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Abstract

Subject of this thesis is the design and the analysis of algorithms for scheduling
problems. In the first part, we focus on energy-efficient scheduling, where one seeks
to minimize the energy needed for processing certain jobs via dynamic adjustments
of the processing speed (speed scaling). We consider variations and extensions of
the standard model introduced by Yao, Demers, and Shenker in 1995 [79], including
the addition of a sleep state, the avoidance of preemption, and variable speed limits.

In the second part, we look at classical makespan scheduling, where one aims to
minimize the time in which certain jobs can be completed. We consider the restricted
assignment model, where each job can only be processed by a specific subset of the
given machines. For a special case of this problem, namely when heavy jobs can go
to at most two machines, we present a combinatorial algorithm with approximation
ratio strictly better than two.

Zusammenfassung

Inhalt dieser Arbeit ist der Entwurf und die Analyse von Algorithmen für Planungs-
probleme. Der erste Teil konzentriert sich auf energieeffiziente Ablaufplanung, wobei
bestimmte Aufträge mittels dynamischer Anpassungen der Arbeitsgeschwindigkeit
(Speed Scaling) möglichst energiesparend abgearbeitet werden sollen. Es werden
verschiedene Variationen und Erweiterungen des Standardmodells von Yao, Demers
und Shenker aus dem Jahr 1995 [79] betrachtet, wie zum Beispiel die Hinzunahme
eines Ruhezustands, die Vermeidung von Präemption, sowie variable Geschwindig-
keitsbegrenzungen.

Im zweiten Teil geht es um ein klassisches Problem der Maschinenbelegungspla-
nung. Hier ist das Ziel bestimmte Aufträge mit minimalem Zeitaufwand abzuar-
beiten. Betrachtet wird das Modell der eingeschränkten Zuordnung, bei dem jeder
Auftrag nur auf einer Teilmenge der gegebenen Maschinen bearbeitet werden kann.
Für einen Spezialfall dieses Problems, nämlich wenn große Aufträge auf höchstens
zwei verschiedenen Maschinen bearbeitet werden können, wird ein kombinatorischer
Algorithmus mit Approximationsgüte besser als zwei vorgestellt.
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“As a man who has devoted his whole life to the most clearheaded
science, to the study of matter, I can tell you as a result of my
research about the atoms this much: There is no matter as such! All
matter originates and exists only by virtue of a force which brings
the particles of an atom to vibration and holds this most minute
solar system of the atom together. ... We must assume behind this
force the existence of a conscious and intelligent Mind. This Mind
is the matrix of all matter.”

Max Planck1

1Das Wesen der Materie (The Nature of Matter), Florence, Italy (1944). Archiv zur Geschichte
der Max-Planck-Gesellschaft, Abt. Va, Rep. 11 Planck, Nr. 1797. Excerpt from Gregg Braden.
The Spontaneous Healing of Belief, page 212. Hay House, 2008.
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Introduction

Scheduling decisions affect our lives in a significant way. Even an action as simple
as buying a tube of toothpaste involves many small tasks that need to be scheduled:
put on your shoes, get your keys and wallet, drive to a store, find toothpaste, queue
up at the cashier, and so forth. A schedule is a precise plan how to carry out all
these tasks, keeping in view the available resources. For instance, if you have no
cash at home, you must fit in a stop at the bank before reaching the store.

In the most general sense, scheduling can be understood as the problem of assign-
ing tasks to resources over a certain period of time. Today, the field of scheduling
is a widely researched area with several hundred publications every year and early
work dating back to at least the 1950s [68]. In one of the landmark papers of that
time, Johnson [53] considers a production problem, where items must be processed
through two different machines one after the other. Taking into account the setup-
and work times for each item, Johnson designs a simple scheduling rule that mini-
mizes the total elapsed time until all jobs are completed (the so-called makespan).

The problem considered by Johnson is a classical example of scheduling with a
time-objective. For many years, time was the key benchmark to determine how
efficient a solution is. In the second part of this thesis, we shall also consider a
scheduling problem with makespan objective (Chapter 4) - a classical scheduling
problem.

In recent years, however, the focus has begun to shift. No longer is faster al-
ways better. Instead, energy-efficiency has risen to be a major factor in the design
and development of technical systems, ranging from data centers, over the embed-
ded systems in our homes (“Internet of Things”), to the mobile devices everyone
carries around. There are efforts on a multitude of levels to make such systems
more energy-efficient. On an algorithmic level, these efforts focus largely on the
speed scaling technique, which basically all modern microprocessors support in one
way or the other. The general idea of this technique is to dynamically adjust the
operating speed of the processor to the actual workload requirements. A higher
speed implies a higher performance, but this performance comes at the cost of a
higher power consumption. In practice, the power function P (s) = s3 provides a
good approximation on the true power consumption when the processor is run at
speed s [23, 30]. The theoretical investigation of scheduling problems involving the
speed scaling technique was initiated by Yao, Demers, and Shenker in their seminal
paper of 1995 [79]. Their goal is to process a given set of jobs (each equipped with a
release time, deadline, and processing volume) on a single speed-scalable processor,
using as little energy as possible. For this problem they develop a polynomial-time
algorithm, known as the YDS-algorithm. In the first part of this thesis, we de-
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Introduction

sign and analyze scheduling algorithms for variations and extensions of Yao et al.’s
original model.

Basics on Approximation Algorithms

Most problems considered in this thesis belong to the class of NP-hard problems.
It is widely believed that for this class of problems, optimal solutions cannot be
computed efficiently (i.e. no algorithm with polynomial running time exists). The
question whether this is true or not results in the famous P versus NP problem.
We refer the interested reader to [42] for an extensive discussion on the theory of
NP-completeness.

One possible way to deal with NP-hard problems is to develop approximation
algorithms, that compute nearly optimal solutions in polynomial time. The quality
of the returned solution is measured by the so-called approximation ratio α. We say
that an algorithm is an α-approximation if, for a minimization problem, it returns a
solution with objective function value at most α times the optimal. In the following,
we will denote the optimal objective function value by OPT.

Sometimes it is possible to approximate a problem to any required degree, which
leads us to the concept of approximation schemes. Consider an algorithm with two
inputs: a problem instance and an error parameter ε > 0. If the algorithm outputs
a solution with objective function value at most (1 + ε) ·OPT (for a minimization
problem), it is called an approximation scheme. In a polynomial-time approximation
scheme (PTAS), the algorithm’s running time has to be polynomial in the size of
the problem instance for each fixed ε > 0. If the running time is also polynomial in
1/ε, it is called a fully polynomial-time approximation scheme (FPTAS).

A general introduction to the topic of approximation algorithms can be found
in [75].

Outline of the Thesis

This thesis consists of two parts. In the first part we consider scheduling problems
where minimizing energy consumption (or -cost) is the major goal. In the second
part, we look at the classical makespan objective, i.e. we aim to minimize the time
in which certain jobs can be completed. In the following, we give an overview of
the different chapters. Note that each chapter is self-contained and can be read
independently.

Chapter 1: In the first chapter, we study the scheduling of jobs in a computing
environment not only equipped with speed scaling capabilities, but also with
a so-called sleep state. In the sleep state, the processor consumes no energy,
but a constant wake-up cost is required to transition back to the active state.
In contrast to speed scaling alone, the addition of a sleep state makes it some-
times beneficial to accelerate the processing of jobs in order to transition the
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processor to the sleep state for longer amounts of time and incur further en-
ergy savings. The goal is to output a feasible schedule that minimizes the
energy consumption. Preemption of jobs is allowed. Since the introduction of
the problem by Irani et al. [50], its exact computational complexity has been
repeatedly posed as an open question (see e.g. [2, 27, 48]). Before our work,
the best known upper and lower bounds were a 4/3-approximation algorithm
and NP-hardness due to [2] and [2, 57], respectively.

We close the aforementioned gap between the upper and lower bound on the
computational complexity of speed scaling with sleep state by presenting a
fully polynomial-time approximation scheme for the problem.

Our result has been previously published in SODA ’15 [10].

Chapter 2: In this chapter, we revisit the original speed scaling problem (without
sleep state), as introduced by Yao, Demers, and Shenker in 1995 [79]. The
goal is to process a given number of jobs (each with its own release time,
deadline, and processing volume) on a single speed-scalable processor, using
as little energy as possible. As opposed to the original setting, we consider
the non-preemptive variant of the problem, where a job, once started, must be
processed uninterruptedly until its completion. This version of the problem
is significantly harder (it was shown to be strongly NP-hard by Antoniadis
and Huang in 2012 [8]) and only a few (large) constant factor approximations
exist [8, 16, 17, 34]. Up until now, the (general) complexity of this problem is
unknown.

We study the special case when the jobs’ time windows have a laminar struc-
ture. The problem remains strongly NP-hard in this case [8]. We present a
quasipolynomial-time approximation scheme, thereby showing that (at least)
this special case is not APX-hard, unless NP ⊆ DTIME(2poly(logn)).

Our second contribution is a polynomial-time exact algorithm for the case
that all jobs have equal volume (even if the jobs’ time windows do not have a
laminar structure). In addition, we show that two other special cases of the
problem allow fully polynomial-time approximation schemes.

The contents of this chapter have been previously published in MFCS ’14 [46].

Chapter 3: In this chapter, we consider an extension of the (preemptive) speed
scaling problem introduced by Yao et al. [79]: the maximum allowed speed of
the processor is limited, and both this maximum speed and the energy costs
may vary - even continuously - over time. The objective is to find a feasible
schedule that minimizes the total energy costs.

We apply techniques from calculus of variations to derive optimality condi-
tions that extend the well known KKT conditions to the case of continuous
constraints. Using these optimality conditions, we design and analyze a natu-
ral and exact polynomial-time algorithm for this problem.

3



Introduction

The contents of this chapter are joint work with Antonios Antoniadis (Max-
Planck-Institut für Informatik, Saarbrücken, Germany), Peter Kling (Simon
Fraser University, Burnaby, Canada), and Sören Riechers (University of Pader-
born, Paderborn, Germany). Our result is currently under submission.

Chapter 4: In this chapter, we consider a classical machine scheduling problem,
namely makespan minimization in restricted assignment. In a land-
mark paper in 1990 [58], Lenstra, Shmoys, and Tardos gave a 2-approximation
algorithm and proved that the problem cannot be approximated within 1.5 un-
less P=NP. The upper and lower bounds of the problem have been essentially
unimproved in the intervening 25 years, despite several remarkable successful
attempts in some special cases of the problem [31, 37, 73] recently.

We consider a special case of this problem, called graph-balancing with light
hyper edges, where heavy jobs can be assigned to at most two machines while
light jobs can be assigned to any number of machines. For this case, we present
algorithms with approximation ratios strictly better than 2.

Our algorithms are purely combinatorial, without the need of solving a linear
program as required in most other known approaches.

The contents of this chapter are joint work with Chien-Chung Huang (Chalmers
University, Gothenburg, Sweden) and are accepted for publication at ESA ’16;
a preprint is available on arXiv [47].
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ENERGY-EFFICIENT
SCHEDULING
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1. Speed Scaling with Sleep State

1.1. Introduction

As energy efficiency in computing environments becomes more and more important,
chip manufacturers are increasingly incorporating energy-saving functionalities to
their processors. One of the most common such functionalities is dynamic speed
scaling, where the processor can adjust its speed dynamically over time. A lower
speed results in a lower energy consumption, but at the cost of performance. How-
ever, even when the processor is idling, it consumes a non-negligible amount of
energy just for the sake of “being active” (for example because of leakage current).
Due to this fact, additional energy can be saved by incorporating a sleep state to
the processor. A processor in a sleep state consumes zero (or negligible) energy;
however, there is an extra energy cost when it is transitioned back to the active
state.

In this chapter, we study the offline problem of minimizing energy consumption
of a processor that is equipped with both speed scaling and sleep state capabilities.
This problem is called speed scaling with sleep state and was first introduced by Irani
et al. [50].

Let us state the problem more formally. The given processor has two states: the
active state, during which it can execute jobs and consumes a certain amount of
energy, and the sleep state, during which no jobs can be executed but also no energy
is consumed. We assume that a wake-up operation, that is a transition from the sleep
state to the active state, incurs a constant energy cost C > 0, whereas transitioning
from the active state to the sleep state is free of charge. Further, as in [2, 50],
the power required by the processor in the active state is an arbitrary convex and
non-decreasing function P of its speed s. We assume that P (0) > 0, since (i) as
already mentioned, real-world processors are known to have leakage current and (ii)
otherwise the sleep state would be redundant. Further motivation for considering
arbitrary convex power functions for speed scaling can be found, for example, in [24].

The input is a set J of n jobs. Each job j is associated with a release time rj ,
a deadline dj and a processing volume vj . One can think of the processing volume
as the number of CPU cycles that are required in order to completely process the
job, so that if job j is processed at a speed of s, then vj/s time-units are required to
complete the job. We call the interval [rj , dj) the allowed interval of job j, and say
that job j is active at time point t if and only if t ∈ [rj , dj)

1. Furthermore, we may
assume without loss of generality that minj∈J rj = 0, and that vmin := minj∈J vj is

1Unless stated differently, throughout this chapter an interval will always have the form [·, ·).

7



1. Speed Scaling with Sleep State

normalized to 1 (if v∗ 6= 1 is the real minimum volume, we can scale the instance by
dividing the rj ’s, dj ’s, and vj ’s by v∗, and using the power function P (s) · v∗ along
with the original wake-up cost C). Further, let dmax := maxj∈J dj be the latest
deadline of any job.

A schedule is defined as a mapping of every time point t to the state of the
processor, its speed, and the job being processed at t (or null if there is no job
running at t). Note that the processing speed is zero whenever the processor sleeps,
and that a job can only be processed when the speed is strictly positive. A schedule
is called feasible when the whole processing volume of every job j is completely
processed in j’s allowed interval [rj , dj). Preemption of jobs is allowed.

The energy consumption incurred by a schedule S while the processor is in the
active state, is its power integrated over time, i.e.

∫
P (s(t))dt, where s(t) is the

processing speed at time t, and the integral is taken over all time points in [0, dmax)
during which the processor is active under S. Assume that S performs k transitions
from the sleep state to the active state. (We will assume that initially, prior to the
first release time, as well as finally, after the last deadline, the processor is in the
active state. However, our results can be easily adapted for the setting where the
processor is initially and/or eventually in the sleep state). Then the total energy
consumption of S is E(S) :=

∫
P (s(t))dt+kC, where again the integral is taken over

all time points at which S keeps the processor in the active state. We are seeking a
feasible schedule that minimizes the total energy consumption.

Observe that, by Jensen’s inequality, and by the convexity of the power function,
it is never beneficial to process a job with a varying speed. Irani et al. [50] observed
the existence of a critical speed scrit, which is the most efficient speed for processing
jobs. This critical speed is the smallest speed that minimizes the function P (s)/s.
Note that, by the convexity of P (s), the only case where the critical speed scrit is
not well defined, is when P (s)/s is always decreasing. However, this would render
the setting unrealistic, and furthermore make the algorithmic problem trivial, since
it would be optimal to process every job at an infinite speed. We may therefore
assume that this case does not occur. Further, it can be shown (see [50]) that for
any s ≥ scrit, the function P (s)/s is non-decreasing.

1.1.1. Previous Work

The theoretical model for dynamic speed scaling was introduced in a seminal paper
by Yao, Demers and Shenker [79]. They developed a polynomial time algorithm
called YDS, that outputs a minimum-energy schedule for this setting. Irani, Shukla
and Gupta [50] initiated the algorithmic study of speed scaling combined with a sleep
state. Such a setting motivates the so-called race-to-idle technique: one saves energy
by accelerating some jobs in order to transition the processor to the sleep state for
longer periods of time (see [13, 41, 43, 69] and references therein for more information
regarding the race-to-idle technique). Irani et al. developed a 2-approximation
algorithm for speed scaling with sleep state, but the computational complexity of
the problem has remained open. The first step towards attacking this open problem

8



1.1. Introduction

was made by Baptiste [26], who gave a polynomial time algorithm for the special case
where the processor must execute all jobs at a fixed speed, and all jobs are of unit
size. Baptiste’s algorithm is based on a clever dynamic programming formulation of
the scheduling problem, and was later extended to (i) arbitrarily-sized jobs in [27],
and (ii) a multiprocessor setting in [35].

More recently, Albers and Antoniadis [2] improved the upper bound on the ap-
proximation ratio of the general problem, by developing a 4/3-approximation al-
gorithm. For the special case of agreeable deadlines and a power function of the
form P (s) = sα + β (with constant α > 1 and β > 0), Bampis et al. [14] provided
an exact polynomial time algorithm. With respect to the lower bound, [2] gave an
NP-hardness reduction from the partition problem. The reduction uses a particular
power function that is based on the partition instance, i.e., it is considered that
the power function is part of the input. The reduction of [2] was later refined by
Kumar and Shannigrahi [57], to show that the problem is NP-hard for any fixed,
non-decreasing and strictly convex power function.

The online setting of the problem has also been studied. Irani et al. [50] gave a
(22α−2αα + 2α−1 + 2)-competitive online algorithm. Han et al. [45] improved upon
this result by developing an (αα + 2)-competitive algorithm for the problem. Both
of the above results assume a power function of the form P (s) = sα+β, where α > 1
and β > 0 are constants.

A more thorough discussion on the above scheduling problems can be found in
the surveys [1, 48].

1.1.2. Our Contribution

We study the offline setting of speed scaling with sleep state. Since the introduction
of the problem by Irani et al. [50], its exact computational complexity has been
repeatedly posed as an open question (see e.g. [2, 27, 48]). Before our work, the
best known upper and lower bounds were a 4/3-approximation algorithm and NP-
hardness due to [2] and [2, 57], respectively. We settle the open question regarding
the computational complexity of the problem by presenting a fully polynomial-time
approximation scheme.

At the core of our approach is a transformation of the original preemptive problem
into a non-preemptive scheduling problem of the same type. At first sight, this may
seem counterintuitive, especially as Bampis et al. [15] showed that (for the problem
of speed scaling alone) the ratio of an optimal preemptive solution against an optimal
non-preemptive solution can be very high. However, this does not apply in our case,
as we consider the non-preemptive problem on a modified instance, where each job
is replaced by a polynomial number of pieces. Furthermore, in our analysis, we
make use of a particular lexicographic ordering that does exploit the advantages of
preemption.

In order to compute an optimal schedule for the modified instance via dynamic
programming, we require a number of properties that pieces must satisfy in a valid
schedule. The definition of these properties is based on a discretization of the time

9



1. Speed Scaling with Sleep State

horizon by a polynomial number of time points. Roughly speaking, we focus on
those schedules that start and end the processing of each piece at such time points,
and satisfy a certain constraint on the processing order of the pieces. Proving that
a near-optimal schedule in this class of schedules exists is the most subtle part of
our approach.

On the one hand, the processing order constraint can be exploited by the DP; on
the other hand, such a constraint is difficult to establish in an optimal schedule with
the introduced indivisible volumes (since pieces of different jobs might have different
volumes and cannot easily be interchanged). To get around this, we first ensure the
right ordering in an optimal schedule for the preemptive setting, and then perform
a series of transformations to a non-preemptive schedule with the above properties.
Each of these transformations increases the energy consumption only by a small
factor, and maintains the correct ordering among the pieces.

We remark that Baptiste [26] used a dynamic program of similar structure for
the special case of unit-sized jobs and a fixed-speed processor equipped with a sleep
state. His dynamic program is also based on a particular ordering of jobs, which,
however, is not sufficient for our setting. Since we have pieces of different sizes, the
swapping argument used in [26] fails.

In Section 1.2, we describe the YDS algorithm of [79] for the problem of speed
scaling without a sleep state, and then show several properties that a schedule pro-
duced by YDS has for our problem of speed scaling with sleep state. We then, in
Section 1.3, define a particular class of schedules that have a set of desirable proper-
ties, and show that there exists a schedule in this class, whose energy consumption
is within a (1 + ε)-factor from optimal. Finally, in Section 1.4, we develop an algo-
rithm based on a dynamic program, that outputs, in polynomial time, a schedule of
minimal energy consumption among all the schedules of the aforementioned class.

1.2. Preliminaries

We start by giving a short description of the YDS algorithm presented in [79]. For
any interval I, let B(I) be the set of jobs whose allowed intervals are contained in
I. We define the density of I as

dens(I) =

∑
j∈B(I) vj

|I| .

Note that the average speed that any feasible schedule uses during interval I is
no less than dens(I). YDS works in rounds. In the first round, the interval I1 of
maximal density is identified, and all jobs in B(I1) are scheduled during I1 at a speed
of dens(I1), according to the earliest deadline first policy. Then the jobs in B(I1)
are removed from the instance and the time interval I1 is “blacked out”. In general,
during round i, YDS identifies the interval Ii of maximal density (while disregarding
the blacked out time intervals, and the already scheduled jobs), and then processes
all jobs in B(Ii) at a uniform speed of dens(Ii). YDS terminates when all jobs are
scheduled, and its running time is polynomial in the input size.
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1.2. Preliminaries

We remark that the speed used for the processing of jobs can never increase be-
tween two consecutive rounds, i.e., YDS schedules the jobs by order of non-increasing
speeds. Furthermore, all the jobs scheduled in each round i have their allowed in-
tervals within Ii.

Given any job instance J , let FAST (J ) be the subset of J that YDS processes
at a speed greater than or equal to scrit, and let SLOW (J ) := J \FAST (J ). The
following lemma is an extension of a fact proven by Irani et al. [50].

Lemma 1.2.1. For any job instance J , there exists an optimal schedule (w.r.t.
speed scaling with sleep state) in which

1. Every job in FAST (J ) is processed according to YDS.

2. Every job k ∈ SLOW (J ) is run at a uniform speed sk ≤ scrit, and the processor
never (actively) runs at a speed less than sk during [rk, dk).

We call an optimal schedule with these properties a YDS-extension for J .

Proof. To break ties among schedules with equal energy consumption, we introduce
the pseudo cost function

∫
s(t)2dt (this idea was first used in [50]). Consider a

minimal pseudo cost schedule Y , so that Y satisfies property 1 of the lemma, and
minimizes the energy consumption among all schedules satisfying this property. It
was shown in [50] that Y is optimal for instance J , and that under Y

Every job k ∈ SLOW (J ) is run at a uniform speed sk, and the processor
never (actively) runs at a speed less than sk during those portions of [rk, dk)
where no job from FAST(J ) is processed.

(∗)

It therefore remains to prove that the speeds sk are no higher than scrit. For the sake
of contradiction, assume that there exists a job j ∈ SLOW (J ) which is processed at
speed higher than scrit. Let I be a maximal time interval, so that (i) I includes at
least part of the execution of j, and (ii) at any time point t ∈ I the processor either
runs strictly faster than scrit, or executes a job from FAST (J ). Then there must
exist a job k ∈ SLOW (J ) (possibly k = j) which is executed to some extent during
I, and whose allowed interval is not contained in I (otherwise, when running YDS,
the density of I after the jobs in FAST (J ) have been scheduled is larger than scrit,
contradicting the fact that YDS processes all remaining jobs slower than scrit). By
the maximality of I, there exists some interval I ′ ⊆ [rk, dk) right before I or right
after I, during which no job from FAST (J ) is executed, and the processor either
runs with speed at most scrit or resides in the sleep state. The first case contradicts
property (∗), as k is processed during I and thus at speed sk > scrit. In the second
case, we can use a portion of I ′ to slightly slow down k to a new speed s′, such that
scrit < s′ < sk. The resulting schedule Y ′ has energy consumption no higher than
Y , as P (s)/s is non-decreasing for s ≥ scrit. Furthermore, if Cp is the pseudo cost of
Y , then Y ′ has pseudo cost Cp− vksk + vks

′ < Cp. This contradicts our assumptions
on Y .

11



1. Speed Scaling with Sleep State

By the preceding lemma, we may use YDS to schedule the jobs in FAST (J ),
and need to find a good schedule only for the remaining jobs (which are exactly
SLOW (J )). To this end, we transform the input instance J to an instance J ′, in
which the jobs FAST (J ) are replaced by dummy jobs. This introduction of dummy
jobs bears resemblance to the approach of [2]. We then show in Lemma 1.2.3, that
any schedule for J ′ with a certain property, can be transformed to a schedule for J
without any degradation in the approximation factor.

Consider the schedule SY DS that algorithm YDS produces on J . Let Ii = [yi, zi),
i = 1, . . . , ` be the i-th maximal interval in which SY DS continuously runs at a
speed greater than or equal to scrit, and let T1, . . . , Tm be the remaining maximal
intervals in [0, dmax) not covered by intervals I1, I2, . . . , I`. Furthermore, let T :=
∪1≤k≤m Tk. Note that the intervals Ii and Ti partition the time horizon [0, dmax),
and furthermore, by the way YDS is defined, every job j ∈ FAST (J ) is active in
exactly one interval Ii, and is not active in any interval Ti. On the other hand, a
job j ∈ SLOW (J ) may be active in several (consecutive) intervals Ii and Ti′ . We
transform J to a job instance J ′ as follows:

• For every job j ∈ SLOW (J ), if there exists an i such that rj ∈ Ii (resp. dj ∈ Ii),
then we set rj := zi (resp. dj := yi), else we keep the job as it is.

• For each Ii, we replace all jobs j ∈ FAST (J ) that are active in Ii by a single job
jdi with release time at yi, deadline at zi, and processing volume vdi equal to the
total volume that SY DS schedules in Ii, i.e. vdi =

∑
j∈B(Ii)

vj .

Clearly, the above transformation can be done in polynomial time. Note that after
the transformation, there is no release time or deadline in the interior of any interval
Ii. Furthermore, we have the following proposition:

Proposition 1.2.2. FAST (J ′) = {jdi : 1 ≤ i ≤ `} and SLOW (J ′) = SLOW (J ).

Proof. Since J ′ = {jdi : 1 ≤ i ≤ `} ∪ SLOW (J ), and furthermore SLOW (J ′) and
FAST (J ′) are disjoint sets, it suffices to show that (i) FAST (J ′) ⊇ {jdi : 1 ≤ i ≤ `}
and that (ii) SLOW (J ′) ⊇ SLOW (J ).

For (i), we observe that no job jdi can be feasibly scheduled at a uniform speed
less than scrit. As YDS uses a uniform speed for each job, these jobs must belong
to FAST (J ′).

For (ii), consider the execution of YDS on J ′. More specifically, consider the
first round when a job from SLOW (J ) is scheduled. Let I be the maximal density
interval of this round, and let JS and Jd be the sets of jobs from SLOW (J ) and
{jdi : 1 ≤ i ≤ `}, respectively, that are scheduled in this round (note that I contains
the allowed intervals of these jobs). As the speed used by YDS is non-increasing
from round to round, it suffices to show that dens(I) < scrit.

Consider a partition of I into maximal intervals Λ1, . . . ,Λa, s.t. each Λk is con-
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1.2. Preliminaries

tained in some interval Ii or Ti. Then

dens(I) =

∑
j∈Jd vj
|I| +

∑
j∈JS vj
|I|

=
∑

Λk 6⊆T

( |Λk|
|I| dens(Λk)

)
+

∑
Λk⊆T |Λk|
|I| ·

∑
j∈JS vj∑

Λk⊆T |Λk|

≤
( ∑

Λk 6⊆T

|Λk|
|I|
)
dens(I) +

(
1−

∑
Λk 6⊆T

|Λk|
|I|
)
·
∑

j∈JS vj∑
Λk⊆T |Λk|

,

since no Λk can have a density larger than dens(I) (because I is the interval of
maximal density). It follows that

dens(I) ≤
∑

j∈JS vj∑
Λk⊆T |Λk|

.

Furthermore, by the definition of SLOW (J ), it is possible to schedule all jobs
in JS during I ∩ T , at a speed slower than scrit (since none of the steps in the
transformation from J to J ′ reduces the time any job is active during T ). Together
with the previous inequality, this implies dens(I) < scrit.

The following lemma suggests that for obtaining an FPTAS for instance J , it
suffices to give an FPTAS for instance J ′, as long as we schedule the jobs jdi exactly
in their allowed intervals Ii.

Lemma 1.2.3. Let S′ be a schedule for input instance J ′, that (i) processes each job
jdi exactly in its allowed interval Ii (i.e. from yi to zi), and (ii) is a c-approximation
for J ′. Then S′ can be transformed in polynomial time into a schedule S that is a
c-approximation for input instance J .

Proof. Given such a schedule S′, we leave the processing in the intervals T1, . . . , Tm
unchanged, and replace for each interval Ii the processing of job jdi by the original
YDS-schedule SY DS during Ii. It is easy to see that the resulting schedule S is a
feasible schedule for J . We now argue about the approximation factor.

Let OPT be a YDS-extension for J , and let OPT′ be a YDS-extension for J ′.
Recall that E(·) denotes the energy consumption of a schedule (including wake-up
costs). Additionally, let EI(S) denote the total energy consumption of S in all inter-
vals I1, . . . , I` without wake-up costs (i.e. the energy consumption for processing or
being active but idle during those intervals), and define similarly EI(S′), EI(OPT ),
and EI(OPT ′) for the schedules S′, OPT, and OPT′, respectively. Since S′ is a
c-approximation for J ′, we have

E(S′) ≤ cE(OPT ′).

Note that OPT′ schedules exactly the job jdi in each Ii (using the entire interval for
it) by Proposition 1.2.2, and thus each of the schedules S, S′, OPT, and OPT′ keeps
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1. Speed Scaling with Sleep State

the processor active during every entire interval Ii. Therefore

E(S)− E(S′) = EI(S)− EI(S′),
since S and S′ have the same wake-up costs and do not differ in the intervals
T1, . . . , Tm. Moreover,

E(OPT )− E(OPT ′) = EI(OPT )− EI(OPT ′),
as E(OPT ) − EI(OPT ) and E(OPT ′) − EI(OPT ′) are both equal to the optimal
energy consumption during T of any schedule that processes the jobs SLOW (J )
in T and resides in the active state during each interval Ii (including all wake-up
costs of the schedule). Clearly, EI(S) = EI(OPT ), and since both S′ and OPT′

schedule exactly the job jdi in each Ii (using the entire interval for it), we have that
EI(S′) ≥ EI(OPT ′). Therefore

E(S)− E(S′) ≤ E(OPT )− E(OPT ′).

We next show that 0 ≤ EI(OPT )−EI(OPT ′) = E(OPT )−E(OPT ′), which implies

E(S) ≤ E(OPT )− E(OPT ′) + E(S′)

≤ c(E(OPT )− E(OPT ′)) + E(S′)

≤ c(E(OPT )− E(OPT ′)) + cE(OPT ′)

≤ cE(OPT ).

Since YDS (when applied to J ) processes a volume of exactly vdi in each interval
Ii, the average speed of OPT in Ii is vdi /|Ii|. On the other hand, OPT′ runs with a
speed of exactly vdi /|Ii| during Ii, and therefore EI(OPT ) ≥ EI(OPT ′).

1.3. Discretizing the Problem

After the transformation in the previous section, we have an instance J ′. In this
section, we show that there exists a “discretized” schedule for J ′, whose energy
consumption is at most 1 + ε times that of an optimal schedule for J ′. In the next
section, we will show how such a discretized schedule can be found by dynamic
programming.

Before presenting formal definitions and technical details, we here first sketch the
ideas behind our approach.

A major challenge of the original problem is that we need to deal with an infinite
number of possible schedules. We overcome this intractability by “discretizing” the
problem as follows: (1) we break each job in SLOW (J ′) into smaller pieces, and (2)
we create a set of time points and introduce the additional constraint that each piece
of a job has to start and end at these time points. The number of the introduced
time points and job pieces are both polynomial in the input size and 1/ε, which
greatly limits the amount of guesswork we have to do in the dynamic program. The
challenge is how to find such a discretization and argue that it does not increase the
optimal energy consumption by too much.
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1.3. Discretizing the Problem

1.3.1. Further Definitions and Notation

We first define the set W of time points. Given an error parameter ε > 0, let
δ := min{1

4 ,
ε
4

P (scrit)
P (2scrit)−P (scrit)

}. Intuitively, δ is defined in such a way that speeding

up the processor by a factor (1 + δ)3 does not increase the power consumption by
more than a factor 1 + ε (see Lemma 1.3.7).

Let W ′ :=
⋃
j∈J ′{rj , dj}, and consider the elements of W ′ in sorted order. Let

ti, 1 ≤ i ≤ |W ′| be the i-th element of W ′ in this order. We call an interval [ti, ti+1)
for 1 ≤ i ≤ |W ′| − 1 a zone, and observe that every zone is either equal to some
interval Ii or contained in some interval Ti.

For each i in 1, . . . , |W ′| − 1, let x(i) be the largest integer j so that

(1 + δ)j
1

4n2scrit(1 + δ)d1/δe ≤ ti+1 − ti.

We are now ready to define the set W of time points as follows:

W := W ′
⋃

i s.t. [ti,ti+1)⊆T
0≤j≤x(i)

1≤r≤16n6d1/δe2(1+d1/δe){
ti + r ·

(1 + δ)j 1
4n2scrit(1+δ)d1/δe

16n6d1/δe2(1 + d1/δe) ,

ti+1 − r ·
(1 + δ)j 1

4n2scrit(1+δ)d1/δe
16n6d1/δe2(1 + d1/δe)

}
.

Let us explain how these time points in W come about. As we will show later
(Lemma 1.3.5(2)), there exists a certain optimal schedule for J ′ in which each
zone [ti, ti+1) ⊆ T contains at most one contiguous maximal processing interval,
and this interval “touches” either ti or ti+1 (or both). The geometric series (1 +
δ)j 1

4n2scrit(1+δ)d1/δe of time points is used to approximate the ending/starting time

of this maximal processing interval. For each guess of the ending/starting time,
we split the guessed interval, during which the job pieces (to be defined formally
immediately) are to be processed, into 16n6d1/δe2(1+d1/δe) many intervals of equal
length. An example of the set W for a given zone can be seen in Figure 1.1.

Note that |W | is polynomial in the input size and 1/ε.

Definition 1.3.1. We split each job j ∈ SLOW (J ′) into 4n2d1/δe equal sized
pieces, and also consider each job jdi ∈ FAST (J ′) as a single piece on its own.
For every piece u of some job j, let job(u) := j, ru := rj, du := dj, and vu :=
vj/(4n

2d1/δe) if j ∈ SLOW (J ′), and vu := vj otherwise. Furthermore, let D
denote the set of all pieces derived from all jobs in J ′.
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1. Speed Scaling with Sleep State

ti ti+1

ti+1ti

Figure 1.1.: We assume that r = 1 . . . 8 and that x(i) = 2. The red dashed points correspond
to j = 1 and the blue dotted points to j = 2. For clarity, we drew the points defined from
ti and from ti+1 in two separate pictures. Note that for each j the number of points is the
same and the points of the same color are at equal distance from each other.

Note that |D| = ` + |SLOW (J ′)| · 4n2d1/δe is polynomial in the input size and
1/ε. We now define an ordering of the pieces in D.

Definition 1.3.2. Fix an arbitrary ordering of the jobs in J ′ , s.t. for any two
different jobs j and j′, j ≺ j′ implies rj ≤ rj′. Now extend this ordering to the set
of pieces, s.t. for any two pieces u and u′, there holds

u ≺ u′ ⇒ job(u) � job(u′).

We point out that any schedule for J ′ can also be seen as a schedule for D, by
implicitly assuming that the pieces of any fixed job are processed in the above order.

We are now ready to define the class of discretized schedules.

Definition 1.3.3. A discretized schedule is a schedule for J ′ that satisfies the
following two properties:

(i) Every piece is completely processed in a single zone, and without preemption.

(ii) The execution of every piece starts and ends at a time point from the set W .

A discretized schedule S is called well-ordered if and only if

(iii) For any time point t, such that in S a piece u ends at t, S schedules all pieces
u′ � u with du′ ≥ t after t.

Finally, we define a particular ordering over possible schedules, which will be
useful in our analysis.

Definition 1.3.4. Consider a given schedule. For every job j ∈ J ′, and every
x ≤ vj, let cj(x) denote the earliest time point at which volume x of job j has been
finished under this schedule. Furthermore, for any j ∈ J ′, we define

qj :=

∫ vj

0
cj(x)dx.

Let j1 ≺ j2 ≺ · · · ≺ j|J ′| be the jobs in J ′. A schedule S is lexicographically
smaller than a schedule S′ if and only if it is lexicographically smaller with respect
to the vector (qj1 , qj2 , . . . , qj|J ′|).
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Observe that shifting the processing interval of any fraction of some job j to an
earlier time point (without affecting the other processing times of j) decreases the
value of qj .

1.3.2. Existence of a Near-Optimal Discretized Schedule

In this section, we first show that there exists a YDS-extension for J ′ with certain
nice properties (recall that a YDS-extension is an optimal schedule satisfying the
properties of Lemma 1.2.1). We then explain how such a YDS-extension can be
transformed into a well-ordered discretized schedule, and prove that the speed of
the latter, at all times, is at most (1 + δ)3 times that of the former. This fact
essentially guarantees the existence of a well-ordered discretized schedule with energy
consumption at most 1 + ε that of an optimal schedule for J ′.

Lemma 1.3.5. Let OPT be a lexicographically minimal YDS-extension for J ′. Then
the following holds:

1. Every job jdi is scheduled exactly in its allowed interval Ii.

2. Every zone [ti, ti+1) ⊆ T has the following two properties:

(a) There is at most one contiguous maximal processing interval within [ti, ti+1),
and this interval either starts at ti and/or ends at ti+1. We call this interval
the block of zone [ti, ti+1).

(b) OPT uses a uniform speed of at most scrit during this block.

3. There exist no two jobs j′ � j, such that a portion of j is processed after some
portion of j′, and before dj′.

Proof.

1. Since FAST (J ′) = {jdi : 1 ≤ i ≤ `} (by Proposition 1.2.2), and OPT is a
YDS-extension, it follows that each jdi is processed exactly in its allowed interval
Ii.

2. (a) Assume for the sake of contradiction that [ti, ti+1) ⊆ T contains a number
of maximal intervals N1, N2, . . . , Nψ (ordered from left to right2) during
which jobs are being processed, with ψ ≥ 2. Let M1,M2, . . . ,Mψ′ (again
ordered from left to right) be the remaining maximal intervals in [ti, ti+1), so
that N1, . . . , Nψ and M1, . . . ,Mψ′ partition the zone [ti, ti+1). Furthermore,
note that for each i = 1, . . . , ψ′, the processor is either active but idle or
asleep during the whole interval Mi, since otherwise setting the processor
asleep during the whole interval Mi would incur a strictly smaller energy
consumption.

We modify the schedule by shifting the intervals Ni, i = 2, . . . , ψ to the left,
so that N1, N2, . . . , Nψ now form a single contiguous processing interval. The

2For any two time points t1 < t2, we say that t1 is to the left of t2, and t2 is to the right of t1.
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1. Speed Scaling with Sleep State

intervals Mk lying to the right of N1 are moved further right and merge into
a single (longer) interval M ′ during which no jobs are being processed. If
the processor was active during each of these intervals Mk, then we keep the
processor active during the new interval M ′, else we transition it to the sleep
state. We observe that the resulting schedule is still a YDS-extension (note
that its energy consumption is at most that of the initial schedule), but is
lexicographically smaller.

For the second part of the statement, assume that there exists exactly one
contiguous maximal processing interval N1 within [ti, ti+1), and that there
exist two M -intervals, M1 and M2 before and after N1, respectively.

We consider two cases:

• The processor is active just before ti, or the processor is asleep both just
before ti and just after ti+1: In this case we can shift N1 left by |M1| time
units, so that it starts at ti. Again, we keep the processor active during
[ti + |N1|, ti+1) only if it was active during both M1 and M2. As before,
the resulting schedule remains a YDS-extension, and is lexicographically
smaller.

• The processor is in the sleep state just before ti but active just after ti+1:
In this case we shift N1 by |M2| time units to the right, so that its right
endpoint becomes ti+1. During the new idle interval [ti, ti + |M1|+ |M2|)
we set the processor asleep. Note that in this case the processor was
asleep during M1. The schedule remains a YDS-extension, but its energy
consumption becomes strictly smaller: (i) either the processor was asleep
during M2, in which case the resulting schedule uses the same energy
while the processor is active but has one wake-up operation less, or (ii)
the processor was active and idle during M2, in which case the resulting
schedule saves the idle energy that was expended during M2.

(b) The statement follows directly from the second property of Lemma 1.2.1 and
the fact that all jobs processed during [ti, ti+1) belong to SLOW (J ′) and
are active in the entire zone.

3. Assume for the sake of contradiction that there exist two jobs j′ � j, such that
a portion of j is processed during an interval Z = [ζ1, ζ2), ζ2 ≤ dj′ , and some
portion of j′ is processed during an interval Z ′ = [ζ ′1, ζ

′
2), with ζ ′2 ≤ ζ1. We first

observe that both jobs belong to SLOW (J ′). This follows from the fact that
both jobs are active during the whole interval [ζ ′1, ζ2), and processed during parts
of this interval, whereas any job jdi (which are the only jobs in FAST (J ′)) is
processed exactly in its entire interval [yi, zi) (by statement 1 of the lemma).

By the second property of Lemma 1.2.1, both j and j′ are processed at the same
speed. We can now apply a swap argument. Let L := min{|Z|, |Z ′|}. Note that
OPT schedules only j′ during [ζ ′2−L, ζ ′2) and only j during [ζ2−L, ζ2). Swap the
part of the schedule OPT in [ζ ′2−L, ζ ′2) with the schedule in the interval [ζ2−L, ζ2).
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Given the above observations, it can be easily verified that the resulting schedule
(i) is feasible and remains a YDS-extension, and (ii) is lexicographically smaller
than OPT.

The next lemma shows how to transform the lexicographically minimal YDS-
extension for J ′ of the previous lemma into a well-ordered discretized schedule. This
is the most crucial part of our approach. Roughly speaking, the transformation needs
to guarantee that (1) in each zone, the volume of a job j ∈ SLOW (J ′) processed is
an integer multiple of vj/(4n

2d1/δe) (this is tantamount to making sure that each
zone has integral job pieces to deal with), (2) the job pieces start and end at the time
points in W , and (3) all the job pieces are processed in the “right order”. As we will
show, the new schedule may run at a higher speed than the given lexicographically
minimal YDS-extension, but not by too much.

Lemma 1.3.6. Let OPT be a lexicographically minimal YDS-extension for J ′, and
let sS(t) denote the speed of schedule S at time t, for any S and t. Then there exists
a well-ordered discretized schedule F , such that at any time point t ∈ T , there holds

sF (t) ≤ (1 + δ)3sOPT (t),

and for every t /∈ T , there holds

sF (t) = sOPT (t).

Proof. Through a series of three transformations, we will transform OPT to a well-
ordered discretized schedule F , while upper bounding the increase in speed caused
by each of these transformations. More specifically, we will transform OPT to a
schedule F1 satisfying (i) and (iii) of Definition 1.3.3, then F1 to F2 where we slightly
adapt the block lengths, and finally F2 to F which satisfies all three properties of
Definition 1.3.3. Each of these transformations can increase the speed by at most a
factor (1 + δ) for any t ∈ T and does not affect the speed in any interval Ii.

Transformation 1 (OPT→ F1): We will transform the schedule so that

(i) For each job j ∈ SLOW (J ′), an integer multiple of vj/(4n
2d1/δe) volume

of job j is processed in each zone, and the processing order of jobs within
each zone is determined by ≺. Together with property 1 of Lemma 1.3.5, this
implies that F1 (considered as a schedule for pieces) satisfies Definition 1.3.3(i).

(ii) The well-ordered property of Definition 1.3.3 is satisfied.

(iii) For all t ∈ T it holds that sF1(t) ≤ (1 + δ)sOPT (t), and for every t /∈ T it
holds that sF1(t) = sOPT (t).

Note that by Lemma 1.3.5, every zone is either empty, filled exactly by a job jdi ,
or contains a single block. For any job j ∈ SLOW (J ′), and every zone [ti, ti+1), let
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V i
j be the processing volume of job j that OPT schedules in zone [ti, ti+1). Since

there can be at most 2n different zones, for every job j there exists some index h(j),

such that V
h(j)
j ≥ vj/(2n).

For every job j ∈ SLOW (J ′), and every i 6= h(j), we reduce the load of job j
processed in [ti, ti+1), by setting it to

V̄ ij =
⌊
V i
j /

vj
4n2d1/δe)

⌋
· vj

4n2d1/δe .

Finally, we set the volume of j processed in [th(j), th(j)+1) to V̄h(j)
j = vj−

∑
i 6=h(j) V̄ ij .

To keep the schedule feasible, we process the new volume of each non-empty zone
[ti, ti+1) ⊆ T in the zone’s original blockBi, at a uniform speed of

∑
j∈SLOW (J ′)(V̄ ij)/|Bi|.

Here, the processing order of the jobs within the block is determined by ≺.

Note that in the resulting schedule F1, a job may be processed at different speeds
in different zones, but each zone uses only one constant speed level.

It is easy to see that F1 is a feasible schedule in which for each job j ∈ SLOW (J ′),
an integer multiple of vj/(4n

2d1/δe) volume of j is processed in each zone, and that
V̄ ij ≤ V i

j for all i 6= h(j). Furthermore, if i = h(j), we have that V̄ ij − V i
j ≤

vj/(2nd1/δe), and V i
j ≥ vj/(2n). It follows that V̄ ij ≤ V i

j + V i
j /d1/δe ≤ (1 + δ)V i

j

in this case, and therefore sF1(t) ≤ (1 + δ)sOPT (t) for all t ∈ T . We note here,
that for every job jdi , and the corresponding interval Ii, nothing changes during the
transformation.

We finally show that F1 satisfies the well-ordered property of Definition 1.3.3.
Assume for the sake of contradiction that there exists a piece u ending at some t, and
there exists a piece u′ � u with du′ ≥ t that is scheduled before t. Recall that we can
implicitly assume that the pieces of any fixed job are processed in the corresponding
order ≺. Therefore job(u′) � job(u), by definition of the ordering ≺ among pieces.
Furthermore, if [tk, tk+1) and [tk′ , tk′+1) are the zones in which u and u′, respectively,
are scheduled, then k′ < k, as k′ = k would contradict F1’s processing order of jobs
inside a zone. Also note that du′ ≥ tk+1, since t ∈ (tk, tk+1], and (tk, tk+1) does not
contain any deadline. This contradicts property 3 of Lemma 1.3.5, as the original
schedule OPT must have processed some volume of job(u′) in [tk′ , tk′+1), and some
volume of job(u) in [tk, tk+1).

Transformation 2 (F1 → F2): In this transformation, we slightly modify the
block lengths, as a preparation for Transformation 3. For every non-empty zone
[ti, ti+1) ⊆ T , we increase the uniform speed of its block until it has a length of
(1 + δ)j 1

4n2scrit(1+δ)d1/δe for some integer j ≥ 0, keeping one of its endpoints fixed at

ti or ti+1. Note that in F1, the block had length at least 1
4n2scrit(1+δ)d1/δe , since it

contained a volume of at least 1/(4n2d1/δe), and the speed in this zone was at most
(1 + δ)scrit. The speedup needed for this modification is clearly at most (1 + δ).

As this transformation does not change the processing order of any pieces nor
the zone in which any piece is scheduled, it preserves the well-ordered property of
Definition 1.3.3.
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Transformation 3 (F2 → F ): In this final transformation, we want to establish
Definition 1.3.3(ii). To this end, we shift and compress certain pieces in F2, such
that every execution interval starts and ends at a time point from W (this is already
true for pieces corresponding to jobs jdi ). The procedure resembles a transformation
done in [46]. For any zone [ti, ti+1) ⊆ T , we do the following: Consider the pieces
that F2 processes within the zone [ti, ti+1), and denote this set of pieces by Di.
If Di = ∅, nothing needs to be done. Otherwise, let γ be the integer such that
(1 + δ)γ 1

4n2scrit(1+δ)d1/δe is the length of the block in this zone, and let

∆ :=
(1 + δ)γ 1

4n2scrit(1+δ)d1/δe
16n6d1/δe2(1 + d1/δe) .

Note that in the definition of W , we introduced 16n6d1/δe2(1 + d1/δe) many time
points (for j = γ and r = 1, . . . , 16n6d1/δe2(1+d1/δe)) that subdivide this block into
16n6d1/δe2(1 + d1/δe) intervals of length ∆. Furthermore, since |Di| ≤ 4n3d1/δe,
there must exist a piece u ∈ Di with execution time Γu ≥ 4n3d1/δe(1+d1/δe)∆. We
now partition the pieces in Di \u into D+, the pieces processed after u, and D−, the
pieces processed before u. First, we restrict our attention to D+. Let q1, . . . , q|D+|
denote the pieces in D+ in the order they are processed by F2. Starting with the
last piece q|D+|, and going down to q1, we modify the schedule as follows. We keep
the end of q|D+|’s execution interval fixed, and shift its start to the next earlier time
point in W , reducing its uniform execution speed accordingly. At the same time, to
not produce any overlappings, we shift the execution intervals of all qk, k < |D+|
by the same amount to the left (leaving their lengths unchanged). Eventually, we
also move the execution end point of u by the same amount to the left (leaving
its start point fixed). This shortens the execution interval of u and “absorbs” the
shifting of the pieces in D+ (note that the processing speed of u increases as its
interval gets shorter). We then proceed with q|D+|−1, keeping its end (which now
already resides at a time point in W ) fixed, and moving its start to the next earlier
time point in W . Again, the shift propagates to earlier pieces in D+, which are
moved by the same amount, and shortens u’s execution interval once more. When
all pieces in D+ have been modified in this way, we turn to D− and apply the same
procedure there. This time, we keep the start times fixed and instead shift the right
end points of the execution intervals further to the right. As before, u “absorbs” the
propagated shifts, as we increase its start time accordingly. After this modification,
the execution intervals of all pieces in Di start and end at time points in W .

To complete the proof, we need to argue that the speedup of piece u is bounded
by a factor (1 + δ). Since |Di| ≤ 4n3d1/δe, u’s execution interval can be shortened
at most 4n3d1/δe times, each time by a length of at most ∆. Furthermore, recall
that the execution time of u was Γu ≥ 4n3d1/δe(1 + d1/δe)∆. Therefore, its new
execution time is at least Γu − 4n3d1/δe∆ ≥ Γu − Γu

1+d1/δe , and the speedup factor
thus at most

Γu

Γu − Γu
1+d1/δe

=
1

1− 1
1+d1/δe

≤ 1 + δ.
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1. Speed Scaling with Sleep State

Again, the transformation does not change the processing order of any pieces
nor the zone in which any piece is scheduled, and thus preserves the well-ordered
property of Definition 1.3.3.

We now show that the speedup used in our transformation does not increase the
energy consumption by more than a factor of 1 + ε. To this end, observe that
for any t ∈ T , the speed of the schedule OPT in Lemma 1.3.6 is at most scrit,
by Lemma 1.3.5(2). Furthermore, note that the final schedule F has speed zero
whenever OPT has speed zero. This allows F to use exactly the same sleep phases
as OPT (resulting in the same wake-up costs). It therefore suffices to prove the
following lemma, in order to bound the increase in energy consumption.

Lemma 1.3.7. For any s ∈ [0, scrit], there holds

P
(
(1 + δ)3s

)
P (s)

≤ 1 + ε.

Proof.

P
(
(1 + δ)3s

)
P (s)

(1)

≤ P
(
(1 + 4δ)s

)
P (s)

=
P (s) + 4δsP (s+4δs)−P (s)

4δs

P (s)

(2)

≤
P (s) + 4δsP (s+scrit)−P (s)

scrit

P (s)

(3)

≤
P (s) + 4δsP (2scrit)−P (scrit)

scrit

P (s)

(4)

≤ 1 + 4δ
scrit

P (scrit)
· P (2scrit)− P (scrit)

scrit
(5)

≤ 1 + ε.

In the above chain of inequalities, (1) holds since δ ≤ 1
4 and P (s) is non-decreasing.

(2) and (3) follow from the convexity of P (s), and the fact that 4δs ≤ scrit. Inequality
(4) holds since scrit minimizes P (s)/s (and thus maximizes s/P (s)), and (5) follows
from the definition of δ.

We summarize the major result of this section in the following lemma.

Lemma 1.3.8. There exists a well-ordered discretized schedule with an energy con-
sumption no more than (1 + ε) times the optimal energy consumption for J ′.
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1.4. The Dynamic Program

1.4. The Dynamic Program

In this section, we show how to use dynamic programming to find a well-ordered
discretized schedule with minimum energy consumption. In the following, we dis-
cuss only how to find the minimum energy consumption of this target schedule, as
the actual schedule can be easily retrieved by proper bookkeeping in the dynamic
programming process.

Recall thatD is the set of all pieces andW the set of time points. Let u1, u2, . . . , u|D|
be the pieces in D, and w.l.o.g. assume that u1 ≺ u2 ≺ . . . ≺ u|D|.

Definition 1.4.1. For any k ∈ {1, . . . , |D|}, and τ1 ≤ τ2, τ1, τ2 ∈ W , we define
Ek(τ1, τ2) as the minimum energy consumption during the interval [τ1, τ2], of a well-
ordered discretized schedule so that

1. all pieces {u � uk : τ1 < du ≤ τ2} are processed in the interval [τ1, τ2), and

2. the machine is active right before τ1 and right after τ2.

In case that there is no such feasible schedule, let Ek(τ1, τ2) =∞.

The DP proceeds by filling the entries Ek(τ1, τ2) by decreasing index of k. The
base cases are

E|D|+1(τ1, τ2) := min{P (0)(τ2 − τ1), C},

for all τ1, τ2 ∈ W, τ1 ≤ τ2. For the recursion step, suppose that we are about to
fill in Ek(τ1, τ2). There are two possibilities.

• Suppose that duk 6∈ (τ1, τ2]. Then clearly Ek(τ1, τ2) = Ek+1(τ1, τ2).

• Suppose that duk ∈ (τ1, τ2]. By definition, piece uk needs to be processed in the
interval [τ1, τ2). We need to guess its actual execution period [b, e) ⊆ [τ1, τ2), and
process the remaining pieces {u � uk+1 : τ1 < du ≤ τ2} in the two intervals [τ1, b)
and [e, τ2). We first rule out some guesses of [b, e) that are bound to be wrong.

– By Definition 1.3.3(i), in a discretized schedule, a piece has to be processed
completely inside a zone [ti, ti+1) (recall that ti ∈W ′ are the release times and
deadlines of the jobs). Therefore, in the right guess, the interior of [b, e) does
not contain any release times or deadlines; more precisely, there is no time point
ti ∈W ′ so that b < ti < e.

– By Definition 1.3.3(iii), in a well-ordered discretized schedule, if piece uk ends
at time point e, then all pieces u′ � uk with deadline du′ ≥ e are processed after
uk. However, consider the guess [b, e), where e = du′ for some u′ � uk (notice
that the previous case does not rule out this possibility). Then u′ cannot be
processed anywhere in a well-ordered schedule. Thus, such a guess [b, e) cannot
be right.
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1. Speed Scaling with Sleep State

By the preceding discussion, if the guess (b, e) is right, the two sets of pieces
{u � uk+1 : τ1 < du ≤ b} and {u � uk+1 : e < du ≤ τ2}, along with piece uk,
comprise all pieces to be processed that are required by the definition of Ek(τ1, τ2).
Clearly, the former set of pieces {u � uk+1 : τ1 < du ≤ b} has to be processed
in the interval [τ1, b); the latter set of pieces, in a well-ordered schedule, must be
processed in the interval [e, τ2) if [b, e) is the correct guess for the execution of the
piece uk.

We therefore have that

Ek(τ1, τ2) = min
b,e∈W, [b,e)⊆[τ1,τ2),

[b,e)⊆[ruk ,duk ),

6∃ti∈W ′, s.t. b<ti<e,
6∃u′�uk, s.t. du′=e.{

Ek+1(τ1, b) + P (
vuk
e− b)(e− b) + Ek+1(e, τ2)

}
if there exist b, e ∈ W with the properties stated under the min-operator, and
Ek(τ1, τ2) =∞ otherwise.

It can be verified that the running time of the DP is polynomial in the input size
and 1/ε. The minimum energy consumption for the target schedule is E1(0, dmax).

Theorem 1.4.2. There exists a fully polynomial-time approximation scheme (FP-
TAS) for speed scaling with sleep state.

Proof. Given an arbitrary instance J for speed scaling with sleep state, we can
transform it in polynomial time to an instance J ′, as seen in Section 1.2. We
then apply the dynamic programming algorithm that was described in this section
to obtain a well-ordered discretized schedule S ′ of minimal energy consumption
for instance J ′. By Lemma 1.3.8, we have that S ′ is a (1 + ε)-approximation for
instance J ′. Furthermore, note that every discretized schedule (and therefore also
S ′) executes each job jdi exactly in its allowed interval Ii = [yi, zi). This holds
because there are no time points from the interior of Ii included in W , and any
discretized schedule must therefore choose to run jdi precisely from yi ∈W to zi ∈W .
Therefore, by Lemma 1.2.3, we can transform S ′ to a schedule S in polynomial time
and obtain a (1 + ε)-approximation for J .
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2. Non-Preemptive Speed Scaling

2.1. Introduction

The first theoretical model for speed scaling problems was introduced by Yao et
al. in their seminal paper of 1995 [79]. One is given a set of jobs, each with its
own volume vj (number of CPU cycles needed for completion of this job), release
time rj (when the job becomes available), and deadline dj (when the job needs
to be finished), and a processor with power function P (s) = sα, where s is the
processing speed, and α > 1 is a constant (typically between two and three for
modern microprocessors [30, 77]). The energy consumption is power integrated over
time, and the objective is to process all given jobs within their time windows [rj , dj),
while minimizing the total energy consumption.

Most work in the literature focuses on the preemptive version of the problem, where
the execution of a job may be interrupted and resumed at a later point of time. For
this setting, Yao et al. [79] gave a polynomial-time exact algorithm to compute the
optimal schedule. The non-preemptive model, where a job must be processed unin-
terruptedly until its completion, has so far received surprisingly little attention, even
though it is often preferred in practice and widely used in current real-life applica-
tions. For example, most current real-time operating systems for automotive appli-
cations use non-preemptive scheduling as defined by the OSEK/VDX standard [67].
The advantage of this strategy lies in the significant lower overhead (preemption
requires to memorize and restore the state of the system and the job) [8], and the
avoidance of synchronization efforts for shared resources [67]. From a theoretical
point of view, the non-preemptive model is of interest, since it is a natural varia-
tion of Yao et al.’s original model. So far, little is known about the complexity of
the non-preemptive speed scaling problem. On the negative side, no lower bound
is known, except that the problem is strongly NP-hard [8]. On the positive side,
Antoniadis and Huang [8] showed that the problem has a constant factor approx-
imation algorithm, although the obtained factor 25α−4 is rather large. However,
recently a number of papers have appeared that (significantly) improve upon the
constant [16, 17, 34].

2.1.1. Our Results and Techniques

We work towards better understanding the complexity of the non-preemptive speed
scaling problem, by considering several special cases and presenting (near-)optimal
algorithms. In the following, we give a summary of our results.

25



2. Non-Preemptive Speed Scaling

Laminar Instances: An instance is said to be laminar if for any two different jobs
j1 and j2, either [rj1 , dj1) ⊆ [rj2 , dj2), or [rj2 , dj2) ⊆ [rj1 , dj1), or [rj1 , dj1) ∩
[rj2 , dj2) = ∅. The problem remains strongly NP-hard for this case [8]. We
present the first (1 + ε)-approximation for this problem, with a quasipoly-
nomial running time (i.e. a running time bounded by 2poly(logn) for any
fixed ε > 0); a so-called quasipolynomial-time approximation scheme (QP-
TAS). Our result implies that laminar instances are not APX-hard, unless
NP ⊆ DTIME(2poly(logn)). We remark that laminar instances form an impor-
tant subclass of instances that not only arise commonly in practice (e.g. when
jobs are created by recursive function calls [62]), but are also of theoretical
interest, as they highlight the difficulty of the non-preemptive speed scaling
problem: Taking instances with an “opposite” structure, namely agreeable in-
stances (here for any two jobs j1 and j2 with rj1 < rj2 , it holds that dj1 < dj2),
the problem becomes polynomial-time solvable [8]. On the other hand, further
restricting the instances from laminar to purely-laminar (see next case) results
in a problem that is only weakly NP-hard and admits an FPTAS.

Purely-Laminar Instances: An instance is said to be purely-laminar if for any two
different jobs j1 and j2, either [rj1 , dj1) ⊆ [rj2 , dj2), or [rj2 , dj2) ⊆ [rj1 , dj1). We
present a fully polynomial-time approximation scheme (FPTAS) for this class
of instances. This is the best possible result (unless P = NP), as the problem
is still (weakly) NP-hard [8].

Equal-Volume Jobs: If all jobs have the same volume v1 = v2 = . . . = vn = v,
we present a polynomial-time algorithm for computing an (exact) optimal
schedule. We thereby improve upon a result of Bampis et al. [15], who proposed
a 2α-approximation algorithm, and answer their question for the complexity
status of this problem.

Bounded Number of Time Windows: If the total number of different time win-
dows is bounded by a constant, we present an FPTAS for the problem. This
result is again optimal (unless P = NP), as the problem remains (weakly)
NP-hard even if there are only two different time windows [8].

The basis of all our results is a discretization of the problem, in which we allow the
processing of any job to start and end only at a carefully chosen set of grid points on
the time axis. We then use dynamic programming to solve the discretized problem.
For laminar instances, however, even computing the optimal discretized solution is
hard. The main technical contribution of our QPTAS is a relaxation that decreases
the exponential size of the DP-tableau without adding too much energy cost. For
this, we use an overly compressed representation of job sets in the bookkeeping.
Roughly speaking, we “lose” a number of jobs in each step of the recursion, but we
ensure that these jobs can later be scheduled with only a small increment of energy
cost.
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2.1.2. Related Work

The study of dynamic speed scaling problems for reduced energy consumption was
initiated by Yao, Demers, and Shenker in 1995. In their seminal paper [79], they
presented a polynomial-time algorithm for finding an optimal schedule when pre-
emption of jobs is allowed. Furthermore, they also studied the online version of the
problem (again with preemption of jobs allowed), where jobs become known only
at their release times, and developed two constant-competitive algorithms called
Average Rate and Optimal Available.

Over the years, a rich spectrum of variations and generalizations of the original
model have been investigated, mostly with a focus on the preemptive version. Irani
et al. [49], for instance, considered a setting where the processor additionally has a
sleep state available. Another extension of the original model is to restrict the set
of possible speeds that we may choose from, for example by allowing only a number
of discrete speed levels [33, 61], or bounding the maximum possible speed [20, 32,
45]. Variations with respect to the objective function have also been studied, for
instance by Albers and Fujiwara [3] and Bansal et al. [19], who tried to minimize
a combination of energy consumption and total flow time of the jobs. Finally, the
problem has also been studied for arbitrary power functions [21], as well as for
multiprocessor settings [5, 6, 28].

In contrast to this diversity of results, the non-preemptive version of the speed
scaling problem has been addressed rarely in the literature. Only in 2012, Antoniadis
and Huang [8] proved that the problem is strongly NP-hard, and gave a 25α−4-
approximation algorithm for the general case. This ratio has then been improved
to 2α−1(1 + ε)B̃α by Bampis et al. [16], where B̃α is a generalization of the Bell
number to fractional α-values, and to (12(1 + ε))α−1 by Cohen-Addad et al. [34].
Later, Bampis et al. [17] improved the ratio further to (1+ε)B̃α. For the special case
where all jobs have the same volume, Bampis et al. [15] proposed a 2α-approximation
algorithm. Independently of our result for this setting, Angel et al. [7] also gave a
polynomial-time exact algorithm for such instances.

Multi-processor non-preemptive speed scaling also started to draw the attention
of researchers. See [15, 34] for details.

2.1.3. Overview

In Section 2.2 we give a formal definition of the problem and establish a couple of
preliminaries. We then present our QPTAS for laminar instances (Section 2.3), and
our polynomial-time algorithm for instances with equal-volume jobs (Section 2.4).
Our FPTAS’ for purely-laminar instances and instances with a bounded number of
different time windows follow in Sections 2.5 and 2.6, respectively.
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2.2. Preliminaries and Notations

The input is given by a set J of n jobs, each having its own release time rj , deadline
dj , and volume vj > 0. The power function of the speed-scalable processor is
P (s) = sα, with α > 1, and the energy consumption is power integrated over time.
A schedule specifies for any point of time (i) which job to process, and (ii) which
speed to use. A schedule is called feasible if every job is executed entirely within its
time window [rj , dj), which we will also call the allowed interval of job j. Preemption
is not allowed, meaning that once a job is started, it must be executed entirely until
its completion. Our goal is to find a feasible schedule of minimum total energy
consumption.

We use E(S) to denote the total energy consumed by a given schedule S, and
E(S, j) to denote the energy used for the processing of job j in schedule S. Fur-
thermore, we use OPT to denote the energy consumption of an optimal schedule. A
crucial observation is that, due to the convexity of the power function P (s) = sα, it
is never beneficial to vary the speed during the execution of a job. This follows from
Jensen’s Inequality. We can therefore assume that in an optimal schedule, every job
is processed using a uniform speed.

In the following, we restate a proposition from [8], which allows us to speed up
certain jobs without paying too much additional energy cost.

Proposition 2.2.1. Let S and S′ be two feasible schedules that process j using
uniform speeds s and s′ > s, respectively. Then E(S′, j) = (s′/s)α−1 · E(S, j).

Proof.

E(S′, j) = P (s′)
vj
s′

= (s′)α−1vj = (
s′

s
)α−1sα−1vj

= (
s′

s
)α−1P (s)

vj
s

= (
s′

s
)α−1E(S, j).

As mentioned earlier, all our results rely on a discretization of the time axis, in
which we focus only on a carefully chosen set of time points. We call these points
grid points and define grid point schedules as follows.

Definition 2.2.2 (Grid Point Schedule). A schedule is called grid point schedule if
the processing of every job starts and ends at a grid point.

We use two different sets of grid points, Papprox and Pexact. The first set, Papprox,
is more universal, as it guarantees the existence of a near-optimal grid point schedule
for any kind of instances. On the contrary, the set Pexact is specialized for the case
of equal-volume jobs, and on such instances guarantees the existence of a grid point
schedule with energy consumption exactly OPT. We now give a detailed description
of both sets. For this, let us call a time point t an event if t = rj or t = dj for some
job j, and let t1 < t2 < . . . < tp be the set of ordered events. We call the interval
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between two consecutive events ti and ti+1 a zone. Furthermore, let γ := 1 + d1/εe,
where ε > 0 is the error parameter of our approximation schemes.

Definition 2.2.3 (Grid Point Set Papprox). The set Papprox is obtained in the fol-
lowing way. First, create a grid point at every event. Secondly, for every zone
(ti, ti+1), create n2γ − 1 equally spaced grid points that partition the zone into n2γ
many subintervals of equal length Li = ti+1−ti

n2γ
. Now Papprox is simply the union of

all created grid points.

Note that the total number of grid points in Papprox is at most O
(
n3(1 + 1

ε )
)
, as

there are O
(
n) zones, for each of which we create O

(
n2γ

)
grid points.

Lemma 2.2.4. There exists a grid point schedule G with respect to Papprox, such
that E(G) ≤ (1 + ε)α−1OPT.

Proof. Let S∗ be an optimal schedule, that is E(S∗) = OPT. We show how to
modify S∗ by shifting and compressing certain jobs, s.t. every execution interval
starts and ends at a grid point. For the proof we focus on one particular zone
(ti, ti+1), and the lemma follows by applying the transformation to each other zone
individually.

Let us consider the jobs that S∗ processes within the zone (ti, ti+1). If a job’s
execution interval overlaps partially with this zone, we consider only its fraction
inside (ti, ti+1) and treat this fraction as if it were a job by itself. We denote the
set of (complete and partial) jobs in zone (ti, ti+1) by J . If J = ∅, nothing needs to
be done. Otherwise, we can assume that S∗ uses the entire zone (ti, ti+1) without
any idle periods to process the jobs in J . If this were not the case, we could slow
down the processing of any job in J without violating a release time or deadline
constraint, and thus obtain a feasible schedule with lower energy cost than S∗, a
contradiction. Consequently, the total time for processing J in S∗ is γn2Li (recall
that Li = ti+1−ti

n2γ
), and as |J | ≤ n, there must exist a job j ∈ J with execution time

Tj ≥ γnLi.
We now partition the jobs in J \ j into J+, the jobs processed after j, and J−,

the jobs processed before j. First, we restrict our attention to J+. Let q1, . . . , q|J+|
denote the jobs in J+ in the order they are processed by S∗. Starting with the
last job q|J+|, and going down to q1, we modify the schedule as follows. We keep
the end of q|J+|’s execution interval fixed, and shift its start to the next earlier grid
point, reducing its uniform execution speed accordingly. At the same time, to not
produce any overlappings, we shift the execution intervals of all qk, k < |J+| by
the same amount, in the direction of earlier times (leaving their lengths unchanged).
Eventually, we also move the execution end point of j by the same amount towards
earlier times (leaving its start point fixed). This shortens the execution interval of j
and “absorbs” the shifting of the jobs in J+. The shortening of j’s execution interval
is compensated by an appropriate increase of speed. We then proceed with q|J+|−1,
keeping its end (which now already resides at a grid point) fixed, and moving its
start to the next earlier grid point. Again, the shift propagates to earlier jobs in
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2. Non-Preemptive Speed Scaling

J+, which are moved by the same amount, and shortens j’s execution interval once
more. When all jobs in J+ have been modified in this way, we turn to J− and apply
the same procedure there. This time, we keep the start times fixed and instead
shift the right end points of the execution intervals towards later times. As before,
j “absorbs” the propagated shifts, as we increase its start time accordingly. After
this modification, the execution intervals of all jobs in J start and end at grid points
only.

To complete the proof, we need to analyze the changes made in terms of energy
consumption. Let G denote the schedule obtained by the above modification of S∗.
Obviously, for all j′ ∈ J \ j, we have that E(G, j′) ≤ E(S∗, j′), as the execution in-
tervals of those jobs are only prolonged during the transformation process, resulting
in a less or equal execution speed. The only job whose processing time is possibly
shortened, is j. Since |J | ≤ n, it can be shortened at most n times, each time by a
length of at most Li. Remember that the execution time of j in S∗ was Tj ≥ γnLi.
Therefore, in G, its execution time is at least Tj−nLi ≥ Tj−Tj/γ. Thus the speedup
factor of j in G compared to S∗ is at most

Tj

Tj − Tj
γ

=
1

1− 1
γ

≤ 1 + ε,

where the last inequality follows from the definition of γ. Hence, Proposition 2.2.1
implies that E(G, j) ≤ (1 + ε)α−1E(S∗, j), and the lemma follows by summing up
the energy consumptions of the individual jobs.

Definition 2.2.5 (Grid Point Set Pexact). For every pair of events ti ≤ tj, and
for every k ∈ {1, . . . , n}, create k − 1 equally spaced grid points that partition the
interval [ti, tj ] into k subintervals of equal length. Furthermore, create a grid point
at every event. The union of all these grid points defines the set Pexact.

Clearly, the total number of grid points in Pexact is O
(
n4
)
.

Lemma 2.2.6. If all jobs have the same volume v1 = v2 = . . . = vn = v, there
exists a grid point schedule G with respect to Pexact, such that E(G) = OPT.

Proof. Let S∗ be an optimal schedule. W.l.o.g., we can assume that S∗ changes
the processing speed only at events (recall that an event is either a release time or
a deadline of some job), as a constant average speed between any two consecutive
events minimizes the energy consumption (this follows from Jensen’s Inequality)
without violating release time or deadline constraints. Given this property, we will
show that S∗ is in fact a grid point schedule with respect to Pexact. To this end, we
partition the time horizon of S∗ into phases of constant speed, that is time intervals
of maximal length during which the processing speed is unchanged. As every job
itself is processed using a uniform speed, no job is processed only partially within a
phase. Each phase is therefore characterized by a pair of events ti ≤ tj indicating its
beginning and end, and a number x of jobs that are processed completely between ti
and tj at constant speed. It is clear that the grid points created for the pair (ti, tj)
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2.3. Laminar Instances

and k := x in the definition of Pexact correspond exactly to the start and end times
of the jobs in this phase. Since this is true for every phase, S∗ is indeed a grid point
schedule.

2.3. Laminar Instances

In this section, we present a QPTAS for laminar problem instances. We start with a
small example to motivate our approach, in which we reuse some ideas of Muratore
et al. [66] for a different scheduling problem. Consider Figure 2.1, where we have
drawn a number of (laminar) time intervals, purposely arranged in a tree structure.
Imagine that for each of those intervals Ik, we are given a set of jobs Jk whose
allowed interval is equal to Ik. Furthermore, let us make the simplifying assumption
that no job can “cross” the boundary of any interval Ik during its execution. Then,
in any feasible schedule, the set of jobs J1 at the root of the tree decomposes into two
subsets; the set of jobs processed in the left child I2, and the set of jobs processed in
the right child I3. Having a recursive procedure in mind, we can think of the jobs in

  

I
1

I
2

I
4

I
3

I
5

Figure 2.1.: Time intervals of a laminar instance, arranged in a tree structure.

the root as being split up and handed down to the respective children. Each child
then has a set of “inherited” jobs, plus its own original jobs to process, and both are
available throughout its whole interval. Now, the children also split up their jobs,
and hand them down to the next level of the tree. This process continues until we
finally reach the leaves of the tree, where we can simply execute the given jobs at a
uniform speed over the whole interval.

Aiming for a reduced running time, we reverse the described process and instead
compute the schedules in a bottom-up manner via dynamic programming, enumerat-
ing all possible sets of jobs that a particular node could “inherit” from its ancestors.
This dynamic programming approach is the core part of our QPTAS, though it
bears two major technical difficulties. The first one is that a job from a father node
could also be scheduled “between” its children, starting in the interval of child one,
stretching over its boundary, and entering the interval of child two. We overcome
this issue by taking care of such jobs separately, and additionally listing the trun-
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2. Non-Preemptive Speed Scaling

cated child-intervals in the dynamic programming tableau. The second (and main)
difficulty is the huge number of possible job sets that a child node could receive
from its parent. Reducing this number requires a controlled “omitting” of small
jobs during the recursion, and a condensed representation of job sets in the DP
tableau. At any point of time, we ensure that “omitted” jobs only cause a small
increment of energy cost when being added to the final schedule. We now elaborate
the details, beginning with a rounding of the job volumes. Let I be the original
problem instance.

Definition 2.3.1 (Rounded Instance). The rounded instance I ′ is obtained by
rounding down every job volume vj to the next smaller number of the form vmin(1 +
ε)i, where i ∈ N≥0 and vmin is the smallest volume of any job in the original in-
stance. The numbers vmin(1 + ε)i are called size classes, and a job belongs to size
class Ci if its rounded volume is vmin(1 + ε)i.

Lemma 2.3.2. Every feasible schedule S′ for I ′ can be transformed into a feasible
schedule S for I with E(S) ≤ (1 + ε)αE(S′).

Proof. The lemma easily follows by using the same execution intervals as S′ and
speeding up accordingly. As rounded and original volume of a job differ by at most
a factor of 1 + ε, we need to increase the speed at any time t by at most this factor.
Therefore the energy consumption grows by at most a factor of (1 + ε)α.

From now on, we restrict our attention to the rounded instance I ′. Remember
that our approach uses the inherent tree structure of the time windows. We proceed
by formally defining a tree T that reflects this structure.

Definition 2.3.3 (Tree T ). For every interval [ti, ti+1) between two consecutive
events ti and ti+1, we introduce a vertex v. Additionally, we introduce a vertex for
every time window [rj , dj), j ∈ J that is not represented by a vertex yet. If several
jobs share the same allowed interval, we add only one single vertex for this interval.
The interval corresponding to a vertex v is denoted by Iv. We also associate a
(possibly empty) set of jobs Jv with each vertex v, namely the set of jobs j whose
allowed interval [rj , dj) is equal to Iv. Finally, we specify a distinguished root node
r as follows. If there exists a vertex v with Iv = [r∗, d∗), where r∗ is the earliest
release time and d∗ the latest deadline of any job in J , we set r := v. Otherwise, we
introduce a new vertex r with Ir := [r∗, d∗) and Jr := ∅. The edges of the tree are
defined in the following way. A node u is the son of a node v if and only if Iu ⊂ Iv
and there is no other node w with Iu ⊂ Iw ⊂ Iv. As a last step, we convert T into
a binary tree by repeating the following procedure as long as there exists a vertex v
with more than two children: Let v1 and v2 be two “neighboring” sons of v, such that
Iv1 ∪ Iv2 forms a contiguous interval. Now create a new vertex u with Iu := Iv1 ∪ Iv2
and Ju := ∅, and make u a new child of v, and the new parent of v1 and v2. This
procedure eventually results in a binary tree T with O(n) vertices.

The main idea of our dynamic program is to stepwise compute schedules for sub-
trees of T , that is for the jobs associated with the vertices in the subtree (including
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2.3. Laminar Instances

its root), plus a given set of “inherited” jobs from its ancestors. Enumerating all
possible sets of “inherited” jobs, however, would burst the limits of our DP tableau.
Instead, we use a condensed representation of those sets via so-called job vectors,
focusing only on a logarithmic number of size classes and ignoring jobs that are too
small to be covered by any of these. To this end, let δ be the smallest integer such
that n/ε ≤ (1 + ε)δ, and note that δ is O(log n) for any fixed ε > 0.

Definition 2.3.4 (Job Vector). A job vector
−→
λ is a vector of δ + 1 integers

λ0, . . . , λδ. The first component λ0 specifies a size class, namely the largest out
of δ size classes from which we want to represent jobs (therefore λ0 ≥ δ − 1). The
remaining δ components take values between 0 and n each, and define a number of
jobs for each of the size classes Cλ0 , Cλ0−1, . . . , Cλ0−δ+1 in this order. For ex-
ample, if δ = 2, the job vector (4, 2, 7) defines a set containing 2 jobs with volume
vmin(1 + ε)4 and 7 jobs with volume vmin(1 + ε)3.

We refer to the set of jobs defined by a job vector
−→
λ as J(

−→
λ ).

Remark: We do not associate a strict mapping from the jobs defined by a job

vector
−→
λ to the real jobs (given as input) they represent. The jobs J(

−→
λ ) should

rather be seen as dummies that are used to reserve space and can be replaced by
any real job of the same volume.

Definition 2.3.5 (Heritable Job Vector). A job vector
−→
λ = (λ0, . . . , λδ) is heritable

to a vertex v of T if:

1. At least λi jobs in
⋃

u ancestor of v

Ju belong to size class Cλ0−i+1, for 1 ≤ i ≤ δ.

2. λ1 > 0 or λ0 = δ − 1.

The conditions on a heritable job vector ensure that for a fixed vertex v, λ0 can
take only O(n) different values, as it must specify a size class that really occurs in
the rounded instance, or be equal to δ− 1. Therefore, in total, we can have at most
O(nδ+1) different job vectors that are heritable to a fixed vertex of the tree. In order
to control the error caused by the laxity of our job set representation, we introduce
the concept of δ-omitted schedules.

Definition 2.3.6 (δ-omitted Schedule). Let J be a given set of jobs. A δ-omitted
schedule for J is a feasible schedule for a subset R ⊆ J , s.t. for every job j ∈ J \R,
there exists a job big(j) ∈ R with volume at least vj(1 + ε)δ that is scheduled entirely
inside the allowed interval of j. The jobs in J \R are called omitted jobs, the ones
in R non-omitted jobs.

Lemma 2.3.7. Every δ-omitted schedule S′ for a set of jobs J can be transformed
into a feasible schedule S for all jobs in J , such that E(S) ≤ (1 + ε)αE(S′).

Proof. Let R be the set of non-omitted jobs in S′. W.l.o.g., we can assume that S′

executes each job in R at a uniform speed, as this minimizes the energy consumption.
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2. Non-Preemptive Speed Scaling

For every j ∈ R, define SMALL(j) := {x ∈ J \ R : big(x) = j}. Note that every
omitted job occurs in exactly one of the sets SMALL(j), j ∈ R. The schedule S is
constructed as follows. For all j ∈ R, we process the jobs {j} ∪ SMALL(j) using
the execution interval of j in S′ and a uniform speed. The processing order may
be chosen arbitrarily. Clearly, the resulting schedule is feasible by the definition of
big(x). In order to finish the total volume Vj of the jobs {j}∪SMALL(j) within the
interval of j in S′, we need to raise the speed in this interval by the factor Vj/vj .
As |SMALL(j)| ≤ n, and vx ≤ vj(1 + ε)−δ for all x ∈ SMALL(j), we have that

Vj ≤ vj + nvj(1 + ε)−δ ≤ vj + nvj
ε

n
≤ (1 + ε)vj ,

where the second inequality follows from the definition of δ. For the speedup factor,
we therefore obtain Vj/vj ≤ 1 + ε. Hence, the energy consumption grows by at most
the factor (1 + ε)α.

The preceding lemma essentially ensures that representing the δ largest size classes
of an “inherited” job set suffices if we allow a small increment of energy cost. The
smaller jobs can then be added safely (i.e. without increasing the energy cost by too
much) to the final schedule. We now turn to the central definition of the dynamic
program. All schedules in this definition are with respect to the rounded instance I ′,
and all grid points relate to the set Papprox.

Definition 2.3.8. For any vertex v in the tree T , any job vector
−→
λ that is heritable

to v, and any pair of grid points g1 ≤ g2 with [g1, g2) ⊆ Iv, let G(v,
−→
λ , g1, g2) denote

a minimum cost grid point schedule for the jobs in the subtree of v (including v itself)

plus the jobs J(
−→
λ ) (these are allowed to be scheduled anywhere inside [g1, g2)) that

uses only the interval [g1, g2). Furthermore, let S(v,
−→
λ , g1, g2) be a δ-omitted schedule

for the same set of jobs in the same interval [g1, g2), satisfying E
(
S(v,

−→
λ , g1, g2)

)
≤

E
(
G(v,

−→
λ , g1, g2)

)
.

Dynamic Program. Our dynamic program computes the schedules S(v,
−→
λ , g1, g2).

For ease of exposition, we focus only on computing the energy consumption values

E(v,
−→
λ , g1, g2) := E

(
S(v,

−→
λ , g1, g2)

)
, and omit the straightforward bookkeeping of

the corresponding schedules. The base cases are the leaves of T . For a particular
leaf node `, we set

E(`,
−→
λ , g1, g2) :=

{
0 if J` ∪ J(

−→
λ ) = ∅

V α

(g2−g1)α−1 otherwise,

where V is the total volume of all jobs in J` ∪ J(
−→
λ ). This corresponds to executing

J` ∪J(
−→
λ ) at uniform speed using the whole interval [g1, g2). The resulting schedule

is feasible, as no release times or deadlines occur in the interior of I`. Furthermore,

it is also optimal by the convexity of the power function. Thus E(`,
−→
λ , g1, g2) ≤

E
(
G(`,

−→
λ , g1, g2)

)
.
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2.3. Laminar Instances

When all leaves have been handled, we move on to the next level, the parents of
the leaves. For this and also the following levels up to the root r, we compute the

values E(v,
−→
λ , g1, g2) recursively, using the procedure Compute in Figure 2.2. An

intuitive description of the procedure is given below.

Compute (v,
−→
λ , g1, g2):

Let v1 and v2 be the children of v, such that Iv1 is the earlier of the intervals
Iv1 , Iv2 . Furthermore, let g be the grid point at which Iv1 ends and Iv2 starts.

Initialize MIN :=∞.

For all gridpoints g̃1, g̃2, s.t. g1 ≤ g̃1 < g < g̃2 ≤ g2, and all jobs j ∈ Jv ∪ J(
−→
λ ),

do:

E :=
vj
α

(g̃2−g̃1)α−1 ; J̃ :=
(
Jv ∪ J(

−→
λ )
)
\ {j}; −→γ := Vector (J̃).

MIN := min
{

MIN,

min{E + E(v1,
−→γ1, g1, g̃1) + E(v2,

−→γ2, g̃2, g2) : J(−→γ1) ∪ J(−→γ2) = J(−→γ )}
}

.

J̃ := Jv ∪ J(
−→
λ ); −→γ := Vector (J̃).

a1 := min{g1, g}; a2 := min{g2, g}; b1 := max{g1, g}; b2 := max{g2, g}.
E(v,

−→
λ , g1, g2) := min

{
MIN,

min{E(v1,
−→γ1, a1, a2) + E(v2,

−→γ2, b1, b2) : J(−→γ1) ∪ J(−→γ2) = J(−→γ )}
}

.

Vector (J̃):

Let C` be the largest size class of any job in J̃ .

i := max{`, δ − 1}.
For k := i− δ + 1, . . . , i do: xk := |{p ∈ J̃ : p belongs to size class Ck}|.
Return (i, xi, xi−1, . . . , xi−δ+1).

Figure 2.2.: Procedure for computing the remaining entries of the DP.

Our first step is to iterate through all possible options for a potential “crossing” job
j, whose execution interval [g̃1, g̃2) stretches from child v1 into the interval of child
v2. For every possible choice, we combine the optimal energy cost E for this job
(obtained by using a uniform execution speed) with the best possible way to split up
the remaining jobs between the truncated intervals of v1 and v2. Here we consider
only the δ largest size classes of the remaining jobs J̃ , and omit the smaller jobs.
This omitting happens during the construction of a vector representation for J̃ using
the procedure Vector. Finally, we also try the option that no “crossing” job exists
and all jobs are split up between v1 and v2. In this case we need to take special care
of the subproblem boundaries, as g1 > g or g2 < g are also valid arguments for the
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2. Non-Preemptive Speed Scaling

procedure Compute.

Lemma 2.3.9. The schedules S(v,
−→
λ , g1, g2) constructed by the above dynamic pro-

gram are δ-omitted schedules for the jobs in the subtree of v plus the jobs J(
−→
λ ).

Furthermore, they satisfy E
(
S(v,

−→
λ , g1, g2)

)
≤ E

(
G(v,

−→
λ , g1, g2)

)
.

Proof. We prove the lemma by induction. In the base cases, that is at the leaves
of T , we already argued that the schedules are feasible and optimal. Since no jobs
are omitted at all, the lemma is obviously true at this level. We now perform

the induction step. To this end, let us consider a fixed schedule S(v,
−→
λ , g1, g2),

and let us assume the lemma is true for the children v1 and v2 of v. We first
show that S(v,

−→
λ , g1, g2) is indeed a δ-omitted schedule. The only point where jobs

are omitted in the recursive procedure is the call of Vector (J̃), where a vector-
representation −→γ of J̃ is constructed. This vector −→γ only represents a subset of
the jobs J̃ , namely the jobs in the δ largest size classes of J̃ . Let jmax denote
a job in J̃ with maximum volume, i.e. a job belonging to the largest size class.
Then every omitted job jom has volume at most vjmax(1 + ε)−δ, and we can choose
big(jom) := jmax to satisfy the requirements of Definition 2.3.6, as long as jmax is
indeed contained in one of the subschedules that we combine in the recursion step.
If, however, jmax is omitted in the corresponding subschedule, then there exists a
job big(jmax) as required in Definition 2.3.6, by induction hypothesis. In this case

we can choose big(jom) := big(jmax). This proves that S(v,
−→
λ , g1, g2) is indeed a

δ-omitted schedule.

We now argue about the energy consumption. Let J1 and J2 denote the subsets of

jobs that G(v,
−→
λ , g1, g2) processes entirely within Iv1 and Iv2 , respectively. If there

exists a “crossing” job spanning from Iv1 into Iv2 , we denote this job by jc. Now
we look at the iteration that handles exactly this situation, i.e. when j = jc and

g̃1, g̃2 mark the beginning and end of jc’s execution interval in G(v,
−→
λ , g1, g2), or the

passage after the for-loop for the case without “crossing” job. As mentioned earlier,

the procedure possibly omits certain jobs and only splits up a subset of Jv ∪ J(
−→
λ )

between the children v1 and v2. Since all possible splits are tried, one option for
the min-operation is to combine subschedules that process a subset of J1 within Iv1 ,
and a subset of J2 within Iv2 . By induction hypothesis, and since we only schedule
subsets of J1 and J2, the energy consumption of these subschedules is at most the

energy spent by G(v,
−→
λ , g1, g2) for executing J1 and J2, respectively. Furthermore,

if there exists a “crossing” job jc, then executing this job from g̃1 to g̃2 at uniform

speed costs at most the energy that G(v,
−→
λ , g1, g2) pays for this job. Summing up

the different parts, we get that the considered option has an energy consumption of

at most E
(
G(v,

−→
λ , g1, g2)

)
. The lemma follows as we choose the minimum over all

possible options.

Combining Lemmas 2.2.4, 2.3.2, 2.3.7, and 2.3.9 we can now state our main the-
orem.
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Theorem 2.3.10. The non-preemptive speed scaling problem admits a QPTAS if
the instance is laminar.

Proof. Let r∗ be the earliest release time, and d∗ be the latest deadline of any job
in J . Furthermore, let r be the root of the tree T , and let

−→
0 denote the (heritable)

job vector representing the empty set, i.e.
−→
0 := (δ − 1, 0, . . . , 0). We consider the

schedule S(r,
−→
0 , r∗, d∗), which is a δ-omitted schedule for the rounded instance by

Lemma 2.3.9, and turn it into a feasible schedule Sr for the whole set of (rounded)
jobs, using Lemma 2.3.7. Finally, we apply Lemma 2.3.2 to turn Sr into a feasible
schedule S for the original instance I, and obtain

E(S) ≤ (1 + ε)αE(Sr) ≤ (1 + ε)2αE
(
S(r,
−→
0 , r∗, d∗)

)
≤ (1 + ε)2αE

(
G(r,

−→
0 , r∗, d∗)

)
≤ (1 + ε)3α−1OPT =

(
1 +O(ε)

)
OPT.

Here, the third inequality holds by Lemma 2.3.9, and the fourth inequality follows
from Lemma 2.2.4 and the fact that G(r,

−→
0 , r∗, d∗) is an optimal grid point schedule

for the rounded instance (with smaller job volumes). The quasipolynomial running
time of the algorithm is easily verified, as we have only a polynomial number of grid
points, and at most a quasipolynomial number of job vectors that are heritable to
any vertex of the tree.

2.4. Equal-Volume Jobs

In this section, we consider the case that all jobs have the same volume v1 = v2 =
. . . = vn = v. We present a dynamic program that computes an (exact) optimal
schedule for this setting in polynomial time. All grid points used for this purpose
relate to the set Pexact.

As a first step, let us order the jobs such that r1 ≤ r2 ≤ . . . ≤ rn. Furthermore,
let us define an ordering on schedules as follows.

Definition 2.4.1 (Completion Time Vector). Let C1, . . . , Cn be the completion times

of the jobs j1, . . . , jn in a given schedule S. The vector
−→
S := (C1, . . . , Cn) is called

the completion time vector of S.

Definition 2.4.2 (Lexicographic Ordering). A schedule S is said to be lexicograph-
ically smaller than a schedule S′ if the first component in which their completion

time vectors differ is smaller in
−→
S than in

−→
S′.

We now elaborate the details of the DP, focusing on energy consumption values
only.

Definition 2.4.3. Let i ∈ {1, . . . , n} be a job index, and let g1, g2, and g3 be grid
points satisfying g1 ≤ g2 ≤ g3. We define E(i, g1, g2, g3) to be the minimum energy
consumption of a grid point schedule for the jobs {jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3}
that uses only the interval [g1, g2).
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Dynamic Program. Our goal is to compute the values E(i, g1, g2, g3). To this
end, we let

E(i, g1, g2, g3) :=

{
0 if {jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3} = ∅
∞ if ∃k ≥ i : g1 < dk ≤ g3 ∧ [rk, dk) ∩ [g1, g2) = ∅.

Note that if g1 = g2, one of the above cases must apply. We now recursively
compute the remaining values, starting with the case that g1 and g2 are consecutive
grid points, and stepwise moving towards cases with more and more grid points in
between g1 and g2. The recursion works as follows. Let E(i, g1, g2, g3) be the value
we want to compute, and let jq be the smallest index job in {jk ∈ J : k ≥ i ∧ g1 <
dk ≤ g3}. Furthermore, let G denote a lexicographically smallest optimal grid point
schedule for the jobs {jk ∈ J : k ≥ i ∧ g1 < dk ≤ g3}, using only the interval [g1, g2).
Our first step is to “guess” the grid points bq and eq that mark the beginning and end
of jq’s execution interval in G, by minimizing over all possible options. We then use
the crucial observation that in G, all jobs J− := {jk ∈ J : k ≥ q+1 ∧ g1 < dk ≤ eq}
are processed completely before jq, and all jobs J+ := {jk ∈ J : k ≥ q + 1 ∧ eq <
dk ≤ g3} are processed completely after jq. For J− this is obviously the case because
of the deadline constraint. For J+ this holds as all these jobs have release time at
least rq by the ordering of the jobs, and deadline greater than eq by definition of
J+. Therefore any job in J+ that is processed before jq could be swapped with jq,
resulting in a lexicographic smaller schedule; a contradiction. Hence, we can use the
following recursion to compute E(i, g1, g2, g3).

E(i, g1, g2, g3) := min
{ vq

α

(eq − bq)α−1
+ E(q + 1, g1, bq, eq) + E(q + 1, eq, g2, g3) :

(g1 ≤ bq < eq ≤ g2) ∧ (bq ≥ rq) ∧ (eq ≤ dq)
}
.

Once we have computed all values, we output the schedule S corresponding to
E(1, r∗, d∗, d∗), where r∗ is the earliest release time and d∗ the latest deadline of any
job in J . Lemma 2.2.6 implies that E(S) = OPT.

Theorem 2.4.4. The non-preemptive speed scaling problem admits a polynomial
time algorithm if all jobs have the same volume.

2.5. Purely-Laminar Instances

In this section, we present an FPTAS for a purely-laminar instance I. W.l.o.g.,
we assume that the jobs are ordered by inclusion of their time windows, that is
[r1, d1) ⊆ [r2, d2) ⊆ · · · ⊆ [rn, dn). Furthermore, whenever we refer to grid points
in this section, we refer to the set Papprox. Our FPTAS uses dynamic programming
to construct an optimal grid point schedule for I, satisfying the following structural
property:
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Property 2.5.1. For any k > 1, jobs j1, . . . , jk−1 are either all processed before jk,
or all processed after jk.

This structure can easily be established in any schedule for I by performing a
sequence of energy-preserving swaps. According to this, the following lemma is a
straightforward extension of Lemma 2.2.4 to the purely-laminar case.

Lemma 2.5.2. If the problem instance is purely-laminar, there exists a grid point
schedule G with respect to Papprox that satisfies Property 2.5.1 and has energy cost
E(G) ≤ (1 + ε)α−1OPT.

Proof. Consider an optimal schedule S∗ for I, and let J− and J+ be the jobs exe-
cuted before and after j1, respectively. Now rearrange the execution intervals (with-
out changing their lengths) of the jobs in J+ into smallest index first order (SIF), by
repeatedly swapping two consecutively processed jobs ja preceding jb, with a > b.
For the swap, we let the execution interval of jb now start at ja’s original starting
time, and directly append ja’s execution interval once jb is finished. Note that each
such swap maintains feasibility, as no release times occurs during the execution of
the jobs in J+, and a > b implies da ≥ db. Similarly, we rearrange the execution
intervals of the jobs in J− into largest index first order (LIF), and denote the re-
sulting schedule by S′. Clearly, E(S′) = OPT, as the rearrangements preserve the
energy cost of every individual job. Furthermore, S′ satisfies Property 2.5.1. To
see this, let us fix k > 1 and distinguish whether jk is in J− or in J+. In the
first case, when jk ∈ J−, all j ∈ J+ are scheduled after jk by definition of J−/J+,
and all ji ∈ J−, i < k are scheduled after jk by the LIF-order. In the second case,
when jk ∈ J+, all j ∈ J− are scheduled before jk by definition of J−/J+, and all
ji ∈ J+, i < k are scheduled before jk by the SIF-order. As a final step, we now
apply the transformation from the proof of Lemma 2.2.4 to S′. Since this transfor-
mation does not change the order of any jobs, the resulting grid point schedule G
still satisfies Property 2.5.1, and has energy cost E(G) ≤ (1 + ε)α−1OPT.

Dynamic Program. For any k ≤ n and grid points g1 ≤ g2, let S(k, g1, g2)
denote a minimum cost grid point schedule for j1, . . . , jk that satisfies Property
2.5.1 and uses only the time interval between g1 and g2. The corresponding energy
cost of S(k, g1, g2) is denoted by E(k, g1, g2), where E(k, g1, g2) := ∞ if no such
schedule exists. For ease of exposition, we only show how to compute the energy
consumption values E(k, g1, g2), and omit the straightforward bookkeeping of the
corresponding schedules. The base cases are given by E(0, g1, g2) = 0, for all g1 ≤ g2.
All remaining entries can be computed with the following recursion.

E(k + 1, g1, g2) =



∞ if (g1 = g2) ∨ (g1 ≥ dk+1) ∨ (g2 ≤ rk+1).

min
{

vk+1
α

(g′2−g′1)α−1 + min{E(k, g1, g
′
1), E(k, g′2, g2)} :

(g1 ≤ g′1 < g′2 ≤ g2) ∧ (g′1 ≥ rk+1) ∧ (g′2 ≤ dk+1)
}

otherwise.
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2. Non-Preemptive Speed Scaling

Intuitively, we minimize over all possible combinations of grid points g′1 and g′2 that
could mark the beginning and end of jk+1’s execution. For fixed g′1 and g′2, it is best
to process jk+1 at uniform speed, resulting in the energy cost vk+1

α/(g′2 − g′1)α−1 for
this job. The remaining jobs j1, . . . , jk must then be scheduled either before or after
jk+1, to satisfy Property 2.5.1. This fact is captured in the second min-operation of
the formula. The constraints on g′1 and g′2 ensure that jk+1 can be feasibly scheduled
in the chosen interval.

Once we have computed all values E(k, g1, g2) (and their corresponding schedules),
we output the schedule S̃ := S(n, r∗, d∗), where r∗ is the earliest release time and d∗

the latest deadline of any job in I. Note that S̃ is an optimal grid point schedule with
Property 2.5.1 for I. Hence, Lemma 2.5.2 implies that E(S̃) ≤ (1 + ε)α−1OPT =(
1 +O(ε)

)
OPT. Finally, it is easy to verify that the running time of the algorithm

is polynomial in n and 1/ε, since the total number of grid points in Papprox is
O
(
n3(1 + 1

ε )
)
. We therefore obtain the following theorem.

Theorem 2.5.3. The non-preemptive speed scaling problem admits an FPTAS if
the instance is purely-laminar.

2.6. Bounded Number of Time Windows

Let us consider a problem instance I, and group together jobs that share the same
time window. We refer to the group of jobs with time window [r, d) as the type Trd.

Theorem 2.6.1. The non-preemptive speed scaling problem admits an FPTAS if
the total number of types is at most a constant c.

Our FPTAS draws on ideas of Antoniadis and Huang [8], as we transform the prob-
lem into an instance I ′ of unrelated machine scheduling with `α-norm objective. In
this problem, one is given a set of machinesM, a set of jobs J , and numbers pij that
specify the processing time of job j on machine i. The goal is to find an assignment
A of the jobs to the machines that minimizes Cost(A) = (

∑
i∈M(

∑
j:A(j)=i pij)

α)1/α.
In general, this problem is APX-hard [12]. Our instance, however, will have only a
constant number of machines, and for this special case an FPTAS exists [12].

The transformation works as follows. Let G be an optimal grid point schedule
with respect to Papprox, and for each type Trd let b(Trd) and e(Trd) denote the grid
points at which G starts to process the first job of Trd and finishes the last job
of Trd, respectively. Our first step is to “guess” the entire set of grid points b(·)
and e(·), by trying out all possible options with r ≤ b(Trd) < e(Trd) ≤ d for every
type Trd. Note that the total number of choices that we have to make is at most
O
(
n6c(1 + 1

ε )
2c
)
, and thus polynomial in both n and 1/ε. For one particular guess,

let g1 < g2 < . . . < gk be the ordered set of distinct grid points b(·) and e(·). The
instance I ′ has a machine i for every interval [gi, gi+1), and a job j for every job of
the original instance. The processing times pij are given as pij :=

vj
(gi+1−gi)1−1/α if

[gi, gi+1) ⊆ [rj , dj), and pij :=∞ otherwise.
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Note that the total number of machines in I ′ is k − 1 < 2c. Hence, the FPTAS
of [12] can be applied to obtain an assignment A with Cost(A) ≤ (1+ε)OPT′, where
OPT′ denotes the cost of an optimal assignment for I ′. The following two lemmas
imply Theorem 2.6.1.

Lemma 2.6.2. Every finite-cost assignment A for I ′ can be transformed into a
schedule S for I, such that E(S) =

(
Cost(A)

)α
.

Proof. For any i ∈M, let Ai denote the set of jobs that A assigns to machine i. In
order to create the schedule S, we iterate through all i ∈ M and process the jobs
in Ai within the interval [gi, gi+1), using the uniform speed (

∑
j∈Ai vj)/(gi+1 − gi).

The resulting schedule is clearly feasible, as A has finite cost and every j ∈ Ai thus
satisfies [gi, gi+1) ⊆ [rj , dj). For the energy consumption of S we get

E(S) =
∑
i∈M

(∑
j∈Ai vj

gi+1 − gi

)α
(gi+1 − gi) =

∑
i∈M

( ∑
j∈Ai vj

(gi+1 − gi)1−1/α

)α

=
∑
i∈M

(∑
j∈Ai

pij

)α
=
(

Cost(A)
)α
.

Lemma 2.6.3. If the grid points b(·) and e(·) are guessed correctly, there exists an

assignment A for I ′ with Cost(A) ≤
(
(1 + ε)α−1OPT

)1/α
.

Proof. Remember that G is an optimal grid point schedule for I, and that the grid
points b(Trd) and e(Trd) mark the time points at which G starts to process the
first job of type Trd and finishes the last job of Trd, respectively. Now observe
that in G, every job j is processed entirely within some interval [gi, gi+1), satisfying
[gi, gi+1) ⊆ [rj , dj). This is true because rj ≤ b(Trjdj ) < e(Trjdj ) ≤ dj , and no
job can stretch from an interval [gx−1, gx) into [gx, gx+1) since gx indeed marks the
beginning or end of some job. Let Ai denote the set of jobs which are entirely
processed within [gi, gi+1), and let A be the assignment that maps all jobs from Ai
to machine i. The cost of A is given as

Cost(A) =

(∑
i∈M

( ∑
j∈Ai

pij

)α)1/α

=

(∑
i∈M

( ∑
j∈Ai vj

(gi+1 − gi)1−1/α

)α)1/α

=

(∑
i∈M

(∑
j∈Ai vj

gi+1 − gi

)α
(gi+1 − gi)

)1/α

≤
(
E(G)

)1/α
≤
(

(1 + ε)α−1OPT
)1/α

.

Here the last two inequalities follow from the convexity of the power function and
Lemma 2.2.4, respectively.
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3. Speed Scaling with Variable Electricity
Rates and Speed Limits

3.1. Introduction

In this chapter, we study an extension of Yao et al.’s original speed scaling model [79].
The focus of our work lies in two aspects:
Dynamic Speed Limits: In the literature, most work adopts the unbounded speed

model of [79], where the processing speed can be arbitrarily large. In practice,
however, there are limits to the speed, and they no longer stem solely from
the maximum processor frequency. Instead, as devices become smaller and
more sensitive to environmental conditions like temperature and humidity,
speed limits become highly dynamic. For example, failures of air conditioning,
broken fans, or airflow problems can cause severe temperature fluctuations
in data centers [51], making it necessary to temporarily slow down one or
more processors. Another cause for highly dynamic speed limits are voltage
fluctuations: e.g., the power input of solar-powered devices depends heavily on
the current sun exposure, and even the supply through normal power outlets
can vary with the time of the day.

Dynamic Electricity Costs: A second, often neglected model constraint, are dynamic
electricity costs. In particular for data centers, energy minimization aims at
cost reduction. But often, algorithm design assumes energy costs to be uniform
over time. However, electricity providers increasingly adopt time-dependent
tariff policies. In fact, most providers already offer heavily discounted rates
during off peak times, for example at night or before noon. While such cost
changes are not as frequent and dynamic as the aforementioned changes of the
maximum speed, they can have a huge impact on the operating costs.

Our Contribution. We extend the standard model of Yao et al. [79] by the above
discussed aspects of dynamic speed limits and electricity costs. That is, we consider
the scheduling of jobs on a single, speed-scalable processor. Each job comes with
its own release time, deadline, and workload (volume). We assume a limit on the
processor’s maximum speed, which varies over time (to cover the above mentioned
dynamics, we allow almost arbitrary, even continuous constraints). Furthermore,
we also allow energy prices to vary over time. Our goal is to find a schedule that
minimizes the total energy costs. For this problem, we provide a polynomial-time
optimal algorithm. Even though we use convex programming in our analysis, the
derived algorithm is purely combinatorial.
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3. Speed Scaling with Variable Electricity Rates and Speed Limits

An important aspect of our problem is that standard techniques are rendered
infeasible by the infinite number of variables/constraints (because of the continuous
constraint functions). The typical approach to deal with such issues in algorithm
design is to discretize the problem and use the well-known KKT conditions (e.g., [9]).
A major contribution of our work is to exemplify how calculus of variations can be
used to deal with continuous constraints in a combinatorial way. For this, we derive
an optimality condition similar to the well-known KKT conditions, but extended to
continuous constraints. To the best of our knowledge, there is no previous work on
such an explicit extension of the KKT conditions to the continuous case.

Related Work. Special cases of both the maximum speed and the electricity tariff
setting have been studied before. Chan et al. [32] and Li [60] assume that there
is a constant upper bound on the available speed, and one wants to maximize the
throughput of the schedule while minimizing the energy consumption. On the other
hand, Fang et al. [38] consider electricity tariffs, but without an upper bound on the
speed and in a much more restricted setting: their model is equivalent to considering
only one-job-instances and discrete dynamics in our problem. They develop an
optimal polynomial-time algorithm, by a technique which to some extent resembles
ours. However, since we consider a significantly more general setting, we have to
cope with several important aspects not appearing in [38], in particular we need to
extend the KKT conditions using variational calculus. Electricity tariffs have also
been considered beyond the speed-scaling setting, see for example [56]. Further,
Thang [74] uses the lagrangian dual of a mathematical program in order to analyze
several online scheduling algorithms with flow-time objectives. Although [74] also
has the same view of optimizing over a set of arbitrary speed functions, it differs
from our approach in that lagrangian duality is used more as a tool for analyzing
the approximation ratio, rather than for characterizing an optimal solution and
deriving an optimal algorithm. Finally, Bansal et al. [22] consider a speed scaling
problem where energy is supplied at a limited rate. However, their supply rate is
constant over time and they seek to minimize this rate, rather than the overall energy
consumption. See [1] and [48] for broader surveys on energy-efficient algorithms.

3.2. Model and Preliminaries

We consider the scheduling of n jobs J := { 1, 2, . . . , n } on a single, speed-scalable
processor. Here, speed-scalable means that the processor’s speed s ∈ R≥0 is con-
trolled by the scheduler. The power consumption is modeled by a power function
P : R≥0 → R≥0, s 7→ sα. That is, while running at speed s, energy is consumed at
a rate of P (s) = sα. The constant α > 1 is called the energy exponent. In addition
to these classical speed scaling properties, we have the constraint that the maximal
speed at time t is bounded. We model this constraint via a maximum speed function
smax : R≥0 → R≥0. Further, there is a cost factor associated with every time point
t ∈ R≥0, specifying the cost per unit of energy. The cost factor is modeled via a cost
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3.3. Balance for Optimality

factor function c : R≥0 → R>0.

Each job j ∈ J comes with a release time rj ∈ R≥0, a deadline dj ∈ R≥0, and
a workload wj ∈ R≥0. For each time t ∈ R≥0, a schedule S must decide which job
to process at what speed. Preemption is allowed, so that a job may be suspended
and resumed later on. We model a schedule S by a speed function s : R≥0 → R≥0

and a scheduling policy J : R≥0 → J . Here, s(t) denotes the speed at time t, and
J (t) the job that is scheduled at time t. A feasible schedule must finish all jobs
within their release time/deadline intervals [rj , dj) without exceeding the maximum
speed function smax. More formally, we require s(t) ≤ smax(t) for all t ∈ R≥0 and∫
J−1(j)∩[rj ,dj)

s(t) dt ≥ wj for all j ∈ J . The total energy consumption of a schedule

S is given by
∫∞

0 P (s(t)) dt, and its total energy cost by E(s) :=
∫∞

0 c(t) ·P (s(t)) dt.
For technical reasons, we restrict ourselves to functions in Cpr (i.e., to functions that
are right-continuous with finitely many discontinuities), which covers all practically
relevant schedules. Our goal is to find a feasible schedule of minimum cost. We
refer to this scheduling problem as ContBERS (Continuous Bounded Speed &
Electricity Rates Scheduling).

Computational Model. We assume oracle access to the functions smax and c. Simi-
larly, we assume access to basic function calculus like taking the min of two functions
or computing integrals (cf. Section 3.4.1). This is in accord with standard speed-
scaling literature (e.g., [4, 25]) where one needs the ability to, for example, solve
equations involving high degree polynomials.

3.3. Balance for Optimality

This section is dedicated to proving the following theorem.

Theorem 3.3.1. A feasible schedule is optimal if and only if it is both non-wasting
and work-balanced.

The properties non-wasting and work-balanced are natural structural properties,
which we formally introduce in Section 3.3.3. For now, think of schedules that
distribute the jobs’ workload “as evenly as possible” while taking constraints (e.g.,
the release times/deadlines or the speed limits) and cost factors into account.

Being work-balanced is a natural condition, and similar structural properties have
been exploited for a variety of problems to study and compute optimal or approx-
imate solutions. Examples include the original speed-scaling algorithm YDS [18],
the standard approximation algorithm for metric facility location [52], or the study
of equilibria in resource selection games [44]. These properties are typically derived
using a linear or convex program and duality theory, and eventually yield a cor-
responding primal-dual algorithm. The basic ingredients for such an approach are
the KKT conditions known from convex programming [29]. Unfortunately, this ap-
proach does not work in our setting. Although the considered optimization problem
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3. Speed Scaling with Variable Electricity Rates and Speed Limits

is convex, the general maximum speed restriction leads to infinitely many variables/-
constraints: for each time t ∈ R≥0 the speed must not exceed smax(t). Based on the
theory of variational calculus [72], we can still approach the ContBERS problem
by similar means. While variational calculus is a pretty common toolkit (e.g., in
the area of operations research), it is mostly used for solving optimization problems
directly via numerical methods. Instead, we use it as an analysis tool to derive “ex-
tended KKT conditions”, yielding a structural characterization of optimal solutions.
As typical for primal-dual approaches, this leads to a quite intuitive algorithm.

Overview. We continue in Section 3.3.1 with a presentation of the ContBERS
problem viewed as an optimization problem with an infinite number of constraints.
Afterward, Section 3.3.2 provides a framework to characterize optimal solutions for
problems of a more general form. Finally, Section 3.3.3 applies this framework to
prove Theorem 3.3.1.

3.3.1. Scheduling via Variational Calculus

Optimization problems with infinitely many variables/constraints can be modeled
via function variables. In the case of the ContBERS problem, one can think of the
schedule’s speed function s : R≥0 → R≥0 as a variable that has to fulfill the constraint
s(t) ≤ smax(t) at any time t ≥ 0. Remember that the costs of a speed function s are
given by E(s) =

∫∞
0 c(t)P (s(t)) dt ∈ R. In other words, E is a function that maps

a speed function s to a real cost value E(s). Functions mapping other functions to
real values are called functionals [72]. We seek a speed function s that minimizes the
functional E under the constraints that the maximum speed is never exceeded and
that all jobs are finished. Since we also need a scheduling policy (to decide which
job to run when), we actually search n speed functions sj : R≥0 → R≥0 telling us
when and how to run j. The set of candidate functions is

Sj := { f : R≥0 → R≥0 | f ∈ Cpr ∧ ∀x 6∈ [rj , dj) : f(x) = 0 } . (3.1)

Let S :=
∏
j∈J Sj . To improve readability, we slightly abuse notation by using s for

an element of S (that is a vector of the n different sj ’s ) as well as for the speed
function of the schedule, i.e., the sum of the n different sj ’s. We can formulate our
optimization problem as the (infinite) mathematical program (SP) shown below.

min
s∈S

E(
∑

j∈J sj)

s.t.
∑

j∈J sj(t) ≤ smax(t) ∀t ≥ 0 (3.2)∫ dj
rj
sj(t) dt ≥ wj ∀j ∈ J (3.3)

An optimal solution minimizes the energy costs for the speed function
∑

j∈J sj
without exceeding the maximal speed (Constraint (3.2)) and finishes all jobs (Con-
straint (3.3)). Note that we do not require the sj to have pairwise disjoint supports.
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In other words, the resulting schedule might run two jobs at the same time. Omit-
ting this requirement is without loss of generality, as we can show how to transform
such schedules to obtain pairwise disjoint supports.

Lemma 3.3.2 (EDF Schedule). Consider an arbitrary feasible solution s ∈ S to
the optimization problem (SP). Then there exists a feasible solution s′ ∈ S with
E(s′) ≤ E(s) and the property ∀j1, j2 ∈ J, t ∈ R≥0 : s′j1(t) · s′j2(t) > 0 =⇒ j1 = j2.

Proof. We transform solution s to a solution s′ by employing Earliest Deadline First
(EDF) scheduling. Intuitively, at every timepoint we run only the task that has the
earliest deadline among all available tasks.

Let the indices of the jobs be ordered according to their deadline and assume,
w.l.o.g., that no two jobs share the same deadline. We first transform s to a solution
ŝ such that for every job j, ŝ processes exactly wj workload (we call such schedules
non-wasting). To do this we identify for each job j the earliest timepoint tj such

that
∫ tj
rj
sj(t) dt = wj . Note that by constraint (3.3) we have that tj ≤ dj . We then

set ŝj(t) = 0 for all t ≥ tj and ŝj(t) = sj(t) for all t < tj . Note that E(ŝ) ≤ E(s)
holds.

We next transform ŝ into s′. To this end, set t∗ := minj rj and let ŵj := wj
denote the remaining workload of j, for all j ∈ J . We identify the job i that has the
earliest deadline among all jobs j released by time t∗ and with nonzero ŵj . Now, set

ti such that
∫ ti
t∗
∑

j sj(t) dt = ŵi. That is, the point at which i would be finished if
it were exclusively processed by schedule s. If there is no release time in [t∗, ti), we
set s′i(t) :=

∑
j sj(t) for every t ∈ [t∗, ti) and s′j(t) := 0 for all other jobs. Then t∗ is

updated to ti and ŵi to 0. Otherwise, let rk be the earliest release time in [t∗, ti).
We set s′i(t) :=

∑
j sj(t) for every t ∈ [t∗, rk) and s′j(t) = 0 for all other jobs. Finally

we update ŵi to ŵi −
∫ rk
t∗ si(t) dt and t∗ to rk. We repeat the above step until all

ŵj ’s are set to 0.
The above transformation terminates, because in each iteration (new t∗) we make

progress: either we move to the next release time, or one of the ŵj ’s is set to zero.
Also note that E(ŝ) = E(s′). This immediately follows by the fact that by the way
the transformation is defined: for any t,

∑
j ŝj(t) =

∑
j s
′
j(t) holds. Further, since

at every timepoint, t there exists at most one j such that s′j(t) > 0, s′ satisfies the
property stated in the lemma. However, it is not immediately obvious that s′ is
feasible. We continue to show this. By the above transformation, we have for any j
that s′j(t) = 0 for all t ∈ [rmin, rj). It remains to show that the total workload of each

job is processed before its deadline. More formally, we must have
∫ dj

0 s′j(t) dt = wj
for all jobs j. (The fact that s′j(t) = 0 for t ∈ (dj , dmax) then follows by the definition
of the transformation). To this end, define for any job j, any timepoint t, and any
solution s the value F (t, j, s) :=

∫ t
0

∑
i≤j si(x) dx. Intuitively, F (t, j, s) denotes the

total workload of jobs with a deadline of at most dj that s has finished by timepoint
t. By Constraint (3.3) of (SP) and the first part of the transformation we have
F (dj , j, ŝ) =

∑j
i=1wi for any job j.

We now show that for any j and t, we have the inequality F (t, j, s′) ≥ F (t, j, ŝ).
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That is, s′ finishes as least as much workload of jobs with deadline at most dj by
time t as ŝ. Indeed, assume that this is not the case and let t′ be the first time
such that F (t′, j, s′) < F (t′, j, ŝ). In combination with the fact that s′ satisfies the
property stated in the lemma, this implies that at t′ we have

∑j
i=1 ŝi(t

′) > 0 while∑j
i=1 s

′
i(t
′) = 0. However, by the definition of s′,

∑j
i=1 s

′
i(t
′) = 0 can only hold

when all jobs with a release time ≤ t′ and a deadline ≤ dj are fully processed.
This contradicts the assumption F (t′, j, s′) < F (t′, j, ŝ), since ŝ processes exactly
wj units for each job j. Thus, we must have F (t, j, s′) ≥ F (t, j, ŝ) for all t and
j and, in particular, F (dj , j, s

′) ≥ F (dj , j, ŝ) for all j. The lemma follows since

F (dj , j, ŝ) =
∑j

i=1wi.

3.3.2. Characterizing Optimal Solutions

In the following, we formulate a more general optimization problem and derive
(rather abstract) optimality conditions that can be viewed as an extended version
of the KKT conditions. We will see in Section 3.3.3 how to apply these conditions
to the ContBERS problem.

Let N,m, n ∈ N. We consider an optimization problem for functionals over the set
F :=

∏N
j=1Fj andm+n constraints, with Fj := { g : R→ R | g ∈ Cpr ∧ ∀x 6∈ Ij : g(x) = 0 }

for some interval Ij . The j-th component of f ∈ F therefore is a right-continuous
function g with finitely many discontinuities, and g|R\Ij = 0. We also view the

vectors f ∈ F as vector-valued functions f : R→ RN .

We have an objective function L : R× RN → R as well as two types of constraint
functions Gk, Hl : R × RN → R for k ∈ { 1, 2, . . . ,m } and l ∈ { 1, 2, . . . , n }. All
these functions are assumed to be piecewise differentiable and convex in their second
argument. For example, Gk(x, y) with x ∈ R and y ∈ RN is piecewise continuously
differentiable and convex in y. We write ∇L (and similar for the other functions)
to refer to the gradient of L taken with respect to the components of the second
argument y ∈ RN and ∇jL for the j-th component of L’s gradient. Let I be any
interval in R. The considered general optimization problem (GP) is

min
f∈F

∫
I
L(x, f(x)) dx

s.t. Gk(x, f(x)) ≤ 0 ∀x ∈ I, k ∈ { 1, 2, . . . ,m } (I)∫
I
Hl(x, f(x)) dx ≤ 0 ∀l ∈ { 1, 2, . . . , n } (II)

Here, constraints of type (I) represent local constraints that hold at any point in
time t (e.g., restricted processor speed). Constraints of type (II) represent global
constraints that hold for some kind of volume (e.g., finished workload of a job). The
following theorem provides sufficient optimality conditions for solutions of (GP).

Theorem 3.3.3 (Extended KKT conditions). Assume that f ∈ F is a feasible
solution for (GP) with finite solution value. Furthermore, assume that there exist
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functions λk : I → R≥0, λk ∈ Cpr, and constants µl ∈ R≥0 such that the following
properties hold:

1. For all j ∈ { 1, 2, . . . , N } and x ∈ Ij, we have

∇jL(x, f(x)) +

m∑
k=1

λk(x) · ∇jGk(x, f(x)) +

n∑
l=1

µl · ∇jHl(x, f(x)) = 0. (3.4)

2. For all k ∈ { 1, 2, . . . ,m } and x ∈ I, we have λk(x) ·Gk(x, f(x)) = 0.

3. For all l ∈ { 1, 2, . . . , n }, we have µl ·
∫
I Hl(x, f(x)) dx = 0.

Then f is an optimal solution to (GP).

Similar conditions have been used before (see for example [65]) but to the best of
our knowledge not in this explicit form (as sufficient conditions). The rest of this
subsection gives a (mostly self-contained) proof of Theorem 3.3.3.

Getting Rid of the Constraints. Using Lagrange multipliers λk : I → R≥0, λk ∈
Cpr, k ∈ { 1, 2, . . . ,m }, and µl ∈ R≥0, l ∈ { 1, 2, . . . , n }, we can define the functional

Λ(f, λ, µ) :=

m∑
k=1

∫
I
λk(x) ·Gk(x, f(x)) dx+

n∑
l=1

µl ·
∫
I
Hl(x, f(x)) dx, (3.5)

where λ = (λ1, . . . , λm) and µ = (µ1, . . . , µn). This is the so called Lagrangian.
By construction, we have Λ ≤ 0 if f satisfies the constraints of (GP) (independently
of λ and µ). This can be used to prove the following result known from duality
theory [29, 72]:

Lemma 3.3.4. Fix λ and µ, and consider an optimal solution f̃ ∈ F to the mini-
mization problem (LGR) given as

min
f∈F

D(f), where D(f) :=

∫
I
L (x, f(x)) dx+ Λ(f, λ, µ). (3.6)

Assume that λ, µ, and f̃ satisfy properties 2 and 3 of Theorem 3.3.3. If, additionally,
f̃ fulfills the constraints of (GP), then f̃ is an optimal solution to (GP).

Proof. For such λ, µ, and f̃ , we have Λ(f̃ , λ, µ) = 0. Thus, when comparing f̃ to an
arbitrary feasible solution f of (GP), we get∫
I
L
(
x, f̃(x)

)
dx =

∫
I
L
(
x, f̃(x)

)
dx+ Λ

(
f̃ , λ, µ

)
≤
∫
I
L (x, f(x)) dx+ Λ (f, λ, µ)

≤
∫
I
L (x, f(x)) dx.

The last inequality holds because f is a feasible solution to (GP), which implies
Λ(f, λ, µ) ≤ 0. This proves the lemma’s statement.
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3. Speed Scaling with Variable Electricity Rates and Speed Limits

Lemma 3.3.4 says that, in order to solve the minimization problem (GP) with
its constraints, it is sufficient to solve (LGR) (which does not have constraints) for
arbitrary, fixed dual variables, but only if we can guarantee that the constraints are
fulfilled. This seems of small help, and in general such a solution might actually
not exist. However, the dual variables give us an extra degree of freedom, and
convexity ensures that our problem is “well-behaved”. Thus, our strategy is to find
dual variables such that the optimal solution for (LGR) adheres to the constraints
of (GP).

Convexity of (LGR). In order to solve (LGR), we first observe that the set F over
which we optimize is convex. That is, for any two functions f, g ∈ F and t ∈ [0, 1]
we have (1− t) · f + t · g ∈ F . Another useful observation is that the objective D of
(LGR) is convex (as a functional over F). To see this, remember that L, Gk, and
Hl are convex in their second argument. Moreover, D can be rewritten as

D(f) =

∫
I
L (x, f(x)) dx+ Λ(f, λ, µ)

=

∫
I

(
L(x, f(x)) +

m∑
k=1

λk(x) ·Gk(x, f(x)) +

n∑
l=1

µl ·Hl(x, f(x))

)
dx

=:
∫
I L̃(x, f(x), λ(x), µ) dx, for a suitably defined L̃ : R × RN × Rm × Rn → R.

The function L̃ is (as a positive sum of convex functions) convex in its second
argument. Using monotonicity and linearity of the integration operator, we can
prove the convexity of D:

D
(
tf + (1− t)g

)
=

∫
I
L̃(x, tf(x) + (1− t)g(x), λ(x), µ) dx

≤
∫
I

(
tL̃(x, f(x), λ(x), µ) + (1− t)L̃(x, g(x), λ(x), µ)

)
dx

=t

∫
I
L̃(x, f(x), λ(x), µ) dx+ (1− t)

∫
I
L̃(x, g(x), λ(x), µ) dx = tD(f) + (1− t)D(g).

Optimality Condition for (LGR). With D being convex, we can use the property
that any local optimum is also globally optimal (cf. [55, Chap. 3]). Local optima can
be characterized via their derivatives. Consider the (one-sided) directional deriva-

tives δ+D(f, v) := limε→0+
D(f+εv)−D(f)

ε of D at f ∈ F in any direction v with
f + v ∈ F . By convexity, a solution f ∈ F to (LGR) is (globally) optimal if and
only if

δ+D(f, v) ≥ 0 ∀v : f + v ∈ F . (♥)

With this, we are now finally ready to prove Theorem 3.3.3.

Proof of Theorem 3.3.3. Assume we have functions λk : I → R≥0 and constants µl ∈
R≥0 as in Theorem 3.3.3, so that the properties 1 - 3 hold for a feasible solution
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f ∈ F to (GP). Remember that L, Gk, and Hl are piecewise differentiable, implying
that L̃ is piecewise differentiable. Similarly to the other functions, we write ∇L̃ to
denote L̃’s gradient taken with respect to the components of the second argument
y ∈ RN . Then, by Leibniz and chain rule, we can write the directional derivative of
Equation (♥) as

δ+D(f, v) =
d

dε

∫
I
L̃(x, f(x) + εv(x), λ(x), µ) dx

∣∣
ε=0

=

∫
I

d

dε
L̃(x, f(x) + εv(x), λ(x), µ)

∣∣
ε=0

dx =

∫
I

〈
∇L̃(x, f(x), λ(x), µ), v(x)

〉
dx

(3.7)
Note that it may be necessary to split the integral for this operation as the in-
volved functions are only piecewise differentiable. Now, by property 1 of Theo-
rem 3.3.3, we have that component j of ∇L̃(x, f(x), λ(x), µ) is equal to zero when-
ever x ∈ Ij . On the other hand, whenever x 6∈ Ij , we must have vj(x) = 0 as
otherwise fj(x) + vj(x) 6= 0, contradicting the fact that f + v ∈ F . The integrand of
Equation (3.7) thus vanishes, and δ+D(f, v) = 0 for all directions v with f + v ∈ F .
This implies optimality of f for the optimization problem (LGR). As λ, µ, and f
satisfy properties 2 and 3 of Theorem 3.3.3, we can apply Lemma 3.3.4 to show that
f is an optimal solution of (GP).

3.3.3. Extracting Structural Properties

We rewrite the mathematical program (SP) from Section 3.3.1 such that it has the
form of the general mathematical program (GP) from Section 3.3.2. To this end, let
T be the latest deadline and set I := [0, T ). We get the following convex problem:

min
s∈S

E(s)

s.t. s(t)− smax(t) ≤ 0 ∀t ≥ 0 (3.8)∫
I

wj
T
− sj(t) dt ≤ 0 ∀j ∈ J (3.9)

−sj(t) ≤ 0 ∀j ∈ J, t ≥ 0 (3.10)

Theorem 3.3.3 gives us a continuous version of the KKT conditions, which we can
apply to extract a nice and combinatorial optimality condition for our problem. Note
that the Constraints (3.8) and (3.10) translate to inequality constraints of type (I),
whereas Constraint (3.9) corresponds to an inequality constraint of type (II).

Extended KKT Conditions for ContBERS. We now introduce a dual variable
λ : I → R≥0 for Constraint (3.8), dual variables µj ∈ R≥0 for Constraint (3.9),
and dual variables γj : I → R≥0 for Constraint (3.10). Then the extended KKT
conditions are:
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3. Speed Scaling with Variable Electricity Rates and Speed Limits

1. Extended Stationarity: For all j ∈ J and t ∈ [rj , dj), the expression

∇j
(
c(t)P

(
s(t)

))
+ λ(t) · ∇j

(
s(t)− smax(t)

)
− ∑
j∈J

γj(t) · ∇jsj(t) +
∑
j∈J

µj · ∇j
(wj
T − sj (t)

)
equals zero. Recall that ∇j denotes the j-th component of the gradient of
the second argument (where the arguments are t and s(t)) and, therefore, the
partial derivative with respect to sj(t). Hence, the equality above is equivalent
to

c(t)P ′
(
s(t)

)
+ λ(t)− γj(t)− µj = 0. (3.11)

2. Continuous complementary slackness conditions:

λ(t) ·
(
s(t)− smax(t)

)
= 0 ∀t ∈ I, (3.12)

γj(t) · sj(t) = 0 ∀j ∈ J, t ∈ I. (3.13)

3. Discrete complementary slackness conditions:

µj ·
(∫

I

wj
T
− sj(t) dt

)
= 0 ∀j ∈ J. (3.14)

Characterizing Optimality. We now use the above stated extended KKT conditions
to characterize optimal solutions for our ContBERS scheduling problem. Using
the jobs’ release times and deadlines, we partition the time horizon into m non-
overlapping, consecutive time intervals Ti := [ti, ti+1), i ∈ { 1, 2, . . . ,m }, where ti is
the i-th point in the set { rj , dj | j ∈ J }. Note that m ≤ 2n− 1. We call Ti the i-th
atomic interval and use J(i) := { j ∈ J | Ti ⊆ [rj , dj) } to denote the set of jobs that
are active in Ti (i.e., that may be scheduled in Ti).

The resulting scheduling condition is essentially a generalization of the well known
optimality condition for the classical speed-scaling model from Yao et al. [79]. There,
an important property of optimal schedules is that during the lifetime of a job j,
speed never drops below the speed sj used to process j. For our setting, we need a
more general and complex optimality condition. In the following, we provide such
a property (Definition 3.3.6) and prove that it characterizes optimal schedules (by
proving Theorem 3.3.1) using our extended KKT conditions.

Definition 3.3.5 (Work-Transferable). For a given schedule and two atomic in-
tervals Ti and Ti′, the work-transferable relation i → i′ holds if there exists a job
j ∈ J(i)∩J(i′) with

∫ ti+1

ti
sj(t) dt > 0. Furthermore, let � be the reflexive transitive

closure of →.

Definition 3.3.6 (Work-Balanced). We say that a schedule is work-balanced if
there are constants si ∈ R for i ∈ { 1, . . . ,m } so that 1. for any fixed atomic interval

Ti the speed s(t) ∈ R at time t ∈ [ti, ti+1) is min(smax(t), c(t)−
1

α−1 · si) and 2. for
any two atomic intervals Ti and Ti′ with i� i′, we have that si ≤ si′.
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To get an intuition, assume c(t) to be constant in each atomic interval. Then, the
first property implies that, unless smax forces us to run slower, we run at a constant
speed in each atomic interval (which can be different for each atomic interval). The
second property says that workload can only be transferred to intervals of higher
speed (which would increase the cost). For non-constant c(t), we have to weight the
speed suitably.

In addition to the above properties, we call a schedule non-wasting if the workloads
are exactly met (i.e., if for all j ∈ J we have wj =

∫
I sj(t) dt). To ease the further

discussion, we slightly abuse notation by extending the work-transferable relation
“�” to time points and jobs. More specifically, for an atomic interval Ti and a time
t ∈ R≥0 we write i � t if for the atomic interval Ti′ with t ∈ Ti′ we have i � i′.
Similarly, for an atomic interval Ti and a job j ∈ J we write i � j if there is an
atomic interval Ti′ in which j is processed and for which i � i′. Our analysis uses
the following simple observations that follow immediately by these definitions:

Observation 3.3.7. Consider a feasible schedule, an atomic interval i, a job j, and
a time t0 ∈ [rj , dj). Then we have

1. { i | i� j } ⊆ { i | i� t0 } and
2. if sj(t0) > 0, then { i | i� t0 } = { i | i� j }.

We also need the following auxiliary lemma to characterize optimality via the
above notions.

Lemma 3.3.8. Assume that for a feasible schedule S there exist two timepoints
t1 ∈ Ti and t2 ∈ Ti′ such that

• i� i′,

• c(t1)s(t1)α−1 > c(t2)s(t2)α−1, and

• s(t2) < smax(t2).

Then S cannot be optimal.

Proof. To prove the lemma, we transform S to S̃, such that S̃ is feasible and E(s) >
E(s̃). The transformation is as follows:

By the right-continuity of the involved functions, there exist intervals Ii := [t1, t1+
ε) ⊆ Ti and Ii′ := [t2, t2 + ε) ⊆ Ti′ for some ε > 0 such that mint∈Ii c(t)s(t)

α−1 >
maxt∈Ii′ c(t)s(t)

α−1 and s(t′) < smax(t′), for all t′ ∈ Ii′ .
By the definition of “�”, there exists a sequence of atomic intervals Ti = Ti1 , Ti2 , . . . , Til =

Ti′ , such that for each y ∈ {1, . . . , l − 1} there holds iy → iy+1. In other words, for
every y ∈ {0, . . . , l − 1}, there exists a jy such that jy ∈ J(iy) ∩ J(iy+1), and∫ tiy+1

tiy
sjy(t) dt > 0. Consecutively, for every such y we reduce the load of job jy in

the atomic interval Tiy by δ > 0, and increase the load of job jy in Tiy+1 by δ. At
the same time we decrease the speed in Ii by δ/ε and increase the speed in Ii′ by
δ/ε. It is easy to see that by choosing δ small enough, the resulting schedule S̃ is
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3. Speed Scaling with Variable Electricity Rates and Speed Limits

(a) Speed levels before moving workload. (b) Speed levels after moving workload.

Figure 3.1.: Energy decrease when moving workload for the simplified problem with constant
energy costs. The black line denotes the upper speed limit, whereas the level of the shaded
area denotes the current speed level of the schedule.

feasible (although during the above procedure it may have been infeasible at times),
and that mint∈Ii c(t)s̃(t)

α−1 > maxt∈Ii′ c(t)s̃(t)
α−1 still holds. Further note that the

cost only changes in the intervals Ii and Ii′ .

Figure 3.1 visualizes the process described above for the simplified version with
constant energy costs c(t).

In Ii the energy cost decreases by:∫
Ii

c(t) (P (s(t))− P (s̃(t))) dt

≥
∫
Ii

c(t)

(
δ

ε
P ′(s̃(t))

)
dt

≥
∫
Ii

δ

ε
min
t∈Ii

(
αc(t)s̃(t)α−1

)
dt

= δα ·min
t∈Ii

(
c(t)s̃(t)α−1

)
,

where the first inequality follows by the convexity of the power function.

On the other hand, by a similar calculation, the energy cost in Ii′ increases by at
most:

δα ·max
t∈Ii′

(
c(t)s̃(t)α−1

)
.

Since we chose δ so that mint∈Ii
(
c(t)s̃(t)α−1

)
> maxt∈Ii′

(
c(t)s̃(t)α−1

)
still holds,

the lemma follows.

We are now ready to prove our characterization of optimal schedules stated in
Theorem 3.3.1.

Proof of Theorem 3.3.1. We start with the proof that being non-wasting and work-
balanced is sufficient for optimality. Afterward, we show the necessity of both prop-
erties.
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3.3. Balance for Optimality

“⇐”: Any feasible schedule S defines function variables sj for a feasible solution.
Here, sj(t) denotes the processing speed of job j at time t. In the following we
set the dual variables and show that they satisfy the extended KKT conditions.

λ(t) := sup
t0∈Tk,k�t

(
c(t0)P ′

(
s(t0)

))
− c(t)P ′

(
s(t)

)
∀t ∈ [0, T )

µj := sup
t0∈Tk,k�j

(
c(t0)P ′

(
s(t0)

))
∀j ∈ J

γj(t) := λ(t)− µj + c(t)P ′
(
s(t)

)
∀j ∈ J, t ∈ [rj , dj)

Moreover, we set γj(t) := 0 for t /∈ [rj , dj). We first need to show that these
variables are dual-feasible (i.e., non-negative). We start with λ(t). Consider
the atomic interval Ti with t ∈ Ti. We obviously have i� t, causing the supre-
mum to consider t itself. Thus λ(t) cannot be negative. The non-negativity
of µj follows immediately from S being a feasible schedule. Because of this,
there is an atomic interval Ti in which j is processed at some t0 ∈ Ti with
speed s(t0) > 0. For this atomic interval we have i � j. Finally, the non-
negativity of γj(t) for any j ∈ J and t ∈ [rj , dj) follows immediately from
Observation 3.3.71.

It remains to prove that the extended KKT conditions hold. The first con-
dition, Equation (3.11), holds by definition of γj(t). For Equation (3.13), fix
j ∈ J , t ∈ I and assume sj(t) > 0. Then we must have t ∈ [rj , dj). By ap-
plying Observation 3.3.72 we get { i | i� t } = { i | i� j }. This implies the
equality of the supremum expressions in the definition of λ(t) and µj and, thus,
γj(t) = 0. Now look at Equation (3.12) for some fixed t ≥ 0 with i such that
t ∈ Ti and assume s(t) < smax(t). By definition of the work-balanced property,
we must have supt0∈Ti

(
c(t0)1/(α− 1)s(t0)

)
≤ si = c(t)1/(α− 1)s(t). Moreover, any

k with k � i satisfies sk ≤ si, which yields supt0∈Tk
(
c(t0)1/(α− 1)s(t0)

)
≤

c(t)1/(α− 1)s(t). By rearranging, we get supt0∈Tk
(
c(t0)s(t0)α−1

)
≤ c(t)s(t)α−1.

Since we have shown that λ(t) cannot be negative, this yields λ(t) = 0.
Finally, Equation (3.14) follows because S is non-wasting, which gives us
wj =

∫
i∈I sj(t) dt ∀j ∈ J .

“⇒”: First, we show that any optimal schedule S is work-balanced.

For every atomic interval T`, let t` := arg maxt∈Tk,k�` s(t)c(t)
1

α−1 , and s` :=

s(t`)c(t`)
1

α−1 . For the sake of contradiction, assume that these s`’s do not
satisfy property (a) of work-balanced schedules (i.e., there exists some interval

T` and t∗ ∈ T` so that s(t∗) 6= min(smax(t∗), c(t∗)−
1

α−1 · s`)). Then it must
be the case that s(t∗) < smax(t∗), since s(t∗) > smax(t∗) would contradict

the feasibility of S, and s(t∗) = smax(t∗) would imply c(t∗)−
1

α−1 · s` < s(t∗)
and thus contradict our choice of s`. Therefore we have s(t∗) < smax(t∗) and

c(t∗)−
1

α−1 · s` ≥ s(t∗). In fact, even the strict inequality c(t∗)−
1

α−1 · s` > s(t∗)
must hold, since equality would contradict the definition of t∗. Hence, all the
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Figure 3.2.: Water-filling: Atomic interval containers whose upper borders represent the
maximum speed function smax. This example is for constant energy costs and shows a
work-balanced schedule.

properties of Lemma 3.3.8 are satisfied with t1 = t` and t2 = t∗, contradicting
the optimality of S.

Property (b) of work-balanced schedules follows directly from the transitivity

of � and the fact that si is defined as maxt∈Tk,k�i s(t)c(t)
1

α−1 .

Finally, assume S is optimal and not non-wasting. Obviously, we can uniformly
decrease the speed for jobs with wj >

∫
I sj(t) dt which leads to a lower energy

cost and a contradiction.

3.4. Algorithm and Analysis

This section states our algorithm (Section 3.4.1) and proves both its correctness (via
the work-balanced property; Theorem 3.4.2) and runtime bound (Theorem 3.4.3).

Overview. Our algorithm can be seen as pouring a liquid (workload of the jobs)
into a number of connected containers (atomic intervals). The upper border of these
containers is given by the maximum speed function smax, and neighboring containers
are connected with valves. Pouring liquid into the containers causes the water levels
to rise evenly among all non-full containers, while the valves ensure that the workload
of a job does not leave its release-deadline interval. The process is stopped when
all the liquid has been poured. The water level essentially corresponds to the speed
used in the atomic interval. Figure 3.2 illustrates this intuition for constant energy
costs.

If we consider dynamic electricity rates, the situation becomes more complicated.
Here, the energy costs at time t can be interpreted as changing the liquids density
over time. The water levels no longer correspond immediately to job speeds. Instead,
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a job’s speed at time t is essentially given by its water level times the density factor at
time t. We note that water-filling is a natural way of viewing primal-dual algorithms
(see, e.g., water-filling algorithms in [29, Chap. 5]).

3.4.1. Algorithm Description

Our algorithm works in rounds. In the first round, we find the set of consecutive
atomic intervals Ti1 , Ti1+1, . . . , Ti2 that require the “highest water level”. This fixes
the schedule for Ti1 to Ti2 . We then remove these atomic intervals and the scheduled
jobs from the input, adapt the remaining jobs’ release and deadlines, and start over
again. We continue by formally defining water levels and describe more exactly
how the algorithm computes a schedule in each round. See Listing 3.1 for the
corresponding pseudocode.

Computing Water Levels. Consider a collection (union) I of atomic intervals.
In the following, one can mostly think of I as a union of consecutive atomic in-
tervals. However, for our proofs we also need to cover the case that I contains
“holes” (i.e., a union of nonconsecutive atomic intervals). Define the set J(I) :=
{ j ∈ J | rj ∈ I, dj ∈ I } of jobs whose release times and deadlines are contained in
I and the closure of I, respectively. Moreover, let W (I) :=

∑
j∈J(I)wj denote the

total workload of these jobs. For a time t ∈ R≥0 let φ(t) := c(t)− 1/α− 1 denote the
density factor at time t. We define the water level ρ(I) ∈ R≥0 of I as the solution
to the equation

W (I) =

∫
I

min
(
φ(t) · ρ(I), smax(t)

)
dt. (3.15)

Equation (3.15) has a solution if and only if W (I) ≤
∫
I smax(t) dt. If this inequality

is strict, the solution is unique. If it is an equality, we agree on ρ(I) = supt∈I
smax(t)
φ(t) .

If there is no solution to Equation (3.15), we define ρ(I) :=∞.

Note that the computability of ρ(I) depends not only on the ability to compute
the involved integrals. Rather, one also must be able to solve an integral equation
involving smax and c. This is possible for practically relevant functions but can
be nontrivial depending on smax and c (e.g., for high-degree polynomials). In such
cases, one can use numerical methods like binary search. Since our focus lies on the
combinatorial scheduling aspect and continuity of the involved functions, we assume
that ρ(I) can be computed efficiently.

From Water Levels to Schedules. We describe the algorithm in an iterative way.
This gives not the most efficient implementation but simplifies the analysis. Our
algorithm iteratively computes a schedule for a subset of jobs and removes these
from the input, creating a new subinstance of the original problem. This is then
solved in the next iteration.

Set I0 := ∅ and consider an iteration k ≥ 1. We first find indices i1k and i2k for
which the water level ρk := ρ(Ik) of Ik :=

(⋃i2k
i=i1k

Ti
)
\
(⋃

k′<k Ik′
)

is maximal. If this
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1 A := { 1, 2, . . . ,m } {remaining atomic interval indices}
2 B := ∅, J := J {removed atomic interval indices and remaining jobs}
3 while J 6= ∅:
4 for each pair i1 ≤ i2 from A: compute water level ρ(i1, i2) := ρ

(⋃
i∈[i1,i2]\B Ti

)
5 find maximum water level ρk := ρ(i1k, i2k) = maxi1,i2 ρ(i1, i2)
6 Ik := { i ∈ N | i1k ≤ i ≤ i2k, i 6∈ B } {atomic intervals of this iteration}
7 if ρk =∞: return infeasible { feasibility check}
8 set sk(t) := min

(
φ(t) · ρk, smax(t)

)
{speed to be used in atomic intervals of Ik}

9 A := A \ Ik, B := B ∪ Ik, J := J \ J(Ik)
10 for all j ∈ J : update release times and deadlines

Listing 3.1: Primal-dual algorithm for the ContBERS problem. It returns the speed
functions sk to be used during the atomic intervals Ik of iteration k. To keep the pseudocode
simple, we define the interval collections Ik as index sets instead of the actual unions of
atomic intervals.

water level is ∞, the problem instance is infeasible. Otherwise, we can schedule all
jobs Jk := J(Ik) during Ik by using the EDF (earliest deadline first) scheduling policy
and the speed function sk(t) := min

(
φ(t) ·ρk, smax(t)

)
during Ik. At the end of itera-

tion k, we remove the scheduled jobs Jk and the time subset Ik from the input. This
entails updating any remaining release time rj ∈ Ik to min { t ≥ rj | t 6∈

⋃
k′≤k Ik′ }

and any remaining deadline dj ∈ Ik to sup { t ≤ dj | t 6∈
⋃
k′≤k Ik′ }.

3.4.2. Correctness and Runtime

Before we state and prove our main result, we give an auxiliary lemma, showing
that the water levels computed by our algorithm are monotonously decreasing.

Lemma 3.4.1. The algorithm’s water levels ρk are monotonously decreasing in k.

Proof. Assume this is not true, so there is a minimal k such that ρk < ρk+1. First
note that there are u1 < u2 and v1 < v2 with Ik = [u1, u2) \⋃k′<k Ik′ and Ik+1 =
[v1, v2) \⋃k′<k+1 Ik′ . We consider two cases:

Case 1: [u1, u2] ∩ [v1, v2] = ∅
Note that, in this case, job removals and changes to release times or deadlines
from iteration k cannot affect the job set J(Ik+1) in iteration k+ 1. But then,
since our algorithm also considered Ik+1 in iteration k, it would have computed
the same water level ρk+1 > ρk for Ik+1 in this iteration and chosen it instead
of Ik. A contradiction.

Case 2: [u1, u2] ∩ [v1, v2] 6= ∅
Consider the interval I := Ik ∪ Ik+1. Because of [u1, u2] ∩ [v1, v2] 6= ∅, our
algorithm did consider I during iteration k. Moreover, note that J(I) (in
iteration k) contains both the job set J(Ik) from iteration k and the job set
J(Ik+1) from iteration k + 1. Together with the definition of water levels, we
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have

W (I) ≥W (Ik) +W (Ik+1) =

∫
Ik

min
(
φ(t) · ρk, smax(t)

)
dt

+

∫
Ik+1

min
(
φ(t) · ρk+1, smax(t)

)
dt >

∫
I

min
(
φ(t) · ρk, smax(t)

)
dt.

Since the function x 7→
∫
I min

(
φ(t) · x, smax(t)

)
dt is nondecreasing, I’s water

level in iteration k must be larger than ρk, yielding a contradiction to our
algorithm’s choice.

Given this lemma, we can now prove the correctness of our algorithm.

Theorem 3.4.2 (Correctness). Consider an instance of the ContBERS problem.
If there exists a feasible solution, our algorithm returns a work-balanced and non-
wasting schedule. In particular, the returned schedule is optimal.

Proof. Assume there is a feasible solution to the given instance. We first show that
our algorithm returns a non-wasting schedule. Afterward, we show that this schedule
is also work-balanced (implying its optimality by Theorem 3.3.1).

For the first iteration’s water level, we have ρ1 <∞. Otherwise, even running all
the time at maximal speed wouldn’t finish all jobs in J1, causing any schedule to be
infeasible. Moreover, it is easy to see that EDF together with the speed function s1

on I1 yields a feasible (and non-wasting) schedule for the jobs J1. This is because,
by Equation (3.15), EDF with speed function s1 exactly finishes the workload of
all jobs within I1 (i.e., when ignoring release times and deadlines). If this schedule
is infeasible, there must be an I ′1 ⊂ I1 with W (I ′1) >

∫
I′1

min
(
φ(t) · ρ1, smax(t)

)
dt.

But then, since x 7→
∫
I′1

min
(
φ(t) ·x, smax(t)

)
dt is nondecreasing and continuous, we

get ρ(I ′1) > ρ1, contradicting the maximality of ρ1. Now consider a later iteration
k and assume we found a feasible subschedule in the previous iteration k − 1. We
immediately get ρk <∞ by Lemma 3.4.1 (ρk =∞ would contradict ρk ≤ ρk−1 <∞).
The feasibility and non-wasting property of EDF with speed function sk in Ik follows
by the same argument as for the first iteration.

We continue to show that the algorithm computes a work-balanced schedule. To
this end, we show that the constants si from Definition 3.3.6 are given by the water
levels ρk with Ti ⊆ Ik. The first part of this definition is obviously met, as it
corresponds exactly to our definition of water levels and the speed functions in Ik.
For the second part, note that we need only to consider two atomic intervals Ti ⊆ Ik
and Ti′ ⊆ Ik′ from different iterations k < k′ (if they are from the same iteration,
their water levels match, such that the definition’s second part holds trivially). By
construction of the algorithm, we cannot have i� i′: no j scheduled in Ti is active
outside of

⋃
k′′≤k Ik′′ , and the same holds for any j scheduled in

⋃
k′′≤k Ik′′ (and

thus no such job is active in Ik′). On the other hand, if i′ � i, the second part of
Definition 3.3.6 holds as ρk′ ≤ ρk by Lemma 3.4.1.
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3. Speed Scaling with Variable Electricity Rates and Speed Limits

Note that the running time of any algorithm for the ContBERS problem in-
herently depends on the ability to perform advanced computations on continuous
functions. Depending on smax and the cost factor function c, relying on numerical
methods might even be unavoidable. Since we are interested in the scheduling aspect
of the model, the following runtime discussion assumes computations (like integrals,
solving equations, taking the minimum etc.) involving continuous functions can be
performed in constant time. As noted earlier, our iterative implementation is not
the most efficient one, but it is convenient for our correctness analysis. A rather
simple improvement can be achieved by precomputing the water levels for all pairs
i1 and i2 of atomic intervals beforehand and merely updating these values at the end
of each iteration. This immediately yields the same cubic running time as known
from the original YDS algorithm [79]1:

Theorem 3.4.3 (Runtime). The ContBERS problem can be solved in time O(n3).

1There are improved implementations of YDS with runtime O(n2 logn) [63] and O(n2) [64].
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Part II.

MAKESPAN SCHEDULING
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4. Graph Balancing with Light Hyper
Edges

4.1. Introduction

Let J be a set of n jobs andM a set of m machines. Each job j ∈ J has a weight wj
and can be assigned to a specific subset of the machines. An assignment σ : J →M
is a mapping where each job is mapped to a machine to which it can be assigned.
The objective is to minimize the makespan, defined as maxi∈M

∑
j:σ(j)=iwj . This

is the classical makespan minimization in restricted assignment (R|pij ∈
{pj ,∞}|Cmax), itself a special case of the makespan minimization in unrelated
machines (R||Cmax), where a job j has possibly different weight wij on different
machines i ∈M. In the following, we just call them restricted assignment and
unrelated machine problem for short.

The first constant approximation algorithm for both problems is given by Lenstra,
Shmoys, and Tardos [58] in 1990, where the ratio is 2. They also show that re-
stricted assignment (hence also the unrelated machine problem) cannot be
approximated within 1.5 unless P=NP, even if there are only two job weights. The
upper bound of 2 and the lower bound of 1.5 have been essentially unimproved in
the intervening 25 years. How to close the gap continues to be one of the central
topics in approximation algorithms. The recent book of Williamson and Shmoys [78]
lists this as one of the ten open problems.

Our Result

We consider a special case of restricted assignment, called graph balancing
with light hyper edges, which is a generalization of the graph balancing
problem introduced by Ebenlendr, Krčál and Sgall [36]. There the restriction is
that every job can be assigned to only two machines, and hence the problem can be
interpreted in a graph-theoretic way: each machine is represented by a node, and
each job is represented by an edge. The goal is to find an orientation of the edges so
that the maximum weight sum of the edges oriented towards a node is minimized.
In our problem, jobs are partitioned into heavy and light, and we assume that heavy
jobs can go to only two machines while light jobs can go to any number of machines1.
In the graph-theoretic interpretation, light jobs are represented by hyper edges, while
heavy jobs are represented by regular edges.

1If some jobs can be assigned to just one machine, then it is the same as saying a machine has
some dedicated load. All our algorithms can handle arbitrary dedicated loads on the machines.
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4. Graph Balancing with Light Hyper Edges

We present approximation algorithms with performance guarantee strictly better
than 2 in the following settings. For simplicity of presentation, we assume that all
job weights wj are integral (this assumption is just for ease of exposition and can
be easily removed).

Two job sizes: Suppose that heavy jobs are of weight W and light jobs are of
weight w, and w < W . We give a 1.5-approximation algorithm, matching the gen-
eral lower bound of restricted assignment (it should be noted that this lower
bound is established in an even more restrictive setting [11, 36], where all jobs can
only go to two machines and there are only two different job weights). This is the
first time the lower bound is matched in a nontrivial case of restricted assign-
ment (without specific restrictions on the job weight values). In fact, sometimes
our algorithm achieves an approximation ratio strictly better than 1.5. Supposing
that w ≤ W

2 , the ratio we get is 1 + bW/2c
W .

Arbitrary job sizes: Suppose that β ∈ [4/7, 1) and W is the largest given weight.
A heavy job has weight in (βW,W ] while a light job has weight in (0, βW ]. We give
a (5/3 + β/3)-approximation algorithm.

Both algorithms have the running time of O
(
n2m3 log (

∑
j∈J wj)

)
.2

The general message of our result is clear: as long as the heaviest jobs have only
two choices, it is relatively easy to break the barrier of 2 in the upper bound of
restricted assignment. This should coincide with our intuition. The heavy jobs
are in a sense the “trouble-makers”. A mistake on them causes bigger damage than
a mistake on lighter jobs. Restricting the choices of the heavy jobs thus simplifies
the task.

The original graph balancing problem assumes that all jobs can be assigned
to only two machines and the algorithm of Ebenlendr et al. [36] gives a 1.75-
approximation. According to [70], their algorithm can be extended to our setting:
given any β ∈ [0.5, 1), they can obtain a (3/2 + β/2)-approximation. Although this
ratio is superior to ours, let us emphasize two interesting aspects of our approach.

(1) The algorithm of Ebenlendr et al. requires solving a linear program (in fact,
almost all known algorithms for the problem are LP-based), while our algorithms
are purely combinatorial. In addition to the advantage of faster running time, our
approach introduces new proof techniques (which do not involve linear programming
duality).

(2) In graph balancing, Ebenlendr et al. showed that with only two job weights
and dedicated loads on the machines, their strongest LP has the integrality gap of
1.75, while we can break the gap. Our approach thus offers a possible angle to
circumvent the barrier posed by the integrality gap, and has the potential of seeing

2For simplicity, here we upper bound
∑
j∈J aj , where aj is the number of the machines j can be

assigned to, by nm.
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4.1. Introduction

further improvement.

Before explaining our technique in more detail, we should point out another in-
teresting connection with a result of Svensson [73] for general restricted assign-
ment. He gave two local search algorithms, which terminate (but it is unknown
whether in polynomial time) and (1) with two job weights {ε, 1}, 0 < ε < 1, the
returned solution has an approximation ratio of 5/3 + ε, and (2) with arbitrary job
weights, the returned solution has an approximation ratio of ≈ 1.94. It is worth
noting that his analysis is done via the primal-duality of the configuration-LP (thus
integrality gaps smaller than two for the configuration-LP are implied). With two
job weights, our algorithm has some striking similarity to his algorithm. We are
able to prove our algorithm terminates in polynomial time—but our setting is more
restrictive. A very interesting direction for future work is to investigate how the
ideas in the two algorithms can be related and combined.

Our Technique

Our approach is inspired by that of Gairing et al. [39] for general restricted
assignment. So let us first review their ideas. Suppose that a certain optimal
makespan t is guessed. Their core algorithm either (1) correctly reports that t is
an underestimate of OPT, or (2) returns an assignment with makespan at most
t + W − 1. By a binary search on the smallest t for which an assignment with
makespan t+W −1 is returned, and the simple fact that OPT ≥W , they guarantee
the approximation ratio of t+W−1

OPT ≤ 1 + W−1
OPT ≤ 2 − 1

W (the first inequality holds
because t is the smallest number an assignment is returned by the core algorithm).
Their core algorithm is a preflow-push algorithm. Initially all jobs are arbitrarily
assigned. Their algorithm tries to redistribute the jobs from overloaded machines,
i.e., those with load more than t+W −1, to those that are not. The redistribution is
done by pushing the jobs around while updating the height labels (as commonly done
in preflow-push algorithms). The critical thing is that after a polynomial number
of steps, if there are still some overloaded machines, they use the height labels to
argue that t is a wrong guess, i.e., OPT ≥ t+ 1. Our contribution is a refined core
algorithm in the same framework. With a guess t of the optimal makespan, our core
algorithm either (1) correctly reports that OPT ≥ t+1, or (2) returns an assignment
with makespan at most (5/3 + β/3)t.

We divide all jobs into two categories, the rock jobs R, and the pebble jobs P (not
to be confused with heavy and light jobs). The former consists of those with weights
in (βt, t] while the latter includes all the rest. We use the rock jobs to form a graph
GR = (V,R), and assign the pebbles arbitrarily to the nodes. Our core algorithm
will push around the pebbles so as to redistribute them. Observe that as t ≥ W ,
all rocks are heavy jobs. So the formed graph GR has only simple edges (no hyper
edges). As β ≥ 4/7, if OPT ≤ t, then every node can receive at most one rock job
in the optimal solution. In fact, it is easy to see that we can simply assume that the
formed graph GR is a disjoint set of trees and cycles. Our entire task boils down to
the following:
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4. Graph Balancing with Light Hyper Edges

Redistribute the pebbles so that there exists an orientation of the edges
in GR in which each node has total load (from both rocks and pebbles)
at most (5/3 + β/3)t; and if not possible, gather evidence that t is an
underestimate.

Intuitively speaking, our algorithm maintains a certain activated set A of nodes.
Initially, this set includes those nodes whose total loads of pebbles cause conflicts in
the orientation of the edges in GR. A node “reachable” from a node in the activated
set is also included into the set. (Node u is reachable from node v if a pebble in v can
be assigned to u.) Our goal is to push the pebbles among nodes in A, so as to remove
all conflicts in the edge orientation. Either we are successful in doing so, or we argue
that the total load of all pebbles currently owned by the activated set, together with
the total load of the rock jobs assigned to A in any feasible orientation of the edges
in GR (an orientation in GR is feasible if every node receives at most one rock), is
strictly larger than t · |A|. The progress of our algorithm (hence its running time) is
monitored by a potential function, which we show to be monotonically decreasing.

The most sophisticated part of our algorithm is the “activation strategy”. We
initially add nodes into A if they cause conflicts in the orientation or can be (tran-
sitively) reached from such. However, sometimes we also include nodes that do not
fall into the two categories. This is purposely done for two reasons: pushing pebbles
from these nodes may help alleviate the conflict in edge orientation indirectly; and
their presence in A strengthens the contradiction proof.

Due to the intricacy of our main algorithm, we first present the algorithm for the
two job weights case in Section 4.3 and then present the main algorithm for the
arbitrary weights in Section 4.4. The former algorithm is significantly simpler (with
a straightforward activation strategy) and contains many ingredients of the ideas
behind the main algorithm.

Related Work

For restricted assignment, besides the several recent advances mentioned earlier,
see the survey of Leung and Li for other special cases [59]. For two job weights,
Chakrabarti, Khanna and Li [31] showed that using the configuration-LP, they can
obtain a (2−δ)-approximation for a fixed δ > 0 (and note that there is no restriction
on the number of machines a job can go to). Kolliopoulos and Moysoglou [54] also
considered the two job weights case. In the graph balancing setting (with two job
weights), they gave a 1.652-approximation algorithm using a flow technique (thus
they also break the integrality gap in [37]). They also showed that the optimal
makespan for restricted assignment with two job weights can be estimated in
polynomial time within a factor of at most 1.883 (and this is further improved to
1.833 in [31]).

For unrelated machines, Shchepin and Vakhania [71] improved the approx-
imation ratio to 2 − 1/m. A combinatorial 2-approximation algorithm was given
by Gairing, Monien, and Woclaw [40]. Verschae and Wiese [76] showed that the
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4.2. Preliminaries

configuration-LP has integrality gap of 2, even if every job can be assigned to only
two machines. They also showed that it is possible to achieve approximation ratios
strictly better than 2 if the job weights wij respect some constraints.

4.2. Preliminaries

Let t be a guess of OPT. Given t, our two core algorithms either report that
OPT ≥ t+ 1, or return an assignment with makespan at most 1.5t or (5/3 + β/3)t,
respectively. We conduct a binary search on the smallest t ∈ [W,

∑
j∈J wj ] for which

an assignment is returned by the core algorithms. This particular assignment is then
the desired solution.

We now explain the initial setup of the core algorithms. In our discussion, we will
not distinguish a machine and a node. Let dl(v) be the dedicated load of v, i.e.,
the sum of the weights of jobs that can only be assigned to v. We can assume that
dl(v) ≤ t for all nodes v. Let J ′ ⊆ J be the jobs that can be assigned to at least
two machines. We divide J ′ into rocks R and pebbles P. A job j ∈ J ′ is a rock,

• in the 2 job weights case (Section 4.3), if wj > t/2 and wj = W ;

• in the general job weights case (Section 4.4), if wj > βt.

A job j ∈ J ′ that is not a rock is a pebble. Define the graph GR = (V,R) as
a graph with machines M as node set and rocks R as edge set. By our definition,
a rock can be assigned to exactly two machines. So GR has only simple edges (no
hyper edges). For the sake of convenience, we call the rocks just “edges”, avoiding
ambiguity by exclusively using the term “pebble” for the pebbles.

Suppose that OPT ≤ t. Then a machine can receive at most one rock in the
optimal solution. If any connected component in GR has more than one cycle, we
can immediately declare that OPT ≥ t + 1. If a connected component in GR has
exactly one cycle, we can direct all edges away from the cycle and remove these
edges, i.e., assign the rock to the node v to which it is directed. W.L.O.G, we can
assume that this rock is part of v’s dedicated load. (Also observe that then node
v must become an isolated node). Finally, we can eliminate cycles of length 2 in
GR with the following simple reduction. If a pair of nodes u and v is connected by
two distinct rocks r1 and r2, remove the two rocks, add min(wr1, wr2) to both u’s
and v’s dedicated load, and introduce a new pebble of weight |wr1−wr2| between u
and v. Let Ψ denote the set of orientations in GR where each node has at most one
incoming edge. We use a proposition to summarize the above discussion.

Proposition 4.2.1. We can assume that

• the rocks in R correspond to the edge set of the graph GR, and all pebbles can
be assigned to at least two machines;

• the graph GR consists of disjoint trees, cycles (of length more than 2), and
isolated nodes;
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4. Graph Balancing with Light Hyper Edges

• for each node v ∈ V , dl(v) ≤ t;

• if OPT ≤ t, then the orientation of the edges in GR in the optimal assignment
must be one of those in Ψ.

4.3. The 2-Valued Case

In this section, we describe the core algorithm for the two job weights case, with
the guessed makespan t ≥ W . Observe that when t ∈ [W, 2w), if OPT ≤ t, then
every node can receive at most one job (pebble or rock) in the optimal assignment.
Hence, we can solve the problem exactly using the standard max-flow technique. So
in the following, assume that t ≥ 2w. Furthermore, let us first assume that t < 2W
(the case of t ≥ 2W will be discussed at the end of the section). Then the rocks
have weight W and the pebbles have weight w. Initially, the pebbles are arbitrarily
assigned to the nodes. Let pl(v) be the total weight of the pebbles assigned to
node v.

Definition 4.3.1. A node v is

• uncritical, if dl(v) + pl(v) ≤ 1.5t−W − w;

• critical, if dl(v) + pl(v) > 1.5t−W ;

• hypercritical, if dl(v) + pl(v) > 1.5t.

(Notice that it is possible that a node is neither uncritical nor critical.)

Definition 4.3.2. Each tree, cycle, or isolated node in GR is a system. A system
is bad if any of the following conditions holds.

• It is a tree and has at least two critical nodes, or

• It is a cycle and has at least one critical node, or

• It contains a hypercritical node.

A system that is not bad is good.

If all systems are good, then orienting the edges in each system such that every
node has at most one incoming edge gives us a solution with makespan at most 1.5t.
So let assume that there is at least one bad system.

We next define the activated set A of nodes constructively. Roughly speaking, we
will move pebbles around the nodes in A so that either there is no more bad system
left, or we argue that, in every feasible assignment, some nodes in A cannot handle
their total loads, thereby arriving at a contradiction.

In the following, if a pebble in u can be assigned to node v, we say v is reachable
from u. Node v is reachable from A if v is reachable from any node u ∈ A. A node
added into A is activated.
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4.3. The 2-Valued Case

Informally, all nodes that cause a system to be bad are activated. A node reachable
from A is also activated. Furthermore, suppose that a system is good and it has a
critical node v (thus the system cannot be a cycle). If any other node u in the same
system is activated, then so is v. We now give the formal procedure Explore1 in
Figure 4.1. Notice that in the process of activating the nodes, we also define their
levels, which will be used later for the algorithm and the potential function.

Explore1

Initialize A := {v|v is hypercritical, or v is critical in a bad system}.
Set Level(v) := 0 for all nodes in A; i := 0.

While ∃v 6∈ A reachable from A do:

i := i+ 1.
Ai := {v 6∈ A|v reachable from A}.
A′i := {v 6∈ A| v is critical in a good system

and ∃u ∈ Ai in the same system}.
Set Level(v) := i for all nodes in Ai and A′i.
A := A ∪ Ai ∪ A′i.

For each node v 6∈ A, set Level(v) =∞.

Figure 4.1.: The procedure Explore1.

The next proposition follows straightforwardly from Explore1.

Proposition 4.3.3. The following holds.

1. All nodes reachable from A are in A.

2. Suppose that v is reachable from u ∈ A. Then Level(v) ≤ Level(u) + 1.

3. If a node v is critical and there exists another node v′ ∈ A in the same system,
then Level(v) ≤ Level(v′).

4. Suppose that node v ∈ A has Level(v) = i > 0. Then there exists another
node u ∈ A with Level(u) = i − 1 so that either v is reachable from u, or
there exists another node v′ ∈ A reachable from u with Level(v′) = i in the
same system as v and v is critical.

After Explore1, we apply the Push operation (if possible), defined as follows.

Definition 4.3.4. Push operation: push a pebble from u∗ to v∗ if the following
conditions hold.

1. The pebble is at u∗ and it can be assigned to v∗.

2. Level(v∗) = Level(u∗) + 1.
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3. v∗ is uncritical, or v∗ is in a good system that remains good with an additional
weight of w at v∗.

4. Subject to the above three conditions, choose a node u∗ so that Level(u∗) is
minimized (if there are multiple candidates, pick any).

Our algorithm can be simply described as follows.

Algorithm 1: As long as there is a bad system, apply Explore1 and
Push operation repeatedly. When there is no bad system left, return a
solution with makespan at most 1.5t. If at some point, push is no longer
possible, declare that OPT ≥ t+ 1.

Lemma 4.3.5. When there is at least one bad system and the Push operation is
no longer possible, OPT ≥ t+ 1.

Proof. Let A(S) denote the set of activated nodes in system S. Recall that Ψ denotes
the set of all orientations in GR in which each node has at most one incoming edge.
We prove the lemma via the following claim.

Claim 4.3.6. Let S be a system.

• Suppose that S is bad. Then

W ·(min
ψ∈Ψ

number of rocks to A(S) according to ψ)+
∑

v∈A(S)

pl(v)+dl(v) > |A(S)|t.

(4.1)

• Suppose that S is good. Then

W ·(min
ψ∈Ψ

number of rocks to A(S) according to ψ)+
∑

v∈A(S)

pl(v)+dl(v) > |A(S)|t−w.

(4.2)

Observe that the term |A(S)|t is the maximum total weight that all nodes in A(S)
can handle if OPT ≤ t. As pebbles owned by nodes in A can only be assigned to the
nodes in A, by the pigeonhole principle, in all orientations ψ ∈ Ψ, and all possible
assignments of the pebbles, at least one bad system S has at least the same number
of pebbles in A(S) as the current assignment, or a good system S has at least one
more pebble than it currently has in A(S). In both cases, we reach a contradiction.

Proof of Claim 4.3.6: First observe that in all orientations in Ψ, the nodes in A(S)
have to receive at least |A(S)|−1 rocks. If S is a cycle, then the nodes in A(S) have
to receive exactly |A(S)| rocks.

Next observe that none of the nodes in A(S) is uncritical, since otherwise, by
Proposition 4.3.3(4) and Definition 4.3.4(3), the Push operation would still be pos-
sible. By the same reasoning, if S is a tree and A(S) 6= ∅, at least one node v ∈ A(S)
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is critical; furthermore, if |A(S)| = 1, this node v satisfies dl(v)+pl(v) > 1.5t−w, as
an additional weight of w would make v hypercritical. Similarly, if S is an isolated
node v ∈ A, then dl(v) + pl(v) > 1.5t− w.

We now prove the claim by the following case analysis.

1. Suppose that S is a good system and A(S) 6= ∅. Then either S is a tree
and A(S) contains exactly one critical (but not hypercritical) node, or S is
an isolated node, or S is a cycle and has no critical node. In the first case, if
|A(S)| ≥ 2, the LHS of (4.2) is at least

(1.5t−W + 1) + (|A(S)| − 1)(1.5t−W − w + 1) + (|A(S)| − 1)W =

|A(S)|t+ (|A(S)| − 2)(0.5t− w + 1) + t−W − w + 2 > |A(S)|t− w,

using the fact that 0.5t ≥ w, t ≥ W , and |A(S)| ≥ 2. If, on the other hand,
|A(S)| = 1, then the LHS of (4.2) is strictly more than

1.5t− w ≥ t = |A(S)|t,

and the same also holds for the case when S is an isolated node. Finally, in
the third case, the LHS of (4.2) is at least

|A(S)|(1.5t−W − w + 1) + |A(S)|W > |A(S)|t.

2. Suppose that A(S) contains at least two critical nodes, or that S is a cycle
and A(S) has at least one critical node. In both cases, S is a bad system.
Furthermore, the LHS of (4.1) can be lower-bounded by the same calculation
as in the previous case with an extra term of w.

3. Suppose that A(S) contains a hypercritical node. Then the system S is bad,
and the LHS of (4.1) is at least

(1.5t+ 1) + (|A(S)| − 1)(1.5t−W − w + 1) + (|A(S)| − 1)W =

|A(S)|t+ (|A(S)| − 1)(0.5t− w + 1) + 0.5t+ 1 > |A(S)|t,

where the inequality holds because 0.5t ≥ w.

We argue that Algorithm 1 terminates in polynomial time by the aid of a potential
function, defined as

Φ =
∑
v∈A

(|V | − Level(v)) · (number of pebbles at v).

Trivially, 0 ≤ Φ ≤ |V | · |P|. The next lemma implies that Φ is monotonically
decreasing after each Push operation.

Lemma 4.3.7. For each node v ∈ V , let Level(v) and Level′(v) denote the levels
before and after a Push operation, respectively. Then Level′(v) ≥ Level(v).
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Proof. We prove by contradiction. Suppose that there exist nodes x with Level′(x) <
Level(x). Choose v to be one among them with minimum Level′(v). By the choice
of v, and Definition 4.3.4(3), Level′(v) > 0 and v ∈ A after the Push operation.
Thus, by Proposition 4.3.3(4), there exists a node u with Level′(u) = Level′(v)−1,
so that after Push,

• Case 1: v is reachable from u ∈ A, or

• Case 2: there exists another node v′ ∈ A reachable from u ∈ A with Level′(v′) =
Level′(v) in the same system as v, and v is critical.

Notice that by the choice of v, in both cases, Level′(u) ≥ Level(u), and u ∈ A
also before the Push operation. Let p be the pebble by which u reaches v (Case 1),
or v′ (Case 2), after Push. Before the Push operation, p was at some node u′ ∈ A
(u′ may be u, or p is the pebble pushed: from u′ to u).

By Proposition 4.3.3(2), in Case 1, Level(v) ≤ Level(u′) + 1 (as v is reachable
from u′ via p before Push), and Level(v′) ≤ Level(u′)+1 in Case 2. Furthermore,
if in Case 2 v was already critical before push, then Level(v) ≤ Level(v′) by
Proposition 4.3.3(3) (note that v′ ∈ A as it is reachable from u′ ∈ A). Hence, in
both cases we would have

Level(v) ≤ Level(u′) + 1 ≤ Level(u) + 1 ≤ Level′(u) + 1 = Level′(v),

a contradiction. Note that the second inequality holds no matter u = u′ or not.
Finally consider Case 2 where v was not critical before the Push operation. Then

a pebble p′ 6= p is pushed into v in the operation. Note that in this situation, v’s
system is a tree and contains no critical nodes before Push (by Definition 4.3.4(3));
in particular v′ is not critical. Furthermore, the presence of p in u implies that
Level(v′) ≤ Level(u) + 1 by Proposition 4.3.3(2), and that v′ ∈ A by Proposi-
tion 4.3.3(1). As v′ is not critical, Level(v′) > 0, and by Proposition 4.3.3(4) there
exists a node u′′ with Level(u′′) = Level(v′) − 1 so that u′′ can reach v′ by a
pebble p′′ (u′′ may be u and p′′ may be p). As

Level(v′) ≤ Level(u) + 1 ≤ Level′(u) + 1 = Level′(v) < Level(v),

the Push operation should have pushed p′′ into v′ instead of p′ into v (see Def-
inition 4.3.4(4)), since u′′ and v′ satisfy all the first three conditions of Defini-
tion 4.3.4.

By Lemma 4.3.7 and the fact that a pebble is pushed to a node with higher
level, the potential Φ strictly decreases after each Push operation, implying that
Algorithm 1 finishes in polynomial time.

Approximation Ratio: When t < 2W , we apply Algorithm 1. In the case of
t ≥ 2W , we apply the algorithm of Gairing et al. [39], which either correctly reports
that OPT ≥ t+1, or returns an assignment with makespan at most t+W−1 < 1.5t.
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Suppose that t is the smallest number for which an assignment is returned. Then
OPT ≥ t, and our approximation ratio is bounded by 1.5t

OPT ≤ 1.5. We summarize
our result in a theorem.

Theorem 4.3.8. With arbitrary dedicated loads on the machines, jobs of weight W
that can be assigned to two machines, and jobs of weight w that can be assigned to
any number of machines, we can find a 1.5 approximate solution in polynomial time.

In the following, we show that a slight modification of our algorithm yields an

improved approximation ratio of 1 +
bW

2
c

W if W ≥ 2w.

Improving the Ratio. Suppose that W ≥ 2w.

As before, we first assume that t < 2W , and discuss the case t ≥ 2W at the end
of the section. We modify our previous algorithm as follows:

Definition 4.3.9. A node v is

• uncritical, if dl(v) + pl(v) ≤ t+ bW2 c −W − w;

• critical, if dl(v) + pl(v) > t+ bW2 c −W ;

• hypercritical, if dl(v) + pl(v) > t+ bW2 c.

Modified Algorithm 1: As long as there is a bad system, apply Ex-
plore1 and Push operation repeatedly. When there is no bad system
left, return a solution with makespan at most t+ bW2 c. If at some point,
push is no longer possible, declare that OPT ≥ t+ 1.

The proof of Lemma 4.3.7 remains the same, and to establish Lemma 4.3.5 we
just need to re-do the proof of Claim 4.3.6.

New Proof of Claim 4.3.6: By the same reasoning as before,

• none of the nodes in A(S) is uncritical;

• if S is a tree and A(S) 6= ∅, at least one node v ∈ A(S) is critical; furthermore,
if |A(S)| = 1, this node v satisfies dl(v) + pl(v) > t+ bW2 c − w;

• if S is an isolated node v ∈ A, then dl(v) + pl(v) > t+ bW2 c − w.

We now re-do the case analysis.

1. Suppose that S is a good system and A(S) 6= ∅. Then either S is a tree
and A(S) contains exactly one critical (but not hypercritical) node, or S is
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4. Graph Balancing with Light Hyper Edges

an isolated node, or S is a cycle and has no critical node. In the first case, if
|A(S)| ≥ 2, the LHS of (4.2) is at least

(t+ bW
2
c −W + 1) + (|A(S)| − 1)(t+ bW

2
c −W − w + 1) + (|A(S)| − 1)W =

|A(S)|t−W + |A(S)|(bW
2
c+ 1)− (|A(S)| − 1)w >

|A(S)|t+
(|A(S)| − 2)W

2
− (|A(S)| − 1)w ≥ |A(S)|t− w,

where the first inequality holds because bW2 c+ 1 > W
2 and the last inequality

holds because |A(S)| ≥ 2 and W ≥ 2w. If, on the other hand, |A(S)| = 1,
then the LHS of (4.2) is strictly more than

t+ bW
2
c − w ≥ t = |A(S)|t,

and the same also holds for the case when S is an isolated node. Finally, in
the third case, the LHS of (4.2) is at least

|A(S)|(t+ bW
2
c −W − w + 1) + |A(S)|W > |A(S)|t.

2. Suppose that A(S) contains at least two critical nodes, or that S is a cycle
and A(S) has at least one critical node. In both cases, S is a bad system.
Furthermore, the LHS of (4.1) can be lower-bounded by the same calculation
as in the previous case with an extra term of w.

3. Suppose that A(S) contains a hypercritical node. Then the system S is bad,
and the LHS of (4.1) is at least

(t+ bW
2
c+ 1) + (|A(S)| − 1)(t+ bW

2
c −W − w + 1) + (|A(S)| − 1)W =

|A(S)|(t+ bW
2
c+ 1)− (|A(S)| − 1)w > |A(S)|t,

where the last inequality holds because W ≥ 2w.

Approximation Ratio: When t ≥ 2W , we can again use the Gairing et al’s
algorithm [39], which either correctly reports that OPT ≥ t + 1, or returns an
assignment with makespan at most t+W − 1.

Suppose that t is the smallest number for which an assignment is returned (then
OPT ≥ t). Then the approximation ratio is

t+ bW2 c
OPT

, if t < 2W ;
t+W − 1

OPT
, if t ≥ 2W.

The former is bounded by 1 +
bW

2
c

W , since OPT ≥ W ; the latter is bounded by

1 + W−1
2W ≤ 1 +

bW
2
c

W , since OPT ≥ t ≥ 2W . We can thus conclude:
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Theorem 4.3.10. Suppose that W ≥ 2w. With arbitrary dedicated loads on the
machines, jobs of weight W that can be assigned to two machines, and jobs of weight

w that can be assigned to any number of machines, we can find a 1+
bW

2
c

W approximate
solution in polynomial time.

4.4. The General Case

In this section, we describe the core algorithm for the case of arbitrary job weights.
This algorithm inherits some basic ideas from the previous section, but has several
significantly new ingredients—mainly due to the fact that the rocks now have dif-
ferent weights. Before formally presenting the algorithm, let us build up intuition
by looking at some examples.

For simplicity, we rescale the numbers and assume that t = W = 1 and β = 0.7.
We aim for an assignment with makespan of at most 5/3+0.7/3 = 1.9 or decide that
OPT > 1. Consider the example in Figure 4.2. Note that there are 2k+ 1 (for some
large k) nodes (the pattern of the last two nodes repeats). Due to node 1 (which can
be regarded as the analog of a critical node in the previous section), all edges are
to be directed toward the right if we shoot for the makespan of 1.9. Suppose that
there is an isolated node with the pebble load of 2 + ε (this node can be regarded
as a bad system by itself) and it has a pebble of weight 0.7 that can be assigned to
node 3, 5, 7 and so on up to 2k + 1. Clearly, we do not want to push the pebble
into any of them, as it would cause the makespan to be larger than 1.9 by whatever
orientation. Rather, we should activate node 1 and send its pebbles away with the
aim of relieving the “congestion” in the current system (later we will see that this
is activation rule 1). In this example, all odd-numbered nodes are activated, and
the entire set of nodes (including even-numbered nodes) form a conflict set (which
will be defined formally later). Roughly speaking, the conflict sets contain activated
nodes and the nodes that can be reached by “backtracking” the directed edges from
them. These conflict sets embody the “congestion” in the systems.

2− ǫ
0.7 + ǫ

0.2 + ǫ 0.2 + ǫ0.2 + ǫ 0.2 + ǫ
0.7 + ǫ 1

1 2 3 4 5

0.7 0.7

1 · · ·

Figure 4.2.: There are 2k+1 nodes (the rest is repeating the same pattern). Numbers inside
the shaded circles (nodes) are their pebble load.

Recall that in the previous section, if the Push operation was no longer possible,
we argued that the total load is too much (see the proof of Lemma 4.3.5) for the
activated nodes system by system. Analogously, in this example, we need to argue
that in all feasible orientations, the activated set of nodes (totally k + 1 of them)
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Figure 4.3.: A naive Push will oscillate
the pebble between nodes 4 and 4′.
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Figure 4.4.: A fake orientation from node
2 to 3 causes node 4 to have an incoming
edge, thus informing node 4′ not to push
the pebble.

in this conflict set cannot handle the total load. However, if all edges are directed
toward the left, their total load is only (0.2 + ε)k+ (2− ε) + (0.7 + ε)k = 2 + 0.9k+
ε(2k − 1), which is less than what they can handle (which is k + 1) when k is large.
As a result, we are unable to arrive at a contradiction.

To overcome this issue, we introduce another activation rule to strengthen our
contradiction argument. If all edges are directed to the left, on the average, each
activated node has a total load of about 0.2 + 0.7. However, each inactivated node
has, on the average, a total load of about 0.2 + 1. This motivates our activation
rule 2 : if an activated node is connected by a “relatively light” edge to some other
node in the conflict set, the latter should be activated as well. The intuition behind
is that the two nodes together will receive a relatively heavy load. We remark that
it is easy to modify this example to show that if we do not apply activation rule 2,
then we cannot hope for a 2− δ approximation for any small δ > 0. 3

Next consider the example in Figure 4.3. Here nodes 2, 2′, and 4′ can be regarded

3Looking at this particular example, one is tempted to use the idea of activating all nodes in the
conflict set. However, such an activation rule will not work. Consider the following example:
There are k + 2 nodes forming a path, and the k + 1 edges connecting them all have weight
0.95+ε. The first node has a pebble load of 1 and thus “forces” an orientation of the entire path
(for a makespan of at most 1.9). The next k nodes have a pebble load of 0, and the last node has
a pebble load of 0.25 and is reachable from a bad system via a pebble of weight 0.7. The conflict
set is the entire path, and activating all nodes leads to a total load of (k+1) ·(0.95+ε)+1+0.25,
which is less than k + 2 for large k.
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4.4. The General Case

as the critical nodes, and {1, 2}, {1′, 2′, 3′, 4′} are the two conflict sets. Both nodes
1 and 1′ can be reached by an isolated node with heavy load (the bad system) with
a pebble of weight 0.7. Suppose further that node 4′ can reach node 4 by another
pebble of weight 0.7. It is easy to see that a naive Push definition will simply
“oscillate” the pebble between nodes 4 and 4′, causing the algorithm to cycle.

Intuitively, it is not right to push the pebble from 4′ into 4, as it causes the conflict
set in the left system to become bigger. Our principle of pushing a pebble should
be to relieve the congestion in one system, while not worsening the congestion in
another. To cope with this problematic case, we use fake orientations, i.e., we direct
edges away from a conflict set, as shown in Figure 4.4. Node 2 directs the edge
toward node 3, which in turn causes the next edge to be directed toward node 4.
With the new incoming edge, node 4 now has a total load of 1 + 0.3 + ε to handle,
and the pebble thus will not be pushed from node 4′ to node 4.

4.4.1. Formal description of the algorithm

We inherit some terminology from the previous section. We say that v is reachable
from u if a pebble in u can be assigned to v, and that v is reachable from A if
v is reachable from any node u ∈ A. Each tree, cycle, isolated node in GR is a
system. Note that there is exactly one edge between two adjacent nodes in GR (see
Proposition 4.2.1). For ease of presentation, we use the short hand vu to refer to
the edge {v, u} in GR and wvu is its weight.

The orientation of the edges in GR will be decided dynamically. If uv is directed
toward v, we call v a father of u, and u a child of v (notice that a node can have
several fathers and children). We write rl(v) to denote total weight of the rocks
that are (currently) oriented towards v, and pl(v) still denotes the total weight of
the pebbles at v. An edge that is currently un-oriented is neutral. In the beginning,
all edges in GR are neutral.

A set C of nodes, called the conflict set, will be collected in the course of the algo-
rithm. Let D(v) := {u ∈ C : u is child of v} and F(v) := {u ∈ C : u is father of v}
for any v ∈ C. A node v ∈ C is a leaf if D(v) = ∅, and a root if F(v) = ∅. Further-
more, a node v is overloaded if dl(v)+pl(v)+rl(v) > (5/3+β/3)t, and a node v ∈ C
is critical if there exists u ∈ F(v) such that dl(v) + pl(v) + wvu > (5/3 + β/3)t. In
other words, a node in the conflict set is critical if it has enough load by itself (with-
out considering incoming rocks) to “force” an incident edge to be directed toward a
father in the conflict set.

Initially, the pebbles are arbitrarily assigned to the nodes. The orientation of a
subset of the edges in GR is determined by the procedure Forced Orientations
in Figure 4.5.

Intuitively, the procedure first finds a “source node” v, whose dedicated, pebble,
and rock load is so high that it “forces” an incident edge vu to be oriented away
from v. The orientation of this edge then propagates through the graph, i.e. edge-
orientations induced by the direction of vu are established. Then the next “source”
is found, and so on. To simplify our proofs, we assume that ties are broken according
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4. Graph Balancing with Light Hyper Edges

Forced Orientations

While ∃ neutral edge vu in GR, s.t. dl(v) + pl(v) + rl(v) +wvu > (5/3 +
β/3)t:

Direct vu towards u; Marked := {u}.
While ∃ neutral edge v′u′ in GR, s.t. dl(v′) + pl(v′) + rl(v′) + wv′u′ >

(5/3 + β/3)t and v′ ∈Marked:

Direct v′u′ towards u′; Marked := Marked ∪ {u′}.

Figure 4.5.: The procedure Forced Orientations.

to a fixed total order if several pairs (v, u) satisfy the conditions of the while-loops.
The following lemma describes a basic property of the procedure Forced Ori-

entations, that will be used in the subsequent discussion.

Lemma 4.4.1. Suppose that a node v becomes overloaded during Forced Orien-
tations. Then there exists a path u0u1 . . . ukv of neutral edges, such that dl(u0) +
pl(u0) + rl(u0) + wu0u1 > (5/3 + β/3)t before the procedure, that becomes directed
from u0 towards v during the procedure (note that u0 could be v). Furthermore,
other than ukv, no edge becomes directed toward v in the procedure.

Proof. We start with a simple observation. Let ab be the first edge directed in some
iteration of the procedure’s outer while-loop; suppose from a to b. It is easy to
see that up to this moment, no edge has been directed toward a in course of the
procedure. Furthermore, if another edge a′b′ is directed in the same iteration of
the outer while-loop, then there exists a path of neutral edges, starting with ab and
ending with a′b′, that becomes directed during this iteration. This proves the first
part of the lemma.

Now suppose that some node v becomes overloaded and has more than one edge
directed towards it during the procedure. Let vx and vy be the last two edges
directed toward v, and note that both, vx and vy, become directed in the same
iteration of the outer while-loop (because as soon as one of the two is directed toward
v, the other edge satisfies the conditions of the inner while-loop). Hence, there are
two different paths directed towards v (with final edges vx and vy, respectively),
both of which start with the first edge that becomes directed in this iteration of
the outer while-loop. This is not possible, since every system is a tree or a cycle, a
contradiction.

Clearly, if after the procedure Forced Orientations a node v still has a neutral
incident edge vu, then dl(v) + pl(v) + rl(v) +wvu ≤ (5/3 +β/3)t. Now suppose that
after the procedure, none of the nodes is overloaded. Then orienting the neutral
edges in each system in such a way that every node has at most one more incoming
edge gives us a solution with makespan at most (5/3 + β/3)t. So assume the proce-
dure ends with a non-empty set of overloaded nodes. We then apply the procedure
Explore2 in Figure 4.6.
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Explore2

Initialize A := ∅; C := ∅; i := 0. Call Forced Orientations.
Repeat:

If i = 0: Ai := {v|v is overloaded}.
Else Ai := {v|v 6∈ A, v is reachable from Ai−1}.
If Ai = ∅: stop.
Ci := Ai; A := A ∪ Ai; C := C ∪ Ci.

(Conflict set construction)
While ∃v 6∈ C with a father u ∈ C or ∃ neutral vu with v ∈ C do:

While ∃v 6∈ C with a father u ∈ C:
Ci := Ci ∪ {v}; C := C ∪ Ci.

If ∃ neutral vu with v ∈ C:
Direct vu towards u; Call Forced Orientations.

(Activation of nodes)
While ∃v ∈ C \ A satisfying one of the following conditions:

Rule 1 : ∃u ∈ F(v), such that dl(v) + pl(v) + wvu > (5/3 + β/3)t
Rule 2 : ∃u ∈ A ∩ (D(v) ∪ F(v)), such that wvu < (2/3 + β/3)t

Do: Ai := Ai ∪ {v}; A := A ∪ Ai.

i := i+ 1.

Figure 4.6.: The procedure Explore2.

Let us elaborate the procedure. In each round, we perform the following three
tasks.

1. Add those nodes reachable from the nodes in Ai−1 into Ai in case of i > 1; or
the overloaded nodes into Ai in case of i = 0. These nodes will be referred to
as Type A nodes.

2. In the sub-procedure Conflict set construction, nodes not in the conflict set
and having a directed path to those Type A nodes in Ai are continuously added
into the conflict set Ci. Furthermore, the earlier mentioned fake orientations
are applied: each node v ∈ Ci, if having an incident neutral edge vu, direct it
toward u and call the procedure Forced Orientations. It may happen that
in this process, two disjoint nodes in Ci are now connected by a directed path
P , then all nodes in P along with all nodes having a path leading to P are
added into Ci (observe that all these nodes have a directed path to some Type
A node in Ai). We note that the order of fake orientations does not materially
affect the outcome of the algorithm (see Lemma 4.4.21).

3. In the next sub-procedure Activation of nodes, we use two rules to activate
extra nodes in C\A. Rule 1 activates the critical nodes; Rule 2 activates those
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nodes whose father or child are already activated and they are connected by
an edge of weight less than (2/3 + β/3)t. We will refer to the former as Type
B nodes and the latter as Type C nodes.

Observe that except in the initial call of Forced Orientations, no node ever
becomes overloaded in Explore2 (by Lemma 4.4.1 and the fact that every system
is a tree or a cycle). Let us define Level(v) = i if v ∈ Ai. In case v 6∈ A, let
Level(v) =∞. The next proposition summarizes some important properties of the
procedure Explore2.

Proposition 4.4.2. After the procedure Explore2, the following holds.

1. All nodes reachable from A are in A.

2. Suppose that v ∈ A is reachable from u ∈ A. Then Level(v) ≤ Level(u) + 1.

Furthermore, at the end of each round i, the following holds.

3. Every node v that can follow a directed path to a node in C := ∪iτ=0Cτ is in
C. Furthermore, if a node v ∈ C has an incident edge vu with u 6∈ C, then vu
is directed toward u.

4. Each node v ∈ Ai is one of the following three types.

a) Type A: there exists another node u ∈ Ai−1 so that v is reachable from
u, or v is overloaded and is part of A0.

b) Type B: v is activated via Rule 1 (hence v is critical)4, and there exists
a directed path from v to u ∈ Ai of Type A.

c) Type C: v is activated via Rule 2, and there exists an adjacent node
u ∈ ∪iτ=0Aτ so that wvu < (2/3 + β/3)t and u ∈ D(v) ∪ F(v).

After the procedure Explore2, we apply the Push operation (if possible), defined
as follows.

Definition 4.4.3. Push operation: push a pebble from u∗ to v∗ if the following
conditions hold (if there are multiple candidates, pick any).

1. The pebble is at u∗ and it can be assigned to v∗.

2. Level(v∗) = Level(u∗) + 1.

3. dl(v∗) + pl(v∗) + rl(v∗) ≤ (5/3− 2/3 · β)t.

4. D(v∗) = ∅, or dl(v∗) + pl(v∗) + wv∗u ≤ (5/3− 2/3 · β)t for all u ∈ F(v).

4For simplicity, if a node can be activated by both Rule 1 and Rule 2, we assume it is activated
by Rule 1.
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Definition 4.4.3(3) is meant to make sure that v∗ does not become overloaded after
receiving a new pebble (whose weight can be as heavy as βt). Definition 4.4.3(4)
says either v∗ is a leaf, or adding a pebble with weight as heavy as βt does not cause
v∗ to become critical.

Algorithm 2: Apply Explore2. If it ends with A0 = ∅, return a
solution with makespan at most (5/3 + β/3)t. Otherwise, apply Push.
If push is impossible, declare that OPT ≥ t + 1. Un-orient all edges in
GR and repeat this process.

Lemma 4.4.4. When there is at least one overloaded node and the Push operation
is no longer possible, OPT ≥ t+ 1.

Lemma 4.4.5. For each node v ∈ V , let Level(v) and Level′(v) denote the levels
before and after a Push operation, respectively. Then Level′(v) ≥ Level(v).

The preceding two lemmas are proven in sections 4.4.2 and 4.4.3, respectively. We
again use the potential function

Φ =
∑
v∈A

(|V | − Level(v)) · (number of pebbles at v)

to argue the polynomial running time of Algorithm 2. Trivially, 0 ≤ Φ ≤ |V | · |P|.
Furthermore, by Lemma 4.4.5 and the fact that a pebble is pushed to a node with
higher level, the potential Φ strictly decreases after each Push operation. This
implies that Algorithm 2 finishes in polynomial time.

We can therefore conclude:

Theorem 4.4.6. Let β ∈ [4/7, 1). With arbitrary dedicated loads on the machines,
if jobs of weight greater than βW can be assigned to only two machines, and jobs
of weight at most βW can be assigned to any number of machines, we can find a
5/3 + β/3 approximate solution in polynomial time.

4.4.2. Proof of Lemma 4.4.4

Our goal is to show that in any feasible solution, the activated nodes A must handle
a total load of more than |A|t, which implies that OPT ≥ t + 1. For the proof, we
focus on a single component K of GR[C], the subgraph of GR induced by the conflict
set C, and a fixed orientation ψ ∈ Ψ. Let ψ(v) denote the total weight of the rocks
assigned to any v ∈ A by ψ (note that 0 ≤ ψ(v) ≤ t), and let A(K) denote the set
of activated nodes in K. We will show that∑

v∈A(K)

pl(v) + dl(v) + ψ(v) > |A(K)|t (4.3)

if A(K) 6= ∅. The lemma then follows by summing over all components of GR[C],
and noting that the pebbles on the nodes in A can only be assigned to the nodes in
A (Proposition 4.4.2(1)).
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If K consists only of a single activated node v, then (4.3) clearly holds, as pl(v) +
dl(v) > (5/3−2/3 ·β)t ≥ t (since v is a Type A node and push is no longer possible).
In the following, we will assume that F(v) ∪ D(v) 6= ∅ for all v ∈ A(K).

Definition 4.4.7. For every non-leaf v ∈ A(K), fix some node d(v) ∈ D(v), such
that wvd(v) = maxu∈D(v)wvu.

Definition 4.4.8. For every non-root v ∈ A(K), fix some node f(v) ∈ F(v), such
that wvf(v) = maxu∈F(v)wvu.

Definition 4.4.9. For every node v ∈ A(K) that is neither a root nor a leaf, fix
some node n(v) ∈ D(v) ∪ F(v), such that wvn(v) = maxu∈D(v)∪F(v)wvu.

Definition 4.4.10. For every node v ∈ A(K) that was activated using Rule 2 in
the final execution of Explore2, fix some node a(v) ∈ A(K) ∩ (D(v) ∪ F(v)) with
wva(v) < (2/3 + β/3)t, such that a(v) has been activated before v.

We classify the nodes v ∈ A(K) that are neither a root nor a leaf, into the following
three types.

Type 1: |D(v)| > 1.

Type 2: |D(v)| = 1 and v was activated via Rule 2 (i.e., as a Type C node).

Type 3: |D(v)| = 1 and v was not activated via Rule 2 (i.e. as a Type A or Type B
node).

In the following, we summarize the inequalities that we use for the different types
of nodes, in order to prove (4.3). We refer to them as the load-inequalities.

Claim 4.4.11. For every leaf v ∈ A(K), pl(v) + dl(v) > (5/3 + β/3)t− wvf(v).

Proof. If v ∈ Ai is activated as a Type A node, then it is either overloaded or is
reachable from a node u ∈ Ai−1. In both cases, since push is no longer possible,
pl(v)+dl(v)+rl(v) > (5/3−2/3·β)t. The claim follows as rl(v) = 0 and wvf(v) > βt.
If v is not activated as a Type A node, then v first becomes part of C and then
becomes activated via Rule 1 or Rule 2. In this case, at the moment v becomes part
of C, it must have a father u ∈ C. The edge vu becomes oriented towards u only
when Forced Orientations is called and dl(v)+pl(v)+rl(v)+wvu > (5/3+β/3)t.
The claim follows again as rl(v) = 0 and wvf(v) ≥ wvu.

Claim 4.4.12. For every root v ∈ A(K) with |D(v)| = 1, pl(v) + dl(v) > (5/3 −
2/3 · β)t− wvd(v).

Proof. As v ∈ Ai has no father in C, it must either be overloaded or reachable from
an activated node u ∈ Ai−1. In both cases, pl(v) + dl(v) + rl(v) > (5/3− 2/3 · β)t,
since the Push operation is no longer possible. The claim follows as |D(v)| = 1
implies wvd(v) ≥ rl(v).
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Claim 4.4.13. For every root v ∈ A(K) with |D(v)| > 1, pl(v) + dl(v) ≥ 0.

Proof. Trivially true.

Claim 4.4.14. For every Type 1 node v ∈ A(K), pl(v) + dl(v) ≥ 0.

Proof. Trivially true.

Claim 4.4.15. For every Type 2 node v ∈ A(K), pl(v) + dl(v) > (5/3 + β/3)t −
wvf(v) − wvd(v).

Proof. As v is activated using Rule 2, it first becomes part of C without being
activated. For this to happen, it must have a father u ∈ C. The edge vu becomes
oriented towards u only when Forced Orientations is called and dl(v) + pl(v) +
rl(v) + wvu > (5/3 + β/3)t. The claim follows as wvd(v) ≥ rl(v) (since |D(v)| = 1)
and wvf(v) ≥ wvu.

Claim 4.4.16. For every Type 3 node v ∈ A(K), pl(v) + dl(v) > (5/3− 2/3 · β)t−
wvn(v).

Proof. If v is overloaded, the claim directly follows from the fact that wvn(v) ≥ rl(v).
Furthermore, if v ∈ Ai is reachable from an activated node u ∈ Ai−1, then the claim
follows from the definition of n(v) and the fact that either the third or the fourth
condition of push must be violated. The only other possibility for v to be activated
is via Rule 1, which together with the definition of n(v) implies our claim.

To prove (4.3), we look at each node v ∈ A(K) separately and calculate how much
it contributes to the balance under some simplifying assumptions. In the end, we
will see that the nodes in A(K) have enough load to compensate for the assumptions
we made.

Let EA(K) denote the edges of K that are incident with the nodes A(K), i.e.
EA(K) := {vu ∈ R : u ∈ A(K), v ∈ D(u)∪F(u)}. We say that an edge vu ∈ EA(K) is
covered if wvu appears on the right-hand side of u’s and/or v’s load-inequality. For
example, if v is a leaf, then vf(v) is covered. Every edge in EA(K) that is not covered
is called uncovered. Finally, we say that an edge vu ∈ EA(K) is doubly covered if wvu
appears on the right-hand side of both u’s and v’s load-inequality.

We distinguish two cases.

Case 1: K is a tree.

Claim 4.4.17. K contains 1 +
∑

v∈K:F(v)6=∅(|F(v)| − 1) many roots, and
1 +

∑
v∈K:D(v)6=∅(|D(v)| − 1) many leaves. Furthermore, every root and leaf in K is

activated.

Proof. The first part simply follows from the degree sum formula for directed graphs
and the fact that K is a tree. For the second part, observe that any node v ∈ C
that is not activated as Type A node, must have had a father u ∈ C already before
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it got added into C itself. This proves that every root in K is activated (as a Type
A node).

If a leaf v ∈ C is not activated as Type A node, then its incident edge vu with
u ∈ C is oriented toward u only when Forced Orientations is called and dl(v) +
pl(v) + rl(v) + wvu > (5/3 + β/3)t. As v ∈ C ends up a leaf, rl(v) = 0, and Rule 1
would have applied to v. So every leaf in K is activated.

In our calculations, we will assume that every covered edge vu ∈ EA(K) has weight
wvu = t, and that ψ(v) = t for all v ∈ A(K). With these assumptions, we will show
that∑
v∈A(K)

pl(v) + dl(v) + ψ(v) > |A(K)|t

− |{doubly covered vu ∈ EA(K) : wvu < (2/3 + β/3)t}| · (1/3− β/3)t

+ |{uncovered vu ∈ EA(K)}| · (t− wvu)

+ t.

(4.4)

Let us consider the error caused by these two assumptions when we lower-bound
the term

∑
v∈A(K) pl(v) + dl(v) + ψ(v), and in doing so, we will show why (4.4)

implies (4.3).
Consider an edge vu ∈ EA(K) that ψ assigns to a node in A(K), say v. Consider

three possibilities.

• If vu is covered, then wvu appears on the LHS of (4.3) as a negative term after
we plug in the load-inequalities, and the two terms ψ(v) and wvu cancel each
other. Hence, in this case, we make no error by assuming both terms to be
equal to t.

• If vu is doubly covered and wvu < (2/3+β/3)t, our assumptions underestimate
the load

∑
v∈A(K) pl(v) + dl(v) + ψ(v) by more than (1/3− β/3)t.

• If vu is uncovered, then we overestimate ψ(v) by at most t− wvu.

Finally, we note that ψ must assign an edge from EA(K) to every node in A(K)
except for possibly one. For this special node v∗ that does not receive an edge from
EA(K) under ψ, we overestimate ψ(v∗) by at most t. In conclusion, when we remove
our assumptions,

∑
v∈A(K) pl(v) + dl(v) +ψ(v) increases by more than (1/3− β/3)t

per doubly covered edge vu ∈ EA(K) with wvu < (2/3 + β/3)t, and decreases by at
most t−wvu per uncovered edge vu ∈ EA(K), plus possibly another t for the special
node v∗. Hence, if we prove inequality (4.4) under the aforementioned assumptions,
(4.3) must hold after we remove the assumptions, and Lemma 4.4.4 would follow.

We now turn to proving (4.4) when every covered edge vu ∈ EA(K) has weight
wvu = t, and ψ(v) = t for all v ∈ A(K). To this end, we consider the value
pl(v) + dl(v) + ψ(v) as a budget of node v. Furthermore, we also assign budgets
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to edges vu ∈ EA(K) that are doubly covered and have weight wvu < (2/3 + β/3)t.
Each of them gets a budget of (1/3 − β/3)t. Other remaining edges of EA(K) have
budget 0.

By redistributing budgets between nodes and edges, we will ensure that eventually

(i) every node in A(K) has a budget of at least t,

(ii) there exists a leaf in A(K) with budget strictly greater than t+ (2/3 + β/3)t,

(iii) there exists a root in A(K) with budget at least t+ (2/3− 2/3 · β)t,

(iv) every uncovered edge vu ∈ EA(K) has a budget of at least t− wvu, and

(v) no edge in EA(K) has negative budget.

This would complete the proof.
We start with the leaf nodes. If v ∈ A(K) is a leaf, then (using Claim 4.4.11)

it has a budget of more than (5/3 + β/3)t − wvf(v) + ψ(v) = (5/3 + β/3)t. Using
Claim 4.4.17, we can therefore add (|D(u)| − 1) · (2/3 +β/3)t to the budget of every
non-leaf u ∈ A(K), such that (i) and (ii) are still satisfied for all leaves.

Next we consider the roots. If v ∈ A(K) is a root and |D(v)| = 1, then (using
Claim 4.4.12) it has a budget of more than (5/3 − 2/3 · β)t. If v ∈ A(K) is a root
and |D(v)| > 1, then (using Claim 4.4.13 and the load added in the previous step)
it has a budget of at least t + (|D(v)| − 1) · (2/3 + β/3)t. In the latter case, we
transfer (2/3− 2/3 · β)t to the budget of every edge in EA(K) that is incident with
v. The budget of v thereby remains at least t+ (|D(v)| − 1) · (2/3 + β/3)t− |D(v)| ·
(2/3 − 2/3 · β)t = (1/3 − β/3)t + |D(v)| · βt ≥ (5/3 − 2/3 · β)t, where the last
inequality follows from |D(v)| ≥ 2 and β ≥ 4/7. Using Claim 4.4.17, we can thus
add (|F(u)| − 1) · (2/3 − 2/3 · β)t to the budget of every non-root u ∈ A(K), such
that (i) and (iii) are satisfied for all roots.

Before we move on to Type 1, 2, and 3 nodes, we take one step back and visit the
leaves again, as their budget has increased again through the latest redistribution
of load. Namely, every leaf v ∈ A(K) got an additional load of (|F(v)| − 1) · (2/3−
2/3 · β)t, which we now use to add (2/3 − 2/3 · β)t to the budget of every edge
in EA(K) that is incident with v, except to vf(v) (which is surely covered). After
this, (ii) and (iii) are satisfied, (i) holds for every root and every leaf, and every
uncovered edge vu ∈ EA(K) that is incident with a root or a leaf has a budget of at
least (2/3− 2/3 · β)t.

Let us now consider the nodes of Type 1. Such a node v (using Claim 4.4.14 and
the load added in previous steps) has a budget of at least t + (|D(v)| − 1) · (2/3 +
β/3)t+(|F(v)|−1)·(2/3−2/3·β)t. We transfer (2/3−2/3·β)t to the budget of every
edge in EA(K) that is incident with v. Since there are |D(v)|+ |F(v)| such edges, the
budget at v remains at least t+(|D(v)|−1)·(2/3+β/3)t−(|D(v)|+1)·(2/3−2/3·β)t =
(|D(v)|+ 1)βt− (1/3 + 2/3 · β)t ≥ t, as |D(v)| ≥ 2 and β ≥ 4/7.

Next we consider the nodes of Type 2. Such a node v (using Claim 4.4.15 and the
load added in previous steps) has a budget of more than (2/3 + β/3)t + (|F(v)| −
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1) · (2/3 − 2/3 · β)t. We transfer (2/3 − 2/3 · β)t to the budget of every edge in
EA(K) that is incident with v, except to vf(v) and vd(v) (which are surely covered).
Since there are |F(v)| − 1 such edges, the resulting budget at v is still more than
(2/3 + β/3)t. We now reduce the budget of the edge va(v) by (1/3− β/3)t and add
this load to v’s budget, which is then more than t. We will show later that this last
step (reducing the budget of va(v)) does not cause a violation of (v).

Finally, we consider the nodes of Type 3. Such a node v (using Claim 4.4.16
and the load added in previous steps) has a budget of more than (5/3− 2/3 · β)t+
(|F(v)|−1) · (2/3−2/3 ·β)t. We transfer (2/3−2/3 ·β)t to the budget of every edge
in EA(K) that is incident with v, except to vn(v) (which is surely covered). Since
there are |F(v)| such edges, the resulting budget at v is still more than t.

After the above redistributions of load, (i), (ii), and (iii) are satisfied. Further-
more, suppose that some edge vu ∈ EA(K) is uncovered and has weight wvu ≥
(2/3 + β/3)t. Then at least once, we have added (2/3 − 2/3 · β)t to the bud-
get of this edge, and we never reduced it. Therefore it has a budget of at least
(2/3 − 2/3 · β)t ≥ (1/3 − β/3)t ≥ t − wvu, and (iv) holds for this edge. If, on the
other hand, an uncovered edge vu ∈ EA(K) has weight wvu < (2/3 + β/3)t, then
both u and v are in A(K) (due to activation rule 2), and (2/3− 2/3 · β)t was added
twice to the budget of vu. Furthermore, if this budget got reduced at some point,
then at most once (u = a(v) and v = a(u) cannot happen simultaneously). The final
budget of vu is thus at least 2 · (2/3− 2/3 · β)t− (1/3− β/3)t = t− βt > t− wvu.
Hence, for such an edge the assertion (iv) also holds.

Finally, for (v), observe that the only point where we reduce the budget of a
covered edge vu ∈ EA(K) and add it to v’s budget, is when v is of Type 2, wvu <
(2/3 + β/3)t, and u = a(v). Furthermore, both u and v have to be in A(K) (due to
activation rule 2). In this case, the budget of vu is reduced exactly once, by a value of
(1/3−β/3)t. If vu is doubly covered, then it had an initial budget of (1/3−β/3)t, and
its budget therefore remains non-negative. If, on the other hand, vu is covered but
not doubly covered, then at some point its budget was increased by (2/3− 2/3 ·β)t.
Hence, the final budget is at least (2/3−2/3 ·β)t− (1/3−β/3)t = (1/3−β/3)t ≥ 0.
This concludes the proof.

Case 2: K is a cycle.

Claim 4.4.18. K contains
∑

v∈K:F(v)6=∅(|F(v)| − 1) many roots, and∑
v∈K:D(v)6=∅(|D(v)| − 1) many leaves. Furthermore, every root and leaf in K is

activated.

Proof. The first part simply follows from the degree sum formula for directed graphs
and the fact that K is a cycle. The second part is analogous to Claim 4.4.17.

We will again assume that every covered edge vu ∈ EA(K) has weight wvu = t,
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and that ψ(v) = t for all v ∈ A(K). With these assumptions, we will show that∑
v∈A(K)

pl(v) + dl(v) + ψ(v) > |A(K)|t

− |{doubly covered vu ∈ EA(K) : wvu < (2/3 + β/3)t}| · (1/3− β/3)t

+ |{uncovered vu ∈ EA(K)}| · (t− wvu).

(4.5)

By the same arguments as in Case 1, the error caused by the above two assump-
tions when we lower-bound the term

∑
v∈A(K) pl(v) + dl(v) + ψ(v) is:

• we underestimate the term by more than (1/3−β/3)t per doubly covered edge
vu ∈ EA(K) with wvu < (2/3 + β/3)t,

• we overestimate the term by at most t−wvu per uncovered edge vu ∈ EA(K).

Note that, since K is a cycle, ψ must assign an edge from EA(K) to every node
in A(K), and thus there is no special node v∗ as in Case 1. Hence, if we prove
inequality (4.5) under the aforementioned assumptions, (4.3) must hold after we
remove the assumptions, and Lemma 4.4.4 would follow.

We now prove (4.5) when every covered edge vu ∈ EA(K) has weight wvu = t, and
ψ(v) = t for all v ∈ A(K). Again, we consider the value pl(v) + dl(v) + ψ(v) as a
budget of node v. Furthermore, we also assign budgets to edges vu ∈ EA(K) that are
doubly covered and have weight wvu < (2/3 + β/3)t. Each of them gets a budget of
(1/3− β/3)t. Other remaining edges of EA(K) have budget 0.

By redistributing budgets between nodes and edges, we will ensure that eventually

(i) every node in A(K) has a budget of at least t,

(ii) at least one node in A(K) has a budget strictly greater than t,

(iii) every uncovered edge vu ∈ EA(K) has a budget of at least t− wvu, and

(iv) no edge in EA(K) has negative budget.

This would complete the proof.
We start with the leaf nodes. If v ∈ A(K) is a leaf, then (using Claim 4.4.11)

it has a budget of more than (5/3 + β/3)t − wvf(v) + ψ(v) = (5/3 + β/3)t. Using
Claim 4.4.18, we can therefore add (|D(u)| − 1) · (2/3 +β/3)t to the budget of every
non-leaf u ∈ A(K), such that (i) is still satisfied for all leaves.

Next we consider the roots. If v ∈ A(K) is a root and |D(v)| = 1, then (using
Claim 4.4.12) it has a budget of more than (5/3 − 2/3 · β)t. If v ∈ A(K) is a root
and |D(v)| > 1, then (using Claim 4.4.13 and the load added in the previous step)
it has a budget of at least t + (|D(v)| − 1) · (2/3 + β/3)t. In the latter case, we
transfer (2/3− 2/3 · β)t to the budget of every edge in EA(K) that is incident with
v. The budget of v thereby remains at least t+ (|D(v)| − 1) · (2/3 + β/3)t− |D(v)| ·
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(2/3 − 2/3 · β)t = (1/3 − β/3)t + |D(v)| · βt ≥ (5/3 − 2/3 · β)t, where the last
inequality follows from |D(v)| ≥ 2 and β ≥ 4/7. Using Claim 4.4.18, we can thus
add (|F(u)| − 1) · (2/3 − 2/3 · β)t to the budget of every non-root u ∈ A(K), such
that (i) is satisfied for all roots.

Before we move on to Type 1, 2, and 3 nodes, we take one step back and visit the
leaves again, as their budget has increased again through the latest redistribution
of load. Namely, every leaf v ∈ A(K) got an additional load of (|F(v)| − 1) · (2/3−
2/3 · β)t, which we now use to add (2/3 − 2/3 · β)t to the budget of every edge in
EA(K) that is incident with v, except to vf(v) (which is surely covered). After this,
(i) holds for every root and every leaf, and every uncovered edge vu ∈ EA(K) that is
incident with a root or a leaf has a budget of at least (2/3− 2/3 · β)t.

As K is a cycle, there cannot be a node of Type 1, since every v ∈ A(K) with
|D(v)| > 1 is a root.

Let us now consider the nodes of Type 2. Such a node v (using Claim 4.4.15 and
the load added in previous steps) has a budget of more than (2/3+β/3)t+(|F(v)|−
1) · (2/3 − 2/3 · β)t. We transfer (2/3 − 2/3 · β)t to the budget of every edge in
EA(K) that is incident with v, except to vf(v) and vd(v) (which are surely covered).
Since there are |F(v)| − 1 such edges, the resulting budget at v is still more than
(2/3 + β/3)t. We now reduce the budget of the edge va(v) by (1/3− β/3)t and add
this load to v’s budget, which is then more than t. We will show later that this last
step (reducing the budget of va(v)) does not cause a violation of (iv).

Finally, we consider the nodes of Type 3. Such a node v (using Claim 4.4.16
and the load added in previous steps) has a budget of more than (5/3− 2/3 · β)t+
(|F(v)|−1) · (2/3−2/3 ·β)t. We transfer (2/3−2/3 ·β)t to the budget of every edge
in EA(K) that is incident with v, except to vn(v) (which is surely covered). Since
there are |F(v)| such edges, the resulting budget at v is still more than t.

After the above redistributions of load, (i) is satisfied. Furthermore, (ii) holds as
at least one node must be of Type 2, Type 3, or a leaf, and for all these cases the
load-inequality is a strict inequality. Finally, the proof of (iii) and (iv) is exactly
analogous to the proof of (iv) and (v) in Case 1.

4.4.3. Proof of Lemma 4.4.5

In the following, let E(V ′) denote the set of edges both of whose endpoints are in V ′

and δ(V ′) the set of edges exactly one of whose endpoints is in V ′, for each V ′ ⊆ V .
We prove the lemma by the following two steps.

Step 1: We create a clone of the pebble that is pushed from u∗ to v∗ and put this
cloned pebble at v∗ (by cloning, we mean the new pebble has the same weight and
the same set of machines it can be assigned to) and keep the old one at u∗. We
apply Explore2 to this new instance and argue that the outcome is “essentially
the same” as if the cloned pebble were not there. More precisely, we show

Lemma 4.4.19. Suppose that Explore2 is applied to the original instance ( before
Push) and the new instance with the cloned pebble at v∗. Then at the end of each
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round i, Ai = A†i and Ci = C†i , where Ai, A†i are the activated sets in the original

and the new instances respectively, and Ci and C†i are the conflict sets in the original
and the new instances respectively.

Step 2: We then remove the original pebble at u∗ but keep the clone at v∗ (the
same as the original instance after Push). Reapplying Explore2, we then show
that in each round, the set of activated nodes and the conflict set cannot enlarge.
To be precise, we show5

Lemma 4.4.20. Suppose that Explore2 is applied to the new instance with the
cloned pebble put at v∗ and the original instance ( after Push). Then at the end of
each round i,

1.
⋃i
τ=0 A′τ ⊆

⋃i
τ=0 A

†
τ ;

2.
⋃i
τ=0 C′τ ⊆

⋃i
τ=0 C

†
τ ;

3. An edge not in E(
⋃i
τ=0 C

†
τ ), if oriented in the original instance (after Push),

must have the same orientation as in the new instance.

Here A†i , A′i are the activated sets in the new and the original instance (after

Push), respectively, and C†i and C′i are the conflict sets in the new and the original
instances (after Push), respectively.

Lemma 4.4.19 and Lemma 4.4.20(1) together imply Lemma 4.4.5, and the rest of
this section is devoted to the proof of these two lemmas. First, however, we need
to prove the following auxiliary lemma. It states that the “non-determinism” in
the order of fake orientations does not matter, allowing us to let the two instances
“mimic” the behavior of each other when we compare the conflict sets in the main
proofs.

Lemma 4.4.21. In the sub-procedure Conflict set construction, independent of the
order of the edges being directed away from the new conflict set Ci, the final outcome
is the same in the following sense.

1. The sets of nodes in Ci is the same.

2. Every edge not in E(Ci) has the same orientation.

Proof of Lemma 4.4.21

We plan to break each system into a set of subsystems and use the following lemma
recursively to prove the lemma.

5Note that here we still refer to the instance with the cloned pebble at v∗ as the new instance.
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Lemma 4.4.22. Let T be a tree of neutral edges in the beginning of the sub-procedure
Conflict set construction whose nodes are all in V \⋃i−1

τ=0 Cτ and consist of only the
following two types:

1. Type α: a node v that (1) is already in Ci or has a directed path to a node
in Ci in the beginning of the sub-procedure, or (2) at the end of all possible
executions of the sub-procedure, it always has a directed path to some node in
Ci\T .

2. Type β: a node v that (1) is not in Ci and does not have a directed path to
a node in Ci in the beginning of the sub-procedure, and (2) at the end of all
possible executions of the sub-procedure, it never has a directed path to some
node in Ci via edges not in T . Furthermore, (3) all its incident neutral edges
in the beginning of the sub-procedure are either in T , or never become directed
towards v in any execution.

Then the two properties of Lemma 4.4.21 hold. Namely, at the end of any exe-
cution, the final set Ci ∩ T is the same and every edge in T\E(Ci) has the same
orientation.

Intuitively, Type α nodes in T are those bound to be part of Ci in any execution,
while Type β nodes may or may not become part of Ci. If a Type β node does
become part of Ci, then it must have a directed path to some Type α node in T via
the edges in T after the execution. Notice also that by definition, a Type β node
cannot be overloaded (otherwise, it is part of A0 ⊆ C0).

Proof. Let us first observe the outcome of an arbitrary execution of this sub-procedure.
There can be two possibilities.

• Case 1. The entire tree T ends up being part of Ci.

• Case 2. A set of sub-trees T1, T2, · · · become part of Ci. The remaining nodes
T\⋃j Tj = F form a forest. Each node v ∈ F , if it has a non-F neighbor in
T , then this neighbor is in some tree Tj ⊆ Ci and their shared edge is directed
toward v.

The following claim is easy to verify and useful for our proof.

Claim 4.4.23. Let v ∈ T be a Type β node, and suppose that v has an incident
edge in T that becomes outgoing during the execution of the sub-procedure. Then
one of its incident edges in T must become incoming first, and furthermore dl(v) +
pl(v) + rli(v) +

∑
u:vu∈T wvu > (5/3 +β/3)t, where rli(v) is the rock load of v in the

beginning of the sub-procedure.

We now consider the two cases separately.

90



4.4. The General Case

Case 1: Suppose that in a different execution, the outcome is Case 2, i.e., there
remains a forest F ⊆ T not being part of Ci.

Choose a tree T in F and then choose any node in T as the root r. Define the level
of a node in T as its distance to r. Consider the set of nodes v with the largest level
l: they must be leaves of T . By Proposition 4.4.2(3), in the new execution, all non-F
neighbors of v in T direct their incident edges connecting v towards v. As a result,
by Claim 4.4.23 and the fact that v becomes part of Ci in the original execution, v
of level l must direct its incident edge in T toward its neighbor of level l − 1 in T .
Nodes of level l−1 then have incoming edges from their neighbors of level l and from
their non-F neighbors in T . So again they direct the edges in T towards the nodes of
level l−2 in T . Repeating this argument, we conclude that r receives all its incident
edges in T in the new execution, a contradiction to Claim 4.4.23. This proves Case 1.

Case 2: Let us divide the incident edges in T of a node v ∈ F into three categories
according to the outcome of the original execution: incoming Ei(v), outgoing Eo(v),
and neutral En(v). Notice that by Proposition 4.4.2(3), all edges connecting v to its
non-F neighbors in T are in Ei(v). Moreover, the following facts should be clear: at
the end of any other execution, (1) an edge e ∈ Eo(v) must be directed away from
v if all edges in Ei(v) are directed towards v, and (2) an edge in Ei(v) ∪ En(v) can
be directed away from v only if beforehand some edge in Eo(v) ∪ En(v) is directed
towards v, or v ends up being part of Ci.

Claim 4.4.24. Let F ⊆ T be the forest not becoming part of Ci in the original
execution. In any other execution of the sub-procedure,

1. given v ∈ F , it never happens that an edge e ∈ Eo(v)∪En(v) is directed towards
v or an edge in Ei(v) is directed away from v;

2. none of the nodes in F ever becomes part of Ci.

Proof. Suppose that (2) is false and v ∈ F is the first node becoming part of Ci.
Then some edge e = v0u ∈ Ei(v0), where v0 and v are connected in F and u ∈ T is
a non-F neighbor of v0, is directed towards u beforehand. So (1) must be false first.
Let e′ = v′u′ be the first edge violating (1). (At this point, no node in F is part
of Ci yet). If e′ ∈ Eo(v

′) ∪ En(v
′) is directed toward v′, then node u′ directs edge

e′ towards v′ because it first has another edge e′′ ∈ Eo(u
′) ∪ En(u

′) coming toward
itself. Then e′′ should be the edge chosen, a contradiction. If e′ ∈ Ei(v

′) is directed
away from v′, then some edge e′′ ∈ Eo(v

′) ∪ En(v
′) is directed toward v′ first, again

implying that e′′ should be chosen instead, another contradiction. Thus (1) and (2)
hold.

Claim 4.4.25. Suppose that Tj ⊆ Ci in the original execution. Then in any other
execution,

1. Tj ⊆ Ci;
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2. Every edge e = vu with v ∈ Tj and u ∈ F is directed toward u.

Proof. For (1), we argue that Tj itself satisfies the condition of Lemma 4.4.22 and is
exactly Case 1. For this, we need to show that a Type β node v of T in Tj is also a
Type β node in Tj , i.e., v never has a directed path to some node in Ci via edges not
in Tj . As v is a Type β node in T , it suffices to show that it cannot have a directed
path to some Type α node in T\Tj via edges in T . Suppose there is such a path P .
Then P must go through some node u ∈ F , implying that u becomes part of Ci in
this execution, a contradiction to Claim 4.4.24(2). This proves (1). (2) follows from
Claim 4.4.24(2) and Proposition 4.4.2(3).

What remains to be done is to show that all edges in F have the same orientation
in any other execution. Let L0 ⊆ F be the set of nodes v satisfying |Ei(v) ∩ F | = 0
and Li>0 ⊆ F be the set of nodes which can be reached from a node in L0 by a
directed path in F of maximum length exactly i after the original execution. In any
other execution, by Claim 4.4.25(2), given v ∈ L0, all edges in Ei(v) are directed
towards v, so all edges in Eo(v) ∩ F are directed away from v. Now an inductive
argument on i, combined with Claim 4.4.24(1), completes the proof of Case 2.

Proof. (of Lemma 4.4.21) We now explain how to make use of Lemma 4.4.22 to
prove Lemma 4.4.21. For this, we decompose each system into a set of subsystems
that satisfy the conditions required in Lemma 4.4.22.

First consider a system that is not a cycle. In the beginning of the sub-procedure
Conflict set construction, let F be the forest consisting of the nodes in V \⋃i−1

τ=0 Cτ
and the edges that are neutral. We can assume that all nodes having a directed
path to Ci are (already) in Ci as well.

Create a graph H whose node set are the connected components (trees) of F .
If a non-Ci node in such a tree has a directed edge (we refer to the beginning of
the sub-procedure) to some other non-Ci node in another tree, draw an arc from
the node representing the former tree to the node representing the latter tree in
H. (Intuitively, an arc in H indicates the possibility that a node in the former tree
becomes part of Ci because of a directed edge to a node in Ci in the latter tree). As
the entire system is not a cycle, some node in H must have out-degree 0. It is easy
to verify that the particular tree corresponding to this node satisfies the conditions
in Lemma 4.4.22, so the lemma can be applied to it.

We now find the next tree satisfying the conditions of Lemma 4.4.22 by redefining
the graph H as follows. Observe that the “processed” tree (the one we applied
Lemma 4.4.22 to) has exactly two types of non-Ci nodes in the beginning of the
sub-procedure: those that always become part of Ci (i.e., in every possible execution
of the sub-procedure) and those that never become part of Ci. Nodes in other trees
that, in the beginning, have a directed edge to the former type of nodes are bound to
become part of Ci (i.e., they satisfy the conditions of a Type α node in their tree).
Nodes in other trees with a directed edge to the latter type of nodes are not to
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become part of Ci because of them. So in H, we can just remove the corresponding
arcs and the node representing the already processed tree. In the updated H, the
node with out-degree 0 is the next tree, on which Lemma 4.4.22 can be applied.
Repeating this procedure, we are done with the first case (when the system is not a
cycle).

Finally, consider the case that the entire system is a cycle. For the special case
that the entire cycle consists of neutral edges, it is easy to verify that Lemma 4.4.21
holds. So suppose that the set of neutral edges form a forest (precisely, a set of
disjoint paths). We can proceed as before—build H and find a vertex in H with
out-degree 0 and recurse—except for the special case that H is a directed cycle V1,
V2,. . . in the beginning. Observe that the last node v ∈ V1 has a directed edge to
the first node u ∈ V2 and neither v nor u is in Ci. Similarly, the last node of V2 is
also not in Ci and neither is the first node of V3 and so on. In this case, it is easy
to see that Lemma 4.4.21 holds for the entire system.

Proof of Lemma 4.4.19

When Explore2 is applied on the original instance before Push, suppose that v∗

joins the conflict set in round k, i.e., v∗ ∈ Ck. We first make the following claim.

Claim 4.4.26. Apply Explore2 to the new instance. In round k, immediately
after the sub-procedure Conflict set construction, the following holds.

1. Aτ = A†τ , for 0 ≤ τ ≤ k,

2. Cτ = C†τ , for 0 ≤ τ ≤ k,

3. Edges not in E(
⋃k
τ=0 Cτ ) have the same orientations in both instances.

We will prove the claim shortly after. In the following, we will show that Ak = A†k
at the end of round k. Combining this with Claim 4.4.26(2)(3) and Lemma 4.4.21,
an inductive argument proves that Lemma 4.4.19 is true also from round k onwards.

Recall that by the definition of Push, at the end of Explore2 in the original
instance, either (1) D(v∗) = ∅, or (2) dl(v∗) + pl(v∗) +wv∗u ≤ (5/3− 2/3 · β)t for all
u ∈ F(v∗). We consider these two cases separately.

Case 1: Suppose that D(v∗) = ∅ in the original instance at the end of Explore2.

We will show that at the end of round k, Ak = A†k and in particular v∗ ∈ Ak = A†k.
By Claim 4.4.26(1), we just have to argue that a node is activated by Rule 1 or Rule
2 in the original instance if and only if it is activated by one of these two rules in
the new instance, in round k.

For v∗, recall that it is part of Ck. It becomes so by either (1) being a Type A node
in Ak, or (2) having an outgoing edge v∗u and u ∈ ⋃k

τ=0 Cτ . For the former case,

Claim 4.4.26(1) shows that v∗ ∈ A†k. For the latter case, as D(v∗) = ∅ at the end of
Explore2 in the original instance, in round k, dl(v∗)+pl(v∗)+wv∗u > (5/3+β/3)t,
and hence Rule 1 applies to v∗. In the new instance, the preceding inequality still
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holds since the pebble load of v∗ is increased by the cloned pebble. As u ∈ ⋃k
τ=0 C

†
τ

(Claim 4.4.26(2)), Rule 1 again applies to v∗ (note that u is still a father of v∗, since

otherwise v∗ would be overloaded and part of both A†0 and A0).
For other nodes v 6= v∗, as pl(v) + dl(v) are the same in both instances, if v is

activated by Rule 1 in the original instance, then it is so too in the new instance,
and vice versa. We have established that the set of nodes activated by Rule 1 is the
same in both instances. Now by Claim 4.4.26(2), the set of nodes activated by Rule

2 is again the same in both instances. Therefore, Ak = A†k at the end of round k.
Case 2: Suppose that dl(v∗) + pl(v∗) + wv∗u ≤ (5/3− 2/3 · β)t for all u ∈ F(v∗)

in the original instance. Then v∗ cannot be a Type B node in the original instance,
i.e., it is not activated by Rule 1 (but it is possible that v∗ is activated by Rule 2 or
as a Type A node). We now argue that in the new instance, in round k, v∗ cannot
be activated by Rule 1 either.

By the definition of Push (specifically Definition 4.4.3(3)(4)), in the original in-
stance, each father and child u ∈ ⋃k

τ=0 Cτ of v∗ satisfies dl(v∗) + pl(v∗) + wv∗u ≤
(5/3− 2/3β)t (notice that when we compare original and new instance, a father can
become a child and vice versa). Therefore, even with the cloned pebble (of weight
at most βt) in the new instance, Rule 1 still cannot be applied to v∗ in round k.

For other nodes v 6= v∗, it is easy to see that v is activated by Rule 1 in the
original instance if and only if in the new instance in round k. We have established
that the set of nodes activated by Rule 1 is the same in both instances. Now by
Claim 4.4.26(2), the set of nodes activated by Rule 2 is again the same in both

instances. Therefore, Ak = A†k at the end of round k.

Proof of Claim 4.4.26: Consider the moment at the end of round k − 1 when
Explore2 is applied on the original instance before Push. In the special case of
k = 0, we refer to the moment immediately after Forced Orientations is called
in the initialization of Explore2.

In this moment, let us put the cloned pebble at v∗ and invoke Forced Orien-
tations. This causes a (possibly empty) set of neutral edges E to become directed.
Let V0 be the set of nodes which are the heads or tails of the now directed edges in
E. Let V1 be the set of nodes that can be arrived at from nodes in V0 following the
other directed edges E∗ (i.e., those that are already oriented at the end of round
k−1 before the cloned pebble is put at v∗). Observe that v∗ ∈ V0 can reach any node
in V0 ∪ V1 by following the directed edges in E ∪ E∗. Let Ei(v), Eo(v), and En(v)
denote the set of incident incoming, outgoing, neutral edges of each node v ∈ V
after we put the cloned pebble and called Forced Orientations. It should be
clear that (1) E ⊆ ⋃v∈V0 Eo(v), (2)

⋃
v∈V0∪V1 Eo(v) ∩ δ(V0 ∪ V1) = ∅, and (3) none

of the nodes in V0 is overloaded at the end of round k − 1 (and hence also not in
subsequent rounds).

Claim 4.4.27. When Explore2 is applied on the original instance before Push,

1. If an edge e is in E ∩Eo(v) for some v ∈ V0, then at the end of round k, edge
e is also an outgoing edge of v (independent of the order of fake orientations);
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2. At the end of round k − 1, none of the nodes in V0 ∪ V1 is part of the conflict
set built so far, i.e. (V0 ∪ V1) ∩⋃k−1

τ=0 Cτ = ∅.

Proof. Consider the edge v∗u ∈ E ∩Eo(v
∗). As v∗ is part of Ck, at the end of round

k, v∗u cannot be neutral. As it is directed toward u after the added cloned pebble,

wv∗u + pl(v∗) + dl(v∗) + rlk−1(v∗) + w > (5/3 + β/3)t, (4.6)

where w is the weight of the cloned pebble and rlk−1(v∗) is the weight of the rocks
assigned to v∗ at the end of round k−1. Suppose for a contradiction that edge v∗u is
directed toward v∗ at the end of round k. Recall that by Definition 4.4.3(3), for the
pebble to be pushed from u∗ to v∗ in the original instance, pl(v∗)+dl(v∗)+ rl(v∗) ≤
(5/3− 2/3 · β)t, where rl(v∗) is the weight of the rocks assigned to v∗ at the end of
Explore2. Then

dl(v∗)+pl(v∗)+(rlk−1(v∗)+wv∗u)+w ≤ dl(v∗)+pl(v∗)+rl(v∗)+w ≤ (5/3+β/3)t,

a contradiction to inequality (4.6). So we establish that v∗u is directed toward u at
the end of round k. Consider u and its incident edge uu′ ∈ E ∩ Eo(u). The fact
that v∗u causes uu′ to be directed toward u′ implies that at the end of round k, uu′

cannot be directed toward u or stay neutral. Repeating this argument, we prove (1).

If a node in V0 ∪ V1 is part of
⋃k−1
τ=0 Cτ , then either v∗ is part of

⋃k−1
τ=0 Cτ , a

contradiction to the assumption that v∗ joins the conflict set in round k, or some
node in V0\{v∗} has an incident edge in E directed away from it at the end of round
k − 1 (see Proposition 4.4.2(3)), a contradiction to the definition of E. This proves
(2).

Claim 4.4.27(2) has the important implication that, in the original instance, the
set of nodes V0 ∪ V1 is “isolated” from the rest of the graph up to the end of round
k−1 in Explore2: they do not have a directed path to nodes in

⋃k−1
τ=0 Cτ and they

are not reachable from nodes in
⋃k−2
τ=0 Aτ .

Claim 4.4.28. Suppose that k ≥ 1. When Explore2 is applied on the new in-
stance, at the end of round k − 1,

1. Every edge e ∈ Eo(v) (respectively Ei(v), En(v)) for any v ∈ V0 ∪ V1 is an
outgoing (respectively incoming, neutral) edge of v in the new instance;

2. Aτ = A†τ for 0 ≤ τ ≤ k − 1;

3. Cτ = C†τ , for 0 ≤ τ ≤ k − 1;

4. Every edge not in E(
⋃k−1
τ=0 Cτ )∪E has the same orientation in both instances.
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Proof. By Claim 4.4.27(2), none of the nodes in V0∪V1 is overloaded in the original
instance, as k ≥ 1. By Lemma 4.4.21, we may assume that both instances decide
their fake orientations based on the same fixed total order. Let us define the following
events for both instances:

• β: An edge in E(V0 ∪ V1) becomes directed.

• α1: An edge not in E(V0 ∪ V1) becomes directed.

• α2: The sub-procedure Activation of nodes is executed.

• α3: A new round starts and a set of (Type A-) nodes is activated.

• α4: The internal while-loop of Conflict set construction is executed and a set
of nodes is added into the conflict set.

Using an inductive argument, the following fact can easily be verified:

As long as no edge in En(v)∪Ei(v) becomes outgoing for any v ∈ V0∪V1,
the sequences of α-events are the same in both instances (but possibly
intermitted by different sequences of β-events) up to the end of round
k−1. Furthermore, right after two corresponding α-events in the original
and new instance, the conflict set and activated nodes, and the direction
of all edges not in E(V0 ∪ V1) are the same in both instances.

To prove (1), consider the first moment in the new instance when an edge e ∈
En(v) ∪ Ei(v) becomes outgoing for any v ∈ V0 ∪ V1 before the end of round k − 1.
For this to happen, as v is not overloaded in the original instance, there exists
another edge e′ = vu ∈ En(v) ∪ Eo(v) becoming incoming for v first. By the above
fact, it must be the case that u ∈ V0 ∪ V1. Then e′ ∈ En(u) ∪Ei(u), and e′ becomes
outgoing for u before e becomes outgoing for v, a contradiction.

We next show that every edge e ∈ Eo(v) is an outgoing edge for v ∈ V0 ∪ V1 at
the end of round k− 1 in the new instance. Assume that v∗’s system is not a cycle.
Then Ei(v

∗) ⊆ δ(V0∪V1), and all these edges are incoming at the end of round k−1,
implying that all edges in Eo(v

∗) must be outgoing. Now an inductive argument
on the rest of the nodes v ∈ V0 ∪ V1 (based on their distance to v∗) establishes
that e ∈ Eo(v)/Ei(v)/En(v) is an outgoing/incoming/neutral edge of v at the end
of round k − 1 in the new instance. The cycle-case follows by a similar argument.
This completes the proof of (1).

Finally, combining (1) with the above fact, the rest of the claim follows.

Claim 4.4.29. Suppose that k = 0. When Explore2 is applied on the new in-
stance, at the end of the initialization (after Forced Orientations),

1. Every edge e ∈ Eo(v) (respectively Ei(v), En(v)) for any v ∈ V0 ∪ V1 is an
outgoing (respectively incoming, neutral) edge of v in the new instance;

2. Every edge not in E(V0 ∪ V1) has the same orientation in both instances;
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3. The set of overloaded nodes are the same in both instances.

Proof. In the new instance, we claim that no edge in En(v)∪Ei(v) becomes outgoing
for any v ∈ V during the initialization. Suppose not and e ∈ En(v) ∪ Ei(v) is the
first such edge. If this happens because another edge e′ = vu ∈ Eo(v) ∪ En(u) is
directed toward v first, then e′ should have been chosen. So v must be overloaded
in the original instance and by Lemma 4.4.1, e is the only edge in Ei(v) and dl(v) +
pl(v) + we=vu0 > (5/3 + β/3)t. (Notice that v 6= v∗).

Consider the moment in the initialization of the original instance, when e = vu0

is directed toward v. First suppose that in this moment, u0 has no incoming edges
yet. Then we know that dl(u0) + pl(u0) + wvu0 > (5/3 + β/3)t and the pair (u0, v)
precedes (v, u0) in the total order of edges. This is still true in the new instance,
contradicting our assumption that vu0 is chosen to be directed toward u0. So u0

already has some incoming edges Eu0 in the original instance. In the new instance,
when vu0 is directed toward u0, it cannot be that all edges of Eu0 are already directed
toward u0. So at least one such u1u0 ∈ Eu0 is still neutral (it cannot be outgoing
because of the choice of e = vu0). Repeating this argument, in the new instance, we
find a path of neutral edges vu0u1 . . . immediately before e = vu0 is directed toward
u0, and this path ends at a node uz where dl(uz) + pl(uz) +wuzuz−1 > (5/3 + β/3)t,
and the pair (uz, uz−1) precedes the pair (v, u0). This contradicts the assumption
that e = vu0 is chosen to be directed toward u0.

So we established that no edge in En(v) ∪Ei(v) becomes outgoing for any v ∈ V .
To complete the proof of (1) and (2), suppose that uv ∈ Ei(v) for some v ∈ V
remains neutral after the initialization of the new instance. Then there must be
another edge wu ∈ Ei(u) which also remains neutral. Repeating this argument,
we conclude that the entire system is a cycle, whose edges are all neutral after the
initialization of the new instance. As uv ∈ Ei(v), there must be some edge xy in
this cycle, so that dl(x) + pl(x) +wxy > (5/3 + β/3)t after the cloned pebble is put
on v∗. This edge cannot remain neutral after the initialization of the new instance,
a contradiction.

Finally, (3) follows from (1) and (2), and the fact that no node in V0 is overloaded
in both instances.

To complete the proof of Claim 4.4.26, we now show that in round k, after the
sub-procedure Conflict set construction, the outcome of the two instances are ex-
actly the same, except for the orientation of the edges in E(

⋃k
τ=0 Cτ ). Notice that

by Claim 4.4.28(1)(4) and Claim 4.4.29(1)(2), at the end of round k − 1, the ori-
entations of all edges not in E(

⋃k−1
τ=0 Cτ ) are the same in both instances, with the

only exception that E are oriented in the new instance but neutral in the original
instance. Furthermore, by Claim 4.4.28(2) and Claim 4.4.29(3), the same set of

nodes are added into A†k, Ak, C
†
k, Ck in the beginning of round k (as Type A nodes).

Let V ′1 ⊆ V1 be the set of nodes that can be reached by a directed path from v∗ in
the original instance at the end of round k−1 (such a path does not use edges in E).
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Let us first suppose the system containing v∗ is a tree. In the following, when we
say the “sub-tree” of an edge e ∈ En(v) for some v ∈ V0 ∪ V1, we mean the sub-tree
outside of V0 ∪V1 connected to V0 ∪V1 by the edge e (note that e ∈ δ(V0 ∪V1)). We
now make use of Lemma 4.4.21 to let the two instances mirror each other’s behavior.
Consider how v∗ becomes part of Ck in the original instance.

Case 1: in the beginning of round k, v∗ or some node in V ′1 becomes a Type A
node. Then v∗ becomes part of the conflict set in both instances in the beginning
of the sub-procedure Conflict set construction, before any further edges become
directed. In this case, in the original instance, let v∗ direct all edges in E away from
v∗ (by running ahead a few iterations and picking the respective edges incident with
v∗ as fake orientations). After that, in both instances, direct all remaining neutral
edges incident with v∗ away from v∗. Now the two instances are the same6, and we
can let them continue identically until the end of the sub-procedure (also note that
all edges incident with v∗ are already oriented in both instances).

Case 2: in the sub-procedure Conflict set construction, due to fake orientations
in the sub-trees of edges in ∪v∈V ′1En(v), some nodes in V ′1 (hence v∗) become part
of Ck. In this case, in both instances, apply these fake orientations first. Then v∗

becomes part of the conflict set in both instances. Let the original instance direct the
edges in E away from v∗, and then, in both instances, direct all remaining neutral
edges incident with v∗ away from v∗. Now the two instances are the same, and we
can let them continue identically until the end of the sub-procedure.

Case 3: the above two cases do not apply. Consider the execution of the sub-
procedure Conflict set construction in the original instance in round k. En(v

∗) can
be partitioned into En→i(v

∗) and En→o(v
∗), the former (latter) being those edges in

En(v
∗) becoming incoming (outgoing) inside the sub-procedure.

Observe that (1) En→i(v
∗) 6= ∅, otherwise v∗ cannot become part of Ck in the

original instance (see Claim 4.4.27(1)), and (2) in round k, as long as no edge
En→o(v

∗) is directed toward v∗, then even with the cloned pebble at v∗, a proper
subset E′ ⊂ En→i(v

∗) directed toward v∗ cannot cause another edge in En→i(v
∗)\E′

to be directed away from v∗ (by Definition 4.4.3(3) and the fact that rl(v∗) =∑
e∈En→i(v∗)∪Ei(v∗)

we in the original instance after round k).

Let the original instance start round k with the fake orientations in the sub-trees
of edges in En→i(v

∗) until all edges in En→i(v
∗) are directed toward v∗, and let the

new instance mimic. Now the edges in E are directed away from v∗ also in the
original instance (since any rock edge is heavier than the cloned pebble). Hence,
all edges not in E(

⋃k−1
τ=0 Cτ ) have the same orientations in both instances, except

that possibly some edges in En→o(v) and in their sub-trees are already oriented
in the new instance while not in the original instance (this is because in the new
instance, the pebble load at v∗ is higher). Let E′n→o ⊆ En→o(v

∗) be those edges in
En→o(v

∗) that are already oriented in the original instance at this point. Now let
the original instance apply all possible fake orientations in the sub-trees of edges

6When we say that two instances are the same at a certain time point, we mean that the conflict
set and activated nodes, and the orientation of all edges not in E(

⋃k−1
τ=0 Cτ ) are the same.
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in
⋃
v∈V0∪V1\{v∗}En(v) ∪ E′n→o and let the new instance mimic. After this step,

v∗ must be part of the conflict set Ck and C†k in both instances. Finally, in both
instances, direct all remaining neutral edges in En→o(v

∗) away from v∗. Now the
two instances are the same, and we can let them continue identically until the end
of the sub-procedure. This finishes the proof of the tree case.

Next suppose that the system containing v∗ is a cycle. In the original instance,
v∗ joins Ck in two possible ways. Either v∗ or some node in V ′1 is a Type A node
(then this is the same as Case 1 above), or during the sub-procedure Conflict set
construction an edge eα is directed toward v∗, causing the other incident edge eβ
to be directed away from v∗. In this case, by Definition 4.4.3(4), E = ∅. Hence,
the two instances are the same already in the beginning of the sub-procedure, and
we can let them perform identically by choosing the same fake orientations. This
finishes the cycle case and the entire proof of Claim 4.4.26.

Proof of Lemma 4.4.20

Our idea is to make use of Lemma 4.4.21: we will apply Explore2 simultaneously to
both instances and let the new instance mimic the behavior of the original instance.
In the following, we implicitly assume that nodes having a directed path to

⋃i
τ=0 C

†
τ

(respectively
⋃i
τ=0 C′τ ) are part of it in the new (original) instance. Furthermore,

at any time point considered, we refer to the current content of the sets C†i and C′i.
The lemma below explains how the mimicking is done.

Lemma 4.4.30. In round i ≥ 0, suppose that both instances are in the sub-procedure
Conflict set construction and Lemma 4.4.20(2)(3) hold. Let the original instance
apply an arbitrary fake orientation and invoke Forced Orientations. Then the
new instance can apply a number of fake orientations so that Lemma 4.4.20(2)(3)
still hold.

Proof. In the original instance, suppose that the chosen fake orientation is to direct
the edge e0 = v0u0 toward u0. In the subsequent call of Forced Orientations,
a tree Tu0 of neutral edges are further directed away from u0. Given two incident
edges e, e′ of a node v ∈ Tu0 , we write e ≺ e′ if e is closer to u0 than e′. Similarly,
given two adjacent nodes v, u ∈ Tu0 , we write v ≺ u if v is closer to u0 than u. We
make an important observation.

Claim 4.4.31. Suppose that v ∈ Tu0 and v 6∈ ⋃i
τ=0 C

†
τ . Furthermore, suppose that

e, e′ ∈ Tu0 are incident on v and e ≺ e′. Then v can take at most one of them in
the new instance, i.e., if either of them is directed toward v, then (after Forced
Orientations) the other must be directed away from v.

In the special case of v = u0 6∈
⋃i
τ=0 C

†
τ , assuming that e is an incident edge of

u0 in Tu0, u0 can take at most one of e0 = v0u0 and e.

Proof. The dedicated load dl(v) and the pebble load pl(v) are at least as heavy in

the new instance as in the original. An edge not in E(
⋃i
τ=0 C

†
τ ), if oriented in the
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original instance, must be oriented in the same way in the new instance. So the
rock load rl(v) is also at least as heavy in the new instance as in the original. Thus,
if in the original instance, e being directed toward v causes e′ to be directed away
from v, then v can take at most one of them in the original, and hence in the new
instance. The second part of the claim follows from the same reasoning.

Our goal is to apply a number of fake orientations in the new instance, so that the
edges ({e0}∪Tu0)\E(

⋃i
τ=0 C

†
τ ) are directed the same way as in the original instance.

First, if e0 is still neutral in the new instance, direct it toward u0 and invoke
Forced Orientations. Notice that if e0 is already directed toward v0 in the new
instance, then both v0, u0 ∈

⋃i
τ=0 C

†
τ , and hence e0 ∈ E(

⋃i
τ=0 C

†
τ ).

We make another observation.

Claim 4.4.32. In the new instance, after a call of Forced Orientations, assume
that e = vu ∈ Tu0, and v ≺ u.

1. If e = vu is directed toward v, then both u, v ∈ ⋃i
τ=0 C

†
τ .

2. If e = vu is directed toward u 6∈ ⋃i
τ=0 C

†
τ , then the entire sub-tree of Tu0 rooted

at u is directed away from u0 and none of its nodes is in
⋃i
τ=0 C

†
τ .

Proof. For (1), suppose that e is directed toward v. If v ∈ ⋃i
τ=0 C

†
τ , then so is u and

the claim holds. So assume that v 6∈ ⋃i
τ=0 C

†
τ . Consider the incident edge e′ ∈ Tu0 of

v with e′ ≺ e. By Claim 4.4.31, e′ must also be directed toward u0. Repeating this
argument, we find a sequence of edges directed toward u0 and they either end up at
a node in

⋃i
τ=0 C

†
τ (then implying that v is part of

⋃i
τ=0 C

†
τ , a contradiction), or at

u0 and u0 6∈
⋃i
τ=0 C

†
τ . Then, by Claim 4.4.31, the edge v0u0 must be directed toward

v0 in the new instance, again implying that v is part of
⋃i
τ=0 C

†
τ , a contradiction.

(2) is the consequence of Claim 4.4.31 and our assumption that all nodes having

a directed path to
⋃i
τ=0 C

†
τ are part of it.

In the new instance, the set of neutral edges in Tu0 form a set of node-disjoint trees
T1, T2, . . . , where each tree Tj has a root node rj that is closest to u0 in Tu0 (rj could

be u0 itself). Observe that no node in Tj can be part of
⋃i−1
τ=0 C

†
τ , since otherwise its

incident edges would not be neutral in round i. It follows from Claim 4.4.32 (resp.

the last part of Claim 4.4.31 if rj = u0) that rj ∈ C†i . Hence, we can let the new
instance direct the neutral edges in Tj incident on rj away from it. If some edge in

Tj remains neutral after this, by Claim 4.4.31, there must exist a node v ∈ Tj ∩ C†i
with neutral incident edges in Tj . Then again let v direct all remaining neutral edges
in Tj away from it and continue this process until all edges in Tj are directed away
from u0.

By the above mimicking, we guarantee that all edges in ({e0} ∪ Tu0)\E(
⋃i
τ=0 C

†
τ )

are directed the same way in both instances. This implies that Lemma 4.4.20(3)
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holds after the mimicking. Next we argue that if a node v is added into C′i in the

original instance, then it is either already in
⋃i
τ=0 C

†
τ , or is added into C†i as well

after the mimicking. For v to be added into C′i in the original instance, it must have
a directed path P to some node v̂ ∈ C′i after v0u0 is oriented toward u0, where v̂ is

part of C′i already before the fake orientation. Note that v̂ is also in
⋃i
τ=0 C

†
τ before

the mimicking. Let v be the first node on P (starting from v) that is part of
⋃i
τ=0 C

†
τ

after the mimicking. If v = v, we are done. Otherwise, since Lemma 4.4.20(3) holds

after the mimicking, v 6∈ ⋃i
τ=0 C

†
τ has a directed path to v ∈ ⋃i

τ=0 C
†
τ in the new

instance, a contradiction.
So we have established Lemma 4.4.20 (2) and (3) after the mimicking.

We use the above lemma to prove Lemma 4.4.20 for the case of i ≥ 1.

Lemma 4.4.33. Suppose that Lemma 4.4.20 holds at the end of round i − 1 for
i ≥ 1. Then it holds still at the end of round i.

Proof. In round i, it is easy to verify that the Lemma 4.4.20 is true in the beginning
of the sub-procedure Conflict set construction. Now let the original instance apply
all the fake orientations and let the new instance mimic, using Lemma 4.4.30. Next
let the new instance finish off its fake orientations arbitrarily. It is easy to see that
Lemma 4.4.20 holds at the end of round i.

We now handle the more difficult case of round 0. Unlike the later rounds,
Lemma 4.4.20 does not hold in the beginning of the sub-procedure Conflict set
construction: the set of overloaded nodes can be different in the two instances and
the conflict set in the new instance may not be a superset of the conflict set in the
original instance.

In the following, we postpone the fake orientations of the original instance and
just let the new instance perform some fake orientations until Lemma 4.4.20(2)(3)
hold.

Lemma 4.4.34. Consider the beginning of the sub-procedure Conflict set construc-
tion in round 0. In the new instance, as long as an edge e = vu ∈ E(C′0) remains

neutral and v is part of C†0, direct e toward u. Then finally, C′0 ⊆ C†0.

Proof. 7 Consider a connected component H in the induced subgraph GR[C′0], and
let us first assume H is a tree. It is easy to see that because in the original instance
every node v ∈ H can follow a directed path to some overloaded node in H, v cannot
receive all incident edges in H without becoming overloaded. Suppose the lemma
does not hold and consider a maximal tree T ⊆ H remaining outside of C†0. In
the new instance, all edges of H connecting T to the rest of the nodes in H\T are
directed toward T . By induction, we can show that there is a node v ∈ T which
receives all its incident edges in H, implying that v ∈ C†0, a contradiction.

7The proof here is very similar to the proof of Lemma 4.4.22, Case 1. So we only sketch the ideas.
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If H is a cycle, observe that at least one node in H must be overloaded in the new
instance and hence part of C†0. Now we can proceed as before.

Lemma 4.4.35. In round 0, suppose that both instances are in the sub-procedure
Conflict set construction and C′0 ⊆ C†0. In the new instance, as long as there is an
edge e = vu 6∈ E(C′0) so that (1) it is directed toward u in the original instance,

(2) it is currently neutral in the new instance, and (3) v ∈ C†0 and u 6∈ C†0, let e be

directed toward u in the new instance. Then finally, an edge e 6∈ E(C†0), if directed
in the original instance, is directed the same way in the new instance.

Proof. Let Ei(v) and Eo(v) denote the current set of incoming and outgoing edges
of a node v 6∈ C′0 in the original instance. In the new instance, after the fake
orientations required in the lemma, if every edge in Ei(v) is directed toward v, then
every edge in Eo(v) must be directed away from v, otherwise v is overloaded.

We now prove the lemma by contradiction. Suppose that edge e0 = v0u 6∈ E(C†0)
is directed toward u in the original instance while it is neutral or directed toward
v0 in the new instance after the fake orientations required in the lemma. In both
cases v0 6∈ C†0 (hence v0 6∈ C′0) and v0 is not overloaded. So there is an edge
e1 = v1v0 ∈ Ei(v0) that is neutral or directed away from v0 in the new instance after

the fake orientations. As before, v1 6∈ C†0. Repeating this argument, we conclude that

the entire system is a cycle with no node in C†0 (hence also not in C′0), whose edges are
all directed, say clockwise, in the original instance. Furthermore, in the new instance,
each edge in the cycle is either neutral or directed counter-clockwise. Clearly, for
at least one edge xy in the cycle, it holds that dl(x) + pl(x) + wxy > (5/3 + β/3)t.
Since x is not overloaded, this edge must have the same orientation (namely toward
y) in both instances, a contradiction.

By Lemmas 4.4.34 and 4.4.35, item (2) and (3) of Lemma 4.4.20 hold, and we can
apply Lemma 4.4.30 to finish off all the remaining fake orientations in both instances
while maintaining Lemma 4.4.20(2)(3).

The last thing to prove is that A′0 ⊆ A†0 after the activation rules are applied to
both instances. If a node v is overloaded in the original instance, by Lemma 4.4.1,
either its own pebble and dedicated load is already more than (5/3+β/3)t, or it has
a child u ∈ C′0 so that pl(v)+dl(v)+wvu > (5/3+β/3)t. Thus, in the new instance,

v is either overloaded, or (as u ∈ C′0 ⊆ C†0) becomes a child of u and is activated
by Rule 1. Furthermore, if a node v is activated by Rule 1 in the original instance,
then it has a father u ∈ C′0 satisfying dl(v) + pl(v) + wvu > (5/3 + β/3)t. As u is

also part of C†0 in the new instance, either v is overloaded, or it is again activated
by Rule 1. So we are sure Type A and Type B nodes of the original instance in A′0
must be part of A†0. Finally, as Lemma 4.4.20(2) holds, nodes of A′0 activated by

Rule 2 must also be part of A†0. This completes the proof of round 0 and the entire
proof of Lemma 4.4.20.
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