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Abstract
Faculty of Natural Sciences and Technology I

Computer Science

Doctoral Thesis

Tight(er) Bounds for Similarity Measures,
Smoothed Approximation and Broadcasting

by Marvin Künnemann

In this thesis, we prove upper and lower bounds on the complexity of sequence simi-
larity measures, the approximability of geometric problems on realistic inputs, and the
performance of randomized broadcasting protocols.

The first part approaches the question why a number of fundamental polynomial-
time problems – specifically, Dynamic Time Warping, Longest Common Subsequence
(LCS), and the Levenshtein distance – resists decades-long attempts to obtain polynomial
improvements over their simple dynamic programming solutions. We prove that any
(strongly) subquadratic algorithm for these and related sequence similarity measures
would refute the Strong Exponential Time Hypothesis (SETH). Focusing particularly on
LCS, we determine a tight running time bound (up to lower order factors and conditional
on SETH) when the running time is expressed in terms of all input parameters that have
been previously exploited in the extensive literature.

In the second part, we investigate the approximation performance of the popular
2-Opt heuristic for the Traveling Salesperson Problem using the smoothed analysis
paradigm. For the Fréchet distance, we design an improved approximation algorithm for
the natural input class of c-packed curves, matching a conditional lower bound.

Finally, in the third part we prove tighter performance bounds for processes that
disseminate a piece of information, either as quickly as possible (rumor spreading) or as
anonymously as possible (cryptogenography).
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Universität des Saarlandes

Zusammenfassung
Naturwissenschaftliche-Technische Fakultät I

Fachbereich Informatik

Dissertation

Tight(er) Bounds for Similarity Measures,
Smoothed Approximation and Broadcasting

von Marvin Künnemann

Die vorliegende Dissertation beweist obere und untere Schranken an die Komplexität
von Sequenzähnlichkeitsmaßen, an die Approximierbarkeit geometrischer Probleme auf
realistischen Eingaben und an die Effektivität randomisierter Kommunikationsprotokolle.

Der erste Teil befasst sich mit der Frage, warum für eine Vielzahl fundamentaler
Probleme im Polynomialzeitbereich – insbesondere für das Dynamic-Time-Warping, die
längste gemeinsame Teilfolge (LCS) und die Levenshtein-Distanz – seit Jahrzehnten
keine Algorithmen gefunden werden konnten, die polynomiell schneller sind als ihre
einfachen Lösungen mittels dynamischer Programmierung. Wir zeigen, dass ein (im
strengen Sinne) subquadratischer Algorithmus für diese und verwandte Ähnlichkeitsmaße
die starke Exponentialzeithypothese (SETH) widerlegen würde. Für LCS zeigen wir
eine scharfe Schranke an die optimale Laufzeit (unter der SETH und bis auf Faktoren
niedrigerer Ordnung) in Abhängigkeit aller bisher untersuchten Eingabeparameter.

Im zweiten Teil untersuchen wir die Approximationsgüte der klassischen 2-Opt-
Heuristik für das Problem des Handlungsreisenden anhand des Smoothed-Analysis-
Paradigmas. Weiterhin entwickeln wir einen verbesserten Approximationsalgorithmus
für die Fréchet-Distanz auf einer Klasse natürlicher Eingaben.

Der letzte Teil beweist neue Schranken für die Effektivität von Prozessen, die In-
formationen entweder so schnell wie möglich (Rumor-Spreading) oder so anonym wie
möglich (Kryptogenografie) verbreiten.
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Chapter 1

Introduction

This thesis approaches three topics in the design and analysis of algorithms: conditional
lower bounds for polynomial-time problems, approximation algorithms on realistic inputs
and randomized communication protocols.

In the first part, we revisit classic string and curve similarity measures including
Dynamic Time Warping, Longest Common Subsequence (LCS) and the Levenshtein
distance. As fundamental problems with a variety of applications, predominantly in
computational biology, natural language processing and signal processing, all of these
problems have attracted substantial, decade-spanning interest by the research community.
Yet except for small, i.e., polylogarithmic, improvements, the worst-case quadratic
running time bounds obtained by simple dynamic programming algorithms remain state-
of-the-art. In this thesis, we provide a justification for this long-standing barrier: Any
polynomial improvement over the quadratic running time bound would refute the Strong
Exponential Time Hypothesis (SETH), a fundamental conjecture about the complexity
of solving the satisfiability problem. This puts the lack of significant progress for these
“simple” polynomial-time problems into a more favorable perspective – it shows that a
breakthrough result for the notoriously hard satisfiability problem is required to break
the quadratic-time barrier for these classic sequence similarity measures. Furthermore,
we cast our proofs in a framework that provides an abstract reason for the common
hardness of these and related sequence similarity measures.

Focusing particularly on LCS, we extend these results in a yet finer-grained analysis
and provide an extensive study of its multivariate complexity: We show that even when
the running time is expressed in terms of all input parameters studied in the literature,
the best known LCS algorithms are optimal up to lower order factors unless SETH fails
– with the exception of a certain special case of the problem, for which we provide a
new faster algorithm. Such a study of the multivariate complexity of a problem can be
regarded as a step beyond general worst-case results, aiming to obtain a more realistic
assessment of the hardness of a problem on “typical”, realistic inputs.

In Part II, we further explore this direction towards more realistic analyses, this
time rather from an algorithmic than a complexity-theoretic perspective. Here, we
analyze the performance of approximation algorithms on realistic inputs. First, we
perform a smoothed analysis of the popular 2-Opt heuristic for the Traveling Salesperson
Problem. The running time of this simple heuristic on points in the Euclidean space
perturbed by modest Gaussian noise has been known to beat its worst-case exponential
running time. However, its smoothed approximation performance was unsettled. We
give an upper bound of O(log(1/σ)) on the approximation performance of 2-Opt on
instances perturbed by Gaussian noise with standard deviation σ. This bound smoothly
interpolates between the worst-case and average-case bounds of O(log n) and O(1),
respectively. To show that this bound is almost tight, we present a lower bound proving
that the approximation performance cannot be o(log(1/σ)/ log log(1/σ)). Second, we

1



2 Chapter 1. Introduction

consider the approximability of the Fréchet distance. A natural class of realistic inputs,
i.e., c-packed curves, admits an (1 + ε)-approximation in (typically subquadratic) time
Õ(cn/ε) [DHPW12]. This positive result has recently been complemented by a lower
bound [Bri14] of Ω((cn/

√
ε)1−δ) for constant dimension d ≥ 5, conditional on SETH

– however, a certain gap between upper and (conditional) lower bound remained. We
effectively settle the complexity of this problem on c-packed curves (at least for d ≥ 5
and up to lower order factors) by presenting a Õ(cn/

√
ε)-time algorithm for any constant

dimension d.
Part III of this thesis finally considers randomized communication protocols for

publicizing information in a network. We consider two cooperative settings, in both of
which some piece of information initially known to one of n players is to be broadcast to
the public. In the first setting, the aim is to disseminate the information (called rumor)
to all players in the least possible number of rounds, where in each round, each informed
player can directly communicate with any other player to inform him or her of the rumor.
We precisely analyze the classical randomized push protocol that in each round lets each
informed player choose a player to communicate with uniformly at random. Improving
upon classical analyses [FG85; Pit87], we are able to show in particular that the expected
number of rounds it takes until all players are informed is log2(n) + ln(n)±O(1), where
we give explicit (small) bounds on the constants hidden in the O(1)-notation. In the
second setting, the player initially owning the piece of information (this time called
secret) aims at broadcasting the secret without revealing his or her identity. For the
2-player case, Brody et al. [Bro+14] proved that the best-possible protocol succeeds at
correctly communicating a secret single bit without revealing the identity of the secret
owner with probability succ ∈ [1/3, 3/8]. Using both theoretical tools as well as a
computer-aided protocol search, we are able to show that neither of these bounds – while
natural and elegant – are tight by giving the stronger bounds succ ∈ [0.3384, 0.3672].

As a common theme throughout this thesis, we typically advance both upper and lower
bounds on the subject of study, often yielding almost tight results: When analyzing the
rumor spreading time of the push protocol, we give stochastic dominance results (in both
directions) for the total time to inform all players. When analyzing the 2-Opt heuristic
on perturbed inputs, we provide both upper and lower bounds on its approximation
performance. In both cases, such attempts to obtain (almost) tight results belong to the
basic toolbox of algorithmic analysis (except possibly for obtaining lower bounds on the
smoothed approximation performance, which seems much less studied).

For all further results, the close correspondence between upper and lower bounds might
possibly be more surprising: (1) To analyze the cryptogenography problem, we introduce
a problem reformulation that helps in both finding better protocols (by a computer-aided
search) and proving stronger hardness results (using the concavity method proposed in
the previous work [Bro+14]), which are quite different tasks. (2) To design our improved
approximation algorithm for the Fréchet distance, we have drawn inspiration from the
reasons why the non-matching conditional lower bound of [Bri14] could not be improved.
(3) Finally, to obtain our tight results on the multivariate complexity of LCS, we had
to carefully work directly at the border of hardness proofs and algorithmic results –
fortunately, apart from providing tight lower bounds, our approach helped to uncover
a faster algorithm on a special case. We are intrigued by how elegantly, especially for
problems like LCS and Fréchet distance, SETH-based lower bounds enable us to work
simultaneously on faster algorithms and hardness proofs, culminating in many tight
running time bounds (up to factors of lower order no(1) and conditional on SETH).

This concludes the general overview of all parts of this thesis with their results. We
provide more detailed introductions to each topic in the first chapter of each part.



REFERENCES 3

1.1 Indication of Source

During my PhD, I was fortunate to be able to work closely with my advisor, Benjamin
Doerr, who encouraged me to work on a diverse set of projects, also with other co-authors.
As a result of this and the inspiring research environment of MPII, my thesis contains
results in three research directions, obtained in collaborations with varying co-authors.
Here, I list these collaborations and resulting publications – a complete list of publications
(including results not contained in this thesis) is provided in Section 1.2.

The contents of Part I result from joint work with Karl Bringmann. The alignment
gadget framework and its applications (particularly the results of Chapters 4 and 7 and
Section 6.1) have previously been published in the article Quadratic Conditional Lower
Bounds for String Problems and Dynamic Time Warping in the proceedings of FOCS
2015 [BK15b] (with an extended online version accessible at [BK15c]). The multivariate
study of the complexity of Longest Common Subsequence (particularly Chapter 5 and
Section 6.2) is based on results of an unpublished manuscript titled Multivariate Fine-
Grained Complexity of Longest Common Subsequence [BK16]. I contributed 50 % at all
stages of the project.

Part II splits into (1) joint work with Bodo Manthey that appeared in the proceedings
of ICALP 2015 titled Towards Understanding the Smoothed Approximation Ratio of the
2-Opt Heuristic [KM15] and (2) joint work with Karl Bringmann that has previously
been published in the proceedings of ISAAC 2015 titled Improved Approximation for
Fréchet Distance on c-packed Curves Matching Conditional Lower Bounds [BK15a] (with
an extended online version accessible at [BK14]). Note that the contents of [BK15a] (and
thus Chapter 11) are also included in similar form in Karl Bringmann’s PhD thesis [Bri15].
To both projects, I contributed 50 % at all stages.

The contents of Part III have been obtained solely under the supervision of my PhD
advisor, Benjamin Doerr. The results on randomized rumor spreading appeared in the
proceedings of ANALCO 2014 titled Tight Analysis of Randomized Rumor Spreading
in Complete Graphs [DK14]. The results on the 2-player cryptogenography problem
are accepted for publication at ICALP 2016 [DK16a], titled Improved Protocols and
Hardness Results for the Two-Player Cryptogenography Problem (an extended online
version is accessible at [DK16b]).

1.2 Further Contributions

I list here all articles I published during (and before) my PhD, which I started in
August 2012, as well as an unpublished manuscript. Note that [CK13; CK15] contain
results of my Master’s thesis.
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[DK13b] Benjamin Doerr and Marvin Künnemann. “Royal Road Functions and
the (1 + λ) Evolutionary Algorithm: Almost no Speed-up from Larger
Offspring Populations”. In: Proc. 2013 IEEE Congress on Evolutionary
Computation (CEC’13). 2013, pp. 424–431.
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Chapter 2

Introduction to Part I

For many classical polynomial-time problems, algorithmic research has been stagnant for
decades: some classic algorithm solves the problem, e.g., in time Õ(n2), yet the fastest
known algorithm improves upon this running time only by polylogarithmic factors and
it is unknown whether significantly faster algorithms exist. Since unconditional lower
bounds for these problems seem far beyond reach for current techniques, the research
community has spent growing attention to the field of conditional lower bounds. Here,
the lack of progress towards faster algorithms for a particular problem is explained by a
long-standing algorithmic barrier for another, fundamental problem. Put differently, if
we are willing to assume that some problem P does not admit algorithms faster than
some reasonable time barrier, then by reducing P to other problems in a certain way, we
can (conditionally) rule out faster algorithms for these other problems.

The most prominent such approach is 3SUM-hardness, introduced by Gajentaan
and Overmars in 1995 [GO95]: Assuming that 3SUM has no (strongly) subquadratic
algorithms, a number of lower bounds, especially for problems in computational geometry
could be shown. For many other problems, however, it seems impossible to find a
reduction from 3SUM.

Subsequently, further popular conjectures have been used to derive conditional
hardness results for problems for which 3SUM-hardness does not seem to apply (for a
survey of this emerging field, see, e.g., [VW15]). In this thesis, we will focus on reductions
from the Strong Exponential Time Hypothesis (SETH)1 introduced by Impagliazzo
and Paturi [IP01; IPZ01]. It asserts that no algorithm beats exhaustive search for the
satisfiability problem by an exponential factor.

Hypothesis (Strong Exponential Time Hypothesis (SETH)). For no ε > 0, k-SAT can
be solved in time O(2(1−ε)N ) for all k ≥ 3.

Note that exhaustive search takes time 2N ·poly(n) and the best known algorithms for
k-SAT have a running time of the form O(2(1−c/k)N ) for some constant c > 0 [Pat+05].
Thus, SETH is a reasonable hypothesis and, due to lack of progress in the last decades,
can be considered unlikely to fail.

The idea to use SETH to prove conditional lower bounds for polynomial-time problems
dates back to 2005 [Wil05], but only in recent years more and more such conditional
lower bounds have been proven, see, e.g., [ABVW15b; AVW14; AVWW14; AGW15;
Abb+16b; BI15a; Bri14; PW10; RVW13; BI15b]. Two recent examples, which inspired
the results in this part of the thesis, are the conditional lower bounds for Fréchet
distance [Bri14] and Levenshtein distance [BI15a]. Both problems are natural similarity
measures between two sequences (curves or strings, respectively). We study additional
classic similarity measures between strings and curves and prove SETH-based lower
bounds for the algorithmic task of computing these similarity measures.

1In fact, all our reductions will be based on the Orthogonal Vectors Hypothesis, which is implied by
SETH; see Section 3.3 for the definition and a discussion.

9
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To this end, we propose a framework based on a technical idea which we refer
to as alignment gadget. As the first main result of this part, we provide a general
quadratic conditional lower bound for all similarity measures admitting such an alignment
gadget. This includes problems such as the classical Levenshtein distance, Longest
Common Subsequence (LCS) and Dynamic Time Warping (DTW), explaining the lack of
polynomial improvements over the dynamic-programming solutions for these fundamental
problems.

While this shows that under SETH any algorithm for these problems requires
time n2−o(1) in the worst case, there exist a number of specialized algorithms with
faster running times on suitably restricted instances for these problems. Indeed, when
we express an algorithm’s running time in more input parameters than just the problem
size n, the optimal running time might have a much more complex behavior and this
is only partially addressed by the general quadratic lower bound of our framework.
Therefore, in an even finer analysis, we demonstrate a novel paradigm of multivariate
fine-grained complexity using LCS as a fundamental example: We determine, up to lower
order factors, the conditional fine-grained complexity of LCS (i.e., matching upper and
lower bounds), expressed in terms of all input parameters that have been algorithmically
exploited in the LCS literature so far.

In the following sections, we explain these two main contributions (the alignment
gadget framework as well as our study on the multivariate fine-grained complexity of
LCS) in more detail.

2.1 Alignment Gadget Framework and Applications

As the first main result of this part of the thesis, we prove quadratic conditional lower
bounds for problems which admit a certain technical construction called alignment gadget.
We detail here the problems captured in this framework together with the specific results
we obtain.

Dynamic Time Warping (DTW). Fix a metric space (M,d) and call any sequence
of points in M a curve. Let x and y be two strings of lengths n and m, respectively,
where we always assume that n ≥ m. We may traverse x and y by starting in their first
entries, in any time step advancing to the next entry in x or y or both, and ending in
their last entries (see Chapter 3 for details). The cost of such a traversal is the sum
over all points in time of the distance between the current entries. The dynamic time
warping distance of x and y is the minimal cost of any traversal. This similarity measure
can, e.g., readily detect whether two given signals are equal up to time accelerations or
decelerations. This property, among others, makes it a very useful measure in practice,
with many applications in comparing temporal data such as video and audio, e.g., for
speech recognition or music processing (see, e.g., [SC78]). The best known worst-case
running time is achieved by a simple dynamic programming algorithm that computes
the DTW distance of x and y in time O(nm). To break this apparent barrier in practice,
many heuristics have been designed for this problem (see, e.g., [SC07]).

An important special case that frequently arises in practice is dynamic time warping
on one-dimensional curves. Here the metric space is M = R and the distance measure is
d(a, b) := |a− b| for any a, b ∈ R. Even for this important special case the best known
algorithm takes time O(nm). We provide a possible explanation for this situation by
proving the following conditional lower bound for DTW on one-dimensional curves.
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Theorem 2.1.1. DTW on one-dimensional curves taking values in {0, 1, 2, 4, 8} ⊆ R
cannot be solved in time O(n2−ε) for any constant ε > 0, unless SETH fails.

This shows that strongly subquadratic algorithms for DTW can be considered unlikely
to exist. Specifically, obtaining such algorithms is at least as hard as a breakthrough for
satisfiability.2

Edit Distance. Let x and y be two strings of lengths n and m, respectively, where
we always assume that n ≥ m. We start in their first characters at positions (1, 1)
and traverse them up to their last characters at positions (n,m) using the following
operations: If we are at positions (i, j) we may (1) delete a character in x (this costs
cdel-x and we advance to (i + 1, j)), (2) delete a character in y (this costs cdel-y and
we advance to (i, j + 1)), (3) match the current characters, which is only possible if
x[i] = y[j] (this costs cmatch and we advance to (i + 1, j + 1)), or (4) substitute the
current characters, which is only possible if x[i] 6= y[j] (this costs csubst and we advance
to (i+ 1, j + 1)). The minimum total cost of such a sequence of operations is called the
edit distance of x and y, and we denote the problem of computing the edit distance by
Edit(cdel-x, cdel-y, cmatch, csubst). The Levenshtein distance (i.e., the classic edit distance)
is Edit(1, 1, 0, 1). An important special case is Longest Common Subsequence (LCS),
which can be seen to be equivalent to Edit(1, 1, 0, 2). One obtains more variants for other
cost choices, e.g., for aligning DNA sequences a classic choice is Edit(2, 2,−1, 1) [SM97].

Edit Distance admits a natural dynamic programming algorithm with running
time O(nm), which is taught in many undergraduate algorithms courses. Since such
string distance measures have ample applications in bioinformatics, natural language
processing and data comparison, Levenshtein distance and LCS are well studied with a
rich literature focussing on approximation algorithms (see, e.g., [AKO10]) and algorithms
that perform well on special cases (see Section 2.2) – we refer to [Nav01] for an extensive
survey on exact algorithms. Yet still, the best known worst-case running time (of an
exact algorithm) is O(nm(log log n/ log n)2 + n) by an algorithm due to Masek and
Paterson [MP80], i.e., algorithmic improvements have stalled slightly below quadratic
time. Even if we restrict the input to strings over a binary alphabet {0, 1}, no significantly
better worst-case running time is known3. We present a possible explanation for this
state of affairs by proving conditional lower bounds for Edit Distance on binary strings.
Note that already for the special case of LCS, finding subquadratic algorithms has been
posed as an open problem as early as 1972 [CKK72], with attempts at obtaining lower
bounds following shortly afterwards [AHU76]4.

Specifically, our second framework result is a classification of the conditional com-
plexity of Edit(cdel-x, cdel-y, cmatch, csubst) for all operation costs cdel-x, cdel-y, cmatch, csubst:
We identify trivial variants where the edit distance is independent of the input x and y,
and only depends on n and m. In this case, it can be computed in constant time. For
all remaining choices of the operation costs, we prove quadratic-time hardness, even
restricted to binary strings. This includes quadratic-time hardness of LCS and Leven-
shtein distance on binary strings. Compared to the known lower bound for Levenshtein

2Note that quadratic SETH-hardness of DTW has been independently also obtained by [ABVW15b] –
see Section 2.4 for a comparison of the two approaches.

3In this case, the running time of the Masek-Paterson algorithm decreases only slightly to
O(nm/ log2 n+ n).

4Aho et al. [AHU76] prove quadratic complexity in the decision tree model, which, however, does
not even capture the Masek-Paterson algorithm. On the other hand, when restricting the alphabet to
constant size, the complexity drops to linear, rendering this model too powerful to derive non-trivial
hardness for this case.
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distance [BI15a], our result decreases the alphabet size from 4 to 2 and adds hardness of
a large class of problems including LCS5.

Theorem 2.1.2. Edit(cdel-x, cdel-y, cmatch, csubst) can be solved in constant time if csubst =
cmatch or cdel-x + cdel-y ≤ min{cmatch, csubst}. Otherwise, Edit(cdel-x, cdel-y, cmatch, csubst)
on binary strings cannot be solved in time O(n2−ε) for any constant ε > 0, unless SETH
fails.

As the first step of the hardness part of this theorem, for some 0 < c′subst ≤ 2 that
depends on cdel-x, cdel-y, cmatch and csubst, we reduce Edit(1, 1, 0, c′subst) (with “normalized
deletion costs”) to Edit(cdel-x, cdel-y, cmatch, csubst). This reduction is what fails for the
trivial cases. We then proceed to prove hardness of Edit(1, 1, 0, c′subst) using a construction
that is parameterized by c′subst.

Unbalanced Inputs. Our main results are most meaningful for inputs with n ≈ m.
It is conceivable that for unbalanced inputs, i.e., m� n, faster algorithms exist, say the
running time of O(nm) could be reduced to Õ(n+m2). For DTW, we show that such
an improvement is unlikely, by proving that “for any m” no algorithm with running time
O((nm)1−ε) exists, assuming SETH. This is analogous to the situation for the Fréchet
distance, for which such a lower bound is known as well [Bri14].

Theorem 2.1.3. Unless SETH fails, DTW on one-dimensional curves taking values in
{0, 1, 2, 4, 8} cannot be solved in time O((nm)1−ε) for any constant ε > 0, and this even
holds restricted to instances with nα−o(1) ≤ m ≤ nα+o(1) for any 0 < α < 1.

For Edit Distance, Theorem 2.1.2 implies that there is no O(m2−ε)-time algorithm for
any ε > 0 (in the worst case over all strings x, y with |x| ≤ n and |y| ≤ m for any n ≥ m).
Our reduction from SETH cannot result in unbalanced strings, and thus we are not able
to prove better lower bounds than O(m2−ε). This behaviour hints at the possibility of
an Õ(n+m2) algorithm for Edit Distance - and indeed there is an algorithm for LCS
from 1977 due to Hirschberg [Hir77] matching this time complexity. This algorithm can
be generalized to Edit Distance, which we prove in Chapter 6.

Theorem 2.1.4. Edit(cdel-x, cdel-y, cmatch, csubst) admits an Õ(n+m2)-time algorithm.

Thus, for unbalanced inputs, DTW and Edit Distance differ in their behavior, but
using SETH we can readily explain this difference. Note that we will dive deeper into
analyzing the running time in terms of more parameters than just the problem size n
(here, we analyzed also the length m of the shorter string or curve), specialized to the
simpler problem LCS, in Section 2.2 and Chapter 5.

Reductions from Longest Common Subsequence. Observe that any near-linear
time reduction from LCS to another problem P transfers the quadratic-time lower bound
of LCS to P . We think that this notion of LCS-hardness could be used to prove lower
bounds for many string problems (not only distance measures). To support this claim,
we present two simple results in this direction in Chapter 7.

A palindromic subsequence (also called symmetric subsequence) of a string x of
length n is a subsequence z that is the same as its reverse rev(z). Computing a longest
palindromic subsequence is a popular exercise in undergraduate text books (e.g., [Cor+09,

5Note that quadratic SETH-hardness of LCS has been independently also obtained in [ABVW15b] –
see Section 2.4 for a comparison of our two approaches.
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Exercise 15-2]), since it can be easily solved by a reduction to LCS or adapting the dynamic
programming solution of LCS, both resulting in an O(n2)-time algorithm. A tandem
subsequence of a string x is a subsequence z that can be written as the concatenation
z = yy of a string y with itself. In contrast to longest palindromic subsequence, it is
non-trivial to compute a longest tandem subsequence in time O(n2) [Kos04]. We present
reductions from LCS to both of these problems, which yields the following lower bounds.

Theorem 2.1.5. On binary strings, longest palindromic subsequence and longest tandem
subsequence cannot be solved in time O(n2−ε) for any constant ε > 0, unless SETH fails.

These results show that SETH-based lower bounds via LCS are applicable to string
problems that are not necessarily similarity measures.

2.2 Multivariate Complexity of LCS

Let us focus on the conceptually simplest of the framework problems: the problem of
computing the longest common subsequence (LCS). Notwithstanding its quadratic-time
worst-case time barrier obstructing progress in the general case, a long and successful
line of research builds upon the observation that solving LCS on strings with certain
structural properties is significantly simpler. This is most prominently witnessed by
the UNIX diff utility, which quickly compares large, similar files (exploiting that the
longest common subsequence in such instances differs from the input strings at only
few positions). As a result, after the problem was introduced by Wagner and Fischer in
1974 [WF74], identifying and exploiting structural parameters to obtain faster algorithms
has been a decades-long effort [Apo86; AG87; Epp+92; Hir77; HS77; IR09; Mye86;
NKY82; Wu+90]. Parameters that have been studied in the literature are, besides the
input size n := max{|x|, |y|}, the length m := min{|x|, |y|} of the shorter string, the
size of the alphabet Σ that x and y are defined on, the length L of a longest common
subsequence of x and y, the number ∆ = n − L of deleted symbols in x, the number
δ = m− L of deleted symbols in y, the number of matching pairs M , and the number
of dominant pairs d (see Section 5.1 for their definitions). Among the fastest currently
known algorithms are an Õ(n+ d)-algorithm due to Apostolico [Apo86], an Õ(n+ δL)-
algorithm due to Hirschberg [Hir77] and an Õ(n+ δ∆)-algorithm due to Wu, Manbers,
Myers, and Miller [Wu+90]. In the remainder, we refer to such algorithms, whose running
time is stated in more parameters than just the problem size n, as multivariate algorithms.
In Chapter 5, we provide a non-exhaustive survey containing the asymptotically fastest
multivariate LCS algorithms.

While the conditional lower bounds of the alignment gadget framework shows that
any LCS algorithm takes time n2−o(1) in the worst case unless SETH fails, these results
have no direct implications as to whether any of the above multivariate algorithms
can be significantly improved in their dependence on the input parameters for special
cases of inputs. Thus, we aim to establish hardness of LCS also under general input
parameterization with respect to all previously studied parameters.

The motivation for such an even more precise analysis is twofold: (1) It appears
imperative to further investigate whether SETH-based lower bounds can fully justify
the lack of progress since the early 1990s (apart from lower-order improvements), even
when we analyze the running time as a function of all input parameters studied in the
literature. (2) If a careful, systematic approach uncovers parameter settings for which no
matching lower bounds can be obtained, this might reveal special cases that admit faster
algorithms than currently known. In this sense, studying the multivariate complexity of
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a problem can be seen as a structured search for faster multivariate algorithms. As a
case in point, see Chapter 11 in which we provide an algorithmic result for the Fréchet
distance that was inspired by the reasons why a SETH-based lower bound could not be
strengthened to match the best known upper bound.

To obtain such fine-grained results, we systematically study special cases of LCS
that arise from polynomial restrictions of any of the previously studied input parameters.
Informally, we define a parameter setting (or polynomial restriction of the parameters)
as the subset of all LCS instances where each input parameter is individually bound to a
polynomial relation with the input size n, i.e., for each parameter p we fix a constant αp
and restrict the instances such that p attains a value Θ(nαp). An algorithm for a specific
parameter setting of LCS receives as input two strings x and y guaranteed to satisfy the
parameter setting and outputs (the length of) an LCS of x and y. We call a parameter
setting trivial if it is satisfied by at most a finite number of instances; this happens if the
restrictions on different parameters are contradictory. For each non-trivial parameter
setting, we construct a family of hard instances via a reduction from satisfiability, thus
obtaining a conditional lower bound. This greatly extends the construction of hard
instances for the n2−o(1) lower bound of the alignment gadget framework. More precisely,
we obtain the following results, which are developed in full formality in Chapter 5.

Results for Large Alphabets. Since we only consider exact algorithms, any algo-
rithm for LCS takes time Ω(n). Beyond this trivial bound, for any non-trivial parameter
setting we obtain a SETH-based lower bound of

min
{
d, δ∆, δm

}1−o(1)
.

This bound is matched by the known algorithms with running times Õ(n+ d), Õ(n+ δL)
and Õ(n + δ∆).6 Thus, our lower bound very well explains the lack of progress since
1990 (apart from lower-order factors), as these three algorithms were already known at
that time.

Results for Constant Alphabet Size. For the alphabet size |Σ|, we do not only
consider the case of a polynomial relation with n, but also the important special cases
of |Σ| being any fixed constant. We show that our conditional lower bound for polynomial
alphabet size also holds for any constant |Σ| ≥ 3. For |Σ| = 2, we instead obtain a
SETH-based lower bound of

min
{
d, δ∆, δM/n

}1−o(1)
.

This lower bound is weaker than the lower bound for |Σ| ≥ 3 (it is easy to see that the
term δM/n is at most δm). Surprisingly, a stronger lower bound would refute SETH:
Motivated by the difficulties to obtain the same lower bound as for |Σ| ≥ 3, we discovered
an algorithm with running time O(n+ δM/n) for |Σ| = 2, thus matching our conditional
lower bound. To the best of our knowledge, this algorithm provides the first polynomial
improvement for a special case of LCS since 1990, so while its practical relevance is
unclear, we succeeded in uncovering a tractable special case. Interestingly, our algorithm
and lower bounds show that the multivariate fine-grained complexity of LCS differs

6It might not be immediate to the reader that these bounds indeed match the lower bound and do
not contradict it. The parameter relations from which this observation follows are explained in detail in
Chapter 5.
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polynomially between |Σ| = 2 and |Σ| ≥ 3. So far, the running time of the fastest known
algorithms for varying alphabet size differed at most by a logarithmic factor in |Σ|.

We find it surprising that the hardness assumption SETH is not only sufficient to prove
a worst-case quadratic lower bound for LCS, but extends to the complete spectrum of
multivariate algorithms using the previously used 7 parameters, thus proving an optimal
running time bound which was implicitly discovered by the computer science community
within the first 25 years of research on LCS (except for the case of Σ = {0, 1}, for which
we provide a missing algorithm).

2.3 Technical Contributions

We highlight some of our technical contributions.

Alignment Gadget Framework. We introduce a framework for proving SETH-based
lower bounds for a general class of similarity measures δ. It is based on a construction that
we call alignment gadget. Given instances x1, . . . , xn and y1, . . . , ym, m ≤ n, an alignment
gadget consists of (a way to construct) two instances x, y whose similarity δ(x, y) is
closely related to

∑
(i,j)∈Λ δ(xi, yj), where Λ = {(i1, 1), . . . , (im,m)} is the best-possible

ordered alignment of the numbers in [m] to [n] (for details, we refer to Chapter 4). We
prove a quadratic lower bound for any similarity measure admitting such an alignment
gadget (and additionally, so called coordinate values). This proof is a simplified version
of a construction in the known lower bound for Levenshtein distance [BI15a], which is
also closely related to the lower bound for Fréchet distance [Bri14].

Working with our framework has three advantages: First, it unifies three constructions
that are separate proof steps in other SETH-based lower bounds [BI15a; Bri14], thus
reducing the amount of work necessary to prove SETH-based lower bounds. Second,
it hides the reduction from satisfiability, providing a level of abstraction that allows
to ignore the details of the satisfiability problem and instead focus on the details of
the problem we reduce to. This makes it possible to tackle general problems such
as Edit(cdel-x, cdel-y, cmatch, csubst), where the reduction depends on parameters of the
problem, without resulting in an overly complex proof. Third, subsequent work [Abb+16a]
shows that the general definition of our framework captures even more powerful variants
of the satisfiability problem than merely CNF-SAT, yielding even stronger hardness
(based on a weaker assumption than SETH)7.

We present alignment gadgets for DTW, LCS and Edit Distance8. This part needs
careful problem-specific constructions. In particular, we have to construct instances
where the optimal sequence of edit distance operations has some exploitable structure,
which is made difficult by the fact that we work over binary alphabet, so that in principle
any two zeroes and any two ones can be matched. Interestingly, exactly this property
of providing hardness already on the smallest-possible alphabet has enabled the use of
our alignment gadget for LCS as a key technical tool to derive conditional hardness for
practically relevant regimes for the RNA folding problem [Cha15].

Multivariate Fine-grained Complexity. Analyzing the time complexity of prob-
lems in the polynomial-time regime with respect to various input parameters has a long

7For a short discussion, see Section 3.3.
8Note that our general definition of Edit Distance includes LCS as a special case. Nevertheless, since

the proof for LCS is more accessible, we chose to also include this construction for readers’ convenience.
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history, especially for the LCS problem, and recently received growing attention as a
general paradigm [AVWW16; GMN15]. Our systematic approach of proving conditional
lower bounds for all parameter settings strengthens this kind of analysis, since it allows
to establish (near-)optimality and to uncover tractable parameter settings, for which
improved algorithms can be found. To the best of our knowledge, our results are the
first systematic conditional lower bounds for a polynomial-time problem with more than
one parameter (in addition to the problem size).

The first challenge of our work is to uncover all relations between the studied
parameters. Indeed, some parameter settings are contradictory because they violate
a parameter relation. In this case, at most a finite number of instances satisfies the
parameter setting, and LCS is trivial to solve. As we want to construct a family of
instances for each non-trivial parameter setting, we have to find a complete list of
parameter relations that hold up to constant factors. While some parameter relations
can be found in the literature, a complete list was unknown. In particular, these relations
allow us to judge for any asymptotic running times, like Õ(n + d) and Õ(n + δM/n),
whether one is larger than the other on all instances or whether they are incomparable.

Our main challenge is to construct a family of hard instances for each non-trivial
parameter setting. Here we start with the hard instances obtained by using the alignment
gadget framework and carefully embed them into strings that satisfy any given parameter
setting. Note that since the desired bound Õ(n+ min{d, δm, δ∆}) is a quite complex
function of the parameters, our reductions are necessarily rather involved and we need
to very carefully fine-tune our constructions.

One of the new ideas in our constructions is an alternative way of combining so-called
(normalized) vector gadgets9 that we use for the case of small δ. In this construction,
picking any two vector gadgets in x and one in y yields an LCS without any deletions
in the vector gadget of y, thus not increasing δ, which is important for keeping δ small.
Picking one vector gadget in both x and y yields an LCS whose length depends on
the orthogonality of the vectors. We then need to ensure that such “2vs1” and “1vs1”
matchings always generate an LCS and at least one “1vs1” matchings appears in any LCS.

2.4 Notes

The contents of Chapters 4 and 7 and parts of Chapter 6 have already appeared in [BK15b]
(with an extended version accessible at [BK15c]). The results of Chapter 5 and parts of
Chapter 6 are based on the unpublished manuscript [BK16].

Independently of our work, quadratic SETH-hardness of LCS and DTW has been
shown by Abboud, Backurs and Vassilevska Williams [ABVW15b]. Let us briefly compare
our approaches. Our main technical contribution is the alignment gadget framework,
which allows us to give shorter hardness proofs. The proofs of Abboud et al. are longer,
in particular since they are using the lower bound for Levenshtein distance [BI15a], while
our proofs are self-contained. The main technical contribution of Abboud et al., apart
from careful reductions, seems to be that they reduce from a novel problem that they call
Most-Orthogonal Vectors. Regarding the problem LCS, our hardness result is stronger,
since we show hardness on binary strings, while Abboud et al. need alphabet size 7.
Regarding DTW, we prove hardness of different special cases, as we consider DTW on

9Readers unfamiliar with this notion are referred to Section 3.3 for an introduction to the Orthogonal
Vectors problem, whose quadratic SETH-hardness is well known. To obtain our hardness results, we
reduce from Orthogonal Vectors by representing each vector by a (normalized) vector gadget and
combining them to a final instance. Here, the orthogonality of two vectors is captured by the similarity
of the corresponding vector gadgets.
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one-dimensional curves over alphabets of size 5 (where the distance of two numbers is
their absolute difference), while Abboud et al. consider DTW on strings over alphabets
of size 5 (where the distance of two symbols is 1 or 0, depending on whether they are
equal or not).

2.5 Organization

In Chapter 3, we introduce notation, prove several useful lemmas and discuss alternative
assumptions to SETH that can be used to derive our results. We present our framework
for obtaining quadratic lower bounds in Chapter 4: In Section 4.1, we define the alignment
gadget and prove that any similarity measure admitting such a gadget (together with so
called coordinate values) has a quadratic lower bound under SETH. We proceed to prove
quadratic-time hardness of Dynamic Time Warping (Section 4.2), Longest Common
Subsequence (Section 4.3) and Edit Distance (Section 4.4) by implementing an alignment
gadget for each of these problems. Note that the construction for LCS is in fact subsumed
by the alignment gadget for Edit Distance – however, since for the special case LCS the
gadget (and its proof) is simpler and might be more accessible, we chose to provide it
for the reader’s convenience.

In Chapter 5, we focus on Longest Common Subsequence and study its multivariate
complexity, going beyond the general quadratic worst-case SETH-hardness of n2−o(1).
Since this a quite complex task, this chapter takes up a large fraction of this thesis.

Algorithmic results accompanying the lower bounds (showing that the obtained
bounds are indeed tight up to lower order terms) are given in Chapter 6. In Chapter 7,
we prove hardness of longest palindromic subsequence and longest tandem subsequence
by reductions from LCS. Finally, we conclude Part I of this thesis with open problems
and an outlook in Chapter 8.
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Chapter 3

Preliminaries

In this chapter, we prepare notation, problem definitions and basic concepts used
throughout Part I. In particular, we give a list of algorithmic problems considered in this
part in Section 3.2 and discuss the hardness hypotheses used to derive our conditional
lower bounds in Section 3.3. Section 3.4 briefly describes the model of computation we
assume throughout this part and Section 3.5 introduces basic facts to ease later analysis
of Edit Distance and its special case LCS.

3.1 Notation and Conventions

We write [n] := {1, . . . , n}. For a sequence (i.e., string or curve) x, we denote its length
by |x|, write x[i] for its i-th position, and denote the subsequence from position i to
position j by x[i..j]. We call its entries symbols or sometimes, if it is a string, characters.
For a sequence x of length n, let rev(x) := x[n]x[n − 1] . . . x[1] denote its reversed
sequence. For two sequences x and y, we denote their concatenation by x ◦ y = xy and
define, for any ` ≥ 0, the `-fold repetition of x by x` :=©`

i=1 x.
If string x is defined over alphabet Σ, we denote the number of occurrences of symbol

σ ∈ Σ in x by #σ(x). We say that z is a subsequence of x of length `, if |z| = ` and
there are 1 ≤ i1 < · · · < i` ≤ |x| such that x[ik] = z[k] for all 1 ≤ k ≤ `.

To state running times, we use Õ(·) to hide polylogarithmic factors in n. For clarity
of presentation, we sometimes state running times of the form O(f(n) · g(n)), where
f(n) possibly attains non-positive values (e.g, f(n) = log(n/m) with n ≥ m); such
time bounds are to be read as O(max{f(n), 1} · g(n)). Whenever we write a chain of
equalities f(n) = O(g(n)) = O(h(n)), the intended meaning is f(n) = O(g(n)) and
g(n) = O(h(n)).

3.2 Problems in Part I

A traversal of two sequences x and y of length n and m, respectively, is a sequence of
pairs ((a1, b1), . . . , (at, bt)) with t ∈ N satisfying (1) (a1, b1) = (1, 1), (2) (at, bt) = (n,m),
and (3) (ai+1, bi+1) is either of (ai + 1, bi), (ai, bi + 1), or (ai + 1, bi + 1) for all 1 ≤ i < t.

Edit Distance. Let x, y be strings over an alphabet Σ of length n,m (n ≥ m),
respectively. For a traversal T = ((a1, b1), . . . , (at, bt)) of x, y we say that its i-th
operation, 1 ≤ i < t, is (1) a deletion in x if (ai+1, bi+1) = (ai + 1, bi), (2) a deletion in y
if (ai+1, bi+1) = (ai, bi+1), (3) a matching if (ai+1, bi+1) = (ai+1, bi+1) and x[ai] = y[bi],
or (4) a substitution if (ai+1, bi+1) = (ai+1, bi+1) and x[ai] 6= y[bi]. These four operations
incur costs of cdel-x, cdel-y, cmatch, and csubst, respectively. We always assume that these
costs are rational constants, so that we can ignore representation issues. The cost δEdit(T )
of a traversal T is the total cost of all its operations. The edit distance δEdit(x, y) is the
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minimal cost of any traversal of x, y. We write Edit(cdel-x, cdel-y, cmatch, csubst) for the
problem of computing the edit distance of two given strings with costs cdel-x, cdel-y, cmatch,
and csubst. We write Edit(csubst) as a shorthand for Edit(1, 1, 0, csubst). Note that for
these problems, the costs of all four operations are constant, i.e., they stay fixed with
growing n,m. We will mostly consider Edit Distance over binary strings, i.e., we set
Σ = {0, 1}.

We obtain the Levenshtein distance by setting cmatch = 0 and cdel-x = cdel-y =
csubst = 1. By setting cmatch = 0, cdel-x = cdel-y = 1, and csubst = 2, we obtain effectively
the Longest Common Subsequence problem, see below. One obtains more variants for
other cost choices, e.g., for aligning DNA sequences a classic choice is cmatch = −1,
csubst = 1, and cdel-x = cdel-y = 2, see, e.g., [SM97].

Longest Common Subsequence (LCS). For strings x,y and z, we say that z is a
longest common subsequence (LCS) of x and y if it is a subsequence of both x and y that
has maximal length |z|. By LCS(x, y), we denote an arbitrary LCS of x and y and write
L(x, y) := |LCS(x, y)| for its length. It is easy to see that computing L(x, y) is equivalent
to computing Edit(2), since under the operation costs cmatch = 0, cdel-x = cdel-y = 1 and
csubst = 2 of Edit(2), we have δEdit(x, y) = |x|+ |y| − 2L(x, y) =: δLCS(x, y).

Dynamic Time Warping (DTW). Let (M,d) be any metric space. Let x, y be
curves, i.e., sequences over M of length n,m (n ≥ m), respectively. The cost δDTW(T ) of
a traversal T = ((a1, b1), . . . , (at, bt)) is

∑t
i=1 d(x[ai], y[bi]). The dynamic time warping

distance δDTW(x, y) is the minimal cost of any traversal of x and y. We obtain the
special case of dynamic time warping on one-dimensional curves by setting M = R and
d(a, b) := |a− b| for any a, b ∈ R.

Longest Palindromic Subsequence (LPS). For a string x, a palindromic subse-
quence (also known as symmetric subsequence) is a subsequence z of x such that z equals
its reverse rev(z). We denote the length of the longest palindromic subsequence (LPS)
of x by P (x).

Longest Tandem Subsequence (LTS). For a string x, we call a subsequence z of x
a tandem sequence, if z can be written as the concatenation z = yy of a string y with
itself. We let T (x) denote the length of the longest tandem subsequence (LTS) of x.

3.3 Hardness Hypotheses

Recall the Strong Exponential Time Hypothesis (SETH), introduced by Impagliazzo and
Paturi [IP01; IPZ01], that asserts that satisfiability has no algorithms that are much
faster than exhaustive search. It forms the basis of many conditional lower bounds for
NP-hard as well as polynomial-time problems, see, e.g., [VW15; LMS11].

Hypothesis 3.3.1 (Strong Exponential Time Hypothesis (SETH)). For no ε > 0,
k-SAT can be solved in time O((2− ε)n) for all k ≥ 3.

Effectively all known SETH-based lower bounds for polynomial-time problems use
reductions via the Orthogonal Vectors problem (OV): Given sets A, B ⊆ {0, 1}D of size
|A| = n, |B| = m, determine whether there exist a ∈ A, b ∈ B with

∑D
i=1 a[i] · b[i] = 0

(which we denote by 〈a, b〉 = 0). Simple algorithms solve OV in time O(2D(n+m)) and
O(nmD). The fastest known algorithm for D = c(n) log n runs in time n2−1/O(log c(n))
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(when n = m) [AWY15], which is only slightly subquadratic for D � log n. This has led
to the following reasonable hypothesis.

Hypothesis 3.3.2 (Orthogonal Vectors Hypothesis (OVH)). For no ε > 0, OV restricted
to n = |A| = |B| and D = no(1) can be solved in time O(n2−ε).

A well-known reduction by Williams [Wil05] shows that SETH implies OVH. Thus,
OVH is the weaker assumption and any OVH-based lower bound also implies a SETH-
based lower bound. The lower bounds in this thesis do not only hold assuming SETH,
but even assuming the weaker OVH.

Lemma 3.3.3 ([Wil05]). SETH implies OVH.

Proof sketch. The statement follows from a simple reduction that introduced the so called
split-and-list technique: Let φ be an arbitrary k-CNF formula with clauses C1, . . . , CM
and Boolean variables x1, . . . , xN and assume for simplicity that N is even. Let L contain
all partial assignments ` : [N/2] → {0, 1} to the variables x1, . . . , xN/2 and similarly,
let R contain all partial assignments r : [N/2]→ {0, 1} to the variables xN/2+1, . . . , xN .

Then for each assignment `i ∈ L, we define a vector ai ∈ {0, 1}M , where for all k ∈ [M ],
we set ai[k] = 0 if and only if the partial assignment `i of the variables x1, . . . , xN/2
already satisfies the clause Ck, i.e., there is some variable xj with j ∈ [N/2] such that Ck
contains the literal xj if `i(j) = 1 or the negated literal xj if `i(j) = 0. Symmetrically,
we define a vector bj for each partial assignment rj ∈ R. Defining A as the set of all
constructed ai and B as the set of all constructed bj , we obtain an OV instance, finishing
the definition of the reduction.

It is easy to see that the obtained OV instance A,B contains an orthogonal pair ai, bj
if and only if φ is satisfiable: There is a trivial one-to-one correspondence of assignments
s : [N ] → {0, 1} and pairs of partial assignments (`i, rj). The corresponding vectors
ai, bj are orthogonal if and only if (`i, rj) (and hence s) is a satisfying assignment, since∑M

k=1 ai[k] · bj [k] = 0 holds if and only if for all k, at least one of ai[k] and bj [k] are zero,
which captures exactly the fact that each clause Ck has to be satisfied either by some
variable(s) among x1, . . . , xN/2 or by some variable(s) among xN/2, . . . , xN (or by some
variables among both of the sets).

Note that n := |A| = |B| = 2N/2 and hence D = M ≤ Nk = O(logk n) = no(1). Since
the reduction runs in linear time O((|A|+ |B|)D) = O(2N/2+o(1)), we conclude that an
O(n2−ε)-time algorithm for any constant ε > 0 would yield an algorithm for k-SAT
with running time O(2N(1−ε/2)+o(1)). Since k was chosen arbitrarily, this would refute
SETH.

We remark that using the sparsification lemma [IPZ01], it is easy to show that SETH
also implies a stronger Orthogonal Vectors Hypothesis which asserts that there is no ε > 0
such that OV with D ≤ c log n can be solved in time O(n2−ε) for all c > 0. However, we
will not use this stronger assumption.

For convenience, we also work with the following variant of OVH. It provides an
equivalent formulation for giving conditional lower bounds of the form Ω((|A| · |B|)1−ε)
also when |A|, |B| have an arbitrary fixed polynomial dependence on a number n (note
that here, n is not necessarily the problem size (|A|+ |B|) ·D; however, the problem size
has a fixed polynomial dependence on n).

Hypothesis 3.3.4 (Unbalanced Orthogonal Vectors Hypothesis (UOVH)). For any
ε > 0, α, β ∈ (0, 1], and computable functions f(n) = nα−o(1), g(n) = nβ−o(1), the
following problem cannot be solved in time O(nα+β−ε): Given a number n, solve a given
OV instance with D = no(1), |A| = f(n) and |B| = g(n).
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Lemma 3.3.5 (Essentially folklore). UOVH is equivalent to OVH.

Proof. Clearly, UOVH implies OVH (using α = β = 1, f(n) = g(n) = n). For the
other direction, assume that UOVH fails and let α, β ∈ (0, 1], f(n) = nα−o(1), and
g(n) = nβ−o(1) be such that OV with D = no(1) and |A| = f(n) and |B| = g(n) can be
solved in time O(nα+β−ε) for some constant ε > 0. Consider an arbitrary OV instance
A,B ⊆ {0, 1}D with |A| = |B| = n and D = no(1). We partition A into s := d n

f(n)e sets

A1, . . . ,As of size f(n) and B into t := d n
g(n)e sets B1, . . . ,Bt of size g(n) (note that the

last set of such a partition might have strictly less elements, but can safely be filled
up using all-ones vectors). By assumption, we can solve each OV instance Ai,Bj in
time O(nα+β−ε). Since there exist a ∈ A, b ∈ B with 〈a, b〉 = 0 if and only if there exist
a ∈ Ai, b ∈ Bj with 〈ai, bj〉 = 0 for some i ∈ [s], j ∈ [t], we can decide the instance A,B
by sequentially deciding the s · t = O(n2−(α+β)+o(1)) OV instances Ai,Bj . This takes
total time O(s · t · nα+β−ε) = O(n2−ε′) for any ε′ < ε, which contradicts OVH and thus
proves the claim.

We remark that OVH is implicit in many other SETH-based lower bounds. A weaker
version of it (called Most-Orthogonal Vectors) has been used in [ABVW15b] to derive
their results.

Finally, let us briefly discuss recent work on stronger and weaker variants of SETH
that investigates their implications in the regime of polynomial-time problems. Abboud
et al. [Abb+16a] reduce the satisfiability problem on (non-deterministic) branching
programs to the problems captured in our framework to obtain stronger hardness results.
Intuitively, a non-deterministic branching program is a directed graph consisting of
a set of L layers of width W , where each node represents one of n Boolean variables
x1, . . . , xn and each edge is labeled with 0 or 1. The label ` of an edge corresponds to
a constraint xi = `, where xi is the label of the node this edge leaves. There are two
distinguished nodes, a start node in the first layer and an accept node in the last layer.
The satisfiability problem asks whether there is a Boolean assignment to the variables
x1, . . . , xn such that a constraint-respecting path from the start node to the accept node
exists. Abboud et al. show that a strongly subquadratic algorithm for any problem
admitting an alignment gadget would imply an O((2− ε)n)-time algorithm (for some
constant ε > 0) for the satisfiability problem on non-deterministic branching programs
of constant width W and length L = 2o(n). Note that this class of branching programs
captures even NC circuits, which are capable of, e.g., computing determinants or basic
cryptographic primitives. This bases the conditional lower bounds of our framework on
a much weaker assumption than SETH.

In the opposite direction, Carmosino et al. [Car+16] investigate a stronger, non-
deterministic variant of SETH and prove that it cannot be refuted without proving new
non-trivial circuit lower bounds. Translated to the problems considered in this part, their
results imply that even finding strongly subquadratic co-nondeterministic algorithms
for LCS, DTW and the Levenshtein distance requires substantial progress in circuit
complexity.

3.4 Models of Computation

Unless stated otherwise, we assume the unit-cost Word RAM model of computation,
which we briefly describe here (for a more detailed introduction, see, e.g., [Hag98]). In
this model, the memory consists of M words of word size w and all elementary operations
(i.e., basic arithmetic and logic operations on a word of w bits, as well as dereferencing a
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memory cell) can be executed in constant time, where random access to the memory
words is allowed. We assume that M ≥ n (to store the input, where n is the problem
size) and w = Θ(log n), since w ≥ logM is needed to ensure that each memory word
can indeed be addressed and the corresponding upper bound prohibits, e.g, arithmetics
on superpolynomially large integers in unit cost per operation.

A more restrictive model of computation (used in Section 6.1) is the abstract pointer
machine [Tar79; BG92]. Intuitively, it disallows pointer arithmetic by classifying memory
cells (words) into data cells or pointer cells, and enabling computation only on data cells,
not pointer cells. Thus, instead of having random access, this model resembles the power
of indirect accessing by following pointers.

We remark here that the reductions we provide in this thesis are linear-time com-
putable using only very elementary computational primitives and that the hardness
results (and linear running time bounds) transfer also to less powerful models of com-
putation than the Word RAM. The above choice of models is more relevant for the
algorithmic results stated in Chapter 5 and Chapter 6, where it may affect logarithmic
factors in the running times.

3.5 Basic Facts for Edit Distance and LCS

In this section, we collect technical tools for the analysis of Edit Distance and LCS to
ease the analysis in later chapters. In particular, throughout this section we analyze the
variant Edit(csubst) = Edit(1, 1, 0, csubst) with 0 < csubst ≤ 2, in which deletions in both
strings incur unit cost, matches are free of cost and each substitution costs csubst. This
is justified by our classification result in Section 4.4.1 which reduces every non-trivial
variant of the edit distance to this case. Recall that LCS is equivalent to the special case
Edit(2).

Fact 3.5.1 (Optimal Partitions). Let x and y1, . . . , yk be arbitrary strings. Set y =
y1 . . . yk. Then we have

δEdit(x, y) = min
x(y1),...,x(yk)

k∑
j=1

δEdit(x(yj), yj),

where x(y1), . . . , x(yk) ranges over all ordered partitions of x into k substrings, i.e.,
x(y1) = x[i0 + 1..i1], x(y2) = x[i1 + 1..i2], . . . , x(yk) = x[ik−1 + 1..ik] for any 0 = i0 ≤
i1 ≤ . . . ≤ ik = |x|.

Proof. For any ordered partition, the substrings x(yj) are disjoint and ordered along x,
so we can concatenate (optimal) traversals of (x(yj), yj), j ∈ [k], to form a traversal of

(x, y). This shows δEdit(x, y) ≤
∑k

j=1 δEdit(x(yj), yj).
Now let T be an optimal traversal of (x, y). Let Jj be the indices in x that appear

in a matching or substitution operation with symbols in yj . Note that these sets are
ordered, in the sense that for any i ∈ Jj and i′ ∈ Jj′ with j < j′ we have i < i′. This
allows to find an ordered partition x(y1), . . . , x(yk) of x such that x(yj) contains the
indices Jj for any j. Let us denote the total cost of the substitutions involving yj by sj .
Since traversal T deletes |yj | − |Jj | symbols in yj and |x(yj)| − |Jj | symbols in x(yj), we

have δEdit(T ) =
∑k

j=1 |yj |+ |x(yj)| − 2|Jj |+ sj . Clearly, we can construct a traversal
of (x(yj), yj) that follows the matchings and substitutions in Jj and deletes all other
symbols, showing δEdit(x(yj), yj) ≤ |yj | + |x(yj)| − 2|Jj | + sj . By optimality of T , we

obtain δEdit(x, y) ≥
∑k

i=1 δEdit(x(yj), yj).
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Fact 3.5.2. Let x, y, z be arbitrary strings and `, k ∈ N0. Then we have

(i) δEdit(1
kx, 1ky) = δEdit(x, y),

(ii) δEdit(x, y) ≥
∣∣|x| − |y|∣∣, and

(iii) |δEdit(xz, y)− δEdit(x, y)| ≤ |z|.

We obtain symmetric statements of (i) by replacing all 1’s by 0’s and by reversing all
involved strings.

Proof. We show (i) for k = 1, then the general statement follows by induction. Consider
an optimal traversal T of 1x, 1y. If both “1”s are deleted in T , then we can instead
match them and improve T , contradicting optimality. If exactly one “1” is matched or
substituted, then the other “1” is deleted, so we may instead match the two “1”s without
increasing cost. Thus, without loss of generality an optimal traversal of (1x, 1y) matches
the two “1”s.

For (ii), note that matchings and substitutions touch as many symbols in x as in y.
Hence, there have to be at least |x| − |y| deletions in x and at least |y| − |x| deletions
in y.

For (iii), taking an optimal traversal of (x, y) and appending |z| deletions of the
symbols in z shows that δEdit(xz, y) ≤ δEdit(x, y) + |z|. For the other direction, consider
an optimal traversal T of (xz, y). Replace any matching or substitution of a symbol in z
with a symbol y[j] in y by a deletion of y[j]. Additionally, remove every deletion of a
symbol in z. This results in a traversal T ′ of (x, y) with cost at most δEdit(xz, y) + |z|, as
we introduced at most |z| deletions in y. This proves the desired inequality δEdit(x, y) ≤
δEdit(xz, y) + |z|.

For the special case of LCS, we use the following similar observations.

Fact 3.5.3. Let z, w be arbitrary strings and `, k ∈ N0. Then we have

(i) δLCS(1kz, 1kw) = δLCS(z, w),

(ii) δLCS(1kz, w) ≥ δLCS(z, w)− k, and

(iii) δLCS(0`z, 1kw) ≥ min{k, δLCS(z, 1kw) + `}.

We obtain symmetric statements by flipping all bits and by reversing all involved strings.

Proof. Statement (i) is a special case of Fact 3.5.2(i). Statement (ii) follows from
Fact 3.5.2(iii).

For (iii), fix a LCS s of (0`z, 1kw). If s starts with a “0”, then it does not contain
the leading 1k of the second argument, leaving at least k symbols unmatched, so that
δLCS(0`z, 1kw) ≥ k. Otherwise, if s starts with a “1”, then it does not contain the
leading 0` of the first argument, so that L(0`z, 1kw) = L(z, 1kw). Then we have
δLCS(0`z, 1kw) = |0`z|+ |1kw| − 2L(0`z, 1kw) ≥ |z|+ |1kw| − 2L(z, 1kw) = δLCS(z, 1kw).
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Framework

In this chapter, we provide a general way to derive quadratic conditional lower bounds
from OVH/SETH, inspired by the approach of [BI15a; Bri14]. In Section 4.1, we define
the alignment gadget, which provides the basis of the lower bound, and show how to
reduce Orthogonal Vectors to computing any similarity measure admitting such an
alignment gadget (together with so called coordinate values). We then give quadratic
conditional lower bounds for Dynamic Time Warping (Section 4.2), Longest Common
Subsequence (Section 4.3) and Edit Distance (Section 4.4) by proving alignment gadgets
for each of these problems.

4.1 Framework Proof

We consider a similarity (or distance) measure δ : I × I → N0, where I denotes the
set of inputs, e.g., all binary strings or all one-dimensional curves. By a reduction
from Orthogonal Vectors, we prove that this similarity measure cannot be computed
in strongly subquadratic time unless SETH fails if δ admits a gadget that allows us to
realize, in a certain sense, alignments of inputs x1, . . . , xn ∈ I and y1, . . . , ym ∈ I. To
formally state the requirement, we start by introducing the following notions.

Types. For each similarity measure, we define an abstract type of a sequence x ∈ I.
This type simplifies the construction of the gadget we aim to construct. Typically,
we choose the type to be the length of the sequence and the sum of its entries, i.e.,
type(x) := (|x|,

∑
i x[i]) (where for binary strings,

∑
k x[k] is to be interpreted as the

number of ones in x). This definition can be customized to work for the similarity
measure under consideration.1 We define It := {x ∈ I | type(x) = t} as the set of inputs
of type t.

Alignments. Let n ≥ m. A (partial) alignment is a set Λ = {(i1, j1), . . . , (ik, jk)}
with 0 ≤ k ≤ m such that 1 ≤ i1 < . . . < ik ≤ n and 1 ≤ j1 < . . . < jk ≤ m. We say
that (i, j) ∈ Λ are aligned. Any i ∈ [n] or j ∈ [m] that is not contained in any pair in Λ
is called unaligned. We denote the set of all partial alignments (with respect to n,m)
by Λn,m.

We call the partial alignment {(∆ + 1, 1), . . . , (∆ +m,m)}, with 0 ≤ ∆ ≤ n−m, a
structured alignment. We denote the set of all structured alignments by Sn,m.

For any x1, . . . , xn ∈ I and y1, . . . , ym ∈ I, we define the cost of alignment Λ ∈ Λn,m

by

c(Λ) = cx1,...,xn
y1,...,ym(Λ) :=

∑
(i,j)∈Λ

δ(xi, yj) + (m− |Λ|) max
i,j

δ(xi, yj).

1For DTW, we indeed augment the type definition by the maximum entry within the sequence.
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Figure 4.1: Cost c(Λ) of a partial alignment Λ ∈ Λn,m.

In other words, for any j ∈ [m] which is aligned to some i we “pay” the distance δ(xi, yj),
while for any unaligned j we “pay” the maximal distance of any (xi′ , yj′) (note that
there are m − |Λ| unaligned j ∈ [m]). This means that we incur punishment for any
unaligned j (see Figure 4.1 and 4.2 for an illustrations of alignments and their costs).

Alignment Gadget. We start with some intuition. Consider the problem of computing
the value minΛ∈Sn,m c(Λ). This can be solved in time O(nm) if each δ(xi, yj) can
be evaluated in constant time, since |Sn,m| = O(n) and evaluating c(Λ) amounts to
computing m values δ(xi, yj). Moreover, intuitively it should not be possible to compute
this value in strongly subquadratic time. We will show that in some sense it is even hard
to compute, in strongly subquadratic time, any value v with

min
Λ∈Λn,m

c(Λ) ≤ v ≤ min
Λ∈Sn,m

c(Λ). (4.1)

Now, an alignment gadget is simply a pair of instances (x, y) such that from δ(x, y)
we can infer2 a value v as above. The main reason to relax our goal from computing
minΛ∈Sn,m c(Λ) to satisfying (4.1) is that this makes constructing alignment gadgets
much easier. Note that for the alignment gadget (x, y) computing δ(x, y) is as hard as
computing minΛ∈Sn,m c(Λ) (in an approximate sense as given by (4.1)), which we argued
above should take quadratic time. This informal discussion motivates the following
definition.

Definition 4.1.1. The similarity measure δ admits an alignment gadget, if the following
conditions hold: Given instances x1, . . . , xn ∈ Itx , y1, . . . , ym ∈ Ity with m ≤ n and types
tx = (`x, sx), ty = (`y, sy), we can construct new instances x = GAm,ty

x (x1, . . . , xn) and
y = GAn,tx

y (y1, . . . , ym) and C ∈ Z such that

min
Λ∈Λn,m

c(Λ) ≤ δ(x, y)− C ≤ min
Λ∈Sn,m

c(Λ). (4.2)

Moreover, type(x) and type(y) only depend on n,m, tx, and ty. Finally, this construction
runs in time O((n+m)(`x + `y)).

If the construction additionally fulfills |x| = O(n(`x + `y)) and |y| = O(m(`x + `y)),
we say that δ admits an unbalanced alignment gadget.

Note that the types serve the purpose of simplifying the algorithmic problem in the
above definition by restricting the inputs to equi-typed objects. If we can construct

2For us, “infer” will simply mean that v = δ(x, y) − C for an appropriate C. This could be easily
generalized to more general correspondences, if needed for a particular application.
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Figure 4.2: Cost c(Λ) of a structured alignment Λ ∈ Sn,m.

suitable x and y for arbitrary inputs x1, . . . , xn and y1, . . . , ym, then we may completely
disregard types.

Definition 4.1.2. The similarity measure δ admits coordinate values, if there exist
0x,0y,1x,1y ∈ I satisfying

δ(1x,1y) > δ(0x,1y) = δ(0x,0y) = δ(1x,0y),

and moreover, type(0x) = type(1x) and type(0y) = type(1y).

The alignment gadget and the coordinate values as defined above provide the basis
for our framework, which we can finally formalize.

Theorem 4.1.3. Let δ be a similarity measure admitting an alignment gadget as well as
coordinate values and consider the problem of computing δ(x, y) with |x| ≤ n, |y| ≤ m,
and m ≤ n. For no ε > 0, this problem can be solved in time O(m2−ε) unless OVH fails.
If δ even admits an unbalanced alignment gadget, then for no ε > 0, this problem can
be solved in time O((nm)1−ε), unless (U)OVH fails. Both statements hold restricted to
nα−o(1) ≤ m ≤ nα+o(1) for any 0 < α ≤ 1.

In the remainder of this section, we present a reduction from OV to the problem of
computing δ, thus proving Theorem 4.1.3. This uses constructions and arguments similar
to [Bri14; BI15a]. Consider an instance a1, . . . , an ∈ {0, 1}d and b1, . . . , bm ∈ {0, 1}d of
OV, n ≥ m. We construct x, y ∈ I and ρ ∈ N0 such that δ(x, y) ≤ ρ if and only if there
are i ∈ [n] and j ∈ [m] with 〈ai, bj〉 = 0. To this end, let ai[k] denote the k-th component
of ai. For all i ∈ [n] and j ∈ [m], we construct coordinate gadgets as follows,

CG(ai, k) :=

{
0x if ai[k] = 0

1x if ai[k] = 1
1 ≤ k ≤ d, CG(ai, d+ 1) := 0x,

CG(bj , k) :=

{
0y if bj [k] = 0

1y if bj [k] = 1
1 ≤ k ≤ d, CG(bj , d+ 1) := 1y.

Note that type(CG(ai, 1)) = · · · = type(CG(ai, d+ 1)) =: tx and type(CG(bj , 1)) = · · · =
type(CG(bj , d+ 1)) =: ty by definition of coordinate values. This allows us to use the
alignment gadget to obtain the following vector gadgets

VG(ai) := GAd+1,ty
x (CG(ai, 1), . . . ,CG(ai, d+ 1)),

VG(bj) := GAd+1,tx
y (CG(bj , 1), . . . ,CG(bj , d+ 1)),

S := GAd+1,ty
x (0x, . . . ,0x,1x︸ ︷︷ ︸

d+1

).
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Figure 4.3: Schematic illustration of the coordinate, vector, and nor-
malized vector gadgets, case 〈ai, bj〉 = 0: Aligning VG(bj) with VG(ai)
achieves alignment cost (d+ 1)ρ0.

Note that type(VG(a1)) = . . . = type(VG(an)) = type(S) =: t′x and type(VG(b1)) =
. . . = type(VG(bm)) =: t′y, because the type of the output of the alignment gadget only
depends on the number of input elements and their type, which are all tx or all ty,
respectively. We introduce normalized vector gadgets as follows

NVG(ai) := GA
1,t′y
x (S,VG(ai)),

NVG(bj) := GA
2,t′x
y (VG(bj)).

Note that type(NVG(a1)) = . . . = type(NVG(an)) =: t′′x and type(NVG(b1)) = . . . =
type(NVG(bm)) =: t′′y. We finally obtain x and y by setting

x := GA
m,t′′y
x (NVG(a1), . . . ,NVG(an),NVG(a1), . . . ,NVG(an)),

y := GA
2n,t′′x
y (NVG(b1), . . . ,NVG(bm)).

We denote by C,C ′, C ′′ the value C in the three invocations of Property (4.2) of the
alignment gadget.

Observe that x and y have length O((n + m)d) and can be constructed in time
O((n+m)d) by applying the algorithm implicit in Definition 4.1.1 three times. Moreover,
if δ admits an unbalanced alignment gadget, then we have |x| = O(nd) and |y| = O(md).
It remains to show that if we know δ(x, y) then we can decide the given OV instance
in constant time, i.e., correctness of our construction, which we do below. This finishes
our reduction from OV to the problem of computing δ. To obtain Theorem 4.1.3, let
0 < α ≤ 1 and assume that δ(x′, y′) can be computed in time O(M2−ε) whenever
|x′| ≤ N , |y′| ≤M , and Nα−o(1) ≤M ≤ Nα+o(1). Then in particular for n = m we can
compute δ(x, y) in time O(min{|x|, |y|}2−ε+ |x|+ |y|) = O(((n+m)d)2−ε) = O((nd)2−ε),
contradicting OVH. In case of an unbalanced alignment gadget, assume that δ(x′, y′)
can be computed in time O((NM)1−ε) whenever |x′| ≤ N , |y′| ≤ M , and Nα−o(1) ≤
M ≤ Nα+o(1). Then for m = Θ(nα) and d ≤ no(1) we can compute δ(x, y) in time
O((|x||y|)1−ε + |x|+ |y|) = O(((nd)(md))1−ε + (n+m)d) = O((nm)1−ε/2), contradicting
UOVH. This proves Theorem 4.1.3.
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Figure 4.4: Schematic illustration of the coordinate, vector, and normal-
ized vector gadgets, case 〈ai, bj〉 6= 0: Aligning VG(bj) with S achieves an
alignment cost of dρ0 + ρ1.

Correctness. We now prove correctness of our construction and refer to Figure 4.3
and 4.4 for an intuition for coordinate, vector, and normalized vector gadgets. Let
ρ0 := δ(0x,0y) = δ(0x,1y) = δ(1x,0y) and ρ1 := δ(1x,1y). Recall that ρ0 < ρ1.

Claim 4.1.4. For any i ∈ [n], j ∈ [m], if 〈ai, bj〉 = 0, then δ(VG(ai),VG(bj)) =
C + (d+ 1)ρ0. Otherwise, δ(VG(ai),VG(bj)) ≥ C + dρ0 + ρ1. Moreover, δ(S,VG(bj)) =
C + dρ0 + ρ1.

Proof. If 〈ai, bj〉 = 0, then the structured alignment Λ = {(1, 1), . . . , (d+ 1, d+ 1)} has a

cost of c(Λ) =
∑d+1

k=1 δ(CG(ai, k),CG(bj , k)) = (d+ 1)ρ0, since in each component k at
least one value is 0x or 0y, incurring a cost of ρ0 (indeed, even in position k = d+1, we have
CG(ai, d+ 1) = 0x). By definition of alignment gadgets, we obtain δ(VG(ai),VG(bj))−
C ≤ (d+ 1)ρ0. Moreover, since the cost c(Λ) of any alignment Λ ∈ Λd+1,d+1 consists of
d+ 1 summands of the form δ(ux, uy) with ux ∈ {0x,1x}, uy ∈ {0y,1y}, we also have
δ(VG(ai),VG(bj))− C ≥ (d+ 1)ρ0.

If 〈ai, bj〉 6= 0, then consider any Λ ∈ Λn,m. If |Λ| = d+ 1 then Λ = {(1, 1), . . . , (d+
1, d+1)}, and this alignment incurs a cost of at least dρ0+ρ1, since in at least one position k
we have CG(ai, k) = 1x and CG(bj , k) = 1y. Otherwise, if |Λ| < d+1, then c(Λ) consists
of d+ 1 summands of the form δ(ux, uy) with ux ∈ {0x,1x}, uy ∈ {0y,1y}, and at least
one of these summands is the punishment term maxk,` δ(CG(ai, k),CG(bj , `)) because
|Λ| < d+ 1. Since 〈ai, bj〉 = 1, the punishment term is ρ1 and we obtain c(Λ) ≥ dρ0 + ρ1.
By definition of alignment gadgets, we have δ(VG(ai),VG(bj))− C ≥ dρ0 + ρ1.

We argue similarly for δ(S,VG(bj)): The alignment {(1, 1), . . . , (d+1, d+1)} incurs a
cost of dρ0+ρ1, since the (d+1)-st components of S and VG(bj) are 1x and VG(bj , d+1) =
1y, respectively, while all other components of S are 0x. Moreover, any alignment with
|Λ| < d+ 1 incurs a punishment term, so that it incurs cost of at least dρ0 + ρ1.

Claim 4.1.5. For any i ∈ [n], j ∈ [m], if 〈ai, bj〉 = 0 then δ(NVG(ai),NVG(bj)) =
C + C ′ + (d+ 1)ρ0 =: ρ′0. Otherwise, δ(NVG(ai),NVG(bj)) = C + C ′ + dρ0 + ρ1 =: ρ′1.

Proof. Note that {(1, 1)}, {(2, 1)}, and ∅ are the only alignments in Λ2,1, which corre-
sponds to aligning (S,VG(bj)) or (VG(ai),VG(bj)) or nothing. Moreover, the structured
alignments are {(1, 1)} and {(2, 1)}. Observe that the cost of the alignment ∅ is simply
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the maximum of the other two alignments. By Claim 4.1.4, if 〈ai, bj〉 = 0 then the
minimal cost is C + (d+ 1)ρ0, attained by alignment {(2, 1)}. Otherwise, the minimal
cost is C + dρ0 + ρ1, attained by alignment {(1, 1)}. By definition of alignment gadgets,
this yields that δ(NVG(ai),NVG(bj)) − C ′ is equal to C + (d + 1)ρ0 or C + dρ0 + ρ1,
respectively.

The claim shows that δ(NVG(ai),NVG(bj)) attains one of only two values, depending
on whether 〈ai, bj〉 = 0.

Claim 4.1.6. If there is no i ∈ [n], j ∈ [m] with 〈ai, bj〉 = 0, then δ(x, y) ≥ C ′′ +mρ′1.
Otherwise, δ(x, y) ≤ C ′′ + (m− 1)ρ′1 + ρ′0.

Proof. If 〈ai, bj〉 6= 0 for all i, j, then the previous claim yields δ(NVG(ai),NVG(bj)) ≥ ρ′1
for all i, j. Since the cost of any alignment consists of m summands of the form
δ(NVG(ai),NVG(bj)) for some i, j, the cost of any alignment is at least mρ′1. By
definition of alignment gadgets, we obtain δ(x, y)− C ′′ ≥ mρ′1.

If 〈ai, bj〉 = 0 for some i, j, then consider the structured alignment Λ = {(∆ +
1, 1), . . . , (∆ +m,m)} with ∆ := i− j if i ≥ j, or ∆ := n+ i− j if i < j. Its cost consists
of m summands, one of which being δ(NVG(ai),NVG(bj)) = ρ′0 while all others are at
most ρ′1. Hence, the cost of Λ is at most (m− 1)ρ′1 + ρ′0 and by definition of alignment
gadgets, we obtain δ(x, y)− C ′′ ≤ (m− 1)ρ′1 + ρ′0.

By setting ρ := C ′′+ (m− 1)ρ′1 + ρ′0, we have found a threshold such that δ(x, y) ≤ ρ
if and only if there is a pair (i, j) with 〈ai, bj〉 = 0. Thus, computing δ(x, y) allows to
decide the given OV instance. This finishes the proof of Theorem 4.1.3.

4.2 Dynamic Time Warping

We present coordinate values and an unbalanced alignment gadget for DTW on one-
dimensional curves taking values in N0, i.e., we consider the set of inputs I :=

⋃
k≥0 Nk0.

We define the type of a sequence x ∈ I as type(x) := (|x|,
∑

i x[i],maxi x[i]).

Lemma 4.2.1. DTW admits coordinate values by setting

1x := 1100, 0x := 0110, 1y := 0011, 0y := 1010.

Proof. All four sequences have the same length, sum of all entries and maximum entry, so
they have equal type. Short calculations show that 4 = δDTW(1x,1y) > δDTW(0x,1y) =
δDTW(0x,0y) = δDTW(1x,0y) = 1.

Definition 4.2.2. Consider instances x1, . . . , xn ∈ Itx and y1, . . . , ym ∈ Ity with n ≥ m
and types tx = (`x, sx, zx), ty = (`y, sy, zy). We define M := 2z, where z := max{zx, zy}
is the largest value contained in any of the one-dimensional curves x1, . . . , xn, y1, . . . , ym,
and we set κ := 3(`x + `y). We construct

GAm,ty
x (x1, . . . , xn) := Mκ x1 M

κ x2 M
κ . . . Mκ xn M

κ,

GAn,tx
y (y1, . . . , ym) := Mκ y1 M

κ y2 M
κ . . . Mκ ym Mκ,

where Mκ is to be understood as a sequence with κ times the entry M .

Lemma 4.2.3. Definition 4.2.2 realizes an unbalanced alignment gadget for dynamic
time warping.
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Thus, Theorem 4.1.3 is applicable, ruling out O((nm)1−ε)-algorithms for DTW on
one-dimensional curves over N0 (under OVH and SETH). To restrict the alphabet further,
note that our coordinate values use the alphabet {0, 1} ⊆ N0 and each invocation of the
alignment gadget introduces a new symbol which is twice as large as the largest value
seen so far. Since in the proof of Theorem 4.1.3 we use alignment gadgets thrice, we
introduce the symbols 2, 4, and 8. In total, we prove quadratic-time hardness of DTW on
one-dimensional curves taking values in {0, 1, 2, 4, 8} ⊆ N0. This proves Theorems 2.1.1
and 2.1.3.

Proof of Lemma 4.2.3. Observe that the instance given by x := GAm,ty
x (x1, . . . , xn) and

y := GAn,tx
y (y1, . . . , ym) can be computed in time O((n+m)(`x + `y)), yielding sequences

of length O(n(`x + `y)) and O(m(`x + `y)), respectively. Moreover, type(x) and type(y)
only depend on tx, ty, n,m. It remains to show the inequalities (4.2) of Definition 4.1.1,
for which we set C := (n−m)(`xM − sx).

We start with the following useful observations.

Claim 4.2.4. Let ` ≥ 1 and a, a′, b, b′ ∈ N0. For any i ∈ [n], j ∈ [m], we have

(i) δDTW(xi,M
`) ≥ δDTW(xi,M) = `xM − sx ≥ `xM/2 and the analogous statement

δDTW(M `, yj) ≥ δDTW(M,yj) = `yM − sy ≥ `yM/2,

(ii) δDTW(xi, yj) < (`x + `y)M/2,

(iii) δDTW(x′,Mκ) ≥ κM/2 and δDTW(Mκ, y′) ≥ κM/2 for any substrings x′ of xi and
y′ of yj,

(iv) δDTW(MaxiM
a′ ,M byjM

b′) ≥ δDTW(xi, yj).

Proof. For (i), observe that each symbol of xi can only be traversed together with the
symbol M and hence,

δDTW(xi,M
`) ≥ δDTW(xi,M) =

`x∑
k=1

|M − xi[k]| = `xM −
`x∑
k=1

xi[k] = `xM − sx.

Since xi[k] ≤ z = M/2, we have sx ≤ `xM/2. The statement for yj is symmetric.
For (ii) and (iii), note that all symbols in x′ are in [0, z]. Hence, we obtain that

δDTW(xi, yj) ≤ max{|xi|, |yj |}·z < (`x+`y)M/2. Likewise, δDTW(x′,Mκ) ≥ κ(M−z) =
κM/2. The inequality for yj follows symmetrically.

To prove (iv), consider an optimal traversal T of MaxiM
a′ and M byjM

b′ . We
construct a traversal T ′ of xi and yj that has no larger cost. If T does not already
traverse xi[1] together with yj [1], then at some step in T either a symbol in xi is traversed
together with a symbol of the prefix M b or a symbol in yj is traversed together with a
symbol of the prefix Ma. Let us assume the first case, since the second is symmetric. A
contiguous part TH of T consists of traversing a prefix x′ of xi together with all symbols
in M b, incurring a cost of at least |x′|M/2. Let TR be the remaining part of T after
TH . We construct a traversal T ′′ of xiM

a′ and yjM
b′ as follows. We first traverse x′

together with yj [1] and then follow TR, which is possible since TR starts at yj [1]. Since
traversing x′ together with yj [1] incurs a cost of at most |x′|z = |x′|M/2, which is smaller
than the cost of TH , the cost of our constructed traversal T ′′ is no larger than the cost
of T . Symmetrically, we eliminate the suffixes Ma′ and M b′ and construct a traversal T ′

of xi and yj of cost no larger than T .
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Figure 4.5: Optimal traversal corresponding to structured alignment
Λ = {(∆ + j, j) | j ∈ [m]} ∈ Sn,m.

We first verify that

δDTW(x, y) ≤ (n−m)(`xM − sx) + min
Λ∈Sn,m

∑
(i,j)∈Λ

δDTW(xi, yj),

by designing a traversal (illustrated in Figure 4.5) that achieves this bound. Let Λ ∈ Sn,m
be the alignment minimizing the expression, and note that Λ = {(∆ + 1, 1), . . . , (∆ +
m,m)} for some 0 ≤ ∆ ≤ n −m. We first traverse Mκx1M

κ . . .Mκx∆ together with
the first symbol of y, M , which contributes a cost of

∑∆
i=1 δDTW(xi,M) = ∆(`xM − sx)

by Claim 4.2.4(i). For i = 1, . . . ,m we repeat the following: We traverse Mκx∆+i

together with Mκyi by traversing Mκ and Mκ simultaneously, and xi and yi in a
locally optimal manner; this incurs a cost of δDTW(x∆+i, yi) for each i. Finally, we
traverse the last block Mκ in y with the current block Mκ in x, and then traverse the
remainder x∆+m+1M

κ . . .MκxnM
κ of x together with the last symbol of y, M . The

total cost amounts to ∆(`xM − sx) +
∑m

i=1 δDTW(x∆+i, yi) + (n−∆−m)(`xM − sx) =
(n−m)(`xM − sx) +

∑
(i,j)∈Λ δDTW(xi, yj).

In the remainder of the proof, we verify that

δDTW(x, y) ≥ (n−m)(`xM − sx)

+ min
Λ∈Λn,m

[ ∑
(i,j)∈Λ

δDTW(xi, yj) + (m− |Λ|) max
i,j

δDTW(xi, yj)
]
.

Let T ∗ = ((a∗1, b
∗
1), . . . , (a∗t , b

∗
t )) be an optimal traversal of (x, y) (see Chapter 3 for the

definition of traversals). Substrings x′ of x and y′ of y are paired if for some index i in x′

and some index j in y′ we have (i, j) = (a∗t′ , b
∗
t′) for some 1 ≤ t′ ≤ t.

We call the i-th occurrence of Mκ in x the i-th M -block Mx
i of x, and similarly for y.

Let X := {Mx
i | i ∈ [n + 1]}, Y := {My

j | j ∈ [m + 1]} be the sets of all M -blocks of
x and y, respectively. We define a bipartite graph GM with vertex set X ∪ Y , where
M -blocks Mx

i and My
j are connected by an edge if and only if they are paired. We show

the following properties of GM .

Claim 4.2.5 (Planarity). For any paired Mx
i ,M

y
j and paired Mx

i′ ,M
y
j′ we have i ≤ i′

and j ≤ j′ (or i ≥ i′ and j ≥ j′).

Proof. By monotonicity of traversals, for k ≤ k′ we have a∗k ≤ a∗k′ and b∗k ≤ b∗k′ . Thus, if
x[a∗k] is in Mx

i and x[a∗k′ ] is in Mx
i′ , then i ≤ i′. Similarly, if y[b∗k] is in My

j and y[b∗k′ ] is
in My

j′ , then j ≤ j′. Hence, for any paired Mx
i ,M

y
j and Mx

i′ ,M
y
j′ we have i ≤ i′, j ≤ j′

or i ≥ i′, j ≥ j′.

Claim 4.2.6. GM has no isolated vertices.
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Proof. Assume that some M -block Mx
i is not paired with any M -block of y, and let i

be maximal with this property. Note that i < n+ 1, as the last M -block of x is always
paired with the last M -block of y. Then there is some j ∈ [m] such that Mx

i is paired
with yj , but Mx

i is not paired with any part of y outside yj . By maximality of i and
planarity, My

j+1 is paired with xi or Mx
i+1, as otherwise Mx

i+1 is not paired with any My
j′ .

We can find a cheaper traversal as follows. Consider the first time t1 at which the
traversal T ∗ is simultaneously at the first symbol of Mx

i and any symbol of yj (this exists
since Mx

i is paired to yj , but to no part of y outside yj), and any time t2 at which T ∗

is at My
j+1 and xi or at My

j+1 and Mx
i+1. Between t1 and t2, T ∗ has a cost of at least

δDTW(y′,Mκ), where y′ is any substring of yj . By Claim 4.2.4(iii), this is at least κM/2.
We replace this part of T ∗ by traversing (i) the remainder of yj with the first symbol
of Mx

i , (ii) Mx
i with the necessary part of My

j+1, and (iii) the necessary part of xi and
Mx
i+1 with the current symbol in y, M . By Claim 4.2.4(i), this incurs a cost of at most

δDTW(xi,M) + δDTW(yj ,M) = `xM − sx + `yM − sy ≤ (`x + `y)M . By our choice of
κ = 3(`x + `y), we improve the cost of the traversal, contradicting optimality of T ∗. This
shows that no vertex in X is isolated, we argue similarly for vertices in Y .

Claim 4.2.7. GM contains no path of length 3.

Proof. Assume that GM contains a path Mx
i −M

y
j −Mx

i′−M
y
j′ . Without loss of generality

we assume i < i′, the case i > i′ is symmetric. By planarity, we have j < j′. Since GM
has no isolated vertices and by planarity, every Mx

i′′ with i ≤ i′′ ≤ i′ is paired with My
j ,

so we can assume that i′ = i+ 1 (after replacing i with i′ − 1). Similarly, we can assume
j′ = j + 1, and the path is Mx

i −M
y
j −Mx

i+1 −M
y
j+1.

We can find a cheaper traversal as follows. Consider any time t1 at which the traversal
T ∗ is simultaneously at Mx

i and My
j (this exists since Mx

i and My
j are paired), and

consider any time t2 at which T ∗ is simultaneously at Mx
i+1 and My

j+1. Between t1 and t2,
T ∗ traverses xi with (parts of) My

j , and yj with (parts of) Mx
i+1, which by Claim 4.2.4(i)

incurs a cost of at least δDTW(xi,M) + δDTW(M,yj) ≥ (`x + `y)M/2. We replace this
part of T ∗ by traversing (i) the remaining parts of Mx

i and My
j , (ii) xi and yj (in a

locally optimal way), and (iii) the necessary parts of Mx
i+1 and My

j+1. This incurs a cost
of δDTW(xi, yj) < (`x + `y)M/2 (by Claim 4.2.4(ii)), which contradicts optimality of
T ∗.

By the above two claims, GM is a disjoint union of stars. By planarity and since GM
has no isolated vertices, the leaves of any star in GM have to be consecutive M -blocks.
Hence, we can write the components of GM as C1, . . . , Cs and C ′1, . . . , C

′
s′ with

Ck = {Mx
ik
} ∪ {My

jk
,My

jk+1, . . . ,M
y
jk+dk−1},

C ′k = {My
j′k
} ∪ {Mx

i′k
,Mx

i′k+1, . . . ,M
x
i′k+d′k−1}.

Claim 4.2.8. We have
∑s

k=1 dk = m− s′ + 1 and
∑s′

k=1 d
′
k = n− s+ 1.

Proof. Since the components C1, . . . , Cs and C ′1, . . . , C
′
s′ partition GM restricted to Y ,

we have s′ +
∑s

k=1 dk =
∑s′

k=1 |C ′k ∩ Y | +
∑s

k=1 |Ck ∩ Y | = |Y | = m + 1. The second
claim follows analogously.

We construct an alignment by aligning all those xi, yj that lie between two consecutive
components of GM . More formally, we define an alignment Λ by aligning (ik − 1, jk − 1)
(for all k ∈ [s] with ik, jk > 1) and aligning (i′k− 1, j′k− 1) (for all k ∈ [s′] with i′k, j

′
k > 1).

Since GM has no isolated vertices, Λ is a valid alignment. We have |Λ| = s+ s′− 1, since
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only the leftmost component of GM has ik = 1, jk = 1, i′k = 1, or j′k = 1, and all other
components give rise to exactly one aligned pair.

Let us calculate the cost of T ∗. Each yj that lies between the leaves of a star Ck
in GM (i.e., jk ≤ j < jk + dk) has to be traversed together with (parts of) Mx

ik
. By

Claim 4.2.4(i), this incurs a cost of at least δDTW(M,yj) = `yM − sy. Likewise, each xi
that lies between the leaves of a star C ′k incurs a cost of at least `xM − sx. For any
(i, j) ∈ Λ, xi is traversed together with a substring of MκyjM

κ, and yj is traversed
together with a substring of MκxiM

κ. Hence, there are a, a′, b, b′ ≥ 0 such that we
traverse MaxiM

a′ together with M byjM
b′ . By Claim 4.2.4(iv), this incurs a cost of at

least δDTW(xi, yj). In total, the cost of the optimal traversal T ∗ is

δDTW(x, y) ≥
s∑

k=1

(dk − 1)(`yM − sy) +
s′∑
k=1

(d′k − 1)(`xM − sx) +
∑

(i,j)∈Λ

δDTW(xi, yj).

By Claim 4.2.8, we have
∑s

k=1(dk − 1) = m − (s + s′ − 1) = m − |Λ|. Similarly,∑s′

k=1(d′k−1) = n−|Λ| = (n−m)+(m−|Λ|). Additionally bounding `yM−sy+`xM−sx ≥
(`x + `y)M/2 > maxi,j δDTW(xi, yj), we obtain the desired inequality

δDTW(x, y) ≥ (m−|Λ|) max
i,j

δDTW(xi, yj)+(n−m)(`xM−sx)+
∑

(i,j)∈Λ

δDTW(xi, yj).

4.3 Longest Common Subsequence

In this section, we present an alignment gadget (and thus a hardness proof) for LCS, which
is simpler than for the more general problem Edit(cdel-x, cdel-y, cmatch, csubst) in Section 4.4.
Recall that we denote by LCS(x, y) a longest common subsequence of x and y, and by
L(x, y) the length of any longest common subsequence of x and y. Note that LCS is a
maximization problem, but Definition 4.1.1 implicitly assumes a minimization problem,
so we instead consider the number of unmatched symbols δLCS(x, y) := |x|+|y|−2·L(x, y)
for binary strings x, y. This is equivalent to Edit(cdel-x, cdel-y, cmatch, csubst) for cdel-x =
cdel-y = 1, cmatch = 0, and csubst = 2.

We present an alignment gadget and coordinate values for LCS over binary strings,
i.e., we consider the set of inputs I :=

⋃
k≥0{0, 1}k. Here, the type of a binary string x

is defined as type(x) := (`, s), where ` = |x| and s =
∑

i xi denotes the number of ones
in x.

Lemma 4.3.1. LCS admits coordinate values by setting

1x := 11100, 0x := 10011, 1y := 00111, 0y := 11001.

Proof. All four strings have the same length and the same number of ones, so they
have equal type. Short calculations show that LCS(1x,1y) = 111, LCS(1x,0y) = 1100,
LCS(0x,1y) = 0011, and LCS(0x,0y) = 1001. Thus, 4 = δLCS(1x,1y) > δLCS(1x,0y) =
δLCS(0x,1y) = δLCS(0x,1y) = 2.

Definition 4.3.2. Consider instances x1, . . . , xn ∈ Itx and y1, . . . , ym ∈ Ity with n ≥ m
and types tx = (`x, sx), ty = (`y, sy). Set γ1 := `x + `y, γ2 := 6(`x + `y), γ3 := 10(`x +
`y) + 2sx − `x, γ4 := 13(`x + `y). We guard the input strings by blocks of zeroes and
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ones, setting G(z) := 1γ20γ1z0γ11γ2. We define the alignment gagdet as

x := G(x1) 0γ3 G(x2) 0γ3 . . . G(xn−1) 0γ3 G(xn),

y := 0nγ4 G(y1) 0γ3 G(y2) 0γ3 . . . G(ym−1) 0γ3 G(ym) 0nγ4 .

Lemma 4.3.3. Definition 4.3.2 realizes an alignment gadget for LCS.

Thus, Theorem 4.1.3 is applicable, implying a lower bound of O(m2−ε) for LCS. We
remark that our construction is not an unbalanced alignment gadget, as the length of y
grows linearly in n, not necessarily in m ≤ n. Thus, we do not obtain a conditional lower
bound of O((nm)1−ε) (for m ≈ nα for any 0 < α < 1). Indeed, in Chapter 6, we will see
that this is impossible without refuting SETH.

Proof of Lemma 4.3.3. Observe that indeed x only depends on m, ty, and x1, . . . , xn,
and type(x) only depends on n,m, tx, and ty, and similarly for y. Moreover, x and y
can clearly be constructed in time O((n+m)(`x + `y)).

It remains to prove that by setting C := 2nγ4 we have

min
Λ∈Λn,m

c(Λ) ≤ δLCS(x, y)− C ≤ min
Λ∈Sn,m

c(Λ). (4.3)

For convenience, we collect here three useful observations. Recall that for a string z
and indices a ≤ b, we denote the substring from z[a] to z[b] by z[a..b].

Fact 4.3.4. Let x and z1, . . . , zk be binary strings. Set z = z1 . . . zn. Then we have

δLCS(x, z) = min
x(z1),...,x(zk)

k∑
j=1

δLCS(x(zj), zj),

where x(z1), . . . , x(zk) range over all ordered partitions of x into k substrings, i.e.,
x(z1) = x[i0 + 1..i1], x(z2) = x[i1 + 1..i2], . . . , x(zk) = x[ik−1 + 1..ik] for any 0 = i0 ≤
i1 ≤ . . . ≤ ik = |x|.

Proof. This claim is a specialization of Fact 3.5.1 to the case of LCS.

The following additional fact has been proven in Section 3.5 as well.

Fact 3.5.3. Let z, w be arbitrary strings and `, k ∈ N0. Then we have

(i) δLCS(1kz, 1kw) = δLCS(z, w),

(ii) δLCS(1kz, w) ≥ δLCS(z, w)− k, and

(iii) δLCS(0`z, 1kw) ≥ min{k, δLCS(z, 1kw) + `}.

We obtain symmetric statements by flipping all bits and by reversing all involved strings.

Finally, we use the following lemma to handle prefixes (and suffixes) of x and y.

Claim 4.3.5. Let ` ≥ 0. For any prefix x′ of x we have δLCS(x′, 0`) ≥ `. Moreover, if
x′ is of the form G(x1)0γ3 . . .G(xi)0

γ3 for some 0 ≤ i < n and ` ≥ i · (2γ2 + sx), then
δLCS(x′, 0`) = `. Symmetric statements hold for any suffix of x.
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Figure 4.6: Optimal traversal corresponding to structured alignment
Λ = {(∆ + j, j) | j ∈ [m]} ∈ Sn,m.

Proof. We first show that for any i ∈ [n] the string G(xi)0
γ3 contains as many ones as

zeroes, and any prefix of G(xi)0
γ3 contains at least as many ones as zeroes. To this end,

note that each xi has length `x and contains sx ones, so that the number of ones of
G(xi)0

γ3 is 2γ2 + sx, while the number of zeroes is `x − sx + 2γ1 + γ3, and we chose γ3

such that both values are equal. For a prefix, note that G(xi) starts with γ2 ones. Since
each G(xi) contains 2γ1 + `x − sx ≤ γ2 zeroes, any prefix of G(xi) has as most as many
zeroes as ones. Thus, we would have to advance to 0γ3 to see more zeroes than ones,
however, even G(xi)0

γ3 does not contain more zeroes than ones.
Hence, any prefix x′ of x contains at least as many ones as zeroes, implying L(x′, 0`) ≤

|x′|/2. This yields δLCS(x′, 0`) = |x′| + |0`| − 2L(x′, 0`) ≥ `. If x′ is of the form
G(x1)0γ3 . . .G(xi)0

γ3 and sufficiently many zeroes are available in 0`, then we have
equality.

Let us give names to the substrings consisting only of zeroes in x and y. In x, we
denote the 0γ3-block after G(xi) by Zx

i , i ∈ [n− 1]. In y, we denote the 0γ3-block after
G(yj) by Zy

j , j ∈ [m− 1]. Moreover, we denote the prefix 0nγ4 by Ly and the suffix 0nγ4

by Ry.
We now show the upper bound of (4.3), i.e., δLCS(x, y) ≤ 2nγ4 + minΛ∈Sn,m c(Λ).

Consider a structured alignment Λ = {(∆ + 1, 1), . . . , (∆ +m,m)} ∈ Sn,m. We construct
an ordered partition of x as in Fact 4.3.4 by setting (see Figure 4.6)

x(G(yj)) := G(x∆+j) for j ∈ [m],

x(Zy
j ) := Zx

∆+j for j ∈ [m− 1],

x(Ly) := G(x1)Zx
1 . . .G(x∆)Zx

∆,

x(Ry) := Zx
∆+mG(x∆+m+1) . . . Zx

n−1G(xn).

Note that these strings indeed partition x and y, respectively. Thus, Fact 4.3.4 yields

δLCS(x, y) ≤ δLCS(x(Ly), Ly) + δLCS(x(Ry), Ry)

+

m∑
j=1

δLCS(G(x∆+j),G(yj)) +

m−1∑
j=1

δLCS(Zx
∆+j , Z

y
j ).

Since Ly = 0nγ4 and x(Ly) is a prefix of x of the correct form, by Claim 4.3.5 we have
δLCS(x(Ly), Ly) = nγ4 (note that γ4 is chosen sufficiently large to make Claim 4.3.5
applicable). Similarly, we obtain δLCS(x(Ry), Ry) = nγ4. Since Zx

i = Zy
j = 0γ3 , we have

δLCS(Zx
∆+j , Z

y
j ) = 0. Finally, by matching the guarding ones and zeroes of G(x∆+j) =

1γ20γ1x∆+j0
γ11γ2 and G(yj) = 1γ20γ1yj0

γ11γ2 we obtain that δLCS(G(x∆+j),G(yj)) ≤
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δLCS(x∆+j , yj). Hence we have

δLCS(x, y) ≤ 2nγ4 +
∑

(i,j)∈Λ

δLCS(xi, yj).

As Λ ∈ Sn,m was arbitrary, we proved δLCS(x, y) ≤ 2nγ4 + minΛ∈Sn,m c(Λ), as desired.
It remains to prove the lower bound of (4.3), i.e., δLCS(x, y) ≥ 2nγ4 +minΛ∈Λn,m c(Λ).

As in Fact 4.3.4, let x(Ly), x(G(yj)) for j ∈ [m], x(Zy
j ) for j ∈ [m − 1], x(Ry) be an

ordered partition of x such that

δLCS(x, y) = δLCS(x(Ly), Ly) + δLCS(x(Ry), Ry)

+
m∑
j=1

δLCS(x(G(yj)),G(yj)) +
m−1∑
j=1

δLCS(x(Zy
j ), Zy

j ).

Clearly, we can bound δLCS(x(Zy
j ), Zy

j ) ≥ 0. Since Ly = 0nγ4 and x(Ly) is a prefix of x, by
Claim 4.3.5 we have δLCS(x(Ly), Ly) ≥ nγ4, and similarly we get δLCS(x(Ry), Ry) ≥ nγ4.
It remains to construct an alignment Λ ∈ Λn,m satisfying

c(Λ) ≤
m∑
j=1

δLCS(x(G(yj)),G(yj)), (4.4)

then together we have shown the desired inequality δLCS(x, y) ≥ 2nγ4 + minΛ∈Λn,m c(Λ).
Let us construct such an alignment Λ. For any j ∈ [m], if x(G(yj)) contains more

than half of some xi′ (which is part of G(xi′)), then let i be the leftmost such index and
align i and j. Note that the set Λ of all these aligned pairs (i, j) is a valid alignment
in Λn,m, since no xi or yj can be aligned more than once.

Since by definition, we have c(Λ) =
∑

(i,j)∈Λ δLCS(xi, yj)+(m−|Λ|) maxi,j δLCS(xi, yj)
and since maxi,j δLCS(xi, yj) ≤ maxi,j(|xi| + |yj |) = `x + `y, in order to show (4.4) it
suffices to prove the following two claims.

Claim 4.3.6. For any aligned pair (i, j) ∈ Λ, it holds that δLCS(x(G(yj)),G(yj)) ≥
δLCS(xi, yj).

Proof. Recall that x(G(yj)) contains more than half of xi. First consider the case
that x(G(yj)) touches not only G(xi) but also G(xi′) for some i′ 6= i. As between xi
and G(xi′) there is at least one block of zeroes 0γ3 and half of the guarding of G(xi)
(i.e., 1γ20γ1 or 0γ11γ2), we obtain |x(G(yj))| ≥ |0γ3 | + |1γ20γ1 | = γ3 + γ2 + γ1. Thus,
any matching of x(G(yj)) and G(yj) leaves at least |x(G(yj))| − |G(yj)| ≥ (γ3 + γ2 +
γ1) − (2γ2 + 2γ1 + `y) = γ3 − γ2 − γ1 − `y ≥ `x + `y unmatched symbols, implying
δLCS(x(G(yj)),G(yj)) ≥ `x + `y ≥ δLCS(xi, yj).

Now consider the remaining case, where x(G(yj)) touches no other G(xi′). In this
case, x(G(yj)) is a substring of 0γ3G(xi)0

γ3 , i.e., we can write x(G(yj)) as 0hLz0hR , where
z is a substring of G(xi). Since G(yj) starts with γ2 ones, by Fact 3.5.3(iii) we have
δLCS(x(G(yj)),G(yj)) ≥ min{γ2, δLCS(z0hR ,G(yj))}. Since γ2 ≥ `x + `y ≥ δLCS(xi, yj),
it suffices to bound δLCS(z0hR ,G(yj)) from below. By a symmetric argument, we elimi-
nate the block 0hR and only have to bound δLCS(z,G(yj)) from below. We can assume
that |z| > |G(yj)| − γ2, since otherwise δLCS(z,G(yj)) ≥ γ2 ≥ `x + `y ≥ δLCS(xi, yj).
Thus, we have G(yj) = 1γ20γ1yj0

γ11γ2 and can write z as 1rL0γ1xi0
γ11rR with rL, rR > 0.

By Fact 3.5.3(i) we have δLCS(z,G(yj)) = δLCS(0γ1xi0
γ11rR , 1γ2−rL0γ1yj0

γ11γ2). By
Fact 3.5.3(iii), this yields δLCS(z,G(yj)) ≥ min{γ1, δLCS(0γ1xi0

γ11rR , 0γ1yj0
γ11γ2)}, and
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since γ1 ≥ `x + `y ≥ δLCS(xi, yj) it suffices to bound the latter term. By a sym-
metric argument we eliminate the ones on the right side, and it suffices to bound
δLCS(0γ1xi0

γ1 , 0γ1yj0
γ1). Using Fact 3.5.3(i) twice, this is equal to δLCS(xi, yj). Hence,

we have shown the desired inequality δLCS(x(G(yj)),G(yj)) ≥ δLCS(xi, yj).

Claim 4.3.7. If j is unaligned in Λ, then δLCS(x(G(yj)),G(yj)) ≥ `x + `y.

Proof. Since x(G(yj)) contains less than half of any xi, examining the structure of x
we see that x(G(yj)) is a substring3 of P := xi0

γ11γ20γ31γ20γ1xi+1 for some 1 ≤ i < n,
where at most half of xi and xi+1 can be part of x(G(yj)). If x(G(yj)) contains ones
to the left and to the right of 0γ3 in P , then x(G(yj)) contains at least γ3 zeroes.
Since G(yj) contains 2γ1 + `y − sy ≤ 2γ1 + `y zeroes, at most 2γ1 + `y zeroes of
x(G(yj)) can be matched, leaving at least γ3 − 2γ1 − `y unmatched zeroes. Thus,
δLCS(x(G(yj)),G(yj)) ≥ γ3 − 2γ1 − `y ≥ `x + `y. Otherwise, if x(G(yj)) contains only
ones to the left of 0γ3 in P (or only to the right), then x(G(yj)) contains at most γ2 + `x
ones. Thus, among the 2γ2 + sy ≥ 2γ2 ones of G(yj) at least γ2 − `x ones remain
unmatched, implying δLCS(x(G(yj)),G(yj)) ≥ γ2 − `x ≥ `x + `y.

This finishes the proof of Lemma 4.3.3.

Remark 4.3.8. Our construction of the alignment gadget provides some liberty to adapt
its parameters. E.g., prepending or appending further zeroes to y does not change the
length of the LCS, i.e., L(x, 0βy0β

′
) = L(x, y) for all β, β′ ≥ 0. This property might be

useful for future applications of the alignment gadget. In particular, in Chapter 5, we
exploit this property to give our hardness proofs for binary alphabets.

4.4 Edit Distance

To classify the complexity of all cost choices for the edit distance, we first identify the
trivial cases of Edit(cdel-x, cdel-y, cmatch, csubst) that can be solved in constant time. For all
other cases, we present a reduction from Edit(cdel-x, cdel-y, cmatch, csubst) to Edit(c′subst) =
Edit(1, 1, 0, c′subst) and vice versa, over binary alphabet, in Section 4.4.1. Then in
Section 4.4.2, we prove a conditional lower bound of O(m2−ε) for Edit(csubst) by applying
our alignment gadget framework.

4.4.1 Equivalences of Edit Distance Variants

All of our reductions between variants of the edit distance are of the following form.
Consider two arbitrary cost variants E1 = Edit(cdel-x, cdel-y, cmatch, csubst) and E2 =
Edit(c′del-x, c

′
del-y, c

′
match, c

′
subst) and denote the cost of any traversal T with respect to Ei

by δEi(T ). We say that E1 and E2 are equivalent, if there are constants α, β such that
for any traversal T we have δE1(T ) = α · δE2(T ) + β. Then the complexity of computing
E1 and E2 is asymptotically equal.

Lemma 4.4.1. Edit(cdel-x, cdel-y, cmatch, csubst) can be solved in constant time if csubst =
cmatch or cdel-x + cdel-y ≤ min{cmatch, csubst}. Otherwise, Edit(cdel-x, cdel-y, cmatch, csubst)
on binary strings is equivalent to Edit(c′subst) on binary strings for some 0 < c′subst ≤ 2.

3Actually x(G(yj)) could also be a substring of 1γ20γ1x1 or of xn0γ11γ2 . We treat these border cases
by setting x0 := x1 and xn+1 := xn and letting from now on 0 ≤ i ≤ n.
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Note that by this lemma, hardness for general rational cost parameters follows by
proving hardness of Edit(c′subst) for 0 < c′subst ≤ 2. We remark that a characterization as
in Lemma 4.4.1 (for the case of cmatch = 0) has also been obtained in [RBN97].

Proof of Lemma 4.4.1. Let x, y be strings of length n,m. By symmetry, we may assume
that n ≥ m. Observe that we can write the cost of any traversal T with respect to
Edit(cdel-x, cdel-y, cmatch, csubst) as

δEdit(T ) = A · cmatch +B · csubst + C · (cdel-x + cdel-y) + (n−m) · cdel-x,

for some A,B,C ≥ 0 with A + B + C = m, since matchings and substitutions touch
as many symbols in x as in y, so that we need exactly n−m more deletions in x than
deletions in y.

If cdel-x+cdel-y ≤ min{cmatch, csubst}, then we can replace any matching or substitution
by a deletion in x and a deletion in y without increasing the cost. Thus, an optimal
traversal has C = m and minimal cost n · cdel-x +m · cdel-y, which can be computed in
constant time. Similarly, if cmatch = csubst, then the minimal cost is independent of the
symbols in x and y. We may arbitrarily set A+B and C subject to A+B+C = m and
A+B,C ≥ 0; the resulting minimal cost is m ·min{cmatch, cdel-x + cdel-y}+ (n−m)cdel-x,
which again can be computed in constant time.

Now assume that cmatch 6= csubst and cdel-x + cdel-y > min{cmatch, csubst}. Restricting
our attention to binary strings, by flipping all symbols in y but not in x we can swap
the costs of matching and substitution. Thus, we may assume that csubst > cmatch (and
cdel-x + cdel-y > cmatch). We set

c′subst := α(csubst − cmatch), where α := 2
cdel-x+cdel-y−cmatch

.

One can easily verify that for any traversal T with cost δEdit(T ) = A · cmatch +B · csubst +
C · (cdel-x + cdel-y) + (n−m) · cdel-x (with respect to Edit(cdel-x, cdel-y, cmatch, csubst)) we
have

αδEdit(T )− αm · cmatch + (n−m)(1− αcdel-x) = B · c′subst + C · 2 + (n−m).

Observe that the latter is the cost of T with respect to Edit(c′subst). Hence, this proves that
Edit(c′subst) is equivalent to Edit(cdel-x, cdel-y, cmatch, csubst). Finally, note that c′subst > 0.
If c′subst > 2, then we can replace it by 2 without changing the cost of the optimal
traversal, since we can replace any substitution (of cost 2) by a deletion and an insertion
(both of cost 1). This yields 0 < c′subst ≤ 2.

Finally, particularly to allow the algorithm given in Section 6.1 to handle also non-
integer cost choices, we provide a simple reduction from rational cost choices to integer
cost choices.

Fact 4.4.2. Edit(cdel-x, cdel-y, cmatch, csubst) (with rational cost parameters cdel-x, cdel-y,
cmatch and csubst) is equivalent to Edit(c′del-x, c

′
del-y, c

′
match, c

′
subst) for some positive integers

c′del-x, c′del-y, c′match and c′subst.

Proof. Since we always assume all operation costs to be rationals, without loss of
generality cdel-x, cdel-y, cmatch and csubst have a common denominator D. We obtain
positive integral operation costs by setting c′del-x := Dcdel-x +M , c′del-y := Dcdel-y +M ,
c′match := Dcmatch + 2M , c′subst := Dcsubst + 2M for a sufficiently large integer M . Both
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variants are equivalent, since δEdit(T ) is changed to

DδEdit(T ) +m · 2M + (n−m) ·M.

4.4.2 Hardness Proof

In this section, we study the edit distance with matching cost 0, deletion and insertion
cost 1, and substitution cost 0 < csubst ≤ 2. As for LCS, we consider the set of inputs
I :=

⋃
k≥0{0, 1}k and define the type of a binary string x ∈ I as type(x) := (|x|,

∑
i x[i]).

Lemma 4.4.3. Edit(csubst) admits coordinate values by setting

1x := 11100, 0x := 10011, 1y := 00111, 0y := 11001.

Proof. All four strings have the same length and the same number of ones, so they
have equal type. Using Fact 3.5.2(i), we have δEdit(0x,0y) = δEdit(10011, 11001) =
δEdit(0011, 1001) = δEdit(001, 100). Depending on the value of csubst, the optimal
traversal of (001, 100) is either to delete both ones or to substitute the first and last sym-
bols. This yields δEdit(001, 100) = min{2, 2csubst}. Similarly, we obtain δEdit(1x,0y) =
δEdit(0x,1y) = δEdit(0x,0y) = min{2, 2csubst} and δEdit(1x,1y) = δEdit(11100, 00111) =
min{4, 4csubst}. Hence, δEdit(1x,1y) > δEdit(1x,0y) = δEdit(0x,1y) = δEdit(0x,0y).

Definition 4.4.4. Consider instances x1, . . . , xn ∈ Itx and y1, . . . , ym ∈ Ity with n ≥ m
and types tx = (`x, sx), ty = (`y, sy). We define the parameters ρ := 2d1/csubste,
γ1 := 10ρ(`x + `y), γ2 := 6ργ1 + 5sx − `x, and γ3 := 2γ2 (since csubst is constant, these
parameters are Θ(`x + `y)).

To guard a string by blocks of zeroes and ones, we set G(z) := (1γ10γ1)ρz(0γ11γ1)ρ.
Now the alignment gagdet is

x := G(x1) 0γ2 G(x2) 0γ2 . . . G(xn−1) 0γ2 G(xn),

y := 0nγ3 G(y1) 0γ2 G(y2) 0γ2 . . . G(ym−1) 0γ2 G(ym) 0nγ3 .

Let us provide some intuition on the more complex guarding G(z) (compared to the
simpler guarding for LCS): Consider a block B = (1γ0γ)ρ. Clearly, B can be completely
matched to B, resulting in a cost of 0. Consider a slight perturbation B′ of B by
prepending ∆ ones and deleting the last ∆ zeroes. Then the edit distance of B and B′

is at most 2∆, since we may delete the prepended ones in B′ and the additional zeroes
at the end of B. Another upper bound for the edit distance of B and B′ is 2ρ ·∆csubst,
since we may match the first γ ones, then substitute the next ∆ symbols, then match
the next γ − ∆ zeroes, and so on. By choosing ρ := 2d1/csubste, the traversal using
substitutions is more expensive, and indeed we prove that then the edit distance is at
least 2∆. This provides a building block which avoids substitutions and where slight
perturbations are severely punished. Thus, our guarding G(z) = (1γ10γ1)ρz(0γ11γ1)ρ

ensures that an optimal traversal of G(x) and G(y) aligns x and y, and this also holds
after small perturbations.

Lemma 4.4.5. For any 0 < csubst ≤ 2, Definition 4.4.4 realizes an alignment gadget for
Edit(csubst).

Thus, Theorem 4.1.3 is applicable, implying a lower bound of O(m2−ε) for Edit(csubst).
Combining this with Lemma 4.4.1 proves Theorem 2.1.2. We remark that our construction
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is not an unbalanced alignment gadget, as the length of y grows linearly in n, not
necessarily in m. Thus, we do not obtain a conditional lower bound of O((nm)1−ε) (i.e.,
not for m ≈ nα for all 0 < α < 1), which in fact is ruled out by the algorithmic result of
Theorem 2.1.4.

To prepare the proof of Lemma 4.4.5, we recall the following observation proven in
Chapter 3.

Fact 3.5.2. Let x, y, z be arbitrary strings and `, k ∈ N0. Then we have

(i) δEdit(1
kx, 1ky) = δEdit(x, y),

(ii) δEdit(x, y) ≥
∣∣|x| − |y|∣∣, and

(iii) |δEdit(xz, y)− δEdit(x, y)| ≤ |z|.

We obtain symmetric statements of (i) by replacing all 1’s by 0’s and by reversing all
involved strings.

Furthermore, we need the following technical lemma.

Fact 4.4.6. Let `,m, r ≥ 0. Then for any x ∈ {0`1m0r, 1m−`−r, 1m−`0r, 0`1m−r} we
have δEdit(x, 1

m) ≥ |`− r|+ csubst ·min{`, r}.

Proof. Fact 3.5.2(ii) yields δEdit(0
`1m0r, 1m), δEdit(1

m−`−r, 1m) ≥ `+ r ≥ |`− r|+ csubst ·
min{`, r}, since csubst ≤ 2. For x = 0`1m−r, consider any optimal traversal T . If T
substitutes s zeroes and deletes the remaining `−s zeroes, then δEdit(0

`1m−r, 1m) = csubst·
s+ (`− s) + δEdit(1

m−r, 1m−s). By Fact 3.5.2(i), δEdit(1
m−r, 1m−s) = δEdit(ε, 1

|r−s|) =
|r− s|, where ε is the empty string. Hence, δEdit(0

`1m−r, 1m) = min0≤s≤`{csubst · s+ `−
s+ |r − s|}. A short case analysis shows that this term is minimized for s = min{`, r},
where it evaluates to csubst ·min{`, r}+ `+ r − 2 min{`, r} = csubst ·min{`, r}+ |`− r|.
The case x = 1m−`0r is symmetric.

Recall that for a string y and indices a ≤ b, we denote the substring from y[a] to y[b]
by y[a..b], and let us restate the following fact from Chapter 3.

Fact 3.5.1 (Optimal Partitions). Let x and y1, . . . , yk be arbitrary strings. Set y =
y1 . . . yk. Then we have

δEdit(x, y) = min
x(y1),...,x(yk)

k∑
j=1

δEdit(x(yj), yj),

where x(y1), . . . , x(yk) ranges over all ordered partitions of x into k substrings, i.e.,
x(y1) = x[i0 + 1..i1], x(y2) = x[i1 + 1..i2], . . . , x(yk) = x[ik−1 + 1..ik] for any 0 = i0 ≤
i1 ≤ . . . ≤ ik = |x|.

Proof of Lemma 4.4.5. From now on let x, y be as in Definition 4.4.4. Observe that
indeed x only depends on m, ty, and x1, . . . , xn, and type(x) only depends on n,m, tx,
and ty, and similarly for y. Moreover, x and y can clearly be constructed in time
O((n+m)(`x + `y)), where `x = |x1| = . . . = |xn| and `y = |y1| = . . . = |ym|.

It remains to prove that for some C, we have

min
Λ∈Λn,m

c(Λ) ≤ δEdit(x, y)− C ≤ min
Λ∈Sn,m

c(Λ). (4.5)
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Figure 4.7: Optimal traversal corresponding to structured alignment
Λ = {(∆ + j, j) | j ∈ [m]} ∈ Sn,m.

We set
C := 2nγ3 − β(n−m)(γ4 + γ2),

where
β := 1− csubst/5 and γ4 := 4ργ1 + `x.

Note that γ4 is the length of G(xi).
Let us give names to the substrings consisting only of zeroes in x and y. In x, we

denote the 0γ2-block after G(xi) by Zx
i , i ∈ [n− 1]. In y, we denote the 0γ2-block after

G(yj) by Zy
j , j ∈ [m− 1]. Moreover, we denote the prefix 0nγ3 by Ly and the suffix 0nγ3

by Ry.
We first prove the crucial property that for any prefix x′ of x the distance δEdit(x

′, Ly)
is essentially |Ly| − β|x′| = nγ3 − β|x′|. This is due to a careful choice of the parame-
ters γ1, γ2, ρ.

Claim 4.4.7. For any prefix x′ of x we have δEdit(x
′, Ly) ≥ |Ly| − β|x′| = nγ3 − β|x′|,

with equality if x′ is of the form G(x1)0γ2 . . .G(xi)0
γ2 for any 0 ≤ i < n. Symmetric

statements hold for δEdit(x
′′, Ry) where x′′ is any suffix of x.

Proof. The parameter γ3 is chosen such that |x′| ≤ |x| ≤ |Ly|: Indeed, |x| ≤ n(4ργ1 +`x+
γ2) ≤ n · 2γ2 ≤ nγ3 = |Ly|. Observe that all zeroes of x′ can be matched to zeroes of Ly,
while all ones of x′ have to be substituted. The remaining zeroes of Ly have to be deleted.
Denoting the number of ones in x′ by `, we obtain δEdit(x

′, Ly) = ` · csubst + (|Ly| − |x′|).
We will show ` ≥ |x′|/5, with equality if x′ has the special form as in the statement. In
other words, the relative number of ones `/|x′| is at least 1/5, with equality if x′ has the
special form. This implies δEdit(x

′, Ly) ≥ nγ3 − β|x′|, with equality if x′ has the special
form.

Note that each xi has length `x and contains sx ones, and consequently, G(xi)Z
x
i =

(1γ10γ1)ρxi(0
γ11γ1)ρ0γ2 contains 2ργ1 + (`x − sx) + γ2 zeroes and 2ργ1 + sx ones. The

parameter γ2 is chosen so that the number of zeroes is four times the number of ones,
implying that the relative number of ones is 1/5. Note that any prefix of (1γ10γ1)ρ

has relative number of ones at least 1/2. Since xi0
γ1 has less than 2γ1 zeroes and

|(1γ10γ1)ρ| ≥ 2γ1, any prefix of (1γ10γ1)ρxi0
γ1 has relative number of ones at least 1/4.

Since any prefix of 1γ1(0γ11γ1)ρ−1 has relative number of ones at least 1/2, any prefix of
(1γ10γ1)ρxi(0

γ11γ1)ρ has relative number of ones at least 1/4. The relative number of ones
decreases by adding any prefix of 0γ2 , however, for the final string (1γ10γ1)ρxi(0

γ11γ1)ρ0γ2 ,
we already argued that the relative number of ones is 1/5. This shows that the relative
number of ones of any prefix of x is at least 1/5.

We now show the upper bound of (4.5), i.e., we prove that δEdit(x, y) ≤ C +
minΛ∈Sn,m

∑
(i,j)∈Λ δEdit(xi, yj). To this end, consider a structured alignment Λ =
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{(∆ + 1, 1), . . . , (∆ + m,m)} ∈ Sn,m. We construct an ordered partition of x as in
Fact 3.5.1 by setting, as illustrated in Figure 4.7,

x(G(yj)) := G(x∆+j) for j ∈ [m],

x(Zy
j ) := Zx

∆+j for j ∈ [m− 1],

x(Ly) := G(x1)Zx
1 . . .G(x∆)Zx

∆,

x(Ry) := Zx
∆+mG(x∆+m+1) . . . Zx

n−1G(xn).

Note that indeed these strings partition x and y, respectively. Thus, Fact 3.5.1 yields

δEdit(x, y) ≤ δEdit(x(Ly), Ly) + δEdit(x(Ry), Ry)+

m∑
j=1

δEdit(G(x∆+j),G(yj)) +

m−1∑
j=1

δEdit(Z
x
∆+j , Z

y
j ).

Since x(Ly) is a prefix of x of the correct form, by Claim 4.4.7 we have δEdit(x(Ly), Ly) =
nγ3 − β|x(Ly)|. Symmetrically, we obtain δEdit(x(Ry), Ry) = nγ3 − β|x(Ry)|. Note that
|G(xi)Z

x
i | = γ4 + γ2, so that |x(Ly)| + |x(Ry)| = (n − m)(γ4 + γ2). Moreover, as

Zx
i = Zy

j = 0γ2 we have δEdit(Z
x
∆+j , Z

y
j ) = 0. Finally, by matching all guarding zeroes

and ones of G(x∆+j) = (1γ10γ1)ρx∆+j(0
γ11γ1)ρ and G(yj) = (1γ10γ1)ρyj(0

γ11γ1)ρ we
conclude δEdit(G(x∆+j),G(yj)) ≤ δEdit(x∆+j , yj). This yields

δEdit(x, y) ≤ 2nγ3 − β(n−m)(γ4 + γ2) +
m∑
j=1

δEdit(x∆+j , yj) = C +
∑

(i,j)∈Λ

δEdit(xi, yj).

As Λ ∈ Sn,m was arbitrary, the desired inequality follows.
It remains to prove the lower bound of (4.5), i.e., δEdit(x, y) ≥ C + minΛ∈Λn,m c(Λ).

As in Fact 3.5.1, let x(Ly), x(G(yj)) for j ∈ [m], x(Zy
j ) for j ∈ [m − 1], x(Ry) be an

ordered partition of x such that

δEdit(x, y) = δEdit(x(Ly), Ly) + δEdit(x(Ry), Ry)

+
m∑
j=1

δEdit(x(G(yj)),G(yj)) +
m−1∑
j=1

δEdit(x(Zy
j ), Zy

j ).

We define an alignment Λ as follows. If there is some i such that xi is contained in
x(G(yj)), then align j with any such i. Otherwise leave j unaligned.

Claim 4.4.8. We have

δEdit(x(G(yj)),G(yj)) ≥ β(γ4−|x(G(yj))|)+

{
δEdit(xi, yj) if j is aligned to i,

maxi,j′ δEdit(xi, yj′) if j is unaligned.

Proof. If |x(G(yj))| ≥ γ2, it holds that |x(G(yj))| ≥ γ2 ≥ γ4 + 2(`x + `y) ≥ γ4 +
2 maxi,j′ δEdit(xi, yj′) and by β > 1/2 the right hand side of the claim is at most 0, hence
the claim holds trivially. Otherwise x(G(yj)) is shorter than any Zx

i = 0γ2 , implying
that x(G(yj)) is a substring of 0γ2G(xi)0

γ2 for some i ∈ [n].
We write G(yj) as z−2ρ z−2ρ+1 . . . z2ρ−1 z2ρ, where z−2k = z2k = 1γ1 , z−2k+1 =

z2k−1 = 0γ1 , and z0 = yj (for all 1 ≤ k ≤ ρ). As in Fact 3.5.1, we split up x(G(yj))

into x(zk), −2ρ ≤ k ≤ 2ρ, such that δEdit(x(G(yj)),G(yj)) =
∑2ρ

k=−2ρ δEdit(x(zk), zk).
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Figure 4.8: Illustration for the proof of Claim 4.4.8.

Similarly, we write G(xi) as w−2ρw−2ρ+1 . . . w2ρ−1w2ρ. We denote the distance of the
start of x(zk) to the start of wk by ∆L(k), i.e., if x(zk) = x[a..b] and wk = x[c..d] we set
∆L(k) := |a− c|. Similarly, we set ∆R(k) := |b− d|. For an illustration, see Figure 4.8.
Note that ∆R(k) = ∆L(k + 1) holds for any k.

First assume (∗): for some k 6= 0 the string x(zk) is longer than 5
4γ1 or x(zk)

has less than 3
4γ1 common symbols with zk. Then clearly δEdit(x(G(yj)),G(yj)) ≥

δEdit(x(zk), zk) ≥ 1
4γ1. By Fact 3.5.2(ii), we also have δEdit(x(G(yj)),G(yj)) ≥ |G(yi)| −

|x(G(yj))| = γ4 − |x(G(yj))|. As a linear combination of these two lower bounds, we
obtain δEdit(x(G(yj)),G(yj)) ≥ β(γ4 − |x(G(yj))|) + (1 − β)1

4γ1. Since (1 − β)1
4γ1 =

csubst
20 γ1 ≥ `x + `y ≥ maxi,j′ δEdit(xi, yj′), we have proven the statement in this case.

If (*) does not hold, then we have ∆L(k),∆R(k) ≤ 1
2γ1 for any |k| > 1: It suffices

to show the claim for any even k 6= 0, since ∆R(k) = ∆L(k + 1). For any even k 6= 0,
the string x(zk) has to contain the majority of a block w` with even ` 6= 0. Since the
numbers of blocks are identical in G(yj) and G(xi), x(zk) has to contain the majority of
wk for any even k 6= 0. Specifically, x(zk) contains at least 3

4γ1 symbols of wk and has
length at most 5

4γ1, implying the desired inequalities for ∆L(k),∆R(k). Note that in
this case i and j are aligned.

Note that for even k 6= 0 we obtain x(zk) from wk = zk = 1γ1 by either deleting a
prefix of ∆L(k) ones or prepending ∆L(k) zeroes, and by either deleting a suffix of ∆R(k)
ones or by appending ∆R(k) zeroes. Hence, Fact 4.4.6 shows that

δEdit(x(zk), zk) ≥ |∆L(k)−∆R(k)|+ csubst ·min{∆L(k),∆R(k)}. (4.6)

The same argument works for any k with |k| > 1. For k ∈ {−1, 1} the argument does not
work, since z−1 = z1 = 0γ1 is not sorrounded by blocks of 1γ1 . However, for k ∈ {−1, 1}
we have the weaker δEdit(x(zk), zk) ≥ |∆L(k)−∆R(k)| by Fact 3.5.2(ii). Moreover, by
Fact 3.5.2(iii) we have

δEdit(x(z0), z0) ≥ δEdit(xi, yj)−∆L(0)−∆R(0). (4.7)

Combining these inequalities yields δEdit(x(G(yj)),G(yj)) ≥ δEdit(xi, yj)+∆L(−2ρ)+
∆R(2ρ) as we show in the following. This implies the desired statement, since ∆L(−2ρ) +
∆R(2ρ) ≥

∣∣|G(yj)| − |x(G(yj))|
∣∣ ≥ γ4 − |x(G(yj))| ≥ β(γ4 − |x(G(yj))|). To show the

claim, we set sL := min{∆L(k) | −2ρ ≤ k ≤ 0} and sR := min{∆R(k) | 0 ≤ k ≤ 2ρ}.
Note that ∆L(k) has a total variation of at least ∆L(−2ρ) − sL + ∆L(0) − sL over
k = −2ρ, . . . , 0, since it starts in ∆L(−2ρ), changes to sL, and then changes to ∆L(0).
Thus, summing |∆L(k) − ∆R(k)| = |∆L(k) − ∆L(k + 1)| over all −2ρ ≤ k ≤ −1
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yields at least ∆L(−2ρ) − sL + ∆L(0) − sL. Moreover, for every −2ρ ≤ k < −1
inequality (4.6) applies and the summand csubst ·min{∆L(k),∆R(k)} is at least csubst ·sL.
As the number of such k’s is 2ρ− 1 ≥ 2/csubst, the total contribution of the summand
csubst ·min{∆L(k),∆R(k)} over all k < 0 is at least 2sL. Thus, we have

−1∑
k=−2ρ

δEdit(x(zk), zk) ≥
−1∑

k=−2ρ

|∆L(k)−∆R(k)|+
−2∑

k=−2ρ

csubst ·min{∆L(k),∆R(k)}

≥
(
∆L(−2ρ)− sL + ∆L(0)− sL

)
+
(
2sL
)
≥ ∆L(−2ρ) + ∆L(0).

Using a symmetric statement for the sum over all k > 0 as well as equation (4.7),
we obtain the desired inequality δEdit(x(G(yj)),G(yj)) =

∑2ρ
k=−2ρ δEdit(x(zk), zk) ≥

δEdit(xi, yj) + ∆L(−2ρ) + ∆R(2ρ).

Since Ly = 0nγ3 and x(Ly) is a prefix of x, by Claim 4.4.7 we have δEdit(x(Ly), Ly) ≥
nγ3 − β|x(Ly)|, and symmetrically we get δEdit(x(Ry), Ry) ≥ nγ3 − β|x(Ly)|. By
Fact 3.5.2(ii), we have δEdit(x(Zy

j ), Zy
j ) ≥

∣∣|Zy
j | − |x(Zy

j )|
∣∣ ≥ β(γ2 − |x(Zy

j )|). Putting
all of this together, we obtain

δEdit(x, y) ≥ 2nγ3 + c(Λ)

+ β
[ m∑
j=1

(γ4 − |x(G(yj))|) +

m−1∑
j=1

(γ2 − |x(Zy
j )|)− |x(Ly)| − |x(Ry)|

]
,

where we used c(Λ) =
∑

(i,j)∈Λ δEdit(xi, yj) + (m− |Λ|) maxi,j δEdit(xi, yj). Note that by
definition of x and since the strings x(G(yj)), x(Zy

j ), x(Ly), x(Ry) partition x we have

nγ4 + (n− 1)γ2 = |x| =
m∑
j=1

|x(G(yj))|+
m−1∑
j=1

|x(Zy
j )|+ |x(Ly)|+ |x(Ry)|.

Together, this yields the desired bound from below

δEdit(x, y) ≥ 2nγ3 − β(n−m)(γ4 + γ2) + c(Λ).

This finishes the proof of the alignment gadget for Edit Distance.





Chapter 5

Multivariate Fine-grained
Complexity of LCS

In Chapter 4 (Section 4.3), we presented a quadratic SETH-based lower bound for LCS.
While this gives a justification why no LCS algorithm is known that succeeds in breaking
the quadratic-time barrier in the strong sense, a number of these algorithms performs
significantly better when the problem is restricted to inputs with certain structural
properties. This is most prominently witnessed by the UNIX diff utility, which quickly
compares large, similar files (exploiting that the longest common subsequence in such
instances differs from the input strings at only few positions). In fact, since Wagner
and Fischer introduced LCS in 1977, algorithmic progress has effectively been limited to
obtaining algorithms whose running time is small whenever certain natural parameters
are small (see, e.g., [Apo86; AG87; Epp+92; Hir77; HS77; IR09; Mye86; NKY82; Wu+90]).
A notable exception is the result by Masek and Paterson [MP80], who applied the Four
Russians technique to save logarithmic factors in the worst case running time. Yet,
the main focus of the LCS literature (at least between the late 1970s and early 1990s)
appears to be finding fast algorithms in terms of natural input parameters. Recall that
we refer to such algorithms, whose running times are stated in more input parameters
than just the problem size n, as multivariate algorithms.

More specifically, the input parameters (for multivariate algorithms) that have
been studied in the literature are, besides the input size n := max{|x|, |y|}, the length
m := min{|x|, |y|} of the shorter string, the size of the alphabet Σ that x and y are defined
on, the length L of a longest common subsequence of x and y, the number ∆ = n− L
of deleted symbols in x, the number δ = m− L of deleted symbols in y, the number of
matching pairs M , and the number of dominant pairs d (see Section 5.1 for definitions).
Among the fastest currently known multivariate algorithms are an Õ(n+ d)-algorithm
due to Apostolico [Apo86], an Õ(n+ δL)-algorithm due to Hirschberg [Hir77] and an
Õ(n+ δ∆)-algorithm due to Wu, Manbers, Myers, and Miller [Wu+90]. In Table 5.1, we
provide a non-exhaustive survey1 containing the asymptotically fastest multivariate LCS
algorithms.

Even when considering the progress in terms of multivariate algorithms for LCS,
algorithmic improvements by more than polylogarithmic factors have stalled since the
early 1990s. The natural and intriguing question arises whether SETH-based lower
bounds can also explain the lack of progress of multivariate algorithms for LCS. This
chapter is devoted to answering this question in the affirmative: It turns out that in

1Note that in our discussion, we solely regard the time complexity of computing the length of an LCS
and hence omit all results concerning space usage or finding an LCS. See, e.g., [PD94] and [BHR00] for
these and other aspects of LCS as well as empirical comparisons.

47
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Reference Running Time

Wagner and Fischer [WF74] O(mn)
Hunt and Szymanski [HS77] O((n+M) log n)
Hirschberg [Hir77] O(n log n+ Ln)
Hirschberg [Hir77] O(n log n+ Lδ log n)
Masek and Paterson [MP80] O(n+ nm/ log2 n) for |Σ| = O(1)

O
(
n+ nm ·

( log logn
logn

)2) 4

Nakatsu et al. [NKY82] O(nδ)
Apostolico [Apo86] O(n log n+ d log(mnd ))
Myers [Mye86] O(n log n+ ∆2)
Apostolico and Guerra [AG87] O(n log n+ Lmmin{logm, log(n/m))})
Wu et al. [Wu+90] O(n log n+ δ∆) 5

Eppstein et al. [Epp+92] O(n log n+ d log log min{d, nm/d})
Iliopoulos and Rahman [IR09] O(n+M log log n)

Table 5.1: Short survey of LCS algorithms. See Section 5.1 for definitions
of the parameters. When stating the running times, every factor possibly
attaining non-positive values (such as δ, log(n/m), etc.) is to be read as
max{·, 1}. For simplicity, log(|Σ|)-factors have been bounded from above
by logn (see [PD94] for details on the case of constant alphabet size).

order to improve upon the currently best known running time2 of Õ(n+ min{d, δm, δ∆})
by a polynomial factor, one has to either refute SETH or invent novel input parameters
that can be algorithmically exploited.3

Further Related Work. Note that in contrast to the field of fixed-parameter tractabil-
ity (studying the parameterized complexity of NP-hard problems) in our case, both the
total running time and the dependence on any of the studied parameters is polynomial.
However, since it separates the dependence of the running time on the problem size from
the dependence on the input parameters, the results in this chapter can be seen as part of
the field “FPT in P” that recently received growing attention (see the paper by Abboud,
Vassilevska Williams and Wang [AVWW16] who introduced the study of the conditional
complexity of this field, and, e.g., [GMN15] for a recent algorithmic case study).

On a conceptual level, our approach is reminiscent of a systematic study of the
parameterized complexity of the subgraph isomorphism problem [MP14], which presents
for any subset of 10 relevant input parameters either a fixed-parameter tractable algorithm
or a hardness proof. To the best of our knowledge, such a systematic study has not yet
been conducted for any polynomial-time problem. The lack thereof is explained by the
relatively short history of conditional lower bounds for polynomial-time problems: As
discussed in Chapter 2, except for the early success of 3SUM-hardness in computational
geometry, only in recent years meaningful polynomial conditional lower bounds have been

2Note that at first sight it might seem as if Hirschberg’s Õ(n+ δL)-time algorithm could be faster
than this bound, however, for L ≥ m/2 we have δL = Θ(δm), which appears in our lower bound, and for
L ≤ m/2 we have δ = m−L = Θ(m) and thus δL = Θ(Lm) which is Ω(d) by Lemma 5.4.3, given below.

3This holds for ternary and larger alphabets. For the special case of binary alphabets, we provide
a missing algorithm with running time O(n + δM/n) and obtain a SETH-based lower bound of (n +
min{d, δM/n, δ∆})1−o(1) that is tight up to lower order factors.

4See [BFC08] for how to extend the Masek-Paterson algorithm to non-constant alphabets.
5Wu et al. state their running time as O(nδ) in the worst case and O(n + δ∆) in expectation for

random strings. However, Myers worst-case variation trick [Mye86, Section 4c] applies and yields the
claimed time bound O(n logn+ δ∆). The additional O(n logn) comes from building a suffix tree.
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obtained (see, apart from the references to SETH-based lower bounds in Chapter 2, also
work based on further conjectures [ABVW15a; KPP16; WW10; Pat10]). Increasingly,
additional input parameter than the problem size are studied as well [Bri14; KPP16;
Abb+16b], yet hitherto, to the best of our knowledge, never a combination of parameters
with a complex set of relations.

We remark that using very recent work, we could even perform our multivariate
study based on a weaker assumption than SETH: a remarkable result of Abboud et
al. [Abb+16a] bases the quadratic hardness of the alignment gadget framework and hence
LCS on a variant of SETH on branching programs6. Since the basis for our constructions,
so-called normalized vector gadgets, are also constructed in [Abb+16a], in this chapter we
could also reduce from satisfiability of branching programs. To avoid an overly technical
presentation, however, we chose to start from the classical SETH/OVH.

Organization of This Chapter. This chapter is organized as follows: In Section 5.1,
we define the input parameters that the LCS literature has introduced and thus are
fundamental to our multivariate study. In Section 5.2, we then formally develop our
paradigm of multivariate fine-grained complexity and state the results. We provide an
overview of our proofs in Section 5.3, which explains the different tasks of our approach:
uncovering all parameter relations (Section 5.4), embedding orthogonal vectors instances
into strings with bounded input parameters (Section 5.6), padding the input parameters
for large alphabets (Section 5.7) and finally giving the specialized constructions for
constant alphabet sizes (Section 5.8). Technical tools and general constructions needed
for our proofs are prepared in Section 5.5.

5.1 Parameter Definitions

We survey parameters that have been used in the analysis of the LCS problem (see
also [PD94; BHR00]). Let x, y be any strings over alphabet Σ. We usually consider the
induced alphabet Σ = {x[i] | 1 ≤ i ≤ |x|} ∪ {y[j] | 1 ≤ j ≤ |y|} and consider its size |Σ|
as a parameter. Since any symbol not contained in x or in y cannot be contained in an
LCS, we can ensure the following assumption using a (near-)linear-time preprocessing.

Assumption 5.1.1. Every symbol σ ∈ Σ occurs at least once in x and in y, i.e.,
#σ(x),#σ(y) ≥ 1.

By possibly swapping x and y, we can assume that x is the longer of the two strings,
so that n = n(x, y) := |x| is the input size. Then m = m(x, y) := |y| is the length of the
shorter of the two strings. Another natural parameter is the solution size, i.e., the length
L(x, y) = |LCS(x, y)| of any longest common subsequence LCS(x, y) of x and y.

Beyond these standard parameters (applicable for basically any optimization problem),
popular structural parameters measure the sparsity and similarity of the strings. These
notions are more specific to LCS and are especially relevant in practical applications
such as, e.g., the diff file comparison utility, where symbols in x and y correspond to
lines in the input files and the length of their LCS measures the similarity of x and y.

Notions of Sparsity. Based on the observation that the dynamic programming table
typically stores a large amount of redundant information (suggested, e.g., by the fact
that an LCS itself can be reconstructed examining only O(n) entries), algorithms have

6For a short discussion, see Section 3.3.
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d a b c c b d

d
c
b
a
d
c

1 1 1 1 1 1 1
1 1 1 2 2 2 2
1 1 2 2 2 3 3
1 2 2 2 2 3 3
1 2 2 2 2 3 4
1 2 2 3 3 3 4

Figure 5.1: Illustration of the L-table, matching pairs and dominant
pairs. Entries marked in orange and bold letters correspond to dominant
pairs (which by definition are also matching pairs), while entries marked
in blue are matching pairs only.

been studied that consider only the most relevant entries in the table. The simplest
measure of such entries is the number of matching pairs M(x, y) := #{(i, j) | x[i] = y[j]}.
Especially for inputs with a large alphabet (e.g., files for which almost all lines occur only
once), this parameter may significantly restrict the number of candidate pairs considered
by LCS algorithms.

One can refine this notion to obtain the dominant pairs: A pair (i, j) dominates a
pair (i′, j′) if we have i ≤ i′ and j ≤ j′. A k-dominant pair is a pair (i, j) such that
L(x[1..i], y[1..j]) = k and no other pair (i′, j′) with L(x[1..i′], y[1..j′]) = k dominates (i, j).
By defining L[i, j] := L(x[1..i], y[1..j]) and using the well-known recursion L[i, j] =
max{L[i−1, j], L[i, j−1], L[i−1, j−1]+1x[i]=y[j]}, we observe that (i, j) is a k-dominant
pair if and only if L[i, j] = k and L[i− 1, j] = L[i, j − 1] = k − 1. Denoting the set of all
k-dominant pairs by Dk, the number of dominant pairs of x, y is d(x, y) := |

⋃
k≥1Dk|.

Figure 5.1 illustrates matching and dominant pairs. Note that the set of dominant pairs
sparsely encodes the complete L-table: It contains, for every k, the Pareto set of table
entries L[i, j] ≥ k.

Notions of Similarity. To obtain an LCS, we have to delete ∆ = ∆(x, y) := n− L
symbols from x or δ = δ(x, y) := m− L symbols from y. Hence for very similar strings,
which is the typical kind of input for file comparisons, we expect δ and ∆ to be small –
on practical instances, exploiting these similarity notions seems to typically outperform
algorithms based on sparsity measures (see [MM85] for a classical comparison of Myer’s
algorithm to an algorithm based on the number of matching pairs M [HS77; HM75]).

To the best of our knowledge, these are all parameters which have been exploited to
obtain faster multivariate algorithms for LCS. We summarize the parameter definitions
as follows,

n(x, y) := |x|, m(x, y) := |y|,
L(x, y) := |LCS(x, y)|,
δ(x, y) := |y| − L(x, y), ∆(x, y) := |x| − L(x, y),

Σ(x, y) := {x[i] | 1 ≤ i ≤ |x|} ∪ {y[j] | 1 ≤ j ≤ |y|}.
M(x, y) := #{(i, j) | x[i] = y[j]},
d(x, y) := #{(i, j) | L[i, j] > L[i− 1, j] and L[i, j] > L[i, j − 1]},

where L[i, j] := L(x[1..i], y[1..j]).
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We remark that for some strings x, y considered in this chapter the assumption |x| ≥ |y|
may be violated; in this case we use the definitions given above (and thus we may have
n(x, y) < m(x, y) and ∆(x, y) < δ(x, y)). Since L,M, d, and Σ are symmetric in the sense
that L(x, y) = L(y, x), these parameters are independent of the assumption |x| ≥ |y|.

5.2 Formal Statement of Results

Recall that n is the input size and P := {m,L, δ,∆, |Σ|,M, d} is the set of parameters
that were previously studied in the literature. We let P∗ := P ∪ {n}. A parameter
setting fixes a polynomial relation between any parameter and n. To formalize this, we
call a vector α = (ap)p∈P with ap ∈ R≥0 a parameter setting, and an LCS instance x, y
satisfies the parameter setting α if each parameter p attains a value p(x, y) = Θ(nαp).
This yields a subproblem of LCS consisting of all instances that satisfy the parameter
setting. We sometimes use the notation αn = 1.

For our running time bounds, for each parameter p ∈ P except for |Σ| we can assume
αp > 0, since otherwise one of the known algorithms runs in time Õ(n) and there is
nothing to show. Similarly, for αd ≤ 1 there is an Õ(n) algorithm and there is nothing
to show. For |Σ|, however, the case αΣ = 0, i.e., |Σ| = Θ(1), is an important special
case. We study this case more closely by also allowing to fix |Σ| to any specific constant
greater than 1.

Definition 5.2.1 (Parameter Setting). Fix γ ≥ 1. Let α = (ap)p∈P be any vector of
non-negative reals. We define LCSγ(α) as the problem of computing the length of an
LCS of two given strings x, y satisfying nαp/γ ≤ p(x, y) ≤ nαp · γ for every parameter
p ∈ P, where n = |x|, and |x| ≥ |y|. We call α and LCSγ(α) parameter settings. In
some statements we simply write LCS(α) to abbreviate that there exists a γ ≥ 1 such
that the statement holds for LCSγ(α).

For any fixed alphabet Σ, constant γ ≥ |Σ|, and parameter setting α with αΣ = 0, we
also define the problem LCSγ(α,Σ), where additionally the alphabet of x, y is fixed to
be Σ. We again call (α,Σ) and LCSγ(α,Σ) parameter settings.

We call a parameter setting α or (α,Σ) trivial if for all γ ≥ 1 the problem LCSγ(α)
or LCSγ(α,Σ), respectively, has only finitely many instances.

We are ready to formally state our lower bound results, whose proof will be outlined
in Section 5.3.

Theorem 5.2.2. For any non-trivial parameter setting α there is a constant γ ≥ 1 such

that any algorithm for LCSγ(α) takes time min
{
d, δ∆, δm

}1−o(1)
, unless OVH fails.

In the case of constant alphabet size, the (conditional) complexity differs between
|Σ| = 2 and |Σ| ≥ 3. Note that |Σ| = 1 makes LCS trivial.

Theorem 5.2.3. For any non-trivial parameter setting (α,Σ), there is a constant γ ≥ |Σ|
such that unless OVH fails any algorithm for LCSγ(α,Σ) takes time

• min
{
d, δ∆, δm

}1−o(1)
if |Σ| ≥ 3,

• min
{
d, δ∆, δM/n

}1−o(1)
if |Σ| = 2.

Note that in Section 6.2, we prove the following algorithmic result, handling the case
|Σ| = 2 faster whenever M and δ are sufficiently small. This yields matching upper and
lower bounds also for |Σ| = 2.

Theorem 5.2.4. For |Σ| = 2, LCS can be solved in time O(n+ δM/n).



52 Chapter 5. Multivariate Fine-grained Complexity of LCS

5.3 Hardness Proof Overview

In order to get a handle on non-trivial parameter settings, we first need necessary
conditions for being non-trivial. We prove several inequalities on the values αp, p ∈ P∗,
see Table 5.2 on page 54. Note that for small alphabet sizes |Σ| ∈ {2, 3}, additional
parameter relations hold. We will later see in Corollary 5.3.7 that for parameter settings α
these necessary conditions are also sufficient, and thus our list of relations is complete.

Lemma 5.3.1 (Parameter Relations, Section 5.4). For any strings x and y, the parameter
values P∗ satisfy the relations in Table 5.3. Thus, any non-trivial parameter setting α
or (α,Σ) satisfies Table 5.2.

Proof Sketch. The full proof is deferred to Section 5.4. Some parameter relations are
trivial, like L ≤ m ≤ n. By a simple preprocessing, we can ensure that every symbol in Σ
appears in x and y, implying parameter relations like m ≤ |Σ|. Other parameter relations
need a non-trivial proof, like M ≥ md/(80L) if |Σ| = 3. From a relation like L ≤ m we
infer that if αL > αm then for sufficiently large n no strings x, y have L(x, y) = Θ(nαL)
and m(x, y) = Θ(nαm), and thus LCS(α) is finite. Hence, any non-trivial parameter
setting satisfies Table 5.2.

It might be tempting to assume that the optimal running time for parameter settings
is monotone in the input size n and the parameters P (say up to constant factors,
as long as all considered parameters settings are non-trivial). However, since our
parameters have complex dependencies (see Table 5.3), it is far from obvious whether
this intuition is correct. In fact, the intuition fails for |Σ| = 2, where the running time
O(n+ δM/n) of our new algorithm is not monotone, and thus also the tight time bound
Õ(n+ min{d, δ∆, δM/n}) is not monotone.

Thus, let us focus on large alphabets, i.e., parameter settings α, where the alphabet
size is at least a large constant. A non-negligible fraction of this chapter is devoted
to proving monotonicity in this case. To formalize this task, we consider the problem
LCS≤(α) where the slice of input size n consists of all instances x, y of LCS(α) with
input size and all parameters at most as in LCS(α).

Definition 5.3.2 (Downward Closure of Parameter Setting). Fix γ ≥ 1 and let α
be a parameter setting. We define the downward closure LCSγ≤(α) as follows. An
instance of this problem is a triple (n, x, y), where p(x, y) ≤ γ · nαp for any p ∈ P∗ =
{n,m,L, δ,∆, |Σ|,M, d}, and the task is to compute the length of an LCS of x and y. In
some statements, we simply write LCS≤(α) to abbreviate that there exists a γ ≥ 1 such
that the statement holds for LCSγ≤(α).

Similarly, for any fixed alphabet Σ, we define the downward closure LCSγ≤(α,Σ) as
the family of instances (n, x, y) where x, y are strings over alphabet Σ and p(x, y) ≤ γ ·nαp
for any p ∈ P∗. We use the shorthand LCS≤(α,Σ) analogously to LCS≤(α).

We prove a conditional lower bound directly for LCS≤(α). Then in Lemma 5.3.4
below, we show that monotonicity implies the same lower bound for LCS(α).

Theorem 5.3.3 (Hardness for Large Alphabet, Section 5.6). For any non-trivial pa-
rameter setting α, there is a constant γ ≥ 1 such that any algorithm for LCSγ≤(α) takes

time min
{
d, δm, δ∆

}1−o(1)
, unless OVH fails.

Proof Sketch. The full proof is deferred to Section 5.6. We provide different reductions
for the cases αδ = αm and αL = αm. In the former case, our reduction from OV to
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LCS, given in Chapter 4, yields the claim for |Σ| = O(1). For larger alphabet, we use
the construction for constant alphabet multiple times and concatenate the results (with
reversed order in one string).

In the case αL = αm, we want to construct strings where the longest common
subsequence may be very large, but the numbers of deleted symbols δ,∆ could be small.
Our construction of Chapter 4 fails, and we present a new way of combining “normalized
vector gadgets”. We think that this construction is our main contribution to specific lower
bound proof techniques and might find more applications. In this construction, picking
any two vector gadgets in x and one in y yields an LCS without any deletions in the vector
gadget of y, thus not increasing δ, which is important for keeping δ small. Picking one
vector gadget in both x and y yields an LCS whose length depends on the orthogonality
of the vectors. We then need to ensure that such “2vs1” and “1vs1” matchings always
generate an LCS and at least one “1vs1” matchings appears in any LCS.

Monotonicity of the optimal running time for parameter settings is equivalent to the
following statement (since for any α′ ≤ α the parameter setting LCS(α′) “is contained
in” LCS≤(α)). Together with Theorem 5.3.3 this proves Theorem 5.2.2.

Lemma 5.3.4 (Monotonicity). If α is non-trivial and LCS(α) has an O(nβ) algorithm
for some β ≥ 1, then LCS≤(α) also has an O(nβ) algorithm.

For proving the above lemma, we need the useful property that all studied parameters
sum up if we concatenate strings over disjoint alphabets.

Lemma 5.3.5 (Disjoint Alphabets). Let Σ1, . . . ,Σk be disjoint alphabets and let xi, yi be
strings over alphabet Σi. Consider x := x1 . . . xk and y := y1 . . . yk. For any parameter
p ∈ P∗, we have p(x, y) =

∑k
i=1 p(xi, yi).

Proof. The statement is trivial for the string lengths n,m, alphabet size |Σ|, and number
of matching pairs M . For the LCS length L, we observe that any common subsequence z
can be decomposed into z1 . . . zk with zi using only symbols from Σi, so that |zi| ≤ L(xi, yi)
and thus L(x, y) ≤

∑k
i=1 L(xi, yi). Concatenating longest common subsequences of xi, yi,

we obtain equality. Using δ = m− L and ∆ = n− L, the claim follows also for δ and ∆.
Since every dominant pair is also a matching pair, every dominant pair of x, y stems

from prefixes x1 . . . xjx
′ and y1 . . . yjy

′, with x′ being a prefix of xj+1 and y′ being a

prefix of yj+1 for some j. Since L(x1 . . . xjx
′, y1 . . . yjy

′) =
∑j

i=1 L(xi, yi) + L(x′, y′),
where the first summand does not depend on x′, y′, the dominant pairs of x, y of the
form x1 . . . xjx

′, y1 . . . yjy
′ are in one-to-one correspondence with the dominant pairs of

xj+1, yj+1. This yields the claim for parameter d.

The general idea to prove Lemma 5.3.4 is as follows. Given an instance (n, x, y) of
LCS≤(α), take any fixed instance x′, y′ of size Θ(n) of LCS(α), which exists since α
is non-trivial, and make sure that (x, y) and (x′, y′) use disjoint alphabets. Consider
x′′ := x ◦ x′ and y′′ := y ◦ y′. Then the Disjoint Alphabets Lemma implies that (x′′, y′′)
is an instance of LCS(α). Hence, we can compute L(x′′, y′′) in time O(nβ), which yields
L(x, y) via L(x, y) = L(x′′, y′′)− L(x′, y′).

For this argument, we need to be able to compute, given any n, an instance (x′, y′) of
LCS(α) of size Θ(n), as well as the LCS length L(x′, y′), in time O(nβ) (or, say, O(n)).
This is why we need the following constructive characterization of non-trivial parameter
settings.
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Parameter Restriction

m 0 ≤ αm ≤ 1

L 0 ≤ αL ≤ αm

δ

{
0 ≤ αδ ≤ αm if αL = αm

αδ = αm otherwise

∆

{
αδ ≤ α∆ ≤ 1 if αL = αm = 1

α∆ = 1 otherwise

|Σ| 0 ≤ αΣ ≤ αm
d max{αL, αΣ} ≤ αd ≤ min{2αL + αΣ, αL + αm, αL + α∆}
M max{1, αd, 2αL − αΣ} ≤ αM ≤ αL + 1

if |Σ| = 2: αM ≥ max{αL + αm, 1 + αd − αL}
if |Σ| = 3: αM ≥ αm + αd − αL

Table 5.2: Non-trivial parameter settings.

Lemma 5.3.6 (Section 5.7). Let α be a parameter setting satisfying Table 5.2. For
every parameter p ∈ P∗ and any n ≥ 1, there is an instance (n, xp, yp) of LCS≤(α)
such that p(xp, yp) = Θ(nαp), and given n we can compute xp = xp(n), yp = yp(n), and
L(xp, yp) in time O(n).

Proof Sketch. We defer the full proof to Section 5.7 and here only sketch the idea for the
parameter L. Let n ≥ 1 and L := nαL . We argue that if αM ≥ 2αL then x := y := 1L

satisfy the claim for parameter L. The construction is more complicated if αM < 2αL,
and for other parameters.

Note that we have n(x, y) = m(x, y) = L(x, y) = L. Since αL ≤ αm ≤ 1 by Table 5.2,
we have L = nαL ≤ nαm ≤ n. Hence, the parameter p(x, y) realized by x, y is bounded
by the target value nαp for p ∈ {n,m,L}. For the other parameters we argue similarly:
By the trivial lower bounds αp ≥ 0, we have ∆(x, y) = δ(x, y) = 0 ≤ nαδ ≤ nα∆ and
|Σ(x, y)| = 1 ≤ nαΣ . We will later see that d(x, y) = L ≤ n ≤ nαd (see Lemma 5.5.1).
From the assumption αM ≥ 2αL we obtain M(x, y) = L2 ≤ n2αL ≤ nαM . Thus, we have
shown that (n, x, y) is an instance of LCS≤(α). Moreover, as desired L(x, y) = Θ(nαL),
and x, y, and L(x, y) can be computed in time O(n).

In particular, the above lemma and Lemma 5.3.1 imply a characterization of non-
trivial parameter settings, which is interesting in its own right.

Corollary 5.3.7 (Classification of non-trivial parameter settings). A parameter setting α
is non-trivial if and only if it satisfies Table 5.2.

Proof. One direction follows from Lemma 5.3.1. For the other direction, for any n ≥ 1
consider the instances (n, xp, yp) constructed in Lemma 5.3.6, and let them use disjoint
alphabets for different p ∈ P∗. Then the concatenations x :=©p∈P xp and y :=©p∈P xp
form an instance of LCS(α), since for any parameter p ∈ P∗ we have p(xp, yp) = Θ(nαp),
and for all other instances xp′ , yp′ the parameter p is O(nαp), and thus p(x, y) = Θ(nαp)
by the Disjoint Alphabets Lemma. As we constructed instances of LCS(α) for any n ≥ 1,
α is non-trivial.

We are ready to prove Lemma 5.3.4, finishing the proof overview for large alphabets.



Chapter 5. Multivariate Fine-grained Complexity of LCS 55

Proof of Lemma 5.3.4. Let (n, x, y) be an instance of LCS≤(α). Since α is non-trivial,
we can use Corollary 5.3.7 and Lemma 5.3.6 to obtain strings xp, yp for p ∈ P∗ such that
(n, xp, yp) is an instance of LCS≤(α) and p(xp, yp) = Θ(nαp). Consider the concatenations
x′ := x ◦ ©p∈P xp and y′ := y ◦ ©p∈P yp. If we construct these strings over disjoint
alphabets, we may use the Disjoint Alphabets Lemma to analyze x′, y′. Since p(xp, yp) =
Θ(nαp) and for all other pairs (xp′ , yp′) the parameter p is bounded by O(nαp) as they
are instances of LCS≤(α), we obtain p(x′, y′) = Θ(nαp) for any p ∈ P∗. Hence, (x′, y′) is
an instance of LCS(α), and we can use the algorithm that we assume to exist for LCS(α)
to solve (x′, y′) in time O(nβ). This also solves the given instance (n, x, y) of LCS≤(α)
via L(x, y) = L(x′, y′)−

∑
p∈P L(xp, yp) (by the Disjoint Alphabets Lemma) where the

right hand side can now be computed in time O(n) by Lemma 5.3.6. We finish the proof
by observing that the time to construct x′, y′ is O(n).

Small Alphabets. Proving our results for small constant alphabets poses additional
challenges. While for αΣ = 0, the hard instances constructed in the proof of Theorem 5.3.3
could have any large constant alphabet size, for proving hardness in case |Σ| = 2 we need
to construct binary strings. Luckily, our construction of Chapter 4 already produces
binary strings. However, for our new 1vs1/2vs1 gadgets it is significantly harder to
implement them on binary alphabet than for alphabet size at least 3, see Section 5.6.

Note that our proof of Lemma 5.3.4 fails for LCS(α,Σ) if |Σ| is too small, since it
produces strings over alphabet size at least |P| = 7. In particular, for |Σ| = 2 we may
not use the Disjoint Alphabets Lemma at all, rendering our proofs of Lemmas 5.3.4
and 5.3.6 and Corollary 5.3.7 completely useless. In fact, our results in this chapter show
that the Monotonicity Lemma (Lemma 5.3.4) is wrong for binary strings. Indeed, for
|Σ| = 2 our new algorithm has a running time Õ(n+ δM/n) which is not monotone, and
thus also the tight time bound Õ(n+ min{d, δ∆, δM/n}) is not monotone.

Hence, it is impossible to use general strings from LCS≤(α,Σ) as a hard core for
LCS(α,Σ), and instead we take strings with additional properties (see Lemmas 5.6.2
and 5.6.8). Moreover, instead of padding with new strings xp, yp for each parameter,
we need an integrated construction where we control all parameters at once. This is a
technically demanding task to which we devote a large part of this chapter (Section 5.8).
Since the cases |Σ| = 2, |Σ| = 3, and |Σ| ≥ 4 adhere to different relations of Table 5.2,
these three cases have to be treated separately. Moreover, as in the case of large alphabet
we consider cases αδ = αm and αL = αm.

We remark that in Section 5.8, we implicitly also characterize all non-trivial parameter
settings (α,Σ) as the settings satisfying Table 5.2. Indeed, we construct hard instances
for each parameter setting satisfying Table 5.2, and thus establish that any such setting
contains infinitely many instances and thus is non-trivial. The other direction follows
from Lemma 5.3.1.

5.4 Parameter Relations

In this section, we prove relations among the studied parameters, summarized in Table 5.3.
Some of these parameter relations can be found at various places in the literature, however,
our set of relations is complete in the sense that any parameter setting α is non-trivial if
and only if it satisfies all our relations, see Corollary 5.3.7.

Consider a relation like d(x, y) ≤ L(x, y) ·m(x, y), given in Lemma 5.4.3(i) below. Fix
exponents αd, αL, and αm, and consider all instances x, y with d(x, y) = Θ(nαd), L(x, y) =
Θ(nαL), and m(x, y) = Θ(nαm). Note that the relation may be satisfied for infinitely
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Relation Restriction Reference

L ≤ m ≤ n trivial
L ≤ d ≤M trivial
∆ ≤ n trivial
δ ≤ m trivial
δ ≤ ∆ trivial

δ = m− L by definition
∆ = n− L by definition

|Σ| ≤ m Assumption 5.1.1
n ≤M Assumption 5.1.1

d ≤ Lm Lemma 5.4.3(i)
d ≤ L2|Σ| Lemma 5.4.3(ii)
d ≤ 2L(∆ + 1) Lemma 5.4.4
|Σ| ≤ d Lemma 5.4.5
L2

|Σ| ≤M ≤ 2Ln Lemma 5.4.6

M ≥ Lm/4 if |Σ| = 2 Lemma 5.4.7
M ≥ nd/(5L) if |Σ| = 2 Lemma 5.4.9

M ≥ md/(80L) if |Σ| = 3 Lemma 5.4.10

Table 5.3: Relations between the parameters.

many instances if αd ≤ αL + αm. On the other hand, if αd > αL + αm then the relation
is satisfied for only finitely many instances. This argument translates Table 5.3 into
Table 5.2 (using αn = 1), thus generating a complete list of restrictions for non-trivial
parameter settings.

Let x, y be any strings. In the remainder of this section, for convenience, we write
p = p(x, y) for any parameter p ∈ P∗. Recall that by possibly swapping x and y, we may
assume m = |y| ≤ |x| = n. This assumption is explicit in our definition of parameter
settings. For some other strings x, y considered in this chapter, this assumption may be
violated. In this case, the parameter relations of Table 5.3 still hold after replacing n
by max{n,m} and m by min{n,m}, as well as ∆ by max{∆, δ} and δ by min{∆, δ} (as
the other parameters are symmetric).

Note that Assumption 5.1.1 (i.e., every symbol in Σ appears at least once in x and
y) implies |Σ| ≤ m and ensures that any symbol of x has at least one matching symbol
in y, and thus M ≥ n.

We next list trivial relations. The length of the LCS L satisfies L ≤ m. The numbers
of deleted positions satisfy ∆ = n − L ≤ n, δ = m − L ≤ m, and δ ≤ ∆. Since any
dominant pair is also a matching pair, we have d ≤M . Moreover, d ≥ L since for any
1 ≤ k ≤ L there is at least one k-dominant pair.

To prepare the proofs of the remaining relations, recall that we defined L[i, j] =
L(x[1..i], y[1..j]). Moreover, observe that L(x, y) ≤

∑
σ∈Σ min{#σ(x),#σ(y)}, which we

typically exploit without explicit notice. Furthermore, we shall need the following two
simple facts.

Observation 5.4.1. For any σ ∈ Σ, we have #σ(x) ≤ L or #σ(y) ≤ L.

Proof. If some σ ∈ Σ occurs at least L+ 1 times in both x and y, then σL+1 is an LCS
of x and y of length L+ 1 > L, which is a contradiction.

Observation 5.4.2. Fix 1 ≤ k ≤ L and 1 ≤ ī ≤ n. Then there is at most one k-
dominant pair (̄i, j) with 1 ≤ j ≤ m, namely the pair (̄i, j∗) with j∗ = min{j | L[̄i, j] = k}
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if it exists. Symmetrically for every 1 ≤ k ≤ n and 1 ≤ j̄ ≤ m, there is at most one
k-dominant pair (i, j̄) with 1 ≤ i ≤ n.

Proof. All pairs (̄i, j) with j 6= j∗ and L[̄i, j] = k satisfy j ≥ j∗, so they are dominated
by (̄i, j∗).

We are set up to prove the more involved relations of Table 5.3. We remark that
while the inequality d ≤ Lm is well known since the first formal treatment of dominant
pairs, the bound d ≤ L2|Σ| seems to go unnoticed in the literature.

Lemma 5.4.3. It holds that (i) d ≤ Lm and (ii) d ≤ L2|Σ|.

Proof. (i) Let 1 ≤ k ≤ L. For any 1 ≤ j̄ ≤ m, there is at most one k-dominant pair (i, j̄)
by Observation 5.4.2. This proves |Dk| ≤ m and thus d =

∑L
i=1 |Dk| ≤ Lm.

(ii) Let σ ∈ Σ. By Observation 5.4.1, we may assume that #σ(x) ≤ L (the case
#σ(y) ≤ L is symmetric). For any occurrence iσ of σ in x and any 1 ≤ k ≤ L, there can
be at most one k-dominant pair (iσ, j) by Observation 5.4.2. Hence, σ contributes at
most L k-dominant pairs. Summing over all σ ∈ Σ and k = 1, . . . , L yields the claim.

Lemma 5.4.4. We have d ≤ 2L(∆ + 1).

Proof. Fix an LCS z of x and y. Since z can be obtained by deleting at most ∆ = n−L
positions from x or by deleting at most δ = m− L positions from y, x[1..i] and y[1..j]
contain z[1..i − ∆] and z[1..j − δ], respectively, as a subsequence. Hence, we have
min{i−∆, j − δ} ≤ L[i, j] ≤ min{i, j}.

Let 1 ≤ k ≤ L. By the previous property, if L[i, j] = k then (i) k ≤ i ≤ k + ∆ or (ii)
k ≤ j ≤ k + δ. Note that for each ī ∈ {k, . . . , k + ∆}, we have (by Observation 5.4.2) at
most one k-dominant pair (̄i, j), and similarly, for each j̄ ∈ {k, . . . , k + δ}, we have at
most one k-dominant pair (i, j̄). This proves |Dk| ≤ ∆ + δ + 2 ≤ 2(∆ + 1), from which
the claim follows.

Lemma 5.4.5. We have d ≥ |Σ|.

Proof. By Assumption 5.1.1, every symbol σ ∈ Σ appears in x and y. Let i be minimal
with x[i] = σ and j be minimal with y[j] = σ. We show that (i, j) is a dominant pair
of x, y, and thus d ≥ |Σ|. Let k = L[i, j] = L(x[1..i], y[1..j]). Since x[i] = y[j], we have
L[i − 1, j − 1] = k − 1. Moreover, since the last symbol in x[1..i] does not appear in
y[1..j − 1], it cannot be matched, and we obtain L[i, j − 1] = L[i − 1, j − 1] = k − 1.
Similarly, L[i − 1, j] = k − 1. This proves that (i, j) is a k-dominant pair of x, y, as
desired.

Lemma 5.4.6. We have (i) M ≥ L2/|Σ| and (ii) M ≤ 2Ln.

Proof. (i) Let z be an LCS of x and y. We have M =
∑

σ∈Σ #σ(x)·#σ(y) ≥
∑

σ∈Σ #σ(z)2.
By
∑

σ∈Σ #σ(z) = L and the arithmetic-quadratic mean inequality, the result follows.
(ii) Let Σw := {σ ∈ Σ | #σ(w) ≤ L} for w ∈ {x, y}. By Observation 5.4.1, we have

Σx ∪ Σy = Σ. We can thus bound

M =
∑
σ∈Σ

#σ(x) ·#σ(y) ≤
∑
σ∈Σy

L ·#σ(x) +
∑
σ∈Σx

L ·#σ(y) ≤ L(n+m) ≤ 2Ln.
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Small Alphabets. Not surprisingly, in the case of very small alphabets there are more
relations among the parameters. The following relations are specific to |Σ| = 2 and
|Σ| = 3.

Lemma 5.4.7. Let Σ = {0, 1}. Then M ≥ Lm/4.

Proof. Let z be an LCS of x and y. Without loss of generality we may assume #0(x) ≥ n/2
(by possibly exchanging 0 and 1). If #0(y) ≥ L/2, then M ≥ #0(x) ·#0(y) ≥ Ln/4 ≥
Lm/4. Otherwise we have #0(y) < L/2 ≤ m/2, which implies #1(y) ≥ m/2. By
#0(y) < L/2, we must have that #1(x) ≥ L/2, since otherwise L ≤ min{#0(x),#0(y)}+
min{#1(x),#1(y)} ≤ #0(y) + #1(x) < L, which is a contradiction. Hence M ≥
#1(x) ·#1(y) ≥ Lm/4, proving the claim.

The following lemma (which is also applicable for large alphabets) asserts that if
most positions in x and y are the same symbol, say 0, then the number of dominant
pairs is small.

Lemma 5.4.8. Let 0 be a symbol in Σ and set λ :=
∑

σ∈Σ\{0}min{#σ(x),#σ(y)}. Then
d ≤ 5λL. In particular, for Σ = {0, 1}, we have d ≤ 5L ·#1(y).

Proof. Let 1 ≤ k ≤ L and σ ∈ Σ \ {0}. By Observation 5.4.2, there are at most
min{#σ(x),#σ(y)} k-dominant pairs (i, j) with x[i] = y[j] = σ. Hence in total, there
are at most λ · L dominant pairs (i, j) with x[i] = y[j] 6= 0.

To count the remaining dominant pairs, which are contributed by 0, we use a similar
argument to Lemma 5.4.4. Let 1 ≤ k ≤ L and consider any pair (i, j) with x[i] = y[j] = 0,
say x[i] is the `x-th occurrence of 0 in x and y[j] is the `y-th occurrence of 0 in y. If (i, j)
is a k-dominant pair then k − λ ≤ min{`x, `y} ≤ k. Indeed, if min{`x, `y} < k − λ, then

L[i, j] ≤
∑
σ∈Σ

min{#σ(x[1..i]),#σ(y[1..j])} ≤ min{`x, `y}+ λ < k,

contradicting the definition of a k-dominant pair. Moreover, if min{`x, `y} > k, then
0min{`x,`y} is a common subsequence of x[1..i], y[1..j] of length strictly larger than k,
which is again a contradiction to (i, j) being a k-dominant pair.

Hence, we have k − λ ≤ `x ≤ k or k − λ ≤ `y ≤ k. Since any choice of `x uniquely
determines i by Observation 5.4.2 (and symmetrically `y determines j), there are at most
2λ+ 2 k-dominant pairs with x[i] = y[j] = 0. In total, we have at most (3λ+ 2)L ≤ 5λL
dominant pairs (note that λ ≥ 1 by Assumption 5.1.1 and |Σ| ≥ 2).

Lemma 5.4.9. If Σ = {0, 1} then M ≥ nd/(5L).

Proof. Without loss of generality assume that min{#0(x),#0(y)} ≥ min{#1(x),#1(y)}
(by possibly exchanging 0 and 1). Then λ = min{#1(x),#1(y)} satisfies #σ(y) ≥ λ for
all σ ∈ Σ. Thus, M =

∑
σ∈Σ #σ(x) ·#σ(y) ≥ (#0(x)+#1(x)) ·λ = λn. By Lemma 5.4.8,

we have λ ≥ d/(5L) and the claim follows.

For ternary alphabets, the following weaker relation holds.

Lemma 5.4.10. If Σ = {0, 1, 2} then M ≥ md/(80L).

Proof. Let z be an LCS of x and y. We permute the symbols such that σ = 0 maximizes
#σ(z). Thus, we have #0(x) ≥ #0(z) ≥ L/|Σ| = L/3 and symmetrically #0(y) ≥ L/3.

If #0(y) ≥ m/2 then we have M ≥ #0(x) · #0(y) ≥ Lm/6 ≥ dm/(18L) by
Lemma 5.4.3(ii). Similarly, if #0(x) ≥ n/2, we obtain M ≥ Ln/6 ≥ dn/(18L) ≥
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dm/(18L). Hence, it remains to consider the case #0(x) ≤ n/2 and #0(y) ≤ m/2. Let
x′, y′ be the subsequences obtained by deleting all 0s from x and y, respectively, and note
that |x′|, |y′| ≥ m/2. Since x′, y′ have alphabet size 2, Lemma 5.4.7 is applicable and
yields M(x′, y′) ≥ L(x′, y′) ·m(x′, y′)/4. Observe that there is a common subsequence
of x′, y′ of length at least λ/2, where λ =

∑
σ∈Σ\{0}min{#σ(x),#σ(y)} (consider the

longer subsequence of 1min{#1(x),#1(y)} and 2min{#2(x),#2(y)}). Hence,

M(x, y) ≥M(x′, y′) ≥ 1

4
· L(x′, y′) ·m(x′, y′) ≥ 1

4
· λ

2
· m

2
=
λm

16
.

The claim now follows from λ ≥ d/(5L) as proven in Lemma 5.4.8.

5.5 Technical Tools and Constructions

The aim of this section is to collect several technical results to prepare the constructions
in the following sections. We start off with the simple fact that equal prefixes can be
greedily matched.

Lemma 5.5.1 (Greedy Prefix Matching). For any strings w, x, y, we have L(wx,wy) =
|w|+ L(x, y) and d(wx,wy) = |w|+ d(x, y).

Proof. For the first statement, it suffices to prove the claim when w = 1 is a single symbol
(by induction and renaming of symbols). In Fact 3.5.3(i), it was already proved that
δLCS(1x, 1y) = δLCS(x, y) (where δLCS(x, y) = |x|+ |y| − 2 · L(x, y)), which immediately
yields the claim.

For the second statement, let x′ = wx and y′ = wy. For i ∈ [|w|], we have
L(x′[1..i], y′[1..i]) = i. Hence (i, i) is the unique i-dominant pair of x′, y′ and no other
dominant pairs (i, j) with i ≤ |w| or j ≤ |w| exist. This yields |w| dominant pairs.
Consider now any (i, j) with i = |w| + ī and j = |w| + j̄ where ī ∈ [|x|], j̄ ∈ [|y|]. By
the first statement, L(x′[1..i], y′[1..j]) = |w|+ L(x[1..̄i], y[1..j̄]). Thus (i, j) is a (|w|+ k)-
dominant pair of x′ and y′ if and only if (̄i, j̄) is a k-dominant pair of x and y. This
yields d(x, y) additional dominant pairs, proving the claim.

For bounding the number of dominant pairs from below we often use the following
observation.

Observation 5.5.2. For any strings a, x, b, y, we have d(ax, by) ≥ d(a, b).

Proof. This trivially follows from the fact that any prefixes a′, b′ of a, b are also prefixes
of ax,by.

5.5.1 Generating Dominant Pairs

The dependency of d on the other parameters is quite complicated. Indeed, eight of
the parameter relations of Section 5.4 involve the dominant pairs. Apostolico [Apo86]
introduced the parameter under the initial impression that “it seems that whenever [M ]
gets too close to mn, then this forces d to be linear in m”. While we show that this
intuition is somewhat misleading by constructing instances with high values of both M
and d, it is a rather complex task to generate a desired number of dominant pairs while
respecting given bounds on all other parameters (which is why we need to give different
constructions for different parameter regimes).
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0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
0
0
0
1
0
1
0
1
0
1
0
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3
1 1 2 2 3 3 4 4 4 4 4 4 4 4 4 4
1 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5
1 2 3 3 4 4 5 5 6 6 6 6 6 6 6 6
1 2 3 4 4 5 5 6 6 7 7 7 7 7 7 7
1 2 3 4 5 5 6 6 7 7 8 8 8 8 8 8
1 2 3 4 5 6 6 7 7 8 8 9 9 9 9 9
1 2 3 4 5 6 7 7 8 8 9 9 1010 10 10
1 2 3 4 5 6 7 8 8 9 9 1010 1111 11
1 2 3 4 5 6 7 8 9 9 1010 11111212
1 2 3 4 5 6 7 8 9 1010 1111121213

Figure 5.2: The L-table for the strings a = (01)R+S and b = 0R(01)S

with R = 3, S = 5 (where the entry in row j and column i denotes
L(a[1..i], b[1..j])). The indicated dominant pairs visualize the results of
Lemma 5.5.3.

The following lemma establishes the first such construction, illustrated in Figure 5.2.
We remark that statements (iii) and (iv) are technical tools that we will only use for
|Σ| = O(1) in Section 5.8.

Lemma 5.5.3 (Generating dominant pairs). Let R,S ≥ 0 and define a := (01)R+S and
b := 0R(01)S. The following statements hold.

(i) We have L(a, b) = |b| = R+ 2S.

(ii) We have R · S ≤ d(a, b) ≤ min{2(R+ 1), 5S} · (R+ 2S) = O(R · S).

(iii) For any α, β, β′ ≥ 0, we have L(a1α, 0βb0β
′
) = |b| = R+ 2S.

(iv) For any α, β, β′ ≥ 0, we have R · S ≤ d(a1α, 0βb0β
′
) ≤ 2(max{R + α, β + β′} +

1)(R+ 2S).

Proof. All statements follow from the following fact.

(∗) For any 0 ≤ s ≤ S, s ≤ r ≤ R+ s and β ≥ 0, we have L((01)r, 0β0R(01)s) = r + s.

To prove (∗), note that by Lemma 5.5.1 (reversing the strings) we have

L((01)r, 0β+R(01)s) = 2s+ L((01)r−s, 0β+R)

= 2s+ min{#0((01)r−s), β +R} = 2s+ (r − s) = r + s.

Statement (i) now follows from setting s = S, r = R+ S, and β = 0.
To see (iii), note that L(a1α, 0βb0β

′
) ≥ L(a, b) = |b| by (i). For the upper bound, we

compute

L(a1α, 0βb0β
′
) ≤ min{#0(a1α),#0(0βb0β

′
)}+ min{#1(a1α),#1(0βb0β

′
)}

= min{R+ S,R+ S + β + β′}+ min{R+ S + α, S}
= R+ 2S = L(a, b).
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To prove (ii), note that d(a, b) ≤ 5 ·#1(b) · L(a, b) = 5S(R + 2S) by Lemma 5.4.8.
The bound d(a, b) ≤ 2(R + 1) · (R + 2S) follows from (iv) by setting α = β = β′ = 0,
hence it remains to prove (iv).

For the lower bound, we use d(a1α, 0βb0β
′
) ≥ d(a, 0βb) (by Observation 5.5.2) and

consider L′[r, s] := L((01)r, 0β+R(01)s). We prove that for any 1 ≤ s ≤ S, s < r ≤
R + s, we have at least one (r + s)-dominant pair (i, j) with 2(r − 1) < i ≤ 2r and
β+R+ 2(s− 1) < j ≤ β+R+ 2s. Indeed, L′[r, s] = r+ s (by (i)) implies that an (r+ s)-
dominant pair (i, j) with i ≤ 2r and j ≤ β+R+2s exists. If we had i ≤ 2(r−1), then by
monotonicity of L(x[1..i], y[1..j]) in i and j we would have L′[r−1, s] ≥ r+s, contradicting
L′[r − 1, s] = r + s − 1 (by (i)). Thus, we obtain i > 2(r − 1), and symmetrically we
have j > β + R + 2(s − 1). Hence, for every 1 ≤ s ≤ S, s < r ≤ R + s, we have at
least one dominant pair which is not counted for any other choice of r and s. Since for
any 1 ≤ s ≤ S there are R choices for s < r ≤ R + s, we conclude that d(a, b) ≥ S ·R.
For the upper bound, note that ∆(a1α, 0βb0β

′
) = max{R + α, β + β′} by (iii), and

hence Lemma 5.4.4 yields d(a1α, 0βb0β
′
) ≤ 2 · L(a1α, 0βb0β

′
) · (∆(a1α, 0βb0β

′
) + 1) =

2(R+ 2S)(max{R+ α, β + β′}+ 1).

The previous construction uses alphabet size |Σ| = 2, enforcing M(a, b) ≥ L(a, b)2/2.
If the desired number of matching pairs is much smaller than L2, which can only be the
case if the desired alphabet size is large, we have to use a more complicated construction
exploiting the larger alphabet. To make the analysis more convenient, we first observe a
simple way to bound the number of dominant pairs from below: if we can find k pairwise
non-dominated index pairs (i, j) that have the same LCS value (of the corresponding
prefixes) and whose predecessors (i− 1, j − 1) have a strictly smaller LCS value, then at
least k/2 dominant pairs exist.

Recall that for any strings x, y, we defined L[i, j] = L(x[1..i], y[1..j]).

Lemma 5.5.4. Suppose that there are index pairs (i1, j1), . . . , (ik, jk) with i1 < i2 <
· · · < ik and j1 > j2 > · · · > jk such that for some γ and all 1 ≤ ` ≤ k we have
L[i`, j`] = γ and L[i`− 1, j`− 1] = γ − 1. Then the number of γ-dominant pairs of x and
y is at least k/2.

Proof. For each k, fix any γ-dominant pair p` = (i∗` , j
∗
` ) that dominates (i`, j`). Note we

may have p` = (i`, j`) if (i`, j`) is itself a dominant pair, and thus p` always exists. Set
i0 := 1. We argue that for every `, we have i`−1 ≤ i∗` ≤ i`.

Note that for all `, we have L[i` − 1, j` − 1] < γ and hence L[i, j] < γ for all i < i`,
j < j`. Thus, we have either (1) i∗` = i` (and j∗` ≤ j`) or (2) j∗` = j` (and i∗` ≤ i`).
Case (1) trivially satisfies i`−1 ≤ i∗` ≤ i`. Thus, it remains to argue that in case (2) we
have i`−1 ≤ i∗` . Indeed, otherwise we have i∗` < i`−1 and j∗` = j` < j`−1, which implies
L[i∗` , j

∗
` ] < γ and (i∗` , j

∗
` ) is no γ-dominant pair.

Note that the above property implies p` 6= p`+2 for all 1 ≤ ` ≤ k − 2, since
i∗` ≤ i` < i`+1 ≤ i∗`+2. Thus, the number of γ-dominant pairs is bounded from below by
|{p` | 1 ≤ ` ≤ k}| ≥ k/2.

Note that the previous lemma would not hold without the condition L[i`−1, j`−1] =
γ − 1. We are set to analyze our next construction, which is illustrated in Figure 5.3.

Lemma 5.5.5 (Generating dominant pairs, large alphabet). Let t ≥ 2, 1 ≤ t′ ≤ t, and
S ≥ R ≥ 1. Over alphabet Σ = {1, . . . , t} we define the strings

a := ((1 . . . t) ◦ (t′ . . . 1))R ◦ (1 . . . t)S−R,

b := (1 . . . t)S .
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1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 2 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1 2 3 4 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1 2 3 4 4 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1 2 3 4 5 5 5 6 6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 2 3 4 5 5 5 6 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9
1 2 3 4 5 6 6 6 7 7 7 8 8 8 9 1010 10 10 10 10 10 10 10 10 10 10
1 2 3 4 5 6 6 7 7 7 8 8 8 9 9 10 1111 11 11 11 11 11 11 11 11 11
1 2 3 4 5 6 6 7 8 8 8 8 8 9 1010 111212 12 12 12 12 12 12 12 12
1 2 3 4 5 6 7 7 8 8 8 9 9 9 10 1111121313 13 13 13 13 13 13 13
1 2 3 4 5 6 7 8 8 8 9 9 9 1010 111212 131414 14 14 14 14 14 14
1 2 3 4 5 6 7 8 9 9 9 9 9 10 1111121313 141515 15 15 15 15 15
1 2 3 4 5 6 7 8 9 9 9 1010 10 111212 131414 151616 16 16 16 16
1 2 3 4 5 6 7 8 9 9 1010 10 1111121313 141515 161717 17 17 17
1 2 3 4 5 6 7 8 9 1010 10 10 111212 131414 151616 171818 18 18
1 2 3 4 5 6 7 8 9 10 10 1111 11121313 141515 161717 181919 19
1 2 3 4 5 6 7 8 9 10 1111 111212 131414 151616 171818 192020
1 2 3 4 5 6 7 8 9 10 11 11 11121313 141515 161717 181919 20 21

Figure 5.3: The L-table for strings a, b of Lemma 5.5.5 with t = t′ = 3,
R = 2, S = 7.

It holds that

(i) L(a, b) = |b| = St,

(ii) Assume that S ≥ R(t′ + 1). Then (St)(Rt′)/8 ≤ d(a, b) ≤ 4(St)(Rt′),

(iii) tS2 ≤M(a, b) ≤ t(S +R)S.

Proof. Note that (i) trivially follows from the fact that b is a subsequence of a. For
(iii), observe that for all σ ∈ Σ, we have S ≤ #σ(a) ≤ R + S and #σ(b) = S, from
which the claim follows immediately. The upper bound of (ii) follows from d(a, b) ≤
2 · L(a, b) · (∆(a, b) + 1) = 2(St)(Rt′ + 1) ≤ 4(St)(Rt′) (by Lemma 5.4.4). To prove the
remaining lower bound, we establish the following fact.

(∗) Let w := 1 . . . t, w′ := t′ . . . 1. Then L((ww′)R, wR+k) = Rt+ k for all 0 ≤ k ≤ t′R.

Let us postpone the proof and show that (ii) follows from (∗). Define v := wS−R. For
0 ≤ k ≤ K := min{S −R,Rt′} and 0 ≤ ` ≤ (S −R− k)t, we let a(k, `) := (ww′)Rv[1..`]
and b(k, `) := wR+kv[1..`]. Note that a(k, `) and b(k, `) are prefixes of a and b, respectively.
By greedy suffix matching (i.e., Lemma 5.5.1 applied to the reversed strings) and (∗), we
obtain

L(a(k, `), b(k, `)) = `+ L((ww′)R, wR+k) = Rt+ k + `.

Hence, any 0 ≤ k ≤ K, 1 ≤ ` ≤ (S − R − k)t give rise to an index pair (i, j)
with L(a[1..i], b[1..j]) = L(a(k, `), b(k, `)) > L(a(k, ` − 1), b(k, ` − 1)) = L(a[1..i −
1], b[1..j − 1]). Let Iγ denote the set of all such index pairs (i, j) that addition-
ally satisfy L(a[1..i], b[1..j]) = γ. Then for any γ, no (i, j) ∈ Iγ dominates another



Chapter 5. Multivariate Fine-grained Complexity of LCS 63

(i′, j′) ∈ Iγ . Thus by Lemma 5.5.4, d(a, b) ≥
∑

γ |Iγ |/2. By counting all possible choices
for k and `, we obtain

∑
γ |Iγ | =

∑
0≤k≤K t(S − R − k) ≥ tK(S − R)/2. This yields

d(a, b) ≥ t ·min{S−R,Rt′} · (S−R)/4. For S ≥ R(t′+ 1), we have S−R ≥ S/2 as well
as S −R ≥ Rt′ and the lower bound of (ii) follows.

To prove (∗), let a′ := (ww′)R and b′ := wR+k. For the lower bound, it is easy
to see that we can completely match R of the copies of w in b′ to copies of w in a′,
and at the same time match a single symbol in each of the remaining k copies of w
in b to a single symbol in some copy of w′ in a′ (since k ≤ R|w′| = Rt′). This yields
L(a′, b′) ≥ R|w|+ k = Rt+ k.

For the upper bound, we write b′ =©R+k
j=1 bj with bj := w and consider a partitioning

a′ = ©R+k
j=1 aj such that L(a′, b′) =

∑R+k
j=1 L(aj , bj) (this is analogous to the optimal

partition of Fact 3.5.1). For any aj , let w(aj) denote the number of symbols that aj
shares with any occurrence of w (if, e.g., aj = xw′y for some prefix x of w and some
suffix y of w, then w(aj) = |x|+ |y|). We first show that

L(aj , bj) ≤

{
1 if w(aj) = 0,

min{w(aj), |w|} otherwise.
(5.1)

Note that trivially L(aj , bj) ≤ |bj | = |w|. Hence for an upper bound, we may assume
that w(aj) < |w|, and in particular that aj is a subsequence of a′j = xw′y for some prefix
x = σx . . . t of w and some suffix y = 1 . . . σy of w with σy ≤ σx, where |x|+ |y| = w(aj).
Note that any longest common subsequence z of a′j and bj = w = 1 . . . t is an increasing
subsequence of a′j . Hence, if z starts with a symbol σ′ ≥ σy, then z is an increasing
subsequence in x t′ . . . σ′; easy inspection shows that in this case |z| ≤ max{|x|, 1}. If
z starts with a symbol σ′ ≤ σx, then z is an increasing subsequence in σ′ . . . 1 y; again,
one can see that |z| ≤ max{|y|, 1} holds in this case. Thus, L(aj , bj) ≤ L(a′j , bj) = |z| ≤
max{|x|, |y|, 1} ≤ max{|x|+ |y|, 1} = max{w(aj), 1}, concluding the proof of (5.1).

Let J = {j | w(aj) ≥ 1}. We compute

L(a′, b′) =
R+k∑
j=1

L(aj , bj) ≤

∑
j∈J

min{w(aj), |w|}

+ (R+ k − |J |)

≤ min


R+k∑
j=1

w(aj), |J | · |w|

+ (R+ k − |J |)

≤ min{R · |w|, |J | · |w|}+R+ k − |J | ≤ R|w|+ k = Rt+ k,

where the last inequality follows from the observation that |J | = R maximizes the
expression min{R · |w|, |J | · |w|} − |J |. This finishes the proof of (∗) and thus the
lemma.

5.5.2 Block Elimination and Dominant Pair Reduction

We collect some convenient tools for the analysis of later constructions. The first allows
us to “eliminate” 0`-blocks when computing the LCS of strings of the form x0`y, 0`z,
provided that ` is sufficiently large.

Lemma 5.5.6. For any strings x, y, z and ` ≥ #0(x) + |z| we have L(x0`y, 0`z) =
`+ L(0#0(x)y, z).
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1 2 3 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 1010 10 10 10 10
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Figure 5.4: Illustration of Lemma 5.5.8. The strings x′ = y2`x,y′ = 2`y
are defined using x = (01)R+S , y = 0R(01)S , R = 3, S = 5, and ` = 2.
The number of dominant pairs corresponding to x and y are significantly
reduced compared to Figure 5.2.

Proof. Let u := x0`y and v := 0`z. In case we match no symbol in the 0`-block of v
with a symbol in 0`y in u, then at most min{#0(x), `} symbols of the 0`-block of v
are matched. The remainder z yields at most |z| matched symbols. Otherwise, in case
we match any symbol in the 0`-block of v with a symbol in 0`y in u, then no symbol
σ 6= 0 of x can be matched. Thus, in this case we may replace x by 0#0(x). Together
this case distinction yields L(u, v) = max{min{#0(x), `}+ |z|, L(0#0(x)+`y, 0`z)}. Using
Lemma 5.5.1, we obtain L(u, v) = max{#0(x) + |z|, `+ L(0#0(x)y, z)}. The assumption
` ≥ #0(x) + |z| now yields the claim.

The following lemma bounds the number of dominant pairs of strings of the form
x′ = yx, y′ = zy by d(x′, y′) = O(|z| · |y′|). If |x′| ≥ |y′|, this provides a bound of
O(δ(x′, y′) · m(x′, y′)) instead of the general, weaker bound O(∆(x′, y′) · m(x′, y′)) of
Lemma 5.4.4.

Lemma 5.5.7. For any strings x, y, z, let x′ = yx, y′ = zy. Then

d(x′, y′) ≤ |y| · (|z|+ 1) + d(x′, z) ≤ |y| · (|z|+ 1) + |z|2.

Proof. For every prefix ỹ = y′[1..j], we bound the number of dominant pairs (i, j) of x′, y′.
Clearly, all prefixes ỹ of z (i.e., j ≤ |z|) contribute d(x′, z) ≤ L(x′, z) ·m(x′, z) ≤ |z|2
dominant pairs.

It remains to consider ỹ = z y[1..`] (i.e., j = |z| + `) for ` ∈ [|y|]. For i < `, the
string x̃ = x′[1..i] = y[1..i] is a subsequence of ỹ, i.e., L(x̃, ỹ) = i, but the prefix z y[1..i]
of ỹ already satisfies L(x̃, z y[1..i]) = i. Hence, there are no dominant pairs with i < `.
Thus, consider i ≥ ` and let x̃ = x′[1..i]. Clearly, y[1..j] is a common subsequence of
x̃, ỹ. This yields L(x̃, ỹ) ≥ j = |ỹ| − |z| and hence any such dominant pair (i, j) satisfies
j − |z| ≤ L(x′[1..i], y′[1..j]) ≤ j. By Observation 5.4.2, there are at most |z| + 1 such
dominant pairs for fixed j. This yields at most |y| · (|z|+ 1) dominant pairs (i, j) with
|z| < j ≤ |y′|, concluding the proof.
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The above lemma gives rise to a surprising technique: Given strings x, y, we can
build strings x′, y′ such that L(x′, y′) lets us recover L(x, y), but the number of dominant
pairs may be reduced significantly, namely to a value d(x′, y′) = O(δ(x, y) · n(x, y)),
independently of d(x, y).

Lemma 5.5.8 (Dominant Pair Reduction). Consider strings x, y and a number ` >
|y| − L(x, y).

(i) If 2 is a symbol not appearing in x, y, then x′ := y2`x and y′ := 2`y satisfy
L(x′, y′) = L(x, y) + ` and d(x, y) ≤ 3` · |y|.

(ii) For any symbols 0, 1 (that may appear in x, y) set x′′ := 0k1ky1`0k1kx and y′′ :=
1`0k1ky with k := 2|y|+ |x|+ 1. Then L(x′′, y′′) = L(x, y) + `+ 2k and d(x, y) ≤
O(`(|x|+ |y|+ `)).

Proof. (i) Clearly, we have L(x′, y′) ≥ L(2`, 2`) + L(x, y) ≥ ` + L(x, y). For the other
direction, let z be a common subsequence of x′, y′. If z contains no 2, then by inspecting
y′ we obtain |z| ≤ |y| = L(x, y) + (|y| −L(x, y)) < L(x, y) + `, so z is no LCS. Otherwise,
if z contains a 2, then no symbol from the copy of y in x′ can be matched by z, implying
|z| ≤ L(2`x, y′) = `+ L(x, y).

For the dominant pairs, we apply Lemma 5.5.7 to obtain d(x′, y′) ≤ |y|(`+1)+d(x′, 2`).
Note that d(x′, 2`) = d(2`, 2`) = `, since we can delete all characters different from 2 in x′

without affecting the dominant pairs of x′, 2` (thus making x, y satisfy Assumption 5.1.1)
and then apply Lemma 5.5.1. Hence, d(x′, y′) ≤ |y|(`+ 1) + ` ≤ 3` · |y|.

(ii) The argument is slightly more complicated when the padding symbols may appear
in x, y. Clearly, we have L(x′′, y′′) ≥ L(1`0k1kx, 1`0k1ky) ≥ ` + 2k + L(x, y). For the
other direction, let z be a common subsequence of x′′, y′′. If z does not match any 0 in the
0k-block of y′′ with a symbol in a 0k-block in x′′, then from the 0k-block of y′′ we match at
most |y|+ |x| symbols, and we obtain |z| ≤ (|y|+ |x|)+ |1`1ky| = |x|+2|y|+`+k < `+2k,
since k > |x|+ 2|y|, so z is no longest common subsequence. If z matches a 0 in the 0k-
block of y′′ with a symbol in the left 0k-block of x′′, then no symbol in the 1`-block in y′′ is
matched by z, so we obtain |z| ≤ |0k1ky| = 2k+L(x, y)+(|y|−L(x, y)) < 2k+L(x, y)+`,
so z is no longest common subsequence. The case remains that z matches some 0 in the
0k-block of y′′ with a symbol in the right 0k-block of x′′. Then the part 1ky of y′′ has
to be matched to a subsequence of 0k1kx in x′′. This yields |z| ≤ `+ k + L(0k1kx, 1ky).
Since k > |y| we can apply Lemma 5.5.6 (swapping the roles of 0 and 1) to obtain
L(0k1kx, 1ky) = k + L(x, y), so as desired we have |z| ≤ `+ 2k + L(x, y).

For the dominant pairs, we apply Lemma 5.5.7 to obtain d(x′′, y′′) ≤ |0k1ky| · (` +
1) + `2 = O(`(|x|+ |y|+ `)).

5.6 Hardness for Large Alphabet

In this section, we consider a parameter setting α satisfying the relations of Table 5.2,
and we prove a lower bound for LCS≤(α) assuming OVH, thus proving Theorem 5.3.3.
We split our proof into the two cases αδ = αm (where L may be small) and αL = αm
(where L is large). For readability, but abusing notation, for the target value dnαpe of
parameter p we typically simply write p.

Throughout the section we may assume that

αL, αm, αδ, α∆ > 0 and αd > 1, (LB)
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since otherwise the known Õ(n+ min{d, δm, δ∆}) algorithm runs in (near-)optimal time
Õ(n) and there is nothing to show (here we used the parameter relations d ≤ Lm and
L,m, δ,∆ ≤ n).

5.6.1 Small LCS

Assume αδ = αm, i.e., δ = Θ(m). In this case, the longest common subsequence might
be arbitrarily small, i.e., any value 0 < αL ≤ αm is admissible.

Hard Core

At the heart of our constructions lies our reduction from OV to LCS that was given
in Chapter 4. Recall that it was obtained by combining the alignment gadget for LCS
(Lemma 4.3.3, or alternatively the more general construction of Lemma 4.4.5, specialized
to LCS) with the general framework result of Theorem 4.1.3. We summarize the reduction
here together with the properties needed for the purposes of this section.

Lemma 5.6.1. Let two sets A = {a1, . . . , aA} and B = {b1, . . . , bB} of vectors in {0, 1}D
with A ≥ B be given. In time O(AD), we can construct strings x1, . . . , x2A and y1, . . . , yB
over {0, 1} and γ, γ′ = Θ(D) such that the strings x and y defined by

x := x1 0γ x2 0γ . . . x2A−1 0γ x2A,

y := 0Aγ
′
y1 0γ y2 0γ . . . yB−1 0γ yB 0Aγ

′
,

satisfy the following properties:

(i) We can compute some ρ in time O(AD) such that L(x, y) ≥ ρ if and only if there
is a pair i, j with 〈ai, bj〉 = 0.

(ii) |x|, |y| = O(AD).

(iii) #1(y) = O(BD).

(iv) For all β ≥ 0, we have L(x, 0βy) = L(x, y).

Proof. Note that when applying the proof of Theorem 4.1.3 to LCS, we apply the
alignment gadget thrice: Twice to obtain normalized vector gadgets x1, . . . , x2A and
y1, . . . , yB of length O(D), and another time to combine these strings to x and y as
stated above. Claim (ii) hence follows directly from the construction, while Claim (i)
follows from the proof of correctness of Theorem 4.1.3 and Lemma 4.3.3. Claim (iii)
is immediate by construction, since in y, only the yi’s can contain ones, and these B
strings are of length O(D).

For (iv), observe that in Lemma 4.3.3, the value of γ′ is chosen sufficiently large
to satisfy Aγ′ ≥ #0(x). This already yields (iv), since any common subsequence z
of x and 0βy starts with at most #0(x) symbols 0, which can all be matched to the
initial 0Aγ

′
-block of y, so z is also a common subsequence of x and y, and we obtain

L(x, y) = L(x, 0βy).

Constant Alphabet

First assume αΣ = 0 and thus |Σ| = O(1). Consider any n ≥ 1 and target values
p = dnαpe for p ∈ P. Let A = {a1, . . . , aA}, B = {b1, . . . , bB} ⊆ {0, 1}D be a given OV
instance with D = no(1) and where we set A := bL/Dc and B := bd/(LD)c. Note that
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A = nαL−o(1) = nΩ(1) and B = nαd−αL−o(1) = nΩ(1) by (LB) and αL ≤ 1. Also note
that UOVH implies that solving such OV instances takes time (AB)1−o(1) = nαd−o(1) =
d1−o(1).

Construct strings x, y as in Lemma 5.6.1. Then from the LCS length L(x, y) we can
infer whether A,B has an orthogonal pair of vectors by Lemma 5.6.1(i). Moreover, this
reduction runs in time O(AD) = O(L) = O(d1−ε) for sufficiently small ε > 0 (since
αL ≤ αm ≤ 1 < αd by Table 5.2 and (LB)). We claim that (n, x, y) is an instance of
LCS≤(α). This shows that any algorithm solving LCS≤(α) in time O(d1−ε) implies an
algorithm for our OV instances with running time O(d1−ε), contradicting UOVH. Hence,
in the current case αδ = αm and αΣ = 0, any algorithm for LCS≤(α) takes time d1−o(1),
proving part of Theorem 5.3.3.

It remains to show the claim that (n, x, y) is an instance of LCS≤(α). Using the
parameter relations L ≤ m ≤ n, Lemma 5.6.1(ii), and the definition of A, we have
L(x, y) ≤ m(x, y) ≤ n(x, y) = max{|x|, |y|} = O(AD) = O(L) = O(m) = O(n), so
indeed p(x, y) = O(p) = O(nαp) for p ∈ {L,m, n}. Similarly, we obtain δ(x, y) ≤
∆(x, y) ≤ n(x, y) = O(m) = O(δ) = O(∆), where the fourth bound holds in the current
case αδ = αm. Since x, y use the binary alphabet {0, 1}, we have |Σ(x, y)| = 2 = O(nαΣ).
For the number of matching pairs we have M(x, y) ≤ n(x, y)2 = O((AD)2) = O(L2).
Since we are in the case αΣ = 0, from the parameter relation M ≥ L2/|Σ| (Lemma 5.4.6(i))
we obtain L2 = O(M) and thus also M(x, y) is sufficiently small. Finally, we use
Lemmas 5.4.8 and 5.6.1(iii) to bound d(x, y) = O(L(x, y) ·#1(y)) = O(AD ·BD), which
by definition of A,B is O(d). This proves that (n, x, y) belongs to LCS≤(α).

We remark that our proof also yields the following lemma, which we will use for small
alphabets in Section 5.8.

Lemma 5.6.2. Let α be a parameter setting satisfying Table 5.2 with αΣ = 0 and
αδ = αm. There is a constant γ ≥ 1 such that any algorithm for LCSγ≤(α, {0, 1})
takes time d1−o(1), unless OVH fails. This holds even restricted to instances (n, x, y)
of LCSγ≤(α, {0, 1}) with |x|, |y| ≤ γ · nαL and #1(y) ≤ γ · nαd−αL satisfying L(x, 0βy) =
L(x, y) for all β ≥ 0.

Superconstant Alphabet

To tackle the general case αΣ ≥ 0 (while still assuming αδ = αm), we use the following
fact which is similar to the Disjoint Alphabets Lemma.

Lemma 5.6.3 (Crossing Alphabets). Let Σ1, . . . ,Σk be disjoint alphabets and let xi, yi
be strings over alphabet Σi. Consider x := x1 . . . xk and y := yk . . . y1, i.e., the order in y
is reversed. For any parameter p ∈ {n,m, |Σ|,M, d}, we have p(x, y) =

∑k
i=1 p(xi, yi).

Moreover, L(x, y) = maxi L(xi, yi).

Proof. The statement is trivial for the string lengths n,m, alphabet size |Σ|, and number
of matching pairs M . For the LCS length L we observe that any common subsequence z
that matches a symbol in Σi cannot match any symbols in other alphabets, which yields
L(x, y) ≤ maxi L(xi, yi). Since any common subsequence of xi, yi is also a common
subsequence of x, y, we obtain equality.

Since every dominant pair is also a matching pair, every dominant pair of x, y stems
from prefixes x1 . . . xj−1x

′ and yk . . . yj+1y
′, with x′ a prefix of xj and y′ a prefix of yj

for some j. Since L(x1 . . . xj−1x
′, yk . . . yj+1y

′) = L(x′, y′), we obtain that the dominant
pairs of x, y of the form x1 . . . xj−1x

′, yk . . . yj+1y
′ are in one-to-one correspondence with

the dominant pairs of xj , yj . Since these dominant pairs of x, y are incomparable, this
yields the claim for parameter d.
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We make use of the above lemma by invoking the following construction.

Definition 5.6.4. Let Σ1, . . . ,Σt be a collection of disjoint two-element alphabets. For
any string z over {0, 1} and Σi, let z ↑Σi denote the string z lifted to Σi, i.e., we replace
the symbols {0, 1} in z bijectively by Σi. Then for given x1, . . . , xt, y1, . . . , yt ∈ {0, 1}∗
we construct

crx(x1, . . . , xt) := x1 ↑Σ1 x2 ↑Σ2 . . . xt ↑Σt,

cry(y1, . . . , yt) := yt ↑Σt yt−1 ↑Σt−2 . . . y1 ↑Σ1.

We adapt the construction from Lemma 5.6.1 using the following trick that realizes
an ”OR” of t = O(Σ) instances, without significantly increasing the parameters d and M .

Consider any n ≥ 1 and target values p = dnαpe for p ∈ P. Let A = {a1, . . . , aA},
B = {b1, . . . , bB} ⊆ {0, 1}D be a given OV instance with D = no(1) and where we

set A = b d
min{L,

√
d}·Dc and B = bmin{L,

√
d}

D c. Note that UOVH implies that solving

such OV instances takes time (AB)1−o(1) = nαd−o(1) = d1−o(1). Since clearly A ≥ B,
we can partition A into t := dA/Be groups A1, . . . ,At of size B (filling up the last
group with all-ones vectors). Using the relation d ≤ L2|Σ| (Lemma 5.4.3(ii)), we obtain
t = O(d/L2 + 1) = O(Σ).

For each i = 1, . . . , t we construct strings xi and yi for the sets Ai and B using
Lemma 5.6.1. Finally, we set x := crx(x1, . . . , xt) and y := cry(y1, . . . , yt). By the
Crossing Alphabets Lemma and Lemma 5.6.1(i), from L(x, y) we can infer whether A,B
has an orthogonal pair of vectors. We claim that (n, x, y) is an instance of LCS≤(α).
This shows that any algorithm solving LCS≤(α) in time O(d1−ε) implies an algorithm
for our OV instances with running time O(d1−ε), contradicting UOVH. Hence, in the
current case αδ = αm, any algorithm for LCS≤(α) takes time d1−o(1), proving part of
Theorem 5.3.3.

It remains to show the claim that (n, x, y) is an instance of LCS≤(α). This is
similar to the proof for the case αΣ = 0, additionally using the Crossing Aphabets
Lemma. Specifically, we obtain m(x, y) ≤ n(x, y) = |x| =

∑t
i=1 |xi| = O(t · BD) =

O(AD) = O(max{d/L,
√
d}), which is at most O(m) = O(n) using the parameter

relations d ≤ Lm ≤ m2 (Lemma 5.4.3(i)). Similarly, we obtain δ(x, y) ≤ ∆(x, y) ≤
n(x, y) = O(m) = O(δ) = O(∆), where the fourth bound holds in the current case
αm = αδ. For L, we obtain L(x, y) = maxi L(xi, yi) ≤ |yi| = O(BD) = O(L). Since
t = O(Σ), we have |Σ(x, y)| = O(Σ). Using the parameter relation d ≤ M , we have
d(x, y) ≤ M(x, y) =

∑t
i=1M(xi, yi) ≤ t · |xi| · |yi| = t · O((BD)2) = O(AD · BD) =

O(d) = O(M). This proves that (n, x, y) belongs to LCS≤(α).

5.6.2 Large LCS

We turn to the case that αL = αm, i.e., L = Θ(m). Here, the number of deletions in the
shorter string might be arbitrary small, i.e., any value 0 < αδ ≤ αm is admissible. In
this case, our construction of Lemma 5.6.1 is not applicable as is. Instead, we design
new 1vs1/2vs1 gadgets for constructing hard strings for small δ, which can be seen as
one of our main technical contributions in this chapter.

Hard Core

The following lemma (which effectively constitutes an intermediate step when reducing
OV to LCS using Theorem 4.1.3 with the alignment gadget for LCS) yields the basic
method to embed sets of vectors into strings x and y.
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Lemma 5.6.5. Let two sets A = {a1, . . . , aA} and B = {b1, . . . , bB} of vectors in {0, 1}D
be given. In time O((A + B)D), we can construct strings x1, . . . , xA of length `x and
y1, . . . , yB of length `y over alphabet {0, 1}, as well as integers ρ1 < ρ0, such that for all
i ∈ [A], j ∈ [B] we have

(i) `y ≤ `x = O(D),

(ii) L(xi, yj) = ρ0 if 〈ai, bj〉 = 0,

(iii) L(xi, yj) = ρ1 if 〈ai, bj〉 6= 0, and

(iv) L(xi, yj) > `y/2.

Proof. Using Theorem 4.1.3 and Lemma 4.3.3, we can construct normalized vector
gadgets as in Claim 4.1.5, i.e., strings x′1, . . . , x

′
A of length `′x = O(D) and y′1, . . . , y

′
B of

length `′y = O(D), as well as integers ρ′1 < ρ′0 that satisfy L(x′i, y
′
j) = ρ′0 if 〈ai, bj〉 = 0

and L(x′i, y
′
j) = ρ′1 otherwise. To additionally enforce conditions (i) and (iv), we define

xi := 1`
′
y0`
′
y+1x′i and yj := 0`

′
y+1y′j . Since L(xi, yj) = L(x′i, y

′
j) + `′y + 1 by Lemmas 5.5.6

and 5.5.1, we thus obtain conditions (ii) and (iii) for ρ0 := ρ′0 +`′y+1 and ρ1 := ρ′1 +`′y+1.
Since by definition `y = 2`′y + 1 holds, the first condition follows directly and the trivial
bound L(xi, yj) ≥ `′y + 1 > `y/2 shows that the last condition is fulfilled.

1vs1/2vs1 Gadget. The aim of the following construction is to embed given strings
y1, . . . , yQ into a string y and strings x1, . . . , xP into x, where P = Θ(Q), such that in
an LCS each yj is either aligned to a single string xi or to several strings xi, xi+1, . . . , xi′ .
In the first case, |yj | − L(xi, yj) characters of yj are not contained in an LCS of x and y,
while in the second case yj can be completely aligned. By choosing P = 2Q − N for
an arbitrary 1 ≤ N ≤ Q, it will turn out that the LCS aligns N strings yj to a single
partner xi, and the remaining Q−N strings yj to two strings xi, xi+1 each. Thus, only
N strings yj are not completely aligned.

To formalize this intuition, let P ≥ Q. We call a set Λ = {(i1, j1), . . . , (ik, jk)} with
0 ≤ k ≤ Q and 1 ≤ i1 < i2 < · · · < ik ≤ P and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ Q a (partial)
multi-alignment7. Let Λ(j) = {i | (i, j) ∈ Λ}. We say that every j ∈ [Q] with |Λ(j)| = k
is k-aligned. We will also refer to a 1-aligned j ∈ [Q] as being uniquely aligned to i, where
Λ(j) = {i}. Every j ∈ [Q] with Λ(j) = ∅ is called unaligned. Note that each i ∈ [P ]
occurs in at most one (i, j) ∈ Λ. We denote the set of multi-alignments as Λmulti

P,Q .
We will also need the following specialization of multi-alignments. We call a multi-

alignment Λ ∈ Λmulti
P,Q a (1,2)-alignment, if each j is either 1-aligned or 2-aligned. Let

Λ1,2
P,Q denote the set of all (1,2)-alignments.

Given strings x1, . . . , xP of length `x and y1, . . . , yQ of length `y, we define the value

v(Λ) of a multi-alignment Λ ∈ Λmulti
P,Q as v(Λ) =

∑Q
j=1 vj where

vj :=


0 if j is unaligned,

L(xi, yj) if j is uniquely aligned to i,

`y if j is k-aligned for k ≥ 2.

7The analysis of the 1vs1/2vs1 gadget mimics the structure of the analysis of the alignment gadget.
In contrast to the (partial) alignments defined in Chapter 4, intuitively a multi-alignment allows objects
yj to be aligned to multiple partners xi1 , . . . , xik instead of at most one partner xi.
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Lemma 5.6.6. Given strings x1, . . . , xP of length `x and y1, . . . , yQ of length `y, con-
struct

x := G(x1) G(x2) . . . G(xP ),

y := G(y1) G(y2) . . . G(yQ),

where G(w) := 0γ1 1γ2 (01)γ3 w 1γ3 with γ3 := `x + `y, γ2 := 8γ3 and γ1 := 6γ2. Then
we have

max
Λ∈Λ1,2

P,Q

v(Λ) ≤ L(x, y)−Q(γ1 + γ2 + 3γ3) ≤ max
Λ∈Λmulti

P,Q

v(Λ). (5.2)

Proof. For the first inequality of (5.2), let Λ ∈ Λ1,2
P,Q. For every yj , we define zj =

©i∈Λ(j) G(xi). Consider a 1-aligned j and let i ∈ [P ] be the index j is uniquely aligned
to. We have that zj = G(xi) = 0γ11γ2(01)γ3xi1

γ3 and hence by Lemma 5.5.1, we obtain
L(zj ,G(yj)) = γ1 + γ2 + 3γ3 + L(xi, yj) = γ1 + γ2 + 3γ3 + vj . Likewise, consider a
2-aligned j and let i, i′ ∈ [P ] be such that Λ(j) = {i, i′}. Then zj = G(xi)G(xi′). We
compute

L(zj ,G(yj)) = γ1 + γ2 + 3γ3 + L(xi0
γ11γ2(01)γ3xi′ , yj)

≥ γ1 + γ2 + 3γ3 + L((01)γ3 , yj)

= γ1 + γ2 + 3γ3 + `y = γ1 + γ2 + 3γ3 + vj ,

where the first line follows from Lemma 5.5.1, the second line from monotonicity and
the third line from γ3 ≥ `y = |yj |. Observe that z1z2 . . . zQ is a subsequence of x. We
conclude that

L(x, y) ≥
Q∑
j=1

L(zj ,G(yj)) = Q(γ1 + γ2 + 3γ3) +

Q∑
j=1

vj .

It remains to prove the second inequality of (5.2). Write x = z1z2 . . . zQ such that

L(x, y) =
∑Q

j=1 L(zj ,G(yj)). We define a multi-alignment Λ by letting (i, j) ∈ Λ if and
only if zj contains strictly more than half of the 0γ1-block of G(xi). Note that the thus
defined set satisfies the definition of a multi-alignment, since no two zj ’s can contain
more than half of G(xi)’s 0γ1-block and if (i, j), (i′, j′) ∈ Λ, then j < j′ implies i < i′. It
remains to show that L(zj ,G(yj)) ≤ γ1 + γ2 + 3γ3 + vj for all j to prove the claim.

In what follows, we use the shorthand H(w) := 1γ2(01)γ3w1γ3 . Note that G(w) =
0γ1H(w). Consider an unaligned j ∈ [Q]. By definition, zj is a subsequence of
0γ1/2H(xi)0

γ1/2 for some i ∈ [P ]. We can thus bound (using Lemma 5.5.1)

L(zj ,G(yj)) ≤ L(0γ1/2H(xi)0
γ1/2, 0γ1H(yj)) =

γ1

2
+ L(H(xi)0

γ1/2, 0γ1/2H(yj)).

By Lemma 5.5.6 with ` := γ1/2 ≥ 2γ2 + 6γ3 + `x + `y = |H(xi)|+ |H(yj)| ≥ #0(H(xi)) +
|H(yj)|, we obtain

L(H(xi)0
γ1/2, 0γ1/2H(yj)) = γ1/2 + L(0#0(H(xi)), H(yj))

≤ γ1/2 + #0(H(yj)) ≤ γ1/2 + γ3 + `y.

Hence, in total we have L(zj ,G(yj)) ≤ γ1 + γ3 + `y ≤ γ1 + γ2 + 3γ3 = γ1 + γ2 + 3γ3 + vj ,
as desired.
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Consider a j ∈ [Q] that is uniquely aligned (under Λ) to some i. Then zj is a
subsequence of 0γ1/2H(xi−1)0γ1H(xi)0

γ1/2. Analogously to above we compute

L(zj ,G(yj)) ≤
γ1

2
+ L(H(xi−1)0γ1H(xi)0

γ1/2, 0γ1/2H(yj))

= γ1 + L(0#0(H(xi−1))+γ1H(xi)0
γ1/2, H(yj))

= γ1 + L(0#0(H(xi−1))+γ11γ2(01)γ3xi1
γ30γ1/2, 1γ2(01)γ3yj1

γ3).

Using Lemma 5.5.6 with symbol 0 replaced by 1 yields, since ` := γ2 ≥ 3γ3 + `y =
|(01)γ3yj1

γ3 | and #1(0#0(H(xi−1))+γ1) = 0,

L(zj ,G(yj)) ≤ γ1 + γ2 + L((01)γ3xi1
γ30γ1/2, (01)γ3yj1

γ3)

= γ1 + γ2 + 2γ3 + L(xi1
γ30γ1/2, yj1

γ3).

Similarly, using Lemma 5.5.6 with symbol 0 replaced by 1 on the reversed strings yields,
since ` := γ3 ≥ `y = |yj | and #1(0γ1/2) = 0,

L(xi1
γ30γ1/2, yj1

γ3) = γ3 + L(xi, yj).

Hence, we obtain the desired L(zj ,G(yj)) ≤ γ1 +γ2 + 3γ3 +L(xi, yj) = γ1 +γ2 + 3γ3 + vj .
It remains to consider j ∈ [Q] that is k-aligned for k ≥ 2. In this case, the claim

follows from the trivial bound L(zj ,G(yj)) ≤ |G(yj)| = γ1 + γ2 + 3γ3 + vj .
Thus z1, . . . , zQ defines a multi-alignment Λ ∈ Λmulti

P,Q with

L(x, y) =

Q∑
j=1

L(zj ,G(yj)) ≤ Q(γ1 + γ2 + 3γ3) + v(Λ),

proving the second inequality of (5.2).

We can now show how to embed an OV instanceA = {a1, . . . , aA},B = {b1, . . . , bB} ⊆
{0, 1}D with A ≤ B into strings x and y of length O(B ·D) whose LCS can be obtained
by deleting at most O(A ·D) symbols from y. For this we will without loss of generality
assume that A divides B by possibly duplicating some arbitrary element of B up to A− 1
times without affecting the solution of the instance.

The key idea is that for any P and Q = 2P − N with N ∈ {0, . . . , P}, Λ1,2
P,Q is

non-empty and each Λ ∈ Λ1,2
P,Q has exactly N uniquely aligned j ∈ [Q] and exactly P −N

2-aligned j ∈ [Q]. At the same time each Λ ∈ Λmulti
P,Q leaves at least N indices j ∈ [Q]

either unaligned or uniquely aligned.

Lemma 5.6.7. Let a1, . . . , aA, b1, . . . bB ⊆ {0, 1}D be given with A | B. Construct the
corresponding strings x1, . . . , xA of length `x, y1, . . . , yB of length `y ≤ `x = O(D), and
integers ρ0, ρ1 as in Lemma 5.6.5 and define

x̃ := (x̃1, . . . , x̃P ) = (

2·(B/A)+3 groups of size A︷ ︸︸ ︷
x1, . . . , xA, x1, . . . , xA, . . . , x1, . . . , xA),

ỹ := (ỹ1, . . . , ỹQ) = ( y1, . . . , y1︸ ︷︷ ︸
A copies of y1

, y1, . . . , yB, y1, . . . , y1︸ ︷︷ ︸
A copies of y1

),

where P := 2B + 3A and Q := B + 2A. Then the instance x :=©i G(x̃i), y :=©j G(ỹj)
of Lemma 5.6.6 (with the corresponding choice of γ1, γ2 and γ3) satisfies the following
properties:
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(i) For every i ∈ [A], j ∈ [B], there is a (1,2)-alignment Λ ∈ Λ1,2
P,Q such that some

` ∈ [Q] is uniquely aligned to some k ∈ [P ] with x̃k = xi and ỹ` = yj.

(ii) We have L(x, y) ≥ Q(γ1 + γ2 + 3γ3) + (A− 1)ρ1 + ρ0 + (Q− A)`y if and only if
there are i ∈ [A], j ∈ [B] with 〈ai, bj〉 = 0.

(iii) We have |y| ≤ |x| = O(B ·D) and δ(x, y) = O(A ·D).

Proof. For (i), we let j ∈ [B] and note that yj = ỹ` for ` := A+ j. We will show that

for every λ ∈ {0, . . . , A − 1}, there is a (1,2)-alignment Λ with (k, `) ∈ Λ1,2
P,Q where

k := 2(A+ j)− 1− λ. By the cyclic structure of x̃, (x̃k)0≤λ<A cycles through all values
x1, . . . , xA. Hence, for some choice of λ the desired x̃k = xi follows, yielding the claim.

To see that for any λ ∈ {0, . . . , A− 1}, some Λ ∈ Λ1,2
P,Q with (k, `) ∈ Λ exists, observe

that there are `−1 = A+j−1 predecessors of ỹ` and k−1 = 2(A+j−1)−λ = 2(`−1)−λ
predecessors of x̃k. Hence there is a (1,2)-alignment Λ1 ∈ Λ1,2

k−1,`−1 (leaving λ indices
j ∈ [Q] uniquely aligned). Similarly, observe that there are Q− ` = B +A− j successors
of ỹ` and P − k = 2B +A− 2j + λ+ 1 = 2(Q− `)− (A− λ− 1) successors of x̃k, hence
there is a (1,2)-alignment Λ2 ∈ Λ1,2

P−k,Q−` (which leaves A− (λ+ 1) indices j uniquely

aligned). By canonically composing Λ1, (k, `) and Λ2 we can thus obtain Λ ∈ Λ1,2
P,Q with

(k, `) ∈ Λ.
For (ii), assume that there are i ∈ [A], j ∈ [B] satisfying 〈ai, bj〉 = 0. By (i), there is

some Λ ∈ Λ1,2
P,Q where some ` ∈ [Q] is uniquely aligned to some k ∈ [P ] such that x̃k = xi

and ỹ` = yj . To apply Lemma 5.6.6, observe that Λ has Q−A 2-aligned j ∈ [Q], which
contribute value `y to v(Λ), and A uniquely aligned j ∈ [Q], in particular, ` is uniquely
aligned to k. Since any x̃i corresponds to some xi′ , every ỹj corresponds to some yj′

and L(xi′ , yj′) ∈ {ρ0, ρ1}, we conclude that ` contributes ρ0 to v(Λ) and the other A− 1
uniquely aligned j contribute at least ρ1. Hence by the lower bound in Lemma 5.6.6, we
obtain L(x, y) ≥ Q(γ1 + γ2 + 3γ3) + v(Λ), where v(Λ) ≥ (A− 1)ρ1 + ρ0 + (Q−A)`y.

Assume now that no i ∈ [A], j ∈ [B] satisfy 〈ai, bj〉 = 0, and let Λ ∈ Λmulti
P,Q . Then

any j ∈ [Q] uniquely aligned to some i ∈ [P ] contributes L(x̃i, ỹj) = ρ1 to v(Λ). Let
λ be the number of j ∈ [Q] that are k-aligned for any k ≥ 2, each contributing `y to
v(Λ). Then there are at most min{P − 2λ,Q− λ} uniquely aligned j ∈ [Q] (since every
k-aligned j blocks at least two i ∈ [P ] for other alignments), and the remaining j ∈ [Q] are
unaligned, with no contribution to v(Λ). Hence v(Λ) ≤ λ`y + min{P − 2λ,Q− λ} · ρ1 =
min{Pρ1+(`y−2ρ1)λ,Qρ1+(`y−ρ1)λ}. Note that `y/2 < ρ1 ≤ `y (by Lemma 5.6.5(iv)),
hence this minimum of linear functions with leading coefficients `y − 2ρ1 < 0 and
`y− ρ1 ≥ 0 is maximized when both have the same value, i.e., when λ = P −Q = Q−A.
Thus, v(Λ) ≤ (Q−A)`y +Aρ1 < (Q−A)`y + (A− 1)ρ1 + ρ0. Thus by the upper bound
of Lemma 5.6.6 we conclude that L(x, y) < Q(γ1 +γ2 + 3γ3) + (Q−A)`y + (A−1)ρ1 +ρ0.

For (iii), since P ≥ Q and `x ≥ `y we have |x| ≥ |y|, and by P = O(A) and
|G(x̃i)| = O(`x) = O(D) we obtain |x| = O(AD). Note that for any (1,2)-alignment
Λ ∈ Λ1,2

P,Q, we have

v(Λ) = Q · `y −
∑

j uniquely aligned to i

(`y − L(xi, yj)) = Q · `y −O(A ·D),

since by P = 2Q − A the number of uniquely aligned indices j in Λ equals A, and
`y = O(D). Hence by Lemma 5.6.6, L(x, y) ≥ Q(γ1 + γ2 + 3γ3) + Q`y − O(A ·D) =
|y| − O(A ·D), implying δ(x, y) = |y| − L(x, y) = O(A ·D).
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Constant Alphabet

First assume αΣ = 0 and thus |Σ| = O(1). Consider any n ≥ 1 and target values
p = dnαpe for p ∈ P . We write bxc2 for the largest power of 2 less than or equal to x. Let
A = {a1, . . . , aA}, B = {b1, . . . , bB} ⊆ {0, 1}D be a given OV instance with D = no(1)

and where we set

A :=
⌊ 1

D
min

{
δ,

d

min{m,∆}

}⌋
2

and B :=
⌊ 1

D
min{m,∆}

⌋
2
.

By αm, α∆ ≤ 1 and (LB) we obtain that A ≥ nmin{αL,αd−1}−o(1) = nΩ(1) as well as
B = nmin{αm,α∆}−o(1) = nΩ(1). Also note that UOVH implies that solving such OV
instances takes time (AB)1−o(1) = min{d, δm, δ∆}1−o(1), which is the desired bound.
We claim that A ≤ B, implying A | B. Indeed, if δ ≤ d/min{m,∆}, this follows from
the simple parameter relations δ ≤ m and δ ≤ ∆. Otherwise, if δ > d/min{m,∆},
then in particular δ∆ > d, implying d < ∆2. Together with the parameter relations
d ≤ Lm ≤ m2 we indeed obtain d/min{m,∆} ≤ min{m,∆}.

Thus, we may construct strings x, y as in Lemma 5.6.7. We finish the construction
by invoking the Dominant Pair Reduction (Lemma 5.5.8(ii)) to obtain strings x′ :=
0k1ky1`0k1kx and y′ := 1`0k1ky with k := 2|y|+ |x|+1 and ` := β ·dADe with sufficiently
large constant β, so that ` > δ(x, y). Then from the LCS length L(x′, y′) we can infer
whether A,B has an orthogonal pair of vectors by L(x′, y′) = L(x, y) + ` + 2k and
Lemma 5.6.7(ii). Moreover, this reduction runs in time O(|x′|+ |y′|) = O(|x|+ |y|) =
O(BD) = O(min{d, δm, δ∆}1−ε) for sufficiently small ε > 0 (since αδ > 0 and αd > 1 ≥
αm, α∆ by (LB) and Table 5.2). We claim that (n, x′, y′) is an instance of LCS≤(α). This
shows that any algorithm solving LCS≤(α) in time O(min{d, δm, δ∆}1−ε) implies an
algorithm for our OV instances with running time O(min{d, δm, δ∆}1−ε), contradicting
UOVH. Hence, in the current case αL = αm and αΣ = 0, any algorithm for LCS≤(α)
takes time min{d, δm, δ∆}1−o(1), proving part of Theorem 5.3.3.

It remains to show the claim that (n, x′, y′) is an instance of LCS≤(α). From
Lemmas 5.5.8 and 5.6.7(iii) we obtain L(x′, y′) = `+2k+L(x, y) = `+2k+ |y|−δ(x, y) =
|y′| − O(AD), and thus δ(x′, y′) = O(AD) = O(δ). Using the parameter relations
L ≤ m ≤ n, Lemma 5.6.7(iii), and the definition of B, we have L(x′, y′) ≤ m(x′, y′) ≤
n(x′, y′) = |x′| = O(BD) = O(min{m,∆}), which together with the relation m ≤ n
and the assumption αL = αm shows that p(x′, y′) = O(p) = O(nαp) for p ∈ {L,m, n}.
Similarly, we obtain ∆(x′, y′) ≤ n(x′, y′) ≤ O(min{m,∆}) ≤ O(∆). Since x′, y′ use
the binary alphabet {0, 1}, we have |Σ(x′, y′)| = 2 = O(nαΣ). For the number of
matching pairs we have M(x′, y′) ≤ n(x′, y′)2 = O((BD)2) = O(L2). Since we are in
the case αΣ = 0, from the parameter relation M ≥ L2/|Σ| (Lemma 5.4.6(i)) we obtain
L2 = O(M) and thus also M(x′, y′) is sufficiently small. Finally, we use Lemma 5.5.8 to
bound d(x′, y′) = O(` · |y|) = O(AD · BD), which by definition of A,B is O(d). This
proves that (n, x′, y′) belongs to LCS≤(α).

We remark that our proof also yields the following, which we will use for small
alphabets in Section 5.8.

Lemma 5.6.8. Let α be a parameter setting satisfying Table 5.2 with αΣ = 0 and
αL = αm. There is a constant γ ≥ 1 such that any algorithm for LCSγ≤(α, {0, 1}) takes

time min{d, δm, δ∆}1−o(1), unless OVH fails. This holds even restricted to instances
(n, x, y) of LCSγ≤(α, {0, 1}) with |y| ≤ |x| ≤ γ ·min{nαm , nα∆}.
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Superconstant Alphabet

The crucial step in extending our construction to larger alphabets is to adapt the
1vs1/2vs1 gadget such that the strings use each symbol in the alphabet Σ roughly evenly,
thus reducing the number of matching pairs by a factor |Σ|.

Recall that given a 2-element alphabet Σ′ and a string z over {0, 1}, we let z ↑Σ′

denote the string z lifted to alphabet Σ′ by bijectively replacing {0, 1} with Σ′.

Lemma 5.6.9. Let P = 2B + 3A and Q = B + 2A for some A | B. Given strings
x1, . . . , xP of length `x and y1, . . . , yQ of length `y, we define, as in Lemma 5.6.6,
G(w) := 0γ1 1γ2 (01)γ3 w 1γ3 with γ3 := `x + `y, γ2 := 8γ3 and γ1 := 6γ2. Let Σ1, . . . ,Σt

be disjoint alphabets of size 2 with Q/t ≥ A/2 + 1. We define

x := H(x1) H(x2) . . . H(xP ),

y := G(y1) ↑Σf(1) G(y2) ↑Σf(2) . . . G(yQ) ↑Σf(Q),

where f(j) = d jQ · te and

H(xi) :=

{
G(xi) ↑Σk+1 G(xi) ↑Σk if

⋃b(i+A)/2c
j=di/2e {f(j)} = {k, k + 1}

G(xi) ↑Σk if
⋃b(i+A)/2c
j=di/2e {f(j)} = {k}

Then we have

max
Λ∈Λ1,2

P,Q

v(Λ) ≤ L(x, y)−Q(γ1 + γ2 + 3γ3) ≤ max
Λ∈Λmulti

P,Q

v(Λ). (5.3)

Proof. Note that H(·) is well defined, since f(·) maps {1, . . . , Q} to constant-valued
intervals of length at least Q/t − 1 ≥ A/2, as f(j) = k if and only if j ∈

(Qk
t −

Q
t ,

Qk
t

]
, containing at least Q/t− 1 integers. Hence for every i, the at most A/2 values

f(di/2e), . . . , f(b(i+A)/2c) can touch at most 2 different constant-valued intervals.
The proof of (5.3) is based on the proof of Lemma 5.6.6 (the analogous lemma for

alphabet Σ = {0, 1}). For the first inequality of (5.3), let Λ ∈ Λ1,2
P,Q and define for

every j the substring z′j =©i∈Λ(j)H(xi). Note that under Λ, each Λ(j) consists of one
or two elements from {2j − A, . . . , 2j}, since there are at most 2Q − P = A uniquely
aligned j. In other words, for any i ∈ Λ(j) we have j ∈ {di/2e, . . . , b(i+A)/2c}. Thus,
by definition each H(xi) for i ∈ Λ(j) contains G(xi) ↑Σf(j) as a substring and hence z′j
contains ©i∈Λ(j) G(xi) ↑Σf(j) as a subsequence. This proves

L
(
z′j ,G(yj) ↑Σf(j)

)
≥ L

(
©

i∈Λ(j)
G(xi) ↑Σf(j),G(yj) ↑Σf(j)

)
= L

(
©

i∈Λ(j)
G(xi),G(yj)

)
,

which reduces the proof to the case of Σ = {0, 1} – note that the last term is equal to
L(zj ,G(yj)) in the proof of the same inequality of Lemma 5.6.6 and thus the remainder
follows verbatim.

It remains to show the second inequality of (5.3). Essentially as in the proof of
Lemma 5.6.6, we write x = z′1z

′
2 . . . z

′
Q with L(x, y) =

∑Q
j=1 L(z′j ,G(yj) ↑Σf(j)). For

every z′j , we obtain a string zj by deleting all symbols not contained in Σf(j) and then
lifting it to the alphabet {0, 1}. We conclude that L(z′j ,G(yj) ↑Σf(j)) = L(zj ,G(yj)).
We claim that z := z1z2 . . . zQ is a subsequence of x{0,1} := G(x1) . . .G(xP ) (which is
equal to the string x that we constructed in the case of Σ = {0, 1}). Indeed, if H(xi) is
of the form wk+1wk for some k with w` = G(xi) ↑Σ`, then symbols of at most one of wk
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and wk+1 are contained in z. To see this, note that if wk is not deleted then at least one
of its symbols is contained in some z′j with f(j) = k, but then no symbol in wk+1 can
be contained in z′j′ with f(j′) = k + 1, since this would mean j′ > j, so wk+1 is deleted.
Thus,

L(x, y) =

Q∑
j=1

L
(
z′j ,G(yj) ↑Σf(j)

)
=

Q∑
j=1

L
(
zj ,G(yj)

)
≤ L(x{0,1}, y{0,1}),

where y{0,1} := G(y1) . . .G(yQ) is the string y that we constructed in the case of Σ = {0, 1}.
Hence, the second inequality of (5.3) follows from the proof of Lemma 5.6.6.

By the same choice of vectors as in Lemma 5.6.7, we can embed orthogonal vectors
instances.

Lemma 5.6.10. Let a1, . . . , aA, b1, . . . bB ⊆ {0, 1}D be given with A | B. Construct the
corresponding strings x1, . . . , xA of length `x, y1, . . . , yB of length `y ≤ `x = O(D) and
integers ρ0, ρ1 as in Lemma 5.6.5 and define

x̃ := (x̃1, . . . , x̃P ) = (

2·(B/A)+3 groups of size A︷ ︸︸ ︷
x1, . . . , xA, x1, . . . , xA, . . . , x1, . . . , xA),

ỹ := (ỹ1, . . . , ỹQ) = ( y1, . . . , y1︸ ︷︷ ︸
A copies of y1

, y1, . . . , yB, y1, . . . , y1︸ ︷︷ ︸
A copies of y1

),

where P := 2B + 3A and Q := B + 2A. For disjoint alphabets Σ1, . . . ,Σt of size 2 with
Q/t ≥ A/2 + 1, we construct the instance x :=©iH(x̃i), y :=©j G(ỹj) of Lemma 5.6.6
(with the corresponding choice of γ1, γ2 and γ3). This satisfies the following properties:

(i) We have that L(x, y) ≥ Q(γ1 + γ2 + 3γ3) + (A− 1)ρ1 + ρ0 + (Q−A)`y if and only
if there are i ∈ [A], j ∈ [B] with 〈ai, bj〉 = 0.

(ii) We have |y| ≤ |x| = O(B ·D) and δ(x, y) = O(A ·D).

Proof. The lemma and its proof are a slight adaptation of Lemma 5.6.7: For (i),
since Lemma 5.6.9 proves (5.3) which is identical to (5.2), we can follow the proof
of Lemma 5.6.7(i) and (ii) verbatim (since we have chosen x̃ and ỹ as in this lemma).
For (ii), the bounds |y| ≤ |x| ≤ O(B · D) and δ(x, y) = O(A · D) follow exactly as
in Lemma 5.6.6 (note that only |x| has increased by at most a factor of 2, so that
|x| = O(B ·D) still holds by the trivial bound).

We can now finalize the proof of Theorem 5.3.3. Consider any n ≥ 1 and target
values p = dnαpe for p ∈ P . Let A = {a1, . . . , aA}, B = {b1, . . . , bB} ⊆ {0, 1}D be a given
OV instance with D = no(1) and where we set, as in the case αΣ = 0,

A :=
⌊ 1

D
min

{
δ,

d

min{m,∆}

}⌋
2

and B :=
⌊ 1

D
min{m,∆}

⌋
2
.

As before, we have A | B, so we may construct strings x, y as in Lemma 5.6.10, where
we set t := min{bQ/(A/2 + 1)c, |Σ|} = Θ(min{B/A, |Σ|}). We finish the construction by
invoking the Dominant Pair Reduction (Lemma 5.5.8(i)) to obtain strings x′ := y2`x
and y′ := 2`y, where 2 is a symbol not appearing in x, y and we set ` := β · dADe with
sufficiently large constant β, so that ` > δ(x, y).

For the remainder of the proof, we can follow the case αΣ = 0 almost verbatim.
The only exception is the bound on the number of matching pairs. Note that symbol 2
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appears O(AD) times in x′ and y′. As in x and y every symbol appears roughly
equally often and the total alphabet size is Θ(t), for any symbol σ 6= 2 we have
#σ(x) = O(|x|/t) and #σ(y) = O(|y|/t), implying #σ(x′),#σ(y′) = O(BD/t). Hence,
M(x′, y′) = O((AD)2 + t · (BD/t)2). Using t = Θ(min{B/A, |Σ|}) and A ≤ B, we obtain
M(x′, y′) = O(max{AD ·BD, (BD)2/|Σ|}) = O(max{d,m2/|Σ|}. The assumption αL =
αm and the parameter relations M ≥ L2/|Σ| and M ≥ d now imply M(x′, y′) = O(M).
This concludes the proof of Theorem 5.3.3.

5.7 Paddings

In this section, we construct paddings that allow us to augment any strings from LCS≤(α)
to become strings in LCS(α). Specifically, we prove Lemma 5.3.6. To this end, let α
be a parameter setting satisfying Table 5.2, let p ∈ P∗ = {n,m,L, δ,∆, |Σ|,M, d} be a
parameter, and let n ≥ 1. We say that strings x, y prove Lemma 5.3.6 for parameter p if
(n, x, y) is an instance of LCS≤(α) with p(x, y) = Θ(nαp), and given n we can compute
x = x(n), y = y(n), and L(x, y) in time O(n). Note that for the first requirement of being
an instance of LCS≤(α), we have to show that p′(x, y) = O(nαp′ ) for any parameter
p′ ∈ P∗. Recall that we write p = dnαpe for the target value of parameter p.

Lemma 5.7.1. Let Σ′ be an alphabet of size min{|Σ|, L}. Then the strings x := y :=
©σ∈Σ′ σ

bL/|Σ′|c prove Lemma 5.3.6 for parameter L.

Proof. Note that bL/|Σ′|c = Θ(L/|Σ′|), since |Σ′| ≤ L. Thus, indeed L(x, y) = |x| =
Θ(L/|Σ′|) · |Σ′| = Θ(L). Moreover, L(x, y) can be computed in time O(n), as well as
x and y. For the number of matching pairs we note that M(x, y) ≤ |Σ′| · (L/|Σ′|)2,
which is max{L,L2/|Σ|} by choice of |Σ′|. This is O(M), using the parameter relations
M ≥ n ≥ m ≥ L and M ≥ L2/|Σ| (see Table 5.3).

The remaining parameters are straight-forward. Using m(x, y) = n(x, y) = L(x, y) =
Θ(L) and the parameter relations L ≤ m ≤ n we obtain that m(x, y) = O(m) and
n(x, y) = O(n). Moreover, δ(x, y) = ∆(x, y) = 0 ≤ δ ≤ ∆. The alphabet size
|Σ(x, y)| = |Σ′| is at most |Σ| by choice of |Σ′|. By Lemma 5.5.1 we obtain d(x, y) =
|x| = Θ(L) = O(d) using the parameter relation L ≤ d.

Lemma 5.7.2. The strings x := 1∆+1 and y := 1 prove Lemma 5.3.6 for parameter ∆.
The strings x := 1 and y := 1δ+1 prove Lemma 5.3.6 for parameter δ.

Proof. The analysis is straight-forward. Note that indeed ∆(x, y) = ∆, and that
L(x, y) = 1 = O(L). We have n(x, y) = ∆ + 1 = O(n) and m(x, y) = 1 = O(m).
Clearly, L(x, y), x, and y can be computed in time O(n). Moreover, δ(x, y) = 0 ≤ δ
and the alphabet size is 1 = O(Σ). Finally, we have M(x, y) = Θ(∆) = O(n) = O(M)
using the parameter relations L ≤ n ≤ M , and using the relation d ≤ Lm we obtain
d(x, y) ≤ 1 = O(d).

The analysis for δ is symmetric; the same proof holds almost verbatim.

Lemma 5.7.3. The strings constructed in Lemma 5.7.1 or the strings constructed in
Lemma 5.7.2 prove Lemma 5.3.6 for parameters n and m.

Proof. Since n = L + ∆, we have L = Θ(n) or ∆ = Θ(n), i.e., αL = 1 or α∆ = 1. In
the first case, in Lemma 5.7.1 we construct strings of length Θ(L) = Θ(n), and thus
these strings prove Lemma 5.3.6 not only for parameter L but also for parameter n. In
the second case, the same argument holds for the first pair of strings constructed in
Lemma 5.7.2. The parameter m is symmetric.
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Lemma 5.7.4. Let w := 12 . . . |Σ| be the concatenation of |Σ| unique symbols. The
strings w,w or the strings w, rev(w) prove Lemma 5.3.6 for parameter |Σ|.

Proof. Clearly, both pairs of strings realize an alphabet of size exactly |Σ|. Since m =
L+δ, we have L = Θ(m) or δ = Θ(m). In the first case, we use L(w,w) = |Σ| ≤ m = Θ(L)
and δ(w,w) = ∆(w,w) = 0 ≤ δ ≤ ∆. In the second case, we have L(w, rev(w)) = 1 =
O(L) and δ(w, rev(w)) = ∆(w, rev(w)) = |Σ| − 1 ≤ m = Θ(δ) = O(∆).

The remaining parameters are straight-forward. Let (x, y) ∈ {(w,w), (w, rev(w))}.
We have n(x, y) = m(x, y) = |Σ| ≤ m ≤ n. Moreover, d(x, y) ≤M(x, y) = |Σ| ≤ d ≤M
using the relations |Σ| ≤ d ≤ M . Clearly, the strings and their LCS length can be
computed in time O(n).

5.7.1 Matching Pairs

Lemma 5.7.5. If α∆ = 1 then x := 1bM/nc+∆ and y := 1bM/nc prove Lemma 5.3.6 for
parameter M .

Proof. Note that bM/nc = Θ(M/n) by the parameter relation M ≥ n. We have
M(x, y) = Θ((M/n)2 + ∆M/n). By the parameter relations M ≤ 2Ln ≤ 2n2 the first
summand is O(n ·M/n) = O(M). Since α∆ = 1, the second summand is Θ(M). Thus,
we indeed have M(x, y) = Θ(M).

The remainder is straight-forward. Clearly, x, y, and L(x, y) = bM/nc can be
computed in time O(n). Since M ≤ 2Ln, we also obtain L(x, y) = m(x, y) = bM/nc =
O(L) = O(m). Moreover, n(x, y) = bM/nc+∆ = O(n) by the relations M/n ≤ 2L ≤ 2n
and ∆ ≤ n. Note that ∆(x, y) = ∆ and δ(x, y) = 0 ≤ δ. The alphabet size is 1. By
Lemma 5.5.1, we have d(x, y) = bM/nc ≤ 2L ≤ 2d.

Lemma 5.7.6. Assume α∆ < 1 and let Σ′ be an alphabet of size min{dm2/Me, |Σ|}.
Then x := y :=©σ∈Σ′ σ

bm/|Σ′|c prove Lemma 5.3.6 for parameter M .

Proof. Observe that α∆ < 1 implies αL = αm = 1, so that n = Θ(L) = Θ(m) (see
Table 5.2). The number of matching pairs is M(x, y) = |Σ′| · bm/|Σ′|c2. By the
parameter relation m ≥ |Σ| and |Σ| ≥ |Σ′|, we have bm/|Σ′|c = Θ(m/|Σ′|), and by
M ≤ 2Ln = Θ(m2) we obtain dm2/Me = Θ(m2/M). Thus, M(x, y) = Θ(m2/|Σ′|) =
Θ(max{M,m2/|Σ|}) by choice of |Σ′|. Using m = Θ(L) and the parameter relation
M ≥ L2/|Σ|, we indeed obtain M(x, y) = Θ(M).

The remainder is straight-forward. Since x = y we have L(x, y) = m(x, y) = n(x, y) =
|Σ′| · bm/|Σ′|c ≤ m = Θ(L) = Θ(n). Moreover, δ(x, y) = ∆(x, y) = 0 ≤ δ ≤ ∆. The
alphabet size is |Σ(x, y)| = |Σ′| ≤ |Σ| by choice of |Σ′|. By Lemma 5.5.1, we have
d(x, y) = L(x, y) = O(L) = O(d). Clearly, x, y and L(x, y) can be computed in
time O(n).

5.7.2 Dominant Pairs

For the dominant pairs, we start with a simple construction that always works on
constant-sized alphabets (αΣ = 0).

Lemma 5.7.7. Assume αd ≤ 2αL ≤ αM and set x := (01)R+S and y := 0R(01)R+S (as
analyzed in Lemma 5.5.3), instantiated with R = bmin{∆,

√
d}c, S = dd/Re. Then x, y

prove Lemma 5.3.6 for parameter d.
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Proof. Note that by definition R ≤
√
d, and hence S ≥ d/R ≥ R. By Lemma 5.5.3(ii),

we obtain d(x, y) = Θ(R · S) = Θ(R · d/R) = Θ(d). For the other parameters, note
that n(x, y) = 2(R + S) = O(d/R) = O(d/∆ +

√
d). By the relation d ≤ 2L(∆ + 1),

we have d/∆ = O(L), and by the assumption αd ≤ 2αL, we have d = O(L2) and hence√
d = O(L). Thus, n(x, y) = O(L).

The remainder is straight-forward. By L(x, y) ≤ m(x, y) ≤ n(x, y) = O(L) = O(m) =
O(n) we have verified n,m,L. Consequently, also M(x, y) ≤ n(x, y)2 = O(L2) = O(M)
by the assumption 2αL ≤ αM . Trivially, |Σ(x, y)| = 2 = O(|Σ|). Observing that
δ(x, y) = 0 = O(δ) and ∆(x, y) = R = O(∆) by Lemma 5.5.3(i) concludes the parameter
verification. Since x, y and L(x, y) = R+ 2S (by Lemma 5.5.3(i)) can be computed in
time O(n), the claim follows.

The construction above creates a long LCS of length L(x, y) = Θ(m(x, y)) which
forces d(x, y) = O(L(x, y)2). With super-constant alphabet sizes, one can construct
larger numbers of dominant pairs (compared to L(x, y)) by exploiting the crossing gadgets
defined in Definition 5.6.4.

Lemma 5.7.8. Assume αd > 2αL and set v := (01)R+S and w := 0R(01)S with
R = S = L. Construct x := crx(v, . . . , v) and y := cry(w, . . . , w) on bd/L2c copies of v
and w. Then x, y prove Lemma 5.3.6 for parameter d.

Proof. Note that bd/L2c = Θ(d/L2) since we assume αd > 2αL. By the Crossing
Alphabets Lemma (Lemma 5.6.3), we obtain L(x, y) = L(v, w) = 3L, and in particular
L(x, y), x, and y can be computed in time O(n).

Furthermore, the Crossing Alphabets Lemma also yields d(x, y) = Θ(d/L2) ·d(v, w) =
Θ(d), where the bound d(v, w) = Θ(L2) follows from Lemma 5.5.3(i). Similarly, we
observe that ∆(x, y) ≤ n(x, y) = Θ(d/L2) · n(v, w) = Θ(d/L), which is at most O(∆) =
O(n) by the parameter relation d ≤ 2L(∆ + 1). Likewise, m(x, y) ≤ n(x, y) = O(d/L) =
O(m) by the parameter relation d ≤ Lm. Moreover, M(x, y) = O(d/L2) ·M(v, w) =
O(d) = O(M) by d ≤M . Finally, the assumption 2αL < αd together with the parameter
relation d ≤ Lm, i.e., αd ≤ αL+αm, forces αL < αm. Hence, αδ = αm, i.e., δ = Θ(m) (see
Table 5.2), and thus δ(x, y) ≤ m(x, y) = O(m) = O(δ). Since v and w have alphabet size
2 and we use bd/L2c copies over disjoint alphabets, we have |Σ(x, y)| = 2bd/L2c = O(|Σ|)
by the parameter relation d ≤ L2|Σ|, which concludes the proof.

For super-constant alphabet sizes, the number of matching pairs M(x, y) can attain
values much smaller than L(x, y)2, which is an orthogonal situation to the lemma above.
In this case, we use a different generalization of the first construction (that we already
prepared in Section 5.5).

Lemma 5.7.9. Assume αM < 2αL and set x := (1 . . . t t′ . . . 1)R(1 . . . t)S−R and y :=
(1 . . . t)S (as analyzed in Lemma 5.5.5) instantiated with

t :=
⌊L2

M

⌋
, t′ := min{r, t} R :=

⌈r
t

⌉
S := 4

⌈ d
rt

⌉
,

where r := min{∆, b
√
d/tc}. Then x, y prove Lemma 5.3.6 for parameter d.

Proof. We first verify the conditions of Lemma 5.5.5. Observe that by the assumption
αM < 2αL we indeed have t = Θ(L2/M) and t ≥ 2 (for sufficiently large n). From the
parameter relation M ≥ L2/|Σ| we obtain t ≤ |Σ|, and from the parameter relation d ≥
|Σ| (and α∆ > 0) this yields r ≥ 1. Thus, 1 ≤ t′ ≤ t. Moreover, r = Θ(min{∆,

√
d/t}).
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Observe that r ≤ Rt′ ≤ 2r. Indeed, if r ≤ t then R = 1 and t′ = r, and if r > t then
r/t ≤ R ≤ 2r/t and t′ = t. In particular, we have

Rt′ = Θ
(

min{∆,
√
d/t}

)
and S = Θ

( d

Rt′ · t

)
.

Note that R(t′ + 1) ≤ 2Rt′ ≤ 4r ≤ S, since r ≤
√
d/t. In particular, this yields

1 ≤ R ≤ S, so that all conditions of Lemma 5.5.5 are satisfied.
In the remainder we show that x, y satisfy the parameter constraints. We have

n(x, y) ≤ (R+ S)t = O(St) = O(d/(Rt′)) = O(d/∆ +
√
dt). Note that d/∆ = O(L) by

the parameter relation d ≤ 2L(∆ + 1), and that
√
dt = O(

√
dL2/M) = O(L) by the

parameter relation d ≤M . Thus, L(x, y) ≤ m(x, y) ≤ n(x, y) = O(L) = O(m) = O(n),
which satisfies the parameters L,m, n.

For d, note that by Lemma 5.5.5(ii), we have d = Θ((Rt′) ·(St)) = Θ((Rt′) ·d/(Rt′)) =
Θ(d). For M , Lemma 5.5.5(iii) shows that M(x, y) = O(S2t) = O((d/(Rt′))2 · (1/t)) =
O(L2 · (M/L2)) = O(M), where we used d/(Rt′) = O(L) as shown above. Since
L(x, y) = |b| = St, we obtain δ(x, y) = 0 = O(δ) and ∆(x, y) = Rt′ = O(∆). Finally,
|Σ(x, y)| = t = Θ(L2/M) = O(|Σ|) follows from the parameter relation M ≥ L2/|Σ|.
Observing that x, y, and L(x, y) = St can be computed in time O(n) concludes the
proof.

5.8 Small Constant Alphabets

In this section, we show hardness of the parameter settings LCS(α,Σ) for alphabets of
constant size |Σ| ≥ 2, i.e., we prove Theorem 5.2.3. The general approach, as outlined in
Section 5.3, is to take the hard instances x, y of LCS≤(α, {0, 1}) constructed in Section 5.6
and pad them to instances x′, y′ of LCS(α,Σ). Notably, unlike the black-box method of
Lemma 5.3.4 that effectively considered each parameter separately, we now cannot make
extensive use of the Disjoint Alphabets Lemma, as this would introduce more symbols
than admissible. Instead, for small alphabet sizes (such as |Σ| = 2), we need to pad all
parameters simultaneously in a combined construction, taking care of the interplay of the
parameters manually. Additionally, for |Σ| ∈ {2, 3}, more complex parameter relations
hold.

Unfortunately, this general approach fails for Σ = {0, 1}, i.e., we cannot always pad
hard strings x, y of LCS≤(α, {0, 1}) to LCS(α, {0, 1}). Surprisingly, the reason is that
by an O(n + δM/n)-time algorithm (given in Section 6.2), some parameter settings
LCS(α, {0, 1}) are indeed simpler to solve than LCS≤(α, {0, 1}) (conditional on SETH).
In these cases, we take hard instances (n, x, y) from LCS≤(α′, {0, 1}) for a suitably
defined “simpler” parameter setting α′ and pad x, y to instances of LCS(α, {0, 1}).

Recall that given a parameter setting α, for each parameter p ∈ P , we write p = dnαpe
for its target value. Furthermore, we may use the assumption (LB) from Section 5.6,
i.e., αL, αm, αδ, α∆ > 0 and αd > 1. As in Section 5.6, we distinguish between the two
cases αδ = αm (i.e., δ = Θ(m) and any 0 < αL ≤ αm is admissible) and αL = αm (i.e.,
L = Θ(m) and any 0 < αδ < αm is admissible).

5.8.1 Small LCS

In this section, we assume αδ = αm. It can be checked that this assumption implies
α∆ = 1, i.e., ∆ = Θ(n). Moreover, if |Σ| = 2, the assumption and the parameter relation
M ≥ nd/(80L) ≥ Ω(nd/m) imply δM/n = Ω(d). Thus, the desired running time bound
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simplifies to d1−o(1). Theorem 5.2.3 in this regime follows from the following statement
(and Lemma 5.3.1).

Lemma 5.8.1. Let (α,Σ) be a parameter setting satisfying Table 5.2 with αδ = αm.
There is a constant γ ≥ 1 such that any algorithm for LCSγ(α,Σ) takes time d1−o(1)

unless OVH fails.

We prove the above lemma in the remainder of this section. Note that any parameter
setting (α,Σ) satisfying Table 5.2 gives rise to a parameter setting α satisfying Table 5.2
with αΣ = 0 (where the converse does not hold in general). Recall that for any such α,
in Lemma 5.6.2 we constructed hard instances (n, x, y) of LCSγ≤(α, {0, 1}) with an
additional threshold ρ such that deciding L(x, y) ≥ ρ decides the corresponding OV
instance, yielding hardness of LCSγ≤(α, {0, 1}). Furthermore, the constructed instances
have the additional guarantees that |x|, |y| ≤ γ · nαL and #1(y) ≤ γ · nαd−αL and for any
β ≥ 0 we have L(x, 0βy) = L(x, y).

Hence, to prove the above lemma it suffices to show how to compute, given any such
instance (n, x, y) and threshold ρ, an instance x′, y′ of LCSγ

′
(α,Σ) (for some γ′ ≥ 1)

and an integer τ in time O(n) such that L(x′, y′) = L(x, y) + τ .
We do this successively for alphabet sizes |Σ| = 2, |Σ| = 3, |Σ| = 4, and |Σ| ≥ 5. To

this end, the following basic building block will be instantiated with different parameters.
Recall that in Lemma 5.5.3, we defined strings a = (01)R+S and b = 0R(01)S with the
properties L(a, b) = |b| = R+ 2S and d(a, b) = Θ(R · S).

Lemma 5.8.2 (Basic building block). Let x, y be given strings. Given α, β,R, S ≥ 0,
we set ` := |x|+ |y|, and define

x′ := a 1α 0` x = (01)R+S 1α 0` x

y′ := b 0β 0` y = 0R(01)S 0β 0` y.

Then we have L(x′, y′) = L(a, b) + `+L(x, 0βy) = R+ 2S+ `+L(x, 0βy). If L(x, 0βy) =
L(x, y) then we even have L(x′, y′) = R+ 2S + `+ L(x, y).

Proof. Clearly, L(x′, y′) ≥ L(a, b) +L(0`, 0`) +L(x, 0βy) = (R+ 2S) + `+L(x, 0βy) since
L(a, b) = |b| = R + 2S by Lemma 5.5.3. To prove a corresponding upper bound, note
that we can partition y′ = wz such that L(x′, y′) = L(a1α, w) + L(0`x, z). Consider first
the case that z is a subsequence of y. Then

L(x′, y′) = L(a1n, w) + L(0`x, z) ≤ L(a1n, y′) + L(0`x, y),

since w, z are subsequences of y′, y, respectively. Using the simple fact that L(u, v) ≤∑
σ∈Σ min{#σ(u),#σ(v)} for any strings u, v, we obtain

L(x′, y′) ≤ (#0(a1n) + #1(y′)) + (#0(y) + #1(0`x))

= (R+ S) + (S + #1(y)) + #0(y) + #1(x)

≤ (R+ 2S) + `+ L(x, 0βy),

since ` ≥ |x|+ |y| ≥ #0(x) + #0(y) + #1(y). It remains to consider the case that z is
not a subsequence of y and hence w is a subsequence of b0β+`. By Lemma 5.5.3(iii), we
can without loss of generality assume that w is a subsequence of b, since L(a1α, b0β+`) =
L(a, b). We write z = z′z′′ such that z′′ is a subsequence of 0`+βy and maximal with
this property. Hence, wz′ is a subsequence of b. Using the facts L(u, v) ≤ |v| and
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L(u, v′v′′) ≤ |v′|+ L(u, v′′), we bound

L(x′, y′) = L(a1n, w) + L(0`x, z′z′′) ≤ |w|+ (|z′|+ L(0`x, z′′)),

Since wz′ is a subsequence of b and z′′ is a subsequence of 0`+βy, this yields

L(x′, y′) ≤ |b|+ L(0`x, 0`+βy) = (R+ 2S) + `+ L(x, 0βy),

where we used greedy prefix matching. This finishes the proof.

We now instantiate the basic building block to prove Lemma 5.8.1 for Σ = {0, 1}.
Note that in the remainder, we again simply write p for the target value dnαpe of each
parameter p ∈ P, while the parameter value attained by any strings x, y is denoted by
p(x, y), as in Section 5.6. Note that the additional guarantees for (n, x, y) are satisfied
by Lemma 5.6.2.

Lemma 5.8.3. Consider a parameter setting (α, {0, 1}) satisfying Table 5.2 with αδ =
αm. Let (n, x, y) be an instance of LCSγ≤(α, {0, 1}) with |x|, |y| ≤ γ ·L and #1(y) ≤ γ ·d/L
satisfying L(x, 0β

′
y) = L(x, y) for any β′ ≥ 0. We obtain strings x′, y′ from Lemma 5.8.2

(recall that in this lemma we set ` := |x|+ |y|), where we choose

R := L, S := bd/Lc, β := m̃ := max{m, 2|x|}, α := ñ := max{n, m̃+ |y|}.

Then, setting κ := bM/nc, the strings defined by

x′′ := 1κ x′ = 1κ a 1ñ 0` x = 1κ (01)R+S 1ñ 0` x,

y′′ := 1κ y′ = 1κ b 0`+m̃ y = 1κ 0R(01)S 0`+m̃ y.

are an instance of LCSγ
′
(α, {0, 1}) (for some constant γ′ ≥ 1) and can be computed in

time O(n), together with an integer τ such that L(x′′, y′′) = τ + L(x, y).

Proof. Note that

L(x′′, y′′) = κ+ L(x′, y′) = κ+ (R+ 2S) + `+ L(x, y), (5.4)

where the first equality follows from greedy prefix matching and the second follows from
Lemma 5.8.2. Thus by setting τ = κ+ (R+ 2S) + `, we have that L(x′′, y′′) = τ +L(x, y).
Clearly, x′′, y′′, and τ can be computed in time O(n), and Σ(x′′, y′′) = {0, 1}.

We first verify that |x|, |y|, `, R, S, |a|, |b|, κ = O(L). By assumption, |x|, |y| = O(L)
and thus ` = |x|+ |y| = O(L). By the parameter relation d ≤ |Σ| ·L2 = 2L2, we note that
d/L = O(L) and hence by choice of R,S, we have |a|, |b| = Θ(R+ S) = Θ(L+ d/L) =
Θ(L). Furthermore, the parameter relation M ≤ 2Ln implies κ ≤ M/n ≤ 2L. Since
L(x, y) ≤ |x| = O(L), the bound L(x′′, y′′) = κ+R+2S+`+L(x, y) = R+O(L) = Θ(L)
follows directly from (5.4).

Observe that ñ is chosen such that |x′′| ≥ |y′′|. Also, m̃ = Θ(m) and ñ = Θ(n).
Since L ≤ m ≤ n, we thus have |x′′| = κ + |a| + ñ + ` + |x| = ñ + O(L) = Θ(n) and
|y| = κ+ |b|+ m̃+ `+ |y| = m̃+O(L) = Θ(m).

Note that by (5.4), δ(x′′, y′′) = (m̃ + |y|) − L(x, y) ≥ m̃ − |x| ≥ m/2. Hence,
δ(x′′, y′′) = Θ(m) = Θ(δ) (by the assumption αδ = αm). Moreover, since δ = Θ(m),
for some constant ε > 0 we have ∆ = δ + (n −m) ≥ εm + n −m = n − (1 − ε)m ≥
n− (1− ε)n = Ω(n) (where we used the parameter relation m ≤ n). Since also ∆ ≤ n
we have ∆ = Θ(n). By the same argument, using δ(x′′, y′′) = Θ(m) = Θ(m(x′′, y′′)) and
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n(x′′, y′′) = Θ(n) as shown above, we obtain ∆(x′′, y′′) = Θ(n(x′′, y′′)) = Θ(n), and thus
∆(x′′, y′′) = Θ(∆).

For M , observe that #1(x′′) = κ+ #1(a) + ñ+ #1(x) = ñ+O(L) = Θ(n). Moreover,
#1(y) = O(d/L) (by assumption) and #1(b) = S = O(d/L) yield #1(y′′) = κ+ #1(b) +
#1(y) = Θ(M/n) + O(d/L) (here κ = Θ(M/n) follows from the parameter relation
M ≥ n). This yields #1(x′′) ·#1(y′′) = Θ(M) +O(dn/L) = Θ(M) (using the parameter
relation M ≥ nd/(5L)). Also note that #0(x′′) = #0(a) + ` + #0(x) = O(L) and
#0(y′′) = #0(b) + `+ m̃+ #0(y) = m̃+O(L) = O(m). This yields #0(x′′) ·#0(y′′) =
O(Lm) = O(M) (using the parameter relation M ≥ Lm/4). Combining these bounds,
we obtain M(x′′, y′′) = #0(x′′) ·#0(y′′) + #1(x′′) ·#1(y′′) = Θ(M). Note that the last
two parameter relations used here exploited that we have Σ = {0, 1}.

It remains to determine the number of dominant pairs. Since L(x′, y′) = Θ(L) (as
argued above) and #1(y′) = O(d/L), Lemma 5.4.8 yields d(x′, y′) ≤ 5L(x′, y′) ·#1(y′) =
O(L · d/L) = O(d). For a corresponding lower bound, from Observation 5.5.2 and
Lemma 5.5.3 we obtain d(x′, y′) ≥ d(a, b) ≥ R · S = Ω(d). By Lemma 5.5.1, the claim
now follows from d(x′′, y′′) = κ+d(x′, y′) = O(L) + Θ(d) = Θ(d), where we use κ = O(L)
and the parameter relation d ≥ L.

The case Σ = {0, 1, 2} is similar to {0, 1}, except that we use the new symbol 2 to
pad the parameter n, we use symbol 1 to pad m, and we have to swap the constructions
for x′′ and y′′.

Lemma 5.8.4. Consider a parameter setting (α, {0, 1, 2}) satisfying Table 5.2 with
αδ = αm. Let (n, x, y) be an instance of LCSγ≤(α, {0, 1}) with |x|, |y| ≤ γ · L and

#1(y) ≤ γ · d/L satisfying L(x, 0β
′
y) = L(x, y) for any β′ ≥ 0. We obtain strings x′, y′

from Lemma 5.8.2 (recall that in this lemma, we set ` := |x|+ |y|), where we choose

R := L, S := bd/Lc, β := 0, α := m.

Then, setting κ := bM/nc and ñ := max{n, κ+ |a|+m+ |x|}, the strings defined by

x′′ := 2ñ y′ = 2ñ b 0` y = 2ñ 0R(01)S 0` y,

y′′ := 2κ x′ = 2κ a 1m 0` x = 2κ (01)R+S 1m 0` x.

are an instance of LCSγ
′
(α, {0, 1, 2}) (for some constant γ′ ≥ 1) and can be computed

in time O(n), together with an integer τ such that L(x′′, y′′) = τ + L(x, y).

Proof. Note that unlike the case {0, 1}, the string x now appears in y′′ and y appears
in x′′, so the constructions are swapped. This is necessary to realize m and M , using the
parameter relation M ≥ md/(80L) that holds for Σ = {0, 1, 2}. Observe that as usual,
|x′′| ≥ |y′′|.

We first compute

L(x′′, y′′) = L(2ñ, 2κ) + L(y′, x′) = κ+ (R+ 2S) + `+ L(x, y), (5.5)

where the first equality follows from the Disjoint Alphabets Lemma and the second
equality from greedy prefix matching and Lemma 5.8.2. Thus, by setting τ = κ+ (R+
2S) + `, we have L(x′′, y′′) = τ +L(x, y). Clearly, x′′, y′′, and τ can be computed in time
O(n), and Σ(x′′, y′′) = {0, 1, 2}.

As in the case {0, 1}, we have |x|, |y|, `, R, S, |a|, |b|, κ = O(L). Thus, by (5.5),
we have L(x′′, y′′) = R + O(L) = Θ(L). Furthermore, note that ñ = Θ(n). Thus,
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|y′′| = κ+|a|+m+`+|x| = m+O(L) = Θ(m) and |x′′| = ñ+|b|+`+|y| = ñ+O(L) = Θ(n).
Since L(x, y) ≤ |x| = O(L), the bound L(x′′, y′′) = R + O(L) = Θ(L) follows directly
from (5.5).

By (5.5), we see that δ(x′′, y′′) = |y′′| − L(x′′, y′′) = R + m + (|x| − L(x, y)) ≥ m.
Hence δ(x′′, y′′) = Θ(m). Thus, ∆(x′′, y′′) = δ(x′′, y′′) + (|x′′| − |y′′|) = Θ(n) follows as in
the case {0, 1}.

For M , observe that #1(y′′) = #1(a) +m+ #1(x) = m+O(L) = Θ(m). Moreover,
#1(y) = O(d/L) (by assumption) yields #1(x′′) = #1(b)+#1(y) = S+O(d/L) = O(d/L).
Also note that #0(y′′) = #0(a) + `+ #0(x) = O(L) and #0(x′′) = #0(b) + `+ #0(y) =
O(L). Since furthermore #2(y′′) = Θ(M/n) (by the parameter relation M ≥ n) and
#2(x′′) = Θ(n), we conclude that M(x′′, y′′) =

∑
σ∈{0,1,2}#σ(x′′) ·#σ(y′′) = O(dm/L+

L2) + Θ(M). By the parameter relations M ≥ md/(80L) (using that Σ = {0, 1, 2}) and
M ≥ L2/|Σ| = Ω(L2), this yields M(x′′, y′′) = Θ(M).

For the remaining parameter d, by the disjoint alphabets lemma and Lemma 5.5.1 we
have d(x′′, y′′) = d(2ñ, 2κ) + d(y′, x′) = κ+ d(x′, y′) (using symmetry d(x, y) = d(y, x)).
The remaining arguments are the same as in the case {0, 1}.

In the case Σ = {0, 1, 2, 3} we can use the new symbol 3 to pad m (instead of using
symbol 1, as in the previous case). Note that now x appears in x′′ and y in y′′, as in the
case {0, 1}.

Lemma 5.8.5. Consider a parameter setting (α, {0, 1, 2, 3}) satisfying Table 5.2 with
αδ = αm. Let (n, x, y) be an instance of LCSγ≤(α, {0, 1}) with |x|, |y| ≤ γ · L and

#1(y) ≤ γ · d/L satisfying L(x, 0β
′
y) = L(x, y) for any β′ ≥ 0. We obtain strings x′, y′

from Lemma 5.8.2 (recall that in this lemma, we set ` := |x|+ |y|), where we choose

R := L, S := bd/Lc, β := 0, α := 0.

Then, setting κ := bM/nc and ñ := max{n,m+ κ+ |y|}, the strings defined by

x′′ := 3 2ñ x′ = 3 2ñ a 0` x = 3 2ñ (01)R+S 0` x,

y′′ := 3m 2κ y′ = 3m 2κ b 0` y = 3m 2κ 0R(01)S 0` y,

are an instance of LCSγ
′
(α, {0, 1, 2, 3}) (for some constant γ′ ≥ 1) and can be computed

in time O(n), together with an integer τ such that L(x′′, y′′) = τ + L(x, y).

Proof. We compute

L(x′′, y′′) = L(3, 3m) + L(2ñ, 2κ) + L(x′, y′) = 1 + κ+ (R+ 2S) + `+ L(x, y), (5.6)

where the first equality follows from the Disjoint Alphabets Lemma and the second follows
from greedy prefix matching and Lemma 5.8.2. Hence, by setting τ = 1 + κ+R+ 2S + `,
we have L(x′′, y′′) = τ + L(x, y). Clearly, x′′, y′′, and τ can be computed in time O(n),
and Σ(x′′, y′′) = {0, 1, 2, 3}.

As for the cases {0, 1} and {0, 1, 2}, we have |x|, |y|, `, R, S, |a|, |b|, `, κ = Θ(L). Note
that by choice of ñ, we have again |x′′| ≥ |y′′| and ñ = Θ(n). Hence, |x′′| = 1 + ñ+ |a|+
`+ |x| = ñ+O(L) = Θ(n) and |y′′| = m+ κ+ |b|+ `+ |y| = m+O(L) = Θ(m). Since
L(x, y) ≤ |x| = O(L), the bound L(x′′, y′′) = R+O(L) = Θ(L) follows directly from (5.6).
Note that (5.6) also implies that δ(x′′, y′′) = |y′′|−L(x′′, y′′) = m−1+|x|−L(x, y) ≥ m−1
and hence δ(x′′, y′′) = Θ(m). Thus, ∆(x′′, y′′) = δ(x′′, y′′) + (|x′′| − |y′′|) = Θ(n) follows
as for the case {0, 1}.
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For M , observe that |a0`x|, |b0`y| = O(L) implies that M(a0`x, b0`y) = O(L2). By
the Disjoint Alphabets Lemma, we obtain

M(x′′, y′′) = M(2ñ, 2κ) +M(3, 3m) +M(a0`x, b0`y) = κñ+O(m+ L2) = Θ(M),

where we used κñ = Θ(M/n · n) = Θ(n) (note that M ≥ n implies κ = Θ(M/n)) and
the parameter relations M ≥ n ≥ m and M ≥ L2/|Σ| = Ω(L2).

For the remaining parameter d, as in the case {0, 1} we show that d(x′, y′) = Θ(d).
Thus, the Disjoint Alphabets Lemma and Lemma 5.5.1 prove that d(x′′, y′′) = d(3, 3m) +
d(2ñ, 2κ) + d(x′, y′) = 1 + κ + d(x′, y′) = d(x′, y′) +O(L) = Θ(d) using κ = O(L) and
the parameter relation d ≥ L.

Finally, observe that for any parameter setting (α,Σ) with |Σ| ≥ 5 satisfying Table 5.2,
also the parameter setting (α, {0, 1, 2, 3}) satisfies Table 5.2. Hence, the following lemma
transfers the hardness of LCS(α, {0, 1, 2, 3}) to LCS(α,Σ).

Lemma 5.8.6. Let α be a parameter setting satisfying Table 5.2 with αδ = αm. Let Σ
be an alphabet of size |Σ| ≥ 5. If there is an O(nβ)-time algorithm for LCS(α,Σ), then
also LCS(α, {0, 1, 2, 3}) admits an O(nβ)-time algorithm.

Proof. Given an instance (x, y) of LCS(α, {0, 1, 2, 3}) with n := |x|, we show how to
compute, in time O(n), an instance (x′, y′) of LCS(α,Σ) such that L(x′, y′) = 1+L(x, y).
The claim then follows from applying the O(nβ)-time algorithm on x′, y′ (and subtracting
1 from the result).

Without loss of generality, let Σ = {0, . . . , σ} with σ ≥ 4. Define x′ := wx and
y′ = wRy, where w = 4 . . . σ and wR = σ . . . 4. Then by the Disjoint Alphabets
and Crossing Alphabets Lemmas (Lemmas 5.3.5 and 5.6.3), we obtain L(x′, y′) =
L(w,wR) + L(x, y) = 1 + L(x, y). It remains to show that (x′, y′) is an instance of
LCS(α,Σ). By the Crossing Alphabets Lemma, for all parameters p ∈ {d,M, n,m} we
have p(w,wR) =

∑σ
σ′=4 p(σ

′, σ′) = |Σ| − 4, and hence the Disjoint Alphabets Lemma
yields p(x′, y′) = p(w,wR) + p(x, y) = |Σ| − 4 + p(x, y) = Θ(p(x, y)), by the parameter
relations n ≥ m ≥ |Σ| and M ≥ d ≥ |Σ|. For L we obtain L(x′, y′) = L(w,wR)+L(x, y) =
1 + L(x, y) = Θ(L(x, y)). For p ∈ {δ,∆} this yields p(x′, y′) = (|w| − 1) + p(x, y) =
Θ(p(x, y)), since α∆ ≥ αδ = αm ≥ αΣ (by the assumption αδ = αm and the parameter
relations ∆ ≥ δ and m ≥ |Σ|) and thus ∆(x, y) ≥ δ(x, y) ≥ Ω(|w|−1). Hence, (x′, y′) has
the same parameters as (x, y) up to constant factors, so all parameter relations satisfied
by (x, y) are also satisfied by (x′, y′). Since clearly x′, y′ use alphabet Σ, indeed (x′, y′)
is an instance of LCS(α,Σ).

Lemmas 5.8.3, 5.8.4, 5.8.5, and 5.8.6 of this section, together with the construction
of hard strings in LCS≤(α, {0, 1}) in Lemma 5.6.2, prove hardness of LCS(α,Σ) for any
constant alphabet size in the case αδ = αm, i.e., Lemma 5.8.1.

5.8.2 Large LCS, Alphabet Size At Least 3

In this section, we study the case that αL = αm (and αδ, α∆ may be small). Additionally,
we assume that |Σ| ≥ 3. In this regime, Theorem 5.2.3 follows from the following
statement (and Lemma 5.3.1).

Lemma 5.8.7. Let (α,Σ) be a parameter setting satisfying Table 5.2 with αL = αm and
|Σ| ≥ 3. There is a constant γ ≥ 1 such that any algorithm for LCSγ(α,Σ) takes time
min{d, δm, δ∆}1−o(1) unless OVH fails.
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By the following lemma, it suffices to prove the result for Σ = {0, 1, 2} (note that
for any (α,Σ) satisfying Table 5.2 with αL = αm and |Σ| ≥ 4, also (α, {0, 1, 2}) satisfies
Table 5.2, since the only additional constraint αM ≥ αm +αd−αL for ternary alphabets
simplifies, by αL = αm, to the constraint αM ≥ αd, which is satisfied by α).

Lemma 5.8.8. Let α be a parameter setting satisfying Table 5.2 with αL = αm. Let Σ
be an alphabet of size |Σ| ≥ 4. If there is an O(nβ)-time algorithm for LCS(α,Σ), then
also LCS(α, {0, 1, 2}) admits an O(nβ)-time algorithm.

Proof. Given an instance (x, y) of LCS(α, {0, 1, 2}) with n := |x|, we show how to
compute in time O(n) an instance (x′, y′) of LCS(α,Σ) such that L(x′, y′) = |Σ| − 3 +
L(x, y). The claim then follows from applying the O(nβ)-time algorithm on x′, y′ (and
subtracting |Σ| − 3 from the result).

Without loss of generality, let Σ = {0, . . . , σ} with σ ≥ 3. Define x′ := wx and
y′ = wy, where w = 3 . . . σ. Then by the Disjoint Alphabets Lemma (Lemma 5.3.5), we
obtain L(x′, y′) = L(w,w)+L(x, y) = |Σ|−3+L(x, y). It remains to show that (x′, y′) is
an instance of LCS(α,Σ). By the Disjoint Alphabets Lemma, for all parameters p ∈ P∗ =
{n,m,L, δ,∆, |Σ|,M, d} we have p(x′, y′) = p(w,w) + p(x, y) =

∑σ
σ′=3 p(σ

′, σ′) + p(x, y).
For p ∈ {n,m,L,M, d} we have p(σ′, σ′) = 1 and thus p(x′, y′) = |Σ| − 3 + p(x, y) =
Θ(p(x, y)) by the assumption αL = αm and the parameter relations n ≥ m ≥ |Σ| and
M ≥ d ≥ |Σ|. For p ∈ {δ,∆} this yields p(x′, y′) = 0 + p(x, y) = p(x, y). Hence, (x′, y′)
has the same parameters as (x, y) up to constant factors, so all parameter relations
satisfied by (x, y) are also satisfied by (x′, y′). Since clearly x′, y′ use alphabet Σ, indeed
(x′, y′) is an instance of LCS(α,Σ).

To prepare the proof of the main result in this section, we adapt the construction
of Lemma 5.8.2 to obtain a desired value for d (and, in later sections, δ). Recall that
Lemma 5.5.3 defines a = (01)R+S , b = 0R(01)S with L(a, b) = |b| = R + 2S and
d(a, b) = Θ(R · S).

Lemma 5.8.9 (Basic building block II). Given strings x, y and R,S, `, β ≥ 0 with
` ≥ R+ |x|+ |y| we define

x′ := a 0` x = (01)R+S 0` x,

y′ := 0β b 0` y = 0β 0R(01)S 0` y.

Assume that S ≥ |x| or L(x, 0βy) = L(x, y). Then we have L(x′, y′) = R+2S+`+L(x, y).

Proof. Clearly, L(x′, y′) ≥ L(a, b) + L(0`, 0`) + L(x, y) = R + 2S + ` + L(x, y), since
L(a, b) = |b| = R+ 2S. To prove the corresponding upper bound, we partition y′ = y1y2

such that L(x′, y′) = L(a, y1)+L(0`x, y2). Consider first the case that y2 is a subsequence
of y. Then

L(x′, y′) ≤ L(a, y1) + L(0`x, y) ≤ |a|+ |y| = 2(R+ S) + |y| ≤ (R+ 2S) + `+ L(x, y),

since ` ≥ R+ |y|.
It remains to consider the case that y2 is not a subsequence of y and hence y1 is a

subsequence of 0βb0`. By Lemma 5.5.3(iii), we can without loss of generality assume that
y1 is a subsequence of 0βb, since L(a, 0βb0`) = |b| = L(a, 0βb). Hence, we can partition
0βb = y1z with L(x′, y′) ≤ L(a, y1) + L(0`x, z0`y). We bound

L(a, y1) ≤ min{#0(a),#0(y1)}+ min{#1(a),#1(y1)} ≤ (R+ S) + #1(y1).
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Observe that L(0`x, z0`y) ≤ #1(z) + L(0`x, 0#0(z)+`y), since each “1” in z can
increase the LCS by at most 1. By greedy prefix matching, we obtain L(0`x, z0`y) ≤
#1(z) + `+ L(x, 0#0(z)y). With the assumption L(x, 0βy) = L(x, y) for any β ≥ 0, this
yields

L(x′, y′) ≤ L(a, y1) + L(0`x, z0`y)

≤ (R+ S + #1(y1)) + (#1(z) + `+ L(x, y)) = R+ 2S + `+ L(x, y),

since 0βb = y1z and hence #1(y1) + #1(z) = #1(0βb) = S.
With the alternative assumption S ≥ |x|, we bound L(0`x, z0`y) ≤ |0`x| ≤ `+ S. If

#1(y1) = 0 this yields

L(x′, y′) ≤ L(a, y1) + L(0`x, z0`y) ≤ (R+ S) + (`+ S) ≤ R+ 2S + `+ L(x, y).

Otherwise, if #1(y1) ≥ 1, by inspecting the structure of 0βb = 0β+R(01)S we see that z
is a subsequence of (01)S−#1(y1). Consider an LCS of 0`x, z0`y. If no “1” in z is matched
by the LCS, then we obtain

L(0`x, z0`y) ≤ L(0`x, 0#0(z)+`y) ≤ #0(z) + L(0`x, 0`y) = #0(z) + `+ L(x, y),

where we used the fact L(u, vw) ≤ |v|+ L(uw) and greedy prefix matching. Otherwise,
if a “1” in z is matched by the LCS to a “1” in 0`x, i.e., to a “1” in x, then the 0`-block
of 0`x is matched to a subsequence of z and hence

L(0`x, z0`y) ≤ L(0`, z) + L(x, z0`y) ≤ #0(z) + |x| ≤ #0(z) + `+ L(x, y),

where we used ` ≥ |x|. Since z is a subsequence of (01)S−#1(y1) and thus #0(z) ≤
S −#1(y1), in both cases we obtain

L(x′, y′) ≤ L(a, y1) + L(0`x, z0`y)

≤ (R+ S + #1(y1)) + (#0(z) + `+ L(x, y)) ≤ R+ 2S + `+ L(x, y),

which finally proves the claim.

Lemma 5.8.10. Consider x′, y′ as in Lemma 5.8.9 with β = 0, and assume S ≥ |x|.
Then

R · S ≤ d(x′, y′) ≤ (R+ 1)(4R+ 6S + `) + d(x, y).

Proof. Note that the simple fact L(u′u′′, v) ≤ |u′′| + L(u′, v) implies that for any
strings w, z and any i, we have L(w, z) ≤ |w[(i + 1)..|w|]| + L(w[1..i], z) = |w| − i +
L(w[1..i], z), and hence L(w[1..i], z) ≥ i − (|w| − L(w, z)). Recall that L(a, b) = |b| =
R+ 2S by Lemma 5.5.3(iii). This yields L(a[1..i], b) ≥ i− (|a| − (R+ 2S)) = i−R and
L(a, b[1..j]) ≥ j − (|b| − |b|) = j.

The claimed lower bound follows from d(x′, y′) ≥ d(a, b) ≥ R ·S by Observation 5.5.2
and Lemma 5.5.3(iv). For the upper bound, we consider all possible prefixes x̃ :=
x′[1..i], ỹ := y′[1..j] of x′, y′ and count how many of them correspond to dominant pairs.
Clearly, for i ≤ |a|, j ≤ |b|, there are d(a, b) dominant pairs.

By the above observation, for any i ≤ |a|, we have L(a[1..i], b) ≥ i − R. Hence,
any dominant pair of the form (i, j) satisfies i − R ≤ L(a[1..i], b) ≤ |a[1..i]| = i. By
Observation 5.4.2, there are at most R+ 1 such dominant pairs for fixed i. Thus, there
are at most |a| · (R + 1) dominant pairs with i ≤ |a| and j > |b|. Similarly, for j ≤ |b|,
we have L(a, b[1..j]) ≥ j. Hence, there are no dominant pairs with i > |a| and j ≤ |b|,
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since already the prefix a of x′[1..i] includes b[1..j] as a subsequence. In total, there are
at most d(a, b) + |a| · (R+ 1) dominant pairs with i ≤ |a| or j ≤ |b|.

Let i = |a|+ k, j = |b|+ k with k ∈ [`]. Then L(x̃, ỹ) = L(a0k, b0k) = L(a, b) + k =
|b| + k by greedy suffix matching and Lemma 5.5.3(iii). As any such choice could
correspond to a dominant pair, we count at most ` dominant pairs. Analogously to above,
for i = |a|+ k, there can be at most i−L(a0k, b0k) ≤ R dominant pairs with j > |b|+ k.
Symmetrically, for j = |b| + k, there are at most j − L(a0k, b0k) = 0 dominant pairs
with i > |a|+ k. This yields at most (R+ 1) · ` dominant pairs with |a| < i ≤ |a|+ ` or
|b| < j ≤ |b|+ `.

It remains to count dominant pairs with i = |a| + ` + ĩ and j = |b| + ` + j̃, with
ĩ ∈ [|x|], j̃ ∈ [|y|]. Here, Lemma 5.8.9 bounds L(x̃, ỹ) = L(a0`x[1..̃i], b0`y[1..j̃]) =
L(a, b) + `+ L(x[1..̃i], y[1..j̃]). Hence, the dominant pairs of this form are in one-to-one
correspondence to the dominant pairs of x, y.

Summing up all dominant pairs, we obtain

d(x′, y′) ≤ d(a, b) + (R+ 1)(|a|+ `) + d(x, y)

≤ (R+ 1)(4R+ 6S + `) + d(x, y),

since |a| = 2R+ 2S and Lemma 5.5.3(iv) yields d(a, b) ≤ 2(R+ 1)(R+ 2S).

Finally, to pad δ (and later, in Section 5.8.3, ∆), we need the following technical
lemma.

Lemma 5.8.11. Let x, y be arbitrary and µ, ν such that ν ≥ µ+ |y|. We define

x′ := 0µ 1ν 0µ x,

y′ := 1ν 0µ y.

Then L(x′, y′) = µ+ ν + L(x, y) and d(x′, y′) = 2µ+ ν + #1(y) + d(x, y).

Proof. Note that for any prefix w, z of 0µx, 0µy, we have

L(0µ1νw, 1νz) = ν + L(w, z), (5.7)

by Lemma 5.5.6 (swapping the role of “0”s and “1”s). In particular, we obtain L(x′, y′) =
ν + L(0µx, 0µy) = µ+ ν + L(x, y) by greedy prefix matching.

For the second statement, we consider all possible prefixes x̃ := x′[1..i], ỹ := y′[1..j]
of x′, y′ and count how many of them correspond to dominant pairs. Note that these
prefixes have to end in the same symbol, since any dominant pair is a matching pair.
Recall that x̃ := x′[1..i], ỹ := y′[1..j] gives rise to a dominant pair if and only if L(x̃, ỹ) >
L(x′[1..i− 1], ỹ) and L(x̃, ỹ) > L(x̃, y′[1..j − 1]).

• x̃ = 0µ1νw, ỹ = 1` (with w non-empty prefix of 0µx, ` ∈ [ν]): These prefixes do not
correspond to a dominant pair, since L(0µ1νw, 1`) = L(0µ1`, 1`) = ` is obtained
already by a shorter prefix of x̃.

• x̃ = 0µ1νw, ỹ = 1νz (with w non-empty prefix of 0µx, z non-empty prefix of 0µy):
These prefixes correspond to a dominant pair if and only if w, z correspond to a
dominant pair of 0µx, 0µy, since by (5.7) we have L(x̃, ỹ) = ν+L(w, z). This yields
d(0µx, 0µy) dominant pairs, which by Lemma 5.5.1 evaluates to µ+ d(x, y).

• x̃ = 0k, ỹ = 1µ0` (with k, ` ∈ [µ]): Clearly, L(x̃, ỹ) = min{k, `}. It follows that x̃, ỹ
corresponds to a dominant pair if and only if k = `. This yields exactly µ dominant
pairs.
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• x̃ = 0µ1k, ỹ = 1` (with k, ` ∈ [ν]): Analogously to above, L(x̃, ỹ) = min{k, `},
hence this corresponds to a dominant pair if and only if k = `. This yields exactly
ν dominant pairs.

• x̃ = 0k, ỹ = 1ν0µz (with k ∈ [µ], z non-empty prefix of y): We have L(x̃, ỹ) =
L(0k, 1ν0k) = k, hence these prefixes do not correspond to a dominant pair, since
the LCS is already obtained for a shorter prefix of ỹ.

• x̃ = 0µ1k, ỹ = 1ν0µz (with k ∈ [ν], z non-empty prefix of y): Since we can either
match some “1” of the 1ν-block in ỹ to a “1” in x̃ (necessarily discarding the initial
0µ-block of x̃) or delete the complete 1ν-block, we obtain

L(0µ1k, 1ν0µz) = max{L(1k, 1ν0µz), L(0µ1k, 0µz)}
= max{k, µ+ L(1k, z)} = max{k, µ+ min{k,#1(z)}}.

Consider the case L(x̃, ỹ) = L(x′[1..i], y′[1..j]) = k. Then also L(x′[1..i], y′[1..(j −
1)]) = k, and hence (i, j) is no dominant pair. If, however, L(x̃, ỹ) = µ +
min{k,#1(z)}, then this corresponds to a dominant pair if and only if k = #1(z)
(and z ends in “1”): if k > #1(z), then also L(x′[1..(i− 1)], y′[1..j]) = µ+ #1(z),
if k < #1(z), then also L(x′[1..i], y′[1..(j − 1)]) = µ+ k. Thus, there are exactly
min{ν,#1(y)} = #1(y) such dominant pairs.

In total, we have counted ν + 2µ+ #1(y) + d(x, y) dominant pairs.

We start with the basic building block from Lemma 5.8.9 and then further pad
the strings to obtain the desired n,m,∆, δ,M as follows. Note that the guarantee
|y| ≤ |x| = O(min{∆,m}) is satisfied by Lemma 5.6.8.

Lemma 5.8.12. Let (α, {0, 1, 2}) be a parameter setting satisfying Table 5.2 with αL =
αm. Let (n, x, y) be an instance of LCSγ≤(α, {0, 1}) with |y| ≤ |x| ≤ γ ·min{∆,m}. We
set

S = max{m, |x|}, R = bd/mc,

to instantiate the basic building block x′ = a0`x = (01)R+S0`x and y′ = b0`y = 0R(01)S0`y
of Lemma 5.8.9 with ` := R + S + |x| + |y|. Moreover, we define κ := bM/nc and
m̃ := max{m, δ + 2R+ 2S + `+ |x|} to further pad the instance to

x′′ = 2κ 2∆ 1m̃ 0δ a 0` x,

y′′ = 2κ 0δ 1m̃ 0δ b 0` y.

Then x′′, y′′ is an instance of LCSγ
′
(α, {0, 1, 2}) for some constant γ′ ≥ 1 and can be

computed in time O(n), together with an integer τ such that L(x′′, y′′) = τ + L(x, y).

Proof. We first use the Disjoint Alphabets Lemma and greedy prefix matching to obtain

L(x′′, y′′) = κ+ L(1m̃0δx′, 0δ1m̃0δy′)

= κ+ m̃+ δ + L(x′, y′) = κ+ m̃+ δ +R+ 2S + `+ L(x, y),
(5.8)

where we used Lemma 5.8.11 for the second equality (with the roles of x, y swapped) and
Lemma 5.8.9 for the last equality. Observe that x′′, y′′ and τ = κ+ m̃+ δ +R+ 2S + `
can be computed in time O(n).
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It remains to verify that x, y is an instance of LCSγ
′
(α, {0, 1, 2}) for some γ′ ≥ 1.

We first observe that S = Θ(m) by |x| = O(m) and R = O(S) by the parameter
relation d ≤ Lm ≤ m2. Since also |y| = O(m), we conclude R,S, |x|, |y|, ` = O(m).
Observe that κ = O(M/n) = O(m) by the relation M ≤ mn and m̃ = Θ(m) (using that
R,S, `, |x| = O(m) and the parameter relation δ ≤ m). Thus, |x′′| = κ+∆+m̃+δ+2(R+
S) + `+ |x| = Θ(m+ ∆) +O(m) = Θ(n). Similarly, |y′′| = κ+ m̃+ δ+R+ 2S+ `+ |y| =
Θ(m+ δ) +O(m) = Θ(m). By (5.8), we also have L(x′′, y′′) = m̃+O(m) = Θ(m), as
desired.

Note that by ∆ ≥ δ, |a| ≥ |b| and |x| ≥ |y|, we indeed have |x′′| ≥ |y′′|. Furthermore,
using the relation d ≤ 2L(∆ + 1) = O(m∆), we obtain R = O(d/m) = O(∆). By (5.8),
we obtain ∆(x′′, y′′) = ∆ +R + (|x| − L(x, y)) = ∆ +O(∆) = Θ(∆) since |x| = O(∆).
Similarly, (5.8) yields δ(x′′, y′′) = δ+(|y|−L(x, y)) = δ+O(δ) = Θ(δ), since |y|−L(x, y) =
δ(x, y) = O(δ).

For the dominant pairs, we apply the disjoint alphabets lemma, Lemma 5.5.1 and
Lemma 5.8.11 to compute

d(x′′, y′′) = κ+ d(1m̃0δx′, 0δ1m̃0δy′) = κ+ m̃+ 2δ + #1(x′) + d(x′, y′). (5.9)

Lemma 5.8.10 yields the lower bound d(x′, y′) ≥ R · S = Ω(d) and the corresponding
upper bound

d(x′, y′) ≤ (R+ 1)(4R+ 6S + `) + d(x, y) = O(R · S + d(x, y)) = O(d).

Thus, (5.9) yields d(x′′, y′′) = Θ(d) +O(m) = Θ(d), where we used that κ, m̃, δ, |x′| =
O(m) and that d ≥ L = Ω(m) by αL = αm.

For M , we count #2(x′′) = ∆ + κ and #2(y′′) = κ, as well as #0(y′′),#1(y′′) ≤
|y′′| = O(m), #0(x′′) ≤ δ + |x′| = O(m) and #1(x′′) ≤ m̃ + |x′| = O(m). Thus,
M(x′′, y′′) = (∆ + κ)κ + O(m2) and by M ≥ L2/|Σ| = Ω(m2) (since αL = αM ), it
suffices to prove that (∆ + κ)κ = Θ(M) to verify M(x′′, y′′) = Θ(M). Indeed, we
have κ = Θ(M/n), since M ≥ n. If α∆ < 1, we have αm = αn = 1 and M = Ω(m2)
together with the relation M ≤ mn = O(m2) implies M = Θ(m2). Thus, κ = Θ(m)
and hence (κ+ ∆)κ = Θ(m2) = Θ(M). If α∆ ≥ αm, then α∆ = 1 and hence ∆ + κ =
∆ +O(m) = Θ(n), which implies (κ+ ∆)κ = Θ(n ·M/n) = Θ(M). Finally, note that
indeed Σ(x′′, y′′) = {0, 1, 2}.

Combining Lemma 5.8.12 with Lemma 5.6.8 finally proves Lemma 5.8.7.

5.8.3 Large LCS, Alphabet Size 2

In this section, we study the case that αL = αm (and αδ, α∆ may be small) for the case
of binary alphabets, i.e., Σ = {0, 1}. In this regime, Theorem 5.2.3 follows from the
following statement (and Lemma 5.3.1).

Lemma 5.8.13. Let (α, {0, 1}) be a parameter setting satisfying Table 5.2 with αL =
αm. There is a constant γ ≥ 1 such that any algorithm for LCSγ(α, {0, 1} takes time
min{d, δ∆, δM/n}1−o(1) unless OVH fails.

We present different constructions for three subcases, that we discuss shortly in the
following paragraphs and in detail in the remainder of this section. We hope that this
short discussion conveys enough intuition about the “complexity” of the task to make it
believable that our lengthy and technical case distinction is indeed necessary.
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Case 1: α∆ ≤ αm = αL. Here, n = Θ(m) and it follows that any binary strings x, y
satisfy M(x, y) = Θ(m2), so M poses no constraints, in particular there are no constraints
on the numbers of “0”s and “1”s in the constructed strings. On the other hand, the
potentially small value of ∆ renders some of our gadgets useless (e.g., Lemma 5.8.25).
Since δ may be small, we use the hardness construction from Section 5.6.2 (for large
LCS).

Otherwise, we have α∆ > αm and thus ∆ = Θ(n)� m. Note that any string x of
length n contains at least n/2 “0”s or “1”s, say x contains many “1”s. Then to obtain
Θ(M) matching pairs, y must contain at most O(M/n) “1”s. Thus, we need to pay close
attention to the number of “1”s in the constructed string y. We split the case α∆ > αm
into two subcases. Case 2: α∆ > αm = αL and αδ ≥ αM − 1. Here, the constraint on
#1(y) is stronger than the constraint on δ, and we use the hardness construction from
Section 5.6.1 (for small LCS), since it introduces few “1”s. Case 3: α∆ > αm = αL and
αδ < αM − 1. Here, the constraint on δ is stronger than the constraint on #1(y), and we
use the hardness construction from Section 5.6.2 (for large LCS), since it keeps δ small.

Case 1: α∆ ≤ αm = αL

Since n = ∆ + L, the assumptions αL = αm and α∆ ≤ αm imply n = Θ(m). Together
with the parameter relations L2/|Σ| ≤M ≤ 2Ln and Σ = {0, 1} we obtain M = Θ(m2).
In particular, in this regime the Õ(δ∆) time bound beats Õ(δM/n), and Lemma 5.8.13
simplifies to the following result.

Lemma 5.8.14. Let (α,Σ) be a parameter setting satisfying Table 5.2 with αL = αm
and α∆ ≤ αm. There is a constant γ ≥ 1 such that any algorithm for LCSγ(α,Σ) takes
time min{d, δ∆}1−o(1) unless OVH fails.

We instantiate the parameters of Lemma 5.8.9 to create a string with the desired
number of dominant pairs. The remaining parameters will be padded in an additional
construction. Note that the preconditions, specifically the additional guarantee, are
satisfied by Lemma 5.6.8.

Lemma 5.8.15. Let (α,Σ) be a parameter setting satisfying Table 5.2 with αL = αm and
α∆ ≤ αm. Given any instance (n, x, y) of LCSγ≤(α, {0, 1}) with the additional guarantee

|y| ≤ |x| ≤ γ ·m, we can construct an instance (n, x′, y′) of LCSγ
′

≤ (α, {0, 1}) (for some
constant γ′ ≥ 1) and τ in time O(n) such that

(i) L(x′, y′) = τ + L(x, y),

(ii) d(x′, y′) = Θ(d).

(iii) |x′| ≥ |y′|.

Proof. We construct x′, y′ as in Lemma 5.8.9 with S = max{|x|,m}, R = dd/Se, β = 0
and ` = (R + S + |x| + |y|). Note that indeed |x′| ≥ |y′| by |x| ≥ |y|, |a| ≥ |b|, and
β = 0. The assumption |x|, |y| = O(m) yields S = Θ(m). By the parameter relation
d ≤ 2(∆ + 1) · L = O(∆ ·m), we also have R = O(d/S + 1) = O(d/m+ 1) = O(∆). We
conclude that |x′|, |y′| = O(R+ S + |x|+ |y|) = O(m+ ∆) = O(m), since by assumption
α∆ ≤ αm. This yields L(x′, y′) = O(m) = O(L) (by the assumption αL = αm) and
M(x′, y′) = O(m2) = O(M) (note that M ≥ L2/|Σ| = Ω(m2) by the assumption
αL = αm).

By Lemma 5.8.9, we have L(x′, y′) = R+ 2S + `+ L(x, y), satisfying (i). This yields
δ(x′, y′) = δ(x, y) = O(δ) and ∆(x′, y′) = R + ∆(x, y) = O(d/m+ ∆) = O(∆), by the
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parameter relation d ≤ 2L(∆+1) = O(m∆). For d, we first observe that dd/Se = Θ(d/m)
(by the parameter relation d ≥ L = Θ(m)) and ` = O(R + S + |x| + |y|) = O(m).
Lemma 5.8.10 yields the lower bound d(x′, y′) ≥ R · S = Ω(d/m ·m) = Ω(d) as well as
the corresponding upper bound d(x′, y′) = O(R · `+ d(x, y)) = O(d/m ·m+ d) = O(d).

These bounds show that (n, x′, y′) is an instance of LCSγ
′

≤ (α, {0, 1}) for a sufficiently
large constant γ′ ≥ 1.

We use Lemma 5.8.11 to finally pad δ,∆, and m.

Lemma 5.8.16. Let x, y, x′, y′, τ be as given in Lemma 5.8.15. Then, in time O(n) we
can construct an instance x′′′, y′′′ of LCSγ

′′
(α, {0, 1}) (for some constant γ′′ ≥ 1) and

an integer τ ′ such that L(x′′′, y′′′) = τ ′ + L(x′, y′) = (τ + τ ′) + L(x, y).

Proof. As an intermediate step, let m̃ := max{m, |x′|, |y′|,∆} and construct

x′′ := 0∆ 1m̃+∆ 0∆ x′,

y′′ := 1m̃+∆ 0∆ y′.

We obtain the final instance as

x′′′ := 15m̃+δ 0δ x′′,

y′′′ := 0δ 15m̃+δ 0δ y′′.

Note that by definition of m̃, we have m̃+∆ ≥ ∆+ |y′| and δ+5m̃ ≥ δ+(3∆+m̃+ |x′|) =
δ + |x′′|, satisfying the conditions of Lemma 5.8.11. Hence, this lemma yields

L(x′′′, y′′′) = 5m̃+ 2δ + L(x′′, y′′) = 6m̃+ 2δ + 2∆ + L(x′, y′). (5.10)

Clearly, x′, y′, τ and hence also x′′, y′′ and τ ′ := 6m̃ + 2δ + 2∆ can be computed in
time O(n).

We now verify all parameters. Clearly, Σ(x′′′, y′′′) = {0, 1}. Since by assumption
α∆ ≤ αm = 1, we have |x′| = O(n) = O(m), |y′| = O(m), and ∆ = O(m). This implies
m̃ = Θ(m) and consequently |x′′′| = 6m̃+ 2δ + 3∆ + |x′| = 6m̃+O(m) = Θ(m) = Θ(n)
(using δ ≤ ∆ and α∆ ≤ αm = 1). Similarly, |y′′′| = 6m̃+ 3δ + 2∆ + |y′| = 6m̃+O(m) =
Θ(m). By (5.10), we have L(x′′′, y′′′) = 6m̃+ 2δ + 2∆ + L(x′, y′) = 6m̃+O(L) = Θ(L)
(using the assumption αL = αm).

Note that |x′′′| ≥ |y′′′| follows from ∆ ≥ δ and |x′| ≥ |y′| (by Lemma 5.8.15(iii)).
Hence, (5.10) provides ∆(x′′′, y′′′) = ∆+∆(x′, y′) = Θ(∆) and δ(x′′′, y′′′) = δ+δ(x′, y′) =
Θ(δ).

For the number of matching pairs, it holds that M(x′′′, y′′′) = #0(x′′′)#0(y′′′) +
#1(x′′′)#1(y′′′) = Θ(m2) = Θ(M), where the last bound follows from M ≥ L2/|Σ| =
Ω(m2) and M ≤ 2Ln = O(m2) by αL = αm = 1. For the number of dominant pairs, we
apply Lemma 5.8.11 to bound

d(x′′′, y′′′) = 3δ + 5m̃+ #1(x′′) + d(x′′, y′′)

= 3δ + 5m̃+ (m̃+ ∆ + #1(x′)) + (3∆ + m̃+ #1(y′) + d(x′, y′))

= 7m̃+ 3(δ + ∆) + #1(x′) + #1(y′) + d(x′, y′) = Θ(d) +O(m) = Θ(d),

where the last two bounds follow from m̃, |x′|, |y′|, δ,∆ = O(m), d(x′, y′) = Θ(d) by
Lemma 5.8.15 and the parameter relation d ≥ L = Ω(m).

Combining Lemmas 5.8.15 and 5.8.16 with Lemma 5.6.8 finally proves Lemma 5.8.14.



92 Chapter 5. Multivariate Fine-grained Complexity of LCS

Case 2: α∆ > αm = αL and αδ ≥ αM − 1

In this section, we consider the case where αL = αm < α∆ and αδ ≥ αM − 1. In this
case, we have ∆ = Θ(n) � m and M/n = O(δ). Since M/n = O(m) = O(∆), the
fastest known algorithm runs in time Õ(min{d, δM/n}+n). Consequently, in this regime
Lemma 5.8.13 simplifies to the following statement.

Lemma 5.8.17. Let (α, {0, 1}) be a parameter setting satisfying Table 5.2 with αL =
αm < α∆ and αM − 1 ≤ αδ. There is a constant γ ≥ 1 such that any algorithm for
LCSγ(α,Σ) takes time min{d, δM/n}1−o(1) unless OVH fails.

To obtain this result, it is infeasible to simply pad our hard instances (n, x, y) of
LCS≤(α, {0, 1}) to LCS(α, {0, 1}), since the desired running time bound min{d, δM/n}
is not monotone. In other words, for LCS≤(α, {0, 1}) we have a lower bound of
min{δ∆, δm, d}1−o(1) (see Lemma 5.6.8) which can be higher than the running time
O(n+ δM/n) of our new algorithm (Theorem 5.2.4) and thus a direct padding would
violate SETH. Moreover, we even cannot start from an instance as constructed in
Lemma 5.6.8, since this would generate too many “1”s. Instead, we use instances of a
different parameter setting LCS≤(α′, {0, 1}) with α′δ = α′m, i.e., we invoke Lemma 5.6.2.

Observation 5.8.18. Let (α, {0, 1}) be a parameter setting satisfying Table 5.2 with
αL = αm < α∆ and αM − 1 ≤ αδ. Then α′ := α′(α) defined by

α′d = min{αd, αδ + αM − 1}, α′M = 2α′L,

α′d − α′L = min{αM − 1, αd/2}, α′∆ = 1,

α′m = α′δ = α′L, α′Σ = 0,

yields a parameter setting (α′, {0, 1}) satisfying Table 5.2. The definition of α′ implies

α′L = min{αδ,max{αd − αM + 1, αd/2}}. (5.11)

Moreover, there is some constant γ ≥ 1 such that no algorithm solves LCSγ≤(α′, {0, 1})
in time nα

′
d(1−o(1)) = min{d, δM/n}1−o(1) unless OVH fails. This holds even restricted

to instances (n, x, y) with |x|, |y| ≤ γ · nα′L = O(min{δ,max{dn/M,
√
d}}) and #1(y) ≤

γ · nα′d−α′L = O(min{M/n,
√
d}) satisfying L(x, 0βy) = L(x, y) for all β ≥ 0.

Proof. We first prove (5.11). Consider the case that αd/2 ≤ αM − 1. Then αd ≤
2(αM − 1) ≤ αδ + (αM − 1), where we used the assumption αM − 1 ≤ αδ. Thus, α′d = αd
and by definition

α′L = α′d −min{αM − 1, αd/2} = αd − αd/2 = αd/2.

From αd/2 ≤ αM − 1, it follows that αd − αM + 1 ≤ αd/2 and αd/2 ≤ αM − 1 ≤ αδ,
hence α′L = αd/2 = min{αδ,max{αd − αM + 1, αd/2}}, as desired.

Consider the remaining case that αd/2 > αM − 1. Then by definition

α′L = α′d − (αM − 1) = min{αd − αM + 1, αδ}.

Since αd/2 > αM − 1 implies αd − αM + 1 ≥ αd/2, this indeed yields

α′L = min{max{αd − αM + 1, αd/2}, αδ},

as desired, concluding the proof of (5.11).
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Checking all constraints from Table 5.2 is straight-forward, except for the inequalities
0 ≤ α′L ≤ 1 and α′d ≤ 2α′L. From (5.11), 0 ≤ α′L ≤ 1 follows immediately by the
parameter relations αδ, αd ≥ 0 and αδ ≤ αm ≤ 1. For the other inequality, note that
α′d ≤ 2α′L is equivalent to min{αM − 1, αd/2} = α′d − α′L ≤ α′L = min{αδ,max{αd −
αM + 1, αd/2}}, which directly follows from the assumption αM − 1 ≤ αδ and the trivial
fact that αd/2 ≤ max{αd − αM + 1, αd/2}.

The last statement directly follows from Lemma 5.6.2.

It remains to pad strings x, y of LCS≤(α′, {0, 1}) to LCS(α, {0, 1}). The first step is
the following construction which pads δ and d.

Lemma 5.8.19. Let (α, {0, 1}) be a parameter setting satisfying Table 5.2 with αL =
αm < α∆ and αM − 1 ≤ αδ, and define α′ as in Observation 5.8.18. Let (n, x, y) be
an instance of LCSγ≤(α′, {0, 1}) with |x|, |y| ≤ γ ·min{δ,max{dn/M,

√
d}} and #1(y) ≤

γ ·min{M/n,
√
d} satisfying L(x, 0βy) = L(x, y) for all β ≥ 0. We set

S = bmin{M/n,
√
d}c, R = bd/Sc, ` = |x|+ |y|+R+ S, β = δ,

and define, as in Lemma 5.8.9,

x′ := a 0` x = (01)R+S 0` x,

y′ := 0β b 0` y = 0β 0R(01)S 0` y.

Then x′, y′ is an instance of LCSγ
′

≤ (α, {0, 1}) (for some γ′ ≥ 1) with the additional
guarantees that

(i) |x′|, |y′| = O(m),

(ii) #1(y′) = O(M/n) and #1(y′) · |b0`y| = O(d).

(iii) d(x′, y′) = Θ(d),

(iv) |y′| − L(x′, y′) = Θ(δ),

(v) In time O(n) we can compute a number τ such that L(x′, y′) = τ + L(x, y).

Proof. Note that S ≤
√
d implies that S ≤ R. Note also that by assumption, |x|, |y| =

O(min{δ,R}) and hence R,S, `, |x|, |y| = O(R). Furthermore, R = Θ(d/S) = Θ(d/Mn+√
d) = O(m), where the first bound follows from αd ≥ 0 and αM ≥ 1and the second

follows from the parameter relations d/Mn ≤ 5L = O(m) and d ≤ Lm ≤ m2. Hence
|x′| = O(R) = O(m). Additionally, δ̃ = Θ(δ) and thus |y′| = O(δ+m) = O(m) by δ ≤ m;
thus we have proven (i). This also implies L(x′, y′) ≤ O(m) = O(L) since αL = αm.

Note that #1(y) = S+#1(y) = O(S) by definition of S and assumption on #1(y). We
compute d(x′, y′) ≤ 5L(x′, y′) ·#1(y′) ≤ 5|x′| ·#1(y′) = O(R · S) = O(d). Furthermore,
we obtain by Observation 5.5.2 and Lemma 5.5.3 that d(x′, y′) ≥ d(a, 0βb) ≥ R ·S = Ω(d).
Note that in particular #1(y′) = O(S) = O(M/n) and #1(y′) · |b0`y| = O(S ·R) = O(d),
proving (ii). The bound M(x′, y′) ≤ O(m2) = O(M) trivially follows from |x′|, |y′| =
O(m) and M ≥ L2/|Σ| = Ω(m2) since αL = αm.

By Lemma 5.8.9, we have L(x′, y′) = R + 2S + ` + L(x, y), which immediately
yields (v). Moreover, we obtain δ(x′, y′) = δ + δ(x, y) = Θ(δ), since δ(x, y) ≤ |x| = O(δ),
proving (iv). Finally, ∆(x′, y′) ≤ |x′| = O(m) = O(∆) by the assumption α∆ > αm.

To finally pad all remaining parameters, we first prepare the following technical tool.
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Lemma 5.8.20. Let x = 1κ0µw and y = 0µ0νz with µ > |z|. Then it holds that
L(x, y) = µ+ L(w, 0νz), as well as d(x, y) ≥ d(w, 0νz) and d(x, y) ≤ min{κ, |z|}+ µ+
d(1κ0µ, z) + d(w, 0νz).

Proof. By Lemma 5.5.6, we have that L(x, y) = µ+ L(w, 0νz).
This immediately shows that d(x, y) ≥ d(w, 0νz), since the above statement implies,

for any prefixes w̃, z̃ of w, 0νz, that L(1κ0µw̃, 0µz̃) = µ + L(w̃, z̃) and hence any k-
dominant pair (i, j) of w and 0νz gives rise to a (µ+ k)-dominant pair (κ+ µ+ i, µ+ j)
of x and y.

For the upper bound, we count the number of prefixes x̃, ỹ of x, y corresponding to
dominant pairs. Note that x̃, ỹ have to end in the same symbol to be a dominant pair.
Consider first the case that x̃ = 1k. Hence we must have ỹ = 0µ0ν z̃ for some prefix
z̃ = z[1..`] of z̃. Clearly, L(x̃, ỹ) = min{k,#1(z̃)}. Hence, x̃, ỹ corresponds to a dominant
pair if and only if #1(z̃) = #1(z[1..`]) = k and #1(z[1..`−1]) < k, i.e., z̃ is determined by
the k-th occurrence of “1” in z. Thus, there can be at most min{κ,#1(z)} ≤ min{κ, |z|}
such dominant pairs.

Consider the case that x̃ = 1κ0k with k ∈ [µ]. We separately regard the following
types of prefixes of y.

• ỹ = 0` with ` ∈ [µ + ν]: By greedy suffix matching, L(x̃, ỹ) = L(1κ0k, 0`) =
min{k, `}, hence as above there can be at most µ dominant pairs, since there are
only µ choices for k.

• ỹ = 0µ0ν z̃: We have L(x̃, ỹ) = max{k, L(1κ0k, z̃)}. To see that this holds, note
that the longest common subsequence either includes none of the ones of 1κ of ỹ,
in which case 0k is the LCS of ỹ and x̃, or otherwise it matches at least one 1 in ỹ,
which means that the LCS deletes all “0”s preceding the first “1” in ỹ, i.e., the
whole 0µ+ν block in y′.

If L(x̃, ỹ) = k, then x̃, ỹ cannot correspond to a dominant pair since already the
prefix 0k of ỹ satisfies L(x̃, 0k) = k = L(x̃, ỹ). Hence x̃, ỹ can only correspond to a
dominant pair if L(x̃, ỹ) = L(1κ0k, z̃) and hence 1κ0k, z̃ correspond to a dominant
pair of 1κ0µ, z. This yields at most d(1κ0µ, z) dominant pairs.

Finally, consider the case that x̃ = 1κ0µw̃ with w̃ a prefix of w. There are no
dominant pairs for ỹ = 0` with ` ∈ [µ]: Already for the prefix 1κ0` of x̃, we have
L(1κ0`, 0`) = ` = L(x̃, ỹ), hence these prefixes cannot correspond to dominant pairs.
It remains to consider ỹ = 0µz̃ for a prefix z̃ of 0νz. Again by Lemma 5.5.6, we have
L(x̃, ỹ) = µ+ L(w̃, z̃) and hence such dominant pairs are in one-to-one correspondence
with the dominant pairs of w and 0νz. This yields at most d(w, 0νz) further dominant
pairs.

By summing up over the three cases, we conclude that there are at most min{κ, |z|}+
µ+ d(1κ0µ, z) + d(w, 0νz) dominant pairs.

We can finally pad to LCS(α, {0, 1}).
Lemma 5.8.21. Let x, y, x′, y′, τ be as in Lemma 5.8.19. We set κ := bM/nc, ∆̃ :=
max{∆, |y′|}, and m̃ := max{m, |y′|} and define

x′′ = 1κ+∆̃ 0m̃ x′,

y′′ = 1κ 0m̃ y′.

Then x′′, y′′ is an instance of LCSγ
′
(α, {0, 1}) for some constant γ′ ≥ 1. Moreover, we

can compute a number τ ′ in time O(n) such that L(x′′, y′′) = τ ′ + L(x, y).
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Proof. Note that κ = O(M/n) = O(m) by the parameter relation M ≤ mn. Furthermore,
Lemma 5.8.19(i) yields |x′|, |y′| = O(m) and hence m̃ = Θ(m) and ∆̃ = Θ(∆) (since
αm ≤ α∆ = 1). Thus, |x′′| = κ + ∆̃ + m̃ + |x′| = Θ(∆) +O(m) = Θ(n) since α∆ = 1.
Furthermore, |y′′| = κ+ m̃+ |y′| = m̃+O(m) = Θ(m).

Observe that ∆̃ has been defined such that |x′′| ≥ |y′′|. By greedy prefix matching
and Lemma 5.8.20, we obtain

L(x′′, y′′) = κ+ L(1∆̃0m̃x′, 0m̃y′) = κ+ m̃+ L(x′, y′). (5.12)

Since L(x′, y′) = τ + L(x, y), we satisfy the last claim by setting τ ′ := κ + m̃ + τ .
Moreover, L(x′′, y′′) = m̃+O(m) = Θ(m) = Θ(L) since |x′|, |y′| ≤ O(m) and αL = αm.
Furthermore, (5.12) yields ∆(x′′, y′′) = ∆̃ + (|x′| − L(x′, y′)) = Θ(∆) + O(m) = Θ(∆)
and δ(x′′, y′′) = |y′| − L(x′, y′) = Θ(δ) by Lemma 5.8.19(iv).

For the dominant pairs, Lemma 5.5.1 yields d(x′′, y′′) = κ + d(1∆̃0m̃x′, 0m̃y′). To

bound the latter term, note that Lemma 5.8.20 yields d(1∆̃0m̃x′, 0m̃y′) ≥ d(x′, y′) = Ω(d)

by Lemma 5.8.19(iii). For the upper bound, we first recall that y′ = 0δ̃b0`y and

that #1(y′) · |b0`y| = O(d) by Lemma 5.8.19(ii). Hence we have d(1∆̃0m̃, b0`y) ≤
5 · L(1∆̃0m̃, b0`y) ·#1(b0`y) = O(|b0`y| ·#1(y′)) = O(d). We can finally compute, using
Lemma 5.8.20,

d(1∆̃0m̃x′, 0m̃y′) ≤ min{∆̃, |y′|}+ m̃+ d(1∆̃0m̃, b0`y) + d(x′, y′)

≤ |y′|+ m̃+O(d) + d(x′, y′) = O(d),

where the last bound follows from |y′|, m̃ = O(m) = O(d) by the relation d ≥ L = Ω(m)
(since αL = αm) and d(x′, y′) = O(d) by Lemma 5.8.19(iii).

It remains to count the number of matching pairs. We have #0(x′′),#0(y′′) ≤
|x′| + |y′| + m̃ = O(m), as well as #1(x′′) = κ + ∆̃ + #1(x′) = Θ(∆) + O(m) = Θ(n)
(since α∆ = 1) and #1(y′′) = κ+ #1(y′) = κ+O(M/n) = Θ(M/n) by Lemma 5.8.19(ii).
Thus M(x′′, y′′) = #1(x′′)#1(y′′) + #0(x′′)#0(y′′) = Θ(M) +O(m2) = Θ(M), where the
last bound follows from M ≥ L2/|Σ| = Ω(m2) since αL = αm.

By combining Lemmas 5.8.19 and 5.8.21 with Observation 5.8.18, we finally obtain
Lemma 5.8.17.

Case 3: α∆ > αm = αL and αδ ≤ αM − 1

We consider the final case, where αL = αm < α∆ and αδ ≤ αM − 1. Here, we have
∆ = Θ(n) � m and δ = O(M/n). Since M/n = O(m) = O(∆), the fastest known
algorithm runs in time Õ(min{d, δM/n}+n). Consequently, in this regime Lemma 5.8.13
simplifies to the following statement.

Lemma 5.8.22. Let (α, {0, 1}) be a parameter setting satisfying Table 5.2 with αL =
αm < α∆ and αδ ≤ αM − 1. There is a constant γ ≥ 1 such that any algorithm for
LCSγ(α,Σ) takes time min{d, δM/n}1−o(1) unless OVH fails.

As in the previous case, to prove this result we cannot simply pad instances of
LCS≤(α, {0, 1}) to LCS(α, {0, 1}), since the desired running time bound min{d, δM/n}
is not monotone. Instead, we start from instances of a suitably chosen different parameter
setting LCS≤(α′, {0, 1}) with α′L = α′m, i.e., we invoke Lemma 5.6.8.
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Observation 5.8.23. Let (α, {0, 1}) be a non-trivial parameter setting satisfying Ta-
ble 5.2 with αL = αm < α∆ and αδ ≤ αM − 1. Define α′ := α′(α) by

α′δ = min{αδ, αd/2}, α′M = 1 + α′m,

α′L = α′m = min{αM − 1, αd − α′δ}, α′∆ = 1,

α′d = min{αδ + αM − 1, αd}, α′Σ = 0,

Then the parameter setting (α′, {0, 1}) satisfies Table 5.2. Furthermore, there is some
constant γ ≥ 1 such that no algorithm solves LCSγ≤(α′, {0, 1}) in time nα

′
d(1−o(1)) =

min{d, δM/n}1−o(1) unless OVH fails. This holds even restricted to instances (n, x, y)
with |x|, |y| ≤ γ · nα′m = O(min{M/n,max{d/δ,

√
d}}).

Proof. We only discuss the inequalities from Table 5.2 that are not straight-forward
to verify. To see α′δ ≤ α′m, note that αδ ≤ αM − 1 by assumption and αd/2 =
αd − αd/2 ≤ αd − α′δ. The inequality α′L ≤ α′d follows from αM − 1 ≤ αM − 1 + αδ
and αd − α′δ ≤ αd. Furthermore, α′d ≤ 2α′L follows from αδ + αM − 1 ≤ 2(αM − 1) (by
assumption) and αd = 2(αd − αd/2) ≤ 2(αd − α′δ). From α′d ≤ 2α′L and α′L = α′m we
also obtain α′M = 1 + α′m = 1 + α′L ≥ 1 + α′d − α′L, which corresponds to the parameter
relation M ≥ nd/(5L) that only holds for Σ = {0, 1}. Finally, α′M ≥ α′d follows from
α′M = 1 + α′m = min{αM , 1 + αd − α′δ} ≥ min{αM , αd} by α′δ ≤ αδ ≤ 1 and similarly
α′d = min{αδ + αM − 1, αd} ≤ min{αM , αd}.

Lemma 5.6.8 shows that some γ ≥ 1 exists such that LCSγ≤(α′, {0, 1}) cannot be

solved in time min{nα′d , nα′δ+α′m , nα′δ+α′∆}(1−o(1)), even restricted to instances (n, x, y)
with |x|, |y| ≤ γ · nα′m = O(min{M/n,max{d/δ,

√
d}}). We simplify the running time

bound by noting that α′∆ = 1 ≥ α′m, so that nα
′
δ+α

′
m ≤ nα

′
δ+α

′
∆ . Moreover, we have

α′δ + α′m = α′d = min{αδ + αM − 1, αd}. Indeed, if αδ ≤ αd/2, we have α′δ = αδ and
hence α′δ + α′m = min{αδ + αM − 1, αd} = α′d. Otherwise, αd/2 < αδ ≤ αM − 1, forcing
α′δ = αd/2 and α′m = αd/2, which yields α′δ + α′m = αd = min{αδ + αM − 1, αd} = α′d.
Thus, min{α′d, α′δ + α′m, α

′
δ + α′∆} = α′d and the lower bound simplifies to nα

′
d(1−o(1)) =

min{δM/n, d}1−o(1).

In this section, to pad the number of dominant pairs, we will construct instances
x′ = a0`x = (01)R+S0`x, y′ = b0`y = 0R(01)S0`y, where we choose R,S proportional to
nαR , nαS with

αS := min{αM − 1,max{αd − αδ, αd/2}}, αR := αd − αS .

Note that the use of αS , αR is a slight abuse of notation, since R,S are not actual input
parameters, but αS , αR depend only on α. We will later set R = c · nαR , S = c′ · nαS
with suitably large constants c, c′. However, depending on whether αS ≤ αR or αS > αR,
we will extend and analyze the basic construction differently. We start with the simpler
case of αS ≤ αR.

Lemma 5.8.24 (Construction for αS ≤ αR). Let (α, {0, 1}) be a parameter setting
satisfying Table 5.2 with αL = αm < α∆, αδ ≤ αM − 1, and αS ≤ αR. We define α′ as
in Observation 5.8.23. Given an instance (n, x, y) of LCSγ≤(α′, {0, 1}) with |y| ≤ |x| =
O(min{M/n,max{d/δ,

√
d}}), we use the parameters

S = max{|x|, bnαSc}, R = bd/Sc,
` = R+ S + |x|+ |y|, β = δ,
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to instantiate the strings x′ = a0`x = (01)R+S0`x and y′ = 0βb0`y = 0β0R(01)S0`y as in
Lemma 5.8.9. We furthermore set m̃ := max{m, δ +R+ 2S + `+ |y|} and κ := bM/nc
and define

x′′ := 1∆+κ 0m̃ x′ = 1∆+κ 0m̃ a 0` x = 1∆+κ 0m̃ (01)R+S 0` x,

y′′ := 1κ 0m̃ y′ = 1κ 0m̃ 0δ b 0` y = 1κ 0m̃ 0δ 0R(01)S 0` y.

Then x′′, y′′ is an instance of LCSγ
′
(α, {0, 1}) for some constant γ′ ≥ 1 that can be

constructed in time O(n) together with some integer τ such that L(x′′, y′′) = τ + L(x, y).

Proof. By greedy prefix matching and Lemma 5.5.6, we obtain

L(x′′, y′′) = κ+L(1∆0m̃x′, 0m̃y′) = κ+m̃+L(x′, y′) = κ+m̃+R+2S+`+L(x, y), (5.13)

where the last equality follows from Lemma 5.8.9, which applies since S ≥ |x|. Clearly,
x′′, y′′ and τ = κ+ m̃+R+ 2S + ` can be computed in time O(n).

Let us verify that x, y is an instance of LCSγ
′
(α, {0, 1}) for some γ′ ≥ 1. By

assumption, |x|, |y| = O(nαS ), and hence S = Θ(nαS ) = Θ(min{M/n,max{d/δ,
√
d}}).

Thus, R = Θ(d/S) = Θ(nαR) = O(dn/M + min{δ,
√
d}) = O(m), where the last bound

follows from the parameter relations M ≥ nd/(5L) = Ω(nd/m) (since αL = αm) and
δ ≤ m. By assumption αS ≤ αR, we have S = O(R) = O(m). Furthermore, we have
κ = O(M/n) = O(m) by the relation M ≤ mn and m̃ = Θ(m) by R,S, |x|, |y|, ` = O(m)
and δ ≤ m. Thus, |x′′| = κ + ∆ + m̃ + 2(R + S) + ` + |x| = Θ(∆ + m) = Θ(n)
and |y′′| = κ + m̃ + δ + R + 2S + ` + |y| = Θ(m). By (5.13), we also conclude that
L(x′′, y′′) = m̃+O(m) = Θ(m) = Θ(L) by the assumption αL = αm.

Note that by ∆ ≥ δ, |a| ≥ |b| and |x| ≥ |y|, we have |x′′| ≥ |y′′|. Hence by (5.13),
∆(x′′, y′′) = ∆ +R+ (|x| − L(x, y)) = Θ(∆), since R, |x| = O(m) = O(∆) by α∆ > αm.
Likewise, (5.13) yields δ(x′′, y′′) = δ+ (|y| −L(x, y)) = δ+ δ(x, y) = Θ(δ) since δ(x, y) =
O(δ) by δ(x, y) = O(nα

′
δ) and α′δ ≤ αδ.

For the dominant pairs, we first compute

d(1∆0m̃x′, 0m̃y′) ≥ d(x′, y′) ≥ d(a, 0δb) ≥ R · S = Ω(d),

using Lemma 5.8.20, Observation 5.5.2, and Lemma 5.5.3. For a corresponding upper
bound, we use Lemma 5.8.20 to obtain

d(1∆0m̃x′, 0m̃y′) = d(1∆0m̃x′, 0m̃0δb0`y) ≤ |y′|+ m̃+ d(1∆0m̃, b0`y) + d(x′, y′).

By Lemma 5.4.8, we have d(1∆0m̃, b0`y) ≤ 5 · L(1∆0m̃, b0`y) ·#1(b0`y) = O(|b0`y| · (S +
|y|)) = O(R · S) = O(d). Since |y′| + m̃ = O(m) = O(d) (using d ≥ L = Ω(m) since
αL = αm) and d(x′, y′) ≤ 5 · L(x′, y′) · #1(y′) = O(|x′| · #1(y′)) = O(R · S) = O(d),
we conclude that d(1∆0m̃x′, 0m̃y′) = Θ(d). Finally, Lemma 5.5.1 yields d(x′′, y′′) =
κ+ d(1∆0m̃x′, 0m̃y′) = Θ(d) +O(m) = Θ(d), as desired.

It remains to count the matching pairs. Note that #0(x′′),#0(y′′) = O(m̃ + |x′|+
|y′|) = O(m). Furthermore #1(x′′) = ∆ + κ + #1(x′) = Θ(∆) + O(m) = Θ(n) (since
α∆ > αm implies α∆ = 1) and #1(y′′) = κ+S+#1(y) = Θ(κ) = Θ(M/n), where we used
S, |y| = O(M/n) and κ = Θ(M/n) (since M ≥ n). Thus, M(x′′, y′′) = #1(x′′)#1(y′′) +
#0(x′′)#1(y′′) = Θ(n ·M/n) + O(m2) = Θ(M) using that M ≥ L2/|Σ| = Ω(m2) by
αL = αm. Note that indeed Σ(x′′, y′′) = {0, 1}.

Before giving the construction for the case αS > αR, we present a technical lemma
that is similar to the dominant pair reduction technique of Lemma 5.5.8.
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Lemma 5.8.25. Let x′ = a0`x = (01)R+S0`x, y′ = b0`y = 0R(01)S0`y be an instance of
Lemma 5.8.2 and R ≥ |y| − L(x, y). We set t := R+ |y′|+ 1 and define

x̄ := 1t 0t y′ 0R 1t+∆ 0t x′,

ȳ := 0R 1t 0t y′.

Then

(i) L(x̄, ȳ) = R+ 2t+ L(x′, y′),

(ii) d(x̄, ȳ) ≤ (2t+ |y′|)(R+ 1) +R2,

(iii) d(x̄, ȳ) ≥ R · S.

Proof. We first prove the following property.

(∗) For any prefixes x̃, ỹ of x′, y′, we have

L(1t0ty′ 0R 1t+∆0tx̃, 0R 1t0tỹ) = max{2t+ |ỹ|, R+ 2t+ L(x̃, ỹ)}.

Note that the lower bound immediately follows from either matching 1t0tỹ with 1t0ty′,
or by matching 0R1t0tỹ with 0R1t+∆0tx̃. For the upper bound, fix an LCS and observe
that it cannot match symbols in the 1t-prefix of x̄ and symbols in the 0R-prefix of ȳ, so
at least one of the two prefixes stays unmatched. Thus,

L(1t0ty′ 0R 1t+∆0tx̃, 0R 1t0tỹ)

≤ max{L(0ty′ 0R 1t+∆0tx̃, 0R 1t0tỹ), L(1t0ty′ 0R 1t+∆0tx̃, 1t0tỹ)}
= max{R+ L(0t−Ry′ 0R 1t+∆0tx̃, 1t0tỹ), 2t+ |ỹ|},

where the second line follows from greedy prefix matching. Setting x̂ := 0t−Ry′ 0R 1t+∆0tx̃
and ŷ := 1t0tỹ, it remains to provide the upper bound R+L(x̂, ŷ) ≤ max{2t+ |ỹ|, R+2t+
L(x̃, ỹ)} to prove (∗). Assume that an LCS z of x̂, ŷ matches less than t−R symbols of the
1t-prefix of ŷ. Then |z| ≤ t−R+L(x̂, 0tỹ) ≤ 2t−R+ |ỹ|, yielding R+L(x̂, ŷ) ≤ 2t+ |ỹ|.
Hence, assume instead that at least t − R symbols of the 1t-prefix of ŷ are matched.
Since the number of “1”s in the prefix 0t−Ry′0R of x̂ is only #1(y′) ≤ |y′| < t− R, all
zeroes of this prefix have to be deleted, resulting in

L(x̂, ŷ) = |z| ≤ L(1#1(y′)+t+∆0tx̃, 1t0tỹ)

= t+ L(1#1(y′)+R+∆0tx̃, 0tỹ)

= 2t+ L(x̃, ỹ),

where the second line follows from greedy prefix matching and the third follows from
Lemma 5.5.6. Thus, we have verified R+L(x̂, ŷ) ≤ max{2t+ |ỹ|, R+ 2t+L(x̃, ỹ)}, which
implies (∗).

As an immediate consequence, (∗) yields L(x̄, ȳ) = max{2t+ |y′|, R+2t+L(x′, y′)} =
R + 2t + L(x′, y′) since R ≥ |y| − L(x, y) = |y′| − L(x′, y′) (where the equality follows
from Lemma 5.8.2). This proves (i).

For (ii), an application of Lemma 5.5.7 yields d(x̄, ȳ) ≤ (2t+ |y′|)(R+ 1) +R2.
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Finally, for (iii) we consider, analogous to Lemma 5.5.3, for any 0 ≤ s ≤ S and
s ≤ r ≤ R+ s, the prefixes x̃ = (01)r of x′ and ỹ = 0R(01)s of y′. Then by (∗),

L(1t0ty′ 0R 1t+∆0tx̃, 0R 1t0tỹ) = max{2t+ |ỹ|, R+ 2t+ L(x̃, ỹ)}
= max{2t+R+ 2s,R+ 2t+ r + s} = (R+ 2t) + r + s,

where we used Lemma 5.5.3(∗) for the second equality and r ≥ s for the last equality.
Analogously to the proof of Lemma 5.5.3(ii), this yields d(x̄, ȳ) ≥ R ·S, since any feasible
choice of r, s gives rise to a unique dominant pair.

We can now give the construction for αS > αR. Recall that

αS := min{αM − 1,max{αd − αδ, αd/2}}, αR := αd − αS .

Lemma 5.8.26 (Construction for αS > αR). Let (α, {0, 1}) be a parameter setting
satisfying Table 5.2 with αL = αm < α∆, αδ ≤ αM − 1, and αS > αR. We de-
fine α′ as in Observation 5.8.23. Given an instance (n, x, y) of LCSγ≤(α′, {0, 1}) with

|y| ≤ |x| = O(min{M/n,max{d/δ,
√
d}}), we can construct an instance x(4), y(4) of

LCSγ
′
(α, {0, 1}) (for some constant γ′ ≥ 1) in time O(n) together with some integer τ

such that L(x(4), y(4)) = τ + L(x, y).

Proof. We first set `1 := |x| to define

x(1) := 0`1 x,

y(1) := 1δ 0`1 y,

which pads the parameter δ. For convenience, define δ1 := |y(1)| − L(x(1), y(1)). We use
the parameters

S := bnαSc, R := max{bnαRc, δ1}, `2 := |x(1)|+ |y(1)|,

to define, as in Lemma 5.8.2,

x(2) := a 0`2 x(1),

y(2) := b 0`2 y(1).

We then use the dominant pair reduction trick of Lemma 5.8.25, which additionally
pads ∆, and define

x(3) := 1`3 0`3 y(2) 0R 1`3+∆ 0`3 x(2),

y(3) := 0R 1`3 0`3 y(2),

where `3 := R+ |y(2)|+ 1. The final instance is then constructed as

x(4) = 1κ 0m x(3),

y(4) = 1κ 0m y(3),

where κ := bM/nc.
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We first compute

L(x(4), y(4)) = κ+m+ L(x(3), y(3))

= κ+m+R+ 2`3 + L(x(2), y(2))

= κ+m+ 2R+ 2S + `2 + 2`3 + L(x(1), x(1))

= κ+m+ 2R+ 2S + `1 + `2 + 2`3 + L(x, y), (5.14)

where we used greedy prefix matching in the first line, Lemma 5.8.25(i) in the second,
Lemma 5.8.2 in the third, and Lemma 5.5.6 in the last line. Note that x(4), y(4), and
τ := κ+m+ 2R+ 2S + `1 + `2 + 2`3 can be computed in time O(n).

It remains to verify that x(4), y(4) is an instance of LCSγ
′
(α, {0, 1}) for some γ′ ≥ 1.

We first observe that |x|, |y| = O(nαS ) and hence |x(1)|, |y(1)| = O(nαS + δ). Note that
by definition S = Θ(nαS ).

Assume for contradiction that αR < αδ. Note that by definition αR = αd − αS =
max{αd − αM + 1,min{αδ, αd/2}} and hence αR < αδ only holds if αd − αM + 1 ≤
αR = αd/2 < αδ. But then αd − αδ ≤ αd/2 < αδ ≤ αM − 1. This forces αS = αd/2 by
definition, which contradicts the assumption αS > αR. We therefore obtain αR ≥ αδ.

Note that δ1 = |y(1)| − L(x(1), y(1)) = δ + δ(x, y) by Lemma 5.5.6. Since δ(x, y) ≤
O(nα

′
δ) and α′δ ≤ αδ, this yields δ1 = Θ(δ), and hence R = Θ(nαR). Thus, R = O(S),

since αR < αS . It is immediate that |x(2)|, |y(2)| = O(R + S + |x(1)| + |y(1)|) = O(S).
Furthermore, it follows that |x(3)| = ∆ + O(S) and |y(3)| = O(S). Finally |y(4)| =
m+O(M/n+S) = Θ(m), where the last bound follows from S = O(M/n) = O(m) by the
parameter relation M ≤ mn. Likewise, |x(4)| = m+∆+O(M/n+S) = Θ(m+∆) = Θ(n).
Finally, L(x(4), y(4)) = m+O(M/n+ S) = Θ(m) = Θ(L) by (5.14) and αL = αm.

Since |x| ≥ |y|, |a| ≥ |b| and ∆ ≥ δ it is easy to see that |x(4)| ≥ |y(4)|. Hence (5.14)
yields

∆(x(4), y(4)) = 2`3 + |y(2)|+ ∆ +R+ ∆(x, y) = ∆ +O(m) = Θ(∆),

since in particular ∆(x, y) ≤ |x| = O(m). Similarly, δ(x(4), y(4)) = δ + δ(x, y) = Θ(δ) as
above.

For the number of dominant pairs, Lemma 5.8.25(iii) yields d(x(3), y(3)) ≥ R·S = Ω(d).
From Lemma 5.8.25(ii), the corresponding upper bound d(x(3), y(3)) ≤ (2`3 + |y(2)|) ·
(R + 1) + R2 = O(S · R + R2) = O(d) follows, since R = O(S) by αR < αS . Thus, by
Lemma 5.5.1 we obtain d(x(4), y(4)) = κ+m+ d(x(3), y(3)) = Θ(d) +O(m) = Θ(d) by
d ≥ L = Ω(m) since αL = αm.

It remains to count the number of matching pairs. We have #1(y(4)) = κ+#1(y(3)) =
Θ(M/n), since κ = Θ(M/n) by the parameter relation M ≥ n, and #1(y(3)) ≤ |y(3)| =
O(S) = O(M/n). Since |y(4)| = O(m), we have #0(y(4)) = O(m). Note that #1(x(4)) =
κ + 2`3 + ∆ + |x(2)| + |y(2)| = ∆ + O(S + κ) = Θ(n), since α∆ > αm implies α∆ = 1.
Finally, #0(x(4)) = m + 2`3 + R + #0(y(2)) + #0(x(2)) = O(m). Thus, we obtain
M(x(4), y(4)) = #1(x(4)) ·#1(y(4)) + #0(x(4)) ·#0(y(4)) = Θ(n ·M/n) +O(m2) = Θ(M)
by the relation M ≥ L2/|Σ| = Ω(m2), since αL = αm.

Note that combining Lemmas 5.8.24 and 5.8.26 with Observation 5.8.23 yields
Lemma 5.8.22.



Chapter 6

Algorithms

In this chapter, we provide two algorithmic results. The first is a generalization of
Hirscherg’s Õ(n+ δL)-time algorithm for LCS to Edit Distance, which we provide here
for completeness (Section 6.1). The second algorithm is a novel LCS algorithm for
binary alphabets, which runs particularly fast when the number of matching pairs M
and δ = m− L are small (Section 6.2).

6.1 Generalization of Hirscherg’s Algorithm

For completeness, we prove a generalization of the algorithm of Hirschberg [Hir77] from
LCS to Edit Distance. Recall that the trivial dynamic programming algorithm computes
a table storing all prefix distances δEdit(x[1..i], y[1..j]). In contrast, we build a dynamic
programming table storing, for any index j and any cost k, the minimal index i with
δEdit(x[1..i], y[1..j])− cdel-x(i− j) = k. For some intuition, note that for i ≥ j at least
i− j symbols in x[1..i] have to be deleted so that the cost δEdit(x[1..i], y[1..j]) is at least
cdel-x(i− j). Thus, it is reasonable to “normalize” the cost by subtracting cdel-x(i− j).
As we will see, the normalized cost is bounded by O(m) (the length of the smaller of the
two strings), which reduces the table size to O(m2).

Theorem 6.1.1. Let the cost parameters cdel-x, cdel-y, cmatch, csubst be any positive inte-
gers. Then Edit(cdel-x, cdel-y, cmatch, csubst) can be solved in time O((n+m2) log |Σ|) on
strings of length n,m with n ≥ m over alphabet Σ.

Note that it is easy to ensure Σ ⊆ [n+m] after O(n log(min{|Σ|, n})) preprocessing.1

Thus, the running time is at most O((n+m2) log n) = Õ(n+m2), and Theorem 2.1.4
follows from the above theorem and Fact 4.4.2. Our algorithm is designed for the pointer
machine model; a slightly better running is achievable on the Word RAM.

Consider strings x and y over alphabet Σ of lengths n and m, respectively, and
assume without loss of generality that n ≥ m. For convenience, we set min ∅ :=∞. For
any index i ∈ {0, . . . , n} and symbol σ ∈ Σ, we define

Nextx=σ(i) := min{i′ | i < i′ ≤ n and x[i′] = σ},
Nextx6=σ(i) := min{i′ | i < i′ ≤ n and x[i′] 6= σ}.

We argue that a data structure can be built in O(n log |Σ|) preprocessing time supporting
Nextx=σ(i) and Nextx6=σ(i) queries in time O(log |Σ|). A simple solution with worse running
time is to precompute all answers to all possible queries Nextx=σ(i) and Nextx6=σ(i), with
i ∈ {0, . . . , n}, σ ∈ Σ, in time O(|Σ|n) by one scan from x[n] to x[1]. To improve

1To compress the alphabet we build a balanced binary search tree T whose nodes correspond to Σ
(by simply adding all symbols of x and y to T ). Then we replace each symbol by its index in some fixed
ordering of the nodes of T .
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the preprocessing time for Nextx6=σ(i), note that Nextx6=σ(i) = i+ 1 for all σ 6= x[i+ 1].
Thus, we only have to precompute all values Nextx6=x[i+1](i) for 1 ≤ i ≤ n (which can

be done in time O(n) by one scan from x[n] to x[1]), then Nextx6=σ(i) can be queried
in time O(1). For Nextx=σ(i), for any i ∈ {0, . . . , n} we build a dictionary Di storing
Nextx=σ(i) for each σ ∈ Σ. Note that Di−1 and Di differ only for the symbol x[i + 1].
Thus, we can use persistent search trees [Dri+89] as dictionary data structures, resulting
in a preprocessing time of O(n log |Σ|) for building D0, . . . , Dn and a lookup time of
O(log |Σ|) for querying Nextx=σ(i). Using such a Next data structure, we can formulate
our dynamic programming algorithm, see Algorithm 1.

Algorithm 1 Solving Edit(cdel-x, cdel-y, cmatch, csubst) in time O((n+m2) log |Σ|).
Assumption: cdel-x, cdel-y, cmatch, csubst are positive integers
Input: strings x, y of length n,m, n ≥ m
Output: δEdit(x, y)

M ← (cdel-x + cdel-y)m
Implicitly set I[j, k]←∞ for all j and all k < 0 or k > M
I[0, 0]← 0
I[0, k]←∞ for 0 < k ≤M
for j = 1, . . . ,m do

for k = 0, . . . ,M do
I[j, k]← min{I[j − 1, k − cdel-x − cdel-y],

Nextx=y[j](I[j − 1, k − cmatch]),

Nextx6=y[j](I[j − 1, k − csubst])}

return cdel-x(n−m) + min{0 ≤ k ≤M | I[m, k] <∞}.

Since Nextx=σ and Nextx6=σ can be queried in time O(log |Σ|) and M = (cdel-x +

cdel-y)m = O(m), Algorithm 1 runs in time O(m2 log |Σ|). Together with the preprocess-
ing time for the Next data structure, we obtain a total running time of O((n+m2) log |Σ|).
It remains to argue correctness.

Correctness. We prove that the dynamic programming table I[j, k] admits the follow-
ing interpretation.

Lemma 6.1.2. Algorithm 1 computes for any j ∈ [m], k ∈ Z, the quantity

I[j, k] = min{0 ≤ i ≤ n | δEdit(x[1..i], y[1..j])− cdel-x(i− j) = k}.

Proof. Let R[j, k] := min{0 ≤ i ≤ n | δEdit(x[1..i], y[1..j])− cdel-x(i− j) = k} be the right
hand side of the statement.

The statement is true for j = 0, since for the empty string ε, we have δEdit(x[1..i], ε) =
cdel-x · i, so that R[0, k] = 0 for k = 0, and ∞ otherwise, which is exactly how we
initialize I[0, k].

We show that R[j, k] = ∞ for k < 0 or k > M , which is also implicitly assumed
for I[j, k] in Algorithm 1. Note that for i ≥ j we have to delete at least i − j sym-
bols in x[1..i] when traversing it with y[1..j], which implies δEdit(x[1..i], y[1..j]) ≥
cdel-x(i − j). Since additionally for i < j the term −cdel-x(i − j) is positive, we
have δEdit(x[1..i], y[1..j]) − cdel-x(i − j) ≥ 0 for all i, j. Thus, for no k < 0, we have
δEdit(x[1..i], y[1..j]) − cdel-x(i − j) = k, implying R[j, k] = ∞ in this case. Moreover,
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δEdit(x[1..i], y[1..j]) ≤ cdel-x ·i+cdel-y ·j, which implies δEdit(x[1..i], y[1..j])−cdel-x(i−j) ≤
(cdel-y + cdel-x)j ≤M . Thus, we also have R[j, k] =∞ for k > M .

It remains to show the statement for j > 1 and 0 ≤ k ≤ M . Inductively, we can
assume that the statement holds for j − 1. We show that R[j, k] satisfies the same
recursive equation as I[j, k] in Algorithm 1. Let i := R[j, k] and consider an optimal
traversal T of (x[1..i], y[1..j]). We obtain a traversal T ′ by removing the last operation
in T .

If the last operation in T is a deletion in x, then T ′ is an optimal traversal of
(x[1..i− 1], y[1..j]) with cost δEdit(x[1..i− 1], y[1..j]) = δEdit(x[1..i], y[1..j])− cdel-x. Thus,
we can decrease i to i − 1 while keeping k = δEdit(x[1..i], y[1..j]) − cdel-x(i − j) =
δEdit(x[1..i− 1], y[1..j])− cdel-x(i− 1− j). This contradicts minimality of i = R[j, k], so
the last operation in T cannot be a deletion in x.

If the last operation in T is a deletion in y, then T ′ is an optimal traversal of
(x[1..i], y[1..j− 1]) with cost δEdit(x[1..i], y[1..j− 1]) = δEdit(x[1..i], y[1..j])− cdel-y. Thus,
we have

R[j, k]

= min{0 ≤ i ≤ n | δEdit(x[1..i], y[1..j])− cdel-x(i− j) = k}
= min{0 ≤ i ≤ n | δEdit(x[1..i], y[1..j − 1])− cdel-x(i− (j − 1)) = k − cdel-y − cdel-x}
= R[j − 1, k − cdel-x − cdel-y].

If the last operation in T is a matching of x[i] and y[j], then T ′ is an optimal traversal of
(x[1..i−1], y[1..j−1]) with cost δEdit(x[1..i−1], y[1..j−1]) = δEdit(x[1..i], y[1..j])−cmatch.
This implies δEdit(x[1..i−1], y[1..j−1])−cdel-x((i−1)− (j−1)) = k−cmatch, so that i−1
is a candidate for R[j−1, k−cmatch]. Let i′ := R[j−1, k−cmatch] and note that i′ ≤ i−1.
As x[i] = y[j], we obtain i ≥ Nextx=y[j](i

′) =: i∗. In the following we show i = i∗. By

definition of i′ we have δEdit(x[1..i′], y[1..j − 1])− cdel-x(i′ − j + 1) = k − cmatch. Hence,
δEdit(x[1..i∗], y[1..j]) ≤ cmatch+cdel-x(i∗−i′−1)+δEdit(x[1..i′], y[1..j−1]) = k+cdel-x(i∗−j).
We even have equality, since otherwise δEdit(x[1..i], y[1..j]) ≤ δEdit(x[1..i∗], y[1..j]) +
cdel-x(i−i∗) < k+cdel-x(i−j), contradicting the definition of i. Thus, i∗ is a candidate for
R[j, k], implying that we also have i ≤ i∗. Hence, we have R[j, k] = i∗ = Nextx=y[j](i

′) =

Nextx=y[j](R[j − 1, k − cmatch]).

We argue analogously if the last operation in T is a substitution of x[i] and y[j]. This
yields

R[j, k] = min{R[j − 1, k − cdel-x − cdel-y],

Nextx=y[j](R[j − 1, k − cmatch]),

Nextx6=y[j](R[j − 1, k − csubst])}.

Hence, R[j, k] satisfies the same recursion as I[j, k], and we proved R[j, k] = I[j, k] for
all j, k.

We can finally prove correctness of Algorithm 1, thus proving Theorem 6.1.1.

Lemma 6.1.3. Algorithm 1 correctly computes δEdit(x, y).

Proof. Among all optimal traversals of (x, y), pick a traversal T that ends with the
maximal number d of deletions in x, and set i := n− d. Observe that i is minimal with
δEdit(x[1..i], y[1..m]) + cdel-x(n− i) = δEdit(x, y), which is equivalent to

δEdit(x[1..i], y[1..m])− cdel-x(i−m) = δEdit(x, y)− cdel-x(n−m) =: k.
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Thus, i = I[m, k] < ∞, which implies that the return value of Algorithm 1 is at most
cdel-x(n−m) + k = δEdit(x, y).

Moreover, for any k with I[m, k] <∞ there is a 0 ≤ i ≤ n with δEdit(x[1..i], y[1..m])−
cdel-x(i − m) = k. By appending n − i deletions in x to any optimal traversal of
(x[1..i], y[1..m]), we obtain δEdit(x, y) ≤ δEdit(x[1..i], y[1..m])+cdel-x(n−i) = k+cdel-x(n−
m). Hence, the return value of Algorithm 1 is also at least δEdit(x, y).

6.2 Improved LCS Algorithm for Alphabet Size 2

In this section, we prove Theorem 5.2.4, i.e., we consider LCS, assume that Σ = {0, 1} and
provide an algorithm running in time O(n+ δM/n) (recall that M = #{(i, j) | xi = yj}
and δ = m−L, see Section 5.1). More precisely, for any input x and y, by #0(x)+#1(x) =
n we have max{#0(x),#1(x)} ≥ n/2, so without loss of generality assume #1(x) ≥ n/2
(otherwise exchange 0 and 1). Since M = #0(x) ·#0(y) + #1(x) ·#1(y), it follows that
#1(y) ≤ 2M/n. Hence, it suffices to design an algorithm running in time O(n+δ ·#1(y)).

Theorem 6.2.1. For Σ = {0, 1}, LCS admits an O(n+ δ ·#1(y))-time algorithm.

We preprocess x in time O(n) to support the following queries (which are a slight
generalization of the queries used in Section 6.1). For σ ∈ {0, 1}, 0 ≤ i ≤ n, and t ≥ 1,
Nextt=σ(i) returns the position of the t-th occurrence of symbol σ after position i in x,
i.e., Nextt=σ(i) = i′ if and only if x[i′] = σ and #σ(x[i + 1..i′]) = t (if such a number
i′ does not exist then Nextt=σ(i) := ∞). For convenience, we let Next0

=σ(i) := i. For
t = 1, we also write Next1

=σ(i) = Next=σ(i). It is easy to implement Nextt=σ in time
O(1) using rank/select data structures on the 0’s and 1’s in x, which can be built in
time O(n) [Jac89; Pat08]. The symbol succeeding i is Next(i) := i+ 1 if i+ 1 ≤ n, or ∞
otherwise, which can be computed in time O(1).

Let λ = #1(y) and 1 ≤ j1 < . . . < jλ ≤ m be the positions of all 1’s in y, and for
convenience set j0 := 0. We can assume that the last symbol in each of x and y is a 1, in
particular jλ = m, because appending symbol 1 to both x and y increases the LCS by
exactly 1 (by Lemma 5.5.1). We write z` for the number of 0’s between j`−1 and j` in y,
i.e., y = 0z110z21 . . . 10zλ1 with z` ≥ 0.

Consider the dynamic programming table T that contains for all 0 ≤ ` ≤ λ and k ≥ 0
(it remains to fix an upper bound on k) the value

T [`, k] = min{0 ≤ i ≤ n | L(x[1..i], y[1..j`]) = j` − k}, (6.1)

where we set min ∅ = ∞. Observe that from T we can read off the LCS length as
L(x, y) = m−min{k | T [λ, k] <∞}. In particular, we may initialize δ̃ := 1, and compute
the table T for 0 ≤ ` ≤ λ and 0 ≤ k ≤ δ̃. If there is no 0 ≤ k ≤ δ̃ with T [λ, k] <∞, then
we double δ̃ and repeat. This exponential search ends once we find a value δ̃ ∈ [δ, 2δ).

Next we show how to recursively compute T [`, k]. For ` = 0, we clearly have T [0, 0] = 0
and T [0, k] =∞ for any k > 0. For ` > 0, the following dynamic programming recurrence
computes T [`, k], as shown in Lemma 6.2.2 below.

T [`, k] = min
{

min{Next(Nextz`−k+k′

=0 (T [`− 1, k′])) | max{0, k − z`} ≤ k′ < k},
Next=1(Nextz`=0(T [`− 1, k])), (6.2)

T [`− 1, k − z` − 1]
}
.

Note that the third line only applies if k − z` − 1 ≥ 0, as T [`′, k′] =∞ for k′ < 0.
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Let us discuss how to efficiently implement the above algorithm, assuming we already
have computed the values T [` − 1, k], 0 ≤ k ≤ δ̃. Clearly, we can evaluate the second
and third line in constant time, using the Next data structures that we built in the
preprocessing. For the first line, observe that Nextt=0(i) is the position of the (t +

#0(x[1..i]))-th 0 in x. Hence, Nextz`−k+k′

=0 (T [`− 1, k′]) is the position of the (z`−k+k′+
#0(x[1..T [`−1, k′]]))-th 0 in x, so it is minimized if k′+#0(x[1..T [`−1, k′]]) is minimized2.
Thus, it suffices to compute a range minimum query over the interval [max{0, k − z`}, k)
on the array A`[0..δ̃] with A`[k

′] := k′ + #0(x[1..T [` − 1, k′]]). From the answer A`[r]
to this range minimum query we can infer T [`, k] in time O(1). Specifically, the first
line evaluates to the next symbol after the position of the (z` − k +A[r])-th 0 in x, i.e.,

Next(Next
z`−k+A`[r]
=0 (0)).

Note that range minimum queries can be performed in time O(1), after a preprocessing
of O(|A`|) = O(δ̃) [Sad07; BDR12], where |A`| is the size of array A`. Since we can reuse
the array A` for all 0 ≤ k ≤ δ̃, we spend (amortized) preprocessing time O(1) per entry
of T [`, ·]. In total, this yields time O(δ̃ · λ) = O(δ̃ ·#1(y)) to build the table T . The
exponential search for δ yields time O(δ ·#1(y)). Adding the preprocessing time O(n),
we obtain an O(n+ δ ·#1(y)) algorithm. It remains to prove correctness of the recursive
formula (6.2).

Lemma 6.2.2. Table (6.1) follows the recursive formula (6.2).

Proof. For any 1 ≤ ` ≤ λ and 0 ≤ k ≤ δ̃ we show that the value T [`, k] of (6.1) follows
the recursive formula (6.2). Let i = T [`, k] and let i′ be minimal with

L(x[1..i], y[1..j`]) = L(x[1..i′], y[1..j`−1]) + L(x[i′ + 1..i], y[j`−1 + 1..j`]). (6.3)

Let k′ = j`−1 − L(x[1..i′], y[1..j`−1]). Then we claim i′ = T [` − 1, k′]. Indeed, since i′

satisfies the condition L(x[1..i′], y[1..j`−1]) = j`−1 − k′ of (6.1) we have i′ ≥ T [`− 1, k′].
Moreover, if we had i′ > T [` − 1, k′] then we could replace i′ by T [` − 1, k′], as both
values satisfy the condition L(x[1..i′], y[1..j`−1]) = j`−1 − k′, contradicting minimality
of i′.

Let r = L(x[i′+ 1..i], y[j`−1 + 1..j`]). By (6.3), we have j`− k = j`−1− k′+ r, and we
obtain r = 1 + z` − k + k′ using z` = j` − j`−1 − 1. Note that i ≥ i′ is the smallest value
attaining L(x[i′+ 1..i], y[j`−1 + 1..j`]) = r. Indeed, if there was a smaller value i′ ≤ i∗ < i
with L(x[i′ + 1..i∗], y[j`−1 + 1..j`]) = r, then L(x[1..i∗], y[1..j`]) ≥ L(x[1..i′], y[1..j`−1]) +
L(x[i′ + 1..i∗], y[j`−1 + 1..j`]) = L(x[1..i′], y[1..j`−1]) + L(x[i′ + 1..i], y[j`−1 + 1..j`]) =
L(x[1..i], y[1..j`]) = j` − k. Then there also exists 0 ≤ i′′ ≤ i∗ < i with equality, i.e.,
L(x[1..i′′], y[1..j`]) = j`−k. Indeed, if L(x[1..i∗], y[1..j`]) > j`−k then we can repeatedly
reduce i∗ by 1, this reduces L(x[1..i∗], y[1..j`]) by at most 1, and we eventually reach
j` − k since L(x[1..t], y[1..j`]) = 0 for t = 0. However, existence of i′′ < i contradicts
minimality of i = T [`, k].

Now we show that i is one of the terms on the right hand side of (6.2), considering
three cases.

Case 1: If 1 ≤ r < z` + 1, then the LCS of x[i′ + 1..i] and y[j`−1 + 1..j`] = 0z`1
consists of r − 1 0’s and one additional symbol which is 0 or 1. Thus, the smallest i
attaining r is Next(Nextr−1

=0 (i′)), accounting for r − 1 0’s and one additional symbol.
Since r − 1 = z` − k + k′ and i′ = T [`− 1, k′], we have shown that i = T [`, k] is of the

form Next(Nextz`−k+k′

=0 (T [` − 1, k′])) for some k′. Observe that 1 ≤ r < z` + 1 implies
k − z` ≤ k′ < k. We clearly also have k′ ≥ 0. This corresponds to the first line of (6.2).

2Here we interpret #0(x[1..∞]) as ∞.
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Case 2: If r = z` + 1 then x[i′ + 1..i] contains y[j`−1 + 1..j`] = 0z`1. Thus, i =
Next=1(Nextz`=0(i′)), accounting for z` 0’s followed by a 1. In this case, we have k′ =
k + r − z` − 1 = k so that i = T [`, k] is of the form Next=1(Nextz`=0(T [`− 1, k])). This
corresponds to the second line of (6.2).

Case 3: If r = 0 then i = i′, since the smallest value i ≥ i′ attaining L(x[i′ +
1..i], y[j`−1 + 1..j`]) = 0 is i′. In this case, we have k′ = k − z` − 1, and we obtain
T [`, k] = i = i′ = T [`− 1, k′] = T [`− 1, k − z` − 1]. This only applies if k − z` − 1 ≥ 0.
This corresponds to the third line of (6.2).

This case distinction shows that i is one of the terms on the right hand side of
(6.2). Also observe that we have i ≤ Next=1(Nextz`=0(T [` − 1, k])), since the number
Next=1(Nextz`=0(T [` − 1, k])) is part of the set of which i = T [`, k] is the minimum.

Similarly, we have i ≤ Next(Nextz`−k+k′

=0 (T [`− 1, k′])) for any max{0, k − z`} ≤ k′ < k,
and i ≤ T [`− 1, k − z` − 1] if k − z` − 1 ≥ 0. This proves that i is the minimum over all
expressions on the right hand side of (6.2), proving that i = T [`, k] follows the recursive
formula (6.2).



Chapter 7

Palindromic and Tandem
Subsequences

In this chapter, we prove quadratic-time hardness of Longest Palindromic Subsequence
(LPS) and Longest Tandem Subsequence (LTS) by presenting reductions from LCS.
This proves Theorem 2.1.5. We will use the following simple facts about LCS (proven
in Section 3.5), where we again regard LCS as a minimization problem by writing
δLCS(x, y) := |x|+ |y| − 2L(x, y); recall that L(x, y) denotes the length of any LCS of x
and y. In the whole chapter, we let Σ be any alphabet with 0, 1 ∈ Σ.

Fact 3.5.3. Let z, w be arbitrary strings and `, k ∈ N0. Then we have

(i) δLCS(1kz, 1kw) = δLCS(z, w),

(ii) δLCS(1kz, w) ≥ δLCS(z, w)− k, and

(iii) δLCS(0`z, 1kw) ≥ min{k, δLCS(z, 1kw) + `}.

We obtain symmetric statements by flipping all bits and by reversing all involved strings.

Note that in this chapter, we write x = (x[1], . . . , x[|x|]) = ©|x|i=1 x[i] for better
readability.

7.1 Longest Palindromic Subsequence

We show that computing the length of the longest palindromic subsequence is effectively
computationally equivalent to computing the length of the longest common subsequence
of two strings. For completeness, we provide the following well-known result which shows
that LPS can be reduced to LCS in linear time. Recall that for a string x, we denote its
reversed string by rev(x) and the length of its longest palindromic subsequence by P (x).

Fact 7.1.1 (Folklore). For any input x ∈ Σ∗, we have P (x) = L(x, rev(x)).

Proof. Let p be a palindromic subsequence of x. Then p = rev(p) is a common subse-
quence of x and rev(x), yielding L(x, rev(x)) ≥ P (x).

For the other direction, let c be any LCS of x and rev(x) of length `. It remains to show
that we can find a palindromic subsequence p of x with |p| ≥ ` (observe that c itself is not
necessarily a palindrome). Note that c gives rise to a sequence of pairs (a1, b1), . . . , (a`, b`)
such that a1 < · · · < a`, b1 > · · · > b`, and c = (x[a1], . . . , x[a`]) = (x[b1], . . . , x[b`]).
Define m := b `2c + 1. If am ≤ bm, then a1 < · · · < am ≤ bm < · · · < b1 and hence
(x[a1], . . . , x[am−1], x[am], x[bm−1], . . . , x[b1]) is a palindromic subsequence of x of length
2m− 1 = 2b `2c+ 1 ≥ `. Otherwise, i.e., if am > bm, then b` < · · · < bm < am < · · · < a`
gives rise to the palindromic subsequence (x[b`], . . . , x[bm], x[am], . . . , x[a`]) of x of length
2(`−m+ 1) = 2`− 2b `2c ≥ `.
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To prove our lower bound for computing a longest palindromic subsequence of a
string x, we present a simple reduction from LCS to LPS, and then appeal to our lower
bound for LCS, which is equivalent to Edit(1, 1, 0, 2), see Theorem 2.1.2.

Theorem 7.1.2. On input x, y ∈ Σ∗, we can compute, in time O(|x| + |y|), a string
z ∈ Σ∗ and κ ∈ N such that P (z) = 3κ+ 2L(x, y).

Proof. Let κ := 2(`x + `y + 1), where `x := |x|, `y := |y|. We define

z := x 0κ 1κ 0κ rev(y).

Clearly, z and κ can be computed in time O(`x + `y). Let s be a LCS of x and y. Then
s0κ1κ0κrev(s) is a palindromic subsequence of z, which proves P (z) ≥ 3κ+ 2L(x, y).

To show P (z) ≤ 3κ+2L(x, y), fix a LPS p of z and let ` be its length. We define m :=
b `2c and denote by p1 = (p[1], . . . , p[m]) the first “half” of p. Let z1 = (z[1], . . . , z[i]) be
the shortest prefix of z that contains p1 as a subsequence and let z2 := (z[i+1], . . . , z[|z|])
be the remainder of z. Then p1, which by definition equals (p[`], . . . , p[` −m + 1]), is
a subsequence of rev(z2). This shows that if ` is even, then ` ≤ 2L(z1, rev(z2)). If ` is
odd, we may without loss of generality assume that p[m+ 1] = z2[1]. Hence rev(p1) is a
subsequence of z′2 := (z2[2], . . . , z2[|z2|]), so that ` ≤ 2L(z1, rev(z′2)) + 1. It remains to
show that (i) L(z1, rev(z2)) ≤ 3

2κ+ L(x, y) and (ii) L(z1, rev(z′2)) ≤ 3
2κ+ L(x, y)− 1

2 .
Assume that |z1| ≤ `x + κ or |z2| ≤ (`y + 1) + κ, then by L(u, v) ≤ min{|u|, |v|} we

obtain that L(z1, rev(z′2)) ≤ L(z1, rev(z2)) ≤ max{`x, `y + 1}+ κ < 3
2κ+ L(x, y). Hence

without loss of generality, z1 = x0κ1a and z2 = 1a
′
0κrev(y) with a′ ≥ 1, where we assume

that a′ ≥ a since the other case is symmetric. Note that (i) and (ii) are equivalent
to δLCS(z1, rev(z2)) ≥ δLCS(x, y) and δLCS(z1, rev(z′2)) ≥ δLCS(x, y), respectively. We
compute

δLCS(z1, rev(z2)) = δLCS(x 0κ 1a, y 0κ 1a
′
)

= δLCS(x 0κ, y 0κ 1a
′−a) (by Fact 3.5.3(i))

≥ min{κ, δLCS(x 0κ, y 0κ)} (by Fact 3.5.3(iii))

= min{κ, δLCS(x, y)} = δLCS(x, y). (by Fact 3.5.3(i)).

By replacing a′ by a′ − 1 ≥ 0, we obtain δLCS(z1, rev(z′2)) ≥ δLCS(x, y) by the same
calculation. This yields P (z) = ` ≤ 3κ+ 2L(x, y), as desired.

7.2 Longest Tandem Subsequence

As for LPS, our lower bound for LTS follows from a simple reduction from LCS and
appealing to our lower bound for LCS of Theorem 2.1.2. Recall that for a given string x,
T (x) denotes the length of its longest tandem subsequence.

Theorem 7.2.1. On input x, y ∈ Σ∗, we can compute, in time O(|x| + |y|), a string
z ∈ Σ∗ and κ ∈ N such that T (z) = 4κ+ 2L(x, y).

Proof. Let κ := `x + `y, where `x := |x| and `y := |y|. We define

z := 0κ x 1κ 0κ y 1κ.

Clearly, z can be computed in time O(`x + `y). Let s be a LCS of x and y. Then t := t′ t′

with t′ := 0κs1κ is a tandem subsequence of z. Hence, we have T (z) ≥ |t| = 4κ+2L(x, y).
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To show T (z) ≤ 4κ + 2L(x, y), fix a LTS t = t′ t′ of z. Let i be the smallest index
such that t′ is a subsequence of z1 := (z[1], . . . , z[i]) and let z2 := (z[i + 1], . . . , z[|z|]).
By choice of t, t′ is also a subsequence of z2, so that T (z) = 2|t′| ≤ 2L(z1, z2). Thus, it
remains to prove that 2L(z1, z2) ≤ 4κ+ 2L(x, y).

Assume that |z1| ≤ κ+ `x or |z2| ≤ κ+ `y. Then, using L(u, v) ≤ min{|u|, |v|}, we
conclude that 2L(z1, z2) ≤ 2κ+ 2(`x + `y) ≤ 4κ+ 2L(x, y).

Hence, without loss of generality, we have (i) z1 = 0κx1` and z2 = 1`
′
0κy1κ or

(ii) z1 = 0κx1κ0` and z2 = 0`
′
y1κ, for some `, `′ with ` + `′ = κ. We only consider

case (i), since case (ii) is symmetric. Note that 2L(z1, z2) ≤ 4κ+ 2L(x, y) is equivalent
to δLCS(z1, z2) ≥ δLCS(x, y). We obtain

δLCS(z1, z2) = δLCS(0κx1`, 1`
′
0κy1κ)

≥ min{κ, δLCS(0κx1`, 0κy1κ) + `′} (by Fact 3.5.3(iii))

= min{κ, δLCS(x1`, y1κ) + `′} (by Fact 3.5.3(i))

= min{κ, δLCS(x, y1κ−`) + `′} (by Fact 3.5.3(i))

≥ min{κ, δLCS(x, y)− (κ− `) + `′} (by Fact 3.5.3(ii))

= min{κ, δLCS(x, y)} = δLCS(x, y),

which proves the desired inequality 2L(z1, z2) ≤ 4κ+ 2L(x, y).





Chapter 8

Open Problems and Outlook

In this part, we proved conditional lower bounds for natural polynomial-time problems:
Edit Distance for general operation costs (including its special cases Longest Common
Subsequence and Levenshtein distance), Dynamic Time Warping, Longest Palindromic
Subsequence, and Longest Tandem Subsequence. Our results give strong evidence that
the known algorithms for these problems are optimal up to lower order factors, even
restricted to binary strings and one-dimensional curves, respectively. We hope that
the underlying framework will find application in hardness proofs for further similarity
measures, and that the studied problems serve as starting points for further reductions.

Surprisingly, using our framework to derive conditional lower bounds even yields
stronger hardness results than “mere SETH-hardness”: Recent work by Abboud et
al. [Abb+16a] shows that the alignment gadget captures even more powerful variants
of the satisfiability problem, namely a variant of satisfiability of branching programs.
Interestingly, in this vein, one can independently investigate what the most powerful class
of satisfiability variants is that is captured by the alignment gadget (strengthening the
hardness of all problems captured in the framework), and find further problems to apply
this framework to (broadening the scope of results). Furthermore, our alignment gadgets
for LCS and Edit Distance might find further applications even outside of the framework
(see, e.g., results improving conditional hardness of the RNA folding problem [Cha15],
which exploits our LCS alignment gadget over binary alphabets).

It remains an open question whether constant-factor approximations running in
strongly subquadratic time can be ruled out for the above problems assuming SETH.
Furthermore, most polynomial-time lower bounds show quadratic-time barriers, and
it is challenging to prove matching SETH-based lower bounds for problems with, say,
cubic or O(n3/2)-time algorithms (only few results are known in this direction, see, e.g.,
[ABVW15b; PW10]).

Turning to an even finer-grained perspective, we also presented a systematic multivari-
ate study of SETH-based lower bounds, focusing on LCS. Here, we regarded polynomial
restrictions of all 7 previously studied input parameters for LCS. Our tight conditional
lower bounds completely explain the lack of polynomial time improvements since the
early 1990s, except for a special regime on Σ = {0, 1}, for which we designed an improved
algorithm matching our lower bound. We conclude that to obtain polynomially faster
LCS algorithms, one has to either (1) refute the Strong Exponential Time Hypothesis or
(2) design new reasonable and algorithmically tractable input parameters.

These results showcase our paradigm of multivariate fine-grained complexity on a
classic problem with 7 parameters that display a complex set of relations. We believe that
this paradigm can be applied to further problems, yielding similar systematic insights
and helping to find algorithmic improvements for natural special cases.
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Chapter 9

Introduction to Part II

Classically, theoretical computer scientists judge an algorithm’s performance by analyzing
its behavior on worst-case inputs. This provides an immensely useful paradigm in general,
as such a worst-case analysis is well understood and effectively provides the foundation for
complexity theory. Still, it suffers from certain drawbacks when it comes to transferring
theoretical results to the empirical world of practical applications: For instance, the
famous Simplex method for linear programming is known to require exponential time in
the worst case1, yet it performs remarkably well in practice. Thus, worst-case analysis
appears to give a too pessimistic view on the practical performance of the Simplex method.
For other problems than linear programming, we face long-standing time barriers that
could not yet be beaten by any algorithm on all instances, however, practical instances
might have significantly simpler complexity. In both cases, restricting the input to a
natural model of “typical”, realistic instances might provide insights that more closely
reflect an algorithm’s performance or a problem’s complexity in practice.

In this thesis, we consider two such models: the general paradigm of smoothed
analysis (applicable to many problems, especially Euclidean optimization problems) and
the rather ad-hoc notion of c-packed curves (which are particularly useful for curve
similarity measures). These approaches do not only constitute models of realistic inputs,
but also yield insights into the structure and properties of hard instances for a problem.
In the two main chapters of this part, we use these realistic input assumptions to analyze
the approximability of two well-known problems: the Euclidean Traveling Salesperson
Problem (TSP) and the Fréchet distance.

9.1 Smoothed Analysis of the 2-Opt Heuristic

The Traveling Salesperson Problem (TSP) is one of the best-studied combinatorial
optimization problems. In Chapter 10, we are concerned with the following variant,
called Euclidean TSP: given points X ⊆ [0, 1]d, find the Hamiltonian cycle (i.e., a cycle
visiting all points in X, also called a tour) of minimal length (i.e., it minimizes the sum of
the Euclidean distances of neighboring points on the tour). Even this restricted variant
is NP-hard for d ≥ 2 [Pap77].

While Euclidean TSP famously admits a polynomial-time approximation scheme
(PTAS) [Aro98; Mit99], heuristics that are simpler and easier to implement are often used
in practice. A very simple and popular heuristic for finding near-optimal tours quickly is
2-Opt: starting from an initial tour, we iteratively replace two edges by two other edges to
obtain a shorter tour until we have found a local optimum. Experiments indicate that this
heuristic converges quickly and produces solutions that are within a few percent of the
optimal solution [JM97; JM02]. In contrast to its success on practical instances, however,
2-Opt performs poorly in the worst case: the worst-case running-time is exponential

1This holds for most, if not all known pivoting rules.
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even for d = 2 [ERV14] and its worst-case approximation ratio of O(log n) has an almost
matching lower bound of Ω(log n/ log log n) for Euclidean instances [CKT99].

Smoothed Analysis. In order to explain the performance of algorithms whose worst-
case performance guarantee does not reflect the empirical performance (in particular, to
explain the performance of the Simplex method, as mentioned above), the paradigm of
smoothed analysis has been introduced by Spielman and Teng [ST04]. It provides a hybrid
of worst-case analysis (which is often too pessimistic) and average-case analysis (which
is often dominated by completely random instances that have special properties not
shared by typical instances). In smoothed analysis, an adversary specifies a (worst-case)
instance, which is then slightly randomly perturbed. The smoothed performance is the
expected performance, where the expectation is taken over the random perturbation,
on the worst-case choice of the adversary. The motivating assumption of smoothed
analysis is that practical instances are often subjected to a small amount of random noise,
e.g., resulting from measurement errors or numerical imprecision. Smoothed analysis
often allows more realistic conclusions about the performance of an algorithm than mere
worst-case or average-case analysis.

Besides as a justification for the Simplex method, smoothed analysis has been applied
successfully to explain the running time of the 2-Opt heuristic [ERV14; MV13] as well as
other local search algorithms [AMR11; MR13; AV09]. For an overview of this paradigm,
we refer to two surveys on smoothed analysis [MR11; ST09].

Much less than for the running time is known about the smoothed approximation
performance of algorithms. Karger and Onak have shown that multi-dimensional bin
packing can be approximated arbitrarily well for smoothed instances [KO07] and there are
frameworks to approximate Euclidean optimization problems such as TSP for smoothed
instances [BMR13; CK15]. However, these approaches mostly consider algorithms tailored
to solving smoothed instances. With respect to well-established algorithms, we are only
aware of analyses of the jump and lex-jump heuristics for scheduling [Bru+14; Ets15]
and an upper bound of O(φ1/d) for the smoothed approximation ratio of 2-Opt in the
so-called one-step model [ERV14]. Here, φ is an upper bound on the density functions
according to which the points are drawn. Translated to Gaussian perturbation, we would
obtain an upper bound of O(1/σ) if we truncate the Gaussian distribution such that all
points lie in a hypercube of constant side length.

Our Results. In order to explain the practical approximation performance of 2-Opt,
we provide an improved smoothed analysis of its approximation ratio in Chapter 10. More
precisely, we provide bounds on the quality of the worst local optimum, when the n data
points from [0, 1]d are perturbed by Gaussian distributions of standard deviation σ. In
Section 10.3, we prove an upper bound of O(log(1/σ)) that improves significantly upon
the direct translation of the bound of Englert et al. [ERV14] to Gaussian perturbations
(see Section 10.2 for how to translate the bound to Gaussian perturbations). It smoothly
interpolates between the average-case constant approximation ratio and the worst-case
bound of O(log n).

To complement our upper bound, we show that the lower bound by Chandra et
al. [CKT99] remains true for σ = O(1/

√
n) in Section 10.4.

Technical Contributions. To obtain our improved upper bound for the smoothed
approximation ratio, we take into account the unperturbed positions of the points, which
we also call their origins. Although this information is not available to the algorithm,
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it can be exploited in the analysis. The smoothed analyses of approximation ratios so
far [ERV14; Bru+14; CK15; BMR13; Ets15; KO07] essentially ignored this information.
While simplifying the analysis, being oblivious to the unperturbed positions seems to be
too pessimistic. In fact, we observe that the bound of Englert et al. [ERV14] cannot be
improved beyond O(1/σ) if the unperturbed positions of the points are ignored, i.e., if
we separately bound the values of the smoothed local and global optima from above and
below, respectively, on all instances. Intuitively, the reason for this limitation is that the
lower bound for the global optimum is obtained if all points have the same origin, which
corresponds to an average-case rather than a smoothed analysis. On the other hand, the
upper bound for the local optimum has to hold for all choices of the unperturbed points,
most of which yield higher costs for the global optimum than the average-case analysis.

Our approach exploits the structure of the unperturbed instance by an analysis that
(1) argues about the global structure of the longest 2-optimal tour using worst-case
bounds and (2) carefully reduces local structures of the longest 2-optimal tour to an
almost-average case. The first task uses arguments along the lines of the worst-case
bound of Chandra et al. [CKT99]. For the second task, we observe that by conditioning
a set of points to be perturbed into a small part of the input space, we obtain a random
local instance. If we can choose local instances such that the maximum density required
to express the resulting (conditional) distributions of the points is small, we can apply
the results of Englert et al. [ERV14] to bound a local approximation ratio. Particularly
for this task, we exploit information about the origins of the points. Finally, to obtain
a global bound after analyzing local instances, we use, among other ideas, tools from
average-case analysis such as a certain superadditivity of the length of the optimal tour.

9.2 Realistic Input Curves for the Fréchet Distance

Analyzing the similarity of curves is a well-studied topic in computation geometry, with
ample applications in shape matching, speech recognition, signature verification and
sequence analysis. A popular measure for this task is the Fréchet distance, which has
two classic variants. Roughly speaking, the continuous Fréchet distance of two curves π
and σ is the minimal length of a leash required to connect a dog to its owner as they
walk without backtracking along π and σ, respectively. In the discrete Fréchet distance
we replace the dog and its owner by two frogs – in each time step, each frog can jump to
the next vertex along its curve or stay where it is.

In a seminal paper in 1991, Alt and Godau introduced the continuous Fréchet distance
to computational geometry [AG95; God91]. For polygonal curves π and σ with n and m
vertices2, respectively, they presented an O(nm log nm) algorithm. The discrete Fréchet
distance was defined by Eiter and Mannila [EM94], who presented an O(nm) algorithm.

Since then, Fréchet distance has become a rich field of research: The literature
contains generalizations to surfaces (see, e.g., [AB10]), approximation algorithms for
realistic input curves ([Aro+06; AKW04; DHPW12]), the geodesic and homotopic Fréchet
distance (see, e.g., [Cha+10; CW10]), and many more variants (see, e.g., [BBW09; DHP13;
Mah+11; Ind02]). As a natural measure for curve similarity [Alt09], the Fréchet distance
has found applications in various areas such as signature verification (see, e.g., [MP99]),
map-matching tracking data (see, e.g., [Bra+05]), and moving objects analysis (see,
e.g., [Buc+11]).

Analogous to the situation for Dynamic Time Warping, Edit distance and similar
problems discussed in Part I, apart from log-factor improvements [Aga+14; Buc+14] the

2We always assume that m ≤ n.
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quadratic complexity of the classic algorithms for the continuous and discrete Fréchet
distance are still state-of-the-art. In fact, Bringmann [Bri14] recently showed a conditional
lower bound: Assuming the Strong Exponential Time Hypothesis3 (SETH), there is no
algorithm for the (continuous or discrete) Fréchet distance running in time O((nm)1−δ)
for any δ > 0, hence apart from lower order factors of the form no(1), the classic algorithms
are optimal under the assumption SETH.

Realistic Inputs. Already before the conditional lower bound appeared, attempts
to obtain faster algorithms for realistic inputs have been made by considering various
restricted classes of curves, such as backbone curves [Aro+06], κ-bounded and κ-straight
curves [AKW04], and φ-low density curves [DHPW12]. The most popular model of
realistic inputs are c-packed curves, introduced by Driemel et al. [DHPW12]. A curve π
is c-packed if for any point z ∈ Rd and any radius r > 0, the total length of π inside
the ball B(z, r) is at most cr, where B(z, r) is the ball of radius r around z. Intuitively,
requiring a curve to be c-packed (for small c) prohibits it from displaying particularly
complex, unrealistic behaviour on small parts of the input space. This notion has
found applications for several generalizations of the Fréchet distance, such as map
matching [Che+11], the mean curve problem [HPR11], a variant of the Fréchet distance
allowing shortcuts [DHP13], and Fréchet matching queries in trees [GS13].

Together with introducing c-packed curves as models of realistic inputs, Driemel et
al. presented a (1 + ε)-approximation for the continuous Fréchet distance running in
time O(cn/ε+ cn log n), which is applicable for curves in any Rd with constant d ≥ 2.
Assuming SETH, the following lower bounds have been shown for c-packed curves: (1)
For sufficiently small constant ε > 0 ,there is no (1 + ε)-approximation running in time
O((cn)1−δ) for any δ > 0 [Bri14]. Thus, for constant ε the algorithm by Driemel et al. is
optimal apart from lower order terms of the form no(1). (2) In any dimension d ≥ 5 and
for varying ε > 0, there is no (1 + ε)-approximation running in time O((cn/

√
ε)1−δ) for

any δ > 0 [Bri14].

Our Results. In Chapter 11, we are interested in better-than-constant approximation
algorithms for the Fréchet distance on realistic input curves. Specifically, for any constant
0 < β < 1, we set ε = n−β and ask what running time is necessary to compute a
(1 + ε)-approximation of the Fréchet distance on c-packed curves. Note that in this

regime, the known upper and lower bounds differ by a factor
√
ε
−1−o(1)

= nβ/2+o(1). We
improve upon the algorithm by Driemel et al. [DHPW12] by presenting an algorithm
that matches the conditional lower bound of [Bri14].

Theorem 9.2.1. For any 0 < ε ≤ 1, we can compute a (1 + ε)-approximation of the
continuous and discrete Fréchet distance on c-packed curves in time Õ(cn/

√
ε).

Note that here we use the Õ-notation to hide polylogarithmic factors in n and 1/ε.
Specifically, our running time is O( cn√

ε
log(1/ε) + cn log n) for the discrete variant and

O( cn√
ε

log2(1/ε) + cn log n) for the continuous variant. This improves upon the algorithm

by Driemel et al. for any ε� 1/ log n; in particular for ε = Θ(1/n) and c = Θ(1) we are
faster by a factor of nearly

√
n. While our algorithm might be too complex to speed up

the algorithm by Driemel et al. in practical situations, it clarifies the optimal asymptotic
dependence on c,n, and ε – apart from lower order factors no(1), in dimension d ≥ 5, and
unless SETH fails [Bri14]. Specifically, for any constants α, β ≥ 0, even after restricting

3For a definition, see Section 3.3.
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c = nα+o(1) and ε = n−β+o(1), any algorithm takes time Ω(min{cn/
√
ε, n2}1−o(1)) in

dimension d ≥ 5 [Bri14], i.e., any algorithm is at most a factor of no(1) faster than the
better of our proposed algorithm (Õ(cn/

√
ε)) and the exact algorithm (Õ(n2)).

Technical Contributions. Our algorithmic approach is inspired by the conditional
lower bound of Bringmann [Bri14]. Inspecting why the construction could not be improved
to obtain a matching lower bound, we identified a potentially tractable special case:
decide, for curves contained in disjoint balls of radius O(

√
ε), whether their Fréchet

distance is at most 1 or at least 1 + ε. Indeed, one can reduce this problem to computing
the discrete Fréchet distance ddF(π, σ) of one-dimensional, separated curves π and σ
(see Chapter 11 for a precise definition). Fortunately, this case admits an exact greedy
algorithm running in near-linear time. To exploit this special case in the algorithmic
framework of Driemel et al. [DHPW12], however, we have to provide a highly non-trivial
extension to solve a more general problem: given one-dimensional, separated curves
π = (π1, . . . , πn) and σ = (σ1, . . . , σm), a value δ, and a set of entries on π, specified
by 1 ≤ i1 < i2 < · · · < i` ≤ n, determine all feasible exits, i.e., (1) all 1 ≤ j ≤ n
such that some subcurve π′ := (πik , . . . , πj) (for some 1 ≤ k ≤ ` with ik ≤ j) satisfies
ddF(π′, σ) ≤ δ, and (2) all 1 ≤ j ≤ m such that some subcurve π′ := (πik , . . . , πn) (for
some 1 ≤ k ≤ `) satisfies ddF(π′, (σ1, . . . , σj)) ≤ δ. Solving this problem in near-linear
time is our main technical contribution. We provide more intuition for this problem in
the beginning of Chapter 11.

9.3 Notes

The contents of Chapter 10 are based on the extended abstract that has been presented at
ICALP’15 [KM15], co-authored by Bodo Manthey. The contents of Chapter 11 result from
joint work with Karl Bringmann that has previously been presented at ISAAC’15 [BK15a]
(with an extended version accessible online at [BK14]) and are included in similar form
in Bringmann’s PhD thesis [Bri15]. A journal version is currently under submission.
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Chapter 10

Smoothed Analysis of the 2-Opt
Heuristic

In this chapter, we analyze the approximation performance of the 2-Opt heuristic for
Euclidean TSP (for an introduction, see Chapter 9). We start with introducing our
notation, basic definitions and the formal description of our model of smoothed analysis
in Section 10.1. We proceed to give general upper and lower bounds for the length of
2-optimal tours (i.e., locally optimal tours for the 2-Opt heuristic) in Section 10.2. Our
upper bound of O(log(1/σ)) is proved in Section 10.3, which is complemented by an
almost matching lower bound in Section 10.4.

10.1 Preliminaries

Throughout this chapter, we consider input in the Euclidean space [0, 1]d and assume the
dimension d ≥ 2 to be a fixed constant. Given a sequence of points X = (X1, . . . , Xn)
in Rd, we call a collection T ⊆ [n] × [n] of edges a tour, if T is connected and every
i ∈ [n] = {1, . . . , n} has in- and outdegree exactly one in T . (Note that we consider
directed tours, which is useful in the analysis, but our distances are always symmetric.)
Given any collection of edges S, its length is denoted by L(S) =

∑
(u,v)∈S d(u, v), where

d(u, v) denotes the Euclidean distance ‖Xu −Xv‖ between points Xu and Xv. We call a
tour T 2-optimal, if d(u, v)+d(w, z) ≤ d(u,w)+d(v, z) for all edge pairs (u, v), (w, z) ∈ T .
Equivalently, it is not possible to obtain a shorter tour by replacing (u, v) and (w, z) in
a 2-optimal tour T by two new edges. The 2-Opt heuristic replaces a pair of edges (u, v)
and (w, z) by (u,w) and (v, z) if this decreases the tour length while this is possible.
Thus, it terminates with a 2-optimal tour.

We call a collection T ⊆ [n]2 a partial 2-optimal tour if T is a subset of a tour and
d(u, v) + d(w, z) ≤ d(u,w) + d(v, z) holds for all edges (u, v), (w, z) ∈ T . Our main
interests are the traveling salesperson functional TSP(X) := mintour T L(T ) and the
functional 2OPT(X) := max2-optimal tour T L(T ) mapping the point set X to the length
of the longest 2-optimal tour through X.

We note that the results in Section 10.2 hold for metrics induced by arbitrary norms
in Rd (Lemma 10.2.1 and 10.2.2) or typical `p norms (Lemma 10.2.3 and 10.2.4), not
only for the Euclidean metric. We conjecture that also the upper bound in Section 10.3
holds for more general metrics, while the lower bound in Section 10.4 is probably specific
for the Euclidean metric. Still, we think that the construction can be adapted to work
for most natural metrics.

Perturbation models. In the Gaussian perturbation model (also called two-step
model) for smoothed analysis, an adversary specifies points x1, . . . , xn in [0, 1]d that serve
as unperturbed origins. Each such point xi is perturbed independently by adding a
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normally distributed random variable of mean 0 and standard deviation σ independently
to each coordinate. Equivalently, we draw n random noise vectors Zi ∼ N (0, σ2),
where by abuse of notation N (0, σ2) refers to the multivariate normal distribution with
covariance matrix diag(σ2), to obtain the perturbed input X1 = x1+Z1, . . . , Xn = xn+Zn.
For compactness, we denote the set of unperturbed points by X = {x1, . . . , xn} and the
set of perturbed points by X = {X1, . . . , Xn}. We write X ← pertσ(X) to make explicit
from which point set X the points in X are obtained.

Note that we may assume σ ≤ 1 without loss of generality. Indeed, if σ > 1, we can
rescale the instance to be contained in [0, 1/σ]d and perturb the points by Gaussians
with standard deviation 1 instead, which gives an equivalent instance. Thus, every upper
bound for σ = 1 carries over to larger values of σ.

The φ-bounded perturbation model (also called one-step model) lets the adversary
directly specify (not necessarily identical) distributions by choosing probability density
functions f1, . . . , fn : [0, 1]d → [0, φ]. The perturbed input is then generated by indepen-
dently sampling X1 ∼ f1, . . . , Xn ∼ fn. Note that the resulting input is always contained
in [0, 1]d and with higher φ, the adversary can concentrate points to smaller regions of
the input space. Roughly speaking, when translating Gaussian perturbations to the
one-step model, φ is proportional to σ−d for fixed d.

Technical Tools. The following standard lemma provides a convenient way to bound
the deviation of a perturbed point from its mean in the two-step model.

Lemma 10.1.1 (Chi-square bound [ST04, Cor. 2.19]). Let x be a Gaussian random
vector in Rd of standard deviation σ centered at the origin. Then, for t ≥ 3, we have
Pr
[
‖x‖ ≥ σ3

√
d ln t

]
≤ t−2.9d.

To give large-deviation bounds on sums of independent variables with bounded
support, we will make use of a standard Chernoff-Hoeffding bound.

Lemma 10.1.2 (Chernoff-Hoeffding Bound [DP09, Exercise 1.1]). Let X :=
∑n

i=1Xi,
where Xi, i = 1, . . . , n are independently distributed in [0, 1], and µL ≤ E[X] ≤ µH . Then,
for 0 ≤ ε ≤ 1, we have

Pr
[
X > (1 + ε) · µH

]
≤ exp(−(ε2/3) · µH),

Pr
[
X < (1− ε) · µL

]
≤ exp(−(ε2/2) · µL).

For obtaining lower bounds on the length of optimal tours, we consider the boundary
functional TSPB(X) that attains the length of the shortest tour through all points in X
that is allowed to traverse the boundary of [0, 1]d at zero cost. For a proof of the following
lemma, we refer to the monograph by Yukich [Yuk98].

Lemma 10.1.3 (Boundary Functional [Yuk98, Lemma 3.7]). There is a constant C > 0

such that for all sets X ⊆ [0, 1]d of n points, we have TSPB(X) ≥ TSP(X)− Cn
d−2
d−1 .

10.2 Length of 2-Optimal Tours under Perturbations

In this section, we provide an upper bound for the length of any 2-optimal tour and a
lower bound for the length of any global optimum. These two results yield an upper
bound of O(1/σ) for the approximation ratio.

Chandra et al. [CKT99] proved a bound on the worst-case length of 2-optimal tours
that, in fact, already holds for the more general notion of partial 2-optimal tours. For an
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intuition why this is true, let us point out that their proof strategy is to argue that not
too many long arcs in a tour may have similar directions due to the 2-optimality of the
edges, while short edges do not contribute much to the length. The claim then follows
from a packing argument. It is straight-forward to verify that it is never required that
the collection of edges is closed or connected.

Lemma 10.2.1 (Length of partial 2-optimal tours [CKT99, Theorem 5.1], paraphrased).
There exists a constant cd such that for every sequence X of n points in [0, 1]d, any
partial 2-optimal tour has length less than cd · n1−1/d.

While this bound directly applies to any perturbed instance under the one-step model,
Gaussian perturbations fail to satisfy the premise of bounded support in [0, 1]d. However,
Gaussian tails are sufficiently light to enable us to translate the result to the two-step
model by carefully taking care of outliers.

Lemma 10.2.2. There exists a constant bd such that for any σ ≤ 1 the following
statement holds. For any X̄, the probability that any partial 2-optimal tour on X ←
pertσ(X) has length greater than bd · n1−1/d, i.e., 2OPT(X) > bd · n1−1/d, is bounded by
exp(−Ω(

√
n)). Furthermore,

EX←pertσ(X)

[
2OPT(X)

]
≤ bd · n1−1/d.

Proof. By translation, assume without loss of generality that the input points are
contained in [−1/2, 1/2]d. We define cubes C1 = `1[−1, 1]d, C2 = `2[−1, 1]d, . . . with
`k := 6

√
kd ln 3. The side length of cube Ck is 2`k. We consider the partitioning of Rd

into the regions C1 and Ci \Ci−1 for i ≥ 2. For some cube C and any tour T , let EC(T )
denote the edges in T that are completely contained in C. For any tour T , the sequence
E1, E2, . . . defined by E1 := EC1(T ) and Ek := ECk(T ) \ECk−1

(T ), for k ≥ 2, partitions
the edges of T . Thus, L(T ) =

∑∞
k=1 L(Ek).

For any outcome of the perturbed points, let T be the longest 2-optimal tour. Then,
each Ek is a partial 2-optimal tour in Ck. Let nk be the (random) number of points
in Rd \ Ck−1, which is an upper bound on the number of points in Ck \ Ck−1. At most
3nk vertices are incident to the edges Ek, since each such edge is incident to at least
one endpoint in Ck \ Ck−1 and every point has degree 2 in T . Since Ck = `k[−1, 1]d is a
translated unit cube scaled by 2`k, Lemma 10.2.1 yields L(Ek) ≤ cd · (2`k)(3nk)1−1/d.

Observe that Xi is not contained in Ck only if its origin has been perturbed by
noise of length at least `k/2. Thus, let Z ∼ N (0, σ2) and note that σ ≤ 1 implies that
`k/2 ≥ 3

√
dk ln 3σ. Hence, for each point Xi, Lemma 10.1.1 yields

Pr[Xi /∈ Ck] ≤ Pr

[
‖Z‖ ≥ `k

2

]
≤ 3−(2.9d)k.

By linearity of expectation, we conclude E[nk] ≤ n3−(2.9d)(k−1) for k ≥ 1. This yields

E
[
L(T )

]
=
∞∑
k=1

E[L(Ek)] ≤
∞∑
k=1

cd · (2`k)(3 E[nk])
1−1/d

≤ cd · 12
√
d ln 3 · (3n)1−1/d

( ∞∑
k=1

√
k3−2.9(d−1)(k−1)

)
= O(n1−1/d),

where we used Jensen’s inequality for the first inequality.
To derive tail bounds for the length of any 2-optimal tour, let Nk := n3−2.9d(k−1) be

the upper bound on E[nk] derived above. By the Chernoff bound of Lemma 10.1.2, we
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have that
Pr[nk ≥ 2Nk] ≤ exp(−Nk/3).

This guarantee is only strong as long as Nk is sufficiently large. Hence, we regard this
guarantee only for 1 ≤ k ≤ k1, where k1 is chosen such that

√
n ≤ Nk1 ≤ 32.9d√n.

Assume that nk ≤ 2Nk for all 1 ≤ k ≤ k1. Then, analogously to the above calculation,
the contribution of E1, . . . , Ek1 is bounded by

k1∑
k=1

L(Ek) ≤
k1∑
k=1

cd · (2`k)(6Nk)
1−1/d

≤ cd · 12
√
d ln 3 · (6n)1−1/d

( ∞∑
k=1

√
k3−2.9(d−1)(k−1)

)
= O(n1−1/d).

Let p1 denote the probability that some 1 ≤ k ≤ k1 fails to satisfy nk ≤ 2Nk. Then,

p1 ≤
k1∑
k=1

Pr[nk > 2Nk] ≤ k1 exp(−Nk1/3) = exp(−Ω(
√
n)).

Let us continue assuming that all 1 ≤ k ≤ k1 satisfy nk ≤ 2Nk. Since in particular
nk1 ≤ 2Nk1 , at most nk1 ≤ 2 · 32.9d√n vertices remain outside Ck1−1. Let k2 := d

√
ne.

By a union bound,

p2 := Pr[∃j : Xj /∈ Ck2 ] ≤ n3−2.9d(k2−1) = exp(−Ω(
√
n)).

Assume that the corresponding event holds (i.e., X ⊆ Ck2), then the remaining points
outside Ck1−1 (and hence, outside Ck1) are contained in Ck2 . We conclude that, with
probability at least 1− (p1 + p2) = 1− exp(−Ω(

√
n)),

∞∑
k=k1+1

L(Ek) =

k2∑
k=k1+1

L(Ek) ≤ cd · (2`k2)(6Nk1)1−1/d

= O(
√
k2(Nk1)1−1/d) = O(n

1
4

+ 1
2(1− 1

d)) = O(n1−1/d).

This finishes the claim, since we have shown that with probability 1 − exp(−Ω(
√
n)),

both the contribution of E1, . . . , Ek1 and Ek1+1, . . . is bounded by O(n1−1/d).

We complement the bound above by a lower bound on tour lengths of perturbed
inputs, making use of the following result by Englert et al. [ERV14] for the one-step
model.

Lemma 10.2.3 ([ERV14, Proof of Theorem 1.4]). Let X1, . . . , Xn be a φ-perturbed
instance. Then with probability 1− exp(−Ω(n)), any tour on X1, . . . , Xn has length at
least Ω(n1−1/d/ d

√
φ).

It also follows from their results that this bound translates to the two-step model
consistently with the intuitive correspondence of φ ∼ σ−d between the one-step and the
two-step model.

Lemma 10.2.4. Let X1, . . . , Xn be an instance of points in the unit cube perturbed by
Gaussians of standard deviation σ ≤ 1. Then with probability 1− exp(−Ω(n)) any tour
on X1, . . . , Xn has length at least Ω(σn1−1/d).



Chapter 10. Smoothed Analysis of the 2-Opt Heuristic 125

Proof. For readers’ convenience, we summarize the arguments of Englert et al. [ERV14,
Section 6] who considered truncated Gaussian perturbations: Here, we condition the
Gaussian perturbation Zi for each input point Xi to be contained in A := [−α, α]d for
some α ≥ 1. Conditioned on this event, the resulting input instance is contained in the
cube C := [−α, 1 + α]d. By straight-forward calculations, the conditional distribution of
each point in C has maximum density bounded by O(αd/σd). Moreover, the probability
that the condition fails for a single point is bounded by Pr[Zi /∈ A] ≤ dσ exp(−α2/(2σ2))
for all i. Thus, by choosing α ≥ 1 sufficiently large, each point has at least constant
probability to satisfy the condition Zi ∈ A.

Given any instance (with Gaussian perturbations which are not truncated), first reveal
the (random) subinstance of those points for which the condition Zi ∈ A is satisfied and
let n′ be the number of such points. By the Chernoff bound of Lemma 10.1.2, and Pr[Zi ∈
A] = Ω(1), we have n′ ≥ c · n for some c > 0 with probability at least 1− exp(−Ω(n)). If
this event occurs, we obtain a random instance of n′ ≥ cn points and maximum density
φ = O(αd/σd). Hence an application of Lemma 10.2.3 yields that, for some constant c′ >
0, the probability that a tour of length less than c′ · (n′)1−1/d/ d

√
φ = O((σ/α)n1−1/d) =

O(σn1−1/d) exists is at most exp(−Ω(n)) + exp(−Ω(n′)) = exp(−Ω(n)).

Note that Lemmas 10.2.2 and 10.2.4 almost immediately yield the following bound
on the approximation performance for the two-step model.1

Observation 10.2.5. Let X1, . . . , Xn be an instance of points in the unit cube perturbed
by Gaussians of standard deviation σ ≤ 1. Then the approximation performance of 2-Opt
is bounded by O(1/σ) in expectation and with probability 1− exp(−Ω(

√
n)).

We remark that this bound is best possible for an analysis of perturbed instances
that separately bounds the lengths of any 2-optimal tour from above and gives a lower
bound on any optimal tour. To see this, we argue that Lemma 10.2.3, Lemma 10.2.1
(even under φ-perturbed input), Lemma 10.2.4 and Lemma 10.2.2 cannot be improved in
general. This is straight-forward for Lemma 10.2.3, since n points distributed uniformly
at random in a cube of volume 1/φ always have, by scaling and Lemma 10.2.1, a tour of
length O(n1−1/d/ d

√
φ). Hence, the lower bound on optimal tours on perturbed instances

is tight. To see that the upper bound on any 2-optimal tour is tight, take n uniformly
distributed points that have, by Lemma 10.2.3, an optimal tour of length Ω(n1−1/d) with
high probability and thus also in expectation.

Naturally, this transfers to the case of Gaussian perturbations, albeit more technical
to verify: If we place n identical points in [0, 1]d, say at the origin, and perturb them
with Gaussians of standard deviation σ, then we may without loss of generality scale
the unit cube to [0, 1/σ]d and perturb the points with standard deviation 1 instead. By
Lemma 10.2.2, any 2-optimal tour and, thus, any optimal tour on these points has a
length of O(n1−1/d) on the scaled instance, since the origins are still contained in the
unit cube. Thus, the optimal tour on the original instance has a length of at most
O(σ · n1−1/d) in expectation and with high probability.

We only sketch that 2-optimal tours can have a length of at least Ω(n1−1/d): We
distribute the n (unperturbed) points into 1/σd groups of σdn points each, and we
partition the cube [0, 1]d into 1/σd subcubes of equal side length. Let c > 0 be a
constant such that with high probability, at least cσdn points of a group remain in their
subcube after perturbation. We call these points successful. Since successful points
are identically distributed, conditioned on falling into a compact set, the shortest tour

1The large-deviation bound is immediate. For the expected approximation ratio, we additionally
make use the worst-case bound of O(logn), given in Lemma 10.3.1 below.
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through these (at least) cσdn points has a length of at least σ · c′(σdn)1−1/d = c′σdn1−1/d

for some other constant c′ > 0 [Yuk98]. (This is just a scaled version of perturbing
and truncating a Gaussian of standard deviation 1 to a unit hypercube, which would
result in a tour length of m1−1/d for m points.) By closeness of the tour on all points to
the boundary functional and geometric superadditivity of the boundary functional (see
Yukich [Yuk98] for details), it follows that the optimal tour on all successful points is at
least Ω

(
(1/σd) · σdn1−1/d

)
= Ω(n1−1/d).

10.3 Upper Bound on the Approximation Performance

In this section, we establish an upper bound on the approximation performance of
2-Opt under Gaussian perturbations. We achieve a bound of O(log 1/σ). Due to the
lower bound presented in Section 10.4, we cannot expect an approximation ratio of
o(log(1/σ)/ log log(1/σ)). Thus, our bound is almost tight.

As noted in the previous section, to beat O(1/σ) it is essential to exploit the structure
of the unperturbed input. This will be achieved by classifying edges of a tour into long
and short edges and bounding the length of long edges by a (worst-case) global argument
and short edges locally against the partial optimal tour on subinstances (by a reduction
to an (almost-)average case). The local arguments for short edges will exploit how many
unperturbed origins lie in the vicinity of a given region.

The global argument bounding long edges follows from the worst-case O(log n) bound
on the worst-case approximation performance [CKT99] that we rephrase here for our
purposes.

Lemma 10.3.1 ([CKT99, Proof of Theorem 4.3]). Let T be a 2-optimal tour and OPT
denote the length of the optimal traveling salesperson tour TOPT. Let Ti contain the set
of all edges in T whose length is in [OPT/2i,OPT/2i−1]. Then L(Ti) = O(OPT). In
particular, it follows that L(T ) = O(log n) ·OPT.

In the proof of our bound of O(log 1/σ), the above lemma accounts for all edges of
length [Ω(σ),O(1)]. A central idea to bound all shorter edges is to apply the one-step
model result to small parts of the input space. In particular, we will condition sets of
points to be perturbed into cubes of side length σ. The following technical lemma helps
to capture what values of φ suffice to express the conditional density function of these
points depending on the distance of their unperturbed origins to the cube. This allows
for appealing to the one-step model result of Lemma 10.2.3.

Lemma 10.3.2. Let c ∈ [0, σ]d and k = (k1, . . . , kd) ∈ Nd0. Let Y be the random variable
X ∼ N (c, σ2) conditioned on X ∈ Q := [k1σ, (k1 + 1)σ]× · · · × [kdσ, (kd + 1)σ] and fY
be the corresponding probability density function. Then fY is bounded from above by
exp(‖k‖1 + (3/2)d)σ−d.

Proof. Let fX(x) = 1
(2π)d/2σd

· exp(−‖x−c‖
2

2σ2 ) be the probability density function of X.

Let q := argminz∈Q ‖z − c‖ be the point in Q that is closest to c. Then, since fX(x) is
rotationally invariant around c and decreasing in ‖x− c‖, the density fX(x) inside Q
is maximized at x = q. Likewise, q′ := argmaxz∈Q ‖z − c‖ minimizes the density
inside Q. Since Q is a (σ × · · · × σ)-cube in R≥0, ‖q′ − c‖ ≤ ‖(q + σ1)− c‖, where

1 = (1, . . . , 1) ∈ Rd denotes the all-ones vector. Given g(q) := fX(q)
fX(q+σ1) , we can thus

bound the conditional probability density function fY for x ∈ Q by

fY (x) =
fX(x)∫

Q fX(y)dy
≤ fX(x)

fX(q′)vol(Q)
≤ fX(q)

fX(q + σ1)
· 1

σd
=
g(q)

σd
.
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It remains to bound, for x ∈ Q,

g(x) =
f(x)

f(x+ σ1)
= exp

(
‖(x− c) + σ1‖2 − ‖x− c‖2

2σ2

)
= exp

(
‖x− c‖1

σ
+
d

2

)
.

Since for all x ∈ Q, ‖x− c‖1 ≤ (‖k‖1 + d)σ, we can bound g(x) ≤ exp(‖k‖1 + (3/2)d),
yielding the claim.

The main result of this section is the following theorem, which will be proved in the
remainder of the section.

Theorem 10.3.3. Let X = (X1, . . . , Xn) be an instance of points in [0, 1]d perturbed by
Gaussians of standard deviation σ ≤ 1. With probability 1− exp(−Ω(n1/2−ε)) for any
constant ε > 0, we have 2OPT(X) = O(log(1/σ)) · TSP(X). Furthermore,

E

[
2OPT(X)

TSP(X)

]
= O(log(1/σ)).

Since the approximation performance of 2-Opt is bounded by O(log n) in the worst-
case, we may assume that 1/σ = O(nε) for all constant ε > 0, since otherwise our
smoothed result is superseded by Lemma 10.3.1. Furthermore, we may also assume
that 1/σ = ω(1), since otherwise Observation 10.2.5 already yields the result. In what
follows, let TOPT and T be any optimal and longest 2-optimal, respectively, traveling
salesperson tour on X1, . . . , Xn. Furthermore, we let OPT = L(TOPT) denote the length
of the shortest traveling salesperson tour.

10.3.1 Outliers and Long Edges

We will first show that the contribution of almost all points outside [0, 1]d is bounded by
O(σn1−1/d) with high probability and in expectation, similar to Lemma 10.2.2. For this,
we define growing cubes Ai := [−ai, 1 + ai]

d, where we set ai := 3σ
√
di ln(3/σ) for i ≥ 1

and A0 = [0, 1]d. Let ni be the number of points not contained in Ai−1. For every point
Xj , Lemma 10.1.1 with t := (3/σ)i bounds Pr[Xj /∈ Ai−1] ≤ (σ/3)2.9d(i−1) (note that we
have chosen the ai such that t ≥ 3). Thus, E[ni] ≤ n(σ/3)2.9d(i−1). We define Ei as the
set of edges of the longest 2-optimal tour T contained in Ai with at least one endpoint
in Ai \Ai−1. We first bound the contribution of the Ei with i ≥ 2.

Lemma 10.3.4. With probability 1− exp(−Ω(n1/2−ε)) for any constant ε > 0, we have∑∞
i=2 L(Ei) = O(σn1−1/d). Additionally, E[

∑∞
i=2 L(Ei)] = O(σn1−1/d).

Proof. The proof is analogous to the proof of Lemma 10.2.2. By linearity of expectation,
Lemma 10.2.1 and Jensen’s inequality, we have

∞∑
i=2

E[L(Ei)] ≤
∞∑
i=2

cd · (3 E[ni])
1−1/d(1 + 2ai)

≤
∞∑
i=2

3cd · n1−1/d
(σ

3

)2.9(d−1)(i−1) (
1 + 6σ

√
i ln(3/σ)

)
≤ 3cd · n1−1/d

(σ
3

)2.9(d−1)
(1 + 6σ

√
ln(3/σ))

( ∞∑
i=0

√
i+ 2

(σ
3

)2.9(d−1)i
)
.
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By noting that
∑∞

i=0

√
i+ 2(σ/3)2.9(d−1)i is bounded by a constant, we conclude that∑∞

i=2 E[L(Ei)] is bounded by O(σn1−1/d).
Let Nk := n(σ/3)2.9d(k−1) be the upper bound on E[nk] derived above. By the

Chernoff bounds of Lemma 10.1.2, we have

Pr[nk ≥ 2Nk] ≤ exp(−Nk/3).

Choose k1 such that (σ/3)2.9dσ
√
n ≤ Nk1 ≤ σ

√
n. Thus, k1 = O(log n). Assume that

nk ≤ 2Nk for all 1 ≤ k ≤ k1. Then, analogously to the above calculation, the contribution
of E2, . . . , Ek1 is bounded by

k1∑
k=2

L(Ek) ≤
k1∑
k=2

cd · (1 + 2ak)(6Nk)
1−1/d

≤ cd ·
(

1 + 6σ
√
d ln(3/σ)

)
· (6n)1−1/d(σ/3)2.9(d−1)

·

( ∞∑
k=0

√
k + 2(σ/3)2.9(d−1)k

)
= O(σn1−1/d).

Note that the probability that some 1 ≤ k ≤ k1 fails to satisfy nk ≤ 2Nk is bounded by

k1∑
k=1

Pr[nk > 2Nk] ≤ k1 exp(−Nk1/3) = exp(−Ω(n1/2−ε)),

for any constant ε > 0. Since nk1 ≤ 2Nk1 , at most nk1 ≤ 2σ
√
n vertices remain outside

Ak1−1. Let k2 := dσ
√
ne. By a union bound, for any constant ε > 0,

Pr[∃j : Xj /∈ Ak2 ] ≤ n(σ/3)2.9d(k2−1) = exp(−Ω(n1/2−ε)).

Assume that we have the – very likely – event that all points are in Ak2 , then the
remaining points outside Ak1−1 are contained in Ak2 . We conclude that

∞∑
k=k1

L(Ek) =

k2∑
k=k1

L(Ek)

≤ cd · (1 + 2ak2)(6Nk1)1−1/d

= O(
√
k2(Nk1)1−1/d)

= O(σ3/2−1/dn
1
4

+ 1
2(1− 1

d)) = O(σn1−1/d).

In the remainder of the proof, we bound the total length of edges inside A1. Define
C := A1 and note that all edges in C have bounded length

√
d(1+2a1) = O(1). We let Ti

contain the set of all those edges within C (in the longest 2-optimal tour T ) whose lengths
are in [OPT/2i,OPT/2i−1]. Let k1 be such that

√
d(1 + 2a1) ∈ [OPT/2k1 ,OPT/2k1−1].

Then L(Tk) = 0 for all k < k1, since no longer edges exist. Let k2 be such that
σ ∈ [OPT/2k2 ,OPT/2k2−1]. Then

∑k2
k=k1

L(Tk) = O((k2−k1)·OPT) = O(log(1/σ)OPT)
by Lemma 10.3.1. This argument bounds the contribution of long edges, i.e., edges longer
than σ, in the worst case, after observing the perturbation of the input points. It remains
to bound the length of short edges in C.
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10.3.2 Short Edges

To account for the length of the remaining edges, we take a different route than for
the long edges: Call an edge that is shorter than σ a short edge and partition the
bounding box C = [−a1, 1 + a1]d into a grid of (σ × · · · × σ)-cubes C1, . . . , CM with
M = Θ((σ/(1 + a1))−d) = Θ(σ−d), which we call cells. All edges in Tk for k ≥ k2, i.e.,
short edges, are completely contained in a single cell or run from some cell Ci to one of
its 3d − 1 neighboring cells. For a given tour T , let ECi(T ) denote the short edges of T
for which at least one of the endpoints lies in Ci.

We aim to relate the length of the edges ECi(T ) for the longest 2-optimal tour T
to the length of the edges ECi(TOPT) of the optimal tour TOPT. This local approach is
justified by the following property.

Lemma 10.3.5. For any tour T ′, the contribution L(ECi(T
′)) of cell Ci is lower bounded

by TSP(X ∩ Ci)−O(σ|X ∩ Ci|
d−2
d−1 ).

Proof. Consider all edges S in T ′ that have at least one endpoint in Ci. Replacing
those edges (u, v) ∈ S with u ∈ Ci and v /∈ Ci by the shortest edge connecting u
to the boundary of Ci does not increase the total edge length by triangle inequality.
If Ci were the unit cube, L(ECi(T

′)) would thus be lower bounded by the boundary
functional TSPB(X ∩ Ci). Instead, we scale the instance X ∩ Ci by 1/σ to obtain an
instance X ′ in the unit cube, satisfying TSP(X ∩Ci) = σTSP(X ′) and, as argued above,
L(ECi(T

′)) ≥ σTSPB(X ′). Thus an application of Lemma 10.1.3 yields

L(ECi(T
′)) ≥ σ

(
TSP(X ′)−O

(
|X ′|

d−2
d−1
))

= TSP(X ∩ Ci)−O
(
σ · |X ∩ Ci|

d−2
d−1
)
.

Intuitively, a cell Ci is of one of two kinds: either few points are expected to be
perturbed into it and hence it cannot contribute much to the length of any 2-optimal
tour (a sparse cell), or many unperturbed origins are close to the cell (a heavy cell). In
the latter case, either the conditional densities of points perturbed into Ci are small,
hence any optimal tour inside Ci has a large value by Lemma 10.2.3, or we find another
cell close to Ci that has a very large contribution to the length of any tour.

To formalize this intuition, fix a cell Ci and let ni be the expected number of points
Xj with Xj ∈ Ci. Assume for convenience that a1/σ and (1 + a1)/σ are integer. We
describe the position of a cube Ci canonically by indices pos(Ci) ∈ {−ai

σ , . . . ,
1+ai
σ }

d. For
two cells Ci and Cj , we define their distance as dist(Ci, Cj) = ‖pos(Ci)− pos(Cj)‖1. For
k ≥ 0, let Dk denote all cells of distance k to Ci and let n(Dk) denote the cardinality
of unperturbed origins located in a cell in Dk. We call a perturbed point X` ∈ Ci with
unperturbed origin x` ∈ Cj , for some Cj ∈ Dk, a k-successful point. Let Sk denote the
set of all k-successful points. Then ni =

∑∞
k=0 E[|Sk|].

Our first technical lemma shows that any cell Ci, having (in expectation) a large
number µ of points perturbed into it from cells of distance at most K, contributes at
least σµ1−1/d exp(−O(K + 1)) to the length of the optimal tour.

Lemma 10.3.6. Let K ≥ 0 and define S≤K := S0 ∪ · · · ∪ SK as the set of k-successful
points for k ≤ K. Let µ := E[|S≤K |]. If K = o(logµ), then with probability 1 −
exp(−Ω(µ)), we have

L(ECi(TOPT)) ≥ σµ1−1/d

exp(O(K + 1))
.

Proof. Note that by Lemma 10.3.5, L(ECi(TOPT)) ≥ TSP(S≤K)−O(σ · |S≤K |
d−2
d−1 ). Fix

any realization of S≤K , i.e., choice of unperturbed origins inside some cell in D0, . . . , DK
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whose perturbed points fall into Ci. We can simulate the distribution of TSP(S≤K) (under
this realization of S≤K) by appealing to the one-step model. Note that each point in S≤K
is distributed as a Gaussian conditioned on containment in cell Cj . By rotational invari-
ance of the Gaussian distribution, Lemma 10.3.2 is applicable and bounds the conditional
density function of each point in S≤K by exp(K + (3/2)d)σ−d. By scaling, we obtain
an instance in the unit cube with N := |S≤K | points distributed according to density
functions of maximum density exp(K + (3/2)d). Hence, by Lemma 10.2.3 we obtain that
any tour has length Ω(N1−1/d/ exp(K/d+ 3/2)) on the scaled instance with probability
1−exp(−Ω(N)). Scaling back to Ci, we obtain TSP(S≤K) ≥ Ω(σN1−1/d/ exp(K/d+3/2)).
Since by Chernoff bounds (Lemma 10.1.2), |S≤K | = Ω(µ) with probability 1−exp(−Ω(µ)),
we finally obtain, using Lemma 10.3.5,

L(ECi(TOPT)) ≥ Ω

(
σµ1− 1

d

exp(Kd + 3
2)

)
−O(σ · µ

d−2
d−1 ) ≥ σµ1−1/d

exp(O(K + 1))
,

with probability 1− exp(−Ω(µ)), where we used that K = o(logµ).

The following simple technical lemma shows that with constant probability, a point
is perturbed into the cell it originates in.

Lemma 10.3.7. Let c ∈ Q0 := [0, σ]d and Z ∼ N (c, σ2). Then Pr[Z ∈ Q0] ≥
1

(2π)d/2
exp(−d

2).

Proof. Let f(x) = 1
(2π)d/2σd

· exp(−‖x−c‖
2

2σ2 ) be the probability density function of Z. For

all x ∈ Q0, we have ‖x− c‖ ≤
√
dσ and hence f(x) ≥ 1

(2π)d/2σd
· exp(−d

2) =: fmin. This

yields

Pr[Z ∈ Q0] =

∫
Q0

f(x)dx ≥ σdfmin =
1

(2π)d/2
exp(−d/2).

We are set-up to formally show the classification of heavy cells. Recall that M =
Θ(σ−d) denotes the number of cells Ci.

Lemma 10.3.8. Let α := M
d
d−1 , k1 := γ log log(1/σ) and k2 := (1/γ′)

√
log 1/σ for

sufficiently small constants γ, γ′. Then we can classify each cell Ci with ni ≥ n
α into one

of the following two types.

(T1) With probability 1− exp(−Ω(n1−ε)) for any constant ε > 0, we have

L(ECi(T )) ≤ O(log 1/σ)L(ECi(TOPT)).

(T2) There is some Cj ∈ Dk1 ∪ · · · ∪Dk2 such that for any f(1/σ) = polylog(1/σ), we
have

L(ECi(T )) ≤
L(ECj (TOPT))

f(1/σ)
,

with probability 1− exp(−Ω(n1−ε)) for any constant ε > 0.

Proof. We start with some intuition. By Lemma 10.2.1, we can bound L(ECi(T )) =

O(σn
1−1/d
i ). If we have E[|S≤k1 |] = Ω(ni), then Lemma 10.3.6 already proves Ci to

have type (T1). Otherwise, by tail bounds for the Gaussian distribution, we argue
that some cell Cj in distance at most k2 contains at least ni exp(Ω((log log 1/σ)2))
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unperturbed origins. These are sufficiently many to let Cj contribute f(1/σ)σn
1−1/d
i , for

any f(1/σ) = polylog(1/σ), to the optimal tour length.
To make the intuition formal, note that all edges in ECi(T ) are contained in a cube

of side length 3σ around Ci. By Chernoff bounds (Lemma 10.1.2), at most 2ni points
are contained in Ci with probability 1− exp(−Ω(ni)). Hence, Lemma 10.2.1 bounds

L(ECi(T )) ≤ 3σcd(6ni)
1−1/d, (10.1)

with probability 1− exp(−Ω(ni)).

Case 1: E[S≤k1 ] > ni/2. In this case, we may appeal to Lemma 10.3.6 (since k1 =
o(log ni)) and obtain

L(ECi(TOPT)) ≥ σ(|S≤k1 |)1−1/d

exp(O(k1))
= Ω

(
σn

1−1/d
i

log(1/σ)

)
, (10.2)

with probability 1−exp(−Ω(ni)), since k1 = γ log log 1/σ and γ can be chosen sufficiently
small. By union bound, (10.1) and (10.2) hold with probability 1 − exp(−Ω(ni)) =
1− exp(−Ω(n1−ε)) for any constant ε > 0, proving that Ci has type (T1).

Case 2: E[S≤k1 ] ≤ ni/2. Since every point in Ci has an `1-distance of at least
σ(dist(Ci, Cj)− d) to every point in Cj , we have, by Lemma 10.1.1, that

E[|Sk|] ≤ n(Dk) Pr

[
‖Z‖ ≥ k − d√

d
σ

]
≤ n(Dk) exp

(
−0.32

(k − d)2

d

)
, (10.3)

for sufficiently large k.
Since α = poly(1/σ), we can choose a sufficiently small constant γ′ such that

k2 = (1/γ′)
√

log 1/σ satisfies exp(−0.32(k2 − d)2/d) ≤ 1/(4α). From
∑∞

k=0 n(Dk) = n,
we conclude

∞∑
k=k2+1

E[|Sk|] ≤
∞∑

k=k2+1

n(Dk) exp(−0.32(k − d)2/d) ≤ n

4α
≤ ni

4
.

Hence, we have

k2∑
k=k1+1

E[|Sk|] = ni − E[|S≤k1 |]−
∞∑

k=k2+1

E[|Sk|] ≥
ni
4
.

By (10.3), it follows that

N :=

k2∑
k=k1+1

n(Dk) ≥ exp

(
0.32

(k1 − d)2

d

) k2∑
k=k1+1

E[|Sk|] = ni exp(Ω((log log 1/σ)2))

unperturbed origins are situated in cells in distance k1 < k ≤ k2 from Ci. Note that there
are at most

∑k2
k=k1+1 |Dk| = O(kd2) = polylog(1/σ) such cells and exp(Ω((log log 1/σ)2) =

ω(logc(1/σ)) for any c ∈ N. By pigeon hole principle, there is a cell Cj ∈ Dk1 ∪ · · · ∪Dk2

with Ω(N/kd2) = ni exp(Ω((log log 1/σ)2)) many unperturbed origins.
Let S′0 be the 0-successful points for cell Cj , i.e., the points with origin in Cj

that are perturbed into Cj . By Lemma 10.3.7, each unperturbed origin x` ∈ Cj
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has constant probability to be perturbed into Cj , i.e., Pr[X` ∈ Cj ] = Ω(1). Hence,
E[|S′0|] = ni exp(Ω((log log 1/σ)2)). Thus, Lemma 10.3.6 bounds

L(ECj (TOPT)) ≥ σ(E[|S′0|])1− 1
d

exp(O(1))
= σn

1− 1
d

i exp(Ω((log log 1/σ)2)), (10.4)

with probability 1− exp(−Ω(E[|S′0|])) = 1− exp(−Ω(ni)). Since (10.1) and (10.4) hold
simultaneously with probability 1− exp(−Ω(ni)) = 1− exp(−Ω(n1−ε)) for any constant
ε > 0, this proves that Ci has type (T2).

10.3.3 Total Length of 2-Optimal Tours

With the analyses of the previous subsections, we can finally bound the total length
of 2-optimal tours. To bound the total length of short edges, consider first sparse
cells Ci, i.e., cells containing ni ≤ n/α perturbed points in expectation (recall that

α = M
d
d−1 , where M = Θ(σ−d) is the number of cells). For each such cell, the

Chernoff bound of Lemma 10.1.2 yields that with probability 1 − exp(−Ω(n/α)), at
most 2n/α points are contained in Ci, since each point is perturbed independently.
By union bound, no sparse cell contains more than 2n/α points with probability at
least 1−M exp(−Ω(n/α)) = 1− exp(−Ω(n1−ε)) for any constant ε > 0. In this event,
Lemma 10.2.1 allows for bounding the contribution of sparse cells by

∑
i:ni≤n/α

L(ECi(T )) ≤M(3σ)cd

(
6n

α

)1− 1
d

= O

(
Mσn1− 1

d

α1− 1
d

)
= O(σn1− 1

d ). (10.5)

For bounding the length in the remaining cells, the heavy cells, let T1 := {i |
Ci has type (T1)} and T2 := {i | Ci has type (T2)}. We observe that with probability
at least 1 − M exp(−Ω(n1−ε)) = 1 − exp(−Ω(n1−ε)), all type-(T1) cells Ci satisfy
L(ECi(T )) = O(log 1/σ)L(ECi(TOPT)). Thus,

∑
i∈T1

L(ECi(T )) ≤ O(log 1/σ) ·

∑
i∈T1

L(ECi(TOPT))

 ≤ O(log 1/σ)OPT, (10.6)

where the last inequality follows from
∑M

i=1 LCi(TOPT) ≤ 2 · OPT, which holds since
every edge in OPT (inside C) is counted at most twice on the left-hand side.

Let A : T2 → {1, . . . ,M} be any function that assigns to each type-(T2) cell Ci a
corresponding cell CA(i) ∈ Dk1 ∪ · · · ∪Dk2 satisfying the condition (T2). We say that Ci
charges CA(i). We can choose any f(1/σ) = polylog(1/σ) and have with probability at

least 1−M exp(−Ω(n1−ε)) = 1− exp(−Ω(n1−ε)) that L(ECi(T )) ≤
L(ECA(i)

(TOPT))

f(1/σ) for
all i ∈ T2. Assume that this event occurs. Since every cell Ci can only be charged by
cells in distance k1 < k ≤ k2, each cell can only be charged

∑k2
k=k1+1 |Dk| = O(kd2) times.

Hence, ∑
i∈T2

L(ECA(i)
(TOPT)) ≤ O(kd2)

M∑
i=1

L(ECi(TOPT)) = O(kd2)OPT.
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Figure 10.1: Parts V1 and V3 of the lower bound instance. Each point
is contained in a corresponding small container (depicted as brown circle)
with high probability. The black lines indicate the constructed 2-optimal
tour, which on V2 runs analogously.

Since kd2 = polylog(1/σ), choosing f(1/σ) = polylog(1/σ) sufficiently large yields

∑
i∈T2

L(ECi(T )) ≤
∑
i∈T2

L(ECA(i)
(TOPT))

f(1/σ)
≤ O(kd2)OPT

f(1/σ)
= O(OPT). (10.7)

Proof of Theorem 10.3.3. By a union bound, we can bound by 1− exp(−Ω(n1/2−ε)), for
any constant ε > 0, the probability that (i) OPT = Ω(σn1−1/d) (by Lemma 10.2.4),
(ii) all edges outside C contribute O(σn1−1/d) = O(OPT) (by Lemma 10.3.4), (iii) all
sparse cells contribute O(σn1−1/d) = O(OPT) (by (10.5)), (iv) the type-(T1) cells Ci
induce a cost of O(log 1/σ)OPT (by (10.6)), and (v) the type-(T2) cells induce a cost
of O(OPT) (by (10.7)). Since the remaining edges are long edges and contribute
only O(log(1/σ) · OPT), we obtain that every 2-optimal tour has a length of at most
O(log 1/σ)OPT with probability 1− exp(−Ω(n1/2−ε)).

Since a 2-optimal tour always constitutes a O(log n)-approximation to the optimal
tour length by Lemma 10.3.1, we also obtain that the expected cost of the worst 2-optimal
tour is bounded by

O(log 1/σ) ·OPT + exp(−Ω(n1/2−ε)) · O(log n) ·OPT = O(log 1/σ) ·OPT.

10.4 Lower Bound on the Approximation Ratio

We complement our upper bound on the approximation performance by the following lower
bound: for σ = O(1/

√
n), the worst-case lower bound is robust against perturbations.

For this, we face the technical difficulty that in general, a single outlier might destroy the
2-optimality of a desired long tour, potentially cascading into a series of 2-Opt iterations
that result in a substantially different or even optimal tour.

Theorem 10.4.1. Let σ = O(1/
√
n). For infinitely many n, there is an instance X of

points in R2 perturbed by normally distributed noise of standard deviation σ such that with
probability 1−O(n−s) for any constant s > 0, we have 2OPT(X) = Ω(log n/ log log n) ·
TSP(X). This also yields

E

[
2OPT(X)

TSP(X)

]
= Ω

(
log n

log log n

)
.

We remark that our result transfers naturally to the one-step model with φ = Ω(n)
and interestingly, holds with probability 1 over such random perturbations.
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Furthermore, even when we initialize the tour using the nearest neighbor heuristic,
2-Opt might, with probability O(1), return a 2-optimal tour of length Ω(log n/ log log n) ·
TSP(X) on perturbed inputs. We omit the necessary modifications to our construction
here; they will be subject of future work.

Proof of Theorem 10.4.1. We alter the construction of Chandra et al. [CKT99] to
strengthen it against Gaussian perturbations with standard deviation σ = O(1/

√
n)

(see Figure 10.1). Let p ≥ 3 be an odd integer and P := 3p2p. The original instance
of [CKT99] is a subset of the (P × P )-grid, which we embed into [0, 1]2 by scaling by
1/P , and consists of three parts V1, V2 and V3. The vertices in V1 are partitioned into
the layers L0, . . . , Lp. Layer i consists of p2i + 1 equidistant vertices, each of which has a
vertical distance of ci = p2p−2i−1/P to the point above it in Layer i+ 1 and a horizontal
distance of ai = p2p−2i/P to the nearest neighbor(s) in the same layer. The set V2 is a
copy of V1 shifted to the right by a distance of 2/3. The remaining part V3 consists of
a copy of Layer p of V1 shifted to the right by 1/3 to connect V1 and V2 by a path of
points. We regard Li as the set of Layer-i points in V1 ∪ V2 ∪ V3.

As in the original construction, we will construct an instance of n = Θ(p2p) points,
which implies p = Θ(log n/ log log n). Let 0 ≤ t ≤ p be the largest odd integer such that
p2t+1 ≤ (3σ)−1. In our construction, we drop all Layers t+ 1, . . . , p in both V1 and V2,
as well as Layer p in V3. Instead, we connect V1 and V2 already in Layer t by an altered
copy of Layer t of V1 shifted to the right by 1/3. Let C be an arbitrary point of our
construction, for convenience we will use the central point of Layer t in V3. We introduce
p2p − 1 additional copies of this point C. These surplus points serve as a “padding” of
the instance to ensure n = Θ(p2p). Note that the resulting instance has t + 1 layers
L0, . . . , Lt. We chose t such that the magnitude of perturbation is negligible compared
to the pairwise distances of all non-padding points. Furthermore, the restriction on σ
ensures that incorporating the padding points increases the optimal tour length only by
a constant.

Lemma 10.4.2. With probability 1−O(n−s) for any constant s > 0, the optimal tour
has length O(1).

Proof. Let n be the number of points in the constructed instance. Note that X =

(x1, . . . , xn) consists of (i) a subset X
orig

of the instance of Chandra et al. [CKT99], plus

(ii) an additional copy X
t

of Layer t and (iii) the padding points X
pad

in V3. Denote the

number of points in X
orig ∪Xt

by n′. We have

n′ = p2t + 2

(
t∑
i=0

p2i + 1

)
≤ p2t + 2(1− p−2)−1p2t + 2t = O(σ−1/p),

by choice of t. Hence n = (p2p−1)+n′ = Θ(p2p). It is easy to see [CKT99] that the original

instance of Chandra et al. has a minimum spanning tree of length MST(X
orig

) ≤ 9p2p/P .
(This is achieved by the spanning tree that includes, for each Layer-i vertex with 0 ≤ i < p,
the vertical edge to the point above it, and each edge between consecutive points on
Layer p.) Clearly,

MST(X
orig ∪Xt

) ≤ MST(X
orig

) + MST(X
t
) + 2at ≤ 9p2p/P + p2p/P + 2at = O(1).

Consider the perturbed instance X ← pertσ(X). Note that for every constant s > 0,
we have pσ ≥ 3σ

√
d(s+ 1) lnn for sufficiently large n. Thus for each 1 ≤ i ≤ n, the
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Gaussian noise Zi ∼ N (0, σ) satisfies ‖Zi‖ ≤ pσ with probability at least 1−O(n−s+1)

by Lemma 10.1.1. By a union bound, we have
∑n′

i=1 ‖Zi‖ ≤ O(n′pσ) = O(1) with
probability at least 1 − O(n−s). In this case, by the triangle inequality, the fact that
TSP(Y ) ≤ 2 ·MST(Y ) for all point sets Y and since only a constant number of edges
connects the three parts, we obtain

TSP(X1, . . . , Xn) ≤ 2 ·MST(X
orig ∪Xt

) + 2

(
n′∑
i=1

‖Zi‖

)
+ TSP(Xpad) +O(1)

≤ TSP(Xpad) +O(1).

Note that we may translate and scale X
pad

to be contained in [0, σ]d, by which TSP(Xpad)
may be regarded as the optimal tour length on an instance of p2p = Θ(n) points in
[0, 1]d perturbed by Gaussians with standard deviation 1. By Lemma 10.2.2, any 2-
optimal tour and hence also the optimal tour on the scaled instance has length O(

√
n)

with probability 1 − exp(−Ω(
√
n)). Scaling back to the original instance, we obtain

TSP(Xpad) = O(
√
nσ) = O(1) with probability 1− exp(−Ω(

√
n)). This yields the result

by a union bound.

We find a long 2-optimal tour on all non-padding points analogously to the original
construction by taking a shortcut of the original 2-optimal tour, which connects V1 and
V2 already in Layer t (see Figure 10.1).

Consider the padding points, which are yet to be connected. Let C` denote the
nearest point in Layer t of V3 that is to the left of C. Symmetrically, Cr is the nearest
point to the right of C. Let T p be any 2-optimal path from C` to Cr that passes through
all the padding points (including C). We replace the edges (C`, C) and (C,Cr) by the
path T p, completing the construction of our tour T .

Lemma 10.4.3. Let s > 0 be arbitrary. With probability 1 − O(n−s), T is 2-optimal
and has a length of Ω(log n/ log logn).

Note that given Lemma 10.4.3, Theorem 13.3.1 follows directly using Lemma 10.4.2.
The (rather technical) proof of Lemma 10.4.3 hence concludes our lower bound.

Probability of 2-optimality

To account for the perturbation in the analysis, we define a safe region for every point.
More formally, let xj be any unperturbed origin. We define its container Bj as the circle
centered at xj with radius β := at/8 = p2p−2t/(8P ) ≥ σp/8. Very likely, all perturbed
points lie in their containers.

Lemma 10.4.4. For sufficiently large p, the tour T constructed as described in Sec-
tion 10.4 is 2-optimal, provided that all points Xj lie in their corresponding containers Bj.

We first show that this lemma implies Lemma 10.4.3.

Proof of Lemma 10.4.3. Let Z ∼ N (0, σ2) and s > 0 be arbitrary. By β ≥ σp/8 =
Ω(σ log(n)/ log log n) = ω(σ

√
log n), we have β ≥ 3σ

√
d(s+ 1) lnn for sufficiently large n.

By definition of the containers, Lemma 10.1.1 yields that for any point Xj and sufficiently
large n,

Pr[Xj /∈ Bj ] ≤ Pr[‖Z‖ ≥ β] ≤ Pr[‖Z‖ ≥ σ3
√
d(s+ 1) lnn] ≤ n−(s+1).
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By union bound, we conclude that with probability 1− n−s, all points are contained in
their corresponding containers and hence, by the previous lemma, T is 2-optimal.

Recall that t is the largest odd integer satisfying p2t+1 ≤ (3σ)−1. Since σ−1 = Ω(
√
n),

this implies t ≥ p−1
2 − 1. Observe that T visits t = Ω(p) many layers and crosses a

horizontal distance of 2/3 in each of them. Hence, it has a length of at least Ω(p) =
Ω(log n/ log logn).

In the remainder of this section, we prove Lemma 10.4.4, i.e., show that the constructed
tour is 2-optimal, provided all points stay inside their respective containers. Clearly, it
suffices to show for any pair of edges (u, v) and (w, z) in the tour, the corresponding
2-change, i.e., replacing these edges by (u,w) and (v, z) does not reduce the tour length,
i.e., d(u,w) + d(v, z) ≥ d(u, v) + d(w, z). We first state the technical lemmas capturing
the ideas behind the construction.

The first lemma treats pairs of horizontal edges and establishes how large their
vertical distance must be in order to make swapping these edges increase the length
of the tour. It is a generalization of a similar lemma of Chandra et al. [CKT99] to a
perturbation setting, in which points are placed arbitrarily into small containers.

Note that in what follows, for a point p ∈ R2, we let px denote its x-coordinate and
py its y-coordinate. Furthermore, for any points p, q ∈ R2, we let dx(p, q) := |px − qx|
and dy(p, q) := |py − qy| denote their horizontal and vertical distance, respectively.

Lemma 10.4.5. Let pq and rs be horizontal line segments in the Euclidean plane with
px < qx and rx < sx. Let Bp, Bq, Br and Bs be circles of radius β with centers p, q, r
and s, respectively. If d(r, s) ≥ d(p, q)+4β and the vertical distance v := dy(p, r) = dy(q, s)
between pq and rs is at least√

d(p, q)d(r, s) + 4βd(r, s) + 2β,

then, for all p̃ ∈ Bp, q̃ ∈ Bq, r̃ ∈ Br, s̃ ∈ Bs, we have

d(p̃, r̃) + d(q̃, s̃) ≥ d(p̃, q̃) + d(r̃, s̃).

Proof. Note that dy(p̃, r̃), dy(q̃, s̃) ≥ v − 2β. Furthermore, we have that

d(r, s)− 2β ≤ s̃x − r̃x = (p̃x − r̃x) + (q̃x − p̃x) + (s̃x − q̃x)

≤ (p̃x − r̃x) + d(p, q) + 2β + (s̃x − q̃x),

and hence
(p̃x − r̃x) + (s̃x − q̃x) ≥ d(r, s)− d(p, q)− 4β,

where the right-hand side expression is at least 0, since d(r, s) ≥ d(p, q)+4β by assumption.
Let L := p̃x− r̃x and R := s̃x− q̃x, then it is straight-forward to verify that the expression

d(p̃, r̃) + d(q̃, s̃) ≥
√

(v − 2β)2 + L2 +
√

(v − 2β)2 +R2, (10.8)

subject to L+R ≥ d(r, s)− d(p, q)− 4β is minimized when L = R = d(r,s)−d(p,q)
2 − 2β.
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Hence, we can bound (10.8) by

d(p̃, r̃) + d(q̃, s̃)

≥ 2

√
(v − 2β)2 +

(
d(r, s)− d(p, q)

2
− 2β

)2

≥ 2

√
d(p, q)d(r, s) + 4βd(r, s) +

(
d(r, s)− d(p, q)

2
− 2β

)2

= 2

√(
d(r, s)− d(p, q)

2

)2

+ d(p, q)d(r, s) + 4βd(r, s)− 2β(d(r, s)− d(p, q)) + (2β)2

= 2

√(
d(r, s) + d(p, q)

2

)2

+ 2β(d(r, s) + d(p, q)) + (2β)2

= 2

(
d(r, s) + d(p, q)

2
+ 2β

)
= d(r, s) + d(p, q) + 4β ≥ d(p̃, q̃) + d(r̃, s̃),

where the third line follows from our assumption on v.

The following very basic lemma shows that a sequence of edges that share roughly
the same direction will always be 2-optimal.

Lemma 10.4.6. Let p1, p2, p3 and p4 be a sequence of points in [0, 1]2 such that all
connecting segments pi+1 − pi fulfill |(pi+1 − pi)y| ≤ (pi+1 − pi)x. Then,

d(p1, p3) + d(p2, p4) ≥ d(p1, p2) + d(p3, p4).

Proof. For any point p, let Cp denote the cone Cp := {q | |(q − p)y| ≤ (q − p)x}. Let
∆ := p2 − p1, then by assumption, we have p2 ∈ Cp1 and thus |∆y| ≤ ∆x. Let us assume
that 0 ≤ ∆y ≤ ∆x (the other case is symmetric). Since by assumption, p3 ∈ Cp2 , we have
for ∆′ := p3−p1 that ∆′x = ∆x+δx and ∆′y = ∆′y+δy for some δx > 0 and δy with |δy| < δx.
If δx ≥ ∆y, the claim is immediate from d(p1, p3) ≥ ∆x + δx ≥ ∆x + ∆y ≥ d(p1, p2).
Otherwise, for δx < ∆y, we obtain

d(p1, p3) =
√

(∆x + δx)2 + (∆y + δy)2

≥
√

(∆x + δx)2 + (∆y − δx)2

≥
√

∆2
x + ∆2

y + 2δx(∆x −∆y) ≥
√

∆2
x + ∆2

y = d(p1, p2).

By an analogous computation, d(p2, p4) ≥ d(p3, p4) follows and hence the claim.

We can now prove Lemma 10.4.4. Assume that all points are contained in their
respective containers. We call an edge between Xi and Xj horizontal (or vertical) if
the edge between xi and xj is horizontal (or vertical) and neither xi nor xj belong to
the set of padding points. In what follows, we will first consider horizontal-horizontal,
horizontal-vertical and vertical-vertical edge pairs and then turn to pairs of edges for
which at least one edge is adjacent to some padding point. Recall that β is chosen such
as to satisfy at = 8β.
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Horizontal-horizontal edge pair. Let (Xi, Xi+1) and (Xj , Xj+1) be two horizontal
edges. Horizontal edges (Xi, Xi+1) with xi, xi+1 ∈ Lk appear only if k ≤ t. We distinguish
the following cases.

1. xi, xi+1, xj , xj+1 ∈ Lk: Both edges are in the same layer. Note that no 2-change
swaps neighboring edges. Assume without loss of generality that (xi)x < (xi+1)x <
(xj)x < (xj+1)x (the other case is symmetric). Since ak ≥ at = 8β, we have that

dy(Xi, Xi+1) ≤ 2β ≤ ak − 2β ≤ dx(Xi, Xi+1).

Similarly, dy(Xj , Xj+1) ≤ dx(Xj , Xj+1) and dy(Xi+1, Xj) ≤ dx(Xi+1, Xj). This
shows that Lemma 10.4.6 is applicable to Xi, Xi+1, Xj , Xj+1, which yields that no
2-change can be profitable.

2. xi, xi+1 ∈ Lk, and xj , xj+1 ∈ Lk+1. By construction of T , the edges have opposite
direction. Assume that (xi)x < (xi+1)x and hence (xj)x > (xj+1)x (the other case is
symmetric). By construction (xi+1)x−(xi)x ≥ ak. We have that (Xi+1)x−(Xi)x ≥
ak − 2β ≥ at − 2β = 6β > 0. The same reasoning shows that (Xj)x > (Xj+1)x.
Similarly, one can show that py > qy for all p ∈ {Xj , Xj+1} and q ∈ {Xi, Xi+1}.
Hence the 2-change to (Xi, Xj) and (Xi+1, Xj+1) has a crossing, which by triangle
inequality cannot be profitable.

3. xi, xi+1 ∈ Lk, and xj , xj+1 ∈ Lk+` with ` ≥ 2 and k + ` ≤ t. Either both
edges have opposite directions, then the previous argument shows that a 2-change
is not profitable. Otherwise, note that the first requirement of Lemma 10.4.5,
ak ≥ ak+` + 4β, is fulfilled. Also note that β = at

8 ≤
ak

8p2` , since k ≤ t− `. We have√
d(xi, xi+1)d(xj , xj+1) + 4βd(xi, xi+1) + 2β =

√
akak+` + 4βak + 2β

≤

√
a2
k

p2`
+

a2
k

2p2`
+

ak
4p2`

≤
√

3

2
· ak
p`

+
ak

4p2`

≤

(√
3

2
· 1

p`−1
+

1

4p2`−1

)
ak
p

≤ ck ≤
`−1∑
m=0

ck+m = dy(xi, xj),

since for sufficiently large p, we have
√

3/2/p`−1 + 1/(4p2`−1) ≤ 1. Consequently,
Lemma 10.4.5 applies and shows that the 2-change does not yield an improvement.

Horizontal-vertical edge pair. Let (Xi, Xi+1) be a vertical edge and (Xj , Xj+1) be
a horizontal edge. We assume that the vertical edge is in V1, since the case xi, xi+1 ∈ V2

is symmetric. Exactly one of the following cases occurs.

1. xi ∈ Lk, xi+1 ∈ Lk+1 and xj , xj+1 ∈ Lk′ with k′ ∈ {k, k + 1}. The horizontal
edge is in the same layer as one of the end points of the vertical edge. Clearly,
d(Xi, Xi+1) ≤ ck + 2β and d(Xj , Xj+1) ≤ ak′ + 2β. Since a 2-change cannot swap
neighboring edges, at least one horizontal segment lies between both edges. By
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construction of the tour, one of the edges {xi, xj} and {xi+1, xj+1} crosses a vertical
distance of at least ck and the other a horizontal distance of at least 2ak′ . Hence

d(Xi, Xj) + d(Xi+1, Xj+1) ≥ 2ak′ + ck − 4β ≥ ak′ + ck + 4β,

since ak′ ≥ at = 8β.

2. xi ∈ Lk, xi+1 ∈ Lk+1 and xj , xj+1 ∈ Lk′ with k′ /∈ {k, k + 1}. As in the previous
case, d(Xi, Xi+1) ≤ ck+2β and d(Xj , Xj+1) ≤ ak′+2β. Consider first the case that
k′ < k, then by construction of the tour, one of the edges {xi, xj} and {xi+1, xj+1}
crosses a horizontal distance of at least ak′ and the other edge crosses a vertical
distance of at least ck′ , yielding

d(Xi, Xj) + d(Xi+1, Xj+1) ≥ ak′ + ck′ − 4β ≥ ak′ + ck + 4β,

since ck′ ≥ ck−1 ≥ ck + 8β. Otherwise, if k′ > k + 1, the edges xi, xj crosses a
vertical distance of at least ck+1 + ck and hence

d(Xi, Xj) + d(Xi+1, Xj+1) ≥ ck+1 + ck − 2β ≥ ak′ + ck + 4β,

since ck+1 ≥ ak+2 + 6β ≥ ak′ + 6β. Thus in both cases, a 2-change is not profitable.

Vertical-vertical edge pair. Let (Xi, Xi+1) and (Xj , Xj+1) be vertical edges.

1. xi ∈ Lk, xi+1 ∈ Lk+1 and xj ∈ Lk′ , xj+1 ∈ Lk′+1 with (xi)x = (xj)x, i.e., the
vertical edges are above each other. By swapping the x- and y-axis in Lemma 10.4.6,
we can show that a 2-change is not profitable, since it is easy to see that |(p−q)x| ≤
(p− q)y for all consecutive pairs (p, q) in (Xi, Xi+1, Xj , Xj+1).

2. xi ∈ Lk, xi+1 ∈ Lk+1 and xj ∈ Lk′ , xj+1 ∈ Lk′+1 with (xi)x 6= (xi′)x. Clearly,
d(Xi, Xj) ≥ a0 − 2β and d(Xi+1, Xj+1) ≥ a0 − 2β, while d(Xi, Xi+1) ≤ ck + 2β ≤
c0 + 2β and d(Xj , Xj+1) ≤ ck′ + 2β ≤ c0 + 2β. Hence a 2-change is not profitable,
since a0 ≥ 8β + c0.

Padding points. Since we assumed for convenience that the padding points are placed
at the central vertex C of Layer t in V3, only the edges with at least one endpoint in V3

are relevant candidates for the treatment of padding points. This is because all other
edges have both endpoints at a distance of 1/6 to the padding points, which can never
be accounted for by its edge length, since all edges except in Layer 0 are much shorter
than 1/3. Separately, the Layer-0 edges can be handled easily as well: an edge {Xi, Xi′}
with xi = xi′ ∈ X

pad
is a horizontal edge, hence the pair (Xi, Xi′) and a Layer-0 edge

trigger the corresponding case of horizontal-horizontal edge pairs with even smaller edge
length of the edge (Xi, Xi′) in Layer t.

It remains to handle the following cases, where we regard C as a padding point, i.e.,

C ∈ Xpad
, not as a Layer-t point.

1. xi, xi′ ∈ X
pad

, and xj , xj′ ∈ Lt. Clearly, d(Xj , Xj′) ≤ at + 2β and d(Xj , Xj′) ≤ 2β.
Furthermore, at least one of {xj , xj′} has a horizontal distance of at least 2at to
xi = xi′ . Hence,

d(Xi, Xj) + d(Xi′ , Xj′) ≥ 2at − 2β ≥ at + 4β ≥ d(Xj , Xj′) + d(Xi, Xi′)
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2. xi ∈ {C`, Cr}, xi′ ∈ X
pad

and xj , xj′ ∈ Lt. These edge pairs are exactly as regular
pairs of Layer-t edges and the corresponding case of horizontal-horizontal edge
pairs applies.

3. xi, xi′ , xj , xj′ ∈ X
pad ∪ {Cr, C`}. All such edges are 2-optimal by construction,

since a 2-optimal path from C` to Cr passing by all padding points was used.

This concludes the case analysis and thus the proof of Lemma 10.4.4.

10.5 Discussions and Open Problems

We have proved an upper bound of O(log 1/σ) for the smoothed approximation ratio of
2-Opt. Furthermore, we have proved that the lower bound of Chandra et al. [CKT99]
remains robust even for σ = O(1/

√
n). We leave as an open problem to generalize our

upper bounds to the one-step model to improve the current bound of O( d
√
φ) [ERV14],

but conjecture that this might be difficult.
While our bound significantly improves the previously known bound for the smoothed

approximation ratio of 2-Opt, we readily admit that it still does not explain the per-
formance observed in practice. A possible explanation is that when the initial tour is
not picked by an adversary or the nearest neighbor heuristic, but using a construction
heuristic such as the spanning tree heuristic or an insertion heuristic, an approximation
factor of 2 is guaranteed even before 2-Opt has begun to improve the tour [RSL77].
However, a smoothed analysis of the approximation ratio of 2-Opt initialized with a good
heuristic might be difficult: even in the average case, it is only known that the length

of an optimal TSP is concentrated around γd · n
d−1
d for some constant γd > 0. But the

precise value of γd is unknown [Yuk98]. Since experiments suggest that 2-Opt even with
good initialization does not achieve an approximation ratio of 1 + o(1) [JM97; JM02],
one has to deal with the precise constants, which seems challenging.

Finally, we conjecture that many examples for showing lower bounds for the approxi-
mation ratio of concrete algorithms for Euclidean optimization such as the TSP remain
stable under perturbation for σ = O(1/

√
n). The question remains whether such small

values of σ, although they often suffice to prove polynomial smoothed running time,
are essential to explain practical approximation ratios or if already slower decreasing σ
provide a sufficient explanation.



Chapter 11

Approximating the Fréchet
Distance on c-Packed Curves

This chapter is devoted to presenting an improved approximation algorithm for the
Fréchet distance on realistic input curves. Specifically, we prove the following main
result.

Theorem 9.2.1. For any 0 < ε ≤ 1, we can compute a (1 + ε)-approximation of the
continuous and discrete Fréchet distance on c-packed curves in time Õ(cn/

√
ε).

In any dimension d ≥ 5, this matches the conditional lower bound that for varying
ε > 0, there is no (1 + ε)-approximation in time O((cn/

√
ε)1−δ) for any δ > 0, unless

SETH fails [Bri14].
Our algorithm also yields improved running time guarantees for other models of

realistic input curves, like κ-bounded and κ-straight curves, where we are also able to
essentially replace ε by

√
ε in the running time bound. However, there are no matching

lower bounds known in these cases. We provide the details in Section 11.2.2.

Connection to lower bound. We obtained our new algorithm by investigating why
the conditional lower bound [Bri14] cannot be improved and exploiting the discovered
properties. Thus, a conditional lower bound made it possible to come up with Theo-
rem 9.2.1. This is similar to the results in Chapter 6, which we have obtained after noting
that our conditional lower bounds could not be strengthened beyond a certain bound.
Here, however, the reason why the conditional lower bound could not be strengthened in
some sense even suggested properties that make these cases tractable. In what follows,
we briefly describe this vague connection.

In the conditional lower bound [Bri14], two curves π and σ are constructed for
which it is hard to decide whether dF(π, σ) is at most δ or at least (1 + ε)δ. In this
construction, for some consecutive points πi, πi+1 and σj , σj+1 we want to force any
algorithm reaching (πi, σj) to make a simultaneous step to (πi+1, σj+1). That is, we
want that (i) ‖πi − σj‖, ‖πi+1 − σj+1‖ ≤ δ and (ii) ‖πi − σj+1‖, ‖πi+1 − σj‖ > (1 + ε)δ.
By elementary geometric arguments, (i) and (ii) imply ‖πi − πi+1‖, ‖σj − σj+1‖ ≥

√
εδ.

Thus, we cannot “compress” the curves π and σ too well (in terms of c-packedness),
resulting in the factor 1/

√
ε in the lower bound of [Bri14].

This bottleneck vaguely connects to the following useful property: Consider curves π
and σ with the property that every point on the curve has distance at most

√
εδ to

the starting point of the curve. Consider the line L containing the starting points of
π and σ. We project π and σ onto L, thereby obtaining one-dimensional curves π̂, σ̂
(see Figure 11.2 in Section 11.2.3). By the Pythagorean theorem, this projection keeps
pairwise distances between π and σ roughly fixed: If ‖πi − σj‖ is approximately δ, then
‖π̂i− σ̂j‖ = ‖πi−σj‖+O(εδ). Thus, for (1+ε)-approximation algorithms this projection
is admissible. We next describe how we use this property in our algorithm.
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Outline of the Algorithm. We give an improved algorithm that approximately
decides whether the Fréchet distance of two given curves π and σ is at most δ. Using a
construction of [DHPW12] to search over possible values of δ, this yields an improved
approximation algorithm. We partition our curves into subcurves, each of which is either
a long segment, i.e., a single segment of length at least Λ = Θ(

√
εδ), or a piece, i.e.,

a subcurve staying in the ball of radius Λ around its initial vertex. We then run the
usual algorithm that explores the reachable free-space (see Section 11.1 for definitions),
however, we treat regions spanned by a piece π′ of π and a piece σ′ of σ in a special way.
Typically, if π′ and σ′ consist of n′ and m′ segments, respectively, then their free-space
could be resolved in time O(n′m′). Our overall speedup comes from reducing this runtime
to Õ(n′ +m′), which is our first main contribution. As discussed above, we project π′, σ′

onto the line through their starting points, obtaining one-dimensional curves π̂ and σ̂
without changing pairwise distances significantly. Moreover, we show how to ensure that
π̂ and σ̂ are separated, i.e., all vertices of π̂ lie on the one side of some point z on the line
and all vertices of σ̂ lie on the other side. Hence, we reduced our problem to resolving
the free-space region of one-dimensional separated curves.

It is easy to see that the Fréchet distance of one-dimensional separated curves can
be computed in near-linear time, since we can walk along π and σ with (appropriately
defined) greedy steps to either find a feasible traversal or bottleneck subcurves. However,
we face the additional difficulty that we have to resolve the free-space region of one-
dimensional separated curves, i.e., given entry points on π̂ and σ̂, compute all exits on
π̂ and σ̂. Our second main contribution is to present an extension of the easy greedy
algorithm to handle this more complex problem.

Interestingly, Bringmann and Mulzer [BM16] very recently showed that the assump-
tion of separated curves is indeed necessary: Already approximating the discrete Fréchet
distance on general one-dimensional curves in (strongly) subquadratic time is not possible
unless SETH fails.

Organization. We start with basic definitions and techniques borrowed from Driemel
et al. [DHPW12] in Section 11.1. In Section 11.2, we present our approximate decision
procedure which reduces the problem to one-dimensional separated curves. We solve
the latter in Section 11.3. Here, we focus on the continuous Fréchet distance. It is
straightforward to obtain a similar algorithm for the discrete variant: in this case,
Section 11.3.1 becomes obsolete, which is why we save a factor of log 1/ε in the running
time.

11.1 Preliminaries

Throughout this chapter, we fix the dimension d ≥ 2. For z ∈ Rd, r > 0 we let B(z, r)
be the ball of radius r around z. For integers i ≤ j, we let [i..j] := {i, i+ 1, . . . , j}, which
is not to be confused with the real interval [i, j] = {x ∈ R | i ≤ x ≤ j}. A (polygonal)
curve π is defined by its vertices (π1, . . . , πn) with πp ∈ Rd, p ∈ [1..n]. We let |π| = n
be the number of vertices of π and ‖π‖ be its total length

∑n−1
i=1 ‖πi − πi+1‖, where ‖z‖

denotes the Euclidean norm of z ∈ Rd. We write πp..b for the subcurve (πp, πp+1, . . . , πb).
Similarly, for an interval I = [p..b] we write πI = πp..b. We can also view π as a continuous
function π : [1, n]→ Rd with πp+λ = (1− λ)πp + λπp+1 for p ∈ [1..n− 1] and λ ∈ [0, 1].
For the second curve σ = (σ1, . . . , σm) we will use indices of the form σq..d for the reader’s
convenience.
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Variants of the Fréchet distance. Let Φn be the set of all continuous and non-
decreasing functions φ from [0, 1] onto [1, n]. The continuous Fréchet distance between
two curves π and σ with n and m vertices, respectively, is defined as

dF(π, σ) := inf
φ1∈Φn
φ2∈Φm

max
t∈[0,1]

‖πφ1(t) − σφ2(t)‖.

We call φ := (φ1, φ2) a (continuous) traversal of (π, σ), and say that it has width
maxt∈[0,1] ‖πφ1(t) − σφ2(t)‖.

In the discrete case, we let ∆n be the set of all non-decreasing functions φ from
[0, 1] onto [1..n]. We obtain the discrete Fréchet distance ddF(π, σ) by replacing Φn and
Φm by ∆n and ∆m. This also yields analogous notions of a (discrete) traversal and its
width. Note that any φ ∈ ∆n is a staircase function attaining all values in [1..n]. Hence,
(φ1(t), φ2(t)) changes only at finitely many points in time t. At any such time step, we
jump to the next vertex in π or σ or both.

Free-space diagram. The discrete free-space of curves π, σ is defined as Dd≤δ(π, σ) :=
{(p, q) ∈ [1..n]× [1..m] | ‖πp−σq‖ ≤ δ}. Note that any discrete traversal of π, σ of width
at most δ corresponds to a monotone sequence of points in the free-space where at each
point in time we increase p or q or both. Because of this property, the free-space is a
standard concept used in many algorithms for the Fréchet distance.

The continuous free-space is defined as D≤δ(π, σ) := {(p, q) ∈ [1, n]× [1,m] | ‖πp −
σq‖ ≤ δ}. Again, a monotone path from (1, 1) to (n,m) in D≤δ(π, σ) corresponds to a
traversal of width at most δ. It is well known [AG95; God91] that each free-space cell
Ci,j := {(p, q) ∈ [i, i+ 1]× [j, j + 1] | ‖πp − σq‖ ≤ δ} (for i ∈ [1..n− 1], j ∈ [1..m− 1]) is
convex, specifically it is the intersection of an ellipse with [i, i+1]× [j, j+1]. In particular,
the intersection of the free-space with any interval [i, i+ 1]×{j} (or {i}× [j, j+ 1]) is an
interval Ihi,j (or Ivi,j), and for any such interval the subset that is reachable by a monotone

path from (1, 1) is an interval Rhi,j (or Rvi,j). Moreover, in constant time one can solve the

following free-space cell problem: Given intervals Rhi,j ⊆ [i, i+1]×{j}, Rvi,j ⊆ {i}×[j, j+1],

determine the intervals Rhi,j+1 ⊆ [i, i+ 1]×{j + 1}, Rvi+1,j ⊆ {i+ 1}× [j, j + 1] consisting

of all points that are reachable from a point in Rhi,j ∪Rvi,j by a monotone path within the
free-space cell Ci,j . Solving this problem for all cells from lower left to upper right we
determine whether (n,m) is reachable from (1, 1) by a monotone path and thus decide
whether the Fréchet distance is at most δ.

From approximate deciders to approximation algorithms. An approximate de-
cider is an algorithm that, given curves π, σ and δ > 0, 0 < ε ≤ 1, returns one of the
outputs (1) dF(π, σ) > δ or (2) dF(π, σ) ≤ (1 + ε)δ. In any case, the returned answer has
to be correct. In particular, if δ < dF(π, σ) ≤ (1 + ε)δ the algorithm may return either
of the two outputs.

Let D(π, σ, δ, ε) be the running time of an approximate decider and set D(π, σ, ε) :=
maxδ>0D(π, σ, δ, ε). We assume polynomial dependence on ε, i.e., that there are constants
0 < c1 < c2 < 1 such that for any 0 < ε ≤ 1 we have c1D(π, σ, ε/2) ≤ D(π, σ, ε) ≤
c2D(π, σ, ε/2). Driemel et al. [DHPW12] gave the following construction of a (1 + ε)-
approximation for the Fréchet distance given an approximate decider. (This follows
from [DHPW12, Theorem 3.15] after replacing their concrete approximate decider with
running time “O(N(ε, π, σ))” by any approximate decider with running time D(π, σ, ε).)
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(a) This figure illustrates our partitioning of a
curve into pieces (contained in dashed circles)
and long segments (bold edges).

(b) The free-space problem for pieces π′ and
σ′ in the free-space diagram of π and σ. Given
entry intervals on the lower and left boundary
of the region, compute exit intervals on the
upper and right boundary.

Figure 11.1: Definition and treatment of pieces.

Lemma 11.1.1. Given an approximate decider with running time D(π, σ, ε) we can
construct a (1+ε)-approximation for the Fréchet distance with running time O

(
D(π, σ, ε)+

D(π, σ, 1) log n
)
.

11.2 The Approximate Decider

By Lemma 11.1.1 it suffices to give an improved approximate decider with running time
O( cn√

ε
log2(1/ε)) for the Fréchet distance to prove Theorem 9.2.1.

Long segments and pieces. Let π and σ be curves for which we are to (approximately)
decide whether dF(π, σ) > δ or dF(π, σ) ≤ (1 + ε)δ. We first partition π and σ into
subcurves, each of which is either a long segment, i.e., a single segment of length at least
Λ = Θ(

√
εδ), or a piece, i.e., a subcurve staying in the ball of radius Λ around its initial

vertex (see Figure 11.1a). More formally, we modify the curve π by introducing new
vertices as follows. Start with the initial vertex π1 as current vertex. If the segment
following the current vertex has length at least Λ = Λε,δ := min{1

2

√
ε, 1

4} · δ then mark
this segment as long and set the next vertex as the current vertex. Otherwise follow π
from the current vertex πx to the first point πy such that ‖πx − πy‖ = Λ (or until we
reach the last vertex of π). If πy is not a vertex, but lies on some segment of π, then
introduce a new vertex at πy. Mark πx..y as a piece of π and set πy as current vertex.
Repeat until π is completely traversed. Since this procedure introduces at most |π| new
vertices and does not change the shape of π, with slight abuse of notation we call the
resulting curve again π and set n := |π|. This partitions π into subcurves π1, . . . , πk,
with πs = πps..bs , where every part πs is either (see also Figure 11.1a)

• a long segment : bs = ps + 1 and ‖πps − πbs‖ ≥ Λ, or

• a piece: ‖πps − πbs‖ = Λ and ‖πps − πx‖ < Λ for all x ∈ [ps, bs).
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Note that the last piece actually might have distance ‖πps − πbs‖ less than Λ, however,
for simplicity we assume equality for all pieces (in fact, a special handling of the last
piece would only be necessary in Lemmas 11.2.6 and 11.2.9). Similarly, we introduce
new vertices on σ and partition it into subcurves σ1, . . . , σ`, with σt = σqt..dt , each of
which is a long segment or a piece. Let m := |σ|.

Free-space regions. We follow the usual approach of exploring the reachable free-
space (see Section 11.1). However, we treat regions spanned by a piece π′ of π and a
piece σ′ of σ in a special way. Typically, if π′, σ′ consist of n′,m′ segments then their
free-space would be resolved in time O(n′m′), by resolving each of the n′m′ induced
free-space cells in constant time. We show that by resorting to approximation we can
reduce this running time to Õ(n′+m′). This is made formal by the following subproblem
and lemma (see also Figure 11.1b).

Problem 11.2.1 (Free-space region problem). Given δ > 0, 0 < ε ≤ 1, curves π and
σ with n and m vertices, respectively, and entry intervals R̃hi,1 ⊆ [i, i+1]×{1} for i ∈ [1..n)

and R̃v1,j ⊆ {1}× [j, j+1] for j ∈ [1..m), compute exit intervals R̃hi,m ⊆ [i, i+1]×{m} for

i ∈ [1..n) and R̃vn,j ⊆ {n}× [j, j+ 1] for j ∈ [1..m) such that (1) the exit intervals contain
all points reachable from the entry intervals by a monotone path in D≤δ(π, σ) and (2)
all points in the exit intervals are reachable from the entry intervals by a monotone path
in D≤(1+ε)δ(π, σ).

To stress that we work with approximations, we denote reachable intervals by R̃
instead of R in the remainder of the chapter.

Lemma 11.2.2. If π and σ are pieces then the free-space region problem can be solved
in time O((n+m) log2 1/ε).

We will prove this lemma in Sections 11.2.3 and 11.3. Using the algorithm of the
above lemma, we obtain an approximate decider for the Fréchet distance as follows.

Algorithm 11.2.3. We consider all regions rs,t = [ps, bs]× [qt, dt] spanned by parts πs

and σt. With each region rs,t we are going to store the entry intervals R̃hi,qt ⊆ [i, i+1]×{qt}
for i ∈ [ps..bs) and R̃vps,j ⊆ {ps} × [j, j + 1] for j ∈ [qt..dt). We correctly initialize the

outer reachability intervals R̃hi,1 and R̃v1,j . Then we enumerate all regions sorted by
increasing layer s+ t, and among all regions with equal s+ t sorted by s. For each region
rs,t we resolve its free-space region: (1) If both πs, σt are long segments, we can resolve
the free-space cell rs,t in constant time, (2) if πs is a piece and σt is a long segment,
we sequentially resolve the free-space cells [i, i+ 1]× [qt, dt] for i = ps, . . . , bs − 1 (and
symmetrically if πs is a long segment and σt a piece), and (3) if both πs, σt are pieces
we solve the corresponding free-space region problem using Lemma 11.2.2. Finally, we
return dF(π, σ) ≤ (1 + ε)δ if (n,m) ∈ R̃hn−1,m and dF(π, σ) > δ otherwise.

Observe that instead of enumerating all regions, we may enumerate only reachable
regions, i.e., regions where some stored entry interval is non-empty. Indeed, if the
reachable regions in layer L are rs1,L−s1 , . . . , rsa,L−sa , sorted by s1 ≤ . . . ≤ sa, then the
reachable regions in layer L+1 are among {rsi+1,L−si , rsi,L−si+1 | 1 ≤ i ≤ a}, and we can
check for each such region in constant time whether it is reachable, so we can efficiently
enumerate all reachable regions in layer L + 1, again sorted by s. This trick was also
used in [DHPW12, Lemma 3.1].

Lemma 11.2.4. Algorithm 11.2.3 is a correct approximate decider.
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Proof. Observe that if (n,m) ∈ R̃hn−1,m then there exists a monotone path from (1, 1) to
(n,m) in D≤(1+ε)δ(π, σ), which implies dF(π, σ) ≤ (1 + ε)δ. If dF(π, σ) ≤ δ then there is

a monotone path from (1, 1) to (n,m) in D≤δ(π, σ), implying (n,m) ∈ R̃hn−1,m.

Let us analyze the time complexity of Algorithm 11.2.3. Let M be the set of all
non-empty regions rs,t. We define the free-space complexity

N(π, σ, δ, ε) :=
∑

(s,t)∈M

(|πs|+ |σt|),

and set N(π, σ, ε) := maxδ>0N(π, σ, δ, ε). Since the algorithm considers only reachable
regions and any reachable region is also non-empty, the running time of Algorithm 11.2.3
is O(N(π, σ, ε) log2 1/ε). Indeed, (1) if πs, σt are both long segments then the running
time for resolving their free-space cell is constant and they contribute a constant to
N(π, σ, ε), (2) if one of πs, σt is a long segment and the other a piece then the running
time is O(|πs|+ |σt|), which is their contribution to N(π, σ, ε), and (3) if both πs, σt are
pieces, then solving the free-space region problem takes time O((|πs|+ |σt|) log2(1/ε))
by Lemma 11.2.2. This proves the following lemma.

Lemma 11.2.5. The approximate decider in Algorithm 11.2.3 runs in time D(π, σ, ε) =
O(N(π, σ, ε) · log2 1/ε).

To prove Theorem 9.2.1, it remains to give a bound on N(π, σ, ε) for c-packed curves,
which is done in the following section. In Section 11.2.2, we give corresponding bounds
for κ-bounded and κ-straight curves, yielding an improved algorithm for such curves as
well.

11.2.1 Free-Space Complexity of c-Packed Curves

Recall that a curve π is c-packed if for any point z ∈ Rd and any radius r > 0 the total
length of π inside the ball B(z, r) is at most cr.

Lemma 11.2.6. Let π, σ be c-packed curves with n vertices in total and ε > 0. Then
N(π, σ, ε) = O(cn/

√
ε).

Proof. Our proof uses a similar argument as [DHPW12, Lemma 4.4]. Let δ > 0 be
arbitrary. We charge N(π, σ, ε) to the segments of π and σ as follows. For any non-empty
region rs,t, we analyze: (1) if both πs, σt are long segments, then the longer segment
charges 1 to the shorter one, (2) if πs is a piece and σt a long segment, then σt charges 1
to each of the |πs| segments of πs (we proceed symmetrically if πs is a long segment and
σt a piece), and (3) if both πs, σt are pieces then we charge 1 to each of the |πs|+ |σt|
segments of πs and σt (each segment of πs is charged by the piece σt, and the other way
round). This accounts for N(π, σ, ε), up to constant factors.

Let e be any segment of π. By construction, every part σt that charges 1 to e has
length ‖σt‖ ≥ ‖e‖ (irrespective of whether σt is a long segment or piece): (1) If both
e, σt are long segments then σt is only charging e if its length is longer, and (2) if e is
contained in a piece πs then ‖e‖ ≤ Λ ≤ ‖σt‖, irrespective of σt being a long segment or
piece.

Moreover, if σt is charging e, then σt and e have distance at most (1 + ε)δ + 2Λ.
Indeed, if the (ε-approximate) free-space cell of segments πi..i+1, σj..j+1 is non-empty
then the segments have distance at most (1 + ε)δ. For pieces πs, σt, for a charge to
happen it suffices that some segments of πs, σt lie in distance (1 + ε)δ, but then any pair
of segments is in distance (1 + ε)δ + 2Λ.
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It follows that σt contributes at least µ := max{‖e‖,Λ} to the length of σ in the ball
B of radius 1

2‖e‖+ max{‖e‖,Λ}+ ((1 + ε)δ + 2Λ) around the midpoint of e. Since σ is
c-packed, the number of charges to e is at most

‖σ ∩B‖
µ

≤ cr

µ
≤
c(3

2‖e‖+ (1 + ε)δ + 3Λ)

max{‖e‖,Λ}
≤ 9

2c+
c(1 + ε)δ

min{1
2

√
ε, 1

4} · δ
= O

( c√
ε

)
.

Summing up over all segments e of π, the free-space complexity N(π, σ, ε) is bounded by
O(cn/

√
ε).

Combining Lemmas 11.2.6, 11.2.5, and 11.1.1, we obtain an approximation algorithm
for the Fréchet distance with running time O( cn√

ε
log2 1/ε+ cn log n) = Õ( cn√

ε
), as desired.

11.2.2 Free-Space Complexity of κ-Bounded and κ-Straight Curves

Definition 11.2.7. Let κ ≥ 1 be a given parameter. A curve π is κ-straight if for any
p, b ∈ [1, |π|] we have ‖πp..b‖ ≤ κ‖πp − πb‖. A curve π is κ-bounded if for all p, b the
subcurve πp..b is contained in B(πp, r) ∪B(πb, r), where r = κ

2‖πp − πb‖.

The following lemma from [DHPW12] allows us to transfer our speedup for c-packed
curves directly to κ-straight curves. Thus, we improve the best previous algorithm for
κ-straight curves with running time O(κn/ε+ κn log n) [DHPW12] to time Õ(κn/

√
ε).

Lemma 11.2.8. A κ-straight curve is 2κ-packed.

In the remainder of this section we consider κ-bounded curves, closely follow-
ing [DHPW12, Sect. 4.2].

Lemma 11.2.9. Let δ > 0, 0 < ε ≤ 1, λ > 0, and let π be a κ-bounded curve with
disjoint subcurves π1, . . . , πk, where πs = πps..bs and ‖πps − πbs‖ ≥ λ for all s. Then
for any z ∈ Rd, r > 0 the number of subcurves πs intersecting B(z, r) is bounded by
O(κd(1 + r/λ)d).

Proof. Let πs1 , . . . , πs` be the subcurves that intersect the ball B = B(z, r). Let X =
{s1, s3, . . . , } be the odd indices among the intersecting subcurves. For all s ∈ X
pick any point πxs in πs ∩ B. Between any points πxs , πxs′ there must lie an even
subcurve πs2i . As the endpoints of this even subcurve have distance at least λ, we have
‖πxs − πxs′‖ ≥ λ/(κ+ 1). Otherwise, setting r′ := κ

2‖πxs − πxs′‖, the even part would
not fit into B(πxs , r

′) ∪B(πxs′ , r
′) which has diameter (κ+ 1)‖πxs − πxs′‖. Hence, the

balls B(πxs , λ/2(κ+ 1)) are disjoint and contained in B(z, r + λ). A standard packing
argument now shows that ` ≤ 2 · (r + λ)d/(λ/2(κ+ 1))d = O(κd(1 + r/λ)d).

Lemma 11.2.10. For any κ-bounded curves π, σ with n vertices in total, 0 < ε ≤ 1, we
have N(π, σ, ε) = O((κ/

√
ε)dn).

Proof. Let δ > 0 and consider the partitionings into long segments and pieces π1, . . . , πk,
σ1, . . . , σ` computed by our algorithm. Then σt = σqt..dt satisfies ‖σqt − σdt‖ ≥ Λ =
min{1

2

√
ε, 1

4} ·δ for all t. We use the same charging scheme as in Lemma 11.2.6. Consider
any segment v of a piece πs. The segment v can be charged by a part σt which is either a
long segment or a piece. In both cases, σt intersects the ball B centered at the midpoint
of ‖v‖ with radius r := (1 + ε)δ + 2Λ. By Lemma 11.2.9 with λ := Λ, the number of
such charges is bounded by O((κ/

√
ε)d).

Now consider any long segment v of π. The segment v can be charged by segments of
σ which are longer than v. Any such charging gives rise to a long segment σt intersecting
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Figure 11.2: Projection of the pieces π, σ onto the line L through their
initial vertices. This yields one-dimensional separated curves π̂, σ̂.

the ball B centered at the midpoint of v of radius r := (1 + ε)δ+ 1
2‖v‖. By Lemma 11.2.9

with λ := ‖v‖, the number of such charges is bounded by O(κd(3
2 + (1 + ε)δ/‖v‖)d) =

O((κ/
√
ε)d), since ‖v‖ ≥ Λ = min{1

2

√
ε, 1

4} · δ.
Hence, every segment of π is charged O((κ/

√
ε)d) times; a symmetric statement holds

for σ.

Together with Lemmas 11.1.1 and 11.2.5, the above lemma yields the following result.
The best previously known running time was O((κ/ε)dn+ κdn log n) [DHPW12].

Theorem 11.2.11. For any 0 < ε ≤ 1 there is a (1+ε)-approximation for the continuous
and discrete Fréchet distance on κ-bounded curves with n vertices in total in time
O((κ/

√
ε)dn log2 1/ε+ κdn log n) = Õ((κ/

√
ε)dn).

11.2.3 Solving the Free-Space Region Problem on Pieces

It remains to prove Lemma 11.2.2. Let (π, σ, δ, ε) be an instance of the free-space
region problem, where n := |π|, m := |σ|, with ‖π1 − πx‖, ‖σ1 − σy‖ ≤ Λε,δ = Λ for
any x ∈ [1, n], y ∈ [1,m] (and entry intervals R̃hi,1 ⊆ [i, i + 1] × {1} for i ∈ [1..n) and

R̃v1,j ⊆ {1} × [j, j + 1] for j ∈ [1..m)). We reduce this instance to the free-space region
problem on one-dimensional separated curves, i.e., curves π̂, σ̂ in R such that all vertices
of π̂ lie above 0 and all vertices of σ̂ lie below 0.

Since π and σ stay within distance Λ of their initial vertices, if their initial vertices
are within distance ‖π1−σ1‖ ≤ δ− 2Λ then all pairs of points in π, σ are within distance
δ. In this case, we find a translation of π making ‖π1 − σ1‖ = δ − 2Λ and all pairwise
distances are still at most δ. This ensures that the curves π, σ are contained in disjoint
balls of radius Λ ≤ 1

4δ centered at their initial vertices.
Consider the line L through the initial vertices π1 and σ1. Denote by Π: Rd → L

the projection onto L. Now, instead of the pieces π, σ we consider their projections
π̂ := Π(π) = (Π(π1), . . . ,Π(πn)) and σ̂ := Π(σ) = (Π(σ1), . . . ,Π(σm)), see Figure 11.2.
Note that after rotation and translation we can assume that π̂ and σ̂ lie on R ⊂ Rd and
π̂ and σ̂ are separated by 0 ∈ R (since π and σ are contained in disjoint balls centered
on L). Now we solve the free-space region problem on π̂, σ̂, δ̂ := δ, and ε̂ := 1

2ε (with

the same entry intervals R̃hi,j , R̃
v
i,j)).

Lemma 11.2.12. Any solution to the free-space region problem on (π̂, σ̂, δ̂, ε̂) solves the
free-space region problem on (π, σ, δ, ε).
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Proof. Let x, y be vertices of π, σ, respectively. Clearly, ‖Π(x)−Π(y)‖ ≤ ‖x−y‖. Hence,
any monotone path in D≤δ(π, σ) yields a monotone path in D≤δ(π̂, σ̂) = D≤δ̂(π̂, σ̂), so it
will be found.

Note that x and y have distance at most Λ to L. Since Π(x)− Π(y) and x− Π(x)−
(y −Π(y)) are orthogonal, we can use the Pythagorean theorem to obtain

‖x− y‖ =
√
‖Π(x)−Π(y)‖2 + ‖x−Π(x)− (y −Π(y))‖2 ≤

√
‖Π(x)−Π(y)‖2 + (2Λ)2.

Hence, any monotone path in D≤(1+ε̂)δ̂(π̂, σ̂) yields a monotone path in D≤α(π, σ) with

α ≤
√

(1 + ε̂)2δ̂2 + (2Λ)2. Plugging in δ̂ = δ, ε̂ = 1
2ε, and Λ = min{1

2

√
ε, 1

4} · δ we obtain

α ≤
√

(1 + 1
2ε)

2 + ε · δ ≤ (1 + ε) δ. Thus, the desired guarantees for the free-space region

problem are satisfied.

Lemma 11.2.2 now follows from Lemma 11.3.1 below, that we prove in the next
section.

11.3 On One-Dimensional Separated Curves

In this section, we show the following lemma.

Lemma 11.3.1. The free-space region problem on one-dimensional separated curves can
be solved in time O((n+m) log2 1/ε).

First, in Section 11.3.1, we show how to reduce this problem to a discrete version,
meaning that we can eliminate the continuous Fréchet distance and only consider the
much simpler discrete Fréchet distance (for general curves such a reduction is not known
to exist, but we only need it for one-dimensional separated curves). Moreover, we simplify
our curves further by rounding the vertices. This yields a reduction to the following
subproblem. Note that we no longer ask for an approximation algorithm.

Problem 11.3.2 (Reduced free-space problem). Given δ > 0 and 0 < ε ≤ 1, given
one-dimensional separated curves π, σ with n,m vertices and all vertex coordinates being
multiples of 1

4εδ, and given an entry set E ⊆ [1..n], compute the exit set F π ⊆ [1..n]
consisting of all points f such that ddF(πe..f , σ) ≤ δ for some e ∈ E and the exit set
F σ ⊆ [1..m] consisting of all points f such that ddF(πe..n, σ1..f ) ≤ δ for some e ∈ E.

Lemma 11.3.3. The reduced free-space problem can be solved in time O((n+m) log 1/ε).

As a second step, we prove the above lemma. We first consider the special case
of E = {1} and the problem of deciding whether n ∈ F π, i.e., the lower left corner
(1, 1) of the free-space is the only entry point and we want to determine whether the
upper right corner (n,m) is an exit. This is equivalent to deciding whether the discrete
Fréchet distance of π, σ is at most δ, which has an easy near-linear time algorithm as
π, σ are one-dimensional and separated. We present a greedy algorithm for this special
case in Section 11.3.2. To extend this to the reduced free-space problem, we prove
useful structural properties of one-dimensional separated curves in Section 11.3.3. With
these, we first solve the problem of determining the exit set F π assuming E = {1} in
Section 11.3.4. Then we show for general E ⊆ [1..n] how to compute F π (Section 11.3.4)
and F σ (Section 11.3.4).
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11.3.1 Reduction from the Continuous to the Discrete Case

We show that on one-dimensional separated curves, discrete and continuous Fréchet
distance coincide. Moreover, subdividing one-dimensional separated curves does not
change their discrete Fréchet distance.

Lemma 11.3.4. Let π, σ be one-dimensional separated curves. Then we have dF(π, σ) =
ddF(π, σ). Moreover, assume that we subdivide any segments of π, σ by adding new
vertices along the segments, yieldings curves π′, σ′. Then we have ddF(π′, σ′) = ddF(π, σ).

Proof. It is known that dF(π, σ) ≤ ddF(π, σ) holds for all curves π, σ. Thus, we only
need to show that any continuous traversal φ = (φ1, φ2) of π, σ can be transformed into
a discrete traversal with the same width. We adapt φ as follows. For any point in time
t ∈ [0, 1], if φ1(t) is at a vertex of π we set φ′1(t) := φ1(t). Otherwise φ1(t) is in the
interior of a segment πi..i+1 of π. Let j ∈ {i, i + 1} minimize πj . We set φ′1(t) := j.
Observe that φ′1 indeed is a non-decreasing function from [0, 1] onto [1..n]. A similar
construction, where we round to the value j ∈ {i, i+ 1} maximizing σj , yields φ′2 and we
obtain a discrete traversal φ′ = (φ′1, φ

′
2). The width of φ′ is at most the width of φ since

we rounded in the right way, i.e., we have π(φ′1(t)) ≤ π(φ1(t)) and σ(φ′2(t)) ≥ σ(φ2(t))
so that ‖π(φ′1(t))− σ(φ′2(t))‖ ≤ ‖π(φ1(t))− σ(φ2(t))‖ for all t ∈ [0, 1].

Note that the discrete Fréchet distance is in general not preserved under subdivision
of segments, but the continuous Fréchet distance is. Thus, the second statement follows
from the first one, ddF(π, σ) = dF(π, σ) = dF(π′, σ′) = ddF(π′, σ′).

The above lemma enables the following trick. Consider any finite sets E ⊆ [1, n] and
F ⊆ [1, n]. Add πx as a vertex to π for any x ∈ E ∪ F , with slight abuse of notation we
say that π now has vertices at πi, i ∈ [1..n], and πx, x ∈ E ∪ F . Mark the vertices πx,
x ∈ E, as entries. Now solve the reduced free-space problem instance (π, σ,E). This
yields the set F π of all values f ∈ F such that there is an e ∈ E with ddF(πe..f , σ) ≤ δ,
which by Lemma 11.3.4 is equivalent to dF(πe..f , σ) ≤ δ. Thus, we computed all exit
points in F given entry points in E, with respect to the continuous Fréchet distance.
This is already close to a solution of the free-space region problem, however, we have to
cope with entry and exit intervals.

For the full reduction we need two more arguments. First, we can replace all non-
empty input intervals R̃hi,1 by the leftmost point (yi, 1) in R̃hi,1 ∩ D≤δ(π, σ), specifically,

we show that any traversal starting in a point in R̃hi,1 can be transformed into a traversal
starting in (yi, 1). Thus, we add πyi as a vertex and mark it as an entry to obtain a finite
and small set of entry points. Second, for any segment πi..i+1 we call a point f ∈ [i, i+ 1]
reachable if there is an e ∈ E with dF(πe..f , σ) ≤ δ. We show that if f is reachable then
essentially all points f ′ ∈ [i, i + 1] with πf ′ ≤ πf are also reachable. Thus, the set of
reachable points is an interval with one trivial endpoint, and we only need to search for
the other endpoint of the interval, which can be done by binary search. Moreover, we
can parallelize all these binary searches, as solving one reduced free-space problem can
answer for every segment of π whether a particular point on this segment is reachable
(after adding this point as a vertex). To make these binary searches finite, we round
all vertices of π and σ to multiples of γ := 1

4εδ and only search for exit points that
are multiples of γ. This is allowed since the free-space region problem only asks for an
approximate answer. A similar procedure yields the exits on σ reachable from entries
on π, and determining the exits reachable from entries on σ is a symmetric problem.
Since for the binary searches we reduce to O(log 1/ε) instances of the reduced free-space
problem, Lemma 11.3.1 follows from Lemma 11.3.3.
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In the following we present the details of this approach. Let π, σ be one-dimensional
separated curves, i.e., they are contained in R, all vertices of π lie above 0, and all
vertices of σ lie below 0. Let n = |π|, m = |σ|, δ > 0 and 0 < ε ≤ 1. Consider entry
intervals R̃hi,1 ⊆ [i, i + 1] × {1} for i ∈ [1..n) and R̃v1,j ⊆ {1} × [j, j + 1] for j ∈ [1..m).
We reduce this instance of the free-space region problem to O(log 1/ε) instances of the
reduced free-space problem.

First we change π, σ as follows. (1) Let Z ⊂ R be the set of all integral multiples1 of
γ := 1

4εδ. We round all vertices of π, σ to values in Z, where we round down everything
in π and round up in σ, yielding curves π′, σ′. (2) Let I ⊆ [1..n) be the set of all i
with nonempty R̃hi,1 ∩ D≤δ(π′, σ′). For any i ∈ I let (y′i, 1) be the leftmost point in

R̃hi,1∩D≤δ(π′, σ′) and let yi ≤ y′i be maximal with π′yi ∈ Z. Add π′yi as a vertex to π′ and
mark it as an entry. With slight abuse of notation, we say that π′ now has its vertices at
π′i, i ∈ [1..n] and π′yi , i ∈ I. We let E = {yi | i ∈ I} be the indices of the entry vertices.
Note that (π′, σ′, E) can be computed in time O(n+m).

For every i ∈ [1..n) consider the multiples of γ on π′i..i+1, i.e., Si := {x ∈ [i, i+ 1] |
π′x ∈ Z}. Note that Si is either [i, i+1] (if πi = πi+1) or it forms an arithmetic progression,
specifically Si = {i, i+1/ti, i+2/ti, . . . , i+1} for some ti ∈ N, since π′i, π

′
i+1 are in Z and

π′x is a linear function in x. Thus, Si and subsequences of Si can be handled efficiently,
we omit these details in the following. We want to determine the set Fi of all f ∈ Si such
that there is an e ∈ E with ddF(π′e..f , σ

′) ≤ δ. We first argue that Fi is of an easy form.

Lemma 11.3.5. If Fi is non-empty then we have Fi = [a, b]∩ Si for some a, b ∈ Si with
{a, b} ∩ {i, yi, i+ 1} 6= ∅ (or {a, b} ∩ {i, i+ 1} 6= ∅ if yi does not exist).

Proof. We show that if any f ∈ Si is reachable, i.e., there is an e ∈ E with ddF(π′e..f , σ
′) ≤

δ, then any f ′ ∈ Si with π′f ′ ≤ π′f and yi 6∈ (f ′, f ] is also reachable. This proves the
claim. Let φ be any traversal of π′e..f , σ

′ of width at most δ. Note that e ≤ f ′, since
yi 6∈ (f ′, f ] and yi is the only entry on the segment containing f and f ′. If f ′ ≤ f then
we change φ to stop at π′f ′ once it arrives at this point, and we traverse the remaining
part of σ staying fixed at π′f ′ . Since π′f ′ ≤ π′f this does not increase the width of the
traversal and shows that f ′ is also reachable. If f ′ > f then we append a traversal to φ
that stays fixed at σ′m but walks in π′ from π′f to π′f ′ . Again since π′f ′ ≤ π′f this does
not increase the width of the traversal and shows that f ′ is also reachable.

Note that by solving the reduced free-space problem on (π′, σ′, E) we decide for each
f ∈ [n] ∪ {yi | i ∈ I} whether there is an e ∈ E with ddF(π′e..f , σ

′) ≤ δ. By the above
lemma, this yields one of the endpoints of the interval Fi, say a, and we only have to
determine the other endpoint, say b. In the special case π′i = π′i+1 we even determined
both endpoints already, so from now on we can assume π′i 6= π′i+1 so that |Si| <∞. We
search for the other endpoint of Fi using a binary search over Si. To test whether any
z ∈ Si is in Fi, we add π′z as a vertex of π′ and solve the reduced free-space problem on
(π′, σ′, E). If z is in the output set F π then it is in Fi.

Note that any vertex π′x > δ on π′ does not have any point of σ within distance δ,
which is preserved by setting π′x := 2δ. Thus, we can assume that π′ takes values in
[0, 2δ], which implies |Si| ≤ O(1/ε), so that our binary search needs O(log 1/ε) steps.
Moreover, note that we can parallelize these binary searches, since we can add a vertex zi
on every subcurve π′i..i+1, so that one call to the reduced free-space problem determines
for every zi whether it is reachable. Here we use Lemma 11.3.4, since we need that
further subdivision of some segments of π′ does not change the discrete Fréchet distance.

1Without loss of generality we assume 1/ε ∈ N so that δ ∈ Z.
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Note that since we add O(n) vertices to π′ and since we need O(log 1/ε) steps of binary
search, Lemma 11.3.3 implies a total running time of O((n+m) log2 1/ε).

We thus computed Fi = [a, b] ∩ Si with a, b ∈ Si. We extend Fi slightly to F ′i =
[a′, b′] ∩ Si by including the neighboring elements of a and b in Si. Finally, we set
R̃hi,m(π) := [a′, b′]×{m}. A similar procedure adding entries Eσ on σ′ and doing a binary

search over exits on π′ yields an interval R̃hi,m(σ) consisting of points (f,m) ∈ [i, i+1]×{m}
such that there is an e ∈ Eσ with ddF(π′1..f , σ

′
e..m) ≤ δ. We set R̃hi,m := R̃hi,m(π)∪ R̃hi,m(σ),

which will be again an interval (which follows from the proof of Lemma 11.3.5). A
symmetric algorithm determines R̃vn,j for j ∈ [1..m).

We show that we correctly solve the given free-space region problem instance.

Lemma 11.3.6. The computed intervals are a valid solution to the given free-space
region instance.

Proof. Let φ be any monotone path in D≤δ(π, σ) that starts in a point (p, 1) ∈ R̃hj,1
and ends in (b,m), witnessing that ddF(πp..b, σ) ≤ δ. After rounding down π to π′ and
rounding up σ to σ′, φ is still a monotone path in D≤δ(π′, σ′). Moreover, we can prepend
a path from (y′j , 1) to (p, 1) to φ, since R̃hj,1 ∩ D≤δ(π′, σ′) is an interval containing (y′j , 1)
and (p, 1). We can also prepend a path from (yj , 1) to (y′j , 1), since σ1 is a multiple of γ
and π′yj is at most π′y′j

rounded up to a multiple of γ. Let r be the value of πb rounded

down to a multiple of γ. This value r is attained at some point π′f on the same segment
π′i..i+1 as π′b. If f ≤ b then we change φ to stop at π′f whenever it reaches this point. If
f > b then we change φ by appending a path from (b,m) to (f,m). In any case, this
yields a monotone path in D≤δ(π′, σ′) from (yj , 1) to (f,m). Since such a continuous
traversal is equivalent to a discrete traversal by Lemma 11.3.4, we have f ∈ Fi. By the
construction of F ′i , the point (b,m) will be contained in the output R̃hi,m(π), so we find
the reachable exit (b,m) as desired. A similar argument with entries on σ shows that we
satisfy property (1) of the free-space region problem.

Consider any point (f,m) in the constructed output set R̃hi,m(π). By the construction
of F ′i , there is a point b on the same segment as f with |π′b − π′f | ≤ γ and there is an
entry e ∈ E with ddF(π′e..b, σ

′) ≤ δ, witnessed by a traversal φ. By the construction of E,
there is a point y ∈ R̃hj,1, for some j, with e ≤ y and |π′y − π′e| ≤ γ. First assume y ≤ f, b.
In this case, we change φ so that it starts at π′y and stays there while φ is at any point
π′x, x ≤ y. Moreover, if b ≤ f we change φ so that it stops at π′b once it reaches this
point, and if b > f we change φ by appending a path from (b,m) to (f,m). This shows
ddF(π′y..f , σ

′) ≤ δ + γ. Since π′, σ′ are rounded versions of π, σ where all vertices are
moved by less than γ, we obtain ddF(πy..f , σ) ≤ δ+ 3γ ≤ (1 + ε)δ. In the remaining cases
e ≤ f ≤ y and e ≤ b ≤ y, we have |π′y − π′x| ≤ 2γ for all x ∈ {e, b, f}. Hence, a traversal
staying fixed in π′y does the job, i.e., ddF(π′y, σ

′) ≤ δ+2γ and ddF(πy, σ) ≤ δ+4γ = (1+ε)δ.
Thus, any point (f,m) in the output set is reachable from the entry sets by a monotone
path in D≤(1+ε)δ(π, σ), which together with a similar argument for entries on σ proves
that we satisfy property (2) of the free-space problem.

11.3.2 Greedy Decider for One-Dimensional Separated Curves

Before solving the reduced free-space problem, let us consider the simpler problem of
deciding ddF(π, σ) ≤ δ for one-dimensional separated curves π, σ. In this section, we
present a near-linear time algorithm for this problem, by walking along π and σ with
greedy steps to either find a feasible traversal or bottleneck subcurves. We are not the
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first to have this observation2, which in any case is not the focus of this work. Instead,
we are interested in the (quite complex) extension of this result to the reduced free-space
problem (see Section 11.3.4), which we use as a subroutine for our main result on c-packed
curves.

In the remainder of the chapter, all indices of curves will be integral. Let π =
(π1, . . . , πn) and σ = (σ1, . . . , σm) be two separated polygonal curves in R, i.e., πi ≥ 0 ≥
σj . For indices 1 ≤ i ≤ n and 1 ≤ j ≤ m, define visσ(i, j) := {k | k ≥ j and σk ≥ πi− δ}
as the index set of vertices on σ that are later in sequence than σj and are still in
distance δ to πi (i.e, seen by πi) and, likewise, visπ(i, j) := {k | k ≥ i and πk ≤ σj + δ}.
Hence, the set of points that we may reach on σ by starting in (πi, σj) and staying
in πi can be defined as the longest contiguous subsequence [j + 1..j + k] such that
[j + 1..j + k] ⊆ visσ(i, j). Let reachσ(i, j) := [j + 1..j + k] denote this subsequence and
let reachπ(i, j) be defined symmetrically. Note that πi ≤ πi′ implies that visσ(i, j) ⊇
visσ(i′, j), however the converse does not necessarily hold. Also, visσ(i, j) + visσ(i′, j)
implies that visσ(i, j) ( visσ(i′, j) and πi > πi′ .

The visibility sets established above enable us to define a greedy algorithm for the
Fréchet distance of π and σ. Let 1 ≤ p ≤ n and 1 ≤ q ≤ m be arbitrary indices on σ and π.
We say that p′ is a greedy step on π from (p, q), written p′ ← GreedyStepπ(πp..n, σq..m),
if p′ ∈ reachπ(p, q) and visσ(i, q) ⊆ visσ(p′, q) holds for all p ≤ i ≤ p′. Symmetrically,
q′ ∈ reachσ(p, q) is a greedy step on σ from (p, q), if visπ(p, i) ⊆ visπ(p, q′) for all q ≤ i ≤ q′.
In pseudo code, GreedyStepπ(πp..n, σq..m) denotes a function that returns an arbitrary
greedy step p′ on π from (p, q) if such an index exists and returns an error otherwise
(symmetrically for σ).

Consider the following greedy algorithm:

Algorithm 2 Greedy Fréchet distance decider for separated curves π1..n and σ1..m in R
1: p← 1, q ← 1
2: repeat
3: if p′ ← GreedyStepπ(πp..n, σq..m) then p← p′

4: if q′ ← GreedyStepσ(πp..n, σq..m) then q ← q′

5: until no greedy step was found in the last iteration
6: if p = n and q = m then return ddF(π, σ) ≤ δ
7: else return ddF(π, σ) > δ

Theorem 11.3.7. Let π and σ be separated curves in R and δ > 0. Algorithm 2 decides
whether ddF(π, σ) ≤ δ in time O((n+m) log(nm)).

We will first prove the correctness of the algorithm in Lemma 11.3.9 below and
postpone the discussion how to implement the algorithm efficiently to Section 11.3.2.

Correctness

Note that Algorithm 2 considers potentially only very few points of the curve explicitly
during its execution. Call the indices (p, q) of point pairs considered in some iteration of
the algorithm (for any choice of greedy steps, if more than one exists) greedy (point) pairs
and all points contained in some such pair greedy points (of π and σ). The following
useful monotonicity property holds: If some greedy point on π sees a point on σ that is
yet to be traversed, all following greedy points on π will see it until it is traversed.

2We thank Wolfgang Mulzer for a pointer to this (unpublished) result by Matias Korman and Sergio
Cabello (personal communication).
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Figure 11.3: An illustration of greedy steps. For better visibility, the
one-dimensional separated curves π, σ are drawn in the plane by mapping
πi to (i, πi). In particular, the results of MinGreedyStepπ(πp..n, σq..m),
MaxGreedyStepπ(πp..n, σq..m), and stopπ(πp..n, σq..m) are shown.

Lemma 11.3.8. Let (p1, q1), . . . , (pi, qi) be the greedy point pairs considered in the
iterations 1, . . . , i. It holds that

1. visσ(`, qi) ⊆ visσ(pi, qi) for all 1 ≤ ` ≤ pi, and

2. visπ(pi, `) ⊆ visπ(pi, qi) for all 1 ≤ ` ≤ qi.

Proof. Let k < i. We first show that visσ(`, qi) ⊆ visσ(pk+1, qi) holds for all pk ≤ ` < pk+1.
If pk = pk+1, the claim is immediate. Otherwise pk+1 is the result of a greedy step on π. By
definition of visibility, we have visσ(`, qi) = visσ(`, qk)∩ [qi..m] ⊆ visσ(pk+1, qk)∩ [qi..m] =
visσ(pk+1, qi), where the inequality follows from pk+1 being a greedy step from (pk, qk).

For arbitrary ` ≤ pi, let k < i be such that pk ≤ ` < pk+1. Then visσ(`, qi) ⊆
visσ(pk+1, qi) ⊆ visσ(pk+2, qi) ⊆ · · · ⊆ visσ(pi, qi). The second statement is symmetric.

We will exploit this monotonicity to prove that if Algorithm 2 finds a greedy point
pair that allows no further greedy steps, then no feasible traversal of π and σ exists. We
derive an even stronger statement using the following notion: For a greedy point pair
(p, q), define stopπ(πp..n, σq..m) := max(reachπ(p, q) ∪ {p}) + 1 as the index of the first
point after πp on π which is not seen by σq, or n+ 1 if no such index exists. Let stopσ
be defined symmetrically.

Lemma 11.3.9 (Correctness of Algorithm 2). Let (p, q) be a greedy point of π and σ,
pstop := stopπ(πp..n, σq..m) and qstop := stopσ(πp..n, σq..m). If on both curves no greedy
step from (p, q) exists, then ddF(π, σ) > δ.

In particular, if qstop ≤ m, then for all 1 ≤ p′ ≤ n, we have that ddF(π1..p′ , σ1..qstop) > δ
and if pstop ≤ n, then ddF(π1..pstop , σ1..q′) > δ for all 1 ≤ q′ ≤ m.

Note that the correctness of Algorithm 2 follows immediately: If the algorithm is
stuck, then ddF(π, σ) > δ. Otherwise, it finds a feasible traversal.

Proof of Lemma 11.3.9. Consider the case that no greedy step from (p, q) exists, then
the following stuckness conditions have to hold:

1. For all p′ ∈ reachπ(p, q), we have visσ(p′, q) ( visσ(p, q), and
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2. for all q′ ∈ reachσ(p, q), we have visπ(p, q′) ( visπ(p, q).

In this case, we can extend the monotonicity property of Lemma 11.3.8 to include all
reachable and the first unreachable point.

Claim 11.3.10. If the stuckness conditions hold for (p, q), then we have visσ(i, q) ⊆
visσ(p, q) for all 1 ≤ i ≤ pstop. In particular, if πp does not see σ` for some ` > q, then
no vertex πi with 1 ≤ i ≤ pstop sees σ`. The symmetric statement holds for σ.

Proof. By Lemma 11.3.8, visσ(i, q) ⊆ visσ(p, q) holds for all i ≤ p. The first of the
stuckness conditions implies visσ(i, q) ⊆ visσ(p, q) for all p < i < pstop. If pstop = n+ 1,
this already completes the proof of the claim. Otherwise, note that πpstop > πp, since
otherwise pstop ∈ reachπ(p, q). Hence visσ(pstop, q) ⊆ visσ(p, q) holds as well.

We distinguish the following cases that may occur under the stuckness conditions.
Case 1: pstop ≤ n or qstop ≤ m. Without loss of generality, let pstop ≤ n (the other

case is symmetric). Assume for contradiction that a feasible traversal φ of π1..pstop and
σ1..q′ exists for some 1 ≤ q′ ≤ m. In φ, at some point in time we have to move in π
from pstop − 1 to pstop while moving in σ1..q′ from some σ`′ to σ` where `′ ∈ {` − 1, `}
and σ` sees πpstop . Since σq does not see πpstop , the previous claim shows that ` > qstop.
If qstop = m + 1 or qstop > q′, this is impossible, yielding a contradiction. Otherwise,
to do this transition, in some earlier step we have to move in σ from qstop − 1 to qstop

while moving in π from πk′ to πk for some k < pstop and k′ ∈ {k − 1, k}. However, by
definition qstop /∈ visσ(p, q), hence Claim 11.3.10 implies that the transition is illegal,
since πk does not see σqstop . This is a contradiction. By a symmetric argument, it holds
that ddF(π1..p′ , σ1..qstop) > δ.

Case 2: pstop = n + 1 and qstop = m + 1. In particular, this implies p < n and
q < m. In this case, reachπ(p, q) = [p+ 1..n] and reachσ(p, q) = [q + 1..m]. By stuckness
conditions, there exist an index pmax > p such that no σq′ with q′ > q sees πpmax and
an index qmin such that no πp′ with p′ > p sees σqmin . Assume for contradiction that a
feasible traversal φ exists. In φ, at some point in time t, we have to cross either (1) from
πp to πp+1 while moving in σ from σ`′ to σ` with ` ≤ q + 1 ≤ qmin and `′ ∈ {`− 1, `} or
(2) from σq to σq+1 while moving from π`′ to π` with ` ≤ p+ 1 ≤ pmax and `′ ∈ {`− 1, `}.
In the first case, ` < qmin holds, since πp+1 does not see σqmin . For all consecutive times
t′ ≥ t, φ is in a point πp′ (p′ ≥ p + 1) that does not see σqmin , which still has to be
traversed, leading to a contradiction. Symmetrically, in the second case, for all times
t′ ≥ t, φ is in a point σq′ (q′ ≥ q + 1) that does not see πpmax , which still has to be
traversed.

This concludes the proof of Lemma 11.3.9.

Implementing Greedy Steps

To prove Theorem 11.3.7, it remains to show how to implement the algorithm to run in
time O((n+m) log(nm)). We make use of geometric range search queries. The classic
technique of fractional cascading [Lue78; CG86; Wil78] provides a data structure D with
the following properties: (i) Given n points P in the plane, D(P) can be constructed
in time O(n log n) and (ii) given a query rectangle Q := I1 × I2 with intervals I1 and
I2, find and return q ∈ Q ∩ P with minimal y-coordinate, or report that no such point
exists, in time O(log n). Here, each interval Ii may be open, half-open or closed.

By invoking the above data structure on P := {(i, πi) | i ∈ [1 . . . n]} for a given curve
π = π1..n (as well as all three rotations of P by multiples of 90°), we obtain a data
structure Dπ such that:
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1. Dπ can be constructed in time O(n log n),

2. the query Dπ.minIndex([x1, x2], [p, b]) (Dπ.maxIndex([x1, x2], [p, b])) returns the
minimum (maximum) index p ≤ i ≤ b such that x1 ≤ πi ≤ x2 in time O(log n),
and

3. the query Dπ.minHeight([x1, x2], [p, b]) (Dπ.maxHeight([x1, x2], [p, b])) returns
the minimum (maximum) height x1 ≤ πi ≤ x2 such that p ≤ i ≤ b in time O(log n).

The queries extend naturally to open and half-open intervals. If no index exists in the
queried range, all of these operations return the index ∞, in case of minimization, or
−∞, in case of maximization. We will use the corresponding data structure Dσ for σ as
well.

With these tools, we implement the following basic operations for arbitrary subcurves
π′ := πp..b and σ′ := σq..d of π and σ. See also Figure 11.3.

1. Stopping point stopπ(π′, σ′). For points p, q, the primitive stopπ(π′, σ′) :=
max(reachπ′(p, q)∪{p}) + 1 returns the index of the first point after πp on π′ which
is not seen by σq, or b+ 1 if no such index exists.

Algorithm 3 Finding the stopping point

1: function stopπ(πp..b, σq..d)
2: pstop ← Dπ.minIndex((σq + δ,∞), [p, b]) . First non-visible point on π
3: if pstop <∞ then return pstop

4: else return b+ 1

2. Minimal greedy step MinGreedyStepπ(π′, σ′). This function returns the
smallest index p′ ∈ reachπ′(p, q) such that visσ′(p

′, q) ⊇ visσ′(p, q) or reports that
no such index exists.

Algorithm 4 Minimal greedy step

1: function MinGreedyStepπ(πp..b, σq..d)
2: qmin ← Dσ.minHeight([πp − δ,∞), [q, d]) . Lowest still visible point on σ
3: pcand ← Dπ.minIndex((−∞, σqmin + δ], [p+ 1, d]) . If p′ exists, it is pcand

4: pstop ← stopπ(πp..b, σq..d) . First non-visible point on π
5: if pcand < pstop then return pcand

6: else return “No greedy step possible.” . πpcand
not reachable from πp while at

σq

3. Maximal greedy step MaxGreedyStepπ(π′, σ′). Let p′ ∈ reachπ′(p, q) be such
that (i) p′ is the largest index in reachπ′(p, q) with |visσ′(p

′, q)| = max{|visσ′(z, q)| |
z ∈ reachπ′(p, q)} and (ii) visσ′(p

′, q) ⊇ visσ′(p, q). If p′ exists, MaxGreedyStepπ
returns this value, otherwise it reports that no such index exists. Note that if p′

exists, then by definition there is no greedy step on π starting from (p′, q), i.e., this
step is a maximal greedy step.

While maximal greedy steps can be implemented by repeatedly computing minimal
greedy steps until no further greedy step can be found, this does not suffice for our
purposes. Such an approach introduces a dependence on the number of minimal
greedy steps encountered, which might scale with the length of the curve. To
achieve a polylogarithmic dependence on the number of vertices of π and σ, we
instead separately implement MaxGreedyStepπ as described in Algorithm 5.
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Algorithm 5 Maximal greedy step

1: function MaxGreedyStepπ(πp..b, σq..d)
2: qmin ← Dσ.minHeight([πp − δ,∞), [q, d]) . Lowest still visible point on σ
3: pstop ← stopπ(πp..b, σq..d) . First non-visible point on π
4: pmin ← Dπ.minHeight((−∞, σqmin + δ], [p+ 1, pstop − 1])

. Maximizes visibility among reachable points

5: if pmin =∞ then . No reachable point has better visibility than πp
6: return “No greedy step possible.”
7: else
8: qmin ← Dσ.minHeight([πpmin − δ,∞), [q, d])

. Lowest point on σ still seen by pmin

9: return Dπ.maxIndex((−∞, σqmin + δ], [pmin, pstop − 1])

4. Arbitrary greedy step GreedyStepπ(π′, σ′). If, in some situation, it is only
required to find an arbitrary index p′ ∈ reachπ′(p, q) such that all p ≤ i ≤ p′ satisfy
visσ′(i, q) ⊆ visσ′(p

′, q) or report that no such index exists, we use the function
GreedyStepπ(π′, σ′) to denote that any such function suffices; in particular,
MinGreedyStepπ or MaxGreedyStepπ can be used.

For σ, we define the obvious symmetric operations. Note that in these operations, it
is not feasible to traverse all directly feasible points and check whether the visibility
criterion is satisfied, since this would not necessarily yield a polylogarithmic running
time.

Lemma 11.3.11. Using O((n + m) log nm) preprocessing time, MaxGreedyStepπ,
MinGreedyStepπ and stopπ can be implemented to run in time O(log nm).

Proof. In time O((n+m) log nm), we can build the data structure Dπ for π and sym-
metrically Dσ for σ. Algorithms 3, 4 and 5 implement the greedy steps and stopπ using
only a constant number of queries to Dπ and Dσ, each with running time O(log n) or
O(logm).

For the reduced free-space problem, these operations can be implemented even faster.

Lemma 11.3.12. Let π = π1..n and σ = σ1..m be input curves of the reduced free-space
problem. Using O((n+m) log 1/ε) preprocessing time, the primitives MaxGreedyStepπ,
MinGreedyStepπ and stopπ can be implemented to run in time O(log 1/ε).

Proof. We argue that range searching can be implemented with O(log 1/ε) query time
and O(n log 1/ε) preprocessing time. This holds since for the point set P = {(i, πi) | i ∈
[1 . . . n]} (1) the x-values are 1, . . . , n, so that we can determine the relevant pointers
in the first level of the fractional-cascading tree in constant time instead of O(log n)
and (2) all y-values are multiples of γ = 1

4εδ and in [−2δ, 2δ], i.e., there are only O(1/ε)
different y-values. For the latter, note that any point πp > δ sees no point in σ, and
this is preserved by setting πp to 2δ (and similarly for σ). Using these properties it is
straightforward to adapt the fractional-cascading data structure, we omit the details.

11.3.3 Composition of One-Dimensional Curves

In this subsection, we collect essential composition properties of feasible traversals of
one-dimensional curves that enable us to tackle the reduced free-space problem (see
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(a) Lemma 11.3.13. (b) Lemma 11.3.14. (c) Lemma 11.3.15.

Figure 11.4: Composition properties of feasible traversals of one-
dimensional separated curves.

Figure 11.4 for an illustration of these results). The first tool is a union lemma that
states that two intersecting intervals I, J of π that each have a feasible traversal together
with σ prove that also πI∪J can be traversed together with σ.

Lemma 11.3.13. Let π = π1..n and σ = σ1..m be one-dimensional separated curves and
let I, J ⊆ [1..n] be intervals with I ∩ J 6= ∅. If ddF(πI , σ) ≤ δ and ddF(πJ , σ) ≤ δ, then
ddF(πI∪J , σ) ≤ δ.

Proof. If I ⊆ J , the claim is trivial. Without loss of generality, let I = [aI ..bI ] and J =
[aJ ..bJ ], where aI ≤ aJ ≤ bI ≤ bJ . Let φI (and φJ) be a feasible traversal of (πI , σ) (and
(πJ , σ), respectively). By reparameterization, we can assume that φI(t) = (ψI(t), f(t))
and φJ(t) = (ψJ(t), f(t)) for suitable (non-decreasing onto) functions ψI , ψJ : [0, 1]→
[1..n] and f : [0, 1]→ [1..m]. One of the following cases occurs.

Case 1: There is some 0 ≤ t ≤ 1 with ψI(t) = φJ(t). Then we can concatenate
φI(0, t) and φJ(t, 1) to obtain a feasible traversal of φI∪J .

Case 2: For all 0 ≤ t ≤ 1, we have ψI(t) < ψJ(t). Let σq be the highest point on
σ. By ddF(πI , σ) ≤ δ and ddF(πJ , σ) ≤ δ, the point σq sees all points on πI∪J . There
is some 0 ≤ t∗ ≤ 1 with f(t∗) = q. We can concatenate φI(0, t

∗) and the traversal of
πψI(t∗)..ψJ (t∗) and σq to obtain a feasible traversal of πaI ..ψI(t∗) and σ1..f(t∗). Appending
φJ(t∗, 1) to this traversal yields ddF(πaI ..bJ , σ) ≤ δ.

The second result formalizes situations in which a traversal φ of subcurves has to
cross a traversal ψ of other subcurves, yielding the possibility to follow φ up to the
crossing point and to follow ψ from there on.

Lemma 11.3.14. Let π = π1..n and σ = σ1..m be one-dimensional curves and consider
intervals I = [aI ..bI ] and J = [aJ ..bJ ] with J ⊆ I ⊆ [1..n], and K = [1..k] ⊆ [1..m]. If
ddF(πI , σK) ≤ δ and ddF(πJ , σ) ≤ δ, then ddF(πaI ..bJ , σ) ≤ δ.

Proof. Let φ be a feasible traversal of πI and σK and ψ a feasible traversal of πJ and
σ. We first show that φ and ψ cross, i.e., there are 0 ≤ t, t′ ≤ 1 such that φ(t) = ψ(t′).

For all k ∈ [1..K], let [sφk ..e
φ
k ] denote the interval of points that φ traverses on π while

staying in σk. Similarly, [sψk ..e
ψ
k ] denotes the interval of points ψ traverses on π while

staying in σk. Assume for contradiction that [sφk ..e
φ
k ] and [sψk ..e

ψ
k ] are disjoint for all

1 ≤ k ≤ K. Then initially, we have sφ1 = aI ≤ aJ = sψ1 and hence eφ1 < sψ1 . This implies
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sφ2 ≤ eφ1 + 1 ≤ sψ1 ≤ sψ2 and inductively we obtain eφk < sψk ≤ eψk for all k ∈ [1..K].

This contradicts eφK = bI ≥ bJ ≥ eψK . Hence, for some 1 ≤ k ≤ K, [sφk ..e
φ
k ] and

[sψk ..e
ψ
k ] intersect, which gives φ(t) = (p, k) = ψ(t′) for any p ∈ [sφk , e

φ
k ] ∩ [sψk , e

ψ
k ] and the

corresponding 0 ≤ t, t′ ≤ 1. By concatenating φ(0, t) with ψ(t′, 1), we obtain a feasible
traversal of πaI ..bJ and σ.

The last result in our composition toolbox strengthens Lemma 11.3.13 to the case
that the traversal of πI uses only an initial subcurve σ1..k of σ and not the complete
curve.

Lemma 11.3.15. Let π = π1..n and σ = σ1..m be one-dimensional separated curves and
consider intervals I = [aI ..bI ] and J = [aJ ..bJ ] with 1 ≤ aI ≤ aJ ≤ bI ≤ bJ ≤ n, and
K = [1..k] ⊆ [1..m]. If ddF(πI , σK) ≤ δ and ddF(πJ , σ) ≤ δ, then dF (πI∪J , σ) ≤ δ.

Proof. Let φ be any feasible traversal of πJ and σ. There exists aJ ≤ ` ≤ bJ with
φ(t) = (`, k) for some 0 ≤ t ≤ 1. Hence φ restricted to [0, t] yields a feasible traversal of
πaJ ..` and σK , i.e., ddF(πaJ ..`, σK) ≤ δ. Since I and [aJ ..`] are intersecting, Lemma 11.3.13
yields that ddF(πaI ..`, σK) ≤ δ. Let ψ be such a feasible traversal of πaI ..` and σK .
Concatenating ψ at ψ(1) = (`, k) = φ(t) with φ(t, 1), we construct a feasible traversal of
πaI ..bJ and σ, proving the claim.

11.3.4 Solving the Reduced Free-Space Problem

In this section, we solve the reduced free-space problems, using the structural properties
derived in the previous section and the principles underlying the greedy algorithm of
Section 11.3.2. Recall that the greedy steps implemented as discussed in Section 11.3.2
run in time O(log 1/ε) on the input curves of the reduced free-space problem.

Single Entry

Given the one-dimensional separated curves π = (π1, . . . , πn) and σ = (σ1, . . . , σm) and
entry set E = {1}, we show how to compute F σ. We present the following recursive
algorithm.

Algorithm 6 Special Case: Single entry

1: function Find-σ-exits(πp..b, σq..d)
2: if q = d then
3: if stopπ(πp..b, σq) = b+ 1 then
4: return {q} . The end of π is reachable while staying in σq
5: else return ∅

6: if p′ ←MaxGreedyStepπ(πp..b, σq..d) then
7: return Find-σ-exits(πp′..b, σq..d)
8: else if q′ ← GreedyStepσ(πp..b, σq..d) then
9: return Find-σ-exits(πp..b, σq..q′−1) ∪ Find-σ-exits(πp..b, σq′..d)

10: else
11: return Find-σ-exits(πp..b, σq..d−1) . No greedy step possible

The following property establishes that a greedy step on a long curve is also a greedy
step on a shorter curve. Clearly, the converse does not necessarily hold.
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Proposition 11.3.16. Let 1 ≤ p ≤ P ≤ n and 1 ≤ q ≤ Q ≤ m. Any greedy step on
π from (p, q) to (p′, q) with p′ ≤ P is also a greedy step with respect to π̃ := πp..P and
σ̃ := σq..Q, i.e., if there is some p′ ≤ P with visσ(i, q) ⊆ visσ(p′, q) for all p ≤ i ≤ p′,
then also visσ̃(i, q) ⊆ visσ̃(p′, q).

Proof. From the definition of visσ, we immediately derive visσ̃(i, q) = visσ(i, q)∩ [q..Q] ⊆
visσ(p′, q) ∩ [q..Q] = visσ̃(p′, q) for all p ≤ i ≤ p′. Restricting the length of π also has no
influence on the greedy property, except for the trivial requirement that p′ still has to be
contained in the restricted curve.

Lemma 11.3.17. Algorithm 6 correctly identifies F σ given the single entry E = {1}.

Proof. Clearly, if Find-σ-exits(π, σ) finds and returns an exit e on σ, then it is contained
in F σ, since the algorithm uses only feasible (greedy) steps. Conversely, we show that for
all I = [p..b] and J = [q..d], where (p, q) is a greedy point pair of π and σ, and all e ∈ J
with ddF(πI , σJ∩[1..e]) ≤ δ, we have e ∈ Find-σ-Exits(πI , σJ), i.e. we find all exits.

Consider some call of Find-σ-Exits(πI , σJ) for which the precondition is fulfilled.
If J consists only of a single point, then J = {e}, and a feasible traversal of πI and σJ
exists if and only if σe sees all points on πI . Let I = [p..b], then this happens if and only
if stopπ(πI , σe) = b+ 1, hence the base case is treated correctly.

Assume that I = [p..b] and a maximal greedy step p′ on π exists. By Property 11.3.16,
this step is a greedy step also with respect to σJ∩[1..e]. Hence by Lemma 11.3.9, if there
is a traversal of πp..b and σJ∩[1..e], then a traversal of π[p′..b] and σJ∩[1..e] also exists.

Consider the case in which J = [q..d] and a greedy step q′ in σ exists. If e < q′, then
e ∈ [q..q′ − 1] and J ∩ [1..e] = [q..q′ − 1] ∩ [1..e]. Hence, e is found in the recursive call
with J ′ = [q..q′ − 1]. If e ≥ q′, then by Property 11.3.16, this step is a greedy step with
respect to the curves πI and σJ∩[1..e]. Again, by Lemma 11.3.9, the existence of a feasible
traversal of πI and σJ implies that also a feasible traversal of πI and σJ∩[q′..e] exists.

It remains to regard the case in which no greedy step exists. By Lemma 11.3.9, there
is no feasible traversal of π1..n and σ1..d. This implies e 6= d and all exits are found in
the recursive call with J ′ = [q, d− 1].

Lemma 11.3.18. Find-σ-Exits(πp..b, σq..d) runs in time O((d− q + 1) · log 1/ε).

Proof. Since the algorithm’s greedy steps on π are maximal, after each greedy step on π,
we split σ (by a greedy step on σ) or shorten σ (if no greedy step on σ is found). Thus, it
takes at most O(log 1/ε) time until σ is split or shortened. The base case is also handled
in time O(log 1/ε). In total, this yields a running time of O((d− q + 1) log 1/ε).

Note that by swapping the roles of π and σ, Find-σ-Exits can be used to determine
F π given the single entry σ1 on σ. This is equivalent to having the single entry E = {1}
on π. Thus, we can also implement the function Find-π-Exits(π1..n, σ1..m) that returns
F π given the single entry E = {1} on π in time O(n log 1/ε).

Entries on π, Exits on π

In this section, we tackle the task of determining F π given a set of entries E on π. It is
essential to avoid computing the exits by iterating over every single entry. We show how
to divide π into disjoint subcurves that can be solved by a single call to Find-π-Exits
each.

Assume we want to traverse πp..b and σq..d starting in πp and σq. Let u(p) := max{p′ ∈
[p, b] | ∃q ≤ q′ ≤ d : ddF(πp..p′ , σq..q′) ≤ δ} be the last point on π that is reachable while
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(a) Statement 1: A traversal of πe..e′
and σq..d has to cross a traversal of
πp..u(p) and σq..q′ , which we can com-
bine by Lemma 11.3.14.

(b) Statement 2: If there was a traversal of
πe..e′ and σq..d, then by Lemma 11.3.15, a
traversal of πp..e′ and σq..d exists, contradicting
the definition of u(p).

Figure 11.5: An illustration of the proof of Lemma 11.3.19.

traversing any subcurve of σq..d starting in σq. This point fulfills the following properties
(whose proof ideas are depicted in Figure 11.5).

Lemma 11.3.19. It holds that

1. If there are p ≤ e ≤ e′ ≤ u(p) with ddF(πe..e′ , σq..d) ≤ δ, then ddF(πp..e′ , σq..d) ≤ δ.

2. For all p ≤ e ≤ u(p) < e′, we have that ddF(πe..e′ , σq..d) > δ.

Proof. By definition of u(p), there is a q ≤ q′ ≤ d with ddF(πp..u(p), σq..q′) ≤ δ. Since
[e, e′] ⊆ [p, u(p)], Lemma 11.3.14 proves the first statement. For the second statement,
assume for contradiction that ddF(πe..e′ , σq..d) ≤ δ. Then, Lemma 11.3.15 yields that
ddF(πp..e′ , σq..d) ≤ δ. This is a contradiction to the choice of u(p), since e′ > u(p).

The above lemma implies that we can ignore all entries in [p..u(p)] except for p.
Moreover, all exits reachable from p are contained in the interval [p..u(p)]. This gives
rise to the following algorithm.

Algorithm 7 Given entry points E on π, compute all exits on π.

1: function π-exits-from-π(π, σ,E)
2: S ← ∅
3: while E 6= ∅ do
4: p̂ ← pop minimal index from E
5: p← p̂, q ← 1
6: repeat
7: if q′ ←MaxGreedyStepσ(πp..n, σq..m) then
8: q ← q′

9: if p′ ← GreedyStepπ(πp..n, σq..m) then
10: p ← p′

11: until no greedy step was found in the last iteration
12: p̄ ← stopπ(πp..n, σq..m)− 1 . determines the maximal reachable point u(p̂)
13: S ← S ∪ Find-π-Exits(πp̂..p̄, σ)
14: E ← E ∩ [p̄+ 1, n] . drops all entries in [p̂, u(p̂)]

15: return S
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Lemma 11.3.20. Algorithm 7 correctly computes F π.

Proof. We first argue that for each considered entry p̂, the algorithm computes p̄ = u(p̂).
Clearly, p̄ ≤ u(p̂), since only feasible steps are used to reach p̄. If p̄ = m, this already
implies that also u(p̂) = m. Otherwise, let (p, q) be the greedy point pair on the curves
πp̂...n and σ for which no greedy step has been found. Then by Lemma 11.3.9, for
pstop := stopπ(πp..n, σq..m) and all 1 ≤ q′ ≤ m, we have that ddF(πp̂..pstop , σ1..q′) > δ.
Hence, u(p̂) < pstop. Finally, note that Algorithm 7 computes p̄ = pstop− 1, which proves
p̄ = u(p̂).

It is clear that every found exit is included in F π. Conversely, let e′ ∈ F π and
1 ≤ e ≤ n be such that ddF(πe..e′ , σ) ≤ δ. For some p̂ with p̂ ≤ e ≤ u(p̂) = p̄, we
run Find-π-Exits(πp̂..p̄, σ). Hence by Lemma 11.3.19 (2), e′ ≤ u(p̂) and by Lemma
11.3.19 (1), ddF(πp̂..e′ , σ) ≤ δ. Hence, the corresponding call Find-π-Exits(πp̂..p̄, σ) will
find e′.

Lemma 11.3.21. Using preprocessing time O((n + m) log 1/ε), Algorithm 7 runs in
time O(n log 1/ε).

Proof. We first bound the cost of all calls Find-π-Exits(πIi , σ). Clearly, all intervals
Ii are disjoint with

⋃
Ii ⊆ [1..n]. Hence, by Lemma 11.3.18, the total time spent in

these calls is bounded by O(
∑

i |Ii| log(1/ε)) = O(n log 1/ε). To bound the number
greedy steps, let p1, . . . , pk be the distinct indices considered as values of p during the
execution of π-exits-from-π(π, σ). Between changing p from each pi to pi+1, we will
make, by maximality, at most one call to MaxGreedyStepσ and at most one call to
GreedyStepπ. Since k ≤ n, the total cost of greedy calls is bounded by O(n log 1/ε)
as well. The total time spent in all other operations is bounded by O(n log 1/ε).

Entries on π, Exits on σ

Similar to the previous section, we show how to compute the exits F σ given entries
E on π, by reducing the problem to calls of Find-σ-Exits on subcurves of π and σ.
This time, however, the task is more intricate. For any index p on π, let Q(p) :=
min{q | ddF(πp..n, σ1..q) ≤ δ} be the endpoint of the shortest initial fragment of σ
such that the remaining part of π can be traversed together with this fragment3. Let
P (p) := min{p′ | ddF(πp..p′ , σ1..Q(p)) ≤ δ} be the endpoint of the shortest initial fragment
of π, such that σQ(p) can be reached by a feasible traversal.

Note that by definition, entries p with Q(p) =∞ are irrelevant for determining the
exits on σ. In fact, if an entry p is relevant, i.e., Q(p) <∞, it is easy to compute Q(p)
due to the following lemma.

Lemma 11.3.22. Let Q′(p) := min{q | σq ≥ maxi∈[p..n] πi − δ}. If Q(p) < ∞, then
Q(p) = Q′(p). Similarly, Q(p) <∞ implies that P (p) = min{p′ | πp′ ≤ mini∈[q..Q(p)] σi +
δ} <∞.

Proof. Assume that Q(p) < Q′(p) holds, then no point in σ1..Q(p) sees the highest point
in πp..n. Hence no feasible traversal of these curves can exist, yielding a contradiction.
Assume that Q(p) > Q′(p) holds instead and consider the feasible traversal φ of the
shortest initial fragment of σ that passes through all points in πp..n. At some point φ
visits (πp′ , σQ′(p)) for some p ≤ p′ ≤ n. We can alter this traversal to pass through the
remaining curve πp′..n while staying in σQ′(p), since σQ′(p) sees all points on πp′..n. This

3As a convention, we use min ∅ =∞.
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(a) Case q1 = q2. (b) Case q1 > q2.

Figure 11.6: Illustration of Lemma 11.3.23. For both pi, i ∈ {1, 2}, a
feasible traversal of the curves πpi..p′i and σ1..qi is depicted as monotone
paths in the free-space.

gives a feasible traversal of πp..n and σ1..Q′(p), which is a contradiction to the choice of φ
and Q(p) > Q′(p).

The statement for P (p) follows analogously by regarding the curves πp..n and σ1..Q(p)

and switching their roles.

Note that the previous lemma shows that for relevant entries p1 < p2, we have
Q(p1) ≥ Q(p2), since for relevant entries, Q(p1) = Q′(p1) ≥ Q′(p2) = Q(p2). We will use
the following lemma to argue that (i) if Q(p1) = Q(p2), entry p1 dominates p2, and (2) if
Q(p1) > Q(p2), we have p2 /∈ [p1..P (p1)]. Hence, we can ignore all entries in [p1..P (p1)]
except for p1 itself.

Lemma 11.3.23. Let p1 < p2 be indices on π with q1 := Q(p1) <∞ and q2 := Q(p2) <
∞. Let p′1 := P (p1) and p′2 := P (p2). If q1 = q2, then p′1 ≤ p′2. Otherwise, i.e., if
q1 > q2, we even have p′1 < p2.

Proof. See Figure 11.6 for illustrations. Let q1 = q2. Assume for contradiction that
p′1 > p′2, then we have ddF(πp1..p′1

, σ1..q1) ≤ δ and ddF(πp2..p′2
, σ1..q1) ≤ δ, where [p2..p

′
2] ⊆

[p1..p
′
1]. Hence by Lemma 11.3.14, ddF(πp1..p′2

, σ1..q1) ≤ δ and thus p′1 ≤ p′2, which is a
contradiction to the assumption.

For the second statement, let p be maximal such that πp > σq2 + δ. If p does not exist
or p < p1, we have that Q′(p1) = Q′(p2) and hence by Lemma 11.3.22, q1 = q2. Note
that additionally p < p2, since otherwise σq2 < πp− δ with p ≥ p2 shows that q2 6= Q′(p2)
contradicting Lemma 11.3.22. Thus, in what follows, we can assume that p1 < p < p2.

Assume for contradiction that q1 > q2 and p′1 ≥ p2. Then a feasible traversal φ of
πp1..p′1

and σ1..q1 visits (πp, σq) for some 1 ≤ q ≤ q1. It even holds that q < q1, since
otherwise there is a feasible traversal of σ1..q1 and πp1..p with p < p′1, contradicting the
choice of p′1. Clearly, σq > σq2 , since πp sees σq, while it does not see σq2 . Since by
choice of p, σq2 sees all of πp+1..n and σq sees only more (including πp), we conclude that
we can traverse all points of πp..n while staying in σq. Concatenating this traversal to
the feasible traversal φ yields ddF(πp1..n, σ1..q) ≤ δ and thus Q(p1) ≤ q < q1, which is a
contradiction to Lemma 11.3.22. This proves that q1 > q2 implies p′1 < p2.

Lemma 11.3.24. Algorithm 8 fulfills the following properties.
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Algorithm 8 Given entry points E on π, compute all exits on σ.

1: function σ-exits-from-π(π, σ,E)
2: F ← ∅, q̄ ← m
3: repeat
4: p̂ ← pop minimal index from E
5: p← p̂, q ← 1
6: Q′ ← Q′(p)
7: repeat
8: if q′ ←MaxGreedyStepσ(πp..n, σq..Q′) then
9: q ← q′

10: if q 6= Q′ and p′ ←MinGreedyStepπ(πp..n, σq..Q′) then
11: p ← p′

12: until q = Q′ or no greedy step was found in the last iteration
13: if q = Q′ then
14: F ← F ∪ Find-σ-Exits(πp..n, σQ′..q̄)
15: q̄ ← Q′ − 1

16: E ← E ∩ [p+ 1, n]
17: until E = ∅
18: return F

1. Let (p, q) with q < Q′(p̂) be a greedy point pair of πp̂..n and σ1..Q′(p̂) for which no
greedy step exists. Then for all e ∈ [p̂, p], we have Q(e) =∞.

2. For each considered p̂, if we have Q(p̂) <∞, then the algorithm makes a recursive
call to Find-σ-Exits(πP (p̂)..n, σQ(p̂)..q̄). In this case, the point (P (p̂), Q(p̂)) is a
greedy pair of πp̂..n and σ.

Proof. For the first statement, assume for contradiction Q(e) <∞. By Lemma 11.3.22,
Q(e) = Q′(e), which implies that for all q′ < Q′(e) ≤ Q′(p̂), we have σq′ < σQ′(e)
and hence visπ(p, q′) ⊆ visπ(p,Q′(e)). Assume first that q < Q′(e). In this case,
stopσ(πp..n, σq..Q′(p̂)) ≤ Q′(e), since otherwise Q′(e) ← GreedyStepσ(πp..n, σq..Q′(p̂)).
By Lemma 11.3.9, this proves that ddF(πp̂..n, σ1..Q′(e)) > δ. Since ddF(πp̂..e, σ1..q′) ≤ δ for
some q′ < Q′(e), Lemma 11.3.15 yields ddF(πe..n, σ1..Q′(e)) > δ. This is a contradiction
to Q(e) = Q′(e).

Otherwise, if q ≥ Q′(e), then consider 1 ≤ q∗ ≤ q maximizing σq∗ . In particular,
we have σq∗ ≥ πp′ − δ for any p̂ ≤ p′ ≤ p, since we constructed a traversal of πp̂..p, σ1..q.
Moreover, σq∗ ≥ σQ′(e), since 1 ≤ Q′(e) ≤ q. Since σQ′(e) ≥ πp′ − δ for all e ≤ p′ ≤ n and
e ≤ p, we have σq∗ ≥ πp′ − δ for all p̂ ≤ p′ ≤ n. This contradicts q∗ ≤ q < Q′(p̂).

For the second statement, note that if Q(p̂) <∞, then by Lemma 11.3.22, Q(p̂) =
Q′(p̂). Hence Lemma 11.3.9 yields that the algorithm finds a feasible traversal of πp̂..p
and σ1..Q′(p̂) for some p̂ ≤ p ≤ n. This shows that P (p̂) ≤ p <∞. Let σ′ := σ1..Q(p̂) and
assume that there is a p′ < p with ddF(πp̂..p′ , σ

′) ≤ δ and let (p̃, q̃) be the greedy point of
πp̂..n and σ′ right before the algorithm made a greedy step on π to some index in (p′, p]. By
maximality of the greedy steps on σ, there exists q̃ < qmin < Q(p̂) such that πp̃ does not see
σqmin , since otherwise Q(p̂) ∈ reachσ′(p̃, q̃) with visπ(p̃, q̃) ( visπ(p̃, Q(p̂)), i.e., Q(p̂) would
be a greedy step on σ′. By minimality of greedy steps on π, visσ′(p̃, q̃) ) visσ′(i, q̃) for
all p̃ ≤ i ≤ p′. Hence, no vertex on πp̃..p′ sees σqmin , which proves ddF(πp̃..p′ , σ

′
q̃..Q(p̂)) > δ.

Since (p̃, q̃) is a greedy pair of πp̂..p′ and σ′, this yields that ddF(πp̂..p′ , σ
′) > δ by
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Lemma 11.3.9, which is a contradiction to the assumption. Hence, the algorithm calls
Find-σ-Exits(πp..n, σQ′(p̂)..q̄), where p = P (p̂) and Q′(p̂) = Q(p̂).

It remains to show that (P (p̂), Q(p̂)) is also a greedy pair of πp̂..n and the complete
curve σ. By Lemma 11.3.22, every p̂ ≤ p < P (p̂) satisfies πp > πP (p̂) and hence
visσ(p, q) ⊆ visσ(P (p̂), q) for all 1 ≤ q ≤ m. Hence, if at some greedy pair (p, q),
q ≤ Q(p̂), a greedy step p′ ← GreedyStepπ(πp..n, σ) with p′ ≥ P (p̂) exists, then also
P (p̂)← GreedyStepπ(πp..n, σ), which shows that (P (p̂), q) is a greedy point of πp̂..n and
σ. If q = Q(p̂), then (P (p̂), Q(p̂)) is a greedy point pair. Otherwise, by Lemma 11.3.22,
P (p̂) sees all of σq..Q(p̂) and σq < σQ(p̂), hence Q(p̂) ∈ GreedyStepσ(πP (p)..n, σ) and
(P (p̂), Q(p̂)) is a greedy step of πp̂..n and σ.

It is left to consider the case that for all greedy pairs (p, q), q ≤ Q(p̂), of πp̂..n and σ,
no greedy step to some p′ ≥ P (p̂) exists. Then there is some (p, q) with p < P (p̂) and
q ≤ Q(p̂) for which no greedy step exists at all. We have pstop := stopπ(πp..n, σq..m) ≤
P (p̂), since otherwise P (p̂) would be a greedy step. Since Lemma 11.3.9 shows that
ddF(πp̂..pstop , σ1..q′) > δ for any q′, this contradicts ddF(πp̂..P (p̂), σ1..Q(p̂)) ≤ δ.

Lemma 11.3.25. Algorithm 8 correctly computes F σ.

Proof. Clearly, any exit found is contained in F σ, since the methods σ-exits-from-π
and Find-σ-Exits only use feasible steps. For the converse, let e ∈ E be an arbitrary
entry and consider the set F σe = {q | ddF(πe..n, σ1..q) ≤ δ} of σ-exits corresponding to the
entry e.

As a first step, we show that if F σe 6= ∅ and hence Q(e) < ∞, then we have that
F σe = Find-σ-Exits(πP (e)..n, σQ(e)..m). Let ē ∈ F σe . By Lemma 11.3.24, (P (e), Q(e)) is
a greedy pair of πe..n and σ and hence also of πe..n and σ1..ē. Lemma 11.3.9 thus implies
ddF(πP (e)..n, σQ(e)..ē) ≤ δ and consequently ē ∈ Find-σ-Exits(πP (e)..n, σQ(e)..m). The
converse clearly holds as well.

Note that e is not considered as p̂ in any iteration of the algorithm if and only if
the algorithm considers some p̂ with e ∈ [p̂+ 1..p], where either (i) the algorithm finds
a greedy pair (p, q) of πp̂..n and σ1..Q′(p̂) that allows no further greedy steps, or (ii) the
algorithm calls Find-σ-Exits(πp..n, σQ′(p̂)..q̄), where p = P (p̂) by Lemma 11.3.24. In
the first case, F σe = ∅ since Lemma 11.3.24 proves Q(e) = ∞. In the second case, if
F σe 6= ∅, we have Q(e) <∞, and hence by Lemma 11.3.23, Q(e) = Q(p̂) and P (p̂) ≤ P (e).
Since σQ(p̂) sees all of πP (p̂)..n, any exit reachable from (P (e), Q(e)) is reachable from
(P (p̂), Q(p̂)) as well. Hence F σe ⊆ F σp̂ .

Let p̂1 ≤ .. ≤ p̂k be the entries considered as p̂ by the algorithm. It remains
to show that the algorithm finds all exits

⋃k
i=1 F

σ
p̂i

. We inductively show that the
algorithm computes F σp̂i \

⋃
j<i F

σ
p̂j

in the loop corresponding to p̂ = p̂i. For any i, let

k := max{j < i | Q(p̂j) <∞}. The base case is when k is undefined, then the claim is
immediate. Otherwise, note that the corresponding loop computes

Find-σ-Exits(πP (p̂i)..n, σQ(p̂i)..Q(p̂k)−1) = F σp̂i ∩ [Q(p̂i)..Q(p̂k)− 1].

The claim follows if we can show F σp̂i ∩ [Q(p̂k)..m] ⊆ F σp̂k . Let ē ∈ F σp̂i with ē ≥ Q(p̂k).
Then ddF(πp̂i..n, σ1..ē) ≤ δ. Together with ddF(πp̂k..n, σ1..Q(p̂k)) ≤ δ, Lemma 11.3.14 shows
that ddF(πp̂k..n, σ1..ē) ≤ δ and hence e ∈ F σp̂k .

Lemma 11.3.26. Algorithm 8 runs in time O((n+m) log 1/ε).

Proof. Consider the total cost of the calls Find-σ-Exits(πIi , σJi). Since all Ji are
disjoint and

⋃
i Ji ⊆ [1..m], Lemma 11.3.18 bounds the total cost of such calls by
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O(
∑

i |Ji| log(1/ε)) = O(m log(1/ε)). Let p1, . . . , pk denote the distinct indices considered
as p during the execution of the algorithm. Between changing pi to pi+1, we will make
at most one call to MaxGreedyStepσ (by maximality) and at most once call to
MinGreedyStepπ. Hence k ≤ n bounds the number of calls to greedy steps by
O(n log(1/ε)).

11.4 Conclusion

We presented an improved (1 + ε)-approximation algorithm for the Fréchet distance
on c-packed curves running in time Õ(cn/

√
ε). While our running time improves the

state of the art for ε� 1/ log n, we suspect that our algorithm is too complex to speed
up Fréchet distance computation in practical situations, unless ε is very small. Our
running time matches a conditional lower bound, so that it is asymptotically optimal,
up to lower order factors of the form no(1), in dimension d ≥ 5, and unless the Strong
Exponential Time Hypothesis fails. We leave it as open problems to (1) find simpler and
more practical algorithms with the same asymptotic guarantees as ours, (2) improve
our log n and log 1/ε-factors, and (3) determine the correct asymptotic behaviour in
dimension d = 2, 3, 4.
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Chapter 12

Introduction to Part III

In the final part of this thesis, we consider two quite different, yet fundamental aspects
of (randomized) broadcasting in communication networks. Our setting is that of a single
person, Alice, who owns some piece of information and wishes to disseminate this piece of
information to all of her friends (or even the public). Chapter 13 is concerned with how
quickly Alice can spread the information to her friends when only direct contacts among
all friends are allowed, while the aim in Chapter 14 is to broadcast the information
anonymously, i.e., without revealing the identity of Alice.

For the first task, called rumor spreading, a wealth of communication protocols
has been suggested and analyzed, starting with a simple communication protocol that
proceeds in a round-based fashion as follows: in each round, each participant knowing
the rumor randomly contacts a neighbor and informs him/her of the rumor if it was
unknown to him/her. This (synchronized) push protocol is probably the most basic
and classic randomized rumor spreading protocol, with a wide range of applications in
algorithms, distributed systems, simulation and modeling of epidemic processes, etc. As
such, we feel that it deserves a detailed look at its performance. In Chapter 13, we give
a precise analysis of the distribution of the time it takes this protocol to inform all n
nodes in a complete graph, improving upon classical results [FG85; Pit87].

The second task, i.e., anonymous information disclosure in a public network, has
recently been formalized as the cryptogenography problem [Bro+14]: Here, the owner of
the piece of information (this time called secret), Alice, is chosen uniformly at random
from a set of n cooperative players. The players’ aim is to communicate publicly
(without use of any privately shared information) such that the success probability
succ is maximized, i.e., the probability that (i) the correct secret is derivable from all
communication and (ii) an outside observer trying to identify Alice fails in guessing her
identity. In Chapter 14, we consider the simplest possible special case, in which two
players cooperate to disclose a single secret bit. In this case, Brody et al. [Bro+14],
using deep structural insights, improved the trivial bounds of succ ∈ [1/4, 1/2] to
succ ∈ [1/3, 3/8]. Since their protocol obtaining a success probability of 1/3 is surprising
at first sight and – when viewed in a suitable formulation of the problem – natural and
elegant at a closer look, one might suspect it to be optimal. We disprove this hope by
presenting protocols with success probability strictly larger than 1/3 and additionally
give a stronger hardness proof, yielding the tighter bounds succ ∈ [0.3384, 0.3672].

We give more detailed introductions to Chapters 13 and 14 below.

12.1 Rumor Spreading in Complete Graphs

Randomized rumor spreading is a class of randomized processes with ample applications
in algorithmics, but also in modeling natural or technical spreading processes (e.g.,
epidemics and computer viruses). In Chapter 13, we shall give a very precise analysis of
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the most basic rumor spreading process in which a single piece of information is spread in
a group of n people by, in a round-based fashion, each informed person calling a random
one and gossiping the rumor to him/her.

Randomized Rumor Spreading Processes. A randomized rumor spreading process
is characterized by the fact that a rumor is spread in a network by nodes of the network
exchanging information with randomly chosen neighbors. Such processes and similar ones
have been studied in mathematical epidemiology and stochastic particle systems, see,
e.g., [Lig99]. In computer science, besides modeling epidemic processes with relevance
to computer science (e.g., spread of information in social networks [DFF12], spread of
computer viruses [Ber+05] and forming of opinions in social networks [Kle08]), rumor
spreading is an important algorithmic paradigm.

While its very first occurrence [FG85] was only as an analysis tool for algorithmic
problems with no immediate connection to rumor spreading, it quickly was noted that
randomized rumor spreading can be used as a highly scalable and robust mechanism
to distribute updates in replicated database applications [Dem+88]. This scalability
today is mostly exploited in data-intensive applications, e.g., for media content or news
feeds [Mat+12]. The second main application area of rumor spreading (here often called
gossip-based algorithms) are wireless sensor networks and mobile ad-hoc networks. Here,
the simple paradigm of contacting random neighbors is used to overcome the difficulties
imposed by the changing and unreliable network topology, see, e.g., [IS10].

Basic Rumor Spreading. Possibly the most basic rumor spreading process regarded
already in the paper by Frieze and Grimmett [FG85], aiming to spread a rumor in a
network of n nodes who can all communicate with each other, proceeds as follows. We
start with a single node possessing a piece of information (“rumor”). The process works
in discrete time steps (“rounds”). In each round, each informed node calls a node chosen
uniformly at random (including itself) and gossips the rumor to it, making the node
informed if it was not before.

This process is sometimes called synchronized rumor spreading in the push model in
a complete graph. Note that this basic process also models the spread of a single piece
of information in a system where several rumors are disseminated. Note also that the
assumption that all nodes can communicate with each other makes sense even in networks
where there is no physical connection between any two nodes. In such networks, gossip-
based algorithms usually are implemented building upon a peer-sampling service [Jel+07],
which enables the individual node to connect to a random other one.

Previous Results. For the basic rumor spreading process, two classical analyses exist.
For simplicity, denote by Sn the number of rounds performed until (for the first time) all
nodes are informed. This random variable is also called the broadcast time of the rumor
spreading process.

Already Frieze and Grimmett [FG85] give the fairly precise result that Sn = (1 ±
o(1))(log2 n+ lnn) with probability 1− o(1). They also prove that for all ε, γ > 0, with
probability at least 1−o(n−γ), the broadcast time does not exceed (1+ε)(log2 n+γ lnn).
The first bound was sharpened by Pittel [Pit87], who proved that for any h = ω(1), we
have Pr(|Sn − log2 n− lnn| ≥ h(n))→ 0.

Our Results. Despite the strong results of Frieze and Grimmett [FG85] and Pit-
tel [Pit87], it is still surprising that a simple process like basic randomized rumor
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spreading is not even better understood. Recall, for example, that the coupon collector
process is much better analyzed. We can precisely describe the time needed to collect
all coupons as the sum Cn = X1 + . . .+Xn of n independent geometrically distributed
random variables Xi with success rates pi = i/n. Consequently, the expected time the
process takes is nHn = n ln(n) + γn + 1/2 − O(1/n). For the basic rumor spreading
process, we are not aware of any proof for a log2 n+ lnn+ Θ(1) bound for the expected
runtime, let alone a precise description of the distribution. It might be possible to derive
results in this direction from a careful analysis of the proof in [Pit87], but since the
8-page proof analyzing the process in 7 different phases is quite technical, we preferred
to use an alternative route.

We prove that the expected time needed to inform all n nodes via the basic rumor
spreading process is at most

E[Sn] ≤ dlog2 ne+ lnn+ 2.765 + o(1).

In addition to the expectation, we show that the random variable describing the rumor
spreading time is dominated by

Sn � dlog2 ne+ 2.562 + o(1) +
1 +O(n−

1
2

+ε)

n
· Cn + Geom(1−O(n−1+ε)),

where Cn is the time needed to collect n coupons, Geom(p) is an independent geometric
random variable with success probability p, and ε is an arbitrarily small constant. Fur-
thermore, from the stochastic dominance result, the following tail bound is immediately
derived. With probability at least 1− 2e−r, we have

Sn ≤ dlog2(n)e+ ln(n) + 2.188 + r,

for sufficiently large n. These results are proven in Section 13.2 as Theorem 13.2.6 as
well as Corollaries 13.2.7 and 13.2.8.

Our upper bounds are quite sharp. For the expectation, a lower bound of blog2 nc+
lnn − 1.116 is not difficult to prove, see Corollary 13.3.2 in Section 13.3. Also, for

the distribution, we show that Sn is subdominated by blog2 nc − 1 + (1/n)
∑n/2

i=1Xi

(Theorem 13.3.1), where as above the Xi are independent geometric random variables
with success probability pi = i/n.

Technical Contributions. In addition to proving the relatively precise results stated
above, we also feel that our analysis method is even a little simpler than the previous
works. We use the following two elementary, but powerful arguments.

(i) Imagine that at some time we have at least n1 nodes informed. Instead of trying
to estimate the result of a single round starting with n1 informed nodes, we fix a target
number n2 of nodes such that with high probability 1− q, at least n2 nodes are informed
after one round. In case this fails in a single round, we simply try again. Consequently,
we have that in a subphase of length 1 + Geom(1 − q), we surely go from at least n1

informed nodes to at least n2 informed nodes. By this, we avoid dealing with the
distribution of the number of informed nodes at particular times—of course at the price
of dealing with random completion times, but this is less critical since their distributions
are simply a fixed number plus some geometrically distributed random variables with
success probabilities very close to one. What remains is to cleverly choose the target
numbers. On the one hand, they should be large to ensure that the number of subphases
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(and consequently the number of rounds needed) is small, on the other, they have to be
small enough such that the failure probabilities q are very small.

(ii) For the part of the process leading from cn informed nodes (for some constant
0 < c < 1) to all nodes informed, we use an elegant reduction to the coupon collector
process. We give (not too sharp) lower bounds for the number of informed nodes in
these rounds, building on the elementary observation that the number of uninformed
nodes typically shrinks by a constant factor. This factor is known to approach 1/e, but
we shall not exploit this and use a weaker factor. This weaker factor is enough to see
that in the following κ rounds, a total of κn−O(n) random contacts are made. From
the coupon collector process, it is well known how many random calls are needed to
ensure that each of the missing (1− c)n nodes receives a call.

We did not try to optimize the additive constants in our bounds, though we imagine
that our proof method allows making them precise with moderate additional effort. We
also note that our results confirms, and strengthens, previous observations that the
first part of the process up to a constant fraction of informed nodes shows very little
variation in the runtime. For example, we shall prove that with probability 1− n−1+ε,
after dlog2 ne − 1 rounds, at least (5/16)n− o(n) nodes are informed. Note that within
log2 n− 2 rounds, no rumor spreading process (where each informed node does one call
per round) can inform more than n/4 nodes.

12.2 The 2-Player Cryptogenography Problem

Motivated by a number of recent influential cases of whistle-blowing, Brody, Jakobsen,
Scheder and Winkler [Bro+14] proposed the following cryptogenography problem as
model for anonymous information disclosure in public networks, which is the subject
of Chapter 14. We have k players (potential information leakers). A random one of
them holds a secret, namely a random bit. All other players only know that they are not
the secret holder. Now without any non-public communication, the players aim at both
making the secret public and hiding the identity of the secret holder. More precisely, we
are looking for a (fully public) communication protocol in which the players – as only form
of communication – broadcast bits, which may depend on public information (including
all previous communication), private knowledge (with respect to the secret), and a private
source of randomness. After this phase of communication, the protocol outputs a single
bit depending solely on all data sent in the communication phase. The complete protocol
(regulating the communication and the output function) and all communication is public,
and is monitored by an eavesdropper who aims at identifying the secret owner. We say
that a run of the protocol is a success for the players, if the protocol output is the secret
bit and the eavesdropper fails to identify the secret owner; otherwise it is a success for
the eavesdropper. Since everything is public, optimal strategies for the eavesdropper are
easy to find (see below). We shall therefore always assume that the eavesdropper plays
an optimal strategy. The players’ success probability (for a given protocol) then is the
probability (taken over the random decisions of the players and the random initial secret
distribution) that simultaneously (i) the protocol outputs the true secret and (ii) an
optimal eavesdropper does not blame the secret holder.

It is immediately clear that some positive (players’) success probability is easy to
obtain. A protocol without any communication and outputting a random bit achieves a
success probability of 1

2 −
1
2k (the eavesdropper has no strictly better alternative than

guessing a random player). Surprisingly, Brody et al. could show that the players, despite
the complete absence of private communication, can do better. For two players, they
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present a protocol having a success probability of 1
3 (instead of the trivial 1

4). For k
sufficiently large, they present a protocol with success probability 0.5644. They also
show two hardness results, namely that a success probability of more than 3

4 cannot be
obtained, regardless of the number of players, and that 3

8 is an upper bound for the
two-player case. While all these results are easy to state, they build on deep analyses of
the cryptogenography problem, in particular, on clever reformulations of the problem
in terms of certain convex combinations of secret distributions and functions that are
concave on a certain infinite set of two-dimensional subspaces (“allowed planes”) of the
set of secret distributions.

The starting point for our work is the incomplete understanding of the two-player case.
While the gap between upper and lower bound of 3

8−
1
3 ≈ 0.04167 is small, our impression

is that the current-best protocol achieving success probability 1
3 in two rounds together

with the abstract hardness result do not give us much understanding of the structure of
the cryptogenography problem. We therefore imagine that a better understanding of
this smallest possible problem of leaking one bit from two players, ideally by determining
an optimal protocol (that is, matching a hardness result), could greatly improve the
situation.

Our Results. We shall be partially successful in achieving the above stated goals.
On the positive side, we find protocols with strictly larger success probability than 1

3
(namely 0.3384) and we prove a stricter hardness result of 0.3672. Our new protocols
look very different from the 2-round protocol given by Brody et al., in particular,
they use infinite protocol trees (but have an expected finite number of communication
rounds). These findings motivate and give new starting points for further research on
the cryptogenography problem.

On the not so positive side, our work on better protocols indicates that good
cryptogenographic protocols can be very complicated. The simplest protocol we found
that beats the 1

3 barrier already has a protocol tree of depth 16, that is, the two players
need to transmit 16 bits in total in the worst case. While we still manage to give a
human-readable description and performance proof for this protocol, it is not surprising
that previous works not incorporating a computer-assisted search did not find such a
protocol. Our best protocol, giving a success probability of 0.3384, already uses 18248
non-equivalent states.

Technical Contributions. To find the improved protocols, we use a number of
theoretical and experimental tools. We first reformulate the cryptogenography problem
as a solitaire vector splitting game over vectors in R2×k

≥0 . Both for human researchers and
for automated protocol searches, this reformulation seems to be easier to work with than
the previous reformulation via convex combinations of distributions lying in a common
allowed plane [Bro+14]. It also proved to be beneficial for improving upon the hardness
result.

Restrictions of the vector splitting game to a finite subset of R2×k
≥0 , e.g., {0, . . . , T}2×k,

can easily be solved via dynamic programming, yielding (due to the restriction possibly
sub-optimal) cryptogenographic protocols. Unfortunately, for k = 2 even discretizations
as fine as T = 40 are not sufficient to find protocols beating the 1/3 barrier and memory
usage quickly becomes a bottleneck issue. However, exploiting the simple fact that the
game values are homogeneous (that is, multiplying a game position by a non-negative
scalar changes the game value by this factor), we can (partially) simulate a much finer
discretization in a coarse one. This extended dynamic programming approach easily gives
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cryptogenographic success probabilities larger than 1/3. Reading off the corresponding
protocols, due to the reuse of the same position in different contexts, needs more care,
but in the end gives without greater difficulties also the improved protocols.

When a cryptogenographic protocol reuses a state a second time (with a non-trivial
split in between), then there is no reason to re-iterate this part of the protocol whenever
this position occurs. Such a protocol allows infinite paths, while still needing only an
expected finite number of rounds. Since the extended dynamic programming approach in
finite time cannot find such protocols, we use a linear programming based post-processing
stage. We translate each splitting operation used in the extended dynamic programming
search into an inequality relating game values. By exporting these into an LP-solver,
we do not only obtain better game values (possibly corresponding to cryptogenographic
protocols with infinite paths, for which we would get a compact representation by making
the cycles explicit), but also a way to easily certify these values using an optimality
check for a linear program instead of having to trust the ad-hoc dynamic programming
implementation.

Related Work. Despite a visible interest of the research community in the cryp-
togenography problem1, the only relevant follow-up work is Jakobsen’s paper [Jak14],
which analyses the cryptogenography problem for the case that several of the players
know the secret. This allows to leak a much larger amount of information as made
precise in [Jak14]. Due to the asymptotic nature of these results, unfortunately, they
do not give new insights in the 2-player case. Other work on anonymous broadcasting
typically assumes bounded computational power of the adversary (see, e.g., [JO16]); we
refer to [DD08] for a survey on anonymous communication in networks.

In [Bro+14], the cryptogenography problem was reformulated to the problem of
finding the point-wise minimal function f on the set of secret distributions that is
point-wise not smaller than some given function g and that is concave on an infinite set
of 2-dimensional planes. Such restricted notions of concavity (or, equivalently, convexity)
seem to be less understood. There exists work by Matoušek [Mat01] for a similar
convexity problem, however, with only a finite number of one-dimensional directions in
which convexity is required. We do not see how to extend these results to our needs.

12.3 Notes

The contents of Chapter 13 have previously been published at ANALCO’14 [DK14]. The
contents of Chapter 14 have been accepted for publication at ICALP’16 [DK16a] (with
an extended online version accessible at [DK16b]).
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Chapter 13

Rumor Spreading in Complete
Graphs

In this chapter, we give a precise analysis of the rumor spreading time of the classical
(synchronized) push protocol for randomized rumor spreading in complete graphs (see
Chapter 12 for an overview of the results). We introduce the process, corresponding
notation as well as basic concepts and tools from probability theory in Section 13.1. An
upper bound (in form of a stochastic dominance result) is obtained in Section 13.2 by
successively analyzing three phases of the process and finally connecting these results. A
complementing lower bound is given in Section 13.3, concluding the chapter.

13.1 Notation and Preliminaries

Throughout this chapter, we analyze the basic rumor spreading process introduced by
Frieze and Grimmett [FG85] (see also [Pit87] for a beautiful description of the process).
The process starts with one node of a complete network on the n nodes [n] := {1, . . . , n}
knowing a rumor. In each round of the process, each node that knows the rumor chooses a
node uniformly at random (including possibly itself) and gossips the rumor to that node,
which becomes informed in case it was not before. We denote by It the set of informed
nodes after the completion of round t. Let I0 consist of the single initially informed node.
By Ut := [n] \ It, we denote the set of uninformed nodes after completion of round t. Our
main concern is the time needed to inform all nodes, that is, Sn := min{t | |It| = n}.

Before starting the analysis of this process, let us collect a few probabilistic tools
needed in the proofs.

13.1.1 Domination, Negative Association and Tail Bounds

Let a pair of random variables X,Y be given. We say that X stochastically dominates Y ,
and write Y � X, if Pr[X ≥ x] ≥ Pr[Y ≥ x] for all x.

The following lemma is a standard tool to bound the deviation of sums of independent
random variables from their expectation, see, e.g., [DP09].

Lemma 13.1.1 (Chernoff-Hoeffding Bound, [DP09, Theorem 1.1]). Let X :=
∑n

i=1Xi,
where the Xi are independently distributed in [0, 1]. Then,

(i) for 0 < δ < 1,

Pr[X ≤ (1− δ) E[X]] ≤ e−E[X]δ2/2,

(ii) for all δ > 0,

Pr[X ≥ (1 + δ) E[X]] ≤
(

eδ

(1 + δ)(1+δ)

)E[X]

.
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Many of these large-deviation bounds also hold in some dependent settings. The
following lemma establishes a case in which a sequence of non-independent binary random
variables X1, . . . , Xn can be substituted by independent random variables whose sum
dominates (or subdominates)

∑n
i=1Xi. This makes it possible to use the previous lemma

to derive tail bounds for
∑n

i=1Xi. This fact seems to be well known, but the only
published proof we are aware of is Lemma 1.18 and 1.19 in [Doe11].

Lemma 13.1.2. Let X1, . . . , Xn be arbitrary binary random variables. Let X∗1 , . . . , X
∗
n

be binary random variables that are mutually independent and such that for all i, X∗i is
independent of X1, . . . , Xi−1. If for all i and all x1, . . . , xi−1 ∈ {0, 1},

Pr[Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1] ≥ Pr[X∗i = 1],

then for all k ≥ 0, we have

Pr

[
n∑
i=1

Xi < k

]
≤ Pr

[
n∑
i=1

X∗i < k

]
.

Similarly, if for all i and all x1, . . . , xi−1 ∈ {0, 1},

Pr[Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1] ≤ Pr[X∗i = 1],

then for all k ≥ 0, we have

Pr

[
n∑
i=1

Xi > k

]
≤ Pr

[
n∑
i=1

X∗i > k

]
.

A more intricate dependent setting allowing for Chernoff-type bounds is the case of
negatively associated random variables. We say that random variables X1, . . . , Xn are
negatively associated, if for all disjoint subsets I, J ⊆ [n] and all non-decreasing functions
f and g, we have

E[f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)] E[g(Xi, i ∈ I)].

This notion has been studied especially in the balls-into-bins model, which has a direct
correspondence to our rumor spreading process. In particular, we will exploit the following
basic fact.

Lemma 13.1.3 (Balls Into Bins, Negative Association [DP09, Example 3.2]). Let m balls
be thrown independently and uniformly at random into n bins. The indicator variables
Zi defined by Zi = 1 if and only if bin i is empty are negatively associated.

The above fact allows us to use the following large-deviation bound.

Lemma 13.1.4 (Chernoff-Hoeffding Bound, Negative Association [DP09, Theorem 3.1]).
Let X :=

∑n
i=1Xi, where the Xi are negatively associated random variables taking values

in [0, 1]. Then for all t > 0,

Pr[X > E[X] + t] ≤ e−2t2/n.

We say that a random variable G is geometrically distributed with success probabil-
ity p, and write G ∼ Geom(p), if Pr[G = i] = (1− p)ip for all i ∈ N0 = {0, 1, . . . , } – note
that by definition the smallest possible realization of G is the value zero. Equivalently,
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G ∼ Geom(p) whenever Pr[G ≥ i] = (1− p)i holds for all i ∈ N0. In the first phases of
the process, we will bound the expected number of rounds to inform a certain number of
nodes by a deterministic number and a sum of geometrically distributed variables. This
value is typically dominated by the single geometric random variable with the smallest
success probability. To use this fact for simplifying the results, we provide the following
convenient lemma.

Lemma 13.1.5. Let G1, . . . , Gn be independent random variables with Gi ∼ Geom(1−qi).
Then

∑n
i=1Gi is stochastically dominated by a random variable G with G ∼ Geom(1−∑n

i=1 qi).

Proof. Let G1, G2 be independent geometrically distributed random variables with success
probabilities 1− q1 and 1− q2, respectively. By law of total probability, we compute for
all t ≥ 0,

Pr[G1 +G2 ≥ t] =

(
t−1∑
k=0

Pr[G1 = k] Pr[G2 ≥ t− k]

)
+ Pr[G1 ≥ t]

=

(
t−1∑
k=0

(1− q1)qk1q
t−k
2

)
+ qt1

≤
t∑

k=0

qk1q
t−k
2 ≤

t∑
k=0

(
t

k

)
qk1q

t−k
2 = (q1 + q2)t.

Hence, G1 +G2 � Geom(1− (q1 + q2)). By successive application of this fact, we obtain∑n
i=1Gi � Geom(1−

∑n
i=1 qi).

13.1.2 The Coupon Collector Process

A central approach of our analysis is a reduction from the final stages of the rumor
spreading process to the coupon collector process. In this process, we independently
draw coupons c1, c2, . . . , each having a random, equiprobable (coupon) type out of n
distinguishable types. Let an initial collection of coupons having in total 0 ≤ m < n
different types be given. We let Cn(n − m) denote the number of draws until the
remaining n−m coupon types have been collected. We write Cn := Cn(n) for short to
denote the number of draws in the typical coupon collector process that starts with an
empty initial collection.

It is well known that the time to collect the remaining m coupon types, when starting
with n −m collected types, can be described by the sum Cn(m) = X1 + · · · + Xm of
independent geometric random variables Xi with success probability pi = i/n. Let
Hi :=

∑i
j=1

1
j denote the i-th harmonic number, then we obtain E[Cn(m)] = nHm.

Together with the fact that

1/(2n)− 1/(8n2) ≤ Hn − (ln(n) + γ) ≤ 1/(2n),

where γ = 0.57721 . . . is the Euler-Mascheroni constant (see, e.g., Pt. II, Ex 18 in [PS72]),
this yields a very sharp bound of E[Cn(m)/n] = ln(m) + γ +O(1/m).

To bound the deviation of the coupon collector’s time, we exploit the following lemma,
which is a slight generalization of the classic upper tail bound for the coupon collector
process.
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Lemma 13.1.6 (Coupon Collector Tail Bound). Let 1 ≤ m ≤ n and r ≥ 0. Then,

Pr[Cn(m) ≥ n ln(m) + rn] ≤ e−r.

Proof. By union bound, the probability that in t := n ln(m) + rn rounds, one of the
initially missing m coupons types is never drawn, is bounded from above by

m

(
1− 1

n

)t
≤ me−(ln(m)+r) = e−r.

In our analysis, we couple the rumor spreading process with the coupon collector
by identifying coupons with message receivers. We will count the number of messages
sent in a sequence of rounds that, by our analysis, satisfy a lower bound on the number
of newly informed nodes. Although this conditional process is a modification of the
original coupon collector process, it is easy to see that it is only pessimistic to regard
the original process instead. The following lemma makes this claim precise by showing
that bounding the number of collected coupons from below only decreases the number of
draws remaining until all coupons are collected.

Lemma 13.1.7. Let C1, C2 . . . be a sequence of coupons drawn independently and
uniformly at random from [n], let X ⊆ [n] be a set of x distinguished coupon types and
M be arbitrary. We define S(C1, . . . , CM ) ⊆ X as the set of coupon types of X collected
among C1, . . . , CM . Then, for any 0 ≤ m ≤ x and r,

Pr [Cn(x) ≤ r | |S(C1, . . . , CM )| ≥ m] ≥ Pr[Cn(x) ≤ r],

i.e., Cn(x) conditioned on |S(C1, . . . , CM )| ≥ m is stochastically dominated by Cn(x).

Proof. We show that

Pr[Cn(x) ≤ r | |S(C1, . . . , CM )| ≥ m] ≥ Pr[Cn(x) ≤ r | |S(C1, . . . , CM )| < m],

from which the claim follows by the law of total probability. If r ≤M , then the condition
|S(C1, . . . , CM )| < m ≤ x already implies Pr[Cn(x) ≤ r | |S(C1, . . . , CM )| < m] = 0,
thus the claim holds trivially.

For r > M , let γ1, . . . , γM and γ̄1, . . . , γ̄M be arbitrary realizations of C1, . . . , CM
satisfying |S(γ1, . . . , γM )| < m and |S(γ̄1, . . . , γ̄M )| ≥ m. The smaller set might not be
contained in the larger one, however, we may couple both situations by a simple renaming
of the coupons, using any permutation π : [n] → [n] such that π(S(γ1, . . . , γM )) ⊆
S(γ̄1, . . . , γ̄M ) and π(X) = X. Consider any realization CM+1 = cM+1, . . . , Cr = cr
with |S(γ1, . . . , γM , cM+1, . . . , cr)| = x, then cM+1, . . . , cr must contain the coupons
X \ S(γ1, . . . , γM ). By definition of π, this implies that

S(π(cM+1), . . . , π(cr)) = π(S(cM+1, . . . , cr))

⊇ π(X \ S(γ1, . . . , γM )) ⊇ π(X) \ S(γ̄1, . . . , γ̄M ).

This implies |S(γ̄1, . . . , γ̄M , π(XM+1), . . . , π(Xr))| = |π(X)| = x. After noting that
CM+1, . . . , Cr is equally distributed to π(CM+1), . . . , π(Cr), this immediately yields

Pr [Cn(x) ≤ r |X1 = γ1, . . . , XM = γM ] ≤ Pr [Cn(x) ≤ r |X1 = γ̄1, . . . , XM = γ̄M ] ,

proving the claim.
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13.2 Upper Bounds

To prove the upper bounds, we use three different ways to prove lower bounds on the
numbers of informed vertices. When there are few informed vertices, a birthday-paradox-
type computation shows that very likely, all calls reach different uninformed vertices
(Phase 1). When there are more, but at most a small constant fraction of informed nodes,
a similar argument together with a Chernoff bound argument shows that the number of
informed nodes almost doubles (Phase 2). When there are even more informed nodes,
then, like previous works, switching the focus to the uninformed nodes and again using
Chernoff bounds shows that the number of uninformed nodes shrinks by a constant
factor (Phase 3). This shows that in the following p3 rounds, p3n−O(n) random calls
are made in total. Together with a reduction to the coupon collector process, we derive
a bound on the rumor spreading time.

13.2.1 Phase 1

When only few nodes are informed, the random calls performed by these nodes have a
very high chance of targeting an uninformed node, and consequently, there is a good
chance that the number of informed nodes doubles. The following lemma makes this
observation precise.

Lemma 13.2.1 (Phase 1). Let n1 <
√
n be a power of two and t1 := min{t ≥ 0 | |It| ≥

n1}. Then t1 is stochastically dominated by log2(n1) + Geom(1− n2
1/n).

Proof. Let p1 := log2 n1, 1 ≤ j ≤ p1 and t ≥ 0. Assume that in the (t + 1)-st round,
the |It| informed nodes perform their actions in some given order. Then, when the k-th
node chooses its random communication partner, at most |It|+ k− 1 nodes are informed.
Consequently, with probability at least 1− (|It|+ k − 1)/n it calls an uninformed node
and informs it. Hence

Pr
[
|It+1| ≥ 2j | |It| ≥ 2j−1

]
≥

2j−1−1∏
k=0

(
1− 2j−1 + k

n

)

≥ 1−
22(j−1) +

∑2j−1−1
k=0 k

n
≥ 1− (3/2)22(j−1)

n
,

where the second inequality follows from Bernoulli’s inequality.
We divide the process until at least n1 nodes are informed into p1 subphases, where

each subphase j ends as soon as at least 2j nodes are informed. These subphases almost
surely consist of a single round each. Formally, define t(0) := 0 and introduce the random
stopping times

t(j) := min{t ≥ 0 | |It| ≥ 2j}, for 1 ≤ j ≤ p1.

Clearly, at time t(p1) =
∑p1

j=1 t
(j) − t(j−1) at least 2p1 = n1 nodes are informed. For

1 ≤ j ≤ p1, the above calculation shows that t(j) − t(j−1) is stochastically dominated by
1 + Geom(1− qj) with qj := (3/2)22(j−1)/n, since in each round t with |It| ≥ 2j−1, we
have that |It+`| < 2j with probability at most q`j for each ` ≥ 1.

We introduce independent random variables Gj ∼ Geom(1− qj) and obtain

t(p1) � p1 +

p1∑
j=1

Gj .
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To complete the proof, note that

p1∑
j=1

qj ≤
p1∑
j=1

(3/2)22(j−1)

n
≤ 22p1−1

n
,

and apply Lemma 13.1.5. This proves the claim.

13.2.2 Phase 2

When more than just very few nodes are informed, the probability for the informed
nodes to double in one round is smaller than what we are willing to tolerate. However,
the number of informed nodes still increases, in expectation, almost by a factor of two
per round, and is additionally closely concentrated around its expectation. This is what
we shall exploit in this subsection.

Let 1 ≤ k ≤ n
2 and assume that |It| ≥ k. Enumerate k nodes from It in an arbitrary

manner u1, . . . , uk. Denote by c(uj) the random node called by uj in the (t+ 1)-st round.
Let Xj be the indicator random variable for the event c(uj) /∈ It ∪ {c(u1), . . . , c(uj−1)}.
Then |It+1| ≥ k +

∑k
j=1Xj . While X1, . . . , Xk are not independent, for all j = 1, . . . , k,

they satisfy the property that regardless of the outcome of X1, . . . , Xj−1, we have
Pr[Xj = 1] ≥ 1 − (k + j − 1)/n. This not only allows us to bound the expectation of
|It+1| by

E [|It+1|] ≥ 2k −
k2 +

∑k−1
i=0 i

n
≥ 2k − 3k2

2n
= 2k

(
1− 3k

4n

)
, (13.1)

but also allows to use Chernoff bounds. By Lemma 13.1.2, the above property implies
that X1 + . . .+Xk stochastically dominates Y1 + . . .+ Yk, where the Yj are independent
binary random variables with Pr[Yj = 1] = 1 − (k + j − 1)/n. For convenience, we

define Y =
∑k

j=1 Yj and note that by an analogous calculation to (13.1), we obtain

E[Y ] ≥ k(1− 3k
2n).

Lemma 13.2.2. Let 0 < s < 1
2 and ns

2 ≤ k ≤
n
2 . Then

Pr

[
|It+1| ≤ 2k

(
1− 3k

4n
− 1

2n
s
2

) ∣∣∣∣ |It| ≥ k] ≤ e−n s2 /24.

Proof. Assume that |It| ≥ k. If the event |It+1| ≤ 2k
(

1− 3k
4n −

1

2n
s
2

)
occurs, we have

k∑
j=1

Xj ≤ k

(
1− 3k

2n
− 1

n
s
2

)
(13.2)

≤
(

1− 1

n
s
2

)
k

(
1− 3k

2n

)
≤
(

1− 1

n
s
2

)
E [Y ] ,

where the random variables Y1, . . . , Yk and Y =
∑k

j=1 Yj are as defined above.
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If 1
3n

1− s
2 ≤ k ≤ n

2 , we can simply apply the Chernoff bound of Lemma 13.1.1(i), and
obtain

Pr

[
|It+1| ≤ 2k

(
1− 3k

4n
− 1

2n
s
2

) ∣∣∣∣ |It| ≥ k]

≤ Pr

 k∑
j=1

Yj ≤
(

1− 1

n
s
2

)
E [Y ]


≤ exp

(
−1

2

(
1

n
s
2

)2

k

(
1− 3k

2n

))

≤ exp

(
− k

8ns

)
≤ exp(−n1− 3

2
s/24) ≤ exp(−n

s
2 /24),

where the second line follows from Lemma 13.1.2, the third from Lemma 13.1.1(i) as
well as E[Y ] ≥ k(1− 3k

2n), and finally the last from 1
3n

1− s
2 ≤ k ≤ n/2 and s < 1

2 .

If 1
2n

s ≤ k ≤ 1
3n

1− s
2 , it is useful to regard X̄j := 1 −Xj and reformulate (13.2) to

the equivalent inequality
∑k

j=1 X̄j ≥ 3k2

2n + k

n
s
2

. Analogously, we define Ȳj := 1− Yj and

Ȳ :=
∑k

j=1 Ȳj , resulting in E[Ȳ ] ≥ 3k2

2n . Setting δ such that (1 + δ) E[Ȳ ] = 3k2

2n + k

n
s
2

, we

see that δ ≥ 2n1− s2
3k ≥ 2. Thus similar to above, we compute

Pr

[
|It+1| ≤ 2k

(
1− 3k

4n
− 1

2n
s
2

) ∣∣∣∣ |It| ≥ k]

≤ Pr

 k∑
j=1

Ȳj ≥ (1 + δ) E
[
Ȳ
]

≤
(

eδ

(1 + δ)(1+δ)

)E[Ȳ ]

≤
(e

3

)(1+δ) E[Ȳ ]

≤
(e

3

) k

n
s
2 ≤ exp

(
− k

12n
s
2

)
≤ exp

(
−n

s
2 /24

)
,

where the second line follows from Lemma 13.1.2, the third from Lemma 13.1.1(ii) and
the observation δ ≥ 2, and finally the last from (1 + δ) E[Ȳ ] ≥ k

n
s
2

and k ≥ ns

2 .

Equipped with the lemma above, we can show that for any ` ≥ 1, intuitively after
dlog2 ne − ` rounds, plus a small geometrically distributed random number of extra
rounds, we expect to inform about n( 1

2`
− 3

4
1

22` ) nodes. For ` = 2, this corresponds to a

(1
4 −

3
64)-fraction of the nodes (deviating only slightly from the best-possible fraction of

1
4 whenever n is a power of two), while for ` = 1, this still amounts to 5

16 of the nodes.
In the proof of the following lemma, we use the analysis provided by Phase 1 to boost

the number of informed nodes at the beginning of Phase 2 to ns (for small s).

Lemma 13.2.3 (Phase 2). Let ` ≥ 1 be an integer and s < 1/2 with n
s
2 ≥ (3/2) log2 n.

Define n2 := n
(

1
2`
− 3

4
1

22` − ε
)
, where ε := log2(n)

2n
s
2

, and correspondingly, t2 := min{t ≥
0 | |It| ≥ n2}. Then t2 is stochastically dominated by

dlog2(n)e − `+ Geom(1− (n−1+2s + log2(n)e−n
s
2 /24)).
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Proof. We define n1 as the largest power of two that is at most ns, hence ns/2 ≤ n1 ≤ ns.
We apply the Phase 1 Lemma (Lemma 13.2.1) to see that t1 := min{t ≥ 0 | |It| ≥ n1} is
dominated by log2(n1) + Geom(1− n2

1/n). Similarly to the proof of the Phase 1 Lemma,
we introduce subphases t(1), t(2), . . . with

t(j) := min{t ≥ 0 | |It| ≥ aj},

where a0 := n1 and ai := 2ai−1(1− 3ai−1

4n −
1

2n
s
2

). Trivially, ai ≤ 2ia0. Hence,

ai ≥ 2ai−1

(
1− 3

4

2i−1a0

n
− 1

2n
s
2

)
,

and, by a simple induction,

ai ≥ 2ia0

i∏
j=1

(
1− 3

4

2i−ja0

n
− 1

2n
s
2

)
(13.3)

≥ 2ia0

(
1− 3

4

2ia0

n
− i

2n
s
2

)
.

Set p2 := dlog2(n)e − `− log2(n1) and note that for all i < p2, we have that

ai ≤ 2ia0 ≤ 2dlog2(n)e−(`+1) ≤ n

2`
≤ n

2
,

since ` ≥ 1. Hence, for all i < p2 Lemma 13.2.2 is applicable to bound the distribution
of t(i+1) − t(i) by deterministic single round plus a geometrically distributed random
variable with high success probability, which we will use below. Observe that

ap2−1 ≥
n

2`+1

(
1− 3

4

1

2`+1
− p2 − 1

2n
s
2

)
=: āp2−1.

Since the lower bound of (13.3) might be decreasing for large values of 2ia0, in particular
when i ≥ p2, we now pessimistically work with the smaller lower bound of āp2−1 instead
of ap2−1. We set, as the target of the last subphase,

āp2 := 2āp2−1

(
1− 3

4

āp2−1

n
− 1

2n
s
2

)
≥ n

2`

(
1− 3

4

1

2`+1
− p2 − 1

2n
s
2

)
·
(

1− 3

4

1

2`+1
− 1

2n
s
2

)
≥ n

2`

(
1− 3

4

1

2`
− p2

2n
s
2

)
≥ n2,

and redefine t(p2) := min{t ≥ 0 | |It+1| ≥ āp2}. Note that Lemma 13.2.2 still applies,
since āp2 is a lower bound on ap2 . From the above inequality, t2 ≤ t(p2) follows.

Consequently, t2 is dominated by t1 + dlog2(n)e − `− log2(n1) +
∑p2

i=1Gi, where Gi

is geometrically distributed with success probability 1 − qi with qi ≤ e−n
s
2 /24 using

Lemma 13.2.2. Since Lemma 13.2.1 yields t1 � log2(n1)+Geom
(

1− n2
1
n

)
, and

∑p2
i=1 qi ≤
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log2(n)e−n
s
2 /24, we obtain, by Lemma 13.1.5,

t2 � t1 + dlog2(n)e − `− log2(n1) + Geom(1− log2(n)e−n
s
2 /24)

� dlog2(n)e − `+ Geom(1− (n−1+2s + log2(n)e−n
s
2 /24)).

13.2.3 Phase 3

Once a linear number of nodes is informed, the probability for a specific uninformed
node to stay uninformed is less than a constant, hence we switch our focus from the
set of informed nodes to the set of uninformed nodes. Let |Ut| ≤ cn for some constant
0 < c < 1. Then

E[|Ut+1|] ≤ |Ut|
(

1− 1

n

)|It|
≤ cn

(
1− 1

n

)(1−c)n
≤ cne−(1−c).

In fact, the number of uninformed nodes is concentrated in an O(n(1/2)+δ)-interval around
its expectation.

Lemma 13.2.4. For any δ > 0, we have

Pr
[
|Ut+1| > cne−(1−c) + n

1
2

+δ
∣∣∣ |Ut| ≤ cn] ≤ e−n2δ

.

Proof. Without loss of generality, assume that Ut = {1, . . . , u} with u ≤ cn. We introduce

X :=
∑bcnc

i=1 Xi, where we set the indicator variables Xi = 1 if and only if node i is
not informed by any node in It. Observe that X is a pessimistic estimate on |Ut+1|,
i.e., |Ut+1| ≤ X, and that E[X] ≤ cne−(1−c). The indicator variables are negatively
associated by Lemma 13.1.3. Consequently,

Pr
[
|Ut+1| > cne−(1−c) + n

1
2

+δ
]
≤ Pr

[
X > E[X] + n

1
2

+δ
]
≤ e−

2n1+2δ

cn ≤ e−n2δ
,

using Lemma 13.1.4.

We are ready to analyze Phase 3, which starts with some fraction 0 < c < 1 of
uninformed nodes and analyzes the time it takes until all these remaining nodes are
informed. The lemma below shows that this time is effectively dominated by⌈

(1 + o(1))
Cn(bcnc)

n
+

c

1− e−(1−c) + o(1)

⌉
+ Geom(1− o(1)),

and gives explicit bounds on all o(1)-terms.

Lemma 13.2.5 (Phase 3). Let 0 < c < 1 and t(0) := min{t ≥ 0 | |Ut| ≤ cn}. For
any 0 < δ < 1/2, the number of rounds until all nodes are informed is stochastically
dominated by

t(0) +
⌈
(1 + g(n))

Cn(bcnc)
n

+
c

1− e−(1−c) + h(n)
⌉

+ Geom

(
1− ln(en)e−n

2δ

1− c

)
,
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where for q := e−(1−c) and Z :=
(
c+ 1

1−q

)
n−

1
2

+δ, we define

g(n) :=
Z

1− Z
= O

(
n−

1
2

+δ
)
,

h(n) :=
n−

1
2

+δ ln en

(1− c)(1− q)
+ g(n)

(
c

1− q
+

n−
1
2

+δ ln en

(1− c)(1− q)

)
= O

(
n−

1
2

+δ lnn
)
.

Proof. As in the previous phases, for some p3 to be chosen later, we introduce p3

subphases almost surely consisting of single rounds each. To this end, we set

ε := n−1/2+δ, z0 := c, and zi := zi−1e
−(1−zi−1) + ε.

Let t(i) := min{t > t(i−1) | |Ut| ≤ zin} be the time that concludes the i-th subphase of
Phase 3. Using the previous lemma, we immediately see that

Pr[t(i) − t(i−1) > 1] ≤ Pr[|Ut+1| > zin | |Ut| ≤ zi−1n] ≤ e−n2δ
.

Consequently, using Lemma 13.1.5,
∑p3

i=1(t(i) − t(i−1)) � p3 + Geom(1− p3e
−n2δ

).
Observe that zi ≤ c for all i and thus, with q := e−(1−c),

zi ≤ zi−1q + ε ≤ · · · ≤ qic+
i−1∑
j=0

qjε.

Clearly, the total number C1 of messages sent in the subphases 1, . . . , p3 is lower bounded
by

C1 ≥
p3−1∑
i=0

n(1− zi) = n

(
p3 −

p3−1∑
i=0

zi

)

≥ n

p3 − c
p3−1∑
j=0

qj − εp3

p3−1∑
j=0

qj


≥ n

(
p3 −

c

1− q
− p3ε

1− q

)
. (13.4)

Recall that Cn(x) is the random number of coupons to be drawn in the coupon collector
process with n coupon types until a set of x distinguished type has been collected.
Equivalently, this is the time needed to collect all coupon types given that we already
start with n− x distinct types. We couple the rumor spreading process and the coupon
collector process by identifying informed nodes and coupons, and mimicking the choice
of message receivers as coupons in the coupon collector process. We observe that if the
number of messages sent after round t(0) is larger than Cn(bcnc), the rumor spreading
process is completed.

Note that when collecting all coupons (i.e., nodes receiving the rumor) in the subphases
1, 2, . . . , p3, by definition it is assured that at least |Ut(0) | − zp3n of the distinguished
coupon types appear among these coupons. Hence these are not independent draws
from the set of all coupons. However, by Lemma 13.1.7 this condition only decreases the
number of messages to be sent.
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Consider the situation in round t(p3) and afterwards. Setting p3 := dlogq εe, the
number of uninformed nodes is bounded by

zp3 ≤ cqlogq ε + ε

p3−1∑
j=0

qj ≤
(
c+

1

1− q

)
ε.

Consequently, in each additional round C2 ≥ (1 − zp3)n = (1 − O(ε))n messages are
sent. We define the target number of coupons C∗ as Cn(bcnc) where we condition the
underlying coupon collector process to be such that the conditions for every subphase
1 ≤ i ≤ p3, namely |Ut(i) | ≤ zin, are satisfied (see also Lemma 13.1.7). It remains to
determine j such that j · C2 + C1 ≥ C∗, i.e., the number of messages sent in rounds
t(0) + 1, . . . , t(p3) + dje is at least the required amount of C∗ and the process is completed.
By (13.4) and C2 ≥ n(1− zp3), this happens if

jn(1− zp3) + n

(
p3 −

c

1− q
− p3ε

1− q

)
= C∗.

We compute

j =
C∗

n

1

1− zp3

+
1

1− zp3

(
c

1− q
+

εp3

1− q
− p3

)
≤ C∗

n

1

1− zp3

+
c

1− q
+

εp3

1− q
− p3 +

zp3

1− zp3

c+ εp3

1− q

=
C∗

n

1

1− zp3

+
c

1− q
− p3 + hc(ε),

where hc(ε) := εp3

1−q +
zp3

1−zp3
c+εp3

1−q = O(ε · p3). Note that the second line follows from

(1− zp3)−1 = 1 + zp3/(1− zp3) and p3 ≥ 0.
By repeated application of Lemma 13.1.7, we can replace C∗ by the independent,

unconditioned random variable Cn(bcnc) and conclude that the total number of rounds
is stochastically dominated by

t(0) +

p3∑
i=1

(t(i) − t(i−1)) + dje

� t(0) + Geom(1− p3e
−n2δ

) + dp3 + je

� t(0) + Geom(1− p3e
−n2δ

) +

⌈
Cn(bcnc)

n

1

1− zp3

+
c

1− q
+ hc(ε)

⌉
,

where 1+g(n) ≥ 1
1−zp3

and h(n) ≥ hc(ε) = hc(n
−1/2+δ), using that p3 = dln(n1/2+δ)/(1−

c)e ≤ ln(en)/(1− c) and zp3 ≤ (c+ (1− q)−1)ε.

13.2.4 Connecting the Phases

We can finally prove the main theorem, combing the analysis of all phases. Specifically,
we instantiate the Phase 2 Lemma (Lemma 13.2.3) with ` = 1, i.e., we use the analysis
of Phases 1 and 2 to obtain a fraction of roughly 5

16 informed nodes and use the analysis
of Phase 3 thereafter.

Theorem 13.2.6. Let s < 1/2 with n
s
2 ≥ (3/2) log2 n. The number of rounds until

the rumor spreading process on the complete graph with n nodes informs all nodes is
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stochastically dominated by

dlog2 ne+
⌈

(1 + g(n))
Cn
(
b
(

11
16 + ε

)
nc
)

n
+ 1.562 + 10.71ε+O(ε2) + h(n)

⌉
+ Geom

(
1−
(

1

n1−2s
+

log2(n)

exp(n
s
2 /24)

+
4 ln(en)

exp(ns)

))
,

where we choose δ = s/2, c = 11
16 + ε and define ε := log2(n)

2n
s
2

, g(n) = O(n−(1+s)/2) and

h(n) = O(n−(1+s)/2 lnn) as in Lemma 13.2.5.

Proof. By Lemma 13.2.3 (with ` := 1), we have that for c̄ := 5
16 − ε, the time until at

least dc̄ne nodes are informed is stochastically dominated by dlog2 ne − 1 + Geom(1−
(n−1+2s+log2(n)e−n

s
2 /24)). At this point, we have a fraction of at most c := 1− c̄ = 11

16 +ε
uninformed nodes. Define F (x) := x

1−e−(1−x) and note that

F (c) ≤ F
(

11

16

)
+ F ′

(
11

16

)
ε+O(ε2) ≤ 2.562 + 10.71ε+O(ε2). (13.5)

With δ = s
2 , Lemma 13.2.5 yields that the total number of rounds is stochastically

dominated by

dlog2 ne − 1 +

⌈
(1 + g(n))

Cn(bcnc)
n

+ F (c) + h(n)

⌉
+ Geom

(
1−

(
n−1+2s + log2(n)e−n

s
2 /24

))
+ Geom

(
1− ln(en)

(1− c)
e−n

s

)
.

Plugging in the value of c and using (13.5), ln(en)(1− c)−1e−n
s ≤ 4 ln(en)e−n

s
, as well

as Lemma 13.1.5 concludes the proof.

Using that E[Cn(bcnc)/n] ≤ Hbcnc ≤ ln(n) + ln(c) + γ + O(1/n), we immediately
derive the following statement, since Theorem 13.2.6 bounds the expected number of
total rounds by

dlog2 ne+ (ln(n) + ln(11/16) + γ + 1.562) + 1 + o(1).

Corollary 13.2.7. The expected number of rounds until the rumor spreading process on
the complete graph with n nodes informs all nodes is bounded by

dlog2 ne+ lnn+ 2.765 + o(1).

Corollary 13.2.8. Let r ≥ 0 be constant and n be sufficiently large. The probability
that the rumor spreading process on the complete graph with n nodes does not inform all
nodes in dlog2(n)e+ ln(n) + 2.188 + r rounds is bounded by 2e−r.

Proof. Theorem 13.2.6 confines deviations from the expected value to the deviations of
the coupon collector process Cn(m) with m = b(11

16 + o(1))nc and a geometric random
variable X ∼ Geom(1−O(n−1+ε)) for some arbitrarily small ε > 0. By Lemma 13.1.6,
we have that

Pr

[
Cn(m)

n
> ln(m) + r

]
≤ e−r.
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For the geometric random variable X, there is a constant C such that for sufficiently
large n, we have, with α := 1/ ln(n1−ε/C),

Pr[X > αr] ≤
(

C

n1−ε

)αr
≤ e−r.

Consequently, with probability at most 2e−r, it holds that

Sn ≤ dlog2(n)e+ d(1 + g(n))(ln(m) + r) + 1.562 + o(1)e+ rα

≤ dlog2(n)e+ dln(n) + ln(11/16) + r + 1.562 + o(1)e+ rα

≤ dlog2(n)e+ ln(n) + r + 2.188,

for sufficiently large n.

13.3 Lower Bounds

In this section, we give two coarse lower bounds, which still show that our upper bounds
derived in the previous section are relatively sharp. Stronger lower bounds, giving a
better additive constant, could be proven with similar arguments as in the previous
section, in particular, by giving upper bounds on the expected number of informed
vertices together with large deviation bounds.

Theorem 13.3.1. The number of rounds until the rumor spreading process on the
complete graph with n nodes informs all nodes is stochastically subdominated by

blog2 nc − 1 +

⌈
Cn(dn/2e)

n

⌉
.

Proof. The number of informed nodes can at most double per round, hence it is guaranteed
that after blog2(n/2)c rounds at least dn/2e vertices remain uninformed. Coupling the
rumor spreading process with a coupon collector, Cn(dn/2e) describes the number of
coupons to be drawn until the last dn/2e of the remaining coupon types are collected.
Since at most n coupons are collected per round, dCn(dn/2e)/ne is a lower bound on the
number of rounds required to inform the last dn/2e nodes. Consequently, the number
of rounds required to inform all nodes is stochastically subdominated by blog2 nc − 1 +

dCn(dn/2e)
n e.

Corollary 13.3.2. The expected number of rounds until the rumor spreading process on
the complete graph with n nodes informs all nodes is at least

blog2 nc+ ln(n)− 1.116.

Proof. Using Hx ≥ ln(x) + γ, we compute

E

[
Cn(dn/2e)

n

]
≥ ln(n) + γ − ln(2) ≥ ln(n)− 0.116,

and the claim follows from the previous theorem.





Chapter 14

The 2-Player Cryptogenography
Problem

In this chapter, we analyze the 2-player cryptogenography problem and improve upon
previous upper and lower bounds on the optimal success probability (see Chapter 12 for
an overview of the results). Section 14.1 introduces the problem, describes our approach
to obtain strong cryptogenographic protocols and proves new upper bounds. Section 14.2
revisits the concavity method used in the previous work and provides a stronger lower
bound. Section 14.3 concludes this chapter with a short discussion and outlook.

14.1 Finding Better Cryptogenography Protocols

This section is devoted to the design of stronger cryptogenographic protocols. In
particular, we demonstrate that a success probability of more than 1/3 can be achieved.
We start by making the cryptogenography problem precise (Sections 14.1.1 and 14.1.2)
and introduce an equivalent formulation as solitaire vector splitting game (Section 14.1.3).
We illustrate both formulations using the best known protocol for the 2-player case
(Section 14.1.4). In Section 14.1.5, we state basic properties that simplify the analysis
of protocols and aid our automated search for better protocols, which is detailed in
Section 14.1.7. In Section 14.1.6, we give a simple, human-readable proof that 1/3 is
not the optimal success probability by analyzing a protocol with success probability
449
1334 ≈ 0.3341. We describe how to post-optimize and certify the results obtained by
the automated search using linear programming in Section 14.1.8 and summarize our
findings (in particular, the best lower bound we have found) in Section 14.1.9.

14.1.1 The Cryptogenography Problem

Let us fix an arbitrary number k of players called 1, . . . , k for simplicity. We write
[k] := {1, . . . , k} for the set of players. We assume that a random one of the them, the
“secret owner” J ∈ [k], initially has a secret, namely a random bit X ∈ {0, 1}. The
task of the players is, using public communication only, to make this random bit public
without revealing the identity of the secret owner. More precisely, we assume that the
players, before looking at the secret distribution, (publicly) decide on a communication
protocol π. This is again public, that is, all bits sent are broadcast to all players, and
they may depend only on previous communication, the private knowledge of the sender
(whether he is the secret owner or not, and if so, the secret), and private random numbers
of the sender. At the end of the communication phase, the protocol specifies an output
bit Y (depending on all communication).

The aspect of not disclosing the identity of the secret owner is modeled by an
adversary, who knows the protocol (because it was discussed in public) and who gets
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to see all communication (and consequently also knows the protocol output Y ). The
adversary, based on all this data, blames one player K. The players win this game
if the protocol outputs the true secret (that is, Y = X) and the adversary does not
blame the secret owner (that is, K 6= J), otherwise the adversary wins. It is easy to
see (see Section 14.1.2) what the best strategy for the adversary is (given the protocol
and the communication), so the interesting part of the cryptogenography problem is
finding strategies that maximize the probability that the players win assuming that the
adversary plays optimally. We call this the (players’) success probability of the protocol.

While the game starts with a uniform secret distribution, it will be useful to regard
arbitrary secret distributions. In general, a secret distribution is a distribution D over
{0, 1} × [k], where Dij is the probability that player j ∈ [k] is the secret owner and
the secret is i ∈ {0, 1}. Modulo a trivial isomorphism, D is just a vector in R2×k

≥0 with
‖D‖1 = 1. We denote by ∆ = ∆k the set of all these distributions (this was denoted by
∆({0, 1} × [k]) in [Bro+14]).

Brody et al. [Bro+14] observe that any cryptogenographic protocol can be viewed as
successive rounds of one-bit communication, where in each step some (a priori) secret
distribution probabilistically leads to one of two follow-up (a posteriori) distributions
(depending on the bit transmitted) such that the a priori distribution is a convex combi-
nation of these and a certain proportionality condition is fulfilled (all three distributions
lie in the same “allowed plane”). Conversely, whenever the initial distribution can be
written as such a convex combination of certain distributions, then there is a round of a
cryptogenographic protocol leading to these two distributions (with certain probabilities).
Consequently, the problem of finding a good cryptogenographic protocol is equivalent to
iteratively rewriting the initial equidistribution as certain convex combinations of other
secret distributions in such a way that the success probability, which can be expressed in
terms of this rewriting tree, is large. Instead of directly working with this formulation,
we propose a slightly different reformulation in Section 14.1.3. To prepare readers that
are unfamiliar with the work of Brody et al. [Bro+14], we give a high-level introduction
in the following section.

14.1.2 The Convex Combination Formulation

For readers’ convenience, we give a high-level description of the convex combination
formulation of Brody et al. For proofs and a more formal treatment, we refer the reader
to [Bro+14].

Optimal strategy of the adversary. Recall that X denotes the secret bit and J
the identity of the secret owner. Fix a protocol π of the players, which for every state
of the protocol execution, i.e., every possible history of communication, determines
(1) which player’s turn it is to communicate (or whether communication has ended) and
(2) probability distributions over the next message this player sends (two for the case
that this player is the secret owner, i.e., one for each value of the secret bit, and one
for the other case). Thus, both (1) and (2) may depend on all previous communication,
and (2) possibly depends on the value of the secret bit, namely if the active player is
the secret owner. Additionally, π fixes a protocol output function Out that given the
transcript τ of all communication returns the players’ guess Out(τ) on the secret bit.
Without loss of generality, we may assume that the protocol proceeds in rounds, where
in each round a message consisting of a single bit is sent.

Let Com(π) denote the transcript of all communication of the protocol π. Note
that this is a random variable, since we assume a random player to be the owner
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of a random secret bit. It is not difficult to see what the optimal strategy of the
adversary is, given the knowledge of the protocol π. He may assume that the players’
guess is correct, i.e., Out(Com(π)) = X, as otherwise the players have already lost
and therefore his guess is irrelevant. After the protocol execution has finished with a
transcript τ , the adversary maximizes his winning probability by blaming the player
argmaxj∈[k] Pr[J = j | Com(π) = τ,X = Out(τ)] (breaking ties arbitrarily), i.e., the
player who is most likely to own the secret given the communication described by τ .

From this reasoning, it becomes clear that the decisive information in the game is,
for any partial transcript τ ′, the distribution D = ((D0,1, D1,1), . . . , (D0,k, D1,k)), where

Dx,j = Pr[J = j,X = x | Com(π) starts with τ ′]

is the probability an outside observer (knowing only public information, i.e., all previous
communication) assigns to the event (J = j,X = x). As a simple consequence, assume
that some fixed transcript τ ′ transforms the initial uniform distribution into the distri-
bution D and no further communication is allowed. Then the optimal choice for the
protocol output is the guess

argmax
x∈{0,1}

∑
j∈[k]

Dx,j −max
j∈[k]

Dx,j

 ,

as for any fixed choice Out(τ ′) = x, the adversary blames the player ̄ := argmaxj∈[k]Dx,j

and hence the players win in all cases with X = x except when J = ̄. We call the
strategy applied here the zero-bit strategy (since no further communication is done).

Convex combination formulation. Brody et al. prove that it is not only sufficient,
but in fact equivalent to represent the cryptogenography game using only the distributions
D described above and how the protocol affects these distributions. More precisely, one
can model the game starting from any initial distribution D on {0, 1}× {1, . . . , k}. Then
the first bit sent by some player j splits D into the distributions D0 (for the case that
the 0-bit is sent) and D1 (for the case that the 1-bit is sent), i.e., Di is the distribution
an outside observer assigns to (J,X) after bit i has been sent. By this abstraction, one
can recursively consider the distributions D0 and D1 (i.e., their optimal protocols and
success probabilities).

To determine the properties of possible splits in a protocol, let p be the probability
that player j transmits a 0-bit. By a simple calculation, we have that D = pD0+(1−p)D1

(cf. [Bro+14, Lemma 4.1]). Additionally, since a player may only use the information
whether or not he has the secret bit (and if so, the value of the secret bit), player j may
never leak new information about whether another player j′ ∈ [k] \ {j} is more likely
to have secret 0 or 1 (i.e., the ratio of D0,j′ and D1,j′ is maintained in the resulting
distributions D0 and D1) or whether player j′ 6= j is more likely to have the secret
than another player j′′ ∈ [k] \ {j, j′}. This transfers to a proportionality condition that
(D0)|{0,1}×([k]\{j}) = λD|{0,1}×([k]\{j}) for some λ ∈ [0, 1]. In fact, any split of D into
D0 and D1 satisfying these conditions can be realized by a cryptogenographic protocol.
Thus, the cryptogenography game is equivalent to, starting from the uniform distribution,
recursively apply splits satisfying these conditions (i.e., allowed splits), using the zero-bit
strategy at the leaves, in such a way that the resulting success probability is maximized.
We argue that this view is equivalent to our vector splitting formulation (that will be
introduced in the following section) in Lemma 14.1.6.
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14.1.3 The Solitaire Vector Splitting Game

Instead of directly using the “convex combination” formulation of Brody et al., we pro-
pose a slightly different reformulation as solitaire vector splitting game. This formulation
seems to ease finding good cryptogenographic protocols (lower bounds for the success
probability), both for human researchers and via automated search (Section 14.1.6). The
main advantage of our formulation is that it takes as positions all 2k-dimensional vectors
with non-negative entries, whereas the cryptogenographic protocols are only defined on
distributions over {0, 1} × [k]. In this way, we avoid arguing about probabilities and
convex combinations and instead simply split a vector (resembling a secret distribu-
tion) into a sum of two other vectors. Furthermore, a simple monotonicity property
(Proposition 14.1.5) eases the analyses. Still, there is an easy translation between the
two formulations, so that we can re-use whatever results were found in [Bro+14].

Definition 14.1.1. Let D ∈ R2×k
≥0 . We say that (D0, D1) is a j-allowed split of D if

D = D0 +D1 and D0 (and thus also D1) is proportional to D on {0, 1}× ([k] \ {j}), that
is, there is a λ ∈ [0, 1] such that (D0)|{0,1}×([k]\{j}) = λD|{0,1}×([k]\{j}). We call (D0, D1)
an allowed split of D if it is a j-allowed split of D for some j ∈ [k].

The objective of the vector splitting game is to recursively apply allowed splits to a
given vector D ∈ R2×k

≥0 with the target of maximizing the sum of the

p(D′) := max
x∈{0,1}

(∑
j∈[k]

D′x,j −max
j∈[k]

D′x,j

)

values of the resulting vectors (note that when D′ is a distribution, then p(D′) is the
0-bit success probability of D′ as argued in Section 14.1.2). More precisely, an n-round
play of the vector splitting game is described by a binary tree of height at most n, where
the nodes are labeled with game positions in R2×k

≥0 . The root is labeled with the initial
position D. For each non-leaf v, the labels of the two children form an allowed split of
the label of v. The payoff of such a play is

∑
D′ p(D

′), where D′ runs over all leaves of
the game tree. The aim is to maximize the payoff. Right from this definition, it is clear
that the maximum payoff achievable in an n-round game started in position D, the value
of this game, is succn(D) as defined below.

Definition 14.1.2. For all n ∈ N and for all D ∈ R2×k
≥0 , we recursively define

(i) succ0(D) := max
x∈{0,1}

( ∑
j∈[k]

Dx,j −max
j∈[k]

Dx,j

)
;

(ii) succn(D) := max
(D0,D1)

(
succn−1(D0)+succn−1(D1)

)
, if n ≥ 1. Here the maximum

is taken over all allowed splits (D0, D1) of D.

For an example of an admissible game, we refer to Figure 14.1 in Section 14.1.4.
It is easy to see that the game values are non-decreasing in the number of rounds,

but bounded. The limiting value is thus well defined.

Lemma 14.1.3. Let D ∈ R2×k
≥0 and n ∈ N. Then succn(D) ≤ ‖D‖1 and succn+1(D) ≥

succn(D). Consequently, succ(D) := limn→∞ succn(D) is well defined and is equal to
supn∈N succn(D).
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Proof. The previous definition and an elementary induction shows succn(D) ≤ ‖D‖1.
Since (D, 0) is an allowed split of D and succn(0) = 0 by the previous observation, we
have succn+1(D) ≥ succn(D) + succn(0) = succn(D).

Proposition 14.1.4 (scalability). Let D ∈ R2×k
≥0 and λ ≥ 0. Then succn(λD) =

λ succn(D) for all n ∈ N. Consequently, succ(λD) = λ succ(D).

Proof. The statements follow right from the definition of succn and succ via induction.

Proposition 14.1.5 (monotonicity). Let D,E ∈ R2×k
≥0 with E ≥ D (component-wise).

Then succn(E) ≥ succn(D) for all n ∈ N. Consequently, succ(E) ≥ succ(D).

Proof. Clearly succ0(E) ≥ succ0(D). Hence assume that for some n ∈ N, we have
succn(E) ≥ succn(D) for all E ≥ D. Let (D0, D1) with D0 = (d0

ij) and D1 = D−D0 =

(d1
ij) be an allowed split of D = (dij). Building on these, define E0 := E0(D0, D) = (e0

ij)

with e0
ij := d0

ij
eij
dij

and E1 := E1(D1, D) := E − E0, hence e1
ij = d1

ij
eij
dij

. Then (E0, E1) is

an allowed split of E satisfying E0 ≥ D0 and E1 ≥ D1. Hence

succn+1(E) ≥ max
(D0,D1)

(succn(E0) + succn(E1))

≥ max
(D0,D1)

(succn(D0) + succn(D1)) = succn+1(D),

where the maxima range over all allowed splits (D0, D1) of D.

From the previous definitions and observations, we derive that the game values for
games starting with a distribution D, that is, ‖D‖1 = 1, and the success probabilities of
the optimal cryptogenographic protocols for D, are equal.

Lemma 14.1.6. Let D ∈ R2×k
≥0 with ‖D‖1 = 1. Then for all n ∈ N, our definitions of

succn coincide with the ones of Brody et al., which are the success probabilities of the
best n-round cryptogenographic protocols for the distribution D. Consequently, also the
definition of succ(D) coincides.

Proof. Let us for the moment denote the success probabilities defined by Brody et al. by
sn(D) and s(D) and then show that succn(D) = sn(D) and consequently succ(D) =
s(D) for all distributions D.

By definition, we have succ0(D) = s0(D) for all distributions D. Lemmas 4.1 and
4.2 of [Bro+14] establish that the first round of any cryptogenographic protocol for the
distribution D with some probability λ leads to a distribution D0 and with probability
λ̄ := 1−λ leads to a position D1 such that D = λD0+λ̄D1 and D0, D1 are proportional to
D on {0, 1}×([k]\{j}) for some j ∈ [k]. Conversely, for any such λ,D0, D1 there is a one-
round cryptogenographic protocol leading to the distribution D0 with probability λ and to
D1 with probability λ̄. Hence for any n ≥ 1, the success probability sn(D) of the optimal
n-round protocol for the distribution D is sn(D) = maxλ,D0,D1(λsn−1(D0) + λ̄sn−1(D1)),
where λ,D0, D1 run over all values as above. Note that these are exactly those values
which make (λD0, λ̄D1) an allowed split of D. By induction and scalability, we obtain

sn(D) = max
λ,D0,D1

(λ succn−1(D0) + λ̄ succn−1(D1))

= max
λ,D0,D1

(succn−1(λD0) + succn−1(λ̄D1))

= max
(D̄0,D̄1)

(succn−1(D̄0) + succn−1(D̄1)) = succn(D),
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where the last maximum is taken over all allowed splits (D̄0, D̄1) of D.

14.1.4 Example: The Best-so-far 2-Player Protocol

We now turn to the case of two players. We use this section to describe the best known
protocol for two players in the different languages. We also use this mini-example to
sketch the approaches used in the following sections to design superior protocols.

For two players, we usually write a game position D = (D01, D11, D02, D12) ∈ R2×2
≥0

as D = (a, b, c, d). The 0-round game value (equaling the success probability of the 0-bit
protocol) then is

succ0(D) = max{min{a, c},min{b, d}}.

As a warmup, let us describe the best known 2-player protocol TwoBit in the two
languages. In the language of Brody et al., the first player can send a (randomized)
bit that transforms the initial distribution (1

4 ,
1
4 ,

1
4 ,

1
4) with probability 1

2 each into the
distributions (1

3 ,
1
3 ,

1
6 ,

1
6) and (1

6 ,
1
6 ,

1
3 ,

1
3). In the first case, the second player can send

a bit leading to each of the distributions (1
3 ,

1
3 ,

1
3 , 0) and (1

3 ,
1
3 , 0,

1
3) with probability 1

2 ,
both having a 0-bit success probability of 1

3 . In the second possible result of the first
move, the first player can lead to an analogous situation. Consequently, after two rounds
of the protocol we end up with four equally likely distributions all having a 0-bit success
probability of 1

3 . Hence the protocol TwoBit has a success probability of 1
3 .

In the language of the splitting games, we can forget about the probabilities and
simply split up the initial distribution. Using the scaling invariance, to ease reading we
scaled up all numbers by a factor of 12. Figure 14.1 shows the game tree corresponding to
the TwoBit protocol. It shows that succ2(3, 3, 3, 3) ≥ 4, proving again the existence of
a cryptogenographic protocol for the distribution (1

4 ,
1
4 ,

1
4 ,

1
4) = 1

12(3, 3, 3, 3) with success
probability 4

12 = 1
3 .

Note that each allowed split (D0, D1) of D implies the corresponding inequality
succ(D) ≥ succ(D0) + succ(D1), which follows from clause (ii) of Definition 14.1.2
and taking the limit n → ∞. Hence the game tree giving the 1

3 lower bound for the
success probability equivalently gives the following proof via inequalities.

succ(3, 3, 3, 3) ≥ succ(2, 2, 1, 1) + succ(1, 1, 2, 2),

succ(2, 2, 1, 1) = succ(1, 1, 2, 2) ≥ succ(1, 0, 1, 1) + succ(0, 1, 1, 1),

succ(1, 0, 1, 1) = succ(0, 1, 1, 1) ≥ succ0(0, 1, 1, 1) = 1.

(3, 3, 3, 3)

(2, 2, 1, 1) (1, 1, 2, 2)

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)

Figure 14.1: Game tree corresponding to TwoBit.

The splitting game and the inequality view will in the following be used to design
stronger protocols (better lower bounds for the optimal success probability). We shall
compute good game trees by computing lower bounds for the game values of a discrete
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set of positions via repeatedly trying allowed splits. For example, the above game tree
for the starting position (3, 3, 3, 3) could have easily be found by recursively computing
the game values for all positions in {0, 1, 2, 3}4.

It turns out that such an automated search leads to better results when we also allow
scaling moves (referring to Proposition 14.1.4). For example, in the above mini-example
of computing optimal game values for all positions {0, 1, 2, 3}4, we could try to exploit
the fact that succ(1, 1, 1, 1) = 1

3succ(3, 3, 3, 3). Such scaling moves are a cheap way of
working in {0, 1, 2, 3}4, but trying to gain the power of working in {0, 1, . . . , 9}4, which
is computationally more costly, especially with regard to memory usage. Scaling moves
may lead to repeated visits of the same position, resulting in cyclic structures. Here
translating the allowed splits used in the tree into the inequality formulation and then
using an LP-solver is an interesting approach (detailed in Section 14.1.8). It allows to
post-optimize the game trees found, in particular, by solving cyclic dependencies. This
leads to slightly better game values and compacter representations of game trees.

14.1.5 Useful Facts

For some positions of the vector splitting game, the true value is easy to determine. We
do this here to later ease the presentation of the protocols.

Proposition 14.1.7. We have succ(a, b, c, d) ≤ min{a, c}+ min{b, d}.

This statement is a simple corollary of the concavity method detailed in Section 14.2.1,
hence at this point, we only state the proposition and postpone the proof.

Proposition 14.1.8. Let D = (a, b, c, 0). Then succ(D) = succ0(D) = min{a, c}.

Proof. Clearly, succ(D) ≥ succ0(D) = min{a, c}. By Proposition 14.1.7, we obtain
succ(D) ≤ min{a, c}, proving the claim.

Proposition 14.1.9. If D = (a, b, c, d) is such that a+ b ≤ min{c, d}, then succ(D) =
a+ b.

Proof. We have D ≥ D′ := (a, b, a + b, a + b) and (D0, D1) with D0 = (a, 0, a, a) and
D1 = (0, b, b, b) is an allowed split of D′. Hence succ(D) ≥ succ(D′) ≥ succ(D0) +
succ(D1) = a+ b. The upper bound follows immediately from Proposition 14.1.7.

14.1.6 Small Protocols Beating the 1/3 Barrier

We now present a sequence of protocols showing that there are cryptogenographic
protocols having a success probability strictly larger than 1

3 . These protocols are still
relatively simple, so we also obtain a human-readable proof of the following result.

Theorem 14.1.10 (Stronger Protocols I). For the 2-player cryptogenography probem,
we have succ(1

4 ,
1
4 ,

1
4 ,

1
4) ≥ 449

1334 ≈ 0.3341.

Proof. To be able to give a readable mathematical proof, we argue via inequalities for
game values succ(·). We later discuss how the corresponding protocols (game trees)
look like.

We first observe the following inequalities, always stemming from allowed splits (the
underlined entries are proportional). Whenever Proposition 14.1.8 or 14.1.9 determine a
value, we exploit this without further notice.

succ(12, 12, 12, 12) ≥ succ(7, 7, 6, 4) + succ(5, 5, 6, 8),

succ(5, 5, 6, 8) ≥ succ(2, 2, 0, 2) + succ(3, 3, 6, 6) = 2 + 6 = 8.
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This proves succ(12, 12, 12, 12) ≥ 8 + succ(7, 7, 6, 4). To analyze succ(7, 7, 6, 4), we use
the allowed split

succ(7, 7, 6, 4) ≥ succ(4, 5, 3, 2) + succ(3, 2, 3, 2) (14.1)

and regard the two positions (4, 5, 3, 2) and (3, 2, 3, 2) separately in some detail.
Claim 1: The value of (4, 5, 3, 2) satisfies succ(4, 5, 3, 2) ≥ 55

12 . By scaling, we have
succ(4, 5, 3, 2) = 1

2 succ(8, 10, 6, 4). We present the allowed splits

succ(8, 10, 6, 4) ≥ succ(4, 5, 2, 4) + succ(4, 5, 4, 0) = succ(4, 5, 2, 4) + 4,

succ(4, 5, 2, 4) ≥ succ(1, 2, 1, 2) + succ(3, 3, 1, 2) = succ(1, 2, 1, 2) + 3,

hence succ(8, 10, 6, 4) ≥ succ(1, 2, 1, 2)+7. To bound the latter term, we use the scaling
succ(1, 2, 1, 2) = 1

6 succ(6, 12, 6, 12) and consider the allowed splits

succ(6, 12, 6, 12) ≥ succ(5, 10, 3, 9) + succ(1, 2, 3, 3) = succ(5, 10, 3, 9) + 3,

succ(5, 10, 3, 9) ≥ succ(0, 6, 2, 6) + succ(5, 4, 1, 3) = 6 + 4 = 10.

Thus succ(6, 12, 6, 12) ≥ 13 and succ(1, 2, 1, 2) ≥ 13
6 . This shows succ(4, 5, 3, 2) ≥

1
2 (succ(1, 2, 1, 2) + 7) ≥ 55

12 .
Claim 2: We have succ(3, 2, 3, 2) ≥ 5

3 + 2
9 succ(7, 7, 6, 4). By scaling, we obtain

succ(3, 2, 3, 2) = 1
3 succ(9, 6, 9, 6) and compute

succ(9, 6, 9, 6) ≥ succ(6, 3, 6, 4) + succ(3, 3, 3, 2),

succ(6, 3, 6, 4) ≥ succ(3, 0, 3, 2) + succ(3, 3, 3, 2) = 3 + succ(3, 3, 3, 2),

and hence succ(9, 6, 9, 6) ≥ 3 + 2 succ(3, 3, 3, 2). To bound the latter term, we scale
succ(3, 3, 3, 2) = 1

3 succ(9, 9, 9, 6) and present the allowed splits

succ(9, 9, 9, 6) ≥ succ(7, 7, 6, 4) + succ(2, 2, 3, 2),

succ(2, 2, 3, 2) ≥ succ(1, 1, 1, 0) + succ(1, 1, 2, 2) = 1 + 2 = 3.

Thus, we obtain succ(3, 3, 3, 2) ≥ 1 + 1
3 succ(7, 7, 6, 4), implying that succ(3, 2, 3, 2) ≥

5
3 + 2

9 succ(7, 7, 6, 4).
Putting things together. Claims 1 and 2 together with (14.1) give

succ(7, 7, 6, 4) ≥ 75
12 + 2

9 succ(7, 7, 6, 4).

By solving this elementary equation, we obtain succ(7, 7, 6, 4) ≥ 225
28 , and it follows that

succ(12, 12, 12, 12) ≥ 225
28 + 8 = 449

28 = 16 + 1
28 . Scaling leads to the claim of the theorem

succ(1
4 ,

1
4 ,

1
4 ,

1
4) ≥ 1

3 + 1
1344 = 449

1344 = 0.33407738 . . . .

When translating the inequalities into a game tree (see Figure 14.2 for the result), we
first observe that in Claim 2 we obtained two different nodes labeled with the position
(3, 3, 3, 2). Since there is no reason to treat them differently, we can identify these two
nodes and thus obtain a more compact representation of the game tree. This is the
reason why the node labeled (3, 3, 3, 2) in Figure 14.2 has two incoming edges.

Interestingly, such identifications can lead to cycles. If we translate the equa-
tions for position (7, 7, 6, 4) and its children into a graph, then we observe that the
node for (7, 7, 6, 4) has a descendant also labeled (7, 7, 6, 4) (this is what led to the
inequality succ(7, 7, 6, 4) ≥ 75

12 + 2
9 succ(7, 7, 6, 4)). By transforming this inequality to
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(12, 12, 12, 12)

(7, 7, 6, 4) (5, 5, 6, 8)

(4, 5, 3, 2) (3, 2, 3, 2) (2, 2, 0, 2)(3, 3, 6, 6)

(3, 0, 3, 3)(0, 3, 3, 3)

(2, 2, 0, 2)

(8, 10, 6, 4)

· 2

(9, 6, 9, 6)

· 3

(4, 5, 2, 4)(4, 5, 4, 0)

(1, 2, 1, 2)(3, 3, 1, 2)

(6, 12, 6, 12)

· 6

(1, 1, 1, 0)

(1, 1, 1, 0)

(1, 1, 1, 0)

(5, 10, 3, 9)(1, 2, 3, 3)

(0, 6, 2, 6) (5, 4, 1, 3)(1, 0, 1, 1) (0, 2, 2, 2)

(1, 0, 1, 1)(1, 0, 0, 0) (4, 4, 1, 3)

(3, 3, 0, 3)

(6, 3, 6, 4)

(3, 3, 3, 2) (3, 0, 3, 2)

(9, 9, 9, 6)

· 3

(7, 7, 6, 4) (2, 2, 3, 2)

(1, 1, 2, 2)

(0, 1, 1, 1)

Figure 14.2: Game tree representation of the protocols of Theo-
rem 14.1.10.
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succ(7, 7, 6, 4) ≥ 225
28 , we obtain a statement that is true, but that does not anymore

refer to an actual (finite) game tree. However, there is a sequence of game trees with
values converging to the value we determined. These trees are obtained from recursively
applying the above splitting procedure for (7, 7, 6, 4) a certain number ` of times and
then using the 0-round tree for the lowest node labeled (7, 7, 6, 4). The value of this game

tree is 8 +
∑`−1

i=0(2
9)i 75

12 + (2
9)` succ0(7, 7, 6, 4) = 8 + 75

12

1−( 2
9

)`

1− 2
9

+ 6 · (2
9)` = 449

28 −
57
28 (2

9)`.

Hence for ` ≥ 3, this is more than 16 (which represents a success probability of 1
3),

corresponding to a game tree of height1 4 + 4` ≥ 16.

14.1.7 Automated Search

The vector splitting game formulation enables us to search for good cryptogenographic
protocols as follows. We try to determine the game values of all positions from a discrete
set D := {0, . . . , T}2×k by repeatedly applying allowed splits. More precisely, we store a
function s : D → R that gives a lower bound on the game value succ(D) of each position
D ∈ D. We initialize this function with s ≡ succ0 and then in order of ascending ‖D‖1
try all allowed splits D = D0 +D1 and update s(D)← s(D0) + s(D1) in case we find
that s(D) was smaller.

Recall that for any secret distribution D, the game value succ(D) is the supre-
mum success probability of cryptogenographic protocols for D. Hence, e.g., the value
s(T, . . . , T )/(2Tk) ≤ succ(1/(2k), . . . , 1/(2k)) is a lower bound for this success proba-
bility. As we will discuss later, by keeping track of the update operations performed, we
can not only compute such a lower bound, but also concrete protocols.

Since even for k = 2, the size of the position space D and the number of allowed
splits increase quickly with T , only moderate choices of T are computationally feasible,
limiting the power of this approach drastically. However, using the scaling invariance
λsucc(D) = succ(λD), we can introduce a scaling step: we iteratively optimize using
allowed splits (or rather, a generalization called relaxed splits that we define below), then
backpropagate the computed values (updating, e.g., s(1, 1, 1, 1)← (1/T ) · s(T, T, T, T ))
to repeat the process. Surprisingly, this simple modification is sufficient to find protocols
that are better than the previous best protocol TwoBit. Algorithm 9 outlines our basic
search procedure.

Instead of restricting to optimize only over all allowed splits (D0, D1) ∈ D2 of D ∈ D,
however, we use monotonicity of the discretization to exploit even more reasonable splits.
For ease of presentation, we focus here on the 2-player case (the generalization to larger
values of k is straightforward).

Definition 14.1.11. We call the distributions D0 = (a0, b0, c0, d0) ∈ D and D1 =
(a1, b1, c1, d1) ∈ D a relaxed split of D = (a, b, c, d) ∈ D, if a = a0 + a1, b = b0 + b1,
c = c0 + c1, d0 = b(d/c) · c0c and d1 = b(d/c) · c1c.

Observation 14.1.12. Any relaxed split (D0, D1) ∈ D2 of D ∈ D yields a feasible lower
bound succ(D) ≥ succ(D0) + succ(D1).

Proof. The statement follows from noting that D̄0 := (a0, b0, c0, (d/c) · c0) and D̄1 :=
(a1, b1, c1, (d/c)·c1) yield an allowed split of D. Thus succ(D) ≥ succ(D̄0)+succ(D̄1) ≥
succ(D0) + succ(D1), where the last inequality follows from monotonicity (Proposi-
tion 14.1.5).

1Note that the height of a game tree refers to the number of transmitted bits and thus does not
include the number of (virtual) scaling moves.
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Algorithm 9 Computing a lower bound on succ for the (discretized) positions D =
{0, . . . , T}2×k.

1: Initialize s ≡ succ0

2: repeat
3: Splitting Step:
4: for all D ∈ D in ascending order of ‖D‖1 do
5: for all relaxed splits (D0, D1) ∈ D2 of D do
6: if s(D) < s(D0) + s(D1) then
7: Update s(D)← s(D0) + s(D1)

8: Scaling Step:
9: for all D ∈ D and all λ ∈ N with λD ∈ D do

10: if s(D) < s(λD)
λ then

11: Update s(D)← s(λD)
λ

12: until termination criterion is met

Note that while the definition relaxes an allowed split only at coordinate d, by
symmetry of succ, we obtain the same lower bound when relaxing at other coordinates.
This allows us to even split distributions D = (a, b, c, d) ∈ D where neither of the ratios
a/b and c/d occur “perfectly” in another distribution D′ ∈ D by dismissing some “vector
mass”, i.e., rounding down from d/c · ci to bd/c · cic. Although these splits might appear
inherently wasteful (as this loss can never be regained), the best protocols that we find
do indeed make use of (a small number of) such relaxed splits.

Implementation Details. Since succ is symmetric in both the secret and the player
dimension, for all distributions D = ((D0,1, D1,1), . . . , (D0,k, D1,k)) ∈ D we may assume
the following standard form to speed up computation and reduce memory usage: D0,1 ≥
D1,1 and D0,i ≥ D0,i+1 for i = 1, . . . , k − 1. More specifically, for k = 2, we can without
loss of generality even assume that D0,1 ≥ D1,0, D0,2, D1,2.

In principle, an implementation should take care to avoid propagation of floating-
point rounding errors, since previously computed entries are reused heavily and identical
values are regularly recalculated in a number of different ways. Instead of using interval
arithmetic, however, we chose to use a simple, fast implementation ignoring potential
rounding errors: This is justified by (i) our LP-based post-optimization which gives
a proof of the obtained lower bound (that can be checked using an exact LP solver),
hence correctness of the output remains certified, and (ii) the fact that our discretization
of the search space introduces an inherent imprecision that very likely dominates the
floating-point rounding errors.

The probably most desirable termination criterion is to run the search until no
improvements can be found. However, when the running time becomes a bottleneck
issue, we can restrict the search to a small fixed number of iterations. This is especially
useful in combination with the post-optimization (as the gain in the result per iteration is
decreasing for later iterations of the process, which intuitively give increasingly accurate
approximations of infinite “ideal” protocols – the post-optimization could potentially
resolve these cyclic structures earlier in the process).

Results. The success probabilities of the protocols computed following the above
approach, using different values for T , are given in the first line of Table 14.1. Further
results exploiting the post-optimization are given in Table 14.2 in Section 14.1.9.
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T 15 20 25 30

Automated search 0.3369432925 0.3376146092 0.3379027186 0.3381689066
Iterations 119 129 141 146
Constraints 535 1756 4217 13958
Game Positions 394 1326 2956 9646

Table 14.1: Lower bounds s(T, . . . , T )/(4T ) on succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) stem-

ming from the automated search (line 1). Given are also the number of
iterations until the automated search procedure converged, i.e., stopped
finding improvements using relaxed splits or scalings, and the number
of game positions and constraints that had an influence on the value of
s(T, . . . , T ).

14.1.8 Post-Optimization via Linear Programming

When letting Algorithm 9 also keep track of at what time which update operation
was performed, this data can be used to extract strategies for the splitting game
(and cryptogenographic protocols). Some care has to be taken to only extract those
intermediate positions that had an influence on the final game value for the position we
are interested in (see below).

While this approach does deliver good cryptogenographic protocols, manually verifying
the correctness of the updates or analyzing the structure of the underlying protocol
quickly becomes a difficult task, as the size of the protocol grows rapidly.

Fortunately, it is possible to output a compact, machine-verifiable certificate for the
lower bound obtained by the automated search that might even prove a better lower
bound than computed: Each update step in the automated search corresponds to a
valid inequality of the form succ(D) ≥ succ(D0) + succ(D1), succ(D) ≥ succ0(D)
or λ · succ(D) = succ(λ ·D). We can extract the (sparse) set ineq(T, T, T, T ) of those
inequalities that lead to the computed lower bound on succ(T, T, T, T ).

Reconstructing the Strategy. Memorizing the best splits found by the dynamic
programming updates, it is straightforward to reconstruct the best strategy found by
the automated search. For preciseness, we define the i-th update step for i = 2k − 1 as
the k-th splitting step (during the execution of Algorithm 9) and for i = 2k as the k-th
scaling step, i.e., each update step is alternatingly a splitting and a scaling step. For
every distribution D and update step i, we maintain an index L(D, i) defined as the last
update step before and including i in which s(D) has been updated to a better value, or
0 if s(D) has never been updated. Moreover, for every D and update step i in which
s(D) has been updated, we keep a constraint I(D, i) which represents the inequality or
equality used to update s(D) to its best value in update step i. More specifically, I(D, i)
stores the inequality succ(D) ≥ succ(D0) + succ(D1) if the update step i represents
a splitting step of D into (D0, D1) and λsucc(D) = succ(λD) if the update step i
represents a scaling of D by λ. Furthermore, we let I(D, 0) represent the inequality
succ(D) ≥ succ0(D). This gives rise to the procedure ineq(D, i) (see Algorithm 10) that
returns a (sparse) list of inequalities proving the lower bound computed by the automated
search (after letting it run for i update steps). When using Algorithm 9 with I iterations
and discretization T , we may thus obtain a proof ineq(T, T, T, T ) = ineq((T, T, T, T ), 2I)
of the lower bound computed.
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Algorithm 10 Computing the proof ineq(D, i) of the lower bound on succ(D) obtained
by running the automated search for i update steps.

1: function ineq(D, i)
2: if L(D, i) < i then
3: return ineq(D,L(D, i))

4: if i is a splitting step with I(D, i) = ”succ(D) ≥ succ(D0) + succ(D1)” then
5: return I(D, i) ∪ ineq(D0, i) ∪ ineq(D1, i)
6: else if i is a scaling step with I(D, i) = ”λsucc(D) = succ(λD)” then
7: return I(D, i) ∪ ineq(λD, i− 1)
8: else if i = 0 with I(D, 0) = ”succ(D) ≥ succ0(D)” then
9: return I(D, 0)

The Linear Program. Consider replacing each occurrence of succ(D′) in the set
of inequalities ineq(T, T, T, T ) found by the automated search by a variable sD′ . We
obtain a system of linear inequalities S that has the feasible solution sD′ = succ(D′)
(for every occurring vector D′). Hence in particular, the optimal solution of the linear
program of minimizing sD subject to S is a lower bound on succ(D). It is easy to see
that this solution is at least as good as the solution stemming from the automated search
alone. It can, however, even be better, in particular when a game strategy yields cyclic
visits to certain positions. Table 14.2 contains, for different values of T , the success
probabilities found by automated search (run with a bounded iteration number of 20)
and by this above linear programming approach. The table also contains the number of
linear inequalities (and game positions) that were extracted from the automated search
run. We observe that consistently the LP-based solution is minimally better. We also
observe that the number of constraints is still moderate, posing no difficulties for ordinary
LP solvers (which stands in stark contrast to feeding all relaxed splits and scalings over
the complete discretization to the LP solver, which quickly becomes infeasible).

Hence the advantage of our approach of extracting the constraints from the automated
search stage is that it generates a much sparser sets of constraints that still are sufficiently
meaningful. After solving the LP, we can further sparsify this set of inequalities by
deleting all inequalities that are not tight in the optimal solution of the LP, since these
cannot correspond to the best splits found for the corresponding vector D, yielding a
smaller set of relevant inequalities, which might help to analyze the structure of strong
protocols.

14.1.9 Our Best Protocol

We report the best protocol we have found using the approach outlined in the previous
sections.

Theorem 14.1.13 (Stronger Protocols II). For the 2-player cryptogenography problem,
succ(1

4 ,
1
4 ,

1
4 ,

1
4) ≥ 0.3384736.

Proof. On http://people.mpi-inf.mpg.de/~marvin/verify.html, we provide a lin-
ear program based on feasible inequalities on the discretization D with T = 50. To verify
the result, one only has to (1) check validity of each inequality, i.e., checking whether
each constraints encodes a feasible scaling, relaxed split or zero-bit success probability
and (2) solve the linear program. Since we represent the distributions D = (a, b, c, d)
using a normal form a ≥ b, c, d (to break symmetries), checking validity of each splitting
constraint is not completely trivial, but easy. We provide a simple checker program to

http://people.mpi-inf.mpg.de/~marvin/verify.html
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T 30 35 40 45 50

Automated search 0.3381086510 0.3381937725 0.3383218072 0.3383946540 0.3384414508
LP solution 0.3381527322 0.3382301900 0.3383547901 0.3384303130 0.3384736461
Iterations 20 20 20 20 20
Constraints 5373 8882 12410 18659 24483
Game states 4126 6789 9396 13992 18248

Table 14.2: Lower bounds s(T, . . . , T )/(4T ) on succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) stem-

ming from the automated search only (line 1) and from the LP solution
of the linear system extracted from the automated search data (line 2),
when the number of iterations is restricted to 20.

verify validity of the constraints. The LP is output in a format compatible with the LP
solver lp solve2.

14.2 A Stronger Hardness Result

In this section, we prove that any 2-player cryptogenographic protocol has a success
probability of at most 0.3672. This improves over the previous 0.375 bound of [Bro+14].

Theorem 14.2.1 (Stronger Hardness Result). For the 2-player cryptogenography prob-
lem, we have succ(1

4 ,
1
4 ,

1
4 ,

1
4) ≤ 47

128 = 0.367188.

To prove the result, we apply the concavity method used by Brody et al. [Bro+14]
which consists of finding a function s that (i) is lower bounded by succ0 for all distri-
butions and (ii) satisfies a certain concavity condition. We first relax the lower bound
requirement to hold only for six particular simple distributions (namely, the distributions
(1, 0, 0, 0), . . . , (0, 0, 0, 1), (1

2 , 0,
1
2 , 0) and (0, 1

2 , 0,
1
2)) instead of all distributions. This

simplifies the search for a suitable stronger candidate function satisfying (i) - it remains
to verify condition (ii) for the thus found candidate function.

We first describe the previously used concavity method in Section 14.2.1 and apply it
to our new upper bound function in Section 14.2.2.

14.2.1 Revisiting the Concavity Method

We revisit the original result of Brody et al. [Bro+14, Theorem 4.4] establishing the
concavity method for the cryptogenography problem. Similar concavity arguments
have appeared earlier in different settings in information complexity and information
theory (e.g., [Bra+13; MI13; MIG12]). In what follows, we mostly use the language
of convex combinations of secret distributions in allowed planes. To this aim, let
∆ := {D ∈ R2×2

≥0 | ‖D‖1 = 1} denote the set of these distributions. For a given
distribution D = (a, b, c, d) ∈ ∆, there are two allowed planes through D, namely
{(a′, b′, δc, δd) | a′, b′, δ ∈ R} ∩∆ and {(δa, δb, c′, d′) | c′, d′, δ ∈ R} ∩∆.

Lemma 14.2.2 (Concavity Method, [Bro+14, Theorem 4.4]). Let s : ∆→ R satisfy

(C1) s(D) ≥ λs(D0) + (1 − λ)s(D1) for all λ ∈ [0, 1] and all D0, D1 such that D =
λD0 + (1− λ)D1 and D0, D1 lie in the same allowed plane through D.

(C2) s(D) ≥ succ0(D) for all D ∈ ∆.

2lpsolve.sourceforge.net
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Then succ(D) ≤ s(D) holds for all D ∈ ∆.

To transfer this method to the vector splitting formulation, consider an s′ : R2×2
≥0 → R,

which is scalable (i.e., s′(λD) = λs′(D) for all λ ∈ R≥0, D ∈ R2×2
≥0 ) and when restricted to

∆ equals s. Then condition (C1) is equivalent to s′(D) ≥ s′(D0) + s′(D1) for all allowed
splits (D0, D1) of D, i.e., superadditivity of s′ for all allowed splits. Condition (C2)
remains effectively the same: s′(D) ≥ succ0(D) for allD ∈ R2×2

≥0 . If these conditions hold,

we obtain succ(D) ≤ s′(D) for all D ∈ R2×2
≥0 , which is equivalent to succ(D) ≤ s(D)

for all D ∈ ∆.
As a simple application of the concavity method, we can now give the simple proof

of Proposition 14.1.7 stated in Section 14.1.5.

Proposition 14.1.7. We have succ(a, b, c, d) ≤ min{a, c}+ min{b, d}.

Proof. We use the vector splitting formulation. Define sUB(a, b, c, d) := min{a, c} +
min{b, d}. We have

succ0(a, b, c, d) = max{min{a, c},min{b, d}} ≤ min{a, c}+ min{b, d} = sUB(a, b, c, d),

which proves condition (C2) of Lemma 14.2.3. Note that f : (x, y) 7→ min{x, y} is
superadditive and hence sUB, as a sum of superadditive functions, is superadditive as
well. This proves sUB(D) ≥ sUB(D0) + sUB(D1) even for all splits D = D0 +D1 (not
only allowed splits).

The following lemma is an extension of the concavity theorem. We relax the condition
that s is lower bounded by succ0 on all distributions to now on only six particular, very
simple distributions.

Lemma 14.2.3 (Concavity Method, adapted). Let s : ∆→ R satisfy

(C1) s(D) ≥ λs(D0) + (1 − λ)s(D1) for all λ ∈ [0, 1] and all D0, D1 such that D =
λD0 + (1− λ)D1 and D0, D1 lie in the same allowed plane through D.

(C2’) • s(1/2, 0, 1/2, 0), s(0, 1/2, 0, 1/2) ≥ 1/2, and

• s(1, 0, 0, 0), s(0, 1, 0, 0), s(0, 0, 1, 0), s(0, 0, 0, 1) ≥ 0.

Then succ(D) ≤ s(D) holds for all D ∈ ∆.

Proof. To appeal to Lemma 14.2.2, we need to show that (C1) and (C2’) imply (C2),
i.e., for all D = (a, b, c, d) ∈ ∆, we have s(D) ≥ succ0(D) = max{min{a, c},min{b, d}}.

To prove this statement, we again find it more convenient to use the vector splitting
formulation. To this aim, we extend s to s′ : R2×2

≥0 → R by defining s′(D) := ‖D‖1·s( D
‖D‖1 ).

Recall that in this view (C1) is equivalent to s′(D) ≥ s′(D0) + s′(D1) for all allowed
splits (D0, D1) of D. Assume that min{a, c} ≥ min{b, d} (the other case is symmetric).
Consider D0 := (a, 0, c, d), D1 := (0, b, 0, 0), which is a 1-allowed split of D. By scaling
and (C2’), we have s′(D1) = b · s(0, 1, 0, 0) ≥ 0. We split D0 into E0 := (a, 0, c, 0)
and E1 := (0, 0, 0, d), which is a 2-allowed split. Again, by scaling and (C2’), we
obtain s′(E1) ≥ 0. Assuming that a ≥ b (since the other case is symmetric), we finally
split E0 into F0 := (b, 0, b, 0) and F1 := (a − b, 0, 0, 0), which is a 1-allowed split that
satisfies, by scaling and (C2’), s′(F1) ≥ 0 and s′(F0) = 2b · s(1

2 , 0,
1
2 , 0) ≥ b. Thus,

s(D) = s′(D) ≥ b = succ0(D).
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14.2.2 The Adapted Upper Bound Function

Motivated by our relaxation of the condition of the concavity method, we adapt the
upper bound function of Brody et al. [Bro+14] and set

s(a, b, c, d) :=
1− f(a, b, c, d)

4
,

f(a, b, c, d) := a2 + b2 + c2 + d2 − 6(ac+ bd) + 8abcd.

In fact, we have changed their upper bound function by introducing an additional term
of 8abcd, which attains a value of zero on the distributions (1

2 , 0,
1
2 , 0), (1, 0, 0, 0), etc.,

thus not affecting the zero-bit success probability condition of the concavity method.
Additionally, this function also satisfies the concavity condition, which we will prove
later.

Lemma 14.2.4. The thus defined function s satisfies the concavity condition (C1) of
Lemma 14.2.3.

As an immediate consequence of the concavity method of Lemma 14.2.3, we obtain
the upper bound of succ(1

4 ,
1
4 ,

1
4 ,

1
4) ≤ 47

128 of Theorem 14.2.1.

Proof of Theorem 14.2.1. Simple calculations show that s satisfies s(1, 0, 0, 0) = 0 and
s(1/2, 0, 1/2, 0) = 1/2, which by symmetry implies that s satisfies condition (C2’).
Since additionally condition (C1) is satisfied by Lemma 14.2.4, the concavity method
(Lemma 14.2.3) is applicable and yields succ(1

4 ,
1
4 ,

1
4 ,

1
4) ≤ s(1

4 ,
1
4 ,

1
4 ,

1
4) = 47

128 .

In the remainder of this section, we will show that s does not violate concavity on
allowed planes (condition (C1)), i.e., prove Lemma 14.2.4. To this end, we exclusively
use the convex combination view, in which ‖D0‖1 = ‖D1‖1 = ‖D‖ = 1.

For q ≥ 0, we define fq : S → R, where S := {(a, b) | 0 ≤ a, b ≤ 1, a+ b ≤ 1}, by

fq(a, b) := f

(
a, b,

1

1 + q
(1− a− b), q

1 + q
(1− a− b)

)
,

i.e., for fixed q ≥ 0, this function maps each pair (a, b) ∈ S to the value of f at the
unique distribution (a′, b′, c′, d′) with a′ = a, b′ = b and d′/c′ = q.

Lemma 14.2.5. If fq is convex for all q ≥ 0, then s satisfies the concavity condition (C1)
of Lemma 14.2.3.

Proof. Let D = (a, b, c, d) be an arbitrary distribution and let D0 = (a0, b0, c0, d0), D1 =
(a1, b1, c1, d1) be such that D = λD0 + (1 − λ)D1 for some λ ∈ [0, 1] and D0, D1 lie in
the same allowed plane through D. By the symmetry s(a, b, c, d) = s(c, d, a, b), we can
without loss of generality assume that D0, D1 and D are proportional on the entries of
player 2 (i.e., a 1-allowed split).

Assume first that c = d = 0, then any D0 and D1 lie on the line (t, 1−t, 0, 0) with t ∈ R.
Define the restriction of s to this line as s̃(t) := s(t, 1 − t, 0, 0) = 1

4

(
1− (1− t)2 − t2

)
and note that s̃(t) is concave by d2s̃

dt2
= −1. Thus (C1) is satisfied for c = d = 0.

Hence we may assume c > 0 or d > 0 and more specifically, by the symmetry
s(a, b, c, d) = s(b, a, d, c), that c > 0. We set q := d

c and observe that q = d0
c0

= d1
c1

,
since (D0, D1) is a 1-allowed split of D. Then by ‖D‖1 = ‖Di‖1 = 1, we have D =
(a, b, 1

1+q (1−a− b), q
1+q (1−a− b)) and Di = (ai, bi,

1
1+q (1−ai− bi), q

1+q (1−ai− bi)) (for
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i ∈ {0, 1}). Recall that D = λD0 + (1− λ)D1. The claim now follows from the simple
calculation

s(D) =
1− f(a, b, 1

1+q (1− a− b), q
1+q (1− a− b))

4
=

1− fq(a, b)
4

≥ λ1− fq(a0, b0)

4
+ (1− λ)

1− fq(a1, b1)

4
[by convexity of fq]

= λs(D0) + (1− λ)s(D1).

It remains to analyze the concavity of fq.

Lemma 14.2.6. For all q ≥ 0, fq is concave on S.

Proof. We use the fact that fq has continuous second partial derivatives and thus is convex
if the Hessian H := H(fq) is positive semidefinite. By straight-forward calculations, we
obtain

H(fq) =

 4(q2+4(2b2+(3a−2)b+1)q+4)
(q+1)2

4(2q2+(6a2+8(2b−1)a+6b2−8b+5)q+2)
(q+1)2

4(2q2+(6a2+8(2b−1)a+6b2−8b+5)q+2)
(q+1)2

4(4q2+4(2a2+(3b−2)a+1)q+1)
(q+1)2

 .

To verify positive semidefiniteness, we exploit the criterion that H(fq) is positive semidef-
inite if its principal minors are non-negative, i.e.,

4
(
4 + 4

(
1 + (−2 + 3a)b+ 2b2

)
q + q2

)
(1 + q)2

≥ 0, and (14.2)

Det[H] ≥ 0. (14.3)

Verifying (14.2) is equivalent to showing that 4 + 4p1(a, b)q + q2 ≥ 0, where p1(a, b) :=
1+(−2+3a)b+2b2. Note that by 0 ≤ a, b ≤ 1, we have p1(a, b) ≥ 1−2b+2b2 ≥ 1−2b ≥ −1.
Thus,

4 + 4p1(a, b)q + q2 ≥ 4− 4q + q2 = (q − 2)2 ≥ 0,

proving (14.2).
Regarding (14.3), straight-forward calculations reveal that

Det[H] =
64q

(1 + q)4

(
p2(a, b) + p3(a, b)q + p4(a, b)q2

)
,

where

p2(a, b) = 2a2 + 6b− ab− 4b2,

p3(a, b) = 12(a+ b)− 23(a2 + b2)− 32ab+ 24(a3(1− b) + b3(1− a))

+48(ab2 + a2b)− 30a2b2 − 9(a4 + b4),

p4(a, b) = 6a− 4a2 − ab+ 2b2.

Claim 14.2.7. For all 0 ≤ a, b ≤ 1 with a+ b ≤ 1 we have

p2(a, b), p3(a, b), p4(a, b) ≥ 0.

Proof. Note that by a, b ≤ 1, we have p2(a, b) = 2a2 + 6b−ab− 4b2 ≥ 2a2 + 6b− b− 4b =
2a2 + b ≥ 0. Since p4(a, b) = p2(b, a), it directly follows that p4(a, b) ≥ 0.
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To prove the remaining statement p3(a, b) ≥ 0, we will exploit the following basic
inequalities

a4 + b4 ≤ a3(1− b) + b3(1− a), (14.4)

a2b2 ≤ 1

2
(ab2 + a2b− ab3 − a3b), (14.5)

which directly follow from plugging in a ≤ 1− b and b ≤ 1− a into the left-hand sides.
We compute

p3(a, b) = 12(a+ b)− 23(a2 + b2)− 32ab+ 24(a3(1− b) + b3(1− a))

+ 48(ab2 + a2b)− 30a2b2 − 9(a4 + b4),

≥ 12(a+ b)− 23(a2 + b2)− 32ab+ 15(a3(1− b) + b3(1− a))

+ 48(ab2 + a2b)− 30a2b2 [by (14.4)]

≥ 12(a+ b)− 23(a2 + b2)− 32ab+ 15(a3 + b3)

+ 33(ab2 + a2b) [by (14.5)]

= 12(a+ b)− 23(a+ b)2 + 14ab+ 4(a3 + b3)

+ 11(a+ b)3

≥ 12(a+ b)− 23(a+ b)2 + 11(a+ b)3,

Basic calculus shows that t : [0, 1] → R, s 7→ 12s − 23s2 + 11s3 has global minima
t(0) = t(1) = 0 and thus p3(a, b) ≥ t(a+ b) ≥ 0.

Thus p2(a, b) + p3(a, b)q + p4(a, b)q2 ≥ 0 follows from q ≥ 0, which implies that
Det[H] ≥ 0. Hence, we have verified (14.2) and (14.3), which proves that fq is convex
for all q ≥ 0.

Proof of Lemma 14.2.4. Combining Lemmas 14.2.5 and 14.2.6 yields that s is concave
on all allowed planes.

14.3 Conclusion

Despite the fundamental understanding of the cryptogenography problem obtained
by Brody et al. [Bro+14], determining the success probability even of the 2-player
case remains an intriguing open problem. The previous best protocol with success
probability 1/3, while surprising and unexpected at first, is natural and very symmetric
(in particular when viewed in the convex combination or vector splitting game formulation).
We disprove the hope that it is an optimal protocol by exhibiting less intuitive and less
symmetric protocols having success probabilities up to 0.3384. Concerning hardness
results, our upper bound of 0.3671875 shows that also the previous upper bound of 3/8
was not the final answer. These findings add to the impression that the cryptography
problem offers a more complex nature than its simple description might suggest and that
understanding the structure of good protocols is highly non-trivial.

We are optimistic that our methods support a further development of improved
protocols and bounds. (1) Trivially, investing more computational power or optimizing
the automated search might lead to finding better protocols. (2) Our improved protocols
might motivate to (manually) find infinite protocol families exploiting implicit properties
and structure of these protocols. (3) Our reformulations, e.g., as vector splitting game,
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might ease further searches for better protocols and for better candidate functions for a
hardness proof.
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the k-Means Method”. In: Journal of the ACM 58(5) (2011).

[Apo86] Alberto Apostolico. “Improving the Worst-Case Performance of the Hunt-
Szymanski Strategy for the Longest Common Subsequence of Two Strings”.
In: Information Processing Letters 23(2) (1986), pp. 63–69.

[Aro+06] Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola
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for Smoothed Analysis of Euclidean Optimization Problems”. In: Proc.
21st Annual European Symposium on Algorithms (ESA’13). Received Best
Student Paper Award. 2013, pp. 349–360.

http://arxiv.org/abs/1511.04731


BIBLIOGRAPHY 215

[CK15] Radu Curticapean and Marvin Künnemann. “A Quantization Frame-
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Polygon”. In: ACM Transactions on Algorithms 7(1) (2010), pp. 193–204.

[DD08] George Danezis and Claudia Diaz. A Survey of Anonymous Communi-
cation Channels. Tech. rep. MSR-TR-2008-35. Microsoft Research, Jan.
2008.

[Dem+88] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B.
Terry. “Epidemic Algorithms for Replicated Database Maintenance”. In:
Operating Systems Review 22(1) (1988), pp. 8–32.

[DFF12] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. “Why Rumors
Spread So Quickly in Social Networks”. In: Commununications of the
ACM 55(6) (2012), pp. 70–75.

[DHP13] Anne Driemel and Sariel Har-Peled. “Jaywalking Your Dog: Computing
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