slightly
different signature. Their signatures didn’t contain the constant symbols and the
predicate symbol atom, but used sort symbols instead. Sorts are unary predicate
symbols which are interpreted as disjoint sets. Both also considered feature trees,
which were defined slightly differently because of the different signature. Their feature
trees had labels at every node (whereas our feature trees bear label only at the leaves).
The denotation of a sort symbol A in the feature tree interpretation is exactly the
set of all feature trees having the root labelled with A. Their results can easily be

adapted for our signature.

We changed the signature in order to gain a bit more expressivity. Sorts can be
expressed in our languages by introducing a new feature sort and a new constant
symbol for each sort symbol, and by replacing a sort constraint of the form Az (in

prefix notation) with the constraint

x sort A.
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In our signature, we can express the fact that two variables share the same sort,

without knowing the sort:

x sort xs A\ atom(xg) Ay sort ys A atom(ys).

This implies that we have sorts as first class values, which is not true of the signatures

used in [AKPS94, ST94].

A complete axiomatisation for Colmerauer’s rational tree system RT over an infinite
signature was given in [Mah88]. Our completeness proofs for the languages FT and
CFT have the same overall structure used in [Mah88]. However, Maher’s proof de-
pends heavily on the structure of first-order terms, since it uses substitutions. This
is not appropriate in our case since we are using a relational language. A complete

axiomatisation for RT over a finite signature is given in [Mah88, CL89].

A different completeness proof for CFT is presented in [BT94], where Ehrenfeucht-
Fraissé games are used. The method is semantic, in showing that all models of
CFT are elementarily equivalent (i.e., make the same sentences valid), which im-
mediately implies that CFT is complete. This yields a trivial decision method for
CFT-sentences, by enumerating all consequences of CFT. Given an arbitrary sen-
tence ¢, the enumeration will produce either ¢ or —¢ since CFT is complete. On
the other hand, this thesis employs a proof theoretic method in showing explicitly
that for every sentence ¢, either ¢ or —¢ is valid in CFT. Both methods have their
merits. The proof in [BT94] is shorter (though similar problems arise in handling
inequations), while the proof in this thesis presents a decision method for validity.

Another closely related work is the one by Treinen [Tre93], who introduced the lan-
guages F' (again with sort symbols instead of constants) and EF, which is F extended
with arity constraints as used in CFT. Treinen also defined the standard interpreta-
tion of feature trees for these languages. Since arity constraints are definable in F,
the expressivity of F and EF is the same. But this is only true if we consider the full
first-order theory. For the existential fragment, these theories clearly differ. Treinen
showed that the existential fragment of the theory of the feature tree interpretation of
EF is decidable. Furthermore, he proved that the full theory of F is undecidable. In
contrast with our work, Treinen was not concerned with showing that F is a universal

feature description language.
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1.3 Feature Descriptions and Constraint-Based

Grammars

In the last decade, a family of grammar formalisms has become popular which is sub-
sumed under the term constraint-based grammar formalisms. These formalisms have
in common that they use feature descriptions for modelling linguistic entities such
as words, phrases and sentences. Some of the most widely used grammar models in
formal theoretical linguistics such as LFG [KB82], FTAG [VSJ88] and HPSG [PS87]
employ constraint-based formalisms. One of the main advantages of such formalisms
is that they provide a declarative representation of linguistic knowledge, i.e. the lin-
guistic knowledge can be stated independently from the way it is processed. This has
important impact on grammar engineering in computational linguistics. For exam-
ple, the time for developing a sizeable grammar in these formalisms is usually much
less than in other formalisms. Because of the declarative semantics of the formalism,
constraint-based grammars exhibit a higher potential for reusability (see for exam-
ple [RJ94]). For this reason, European-Union-funded projects involving grammar
development have adopted constraint-based grammar formalisms [Eur94].

The motivation for using feature descriptions as representation formalism in constraint-

based grammar formalism is stated in [PS87, page 7]:

“In all these formalisms and theories, linguistic objects are analysed in
terms of partial information structures which mutually constrain possible
collections of phonological structure, syntactic structure, semantic content
and contextual factors in actual linguistic situations. Such objects are in
essence data structures which specify values for attributes; their capability
to bear information of non-trivial complexity arises from their potential

for recursive embedding ...and structure-sharing ....”

To summarise, important attributes of feature descriptions are declarativity, partiali-
ty and the capability of describing nested structured objects. They allow for structure
sharing via coreferences and a uniform representation of different levels of linguistic

knowledge.

In the following, we give a detailed example of the use of feature descriptions in
constraint-based grammars. We start with an example of annotated context-free
rules (phrase structure rules) as used in the PATR-IT [SUP*83, Shi89, Shi92] or
LFG [KB82] formalisms. These annotations further restrict the set of derivations

that are licenced by some grammar rule. Figure 1.3 shows a small grammar for
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(R)) S— NP VP

TNp agr z N xyp agr 2

(R;) VP — V NP

zyp agr z ANxTy agr z

(R3) V — loves

xy agr z\ z pers s¢ N z num 3rd,

(R4) NP — Mary

xyp agr z N\ z pers s¢g N z num 3rd,

(Rs) NP —  John

xyp agr z N\ z pers s¢g N z num 3rd,

Figure 1.3: A small grammar

English. A rule of the form

S — NP VP

rnp agr z N xyp agr 2

consists of the context-free rule S — NP VP, which is annotated by the feature
description xyp agr z A xyp agr z, where xyp, xyp and z are logical variables.

Derivations are described over annotated phrase structures. A phrase structure is a
labelled, ordered tree. An annotated phrase structure consists of a phrase structure,
a feature description and an association of the non-terminal nodes of the phrase
structure with the free variables in the feature descriptions. We indicate that some

non-terminal node of a phrase structure is associated with the variable x by writing
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(— z) to the right of this node. An example of an annotated phrase structure is

S (—> :ES)

A zyp agr 2 N xTy agr z N Typ agr z

NP (= anp) VP (= zvp)

/\

V(= : NP !
‘ (= zv) ‘ (= zlvp) Az pers sg A 2z’ num 3rd.

A z pers s¢ N z num 3rd

A xlyp agr 2’

Mary loves John

Here, Mary, loves and John are the terminal nodes. When a rule is applied to some
leaf of an annotated phrase structure, then the phrase structure is expanded according
to the context-free part of the grammar rule. The variable on the left-hand side of
the rule is identified with the variable associated with the expanded node, and all
other variables of this feature description are consistently renamed to new variables.
The resulting feature description is added conjunctively to the feature description of

the initial annotated phrase structure. Thus, applying the rule (R3) to

S (— xs)
/\
NP (= xnp) VP (= zvp) xyp agr z N Typ agr z
A z pers s¢ N z num 3rd
John
yields
S (—) .175)

/\

NP (—) :Z?Np) VP (—) :Z?VP)

/\ A z pers sg N z num 3rd

. ! N
VP (= zyp) NP (— zyp) Nxyp agr z2° N xvy agr z'.

Typ agr z N Typ agr z

John

Note that the feature description associated with the result can be simplified to
xyp agr z N xyp agr z N\ xvy agr z N z pers sg N\ z num 3rd. An annotated phrase
structure is licenced by a grammar if it can be generated by applying the grammar

rules as described above and if the associated feature description is satisfiable.
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In some modern grammar formalisms, which are influenced by the work on of the
grammar theory HPSG (Pollard and Sag [PS87, PS94]), a more radical approach is
taken by uniformly representing all linguistic data (including the phrase structure)
within feature descriptions. Since phrase structures are ordered trees, the ordering
information must be represented explicity using lists of feature descriptions. A list
of feature trees (¢1,...,t,) can be represented as a feature tree using the features 1

and 2 and the atom nzl:

The clumsiness of list description using this encoding can easily be avoided using

some syntactic sugar. Thus, we write y = (z1,...,x,) for

n—1
Jyr.ccyn(y=yr A yn 2 nil A /\ vilxi Ny 2 yi)

=1
Using this representation of list, we can encode the information contained in an
annotated phrase structure within feature descriptions. Here, we use the feature syn
to denote the non-terminal symbol associated with the phrase structure, the feature
phon to denote the string of terminals covered by the phrase structure, and the
feature dtrs to list the phrase structures which occur directly under the root. Using

this encoding, the annotated phrase structure

VP (—) .I‘VP)

/\

V(= zy) NP (= 2yp) , ,
‘ ‘ N x'np agr z

zyp agr z N Ty agr z

A z pers sg N z num 3rd

loves John A 2" pers sg N 2 num 3rd.

is translated into the following feature description (where we use matrix notation for
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better readability):

syn : VP
phon : (loves John)
pers : sq
agr . oz =
num : 3rd
[ syn : NP ]
syn  : V
phon : (John)
dirs phon : (loves) | ,
pers i sg
agr : z agr
I g I [num : Brd] |

After the encoding of annotated phrase structure is established, the question arises
as to how to transform the grammar listed in Figure 1.3. First note that we can read
a grammar rule such as (Ry) as a recipe for building an annotated phrase structure
with top-symbol VP, given phrase structures for a V and an NP. Conversely, we
know that every phrase structure labelled with VP must have a V followed by an
NP since there is only one rule having VP at the lefthand side. This implies that
the set of feature trees satisfying the feature descriptions of a verb phrase Ryp can
be described by the formula

Ryp(z) < xsyn VP (1.2)
A Ty, z(F(xdirs 2 N2 = (y,z)) A
Ry(y) A Rnp(2) A Ju(z agru Ay agr u)
Juy, ug, us(@ phon uy A y phon uy A z phon us A app(us, us, uy))),

where Ry and Ryp are unary predicates denoting the feature trees representing V's
and NPs, respectively; VP is an atom symbol; and app is the append relation on the
feature tree representation of lists as defined on page 5. Note that the definition for

Ryp is a definite equivalence.

Using this formalisation of grammatical rules, parsing (and if we had added seman-
tics in our examples also generation) can ideally be described as a pure deductive

process [Per83]. A sentence word; ...word, is licenced by the grammar G if
Jdz,y(Rs(z) A x phony Ay = (word; ... word,))

is valid in all models of ¢ (or valid in some model of (7, depending on the intended

semantics of grammars).

In representations of grammatical rules (and/or grammatical principles; for a de-

tailed discussion on the difference of grammatical rules and grammatical principles
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see [PS87]) like (1.2), the relation symbols representing linguistic entities (such as
Ryp etc.) are always unary predicates. Now there are quite a number of formal-
isations that are concerned with feature description languages that contain unary
predicate symbols in their signatures. In these formalisations, the unary predicate
symbols are called types, and the languages are called typed feature description lan-
guages. For example, both FT and CFT were introduced in [AKPS94] and [ST94] as
typed feature description languages (where the unary predicate symbols were called
sorts instead of types). But as the discussion in section 1.2 shows, these types can be

simulated using constants, and our versions of FT and CFT are even more expressive.

Based on typed feature descriptions, the concept of type systems played an important
in the literature on constraint-based grammar formalisms ([AK86, EZ90b, EZ90a,
Pol89, PM90, Smo92, AKPG93, Car92, Zaj92, KS94]) since they allow for a direct
encoding of grammatical principles as defined in the grammar theory HPSG [PS87,
PS94]. A type system consists of a partial order on the type symbols defining type

inheritance and a set of type definitions of the form

where T is a type symbol and ¢ is a typed feature description. The ordering is inter-
preted as the subset relation on the sets denoted by the types, and a type definition
T(z) := ¢(x) restricts the denotation of 7' to the set of all elements z satisfying
¢(z). But as [Bac95b] shows, type systems can be translated into definite equiva-
lences, and the intended interpretation for type systems is the greatest model of the
resulting set of definite equivalences. Retrospectively, one can say that the reason
for concentrating on the unary predicate symbols (types) is that the unary predi-
cates model classes of linguistic entities (which are the objects of main interest in
constraint-based grammars). This focus might have been the reason that type sys-
tems and definite equivalences have often been considered as different concepts. For

a detailed discussion of type systems, the interested reader is referred to [Kri95].

Many modern implementation of constraint-based grammar formalisms use type
systems. Furthermore, nearly all implementations provide a mechanism whose se-
mantics can be described in terms of definite equivalences. In the following, we
consider the systems ALE [Car92, Car94], TFS [Zaj92], CUF [DE91, DD93| and
TDL JUDiNe [BK93, KS94], which is a representative selection of advanced constraint-
based grammar formalisms (descriptions of these and other implemented systems can
be found in [BKSU93]). Both TDL/UDiNe and TFS have type systems that allow
for arbitrary type definitions, and grammatical principles can be defined via type
definitions. In TFS, the constraint solver is built in and parsing (or generation) must

be performed with the deductive system provided with the type system. Since in
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TDL /UDiNe the constraint-solver UDiNe is a separate component, it can also be used

for efficiency reason together with a separated parser.

In ALE and CUF, the type systems allow only a restricted form of type definition,
which is not sufficient for defining grammatical principles directly. Both systems in-
stead provide a mechanism called definite clauses over feature description languages.
The mechanism was introduced in [HS88] and generalises the constraint logic pro-
gramming scheme of Jaffar and Lassez [JL87]. Definite clauses can be translated
into a set of definite equivalences, where the intended semantics is the least model
of the resulting set of definite equivalences [Smo93]. In CUF, these definite clauses
can be used directly for defining grammatical principles, while this is not possible in
ALE. The operational semantics used for the definite clauses in ALE is adapted from
PROLOG, which is not the appropriate one for grammatical principles [Man93a].
For this reasons, ALE has a built in parser for annotated context-free rules, in which

grammatical principles can be specified.

Roughly speaking, the feature description languages used in the above-mentioned sys-
tems are syntactic variants of FT. Clearly, all systems handle the positive existential
fragment of FT. Furthermore, negated equations are handled by ALE, TDL /UDiNe
and CUF. UDiNe is (to our knowledge) the only implemented feature constraint solver
which also handles negation of feature description as defined in [Smo092]. Given a con-
junction of constraints ¢ and a distinguished variable x which is free in ¢, the negation

of ¢ with respect to the variable x is defined as

Y =-3(X —{z})¢,

where X is the set of free variable of ¢. UDiNe additionally uses a syntactic variant
of disjunction which appears in the literature under the name distributed disjunction
([Bac89, BEG90, DE89, DE90, MKR89]). Distributed disjunction are disjunctions
which bear an additional tag, a name. An example of a feature description with

distributed disjunctions is

o=l i)

This feature description is equivalent to the disjunction of

i : + 1 : -
and
2 : 1 2 : 2

Note that the combinations

i : + 1 : -
and
2 : 2 2 : 1
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are not in the interpretation of ¢. The advantages of distributed disjunctions are that
they allow for a very compact encoding of linguistic data and that they often avoid

expansion to disjunctive normal form during unification.

Related Work

There have been many different and diverging formalisations for feature descriptions.
Even for the basic feature description language which contains (roughly speaking)
the descriptive primitives of FT, there have been many different approaches besides
the predicate logic ones of [Joh88, Smo092]. Examples include the early work by
Kasper and Rounds [RK86, KR86, KR90] using a non-standard logic, and the multi-
modal logic approaches by [Rea9l, BS93b] where every feature corresponds to a
modal operator. At least these approaches are comparable to each other. But for the
extensions to feature descriptions there are even more divergent approaches. Most
of the formalisations were custom-built, and nearly every time a new extension to
feature descriptions was proposed, a new formalisation was presented.

There was only one approach to building a more general feature theory (i.e., encod-
ing different extensions in one single feature theory), namely that of Johnson [Joh91,
Joh94], who used Schonfinkel-Bernays’ formulae for the formalisation of feature de-

scriptions. Schonfinkel-Bernays’ formulae are of the form

3.T17...7xnvy17"'7ym¢

where ¢ is a quantifier-free formula. For this class of formulae, the satisfiability
problem is known to be decidable. But this approach is restricted to decidable ex-
tensions of feature descriptions, while we also want to encode undecidable extensions
such as definite equivalences. Furthermore, regular path expression and subsumption
constraints are not expressible within the Schonfinkel-Bernays’ fragment (see [Joh94,
page 10]), although they are expressible in the feature description language F. Hence,
no other feature description language presented in the literature has an expressivity

comparable to F. For this reason, we call F a universal feature description language.

The notion of completeness as defined for FT and CFT is different from the no-
tion of completeness considered in related work by Kasper and Rounds [KR90] and
Moss [Mo0s92]. These authors study logical equivalence for rooted and quantifier-free
feature descriptions and give complete equational axiomatisations of the respective
congruence relations. In contrast, we are concerned with a much larger class of possi-
bly quantified feature descriptions. Moreover, exploiting the power of predicate logic,

we are not committed to any particular model or any particular deductive system,
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but instead prove a result that implies that any complete proof system for Predicate
Logic will be complete for proving equivalence of feature descriptions with respect to

any model of our feature theories for FT and CFT.

The complexity of the simplification algorithms is too high for use in a grammar
formalism. But one could use the algorithms to decide general properties of a gram-
mar, where the complexity is not relevant. For example, one can check with our
simplification algorithms whether a grammatical rule is superfluous by virtue of be-

ing subsumed by another rule. For example, consider the two annotated context-free

rules
(Ry) NI — NT, ... NT,
é1
and
(R;) NT — NT, ... NT,
)
where NT,NT,, ... ,NT, are non-terminal symbols and ¢; and ¢, are the anno-

tated feature descriptions. If ¢ entails ¢, (i.e., every valuation of satisfying ¢; also
satisfies ¢, ), then Ry is superfluous and can be removed, since in every derivation the
application of rule R; can be replaced by an application of rule R,;. We have used
annotated context-free rules in this example for reasons of simplicity, but a similar
test can be performed for formalisms where the phrase structure is encoded in feature
descriptions. Now if the feature descriptions make use of negated equations as in the
example given in section 1.2, page 11, the known algorithm for testing entailment
in FT and CFT (see [AKPS94] and [ST94], respectively) cannot be used. The use
of such negated equation for constraint-based grammars is, for example, considered

in [Car92].

As mentioned, a partial result for the satisfiability problem of conjunction of regular
path constraints was obtained in [KM88]. They showed that the satisfiability prob-
lem for conjunctive formulae containing regular path expression is decidable if an
acyclicity condition is met. But it cannot be guaranteed that the acyclicity condition

is maintained during the application of their algorithm for testing satisfiability.

Solving the satisfiability problem for cyclic descriptions containing regular path ex-
pressions requires a non-trivial extension of the algorithm described in [KM88]. Their
algorithm uses a set of simplification rules that transforms a feature description into
a normal form, from which satisfiability can be read off trivially. If the acyclicity
condition is met, the rule system is terminating. But in the case of cyclic descrip-
tions, termination cannot be guaranteed anymore. This is inherent to the problem.

We solved the problem in this thesis by introducing a quasi-terminating rule system
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(see [Der87]). A rule system is quasi-terminating if it is not terminating, but produces
only finitely many different results. To achieve a quasi-terminating rule system we
had to translate the problem into a new syntax that enabled us to delay subproblems

whose evaluation would cause an infinite number of results.

To see some possible application of regular path expressions, we briefly recall an ex-
ample that is given in Kaplan and Maxwell [KM88, page 1]. Consider the topicalized
sentence

Mary, John telephoned yesterday.

Using s as a variable denoting the whole sentence, the LFG-like clause
stopicx A\ s obj x

specifies that in s, Mary should be interpreted as the object of the relation telephoned.
The sentence could be extended by introducing additional complement predicates, e.g.
in sentences like Mary, John claimed that Bill telephoned; Mary, John claimed that
Bill said that ... Henry telephoned yesterday; .... For this family of sentences the
clauses s topic x A s (comp obj) z, s topic x A s (comp comp obj) x and so on would
be appropriate; specifying all possibilities would yield an infinite disjunction. This
changes if we make use of regular path expressions, allowing the above to be specified
as the single clause
s topic x N\ s comp” obj x.



Chapter 2

First-order Languages over
Feature Trees

In this chapter, we define feature trees and some basic functions and relations on
feature trees. We then introduce various first-order languages, consider the corre-
sponding feature tree interpretations and their substructures consisting only of the
rational trees. We close this chapter by discussing some properties of these languages.
Furthermore, we summarise the decidability and undecidability results that either can
be taken out of the literature or will be proven in this thesis.

2.1 Basic Definitions for Feature Trees

Throughout the thesis we assume a fixed, countable infinite set £ of labels, over
which the set of feature trees is defined.! The labels are used for labelling both the
edges and the leaves of feature trees. A finite string p € L£* of labels is called a path,
where ¢ denotes the empty path. A tree domain is a nonempty set D C £* of paths
that is prefix-closed, i.e., if pg € D, then p € D. Note that every tree domain
contains the empty path €. Given a tree domain D, we define leaves(D) to be the set

of maximal paths of D, i.e.,

leaves(D) = {pe L |VfeL:pf & D}

Definition 2.1 (Feature Tree) A feature tree is a pair o = (D, ), where D is a
tree domain and X is a total function A:leaves(D) — L.

In the rest of the thesis, we assume that £ contains the following symbols: 0, 1, 2, nil and .

23
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The paths in D represent the nodes of the tree; the empty path represents its root;
and A represents the labelling of the leaves of 0. The letters ¢ and 7 will always
denote feature trees. The set of all feature trees is denoted by 7. For convenience,
we will identify the primitive feature trees of the form ({¢},{(¢, a)}) with the symbol

a itself. These feature trees are called atoms.

A feature tree o = (D, A) is called finite [infinite] if its domain D is finite [infinite].
A label f € L is called a feature in some feature tree o = (D, \) if it labels some
edge of o, i.e., there is some path p € £* such that pf € D. The set of all features of

a tree o is denoted by features(o).

Our definition of feature trees differs slightly from the definition given in [AKPS94,
BS93a]. In our case, only the leaves of feature trees are labelled, whereas the feature
trees in [AKPS94, BS93a] have labels at every node (called sorts). This form of

feature trees can easily be simulated in our setting using a special feature sort.

The subtree p~'o of a feature tree ¢ = (D, )\) at a path p € D is the feature tree
(D', X') defined by

D'={q|pge D} and X ={(q,a)](pg,a) € A}.

If it is convenient, we will also sometimes write subtreeAt(o,p,7) if p7lo = 7. A
feature tree 7 is called a subtree of a feature tree o (written subtree(o, 7)) if o is a
subtree of 7 at some path p € D, and a direct subtree if in addition p = f for some
feature f.

Definition 2.2 (Rational Feature Tree) A feature tree o = (D, )) is called ra-
tional if

1. o has only finitely many distinct subtrees, and

2. o is finitely branching (i.e., for every p € D, the set {f € L | pf € D} is
finite).

Note that for every rational feature tree o = (D, A) there exist finitely many features

fiyoo.y fasuch that D C{fy,..., f.}".

A very important notion is the one of the arity of a feature tree, which is the set of
features that occur directly under the root of a feature tree. We write arity(c) = F if
F C L is the arity of 0. Clearly, the arity of a feature tree o is the intersection of the
tree domain of o with the set of labels £. All atoms have the arity @), and conversely,
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a feature tree with arity () is an atom. Note that if two feature trees have the same
non-empty arity and the same subtrees at the corresponding features, then they are

equal. This does not hold for the empty arity, since all atoms have the arity (.

The following functions and partial orders have been considered in the literature on
feature descriptions. Although we will not make use of them in the rest of this thesis
(except that we are showing that these operations can be defined in our universal
feature theory), we define them here since they are natural concepts, and since they

have important applications.

The first function is adjoinAt. It is used for adjoining a feature tree 7 to a given
feature tree o at some feature f. The resulting feature tree o’ = adjoinAt(o, f, ) has
the feature f defined under its root, and the subtree of ¢’ at f is 7. Except f, ¢’ has
the same features as o, and the same subtrees at the corresponding features. Thus,
adjoinAt(o, f,7) replaces the subtree of o at f by 7 if f € arity(o), and adds the
feature f with 7 as the corresponding subtree if f ¢ arity(c). Note that adjoining a

feature to an atom implies that the label of the atom gets lost.

This function was introduced in [HSW95, Smo94b] in the context of the Oz-system
(for the description of the Oz-language and the underlying concepts see also [HSW93,
Smo94a, Smo94c, Smo94d]), where an important application of adjoinAt is inheri-
tance of objects. In Oz, the method table of an object is represented as a record
(where the method names are the features, and the values are the actual methods).
If an object inherits from another object, then the method table of the inheriting
object is derived from the method table of the parent object. If a method name is
new, then this name is added to the table. Otherwise the corresponding method is
overwritten. This behaviour is exactly modelled by the adjoinAt function. Since the
method tables cannot be extracted from the object definitions but are computed at
runtime, we cannot make any assumptions about the changed record. Again, this
holds for the adjoinAt function.

From the definition we get immediately that the effect of applying adjoinAt several
times using the same feature depends only on the last application of adjoinAt, i.e.,

adjoinAt(adjoinAt(c, f,7), f,7) = adjoinAt(o, f,7).

On the other hand, if we adjoin under different features f and g, then the application

of adjoinAt is order independent?, i.e.,

adjoinAt(adjoinAtl(c, f,7),9,7") = adjoinAt(adjoinAt(c,q,7"), f, 7).

2This notion was introduced by [NP93], where a ternary relation on so-called multitrees similar
to adjoinAt was introduced. Multitrees differ from feature trees in that a node can have several
outgoing edges labelled with the same feature.
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Furthermore, adjoining the same feature tree at the same feature to different atoms

a # b produces the same result:

adjoinAt(a, f,7) = adjoinAt(b, f, ).

The next two relations are partial orders on feature tree. These orders have been
investigated in detail in [DR89, DR92, D6r93b]. The first order simulate is just the

subset relation on feature trees:
simulate(o,7) iff D, C D, and A, C X;

The second order subsume corresponds directly to tree embedding. For this purpose,
we have to define the notion of an endomorphism. An endomorphism on the set of

all feature trees 7T is partial map v : 7 ~» T such that the following holds:

e y(c) = c for every ¢ € L N dom(7).

e for every feature tree ¢ € dom(7y) and every feature f € L, if f~'o is defined,
then y(f~'o) is defined and

(o) = (o).

A feature tree o is said to be subsumed by a feature tree 7 (written subsume(o, )

if there is an endomorphism on 7 that maps o to 7.
There exists an alternative definition of the subsume relation, namely

subsume(o, ) iff simulate(o,7) and

1

Vpaths pge D, : (plo=q'c = plr=q"'7).

This definition reflects more the original motivation for introducing this relation,
namely to order feature trees due to their “information content”. The notion of
“information content” is strongly related to the expressive means of the core lan-
guage for feature descriptions, where the existence of specific paths, the labelling
of some paths as atom and the equality of subtrees can be specified. The relation
was initially introduced by Shieber [Shi89, Shi92]. There, it was shown that this
relation has an application in computational linguistics in solving the coordination
problem. Furthermore, Shieber showed that type inference in a programming lan-
guage with polymorphic types can be described adequately using the subsumption
relation. Unfortunately, [DR89, DR92| showed that the satisfiability problem for
feature descriptions that use the subsumption relation as a descriptional primitive
is undecidable. Therefore, Dorre [Dér93b] argued that extending feature descrip-
tions with a descriptional primitive expressing the simulate relation suffices for most

applications. This extension has a decidable satisfiability problem [D6r93b].
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2.2 The Languages I/, FT', CFT', and RFT

In this section, we define various first-order languages with equality whose properties
will be considered in the remaining parts of this thesis. All of these languages are
purely relational, i.e., the signatures do not contain proper function symbols. We
assume an infinite supply of variables ranging over z,y, z, . .. Since the languages are
purely relational, every term is either a constant or a variable. We use the letters
t,t' ... to denote terms. For all languages we introduce two interpretations, namely
the feature tree structure, whose domain is the set of all feature trees (defined over
the set £ of labels), and its restriction to rational feature trees. The languages
F', FT’ and CFT’ have been introduced in a slightly modified version in [Tre93],
[AKPS94] and [ST94]. These papers used unary predicates called sorts and didn’t
have constant symbols. To make a clear distinction between our languages and the

languages defined by these papers, we do not use the original names F, FT and CFT.

2.2.1 Definition of the Languages
The Language I’

The signature of F’ consists of

o all elements of £ acting as constant symbols, and

e a ternary predicate symbol [-]-

We use mixfix notation ¢[t']t" for the so-called generalised feature constraint.
The feature tree structure - is the F'-structure defined as follows:

e the universe U(Tp) of Ty is the set of all feature trees over L,
o v = ({c},{(e,¢)}) for every constant symbol ¢ € £, and

o (01,09,03) € -[]-¥" if and only if there is a constant symbol ¢ such that oy =

& and ¢ loy = .

The Language FT’

The signature of FT consists of
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o all elements of £, which act both as constant symbols and binary predicate
symbols (called features), and

e a unary predicate symbol atom.

We use the letters f, g, h, ... for the feature symbols, and use infix notation ¢ f¢’ for the
so-called feature constraints. The feature tree structure Tpy/ is the following
FT-structure:

e the universe U(Tpr) of Tpp is the set of all feature trees over L,
o *rr = ({e},{(¢,¢)}) for every constant symbol ¢ € L,

o for every feature f € £: (0,7) € f¥' iff f € arity(o) and 7 = [0,

T

o o € atom™F™ iff o is an atom.

The Language CFT’
The signature of CFT is the signature of FT' extended by

e a unary predicate symbol for every non-empty, finite set F' C L of features

(called arity).

We use postfix notation xF for the so-called arity constraints. The feature tree
structure Topp is the following CFT'-structure:

e the universe of Tcprr and the interpretations of atom, the constant symbols and

the feature symbols are defined as in Trps, and

o o F¥err iff arity(o) = F.

Note that the signature of CF'T’ contains no arity constraint for the empty arity. The
reason is that the interpretation of the empty arity is the same as the interpretation
of atom. We use in atom(z) instead of () since (1) we want FT' to be a subsignature
of CFT', and (2) the behaviour of the empty arity is different from the non-empty
arities; for example, for a non-empty arity F' = {f1,..., fn} we have

Tpr = Yy1,. ..,y Ala(xF A /\ T fnn),

=1

whereas there are infinitely many elements in U(Tp/) with the empty arity.
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The Language RFT

For the definition of this language we need to extend the notion of regular expres-
sions over a finite alphabet to an infinite alphabet. The formation rule for regular

expressions over the alphabet £ is given by
L,Ll,LQ = @|6|F|F|L1UL1|L10L2|L*

where ' C L is a finite set of labels. This definition extends the standard definition
of regular expressions by allowing expressions of the form F, which are called co-
finite sets. The regular set [L] C £* denoted by a regular expression L is defined
inductively as

[0]=0, [Fl=F, [F]=L\F,
[L:U Ly = [LiJ U [Ls], [LioLa] = {pp' | p € [Li] A p' € [La]},
[LT=A{p1-..pn €L |n>0,p; €[L]foriel...n}

A set S C L* is called regular if there is some regular expressions L such that
S = [L]. Since the denotation of § is £, we will just use £ as syntactic sugar for
. If F = {f} is a set containing only one feature, then we use f as short for {f}.
Similarly, we write f;... f, instead of fio...0f,. Furthermore, we abbreviate LolL*

by L*.

Proposition 2.1 The class of reqular sets is closed under union, intersection and

complement.

The signature of RFT consists of

o all elements of £ acting as constants, and

e all regular expressions L with [L] C L£*, which are taken as binary predicate

symbols.

We use infix notation ¢ Lt' for so-called regular path expressions. We have excluded
the empty path in the regular expressions since x{¢}y would be an atomic formula
equivalent to x = y, which we wanted to avoid. The feature tree structure Tgpr
is the following RFT-structure:

e the universe U(Tgrpr) of Trpr is the set of all feature trees
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o *rrm = ({e} {(¢,¢)}) for every constant symbol ¢ € L.

e for every regular expression L we have (o, 7) € L***T iff there is a path p € [L]
such that 7 = p~lo.

For the models Tgi, Tprr, Toppr and Trpr we denote the substructure consisting only
of the rational trees by Rp, Rpp, Reprr and Rgrrr, respectively.

2.2.2 Some Properties

In this and the next chapter, we concentrate on the theory of the standard interpre-
tation of F' (i.e., Th(%g/)), and we show that the theories of standard interpretations
of the other languages are definitionally equivalent to fragments of Th(%p/). The
constraint -[-|- used in F' generalises over ordinary feature constraints (as for example
used in FT" and CFT’) in that it allows features as first class values. Such predicates
were introduced by Johnson [Joh88] and Treinen [Tre93]. But these authors didn’t

address the problem of showing that F’ is a universal feature description language.

We encode additional predicates in F’ using a standard first-order method by provid-

ing explicit definitions for them.

Definition 2.3 (Explicit Definition) Let L be one of the languages F', FT', CFT’,
or RFT and R C [I7_, T be some relation over feature trees. An explicit definition
for R in ¥, in terms of L consists of a L-formula ¢(zx1,...,2,) having x1,...,2, as

free variables such that for all valuations o in Xy,
X, al=d(zy,...,x,) ff (alzr),...,a(z,)) € R

Similarly, we say that ¢(xy,...x,) is an explicit definition in Ry in terms of L for
the restriction R of R to the set of rational trees iff for all valuations o in Ry,

%Laa |: ¢($17 s 7$n> Zﬁ (Oz({E1>, s -aa(xTL)) € RI'

If L' is another language defined above, we say that Th(% 1) (or Th(R:)) is defini-
tionally equivalent to a fragment of Th(%r) (or Th(R)) if for every relation symbol
R in the signature of L', the relation R* (or R™1' ) has an explicit definition in Tr
(or Ry, ) in terms of L, respectively.

The definitions we will present are the same regardless whether we consider the feature

tree interpretation or the rational feature tree interpretation for the corresponding
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languages (although the theories of ¥ and Rps for example differ; see Proposition 3.5,
page 39). Hence, we could also have chosen the rational feature tree interpretations
as standard interpretations. For this reason we will just say that ¢(zq,...,2,) is a
definition for R within L if ¢ is an explicit definition for R in both ¥; and Py in
terms of L, and that R can be defined within L (or is definable within L) if there is a
definition for R within L. Furthermore, we say that L’ is definitionally equivalent to a
fragment of L if the theories of ;1 and PRy are definitionally equivalent to fragments

of Th(%y) and Th(Ry), respectively.

In the following, we state the relations between the different languages and the known
decidability and undecidability results for the theories of the feature tree interpreta-

tions of these languages. Henceforth, we will deliberately confuse the languages F’,

FT', CFT" and RFT with Th(%g/), Th(Zpr), Th(Zeprr) and Th(Trer), respectively.

For the feature constraints used in FT and CFT’, the definition for z fy is just z[f]y.

For the atom predicate, there are two possible definitions, namely
atom(z) := Ju,v(u[z]v)

or
atom(z) := —Ju,v(z[ulv).

The existence of this dual characterisation reflects the fact that the label set £ is
used for both labelling the edges and the leaves of feature trees. A similarly simple
definition is given in [Tre93] for the arity relations of CFT’. Given an (non-empty)
arity F' = {f1,..., f.}, the corresponding arity relation is defined within F’ as

n

arity., fn}(;c) = Yu(Jyzuly < \/ u=f)

=1

Henceforth, we use z{fi,..., f.} as an abbreviation for arity , . .(z).

.....

The definition for the adjoinAt function is again very simple. For this purpose, we
have just to consider adjoinAt as a functional relation. This leads to the following

definition:

adjoinAt(z,u,v,y) = ylulv AVz, 2 (2 # u — (z[2]2 & y[z]2)

The definitions for the regular path expressions are somewhat more difficult and will
be presented in the next sections, where we handle the more complicated examples
(see Lemma 3.1, page 41). Overall we get that FT', CFT' and RFT are definitionally
equivalent to fragments of /. Clearly, FT’ is a fragment of CFT' since the signature



32 CHAPTER 2. FIRST-ORDER LANGUAGES OVER FEATURE TREES

of FT" is a subset of the signature of CFT’, but the converse does not hold (see Corol-
lary 4.1, page 88). Furthermore, we can show that CFT' is definitionally equivalent
to a fragment of RF'T by providing the following definitions in RFT:

atom(z) = -Jy(xLTy)
feats(z,y) = zfy
arity{fhn_,fn}(:c) = Ayp.yp(cfiyi A A2 fyn)

A =Fy(a{fi,- s Faty)

On the other hand, we can show that RFT is undecidable®
Theorem 2.1 The theories of Trpr and Rrpr are undecidable.

Proof. Venkataraman [Ven87] showed that the first-order theory of constructor trees
with the subterm relation is undecidable. Since constructor constraints can be defined
within RFT and since the RFT-constraint x LTy is the same as the subterm relation,
this result follows by an adaption of the proof in [Ven87]. O

Since we will show that both FT' and CFT' are decidable, this implies that RFT
cannot be definitionally equivalent to a fragment of CFT’. Whether F’ is definitionally
equivalent to a fragment of RFT is an open problem.

Concerning decidability and undecidability, some results can be taken from the liter-
ature. Beside the full theory of the feature tree interpretations of these languages, we
consider the positive existential fragment (X7 -fragment) and the existential fragment
(31-fragment). Furthermore, we consider the fragment which corresponds to the en-
tailment test of existentially quantified conjunctions of atomic constraints, which is a

subset of the ITy-fragment. A formula ¢ entails a formula ¢ in some theory 7' (written
¢ FEr ) T =V(p— ¢).

The decidability of the existential fragment of F’ and FT' can be proven by an adap-
tion of previous work on feature logic by [Smo88] and [Joh88]. Both presented a
system that transforms a quantifier-free formula into a solved form. The decidability
of the existential fragment of CFT' was shown in [ST94].

The decidability of the fragment corresponding to the entailment test of possible

existentially conjunction of atomic constraints was shown for FT’ in [AKPS94], and

3The undecidability of this language interpreted over arbitrary first-order structures where fea-
tures are binary relations was shown in [BBNt93].
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for CFT' in [ST94]. For both theories, the so-called independence property was
shown. Given existentially quantified conjunctions of atomic formulae ¢, ¥y, ..., 1,

we say that the theory T has the independence property if

dlr V¥ = Jitdr s
=1
Simple first-order equivalence transformations show that 7" satisfies the independence

property if and only if the following equivalence is valid in 7"
AN ) Hr A b A-).
i=1 =1

Clearly, independence allows one to extend the entailment test to formulae containing
disjunction. In the completeness proofs for FT” and CFT’, we will prove a generalised
independence property for FT' and CFT’, namely

n

XA A ) Hy A3IX(6A—),

=1 =1
where X is an arbitrary set of variables and 7' is FT' or CFT’.

The results are summarised in table 2.1. Note that all results also hold for the theories
of the rational feature tree interpretations of these languages. Since the solved form
algorithm for FT' in [Smo88] can be easily adapted for F’, and every solved form
algorithm for F’ is also one for FT', we do not distinguish the existential fragment
of F and FT' in this table. For completeness, we have added the language EF’,
which was introduced by Treinen [Tre93]. The signature of EF’ is the signature of F’
extended by arity constraints. Since arity constraints are definable in F’ this language
is no real extension if we consider the full first-order theory. But there is clearly a
difference when considering restricted fragments of these languages. Treinen showed,
that the existential fragment of this theory is decidable, and that the full theory is

undecidable.



(adaption of [Ven87])

F’ FT’ CFT' RFT EF’
i -fragment v v v v
[Smo88, Joh8&8] [ST94] Theorem 5.5 [Tre93]
Y-fragment Vv Vv v
[Smo88, Joh88] [ST94] [Tre93]
Entailment Vv Vv
+ d quantifiers [AKPS94] [ST94]
+ independence
Full theory O Vv Vv O O
[Tre93] | Theorem 4.4 | Theorem 4.6 Theorem 2.1 [Tre93]

Table 2.1: Collection of decidability and undecidability results. \/ means decidable, and () means undecidable.
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Chapter 3

Expressivity of F’

3.1 Some [’-definable Relations

We present a feature tree encoding for tuples and sets, and show that we can define the
usual relations upon these representations. These concepts will play an important role
in defining further concepts such as regular path expressions and definite equivalences.
The chosen representation of sets allows to encode finite sets in the case of the rational
tree model PRp/, and infinite sets in the case of the feature tree model Tp:. This fact
is used to show that the theories of T/ and Ry are different. Note that these
cardinality restrictions have to be respected when using the set representation for

other definitions.

We proceed showing that, under certain restrictions, the transitive and reflexive clo-
sure of definable, binary relations is definable in F’. This part applies a simple variant
of the general technique that we use to simulate computation within F’. The ability
for defining the transitive and reflexive closure of definable relations is then used for
defining regular path expressions, which are the descriptional primitives of the lan-
guage RFT. A regular path expression is a subtree relation, where the path to the
subtree is restricted to a regular expression. As in the case of the subtree relation,
an implicit existentially quantification over the path to the subtree is used. We can
gain additional expressivity if one splits regular path expressions into the subtree At
relation and a relation which restricts a variable denoting a path to a given regular
expression. Thus, paths become first class values. We will consider this generalisa-
tion for three reasons. First, these relations are the descriptional primitives that are
used in the Chapter 5 for solving the satisfiability problem for RFT. Second, these
relations can be used for defining the simulate and subsume relations. And third, the

35
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definition for the subtree At relation is exactly the kind of formula that is used in the

definition for relations that are formed by definite equivalences.

Finally, we will show that we can encode natural numbers in feature trees, and that
we can define the successor and predecessor relation, and the relation “x represents a
natural number”. The encoding of natural numbers will also play an important role

when considering definite equivalences.

Note that all definitions can be used for both T and Rg/. Therefore, we use a meta-
variable 91 ranging over the two feature tree structures Tr: and Rp.. This eases the
technical details of the proofs for the parts which are common for both structures.
This makes sense since even the proofs are very similar and must be distinguished

only at some (rare) occasions.

3.1.1 Tuples and Sets

We start with the definition of tuples. Although we will later define sets, and a
standard technique is to define tuples using sets, we use a more direct and simpler
approach. For the representation of tuples we assume an arbitrary but fixed enumer-
ation fi,..., fn,... of £. Using this enumeration, a tuple (o1,...,0,) of feature trees

is represented by the feature tree

Now we define

TUPLE, :T" =T

to be the function that maps a given tuple (o,...,0,) to the corresponding feature

tree representation.

Proposition 3.1 The relation “TUPLE,(04,...,0,) = 0" is definable within F'.

Proof. The definition for this relation is y{f1,..., fu} Ayl[fi]lzi A ... Ay[fo]z,. DO
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In order to reduce the complexity of formulae, we use the syntactic sugar (¢,...,1,)
for tuples of length n. We treat (t;,...,t¢,) as a functional term, i.e., for a formula

() with z € V(¢) we write ¢((t1,...,1,)) as an abbreviation for

Fy(d(y) Ayl frs o fad Aylhlo A Ayl faltn).

Next we continue with the feature tree representation of sets. We use a technique

introduced in [Tre93], where a set {oy,...,0,} of feature trees is represented by a
feature tree o which has o4, ..., 0, as direct subtrees. Thus, the feature tree
%\é
1 2

is one possible representation of the set {1,2}. Note that we could have used any
pair of distinct features instead of (f,g) for representing the set {1,2}. The total
function

SET:T — o(T)

maps every feature tree to the set of its direct subtrees. Note that we do not have
a unique representation for a given set of feature trees. For example, all constant
symbols represent the empty set. Furthermore, given a representation of an arbitrary
set as a feature tree, we can generate a different feature tree representing the same
set by renaming the features under the root consistently, or by taking additional
occurrences of subtrees.

Proposition 3.2 For every feature tree o, SET(o) is a countable set. If o is a
rational feature tree, then SET (o) is finite.

We say that a set m of feature trees is representable in 9 if there is a feature
tree o € U(IM) with SET(c) = m. By the above proposition, the class of sets
representable in Ry is the class of all finite sets, and the class of sets representable

in ¥ 1s the class of all countable sets.

Proposition 3.3 The relations “c € SET(r)”, “SET(c) C SET(t)”, “SET(c) U
SET(¢")y = SET(7)” and “SET(c)N SET(c') = SET(7)” are definable within F'.
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Proof. The corresponding definitions are

in(e,y) = Fulylulo)
subset(z,y) Vu[in(u,z) — in(u, )]
union(z,y,z) := Yul[in(u,z) < (in(u,z)V in(u,y))]
intersec(z,y,2) := Vu[in(u,z) ¢ (in(u,z) A in(u,y))].

Throughout the text the letters M and N are used for first-order variables which
are intended to denote sets. Note that we could also use our representation of sets

for encoding the extension of feature descriptions by set descriptions (so-called set-
values) as they have been introduced in [Rou88, PM90, MP93, Man93b].

In the following, we will often use the feature tree representation of sets for represent-
ing n-ary relations, which are encoded as sets of tuples of length n. For simplicity
reasons, we do not guarantee that these sets contain only feature trees representing
tuples of length n. This implies that for every n € N, every feature tree represents

an n-ary relation. Thus, we define the function
REL, : T — o(T")
by REL,(c) = {(01,...,04) | TUPLE,(01,...,0,) € SET(0)}.

Proposition 3.4 The relation “SET(o) is infinite” is definable in F'.

Proof. Recall that SET(c) is infinite if there is a function f : SET(c) — SET(0)
which is injective but not surjective. Now we can define the relation “REL,(7) is a
total, functional relation over SET(o)” by
totalfun(N, M) := Va,y[in((z,y), N) — (in(z, M) A in(y, M))]

A Va,y,y[(in((z,y), N) Adn((z,y), N)) = y = /]

A Vz(in(z, M) — Jy in((z,y), N))
The relations “RFELy(7) is injectiveon SET(c)” and “RELy(7) is surjectiveon SET(0)”
can be defined within F’ by

inj(N, M) := totalfun(N, M)
AN Vz,y,2[(in({(z,y), N) A in((z',y), N)) = = = 2]
surj(N, M) := totalfun(N, M) AVz[in(z, M) — Jy(in((y,z), N))]

Hence, we can define the relation “SET(o) is infinite” by AN (inj(N, M)A—surj(N, M)).
O
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Proposition 3.5 (Treinen 93) Th(Mp/) # Th(Tw).

Proof. Follows from the fact that the relation “SET(o) is infinite” is definable within
F’, and that by Proposition 3.2 only finite sets are representable in fRg/, whereas we

can represent also infinite sets in Xps. O

We have proven this proposition using the definition for “SET(c) is infinite” since
we wanted to show that the property of being an infinite set is definable in F’.
Treinen [Tre93] used a more direct approach to prove Proposition 3.5. He constructed
a formula ¢(x) which expresses that z has an infinite number of children, which
themselves have a strictly increasing number of children. Using x<y as an abbreviation

for Ju(x[uly) (which can be read as “y is a child of 2”), this formula is defined by

dlz) = ylzay) AVy(zay — Y (zay AVz(yaz =y az) A
Jz(y' 4z Ay <z)))

It is easy to verify that Tp: = Jazg(x), whereas Ry | Va—o(x).
The following proposition gives the definition for the subtree relation as presented

in [Tre93].

Proposition 3.6 (Treinen 93) The relation “Ip : p~'o = 77 is definable within
F’.
Proof. The definition for this relation is
subtree(z,y) := VM(in(z, M) A subtreeclos(z, M) — in(y, M)),
where subtree_clos(z, M) is the formula
Yy, z(in(y, M) A Ju(y[u]z) — in(z, M)).

subtree_clos(M) is the definition for the relation “SET(o) is closed under the direct

subtree relation”. We have to show that for every valuation « in 9,
M, o |= subtree(z,y)

if and only if a(y) is a subtree of a(x). For every o € U(M) let S, be the set of all
subtrees of o.

For the “if” direction note that if

M, o = in(x, M) A subtree_clos(M),
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then Sy(z) € SET(a(M)). Hence, M, o |= in(y, M).

For the “only if” direction we have to show that for every feature tree o € U(IM)
the set S, is representable in M. If M = Rgs, then S, is finite since o is a rational
tree. If 91 = T/, then o can have at most as many different subtrees as paths are
defined on o. This implies that the cardinality of S, is at most |£*|. Since we have
assumed that £ is countable, we know that £* is also countable. Hence, the set S,

is representable in 91 by Proposition 3.2. O

The definition of subtree uses a general technique for defining reflexive and transitive

closures of binary relations.

Definition 3.1 Given a definition ¢r(x,y) for a binary relation R C U(9M) x U(M),
we define refl-trans,, (z,y) to be the formula

refl-transy,(z,y) = VM((in(x, M) A closurey.(M)) — in(y, M)),
where closurey. (M) is the formula

closureys (M) := Vz,2/((in(z, M) A ér(z,2")) = in(z', M)))
Proposition 3.7

1. For every binary relation R C U(%p:) x U(Tpr) which has an explicit definition
or(z,y) in Tp in terms of ', the formula refl-transy, (z,y) is an explicit
definition for the reflexive and transitive closure of R in g/ in terms of F' if
for every o € U(Rp/) the set

{r]IneN:(Ro...oR)(o,7)}

n-times
is countable.
2. For a relation R C U(Rp:) x U(Rp/) which has an explicit definition ¢r(z,y)
in Rps in terms of F', the formula refl-transy,.(z,y) is an explicit definition

for the reflexive and transitive closure of R in Rp: in terms of F' if for every
o € U(Rp) the set

{r|dImneN:(Ro...0oR)(o,7)}

n-times

is finite.



3.1. SOME F'-DEFINABLE RELATIONS 41

Proof. For every o € U(IM) let S, be the set

S, = {r]|dIneN:(Ro...oR)(o,7)}.

n-times

It is easy to check that for every a with
M, o = in(x, M) A closure,, (M)

the set Sy(y) is a subset of SET(a(M)). Hence, it suffices to show that for every
o € U(M) the set S, is representable in M. For M = Ry we have assumed that S,
is always finite, and for 91 = ¥ we have assumed that S, is always countable. This

implies that S, is representable by Proposition 3.2. O

3.1.2 Regular Path Expressions

In this section, we show that the descriptional primitives of the language RFT are
definable within F’. Recall that in RFT, a regular expression L is taken as a binary

relation symbol whose interpretation in Tgpr is

(o,7) € L* T iff Ipe[L]:plo=r

Lemma 3.1 For every regular language L over the alphabet L, the relation
“Gp e [L]:p~to =17 is definable within F'.

Proof. The explicit definition regexp; for a some regular language L within F’ is

given inductively as follows:

regexpy(z,y) = L

regexp (z,y) = x =y

regexpp(z,y) =\ z[fly

feF
regexpp(z,y) = J(llyn N 2 £ )
feF

regexpy, ., (7,y) = regexpy, (v,y)V regexpy,(z,y)
regexpy, ., (1,y) = de(regexpy, (r.2) A regexpy, (=)

regexp;.(z,y) := refl-transiegexp, (Z,Y)-

We show by induction over the structure of regular expressions that

mv a |: regexpL(‘x7 y)
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if and only if there is a path p € [L] such that subtreeAt(a(x),p, a(y)) holds.

For the base cases L = (), L = ¢, L = F or L = F the claim holds trivially. For
the induction step the claim is easy to show if L is a regular expression of the form

Ll U L2 or LloLg.
Otherwise, let L be of the form R*. Let 0 = a(z) and let S, be the set
S, = A7 |3Ip € [R] : subtreeAt(o,p,T)}.

By an similar argumentation as in the proof of Proposition 3.6 we get that S, is

representable in 9. Hence, the claim follows from Proposition 3.7. O

Next we want to generalise regular path expressions. The constraints Ly contains
an implicit existential quantification of the path since M, a = regexp; (z,y) iff dp :
(subtreeAt(a(x),p,a(y)) A p € [L]). We gain additional expressivity if we allow
also universal quantification over the path p, which means that we make paths first
class values. For this purpose we have first to find some feature tree representation of
paths. Furthermore, we have to define the subtreeAt relation using this representation
of paths, and the relation “the path represented by o is in [L]”. Assuming that there
is a symbol € € £, a path f; ... f, € L* is represented by the feature tree

P

€

The partial function

PATH: T ~ L*

maps these feature trees to the corresponding paths. For clarity, we use the letter v
for first-order variables that are intended to denote paths.

Proposition 3.8 The relation “PATH(o) is defined” is definable within F’.

Proof. The definition for this relation is
path(v) := Vy(subtree(v,y) — (y = €V onefeat(y))) A subtree(v,e),

where onefeat(y) is the formula FuVu'(Iz(y[u']z) <> u = u') 0
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Proposition 3.9 The relation “subtreeAt(o, PATH(7),0')” is definable within F'.

Proof. The definition for this relation is

subtreeAt(z,v,y) = IM(in({(z,v,y), M)A (3.1)
Vo, v,y(in((z,v,y), M) > v=ecAz =y
V onestep(, v.y, M))),
where onestep(z,v,y, M) is defined as

onestep(z,v,y, M) := path(v)A
2’ v z(v[z]v" A z[z]a’ A in((2’, 0", y), M)).

We have to show that
M, o |= subtreeAt(z,v,y) iff subtreeAt(a(x), PATH(a(v)),a(y)).

The “if” direction is left to the reader. For the “only if” it is sufficient to prove that
if
M, o = Ve,v,y(in((z,v,y), M) > v=cAz =y
V onestep(z,v,y, M))),
then every tuple (o1, 7,02) € REL;(a(M)) satisfies subtreeAt(o1, PATH(7),03). Note
that (o1,7,09) in REL3(a(M)) implies that 7 is the feature tree representation of a
path. Hence, we can use induction over the length of PATH(T).

For the induction beginning PATH(7) = ¢ we know for every {z, v, y}-update o' of «
with o/(z) = o1, &/(v) = 7 and o/(y) = o, that

M, o’ £ onestep(z,v,y, M),
which implies oy = o3.

For the induction step assume that we have proven the claim for all tuples (o1, 7, 03) €
REL;(a(M)) with | PATH(7)| < n. Let (01,7, 02) be an element of RELz(a(M)) with
| PATH(7)| = n + 1, and let o be a {z,v,y}-update of a with o/(z) = oy, &/(v) =7

and o'(y) = o3. Since 7 is not the empty path, we know that
M, o' = onestep(z,v,y, M).

Hence, there are trees oy, 7" and a feature f such that PATH(7) = fp, PATH(r') = p
and subtreeAt(oq, f,0!). By induction hypotheses we get subtreeAt(o}, p, 02). Hence,
subtreeAt(oy, fp,0q). O
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subtreeAt(z,v,y) is a good example for the general method of defining relations.
As we will see in the next chapter, we can at least define all those relations within
F’ which are definable by definite equivalences. To see this consider the following

alternative definition of subtreeAt using definite equivalences:!

subtreeAt(z,v,y) ¢ v=c¢Ax =y
vV (path(v) A
Jz’ v’ z(v][z]v" A z[z]a’ A subtreeAt(z’,v',y)))
Note the similarity between the second clause and the definition of onestep(z, v, y, M).
In fact, for every valuation o of the variable M in the definition of subtreeAt (see
(3.1)) the extension of oy encodes a subset of the subtreeAt relation. If 9 is the

rational tree model, then oy encodes a finite subset of subtreeAt, otherwise it may
be infinite. Note that a finite extension is alway sufficient.

Proposition 3.10 The relation “PATH(c) € [L]” is definable within F'.
We need an additional proposition for the proof.

Proposition 3.11 Given two reqular expressions Ly, Ly, then [L1] C [Ls] if and
only if M |= Yz, y(regexpy, (z,y) — regexpy,(z,y)).

Proof. The “only if” direction is trivial. For the “if” direction assume that 9 =
Vi, y(regexpy (z,y) — regexp; (z,y)). We have to show that [L;] C [L,]. Let
p € [L1] be a path, let o be the feature tree

({19 = p}0).

o is rational tree, which implies that o € U(9). Clearly, subtreeAt(o, p, ), where 7
is the feature tree ({€},?). Furthermore, p is the only path connecting o with 7. Now
we have assumed that 9 |= Va,y(regexp;, (7,y) — regexp; (x,y)). This implies
that a valuation o with a(z) = o and a(y) = 7 satisfies M, o = regexp; (z,y),
which shows p € [L2]. 0

Proof of 3.10. By the last proposition, the definition for the relation “PATH(o) €
[L] is
pathrestr;(v) := path(v)A Va,y(subtreeAt(z,v,y) — regexp;(z,y)).

a

INote that this is no explicit definition for subtreeAt, since the definition itself makes use of the
symbol subtreeAt to be defined. Definitions of this form are sometimes called recursive definitions.
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Proposition 3.12 The relations simulate and subsume are definable within F'.

Proof. The definitions are

simulate(z,y) := Vv(JzsubtreeAt(z,v,z)— JzsubtreeAt(y,v,z))
A Yo, z(subtreeAt(z,v,z) A atom(z) — subtreeAt(y,v, z))
subsume(z,y) := Vv,v[Jz(subtreeAt(x,v,z) A subtreeAt(z,v’,z))
— Jz(subtreeAt(y,v, z) A subtreeAt(y,v', z))].

3.1.3 Natural Numbers

In this section we show that we can encode natural numbers and the operations
successor and predecessor. We use the atom 0 € £ to represent zero. Hence, we can

represent a natural number n by the feature tree

-~
n-times
-
0
The partial function
NUM:T ~ N

maps these feature trees to the corresponding natural number. Note that for every
n € N there is exactly one feature tree o with NUM(o) = n.

Proposition 3.13 The relations “NUM(c) is defined”, “NUM(o) is the predecessor
of NUM(7)” and “NUM(c) is the successor of NUM(7)” are definable within F'.

Proof. The corresponding definitions are

nat(z) := Vy[subtree(z,y) = (y =0V y{pred})] A subtree(z,0)
pred(z,y) := z{pred} A z[pred)y
succ(z,y) = pred(y,z)
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a

In the following, the letter C' is used for first-order variables which are intended to
represent natural numbers. Since for every feature tree o representing a number there
is a unique 7 representing the successor of NUM(o), and since for every o representing
a number different from 0 there is a unique 7 representing the predecessor of NUM(c),
we write ¢(C + 1) and ¢(C — 1) as an abbreviation for 3C'(suce(C,C") A ¢(C’)) and
AC'(C # 0 A pred(C,C') A ¢(C")), respectively.

3.2 Definite Constructions

In this section, we show that the language F' is even expressive enough to encode defi-
nite constructions, i.e., every relation that can be defined using definite constructions
has a definition in F’. Definite constructions allow one to extend the signature by a
set of new relations symbols R, and to provide definitions for these relations in form
of so-called definite equivalences, which are introduced in [Smo93]. The extended
language R(F') is called the relational extension of F’. An equivalence definition for

some relation R is a formula
R(xy,...,z,) < D(xqg,...,2,),

where D is a definite formula which has at most zq,...,x, as free variables. The set

of definite R(F’)-formulae is generated by the production rule
D,D" == R(ti,...,t,) | DAD" | DV D" |3zD | ¢,

where R € R denotes a relation symbol of arity n and ¢ a F'-formula. In the following

we refer to a set of definite equivalences as a definite program.

[Smo93] associates to every definite program P a continuous function Tp over the set
of R(F')-interpretations which has the property that every fixpoint of Tp is a model
of P. The result of applying Tp to some interpretation 2 of P is an interpretation
A’ such that for every equivalence R(z1,...,2,) ¢ ¢(21,..., %),

R¥ = {(a(z1),...,0(x)) | A, = B(1,...,20)]}.

Since T'p is continuous, it has a least and a greatest fixpoint, which establishes a least
and greatest model of P.
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Usually, one is interested in the least model of a definite program. But the greatest
model has also its applications. Recall the definition of the feature tree representation
of lists that we have used in the introduction:
list(z) < x = nil
Vo Fy(a{l1, 2} A z[2]y A 1ist(y))
Now assume that we have an interpretation 2, where list™ contains all feature trees

representing the empty list and unary lists, i.e., all feature trees of the form

nil 1 2

nil
tq

Let ' be the result of applying the continuous function Tp associated to P on the
interpretation 2. Then the denotation of list in 2’ is defined as

list™ = {a(z) | Ao =z = nil VIy(z{l, 2} A z[2]y A List(y))}.
This implies that list* contains all feature trees of the form

nil 1 2

31

It is now easy to check that the least fixpoint of T» contains only the representation

of finite lists, i.e., the feature trees of the form
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But this fixpoint does not contain the representation of cyclic or infinite lists. An

example of the representation of an cyclic list is

h

These feature trees can be found in the greatest fixpoint of T'p.

The distinction between the least and greatest fixpoint of a definite program P can
also be characterised in the following way. The computational service provided for
definite programs usually tests whether a conjunction G of F'-formulae and atomic
R(F’)-formulae is satisfiable in the least model a definite program P. This is the same
as asking whether P entails 3G. If one is interested in whether P A 3G is consistent,
one has to use the greatest model. For this reason, the greatest fixpoint semantics was
chosen for some formalisations of type systems, which are a special form of definite
programs that use only unary predicates (see [AKPG93, Pol89, PM90, Kri95]* for
examples of type systems with greatest fixpoint semantics; for formalisations using

the least fixpoint semantics see [AK86, EZ90b, EZ90a, Smo92, Car92]?).

3.2.1 Definite Programs

The definitions presented in this section are similar to the one in [Smo93] and have
been adapted for our purposes. In the following, let R = U,y Ry be a set of relation
symbols, where R, contains exactly those relation symbols in R of arity n. As in the

last section, we use 91 as a meta-variable ranging over Tp: and Rp:.

Definition 3.2 (Relational Extension) The signature of the relational extension

R(F") of F" is LU {-[]- }UR.

2[Pol89, PM90] defined their semantics by a least fixpoint, but on a partial order that is just the
inverse of partial order that is just by the other approaches. Hence, one has to use the dual notion
for the comparison of the different approaches.

3In [EZ90a], the denotational semantics was defined via the least fixpoint; but the authors present
also an operational semantics, which interestingly corresponds more to a greatest fixpoint semantics
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Definition 3.3 (R(F’)-interpretation) An interpretation A of R(F') extending the
feature tree model M is a R(F')-structure with the following properties:

the universe of A is the universe of M

o & =cM for every c € L,

for every R € R, of arity n, R® is a subset of []7—, U(M).

The set of definite R(F’)-formulae is given by the following formation rule
D,D" == R(ti,...,t,) | DAD"| DV D" |3zD | ¢,

where R € R denotes a relation symbol of arity n and ¢ a F'-formula.

Definition 3.4 An equivalence

s called definite if

o R is a relation symbol of arity n,
e D is a definite formula, and

e V(D) CH{zy,...,z,}.

A finite set P of definite equivalences is called definite program if P contains for
every R € R at most one definite equivalence R(xy,...,x,) <> D.

Since P is finite, it is sufficient to consider only those relation symbols that occur in
P. For this reasons, we assume henceforth that R is a finite set of relation symbols,
and that {Ry,..., R,} is a fixed enumeration of R. Furthermore, we assume that n;
denotes the arity of R;. Since R is finite, we can encode R(F’) interpretations just
as a finite tuple of sets. This view on interpretation is more appropriate for encoding

definite programs within F’.



50 CHAPTER 3. EXPRESSIVITY OF F'

Definition 3.5 The interpretation domain intdom(R,9M) for R = {Ry,...,R,}
over M is defined as

intdom(R, M) = ﬁp(U(ffﬁ)m),

where R; has arity n; for every i € 1...n. For every element m = (my,...,m,) €
intdom(R,9N) we define the associated interpretation Z(m) by

i = m;.

Clearly, there is a one to one mapping of elements of intdom(R,9M) to R(F')-
interpretations. We define the continuous function associated to a definite program
P directly on elements of intdom(R,9) and not on the R(F')-interpretations. In the
following, we use C for the component-wise subset relation, and U for the component-

wise union on elements of intdom(R, ).

Definition 3.6 For a definite program P the mapping TE' : I, p(U(ON)™) —
[T, e(U(OM)™) is defined by

TP : (my,...,mp) — (m,...,m")

if and only if for everyr € 1...n

mi = {(a(z1),...,a(z,)) | Ri(zy,...,2,) < DEP
and Z((m1,...,my,)),a = D}

Proposition 3.14 Let P be a definite program and m € intdom(R,IM). Then I(m)
is a model of P if and only if m is a fizpoint of T2,

Proof. Let m = (my,...m,). Now T2 (m) = m iff for all valuations o into Z(m)
and for every R;(x1,...,2,,) <> D in P

(a(z1)y... a(xy,)) Em; & I(m),al=D. (3.2)

But (3.2) is the same as Z(m),a = Ri(zy,...,x,,) < D. Hence, T2 (m) = m iff
I(m) = P. 0

Next we show that TA" is a continuous function for every definite program P, which
implies that 72" has a least and a greatest fixpoint. Therefore, there exist a least
and a greatest model of P extending 9. We assume the reader familiar with the
basic lattice theory and the different fixpoint theorems for continuous functions (for
an text book on lattice theory, see e.g. [DP90]; a short summary can be found in the

appendix). For our purpose, we need one additional proposition.
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Proposition 3.15 Let T2 : [T, p(U(O)™) — [1, o(U(OM)™) be some function.
Then T is continuous if and only if for every m € [, p(U(IM)™),

=U{fe H@ )*) | f Sm, f finite}.

Proof. Follows from Proposition A.1, where the more general case of algebraic

lattices is considered, since intdom(R,9N) is an algebraic lattice. O

Proposition 3.16 Let D be a definite formula, m an element of intdom(R,9M) and
a be a valuation into I(m) such that Z(m),a = D. Then m';a = D for every
m Cm'.

Proof. By an easy induction proof on the structure of definite formulae. O
Corollary 3.1 T2 is monotone for every definite program P.

Lemma 3.2 Let D be a definite formula, m be an element of intdom(R,IM) and «
be a valuation into Z(m) such that Z(m),« |= D. Then there is a finite f C m such
that Z(f),a E D

Proof. By induction on the structure of definite formulae. Let m and a be given
as described. If D = ¢ where ¢ is a F'-formula, then we define f as (0,...,0). If
D = R;(ty,...,tn,), then we can define f as (fi,..., fn) with f; = () for j # 7, and
fi=A{(alt1),...,a(tx;))}. For the induction step we have the following cases:

e D= Dy A D,. Then there exist f; C m and f, C m finite with

I(fl)aa = D; and I(f2)a04 = D

by induction hypotheses. Let f = f; U f;. Clearly, f is finite with f C m.
By 3.16, we know that Z(f),a E D and Z(f),a | Dy Hence, Z(f),a E
Dy A D,

o D= D;V D,. Similar to the above case.
e D = daD'. Then there exists a o' such that a and o’ differ only on = and
I(m),a E D

By induction hypotheses, there is a finite f C m with Z(f),o' | D', which
implies Z(f), o = Jz D',
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O
Lemma 3.3 T2 is a continuous function for every definite program P.

Proof. By Lemma 3.15, we have to show that for every m € intdom(R,9M),
TP (m) = ({f € [To(UEM)™) | f Cm, [ finite}
=1

The D-direction follows from the monotonicity of T2 (Corollary 3.1). For the C-
direction let Tpm(m) = (m},...,m)) and let (o1,...,0,,) be an element of m;. We

have to show that there is a finite f C m such that

(01,...,07“) € WZ(Tlgn(fD’

where 7; is the i-th projection. Since P is a definite program, we know that there is
a unique equivalence R;(zy,...,2,,) <+ D in P. By definition of T2", there exists a
valuation « into Z(m) such that (oy,...,0,,) = (a(z1),...,a(z,,)) and Z(m),a | D.
By Lemma 3.2, there exists a finite f C m with Z(f),a | D. Hence, (01,...,0,,) €
(TR (). =

Corollary 3.2 FEvery definite program has a least and a greatest model.
Proof. Follows directly from the above lemma. a

A goal (G is a possible empty conjunction of F'-constraints and R(F')-atoms. Consid-
ering the least model of a definite program P is the same as asking whether P entails
3G. One has to choose the greatest model if one is interested in whether P A 3G is
consistent.

Proposition 3.17 Let G be some goal and P be a definite program. Then 3G s
valid in every model of P extending M if and only if it is valid in the least model of
P extending M, and 3G is satisfiable in every model of P extending M if and only
if it is valid in the greatest model of P extending M.
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3.2.2 Fixpoints of Continuous Functions

In this section, we show that for every continuous function

n n

T [T e(UE)™) = [Te(U@)™)

i=1 =1

which is definable within F’ the least and (under certain restrictions) the greatest fix-
point is definable. In the following the letter T' denotes always a continuous function
over [T, p(U(M)™). Since the models of definite programs are continuous function
of this type, we can use the encoding also for the least and greatest models of definite

programs.
Definition 3.7 Let T : [[%, p(U(M)™) — [1%, o(U(MN)™) be some function. A
family of F'-formulae

(¢T7i(M17 R Mn7 T1y--0y xng))i:l..n

is called definition for T in 9 in terms of F' iff for every i € 1...n and every

valuation o into IM,

Mo l=dri(My,.... My, 21,...,2,) <
(az1),...,0(zy,)) € m(T(REL, (a(My)),..., REL,, (a(M,)))),

where m; is the 1" projection function.

We say that T is definable in F’ if there exists a definition for 7" in terms of F’ in
both feature tree models.

Lemma 3.4 The function T2" is definable in F' for every definite program P.

Proof. For a R(F')-formula v, we define the ™! to be the F'-formula where every
occurrence of an atomic formula R;(ty,...,t,) in ¢ is replaced by in({ty,...,t,), M;).

Let P ={Ri(x1,...,2s,) <> D; |1 € 1...n}. Then defining
dri(My, ..., My, x1,...2,) = DI

for every 1 € 1...n yields a M-definition for 7' O

We start with the F'-definition for the least fixpoint. The definition for the greatest
fixpoints will follow as an easy corollary. For the encoding of the least fixpoint, we
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could apply either Tarski’s fixpoint theorem or Kleene’s fixpoint theorem. The first
states that the least fixpoint Ifp(7") of a continuous function T is the greatest lower

bound of all pre-fixpoints, i.e.,
(1) = (Vm | T(m) C m}. (33)

The second fixpoint theorem constructs the fixpoint via an w-iterative application of
T to the least element L. Since the least element of [T, p(U(M)™) is (0,...,0), we
get

p(T) = Ttw = [J{TH(®,...,0)) | k € N}. (3.4)

The characterisation of 1fp(7") in (3.3) would yield the simplest definition for Ifp(7T')

since it uses a direct representation of the least fixpoint. The formula
prefixpT(]Wl, oMy =

/\ Var, ooy (dri(My, ... My, 21, .. x,,) = in((zq, ..., 24,), M),

where (¢r(My, ..., My, x1,...,25,))ic1..n 1s a definition for T within F’, expresses
that the tuple My,..., M, represent a pre-fixpoint of T. Since the subset relation
is definable in F’, we could also define the lower bound off all pre-fixpoints, and
hence the least fixpoint of 7. But this definition works only if all pre-fixpoints are

representable in 9, which is not normally not the case.

This implies that we must use (3.4) for the definition of the least fixpoint. Our aim

is to find a family of formulae (gbi-fp(T)(:E}))i:l__n such that for every valuation a,
Mo 6" Na,eizn) = (alar),...,alew)) € m(T T w).

Since the definition shall also work for the case 91 = PRp/, we impose the additional
restriction that is sufficient for the set variables in the formulae qblfp )(xl, cey Tpy) tO

denote finite sets.

The restriction to finite sets is the minor problem. By Proposition 3.15 we know that
(01,...,04,) € mi(T(m)) if there is a finite f C m with (oq,...,0,,) € m(T(f)). Fur-
thermore, (oy,...,0,,) € m(Ifp(T)) if there is some k € N such that (oy,...,0,,) €
m(T*((D,...,0)). Hence, an easy induction shows that (oy,...,0,.) € m(1fp(T)) iff

there is a finite sequence

(m%,...,m%), ..., (mF,.. . mF)

of finite elements (m!, ..., m%) of [T, p(U(M)™) such that
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o (mith . omEtYY CT(mk, ... ,m") for every I €0...k—1, and

Note that the restriction to finite elements is a sufficient but not necessary condition
(which is important for the case 9 = Tp/, since we can represent also infinite sets in

‘:CFI).

Since we may only use a finite number of variables denoting sets, we have to find an ap-
propriate representation of sequences. Given a sequence (m?,...,m%), ...  (mf ... mF),

we can represent this sequence using a single tuple (sy,...,s,) if we extend each ele-

ment of m! by the number /:
5 = {(0-17"'70-7%‘71) | (017"'7Jni) € mi}

For a set s containing tuples of arity n; + 1, we say that a set m € p(U(9)™) is the
restriction s to [ if

m=A{(or...,00,) | (01...,0n,1) € s}.

A tuple (my,...,my,) is the restriction of (sy,...,s,) to [ if every m; is the restriction
of s; to [. We say that a sequence (m?, ...,m2), ... ,(mF, ... ,mF) of elements of
[T, p(U(M)™) is associated to a tuple (sy,. .., s,) iff (m},...,ml) is the restriction
of (s1,...,8,) to [ for every [ = 0..k. Note that for every & € N there is a sequence

associated to (sy,...,$,).

In the following, we use the variables Sy,..., 5, to encode the tuple (sy,...,s,). In-
stead of natural numbers we use the feature tree representation of natural numbers as
introduced in Section 3.1.3. Note that there is a one-to-one mapping of natural num-
bers to the feature tree representation of natural numbers. Hence, we can represent

sequences as tuples (s1,...,s,) with

(S15...,8n) € ﬁ e(U(IM)™ x natm),

=1
where nat™ denotes the set of feature trees representing natural numbers.

To show that Si,...,S, is a correct encoding of an iterative application of T', we
must find a formula guaranteeing that every sequence m°, ..., m* associated to the
denotation of Sy,...,S,, satisfies m'*! C T'(m!) for every [ € 1...k — 1. For this

purpose we need to express that the sets denoted by the variables M;,..., M, are
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the restriction of the sets encoded by Sy,...,S, to a given natural number encoded

by the variable C":

restr(My,...,M,,S1,...,5,,C) =

A Ve, .z (in((zr, ..o 20, ), Mi) < in((z1, ... 20, C), 5))))
=1

Proposition 3.18 For every valuation o into M, if
M, o | restr(My,..., M,,S1,...,5,,C]),

then REL,,(a(M,)) is the restriction of REL,, 11(a(S;)) to NUM(a(C)).

0

The next formula seqy(Si,...,S,) guarantees that every sequence m° ..., m* of

elements of [T, p(U(M)™) associated to the interpretation of S ..., S, satisfies
m™ C T(m)

In the following, we assume that the formulae (¢r,;(My,..., My, 21, .., 2, ))iz1.n are
a definition for 7" within F.

The formula app,(S1,..., 5%, 21,..., %, ) defined as

M M (restr(Ml,...,Mn,Sl,...,Sn,C')/\)
1y« n

¢T,i(M17 .. .,Mn,.l?l, .. .7337”)

states that (x1,...,2,;) is an element of the application of T' to the restriction of
S1y. ..y, to C. Thus, we can write seqp(S1,...,5,) as

" in((z1,...,2n,C),S;) Anat(C) — )
Va1, ... on, C :
24\1 o ! ( C=0V (C#0Aappp(St,...,Sn,T1y...ypn,, C —1))

Proposition 3.19 If M, a = seqp(S1,...,5,), then every sequence m®,..., m* as-

sociated to (RELy, 41(a(S1)),..., REL,, 11(a(S,))) satisfies m'*t C T(m!) for every
le0...k—1.

Lemma 3.5 Let T : [T, p(UON)™) — [T, o(U(OM)™) be a continuous function
which is definable in F'. Then there is a family of formulae

(¢i(M17 Ty Afnv C; L1y 7xn¢))i:1..n
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such that for all valuations o into M,

E):n,Oé |: ‘l/)i(Mla SRR M17 Ca-rla s a'rni)
<
(a(e1),..., alen,)) € m(TNMEAD (my, ... mn)))

where (my,...,my,) = (REL,, (a(My)), ..., REL,, (a(M))).

Proof. It is easy to check that the family of formulae

nat(C) A

in((x1,...,2n, C), 5) A
seqp(S1,...,5) A
restr(My,...,M,,S1,...,5,,0)

Y, = 351,...,5,

satisfies the required properties. a

Using this proposition, we can define the least and (under certain restrictions) the
greatest fixpoint of a continuous function.

Theorem 3.1 For any continuous function T : [, p(U(IM)™) — [T, (UOM)™)
which is definable in F' there is a family of formulae

Ifp(T)

(&

(T1y.eoy@ny))iztm

such that M, a k= ¢* (@1, 20) iff (al1),..., alwn,)) € m(p(T)).

Proof. By Proposition A.1 we know that Ifp(7) = T 1 w. This implies that
for every tuple (oy,...,0,,) of feature trees, (oy,...,0,,) € m(lp(7T)) iff there is
some k € N with (oy,...,0,,) € m(T*®,...,0)). By lemma 3.5 there is a formula
Yi(My,....M,,C,z1,...,2,) such that for all valuations a into 9,

m, «Q |: ‘LZ)Z'(Ml, ey Ml, (/y, Llyenny xn,)
<
((x1),...,0a(xn,)) € T TVNMAON((REL,, (a(M)), ..., REL,, (a(M))))).

Since for every k there is a feature tree representing &, we can define qﬁi-fp(T)(:Ul, cey Tp,)

as 3C ¥, (eset, ..., eset,C,xq,. .., x,,), Where eset is an arbitrary constant symbol in

L. O
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Theorem 3.2 Let T : [, o(UMM)™) = [T, p(U(ON)™) be a continuous function
which is definable in ¥' If gfp(T) =T | w, then there is a family of formulae

(¢§fP(T)($1’ tety xni))izl..n

such that M, a = <b§fp(T)(:E1, ceny ) ff (az1), .. a(xy,)) € migfp(T)).

Proof. By the monotonicity of T' we know that (T*([]", U(9M)™))xen is a decreasing
sequence of sets, 1.e.

e T UERY™) € THIT U™,

Hence,a tuple (o1,...,0,,) of feature trees is an element of 7;(7" | w) if and only if
for every k € N

n

(01,...,04) € m(THI]UEM™)).

i=1
This implies by Proposition 3.15 that (oq,...,0,,) € m(T | w) iff for every k € N
there is a finite m € [[=, UON)"™ with (o4,...,0,,) € m(T*(m)). The restriction to
finite elements of [I7_, U(9M)™ is not necessary, but sufficient.

Using the formulae ¢;(My, ..., M,,C,xy,...,2,,) of lemma 3.5, we can define the
relation (oy,...,0,,) € m(T | w) by the formula

Gy wn) = YCIMy,..., My(nat(C) = i(My,..., M, Coz1,. .., 20)).

a

Using these theorems, we can show the definability of the least and greatest model

of definite programs.

Theorem 3.3 The relations defined by the least model A of a definite program P
extending M are definable in F' i.e., there are formulae (¢r,(21,...,2n,))e1..n Such
that

M, k= ¢r, (21, on) = (a(z1),...,a(zn,)) € BT

If the greatest fizpoint of the associated continuous function T2 can be generated in w-
many steps (i.e., gfp(T2Y) =T | w), then there exist formulae (Yp,(x1,...,%n))e1.n
such that

Mo = Yp, (1. 2) <= (alzr),... a(z,)) € RF

Proof. Follows from Proposition 3.14, Lemmas 3.3 and 3.4, and Theorems 3.1
and 3.2. O



Chapter 4

Recursive Axiomatisations of FT’

and CFT’

There are two complementary ways of specifying a feature theory: either by explicitly
constructing a standard interpretation and taking all sentences valid in it, or by stat-
ing axioms and proving their consistency. Both approaches to fixing a feature theory
have their advantages. The construction of a standard interpretation provides for a
clear intuition and yields a complete theory (i.e., if ¢ is a closed feature description,
then either ¢ or ¢ is a consequence of the theory). The presentation of a recursively
enumerable axiomatisation has the advantage that we inherit from predicate logic a
sound and complete deduction system for valid feature descriptions. Note that all
models of a complete theory are elementarily equivalent. The ideal is to specify a
feature theory by both a standard interpretation and a corresponding recursively enu-
merable axiomatisation. The existence of such a double characterisation, however, is

by no means obvious, since it implies that the theory is decidable.

In the first two chapters, we have exemplified the first approach by defining the
feature tree interpretation of the language F’' and investigating the theory of this
interpretation. Since we have shown that this theory is undecidable, it is clear that
a recursive enumerable axiomatisation of this theory cannot exists. In this chapter,
we present an axiomatisation for the theory of standard interpretations of FT' and
CFT’, which we have defined in the first chapter. In the following, we deliberately
confuse the language FT' (resp. CFT') with the axiomatisation of the theory of Tpr/

(resp. Tepr)-

In Section 4.1, we give an informal guide through the completeness proofs and com-
pare the proofs for FT/ and CFT’. Section 4.2 formally introduces the method for
proving completeness. In Section 4.3, we define the tool of path constraints which

59
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helps us to keep the completeness proofs simple. Section 4.4 presents the axiomatisa-
tion for FT and proves it completeness. Furthermore, we show that the feature graph
interpretation and both the infinite and rational feature tree interpretation are mod-
els of FT'. This implies that all these models are elementarily equivalent with respect
to the language of FT'. In this section, we will also show that the arity predicates
of CFT' are not definable in FT’. As an example, we will show how the quantifier
elimination can be used for checking entailment of existentially quantified formulae
containing negated equations. Section 4.5 finally introduces the theory CFT' and
proves it completeness. Again we will show that both the rational and infinite tree
interpretation are models of CFT’. Note that the feature tree graph interpretation is

not a model of CFT".

4.1 The Method

4.1.1 Quantifier Elimination

The completeness proofs use a version of the method of quantifier elimination used
by [Mah88]. To proof the completeness of a theory T' using this method, it is necessary
to find a class of formulae (here called prime formulae) satisfying certain properties.
For both FT' and CFT’, the set of prime formulae is the set of existentially quantified
solved formulae. A solved formula is a normal form of conjunction of atomic formulae

with some nice properties. In particular, it is always satisfiable.

The first property is that every closed prime formula is valid in 7', which will be
a trivial consequence of the set of axioms. The second property is that the class of
prime formulae is closed under conjunction and existential quantification. Again, this

is easy to show in our case.

The third (and difficult to prove) property is that the following two equivalences are
valid in T: (1) Given prime formulae 3, 31,. .., 3,, then

XA A5 H A IXE A=) (1.1)

and (2) there exists for all prime formulae 3,3’ a Boolean combination of prime

formulae § such that
IX(BA-8) H Y, (4.2)

where X is a set of variables. These schemes can now be used for a system trans-

forming every closed formula in the language of T' a Boolean combination of solved
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prime formulae. Since every closed prime formula is valid in 7', we know that the
result of transforming the sentence reduces either to T or to L. In the first case, ¢
is valid in T'. Otherwise, —¢ is valid in T'.

The transformation works as follows. An invariant of the transformation is that both

the input and output formulae of a single transformation step are of the form

where ()1 ..., are quantifiers and 7 is a Boolean combination of prime formulae. A
single transformation step now eliminates the innermost quantifier.

If the innermost quantifier (), is an existential one, then we first transform ~ into dis-
junctive normal form, treating the prime formulae as atoms. Then we can distribute
the existential quantifier over the disjuncts, yielding a disjunction of formulae of the

form
n k
Je(A B A N =5))
=1 7=1

where all 3; and 3} are prime formulae. Since prime formulae are closed under

conjunction, we can assume that the disjuncts are of the form

k
Jz(BA N -3;.)

=1

Now we can apply scheme 4.1, transforming each disjunct into a conjunction of the
form

k

A (B A=),

=1
which can be transformed into a Boolean combination of prime formulae § by scheme 4.2.
All together, we have eliminated the innermost existential quantifier.

In the second case that the innermost quantifier is a universal one, we substitute
—da—y for V. Then we put —v into its negation normal form +', treating the prime
formulae as atoms. Applying the elimination method as described for existential
quantification on x4’ yields a Boolean combination of prime formulae §. Now putting
—¢ into negation normal form again (treating prime formulae as atoms) yields a

Boolean combination of prime formulae that is equivalent to Va~.

We have described the elimination of a single quantifier. But as the schemes 4.1
and 4.2 use an existential quantification over a whole set of variables X, the elim-
ination methods apply also to a whole set of quantifiers of the same type (i.e., if
we start with a formula Q... Qx ... Qrrny Where Q... Qrt, are either of the form
dzp ... dzpy, or of the form Vg ... Vagy,, then we can eliminate Q... Qg4+, in one
step.
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4.1.2 Comparison of the Completeness Proofs for FT' and
CFT'

The difference between FT’ and CFT' is that CFT' additionally has arity constraints.
This implies that every FT’ formula is also a CFT' formula. Hence, the completeness
proof for CFT’ is an extension of the completeness proof of FT’. However, we have to
extend the completeness proof for FT' in a non-trivial way, since we have to handle

additional equations imposed by the arity constraints. E.g.

e{fy Nafe ANy{f} Ayfy Eerr @ =y

holds in CFT’ stating that there is only one solution for the formula x{f} A zfz.
In FT' it is not possible to identify one element of the domain by a formula. Thus,
CFT' requires records to be extensional (i.e., two records are identical if they have
the same set of attributes and identical values under the corresponding attributes).
Note that this property could not be guaranteed using the language of FT' (i.e., FT'
has non-extensional models).

In the following we give a concrete example where the additional problems that arise
in the completeness proof for CFT'. Consider the FT'-formula 3z(3 A =3') with

B = Jrg,xa(xfr Axgas)
B = FylafyAagy),

which is an instance of left hand side of scheme 4.2. In the standard model of FT’
(which is the same as for CFT'), there always exists a valuation for = satisfying /3
such that the values under the features f and ¢ are different. This implies that the

equivalence

Jz(BA ) H F2p (4.3)

is valid in FT'. Hence, 3z(3 is the Boolean combination of prime formulae as required
by scheme 4.2. Roughly speaking, this equivalence is proven by extending 3 to a
prime formula 3.,; which makes z; and z, different, e.g. the prime formula

dxy, xy ( xfxy Nxgrg N xifa Nxyfad )

with a,a’ being two different constant symbols. Clearly, 3z3.,; is satisfiable in FT".
Hence, there exists in every model of FT’ a valuation for z satisfying 3..;. Since this

valuation must also satisfy 8 and cannot satisfy ', this shows the equivalence in 4.3.

Therefore, it is necessary in the proof to characterise the variables for which such

additional constraints must be added. In the case of FT’ this is easy; they are
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exactly the variables where an additional equation is added when applying the solved

form algorithm on

BAB = Tz, xg,y(afry Axgry Axfy A zgy).

But in the case of CFT’, the situation is more complex, since variables can be de-

termined using the arity constraints. Consider the following two formulae 3; and

%321

xfxy Nxgrg A
dzy, 29, x5, 24 | w1 {f} AN aifas A
zo{f} Naofay
xfry ANxgry A
dry, 29 | o {f} Naifa A
zo{ f} AN zafas

We let 3’ again be Jy(xfy A xgy). Although in both cases an additional equation
x1 = x is added when solving 81 A 3’ or B A3, the equivalence Jz (6 A=) H Jz b4
is valid in CFT’, whereas the equivalence 3z (3; A =3') = Jz 3, is not.

5

e

4.2 Overall Structure of the Completeness Proofs

The completeness of FT' and CFT’ will be shown by exhibiting simplification algo-
rithms for both FT' and CFT'. The following lemma gives the overall structure of
the algorithms, which is the same as in Maher’s [Mah88] completeness proof for the
theory of constructor trees.

Lemma 4.1 Let T be a first order theory. Suppose there exists a set of prime for-
mulae such that:

1. for every atomic formula ¢ one can compute a Boolean combination § of prime

formulae such that

¢Hrd and V(§) CV(9),
2. T is a prime formula, and there is no other closed prime formula

3. for every two prime formulae 3 and (' one can compute a formula § that is

either prime or L and satisfies

BAB Hpd and V(6) CV(BAJ)
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4. for every prime formula 3 and every variable x one can compute a prime for-
mula (3’ such that

308 Hy B and V(F) C V(32p)

5. if 3, B1,..., 0, are prime formulae, then
Jz(B A /_\ —Bi) Hr /_\ dz(B A —5;)

6. for every two prime formulae 3, ' and every variable x one can compute a

Boolean combination § of prime formulae such that

3e(BA~F) Hyp 6 and V() C V(E2(B A -5).

Then one can compute for every formula ¢ a Boolean combination d of prime formulae

such that ¢ = 6 and V(6) C V(¢).

Proof. Suppose a set of prime formulae exists as required. Let ¢ be a formula. We

show by induction on the structure of ¢ how to compute a Boolean combination ¢ of

prime formulae such that ¢ =, 6 and V(0) C V(¢).

If ¢ is an atomic formula, then it can be transformed into an equivalent Boolean

combination of prime formulae by assumption (1).

If ¢ is =), v A" or ¥ V', then the claim follows immediately with the induction
hypothesis.

It remains to show the claim for ¢ = dxt. By the induction hypothesis we know that
we can compute a Boolean combination § of prime formulae such that § H; ¢ and
V(0) € V(¢). Now § can be transformed to a disjunctive normal form where prime
formulae play the role of atomic formulae; that is, ¢ is equivalent to o1 V ...V oy,
where every “clause” o; is a conjunction of prime and negated prime formulae. Hence

dzp H Jz(oy V... Vo,) H Jzoy V...V Izo,,

where all three formulae have exactly the same free variables. It remains to show
that one can compute for every clause o a Boolean combination ¢ of prime formulae
such that Jzo H; 6 and V(4) C V(Jzo). We distinguish the following cases.

(i) o = [ for some basic constraint 5. Then the claim follows by assumption (4).

(ii) o = B AN, =0, n > 0. Then the claim follows with assumptions (5) and (6).
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(iii) 0 = Ni=y =B, n > 0. Then o H; T A AL, ~f; and the claim follows with case
(ii) since T is a prime formula by assumption (2).

(iv) o= BN ABN=BIA. .. A=BL, k> 1,n > 0. Then we know by assumption (3)
that either By A...A By Hp L oor By A...A By Hy B for some prime formula (.
In the former case we choose § = =T, and in the latter case the claim follows

with case (i) or (ii).

Note that, provided a set of prime formulae with the required properties exists for
FT' (resp. CFT'), the preceding lemma yields the completeness of FT' (resp. CFT’)
since every closed formula can be simplified to T or =T (since T is the only closed

prime formula).

Section 4.4 establishes the set of prime formulae as required for FT', whereas in
section 4.5 we will do the same for CFT’. In the next section we will define the tool
of path constraints that will help us to keep the proofs for both FT' and CFT' simple.

4.3 Path Constraints

Path constraints are a flexible syntax for atomic formulae closed under conjunction
and existential quantification. We will see that for every prime formula there is an

equivalent quantifier-free formula consisting only of path constraints.

The propositions to come will be proven for a common sub-theory of FT' and CFT’,
which expresses exactly the minimal properties of features. This theory is called
FTo. In a slightly modified version, this theory has been introduced in [Smo92].
Since CFT’ contains unary predicates in form of arity constraints, FTy must also
contain unary predicates. Thus, the signature of the common sub-theory consists of
all elements of £ acting both as constants and features, a set of unary predicates
P and a distinguished unary predicate symbol atom. If nothing else is stated, the
letter P denotes a unary predicate symbol in PU{atom}. Since CFT' contains unary
predicates, whereas FT’ does not, we formalise the theory FTy with different sets of
unary predicates. Thus, we use FTOP to denote the instance of FTq whose signature
contains exactly the unary predicate symbols listed in P. We will see that FTé} is a
subset of FT' and that ]E’Tc{,F"}iEN is a subset of CFT’, where {F;},cy is an enumeration
of all arity constraints.
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As mentioned, FTE is a minimal theory expressing the properties of features. In the
models of FTOP, features are interpreted as binary, functional relations. All predicates
in P are free, i.e. they are just interpreted as unary predicates without additional
conditions. Therefore, we have the following axiom schemes for FT? stating that
every feature is functional, that features are not defined on constants, that the unique
name assumption holds for the constants, and that the denotation of atom should be

the set of all constants':

Ax1) ‘%’(;vfy Nxfz—y=z) forevery feature f

(

(Ax2) =(c; = ¢y) if ¢; and ¢, are different constants
(Ax3) V(efz — 1) for every constant ¢

(Ax4) atom(c) for every constant ¢

(Ax5) Y(xfyA atom(z) — L) for every feature f.

Using FTZ)’ we are able to define path constraints. We start by recalling the definition
of the denotation of a path.

The interpretations 2, g% of two features f, g in a structure 2 are binary relations
on the universe U(R() of A; hence their composition f%o0g? is again a binary relation
on U(2A) satisfying

a(ffog®b <= JecU®R): af¥e A cg®b

for all a,b € U(A). Consequently we define the denotation p* of a path p =

fi--+ fn in a structure A as the composition

(flfn)m = lelO___O 7?[7

where the empty path ¢ is taken to denote the identity relation. If 2 is a model of
the theory FT%D, then every path denotes a unary partial function on the universe of
2l. Given an element a € U(RL), p® is thus either undefined on a or leads from a to
exactly one b € U().

Definition 4.1 (Path Constraints) Let p, g be paths, x, y be variables, P be a
unary predicate symbol, and ¢ be a constant symbol. Then path constraints are defined
as follows:

Aalape = alz)p® ™

!Note that this property can only be approximated. For guaranteeing this property, an infinite
disjunction would be needed.
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Aalapy = az)p”aly)
AaoakEFaplyg <= Fae UK ()

) a(z)p?a A aly)q®a
A,a=Plep) 1< dacUR): oafz)p

A
2a N aeP?
A proper path constraint is a path constraint of the form “xpe”, “P(xp)” or “xplyq”.

Note that path constraints xpy generalise feature constraints = fy. We use zpl as a
shortcut for xp | xp. By definition, xp| is satisfied by some valuation « into some
structure 21 iff the path p® is defined on a(z).

Every path constraint can be expressed with the already existing formulae, as can be

seen from the following equivalences:

zet H xz=t
cfpt H Jz(xfzAzpt) (2 # 1)
eplyq H Fz(xpz Ayqz) (2 # z,y)

P(xzp) H Jy(zpy AP(y))  (y # ).

We are now going to define the closure of quantifier-free and of existential quantified
formulae. The closure of a formulae 3 is a set of all path constraints that is equivalent
to B. In general, the closure can be infinite. But we will show that there is a finite

subset that is also equivalent to 3 (which we will call projection).

We will define the closure only for special classes of formulae in order to guarantee
some nice properties for the closure. In the case of quantifier-free formulae, this will
be the class of solved formulae. In the case of existential quantified formulae, this
will be the class of prime formulae. We will later prove that for the theory FT' the
prime formulae satisfies all condition required by lemma 4.1. For CFT’ we have to
redefine the notions of solved formula in order to handle the arities predicates.

The framework of path constraints will later be used for proving claims 5 and 6 of
Lemma 4.1. Recall the example of Section 4.1.2, page 62. There we considered the

FT'-formulae

B = Jxidxey = Jry,xe(xfr A xgas)
B = Jylafy A zgy),

and argued that the equivalence

Jx(BA-8) H a8
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is valid in FT’. This will be shown in the completeness proof for FT' by extending 3
to a formula

Bezs 1= Jxy, 249 ( xfxy ANxgrg Nz faNxyfd ) .

For constructing this formula we introduce the notions of projection, rooted path and
value of a rooted path in a solved formula.

The first step in constructing 3..; is to generate a projection for 3’, which is

xf | xg.

zf and xg are called rooted paths. The value |z f|, and |zg|, of f and zg in v are
xy and x4, respectively. Since z f | xg is not entailed by 3, we know that the values
of xf and z¢g in v must be different variables. Hence, we can add consistently the

constraints x; fa and z,fa’ to generate [(.u4.

Definition 4.2 (Basic Constraint) A basic constraint is either L or a possibly
emptly conjunction of atomic formulae.

In the case of F'T', we have ¢, ft, and t; = ¢, as atomic formulae. In CFT’, we have
the additional atomic formulae of form tF'. Note that T is a basic constraint since T
is the empty conjunction. In the following, we will always use the Greek letter ¢ to
denote basic constraints.

We say that a basic constraint ¢ binds x to y (resp. c¢) if x = y € ¢ (resp.
x = ¢ € ¢) and x occurs only once in ¢. Here it is important to note that we consider
equations as directed, that is, assume that = = y is different from y = z if x # y. We
say that ¢ eliminates z if ¢ binds z to some variable y or some constant c.

Definition 4.3 (Solved Formula) A solved formula is a basic constraint v # L
such that the following conditions are satisfied:

1. no atomic constraint occurs twice in ¢;

2. an equation x =1 appears in v if and only if v eliminates x;

3. ifeft € ¢ and xft' € ¢, thent =1';

4. ¢ contains no atomic constraint of the form ¢ =1t, cft or atom(c);

5. ifaft € ¢, then atom(z) & ¢.
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$ft1/\t1 :tg/\¢

Eli z=iAQ € V() and z #
(Elim) rzindreq ° (¢) and z #y
(can & j & a#a
(CFCI1) cft
L
(CFCI2) atom(z) Nz ft A\ ¢
€
(Orient) c : L
r=c
(Triv) i=tho t, Ao
¢
. A P(z) A
(Simpll) P(a)
Plz) N ¢
(Simpl2) atom(c) A ¢
¢
Figure 4.1: The basic simplification rules.
Fvery solved formula v has a unique decomposition v = vy A vy into a possibly

empty conjunction vy of equations “r = y” and a possibly empty conjunction vy of
constraints “P(x)” and feature constraints “xfy”. We call yn the normaliser and vg
the graph of 7.

The letter v always denotes a solved formula. We will see that every basic constraint

is equivalent in FT? to either L or a solved formula.

Note that the basic simplification rules (Cong), (CFCI1), (CCl), (Simpl2) and (CFCI2)
correspond to the axioms schemes (Ax1), (Ax3), (Ax2), (Ax4) and (Ax5) , respective-
ly. Thus, they are equivalence transformation with respect to FT?. The remaining

simplification rules are equivalence transformations in general.
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Proposition 4.1 The basic simplification rules are terminating and perform equiv-
alence transformations with respect to FTOP. Moreover, a basic constraint ¢ # L is

solved if and only if no basic simplification rule applies to it.

Proof. To see that the basic simplification rules are terminating, observe that no
rule adds a new variable and that every rule preserves eliminated variables. Since
rule (Elim) increases the number of eliminated variables, and the remaining rules
obviously terminate, the entire system must terminate. The other claims are easy to
verify. a

Proposition 4.2 Let ¢ be a formula built from atomic formulae with conjunction.

Then one can compute a formula § that is either solved or L such that ¢ |=|FT(7; 0 and

V(8) CV(9).

Proof. Follows from the preceding proposition and the fact that the basic simplifi-

cation rules do not introduce new variables. O

Definition 4.4 (Closure) The closure [y] of a solved formula v is the closure of the
atomic formulae occurring in v with respect to the following deduction rules:

T =1 xpy yft xpt  yqt P(t) apt Tpc
rex xet xpft xpl yq P(zp) atom(xp)

Recall that we assume that equations x =y are directed, that is, are ordered pairs of

variables. Hence, xey € [vy] and yex ¢ [y] if x =y € 7.

Proposition 4.3 Let v be a solved formula. Then:

—~

- if m € [y], then v Eppp m

2. zete€y] iff e=torxz=teny

3. xftely] iff eftey or Izt x=z€yandzft €v
4. apft € 4] iff 3= apz € [y] and 2ft € ~

5. if p# e and xpt,xpt’ € [v], thent =1

6. orall P € P, P(xp) € [7] iff xpt € [7y] and P(t) € v

7. atom(zp) € [v] iff xpc € [7] for some c € L or xpy € [y] and atom(y) € 7.
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8. it is decidable whether a path constraint is in [v].

Proof. For the first claim one verifies the soundness of the deduction rules for path

constraints. The verification of the other claims is straightforward. O

Now we extend the notion of path constraints to include also existential quantified

formulae.

Definition 4.5 (Prime Formula) Let ¢ be a basic constraint. A formula = 3X ¢

is called prime if it satisfies the following conditions:

1. ¢ is solved;
2. X has no variable in common with the normaliser of ¢;

3. for every x € X there is a variable y € V(3) and a path p such that ypz € [¢].

Given a formula § = 3X ¢ where ¢ is a basic constraint, we can simply transform (3
into an equivalent formula 3’ such that the first two conditions are satisfied. We will
later see that in the case of the complete theories FT’ and CFT’, we can find also
an (' that satisfies additionally the third conditions. In the following, the letter 3
denotes always a prime formula if nothing else is stated.

Definition 4.6 (Closure of Prime Formulae) The closure of a prime formula 8 =

Xy is defined as follows:

8] := {m€y]| m==xel orm proper path constraint with V(m)N X =0 }.

Proposition 4.4 If 3 is a prime formula and © € [B], then B = 7 (and hence
b )

Proof. Let # = 31Xy be a prime formula, A, a = 3, and 7 € [3]. Let o be an
arbitrary X-update of « such that 2, o' = v. Since [#] C [v], we have 7 € [y] and
thus 2, o' = 7. If 7 has no variable in common with X, then 2, o = 7. Otherwise,

7 has the form “ze]” and hence 2, o |= 7 holds trivially. O

We now know that the closure [3], taken as an infinite conjunction, is entailed by 3.
We are going to show that, conversely, 3 is entailed by certain finite subsets of its

closure [3]. For this we need first the definition of a rooted path.
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Definition 4.7 (Rooted Path) A rooted path xp consists of a variable x and a
path p. The value |xp|, of a rooted path xp in some solved formula v is defined as
follows:

x iffp=chac=t¢~

t ffp=chae=tey
2 = |

t iff xpt € [7]

undefined  else.
A rooted path xp is called realized in a solved formula v iff |xpl|, is defined. A rooted

path xp is realized in a prime formula B = IX~ if either p = or x € V(B3) and xp

s realized in .

We say that a proper path constraint 7 contains a rooted path xp if 7 = apl,
T=uapc, T =xplyqor m=yqlap

Proposition 4.5 |- |, is a partial function for every solved formula ~.
Proof. Follows from proposition 4.3 (5). O

Proposition 4.6 Let xp be a rooted path. If xp is realized in some solved formula

v, then |xpl, is either a constant or a variable z with z € V(yq).

Proposition 4.7 Let f = 3X~ be a prime formula and © = xp | yq be a proper path
constraint with x,y ¢ X. If both xp and yq are realized in (3, then

AXy Am Hprp 3X (v A lply = Jygly)-

Definition 4.8 (Access Function) An access function for a prime formula 3 =
dX~ is a function that maps every x € V(v) — X to the rooted path xe, and every
z € X to a rooted path z'p such that 'px € [v] and 2’ ¢ X.

Proposition 4.8 For every prime formula 3 = 31X~ and every access function @ of

B,

|Qz|, = .
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Thus, |- |, is the left inverse of @. But the converse is not true. Given the prime
formula § = dzv with

y=xfzANygz
and the access function with @z = 2 f, we have Q|yg|, = z f.
Note that every prime formula has at least one access function, and that the ac-

cess function of a prime formula 3X+ is injective on V(v) (follows from Proposi-

tion 4.3 (5)).

Definition 4.9 (Projection) The projection of a prime formula f = 3X~v with
respect to an access function @ for 3 is the conjunction of the following proper path

constraints:
{eelye |z =y e}y
{P(a'p) | P(z) €7, a'p=Qz} U
{2'pf Lyl xfy €, a'p=Qu, y'q=Qy}.
Obviously, one can compute for every prime formula an access function and hence a

projection. Furthermore, if X is a projection of a prime formula 3, then X taken as a

set is a finite subset of the closure [f].

Proposition 4.9 Let A be a projection of a prime formula 3. Then X C 3] and
A Hprp B

Proof. Let A be the projection of a prime formula § = 3X~ with respect to an
access function @.
Since every path constraint 7 € A is in [3] and thus satisfies § = 7, we have 3 = .

To show the other direction, suppose 2, = A, where 2 is a model of FT?. Then
A, o' |= 2'pr for every z € X with Qz = 2'p defines a unique X-update o' of a.
From the definition of a projection it is clear that 2, o' = v. Hence 2, a = 3. O

As a consequence of this proposition one can compute for every prime formula an
equivalent quantifier-free conjunction of proper path constraints.

Proposition 4.10 If (8 is a prime formula, then 3 Hpp [5]

Proof. By Proposition 4.4 we have  |=p [3], and by Proposition 4.9 we have
(3] Err B since (3 has a projection A C [3]. O
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4.4 The Theory FT'

4.4.1 The Axioms

The first five axiom schemes of FT are the axiom schemes of FT({)}:

(Ax1) Y(zfyAafz—y=2) for every feature f.

(Ax2) =(c1 = ca) if ¢; and ¢, are different constants
(Ax3) V(cfz — 1) for all constants c.

(Ax4) atom(c) for all constants ¢

(Ax5) Va,y(xzfyA atom(z) — 1).

The sixth and final axiom scheme will say that certain “consistent feature descrip-
tions” are satisfiable. For its formulation we need the important notion of a solved

clause.

An exclusion constraint is an additional atomic formula of the form z f1 (“f un-
defined on z”) taken to be equivalent to =3y (x fy) (for some variable y # z).

Definition 4.10 (Solved Clause) A solved clause is a possibly empty conjunction
¢ of atomic formulae of the form x ft and x f1 such that the following conditions are
satisfied:

1. no atomic formula occurs twice in ¢
2. there are no constraints of the form cft, cf1 or atom(c) in ¢
3. if xft € ¢, then there exists no t # t' such that zft' € ¢

4. if aft € ¢, then xf1 ¢ ¢
5. if atom(x) € ¢, then neither xfy nor x f1 is in ¢.
Proposition 4.11 Given a solved clause ¢, the subset ¢' of ¢ containing all atomic

constraints of the form tyfty is a graph. Vice versa, the graph of a solved formulae

1s a solved clause.
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1 z w fI gt

Figure 4.2: A graph representation of a solved clause.

Figure 4.2 gives a graph representation of the solved clause

zfuNzgv A xhlT A
uhx A ugl ANufz A
vgz N vhw A vfT A
wft A wgf.

Here, the symbols 1 denotes a constant. A more readable textual representation of

this solved clause is

z : [fru g:v AT
u : [hiz g:1 f:2]
v oo [giz hiw ]
w o [fT gt].

As in the example, a solved clause can always be seen as a graph whose nodes are
the variables and constants appearing in the clause and whose arcs are given by the
feature constraints xft. The constraints xf1 appear as labels of the node x. The
graphical representation of solved clauses should be very helpful in understanding the

proofs to come.

A variable z is constrained in a solved clause ¢ if ¢ contains a constraint of the
form z ft or x fT. We use CV(¢) to denote the set of all variables that are constrained
in ¢. The variables in V(¢) —CV(¢) are called the parameters of a solved clause ¢.
In the graph representation of a solved clause the parameters appear as leaves that
are not not labelled with a feature exclusion. The parameter of the solved clause in

Figure 4.2 1s y.
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We can now state the final axiom scheme. It says that the constrained variables of a

solved clause have solutions for all values of the parameters:

(Ax6) VIX¢ for X = CV(¢) and every solved clause ¢ that contains no con-

straints of the form atom(z).

Proposition 4.12 Let ¢ be a solved clause and X = CV(¢p). Then

FT' = V3X¢.

The theory FT' is the set of all sentences that can be obtained as instances of the
axiom schemes (Ax1), (Ax2), (Ax3), (Ax4), (Ax5) and (Ax6). In the next sections
we will show that FT’ is a complete theory. By using an adaption of the proof of
Theorem 8.3 in [Smo092] one can show that FTy is undecidable.

4.4.2 Feature Trees and Feature Graphs

In this section we establish three models of FT' consisting of either feature trees or
feature graphs. Since we will show that FT' is a complete theory, all three models

are in fact elementarily equivalent.

Theorem 4.1 The feature tree structures Tpr: and Rpp are models of the theo-
ry FT'.

Proof. We will first show that Tpp/ is a model of FT'.

The first five axiom schemes are obviously satisfied by Tppr. To see that Xpp satisfies
the sixth axiom scheme, let § be a solved clause, X be the variables constrained in
0, and «a be a valuation into /. It suffices to show that there exists an X-update
o of a such that Tprr, o 6.

For a feature tree o = (D, A) and a path p we define po to be the feature tree (D', o)
with D' = {pq | ¢ € D} and X' = {(pq,a) | (q,a) € A\}. Clearly, p~ipsc = o, but the
converse may not hold. Now one can verify that

VeeX o) = (D) U |J  paly)
rpy€[s], ygX
with
D, = {p|apl€[d]}
Ae = {(p,c) | zpc € [8]}
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defines an X-update o of a such that Tpr/, o’ = 6.

The same construction shows that Rpp is a model of FT". O

Now we will define the third FT'-model, namely the feature graph model. A feature
pregraph is a pair (¢,v) consisting of a term ¢ (called the root) and a solved clause
v not containing exclusion constraints and constraints of the form atom(z) such that

the following conditions are satisfied:

e if ¢ is a constant ¢, then ~ is the empty clause, and

e if { is a variable z, then for every variable y occurring in 7, there exists a path
p satisfying zpy € [].

If one deletes the exclusion constraints in Figure 4.2, one obtains the graphical rep-

resentation of a feature pregraph whose root is x.

A feature pregraph (¢,7) is called a subpregraph of a feature pregraph (¢',40) if y C ¢
and ¢t = t' or ' is a variable z and zpt € [d] for some path p. Note that a feature
pregraph has only finitely many subpregraphs.

We say that two feature pregraphs are equivalent if they are equal up to consistent
variable renaming. For instance, (z, zfy A ygz) and (u, ufz A xgu) are equivalent

feature pregraphs.

A feature graph is an element of the quotient of the set of all feature pregraphs
with respect to equivalence as defined above. Put differently, a feature graph is an

isomorphism class of feature pregraphs. We use (¢,7) to denote the feature graph

obtained as the equivalence class of the feature pregraph (¢, 7).

The feature graph structure & is the FT'-structure defined as follows:

the universe of & is the set of all feature graphs

c® = (¢, {}) for every c € L.

atom® = {c® | c € L}

((z,7), o) € f& iff there exists a maximal feature subpregraph (¢,4) of (z,7)
such that z ft € v and o = (¢,9).

Theorem 4.2 The feature graph structure & is a model of the theory FT'.
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Proof. The first five axiom schemes are obviously satisfied by &. To see that &
satisfies the sixth axiom scheme, let § be a solved clause and « a valuation into Tpy:.
It suffices to show that there exists an CV(d)-update o' of o such that &, o' = 4.

First we choose for the parameters y € V(§)—CV () variable disjoint feature pregraphs

(y,7y) such that a(y) = (y,~,). Moreover, we can assume without loss of generality

that every pregraph (y,v,) has with § exactly its root variable y in common. Hence

§ = SA N Yy
VEV(5)—CV(5)

is a solved clause. Now, for every constrained variable @ € CVY(4), let p, be the
maximal solved clause such that p, C ¢’ and (x, p,) is a feature pregraph. Then the
CV(é)-update o' of a such that o/(x) = (z, p,) for every x € CV(0) satisfies &, o’ = 4.
O

Let § be the structure whose domain consists of all feature pregraphs and that is
otherwise defined analogous to &. Note that & is in fact the quotient of § with

respect to equivalence of feature pregraphs.

Proposition 4.13 The feature pregraph structure § is a model of FTq but not of
FT".

Proof. It is easy to see that § satisfies the first five axiom schemes. To see that §

does not satisfy the sixth axiom scheme, consider the solved clause
0 = zfyAzgz

and a valuation « into § such that a(y) = (z,zha), a(z) = (2, zhb), where a and b
are two different constants. Then there exists no z-update o' of a satisfying §, o' = ¢
since a feature pregraph cannot contain both zha and zhb. a

4.4.3 Some Properties of Prime Formulae

We will now show that the class of prime formulae defined in section 4.2 satisfies
the requirements 1- 4 of Lemma 4.1. Note that all propositions proven for FT({)} in
Section 4.3 can also be used for the theory FT’ as FTé} is a sub-theory of FT".

Requirement 2 is trivial. For requirement 1 note that if ¢ is a basic formula ¢ ft’ or
t =t with t # t, then ¢ is equivalent to L, which is # T. If ¢ is a trivial equation
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t =1, then ¢ is equivalent to T. All other atomic formulae are prime formulae by
definition. In this section we are going to prove requirements 3 and 4.

For this we define the notion of decided variables of an existential quantified solved
formula 3X~. The decided variables are those variables in V() whose valuation is

uniquely determined by the valuation of the free variables.

Definition 4.11 (Decided Variables) Let v be a solved formula and X be a set of
variables. A variable x € V(7) is said to be decided in a formula 6 = 3X~v if x € V()
or there is a variable y € V(0) with y # x and a path p such that

ypr € [7].

For a solved clause ¢ we say that x is decided in & = AX ¢ if x is decided in IX~,
where v C ¢ is the solved formula containing all constraints of ¢ that are of the form

xfy.

We say that a variable is undecided if it is not decided. The set of decided variables
of a formula ¢ will be denoted by Dec(d). Consider the formula

§ = dx,x,xa(afe Axgra A zhy A zfas) (4.4)
Then the variables Dec(d) = {y, z, x3}. x and 1 are both undecided in 4.

In the following we show that every existential quantified solved formula X~ is
equivalent to 3X v/, where 4’ is the set of constraints on the decided variables. Thus,

we above defined formula ¢ is equivalent in FT' to the formula
§ = Fwa(zfxa).

We will use this equivalence to show that we can transform every existential quantified
solved formula in a prime formula thus proving requirement 4 of Lemma 4.1. Note
that in a prime formula 3 = 3X v every variable in V(v) is decided. Furthermore, this

will be used in the next section for the proofs of assumptions 5 and 6 of Lemma 4.1.

Proposition 4.14 Let Y be a set of variables that are existential quantified and
decided in 6 = AX~ and let o be some valuation into a FT' model A with A, a = 4.
Then there exists a unique Y -update o' of a such that

A0 = 3IX\YVH.

A constraint 7 is called a constraint for z if 7 is of the form z ft, atom(z) or x = t.



80 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT' AND CFT'

Lemma 4.2 (Garbage Collection) Let ¢,¢' be solved clauses and let § = IX ¢
and §' = 3X'¢" be formulae with V(§) = V(8') and Dec(é) = Dec(d'). If 6 and ¢

contain exactly the same constraints for the decided variables, then

5 |:|FT/ 5/.

Proof. Let §, ¢’ be given as described and let Z = Dec(d) N X = Dec(d') N X'. As ¢
and ¢’ contain the same constraints for the decided variables, we can write ¢ and ¢’
as

§=3Z3AY(y A ) and & =3ZIY'(y A),

where Y = X\Z, Y’ = X'\Z and ¢ contains all constraints for the variables in
7. Note that all variables of ¢ are decided in § and ¢’. Hence V() NY = ) and
V(¥)NY' ={. This implies that

SH3IZ(EYyAY) and & HIZ(3Y'Y A),

Now ~ and +" are solved clauses. The variables which are free in 3Yy and 3Y'+' are
decided in é and ¢’. Since we have put all constraints for the decided variables into
Y, we know that v and 4’ contain no constraints for the free variables in Y~ and
dY'4'. This implies that the free variables of Yy (resp. 3Y'4’) are parameters of v
(resp. v'). Hence

FT' =V3Yy and FT' | V3Y'y

by Proposition (4.12). This shows ¢ H 37 and ' |H I 7. O

We will say that two formula § = X+ and ¢’ = X'+ differ only on the unde-
cided variables if V() = V(¢'), Dec(é) = Dec(d’), and 6 and ¢’ contain exactly the

same constraints for the decided variables.

Proposition 4.15 For every prime formula 3 and every set of variables X one can

compute a prime formula 3' such that

X6 Hep 1 and V(F) € V(EXH).

Proof. We will proof that we can compute a formula 3 as required by the lemma
for the special case X = {z}. For arbitrary sets X we can compute a 3’ by iterative

application of the method for this special case.

Let 8 = dY~v be a prime formula and z be a variable. We construct a prime formula

B" such that 3208 Hpp B and V(') C V(Jz3). We distinguish the following cases.
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1. 2 ¢ V(B). Then B’ := 3 does the job.
2.y =(x =y A~"). Then 8’ := 3Y4' does the job.
3. v = (y=aAy). Then 5" := Y (y'[x + y]) does the job sincey H z =y A v'[z + y].

4. x ¢ Y and x occurs in the graph but not in the normaliser of y. Then Jz3Y~ H
v A Jz3Y 5. Let 44 contain all the constraints for the variable that are decided
in 3z3dYvs. Then Jdz3Y s and Jx3dY 4 have the same set of decided variables and
contain the same constraints for the decided variables. Since v5 and 4/ contain no

equations, they are solved clauses. Hence, by proposition 4.2

dz3Yve Hpp JeIY ;.
This implies that 3" = vy A J23Y 7 is a prime formulae with 8 =g 6" and V(5') C
V(5). O

Proposition 4.16 For every two prime formulae 3 and (3' one can compute a for-

mula & that is either prime or L and satisfies
BAB Hpp 6 and V(5) SV(BAB).
Proof. Let 8 = 3X~ and 3’ = X'y’ be prime formulae. Without loss of generality
we can assume that X and X’ are disjoint. Hence
BAB H AXIX (v Ay,

Since v A 4’ is a basic constraint, Proposition 4.2 tells us that we can compute a
formula ¢ that is either solved or L and satisfies y A" Hpqp ¢ and V(@) C V(v A~').
If $ = L, then ¢ := L does the job. Otherwise, ¢ is solved. Since

%3/\%3/ |:|FT’ E|XE|X’¢,

we know by Proposition 4.15 how to compute a prime formula 8" such that SAS" Hpp
B". From the construction of 3" one verifies easily that V(38") C V(G A 3'). O

4.4.4 Proof of the Main Lemmas

In this section we show that our prime formulae satisfy the requirements (5) and (6)
of Lemma 4.1 and thus obtain the completeness of FT'. We start with the definition
of the central notion of a joker.
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Definition 4.12 Let 8 = Y~y be a prime formula and X be a set of variables. A
rooted path xp is called decided in 3 wrt. X if either x & X or there is some prefiz p'

such that xp’ is realized and |zp'|, is constant or a variable decided in 3X[.

xp is called undecided in 8 wrt. X is xp is not decided in 3 wrt. X. Note that in this
case ¥ must be an element of X. If # and X are clear from the context, we will just
say decided instead of decided in § wrt. X.

Proposition 4.17 If 7 is a proper path constrained such that all rooted paths con-
tained in © are decided in $ wrt. X, then either A,a E VX(8 — ) or Ao
VX(8 — —m).

Definition 4.13 (X-Joker) A proper path constraint © is called an X-joker for a
prime formula 3 if © ¢ [3] and one of the following conditions is satisfied:

1. m = xpc and xp is undecided in 3 wrt. X

2. m = atom(xp) and xp is undecided in 3 wrt. X
3. m=2xplyqg and xp is undecided in 3 wrt. X
4. m=yplaxq and xq s undecided in 3 wrt. X.

We will now give some examples for X-jokers. The path constraint zf | zg is an

{x}-joker for the formulae

dzy, zo(x fay A zgas)
Jzy(zfry A zgy)
Jzy(xfa).

On the other hand, zf | g is no {x}-joker for the formulae

B = dxi(xfxr Azgay)
Bs = Fxi(xfy A xgry A zhxy),

since z f | xg € [1], and both z f and zg are decided in 3, wrt. {x}.
Proposition 4.18 It is decidable whether a rooted path is undecided in a prime for-

mula wrt. a set of variables, and whether a path constraint is an X -joker for a prime

formula.
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Proof. Follows with Proposition 4.3. O

Lemma 4.3 Let 3 be a prime formula and 7y, ..., m, be X-jokers for 3. Then

ELX,@ IZFT' ElX(,@ A /n\ _|7T2').

Proof. Let § = 3Y~ be a prime formula, 71,...,m, (n > 0) be X-jokers for 3, 2 be
some model of FT', and a be some valuation into 2 with 2, a = 3X3. We have to
show that 2, o = IX(B A AL, —7). We will define a prime formula 3’ satisfying the

following:

o kB,
o X3 Hpp IXF,

e AaEVX(F — —m)foralli=1.n

Once we have defined a 3’ satisfying these conditions, we can prove the claim using
the following argumentation. Since 3X3 Hpp 3XF" and A, o = IXF, there must
be an X-update o' of a such that 2A,o' | 3. But as 8’ = 8 and for all 1 = 1..n
A,a E VX(8 — -m), we know that A, o' E B A A, —m;. This shows A, a
IX(F A ALy ).

For the construction of 3’ we define F.q to be the set of all features that occur in
the path constraints m;. In the following, we will just say that a rooted path zp is
decided when meaning that zp is decided in # wrt. X, and we will use undecided in
a similar way. Let Z C V(vg) be the set of all variables of the graph of 4 that are
undecided, and let A be a new feature. Note that if a rooted path xp is undecided
and realized in 3, then |zp|, is a variable z with z € Z. Furthermore, let Z¢ C Z be
the set of variables z € Z with atom(z) € ~.

By Proposition 4.14 there exists a unique update o’ of a to the variables that are
decided in 3X 3. For each z € Z we fix a constant ¢, that does not appear in v and
m; for 2 = 1...n such that

Ve (XUY)NDec(IXB)): & #d(z).

By the construction we know that for every rooted path yqg which is contained in

some 7; and which is both realized and decided the proposition

A, a =VX(B — —ype.)
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holds. Similarly, we fix for every z € Z\Z¢c a constant ¢, that does not appear in v

and m; for 2 = 1...n such that

Vz e (XUY)NDee(IXB)): —a'(x) h* 2,

z

Again we know for every rooted path yg which is contained in some 7m; and which is

both realized and decided that
A, o =VX(8 — —yphc,)
is true. It is understood that ¢, # ¢, for z # 2" and z,2' € 7.

Let ¢ be obtained from v be deleting all constraints atom(z) with z € Z¢, and let
Z1,-..,%m be an enumeration of Z¢. The formula 8’ = 3Y (v A 4¢) is now defined

IN = VN/\ZliCm/\---/\Zmisz

Ve = Ylae e mmee ] AN (thz/\ A sz)
)

ZE(Z\ZC’ feFusedv thﬁ'v

We will show that (3 satisfies the requirements stated above. Clearly, 5’ Ecpr (3.
Next we will show that 3X 3 Hp 3XG.

By the definition of Z we know that yx contains no constraint of the form z =t with
z € 7. Since the variables in Z are undecided, we know that 2/ = 2 € yy and z € 7
implies z/ € X. Since yy eliminates the variables on the left sides of the equation,
this implies

AX3IY (A ve) H IXTFY (93 A ve),

where 4 is the biggest subset of vx with V(v%) N Z = (. Similarly, 3X3' =
AXIY (v Ave) H IXIY (R Av5). Now V(vh) N Z =0 implies

SXBH 3Z( A 3Z76) and 3AXH'H 32+ A 324%).
where 7' = (X UY)\Z.

Since V(3Z~¢) C Dec(3X3), we know that every variable in Z is also undecided in
dZ~g: if there would be a variable z € Z such that there is a p with ypz € [vg]
and y € V(3Zvq), then y € Dec(IX3), which implies z € Dec(IX3). But this is
contradictory to the definition of Z. Hence, 37~ and 37+, are solved clauses that

differ only on the undecided variables. Then proposition 4.2 shows that 3Z7v¢ Hppr
37Z~¢ and therefore 3X 3 Hpp 3X G

The remaining part is to show that 2, o E VX (3 — AL, —~m;) for all : = 1.n. We
distinguish the following cases for m;:
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1. m; contains a rooted path xp that is undecided and not realized in 3: Let p’ be

the longest path such that xp' is realized in 3 (such a path must exists since at

least xe is realized in 3), and let p = p'fq. As xp is undecided, we know that

|zp'|y is a variable z with z € Z. As p’ is the longest subpath of p/ with xp’
realized in 3 we know that zft € . If z € Z¢, then we have substituted z by
a constant c,. Otherwise we have added z f1 in v, since f € Fyged-

2. every undecided rooted path contained in ; is realized in 3. Note that in this

case ; cannot be of the form xpl, since xp realized in 3 implies that xpl € [3].

We will split up this case as follows:

(a)

m; = xpc. Then xp is undecided. Since xp is realized in 3, we know that

xply is a variable z with z € Z. If z € Z,, then we have substituted z by
a constant symbol ¢ different from ¢. Otherwise, we have added at least

one feature constraint zhe, in 44, which implies 8’ = —;.

m; = atom(xp). Then zp is undecided. Since xp is realized in 3, we
know that |zp|, is a variable z with z € Z. Now m; ¢ [3] implies that
atom(z) & v and therefore z € Zo. Hence, we have added at least one

feature constraint zhc, in 7.

m = xp | yq or m; = yq | xp where xp is undecided but realized in (3.
Again we get |zp|, = z € Z. There are two cases, namely z € Z¢ and
S (Z\Zc)

If z € Z¢, then we have substituted z by ¢, in 4. If yg is undecided,
we can assume that yq is also realized in 3 (otherwise case 1 would be
applicable). This implies that we have either added a constraint z’'hc,s in
v¢: or we have substituted z’ by ¢, in 4, where 2’ = |yq|,. Since ¢, and
¢, are different, this shows 3’ = —m;.

If yq is decided, then A, o |E VX (5 — —yqge.) by the definition of ¢,. As
BB, we get Ao = VX(B — —aplyg).

The other case z € (Z\Z¢) is handled analogously.

Note that the proof uses the axiom scheme (Ax6), the existence of infinitely many

features, and the existence of infinitely many constants.

Lemma 4.4 Let 3, 3’ be prime formulae and o be a valuation into a model A of F'T

such that

Ao =IAX(BAB) and A,a =3IX(BA-F).
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Then every projection of (3' contains an X -joker for (3.

Proof. Without loss of generality we can assume that 2, o = 8 A 3'. Furthermore,
there exists an X-update o’ of a such that 2, o’ = 8 A =3 Let A be a projection of
B'. Since A, o [ 3, we know by Proposition 4.9 that 2, o’ &£ A. Hence, there exists
a proper path constraint 7 € A such that 2, o’ = 7. Since A, o E (', we know by
Proposition 4.4 that 2, a = 7. Hence, we know by Proposition 4.17 that 7 must be
an X-joker for . O

Lemma 4.5 If 3, (1,...,03, are prime formulae, then

n

SIXEANB) He N IXBAR)

=1

Proof. Let 3,04,..., 3, be prime formulae. Then IX(8A AL, =05;) E A, IX(BA
=(3;) is trivial. To see the other direction, suppose that 2 is a model of FT' and
A, E AL, IX(B A —B;). We have to exhibit some X-update o' of a such that
Ao/ Efand A o' |=—f; fori=1,...,n.

Without loss of generality we can assume that 2,/ E IX(BAF;) fori=1,...,m
and A, o' E-IX(BAB) fori=m+1,... n.

By Lemma 4.4 there exists, for every ¢ = 1,...,m, an X-joker m; € [3;] for 5. By

Lemma 4.3 we have

IXB = IX(B A 7\ -m).

Since =7 = —f; by Proposition 4.4, we have

m

X6 = 3X(6 A N\ 5.

=1

Hence we know that there exists an X-update o' of a such that 2, o' = fand A, o |
=f; for e = 1,...,m. Since we know that A, o | =3IX(BAB;) for i =m+1,...,n,

we have 2,/ = =, fori=m+1,...,n. O

Lemma 4.6 For every two prime formulae (3, 3’ and every set of variables X one
can compute a Boolean combination 6 of prime formulae such that

IX(6 A=) Hype 8 and V(8) S VEX(BA ).
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Proof. Let 3,3 be prime formulae, A be a projection of 3’, X be a set of variables
and 2 be a model of FT’. We distinguish two cases:

1. X contains an X-joker m for 3. Then we know that 3X3 = IX(8 A —7) by
Lemma 4.3. Since ' Epp A |E 7, we know that =7 |= =3’ and hence 3IX3 Epr
AX(6 A —=p4"). Thus

AX(B A =B Hep 3XB.

Now the claim follows with Proposition 4.15.

2. X contains no X-joker m for 3. Then we know by Lemma 4.4 that there exists no

valuation « into 2 such that
WapEIX(BAF) and Aol IFX(BA-F).
Hence,
AX(B A -6 Hep IXBA-TX(BAB).
Now the claim follows with Propositions 4.15, 4.16 and 4.18.
The above shows the existence of §. Moreover, § can be computed since we can

compute a projection A of #’, and since we can decide whether A contains an X-joker
for 8 by Proposition 4.18 (A is finite). O

Theorem 4.3 For every formula ¢ one can compute a Boolean combination § of

prime formulae such that ¢ Hpp 0 and V(6) CV(B).

Proof. Follows from Lemma 4.1, Propositions 4.16 and 4.15, and Lemmas 4.5
and 4.6. O

Theorem 4.4 FT' is a complete and decidable theory.

Proof. The completeness of FT' follows from the preceding theorem and the fact that
T is the only closed prime formula. The decidability follows from the completeness

and the fact that FT' is given by a recursive set of sentences. O

4.4.5 Applications of the Simplification Algorithm

As a first application, we want to show that CFT is less expressive than FT', which
is established by the existence of a quantifier elimination for FT'. To show that FT’
is less expressive we must show that the arity predicates are not definable in FT'.

This claim is a trivial consequence of the following lemma.
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Lemma 4.7 Let ¢(x) be a FT'-formula with one free variable x such that FT' |=
Jdxg(z). If there is some feature g with FT' |= Jz(Jy(xzgy) A ¢(z)), then there are

infinitely many features f such that for all constant symbols ¢,

FT' = Jz(zfc A ¢(x)).

Proof. Let ¢(x) be a formula with one free variable, and let () be the corresponding
Boolean combination of prime formulae equivalent to ¢(x) which is the result of
quantifier elimination. Note that x is the only free variable in v(z) by the definition
of the quantifier elimination. Without loss of generality, we can assume that y(z) is
in disjunctive normal form. Since prime formulae are closed under conjunction, we
can furthermore assume that every disjunct of y(z) is of the form 3(z) A /\;?:1 -6;(x),
where (3(x), 31(2), ... Bk(z) are prime formulae such that z is the only variable free
in 3(z),B1(x),...Lk(x).> Furthermore, we can assume that every disjunct of v(z) is

satisfiable in FT'.

Now we choose some disjunct 3 A /\;?=1 =3; of y(z). Since FT' = Jz(Fy(zgy) A &)
for some feature g, we can assume without loss of generality that 3 does not contain
a constraint @ = ¢ or atom(z). Let f be an arbitrary feature that is not used
in 3,01,...0k, ¢ be some arbitrary constant symbol and 3’ be the prime formula
equivalent to the conjunction of z fc and 3. Note that every {z}-joker = for 3 with
the property that f is not used in 7 is also an {z}-joker for 3’. For the claim it is
sufficient to proof that

FT' | 3a(8' A A -5). (4.5)

J=1

Since 3 A /\f=1 —f3; is satisfiable, we know by Lemma 4.4 that for every 5 € 1...k
either 8 Epr —f; or there exists a {z}-joker 7; € [3;] for B, which must also be an

{z}-joker for #'. Since 3’ = 3, a simple argumentation using Lemma 4.3 shows (4.5).
O

Corollary 4.1 The arity constraints are not definable in F'T', i.e., for every finite set
of features F there is no formula ¢(x) such that ¢(z) = Aser Iy fy and $(x) — z f1
for f & F.

Proof. Follows directly from the last lemma. a

2Recall that every closed prime formula is valid in FT' and hence equivalent to T. This implies
that we can assume without loss of generality that 5(z), 51 (2),...8k(2) have z as a free variable.
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Finally, we want to give a concrete example of how the quantifier elimination works.

Suppose we shall prove that if ¢; and ¢, are two different constant symbols, then

FT' E Vz[(zfer A zges) = Tyr, ya(xfyr A zgya A =(y1 = y2))]- (4.6)
This is the same as showing that = fe; Axgey entails Jyy, yo(z fyr Azgya Ayr # y2). In
the following, we will abbreviate x fe; A xgey by 3, and x fy, A gy, by 3. Note that
both 3,3 are prime formulae. The first step is to eliminate the quantifiers Jy;Jy,.
A projection for y; = yo is y1€ | yae. Since both yie and yqe are decided in 3’ wrt.
{y1,y2}, we know that yie | yze is no {yy, y2 }-joker for 3. Hence, we can apply case

2 of lemma 4.6:

Va[-8 vV Fyi, ya2(B' A ~(y1 = y2))]
|} case 2 of lemma 4.6
Vz[=8 V (3yi, 268" A =Ty, y2 (8 Ays = o).
Now Jyi,y2(' A y1 = y2) is no prime formula. An equivalent prime formula is

B" = Jy(zfyAxgy). Now we have to eliminate the out-most quantifier Vz, for which

purpose we have first to apply some first-order equivalence transformation:

Va[=8 V (Jy1, 28 A =5")].
U
—3z[B A (=Fyr, y28V )]
U
S[F2(BA =3yr, y2 ) VvV Fx(B A BY)).
Since ¢; # ¢z, we get Jz(BA B") = Fz(BA Jy(zfy A zgy)) Hepp L. Hence, we have
to consider only =3z (8 A =3y, y23'). Now a projection A for Jyi, y24" is {z f], zgl}.
Since A C [], we can again apply case 2 of lemma 4.6, yielding
=[FzB A =3z(B A Ty, y28)].

But 328 Hepp T and 3z(8 A Jyi, y28') Heppr T, which implies that we get —[T A
—T], which is the same as =L or T. This proves (4.6).

4.5 Adding Arity Constraints: CFT’

4.5.1 The Axioms

The language of CFT' contains in addition to FT' for every finite set of features
F C L a unary predicate z F' (called arity), which is written in postfix notation. The
theory CFT’ has the following axiom schemes:
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(Ax1) ( yANaxfz—y=z) forevery feature f.
(Ax2) (cfr — 1) for all constants .
(Ax3) =(c1 = ¢a) if ¢; and ¢, are different constants
(Ax4) ‘g’(xF Nefy— L) if f&F.
(Ax5) cF — L for every constant ¢ and arity F.
(Ax6) ‘5’(;17F — y(zfy)) if fe Fandzx=#y.
The first three axiom schemes are the same as in FTy and FT'.  The last three

axiom schemes handle the arity constraints. They guarantee that if z has arity F|,

then exactly the features f € F' are defined on =.

In order to achieve a complete theory, we must add an axiom scheme that is similar
to the axiom (Ax6) of FT'. 1In contrast to FT', it is not enough to guarantee that
solved forms are consistent in the intended models. Consider the formula

z{f} Nzfa.

Then there exists exactly one element of Tcepys (resp. Reprr) that satisfies this de-
scription. The uniqueness of the solution of such descriptions must also be expressed
in the axioms. Note that it was not possible to fix one element of the domain in
the theory FT’ since we cannot restrict the arities of the variables in FT'. The ax-
iom scheme that guarantees both the existence and under certain conditions also the
uniqueness of solutions of solved forms was first introduced by [ST94]. They also in-
troduced a complete axiomatisation for CFT in this paper without actually proving
completeness. Before stating the required axiom scheme, we will recall the important

notion of a determinant as presented in [ST94].

Definition 4.14 (Determinant) A determinant for = is a formula of the form

{froee s Fa Y ATFiti AL A T fatn,

where each t; s a vartable or constant. We will write the above formula for conve-
nience as

= (frity, o faity).

Given a basic constraint ¢, we say that x s determined in ¢ if ¢ contains a determi-
nant for . A determinant for pairwise distinct variables x4, ..., x, is a conjunction

1iD1/\.../\JJniDn,
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where Dy, ..., D, are determinants for x(,...,x,. For a basic constraint ¢ we define
D(¢) to be the set of variables that are determined in ¢.

The variables in V(§)\D(9) are called the parameters of §. Now we can define the
last axiom scheme as introduced by [ST94], which states that for every valuation of
the parameters of a determinant § there is exactly one valuation for the variables
determined by 4:

(Ax7) VY(3'D(6)d) if § is a determinant.
An example of an instance of scheme (Ax7) is

r = (fiu g:v)
Yy, z,wdlz,u,vo | v = (hex gy frz)
v = (g:z hiw)

The theory CFT' consists of the axiom schemes (Az1)-(Az7).
Proposition 4.19 The structures Tcpr and Repp: are models of CFT'.

Proof. That the first six axioms schemes are satisfied is obvious. To show that Topr:
(resp. Reprr) satisfies the last axiom scheme, one assumes arbitrary feature trees for
the universally quantified variables and constructs feature trees for the existentially
quantified variables. a

We can also define a feature graph interpretation opps of the language CFT', where

e the universe of gppr and the interpretations of atom, the constant symbols
and the feature symbols are defined as for the feature graph interpretation &
of FT' (see Section 4.4.2, page 77), and

o (z,7) € FOcrr iff F = {f | 3t: xft € v}.
Proposition 4.20 The feature graph structure Scpp: is no model of the theory CFT'.

Proof. &gprr does not satisfy the axiom scheme (Az7). Consider the two different
feature graphs

o= (z,2fy ANyhl ANzgz A zhl) and o' = (z,zfy A yhl A zgy),

and let 7 = (y,yhl). Both o and ¢’ have the arity {f, g} and 7 as a subgraph under
the features f and g. Hence, &cpyr = Yy, 23l (a{f, g} AN xfy A zgz). O
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4.5.2 Solved Formulae, Congruences and Normaliser

For CFT’ we have to redefine the notion of a solved form, since the arity constraints

are no free predicates in CFT".

Definition 4.15 (Solved Formula) A basic constraint  is a solved formula if

1. no atomic constraint occurs twice in ¢;

2. an equation x =t appears in vy if and only if v eliminates x;

3. ifxeft € ¢ and xft' € ¢, thent =1';

4. ifeF 2G € ¢, then F' = G;

5. ifxF € ¢and f & F, then xfy & ¢;

6. ¢ does not contain an atomic formula of the form ¢ =t, cF or cft.
Fuvery solved form ~ has a unique decomposition v = vy A vy into a possibly empty
conjunction yn of equations “r = y” and a possibly empty conjunction g of con-

straints “xF'7 and feature constraints “xfy”. We call vy the normaliser and v the
graph of 7.

Proposition 4.21 Let v be the graph of a solved formula. A variable x is called
constrained in v if ¥ contains a constraint x ft or xF. Let CV(vy) be the set of all
variables constrained in . Then

CFT' = V3CY(y)y

Proof. We will extend v to a determinant § with D(d) = CV (7).

For every @ € CV(v) and & &€ D(v) let F. be a set of features such that F, contains
exactly the features f with zfy € v and let § be defined as

d=yU{zF, |z €CV(7)}
By definition, ¢ is a determinant. By axiom (Axz7) we know that
CFT' = V3aD(6)é

which proves CFT' |= V3ACY (7). 0
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Again, every basic constraint is equivalent in CFT’ to either L or a solved formula.
The basic simplification rules for achieving a solved form are the basic simplification

rules of FTy (see figure 4.1, page 69) plus the following clash rules:
(ArCl) M F#£G

(FA:Cl) w fEr

cF No¢

ArCl
(CArCl) n

We say that a basic constraint clashes if it can be reduced to L with one of the clash-
rules (i.e., one of the rules (CCl), (CFCI1), (CFCI2), (ArCl), (FArCl), or (CArCl)).

We say that a basic constraint is clash-free if it does not clash.

Proposition 4.22 The basic simplification rules for CFT' are terminating and per-
form equivalence transformations with respect to CFT'. Morcover, a basic formula

¢ # L is solved if and only if no basic simplification rule applies to it.

Proposition 4.23 Let ¢ be a formula built from atomic formulae with conjunction.
Then one can compute a formula 6 that is either solved or L such that ¢ Hqpps 6

and V(8) C V(o).

Proof. Follows from the preceding proposition and the fact that the basic simplifi-
cation rules do not introduce new variables. a

In the completeness proof for FT’ we have defined the notion of normaliser, which was
the set of equations attached to a solved formula. For CF'T’ we need a more detailed
definition of a normaliser. To this end we use the notion of congruence of a basic
constraint. The definitions of congruence and normalisers are taken out of [ST94],
where they have been defined and used for the first time.

A congruence of a basic constraint ¢ is an equivalence relation ~ on terms
satisfying the following:

o 1 =1ty € ¢ implies t; =~ 1,

o tyfty, t) fth € ¢ and t; ~ ¢ implies t; ~ 1}.
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It is easy to see that the set of congruences of a basic constraint is closed under
intersection. Since the equivalence relation identifying all terms is a congruence for

every basic constraint, we know that every basic constraint has a least congruence.

It will be convenient to represent congruences as idempotent substitutions. Since our
congruences also relates constants, we define a substitution to be a function on the
set of terms.

Definition 4.16 A normaliser of a congruence & is an idempotent substitution 6
that satisfies
\V/tl,tg : (H(tl) = a(tg) A= tl o tg)

We say that substitution 6 is finite if there are only finitely many terms ¢ with 6(t) # ¢.

A finite substitution can be represented as

Nt =0(t) |t #0(t)}.

For convenience, we will simply use  to denote this formula. Clearly, for every basic

constraint ¢ and every substitution # we have

ONGHONAOP.

Definition 4.17 (Normaliser) A normaliser of a basic constraint ¢ is a normaliser

of the least congruence of ¢.

We will now recall some properties of normalisers that have been proven in [ST94].
A graph constraint is a basic constraint that contains no equations. A graph
constraint is called a graph if it is a solved formula. We say for a substitution 6
and a graph constraint ¢ that 8¢ clashes if either # clashes or the result of applying
f to ¢ clashes. Note that for every normaliser § which is clash-free we can assume

without loss of generality that 6(c) = ¢ for every constant symbol ¢ (which we will

do henceforth).

Proposition 4.24 Let 2 be a model of CFT', ¢ a basic constraint and 0 a normaliser
of ¢. Then ¢ is unsatisfiable in A if and only if ¢ clashes, where ¢ s a graph

constraint containing all constraints of ¢ of the form tF and t ft'.

Proposition 4.25 Let v = v A yn be the normal form of a basic constraint ¢ that
is normal with respect to the rules (Triv), (Cong), (Orient) and (Elim). Then 6 = vy
is a normaliser of ¢ salisfying v = 0y and V(6) C V().
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This proposition allows us to calculate normalisers. Note that this also implies that
for a solved formula the two notions of normaliser as defined in Definition 4.15 and

in Definition 4.17 agree.

Definition 4.18 (Saturated Formula) A basic constraint ¢ is called saturated if
for every arity constraint xF € ¢ and every feature f € F there exists a feature
constraint x ft € ¢.

Lemma 4.8 Let v be a saturated graph constraint and 6 be a normaliser of some

congruence of . If 0 is clash-free and if V(0) C D(y), then

v Ecrr 0.
For our purposes, we need two additional propositions.

Proposition 4.26 Let the substitution 6 be a normaliser of some congruence of a

graph constraint ¢ such that 0¢ is clash-free. Then 0¢ is a graph.

Proposition 4.27 Let 0 be the normaliser of some congruence of graph ~ and let
0 =0"U0" be a partition of 0. If ' is a normaliser of some congruence of vy, then 6"

is a normaliser of some congruence of 0'~.

Proof. Let v, 8, #', and 6" be given as described. If #’ is a normaliser of some
congruence of v, we have to show that #” is a normaliser of some congruence of 6.
Clearly, #” is an idempotent substitution. The congruence property follows from the

fact that 6”(0'(z)) = 6(z). O

4.5.3 Prime Formulae

We now define a class of prime formula for the theory CFT’ that have the properties

as required by lemma 4.1.

Definition 4.19 (Prime Formula) Let ¢ be a basic constraint. A formula 3 =
X ¢ is called prime if it satisfies the following conditions:

1. ¢ is solved and saturated;

2. X has no variable in common with the normaliser of ¢;
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3. for every x € X there is a variable y € V(B) and a path p such that ypz € [¢].

The letter 3 will always denote a prime formula if nothing else is stated. Again, T is
the only closed prime formula. Note that we can use all definitions and propositions
of section 4.3 since a solved formula in CFT' is also a solved formula as defined for
]F‘Tg1 """ Fo and FTOF1 """ Foe CFT’, where Fi,...,F;,... is an enumeration of all

arity constraints.

As in the completeness proof for FT', we have to define the notion of decided variables
in order to show that every existential quantified basic constraint can be transformed
into a prime formula. Decided variables of an existential quantified formula are those
variables, which are reachable from a free variable via a feature path. We have shown
for FT’, that every existential quantified solved formula is equivalent to the set of
constraints on the decided variables. But for CFT', we will define a more general

notion of decidedness, which is more appropriate for the proofs to come.

Definition 4.20 (Decided Variables) Let v be some solved formula, and let ¢ =
AX~. A variable x € V(v) is said to be explicitly decided in ¢ if there is a variable
y free in v and a path p such that

ypx € [7].

A variable x € V() is called implicitly decided in ¢ if v contains a determinant D
for x where each parameter of D is explicitly decided in . We say that x € V(v) is
decided in ¢ if there is a z with xez € [y] and z is explicitly or implicitly decided in

We say that a variable is undecided if it is not decided. The set of decided variables
of a formula v will be denoted by Dec()). The set of explicitly decided variables
is denoted by Dec.(v)). Note that if 3Xv is a prime formula, then every variable in
V(7) is explicitly decided. For the formula

=3z, 2, 2(efy Al f, g} A e fy A ziges A zha,)

we get Dec.(v) = {y, z, 22} and Dec(h) = Dece(yp)U{x1}. The variable z is the only
one which is undecided in .

Note that the explicitly decided variables are the variables we have called decided in
the completeness proof for FT'.
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Proposition 4.28 Let v be a solved formula, vv = AX~, and Y be the subset of X
containing all variables that are decided in 1. Then for every valuation o into a CFT’

model A with A, a |= 1 there exists a unique Y -update o' of a such that

A0 = IX\VH.

Proposition 4.29 Let v be a solved formula and X be a set of variables. If = is

a variable that is decided in 34X~ and v contains a constraint x fy, then y is also

decided in 3X~.

The following lemmas and propositions will show that we can transform every ex-
istential quantified basic constraint into a prime formula. A constraint ¢ is called
a constraint for z if ¢ is of the form zft, F or x = t. We will say that two
formulae ¢» = 39X+ and ¢’ = 3X'y’ differ only on the undecided variables if
V() = V(¥'), Dec(v) = Dec.(v'), and ¢ and ¥’ contain exactly the same con-
straints for the explicitly decided variables.

Lemma 4.9 (Garbage Collection) Let b = X~y and ¢’ = 3X'Y be existentially
quantified solved formulae that differ only on the undecided variables. Then

¥ |:|CFT’ 'l/)/-

Proof. Let Y = Dec.(¥) N X = Dec.(¥')N X', Z = X\Y and 2/ = X'\YV. Y
contains the existentially quantified, explicitly decided variables, whereas Z (resp.
Z'") contains the variables that are not explicitly decided in ¢ (resp. ¥'). We will

show that there is a possible empty conjunction of equations ¢ such that
3Xy Hepr Y (A 3Z76) and  3Xy Heppr Y (0 A TZ0). (4.7)

Once we have shown this, the lemma can be proven as follows. Since V(3Zvq) C
Dec.(), we know that every variable explicitly decided in 37~5 must also be ex-
plicitly decided in : A variable z is explicitly decided in 37~ if there is a variable
y € V(IZ~q) with ypx € [yg]. Since y € Dec.(v0), we know that there is variable
z € V(¢) with zqy € [v] for some path ¢. Hence, zpgz € [v], which implies that z is
explicitly decided in .

Similarly we can show that Dec.(37'75) C Dec.(¢). This implies that (37v¢) and
(37'4¢,) are graphs that do not differ on the decided variables. An adaption of the

proof of lemma 4.2 shows that

1Z~c |:|CFT’ ElZ/Vé;;
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which proves ¢ Hqpp ¢

For the proof of (4.7) let ¢ be the subset of equations x = ¢ in yx N vy with V(z =
t) C Dec.(v0). Then all variables occuring on the left side of an equation in yy\¢
(resp. vy \¢) cannot be explicitly decided in ¢ (resp. ©'). Since v and 4’ eliminate

the variables on the left side of the equations, we get
Xy H IX(pAg) and IXy' H IX(pAG)

Now (4.7) follows from the fact that V(¢) N Z = and V(¢) N Z' = . O

Proposition 4.30 For every prime formula 3 and every set of variables X one can
compute a prime formula 3’ such that

AXB Hepp # and  V(5') CV(IX)).
Proof. See proof of proposition 4.15. O

Proposition 4.31 For every two prime formulae 3 and (3' one can compute a for-

mula 0 that is either prime or L and satisfies

BAB Hepr 6 and V(6) SV(BAS).

Proof. See proof of proposition 4.16. O

4.5.4 Proof of the Main Lemmas

In this section we will show that our prime formulae for CFT’ satisfy requirements (5)
and (6) of lemma 4.1. The procedure is similar to the one in the proof for FT', i.e.

we will define the central notion of X-jokers.

Definition 4.21 A rooted path xp is said to be determined in § = IXy if |xp|, is
defined and |xpl, € D(v).

Proposition 4.32 Let 3 = 3X ¢ be some prime formula and x € D(v) be an variable
that is undecided in (3. Then there is a variable y and path p such that zpy € [v],

y & D(v) and y is undecided in 3.
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Proof. Since z is in D(v) and is undecided, every determinant § C v with = € D(¢)
must contain an undecided parameter. Now let § be the largest determinant such
that § C v, € D(J) and for every z € V(§) there is a path p with

zpz € [v].

Such a determinant must exists since 3 is saturated. Now let y be one parameter of ¢
that is undecided. y cannot be determined in 7. If v would contain a determinant D
for y, then &' = § Ay = D would be a determinant that is larger than 6 and satisfies
8 C v,z € D) and Vz € V(6')Ip : xpz € [y]. Hence, y is the variable we have
searched for. O

Definition 4.22 Let 3 = Y~y be a prime formula and X be a set of variables. A
rooted path xp is said to be decided in 3 wrt. X if either x € X or there is some
prefiz p’ such that xp' is realized and |xp’|, is constant or a variable that is decided

in 31X,

Note that this definition differs from the one in 4.12, as the decided variables in FT’
are the explicitly decided variables in CFT".

Proposition 4.33 If 7 is a proper path constraint such that all rooted paths contained
inm are decided in 3 wrt. X, then either A, a EVX(8 = 7) or U, a = VX (B — —-7).

Definition 4.23 (X-Joker) Let 3 = Y ¢ be a prime formula and X be a set of
vartables. We say that a rooted path xp is free in 3 wrt. X if xp is neither determined
in  nor decided in 3 wrt. X. A proper path constraint is called an X-joker for (3 if
7 & [B] and one of the following conditions is satisfied:

o 7™ = xpc and xp is free in B wrt. X,

o m = atom(xp) and xp is free in B wrt. X,
o m=uxplyqg and xp is free in B wrt. X,

o T =yqlxp and xp is free in B wrt. X.

This definition and the definition of X-jokers for FT' differ in that an X-joker for
CFT’ must contain an undecided rooted path that is additionally undetermined.
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Thus, the path constraint 7 = 2 f | g is no {x}-joker for the formulae

xfxy A xgrg A
B1 = Jxy,xe,xz,xs | o {f} Az faz A
$2{f} Nzyfry
xfxy Nxgry A
dry, 2o | o{f} Naifar A
fQ{f} N zafs

But we can calculate an {x }-joker #’ for 3y with the property 51 A1 Ecpr 7', namely
the constraint xff | xgf. On the other hand, 7’ is no {z}-joker for B;, and there
exists no {x}-joker 7" with the property that 8y A 7 Egpr 7", The calculation of
entailed X-jokers is the subject of Lemma 4.10. Note that the differences between
the X-jokers for FT' and CFT' is also reflected in the following observation. In FT",
given a proper path constraint 7 such that there is some FT’ model 2 and a valuation

B2

o with

A,aEIX(BAT) and A,a=IX(BA-7),
then 7 must be an X-joker (see lemma 4.4). For CFT’, this does not hold.

Proposition 4.34 [t is decidable whether a rooted path is free in a prime formula
wrt. a set of variables, and whether a path constraint is an X -joker for a prime

formula.
Proof. Follows from proposition 4.3. O

Lemma 4.10 Let 8 = dY'~v be a prime formula and ™ be a proper path constraint.
Then either we can calculate an X -joker @' for 3 with

!/

OAT =m

or for every CFT' model A and every valuation o we have

AaEVX(B—-7m) or AaE=VX(E— ).

Proof. Without loss of generality we can assume that V() NY = 0. If 7 is an
element of [3], then 8 Egpr ™ by proposition 4.4. If the normal form of 3 A 7 is L,
then 8 | —m. If both fail, then we distinguish the cases listed below. We will say
that a rooted path zp is decided to mean that xp is decided in 8 wrt. X, and we will
use the term undecided in a similar way. Analogous, we will say that a variable is

(un-)decided if it is (un-)decided in 3X 3.
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1.

3.f

all rooted paths contained in m are decided. Then proposition 4.33 shows that
for every CFT' model 2 and every o either A, a E VX(8 — 7) or A, a
VX(8 — —m).

. ™ contains a rooted path xp that is undecided and not realized in 3. Then xpl

is an X-joker since v is saturated.

7 contains at least one undecided rooted path, and the undecided rooted paths

contained in w are realized in 3. We will split up this case as follows:
7 = zpl. Then 7 is in [f].

m = apc and xp is undecided but realized in 3. By our assumption we can
assume that zp is not determined in 3 since this would imply 5 A 7 |Hqpp L.

Hence, 7 must be an X-joker.

m = xpkF. Analogous to case (3.b).

7 = atom(zp). Analogous to case (3.b).

m = xp | yq and xp is decided and yq is undecided. Then yq is realized. If yq

is undetermined in 3, then 7 is an X-joker.

Otherwise let z = |yg|, with z € D(y). Since z is undecided, proposition 4.32
shows that there is a variable u ¢ D(y) that is undecided and a path r such
that zru € [y]. Then yqgr is a rooted path that is both undecided and not

determined in (3.

Now |zpr|, must be either undefined or a variable 2z’ with z’ # z, since otherwise

u would be a decided variable. Hence, 7’ = xpr | ygr is not in [3]. This shows

that 7’ is an X-joker with 7 =qpp 7.

m = xpl yq and both xp and yq are undecided. Then xp and yq are realized in
G.
If |xp|, (resp. |ygly) is not an element of V(v¢), then xp (resp. yq) is not

determined in 3, which implies that 7 is an X-joker.

Otherwise, let @ be some access function of 3 and € be a normaliser of yo A
|zply = |yq|,. Note that

BAT |:|CFT’ EIY(VN AN eWA |517P|w = |yQ|w)

and

Yo Nleply = lyqly Hopr va A 0.
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Since V(|zp|y = |yqly) € V(vg), we can assume by proposition 4.25 that V(6) C
V(y¢). Since yn eliminates the variable on the left side of the equations, this
implies

w Ava Alaply = yaly Hopr v Ave A

Furthermore, we can assume without loss of generality that 6 contains no trivial
equations of form z = z. Hence, @z, | Qzy ¢ [3] for every equation z; = z; in

6. Since we have assumed 8 A 7 [Ecpr L, we know that 6v¢ is clash-free.

If 6 contains an equation z = ¢ where z is undecided, then z € V(yg). Now z
cannot be determined in v5 as 0vs is clash-free. Hence, @zc is an X-joker 7’
with 8 A 7 =cpr 7.

If § contains an equation z; = z; or z3 = z; where z; is undecided and z, is
decided, then 7/ = @z; | @z, is a proper path constraint with 8 A 7 | 7.
Furthermore, we can apply case (3.e) on 7’ yielding an X-joker 7" with SA 7 |=

.

If f contains an equation z; = z; or z3 = z; where z; and z, are undecided and
z1 is not determined in g, then 7/ = @z, | @z, is an X-joker with A 7 |= 7.
The remaining case is that § contains only equations of the form z = ¢ with z
decided or equations of the form z; = z; where either both variables are decided
or both variables are undecided but determined in v5. We will show that in
this case A, o = 3X (B A 7) implies A, o = VX(F — 7).
Now assume that A, o = IX (8 A 7). We will show that then

A o =VXVY(ye — 0). (4.8)

This implies that A, o = VXVY(yn A v¢ — |zp|ly = |yq|y), which is equivalent
to A, a EVX(IYy — 7).

Let 6’ be the subset of # containing all equations among decided variables, and
let " be the rest of §. 6" contains only equations between variables that are

determined in y¢g. It is easy to check that 6’ is a normaliser of some congruence
of vg. This implies by proposition 4.26 that 6'vs is a solved graph.

Let o' be the unique extension of a to the variables that are decided, and let
Z C X UY be the set of undecided variables. Clearly, 2, o’ = 0'. Furthermore,
V(0')N Z = (). This implies

2[, o |= \V/Z(VG — 9”)((;).

Since 0" is a normaliser of some congruence of 6'y5 by proposition 4.27, 0’4 is
a solved graph and V(6") C D(6'vg), we know by lemma 4.8 that

GI’YG |: 0//.
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Hence, A, o' = VZ(ye — 6’ A 0"), which implies A, o' E VZ(vg — 7). From
this follows (4.8) as o was the unique update of a to Dec(IX3).

Corollary 4.2 Let 3 be a prime formula and m be a proper path constraint. If there
is a OFT' model A and a valuation o into A with

A,aE=IX(BAT) and A al=3IX(BA-7),

then we can calculate an X -joker for B with B A m = 7.

Lemma 4.11 Let § = dYy be a prime formula and 7, ..., 7, be X-jokers for 3.
Then

<.

EIX/B |:CFT' EIX(/B /\

=1

Proof. Let = 3Y~ be a prime formula, 7,...,m, (n > 0) be X-jokers for 3, A be
some model of CFT’, and a be some valuation into 2 with 2, o = 3X 3. We have to
show that 2, o = IX (B A AL, —7). We will define a prime formula 3’ satisfying the

following:

° § =B,
o 1Xp3 |:|CFT’ X4,

e AaE=EVX(F — —-m)foralli=1.n

Once we have defined a 3’ satisfying these conditions, we can prove the claim using
the following argumentation. Since 3X 3 Hqpp 3X B and A, a = X3, there must
be an X-update o' of a such that 2, o' = 3. But as 8’ = 8 and for all : = 1..n
A,a E VX(F — -m), we know that A, o E B A AL, -m;. This shows 2, a =
AX(B ANy —m).

In the following, we will just say that a rooted path zp is decided when meaning that
zp is decided in B wrt. X, and we will use undecided in a similar way. Let Z C V(y¢)
be the set of all variables of the graph of 4 that are undecided and undetermined.
Note that if a rooted path zp is undecided, undetermined and realized in (3, then
|zp|, is a variable z with z € Z. Furthermore, let Zc C 7 be the set of variables
z € Z with atom(z) € .
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By Proposition 4.28 there exists a the unique update o' of a to the variables that are
decided in 3X 3. For each z € Z we fix a constant ¢, that does not appear in v and

m; for 2 = 1...n such that
Ve (X UY)NDec(IXP)): &+ o(x).

By the construction we know that for every rooted path yg which is contained in

some 7; and which is both realized and decided, that the proposition
A a | VX(B — -ype:)

holds. Similarly, we fix for every z € Z\Z¢ an arity F, = {f | zfy € v} U{h}, where
h is a new feature such that

Yz € (X UY)NDec(IXB)): —a'(z)F2.

Again we know for every rooted path yq which is contained in some m; and which is

both realized and decided, that the proposition
A, o =VX(8 — —ypF.)

is true. It is understood that ¢, # ¢, for z # 2z’ and z,2z' € Z¢, and F, # F, for
z# 7 and z,2' € Z\Z¢.

Let ¢ be obtained from ¢ be deleting all constraints atom(z) with z € Z¢, and let

Z1y. .., Zm be an enumeration of Z¢. The formula 8’ = Y (v A v5) is now defined
by
7]'\7 = WAz1=c, AN... Nz =¢C,,
Yo = Ylzé oy Zme ] A /\ 2F,
2e(2\Zc)

We will show that ' satisfies the requirements stated above. Clearly, ' Ecpp 5.
Furthermore, 3X 3 H 3X 3’ by proposition 4.9.

The remaining part is to show that 2, o E VX (3 — AL, —-m) for all 1 = 1.n. We

distinguish the following cases for ;:

1. m; contains a rooted path xp that is undecided and not realized in 3: Let p' be
the longest path such that xp' is realized in 3 (such a path must exists since at
least ze is realized), and let p = p' fq. If xp’ is determined in 3, then 8 | ap'F
with f & F as (3 is saturated. Hence, 8 | —xpl.

If 2p’ is undetermined, we know that |zp'|, is a variable z with z € Z since xp is
undecided. As p’ is the longest subpath of p’ with zp’ realized in 3 we know that
zft ¢ v. If z € Z¢, then we have substituted z by a constant ¢,. Otherwise,
we have added an arity constraint zF, with f & F,. Hence, 8 | —apl.
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2. every undecided rooted path contained in 7; is realized in (3. Note that in this
case m; cannot be of the form zpl, since zp realized implies that zp| € [3]. We

split up this case as follows:

(a) m; = ape. Then xp must be undecided as m; is an X-joker. Since zp
is realized in 3, we know that |zp|, is a variable z with z € Z. If z €
7., then we have substituted z by a constant symbol ¢ different from ec.
Otherwise, either 4 contains an arity constraint zF or we have added an

arity constraint zF, in 44. In both cases we get 3’ | —m;.
(b) m; = apF. Analogous to case (2a)

(¢) mi = atom(xp). Then zp is undecided. Since xp is realized in 3, we
know that |zp|, is a variable z with z € Z. Now m; ¢ [3] implies that
atom(z) € v and therefore z ¢ Zc. Hence, we have added a constraint
zF, in v,

(d) m; =aplyqorm =yql xp where xp is undecided and not determined in
(. By the above cases we can assume that zp is realized in 5. Again we
get |xpl, = z € Z. There are two cases, namely z € Z¢ and z € (Z\Z¢).
If z € Z¢, then we have substituted z by ¢, in 4. If yg is undecided,
we know that yq is also realized in 3. This implies that we have either
added a constraint z’ F,, in v, or we have substituted z’ by ¢,/ in 4{;, where
2" = |yq|. Since ¢, and ¢, are different, this shows 3’ = —;.

If yq is decided, then A, o = VX (8 — —yqge,) by the definition of ¢,. As
B B, we get Ao = VX(B' = —ap | yq).
The other case z € (Z\Z¢) is handled analogously.

Lemma 4.12 If 3, 31,..., 03, are prime formulae, then

EIX(ﬂ A /\ _‘/32) |:|CFT’ /_\ ElX(ﬂ A _‘%32)

Proof. Let 3,04,..., 3, be prime formulae. Then IX(8A AL, =05;) E A, IX(BA
=(3;) is trivial. To see the other direction, suppose that 2 is a model of CFT’ and
A, o = AL, IX(BA-5;). We must exhibit some X-update o of a such that A, o' = 3
and A, o' E-pfifori=1,...,n.

Without loss of generality we can assume that 2,/ E 3IX(BAF;) fori=1,...,m
and 2,0/ = -3IX(BAB;) fort =m+1,...,n. Foreveryr =1,...,m let \; be a
projection of [3;.
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Since for every 1 =1,....m
Ai |:|CFT’ Biy

we know that there is a proper path constraint = with
A,aE=IX(BAT) and A al=3IX(BA-7),

This implies by corollary 4.2 that we can calculate, for every: = 1,...,m, an X-joker
w! for B with 8 A 7; Ecpr 7h. By Lemma 4.11 we have

IXA = IX(B A 7\ ~).

from which

3XB EIX(B A 7\ -m).

follows.

Since —m; = —3; by Proposition 4.4, we have

m

IXB EIX(BANB).

=1
Hence we know that there exists an X-update o’ of a such that 2, o’ |= 3 and 2, o' =
=0; for it = 1,...,m. Since we know that A, o | =3IX(BAB;) for i =m+1,...,n,

we have 2, o' = —f; fori=m+1,...,n. O

Lemma 4.13 For every two prime formulae 3,3 and every set of variables X one
can compute a Boolean combination 6 of prime formulae such that

FX(BA _‘ﬁl) Hepr 0 and  V(6) CV(IX(BA _‘ﬁl))

Proof. Let A be a projection of 3 and 2 be model of CFT'. We distinguish the

following cases:

L. There exists an m € X such that we can derive an X -joker n" with A7 Egpr 7'
using lemma 4.10. Then IXB |=cpr IX(B A —7’') by lemma 4.11. Since
BN " =cpr -, we get

EIX,Q |:CFT’ EIX(,Q N _'7T').

Since ' Ecpr A |E ™, we know that =7 |Egpr -4 and hence IX3 E=cpp
AX(6 A —=p3"). Thus
AX(B A =8") Hepr 3XB

The rest follows from proposition 4.30.



4.5. ADDING ARITY CONSTRAINTS: CFT’ 107

2. For everym € X lemma 4.10 does not produce an X -joker ©" with SAT |=gpr 7.
Then for every valuation « into 2 and every m € X either 2, a = VX (8 — 7)
or A, EVX(3 — —m). This implies that either

AakEVX(B— N\
TEA

or

A,a=VX(E— —|(/\ T)).

TEN

Since Azex ™ H A Heppe 3, this implies that there is no valuation o with
WakEIX(BAF) and Ao l=3IX(BA-F).

Hence
3IX(B A -B') Hopr IXBA-IX(B A B).

The rest follows from propositions 4.30 and 4.31.

Theorem 4.5 For every formula ¢ one can compute a Boolean combination & of

prime formulae such that ¢ Hqpp 6 and V(6) C V(3).

Proof. Follows from Lemma 4.1, Propositions 4.31 and 4.30, and Lemmas 4.12
and 4.13. O

Theorem 4.6 CFT’ is a complete and decidable theory.

Proof. The completeness of CF'T’ follows from the preceding theorem and the fact
that T is the only closed prime formula. The decidability follows from the complete-
ness and the fact that CFT' is given by a recursive set of sentences. O
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Chapter 5

Decidability of the Positive
Existential Fragment of RFT

In this chapter, we will show that the positive existential fragment of the language
RFT is decidable. This is done by presenting a quasi-terminating rule system that
transforms each quantifier-free conjunction of atomic constraints into an equivalent

set of solved formulae (seen as a disjunction).

Section 5.1 gives an informal description of the method for checking satisfiability.
Section 5.2 introduces the two-sorted logic RF, in which a regular path expression
xLy is expressed by two constraints z[uly and pe L. p is a variable that is inter-
preted as a feature path. Furthermore, this section presents a validity preserving
translation of REF'T-clauses into RF-clauses. Section 5.3 characterise the clauses that
are obtained by translating clauses of the original syntax into RF and defines two
normal forms, namely pre-solved clauses and solved clauses. Pre-solved clauses are
satisfiable under the condition that there exists a valuation for the path variables,
whereas solved clauses are always satisfiable. We show the satisfiability of solved
clauses by constructing a valuation in the feature tree interpretation. Since we will
prove in the following sections that we can transform an initial clause into an equiva-
lent set of solved clauses, this implies that the feature tree interpretation is canonical.
In Section 5.4 we define a set of deterministic and non-deterministic simplification
rules that transforms an initial clause into an equivalent set of pre-solved clauses.
This intermediate step is necessary since otherwise the algorithm would not termi-
nate. Section 5.5 finally shows how pre-solved clauses can be transformed into solved

clauses.

109
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5.1 The Method

We will first present a slightly modified method for testing satisfiability of quantifier
free formulae in the FT’-language, and then turn to the systems as extended by
regular path expressions. For the sake of convenience, we allow expressions of the
form xpy where p is a path. Although these constraints extend the language of FT",
they can easily be defined within FT’. Every constraint zfi ... f,y is equivalent to
the FT'-formula 3z, ...z, (2fizi A 21 fora Ao Tpei froZn A T = y).

Now consider a clause ¢ = xpiy1 A xpays (in the rest of the chapter we will call
formulae like this clauses). Although only subtree relations for z,y; and z,ys are
contained in this clause, an additional subtree or equality relation can be implied
depending on the paths p; and py. If p; equals p,y, we know that y; and y, must be
equal, which implies that ¢ is equivalent to zp1y; A y1 = yo. If py is a prefix of py and
hence p; = p1p’, we can transform ¢ into the equivalent formula zpiy; A y1p'y2, thus
additionally stating that y, is a subtree of y;. The reverse case is handled similarly.
If neither prefix nor equality holds between the paths, there is nothing to do. By and
large, clauses where the last condition holds for every z and every pair of different
constraints xpiyr € ¢ and xpyy: € ¢ are the solved graphs as defined in the last
chapter, which are satisfiable.

If we consider a clause of the form ¢ = xLiy; Ax Lay,, then we have again to check the
relation between y;, and y,. But now there is in general no unique relation determined
by ¢, since this depends on which paths p; and p, are used out of L; and L;. Hence,
we have to select non-deterministically a relation between p; and py before we can
calculate the relation between y; and y,. In the following, we will often just say

“guess” instead of “select non-deterministically”.

But there is a problem with the original syntax, namely that it does not allow one
to express any relation between the chosen paths!. Therefore, we extend the syntax
by introducing so-called path variables (written p, v, u',...), which are interpreted as
feature paths. We will henceforth refer to the variables of the original syntax as tree
variables. If we use in addition the modified subtree relation z[u]y and a restriction

constraint p & L, a path expression xLy can be expressed by the equivalent clause
zlply A pé L (p new).

!Maxwell and Kaplan solved this problem by using operations on regular languages such as inter-
section and calculating prefix languages directly. The use of this method forced them to introduce
a new variable each time a transformation rule was applied. For a feature description that contains
a cycle of the form #Liy1 A ... yn—_1Lnx this resulted in the introduction of an infinite number of
variables.
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Using this extended (two-sorted) syntax we are now able to reason about the relations
between different path variables. To do this we introduce additional constraints ¢ = v
(equality), u < v (prefix) and u Il v (divergence). Divergence holds if neither equality
nor prefix does. Now we can describe a normal form equivalent to the solved graphs
of the last chapter, which we will call pre-solved clauses. A clause ¢ is pre-solved
if for each pair of different constraints z[u]y; and z[v|ys in ¢ there is a constraint
L II v in ¢. Additionally, we require pre-solved clauses to contain at most one
constraint p & L for each path variable p. We call these clauses pre-solved, since these
clauses are not necessarily satisfiable: it may happen that the divergence constraints
together with the restrictions of the form pé L are inconsistent (think of the clause
peftAveffraudlo, e.g.). But pre-solved clauses have the property that if we
find a valuation for the path variables, then the clause is satisfiable.

Our algorithm first transforms a clause into a set of pre-solved clauses, which is (when
viewed as a disjunction) equivalent to the initial clause. In a second phase the pre-
solved clauses are checked for satisfiability with respect to the path variables. In both
phases we use a set of deterministic and non-deterministic transformation rules.

Before starting with the technical part we will illustrate the first phase, since it is the
more difficult one. For the rest of the chapter we will write clauses as sets of atomic
constraints. Consider the clause v = {z[u]y, pé L1, z[v]z, v é Ly}. Initially, one
guesses the relation between the path variables ¢ and v. In our example there are
four different possibilities. Therefore, v can be expressed equivalently by the set of
clauses

vio= {plv, 2y, peli, alv]z, véLy}
Yo = {p=v, zluly, pely, x[v]z, vélLy}
va = {u=<v, z[ply, ]

pely, x[v)z, véLsy}
va = {v=<yp, xlply, pely, xf

vz, vels}.

The clause v; is pre-solved. For the others we must evaluate the relation between p

and v as follows. In v, we substitute p for v and y for z, which yields

{yiz) ‘T[M]ya /uéLla /ueL?}

We keep only the equality constraint for the tree variables since we are interested
only in their valuation. Combining {p é Ly, p é Lo} into {p & (L1 N L)} will then
give us an equivalent pre-solved clause. For 73 we know that the variable v can be
split up into two parts, one of them covered by u. We can use concatenation of path
variables to express this, that means we can replace v by the term pov’ with v/ new.
This would lead to the clause

{p = pot/; z[uly, pély, xluor/]z, pov'é Ly}
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But this could easily be expressed more simply. First, the constraint g < por/ is
superfluous. Second, the constraint z[gov']z in combination with z[u]y can also be

expressed by {z[u]y, y[v/]z}. We now obtain the clause

VZ/S = {r[/“L]ya /“LéLla y[V/]Z; ,U/OI//éLQ}.

This shows that we do not need concatenation of path variables within subtree agree-

ments, and we will avoid them for simplicity.

The only thing that remains in order to achieve a pre-solved clause is to resolve the
constraint pov' € Ly. To do this we have to guess a decomposition P, S of Ly with
PoS ={ps|p€ P,s e S} C Ly such that pé P and v/ € S holds. In general, there
can be an infinite number of decompositions (think of the possible decompositions of
the language f*g). But as we use regular languages, there is a finite set of regular
decompositions which covers all possibilities. Finally, reducing {u € Ly, pé P} to
{pe(Li N P)} will yield a pre-solved clause.

Note that the evaluation of the prefix relation in 73 has the additional effect of
introducing a new constraint y[v/]z. In general this implies that after the evaluation
of prefix constraints there may be some path variables whose relation is unknown.
Hence, after reducing the terms of form p = v or u < v, we may have to repeat
the non-deterministic choice of relation between path variables. In the end, the only

remaining constraints between path variables are of form p Il v.

Now let’s turn to an additional point we have to consider, namely that the rules we
present will (naturally) loop in some cases. Roughly speaking, one can say that this
occurs if a cycle in the graph coincides with a cycle in the regular language. To see

this let us vary the above example and let v be the clause

{zlulz, pef, zlvlz, vef g}

Then a possibly looping derivation could be

{p < v, zlplz, péf, z[v]z, vefg} adding relation p < v
{z[plz, pef, z[v']z, pov' e f*g} splitting v into pov/
{zlple, pef, z[V]z, pef*, Vefgh decomposing pov'é f*g
{z[plz, pef, z[V]z, V' éf*g} joining pu-restrictions

But we will prove that we get a quasi-terminating rule system, which means that the
rule system may cycle, but produces only finitely many different clauses (see [Der87]).

This is achieved by the following measures: first, we will guarantee that the rules do
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not introduce additional variables; second, we restrict concatenation to length 2; and
third, we will show that the rule system produces only finitely many regular languages.
In order to show that our rewrite system is complete, we must additionally show that

every solution can be found in a pre-solved clause.

Finally, we want to mention a related work in the context of terminological logics,
which have their roots in the knowledge representation formalism KKL-ONE (see [BS85];
for a comparison of feature logic and terminological logics see [NS91]). Baader [Baa90,
Baa9l] has considered an extension of the terminological language ALC of [SSS91],
which uses regular languages of roles (binary relations) instead of single roles to build
up concept terms. He has shown that testing satisfiability of this extension is decid-
able. In contrast with our problem, there are cycles in the regular languages but
no cycles in the formulae, since these cycles (i.e., cyclic concept definitions) can be
compiled out using a technique called “internalisation”. As we have pointed out in
the example on page 112, the combination of both types of cycle makes our problem
hard. Thus, while Baader can split the problem into independent subproblems, we
cannot use a similar technique because of the structure of our problem (to be more
concrete, the technique of “internalisation” has been used in Baader et al. [BBN*T93]
to prove undecidability of functional uncertainty with negation).

5.2 The language RF

Before defining the language RF, we first introduce some relation on paths. We say
that a path u is a prefix of a path v (written u < v) if there is a non-empty path
w such that v = uw. Note that < is neither symmetric nor reflexive. We say that
two paths u,v diverge (written u Il v) if there are features f,g with f # ¢, and
possibly empty paths w, wy, ws, such that v = wfw; A v = wgw,. 1t is clear that 1T

is a symmetric relation.

Proposition 5.1 Given two paths u and v, then exactly one of the relations u = v,
u<v,u>=vorullv holds.

The language RF has two sorts, tree and path, and an infinite supply of variables of
both sorts. The set of tree variables is denoted by &', and the set of path variables
is denoted by P. We use the letters z,y, ... for tree variables and p, v, ... for path
variables. Besides the equality symbol =, the signature of RF consists of

e an infinite set £ of constant symbols of the sort tree,
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e a ternary relation symbol -[-]- of sort tree x path x tree,

a binary function o of sort path x path — path called concatenation,
e a binary relation < of sort path x path,

a binary relation 1T of sort path x path, and

e an infinite set of unary predicate symbols of sort path of the form é L, where L

is a regular expression with [L] C L*.

We use mixfix notation ¢[p]t’ for the so-called subtree constraints, infix notation
p =< g and p1II ¢ for the so-called prefix and divergence constraints, and postfix
notation p e L for the so-called path restriction constraints. In RF, a tree term
is either a constant symbol (denoted by ¢,c,...), or a tree variable. Tree terms will
be denoted by the letters ¢,#',.... A path term (denoted by p,q,...) is either a path
variable or the concatenation of to path terms pog. Given a RF-formula ¢, we use
Vx(#) to denote the set of tree variables in ¢, and Vp(¢) to denote the set of path
variables ¢.

In the following, we consider only those interpretations of RF which have £t as the
domain for the sort path, and which interpret o, < and II as concatenation, prefix and
divergence, respectively. Hence, we assume for simplicity that an RF-interpretation
2 just consists of a domain Uy () for the sort tree. Clearly, an RF-interpretation is
uniquely determined by its interpretation of the constants and the predicate symbol
[} A valuation into some RF-interpretation 2 is a pair (ay,ap), where ay is a
valuation of the tree terms into Uy () and ap is a function ap : P — L. In the
following, we use (ap,ay) FEu ¢ instead A, (ap, ay) | ¢ for better readability.

The feature tree structure Trp is the following RF-structure:

o the universe Uy..(Trr) of the sort tree is the set of all feature trees,
o c*rr = ({c}, {(e,¢)}) for every constant symbol ¢ € L,

o (0,p,7) € -[]-*»" iff 7 is the subtree of o at the path p.

Rrr is the substructure of Trp consisting only of the rational feature trees.

As we have argued previously, the language RF is more appropriate for testing sat-
isfiability of formulae in the positive existential fragment of RFT. Hence, we have to
translate the ¥} -fragment of RFT into RF such that validity is preserved. Now we
could restrict ourself to the two RFT-interpretations Trrpr and Rrpr. But we want
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to solve the more general problem as was stated by [KM88] and [BBN*93], namely
whether satisfiability of conjunction of “functional uncertainty” constraints is decid-
able. Roughly speaking, these authors considered a language which is similar to our
language RFT. Furthermore, they considered only those RFT-interpretations which
satisfy the following system RFT of axioms:

(Uniq) —(e1 = ¢2) if ¢; and ¢y are different constants
(FCC) (cfr — 1) for all constants ¢ and features f
(Fea) ‘v’(;z:fy Nefz—y=z) for every feature f
(Conc) ‘v’(xfpy < Jz(xfz A zpy) for all features f and non-empty paths p.
(Reg) xLy < \/ zpy for every regular expression L.
pEL

Clearly, this is not a first-order axiomatisation since it uses a possibly infinite dis-

junction in the axiom scheme (Reg).
Proposition 5.2 Both Trpr and Rrpr are models of RFT.

Now we define a translation of RFT-formulae into RF-formulae, and a corresponding
translation of RFT-models into RF-interpretations. Given a RFT-formula ¢, we
define ¢ to be the RF-formula where every occurrence x Lt in ¢ is replace by z[u|t A&
L, where p is a new path variable. Given a RFT-model 2, we define the associated
RF-interpretation 2 by

Upee (™) = U

A
A = & foreveryce L

[ = {(o,p,7) | (0,7) € {p}*}

Using this translation of RFT-models, we get the following system RF of axioms

which is equivalent to the above stated RFT-axioms:

(Uniq) —(c1 = ) if ¢ and ¢, are different constants
(FCCP)  Y(c[u]z — L) for all constants ¢

(Fea’) V(z[ply A z[u)z =y = 2)
(Conc’)  V(w[uop'ly ¢ Iz(xulz A 2[uly)

Note that we do not have to translate the last RFT-axiom scheme (Reg), since we

have fixed the interpretation of the sort path in RF.
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Proposition 5.3 Both Trp and Rgrp are models of RF. Furthermore, ¥rpr = TrE
and %RFT = %RF-

Proposition 5.4 A is an RF-model for every RET-model A. Conversely, there exists
for every RF-model B an RFT-model A such that B = 2.

Proposition 5.5 For every RFT-model A, every valuation ay and every RFT-
clause ¢,

Way =¢ <= exvistsap: A (ay,ap) = o.

5.3 Prime, Pre-Solved and Solved Clauses

In this section, we will define the input and output clauses for both phases of the
algorithm. A clause is either the special symbol L (“false”) or a finite set of atomic
constraints denoting their conjunction. We will say that a path term pov is con-
tained (or used) in some clause ¢ if ¢ contains either a constraint pov & L or a
constraint pov il q.2 Constraints of the form pé& L, p Il g, p < vand pu = v will
be called path term constraints. Note that the validity of path term constraints
depend only on the valuation of the path variables. Hence, we write ap = ¢ if ¢ is

a set of path term constraints that are valid under ap.

Let ¢ be some clause and z, y be distinct variables. We say that ¢ binds y to =
(resp. ¢) if x = y € ¢ (resp. ¢ = y € ¢) and y occurs only once in ¢. Here it is
important that we consider equations as directed, that is, we assume that © = y is
different from y = z. Note that we diverge from the standard practise in treating
equality as binding its right argument (as defined in Section 4.3, page 68). This is
for uniformity with constraints involving the < relation, since they will always share
a left argument which we wish to avoid renaming.> We say that ¢ eliminates y if ¢

binds y to some variable x. A clause is called basic if it is either L or:

1. all path terms in ¢ are either path variables or the concatenation of two path

variables (i.e., the length of concatenation is restricted to 2),

2. concatenation is not used in prefix or equality constraints in ¢ (i.e., ¢ does not

contain a constraint of the form poy’ = v, pop’ = vov/' ete.),

2We will not distinguish between p 1 q and ¢ I p.
3We find the commuted notation with > in place of the prefix relation < even less natural.
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3. ¢ does not contain a constraint of the form ¢ = ¢,

4. an equation t = x appears in ¢ if and only if ¢ eliminates x, and

5. for every path variable u used in ¢ there is at most one constraint t[ult’ € ¢.
A clause ¢ is called prime if it is basic, does not contain a path term of the form
pov and does not contain an atomic constraint of form p Il ¢, p < v or u = v.

The following two clauses are not basic. The first clause does not satisfy condition 4,
and the second clause does not satisfy condition 5:

{y =z, zlply, 2wz, péf, We(fUg)}
{p ', zluly, ylplz, xlp]z, pef, W'é(fUg)}
On the other hand, the clause
{y=z pTy, aluly, =[uWly', nef, w'e(fUg)}
is an example of a basic clause which is not prime. The prime clauses are the input

clauses of our algorithm.

Proposition 5.6 For cvery RFT-clause ¢ there is a prime clause ¥ such that 1 is
equivalent to ¢. Conversely, for every prime clause ¢ there is a RET-clause v such
that ¢ is equivalent to .

Taking as an example the RFT-formula s topic x A s comp* obj z, the equivalent
prime clause
slpr]z A s[pz]e A py € topie A pg & comp™ obj.

Now we turn to the output clauses of the first phase. A basic clause is said to be
pre-solved if it is either L or the following holds:

1. ¢ contains no atomic constraint of the form c[ult,
2. pel € pand pel’ € ¢ implies L = L,

3. el is not in o,

4. ¢ contains no term of form powv,

5. ¢ contains no constraint of form p = v or p < v, and
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6. n Il v e if and only if # v, x|ult € ¢ and z[v]t' € ¢.

For example the clause

{ i 10 o,y 0 sy o 10 sy @[ualyn, xlpalya, xlualys, }
pé(fUg), pee(fTUh™), uséh(fUg)

is pre-solved. The following clauses are not pre-solved. The first violates condition 4,
the second violates condition 5, and the third and fourth do not satisfy condition 6:

{1 I po, 2ilyn, zlalyz, i &(FUg), propaé(fTURT)}
{1 = 2, xlalyr, elpalys, pe(fUg), pae(fTURT)}
{e[alys, xlpalys, pie(fUg), pa&(fTURt)}

{0 I o, 2lilyr, valpaly, e (fUg), pee(frURY)}

Lemma 5.1 Let ¢ be a pre-solved clause different from L. Then ¢ is satisfiable in
Xrr and Rgr if there is a path valuation ap with ap = ¢,, where ¢, is the set of

path term constraints in ¢.

Proof. Let ¢ be a pre-solved clause, and let ap be a path valuation such that
ap = ¢. Let ¢ be the following RFT-clause:

{zap(u)t | zllt € 6}.

It is easy to check that for every tree valuation ay, Trpr,ay = ¥ if and only if
Xrr, (ax,ap) |E ¢. The same holds for Rrr and Rgpr.

That 1 is satisfiable in Trpr and Rrpr can easily be shown using a similar technique
as applied in Theorem 4.1, where we have shown that the solved FT'-clauses are
satisfiable in Tpp/ and Rppr. O

Since in the first phase we transform each prime clause into an equivalent set of pre-
solved clauses, this implies that the structure Tgrp (resp. Rgr) is canonical for prime

clauses; i.e., a prime clause is satisfiable if it is satisfiable in Tgp (resp. Rgr).

In the second phase we will check satisfiability of a pre-solved clause by transforming
it into an equivalent set of solved clauses. A clause ¢ is called solved if it is either
1 or



5.3. PRIME, PRE-SOLVED AND SOLVED CLAUSES 119

1. ¢ contains no atomic constraint of the form ¢[ult,

[S)

. pel € pand pel’ € ¢ implies L = L,

w

. ;e is not in o,
4. ¢ contains no term of form pov,
5. ¢ contains no constraint of form = v, u < v or u Il v, and

6. for every pair of variables pu, v such that u # v, z[ult € ¢ and z[v]t’ € ¢, we
have ¢ = p I v.

Here ¢ |= v means that for every 2 and every (ay,ap) in A, (ax,ap) Eqo ¢ implies
(ax,ap) Eo 7. Note that the definitions of pre-solvedness and solvedness differ in

the last two conditions and that every solved clause is also a prime clause. The clause

{e[ply, «[W]z,pe(fUg), Wehy

is a solved clause, whereas

¢ = {x[uly, z[p]z,ne(fUg), p'egh}

is not solved since ¢ = p Il '
Lemma 5.2 Fvery solved clause different from L is satisfiable in Xrp and Rgrr

Proof. For every solved clause ¢ there is a X U P-equivalent clause v such that v is

pre-solved, namely

y={uTv|u#vAzply€dnzv)z € d}Us.

Thus, a solved clause ¢ is (by lemma 5.1) satisfiable in Trr and Rgryp if there is a
path valuation ap with ap = ¢. Now conditions 2-5 in the definition of solvedness
guarantee that ¢ contains only path term constraints of the form e, with L, # ()
(but no path term constraints of the form pou'é L, =y, pu < p' or p il q). Hence,
every path valuation ap with ap(u) € L, for every u € Vp(¢) satisfies ap = ¢. Since
L, # () for every u € Vp(¢), we know that there is at least one path valuation ap
with ap [ ¢. 0
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5.4 The First Phase

5.4.1 A Set of Rules

For checking satisfiability of prime clauses we will use a set of deterministic and non-
deterministic transformation rules. Which set of rules is used will depend on the

initial clause.

The first rule is the non-deterministic addition of relational constraints between path
variables. In one step we will add the relations between one fixed variable ¢ and all
other path variables v which are used under the same node z as p. We will consider
only the constraints 4 = v, u II v and g < v but not g > v. Thus the rule can be
described by the following pseudo code:

Choose z € Vx(¢) (don’t care)
Choose z[u]t € ¢ (don’t know)

For each z[v]t' € ¢ with y different from v and g II v & ¢
add p 4, v with 6, € {=, <, II} (don’t know)

Formally, this rule is written as

(PathRel) {z[u]t} uq,/{
{po, vzl ebAp#vApllv g U{zulttUud

where 6, € {=, <,H}

This rule will only be applied if

e ) contains no prefix and path equality constraint,
e ) contains no path concatenation, and

e the rule adds at least one constraint.

Although we have restricted the relations , to {=, <, H}, this rule is globally pre-
serving since we have non-deterministically chosen z[u]y. To see this let ¢ be a clause,
2 be an interpretation and (o, ap) be a valuation in A with (ay, ap) FEu ¢. To find
an instance of (PathRel) such that (ay,ap) |Fu v where v is the result of applying

this instance, we choose z[uly € ¢ with ap(p) <-minimal in

{ap(v) | 2[v]z € ¢}.
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Then for each z[v]z € ¢ with pn # v and p Il v & ¢ we add p é, v where ap(p) o,
ap(v) holds. Note that ¢, equals = will not occur since we have chosen a path variable
p the interpretation of which is <-minimal. Therefore, the restriction é, € {=, <, H}
is satisfied.

The definition of (PathRel) is more complex than the naive one in the introduction.
The reason for this is that only by using this special definition can we maintain the
condition that concatenation of path variables is restricted to binary concatenation.
To see this suppose that we had added both 1y < p and p < v, to a clause ~.
Then first splitting up the variable 15 into pov) and then p into vyou’ will result in a
substitution of v in v by viou’or. By the definition of (PathRel) we have ensured
that this does not happen.

The second non-deterministic rule is used in the decomposition of regular languages.

For decomposition we have the following rules:

(DecClash) M if{fwelllw>1}=10
(LangDecy ) {povel} Uy PoS C L

{uePru{rveStuy

where L, P,S C F* L, P,S € A, and L contains a path w with
lw| > 1.

For a specific instance of the rule family LangDecy, A must be a finite set of regular
languages. The clash rule is needed since we require that regular languages do not

contain the empty path.

We use A in (LangDecy) as a global restriction, which means that for every A we
get a different rule (LangDeca) (and hence a different rule system R, ). This is done
as the rule system is quasi-terminating. By restricting (LangDecs) we can guarantee

that only finitely many regular languages are produced.

For (LangDecy) to be globally preserving we need to find, for every possible valuation
of ¢ and v, a suitable pair P, S in A. Therefore, we require A to satisty

VL € A, Ywy,wy # €:
[wleELiap,SEA(POSQL/\UMEP/\UJQES)]

We will call A closed under decomposition if it satisfies this condition. Addition-
ally, we have to ensure that L. € A for every L that is contained in some clause ¢.

We will call such a set A ¢-closed.



122 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT

{p=v, a[plt, vyt U oy 1n=v, zlple, z[v]c} Uy
Py e Vol ey P9 elile} Ul
{p = v, xlule, z[v]d'} U , {c[p]t} Uy
(EqClash) 1£ /”LJ_ c# ¢ | (CClash) K 1
: {pel, pel’} Uy ) {edyuy
(Join) (he(LN L)} U Y L # L'| (Empty) 0
(Div1) {p 11} U.{,uo:/ /YUy (Div2) {pov H porv' U
{p I} {rIv}uy
(DClash1)  1#ovLu}Ue (DClash2) ~ 1#1lppue
€L €L

o) Ap =, xlult, [t} U ,
) ot 1) U o] M7

Figure 5.1: Simplification rules

The remaining rules are listed in figure 5.1.

The (Pre) rule needs some additional explanation. One might expect (Pre) to be of

the form

V' new.

(Pret) = alult, elv]ty U
Telilts H/)0'} U bl e por]

But as we have mentioned, we have to define our rules in a way such that no additional
variables are introduced. This is not satisfied by the rule (Pre’). For solving this
problem note that v is not used in the result of applying (Pre’). Hence, we can
substitute ' by v, which has the effect that no new variable is needed. This leads to
the definition of (Pre) as presented in figure 5.1.

The following proposition and lemma will show that the definition of (LangDec, ) is
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meaningful.

Proposition 5.7 If A is ¢-closed and closed under intersection, then A is y-closed
for all Ra-derivatives v of ¢.

Proof. We will prove this lemma by induction over the length of derivations. We
use the term reg(y) to denote the set of regular languages used in . Then R, is
y-closed if reg(y) C A.

Let v be some R-derivative of ¢. For the base step v = ¢ the lemma holds trivially.
For the induction step let v satisfy the induction hypotheses reg(y) € A and let
r € Ra be a rule such that v —, 4.

If r is some clash rule, then reg(y’) = 0.

If r is not a clash rule and not in (LangDec,) or (Join), then reg(y') = reg(y) and
therefore reg(y’) € A by induction hypotheses. If r € (LangDecy), then r adds only
regular languages P, S € A.

Now let

o= (pel, pel't Uy

(we(LnL}ud

By induction hypotheses we know that L, L' € A. But then (L N L") € A since A is
closed under intersection. O

€ (Join).

We define a finite non-deterministic automaton A over the infinite set £ to be
a tuple (Q4,74,04, Fina), where

1. Q4 is a finite set of states,
2. 14 € ) 4 is the initial state,
3. 04:Qax L — p(Qa) is a transition function such that

VpeQa,QCQa:{f€L]|alp, f)=Q} is finite or cofinite, (5.1)

4. and Finyg C ()4 are the final states.

With 6% we mean the unique extension of 04 to £*. The regular language that is
accepted by an automaton A is defined as

L(A) = {w | §4(ia,w) N Fing # 0}.
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A finite deterministic automaton is a tuple (Q4,7.4,9.4, Fin4) where Q 4,14 and Fing
have the same meaning as in the non-deterministic case, and § 4 is a function Q 4 x £ —
Q4 with the property that for all states p, ¢ the set {f € L | d4(p, f) = ¢} is finite
or cofinite. 6% and L(A) are defined analogous.

Note that although the standard constructions for transforming regular expression
into a finite deterministic automaton and vice versa assume a finite alphabet, the
proofs do not use this assumption at all. Hence, the constructions can be generalised
to the infinite case.* A survey of the standard constructions can, e.g., be found
in [HU79]. As an example, we show how to extend the construction of a deterministic
automaton from a non-deterministic one. This construction is used in [HU79] in the

proof of the equivalence of regular expressions and finite deterministic automatons.

Proposition 5.8 For every non-deterministic automaton A there is a deterministic

automaton A" with L(A) = L(A').

Proof. Let A = (Q4,74,94, Fin) be a non-deterministic automaton. The standard
construction yields a deterministic automaton A" = (p(Q4),{ig ,}, 04, Fina) with

Sa{pt,..,pub, /) = U dalpi, f)

i=1...n

Fing = {Q CQalQN Fing #0}

In order to show that A’ is a finite deterministic automaton we have to show that for

all P = {pla SR 7pn} and Q = {QIa SR an} in QA’ = p(QA) the set
FR={f€L|u(P.f)=0Q}

is either finite or cofinite. Now we can define Fg also inductively as

Fl ooy = U S 8alpi, ) =0}

1=1...n

FRW = | {f [6alpi, /) S(QU{gH} N m o

i=1...n

Under the assumption that §4 satisfies 5.1, an easy induction over the cardinality of
the sets shows that Fg is finite or cofinite. O

The other constructions can be extended similar. Thus we get the following proposi-

tion.

4The same observation for tree automata was made in [Pod92].



5.4. THE FIRST PHASE 125

Proposition 5.9 For every reqular expression L there is a finite deterministic au-
tomaton A with I = L(A) and vice versa.

Lemma 5.3 For cvery prime clause ¢ there is a finite A such that A is ¢-closed,
closed under intersection and decomposition.

Proof. Let reg(¢) = {L1,..., L.} € P(LT) be the set of regular languages used in
¢ and let A; = (Qa;,14,,04,, Fina,) be finite, deterministic automatons such that A,
accepts L;. For each A; we define dec(A4;) to be the set

deC(-Ai) = {Lg |p,q € Q-Ai}’
where L} = {we Lt 54*4¢ (p,w) = q}.
Of course, each dec(.A;) is finite and contains L;. Furthermore, it is also closed under

decomposition. The complete set of decompositions for a language f;’, € dec(A;)

consists of the languages

P:LA;;andssz for s € Q4.

We define Ag to be U, dec(A;). Ag contains each L; € reg(¢) and is closed under
decomposition. Now let

A = fi (Ao)

be the least set that contains Ay and is closed under intersection. Then A is finite

and ¢-closed, since it contains each L; € reg(¢).

We will prove that A is also closed under decomposition. Given some L € A and a
path w = wyw,; € L, we have to find an appropriate decomposition P, S in A. Since
each L in A can be written as a finite intersection

L= ﬂ Ly
k=1
with Ly in Ag, we know that w = wyw, i1s in Ly for 1..m. As Ag is closed under

decomposition, there are languages Py, and S; for k£ = 1..m with wy; € Py, wy € S
and P,oS; C Ly. Let P =, P, and S = ;- Sk. Clearly, wy € P, wy € S and
PoS C L. Furthermore, P, S € A as A is closed under intersection. This implies that
P, S is an appropriate decomposition for wqw,. O

Before proceeding to some properties of the rule system, we present some sample
derivations. We will start with the prime clause

¢ = {x[pm]yr, xlpalye, xluslys, pé(fUg), pa&(fTUR"), useh(fUg)}.
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To find an appropriate set of rules Ry, we must generate a ¢-closed set of languages
A, which is closed under decomposition. By the construction used in the proof of the

last lemma we obtain the following set of languages:
A={(fUg), (fTURT), h(fUg), h}.

For the sake of clarity, we will say that we apply (PathRel) on some variable u if we
apply an instance of (PathRel) of the form

{elulyy Ve
Ly

Figure 5.2 is an example of an R,-derivation which transforms ¢ into a pre-solved
clause. We use the frames to highlight the corresponding parts of a clause which have
been modified by the last rule application. The empty frame || denotes the deletion
of a constraint. Note that we have removed the constraint ps < ps in the fourth
clause using the (Pre) rule, g1y IT pyops in the fifth clause using the (Divl) rule, and
the constraint pqé(f* U AT) in the last clause.

Next we want to examine two clashing Rj-derivations. The first one (see figure 5.3)
shows that gy < gy cannot hold. The second clashing derivation (see figure 5.4)
shows that 3 cannot be the prefix of uj;.

Finally, here is the complete list of pre-solved clauses different from L that are deriv-

able from ¢ using Ry:

{ i 10 gy pn 0 sy pio 1T sy @(ualyn, xlualya, xlualys, }
pe(fUg), pee(fTUht), uséh(fuUg)

{ pa I o, alilys, @lpslys, yaluslys, mé(fUg), pach, psé(fUg) }
{ 0 I pa, oy, wilpaly, lpslys, pef, pae(frURY), pae(fUg) |
U s,y =y, @y, @luslys, e, pse(fU Q) }

5.4.2 Some Properties of the Rule System

For the rest of the paper we will call clauses that are derivable from prime clauses
admissible.

Lemma 5.4

1. Every admissible clause is basic.
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{z[plyr, xlpolys, xluslys, pié(fUg), pae(fHURY), useh(fUg)}

1 (PathRel) on g4

{ i 1T o, g T s b 2l @lialye, 2[islys, }
/'Llé(ng)v /'LQé(f—I—Uh-}_)v MSEh(ng)

1 (PathRel) on p;

{;@gw,mnu%mﬂu&xmwhﬂmm,m@%,}
pé(fUg), pee(fruUht), useh(fuUg)

I (Pre)
D, g 10z, |\ T paops | @lpalys, @lpalye, |yaluslys |
e(fug), peé(fTUh®), |paopséh(fUg)
I (Divl)

{ H1 HM% B e[y, @[palyz, yalpalys, }
pré(fUg), paé(fHUhT), puoopséh(fUg)

1 (LangDecy)

i 10 g, 2y, @lpalyz, yoluslys,
pre(fUg), pe(fTURt), \paéh, puse(fUg)

1 (Join)

{1 I g, @[palyr, @lpelys, yeluslys, me(f U g), D p2éh, pzé(fUg)}

Figure 5.2: A successful R-derivation
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{x[pa]yr, x[polye, luslys, pié(fUg), peé(fHURT), uséh(fUg)}

1 (PathRel) on p

{ 2 < K1, 2 H/i:%, l’[#l]‘yl, lC[M]ym lC[MB]y:a, }
i é(fUg), peé(frUh®), useh(fUg)

L (Pre)

{ D K2 HNB, Yalpalys |y @ [palyz, zlus]ys, }
#20#1é(fU9) ) ,Lbzé(f+ Uh+)a #Béh(fU9>

1 (DecClash)

1

Figure 5.3: A clashing Ra-derivation

2. Ifu<v,u=vorpu Il v is contained in some admissible clause ¢, then there
is a term t such that t[u|t' and t{v]t" is in ¢.

Proof. The proof of the first claim is left to the reader. The second claim will be
proved by induction over the length of derivations. For prime clauses the claim holds
trivially. For the induction hypotheses assume that we have proven the claim for
every admissible clause ¢ that is derivable from a prime clause in n steps and let
¢ —, ¢'. If r is different from (Pre), (PathRel), (Eql,2) or (Div2), there is nothing

to prove. Thus we have the following cases:

r € (PathRel): the claim holds by definition of (PathRel).

r € (Eql,2): the claim is invariant under substitution of one variable v by another

variable p if both ¢[u]t’ and t[v|t" are contained in ¢.

r € (Pre): then ¢ = {u < v, z[u]t, z[v]t'} Uy and ¢ = {z[u]t, t{v]t'} Uy pov.
The only subtree constraint that is changed is z[v|t’. But as v is substituted

by pov, ¢' does not contain any path equality or prefix constraints involving v.

r € (Div2): then ¢ = {pov 11 por'} U and ¢ = {v I V'} U, We will prove
below that if pov is contained in some admissible clause v, then there are terms
t,t', 1" such that t[u]t’ and '[v]t"” are contained in 5. This will complete the
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{z[plyr, xlpolys, xluslys, w1 e(fUg), pae(fHURY), useh(fUg)}

| (PathRel) on w3

{ i T g, s = iz | 2y, elpalys, alslys, }
pié(fUg), peé(fHUh®), uséh(fUg)

L (Pre)
H3 H/Ma D, elplyr, |yalpaly2 |, zlpslys,
pré(fUg), (psopeé(fHYURY) | pzéh(fUg)

1 (LangDecy)

,u3ﬂ t1, =lpalys, yslpalye, xlpslys,
pié(fUg), [peé(frURY), use(fTURT)| uséh(fUg)

1 (Join)

U3 I t1s xpalyn, yslpelye, ©lpslys,
i é(fUg), pee(frunt), (usél

I (Empty)

1

Figure 5.4: Another clashing R,-derivation

129
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proof, since then pov I por’ in ¢ implies that there are terms ¢q,1,,¢3 and
1,y th with {ty[u]ta, talv)ts, th[ults, 5[]t} € ¢. But as ¢ is admissible, it
is also basic by the first claim. Hence, ¢; equals ¢} and ¢; equals t,. Therefore,
both ¢,[v]ts and t3[/]th are in ¢ and in ¢'.

Thus it remains to show that if gor is used in some admissible clause v, then there are
terms ¢,t',¢" such that ¢[u|t’ and ¢'[v]t" are contained in . Let ¢ be an admissible
clause for which this holds, and let v —, +’. The only rules we have to consider
are (Eql,2) and (Pre). For (Eql,2) note that the claim is invariant under consistent
variable renaming. If r € (Pre), then we have to check the path term pov that is
introduced by r. But by definition of (Pre) the clause 4/ must contain both x[u]t and
e, 0

This lemma implies that one of (Eql,2), (EqClash) or (CClash) can always be applied
if a constraint ¢ = v is contained in some admissible clause. The next lemma will
show that different applications of (Pre) or (Eql,2) will not interact. This means the
application of one of these rules to some prefix or path equality constraint will not

change any other prefix or path equality constraint contained in the same clause.

Lemma 5.5 Given some prime clause ¢ and a derivation

¢ = o —Iro Gre Pt rp_1 On =7

that contains an application of (PathRel). Then p = v € v (resp. u < v € v) implies
p=vEded; (resp. u < v € ¢;) fori >k, where k is the number of the last application
of (PathRel). Furthermore, if pov is contained in 7y, then either pov or u < v is
contained in ¢; for 1> k.

Proof. We will use induction over length of derivations. Assume that we have proven
the lemma for admissible clauses v that are derivable in n steps and let y —, 4/ with
r ¢ (PathRel). If r is different from (Eql,2) or (Pre), then there is nothing to prove.
If r € (Eql,2), then a constraint g < v or g = v in 4’ can be missing in « if and only
if 4 contains a constraint g = ¢/ or u < v/ (resp. v/ = v or v/ < v) and r is of the

form

{v=v,..} U {p=v,...J Uy

with v/ # v (resp. with v/ # p).

Hence, v must contain at least two prefix or path equality constraints, the left sides of

which are different. By induction hypotheses these path equality or prefix constraints
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must have been introduced by the last application of (PathRel). But this contradicts
to the definition of (PathRel). A similar argument can be given for the part of the

lemma concerning path terms of form pow.

If r is in (Pre), then we have to check only the second claim of the lemma, namely
that por contained in 4’ implies that either 4 < v is in ¥ or por is used in 7.
For all path terms in 4’ that are not introduced by this application of (Pre) this
holds trivially. For the path term por that is introduced, this is guaranteed by the

application condition of (Pre), namely that 4 must contain u < v. a

We can derive from this lemma certain syntactic properties of admissible clauses

which are needed for proving completeness and quasi-termination.

Corollary 5.1 If 4 < v is contained in an admissible clause ¢, then 1 is different
from v. Furthermore, there is no other prefix or equality constraint in ¢ involving v

and neither vov' nor v'ov is in ¢.

Note that by lemma 5.4 together with this corollary, either (CClash) or (Pre) is
applicable if a constraint y < v is contained in an admissible clause. Furthermore, an
application of (Pre) causes no violation of the restrictions that we have imposed on
the syntax. This means that concatenation does not occur in prefix or path equality

constraints; and concatenation of path variables is restricted to binary concatenation.

Lemma 5.6 If uov 11 v/ is conlained in an admissible clause ¢ with u different from

V', then ¢ contains a constraint of form p I v/, =1 or u < v/

Proof. We will prove a stronger result, namely that if {u < v,v I V'} C ¢ or
{pov I '} C ¢, then ¢ contains a constraint of form p 1% p=1vorpu=<1v. We
will prove this by induction over length of derivations. Assume that we have proven
the claim for every admissible clause ¢ that is derivable in n steps from a prime clause
and let ¢ —, ¢'. Again we have to check only the rules (Pre), (PathRel), (Eql,2) or
(Div2):

€ (PathRel): we have to check only constraints v IT o/ that are already in ¢. By
lemma 5.4 we know that if v II ¢/ is in ¢, then there is a variable x with both
z[v]y and z[']z in ¢. Hence, if (PathRel) adds the constraint y < v, it must
by definition also add a constraint u I, p=vorp=<uv.

€ (Eql,2): the claim is invariant under consistent variable renaming,.
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r € (Pre): then ¢ = {u < v, z[ult, z[v]t'} Uy and ¢ = {z[u]t, t{v]t'} U v+ pov].
The only case that we have to check is that ¢ contains a constraint v IT v/. Then
¢’ contains pov I /. By induction hypotheses ¢ must contain a constraint c

of form p M v/, u = v/ or u < v/'. Since (Pre) does not change ¢, this must hold
also for ¢'.

r € (Div2): then ¢ = {pov IT por/} Utp and ¢ = {v II v/} Ue. The only new
divergence constraint that comes in is v IT /. But as ¢ contains both por and
por', it may not contain y < v or p < v/ by corollary 5.1. Hence, ¢’ does not
contain such a constraint.

a

This lemma ensures that a constraint pov I /' is always reducible. If v/ equals u,
then we can apply (DClashl). If u I/ is in ¢, we can apply (Divl). If g = ¢/ is in
¢ we can either apply (CClash) or (EqClash), or we can apply (Eql,2) followed by
(DClashl). If ¢ = {u < v/, pov Il V'} U, then we can either apply (CClash) or we
can apply (Pre) yielding {pov I pov'} U’ where we can apply (Div2).

5.4.3 Soundness and Completeness

Since we have a two-sorted logic, we have to redefine the notions of soundness and
preservingness. For aset { C A we define =¢ to be the following relation on valuations
of tree variables:

ay =¢ oy iff  for all z € £ the equation ay(z) = o'y (z) holds.

Similarly, we define =, with # C P for path valuations. Let ¢ C X UP be a set
of variables. For a given interpretation 2 we say that a valuation (ax,ap) is a
U-solution of a clause ¢ in 2 if there is a valuation (o, o) in A such that

! ! ! ! /
ay =xng Oy, ap =ppg &p and (a'y,ap) Eao @

The set of all ¥-solutions of ¢ in A is denoted by [¢]F. We call X-solutions just
solutions and write [¢]® instead of [#]2.° A clause ¢ is J-equivalent to a clause

"By calling X'-solutions just solutions we intend to suggest that X-solutions are the interesting
one. The are two reasons for concentrating on X'-solutions rather than X U7P-solutions. First, there
are only tree variables in the original Kaplan/Maxwell syntax, and we have added path variables
as an additional data structure. Our X-solutions will be solutions for the corresponding clauses in
the original syntax. And second, all of the rules we will present will preserve the solutions (i.e.,
X-solutions) of a clause, but not necessarily the X U P-solutions.
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7 (resp. a set of clauses I') if for every interpretation 2, [¢]2 = [v]Z (resp. [¢]2 =
Uer[7]3). Again we use equivalent as short for X'-equivalent.

A rule R is ¥-sound if ¢ —p v implies [¢]2 D [y]% for every interpretation . R is
called ¥-preserving if ¢ —x v implies [¢]2 C [v]2 for every 2. And R is globally
Y-preserving if

vat: [ely < U D3

b= R

Proposition 5.10 The rules (Eql,2), (EqClash), (Divl,2), (CClash), (Join), (Emp-
ty) and (DClashl,2) are X U P-sound and X U P-preserving.

Proposition 5.11 The rule (Pre) is X'-sound and X -preserving.

For (Pre) we can even characterise pairs of path valuations which preserve the X'-
solutions.

Proposition 5.12 Let ¢ = {u < v, z[ult,z[v]t'} U and v be the result of applying
(Pre) to ¢. Given a pair of path valuations ap, oy with

ap =p_gyap  and  ap(v) = ap(uah(v) = ah(u)ah(v),
then for each interpretation A and for each first order valuation ay

(o, ap) = ¢ ¢ (ax,dp) Eay.

Proposition 5.13 If A is closed under decomposition, then (LangDecy) is X U P-
sound and globally X U P-preserving. Furthermore, (PathRel) is X U P-sound and
globally X U P-preserving.

Finally, we have to prove that the rules are complete. This means that given an
input clause ¢, for every solution ay of ¢ in some interpretation 2 there is a pre-
solved clause 4 derivable from ¢ such that ay is a solution of ~. If the rule system is
terminating, then for completeness one has to prove that the pre-solved clauses are

just the irreducible clauses.

In our case this is not enough since the rule system can loop. Therefore, we have to
prove explicitly that each solution of a given prime clause ¢ can be found in some
pre-solved ¢-derivative. We define Irred(¢, Ra) to be the set all Ry-derivatives of
¢ which are R,-irreducible, and Pre-Solved(¢, Ry) to be the set of all pre-solved
clauses which are derivable from ¢. A set of rules R, is said to be ¢-complete wrt.
to a set of variables ¢ if
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L. Irred(¢, Ry) = Pre-Solved(¢, Ry),

2. for every interpretation A

[415 < U I3

~vE€Pre-Solved(¢,R))

We will show that for every prime clause ¢ there is a set of regular languages A such
that R is ¢-complete wrt. the tree variables X'.

Theorem 5.1 (Completeness I) Given a prime clause ¢. If A is a set of reqular
languages that is ¢-closed, closed under intersection and closed under decomposition,

then every Ra-derivative v of ¢ that s not pre-solved is Ry-reducible.

Proof. Let v be a Rj-derivative of ¢ that is not pre-solved. We will check all
conditions that are stated in the definition on page 117.

If one of the conditions 1-3 is not satisfied by ~, then one of the rules (CClash),
(Join) or (Empty) will apply.

Now let’s check the conditions 4 and 5:

~ contains a constraint pové L. As A is ¢-closed, we know that A is also y-closed
by lemma 5.7. Therefore we can apply (LangDecy ) or (DecClash).

~ contains a constraint gov II y/or/. By lemma 5.5 we know that in every R,-
derivation for v the last application of (PathRel) must have introduced the
constraints y < v and y' < v/. By the definition of (PathRel) this implies that
w equals u'. Hence, we can apply (Div2).

~ contains a constraint pov I /. If 1/ equals i, then we can directly apply (DClash1).
Otherwise, there is by lemma 5.6 a constraint u = v/, u < v/ or u I in .
If w = v is in v, we can apply one of (CClash), (EqClash) or (Eql,2) by lem-
ma 5.4. Applying (Eql,2) results in the substitution of v/ by p. The remaining
constraint pov I @ can be reduced using (DClashl). If g < ¢/ is in v, then we
can apply either (CClash) or (Pre) by lemma 5.4 and corollary 5.1. In the later
case we obtain the constraint pov Il por', which can be reduced using (Div2).

The last case is that p I+ is in v, where we can apply (Divl).

v contains a constraint g = v. Then one of (CClash), (EqClash) or (Eql,2) is ap-
plicable by lemma 5.4.
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v contains a constraint y < v. Then either (CClash) or (Pre) is applicable by
lemma 5.4 and corollary 5.1.

The remaining case is that v does not satisfy the last condition of a pre-solved clause,
namely that ¢ II v with g # v in v if and only if z[u|t and z[v]t’ in v. Given the
above, we can now assume that v does not contain a path concatenation or a prefix

or path equality constraint.

There are three possibilities for v to violate the last condition. The first is that ~
contains a constraint of the form p IT y. Then (DClash2) is applicable. The second is
that there is a constraint  IT v with z[u]t € v and 2/[V]t’ € v such that z is different
from z'. But this is excluded by lemma 5.4.

The last case is that there are different path variables y and v such that z[u]t and
z[v|t" are in v but x II v is not. As v contains no concatenation and no path equality
or prefix constraints, the rule (PathRel) is applicable. O

Next we have to establish the second condition for ¢-completeness, namely that for
every interpretation 2l and for every solution ay of ¢ there is a pre-solved ¢-derivative
v with ay € [y]*. This property is needed since our rule system can loop. Let us
recall an example of a looping derivation in order to explain the main idea involved
in the second part of the completeness proof. In contrast with our first example of a
looping derivation (see page 112), we will omit the path restrictions, since they are
not needed for what we want to demonstrate. Let ¢ be the clause

¢ = {z[plz, z[v]y}.

A looping derivation can consist of an application of (PathRel) yielding the clause
&1 = {u=v,z[y]z, z[v]y}, followed by an application of (Pre) on v yielding ¢y = 4.
Clearly, the cause of the looping derivation is the rule (Pre). We will later prove that,

indeed, every infinite derivation must use the (Pre) rule infinitely often.

To prove the second completeness condition we restrict the set of allowed derivations
of a prime clause ¢ to those depending on some arbitrary but fixed valuation (ayx, ap)

with (ay,ap) Fu ¢. This control will guarantee that

1. ay is a solution of every clause in the derivation,

2. under this control, all derivations are finite.

6The first example of a looping derivation on page 112 shows that the situation is no different if
we add path restrictions.
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We will additionally show that even under this control the irreducible clauses are just
the pre-solved clauses. Hence this control will give us, for every clause ¢ and every

initial solution ay, a pre-solved ¢-derivative that has ay as an solution.

We will add this further control only on the non-deterministic rules (PathRel) and
(LangDec, ), thus restricting the set of instances of these rules that may be applied.
We allow only those instances which preserve the valuation (ay, ap). Using our above

example, if ap satisfies
ap(p)=f and ap(v)=g

we may apply only that instance of (PathRel) which transforms ¢ into ¢, = {u I
v, z[p]z, x[v]y}. Since the choice of the instances depends only on the path valuation,

we will call such restricted derivations ap-strict.

It is easy to see that the above restriction will always enforce finiteness of derivations

if the initial path valuation ap satisfies

ap(p) £ ap(v)  where p#vAzuly € oA z[v]z € .
One might say that in this case ap is prefix-free with respect to ¢.

For initial path valuations which are not prefix-free we must have a closer look at
the (Pre) rule, since this rule is the cause of looping derivations. Since the (Pre) rule
is not P-preserving, it may happen that the clause v resulting of an application of
(Pre) is not valid under the initial valuation (ay,ap). But as (Pre) is X-preserving,
we know that there is a o such that (ay,ob) = 7.

Hence, in a ap-strict derivation we can keep the initial valuation ay of the tree
variables, but we must change the path valuation every time the (Pre) rule is applied.
Since application of (Pre) is the cause of looping derivations, this implies that we can
obtain finiteness of ap-strict derivations if we guarantee that after a finite number of
(Pre) applications the initial path valuation has been transformed into a prefix-free

path valuation.

We will again turn to our example to clarify this. If the initial path valuation ap for
¢ is of the form

ap(p)=f and ap(v)= fffg,

the first rule in a ap-strict ¢-derivation could be an application of (PathRel) trans-
forming ¢ = ¢y into ¢y = {u < v, z[u]z,z[v]y}. Now we are able to apply (Pre),
which implies that we have to change ap. Using proposition 5.12 we can use the
following a/p:

ap(p)=[ and ap(v)=ffg.
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Proposition 5.12 guarantees that this can be done without loosing X'-preservingness.
Note that we have shortened ap(v) by f. Now we could iterate this twice more before

ending up with a prefix-free path valuation.

After these remarks we can turn to the technical part.

Theorem 5.2 (Completeness-11) Let ¢ be a prime clause, let A be a set of reqular
languages which is ¢-closed, closed under intersection and decomposition. Then R

is ¢-complete wrt. the tree variables X.

First we need an additional lemma.

Lemma 5.7 There are no infinite derivations using only finitely many instances of

(Pre).

Proof. Assume there is such a derivation. Then there exists an infinite sub-derivation
not using any instance of (Pre). Let ¢ be the starting point of such a derivation. Let

~ be some clause. Then we define the following functions on ~:

O:(y) = number of concatenations in
O,(y) = number of different path variables in v
A%(y) = number of constraints pu é v with ¢ € {=, <, II},

v € Vp(¢) and p o v not in v

II(y) = total number of constraints in

We define ©(7) to be the tuple (©;(7), ©2(7)). Using the functions ©, A? and II we

can construct a partial order on clauses by defining v <4 ~" iff

(O(7) <0())

(O(7) =0(y)) A (A%y) < A%(Y))

(O(7) =0(y)) A (A%(y) =A%) A (TI(y) =T(")).

Here < is the lexicographic ordering on tuples for ©(v) and elsewhere the usual
numeric comparison. It is easy to check, that <, defines a well-founded, partial

ordering on clauses.
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Table 5.1: Monotonicity of the rules wrt. the measure functions.

Let v be some derivation of ¢. Now Vp(v) C Vp(¢) holds, which is important for
the value of A?. In table 5.1 we have summarised for every non-clash rule other than
(Pre) the variation of ©(y), A?(y) and II(y)". The clash rules are not considered
because they automaticly terminate every derivation. The table shows that for every
rule r v —, 4/ implies 7' <, 7. Because <, is a well-founded ordering and therefore
cannot have infinite descending chains, this contradicts our assumption that there is

a infinite derivation not using (Pre). O

Corollary 5.2 There are no infinite derivations using only finitely many instances

of (PathRel).

Proof. By the above lemma we know that there are no infinite derivations without
infinite use of (Pre). But (Pre) removes the constraints 4 < v, the existence of which
is an application condition for (Pre). But additional constraints of form p < v are

only introduced by (PathRel). O

Proof of theorem 5.2 (Completeness II). The first condition for ¢-completeness
was proved in theorem 5.1 (Completeness I). For the second, let 2 be some inter-
pretation and (o, ap) be a valuation with (ay,ap) Eo ¢. We have to show that
there is a Rp-derivative v of ¢ which is pre-solved and satisfies o : (ay, o) = 7.
This will be done by defining ap-strict derivations, which will always end up in a
pre-solved clause. As we have mentioned, we have to redefine the path valuation
every time (Pre) is applied. This leads to the following definition: a derivation

¢:¢O_>7‘0 le"'qbn_)rnqbn—l—l"'

“If a rule decreases the O-value, the clause resulting from applying this rule is smaller than the
input clause wrt. <4 independently of the effects of the rule on the A?-part. Therefore, we omit

the corresponding A®-entries in this case; and similarly for the II-part.
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is called ap-strict if there is a family of path valuations (a%) such that
1. a% = ap;
2. for each i the proposition (ay,ab) Ea ¢; holds; and
3. for each 1
o r; & (Pre) implies a = a% " and
o= M € (Pre) implies
ah=p_gy o' and  ab(v) = o (u)aif (v)
Now for every ap-strict (¢, Ry )-derivation

qb = ¢O _>7‘0 951 e ¢n—1 _>7'n_1 ¢n

where ¢,, is not pre-solved, there is a ap-strict continuation, as the following argu-
mentation shows. If ¢, is not pre-solved, then there is (by theorem 5.1) a rule which
is applicable. We have to show that there is an applicable rule instance such that a

corresponding a5t can be found.

If the applicable rule is different from (Pre), then we know that there is an appropriate
path valuation a5t', as all rules different from (Pre) are either X U P-preserving or
globally X' U P-preserving. If (Pre) is applicable, then proposition 5.12 shows that

we can find an appropriate a/pt?.

Next we must show that there is no infinite ap-strict (¢, Ry )-derivation, which finally
proves the lemma. This is done by introducing a norm on path valuations. For a

path valuation ap we define |ap|s to be:

lapls = D lap(p)].

HEVD ()

Now let
Gi =y it
be a step in some ap-strict (¢, Ry )-derivation and let a%, ozé;"l be the corresponding
path valuations. If r; ¢ (Pre) we know that ab = o5 and hence |ab|, = o,
If r; € (Pre) we know by the third condition of ap-strictness that there are p and v
such that
ab =poy @il and  ab(v) = o (k) ().

As Vp(¢iz1) € Vp(é;) C Vp(o) this implies [af ]y < |adb 4.

As there are no infinite derivations without infinite use of (Pre) this proves that there

are no infinite ap-strict derivations. O
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5.4.4 Quasi-Termination

Lemma 5.8 Let ¢ be a prime clause and A be a finite ¢-closed set of reqular lan-
guages. Then the set of all Ry-derivatives of ¢ is finite.

Proof. We will first consider the sets C which contains every atomic constraint that
occur in at least one Rp-derivative of ¢. C could be seen as the union of all R,-
derivatives of ¢. We will show that C is finite. As every Rj-derivative of ¢ is a subset
of C this will prove the lemma.

First we know that no rule adds new variables. This implies that there are at most
ni = |Vp(9)| + [Vp(¢)|* many different path terms. By lemma 5.7 we know that A
is y-closed for every Rj-derivative v of ¢, which implies that at most |A| different
regular languages are used in the Rp-derivatives of ¢.

Let ncon be the number of constants used in ¢. Note that no rule adds new constants.
|? equality constraints, |neon + Va ()| *
2

Therefore C contains at most |neon + Vi (@)
|Vp(P)| * [ncon + Vx ()] subtree constraints, n? path divergence constraints, |Vp(¢)

prefix and path equality constraints and nj * |A| path restriction constraints. O

Theorem 5.3 For every prime clause ¢ there exists a set of reqular languages A such
that Ry is p-complete wrt. X and the set Pre-Solved(p, Ra) is finite and computable.

Proof. Let reg(¢) be the set of regular languages used in ¢. By lemma 5.3 there must
be a finite A such that A is ¢-closed, closed under intersection and decomposition.
Note that the construction of the set A given in lemma 5.3 is effective. Then R, is ¢-
complete wrt. &' by theorem 5.2. By lemma 5.8 we know that Pre-Solved(¢, Rx) must
be finite. Hence, it suffices to prove that the set Pre-Solved(¢, Ry) is computable.

To do this we will consider loop-free derivations. A derivation is called loop-free if it

is not of the form
R S N T

where ¢; = ¢,. In order to generate the set of derivatives (or a subset of them)
it is enough to consider loop-free derivations. This is because for every pair ~,~
every y-derivation which yields 4 and is not loop-free can be replaced with a shorter
derivation by removing some loop. Iterating this step finally yields a loop-free ~-

derivation for 4.

Furthermore, the set of all loop-free (¢, Rj)-derivations must be finite since Ry can
only generate finitely many R,-derivatives of ¢ by lemma 5.8, and there are on-

ly finitely many rules of Ra applicable on every Ra-derivative of ¢. But as we
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have mentioned we need to consider only the loop-free derivations, which shows that
Pre-Solved(¢, Ry ) is computable. O

Corollary 5.3 For every prime clause ¢ there exists a finite and computable set of

pre-solved clauses I such that I is equivalent to ¢.

Proof. Follows from the last theorem and the fact, that every rule is at least ay-
sound. O

5.5 The Second Phase: Satisfiability of Pre-Solved

Clauses

In this section we present a rule system that transforms each pre-solved clause into an
equivalent set of solved clauses (interpreted as a disjunction), each of which is different
from L and is thus satisfiable by lemma 5.2. A pre-solved clause is satisfiable if and

only if the corresponding set is non-empty.

We will first make a minor redefinition of divergence. We say that two paths u, v are
directly diverging (written u Iy v) if there are features f # ¢ such that v € fL*
and v € gL*. Then uII v holds if there are a possible empty prefix w and paths u’, v’
such that v = wu’ and v = wv’ and u' Iy v’. Using this definition of divergence and

the additional atomic constraint
Iy v direct divergence,

we can (non-deterministically) transform a clause ¢ = {u4 IT 415} Ut into either
{p1 o pa} Uep o {uy = vop!, pa = vopl, 1) Iy py} U .8 By the definition
of IIy we can reduce (non-deterministically) the constraints of form g ﬂo 2 into
{p1€ fL* paegl*} with f # g. The aim is to process all divergence constraints this

way in order to achieve a solved clause.

Before we can present the rule system for solving clause, we have to do two things.
First, we have to redefine the notion of a solved clause, since we have extended the
syntax by the constraint IT,. Without loss of generality we can in the following assume
that every clause ¢ contains for every path variable y € Vp(¢) a path restriction ué L.
We say that a clause over the extended syntax is solved if it is either | or satisfies

the conditions of a solved clause as stated in Section 5.3, page 118 plus additionally

8The first case is needed because we do not allow values of path variables to be empty paths.
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7. for every pair of variables p, v such that u # v, u I, v € ¢ if and only if ¢
contains a path restriction pé L or ve L with L = Fol’ and F' C L is co-finite.

Proposition 5.14 FEvery solved clause different from L is satisfiable.

And second, we have to reformulate the reduction of divergence constraints. The
reason is that we have to evaluate constraints of the form py = wvopf. This can
produce constraints of the forms pov é I and pov IT /. The second is problematic
as we must guess the relation between y and +/. This complicates the termination
proof.

We will avoid this problem by using a special property of pre-solved clauses, namely
that u IT v is in a pre-solved clause ¢ iff z[p]y and z[v]z are in ¢. Hence, if p 1T v
and v II v/ are in ¢, then p Il / is also in ¢. This implies that we can write ¢ as
Il (A W...w Il (A,) W), where Il (A) abbreviates

{p ' |p#u A opp €A},

Ay, ..., A, are disjoint sets of path variables and ¥ contains no divergence constraints.
Now given such a constraint I (A), and some valuation ap with ap |=H (A), suppose
that a whole set of path variables A; C A diverge under ap with the same prefix,
i.e., there is a path p such that

Vp € Aytap(p) =pp, and VY, p' € Ay p # p' — pu o pur.
Then we can replace the constraints set IT (Ay) C Il (A) by
A; = oAl U To(A})

under this valuation, since every valuation o/ with o/ = (A; = voA} U II4(A}))
satisfies ap =4, ofp. Here v is new, A} = {u},..., .} is a fresh copy of A; =
{p1,...,pun} and A = voA] abbreviates the clause {uy = voul, ..., u, = vou’}.
I1o(A) is defined similarly to II(A). If ap additionally satisfies

Vp e (A= Ay):plap(p),
then we can replace the set of constraints i (A) by
M({r}U(A=A4;))) U A = oAl U I,(A)

under the valuation ap.
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Now for every path valuation ap with ap [=IT(A) there must be a set A; with the
properties stated above. We can find an appropriate A; by taking a path p which is

maximal in
{p| 3w e Avp# ' Ap<ap(u) Ap < ap(i)},
and defining Ay as {p € A |p < ap(p)}.

This finally leads to the following non-deterministic rule, where we also consider the

effects of A; = voA! on the subtree constraints in ¢:

zAY; U TI(A) U
{z[]z} UzA'Y; U TIo(A) U I({rIUAy) U o

(Reduce,)

where ' = ¥y + voul, ... pn & voul], Ay W Ay = A, |A4] >
l and z,v new. A] is a disjoint copy of A;. zA;Y; is short for
{z[p]y1, ..., 2[pn]yn }. ¥ may not contain constraints of form dod’¢

L in .

Note that we have avoided constraints of the form pov II /. We also employ the

non-deterministic rules

(Reduce,) O@A)Vy
Mo(A)U ¥
(Solv) {ulov} Uy f#g

{péfol™, pégoF™} U ¢

if ¢ contains constraints g é Ly and vé Ly such that Ly = Fy L] and
Ly = F, L) for two finite sets Fy, Fy C L.

educe,) is needed because path variables always denote non-em aths. We wi
(Reduce,) i ded b path variables always denot pty paths. We will

view (Reduce;) and (Reducey) as a single rule (Reduce).

To complete our rule system, we need the rules (LangDecy ), (DecClash), (Join) and
(Empty). Since we will show that the rule system is terminating, we can replace

(LangDecy ) by a simpler version, namely

an eC {#OVEL} = 17/} ] un
(L gD dfun) {IMEP}U{UES}U;/; P SQL, (P,S) Edf (L)

L must contain a path w with |w| > 1.
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Here dfun : p(L1) — p(L1T) x p(L1) is a decomposition function that assigns to each
regular language L a finite set of decompositions. dfun is called decomposition
complete if for every regular language I and every path w = wyw, € L there is a
pair (P, S) in dfun(L) with w; € P and wy € S. The complete set of rules is denoted
Rifon-

Solv

We illustrate the rule system R32Y using one of the pre-solved clauses listed in sec-

tion 5.4.1 on page 126, namely

¢:{ pr 0 g, o I pis, oo 10 pis, 2fpalys, fpalye, @(uslys, }
pé(fuUg), peé(ffUh®), pséh(fug)

Using the notation introduced in this section, we can write ¢ as

: zlplyr, @lpalya, =lpslys, pié(f U g),
i sy 0 0 R T

A successful R52Y -derivation transforming ¢ into a solved clause appears in figure 5.5.

In the derivation we assume a function dfun with
dfun(f* URY) = {(f* URY, f*UR))

and

dfun(h(f U g)) = {(h, fUg)}.

After the explanation of the rule system we can commence the technical part. A

clause ¢ is called partitioned if the set of divergence constraints of ¢ is of the form
(A W...wII(A,), where the A; are disjoint.

Proposition 5.15 There exists a decomposition function dfun that is decomposition

complete.
Proof. See proof of lemma 5.3 for the construction of such a function. a

Proposition 5.16 Let ¢ be a pre-solved clause and let v be a R -derivative of ¢.
Then ~ s partitioned. Furthermore, for every pair of variables p,v such that p # v,
zlply € v and x[v|z € v we have vy = p O v.

Proposition 5.17 For every partitioned clause ¢ the rule (Reduce) = (Reduce;) +
(Reducey) is Vy(¢)-sound and globally Vx($)-preserving. The rule (Solv) is ax Uap-
sound and ayUap-preserving. If dfun is decomposition complete, then (LangDecqfun)

is ay Uap-sound and ay U ap-preserving.
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¢

| (Reducey) with A; = {pa, us}

{ pr v, ply To i, @mlys, 2[vlz, zlublye, z[phlys, paé(fUg), }
vouy é(f* URY), vouzeh(fUyg)

1 2x (LangDecqfun)

{ M,y Ty, alilys, 2[v]z, zpblya, 2lublys, pme(f U g), }
VE(fTURT), mpe(ffUhY), véh, pzé(fug)

1 (Solv)
{ p v, ey, @vlz, z[phlys, 2[eblys, pé(fUg), }
py€hL, pzégl™, ve(fr URY), pyé(fTURT), véh, uzé(fUg)
1 3x (Join)

{ pr Do, 2(mly, xlv]z, z[uhlya, z[phlys, pie(fUg), }
véh, pyéh™, pyég
| (Reducey)
{ p1 Lo v, almlys, =]z, 2phlve, 2lublys, mé(fUg), }
veh, pyef*, pzég
1 (Solv)
ey, e[vlz, 2[phlye, z[uslys, pé(f U g),
/'Lléf‘C*v Véh£*7 Véh7 /’L/2€f+7 Méeg
1 2x (Join)
alplyr, a[vlz, z[pylye, z[uslys,
/“Lléfa Véha :LL/2€f+7 ILLgEg

Figure 5.5: A successful R32\Y-derivation
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Lemma 5.9 R is terminating.

Proof. For (Solv), (Join), (LangDec), (DecClash) and (Empty) it is trivial to see
that there are no infinite derivations using only these rules. Furthermore, there are
no derivations which use (Reduce) infinitely often, since during every application of
(Reduce) at least one divergence constraint is removed (note that |A;] > 1 is an

application condition of (Reduce;)). Hence, there are no infinite R32\¥-derivations.

O

Lemma 5.10 Let ¢ be a pre-solved clause. If dfun is decomposition complete, then
a RV derivative of ¢ is RN -irreducible if and only if it is solved.

Proof. Let vy be a R5:-derivative of ¢. We have to show that if v is not solved,

then one of the rules applies.

Condition 1 is satisfied by every R32l¥-derivative of ¢ since ¢ is pre-solved and we do

not add or change any sort restriction constraint. If one of the conditions 2 or 3 is not

satisfied, then one of the rules (Join) or (Empty) will apply. Condition 6 is satisfied

by every R32Y-derivative of ¢ by proposition 5.16. Now let’s check the conditions 4,

5 and 7:

v contains a constraint povéL. (LangDecdsun) or (DecClash) is applicable.

~ contains a constraint p IT v. By proposition 5.16 we know that in this case v
is of the form IT (A) U . Given the above we can assume that (Reduce) is
applicable.

~ contains a constraint y I, v. Then either 7 is satisfied or (Solv) is applicable.

a

Lemma 5.11 For every pre-solved clause ¢ there is a finite and effectively com-
putable set of solved clauses T' such that for every A

[60%0) = U DY)

~eT

Proof. Follows from propositions 5.15, 5.16 and 5.17 and lemmas 5.9 and 5.10. O

Corollary 5.4 Satisfiability of pre-solved clauses is decidable.
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Finally, we are able to combine both phases.

Theorem 5.4 Satisfiability of prime clauses is decidable.

Proof. Follows from the corollaries 5.3 and 5.4. O

Theorem 5.5 The positive existential fragment of Th(Trpr) and Th(Rgpr) is de-
cidable.

Proof. Follows from Propositions 5.3 and 5.5, which show that every RFT-clause can
be translated into an RF-clause such that validity in the corresponding feature tree
structures is preserved, Lemma 5.11, which shows that one can effectively transform
a prime clause into an equivalent finite set of solved clauses, and Lemma 5.2, which
shows that solved clauses are satisfiable in Trr and Rgp. 0O
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Appendix A

Mathematical Preliminaries

We assume the reader to be familiar with first-order predicate logic. The signature
of our first-order languages always contains the binary relation symbol =, which is
interpreted as equality, and the special symbols L (“false”) and T (“true”). L (resp.
T) is the same as the empty disjunction (resp. conjunction). We assume an infinite
alphabet of variables and adopt the conventions that z, y, z always denote variables,

and X, Y always denote finite, possibly empty sets of variables.

Compound formulae are obtained as usual with the connectives A, V, —, <>, = and

the quantifiers 3 and V. We call atomic formulae also constraints.

We identify dz3y¢ with Jydze. If X = {zy,..., 2.}, we write IX ¢ for Iz, ...z, .
If X =, then 3X ¢ stands for ¢. Moreover, we use élqp [‘S’cﬁ] to denote the existential
[universal] closure of a formula ¢, and F!z¢ as an abbreviation for

Jzp AVz, y(dA gl eyl =z = y).

For a set of variables X = {z1,...,2,} the quantifier 3! X ¢ is defined as Jz; ... dz,¢.
Moreover, V(¢) is taken to denote the set of all variables that occur free in a formula
¢. The letters ¢ and ¥ will always denote formulae. We use the conventions that to
write ¢(x1,...,x,) if x1,..., 2, is the set of free variables of ¢.

We assume that the conjunction of formulae is an associative and commutative op-
eration that has T as identity element. This means that we identify ¢ A (¢ A ) with
OGN (A @), and ¢ A T with ¢ (but not, for example, zfy A z fy with z fy). A con-
junction of atomic formulae can thus be seen as the finite multiset of these formulae,
where conjunction is multiset union, and T (the “empty conjunction”) is the empty
multiset. We will write ¢» C ¢ (or ¥ € ¢, if ¥ is an atomic formula) if there exists a
formula ¢’ such that ¥ A ¢’ = ¢.

149
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Structures and satisfaction of formulae are defined as usual. A valuation into a
structure 2 is a total function from the set of all variables into the universe U(2l) of
2. A valuation o into 2 is called an z-update [X-update] of a valuation « into
2 if o/ and «a agree everywhere except possibly on z [X]. We use [¢#]? to denote
the set of all valuations « such that 2, o = ¢. We write ¢ = ¢ (“¢ entails ¢”) if
[¢]® C [£]® for all structures A, and ¢ H v (“¢ is equivalent to ") if [¢]* = []*

for all structures .

A theory is a set of closed formulae. A model of a theory is a structure that satisfies
every formulae of the theory. A formula ¢ is a consequence of a theory 7 (T = ¢)
if V¢ is valid in every model of T. A formula ¢ entails a formula ¢ in a theory T
(¢ =1 ¥) if [¢]* C [¥]® for every model A of T'. Two formulae ¢, 1) are equivalent
in a theory T' (¢ H ) if [¢]* = [']* for every model A of T'.

A theory T is complete if for every closed formula ¢ either ¢ or —¢ is a consequence
of T'. The set of all sentences valid in some specific first-order structure 2l is called
the theory of 2 (abbreviated by Th(2()). The theory of a single structure is always
a complete theory. A theory is decidable if the set of its consequences is decidable.
Since the consequences of a recursively enumerable theory are recursively enumerable
(completeness of first-order deduction), a complete theory is decidable if and only if

it is recursively enumerable.

Two first-order structures 2, B are elementarily equivalent if, for every first-order
formula ¢, ¢ is valid in 2 if and only if ¢ is valid in 8. Note that all models of a
complete theory are elementarily equivalent.

A transformation rule is an ordered pair 3 plus optional application conditions.
Rule instances are defined as usual. With ¢[z < y] we denote the formula that is

obtained from ¢ by replacing every occurrence of z with y. We say that r = % is

applicable to ¢’ if there is an instance of % of r and the application conditions noted
in the definition of r are satisfied. We write ¢ —, « if r is applicable on ¢ and the
result of the application is v. For a set of transformation rules R we say ¢ —x v if
there is an r € R with ¢ —, 7. ¢ is called R-irreducible if no rule instance r € R
applies to ¢. We say that a formula ¢ is R-reducible if ¢ is not R-irreducible. A

sequence
oo —ro b1 i —r; ¢z‘+1"'

is called a derivation. A formula « is called a R-derivative of ¢ if there is a
derivation from ¢ to v that uses only rule instances of R. Note that we ommit R if

the set of rules is clear from the context.

A rule system R is called terminating if there are no inifinite derivations, and
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quasi-terminating if for every formula ¢, the set of derivable formulae is finite.

In the following, we recall some standard definitions for lattices and fixpoints of

continous functions. They can be found in a standard text book on lattice theory

(e.g., [DP90]).

Let P be a set partially ordered by <. An element n € P is a lower bound for a

subset N of P if
Yme N:n<m,

and an upper bound for N if Vm € N : m < n. n is the greatest lower bound
of N (denoted by MN) if n is a lower bound of N and in addition

Vm € M : m lower bound for N = m < n.

The least upper bound [ |N of N is defined analogously. A partially ordered set
P is called complete lattice if for all subsets N of P, both || N and MN is defined.

A non-empty subset D of a partially ordered set P is called directed if for every
finite subset [’ of D there is an upper bound in D. A function T': P — P on an
ordered set P is continuous if for every directed set D in P

oy =yrm)  (=[HT() e D}).

An element a € M is called fixpoint of 7' if T(a) = a. A fixpoint « is a least
fixpoint of T if a < b for all other fixpoints b of T'. Similarly, we define greatest
fixpoint. The least fixpoint is denoted by Ifp(7"), and the greatest fixpoint by gfp(7").

In order to describe fixpoints we need to define ordinal powers of the function 7.

We define

T1t0 = L
Tta = T(TT (a—1)), if ais a successor ordinal
Tta = | {T1(B)|B<a}, if aisa limes ordinal

and

710 = T
Tla = T(T] (a—1)), if ais a successor ordinal
Tla = |_|{T 1 (B)| B <a}, if aisa limes ordinal

The next two theorems states the well-known results for the fixpoints of continuous

function over a complete lattice.
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Theorem A.1 (Kleene) Let P be a complete lattice and T : P — P be a continuous
function. Then

ip(T) = Ttw,
and there is some ordinal 3 with

gfp(T) = T8 forall B> 5.

Theorem A.2 (Tarksi) Let P be a complete lattice and T : P — P be a continuous
function. Then

ip(T) = [ {m | T(m) < m}
and

Ifp(7T) = |_|{m | m < T(m)}.

The next definitions will be concerned with special properties of algebraic lattices.
An element k£ of an CPO P is called finite if for every directed set D in P

k%UDﬁk%dforsomedED.

The set of finite elements is denoted by F(P). A complete lattice P is called
algebraic! if for every a € p

a:U{kEF(P)|k<a}
If we consider an algebraic lattice, then continuity of a function has a special role,

namely that the the function is complete determined by its finite approximations.

The next proposition is a reformulation of Proposition 3.31 in [DP90, page 62].

Proposition A.1 If P is an algebraic lattice, then T : P — P is a continuous
function if and only if

forallee P:T(e)=| {T(k) |k € F(P) ANk < €}.

Normally, a lattice is called algebraic if every element a € P is the least upper bound of the
compact elements that are smaller than a. But in complete lattices, the compact elements are just
the finite ones.
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Proof. For the first direction we know that e = | [{k | kK € F(P) Ak < e}, since P is
algebraic. As {k |k € F(P) Ak < e} is directed and T is continuous we know that

T(e) = T(|{k | k€ F(P) A = | {T(k) | k€ F(P) Ak < c}

For the other direction assume that T'(e) = |[{T'(k) | K € F(P) Nk < €} for every
e € P. We have to show that

L7(D) =T(]D)

for every directed set D. We know that T'(d) = [ {T'(k) | k € F(P) Ak < d} for
every d € D, which implies T (D) = |{T'(k) |k € F(P)AN3d € D : k X d} Now k
finite implies that £ < || D iff & < d for some d € D. This shows that

LIT(D) = {T(k) |k € F(P)Ak<[|D}.
Using our assumption we get | {T'(k) |k € F(P)Ak <UD} =TUD). 0
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Subject Index

access function, 72 path restriction, 114

arity, 24 path term, 116

associated, 55 prefix, 114

atoms, 24 subtree, 114

binds to, 68, 116 decomposition complete, 144
definable, 31, 53

clause, 116
admissible, 126
basic, 116
partioned, 144

definite
equivalence, 49
formula, 49
program, 49

pr.e—solved, 7 definitionally equivalent, 30

prime, 117

solved, 74, 118, 141

closed under decomposition, 121

determinant, 90
diverge, 113
directly, 141

closure, 70
of a prime formula, 71 eliminates, 68, 116
co-finite sets, 29 endomorphism, 26
concatenation, 114 explicit definition, 30
congruence, 93
constraint feature tree, 23
arity, 28 rational, 24
basic, 68 formula
clash-free, 93 prime, 71, 95
clashing, 93 saturated, 95
direct divergence, 141 solved, 68, 92

divergence, 114
graph, 69, 92, 94

exclusion, 74

feature, 2‘8 normaliser, 69, 92
generalised, 27 of a basic constraint, 94

for, 79 of a congruence, 94

graph, 94

path, 66 parameters, 75, 91
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path, 23
rooted, 72
decided, 82, 99
determined, 98
free, 99
realised, 72
value of, 72
¢-closed, 121
¢-complete, 133
prefix-closed, 23
projection, 73

regular path expressions, 29
relational extension, 48
restriction to, H5
R(F')-interpretation, 49

subsumed, 26

subtree, 24
at, 24
direct, 24

tree domain, 23

variable
constrained, 75, 92
decided, 79, 96
explicitly, 96
implicitly, 96
determined, 90
Y-equivalent, 132
Y-preserving, 133
globally, 133
¥-solution, 132
v-sound, 133

X-joker, 82, 99



