
Algorithmic Building Blocks for
Relationship Analysis over Large Graphs

Stephan Seufert

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken
2015

Dean Prof. Dr. rer. nat. Markus Bläser

Colloqium 20.04.2015, Saarbrücken

Examination Board

Supervisor and Reviewer Prof. Dr.-Ing. Gerhard Weikum

Reviewer Srikanta Bedathur, Ph. D.

Reviewer Prof. Denilson Barbosa, Ph. D.

Chairman Prof. Dr. rer. nat. Christoph Weidenbach

Research Assistant Dr.-Ing. Johannes Hoffart

ii

Abstract

Over the last decade, large-scale graph datasets with millions of vertices and edges
have emerged in many diverse problem domains. Notable examples include on-
line social networks, the Web graph, or knowledge graphs connecting semantically
typed entities. An important problem in this setting lies in the analysis of the rela-
tionships between the contained vertices, in order to gain insights into the structure
and dynamics of the modeled interactions.

In this work, we develop efficient and scalable algorithms for three important
problems in relationship analysis and make the following contributions:

• We present the Ferrari index structure to quickly probe a graph for the ex-
istence of an (indirect) relationship between two designated query vertices,
based on an adaptive compression of the transitive closure of the graph.

• In order to quickly assess the relationship strength for a given pair of vertices
as well as computing the corresponding paths, we present the PathSketch
index structure for the fast approximation of shortest paths in large graphs.
Our work extends a previously proposed prototype in several ways, including
efficient index construction, compact index size, and faster query processing.

• We present the Espresso algorithm for characterizing the relationship be-
tween two sets of entities in a knowledge graph. This algorithm is based on
the identification of important events from the interaction history of the en-
tities of interest. These events are subsequently expanded into coherent sub-
graphs, corresponding to characteristic topics describing the relationship.

We provide extensive experimental evaluations for each of the methods, demon-
strating the efficiency of the individual algorithms as well as their usefulness for
facilitating effective analysis of relationships in large graphs.

iii

Kurzfassung

Im Laufe des letzten Jahrzehnts hat die Modellierung von direkt sowie indirekt
verknüpften Entitäten in Form von Graphen – wie z. B. von Personen in sozialen
Netzwerken oder semantisch annotierten Konzepten in Wissensbasen – eine wich-
tige Rolle in vielen Geschäfts- und Forschungsfragestellungen eingenommen. Der
Umfang der in dieser Form modellierten Daten liegt in vielen Fällen in der Größ-
enordnung von Millionen von Entitäten und Verknüpfungen. Ein wichtiges und
vielversprechendes Problemfeld in diesem Bereich ist die effiziente und effektive
Analyse der (indirekten) Beziehungen zwischen benutzerspezifizierten Entitäten,
um Erkenntnisse über die Struktur und Dynamik der modellierten Interaktionen
zu erhalten.

In dieserArbeit betrachtenwir drei fundamentale Fragestellungen in derAnalyse
von Beziehungen in graphstrukturierten Daten und stellen die folgenden Beiträge
vor:

• Erreichbarkeitsanalyse befasst sich mit der effizienten (d. h. in Echtzeit aus-
führbaren)ÜberprüfungdesGraphen auf die Existenz einermöglichenBezie-
hung zwischen zwei Entitäten. In dieserArbeit stellenwir denFerrari-Algo-
rithmus zur schnellenVerarbeitung dieser Analysevariante vor, basierend auf
einer adaptiven Form der Kompression der transitiven Hülle des Graphen.

• Wir stellen die PathSketch Indexstruktur vor, ein System zur schnellen Ap-
proximation der Stärke einer Beziehung zwischen zwei Entitäten, sowie der
Identifikation eines oder mehrerer zugehörigen Pfade. Das in dieser Arbeit
vorgestellte System erweitert einen vorausgehend publizierten Prototyp hin-
sichtlich effizienter Durchführung des Indexaufbaus, Repräsentation der In-
dexeinträge sowie schnellerer Anfragebearbeitung.

• Für die semantisch tiefergreifendeAnalyse von graphstrukturiertenWissens-
basen stellen wir den Espresso-Algorithmus zur Charakterisierung der Be-
ziehungen zwischen zweiMengen vonEntitäten vor. Espressobasiert auf der
Identifikation wichtiger Ereignisse, welche anschliessend zu dem Lösungs-
konzept der dichtenTeilgraphen erweitert werden. Diese Strukturen entspre-
chenmaßgeblichenThemenbereichen, die zur Beschreibung der wechselseit-
igen Beziehungen dienen.

Die Effizienz und der praktische Nutzen der genannten Algorithmen und An-
sätze werden in umfangreichen Experimenten evaluiert.

v

Contents

I Introduction 1

1 Analyzing Relationships at Web-Scale 3
1.1 Challenges and Opportunities . 4
1.2 Contributions . 4
1.3 Key Problems in Relationship Analysis 5
1.4 Thesis Organization . 8

2 Preliminaries 11
2.1 A Primer on Graph Theory . 11
2.2 Approximation Algorithms . 23

3 Graph Data Processing: State of the Art & Directions 27
3.1 Representing, Indexing, and Querying Graph-Structured Data . . . 27
3.2 Large-Scale Graph Processing . 33

II Algorithmic Building Blocks 41

4 Reachability Analysis 43
4.1 Problem Definition . 44
4.2 Interval Labeling . 47
4.3 Approximate Interval Labeling . 50
4.4 The Ferrari Reachability Index . 52
4.5 Query Processing . 61
4.6 Related Work . 63
4.7 Experimental Evaluation . 64
4.8 Summary . 71

5 Distance and Shortest Path Approximation 73
5.1 Problem Definition . 74
5.2 Seed-Based Distance Estimation . 77

vii

5.3 The Path Sketch Index . 79
5.4 Budgeted Query Processing . 84
5.5 Restricted and Diverse Paths . 90
5.6 Index Construction . 93
5.7 Physical Index Layout . 103
5.8 Related Work . 108
5.9 Experimental Evaluation . 111
5.10 Summary . 127

6 Relatedness Cores 131
6.1 Problem Definition . 132
6.2 The Espresso Knowledge Graph . 135
6.3 Computational Model . 137
6.4 Relationship Centers . 140
6.5 Connection to Query Entities . 144
6.6 Relatedness Cores . 147
6.7 Integration of Temporal Information 151
6.8 Related Work . 152
6.9 Experimental Evaluation . 154
6.10 Summary . 167

III The Big Picture 171

7 Summary & Future Directions 173

IV Appendix 179

A The Instant Espresso System Demonstration 181

Bibliography 185

Part I

Introduction

1

1
Analyzing Relationships at Web-Scale

Personal friendships, interactions between proteins, functional dependencies with-
in software projects – relationships among entities such as people, biological mol-
ecules, or units of code, appear in various problem domains and in a multitude of
application scenarios. Typically, such relationships are modeled in abstract form
as (directed or undirected) graphs, a formalism that allows for the expressive as
well as intuitive analysis of the modeled relationships. The wide applicability of
algorithms defined in abstract terms over such graph structures has fueled tremen-
dous research efforts over recent years, encompassing infrastructure for efficient
processing as well as newly developed concepts that allow novel kinds of analysis
of graph-structured data. Processing and analyzing massive-scale graphs with bil-
lions of entities and relationships has become feasible in several important problem
scenarios.

Many of thesemassive graphs have emerged due to the advent of theWorldWide
Web, including large online social networks like Facebook and Twitter, interlinked
web-pages extracted from the (hyperlink-)web-graph, as well as knowledge graphs,
comprising hundreds of millions of facts about entities. The scale and availability
of such datasets offers exciting opportunities, both from an academic as well as a
commercial viewpoint.

3

Chapter 1 Analyzing Relationships at Web-Scale

. Challenges and Opportunities

The enormous growth of graph-structured data available for processing, together
with the ever-increasing need for more sophisticated forms of analysis, imposes
great challenges.

1. While some important problems, such as the computation of PageRank scores
over the web graph, can be expressed conveniently and computed efficiently
in newly emerged big data processing frameworks such asMapReduce (Dean
andGhemawat, 2004) and Pregel/BSP (Malewicz et al., 2010), real-time anal-
ysis of large graphs remains a major challenge. As an example, the latency
inherent to distributed processing infrastructure renders these solutions in-
feasible for the interactive exploration of graphs. Usually, low-latency systems
rely on centralized processing, which, in turn, either requires high-end hard-
ware or increased engineering efforts. This encompasses, but is not restricted
to, the efficient processing of graphs stored on external-memory, requiring
novel, I/O-efficient and cache-aware algorithms.

2. The growth observed in graph-structured datasets is not restricted to the
structure itself, as measured by the number of vertices and edges, but also
includes additional information associated with the entities or relationships.
Important examples include labeled graphs with semantically typed edges,
such as knowledge graphs representing facts about entities. Enriched graph
structures of this kind call for novel solutions to compute semantically more
meaningful results, thus extending beyond traditional graph algorithms, which
operate on the mere structure.

. Contributions

In this thesis, we address the problem of relationship analysis – the processing
of graph-structured data with the purpose of gaining insight into the structure and
dynamics of the encoded relationships – with respect to both challengesmentioned
above.

1. With the goal of enabling real-time analysis ofmassive-scale graph-structures
in the centralized setting, we address the relationship analysis problem from
the perspective of efficiency. To this end, we devise methods to preprocess
graph-structured datasets – similar in spirit to index structures in relational
database systems – in such a way that the three most fundamental operations
in graph processing, that is, probing the graph for the (i) existence as well as
the (ii) strength and (iii) structure of a relationship, can be performed in real-
time. The index structures we propose exhibit response times in the order of
milliseconds, even on very large instances of graphs.

2. Second, we shift our focus towards devising an expressive new paradigm for
relationship analysis, based on the annotation of entity-relationship graphs

4

Key Problems in Relationship Analysis 1.3

with additional knowledge and data, such as entity type information or tex-
tual descriptions. To this end, we study the problem of explaining the rela-
tionship between sets of entities in knowledge graphs.

In the next section, we introduce the different contributions we make in this the-
sis in detail.

. Key Problems in Relationship Analysis

On a high level, this work proposes algorithms and index structures for relation-
ship analysis over large graphs. More specifically, we propose four individual, but
related techniques, which we refer to as the key problems in relationship analysis.
Informally, these components correspond to the questions

Q1: Is there a relationship between two entities?

Q2: How strong is the relationship?

Q3: Who participates in the relationship?

Q4: How can the relationship be characterized?

Technically, these questions correspond to the well-known graph-theoretic con-
cepts of reachability in directed graphs (Q1), distances (Q2) and shortest paths
(Q3), as well as a new concept that we develop in the final chapter of this thesis,
relatedness cores (Q4). We discuss these individual components in the following
sections.

1.3.1 Question 1: « Is there a relationship? »

Given a large graph and a pair of individual vertices, (s, t), or sets of vertices, the
problem of graph reachability (s − t-connectivity), corresponds to determining
whether the graph contains a direct or indirect interaction (in the graph-theoretic
terminology referred to as path) between the query entities. While this problem
is easily solved for undirected graphs (that is, networks that only contain symmet-
ric relationships), the general case of directed graphs is much more challenging.
Probing the graph for the existence of a relationship is a very fundamental prim-
itive and has many important practical applications, ranging from discovery of
functional dependencies in software projects to the use of reachability queries as
a building-block in higher-level graph analysis. The contribution we make in this
thesis towards this specific problem lies in the development of an extremely fast,
memory-resident index structure that provides a direct control over the query pro-
cessing vs. precomputation/memory requirement tradeoff. In typical application
scenarios, our index structure occupies space much smaller than the size of the in-
put graph, and provides query processing times in the order of microseconds over
graphs comprising several millions of vertices and edges. Results of this work, dis-
cussed in detail in Chapter 4, has been published in the following research paper:

5

Chapter 1 Analyzing Relationships at Web-Scale

Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard
Weikum. FERRARI: Flexible and Efficient Reachability Range Assign-
ment for Graph Indexing. In ICDE’13: Proceedings of the 26th IEEE In-
ternationalConference onData Engineering, Brisbane, Australia. Pages
1123-1134. IEEE, 2013.

1.3.2 Question 2: « How strong is the relationship? »
Question 3: «Who participates in the relationship? »

The second and third question (of what we have identified as key questions in re-
lationship analysis) correspond to assessing the strength and participants of an (in
general indirect) relationship between twoormore query entities. The fundamental
structure in this context, paths between the query vertices, are sequences of vertices
– starting at the source query vertex and ending at the target query vertex – such
that every pair of consecutive vertices in the path exhibits a direct interaction in
the graph. The most important class of paths between the query vertices are short-
est paths, that is, paths that contain the smallest possible number of intermediate
vertices (for the case of unweighted edges), or the sequence of vertices that exhibit
the strongest interactions (measured by the sum of reciprocal weights of the con-
stituent edges) for the case of weighted graphs. The contribution we make in this
thesis towards this specific problem is an index structure based on the precomputa-
tion and materialization of carefully selected paths in the graph, that are combined
into an approximate solution to a shortest-path query at runtime. This index struc-
ture is especially geared towards very large graph datasets that are potentially too
large to hold in main-memory in their entirety. The technique we propose empiri-
cally allows for the accurate estimation of the distance (length of the shortest path)
between a pair of query vertices while adhering to a user-specified bound on the
online query processing cost. A major benefit of our index structure lies in its abil-
ity to generate multiple short paths connecting the query vertices rather than just
estimate their distance. Since our technique offers the user a direct control over the
tradeoff between efficiency of query execution and accuracy of the computed esti-
mates, it is possible to use the resulting index structure not only for generating short
paths (corresponding to strong relationships) between the query vertices, but also
to apply the query processing framework as an algorithmic building block within
other graph analysis applications.

Our index structure is based on the prototype presented in the publication

Andrey Gubichev, Stephan Seufert, Srikanta J. Bedathur, and Gerhard
Weikum. Fast andAccurate Estimation of Shortest Paths in LargeGraphs.
In CIKM’10: Proceedings of the 18th ACM International Conference
on Information and Knowledge Management, Toronto, Canada. Pages
1009-1019. ACM, 2010,

which itself is not a contribution of this thesis. The salient contributions we make
in this thesis lie in the complete re-engineering of the proposed prototype, includ-
ing the integration of previously proposed, more efficient Bfs traversal algorithm
for index construction, which allows to construct the index significantly faster due

6

Key Problems in Relationship Analysis 1.3

to the representation of several Bfs-forests in main memory at the same time and
limiting the amount of random accesses to the graph structure. This modification
permits the efficient indexing of graphs comprising billions of edges. Further, we
propose a novel physical index layout, including the integration and evaluation of
several compression techniques, leading to a large reduction in required disk space
for storing the computed index. The basic framework is complemented by a bud-
geted query processing variant, offering a direct control over the query processing
time/accuracy tradeoff.
Finally, we highlight how our index structure can be extended in order to more
effectively compute multiple paths between source and target, and to handle addi-
tional constraints, such as requiring all paths to pass through a vertex of a specified
type. This work is discussed in detail in Chapter 5, and has been submitted for
publication in the following research paper:

Stephan Seufert, Andrey Gubichev, Srikanta J. Bedathur, and Gerhard
Weikum. The Path Sketch Index for Efficient Path Queries over Large
Graphs. (under submission), 2014.

1.3.3 Question 4: «How can the relationship be characteri-
zed? »

In the second part of this thesis, we shift our attention froma purely efficiency-focu-
sed point of view towards facilitating a more expressive form of relationship anal-
ysis. The main point of study for this work are knowledge graphs, which contain
vertices corresponding to real-world entities such as organizations (UNICEF, Eu-
ropean Union, etc.) or individuals (Barack Obama, Angela Merkel, etc.), as well as
semantically typed relationships, corresponding for example to the membership of
an individual in an organization, interpersonal relationships such asmarried to, etc.
Vertices are further assigned semantic types (e. g. politician, country) which are
organized hierarchically in a taxonomic structure. This enrichment (of the mere
structural information encoded in the underlying graph) with semantics allows
for techniques that compute semantically meaningful answers to certain queries.
The specific application scenario we target with our algorithm is the characteriza-
tion or explanation of the relationship between two input sets of entities. More
specifically, given sets of entities such as North American politicians and European
politicians (that correspond to sets of individual vertices in the knowledge graph),
the goal is to extract small subgraphs that represent important events (for example
political scandals, high-profile political meetings) that involve entities from both
query sets. Since the concept we present as a solution to this problem – related-
ness cores – is first proposed in this thesis, our contribution is twofold: first, we
discuss the computational model underlying our graph-based relationship expla-
nations. Afterwards, we address how this general model can be modified, both in
order to achieve scalable computation as well as to compute more insightful an-
swers when additional information such as information about the importance of
individual entities over time is available.

Knowledge graphs enriched in this way allow us to define a notion of coherence,
based on both features of the individual entities, as well as the correlation of en-

7

Chapter 1 Analyzing Relationships at Web-Scale

tity popularities over time. The individual contributions have been submitted for
publication in the following research papers:

Stephan Seufert, Klaus Berberich, Srikanta J. Bedathur, Sarath Kumar
Kondreddi, Patrick Ernst, and Gerhard Weikum. ESPRESSO: Explain-
ing Relationships between Sets of Entities. (under submission), 2015,

Stephan Seufert, Patrick Ernst, SarathKumarKondreddi, Klaus Berberich,
Srikanta J. Bedathur, and Gerhard Weikum. Instant ESPRESSO: Inter-
active Analysis of Relationships in Knowledge Graphs. System Demon-
stration (under submission), 2015,

and are discussed in detail in Chapter 6.

. Thesis Organization

This thesis is organized as follows: In Chapter 2, we formally introduce the (mostly
graph-theoretic) concepts used throughout the remainder of this work. In Chap-
ter 3, we offer a detailed discussion of the state of the art of the computation infras-
tructure proposed for processing and querying large-scale graph datasets. Follow-
ing this introduction, Chapter 4 discusses our first algorithmic building block, the
Ferrari index structure for the reachability problem over large directed graphs.
Chapter 5 discusses the PathSketch index structure for estimating the distance
between a pair of vertices and generating the corresponding short paths in large
directed graphs. Chapter 6 presents the Espresso framework for characterizing
the relationship between two sets of entities in knowledge graphs. In Chapter 7
we summarize the individual contributions made in this thesis and discuss future
directions for research in relationship analysis.

8

2
Preliminaries

In this chapter, we discuss the basic concepts used throughout the remainder of
this thesis. We first introduce the fundamental graph-theoretic terminology and
establish the necessary notation used in the subsequent chapters.

. A Primer on Graph Theory

As outlined in the previous chapter, the term graph-structured data broadly refers
to collections of interconnected objects, for example a set of web pages together
with their associated hyperlinks, that induce relationships between pairs of pages.
Formally, the term graph is defined as follows:

Definition 2.1 (Graph). A (directed) graph is a triple G = (V, E, w) with a set of
vertices/nodes V, a set E ⊆ V × V of edges, and a weight function w : E → R. In
the special case of unit edge weights, that is, w(e) = 1 for all e ∈ E, the graph G is
called unweighted graph.

This formalism imposes a clear distinction on the source and target of the re-
lationship represented by the edge (s, t). Continuing above example, the source s
of the edge corresponds to the page containing the hyperlink, whereas the target t
refers to the page being pointed to.

In many scenarios, the relationships expressed by the edges are symmetric, and
no direction can be associated with the edge. Examples include classical social net-
works (where edges represent friendship), co-occurrence graphs (e. g. products
that have been purchased together), and protein-protein interaction networks in
computational biology. Conceptually, such undirected graphs can be regarded as
the special case of a directed graph where the set of edges E contains for each edge

11

Chapter 2 Preliminaries

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2.1: Directed Graph

(s, t) the corresponding reverse edge (t, s). Due to their importance, this class of
graphs is commonly represented by a dedicated formalism where we denote an in-
dividual edge as a set of vertices {s, t}, rather than as a pair of tuples (s, t), (t, s).
However, if there is no risk for confusion we will denote an undirected edge {s, t}
by the tuple (s, t) or (equivalently) by (t, s), for simplicity of notation. In this work,
we restrict our focus to simple graphs, that is, we assume that the edge set does not
contain loops, i. e. (s, t) ∈ E ⇒ s 6= t and every pair of vertices s, t is connected
through at most one edge (s, t) ∈ E.

In labeled graphs, every vertex and edge is annotated with one or more labels
from a specified label space ΣV , ΣE:
Definition 2.2 (Labeled Graph). A labeled graph is specified by a tuple

G = (V, E, `V , ΣV , `E, ΣE)

with a set of vertices/nodes V, a set E ⊆ V × V of edges, a set of vertex labels ΣV , a
vertex-labeling function `V : V → 2ΣV , a set of edge labels ΣE, and an edge-labeling
function `E : E→ 2ΣE .

As an example, for a graph modeling the aviation network of an airline, vertices
correspond to airports and are connected with directed edges correspond to flight
connections. In this case, a vertex v would be labeled with the airport code, i. e.
`V(v) = {FRA} and an edge would be labeled with the codes of the corresponding
flights, e. g. `E(e) = {UA090, LH120}, etc.

For a vertex v ∈ V, we denote the successors (outgoing neighbors) and prede-
cessors (incoming neighbors) of v by the sets

N+(v) = {v′ ∈ V | (v, v′) ∈ E}
and N−(v) = {v′ ∈ V | (v′, v) ∈ E}, (2.1)

that is, by the sets of vertices with an outgoing edge ending at vertex v, and the
vertices with an incoming edge originating from v, respectively. Closely related to
this notion, we define the out- and in-degree of a node as the number of successors
and predecessors, respectively, denoted by

δ+(v) = |N+(v)| and δ−(v) = |N−(v)|. (2.2)

12

A Primer on Graph Theory 2.1

s
t

Figure 2.2: Path of length 3

Finally, the degree of v is given by δ(v) = δ+(v) + δ−(v). For the case of undi-
rected graphs, no distinction is made between incoming and outgoing neighbors.
In this case it thus holds δ(v) = δ+(v) = δ−(v).

Connectivity
Thenotion ofpaths generalizes the concept of an individual edge in order to capture
indirect connections between vertices. Formally, a (directed) path from vertex s
(source) to vertex t (target) is given by a sequence

ps→t = (s = v0, v1, . . . , vl = t), vi ∈ V,

with (vi−1, vi) ∈ E, 1 ≤ i ≤ l.
The length ||ps→t|| of this path is specified by the sum of weights of the edges be-
tween the adjacent vertices in the path, i. e. – by abuse of notation – we have

||ps→t|| =
l

∑
i=1

w(vi−1, vi), (2.3)

We denote the set of all paths originating at vertex s and ending at vertex t byPs→t.
The distance between the pair of vertices (s, t) is defined as the length of the

shortest path connecting s and t:
Definition 2.3 (Distance). Given a graph G = (V, E, w) and a pair of vertices
(s, t) ∈ V ×V, the distance between s and t is given by

d(s, t) =

{
minp∈Ps→t ||p|| if Ps→t 6= ∅
∞ otherwise.

(2.4)

In general, the distance function is not symmetric, i. e. it holds d(s, t) 6= d(t, s).
Paths providing the “best” connection between a pair of nodes are of special inter-
est:
Definition 2.4 (Shortest Path). Given a graph G = (V, E, w) and a pair of vertices
(s, t) ∈ V ×V, we define the shortest paths from s to t as

Sp(s, t) = arg min
p∈Ps→t

||p|| =
{

p ∈ Ps→t
∣∣ ||p|| = d(s, t)

}
, (2.5)

that is, the set of paths starting at s and ending at t that have minimal length.

One of the most important metrics for characterizing graphs – the notion of the
diameter – is derived from vertex distances:

13

Chapter 2 Preliminaries

(a) Graph G (b) Scc(G) (c) Cond(G)

Figure 2.3: Connected Components

Definition 2.5 (Diameter). Given a graph G = (V, E), the diameter of G, denoted
by diam(G), corresponds to the maximum distance among all pairs of vertices, i. e.
the length of the longest shortest path in the graph:

diam(G) = max
s,t∈V

d(s, t). (2.6)

Connected Components
As Equation (2.4) indicates, not all pairs of vertices (s, t) might be connected via a
path, in which case it holds that Ps→t = ∅. A graph that does not provide a directed
path between all pairs of vertices is called disconnected. In order to formalize the
notion of connectivity in a graph, we define the reachability relation:
Definition 2.6 (Reachability). For a graph G = (V, E) and a pair of vertices, (s, t),
we call t reachable from s, denoted by s ∼ t, if G contains a directed path originating
from s and ending at t:

s ∼ t ⇐⇒ Ps→t 6= ∅. (2.7)

Further, we denote the set of vertices reachable from v ∈ V in G by

RG(v) = {w ∈ V | v ∼ w}. (2.8)

The setRG(v) is called the reachable set of v. When the context is clear, wewill drop
the subscript. Note that the notion of reachability is reflexive and transitive an thus
induces a partial order on the set of vertices. A graph G is strongly connected if the
reachability relation is symmetric in G:
Definition 2.7 (Strongly Connected Components). For a graph G = (V, E), we
define the strongly connected components of G as the maximal sets of vertices S1,S2,
. . .,SN ⊆ 2V , 1 ≤ N ≤ |V|, such that for every set Si, 1 ≤ i ≤ N, the included
vertices are mutually reachable, i. e.

∀(s, t ∈ Si) : s ∼ t. (2.9)

We denote the set of strongly connected components of a graph G by Scc(G)
and, for a vertex v ∈ V, we denote the strongly connected component containing
v as [v]. Finally, we define the condensed graph of G:

14

A Primer on Graph Theory 2.1

(a) Input Graph (b) Transitive closure of input graph

Figure 2.5: Transitive Closure

Definition 2.8 (Condensed Graph). Let G = (V, E, w) denote a directed graph.
We define the condensed graph of G as

Cond(G) = (Vc, Ec) with Vc = Scc(G) (2.10)
and Ec =

{(
[u], [v]

) ∣∣ (u, v) ∈ E
}

, (2.11)

that is, the graph containing a vertex (called supervertex) for every strongly connected
component of G, where two supervertices [u] 6= [v] are connected via a directed edge
if there exists an edge from a vertex u ∈ [u] to a vertex v ∈ [v].

An illustration of the concepts introduced in this section is shown in example in
Figure 2.3.

Transitive Closure
The concept of the transitive closure of a graph is closely related to reachability
(and plays an important role in our work on index support for reachability queries
in Chapter 4). Conceptually, given a graph G = (V, E), the transitive closure of G
– denoted by Tc(G) – is the minimal superset of the edge set E, that contains an
edge for every pair of distinct vertices (s, t) reachable in the input graph:
Definition 2.9 (Transitive Closure). Let G = (V, E) denote a graph. We define the
transitive closure of G as

Tc(G) =
{
(s, t) ∈ V ×V

∣∣ s ∼G t, s 6= t
}

. (2.12)

An example is depicted in Figure 2.5. Here, the input graph is shown on the left.
The transitive closure of the input graph, shown in the right figure, contains the
edges of the input graph as well as additional edges (dashed).

15

Chapter 2 Preliminaries

Cyclic Structures
Cyclic structures are a concept frequently occurring in graph theory:
Definition 2.10 (Cycle). Let G = (V, E) denote a directed graph. A subgraph C =
(VC, EC), VC ⊆ V, EC ⊆ E of G is called (simple) cycle if it holds

∀(v ∈ VC) : δ(v) = 2, (2.13)

where δ(v) denotes the degree of v. Thus, each vertex contained in C has exactly two
neighbors in the graph C.

The special case of directed cycles is of particular importance:
Definition 2.11 (Directed Cycle). Let G = (V, E) denote a directed graph. A sub-
graph C = (VC, EC), VC ⊆ V, EC ⊆ E of G is called directed cycle if it holds

∀(v ∈ VC) : δ+(v) = δ−(v) = 1, (2.14)

that is, for every vertex in v ∈ C, there exists exactly one incoming and outgoing edge
in EC, respectively.

Thus, a directed cycle corresponds to a path in a directed graph starting and end-
ing at the same vertex.

Directed Acyclic Graphs (DAGs) and Trees
Graphs that do not contain directed cycles play an important role in many applica-
tions:
Definition 2.12 (Directed Acyclic Graph). Let G = (V, E, w) denote a directed
graph. We call G directed acyclic graph (DAG) if G does not contain directed cycles.

Formally, for DAGs it holds

∀(u, v ∈ V) : u ∼G v ∧ v ∼G u =⇒ u = v. (2.15)

A special case of directed acyclic graphs, trees, are among the most important
classes of graphs, with amanifold of applications. For the case of undirected graphs,
trees are defined as connected, cycle-free graphs. If the edges are directed, we de-
fine:

(a) Cycle (b) Directed Cycle

Figure 2.6: Cyclic Structures

16

A Primer on Graph Theory 2.1

1 2

3

4

5 6 7 8

(a) Directed, Acyclic Graph

1

r(T)

2

3 4

5 6

7 8 9

(b) Directed, Rooted Tree

Figure 2.7: Acyclic Graphs

Definition 2.13 (Directed Rooted Tree). Let T = (VT , ET , w) denote a directed
graph. T is called directed, rooted tree, if G is cycle-free and there exists a vertex
r(T) ∈ VT , such that

∀(v ∈ VT) : r(T) ∼T v, (2.16)

that is, all vertices in the tree are reachable from r.

We refer to the vertex r(T) as root of the tree T. We depict examples for both types
of graphs in Figure 2.7.
For the case of undirected edges, a tree is a graph with exactly one path between
each pair of vertices.

Assessing Vertex Importance
Many graphs encountered in present-day applications exhibit certain noteworthy
properties. One of the most important classes of graph are the so-called scale-free
graphs (Barabási and Réka, 1999). Prominent examples include social networks
and the web graph. In a scale-free graph, the fraction of vertices with degree k is
proportional to a value k−γ for some constant γ > 0 (Bollobás and Riordan, 2004),
i. e. it holds

Prob [δ(v) = k] ∝ k−γ. (2.17)

The highly skewed degree distribution commonly found in scale-free graphs sug-
gests that we can identify important vertices of high degree, so-called hubs. We
formalize this notion of vertex importance, based on three different concepts: de-
gree centrality, closeness centrality, and betweenness centrality.

Definition 2.14 (Degree Centrality). Given a graph G = (V, E), we define the
degree centrality of a vertex v ∈ V as

cD(v) = δ(v). (2.18)

Apart from this rather straightforward measure, a commonly used approach for
evaluating vertex importance is based on the distance of a vertex to the remaining
nodes in the graph:

17

Chapter 2 Preliminaries

Definition 2.15 (Closeness Centrality). Given a graph G = (V, E), we define the
closeness centrality of a vertex v as

cC(v) = ∑
w∈V\{v}

2−d(v)w. (2.19)

The third measure, betweenness centrality, evaluates the score of an individual
vertex v ∈ V as the fraction of shortest paths between pairs of vertices (u, w) ∈ V2

that pass through the intermediate vertex v:
Definition 2.16 (Betweenness Centrality). Given a graph G = (V, E), we define
the betweenness centrality of v as

cB(v) = ∑
u∈V\{v}

∑
w∈V\{u,v}

sp(u, w)

sp(u, v, w)
, (2.20)

where sp(u, w) denotes the number of shortest paths between u and w and sp(u, v, w)
denotes the number of such paths that contain vertex v, respectively.

Graph Algorithms
In this section we review fundamental algorithms on graphs, that will play an im-
portant role in later chapters of this work.

Search Algorithms

The two most fundamental algorithms over graphs – Breadth-First Search (Bfs)
and Depth-First Search (Dfs) – can be categorized as search or exploration algo-
rithms. In this setting, given a start node v ∈ V, the surroundings of v are explored
in a recursive manner, the difference between the two algorithms being the way in
which the next vertex for expansion is selected. The general procedure underlying
Bfs and Dfs is outlined in Algorithm 1.

In this algorithm, the actual “work” is done in the task-specific visit function
called in line 7. As an example, an algorithm for checking reachability (i. e. the
existence of a directed path from vertex s to a vertex t ∈ V) would employ a visit
function that terminates with a positive answer if it is invoked on the target vertex
t. As a result, the graph contains a path from s to t if and only if the GraphSearch
algorithm execution was terminated by the respective visit function with a positive
answer. The fundamental difference between Breadth-First andDepth-First Search
lies in the way in which the next vertex is selected for expansion, or, in other words,
the type of queue used in the algorithm. For Bfs, a FIFO (first-in-first-out) queue
is used. Thus, the vertices that are added to the queue in line 10 of the algorithm
are added to the end of Q. Consequently, the order in which vertices are explored
corresponds to their distance to the start vertex s. More precisely, let u, v ∈ V
denote two vertices with the property that v is explored after u is explored. For the
respective distances to the start vertex s it will hold

d(s, u) ≤ d(s, v).

18

A Primer on Graph Theory 2.1

Algorithm 1: GraphSearch(G, s)

Input: graph G = (V, E), vertex s ∈ V
1 begin
2 Q← MakeQueue()
3 Push(Q, s)
4 S← {s}
5 while Q 6= ∅ do
6 v← Dequeue(Q)
7 Visit(v)
8 for w ∈ N+(v) do
9 if w /∈ S then

10 Enqueue(Q, w)
11 S← S ∪ {w}

In contrast, the Depth-First Search algorithm uses a LIFO (last-in-first-out) queue
which makes it more intuitive to express the procedure in a recursive manner. As
the name suggests, the exploration proceeds by exploring the deepest unexplored
vertex (in terms of distance from the start node).
Important problems that can be solved with this kind of search algorithm include
computation of shortest paths in unweighted graphs (Bfs), checking reachability
(Bfs, Dfs), computing a topological ordering (Dfs), identifying (strongly) con-
nected components (Dfs) and many more. In terms of computational complexity,
the basic Bfs and Dfs algorithms exhibit runtime linear in the size of the graph (in
terms of number of vertices and edges), i. e. with time complexity of O(m + n) and
space complexity of O(n), where n = |V| and m = |E|.

Dijkstra’s Algorithm

Another very prominent technique, Dijkstra’s algorithm, is closely related to the
above search algorithms. This algorithm, displayed in pseudocode in Algorithm 2,
is primarily used for the computation of shortest paths and distances in weighted
(directed or undirected) graphs. The input to the algorithm is the weighted graph
and a vertex s, the output of the algorithm is a vector of the distances (Distance)
from s to all other vertices as well as for each vertex v the last vertex Parent[v] in
one of the shortest paths from s to v. A fundamental property of this algorithm is,
that for the vertex identified in line 9 of the algorithm (the vertex v in the queue
with minimal distance value Distance[v]), it holds

Distance[v] = d(s, v).

that is the distance value assigned to v at this point during the execution of the al-
gorithm corresponds to the actual distance from the start vertex s. Consequently,
v is added to the set S and called settled node, signifying that the true distance from
the start node s is known. In contrast, for the remaining vertices in the queue, the

19

Chapter 2 Preliminaries

Algorithm 2: Dijkstra(G, s)

Input: weighted graph G = (V, E, w), vertex s ∈ V
Result: Distance[v ∈ V]: vector of distances from s to the vertices in V,

Parent[v ∈ V]: vector containing penultimate vertex in shortest path
from s to vertex v

1 begin
2 foreach v ∈ V do
3 Distance[v]← ∞
4 Parent[v]← v

5 Distance[s] = 0
6 Q← {s}
7 S← ∅
8 while Q 6= ∅ do
9 v← arg minv∈Q Distance(v)

10 S← S ∪ {v}
11 for w ∈ N+(v) do
12 if w /∈ Q then
13 Q← Q ∪ {w}
14 d← Distance[v] + w(v, w)
15 if d < Distance[w] then
16 Distance[w]← d
17 Parent[w]← w

18 return Distance[v ∈ V], Parent[v ∈ V]

currently assignedDistance[w], w ∈ Q can further decrease over the course of the
algorithm. In practical implementations, the data structure used as vertex queue
is a heap, where the use of Fibonacci heaps results in the best known computational
complexity for Dijkstra’s algorithm of O

(
m + n log(n)

)
, n = |V|, m = |E|. As a

result, for the case of Fibonacci heaps, identifying and removing from the queue
the vertex to mark as settled (line 9) can be achieved in (amortized) logarithmic
time in the size of the queue, accounting for the logarithmic factor in the overall
runtime complexity. An update to the distance value assigned to a vertex (line 16)
requires a DecreaseKey operation over the heap, which can be achieved in con-
stant time. This operation decreases the tentative distance from the source s to the
vertex w in the priority queue Q, which provides access to the closest unsettled ver-
tex. The DecreaseKey operation potentially causes a reorganization of the heap
data structure underlying this priority queue. As mentioned above, the main use-
case of Dijkstra algorithm lies in the computation of shortest paths and distances.
While the latter can be directly inferred from the assigned distance value, the actual
shortest path from s to a prescribed node t can be reconstructed by following the
Parent pointers backwards to the root.

20

A Primer on Graph Theory 2.1

RandomWalks with Restarts

Algorithms based on random walks with restarts (RWR) represent an important
and widely used class of graph algorithms. Typically, this type of algorithm is exe-
cuted over edge-weighted, directed or undirected graphs with the goal of ranking
the vertices based on a certain criterion. The most prominent example of an RWR-
algorithm is the PageRank algorithm (Brin and Page, 1998), used to determine the
relative importance of a web page for use in search result ranking. Random-walk
based algorithms are traditionally expressed in linear algebra notation, hence we
switch our graph representation to matrix form. In this setting, a weighted graph
G = (V, E, w) is represented by the (weighted) adjacency matrix

W ∈ Rn×n, wij =

{
w(vi, vj) if (vi, vj) ∈ E,
0 otherwise,

(2.21)

where w(vi, vj) denotes the weight of the edge (vi, vj). For the case of undirected
graphs, W is a symmetric matrix, i. e. it holds WT = W. Based on the adjacency
matrix W, a random walk algorithm defines a transition matrix T ∈ Rn×n with
stochastic column vectors, i. e.

n

∑
i=1

tij = 1 for 1 ≤ i ≤ n, (2.22)

and tij ≤ 1 for all 1 ≤ i, j ≤ n, which can be regarded as the column-normalized
adjacency matrix W. If we consider the web graph, where web pages correspond
to vertices and hyperlinks to edges, the intuition behind the transition matrix is to
capture the probabilities that a random surfer located at the web page represented
by vertex v ∈ V proceeds to the page corresponding to vertex w ∈ V after follow-
ing a hyperlink. As a second input to the algorithm, the initial probability for the
surfer to start at vertex v is given by the respective entry in vector x0 ∈ Rn×1, often
corresponding to the uniform distribution, i. e. x0[v] = n−1, but other choices are
appropriate in certain settings in order to bias the random walk process. The con-
cept of start probabilities is extended to a probability distribution xt ∈ Rn×n, where
xt[v] denotes the probability that the random surfer is located at vertex v at time t
in the process. This probability distribution is computed recursively following the
recurrence

xi+1 = (1− α)x0 + αTxi, (2.23)

where (1− α) ∈ [0, 1] denotes the restart probability, that is, the probability that
the surfer restarts the random walk process at a node w ∈ V, selected proportional
to its start probability x0[w]. The desired output of the RWR algorithm is the final
assignment of scores signifying relative importance of the vertices, given by vector
xF ∈ Rn×1. This vector corresponds to the fixed point of Equation (2.23), that is
the stationary probability distribution xF where we have xF = xF−1. Regarding the
computation of the final vector xF, the standard way is to iterate Equation (2.23)
until convergence, known as Jacobi power iteration method.

21

Chapter 2 Preliminaries

2.1.1 Important Graph Classes
In this section, we discuss several important classes of graphs from different appli-
cation domains, that will be referred to from later chapters.

Social Networks

Social networks had been subject of research in the social sciences long before pop-
ular online social networking sites such as Facebook or LinkedIn were established.
Vertices in a (pure) social network graph correspond to persons that are intercon-
nected via typed or untyped relationships e. g. based on interpersonal friendship,
business relationships, and the like. Whilemost social networks contain undirected
relationships, there are examples for directed social network graphs, for example
(subscription-based) content-generating sites like the microblogging service Twit-
ter. From a graph-theoretic point of view, social networks exhibit several notewor-
thy properties. A prominent result, the theory of six degrees of separation states that,
in the modern society, each pair of persons is connected via a chain of at most five
intermediary contacts (Travers and Milgram, 1969). Over the last decade, the mas-
sive growth of online social networks has permitted to perform in-depth analysis
of these graph structures at large scale. Using crawls of several social networking
sites, Mislove et al. (2007) confirm several properties attributed to social networks,
such as small diameter, power-law degree distribution and the scale-free property.

Citation Graphs

Citation networks represent another class of graphs with distinctive properties. In
this setting, vertices correspond to articles (e. g. scientific papers or patent applica-
tions). A citation graph contains a directed edge from article X to article Y, if Y is
referenced in article X. Naturally, since only articles that have been published in the
past can be referenced, citation networks are by definition acyclic, directed graphs,
a property that renders this class of graphs particularly interesting for reachability
analysis.

Road Networks

Due to their important role in route planning and associated applications, road net-
works (transportation networks) are arguably one of themostwidely studied classes
of graphs. In this setting, vertices typically correspond to street crossings, which in
turn represent the directed or undirected, weighted edges. Algorithms over road
networks, most notably for shortest path computation, are at the core of modern
GPS-based navigational systems. The resource limitations of mobile GPS devices
have led to a large body of research in algorithm engineering as well as theoretical
studies, with the goal of identifying special properties of road networks that can be
exploited for fast processing of shortest path queries. Such properties include hi-
erarchical structure (Geisberger et al., 2008, Sanders and Schultes, 2005), enabling
query processing techniques such as transit-node routing (Bast et al., 2007).

22

Approximation Algorithms 2.2

Knowledge Graphs

Knowledge graphs, a term made popular by the recently revealed knowledge base
behind the Google search engine, refer to collections of entities such as persons,
organizations, etc. that are interconnected via semantically typed edges that en-
code facts about the respective incident entities, e. g. personal relationships, mem-
bership in organizations, and the like. Knowledge graphs – such as the YAGO2
ontology (Hoffart et al., 2013) – play an increasingly important role in many appli-
cations, ranging from named entity disambiguation (Hoffart et al., 2011) to query
understanding (Pound et al., 2012) and relationship explanation (Fang et al., 2011),
to name a few.

Web Graphs

We have discussed web graphs earlier in this chapter during the discussion of Page-
Rank algorithm. In web graphs, vertices correspond to web pages (or URLs) and
directed edges correspond to hyperlinks, thereby capturing the structure induced
by the links embedded into websites. This graph structure underlying the World
Wide Web represents an important resource for many applications. While as of
2008 the number of web-pages was estimated to more than a trillion1, important
characteristics of the web graph have been derived from smaller, crawled portions
of the web. In their seminal work, Broder et al. (2000) analyze several fundamen-
tal properties of web graph, with supporting evidence for power-law degree dis-
tribution. Further, the macroscopic structure of the web is detailed, comprising a
strongly connected core, a portion of pages linking into and out of the core, respec-
tively, and so-called tendrils, pages disconnected from the SCC. All four sets were
found to be of roughly the same size. In this thesis, we consider web graphs both
for reachability analysis as well as for the computation of shortest paths.

With this, we conclude our brief introduction to graph theory. For a more com-
prehensive overview of graph-theoretic concepts, the reader is referred to the clas-
sical literature surveying the field (Diestel, 2010), an interdisciplinary perspective is
given by Easley and Kleinberg (2010). Fundamental graph algorithms are covered
by Cormen et al. (2009).

. Approximation Algorithms

In the later chapters of this work, we will repeatedly encounter the notion of ap-
proximation algorithms. Typically proposed for NP-hard optimization problems,
this class of algorithms offers a tradeoff between the optimality of the returned so-
lution and the time- and/or space-complexity of the underlying algorithm. In con-
cordance with the terminology proposed by Vazirani (2001), we formally define:
Definition2.17 (α-ApproximationAlgorithm). Let Π denote aminimization prob-
lem and I a problem instance of Π, respectively. We define the cost of the optimal
solution of I – as determined by the objective function specific to Π – by OPTI . An
1http://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html

23

http://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html

Chapter 2 Preliminaries

algorithm A is called α-approximation algorithm for Π if for every problem instance
I it holds

c
(

A(I)
)
≤ α · OPTI , α ≥ 1 (2.24)

where A(I) denotes the solution returned by the algorithm A for the problem instance
I and c is to the objective function quantifying the cost of the solution.

While we used a minimization problem in above definition, the principle carries
over to the class of maximization problems in a straightforward way.

24

3
Graph Data Processing:

State of the Art & Directions

In this chapter, we discuss the state of the art in processing large-scale graph-struc-
tured data. In concordance with the terminology proposed by Robinson et al.
(2013), we make a distinction between systems for online processing – e. g. query-
ing – of graphs (graph databases), and offline analytic processing.

. Representing, Indexing, and Querying
Graph-Structured Data

Graph-structured data can be expressed in many ways. We briefly review the three
fundamental representations that are commonly used in practice.

• In the simplest case, a graph can be represented by simply recording all edges
in the form of a list of source-target pairs. This edge list representation is
particularly well-suited for graph algorithms in the (semi-)streaming model
(Feigenbaum et al., 2004) of computation.

• For the concise description of algorithms, it is sometimes convenient to ex-
press a graph in terms of matrix notation. In this setting, an unweighted
graph G = (V, E) is given by the adjacencymatrix A ∈ Rn×n where Aij = 1
if and only if the graph contains an edge (vi, vj), and zero otherwise. For
weighted graphs, we have W ∈ Rn×n with Wij = w(vi, vj) if (vi, vj) ∈ E,
where w(vi, vj) denotes the weight of the edge from vertex vi to vertex vj.
Certain algorithms (e. g. the PageRank algorithm discussed in Section 2.1)
can be expressed in a convenient manner using this representation.

27

Chapter 3 Graph Data Processing: State of the Art & Directions

• The most prevalent graph representation used in practice are adjacency lists.
In this setting, every vertex v of the graph is directly assigned the list of suc-
cessors, i. e. the vertices in N+(v) (cf. page 12). In some settings, it makes
sense to access the incoming edges of a vertex directly, in which case we also
assign a list containing the vertices N−(v), with an outgoing edge pointing
to v.

In the next sections, we present an overview of different paradigms for querying
graph-structured data, starting with the simplest scenario: structural querying (i. e.
based purely on graph topology).

3.1.1 Structural Graph Queries
Structural graph queries are concerned only with the structure (or topology) of the
graph and are thus oblivious of additional data such as properties or labels assigned
to vertices and edges. Examples for this fundamental kind of query include reacha-
bility queries, asking for the existence of a connection (i. e. path) between a pair of
specified query vertices, or path queries, requiring identification of a path between
the query vertices. In the majority of cases, structural graph queries can be an-
swered by online search algorithms (cf. Section 2.1). Queries of this kind represent
the basic form of relationship analysis, and play an important role in graph explo-
ration. Further, reachability and path queries can be used as algorithmic building
blocks to support other, more expressive, querying mechanisms such as the pat-
tern matching queries presented in the subsequent section. Due to the application
of structural graph queries in interactive querying as well as the use as a build-
ing block, high efficiency of query execution is imperative. For this reason, index
structures that support fast query execution have been an active area of research
over recent years.
Given a query type (such as reachability or shortest path queries), the common
theme of structural graph indexes lies in the idea of precomputing – in an offline
indexing stage – certain parts of the answers to the potential user-issued queries.
This precomputed information is later used at query time to quickly generate an-
swers without having to start from scratch using a plain search algorithm. In the
extreme case, a complete precomputation of answers to all possible queries is feasi-
ble, dependingmainly on the size of the input graph as well as on structural proper-
ties of the graph (certain classes of graphs – such as trees – often permit a complete
precomputation of all possible query results which would otherwise be infeasible
over general graphs). As an example, consider the case of reachability querying. A
complete precomputation would correspond to the materialization of the transitive
closure of the graph (cf. Definition 2.1), e. g. in the formof a boolean (n×n)-matrix
R for which it holds

R[s, t] = 1 ⇐⇒ s ∼G t,

i. e. thematrix entry in row s and column t is set to one if and only if the input graph
contains a directed path starting at vertex s and ending at vertex t. Clearly, such a
complete precomputation approach, implying indexing time complexity of O(n3)
and index size O(n2), has limited applicability in practice. In order to achieve

28

Representing, Indexing, and Querying Graph-Structured Data 3.1

fast processing of reachability queries over massive graphs, comprising millions of
vertices and edges, recently proposed index structures either rely on sophisticated
compression techniques (van Schaik and de Moor, 2011) or compute more coarse-
grained index entries (which can be considered a lossy, but space-efficient com-
pression of the transitive closure) that are combined with restricted online search
at query time (Seufert et al., 2013, Yıldırım et al., 2010, 2012). One contribution we
make in this thesis is the Ferrari index structure for reachability query processing,
presented in Chapter 4.

For other problem scenarios, like shortest-path querying, index size and precom-
putation requirements are even more demanding. In many cases, index structures
for path computation exploit structural properties of the graph under considera-
tion, e. g. hierarchical structure of road networks, or small diameter for the case
of social networks. The second major contribution made in this thesis, the Path-
Sketch index for shortest path approximation, is presented in Chapter 5. We pro-
vide a detailed discussion of the state-of-the-art in structural graph indexing for
reachability and path queries in the section on related work in the respective chap-
ters.

As hinted above, queries of this type operate exclusively over the topology of the
graph. In practice, vertices and edges are typically annotated with additional infor-
mation (see Definition 2.2). As an example, for the case of graph-structured knowl-
edge bases, vertices are labeled with an identifier (e. g. Barack Obama) and edges
are assigned a label (so-called property) capturing the underlying semantics of the
connection (e. g. presidentOf). Enriched graph structures of this kind are typically
referred to as property graphs. We continue our description with an overview of
actual graph database systems, which integrate the properties of vertices and edges
with the structure of the graph in order to allow for expressive querying.

3.1.2 Pattern Matching Queries

Graph Databases

Graph databases – such as Neo4j1, Titan2, OrientDB3, and InfiniteGraph4 – pro-
vide CRUD (Create, Read, Update, Delete) operations over a graph data model in
a transactional system (Robinson et al., 2013). While graphs can be represented in
a straightforward way using a traditional, relational database system (e. g. by using
a single large relation containing the source and target vertex identifiers for each
edge), many recent graph database implementations can be considered native in
the sense that they make use of a physical database layout optimized for traversal
operations, the de-facto standard for querying graph databases.

1http://neo4j.org
2http://thinkaurelius.github.io/titan/
3http://www.orientechnologies.com/orientdb/
4http://www.objectivity.com/infinitegraph

29

http://neo4j.org
http://thinkaurelius.github.io/titan/
http://www.orientechnologies.com/orientdb/
http://www.objectivity.com/infinitegraph

Chapter 3 Graph Data Processing: State of the Art & Directions

name: “Francis J. Underwood”
dob: 11/05/1959

name: “Claire Underwood”
dob: 04/08/1966

name: “Washington, D.C.”
population: 632,323

name: “Gaffney”
population: 12,449

name: “South Carolina”
population: 4,625,364

name: “United States”
population: 317,238,626

marriedTo

l
i
v
e
s
I
n

bo
rn
In

locatedIn

l
o
c
a
t
e
d
I
n

locatedIn

Figure 3.1: Property Graph

Neo4J

We exemplify this basic principle of graph databases using the example of Neo4j,
the most widely used graph database implementation available. In the scope of
graph databases, querying the data is equivalent to traversing the modeled graph.
The performance advantage of graph databases is due to the so-called principle of
index-free adjacency (Robinson et al., 2013), which means that connections in the
data are retained in the way the data is stored on disk. While there is no stan-
dard query language for graphs (such as SQL for relational databases), the recently
proposed Cypher query language5 has emerged as the query language of choice
for property graphs. The pattern matching approach followed by Cypher is best ex-
plained as query-by-example. For illustration, consider the property graph depicted
in Figure 3.1. Suppose we are interested in all people born in the United States. In
Cypher, this query is expressed as

START us=node:countries(name=”United States”)

MATCH (p)-[:bornIn]->(l)-[:locatedIn:*]->(us)

RETURN p

As the example illustrates, queries correspond to the specification of a subgraph (in
this case a path with edge label locatedIn) satisfying certain structural properties
(in this case on the edge labels, as well as on the fixed endpoint). Vertices of inter-
est are represented as variables (in the example p, l), that are bound to the actual
vertices representing the query result.
While graph databases have gained popularity in recent years, the the lack of stan-
dardization is still hindering a wider adoption. However, recent efforts, such as the
Blueprints API6 try to overcome this limitation in the graph database space. In
the next section, we focus on a graph-structured data representation backed by the
W3C: RDF and the corresponding query language, SPARQL.

5http://www.neo4j.org/learn/cypher
6http://www.tinkerpop.com

30

http://www.neo4j.org/learn/cypher
http://www.tinkerpop.com

Representing, Indexing, and Querying Graph-Structured Data 3.1

Francis_J._Underwood

Gaffney

South Carolina

United_StatesWashington,_D.C.

Claire_Underwood

”Francis Underwood”

”11/05/1959”

”United States”

bo
rn
In

marriedTo

l
i
v
e
s
I
n

locatedIn

l
o
c
a
t
e
d
I
n

locatedIn

is
Ca
ll
ed

bornOnDat
e

isC
all

ed

Figure 3.2: RDF Graph

3.1.3 The Resource Description Framework

The Resource Description Framework (RDF7) is a model for data interchange,
primarily in the scope of Semantic Web applications, that can be regarded as an
edge-labeled multi-graph representation. RDF data is commonly represented in
the form of triples, comprising the three components subject, predicate, and object.
The subject and object of a triple can be regarded as either concepts (entities), or
literals such as strings or numbers. The predicate can be regarded as the “label” of
the edge, capturing the semantics of the expressed relationship. Thus, in contrast
to the concept of property graphs used in graph databases, the atomic units in RDF
are triples, and attributes of individual vertices are represented as adjacent vertices
rather than being directly associated with the vertex. To illustrate the difference, we
express (a subset of) the previous property graph example in RDF, shown in Fig-
ure 3.2. Encoded in the form of triples (TTL/N3 format), this graph representation
can be factorized into triples as follows:

Francis_J._Underwood <bornIn> Gaffney .

Francis_J._Underwood <livesIn> Washington,_D.C. .

Francis_J._Underwood <marriedTo> Claire_Underwood .

Francis_J._Underwood <isCalled> ”Francis Underwood” .

Francis_J._Underwood <bornOnDate> ”11/05/1959” .

Gaffney <locatedIn> South_Carolina .

South_Carolina <locatedIn> United_States .

Washington,_D.C. <locatedIn> United_States .

United_States <isCalled> ”United States” .

As shown in the figure, attributes of vertices – such as the date of birth of a person
in the example) are represented as literals (strings, numbers, etc.) – are connected
to the respective vertex via a labeled edge.
Apart from the amenities of schema-free nature combined with rich querying fa-
cilities that RDF shares with graph databases, a major advantage of RDF is its stan-
dardization backed by the W3C, which has led to a widespread adoption of RDF
in several problem domains, most notably the Semantic Web. RDF has become
the prevalent representation for facts about entities, ranging from the biological
domain (e. g. the UniProt initiative8) to comprehensive knowledge bases such as
7http://www.w3.org/RDF/
8http://www.uniprot.org

31

http://www.w3.org/RDF/
http://www.uniprot.org

Chapter 3 Graph Data Processing: State of the Art & Directions

YAGO2 (Hoffart et al., 2013). The standard query language for RDF is SPARQL, a
declarative language inspired by the SQL standard for relational databases. The cur-
rent standard SPARQL 1.19 enhances the basic query language with more expres-
sive querying facilities, most notably property paths, that allow navigational queries
via the introduction of a regular expression-like syntax for path specifications. Us-
ing this syntax, the query from the previous example can be expressed in SPARQL
1.1 as follows:

SELECT ?name

WHERE { ?person isCalled ?name .

?person bornIn/locatedIn* ?country .

?country isCalled “United States”

}

Here, the variable length subpath of edges with property locatedIn is expressed
using Kleene star notation. In SPARQL, joins are expressed using dot notation. For
brevity, we omit namespace declarations.

RDF-3X

Numerous systems for efficient processing of SPARQL queries have been proposed
in the past (Abadi et al., 2009, Broekstra et al., 2003, Gurajada et al., 2014, Huang
et al., 2011, Wilkinson et al., 2003). We briefly introduce RDF-3X (Neumann and
Weikum, 2010), a state-of-the-art query processor forRDFdata. At its core, RDF-3X
can be considered a RISC-style engine that relies on aggressive indexing of the all
possible permutations of the SPO-triples contained in the database into separate,
clustered B+ trees, and can thus be regarded as exhaustive indexing of the so-called
giant triples table approach (which exists only virtually in RDF-3X). The high com-
pression ratio of the index (due mapping of literals to consecutive numeric iden-
tifiers, delta-encoding of gaps and variable byte-length encoding), makes this ap-
proach feasible for very large RDF datasets. For efficient processing of SPARQL
queries, RDF-3X is relying primarily on merge-joins, with a query optimizer con-
centrating on the join order.

This concludes our overview of the two most important paradigms for graph-
structured data, graph databases and the RDF standard. The discussed pattern
matching query processing approaches (query by example) represent the standard
way of querying graph-structured data. In the next section, we discuss a third graph
querying paradigm (apart from structural and patternmatching queries), whichwe
refer to as subgraph extraction queries. Here, rather than querying a graph by spec-
ifying an example pattern, the input provided consists of certain terminal vertices
of the graph and a property that has to satisfied by the returned subgraph.

9http://www.w3.org/TR/sparql11-overview/

32

http://www.w3.org/TR/sparql11-overview/

Large-Scale Graph Processing 3.2

3.1.4 Subgraph Extraction Queries
As discussed before, primitive operations such as reachability checks and short-
est path queries are common and useful in many problem scenarios. They are
mostly used as building blocks of other algorithms and as heuristics used in pattern
matching-based query processing approaches like SPARQL and Cypher discussed
in the previous section. These query languages allow for the expressive querying
for instances of the subgraph pattern specified in the query. While querying mech-
anisms based on pattern matching cover many information needs, in some settings
a third graph querying paradigm is required, where the desired solution is specified
by a combination of terminal vertices that have to be included in the query result
as well as properties of the requested subgraph. We refer to this kind of queries as
subgraph extraction queries.

For illustration, consider a so-called Steiner tree query, where we are interested in
theminimumcost graph (in terms of number of edges) connecting a set of specified
vertices. Here, the query consists of a set of vertices together with a desired prop-
erty (minimum connection cost). An example for subgraph extraction queries, the
third major contribution of this thesis is a framework for relationship analysis over
knowledge graphs, where we are interested in a coherent subgraph connecting two
sets of specified query entities. This algorithm is discussed in detail in Chapter 6.

This concludes our overview of the three major querying paradigms for graph-
structured data. In the next section, we discuss several practical aspects of process-
ing large graphs, ranging from an overview of disk-based approaches to distributed
querying and analysis of graphs.

. Large-Scale Graph Processing

Over the last two decades, with the advent of the big data era, the scale of graph
datasets available for study has grown massively. This growth is not only affect-
ing the sheer structure of the graph – i. e. the number of vertices and edges – but
also encompasses additional data that associated with the graph, including labels
and weights associated with the vertices and edges, temporal information allowing
to study evolving graph structures over time by examining the graph at different
snapshots, and many more. Many different paradigms for processing large-scale
graph-structured data have emerged, both in a centralized as well as a distributed
setup.

33

Chapter 3 Graph Data Processing: State of the Art & Directions

3.2.1 Centralized Processing
In the centralized setting, the complete graph is stored in a single compute node,
either in main-memory, or on secondary memory, i. e. the hard disk (rotating or
solid state disk (SSD)). Hybrid solutions are possible, e. g. representing the struc-
ture (i. e. edges) but not the entire vertex/edge data in main memory, storing only
certain, frequently accessed subgraphs in main memory, etc.

In this section we discuss the handling of massive graphs (i. e. graphs compris-
ing billions of edges) on a single machine, focusing on the two main approaches
for handling disk-resident graphs: external-memory algorithms and streaming al-
gorithms. We elaborate both on the underlying computational models used for
assessing the cost of an algorithm in these settings, as well as on actual algorithm
implementations used in practice.

External-Memory Algorithms

The standard model used in analysis of sequential (graph) algorithms is the Ran-
dom Access Machine (RAM) model, based on the von Neumann-model of com-
puter architecture (Mehlhorn and Sanders, 2008), first introduced by Sheperdson
and Sturgis (1963). In this setting, a single processor works on a computing task
and has access to an infinite amount of memory cells and a limited number of reg-
isters. The model supports machine instructions for loading and storing the con-
tent of a memory cell into a register and vice-versa, arithmetic and logical oper-
ations, comparisons, assignment of constant values to registers, and jumps in the
execution of the program. Each machine instruction can be executed in constant
time (Mehlhorn and Sanders, 2008). The abstraction achieved by the RAM model
allows for a convenient theoretical analysis of sequential algorithms. In contrast,
the external memory model, proposed by Aggarwal and Vitter (1988), considers
the scenario where the input data to the algorithm is too large to fit into the main
memory of the machine. More formally, the amount of available working memory,
denoted by M, is restricted to a certain size S. An unlimited amount of additional,
slow (external) memory is available. In order to perform computation on data
stored in the external memory, it is required to transfer the respective data blocks
to the fast main memory. For this purpose, designated Input-Output operations
(I/O operations) are available to transfer data blockwise – in blocks of size B – from
the unlimited and slow to the restricted and fast memory and back. The external
memory model not only applies to the case of data stored on hard disk drives that
has to be transferred into main memory. Rather, it is defined in a general way for
so-called memory-hierarchies, that, for example, also encompasses the case where
data blocks are transferred between the main memory and the L3-cache. The cost
of an external memory algorithm is determined as the sum of required I/O opera-
tions, corresponding to the number of transferred data blocks, over the course of its
execution. Themain primitives, that can be regarded as basic building blocks of ex-
ternal memory algorithms, are scanning and sorting operations over the data. The
number of I/Os required to scan/sort N items is denoted by scan(N) = Θ(N/B)
and sort(N) = Θ(N/B logM/B(N/B)), respectively.

34

Large-Scale Graph Processing 3.2

For the case of graph algorithms, the adjacency lists of individual vertices are typ-
ically stored sequentially on disk. Retrieving the neighbors of a vertex then requires
a seek to the respective position on disk, and transferring the entries in the adja-
cency list, using sequential read operations. Chiang et al. (1995) propose external
memory algorithms based on the scan and sort primitives for the I/O-optimal sim-
ulation of graph algorithms in the PRAM model of computation10 and depth-first
search. Several algorithms have been proposed for Breadth-First Search in the ex-
ternal memory model. Munagala and Ranade (1999) propose an algorithm based
on first retrieving the multi-set of all neighbors of vertices at the current level in
the Bfs expansion, followed by sort and scan operations in order to remove dupli-
cates. Afterwards, vertices from the previous two Bfs levels are removed from the
set, resulting in the set of vertices contained in the next level of the Bfs. The over-
all I/O-complexity of this algorithm is given by O

(
n + sort(m)

)
I/Os. Mehlhorn

and Meyer (2002) extend this algorithm with a preprocessing phase that performs
a randomized partitioning of the vertices and their respective adjacency lists, in
order to improve the I/O-complexity of the Bfs phase, resulting in (worst-case)
I/O complexity of O

(√
n · scan(n + m) + sort(n + m)

)
. A comparative study of

external memory Bfs algorithms is given by Ajwani et al. (2006). Regarding im-
plementation aspects, Ajwani et al. (2007) propose a deterministic variant of above
algorithm and reduce the overhead associated with the representation of the Bfs
levels, leading to better results on graphs with large diameters. In a more recent
work, Meyer and Zeh (2012) extend this algorithm to obtain a single source short-
est path algorithm with good average-case performance on graphs with uniformly
random edge weights, and propose a worst-case efficient algorithm for graphs with
arbitrary real-valued edge weights.
Apart fromBfs, other important algorithms that have been researched in thismodel
include connected components, minimum spanning trees, topological orderings,
and diameter computation (Ajwani et al., 2012). For a thorough discussion, we re-
fer to the overview of graph algorithms in external memory given by Katriel and
Meyer (2003).

Graphs in the StreamingModel

Data streamprocessing is a computationalmodel that exhibits certain overlapwith
the problem setting of external memory algorithms. In this scenario, the input data
is processed sequentially (e. g. by scanning through a huge file on disk or in a real-
timemonitoring system) and the available workingmemory is assumed to bemuch
smaller than the size of the input data stream (Alon et al., 1996, Flajolet and Mar-
tin, 1985, Munro and Paterson, 1980). The relevant parameters in this setting are
the size of the available working memory and the number of passes over the stream
that are required for computation (often only one). In addition, the amount of time
spent for processing a single item from the stream is an important factor, referred to
as per-item-processing-time. Many important problems like estimation of statistical
10The Parallel Random Access Memory (PRAM) is a machine model for parallel algorithms, based

on the concept of multiple synchronously clocked processors and a shared memory comprising an
infinite amount ofmemory cells. Programs defined in thismodel are of the SIMD (single instruction
multiple data) type.

35

Chapter 3 Graph Data Processing: State of the Art & Directions

quantities like frequency moments and counting of distinct elements can be effi-
ciently computed in the streaming model under memory constraints. In general,
data stream algorithms have received considerable attention in recent years and a
thorough treatment of this field is beyond the scope of this thesis. For this reason,
we only discuss graph algorithms in the streaming model.

The drastic memory restrictions (e. g. restriction to a constant) typically found
in classical streaming approaches appear too challenging for many graph prob-
lems. For this purpose, less restrictive models have been proposed, most notably
the semi-streaming model (Feigenbaum et al., 2004). In this setting, the available
space is restricted by O

(
n · polylog(n)

)
, where polylog(n) refers to a polylogarith-

mic function of the number of vertices in the input graph, that is, a polynomial
in the logarithm of n. Informally, the semi-streaming allows to store data associ-
ated with the vertices of the graph, but not the full set of edges. Algorithms that
permit efficient approximation schemes under this model include weighted bipar-
tite matchings, computation of the graph diameter (cf. Equation 2.6) and shortest
paths in weighted graphs (Feigenbaum et al., 2004). Demetrescu et al. (2009) dis-
cuss how the available memory can be traded off against the number of passes for
several graph problems.

For further details, an overview of algorithms and applications for (general) data
stream processing is given by Muthukrishnan (2005), while Ruhl (2003) discusses
several variants of stream processing.

3.2.2 Distributed Processing
External memory algorithms and the semi-streaming model allow for the process-
ing of massive graphs in a centralized setting. However, distributed data processing
in large data centers of commodity hardware has become standard in data process-
ing in the big data era. In this sectionwe review the current state-of-the-art in graph
processing in the distributed setting, elaborating on the threemost popular contem-
porary approaches, MapReduce, BSP (bulk synchronous parallel, e. g. Pregel), and
asynchronous graph- parallel computation (GraphLab).

MapReduce

The term MapReduce refers to a data parallel programming model proposed by
Dean andGhemawat (2004) for parallel, distributed computation based on the defi-
nition of just two functions, map, which transforms input key-value pairs into out-
put key-value pairs; followed by reduce, which aggregates the different values of a
key. While the basic functions originate in functional programming, the tremen-
dous impact of the MapReduce paradigm on modern-day data processing is due to
the fact that it allows for user-friendly implementation of distributed algorithms by
abstracting to a level where only two simple functions have to be specified. Many
important tasks can be efficiently computed by a MapReduce system, for example
the construction of inverted indexes for text retrieval. Regarding graphs, also the
power iterationmethod for computing the PageRank scores of individual web pages
is conveniently expressed in terms of map and reduce functions. One drawback of

36

Large-Scale Graph Processing 3.2

the MapReduce paradigm for graph processing is the need to explicitly pass the
original graph structure together with the computed intermediary key-value pairs
from mappers to reducers in order to execute iterative algorithms over the graph.
While some improvements have been proposed in the past regarding this problem,
including the Schimmy design pattern proposed by Lin and Schatz (2010), many
graph algorithms can be implemented more efficiently over a vertex-centric model,
that maintains the graph at individual workers. These approaches are discussed
next.

Bulk-Synchronous Parallel

The Bulk-Synchronous Parallel (BSP) model was introduced by Valiant (1990)
as a bridging model between software and hardware for parallel computation. The
model can be regarded as a generalization of the PRAM model. BSP relies on a
combination of the following basic principles:

1. N components execute computing tasks in parallel,

2. an intermediary message router delivers information between pairs of com-
ponents, and

3. a synchronization mechanism that is executed in pre-defined time-intervals
allowing (subsets) of the components to synchronize their status.

Based on these components, a task is processed as follows: in a so-called super-
step, each component can receive messages from other components, perform local
computation on the available data, and send messages to other components. The
original task is then processed in a sequence of supersteps. After a certain amount
of time units, the barrier synchronization mechanism checks whether the current
superstep has been completed and, based on the result, either initiates the next or
allocatesmore time units to the currently active superstep. The communication cost
plays an important role in the BSP model. Sending and receiving messages can be
regarded as non-local write and read requests (McColl, 1996).

The BSP model has emerged as an important paradigm for graph processing. In
this setting, the graph is partitioned and distributed among the machines in the
cluster for distributed computation. Similar to MapReduce, the user fills in a func-
tion, in this setting a compute function that is applied at the individual vertices in
parallel. Starting with Google’s Pregel framework (Malewicz et al., 2010), several
approaches have been proposed recently. Salihoglu and Widom (2013) propose
GPS, extending the Pregel API in several ways, most notably with a dynamic repar-
tition scheme that reassigns vertices among different machines based on the ob-
served communication. Further, Salihoglu and Widom (2014) discuss the efficient
implementation of graph algorithms in this computationalmodel, advocating serial
computation on a small fraction of the input graph orthogonal to the vertex-centric
computation model. In their recent work, Tian et al. (2013) propose Giraph++, a
graph- (rather than vertex-) centric programming model for distributed process-
ing. In this setting, the partition structure is being made transparent to the user,
which can be exploited for algorithm-specific optimizations that can result in sub-
stantial performance gains.

37

Chapter 3 Graph Data Processing: State of the Art & Directions

Asynchronous Graph-Parallel Computation

Originally proposed as a framework for parallel machine learning, GraphLab (Low
et al., 2010, 2012) is now established as a general purpose distributed data process-
ing environment. (Distributed) GraphLab is marketed as asynchronous, dynamic,
graph-parallel programming model and operates in the shared-memory setting. In
contrast to the vertex-centric Bulk Synchronous Parallel paradigm, in GraphLab,
individual vertices can read as well as write data to the incident edges and adja-
cent vertices of the graph. As a result, rather than communicating via messages,
interaction among vertices is achieved via shared memory. Consequently, serial-
izability is ensured by avoiding the simultaneous execution of neighboring vertex
programs (Gonzalez et al., 2012). Kyrola et al. (2012) port the GraphLab model to
the centralized setting, where the graph resides on the hard disk of a singlemachine.
In order to address and exploit the characteristics of graphs exhibiting a power-law
degree distribution (such as social networks), Gonzalez et al. (2012) propose the
PowerGraph abstraction, a generalization of GraphLab and BSP to the so-called
gather-apply-scatter model of computation, which factorizes a vertex-program into
three phases which allows to parallelize the vertex-programs for high-degree ver-
tices. In addition, the authors propose a partitioning scheme based on the vertex-
cut, effectively minimizing the number of compute nodes “spanned” by an individ-
ual vertex.

With this overviewof the state-of-the-art in large-scale graphprocessing, we con-
clude the introductory part of this thesis. In the subsequent chapters, we present
our individual contributions for relationship analysis of large graphs.

38

Part II

Algorithmic Building Blocks

41

4
Reachability Analysis

Q1: Is there a relationship?
«Is there an interaction between two specific genes in a regulatory net-
work?»

«Which research papers have influenced a certain publication?»

43

Chapter 4 Reachability Analysis

. Problem Definition

In this chapter, we introduce the first of the three algorithmic building blocks that
make up this work, an index structure for the reachability problem. In this set-
ting, given a directed graph and a designated source and target vertex, the task of
a reachability index structure is to determine whether the graph contains a path
from the source to the target. This kind of query is a fundamental operation in
graph mining and algorithmics, and ample work exists on index support for reach-
ability problems.
The index structure we propose in this chapter solves the following two problem
variants:

Problem 1: Two-Sided Reachability

Given Directed graph G = (V, E), pair of vertices (s, t) ∈ V ×V.

Goal Determinewhether G contains a directed path from vertex s to vertex t.

Problem 2: One-Sided Reachability

Given Directed graph G = (V, E), vertex s ∈ V.

Goal Identify all vertices t ∈ V that are reachable from s.

This chapter is organized as follows: in the following section, we discuss the char-
acteristics and applications of the reachability analysis variants introduced above
and continue with an overview of our proposed index structure.

4.1.1 Problem Characteristics
Computing reachability among vertices is a building block in many kinds of graph
analytics, for example biological and social network analysis, traffic routing, soft-
ware analysis, and linked data on the web, to name a few. As a concrete example,
a taxonomic structure – e. g. the type hierarchy in YAGO (Hoffart et al., 2013) –
can be represented as a directed acyclic graph (cf. Section 2.1), where the vertices
correspond to types (e. g. Person, Organization, etc.) and the graph contains a di-
rected edge from type s to type t, if t can be regarded as a specialization of s. Thus, a
taxonomy of real-world types could contain vertices like Artist and Musician and a
directed edge from Artist to Musician. An operation frequently arising in this set-
ting is the type subsumption task: given a pair of types (s, t), determine whether t
is a specialization of s. The transitive nature of the relationships in this setting leads
to the graph-theoretic problem of determining whether the taxonomy DAG con-
tains a directed path from s to t. Along similar lines, determining all types an entity
(directly or indirectly) belongs to can be regarded as an instance of the one-sided
reachability problem. Both examples are illustrated in Figure 4.1.

A fast reachability index can also prove useful for speeding up the execution of
general graph algorithms – such as shortest path and Steiner tree computations –

44

Problem Definition 4.1

Entity

Animal Vegetable

...

Sea Cucumber

? ?

(a) Type Subsumption

Entity

Person

Artist Athlete Politician. . .

Manny Pacquiao

(b) Entity Types

Figure 4.1: Example Applications

via search-space pruning. As an example, Dijkstra’s algorithm can be greatly sped
up by avoiding the expansion of vertices that cannot reach the target vertex.

While the reachability problem is a light-weight task in terms of its asymptotic
complexity, the advent ofmassive graph structures comprising hundreds ofmillions
of vertices and billions of edges can render even simple graph operations compu-
tationally challenging. It is thus crucial for reachability indices to provide answers
in logarithmic or ideally near-constant time. Further complicating matters, the in-
dex structures, which generally reside in main-memory, are expected to satisfy an
upper-bound on the size. In most scenarios, the available space is scarce, ranging
from little more than enough to store the graph itself to a small multiple of its size.

Given their wide applicability, reachability problems have been one of the re-
search foci in graph processing over recent years. While many proposed index
structures can easily handle small to medium-size graphs comprising hundreds of
thousands of vertices – e. g., Agrawal et al. (1989), Chen and Chen (2008), Cohen
et al. (2002), Jin et al. (2008, 2009, 2011), Schenkel et al. (2004), Trißl and Leser
(2007), van Schaik and de Moor (2011) and Wang et al. (2006) – massive prob-
lem instances still remain a challenge to most of them. The only technique that
can cope with web-scale graphs while satisfying the requirements of restricted in-
dex size and fast query processing time, employs guided online search (Yıldırım
et al., 2010, 2012), leading to an index structure that is competitive in terms of
its construction time and storage space consumption, yet speeds up reachability
query answering significantly when compared to a simple Dfs/Bfs traversal of the
graph. However, it suffers from two major drawbacks. Firstly, given the demand-
ing constraints on precomputation time, only basic heuristics are used during index
construction, which in many cases leads to a suboptimal use of the available space.
Secondly and more importantly, while the majority of reachability queries involv-
ing pairs of vertices that are not reachable can be efficiently answered, the important
class of positive queries (i. e. the cases in which the graph actually contains a path
from the source to target) has to be regarded as a worst-case scenario due to the
need of recursive querying. This can severely hurt the performance of many prac-
tical applications where positive queries (i. e. queries that return a positive result
since a path indeed exists) occur frequently.

45

Chapter 4 Reachability Analysis

4.1.2 Contribution
The reachability index structure we propose in this chapter – coined Ferrari (for
Flexible andEfficientReachability RangeAssignment for gRaph Indexing) – is specifi-
cally designed to mitigate the limitations of existing approaches by adaptively com-
pressing the transitive closure during its construction. This technique enables the
efficient computation of an index geared towards minimizing the expected query
processing time, given a user-specified constraint on the resulting index size. Our
proposed index supports positive queries efficiently and outperforms GRAIL, the
best priormethod, on this class of queries by a largemargin, while in the vastmajor-
ity of our experiments also being faster on randomly generated queries. To achieve
these performance gains, we adopt the idea of representing the transitive closure of
the graph by assigning identifiers to individual vertices and encoding sets of reach-
able vertices by intervals, first introduced by Agrawal et al. (1989) (explained in
Section 4.2). Instead of materializing the full set of identifier ranges at every ver-
tex, we adaptively merge adjacent intervals into fewer yet coarser representations
at construction time, whenever a certain space budget is exceeded. The result is a
collection of exact and approximate intervals that are assigned as labels of the ver-
tices in the graph. These labels allow for a guided online search procedure that can
process positive as well as negative reachability queries significantly faster than pre-
viously proposed size-constrained index structures.
The interval assignment underlying our approach is based on the solution of an as-
sociated interval cover problem. Efficient algorithms for computing such a covering
structure together with an optimized guided online search facilitate an efficient and
flexible reachability index structure.

In summary, we make the following technical contributions:

• a space-adaptive index structure for reachability queries based on the selec-
tive compression of the transitive closure using exact and approximate reach-
ability intervals,

• efficient algorithms for index construction and querying that allow extremely
fast query processing on web-scale real world graphs, and

• extensive experiments that demonstrate the superiority of our approach in
comparison to GRAIL, the best prior method that satisfies index size con-
straints.

The remainder of the chapter is organized as follows: In Section 4.2 we discuss
the basic idea of interval labeling. Afterwards, we give a short introduction to ap-
proximate interval indexing in Section 4.3, followed by an in-depth treatment of
our proposed index (Section 4.4). An overview of our query processing algorithm
is given in Section 4.5, followed by the experimental evaluation and concluding
remarks.

46

Interval Labeling 4.2

c d

a b

e

r

(a) Input Graph
1

2

4

3

5

6

r

c d

a b

e

(b) Post-Order Labeling

[1,4]

[1,2] [3,3]

[5,5]

[1,1]

[1,6]
r

c d

a b

e

(c) Interval Assignment

[1,1][3,3]

[1,1]

[1,4]

[1,4]

[1,3][5,5]

[1,2]

[1,6]
r

c d

a b

e

(d) Interval Propagation

Figure 4.2: Post-Order Interval Assignment

. Interval Labeling

In this section, we introduce the concept of vertex identifier intervals for reachabil-
ity processing, first proposed by Agrawal et al. (1989), which provided the basis of
many subsequent indexing approaches, including our own.

Thenatural first step – carried out by virtually all reachability indexing approaches
– is the condensation of the input graph G = (V, E), that is, collapsing the strongly
connected components of the graph into supervertices and computing the index
over the resulting DAG, denoted by Cond(G) = (Vc, Ec) (for a discussion of these
graph-theoretic concepts, see Chapter 2). Then, at query processing time the query
vertices (s, t) are mapped to the identifiers of the respective strongly connected
components, [s], [t]. If it holds [s] = [t], a positive answer is returned (since both
vertices belong to the same strongly connected components and therefore a path
exists). Otherwise, the reachability of supervertex [t] from supervertex [s] is deter-
mined from the index computed over the DAG Cond(G).

The key idea underlying Agrawal’s algorithm is to assign numeric identifiers to
the vertices in the graph and represent the reachable sets of vertices in a compressed
form bymeans of interval representations. This technique is based on the construc-
tion of a tree cover of the graph followed by post-order labeling of the vertices. In
general, the directed acyclic graph Cond(G) contains more than one root vertex
(vertex without incoming edges), and thus it is not possible to extract a spanning
tree. As a solution, Cond(G) is augmented by the addition of a virtual root vertex

47

Chapter 4 Reachability Analysis

r that is connected to every vertex with no incoming edge:

(V′c , E′c) :=
(
Vc ∪ {r}, Ec ∪ {(r, v) | v ∈ V, N−(v) = ∅}

)
. (4.1)

Note that this modification has no effect on the reachability relation among the
existing vertices of Cond(G).

For ease of notation, we will denote the augmented, condensed graph by G′ in
the remainder of this chapter. Now, let T = (VT , ET) denote a tree cover of G′. In
order to assign vertex identifiers, the tree is traversed in depth-first manner. In this
setting, a vertex v is visited after all its children have been visited. The post-order
number π(v) corresponds to the order of v in the sequence of visited vertices.

Example. Consider the augmented example graph depicted in Figure 4.2(a) with
the virtual root vertex r. In this example, the children of a vertex are traversed in
lexicographical order, leading to the spanning tree induced by the edges shown in
bold in Figure 4.2(b). The first vertex to be visited is vertex e, which is assigned
post-order number 1. Vertex a is visited as soon as its children {c, d} have been
visited. The last visited vertex is the root r.

Spanning Tree Labeling
The enabling feature, which makes post-order labeling a common ingredient in
reachability indices, is the resulting identifier locality: For every (complete) subtree
of T, the ordered identifiers of the included vertices form a contiguous sequence of
integers. The vertex set of any such subtree can thus be compactly expressed as an
integer interval. Let Tv = (VTv , ETv) denote the subtree of T rooted at vertex v. We
have {

π(w)
∣∣ w ∈ VTv

}
=

[
min

w∈VTv

π(w), max
w∈VTv

π(w)

]
(4.2)

=

[
min

w∈VTv

π(w), π(v)
]

.

Above interval is called tree interval of v and will be denoted by IT(v) in the re-
mainder of the text.
In this chapter, for integers x, y ∈ N, x ≤ y, we use the interval [x, y] to represent
the set {x, x + 1, . . . , y}. For integer intervals I = [a, b] and J = [p, q], we define
|I| := b− a + 1 to denote the number of elements contained in I. Further, we call
J subsumed by I, written J v I, if J corresponds to a subinterval of I. Further, J is
called an extension of I, denoted I J, if the start-point but not the end-point of J is
contained in I.

Example (cont’d). The subtree rooted at vertex a in Figure 4.2(b) contains the
vertices {a, c, d, e}with the set of identifiers {4, 2, 3, 1}. Thus, the vertices reachable
from a in T are represented by the tree interval [1, 4]. The final assignment of tree
intervals to the vertices is shown in Figure 4.2(c).

48

Interval Labeling 4.2

The complete reachability information of the spanning tree T is encoded in the
collection of tree intervals. For a pair of vertices u, v ∈ V, there exists a path from
u to v in T if (and only if) the post-order number of the target is contained in the
tree interval of the source, that is,

u ∼T v ⇐⇒ π(v) ∈ IT(u). (4.3)

This reachability index for trees allows for O(1) query processing at a space con-
sumption of O(n).

Extension to DAGs
While above technique can be used to easily answer reachability queries on trees,
the case of general DAGs is much more challenging. The reason is that, in general,
the reachable set R(v) of a vertex v (that is, the set of all vertices reachable from
v) in the DAG is only partly represented by the interval IT(v), as the tree interval
only accounts for reachability relationships that are preserved in T. Vertices that
can only be reached from a vertex v by traversing one or more non-tree edges have
to be handled 0: instead of merely storing the tree intervals IT(v), every vertex v
is now assigned a set of intervals, denoted by I(v). The purpose of this so-called
reachable interval set is to capture the complete reachability information of a vertex.
The sets I(v), v ∈ V are initialized to contain only the tree interval IT(v). Then,
the vertices are visited in reverse topological order. For the current vertex v and
every incoming edge (u, v) ∈ E, the reachable interval set I(v) is merged into
the set I(u). The merge operation on the intervals resolves all cases of interval
subsumption and extension exhaustively, eventually ensuring interval disjointness.
Due to the fact that the vertices are visited in reverse topological order, it is ensured
that for every non-tree edge (s, t) ∈ E \ ET , the reachability intervals in I(t)will be
propagated and merged into the reachable interval sets of s and all its predecessors.
As a result, all reachability relationships are covered by the resulting intervals.

Example (cont’d). Figure 4.2(c) depicts the assignment of tree intervals to the
vertices. As described above, in order to compute the reachable interval sets, the
vertices are visited in ascending order of the post-order values (or, equivalently, in
reverse topological order), thus starting at vertex e. The tree interval IT(e) = [1, 1]
ismerged into the set of vertex c, leaving I(c) =

{
[1, 2]

}
unchanged due to interval

subsumption. Next, IT(e) is merged at vertex d, resulting in the reachable interval
set I(d) =

{
[1, 1], [3, 3]

}
. The reverse topological order in which the vertices are

visited ensures that the interval [1, 1] is further propagated to the vertices b, a, and
r.

Query Processing. Using the reachable interval sets I(v), queries on DAGs can be
answered by checking whether the post-order number of the target is contained in
one of the intervals associated with the source:

u ∼ v ⇐⇒ ∃
(
[α, β] ∈ I(u)

)
: α ≤ π(v) ≤ β. (4.4)

49

Chapter 4 Reachability Analysis

Example. Consider again the graph depicted in Figure 4.2(d). The reachable vertex
set of vertex d is given by I(d) =

{
[1, 1], [3, 3]

}
. This set provides all the necessary

information in order to answer reachability queries involving the source vertex d.

By ordering the intervals contained in a set, reachability queries can now be an-
swered efficiently in O(log n) time on DAGs. The resulting index (collection of
reachable interval sets) can be regarded as a materialization of the transitive clo-
sure of the graph, rendering this approach potentially infeasible for large graphs,
both in terms of space consumption as well as computational complexity.

. Approximate Interval Labeling

For massive problem instances, indexing approaches that materialize the transi-
tive closure (or compute a compressed variant without an a priori size restriction),
suffer from limited applicability. For this reason, recent work on reachability query
processing over massive graphs includes a shift towards guided online search pro-
cedures. In this setting, every vertex is assigned a concise label which – in contrast
to the interval sets described in Section 4.2 – is restricted by a predefined size con-
straint. These labels in general do not allow answering the query after inspection
of just the source and target vertex labels, yet can be used to prune portions of the
graph in an online search.

As a basic example, consider a reachability index that labels every vertex v ∈ V
with its topological order number τ(v). While this simple variant of vertex label-
ing is obviously not sufficient to answer a reachability query by means of a single-
lookup, a graph search procedure can greatly benefit from the vertex labels: For a
given query (s, t), the online search rooted at s can terminate the expansion of a
branch of the graph whenever for the currently considered vertex v it holds

τ(v) ≥ τ(t). (4.5)

This follows from the properties of a topological ordering.
The recently proposed GRAIL reachability index (Yıldırım et al., 2010, 2012) fur-
ther extends this idea by labeling the vertices with approximate intervals:

Suppose that for every vertex v we replace the set I(v) by a single interval

I′(v) :=
[

min
w∈R(v)

π(w), max
w∈R(v)

π(w)

]
, (4.6)

spanning from the lowest to the highest reachable id. For vertex d in our running
example, this interval is given by [1, 3]. This interval is approximate in the sense
that all reachable ids are covered whereas false positive entries are possible, similar
to the concept of a Bloom filter:

Definition 4.1 (False Positive). Let v ∈ V denote a vertex with the approximate
interval I′(v) = [α, β]. A vertex w ∈ V is called false positive with respect to I′(v)
if

α ≤ π(w) ≤ β and v 6∼ w. (4.7)

50

Approximate Interval Labeling 4.3

[1,1][3,3]

[1,1]

[1,4]

[1,4]

[1,3][5,5]

[1,2]

[1,6]
r

c d

a b

e

(a) Exact Intervals

[1,3]

[1,1]

[1,4]

[1,4]

[1,5]

[1,2]

[1,6]
r

c d

a b

e

(b) Approximate Intervals

Figure 4.3: Approximate Interval Labeling

Example (cont’d). In our example, vertex c is a false positive with respect to I′(d)
as π(c) ∈ I′(d) whereas no path exists from d to c.

Obviously, the single interval I′(v) is not sufficient to establish a definite answer
to a reachability query of the form (G, v, w). However, all queries involving a target
id π(w) that lies outside the interval, i. e.

π(w) < α or π(w) > β, (4.8)

can be answered instantly with a negative answer, similar to the basic approach
based on Equation (4.5). In the opposite case, that is,

α ≤ π(w) ≤ β, (4.9)

no definite answer to the reachability query can be given and the online search
procedure continues with an expansion of the child vertices, terminating as soon
as the target vertex is encountered or all branches have been expanded or pruned,
respectively.

In practical applications the GRAIL index assigns a number of k ≥ 1 such ap-
proximate intervals to every vertex, each based on a different (random) spanning
tree of the graph. The intuition behind this labeling is that an ensemble of indepen-
dently generated intervals improves the effectiveness of the vertex labels since each
additional interval potentially reduces the remaining false positive entries. The ad-
vantage of this indexing approach over a materialization of the transitive closure is
obvious: the size of the resulting labels can be determined a priori by an appropri-
ate selection of the number (k) of intervals assigned to each vertex. In addition, the
vertex labels are easily computed by means of k Dfs traversals of the graph.

Empirically, GRAIL has been shown to greatly improve the query processing
time over online Dfs search in many cases. However, especially in the case of posi-
tive queries, a potentially large portion of the graph still has to be expanded. Some
extensions have been proposed to GRAIL (Yıldırım et al., 2012) to improve perfor-
mance on positive queries, such as the so-called positive-cut filter, where the lower
part (begin to mid-point) of each interval is approximate and the upper part de-
notes an exact part in the sense that vertices from this interval part are definitely

51

Chapter 4 Reachability Analysis

reachable. However, the processing time in these cases remains high. Furthermore,
while an increase of the number of intervals assigned to the vertices potentially re-
duces false positive elements, no guarantee can be made due to the heuristic nature
of the underlying algorithm. As a result, in many cases superfluous intervals are
stored, in some cases negatively impacting query processing time.

. The Ferrari Reachability Index

In this section, we present the Ferrari reachability index which enables fast query
processing performance over massive graphs by a more involved vertex labeling
approach. The main goal of our index is the assignment of a mixture of exact and
approximate reachability intervals to the vertices with the goal of minimizing the
expected query processing time, given a user-specified size constraint on the index1.
Contrasting previously proposed approaches, we show both theoretically and em-
pirically that the interval assignment of the Ferrari index utilizes the available
space for maximum effectiveness of the vertex labels.

Similar to previously proposed index structures (Agrawal et al., 1989, van Schaik
and de Moor, 2011, Yıldırım et al., 2010, 2012), we use intervals to encode reach-
ability relationships of the vertices. However, in contrast to existing approaches,
Ferrari can be regarded as an adaptive transitive closure compression algorithm.
More precisely, Ferrari uses selective interval set compression, where a subset of
adjacent intervals in an interval set is merged into a smaller number of approxi-
mate intervals. The resulting vertex label then retains a high pruning effectiveness
under a given size-restriction.
Before we delve into the details of our algorithms and the according query pro-
cessing procedure, we first introduce the basic concepts that facilitate our interval
assignment approach.

The Ferrari index distinguishes between two types of intervals: approximate
(similar to the intervals in Section 4.3) and exact (as in Section 4.2), depending on
whether they contain false positive elements or not.

Let I denote an interval. To easily distinguish between interval types, we intro-
duce an indicator variable ηI such that

ηI :=

{
0 if I approximate,
1 if I exact.

(4.10)

As outlined above, a main characteristic of Ferrari is the assignment of size-
restricted interval sets comprising approximate and exact intervals as vertex labels.
Before we introduce the algorithmic steps that facilitate the index construction, it is
important to explain how reachability queries can be answered using the proposed
interval sets. Let (G, s, t) denote a reachability query and I(s) = {I1, I2, . . . , IN}
the set of intervals associated with vertex s. In order to determine whether t is
1Conceptually, GRAILs positive cut-filter can also be regarded as labeling with a mixture of exact and

approximate intervals. However, every interval in GRAIL is split into two such parts, rather than a
real mixture of approximate and exact intervals as used in Ferrari.

52

The Ferrari Reachability Index 4.4

reachable from vertex s, we have to check whether the post-order identifier π(t)
of t is included in one of the intervals in the set I(s). If π(t) lies outside of all in-
tervals I1, . . . , IN , the query terminates with a negative answer. If however it holds
that π(t) ∈ Ii for one Ii ∈ I(s), we have to distinguish two cases:

1. if Ii is exact then s is guaranteed to reach vertex t and

2. if Ii is approximate, the neighbors of vertex s have to be queried recursively
until a definite answer can be given.

Obviously, recursive expansions are costly and it is thus desirable to minimize the
number of cases that require lookups beyond the source vertex.
To formally introduce the according optimization problem, we define the notion of
interval covers:

Definition 4.2 (k-Interval Cover). Let k ≥ 1 denote an integer and I ={
[α1, β1], . . . , [αN , βN]

}
a set of intervals. A set C =

{
[α′1, β′1], . . . , [α′l , β′l]

}
is

called k-interval cover of I , written as C wk I , if C covers all elements from I
using no more than k intervals, i. e.

N⋃
i=1

{
j | αi ≤ j ≤ βi

}
⊆

l⋃
i=1

{
j′ | α′i ≤ j′ ≤ β′i

}
(4.11)

with l ≤ k. (4.12)

Note that an interval cover of a set of intervals is easily obtained by merging
an arbitrary number of adjacent intervals in the input set. Next, we address the
problem of choosing an k-interval cover that maximizes the pruning effectiveness.

Definition 4.3 (Optimal k-Interval Cover). Let k ≥ 1 denote an integer and
I = {I1, I2, . . . , IN} an interval set of size N. We define the optimal k-interval
cover of I by

I∗k := arg min
C : IvkC

∑
I∈ C

(1− ηI) |I|, (4.13)

that is, the cover of I with no more than k intervals and the minimum number of
elements in approximate intervals.

In the FERRARI index structure, we replace the set of exact reachability intervals
I(v) by its optimal k-interval cover I∗k (v), which is then used as the vertex label.
This way, we retain maximal effectiveness for terminating a query. The reason is
that the number of cases that require recursive querying directly corresponds to
the number of elements contained in approximate intervals.

53

Chapter 4 Reachability Analysis

4.4.1 Computing the Optimal Interval Cover
While the special cases k = N (optimal k-interval cover of I is the set I itself) and
k = 1 (optimal solution corresponds to the single approximate interval assigned
by GRAIL, see Equation 4.6) are easily solved, we next introduce an algorithm that
solves the problem for general values of k:

As hinted above, an interval cover can be computed by selectively merging adja-
cent intervals from the original assignment made to the vertex v. In order to derive
an algorithm for computing I∗k (v), we first transform the interval set at the vertex
v into its dual representation where the gaps between intervals are specified. Like
before, let I = {I1, I2, . . . , IN} with Ii = [αi, βi].

The set Γ := {γ1, γ2, . . . , γN−1}, γi = [βi + 1, αi+1 − 1] denotes the gaps be-
tween the intervals contained in I :

α1 β1

I1
α2 β2

I2
α3 β3

I3
α4 β4

I4

γ1 γ2 γ3

Note that the gap set Γ together with the boundary elements α1, βN is an equiva-
lent representation of I . For a subset G ⊆ Γ wedenote by ζ(G) the induced interval
set obtained by merging adjacent intervals Ii, Ii+1 if for their mutually adjacent gap
γi it holds γi /∈ G. As an illustrative example, for the interval set depicted above
we have ζ

(
{γ2}

)
:=
{
[α1, β2], [α3, β4]

}
.

Every induced interval set ζ(G) actually corresponds to a |G|+ 1-interval cover
of the original set I . It is easy to see that the optimal k-interval cover can equiva-
lently be specified by a subset of gaps.

In order to compute the optimal k-interval cover, we thus transform the problem
defined in Equation (4.13) into the equivalent problem of selecting the “best” k− 1
gaps from the original gap set Γ (or, equivalently, determining the |I| − k− 1 gaps
that are not part of the solution). For a potential solution G ⊆ Γ of at most k −
1 gaps to preserve, we can assess the associated cost, measured by the number of
elements in the induced interval cover that are contained in approximate intervals:

c(G) := ∑
I∈ζ(G)

(1− η′I) |I|, (4.14)

where for I ∈ ζ(G) it holds

η′I :=

{
1 if I ∈ I and ηI = 1,
0 else.

(4.15)

Clearly, our goal is to determine the set Γ∗k−1 ⊆ Γ of gaps such that

Γ∗k−1 := arg min
G⊆Γ, |G|≤k−1

c(G). (4.16)

54

The Ferrari Reachability Index 4.4

We propose a dynamic programming approach to obtain the optimal set of k− 1
gaps. In the following, we denote for a sequence of intervals – given by I =
(I1, I2, . . . , IN) – the subsequence consisting of the first j intervals by Ij := (I1, I2,
. . . , Ij). Now, observe that every set of gaps G ⊆ Γ, |G| ≤ k − 1 represents a
valid k-interval cover for each of the interval sequences Imax{i |γi∈G}, . . . , IN , yet
at different costs (the cost corresponding to each of these coverings is strictly non-
decreasing). In order to obtain an optimal substructure formulation, consider the
problem of computing the optimal k-interval cover for the interval sequence Ij.
The possible interval covers can be represented by a collection of sets of gaps:

Gk−1(Ij) =
{

G ⊆ {γ1, γ2, . . . , γj−1}
∣∣ |G| ≤ k− 1

}
= G−k−1(Ij) ∪ G+k−1(Ij) (4.17)

with

G−k−1(Ij) := Gk−1(Ij−1)

and G+k−1(Ij) :=
{

G ∪ {γj−1}
∣∣ G ∈ Gk−2(Ij−1)

}
(4.18)

that is, G−k−1(Ij) is the collection of all subsets of {γ1, . . . , γj−1} comprising not
more than k− 1 elements and G+k−1(Ij) corresponds to the collection of all sets of
gaps including γj−1 and not more than k− 2 elements from {γ1, γ2, . . . , γj−2}.
FromEquations (4.17,4.18) we can deduce that every k-interval cover of Ij and thus
the optimal solution is either

• a k-interval cover of Ij−1 or

• a k − 1-interval cover of Ij−1 combined with the gap γj−1 between the last
two intervals, Ij−1 and Ij.

Thus, for the optimal solution Γ∗k−1(Ij) we have

c
(
Γ∗k−1(Ij)

)
= min

{
min

G∈G+k−1(Ij)
c(G), min

G∈G−k−1(Ij)
c(G)

}

= min

{
min

G∈Gk−2(Ij−1)
c(G)︸ ︷︷ ︸

preserve last gap

,

min
G∈G+k−1(Ij−1)

c(G) + |Ij−1|+ |γj−1|+ |Ij|︸ ︷︷ ︸
merge last gap, prev. interval exact

,

min
G∈G−k−1(Ij−1)

c(G) + |γj−1|+ |Ij|︸ ︷︷ ︸
merge last gap, prev. interval approx.

}

55

Chapter 4 Reachability Analysis

= min

{
c(Γ∗k−2

(
Ij−1)

)
,

c+(Γ∗k−1
(
Ij−1)

)
+ |Ij−1|+ |γj−1|+ |Ij|,

c−(Γ∗k−1(Ij−1)) + |γj−1|+ |Ij|
)}

. (4.19)

We can exploit the optimal substructure derived in Equation (4.19) for the de-
sired dynamic programming procedure: For each Ii, 1 ≤ i ≤ N we have to com-
pute the k′-interval cover for k − N + i ≤ k′ ≤ k, thus obtaining the optimal
solution in time O(kN).

In somepractical applications the amount of computation can becomeprohibitive,
as one instance of the problem has to be solved for every vertex in the graph. Thus,
in our implementation, we use a simple and fast greedy algorithm that, starting
from the empty set, iteratively adds the gap γ ∈ Γ that leads to the greatest re-
duction in cost given the current selection G, until at most k − 1 gaps have been
selected, then compute the interval cover from ζ(G). While the gain in speed comes
at the cost of a potentially suboptimal cover, our experimental evaluation demon-
strates that this approach works well in practice.
In the next section, we explain how above interval covering technique is eventually
put to use during the reachability index computation.

4.4.2 Index Construction
At precomputation time, the user specifies a certain budget B = kn, k ≥ 1 of inter-
vals that can be assigned to the vertices, thus directly controlling the tradeoff be-
tween index size/precomputation time and pruning effectiveness of the respective
vertex labels. The subsequent index construction procedure can be broken down
into the following main stages:

Tree Cover Construction

Agrawal et al. (1989) propose an algorithm for computing a tree cover that leads
to the minimum number of exact intervals to store. This tree can be computed
in O(mn) time, rendering the approach infeasible for the case of massive graphs.
While, in principle, heuristics could be used, that are based on centrality measures
or estimates of the sizes of reachable sets (Cohen, 1997, Palmer et al., 2002), we
settle for a simpler solution that does not yield a certain approximation guarantee
yet performs well in practice. We argue that a good tree cover should cover asmany
reachability relationships as possible in the initial tree intervals (see Equation 4.2).
Therefore, every edge included in the tree should provide a connection between as
many pairs of vertices as possible. To this end, we propose the following procedure
to heuristically construct such a tree cover T:
Let τ : V → {1, 2, . . . , n} denote a topological ordering of the vertices, i. e. for all
(u, v) ∈ E it holds τ(u) < τ(v). Such a topological ordering is easily obtained by
the classical textbook algorithm (Cormen et al., 2009) in time O(m + n).

56

The Ferrari Reachability Index 4.4

1

2

4

6

7

11

3

5

(a) Input Graph

7

6

3

4

11

5

1

2

1 2 3 4 5 6 7 8τ

(b) Topological Ordering

Figure 4.4: Tree Cover Construction

We interpret the topological order number of a vertex as the number of potential
predecessors in the graph, because the number of predecessors of a given vertex is
upper bounded by its position in the topological ordering. For a vertex v with set
of predecessors N−(v), we select the edge from vertex p ∈ N−(v) with highest
topological order number for inclusion in the tree, that is

p := arg max
u∈N−(v)

τ(u). (4.20)

The intuition is that vertex p has the highest number of potential predecessors and
thus the selected edge (p, v) has the potential of providing a connection from a
large number of vertices to v, eventually leading to a high number of reachability
relationships encoded in the resulting tree intervals.

Example. Consider the DAG depicted in Figure 4.4(a). A topological ordering of
the vertices is displayed in Figure 4.4(b). Based on this assignment of topological
order ids (τ), we can extract the tree cover shown as red edges in Figure 4.4(a). For
vertex 2, the potential predecessors are given by N−(2) = {1, 5}. Since τ(1) =
7 > 5 = τ(5), the edge (1, 2) is selected for inclusion in the tree.

An overview of the tree cover construction algorithm is depicted in Algorithm 3.

Interval Set Assignment

As the next step, given the tree cover T, indexing proceeds by assigning the exact
tree interval IT(v), encoding the reachability relationships within the tree at each
vertex v. This interval assignment can be obtained using a single depth-first traver-
sal of T.
In order to label every vertex v with a k-interval cover I ′(v) of its true reachable
interval set, we visit the vertices of the graph in reverse topological order, that is,
starting from the leaf with highest topological order, proceeding iteratively back-
wards to the root vertex. We initialize for vertex v the reachable interval interval
set as I ′(v) := {IT(v)}. For the currently visited vertex v and every outgoing edge

57

Chapter 4 Reachability Analysis

Algorithm 3: TreeCover(G)

Input: directed acyclic graph G = (V, E)
1 begin
2 T ← (VT , ET)← (V, ∅)
3 τ ← TopologicalSort(G)
4 for i = n downto 1 do
5 {v} ← {u ∈ V | τ(u) = i}
6 ifN−(v) 6= ∅ then
7 ET ← ET ∪

(
arg maxu∈N−(v) τ(u), v

)
8 return T

(v, w) ∈ E, we merge I ′(w) into I ′(v), such that the resulting set of intervals is
closed under subsumption and extension.2

Then, in order to satisfy the size restriction of at most k intervals associated with
a vertex, we replace I ′(v) by its k-interval cover which is then stored as the vertex
label of v in our index. It is easy to see that the resulting index consisting of the
sets of approximate and exact intervals I ′(v), v ∈ V comprises at most nk = B
intervals. The upper bound

∑
v∈V
|I ′(v)| ≤ B (4.21)

is usually not tight, i. e. in practice, much less than B intervals are assigned. As
an example, in the case of leaf vertices or the root vertex, in general a single inter-
val suffices. The complete procedure is shown in detail in Algorithm 4. The name
of the algorithm – Ferrari-L – thus reflects the fact that a local size restriction,
|I ′(v)| ≤ k, is satisfied by every interval set I ′(v).
Note that even though an optimal algorithm can be used to compute the k-interval
covers, the optimality of the local result does in general not extend to the global so-
lution, i. e. the full set of vertex labels. The reason for this is the fact that adjacent in-
tervals that aremerged during the interval cover computation are propagated to the
parent vertices. As a result, at the point during the execution of the algorithmwhere
the interval set of the parent p has to be covered, the k-interval cover is computed
without knowledge of the true (exact) reachability intervals of p. More precisely, the
input to the covering algorithm is a combination of approximate (thus previously
merged) and exact intervals. Nevertheless, the resulting vertex labels prove very
effective for early termination of reachability queries, as our experimental evalua-
tion indicates. To further improve our reachability index, in the next section we
propose a variant of the labeling algorithm that leads to an even better utilization
of the available space.
2In our implementation we maintain non-adjacent intervals in the set, that is, for [α1, β1], [α2, β2] ∈ I

it must hold β1 < α2. When sets of approximate and exact intervals are merged, the type of the
resulting interval is based on several factors. For example, when an exact interval is extended by an
approximate interval, the result will be one long approximate range.

58

The Ferrari Reachability Index 4.4

Algorithm 4: Ferrari-L(G, B)

Input: directed, acyclic graph G, interval budget B = kn
Result: set of at most k approximate and exact reachability intervals I ′(v) for

every vertex v ∈ V
1 begin
2 T ← TreeCover(G)
3 IT ← AssignTreeIntervals(T)
4 k← B

n
5 for i = n to 1 do . visit vertices in reverse topological order

6 {v} ← {v ∈ V | τ(v) = i}
7 I ′(v)← {IT(v)}
8 foreach w ∈ N+(v) do
9 I ′(v)← I ′(v)⊕ I ′(w) .merge interval sets

. replace intervals by k-interval cover

10 I ′(v)← k-IntervalCover(I ′(v))
11 return

{
I ′(v) | v ∈ V

}

4.4.3 Dynamic Budget Allocation

As mentioned above, the interval assignment as described in Algorithm 4 usually
leads to a total number of far less than B intervals stored at the vertices. In order
to better exploit the available space, we extend our algorithm by introducing the
concept of deferred interval merging where we can assign more than k intervals to
the vertices on the first visit, potentially requiring to revisit a vertex at a later stage
of the algorithm.
The indexing algorithm for this interval assignment variant works as follows: Sim-
ilar to Ferrari-L, vertices are visited in reverse topological order and the interval
sets of the neighboring vertices (considering outgoing edges) are merged into the
interval set I ′(v) for the current vertex v. However, in this new variant, subsequent
to merging the interval sets we compute the interval cover comprising at most ck
intervals, given a constant c ≥ 1. This way, more intervals can be stored in the ver-
tex labels. After the ck-interval cover has been computed, the vertex v is added to
a min-heap structure where the vertices are maintained in ascending order of their
degree. This procedure continues until the already assigned interval sets sum up
to a size of more than B intervals. In this case, the algorithm repeatedly pops the
minimum element from the heap and restricts its respective interval set by com-
puting the k-interval cover. This deferred interval set restriction is repeated until
the number of assigned intervals again satisfies the size constraint B.
Above procedure leads to a much better utilization of the available space and thus
a higher effectiveness of the resulting reachability index. The improvement comes
at the cost of increased index computation time, in practice the increase is two-fold
in the worst-case, negligible in others. Our experimental evaluation suggests that
a value of c = 4 provides a reasonable tradeoff between efficiency of construction

59

Chapter 4 Reachability Analysis

Algorithm 5: Ferrari-G(G, B)

Input: directed, acyclic graph G, interval budget B = kn, constant c ≥ 1
Result: set of approximate and exact reachability intervals I ′(v) for every

vertex v ∈ V s. t. the total number of intervals is upper-bounded by B
1 begin
2 T ← TreeCover(G)
3 IT ← AssignTreeIntervals(T)
4 H ← InitializeMinHeap()
5 s← 0 . number of currently assigned intervals

6 for i = n to 1 do . visit vertices in reverse topological order

7 {v} ← {v ∈ V | τ(v) = i}
8 I ′(v)← {IT(v)}
9 foreach w ∈ N+(v) do

10 I ′(v)← I ′(v)⊕ I ′(w) .merge interval sets

. replace intervals by ck-interval cover

11 I ′(v)← ck-IntervalCover(I ′(v))
12 s← s + |I ′(v)|
13 if |I ′(v)| > k then
14 Heap-Push

(
H, v, |N+(v)|

)
15 while s > B do
16 w← Heap-Pop(H)
17 I ′(w)← k-IntervalCover(I ′(w))
18 s← s− |I ′(w)|+ k

19 return
{
I ′(v) | v ∈ V

}

and resulting index quality. This second indexing variant is shown in detail in Al-
gorithm 5. We refer to the algorithm as the global variant (Ferrari-G), as in this
case the size constraint is satisfied over all vertices – in contrast to the local size
constraint of Ferrari-L.

In the next section, we providemore details about our query answering algorithm
and additional heuristics that further speed up query execution over the Ferrari
index.

60

Query Processing 4.5

. Query Processing

The basic query processing over Ferrari’s reachability intervals is straightforward
and resembles the basic approach of Agrawal et al. (1989): For every vertex v,
the intervals in the set I ′(v) are maintained in sorted order. Then, given a two-
sided reachability query (G, s, t), it can be determined in time O(log |I ′(v)|) time
whether the target id, π(t), is contained in one of the intervals of the source. The
query returns a negative answer (s 6∼ t) if the target id lies outside all of the inter-
vals and a positive answer if it is contained in one of the exact intervals. Finally,
if π(t) falls into one of the approximate intervals, the neighbors of s are expanded
recursively using a Dfs search algorithm.
For the case of one-sided reachability queries of the form (G, s), where only the
source (target) vertex is specified and the task is to enumerate all vertices t that can
be reached from s (that can reach s), the query processing algorithm works as fol-
lows: starting from the source s, all vertices whose postorder id is included in exact
intervals are added to the set of reachable vertices. Then, a online search procedure
is executed in order to refine the remaining, approximate intervals. More specifi-
cally, the neighbors of the current vertex are expanded in a Bfs manner until all
cases of 1 within approximate intervals have been resolved.

In the next section, we introduce some heuristics that can further speed up query
processing for two-sided reachability queries.

4.5.1 Seed Based Pruning

It is evident that, in the case of recursive querying, the performance of the algorithm
depends on the number of vertices that have to be expanded during the online
search. Vertices with a very high out-degree are especially costly as they might lead
to a large number of recursive queries. In practice, such high degree vertices are to
be expected due to the fact that

(i) most of the real-world graphs in our target applications will follow a power-
law degree distribution and

(ii) the condensation graph obtained from the input graph produces high-degree
vertices in many cases because the large strongly connected components usu-
ally exhibit a large number of outgoing edges.

To overcome this problem, we propose to determine a set of seed vertices S ⊆ V
and assign an additional label to every vertex v in the graph, indicating for every
σ ∈ S whether G contains a forward (backward) directed path from v to s.
This labeling schemeworks as follows: Every vertex will be associatedwith two sets,
S−(v) and S+(v), such that

S−(v) :=
{

σ ∈ S | σ ∼ v
}

and S+(v) :=
{

σ ∈ S | v ∼ σ
}

. (4.22)

61

Chapter 4 Reachability Analysis

Without loss of generality, we describe the procedure for assigning the sets S+:
for every vertex v, we initialize the set as follows:

S+(v) :=

{
{v} if v ∈ S,
∅ otherwise.

(4.23)

We then maintain a FIFO-queue of all vertices, initialized to contain all leaves
of the graph. At each step of the algorithm, the first vertex v is removed from the
queue. Then, for every predecessor u, (u, v) ∈ E we merge the set S+(v) into the
current set S+(u). If all successors of u have been processed, u itself is added to the
set. The algorithm continues until all vertices of the graph have been labeled. It is
easy to see that above procedure can be implemented efficiently. The approach for
assignment of the sets S− is similar (starting from the root vertices).
Once assigned, the sets can be used by the query processing algorithm in the fol-
lowing way: For a query (G, s, t),

1. if S+(s) ∩ S−(t) 6= ∅, then s ∼ t.

2. if there exists a seed vertex σ s. t. σ ∈ S−(s) and σ /∈ S−(t), that is, the seed
σ can reach s but not t, the query can be terminated with a negative answer
(s 6∼ t).

In our implementation we choose to elect the s vertices withmaximum degree as
seed vertices (requiring a minimum degree of 1). The choice of s can be specified
prior to index construction, in our experiments we set s = 32 in order to represent
an individual seed set as a 4-byte integer.

4.5.2 Pruning Based on Topological Properties
We enhance the Ferrari index with two additional powerful criteria that allow
additional pruning of certain queries. First, we adopt the effective topological level
filter that was first proposed for the GRAIL index (Yıldırım et al., 2012):

t(v) =

{
1 if v is a leaf,
1 + maxw∈N+(v) t(w) otherwise,

leading to the pruning criterion

t(w) ≤ t(v) =⇒ v 6∼ w.

Second, we maintain the topological order τ(v) of each vertex v for pruning as
shown in Equation (4.5).

Before we proceed to the experimental evaluation of our index, we first give an
overview of previously proposed reachability indexing approaches.

62

Related Work 4.6

. RelatedWork

Due to the crucial role played by reachability queries in applications, reachabil-
ity index structures that facilitate fast execution of this type of queries have been
subject of active research. Instead of exhaustively surveying previous results, we
describe some of the key proposals here. For a detailed survey, we direct the reader
to the survey of Xu Yu and Cheng (2010). In this section, we distinguish between
reachability query processing techniques that are able to answer queries using only
the label information on vertices specified in the query, and those which use the
index to speed up guided online search over the graph.

Before we proceed, it is worth noting that there are two recent proposals that
aim to speed up the reachability queries from a different direction compared to the
standard graph indexing approaches. First, Jin et al. (2012a) propose a novel way to
compact the graph before applying any reachability index. Naturally, this technique
can be used in conjunction with Ferrari, hence we consider it orthogonal to the
focus of the this work. The other proposal is to compress the transitive closure
through a carefully optimized word-aligned bitmap encoding of the intervals (van
Schaik and de Moor, 2011). The resulting encoding, called PWAH-8, is shown to
make the interval labeling technique ofNuutila (Nuutila, 1996) scale to larger graph
datasets. In our experiments, we compare our performance with both Nuutila’s
Intervals assignment technique as well as the PWAH-8 variant.

4.6.1 Direct Reachability Indices
Indices in this category answer a reachability query (G, s, t) using just the labels
assigned to s and t. Apart from the classical algorithm of Agrawal et al. (1989) de-
scribed in Section 4.2, another approach based on tree covering was proposed by
Wang et al. (2006) and focuses on sparse graphs (targeting near-tree structures in
XML databases). This approach labels each vertex with its tree interval and com-
putes the transitive closure of non-tree edges separately.

Apart from trees to cover the graph being indexed, alternative simple structures
such as chains and paths have also been used. In a chain covering of the graph, a
vertex u can reach v if both belong to the same chain and u precedes v. Jagadish
(1990) presents an optimal way to cover the graph with chains in O(n3), later re-
duced by Chen and Chen (2008) to O(n2 + dn

√
d), where d denotes the diameter

of the graph. Although chain covers typically generate smaller index sizes than the
interval labeling and can answer queries efficiently, they are very expensive to build
for large graphs. The PathTree index, proposed recently by Jin et al. (2011), com-
bines tree covering and path covering effectively to build an index that allows for
extremely fast reachability query processing. Unfortunately, the index size can be-
come extremely large, consuming 2 O(np) space, where p denotes the number of
paths in the decomposition.

Instead of indexing using covering structures, Cohen et al. (2002) introduced
2-Hop labeling which, at each vertex u, maintains a subset of the ancestors and de-
scendants of the vertex. Using this approach, reachability queries between vertices
s and t can be answered by intersecting the descendant set of s with the ancestors of

63

Chapter 4 Reachability Analysis

t. This technique was particularly attractive for query processing within a database
system since it can be implemented efficiently using SQL-statements performing set
intersections (Schenkel et al., 2004). The main hurdle in using it for large graphs
turns out to be its construction – optimally selecting the subsets to label vertices
with is an NP-hard problem, and no bounds on the index size can be specified.
HOPI indexing proposed by Schenkel et al. (2004) tried to overcome these issues
by clever engineering, using a divide-and-conquer approach for computing the cov-
ering. Jin et al. (2009) propose 3-Hop labeling, a technique that combines the idea
of chain- covering with the 2-Hop strategy to reduce the index size.

4.6.2 Accelerating Online Search
From the discussion above, it is evident that accurately capturing the entire tran-
sitive closure in a manner that scales to massive size graphs remains a major chal-
lenge. Some of the recent approaches have taken a different path to utilize scalable
indices that can be used to speed up traditional online search to answer reachability
queries. In GRIPP, proposed by Trißl and Leser (2007), the index maintains only
one interval per vertex on the tree cover of the graph, but some vertices reachable
through non-tree edges have to be replicated.

The recently proposed GRAIL index (Yıldırım et al., 2010, 2012) uses k random
trees to cover the condensed graph, generating as many (approximate) intervals to
label each vertex with. As we already described in Section 4.3, the query process-
ing proceeds by using the labels to quickly determine non-reachability, otherwise
recursively querying the vertices underneath in the DAG, resulting in a worst-case
query processing performance of O(k(m + n)). Although GRAIL was shown to
be able to build indices over massive scale graphs quite efficiently, it suffers from
the previously discussed drawbacks. In our experiments, we compare various as-
pects of our Ferrari index against GRAIL which is, until now, the only tech-
nique that deals effectively with massive graphs while satisfying a user-specified
size-constraint.

. Experimental Evaluation

We conducted an extensive set of experiments in order to evaluate the performance
of Ferrari in comparisonwith the state of the art reachability indexing approaches,
selected based on recent results. In this section, we present the results of our com-
parison with: GRAIL (Yıldırım et al., 2012), PathTree (variant PTree-1) (Jin et al.,
2011), Nuutila’s Intervals (Nuutila, 1996), and PWAH-8 (van Schaik and de Moor,
2011). For all the competing methods, we obtained original source code from the
authors, and set the parameters as suggested in the corresponding publications.

64

Experimental Evaluation 4.7

4.7.1 Setup
Fortunately, all indexing methods are implemented using C++, making the com-
parisons fairly accurate without any platform-specific artifacts. All experiments
were conducted using a LenovoThinkPadW520notebook computer equippedwith
8 Intel Core i7 CPUs at 2.30 GHz, and 16 gigabyte of main memory. The operating
system in use was a 64-bit installation of Linux Mint 12 using kernel 3.0.0.22.

4.7.2 Methodology
The metrics we compare on are:

1. Construction time for each indexing strategy over each dataset. Since the
input to all considered algorithms is always a DAG, we do not include the
time for computing the condensation graph into our measurements.

2. Query processing time for executing 100,000 reachability queries. We con-
sider random and positive (i. e. reachable) sets of queries and report numbers
for both workloads separately.

3. Index size in memory that each index consumes. It should be noted that
although both Ferrari and GRAIL take as input a size restriction parameter,
the resulting size of the index can be quite different. PathTree, (Nuutila’s)
Intervals and PWAH-8 have no parameterized size, and depend entirely on
the dataset characteristics.3

4.7.3 Datasets
We used the selection of graph datasets (Table 4.1a) that, over the recent years,
has become the benchmark set for reachability indexing work. These graphs are
classified based on whether they are small (with 10-100s of thousands of vertices
and edges) or large (with millions of vertices and edges), and dense or sparse. We
refer to the detailed description of these datasets by Yıldırım et al. (2012) and Jin
et al. (2011).

We term these datasets as benchmark datasets and present results accordingly in
Section 4.7.4.

In order to evaluate the performance of the algorithms under real-world settings,
where massive-scale graphs are encountered, we use additional datasets derived
from publicly available sources. These include RDF data, an online social network,
and a World Wide Web crawl. To the best of our knowledge, these constitute some
3More precisely, the individual index sizes are computed as follows. For Ferrari, we report as index

size the number of bytes necessary to represent the intervals (start and end-point as 4-bytes integers,
exactness encoded as 1-byte flags), seed bitmaps (in experiments two 32-bit integers), topological
order id (one integer per vertex), topological level id (1 integer per vertex), and postorder id (1
integer) i. e. overall 9 bytes/interval in addition to 20 bytes/vertex. For GRAIL we have 3 integers
(12 bytes) per interval (begin,middle, end) and 4 bytes per vertex to store the topological level id. For
PWAH/Interval we simply report the output size in bytes of the index as reported by the program.
For PathTree, we compute the index size as 4 times the reported transitive closure size (which reports
number of integers) in addition to three integers assigned to each vertex (Ruan, 2012).

65

Chapter 4 Reachability Analysis

Dataset Type |V| |E| Source

ArXiV small, dense 6,000 66,707 Jin et al. (2009)
GO small, dense 6,793 13,361 Jin et al. (2009)
Pubmed small, dense 9,000 40,028 Jin et al. (2009)
Human small, sparse 38,811 39,816 Jin et al. (2008)

CiteSeer1 large 693,947 312,282 Yıldırım et al. (2012)
Cit-Patents large 3,774,768 16,518,947 Yıldırım et al. (2012)
CiteSeerX large 6,540,401 15,011,260 Yıldırım et al. (2012)
GO-Uniprot large 6,967,956 34,770,235 Yıldırım et al. (2012)

(a) Benchmark Datasets

Dataset |V| |E| |VC | |EC |

GovWild 8,027,601 26,072,221 8,022,880 23,652,610
YAGO2 16,375,503 32,962,379 16,375,503 25,908,132
Twitter 54,981,152 1,963,263,821 18,121,168 18,359,487
Web-UK 133,633,040 5,507,679,822 22,753,644 38,184,039

(b) Web Datasets

Table 4.1: Dataset Overview

of the largest graphs used in evaluating the effectiveness of reachability indices to
this date. In the following, we briefly describe each of them, and summarize the
key characteristics of these datasets in Table 4.1b.

• GovWild is a large RDF data collection consisting of about 26 million triples
representing relations between more than 8 million entities.4

• YAGO2 is another large-scale RDFdataset representing an automatically con-
structed knowledge graph (Hoffart et al., 2012). The version we used con-
tained close to 33 million edges (facts) between 16.3 million vertices (enti-
ties).5

• The Twitter graph (Cha et al., 2010) is a representative of a large-scale social
network. This graph, obtained from a crawl of twitter.com, represents the
follower relationship between about 50 million users.6

• Web-UK is an example of a web graph dataset (Boldi et al., 2008). This
graph contains about 133 million vertices (hosts) and 5.5 billion edges (hy-
perlinks).7

Wepresent the results of our evaluation over theseweb-scale graphs in Section 4.7.5.

1We used the version of the files provided at http://code.google.com/p/grail/
4
http://govwild.hpi-web.de/project/govwild-project.html

5
http://www.mpi-inf.mpg.de/yago-naga/yago/

6
http://twitter.mpi-sws.org/

7
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/

66

http://code.google.com/p/grail/
http://govwild.hpi-web.de/project/govwild-project.html
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://twitter.mpi-sws.org/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/

Experimental Evaluation 4.7

Dataset Ferrari-L Ferrari-G Grail PathTree Interval PWAH-8

ArXiV 15.84 26.62 7.86 4,537.39 34.54 70.10
Pubmed 14.28 24.54 8.21 326.54 20.35 44.41
Human 23.36 23.37 15.93 348.48 2.70 3.82

GO 6.48 6.91 4.83 89.83 5.06 8.67

CiteSeer 450.12 459.90 2,015.90 26,479.70 251.10 416.41
CiteSeerX 14,110.20 16,233.40 20,528.40 – 5,808.79 14,444.09

GO-Uniprot 26,105.90 29,611.90 34,518.40 – 15,213.55 26,745.61
Cit-Patents 20,665.50 32,366.20 21,621.70 – – 751,984.08

(a) Index Construction Time [ms]

Dataset Ferrari-L Ferrari-G Grail PathTree Interval PWAH-8

ArXiV 243.86 275.33 234.38 338.07 1,364.99 315.24
Pubmed 283.68 413.06 351.56 419.03 1,523.83 358.96
Human 768.88 770.30 1,061.04 458.01 160.56 160.22

GO 200.37 251.01 265.35 133.30 180.58 81.86

CiteSeer 13,933.90 13,934.29 43,371.69 9,221.61 7,733.94 6,723.36
CiteSeerX 158,046.72 242,236.08 408.775.06 – 430,913.36 152,354.44

GO-Uniprot 429,564.04 442,301.79 435,497.25 – 774,081.33 249,883.80
Cit-Patents 151,631.73 239,609.23 235,923.00 – – 5,462,135.76

(b) Index Size [kB]

Table 4.2: Benchmark Graphs – Indexing

4.7.4 Results over Benchmark Graphs
Tables 4.2a,b summarize the results for the selected set of benchmark graphs. In
the tables, we provide the absolute values – time in milliseconds and index size in
KBytes. In all the tables missing values aremarked as “−” whenever a dataset could
not be indexed by the corresponding strategy – either due to memory exhaustion
or for taking too long to index (timeout set to 1M milliseconds). The best per-
forming strategy for each dataset is shown in bold. For GRAIL we set the number
of dimensions as suggested in (Yıldırım et al., 2012), that is, to 2 for small sparse
graphs (Human), 3 for small dense graphs (ArXiV, GO, PubMed) and to 5 for the
remaining large graphs. The input parameter value for Ferrari was also set corre-
spondingly for a fair comparison.

Index Construction

Table 4.2a presents the construction time for the various algorithms. The results
show that the GRAIL index can be constructed very efficiently on small graphs,
irrespective of the density of the graph. On the other hand, the performance of
PathTree is highly sensitive to the density of the graph as well as the size. While
GRAIL and FERRARI’s indexing time increases corresponding to the size of the
graphs, PathTree simply failed to complete building for 3 of the larger graphs –
Cit-Patents andCiteSeerX due tomemory exhaustion, GO-Uniprot due to timeout.

The transitive closure compression algorithms Interval and PWAH-8 can index
quite efficiently even the large graphs and their index is also surprisingly compact.
A remarkable exception to this is the behavior on the Cit-Patents dataset, which

67

Chapter 4 Reachability Analysis

Dataset Ferrari-L Ferrari-G Grail PathTree Interval PWAH-8

ArXiV 23.69 13.91 100.92 3.41 4.17 23.22
Pubmed 7.58 4.88 12.27 2.76 3.16 28.58
Human 0.78 0.78 4.98 1.21 1.07 1.06

GO 4.10 2.96 4.83 2.04 2.47 4.45

CiteSeer 6.13 6.24 8.05 5.01 8.28 12.39
CiteSeerX 15.88 9.31 41.23 – 9.27 21.32

GO-Uniprot 28.30 28.92 5.94 – 16.82 48.70
Cit-Patents 778.09 502.20 578.83 – – 1,514.91

(a) 100.000 Random Queries – Query Processing Time [ms]

Dataset Ferrari-L Ferrari-G Grail PathTree Interval PWAH-8

ArXiV 62.64 37.98 220.31 4.94 5.95 17.74
Pubmed 31.31 20.28 85.38 4.42 6.21 43.58
Human 2.08 1.96 14.48 1.30 1.79 6.07

GO 10.72 4.64 19.59 2.04 3.26 11.43

CiteSeer 13.37 13.47 85.22 6.12 15.17 30.60
CiteSeerX 82.76 43.06 700.49 – 30.38 69.21

GO-Uniprot 65.00 64.72 131.46 – 31.76 54.55
Cit-Patents 4,086.21 2,667.38 5,409.82 – – 1,739.30

(b) 100.000 Positive Queries – Query Processing Time [ms]

Table 4.3: Benchmark Graphs – Query Processing

seems to be by far the most difficult graph for reachability indexing. The Interval
index failed to process the graph within the given time limit. The related PWAH-8
algorithm finished the labeling only after around 12 minutes and ended up gen-
erating the largest index in all our experiments (including the indices for the Web
graphs). This is rather surprising, as both algorithms were able to index the larger
and denser GO-Uniprot.

When compared to other algorithms, the construction times of Ferrari-L and
Ferrari-G are highly scalable and are not affected much by the variations in the
density of the graph. On all graphs, Ferrari constructs the index quickly, while
maintaining a competitive index size. For the challenging Cit-Patents dataset, it
generates the most compact index among all the techniques considered, and very
fast – amounting to a 23x-36x speedup over PWAH-8. Further – with the exception
of ArXiV – Ferrari-L generates smaller indices than GRAIL and exhibits compa-
rable indexing time on the set of benchmark graphs. With a few more clever engi-
neering tricks (e. g., including the PWAH-8-style interval encoding), it should be
possible to further reduce the size of Ferrari.

68

Experimental Evaluation 4.7

Dataset Ferrari-L Ferrari-G Grail Interval PWAH-8

YAGO2 27,713.50 26,865.30 17,163.00 5,844.87 9,236.71
GovWild 12,998.80 18,045.30 6,756.67 15,060.55 20,703.06
Twitter 13,065.40 13,897.20 9,717.39 36,480.57 8,219.09

Web-UK 17,604.90 18,754.40 12,275.90 – 166,531.10

(a) Index Construction Time [ms]

Dataset Ferrari-L Ferrari-G Grail Interval PWAH-8

YAGO2 372,150.70 448,139.06 447,767.66 182,962.96 137,878.21
GovWild 206,475.06 297,724.03 219,504.74 921,605.13 311,359.35
Twitter 384,049.21 384,368.44 495,500.69 85,648.12 97,859.81

Web-UK 616,486.63 647,050.45 622,169.95 – 266,342.83

(b) Index Size [kB]

Table 4.4:Web Graphs – Indexing

Query Processing

Moving on to query processing, we consider random and positive query workloads,
with results depicted in Tables 4.3a and 4.3b, respectively. These results help to
highlight the consistency of Ferrari in being able to efficiently process both types
of queries over all varieties of graphs very efficiently. Although for small graphs
PathTree is the fastest as we explained above, it cannot be applied on larger datasets.
As graphs get larger, the Interval indexing turns out to be the fastest. This is not very
surprising, since Intervalmaterializes the exact transitive closure of the graph. Fer-
rari-G consistently provides competitive query processing times for both positive
as well as random queries over all datasets. As a remarkable result of our experi-
mental evaluation consider the CiteSeerX dataset. In this setting, the Interval index
consumes almost twice as much space as the corresponding Ferrari-G index, yet
is only faster by 0.04 milliseconds for random and 12.68 milliseconds for positive
queries.

4.7.5 Evaluation over Web Datasets
As we already pointed out in the introduction, our goal was to develop an index
that is both compact and efficient for use in many analytics tasks when the graphs
are of web-scale. For this reason, we have collected graphs that amount to up to
5 billions of edges before computing the condensation graph. These graphs are of
utmost importance because the resulting DAG exhibits special properties absent
from previously considered benchmark datasets. In this section, we present the
results of this evaluation. Due to its limited scalability, we do not use PathTree
index in these experiments. Also, through initial trial experiments, we found that
forGRAIL the suggested parameter value of k = 5 does not appear to be the optimal
choice, so instead we report the results with the setting k = 2, which is also used
for Ferrari.

69

Chapter 4 Reachability Analysis

Dataset Ferrari-L Ferrari-G Grail Interval PWAH-8

YAGO2 12.00 10.95 16.56 10.45 12.62
GovWild 60.27 31.77 42.62 13.33 33.30
Twitter 5.55 5.65 19.27 8.66 10.32

Web-UK 19.11 19.29 39.21 – 20.45

(a) 100.000 Random Queries – Query Processing Time [ms]

Dataset Ferrari-L Ferrari-G Grail Interval PWAH-8

YAGO2 59.39 38.43 97.99 21.70 44.19
GovWild 171.46 85.12 228.98 29.84 126.96
Twitter 10.24 10.18 76.07 18.21 36.01

Web-UK 25.54 18.01 95.25 – 43.73

(b) 100.000 Positive Queries – Query Processing Time [ms]

Table 4.5:Web Graphs – Query Processing

Index Construction

Whenwe consider the index construction statistics in Tables 4.4a and 4.4b, it seems
that there is no single strategy that is superior across the board. However, a careful
look into these charts further emphasizes the superiority of Ferrari in terms of its
consistent performance. While GRAIL can be constructed fast, its size is typically
larger than the corresponding FERRARI-L index. On the other hand, PWAH-8 can
take an order of magnitude more time to construct than Ferrari as well as GRAIL
as we notice for Web-UK. In fact, the Interval index which is much smaller than
Ferrari for Twitter and YAGO2, fails to complete within the time allotted for the
Web-UK dataset. In contrast, Ferrari and GRAIL are able to handle any form of
graph easily in a scalable manner.

As an additional note, the index size of Interval is sometimes smaller than Fer-
rari which seems to be counter-intuitive at first glance. The reason for this lies
in the additional information maintained at every vertex by Ferrari, for use in
early pruning heuristics. In relatively sparse datasets like Twitter and YAGO2 the
overhead of this extra information tends to outweigh the gains made by interval
merging. If needed, it is possible to turn off these heuristics easily to get around
this problem. However, we retain them across the board to avoid dataset-specific
tuning of the index.

70

Summary 4.8

Query Processing

Finally, we turn our attention to the query processing performance over Web-scale
datasets. As the results summarized in Tables 4.5a and 4.5b demonstrate, the Fer-
rari variants and the Interval index provide the fastest index structures. For Web-
UK and Twitter, the Ferrari variants outperform all other approaches. The perfor-
mance of GRAIL, as predicted, and PWAH-8 are inferior in comparison to Interval
and Ferrari-G when dealing with both random and positive query loads.

In summary, our experimental results indicate that Ferrari, in particular the
global budgeted variant, is highly scalable and efficient in indexing a wide variety
of graphs as well as answering queries extremely fast. This, we believe, provides a
compelling reason to use Ferrari-G on a wide spectrum of graph analytics appli-
cations involving large to massive-scale graphs.

. Summary

In this chapter, we presented the first contribution of this thesis: an efficient and
scalable reachability index structure, Ferrari, that allows to directly control the
query processing/space consumption tradeoff via a user-specified restriction on the
resulting index size. The two different variants of our index allow to either specify
themaximum size of the resulting vertex labels, or to impose a global size constraint
which allows the dynamic allocation of budgets based on the importance of individ-
ual vertices. Ferrari assigns a mixture of exact and approximate identifier ranges
to vertices so as to speed up both random as well as positive reachability queries.
Using an extensive array of experiments, we demonstrated that the resulting index
can scale to massive-size graphs quite easily, even when some of the state of the
art indices fail to complete the construction. Ferrari provides very fast query ex-
ecution, demonstrating substantial gains in processing time of both random and
positive queries when compared to the previous state-of-the-art method, GRAIL.

71

5
Distance and Shortest Path

Approximation

Q2: How strong is the relationship?
«How closely related are two genes in the metabolic network of a com-
plex organism?»

Q3: Who participates in the relationship?
«What is the best way to establish contact with an expert on a partic-
ular problem domain?»

73

Chapter 5 Distance and Shortest Path Approximation

. Problem Definition

In the previous chapter, we have presented an index structure enabling the user to
quickly probe a given graph for the existence of specific relationships. In this chap-
ter, we shift our focus towards a higher-level graph primitive and study the second
algorithmic building block of this work, an index structure for the fast approxima-
tion of distances, and the computation of corresponding paths.

Distance and path queries are prevalent inmany disciplines, e. g. over graphs that
model interactions among proteins in bioinformatics, spatial proximity in trans-
portation networks, relationships between entities in knowledge graphs, as well as
graphs representing taxonomic hierarchies in ontologies. In each of these scenar-
ios, computing the shortest paths between two vertices is one of the fundamental
and most widely used operations.

Apart from being an important application in its own right, shortest paths be-
tween two vertices are often used as a building block in many applications, such as
search result ranking (Vieira et al., 2007) and team formation (Majumder et al.,
2012) in social networks, query evaluation over semi-structured data (Gou and
Chirkova, 2008), analysis of microarray gene expression data (Zhou et al., 2002),
and many more.
The index structure we propose in this chapter solves the following problem vari-
ants:

Problem 1: (Budgeted) Distance Estimation

Given Graph G = (V, E), pair of vertices (s, t) ∈ V ×V.

Goal Estimate the distance (length of shortest path) from vertex s to vertex t
in G (while satisfying a certain budget on online processing effort).

Problem 2: (Budgeted) Shortest-Path Approximation

Given Graph G = (V, E), pair of vertices (s, t) ∈ V ×V.

Goal Identify one ormore short paths from vertex s to vertex t, i. e. paths with
small relative error (while satisfying a certain budget on online process-
ing effort).

In particular, we concentrate on two important aspects of shortest-path process-
ing. First, since one application of the proposed index structure is the use as an
algorithmic building block, it is desirable to provide a direct control over the query
processing time vs. accuracy tradeoff. For this purpose, our index provides a “bud-
geted” query processing variant. Second, in many cases it is required to compute
not only one, but many short(-est) paths from source to target in order to gain in-
sight into the structure of a relationship. We study this problem variant in detail in
this chapter.

74

Problem Definition 5.1

5.1.1 Problem Characteristics
Numerous variants of the shortest path problem have been addressed in the liter-
ature. On general graphs, the single-source shortest path problem is solved by the
classical textbook algorithms – Breadth-First Search (Bfs) for unweighted graphs
and Dijkstra’s algorithm (Dijkstra, 1959) in the presence of edge weights. These al-
gorithms exhibit asymptotic time complexities of O(m + n) and O(m + n log m),
respectively, where n denotes the number of vertices in the graph and m the number
of edges.

While the problem of finding shortest paths is computationally lightweight, mas-
sive graphs with billions of edges render the traditional algorithms infeasible for
analytic tasks that require many shortest-path calls and need to provide interactive
response time to end-users. In these settings, index structures are mandatory for
efficient online processing. In this chapter, we present Path Sketch, an index struc-
ture for massive graphs that may reside on external memory (i. e., disk or flash).
Path Sketch enables rapid processing of shortest path queries by precomputing and
storing selected paths in the graph. These so-called path sketches – stored as labels
of individual vertices – are combined at query time to quickly generate approximate
answers to shortest path and distance queries between pairs of vertices.

One of the main characteristics of the Path Sketch index structure is its ability to
generate a large number of shortest path candidates in a budget-constrained setting,
by just inspecting the index entries of the source and target vertex and potentially
expanding – i. e. retrieving the adjacency lists of – a restricted number of contained
vertices. In order to scale our indexing approach to massive graphs, we impose an
a-priori restriction on the index size, trading off scalability for query processing
accuracy. As a result, the returned paths connecting the query vertices are possibly
longer than the true shortest path. However, as shown in the experimental eval-
uation of this chapter, the approximation quality of our algorithms is very good,
with running times in the order of milliseconds over massive graphs. Our index
structure allows to compute approximate shortest paths with a specified budget on
the number of vertex random accesses to the graph. This property provides direct
control over the tradeoff between approximation quality (or number of generated
paths), and query processing time. The Path Sketch index is mainly targeted to-
wards the class of graphs that exhibit a small effective diameter, a property that is
prevalent especially for the case of online social networks.

5.1.2 Contribution
We build on the idea of selecting certain seed vertices from the graph and precom-
puting an index structure based on the shortest paths connecting these designated
seeds with the remaining vertices of the graph (Das Sarma et al., 2010). However,
previously proposed methods limited themselves to estimating the distances be-
tween vertices (Das Sarma et al., 2010, Potamias et al., 2009). In our first proto-
type of Path Sketch (Gubichev et al., 2010), we have advanced this prior work to
the next level of returning actual paths (not just distances), enabling the genera-
tion of multiple short paths connecting the query vertices. This generalization not
only improves the estimation accuracy of distance queries, but also solves the more

75

Chapter 5 Distance and Shortest Path Approximation

challenging problem of quickly synthesizing the actual paths from source to target
corresponding to the estimated vertex distance.

This chapter emphasizes the problemof quickly computingmultiple approximate
shortest paths (abbreviatedASP), given a budget on the number of random accesses
to the graph at query processing time. Downstream applications often requiremul-
tiple paths, say top-k shortest paths or several approximately shortest paths. Our
method allows controlling the tradeoff between query processing time on one hand,
and number of paths as well as approximation quality on the other hand on a per-
query basis. This is especially relevant when shortest paths are used as a building
block in higher-order graph analytics. We also address the problem variant of gen-
erating paths that satisfy certain structural constraints: computing paths that do
or do not pass through vertices of certain types (i. e., with specific types of vertex
labels).

In summary, this chaptermakes the following technical contributions to advance
our previously proposed prototype of the Path Sketch index:

1. methods for fast index construction by integrating previously proposed, op-
timized Bfs algorithms with the simultaneous computation of multiple trees,
together with a combination of effective index compression techniques,

2. an algorithm for fast, budget-constrained query processing, providing a di-
rect control over the tradeoff between query processing time and accuracy,

3. discussion of novel problem scenarios such as the generation of restricted as
well as multiple diverse paths.

The efficiency and output quality of our methods is demonstrated by a compre-
hensive set of experimental results with real-world graphs from various domains,
including web graphs and social networks, with hundreds of millions of vertices
and billions of edges. The full source code of the Path Sketch software is publicly
available under the Creative Commons CC-BY 3.0 license at the URL

http://mpi-inf.mpg.de/~sseufert/pathsketch.

5.1.3 Extension over Previous Work
In an early version of the Path Sketch index (Gubichev et al., 2010) – which is not a
contribution claimed by this thesis – we introduced the notion of path sketches and
associated techniques for shortest path approximation. In this chapter, we develop
several major improvements over this prior work, making the index space-efficient
and index construction scalable. We also present a new query processing frame-
work, based on the optimized index structure, that gives faster query processing
compared to the original implementation of Gubichev et al. (2010). Finally, we ex-
tend the index structure to allow for querying in the presence of processing budget
constraints (limiting the number of vertex expansions at query time), and develop
support for type restrictions in path computations.

76

http://mpi-inf.mpg.de/~sseufert/pathsketch

Seed-Based Distance Estimation 5.2

5.1.4 Organization
The remainder of this chapter is organized as follows. In Section 5.2, we introduce
the basic principle of seed-based distance estimation. The basic concept of our in-
dex structure, the notion of path sketches and their use in shortest path approxima-
tion, is presented in Section 5.3. We discuss the extension of the query processing
framework to support approximate shortest path (ASP) queries in a budgeted on-
line processing setting in Section 5.4. In Section 5.5, we discussmodifications to our
index that enable the computation of restricted as well as multiple, diverse paths.
We discuss our algorithms for efficient index construction in Section 5.6, followed
by the description of the physical index layout in Section 5.7. A review of previous
work on shortest path computation and related problems is presented in Section 5.8.
In Section 5.9, we present the experimental evaluation of our techniques, followed
by concluding remarks and a discussion of future work in Section 5.10.

. Seed-Based Distance Estimation

The seed-based estimation of vertex distances in graph data has been an active topic
of research over recent years (Das Sarma et al., 2010, Kleinberg et al., 2004, Potamias
et al., 2009, Qiao et al., 2012). In this setting, a set of designated seed vertices, also
referred to as landmarks, is selected, and every vertex is assigned a vector of dis-
tances to and from the seeds. In this so-called embedding technique, all vertices are
anchored with respect to the seed vertices, similar to a coordinate system. In order
to estimate the distance from vertex s to vertex t, one can compute an approximate
solution as

d̃(s, t) = min
σ∈S

d(s, σ) + d(σ, t), (5.1)

where S denotes the set of seed vertices. The estimated distance then corresponds to
the length of the path obtained by concatenating the paths from s to the seed vertex
σ and from σ to the target vertex t, respectively. It is important to note that the
distance estimate d̃(s, t) is an upper bound on the true distance, that is, the distance
is never underestimated. For a simple proof, consider that the graph contains an
actual path from s to t of length d̃(s, t): the path ps→σ∗→t, passing through the seed
vertex

σ∗ = arg min
σ∈S

d(s, σ) + d(σ, t). (5.2)

In general, the distances in a graph follow the triangle inequality:

d(s, t) ≤ d(s, σ) + d(σ, t) ∀(σ ∈ V). (5.3)

Since the distances from and to the seeds can be precomputed, a distance esti-
mation algorithm based on Equation (5.1) allows for an extremely efficient process-
ing of distance queries. This framework is especially attractive for massive graphs,
which potentially reside on secondary storage. In these settings, online-search
methods like Breadth-First Search or Dijkstra’s algorithm severely suffer from the
high cost incurred by the required vertex expansions:

77

Chapter 5 Distance and Shortest Path Approximation

Definition 5.1 (Vertex Expansion). Let v ∈ V denote a vertex. The operation of
retrieving the adjacency listN+(v) of v is called vertex expansion.

When the graph is stored in main memory, a vertex expansion is equivalent to a
memory reference. For graphs stored on disk, a vertex expansion corresponds to a
random access to the hard disk, which is a costly operation especially for the case
of rotational drives.

The seed-based distance estimation framework stores the distance vectors of a
vertex (comprising the distances between the vertex and the seeds) as vertex labels
of an index structure. As a result, two lookups in the index are sufficient in order to
estimate the distance. The index entries (vertex labels) in this context are referred
to as distance sketches:

Definition 5.2 (Distance Sketch).
Let v ∈ V denote a vertex and S = {σ1, . . . , σk} ⊆ V a set of seed vertices. The
sets

`+(v) = {
(
σ1, d(v, σ1)

)
, . . . ,

(
σk, d(v, σk)

)
}, (5.4)

`−(v) = {
(
σ1, d(σ1, v)

)
, . . . ,

(
σk, d(σk, v)

)
}, (5.5)

are called outgoing and incoming distance sketches of v.

The distance estimate can be computed easily by stepping itemwise through the
distance sketches of source and target vertex, given that the entries in a distance
sketch are kept in order.

Seed Selection. An integral part of a seed-based distance estimation algorithm is
the actual selection of seed vertices. Several approaches have been proposed in
the literature: A natural and efficient choice is the selection of k randomly sam-
pled vertices as seeds. More elaborate strategies select vertices based on structural
properties, such as degree or centrality scores. As remarked by Potamias et al.
(2009), the optimal choice for a single seed is the selection of the vertex with high-
est betweenness centrality, which corresponds to the fraction of pairwise shortest
paths passing through a vertex. The optimal selection of seeds is generally a hard
problem (Potamias et al. (2009) show NP-hardness for a slightly modified between-
ness centrality measure). Thus, in practice, seeds are selected by various heuristics.
Apart from the vertex degree mentioned above, selection based on closeness cen-
trality (which is much easier to approximate than betweenness centrality) as well
as partitioning-based strategies have been studied (Potamias et al., 2009). Gold-
berg and Harrelson (2004) use a greedy selection algorithm that repeatedly picks
the vertex that is farthest (in terms of minimum distance) from the set of already
selected seeds.
Das Sarma et al. (2010) propose a set-based seed selection strategy. In this setting,
instead of repeatedly computing the distances from and to a single seed vertex, sets
of seed vertices are used. Every vertex in the graph then records the distance from

78

The Path Sketch Index 5.3

and to the closest seed vertex in the set. In their approach, Das Sarma et al. use ran-
domly sampled seed sets S1, S2, . . . , SK of exponentially increasing size |Si| = 2i−1

in order to derive an upper bound on the approximation error.
In the next section, we discuss our index structure for shortest path approxima-

tion, which extends the seed-based distance estimation framework to synthesize
the actual paths connecting the query vertices, and obtain more accurate distance
estimates.

. The Path Sketch Index

5.3.1 Basic Idea
The basic principle underlying the Path Sketch index structure is the materializa-
tion of actual paths, rather than mere distances, from and to the seed vertices.The
resulting index entries (sets of paths) we assign to each vertex are referred to as path
sketches:

Definition 5.3 (Path Sketch).
Let v ∈ V denote a vertex and S = {σ1, . . . , σk} ⊆ V a set of seed vertices, and
pv→w a path from v to w. The sets

`+(v) = {
(
σ1, pv→σ1

)
, . . . ,

(
σk, pv→σk

)
}, (5.6)

`−(v) = {
(
σ1, pσ1→v

)
, . . . ,

(
σk, pσk→v

)
}, (5.7)

are called outgoing and incoming path sketches of v. In contrast to a distance
sketch, we store for a vertex v paths from v to its k associated seeds in the outgoing
path sketch `+(v), and the paths from the k seeds to vertex v in the incoming path
sketch, `−(v).

In the remainder of this section and the subsequent Section 5.3.2, we discuss the
basic query processing over path sketches, as proposed by Gubichev et al. (2010).
Let (s, t) ∈ V2 denote a pair of query vertices. We want to compute an ASP from
vertex s to vertex t. For this purpose, the Path Sketch query processing algorithm
obtains the outgoing path sketch `+(s) of the source s, and the incoming path
sketch `−(t) of the target t from the index. Recall that `+(s) consists of a set of
k paths connecting s to k seed vertices, and `−(t) consists of a set of k paths con-
necting k seed vertices with t.

Similar to the distance estimation based on Equation (5.1), we obtain a first ap-
proximate solution by simply concatenating all paths sharing a common endpoint
seed, i. e.

d̃(s, t) = ||ps→σ∗ ◦ pσ∗→t||
with σ∗ = arg min

σ∈S
||ps→σ ◦ pσ→t||. (5.8)

This way, we can provide the distance estimate, d̃(s, t), as well as the corresponding
ASP ps→σ∗ ◦ pσ∗→t as the solution.

79

Chapter 5 Distance and Shortest Path Approximation

s

v1

v2

σ

v3

t

(a) Path from s to σ

s

v1

v2

σ

v3

t

(b) Path from σ to t

s

v1

v2

σ

v3

t

(c) Concatenated path from s to
t through σ

s

v1

v2

σ

v3

t

(d) Final path from s to t after cy-
cle elimination

Figure 5.1: Example: Cycle Elimination

For undirected, connected graphs, this approach guarantees to find at least one path
connecting the query vertices. For directed graphs, it is possible that the outgoing
path sketch of the source does not share a seed vertexwith the incoming path sketch
of the target. In order to guarantee that a path will be found if the target is reach-
able from the source in the input graph, additional steps are required. For vertices
that belong to the same strongly connected component (SCC), it suffices to pick
a seed vertex from the same SCC. For pairs of vertices from different SCCs one
approach is the extension of the vertex labels with reachability information as in
the Ferrari index presented in the previous chapter. Then, whenever that target is
reachable from the source but the path sketch intersection is empty, we can combine
our approach with an online algorithm. However, in our experimental evaluation
we demonstrate that in the vast majority of cases a path between source and target
can be generated by the Path Sketch index.

5.3.2 Improving Estimation Accuracy
Apart from enabling the computation of actual paths, how can the information
about intermediate vertices, which is explicitly encoded in the path sketches, lead
to a better approximation quality of the query processing algorithm? In the follow-
ing, we present two concrete ideas that exploit the additional information towards
this goal:

80

The Path Sketch Index 5.3

s

v1

v2 σ

v3

v4

t

(a) Path from s to t. The original graph con-
tains the edge (v2, v4)

s

v1

v2 σ

v3

v4

t

(b) Path from s to t after shortcutting

Figure 5.2: Example: Shortcutting

(1)CycleElimination. Eq. (5.8) displays the basic distance estimation scheme. How-
ever, by the use of path sketches rather than distance sketches, we now have know-
ledge about the individual vertices contained in the paths. This can be exploited in
order to identify shorter paths from source to target. First, observe that each pair of
paths ps→σ ∈ `+(s), pσ→t ∈ `−(t) sharing a common seed endpoint, might have
more vertices in common than just σ. The information about intermediate vertices
allows us to obtain a shorter path by removing cycles that are inevitably present in
the concatenated path ps→σ ◦ pσ→t if the constituent paths ps→σ, pσ→t share more
than one vertex.

Example. Consider the paths depicted in Figure 5.1: Suppose σ ∈ V is a common
seed for the vertices s, t ∈ V, and the path sketches `+(s) and `−(t) contain the
paths ps→σ = (s, v1, v2, σ) and pσ→t = (σ, v3, v1, t), respectively. The concate-
nated s− t-path of length 6 is given by

ps→σ→t = ps→σ ◦ pσ→t = (s, v1, v2, σ, v3, v1, t).

We can obtain a shorter path (and thus better distance estimate) by removing the
cyclic subpath (v1, v2, σ, v3, v1), which is highlighted in Figure 5.1(c), thus obtain-
ing the path (s, v1, t) of length 2.

(2) Shortcutting. As in the previous example, we denote by ps→σ→t = ps→σ ◦ pσ→t
the concatenated path from s to t via the common seed vertex σ. Two vertices u, v
in the path might actually have a closer connection than the one provided by the
respective subpath of ps→σ→t. Consider the following example:

Example. In Figure 5.2, the vertices v2 and v4 are connected by (v2, σ, v3, v4), a
subpath of ps→σ→t of length 3. However, this is not a shortest path from v2 to v4,
since the input graph contains the edge (v2, v4). We can thus improve the approxi-
mated short path by substituting the subpath from v2 to v4 in ps→σ→t by the single
edge (v2, v4), obtaining the path (s, v1, v2, v4, t). Thus, the estimated distance is
improved from 6 to 4.

Note that since the paths ps→σ and pσ→t are already shortest paths, potential
shortcuts can only exist between vertices u, v such that u ∈ ps→σ and v ∈ pσ→t. In
order to improve a pair of paths by detecting shortcuts, it suffices to check for every

81

Chapter 5 Distance and Shortest Path Approximation

inner vertex v ∈ V(ps→σ) \ {s, σ} of the path ps→σ whether it is directly connected
to any vertex of the path pσ→t. Alternatively, we can check whether any inner ver-
tex of the path pσ→t has a direct connection to a vertex in ps→σ. Thus, in order to
detect shortcuts it is necessary to perform at most min{||ps→σ||, ||pσ→t||} − 2 ver-
tex expansions, i. e. obtaining the adjacency lists of inner vertices and intersecting
them with the other path.

5.3.3 Path Sketch Query Processing
In the examples above, we considered individual pairs of paths ps→σ, pσ→t shar-
ing a common seed, with a pairwise application of cycle elimination and shortcut
detection. However, combining the paths associated with the source s and target t
into respective tree structures opens up additional possibilities for query processing:

Tree Representation of Path Sketches

As before, let `+(s) denote the outgoing path sketch of s. Conceptually, `+(s) con-
sists of k shortest paths ps→σ+

i
, 1 ≤ i ≤ k. Since all these paths share the source ver-

tex s as common endpoint, the union of all paths in `+(s) yields a tree-structured
subgraph T+(s) of G, rooted at s:

Definition 5.4 (Path Sketch Tree).
Let s ∈ V denote a vertex and ps→σ+

1
, . . . , ps→σ+

k
shortest paths originating at s

and ending at the seed vertices σ+
1 , . . . , σ+

k . We define the (outgoing) path sketch
tree of v as the union of the paths

T+(s) := ps→σ+
1
∪ ps→σ+

2
∪ . . . ∪ ps→σ+

k
, (5.9)

yielding a tree-structured subgraph rooted at v.

Analogously, for the target vertex t with the incoming path sketch `−(t), we ob-
tain an “inverted” tree structure (i. e. a tree on reversed edges), denoted by T−(t).
We remark that the union of the paths in a sketch can yield a DAG-structured sub-
graph. However, we enforce tree structure by discarding all cross-edges in the union
of the paths. This has no negative impact on the approximation quality of our algo-
rithms, which only depends on the set of vertices included in the sketches and the
property that all vertices in a sketch are connected via a shortest path to the root
vertex.

We now discuss how the aggregated representation of the index entries as tree
structures allows for a more effective query processing approach than operating
merely on the level of pairs of individual paths.

82

The Path Sketch Index 5.3

Shortest-Path Approximation over Path Sketch Trees

For a pair of query vertices (s, t), shortest path approximation with path sketch
trees works as follows.

Step 1 Theoutgoing path sketch `+(s) of the source, and the incoming path sketch
`−(t) of the target are obtained from the index, followed by the construction
of the respective path sketch trees T+(s) and T−(t).

Step 2 In order to identify better (shorter) connections from s to t than provided
by the paths passing through the common seeds, we conduct a bidirectional
breadth-first search over the trees, T+(s) and T−(t). More precisely, we start
two Bfs processes, one rooted at the source s ∈ T+(s) and operating on out-
going edges, and one rooted at the target t ∈ T−(t), operating on incoming
edges. In contrast to a regular bidirectional search, we only expand vertices
that are contained in the respective path sketch trees. When the first com-
mon vertex v is discovered in the interleaved Bfs expansions, we can either
terminate the algorithm and return the path ps→v→t as solution, or finish the
expansion of the current level in either of the trees in order find a better path
(this can be the case if there exists a connection across the fringe of the two
Bfs processes). Optionally, in order to generate more paths, we can termi-
nate the algorithm only after all vertices in the two path sketch trees have
been expanded.

This query processing approach of bidirectional search, restricted to the expan-
sion of only the vertices contained in the path sketch trees, can lead to a suboptimal
solution. The resulting path can be longer than the true shortest path from s to t.
This is the case when the shortest path passes through an intermediate vertex not
present in the common 1-hop neighborhood (the set of vertices directly connected
to vertices in both path sketch trees) of the path sketch trees. In the worst case,
this common 1-hop neighborhood can even be empty, in which case no approx-
imate path can be found, even though the input graph contains a path from s to
t. However, as we will show in our experimental evaluation, in practice we obtain
a very accurate distance and path approximation and fail to find a path only in a
small fraction of cases. At the same timewe performmuch fewer vertex expansions
(translating to randomdisk accesses for external-memory graphs), when compared
to regular (one- or bidirectional) Bfs.

83

Chapter 5 Distance and Shortest Path Approximation

5.3.4 Computational Complexity
We can derive a theoretical bound on the index size as follows: let k denote the
number of seeds we use for index construction. The number of paths that are stored
in the index entry of a vertex v is thus upper-bounded by k. Furthermore, since the
length of each path is upper-bounded by the diameter of the graph, the total size of
our index structure is bounded by O

(
2n · k · diam(G)

)
. In practice, many of the

vertex-seed paths in the union will overlap – i. e. share common subpaths – and
thus the true index size is much smaller.

Since the diameter of the graph directly affects the space complexity, the pro-
posed techniques are applicable mainly for graphs that exhibit a small diameter.
However,many of themost interesting graph structures found in current real-world
applications satisfy this property, most notably social network structures and web
graphs.
Regarding query processing complexity, the bottleneck of the algorithm lies in the
vertex expansions, i. e. the accesses to the graph in order to obtain the respective
adjacency lists – which is especially costly for external-memory graphs – and the
ensuing online processing effort. Thenumber of such vertex expansions is bounded
by the number of vertices in the path sketch trees, i. e. O

(
2k · diam(G)

)
.

In the next section, we discuss how the Path Sketch query processing algorithm
can be extended to satisfy an online processing budget, i. e. handle the case where a
certain number of vertex expansions (that may be issued during query processing)
is specified by the user.

. Budgeted Query Processing

When using approximate shortest paths (ASP) computation as a building block in
graph analytics, it is desirable to directly control the tradeoff between query execu-
tion time and result quality, in order to adapt to a wide range of problem scenarios.
For this purpose, we discuss a variant of query processing over path sketch trees
where only a certain budget β of vertex expansions is available, and these expan-
sion have to be carefully allocated to the vertices in the path sketch trees.

In this section, we describe the modified query processing algorithm for this set-
ting. Our approach is based on (i) estimating an upper bound of the distance from
s to t, and (ii) carefully selecting the most “promising” vertices for expansion in the
path sketch trees, based on the initial distance estimate as well as structural prop-
erties of the vertices. Thus, rather than performing bidirectional Bfs over the trees,
we only select a subset of the vertices for expansion and determine the order of ex-
pansion based on certain “features” of the vertices (not necessarily corresponding
to distance to the respective root).

We now discuss how a first distance estimate can be obtained:

84

Budgeted Query Processing 5.4

(i) Initial Distance Estimate. A first upper bound on the distance d(s, t) from s to t
is obtained from the intersection

S = V
(
T+(s)

)
∩V

(
T−(t)

)
(5.10)

of the vertex sets of the two path sketch trees. This intersection can be computed
immediately after retrieving the respective index entries. The set S consists of all
vertices present in both path sketch trees, and is thus a superset of the common
seed vertices. Since all subpaths of a shortest path are shortest paths themselves,
the vertices in S that are not designated seed vertices can be regarded as additional
seeds, since the true distance from s to every vertex in σ ∈ S as well as the distance
from every σ ∈ S to t is known.

The initial distance estimate, denoted by D, is obtained by

D = min
σ∈S

d(s, σ) + d(σ, t)

= min
σ∈S

depthT+(s)(σ) + depthT−(t)(σ). (5.11)

Note that, by applying the same reasoning as in Section 5.2, this estimate is an upper
bound on the true distance.

This first estimation scheme can be regarded as an extension of cycle elimination.
For the example depicted in Fig. 5.1, the common vertex v1 is an additional seed
for the query pair (s, t). Thus, the distance can be estimated using path (s, v1, t) via
v1 rather than σ, which yields an estimate equivalent to cycle elimination. How-
ever, note that the estimation scheme of Equation (5.11) is more powerful, since
it essentially allows to obtain a distance estimate from a pair of paths ps→σ, pσ′→t
with σ 6= σ′, i. e. paths that do not share a global seed, but still have a non-empty
intersection.

(ii) Restricted Expansion. Having obtained the initial distance estimate, the goal of
the second phase of the query processing algorithm is the identification of potential
shortcuts, similar to the bidirectional Bfs over the path sketch trees, but adhering
to budget constraints. For this purpose, we selectively expand certain vertices in
the path sketch trees in order to find a shorter connection from T+(s) to T−(t),
than the one corresponding to the initial distance estimate, D.
Formally, an edge (v, w), v 6= w provides a shortcut from path sketch tree T+(s)
to T−(t) with respect to the estimated distance D, if it holds

depthT+(s)(v) + 1 + depthT−(t)(w) < D. (5.12)

Here, the left-hand value corresponds to the length of the tree path in T+(s) from
s to v, followed by the edge (v, w), and the tree path from w to t in T−(t). For
shortcut detection, vertices from both the incoming as well as the outgoing path
sketch tree of the query vertices can be expanded, i. e. the set of successors/pre-
decessors is retrieved in a random access to the graph. W. l. o. g., for the outgoing
tree, if any of the neighbors w ∈ N+(v) is contained in the tree T−(t), we obtain
a new shortest path candidate: the concatenated path p = ps→v ◦ (v, w) ◦ pw→t. If

85

Chapter 5 Distance and Shortest Path Approximation

it holds ||p|| < D, we have identified a shortcut and the distance estimate D can be
improved (i. e. reduced) accordingly.

The expansion of a vertex on the incoming tree T−(t) is performed in a similar
way, with the difference that for the current vertex v ∈ V

(
T−(t)

)
, we determine

the neighbors of the vertex to be the vertices N−(v), that is, the vertices of the
graph with an edge to vertex v. Note that, just like in the standard query processing
algorithm, only vertices that are contained in the original tree T+(s), T−(t) are ex-
panded. For each expanded vertex its successors/predecessors are added to the tree
and can thus be discovered from the respective other tree, but will not be expanded
themselves.

The expansions of vertices in the path sketch trees continue until either no shorter
path can be found (a sufficient termination criterion is discussed in the subsequent
section) or the specified expansion budget is exhausted. In both cases, the query
processing algorithm terminates and the last discovered path ps→t with ||ps→t|| =
D is returned as the best path, with the previously discovered paths as additional
solutions.

We now discuss how to select vertices from the path sketch trees for expansion.

(iii) Avoiding Unnecessary Expansions. While some vertices can provide shortcuts
between the path sketch trees, there are likewise vertices for which we can reason
that, due to certain structural properties, no such shortcut can exist and it is thus
not necessary to expand these vertices. We will discuss several such properties for
the case of the outgoing path sketch trees T+(s). All results hold analogously for
the incoming path sketch trees T−(t).
The following classes of vertices do not need to be considered during query pro-
cessing, since their expansion cannot provide a shorter path:

Common Vertices. For a vertex v ∈ S = V
(
T+(s)

)
∩V

(
T−(t)

)
present in both

path sketch trees T+(s), T−(t), the path pv→t is already a shortest path and
thus no shortcut exists from v to T−(t).

Deep Vertices. Let D denote the current upper bound on the distance from s to t
(e. g. the initial distance estimate), that is potentially further improved over
the course of the algorithm. A vertex v ∈ V

(
T+(s)

)
with depthT+(s)(v) ≥

D− 1 can not provide a shortcut since the minimum length of a path from s
to t passing through v is given by

||ps→v→t|| ≥ depthT+(s)(v) + 1 ≥ D. (5.13)

We can integrate this criterion, which is also used as termination criterion
for the plain bidirectional Bfs search, with the information about the current
stage of expansion in the opposite (incoming) path sketch tree, T−(t). Sup-
pose we have expanded all vertices up to level l in T−(t), and no shortcut
from T−(t) to the current vertex v ∈ V

(
T+(s)

)
has been discovered. In this

case, the vertex v in T+(s) does not provide a shortcut if it holds

depthT+(s)(v) ≥ D− (l + 2). (5.14)

86

Budgeted Query Processing 5.4

Shallow Vertices. Path sketches can also help to avoid unnecessary expansion of
vertices that are too close to the source vertex s. Consider a vertex w ∈ V
for which the distances d(s, w) as well as d(t, w) are known. By the triangle
inequality it holds

d(s, w) ≤ d(s, t) + d(t, w) ⇔ d(s, t) ≥ d(s, w)− d(t, w).

We can use this property to compute a lower bound on the true distance
d(s, t) by

d(s, t) ≥ D := max
σ∈S

depthT+(s)(σ)− depthT+(t)(σ),

where S = V
(
T+(s)

)
∩ (
(
T+(t)

)
denotes the commonvertices in T+(s) and

T+(t). Note that we need to obtain both outgoing path sketch trees in order to
compute this lower bound. We can use this result to avoid the unnecessary
expansion of vertices v ∈ V

(
T+(s)

)
for which it holds

depthT+(s)(v) ≤ D− 1. (5.15)

The above criteria can help to avoid the expansion of vertices that cannot provide
a shortcut.

We briefly discuss additional strategies that can help further avoid expansion of
certain vertices. The highly skewed degree distribution is a well-known property of
power law graphs. While in these graphs few vertices exist with very high degree,
the vast majority of the vertices exhibits a very small degree. In order to avoid
expansions of these low-degree vertices, we can – at index construction time – fix a
constant c ≥ 1 and include the successors of all vertices v ∈ T+(s) with δ+(v) ≤ c
in the path sketch tree T+(s) (accordingly for the predecessors of v ∈ T−(t)).
Then, since the direct neighbors of all low-degree vertices in the path sketch tree
are already known, this approach can further reduce the number of candidates for
expansion while bloating the index size by no more than the constant factor c.

A second approach considers the use of probabilistic, memory-resident set data
structures without false negatives, such as Bloom filters (Bloom, 1970), in order to
represent the neighborhood of the individual vertices. More precisely, we precom-
pute a probabilistic representation of the set of successors (predecessors) for the in-
dividual vertices, each consuming notmore than a fixed amount of B = bM/(2n)c
bits, given a main memory restriction of M bits. Then, we can avoid the expansion
of vertex v ∈ V

(
T+(s)

)
if set membership tests are unsuccessful for all vertices of

interest in T−(t).

87

Chapter 5 Distance and Shortest Path Approximation

s

32

6

38

3 5

12 6 8 15 7

9

11

17 1

T+(s)

t

17

1

19

64

21202148

22

37

1332

T−(t)

Figure 5.3: Example: Outgoing and incoming path sketch tree

(iv) Expansion Heuristics. Regarding the selection of the most promising vertices
for expansion, consider the following heuristic, that restricts vertex expansions to
selected branches of the sketch trees. As before, let S denote the set of common
vertices in the trees T+(s), T−(t). For each vertex v ∈ S, we follow the path from v
up to the root of the tree, i. e. s in the outgoing tree and t in the incoming tree. All
vertices along the way are marked as (in principle) expandable. Then, for shortcut
detection, we consider only vertices for expansion that have been marked. The
intuition is that shortcuts between the sketch trees aremore likely to appear in parts
of the tree for which a connection is already known to exist.

Example. For a pair of query vertices (s, t), the respective outgoing and incoming
trees, T+(s) and T−(t) are depicted in Figure 5.3. In the figure we assign a numeric
identifier to every vertex in order to be able to identify which vertices are present
in both trees. The leaves of the trees are the seed vertices. In the figure, vertices in
the intersection of the trees are shown in yellow color (vertices with ids 1,6,17,32).
Further, wemark the vertices on the paths from the root of the tree to vertices in the
intersection with red color. Using above heuristic only the yellow and red vertices
will be expanded.

We propose the following strategies for determining the order in which (depend-
ing on the setting only the marked or all except for deep, shallow, etc.) tree vertices
are selected as candidates for expansion:

Vertex Degree (VD) Expand the β candidate vertices with highest degree, since a
larger number of neighbors increases the probability of detecting a shortcut
as well as additional paths.

Vertex Level (VL) Expand the β candidate vertices that are located closest to the
root, since shortcuts found in lower levels are more valuable in terms of rel-
ative error of the returned solution. This selection criterion will lead to a
search process similar to bidirectional Bfs that is terminated as soon as the
fixed budget has been spent.

The mentioned approaches and strategies are combined to obtain a budgeted
query processing algorithm: first, only vertices that can provide a shortcut can be

88

Budgeted Query Processing 5.4

Algorithm 6: BudgetedQuery(s, t, β)

Data: s: source vertex, t: target vertex, β: vertex expansion budget

. load index entries

T+(s)← LoadOutgoingSketch(s)
T−(t)← LoadIncomingSketch(t)

. initial distance estimate

D ← minσ∈V(T+(s)∩V(T−(t)) depthT+(s)(σ) + depthT−(t)(σ)

. create paths through intersecting vertices

P← ∅
foreach σ ∈ V(T+(s) ∩V(T−(t)) do

P← P ∪
(

ps→σ ◦ pσ→t
)

. order vertices for expansion

X ← OrderVertices(T+(s), T−(t))

expanded← 0
while expanded < β do

x ← Pop(X)
N(x)← Expand(x)
expanded← expanded+ 1
for y ∈ N(x) do

if x came from T+(s) then
if y ∈ T−(t) then

P← P ∪
(

ps→x ◦ (x, y) ◦ py→t
)

if y /∈ V(T+(s)) then
AddEdge(T+(s), (x, y))

else
if y ∈ T+(s) then

P← P ∪
(

ps→y ◦ (y, x) ◦ px→t
)

if y 6∈ V(T−(t)) then
AddEdge(T−(t), (y, x))

return P

89

Chapter 5 Distance and Shortest Path Approximation

considered for expansion (i. e. no shallow, deep, and seed vertices). Then, at most
β of the remaining vertices are considered for expansion, the order of which is gov-
erned by the expansion strategy, i. e. either by degree or distance from the respective
root.

In our experimental evaluationwe compare the results and tradeoffs of the differ-
ent expansion strategies over a variety of expansion budgets.

In Algorithm 6 we present the (simplified) pseudocode for query processing. In
the algorithm we use the procedures OrderVertices to determine the order of
expansion of the vertices in the trees (in this procedure we order candidates for
expansion based on the respective criteria, i. e. distance from root or degree, alter-
nating between candidates from the source and target trees to simulate bidirectional
search). The procedure Expand retrieves the adjacency list (incoming or outgoing
edges) from the graph. When a vertex is expanded, the neighbors will be added to
the path sketch tree in order to find connections to these new vertices in a vertex
expansion from the other tree. However, these newly added vertices will not be
expanded themselves; this can only happen for vertices that were initially present
in the trees.

Regarding the complexity of the proposed query processing algorithms, the sim-
plest variant returns the path obtained after the tree intersection (corresponding to
the initial distance estimate) and requires exactly two accesses to the index struc-
ture and no vertex expansion. The time complexity of this step corresponds to the
complexity of computing the set intersection, given by O(k ·diam(G)). Clearly, for
the budgeted query processing variant, the number of vertex expansions is bounded
by β. Each expansion results in additional time complexity of O(n) for checking
containment of each neighbor in the other tree.

. Restricted and Diverse Paths

In this section, we study two important problem variants: the computation of re-
stricted as well as diverse paths. We discuss how the Path Sketch index structure
can be extended to process such queries.

5.5.1 Computing Restricted Paths
Many problem scenarios require imposing certain restrictions on paths to obtain
semantically meaningful results. We specifically address graphs with vertex types,
specified by the tuple G = (V, E, T, τ), where T denotes a set of types and τ : V →
2T assigns each vertex to a subset of the available types. Consider the following
scenarios:

Relatedness of Wikipedia Articles.
In an application over the Wikipedia encyclopedia, shortest paths between
two articles are computed in order to give insight into the degree of relat-
edness of the respective concepts. In this setting, it is desirable to exclude
paths via non-informative pages of administrative types, for example, con-

90

Restricted and Diverse Paths 5.5

nections through lists (two persons are connected via a path of length 2 pass-
ing through the list Living People).

Relationship Analysis in Knowledge Graphs.
Consider a large knowledge graph like YAGO (Hoffart et al., 2013) or Free-
base (Bollacker et al., 2008), comprising real-world entities (e. g. Barack Oba-
ma, United States) that are connected via edges corresponding to relation-
ships of some type, e. g. presidentOf. Further, individual entities are anno-
tated with semantic types like Politician, Person, Country, etc. A task in the
field of relationship analysis is the extraction of (indirect) relationships of a
certain type between two entities. As an example, consider queries of the
form “Which organizations play an important role in the relationship between
the United States and Germany?” In this setting, an answer to the query can
be computed from a collection of (k ≥ 1) shortest paths between the vertices
United States and Germany that include a vertex of type Organization.

We refer to the former problem scenario as type exclusion and to the latter as type
inclusion constraints. Since exclusion constraints simply prohibit the expansion of
certain vertices, they can be easily handled by the Path Sketch framework. In the
remainder of this section, we discuss the case of type inclusion constraints.
Let (s, t) denote a pair of query vertices and θ ∈ T a vertex type that has to be
included in the computed solution, respectively. For undirected graphs, we can en-
sure that a feasible solution can be computed by the Path Sketch index structure by
including at least one vertex of the desired type as singleton seed in the precom-
puted path sketches. However, in order to attain a good approximation quality, we
need to ensure the inclusion of vertices of the desired type in the path sketch tree of
a vertex v ∈ V, that are indeed located in close distance to v. To this end, we pro-
pose the following selection of seed vertices, based on the seed selection strategy
for plain distance estimation by Das Sarma et al. (2010).

We denote by Vθ := {v ∈ V | θ ∈ τ(v)} the set of all vertices labeled with type
θ, respectively. The following procedure is repeated r ≥ 1 times, where r denotes
the number of selection rounds:

• Randomly select a number of k = log(|Vθ |) sets of vertices S1, . . . , Sk ⊆ Vθ ,
with exponentially increasing size |Si| = 2i−1 from the graph.

• For each of the sets Si and vertex v ∈ V, the union of the shortest paths
from and to the closest seed vertex from the sets Si, 1 ≤ i ≤ k is added to the
incoming and outgoing path sketch tree of v, respectively.

Using this seed selection scheme, vertices with label θ that are close in distance
to a vertex v are likely to appear in the respective path sketch trees of v. Conceptu-
ally, the proposed seed selection strategy leads to a large number of individual seeds
(when compared to traditional selection strategies), however, if the number of seed
sets in the current iteration is large, a smaller number of vertices will be associated
with a certain seed. Since the seed set S1 contains only a single vertex, it is ensured
(for undirected graphs and for directed graphs within a strongly connected compo-
nent), that for a given pair of query vertices (s, t) at least one approximate shortest

91

Chapter 5 Distance and Shortest Path Approximation

path passing through a vertex of type θ (the seed vertex σ ∈ S1) can be returned.
It is worth noting that the set based selection strategy can be combined with a selec-
tion based on structural properties in the followingway. Let f : Vθ → {1, 2, . . . , |Vθ |}
denote an ordering of the vertices of Vθ based on a certain property (e. g. based on
degree in descending order). We select k sets of seed vertices of size Si = 2i−1

according to the following assignment:

Si = {v ∈ Vθ | 2i−1 ≤ f (v) < 2i} for 1 ≤ i ≤ k. (5.16)

In the next section, we address the problemof computingmultiple, diverse shortest-
path approximations for a given pair of query vertices.

5.5.2 Computing Diverse Paths
In many problem settings, it is a requirement to not only compute a single shortest
path, but to identify N “best” paths from the source to the target vertex. The ability
to quickly generate several shortest-path approximations is one of the advantages of
the Path Sketch index structure. More precisely, for the case of k individual vertices
selected as seed vertices, an intersection of the path sketch trees T+(s), T−(t) will
result in k shortest path candidates. In the worst case it could happen that, for a
pair of query vertices (s, t) ∈ V2, all path candidates ps→σi→t are identical. In this
case, s and t are connected in the input graph G by the path of length k + 1 passing
through exactly the k seed vertices σi, 1 ≤ i ≤ k. In this section, we present (i) a
heuristic method for extending the index entries in an existing Path Sketch index
in order to increase its ability to computemultiple distinct paths and (ii) a modified
query processing algorithm that relies on the same number of vertex expansions as
the algorithm presented, but is designed for generating more path candidates

First, we formally define a notion of overlap between paths:
Let p 6= (s, t) 6= q denote two simple (i. e. cycle-free) paths from vertex s to

vertex t. We measure the degree of overlap of p, q by

ω(p, q) =
|V(p) ∩V(q)| − 2

min{|V(p)|, |V(q)|} − 2
. (5.17)

The paths p, q are called disjoint in inner vertices if it holds ω(p, q) = 0. If one of
the paths is a subpath of the other (including the case p = q), it holds ω(p, q) = 1.
We call p, q distinct if it holds ω(p, q) < 1. In order to increase the number of
distinct shortest-path candidates that can be extracted from the path sketch trees
in our index structure, we propose the following approach:

• Determine N seed vertices σ1, . . . , σN ∈ V.

• For each σi, compute the “restricted” outgoing and incoming shortest path
tree rooted at σi, that avoids all paths through any of the previously consid-
ered i− 1 seed vertices σ1, . . . , σi−1. The trees are obtained by conducting a
breadth-first expansion rooted at σi, that does not expand any of the vertices
σj, 1 ≤ j < i.

92

Index Construction 5.6

• For each vertex v ∈ V add the paths from and to the seed vertices σi in the
obtained restricted trees to the incoming and outgoing path sketch tree of v,
respectively.

Note that the presented approach has heuristic nature and is only guaranteed
to enable computation of N distinct paths from the path sketch trees of the query
vertices s, t, if the structure of the input graph allows each of the N restricted Bfs
expansions to reach both s and t.

The second modification we propose, in order to generate a larger number of
shortest-path candidates, concerns the structure of the assigned path sketch trees
as well as the query processing algorithm. More specifically, for every vertex v ∈ V
in the graph, we include the set of direct successors N+(v) in the outgoing path
sketch tree T+(v) and the set of direct predecessors N−(v) in the incoming path
sketch tree, T−(v). Note that the index size will grow by not more than the size of
graph itself. The modified index entries are used as follows. Given a query (s, t),
we first load the outgoing and incoming path sketch trees of s and t from the in-
dex, respectively. Then, in contrast to the previously proposed bidirectional search
procedure over T+(s), T−(t), we expand individual vertices not by retrieving their
direct neighbors from the graph, but by loading their respective path sketch trees
from the index. While the number of required random access operations remains
unchanged, we can potentially extract many more path candidates since, for any
vertex v, the overlap between the path sketch tree T+(v) and the incoming tree
T−(t) is expected to be much larger than the overlap between the direct neighbors
N+(v) of v and T−(t).

. Index Construction

We discuss two algorithms for index construction. The first variant, which is based
on back-to-back breadth-first traversals, is discussed next. This algorithmwas used
in the prototypical index we have proposed earlier (Gubichev et al., 2010). Subse-
quently, we present StreamForest, a fast construction algorithm in the semi-strea-
ming model which is used as the default index construction algorithm in the new
variant of the Path Sketch index.

5.6.1 Traversal-Based Index Construction
The task of the index construction algorithm is the assignment of index entries
(path sketch trees) to the vertices in the graph in order to facilitate efficient approx-
imation of the shortest paths between a pair of query vertices. As described in the
previous sections, the index entries correspond to two tree-like structures for each
vertex in the graph.

The traversal-based index construction works as follows. First, a number of k
seed sets are determined. In many seed selection strategies, the seed sets are sin-
gletons. However, for the strategy proposed by Das Sarma et al. (2010), it is also
possible to use multiple seeds in a set and connect a vertex only to the closest seed

93

Chapter 5 Distance and Shortest Path Approximation

Algorithm 7: BuildPathSketches(G)

1. Determine k sets of seed vertices, S1, S2, . . . , Sk ⊆ V

2. Initialize the vertex labels as `−(v) = ∅ for all v ∈ V

3. For each set Si, compute shortest path forest Fi = {T
(i)
1 , . . . , T(i)

|Si |
} rooted

at the seed vertices, i. e. r(T(i)
j) = σ

(i)
j ∈ Si

4. For every tree T(i)
j = (Vj, Ej) and edge (u, v) ∈ Ej, assign the tree path

p
σ
(i)
j →v

= p
σ
(i)
j →u

◦ (u, v) to vertex v:

`−(v)← `−(v) ∪ {p
σ
(i)
j →v
}.

5. Repeat steps (3) and (4) on the reversed graph G−1 to obtain the labels
`+(v), v ∈ V

vertex in the set. We employ the set notation in this section since the case of individ-
ual seed vertices can be expressed as singleton seed sets. We denote the seed sets by
S1, S2, . . . , Sk and the individual seed vertices by σ

(i)
1 , σ

(i)
2 , . . . , σ

(i)
|Si |
∈ Si. For every

set Si we construct a shortest path forest, rooted at the respective seed vertices, by
conducting a breadth-first traversal of the graph originating from set Si. As a result,
we obtain for every set Si a collection of shortest path trees T(i)

1 , . . . , T(i)
|Si |

, rooted

at the respective seeds, i. e. r(T(i)
j) = σ

(i)
j . Since above procedure is repeated for

each of the seed sets S1, . . . , Sk, every vertex of the graph will be contained in up to
k trees. Let ti(v) denote the tree (if any) containing vertex v in the Bfs originating
from Si. We assign to each vertex v ∈ V a label `−(v) (the path sketch), containing
for every tree ti(v), 1 ≤ i ≤ k, the path from the root vertex r(ti(v)) to v. We repeat
the procedure with the same sets of seed vertices on the reversed graph G−1, and
eventually obtain the labels `+(v), v ∈ V, each consisting of up to k paths originat-
ing from vertex v and ending in a seed vertex. The complete procedure is depicted
in Algorithm 7.

Example. Consider the graph depicted in Figure 2.1 on page 12. Assume we have
determined the two seed sets S1 = {9} and S2 = {2, 11}. The corresponding
shortest path forests are depicted in Figure 5.4(a),(b) and (c),(d), respectively.

In terms of computational complexity, the index construction algorithm con-
ducts k breadth-first expansions of the graph, resulting in a time complexity of
O
(
k(m+ n)

)
. The k breadth-first traversals requiremany random accesses in order

to retrieve the adjacency lists of expanded vertices, incurring high cost. In order

94

Index Construction 5.6

to alleviate this problem, we integrate a semi-streaming approach for Bfs into our
optimized indexing algorithm, which is presented next.

5.6.2 Optimized Index Construction
We discuss an optimized indexing algorithm based on the following two observa-
tions. First, due to the fact that the majority of the indexing effort lies in the con-
struction of Bfs forests, we can exploit optimized algorithms for this widely stud-
ied problem. In general, the execution of a Bfs algorithm can be broken down into
several phases. In each phase, the unvisited successors of all vertices in the fringe
are added to the forest and become the fringe in the subsequent phase. This step
can be regarded as a self-join of the edge relation. Thus we can apply optimization
techniques known from relational databases, such as switching between random
and sequential accesses to the edge list whenever appropriate (i. e. favored by the
cost model). In recent work, Beamer et al. (2012) apply this reasoning specifically
for the case of Bfs expansions of a graph, and discuss a so-called bottom-up ap-
proach in conjunction with a hybrid algorithm, switching between random access
and sequential passes over the edges to construct a Bfs tree quickly. The streaming
algorithmwe discuss in this section is similar in spirit to this approach, which Shun
and Blelloch (2013) have developed further with applications to additional graph
problems, including the computation of multiple Bfs for graph radii estimation.
Our algorithm for index construction as well builds on the fact that in many cases
the available main memory permits the representation of more than one forest at
the same time. We can exploit this fact and update several memory-resident Bfs
forests after each vertex expansion.

Above ideas are incorporated into the StreamForest algorithm described in this
section. The basic algorithm is expressed in the semi-streaming model (Feigenbaum
et al., 2004). This model assumes that all vertices fit into memory, with a constant
amount of data per vertex. The edges of the graph might not entirely fit into mem-
ory. To perform computations involving the graph structure, we need to perform
multiple passes over the edge list. In the next section, we discuss the details of the
algorithm.

Overview

The basic principle of the StreamForest algorithm is to completely avoid costly ran-
dom accesses to the graph and instead process the edges sequentially, at each point
during execution either adding the current edge to one or more forests, or skipping
it, depending on whether the source vertex of the edge is a boundary vertex (fringe
vertex) in one or more partial shortest path trees1
The algorithm works as follows: Let S1, S2, . . . , Sk′ denote k′ ≤ k sets of seed ver-
tices. We initialize k′ empty forests F1, . . . , Fk′ , by setting Fi = (V, ∅). The seed
vertices contained in set Si will be the roots of the shortest path trees in forest Fi.
For each forest we maintain a set of fringe vertices, Φi, initialized to contain the
respective seeds, i. e. Φi = Si. Further, we keep for each forest a set Φ′i of fringe

1This principle is what Beamer et al. (2012) refer to as bottom-up approach.

95

C
hapter

5
D
istance

and
Shortest

Path
A
pproxim

ation

1

2

3

4

5

6

7

8

10

11

12

13

14

15

9

(a) Incoming Paths, Seed Set S1 = {9}

1

2

3

4

5

6

7

8

10

11

12

13

14

15

9

(b) Outgoing Paths, Seed Set S1 = {9}

1

3

4

5

6

7

8

9

10

12

13

14

15

2 11

(c) Incoming Paths, Seed Set S2 = {2, 11}

1

3

4

5

6

7

8

9

10

12

13

14

15

2 11

(d) Outgoing Paths, Seed Set S2 = {2, 11}

Figure 5.4: Path Sketch Computation (Example)

96

Index Construction 5.6

vertices for the upcoming iteration, initialized to Φ′i = ∅. A forest is represented
by recording the parent vertex for every vertex. We denote the parent of vertex v in
forest i by pi(v).

The algorithm proceeds by scanning the edges of the graph. For the current edge
(s, t) ∈ E, we check for each of the forests F1, . . . , Fk′ whether the source vertex s is
marked as a fringe vertex. Let F = {Fi | s ∈ Φi} denote the respective collection
of forests. For each Fi ∈ F we now have to check whether the target vertex of the
edge, t, has already been assigned a parent pi(t) or not. In the former case, the
forest remains unchanged. In the latter case, we add the edge (s, t) to the forest by
setting pi(t) = s and mark t as a fringe vertex for the upcoming iteration by adding
it to Φ′i.

As soon as all edges have been processed by the algorithm, we replace the set
of fringe vertices, Φi, 1 ≤ i ≤ k′ with the fringe set Φ′i for the next iteration, and
continue with the next round by performing another pass over the edge list. We
continue in this fashion as long as at least one of the forests was modified in the
preceding round. The complete algorithm is depicted in Algorithm 8.

In the next section, we provide some details on the efficient implementation of
the StreamForest algorithm.

Implementation Details

Throughout this section we will assume that the vertices in the graph G are con-
secutively numbered, starting with id 1. Assume a working memory of M bytes.
Further, let sizeid denote the size (in bytes) of an individual vertex identifier. Typ-
ically, we have sizeid = 4 (sufficient for graphs with up to ≈4.3 billion vertices)
or sizeid = 8. In order to represent a forest or tree shaped substructure of G, it
is sufficient to store for each vertex v the identifier of its assigned parent vertex,
p(v). For this purpose, we allocate a contiguous block of sizeid · n bytes. Then,
we record the identifier of p(v) at the position [sizeid · (v− 1), sizeid · v− 1]. The
number of forests that can be represented simultaneously in main memory is thus
upper-bounded by k′ = bM/(n · sizeid)c.

Example. Assume an available workingmemory of 4 GB and a graph to be indexed
containing n = 100 million vertices. In this setting, we can represent⌊

M
sizeid · n

⌋
=

⌊
10243 · 4

4 · 100 · 106

⌋
= 10

forests at the same time.

The second component that has to be kept in main memory is a representation
of the current and next fringe (expansion boundary) for each of the k′ forests. For
this purpose, we keep two bit-vectors fcurr, fnext, each of size k′n, where it holds
fcurr[vk′ + i− 1] = 1 if vertex v is currently a fringe vertex in forest Fi. The space
required by each fringe indicator is bounded by d(k′n)/8e bytes.

This concludes the description of the data structures in use. We use these data
structures to represent the forests as well as the sets of fringe vertices throughout
the execution of the StreamForest algorithm.

97

Chapter 5 Distance and Shortest Path Approximation

9p1(v)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 11p2(v)

1 3 12 15p3(v)

1 2 5 6 8 10 13 15p4(v)

(1, 2) (2, 3) (2, 4) (2, 7) (2, 8) ... (13, 15) (14, 10) (15, 11)E

(a) Initial stage

9p1(v)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 11p2(v) 2 2 2 2

1 3 12 15p3(v) 1

1 2 5 6 8 10 13 15p4(v) 2 2 2

(1, 2) (2, 3) (2, 4) (2, 7) (2, 8) ... (13, 15) (14, 10) (15, 11)E

(s, t)

(b) Data structures after reading edge (2, 8)

5 5 9 3 6 4 9 2 9 3 9 8 9 11 13p1(v)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8 2 2 2 6 4 2 2 8 11 11 8 9 11 15p2(v)

1 1 3 3 6 4 2 2 12 3 15 12 12 11 15p3(v)

1 2 2 2 5 6 2 8 8 10 15 8 13 11 15p4(v)

(c) Data structures after completion

Figure 5.5: Example of the StreamForest algorithm execution – data structures

98

Index Construction 5.6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Initial edge selection

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

2,
4

2,4

2,4

2

(b) Edge selection after reading edge (2, 8)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

2,4

2,
4

2,4

1,2
,3

1,2
1,3

1,2,3

1

1

1,
2,
3

2 2,4

1,2,4

1

1

1

1,2

2 1,2,3,4

3 3

1

3,4

(c) Edge selection after completion

Figure 5.6: Example of the StreamForest algorithm execution – edge selection

99

Chapter 5 Distance and Shortest Path Approximation

Algorithm 8: StreamForest(G, {S1, S2, . . . , Sk′})
Data: G: input graph, S1, . . . , Sk′ : collection of seed sets
Result: collection of k′ forests, each rooted at the vertices contained in the

respective seed set
begin

(Φ1, Φ2, . . . , Φk′)← (S1, S2, . . . , Sk′) . current fringe

(Φ′1, Φ′2, . . . , Φ′k′)← (∅, ∅, . . . , ∅) . fringe for next round

foreach v ∈ V do
pi(v)← nil ∀(1 ≤ i ≤ k′) . initialize parent pointers

foreach i = 1 to k′ do
foreach s ∈ Si do

pi(s)← s . seeds point to themselves

while Φi 6= ∅ for some 1 ≤ i ≤ k′ do
foreach (s, t) ∈ E do . stream edges

for i = 1 to k′ do
if s ∈ Φi and pi(t) = nil then

pi(t)← s . add edge to forest

Φ′i ← Φ′i ∪ {t} . add target vertex to fringe

Φi ← Φ′i ∀(1 ≤ i ≤ k′)
Φ← ∅ ∀(1 ≤ i ≤ k′)

. return forests, represented by collection of parent pointers

return {pi | 1 ≤ i ≤ k′}

Example. Consider again the example graph from Figure 2.1. We explain the
different steps of the StreamForest algorithm in detail in Figure 5.5 and 5.6. The
initial stage is displayed in Fig. 5.5(a), for the data structures and Fig. 5.6 for the
selected edges. We depict the arrays containing the parent pointers. The vertices
comprising the current fringe are highlighted in black in the respective forest. Fig-
ure 5.5(b) and 5.6(b) show the updated data-structures and selected edges after
scanning through the edge list up to edge (2, 8). The edge has been added to forest
F2 because 2 is a current fringe vertex (show in black color) in this forest and vertex
8 was not yet assigned a parent. After all edges have been examined, the vertices
shownwith gray background become the new fringe and the procedure is repeated.
The final stage after termination of the algorithm is depicted in Figure 5.5(c) and
5.6(c).

Due to memory restrictions, in general, a single execution of the StreamForest
algorithm does not suffice to cover all seed sets S1, S2, . . . , Sk and conclude the pre-
computation in one round. In the next section we give an overview of the complete
index construction algorithm in these cases, incorporating the forest construction
as a major building block.

100

Index Construction 5.6

Algorithm 9: ExtractTree(v, {p1, p2, . . . , pk′))

Data: v: vertex, p1, . . . , pk′ : mappings from vertex to id of parent vertex
Result: ET : collection of edges (of a tree rooted at v)
begin

ET ← ∅
foreach i = 1 to k′ do

x ← v
while pi(x) 6= x do

ET ← ET ∪ {(pi(x), x)}
x ← pi(x)

return ET

Complete Procedure

As in the previous section, let k′ denote the number of forests that can be kept in
memory in at the same time. Further, let k denote the number of seed sets, corre-
sponding to the total number of forests that we have to compute in order to build
the Path Sketch index. The index construction algorithm proceeds by repeatedly
computing chunks of k′ forests in memory until all k seed sets have been processed.
After each execution of the StreamForest algorithm, we extract for each vertex in the
graph a tree structure from the parent-pointer arrays. More specifically, for each of
the forests Fi ∈ {F1, F2, . . . , Fk′}, we extract for vertex v the path pr(ti(v))→v from
the root of the tree ti(v) ∈ Fi, that contains v, up to vertex v itself. The k′ extracted
paths, starting at the different root vertices r(ti(v)), 1 ≤ i ≤ k′ and ending at vertex
v are then merged into a new (reversed) tree structure. This tree structure is then
serialized into an intermediate file.

The procedure to extract this tree structure from the parent pointers is displayed
in Algorithm 9.

Example. Consider the complete forest data structure returned by the first execu-
tion of StreamForest on the example graph, depicted in Figure 5.5(c). We extract
for each vertex its corresponding tree structure using Algorithm ExtractTree, start-
ing with vertex 1. For vertex 1, by following the parent pointers of the 4 arrays
p1, . . . , p4 up to the root vertices and adding the respective edges, we obtain the
structure depicted below:

1

8 2

5 6 4 3 9

Whenever it holds k′ < k, it is necessary to conduct multiple executions of the
StreamForest algorithm in order to compute the required number of k forests. Each
of the I = dk/k′e iterations will produce one output file, fi, 1 ≤ i ≤ I, containing
the serialized tree structure for each vertex, in ascending order of vertex id. To

101

Chapter 5 Distance and Shortest Path Approximation

k′

f1

F1, . . . , Fk′

k′

f2

Fk′+1, . . . , F2k′

k′

f3

F2k′+1, . . . , F3k′

. . . ≤ k

f I

. . . , Fk

f

Figure 5.7:Merging Index Files

extract the full index entries for each vertex, we thus have to merge the (sorted)
files into one large result file. A schematic overview of this procedure is given in
Figure 5.7.

The algorithm for the computation of the outgoing path sketches works accord-
ingly (in fact, the same algorithm is used with the only difference that the currently
read edge (u, v) is reversed).

Computational Complexity

For each round of forest computation, we need to perform at most diam(G) passes
over the edge list. Thus, the total number of passes is bounded by

O(diam(G) · I) = O

 k · diam(G)⌊
M

sizeid·n

⌋
 .

Theper-itemprocessing time for each edge (s, t) is bounded byO(k′), sincewe have
to determine whether the current source s is contained in the fringe for each of the
k′ forests, followed by recording s as the parent of vertex t in at most k′ forests. The
time complexity of extracting the partial path sketch of a vertex from the k′ forests
given by the arrays of parent pointers is given by O(k · diam(G)).

The algorithm for the computation of the outgoing path sketches works accord-
ingly (in fact, the same algorithm is used with the only difference that the currently
read edge (u, v) is reversed).

5.6.3 Hybrid Algorithm
The semi-streaming approach presented in this section is particularly well-suited
for small-world graphs, such as social networks. However, the number of stream-
ing rounds, and thus the total running time of the construction algorithm, directly
corresponds to the maximum eccentricity (i. e. distance to other vertices) of the
seed sets under consideration. Even in graphs with a small effective diameter (i. e.
short paths between a large fraction of all possible vertex pairs), it can happen in
the worst-case that many streaming rounds are required to compute the few long
paths originating in the selected seed set, resulting in many superfluous reads of

102

Physical Index Layout 5.7

the edge list for already computed paths. In order to alleviate this problem, our im-
plementation employs a hybrid algorithm that carefully chooses to either conduct
a streaming pass over the edge list or use random accesses in order to retrieve the
adjacency lists of the current set of fringe vertices, Φ = Φ1 ∪ . . . ∪ Φk. Regard-
ing this problem, Beamer et al. (2012) as well as Shun and Blelloch (2013) propose
a thresholding heuristic based on the number of vertices and the number of their
outgoing edges compared to the total number of edges.
Our own hybrid construction algorithm is also based on a threshold parameter on
the fringe fill-rate, however, in our case, the threshold is determined by benchmark-
ing the hard disk prior to index construction. For this purpose, in the initialization
phase, wemeasure the average time required to retrieve an adjacency list from disk,
tRA, and the time required to perform one sequential pass over the edge list, tS.
Then, we conduct a sequential scan if for the current round it holds

|Φ| ≤ tS
tRA

. (5.18)

This way, we use the semi-streaming approach while there are sufficiently many
vertices in the expansion fringe (the major part of the work, typically in the middle
of the indexing process), and rely on the random-access strategy if only few vertices
have to be expanded in the next round (typically in the beginning and towards the
end of forest construction), depending on the benchmarked graph access opera-
tions. In the experimental evaluation of this chapter, we show the performance
difference of the traditional, streaming-only, and hybrid algorithm for index con-
struction in detail. The benchmark-based cost model we propose for determining
the right strategy to use is easy to implement and works well in practice, as high-
lighted in our experimental evaluation.

. Physical Index Layout

Materializing two trees for each vertex in the graph inevitably implies a space re-
quirement in the order of several multiples of the size of the underlying graph.
However, by using a sophisticated tree-structure encoding technique in conjunc-
tion with byte-level compression of the resulting index entries, the disk space re-
quired by the Path Sketch index can be kept small enough to allow index construc-
tion over massive graphs comprising billions of edges, requiring only standard disk
space of a few hundred GB.

In this section, we provide an in-depth description of the physical layout of the
Path Sketch index together with the algorithms involved in – and designed for – the
serialization of individual index entries on disk. We first discuss several approaches
for serializing tree structures, followed by the detailed description of the low-level
representation of our index structure in terms of individual bytes.

103

Chapter 5 Distance and Shortest Path Approximation

5

2

7 21

22

3

8

1 9

Figure 5.8: Example tree T = (VT , ET)

5.7.1 Tree Serialization
Since the directed rooted trees, that we assign as index entries, are special instances
of general directed graphs, all standard serialization approaches for these graph
structures are applicable, most notably edge and adjacency list representations.

Edge List

Consider the directed tree T = (VT , ET) depicted in Figure 5.8, which we will
use as running example throughout the remainder of this section. The easiest way
to serialize a directed graph structure such as T is to simply record all edges in
the graph in one contiguous sequence. In this setting, each edge is represented by
the identifier of the source followed by the identifier of the target vertex. In this
description, as well as in our implementation, we represent vertices by integer ids.
Note that there exist m! possible serializations of T with |ET | = m. One possible
representation is given by the sequence depicted in Figure 5.9(a).

Note that this sequence contains the edges of the tree together with a header
entry indicating the number of edges in the tree. In practical applications, vertex
identifiers will be either 32- or 64-bit integers (for |V| > 232). Thus, the space re-
quirement of the edge list representation is given by (2m + 1)sizeid. In the example
above, the space requirement (using 32-bit ids) of the edge list amounts to 65 bytes.
We can further reduce the amount of memory by using a variable byte-length en-
coding. Note that due to the requirement of extremely fast decompression at query
time, we refrain from more aggressive and thus CPU-intensive compression tech-
niques (e. g. bit-level compression).

104

Physical Index Layout 5.7

8 2 7 2 21 5 2 5 8 5 22 8 1 8 9 22 3

(a) Edge List

4 5 3 2 8 22 2 2 7 21 22 1 3 8 2 1 9

(b) Adjacency list

9 ◦ ◦ • • ◦ • ◦• 5 2 7 1 21 2 22 3 2 8 1 1 9

(c) Stack-based traversal

Figure 5.9: Comparison of Serialization Approaches

Adjacency Lists

A serialization technique closely related to the edge list representation is to encode
the tree structure in terms of the adjacency lists of the individual vertices. In con-
trast to edge list encoding, the space requirement of this approach depends on the
structure of the tree rather than on the absolute number of edges. In this setting,
we simply group edges based on common source identifiers. Then, the edges are
treated by recording the source identifier together with the sequence of the respec-
tive target identifiers. In order to extract the individual adjacency lists at query
time, it is necessary to record the number of entries in each list. As a side note,
storing the target ids of each adjacency list in ascending order opens up the pos-
sibility of applying further optimizations, most importantly delta-encoding of the
gaps between subsequent entries instead of listing the identifiers themselves. This
technique, traditionally used for posting list compression of inverted indices, has
proven beneficial when used in conjunction with variable byte-length compression
schemes. The rationale is that the magnitude of gap sizes and thus their space re-
quirement is substantially smaller than the values of vertex identifiers.
We depict the adjacency list representation of the example tree T (without delta-
encoding) in Figure 5.9(b).

Note that, due to the restricted number of k seed sets S1, S2, . . . , Sk (following
the seed selection scheme of Das Sarma et al. (2010) we have k ∈ O

(
log(n)

)
, the

maximum degree of each vertex contained in the index entries (trees) is restricted
by δ(v) ≤ k. In most practical scenarios, we can thus assume that a single byte
is sufficient to record the number of entries per adjacency list. As in the previous
example, we highlight the meta-information contained in the serialized tree with
gray color. This involves, apart from the list lengths, the number of adjacency lists
contained in the index entry, stored as the header. In our example, the space re-
quirement (using one byte to signify list lengths as well as the number of lists in the
header) of this representation amounts to 53 bytes.

105

Chapter 5 Distance and Shortest Path Approximation

Stack-Based Traversal

The third serialization technique we consider is more involved than the straight-
forward approaches discussed above, yet allows for extremely fast (de-)serialization
algorithms. This approach results in the best overall compression ratio, as indicated
by our experimental evaluation. The key idea of the (de-)serialization procedure,
based on a text book algorithm (Shaffer, 2011), is to traverse the tree structure in a
depth-first manner and emit identifiers of encountered vertices together with cer-
tain instructions to the deserialization algorithm, whenever appropriate. We make
a distinction between inner vertices of the tree and leaves. Then, during traver-
sal of the tree, we maintain a stack that holds the identifiers of the vertices on the
path from the root to the current vertex. Whereas intermediate vertices are simply
pushed onto the stack (and written to the output) upon discovery, leaf vertices re-
quire a certain number of elements be popped from the stack in order to proceed
with the traversal. This particular number of pop-operations before the next vertex
in the Dfs sequence can be pushed, is recorded in the serialized tree output, imme-
diately after the id of the respective leaf vertex. Consider again the tree T from our
running example. The depth-first traversal proceeds discovering (and emitting) the
ids of vertices 5,2 and 7. The leaf vertex 7 requires one pop-operation before the
next id, 21, can be pushed onto the stack. Likewise, 2 pop-operations are necessary
after the id of vertex 21 has been emitted.

For the decompression algorithm in order to reconstruct the tree structure from
the serialized representation, we need to mark for each vertex whether it is a leaf
(then the subsequent number denotes the required pop-operations) or an inner
vertex, in which case the following entry is the next vertex identifier in the Dfs
traversal. For this purpose, we add a bitmap to the header, indicating for each vertex
whether the vertex corresponds to a leaf of the tree. For performance reasons, we
strive to keep the bytes in the index entry aligned, and thus, the space requirement
for the bitmap amounts to d n−1

8 e bytes, where n = |VT | (note that we do not record
the leaf indicator of the last vertex since this vertex is anyways a leaf). The num-
ber of pop-operations is bounded by the height of the tree, which in turn cannot
exceed the diameter of the graph. Since in this work we only consider small-world
graphs, a single byte is sufficient to record the number after each leaf. Finally, the
serialized representation of the example tree, T is given by the sequence depicted in
Figure 5.9(c). Again, meta-information (header with number of vertices and leaf
bitmap as well as the number of pops after each leaf) is highlighted. The required
space amounts to 42 bytes.

106

Physical Index Layout 5.7

◦◦◦◦◦◦◦◦ ◦◦◦◦◦◦◦• ••◦•◦••◦ ◦•◦••◦•◦

••◦••◦•◦ •◦•◦••◦◦ ◦◦◦◦◦•••
128 + (n mod 128) 128 +

(
(n div 128) mod 128

)(
((n div 128) div 128)) mod 128

)

n = 120410

Figure 5.10: Example: Variable Byte-Length Encoding

5.7.2 Byte-Level Compression
As mentioned in the preceding paragraphs, in addition to serializing the tree struc-
ture in a space-preserving manner, we also experiment with generic compression
mechanisms. More precisely, we investigate byte-level compression of the integers
emitted by the serialization algorithm. To this end, we employ the basic form of
variable byte-length encodingwhere the integers are recorded as a sequence of bytes
where every byte consists of one header bit (continuation bit) and seven payload
bits. This approach is particularly attractive for adjacency list serialization in con-
junction with delta-encoding.

We briefly explain this integer encoding technique in the following example:
Consider the bit-representation of the 32-bit integer 120410, depicted in Figure 5.10
(little endian notation):

While the number is stored in a 4-byte integer, only the lower three bytes actually
contain set bits. The variable byte-length encoding technique exploits this fact by
recording only the 7-bit sequences from the LSB up to the highest set bit (inclusive).
The continuation bit in the header indicates whether the following byte is part of
the number representation as well. Note that in the resulting sequence, the payload
is arranged in the order of increasing significance. This encoding technique can
be efficiently implemented by means of bitwise operations. For further details we
direct the reader to the classic literature surveying the field (Manning et al., 2008).

5.7.3 Indexed Flat-File Implementation
Recall that in the Path Sketch index structure, we have to store two records for every
vertex in the graph: the serialized incoming and outgoing trees T−(v) and T+(v),
respectively. In general, the index entries will have variable lengths.

Thus, we choose to store the records in a collection of flat files, where individual
index entries are indexed by recording their offset in the file. Since index entries
typically consist of tens to hundreds of individual identifiers for the vertices con-
tained in the trees, the space required for storing offsets induces a tolerable size
overhead. We store the offsets (which are 4-byte values indicating the byte offset in
the file) in dedicated offset files, one for outgoing and one for incoming path sketch
trees, respectively. For the case of outgoing trees T+(v), v ∈ V, the index entries
are stored in a number of FO size-restricted files. The number of files depends on
the disk space required by the serialized trees, that is, whenever the size of an index

107

Chapter 5 Distance and Shortest Path Approximation

file extends past 4 GB, the 4 bytes allotted to store the entry offset are insufficient,
and thus an additional index file is created. The incoming trees are stored in the
same way in FI index files.

Whenever the (physical or user-specified) constraints on the available compu-
tational resources permit, it is possible to load the offsets into main memory. This
way, access to an index entry at query time only requires a single random seek rather
than two (to retrieve offset and index entry, respectively). Finally, in order to deter-
mine for a given vertex the respective index file, we need to record for each index
file the id of the first vertex in the file. Since the number FO + FI of index files is
typically very small, we can easily hold the FO + FI start ids per file inmainmemory
and then identify the appropriate file for a given vertex id.

. RelatedWork

5.8.1 Distance Querying

Distance indices can be regarded as an intermediary between reachability and short-
est path index structures, over both undirected and directed graph structures. An
active area of research, numerous indexing approaches have been proposed in the
past, both for exact as well as approximate distance query processing.

Exact Query Processing. In this setting, the graph is preprocessed and index struc-
tures are built such that queries for the distance (i. e. length of the shortest path)
of a pair of vertices (s, t) ∈ V2 can be answered significantly faster than the naïve
approach of online search (Bfs). A common characteristic of most indexing ap-
proaches is their distributed nature, in the sense that the overall index structure
consists of node labels assigned to the individual vertices. The distance between
a pair of vertices can then be computed by inspecting the labels of the query ver-
tices. Classical work in this direction includes the notion of proximity-preserving
labeling schemes (Peleg, 2000) and the study of Gavoille et al. (2004) on minimum
label-length for different kinds of graph structures. Cohen et al. (2002) propose
the notion of 2-hop covers for reachability and distance labeling. A 2-hop distance
labeling is defined as the assignment of a label L(v) to each vertex v ∈ V of the
graph G = (V, E). The label consists of two sets, L(v) =

(
Lin(v), Lout(v)

)
, that

are collections of vertex-distance pairs (u, d(u, v)) and (w, d(v, w)), respectively.
The distance from vertex s to vertex t can be computed as

d(s, t) = min
v∈Lout(s)∩Lin(t)

d(s, v) + d(v, t).

It has been shown that the problem of identifying 2-hop covers of minimum size
is NP-hard, however, an almost optimal labeling can be achieved with the approxi-
mation algorithm proposed by (Cohen et al., 2002). While this algorithm is effi-
cient, large problem instances render this approach infeasible, as demonstrated
by (Schenkel et al., 2006). Numerous approaches addressing the efficiency of 2-hop

108

Related Work 5.8

cover construction have been proposed subsequently. Schenkel et al. (2004) pro-
pose a divide-and-conquer approachwith restrictedmemory usage in order to pro-
cess large XML data collections. Several enhancements to this algorithm are pro-
posed by (Schenkel et al., 2006), including a recursive approach for joining cov-
ers computed for different partitions. Cheng and Yu (2009) propose an algorithm
for faster computation of distance-aware 2-hop covers by first computing the con-
densed graph, obtained after collapsing all strongly connected components into
supervertices, followed by the computation of a 2-hop cover for this typically much
smaller graph in conjunction with a partitioning scheme.
An important characterization of graphs, the notion of highway dimension, was
recently introduced by Abraham et al. (2010). A graph exhibits low highway di-
mension if for every value d there exists a sparse set of vertices Sr, such that every
shortest path exceeding length d contains a vertex from the set Sr. It is shown that
important classes of graphs, most notably road networks, exhibit a low (polyloga-
rithmic) highway dimension, which in turn allows distance labels of polylogarith-
mic size. In a follow-up work, Abraham et al. (2012) propose hierarchical hub-
labeling, where the vertex inclusion in a distance label exhibits a partial ordering of
the vertices. Jin et al. (2012b) combine the highway structure with a bipartite set
cover approach for distance querying over large, sparse graphs. It is shown that the
resulting labeling is superior to 2-hop labeling, both empirically and theoretically,
regarding indexing time, index size and query processing time. Recently, Akiba
et al. (2013) proposed pruned landmark labeling based on the precomputation of
distance labels obtained by executing a Breadth-First expansion from every vertex
of the graph. This at first sight computationally infeasible approach is facilitated by
a clever pruning scheme, that terminates expansions early based on the informa-
tion already contained in the partially constructed index. This approach enables
substantial performance benefits especially during the later stages of the indexing
process. Fu et al. (2013) propose IS-Label, a vertex labeling approach based on the
organization of the input graph hierarchically into layers, based on the notion of
independent sets, sets of pairwise non-adjacent vertices with respect to a specified
(sub-)graph. The resulting labels are stored on disk and combined with bidirec-
tional Dijkstra search for query processing.
Due to the wide applicability of the problem, further problem variants have been
studied, including single-source distance computation (Cheng et al., 2012).

Approximate Query Processing. Another important stream of research in distance
query processing can be classified as distance estimation techniques, where only an
estimate on the true distance for a pair of query vertices is returned. Dropping the
requirement to compute exact solutions leads to substantial benefits in space and
time consumption. In this setting, distances between the vertices of the graph and
a predefined set of seed vertices (often called landmarks are precomputed. Then,
for a pair of query vertices (s, t), the distance from vertex s to vertex t is com-
puted as the minimum sum of distances from s to a seed vertex and from the same
seed vertex to t. Given that the edge weights satisfy the triangle inequality (as is
the case for unweighted graphs), this method provides an upper bound on the true
distance. Thorup and Zwick (2005) show in their classical work that for undirected,

109

Chapter 5 Distance and Shortest Path Approximation

weighted graphs, it is possible to construct an index structure for distance estima-
tion of size O(kn1+1/k) in O(kmn1/k) expected time such that distance queries can
be answered in O(k) time. The returned distance estimate exhibits a multiplicative
stretch of at most 2k− 1. Thus, for the estimated distance d̃(s, t) it holds

1 ≤ d̃(s, t)/d(s, t) ≤ 2k− 1.

Potamias et al. (2009) study the effects of different seed selection strategies on the
estimation accuracy. In order to improve accuracy especially for close-by query
vertices (a case that often occurs in social networks and other small-world graphs),
Das Sarma et al. (2010) advocate the use of randomly sampled seed sets of exponen-
tially increasing size. For undirected graphs, Qiao et al. (2012) use a least-common-
ancestor approach to identify a seed close to the query vertices. Qi et al. (2013)
study seed-based indexing for distance query processing in a distributed setting.

5.8.2 Shortest Path Querying
The classical textbook algorithm for pairwise shortest path query processing are
(bidirectional) Bfs for unweighted, and Dijkstra’s algorithm for weighted graphs.
Significant improvements in limiting the search space can be achieved by the A∗

algorithm (Hart et al., 1968), which maintains the vertices in the expansion queue
by their potential to provide a connection to the target. This is achieved by com-
bining the distance from the source with a lower bound on the distance (so-called
admissible heuristic) to the target. For graphs like road networks, where the coor-
dinates of vertices are known, the straight-line distance is a common heuristic. For
general graphs, Goldberg and Harrelson (2004) propose ALT, a combination of A∗

search using landmarks as a heuristic to compute lower bounds on the distance to
the target in conjunction with the triangle inequality.

Recent results on index support for shortest path query processing include previ-
ously discussed frameworks for distance querying, which can be extended to sup-
port path queries (Akiba et al., 2012, Fu et al., 2013). These modifications involve
additional bookkeeping (e. g. maintaining the first edge on the shortest path to the
target), with detrimental effect on both precomputation time as well as index size.
Furthermore, maintaining only the first edge on the path to the target requires addi-
tional effort, proportional to the length of the resulting path, by requiring additional
I/O operations that in turn negatively impact the query processing performance.
Other approaches, like the prototypical implementation of Path Sketch (Gubichev
et al., 2010) are designed specifically for path queries rather than offering this func-
tionality in an extension, leading to different design decisions for the involved al-
gorithms and data structures.

110

Experimental Evaluation 5.9

Road Networks. Shortest paths play a crucial role in many applications involv-
ing (near-)-planar graphs such as route planning over road networks. This prop-
erty enables provable efficiency of methods like contraction and highway hierar-
chies (Geisberger et al., 2008, Sanders and Schultes, 2005) and transit node rout-
ing (Bast et al., 2007). Recently, Abraham et al. (2011) have applied results from
learning theory, in particular related to the Vapnik-Chervonenkis dimension, in
order to derive better bounds on query time complexity for the case of graphs with
low highway dimension. Rice and Tsotras (2010) propose an index structure based
on contraction hierarchies to support path query processing in the presence of re-
strictions on the labels of edges contained in the solution.

Complex Networks. In addition to the earlier prototype of our Path Sketch index
structure (Gubichev et al., 2010), we mention the following index structures for
shortest path query processing: Xiao et al. (2009) propose the materialization of
Bfs-trees and exploit symmetric substructures within to reduce index size. Wei
(2010) applies a tree decomposition approach with a tunable parameter controlling
the the time/space-tradeoff. Along similar lines, Akiba et al. (2012) propose an
index for both graphs with small tree-width and complex networks. The approach
is also combined with the seed-based technique for a hybrid algorithm. Tretyakov
et al. (2011) show how the indexing and query processing strategy of a path-based
index structure such as Path Sketch can be adapted by restricting the index entries
to contain only the first edge of each path to the seed. This way, the index structure
can easily incorporate updates to the underlying graph structure.

Shortest Path Variants. Gao et al. (2011) discuss the implementation of shortest
path algorithms inside a relational database system. Tao et al. (2011) study a variant
of shortest path computation where a solution specifies only at least one of every
k consecutive vertices in the resulting path. This scenario has applications in the
context of spatial network databases.

For a more comprehensive overview, the reader is directed to the survey of Som-
mer (2012).

. Experimental Evaluation

5.9.1 Datasets and Setup
We evaluate our algorithms over a variety of real-world datasets, focusing on social
network and web graphs. The datasets we consider are:

• Wikipedia Link graph of the English Wikipedia (article namespace) from
February 20132.

• GoogleWeb graph from the 2002 Google Programming Contest3 (Leskovec
et al., 2009).

2
http://law.di.unimi.it/datasets.php

111

http://law.di.unimi.it/datasets.php

Chapter 5 Distance and Shortest Path Approximation

Dataset Type Disk Size |V| |E| Avg. Degree Diameter

Wikipedia ER graph 400 MB 4,206,289 101,311,614 24.09 53

Google web graph 21 MB 875,713 5,105,039 5.83 47
BerkStan web graph 22 MB 685,230 7,600,595 11.09 676
UK web graph 8.4 GB 105,896,435 3,717,169,969 35.10 1,096

Slashdot social network 4 MB 82,168 870,161 10.59 12
DBLP social network 27 MB 986,207 6,707,236 6.80 20
Twitter social network 6 GB 41,652,230 1,468,364,884 35.25 18

Table 5.1: Dataset Characteristics

• BerkStan Web graph from pages of the berkeley.edu and stanford.edu

domains crawled in 20023 (Leskovec et al., 2009).

• UK Web graph of the .uk domain from May 20072 (Boldi et al., 2008).

• Slashdot Social network among users of the technology website Slashdot3
(Leskovec et al., 2009).

• DBLP Social network of scientists cooperating on articles, extracted in July
2011 from the DBLP bibliography server2.

• Twitter Directed social network of users of the microblogging social net-
work2 (Kwak et al., 2010).

We summarize basic statistics of the graphs in Table 5.1. While some of the
graphs above are undirected, in this work we treat all inputs as directed graphs.
That is, we convert undirected graphs to a directed representation by including both
possible directions for each edge in the graph. The numbers in Table 5.1 reflect the
sizes of the directed graphs after this conversion.4

All experiments were conducted on a server equipped with 2 Intel Xeon X5650
6-core CPUs at 2.66 Ghz, 64 GB of main memory and four local disks configured
as RAID-10, i. e. using mirroring without parity and block-level striping. The op-
erating system in use was Debian 7.0 using kernel 3.10.45.1.amd64-smp. Our algo-
rithms are implemented in C++ and compiled using GCC 4.7 at the highest avail-
able optimization level.

3
https://snap.stanford.edu/data/

4In principle we need only one direction of the sketches for query processing over undirected graphs.
Thus, the index construction times and index sizes for undirected (symmetric) graphswould amount
to roughly half of the values reported in this section if a distinction is made between directed and
undirected inputs.

112

berkeley.edu
stanford.edu
.uk
https://snap.stanford.edu/data/

Experimental Evaluation 5.9

5.9.2 Baseline Strategies
As baseline strategies for processing shortest path and distance queries, we con-
sider BFS (breadth-first-search) as well as bidirectional BFS over thememory-map-
ped, disk-resident graph and also compare with two state-of-the art approaches for
point-to-point (exact) distance computation:

• IS-Label (Fu et al., 2013), is a recently proposed indexing scheme for exact
distance querying of large graphs based on independent sets – that is, sets of
pairwise non-adjacent vertices – for efficient index construction.

• Pruned Landmark Labeling (PLL) (Akiba et al., 2013), is an index structure
for exact distance queries based on the precomputation of vertex distances by
conducting breadth-first-expansions from all vertices. The key idea in this
approach is the use of a clever pruning technique, that drastically reduces
both index size as well as precomputation time when compared with a naïve
approach.

For both PLL and IS-Label, we obtained the original source code from the au-
thors. While the implementation of IS-Label allows for a disk-based index con-
struction out of the box, we modified the source code for PLL to construct disk-
based index entries, using offset-based index entry retrieval, similar to the Path
Sketch index. Furthermore, we adapted PLL to work on directed graphs, since we
treat all input datasets as directed graphs for all considered algorithms. All ap-
proaches are implemented in C++ and compiled at highest available optimization
level. The approaches considered in this work are single-thread implementations.

5.9.3 Disk Access
As the storage layer, wematerialize the incoming and outgoing edges of the vertices
on disk in two separate, clustered B+-trees, adapted from the RDF-3X database en-
gine (Neumann and Weikum, 2010). As in the original RDF-3X implementation,
these B+-trees are backed by memory-mapped files using demand-paging. Thus,
during program execution memory equal to the size of the database is reserved,
and pages are read into memory from disk as they are needed, and stay memory-
resident until program termination. If the graph size is larger than the available
main memory, virtual memory is allocated. Both (bidirectional and regular) BFS,
as well as the Path Sketch query processor access the graph structure in this man-
ner, whereas the actual Path Sketch index entries are stored in binary files that are
accessed via seek-operations. IS-Label and PLL use their own methods to access
the graph, which they need to access only during indexing. PLL loads the graph to
index entirely into main memory, and constructs the full index in main memory as
well. For PLL, we use 64 bit-parallel labels for all datasets and order vertices by de-
gree (sum of in- and out-degrees). We remark, that other strategies are possible for
PLL, e. g. ordering vertices by product of in- and out-degrees as Path Sketch does
for seed selection. IS-Label accesses the graph on disk, satisfying a user-specified
budget on the amount of memory to use, which we keep at the default setting (4

113

Chapter 5 Distance and Shortest Path Approximation

GB). Both Path Sketch as well as our adapted version of PLL use offset-based re-
trieval of index entries. The offsets of index entries in the files are kept in main
memory during query processing for both approaches.

5.9.4 Index Construction
The first evaluation metric we consider is indexing time, the total time required to
create the disk-resident index structures from a given (as well disk-resident) graph,
i. e. including serialization and compression.

Indexing Strategies

We consider the following three seed selection strategies:

Closeness Centrality (CC) Selection of the top-k vertices with highest closeness
centrality, given by

cc(v) = ∑
w∈V\{v}

2d(v,w). (5.19)

Since exact computation the centrality scores entails an all-pairs shortest dis-
tance computation, we approximate the centrality scores by randomly sam-
pling 1, 000 vertices Σ:

c̃c(v) = ∑
s∈Σ

2d(s,v). (5.20)

We then use the k ∈ {10, 25, 50, 100} vertices with highest centrality score as
singleton seed sets for constructing the Path Sketch index:

Si :=

 arg max
v∈V\⋃i−1

j=1 Sj

c̃c(v)

 , 1 ≤ i ≤ k (5.21)

Degree Product (DP) Selection of the top-k vertices with highest product of in-
and out-degrees:

dp(v) = |N+(v)||N−(v)|. (5.22)

We use the k ∈ {10, 25, 50, 100} vertices with highest product of in- and
outdegrees as singleton seed sets:

Si :=

 arg max
v∈V\⋃i−1

j=1 Sj

dp(v)

 , 1 ≤ i ≤ k. (5.23)

Random Exponential (RE) Selection of K · log(n) sets of randomly selected ver-
tices Si, 1 ≤ i ≤ K log(n) of exponentially increasing size, |Si| = 2i−1. We
vary the parameter K ∈ {1, 2, 5, 10}.

114

Experim
ental

Evaluation
5.9

Closeness (CC) Degree Product (DP) Random Exponential (RE)
Dataset

k = 10 k = 25 k = 50 k = 100 k = 10 k = 25 k = 50 k = 100 K = 1 K = 2 K = 5 K = 10

Wikipedia 329 592 1,055 2,046 334 591 1,081 2,062 588 1,048 2,472 4,850

Google 51 115 218 409 57 116 223 441 68 137 337 654
BerkStan 91 187 347 699 94 195 370 737 196 418 1,023 2,002
UK 32,066 58,697 – – 28,792 63,985 106,844 – 138,973 – – –

Slashdot 3 7 11 21 4 8 12 22 5 9 20 38
DBLP 41 81 151 299 41 84 148 311 68 112 290 570
Twitter 4,324 7,189 13,009 22,359 5,307 9,180 13,048 24,336 9,070 17,144 35,489 67,789

Table 5.2: Indexing Time [s]: Comparison of Seed Strategies, PathSketch (Hybrid Algorithm)

115

Chapter 5 Distance and Shortest Path Approximation

Wikipedia Google BerkStan Slashdot DBLP

101

102

103

104

C
on

st
ru

ct
io
n
Ti
m

e
[s
] Traditional Stream Hybrid

Figure 5.11: Indexing Time [s], Comparison of Construction Algorithms, Path Sketch (DP, k = 25)

The index construction times (just construction, excluding determining the seed
vertices5) for the different settings of seed selection strategies and cardinalities are
presented in Table 5.2 using the default settings (adjacency list representation of
path sketch trees with delta encoding, use of variable byte-length encoding, and in-
clusion of the adjacency list of the root vertex in the tree). In this setting, we use the
hybrid algorithmand construct exactly 10 shortest path forests inmainmemory per
iteration. It is evident that the integration of the streaming Bfs technique in con-
junction with the construction of multiple trees into Path Sketch allows for a very
efficient index construction. As a result, Path Sketch can easily handle evenmassive
graphs comprising billions of edges. As an example, for the strategy DPk=10, i. e.
using the top-10 vertices with highest degree product, we are able to construct the
index structure in less than 90 minutes on the Twitter social network comprising
roughly 1.5 billion edges and in around 8 hours on the UK web graph comprising
3.7 billion edges. Small datasets, like the Slashdot social network with a little less
than 1 million edges, can be processed within just a few seconds.

For the choice of closeness centrality to determine seeds as well as random ex-
ponential seed sets, the index can also be constructed very efficiently. It is worth
noting that, for the random exponential seed selection, the number of seed sets de-
pends on the size of the graph (number of vertices), whereas for the CC and DP
strategies the number of seed sets is fixed a-priori using parameter k. In this exper-
iment, we use a timeout of 48 hours after which the index construction is aborted
(this was the case only for the UK webgraph for settings CCk=100, DPk=100, and
REK>1.

5Which is cheap for degree product and expensive (since requiring computation of several shortest
path trees) for approximated closeness centrality

116

Experimental Evaluation 5.9

Dataset IS-Label PLL PS (CC-25) PS (DP-25) PS (RE-2)

Wikipedia 8,218 – 592 591 1,048

Google 56 181 115 116 137
BerkStan 164 98 187 195 418
UK – – 58,697 63,985

Slashdot 10 5 7 8 9
DBLP 52 971 81 84 112
Twitter – – 7,189 9,180 17,144

Table 5.3: Indexing Time [s], Comparison to state-of-the-art distance computation frameworks

Streaming Index Construction

The hybrid algorithm used for index construction offers substantial benefits over
the traditional approach of Bfswith randomaccesses used inGubichev et al. (2010).
As shown in Figure 5.11 (note the logarithmic scale of the y-axis), the hybrid al-
gorithm offers a speedup of an order of magnitude over the traditional algorithm
in the vast majority of considered cases. Compared to a streaming-only approach
(shown as orange bars in Figure 5.11), the hybrid algorithm is significantly faster,
up to a factor of 3.3 for the case of the BerkStan webgraph. On average, for the con-
sidered datasets (all graphs except for the massive graphs Twitter and UK, which
turned out to be too demanding for the traditional algorithm) and setting DPk=25,
the hybrid algorithm is faster than the pure streaming approach by a factor of 1.7,
and faster than the traditional approach by a factor of 16, and is thus used as the
standard index construction algorithm in our implementation. In this experiment
we compute 10 shortest path forests at a time for the streaming-only as well as
the hybrid algorithm. The speedup obtained by the streaming- and hybrid algo-
rithm over the traditional index construction is quite high even though the size of
the considered graphs is smaller than the available main memory and the graph
is memory-mapped. This is due to the fact that the overhead associated with ran-
dom accesses to the graph, i. e. retrieving the correct page, uncompressing all page
contents, and extracting the relevant parts, is still high, even when the graphs can
be held in main memory. In combination with the benefits obtained from caching
contiguous pages in the memory hierarchy, sequential access to the edge list out-
performs random accesses even though the latter do not (always) induce disk seek
operations.

117

Chapter 5 Distance and Shortest Path Approximation

Comparison with Baseline Strategies

In Table 5.3 we summarize the indexing times for the various baseline algorithms
(in seconds), compared to the Path Sketch index for different seed selection strate-
gies with cardinality 25, and random exponential seed set selection with K = 2
rounds. While both Path Sketch and IS-Label provide competitive index construc-
tion performance, the results vary greatly on individual datasets. As an example,
while the Path Sketch index requires 116 seconds (DP-25) to index the Google
dataset, IS-Label finishes index construction already after 56 seconds. On the
other hand, the Path Sketch index requires 591 seconds to create the index over
the Wikipedia dataset, while IS-Label needs 8,218 seconds for indexing.

Regarding scalability to massive graphs, as expected for an exact approach, we
found that IS-Label could not index theTwitter andUKdatasetswithin the allotted
time limit of 2 days. The PLL implementation for directed graphs was only able to
index 4 of the datasets within the allotted time limit (1 day for the small datasets,
2 days for Twitter and UK). For the UK dataset, loading the graph itself entirely
into main memory in uncompressed form led to memory exhaustion even before
starting index construction of PLL.While for theDBLPdataset, PLL requiredmuch
more time for indexing than both Path Sketch and IS-Label, it exhibited the best
performance for both Slashdot and BerkStan.

5.9.5 Index Size

We now consider index size, i. e. the total size of the resulting disk-resident in-
dex structure that is used in the query processing stage. The Path Sketch index
comprises of files containing the path sketch trees and the offset files. In our ex-
periments, as described in Section 5.5.2, the direct successor/predecessors of each
vertex are included in the index entries, and thus the whole input graph is implic-
itly contained in the index entries. We first compare the index sizes for the different
seed selection strategies, and then discuss the space requirements of the different
proposed tree serialization approaches.

Indexing Strategies

The (on-disk) index size, including the offset and index entry files, is summarized
in Table 5.4, for adjacency list encoding using variable byte-length compression.
While the selection strategies CC (Closeness) and DP (DegreeProduct) can be com-
pared easily, the number of seed sets used in the random exponential selection de-
pends on the graph size rather than being specified as an input parameter. For
k = 10 seeds, the computed index size ranges from 10 MB (CC, DP) for the Slash-
dot social network (graph size 4MB) to 75GB (CC) and 106GB (DP) for the largest
considered graph (UK web graph, size 8.4 GB). We observe that for the strategies
CC and DP the index size exhibits a linear dependence on the number of selected
seeds for the increase from 10 to 25 formost of the graphs. This effect levels off for a
larger number of seeds, resulting in sublinear growth of index size in the number of
selected seeds. Overall, it becomes clear that the Path Sketch index structure easily

118

Experim
ental

Evaluation
5.9

Closeness (CC) Degree Product (DP) Random Exponential (RE)
Dataset

k = 10 k = 25 k = 50 k = 100 k = 10 k = 25 k = 50 k = 100 K = 1 K = 2 K = 5 K = 10

Wikipedia 1,202 2,065 3,392 5,598 1,178 2,143 3,528 6,017 1,867 3,033 6,081 10,580

Google 281 622 1,049 1,692 304 585 980 1,762 365 651 1,339 2,271
BerkStan 120 152 183 324 148 195 302 535 292 488 945 1,871
UK 75,193 118,420 64,998 – 106,015 198,450 329,477 – 116,138 – – –

Slashdot 10 17 25 41 10 18 27 44 15 25 44 69
DBLP 222 410 676 1,120 223 424 689 1,213 391 573 1,304 2,272
Twitter 10,521 13,755 18,714 26,359 12,413 20,095 27,304 37,662 20,241 33,229 58,406 102,155

Table 5.4: Index Size [MB]: Comparison of Seed Strategies, PathSketch (AL+Delta, compressed)

119

Chapter 5 Distance and Shortest Path Approximation

Wikipedia Google BerkStan Slashdot DBLP

101

102

103

104

In
de

x
Si
ze

[M
B]

compressed

uncompressed

AL AL+Delta EL SBT

Figure 5.12: Index Size [MB]: Comparison of Serialization Approaches, Path Sketch (DP, k = 25) – (lower
bars correspond to variant using variable byte-length encoding)

fits on standard hard drive sizes, with a maximum observed index size of 330 GB
for the UK web graph with 3 billion edges for 50 seeds ordered by degree product.

Serialization Approaches

In Figure 5.12 we give an overview of the effect of the serialization techniques on
the overall index size for the setting (DP-25) on the 5 smaller datasets. As described
in Section 5.7.1, we consider adjacency list (AL), sorted adjacency list with delta en-
coding for gaps between subsequent entries (AL+Delta), edge list (EL) and stack-
based traversal (SBT). Further, we consider plain as well as variable byte-length
(VBE) encoding of the integers. We observe that plain edge-list encoding results
in larger index size, whereas stack-based traversal encoding results in the smallest
observed indices. In comparison with original graph size, for the choice of seeds
by strategy DP-25, the index constructed by edge-list encoding requires on average
16 times more space than the graph, whereas for stack-based traversal this factor
reduces to 10. The two adjacency list variants require 14 (AL) to 13 (AL+Delta)
times the size of the input graph. Variable-byte length encoding has a major im-
pact on index size, resulting on average in a compression ratio of 2:1. Note that the
achieved compression does not incur a penalty on indexing time, rather the index-
ing time is slightly improved by the smaller amount of data that has to be written
to disk. Interestingly, stack-based traversal encoding not only leads to the small-
est index sizes on average, but allows fast index construction as well. On average,
SBT encoded indexes can be constructed as fast than adjacency list encoded index
entries, and slightly faster than edge-list encoded path sketch trees.

120

Experimental Evaluation 5.9

Dataset IS-Label PLL PS (CC-25) PS (DP-25) PS (RE-2)

Wikipedia 1,941 – 2,065 2,143 3,033

Google 159 2,958 622 585 651
BerkStan 168 1,989 152 195 488
UK – – 118,420 198,450

Slashdot 18 196 17 18 25
DBLP 123 5,742 410 424 573
Twitter – – 13,755 20,095 33,229

Table 5.5: Index Size [MB], Comparison to state-of-the-art distance computation frameworks

Comparison with Baseline Strategies

In Table 5.5 we show the index sizes for IS-Label, PLL, and the Path Sketch variants
with cardinality k = 25 (for DP,CC) as well as K = 2 indexing rounds (RE). The
index sizes of IS-Label and Path Sketch exhibit the same order of magnitude. In
general, given that IS-Label is an exact distance computation framework, its index
sizes are remarkably compact. The index sizes for the computed PLL indexes are
significantly larger than both the IS-Label and Path Sketch indexes.

5.9.6 Query Processing
We now evaluate the query processing performance in several dimensions: query
processing time, accuracy of the estimated distance (and corresponding path), and
the number of paths generated. For benchmarking, we use a set of 1000 reachable
pairs of vertices, that are executed back-to-back. The metric we use to evaluate the
accuracy of distance estimates is a measure of (micro-averaged) relative estimation
error.

Processing Time

The reported query processing times correspond to the average time per individ-
ual query over the 1000 input queries. As described above, for both PLL as well as
Path Sketch, we use offset-based indexing of the individual index entries. The off-
sets are loaded into main memory prior to query execution. In the experiments,
we use warm filesystem caches for all strategies, that is, we execute the experi-
ments five times back-to-back (including index initialization) and report the best
run. In Table 5.6 we compare the query processing performance of IS-Label, PLL,
the Path Sketch index (for different seed selection strategies and budgets of 0 and
10 additional vertex expansions, respectively, using budgeted expansion by vertex
level), and the baseline strategies BFS (breadth-first search) andBBFS (bidirectional
breadth-first search). Regarding query processing time, the Path Sketch variants
without expansion budget (β = 0) are extremely fast while maintaining a good es-
timation accuracy (which is discussed in detail in the subsequent section). We set
the timeout for processing the 1000 benchmark queries to 10 hours (corresponding
to 36 seconds per query), which led to the abortion of the plain BFS algorithm over

121

C
hapter

5
D
istance

and
Shortest

Path
A
pproxim

ation

Dataset IS-Label PLL

PS (CC-25) PS (DP-25) PS (RE-2)

BFS BBFSβ = 0 β = 10 β = 0 β = 10 β = 0 β = 10

QT ε QT ε QT ε QT ε QT ε QT ε

Wikipedia 25.32 – 0.12 0.07 0.86 0.06 0.12 0.07 0.86 0.05 0.11 0.43 0.83 0.37 – 26.54

Google 0.37 0.03 0.15 0.05 0.59 0.04 0.14 0.04 0.60 0.04 0.13 0.18 0.54 0.18 7,459.57 88.28
BerkStan 2.29 0.02 0.08 0.01 0.52 0.01 0.09 0.01 0.53 0.01 0.15 0.01 0.56 0.01 5,286.53 202.38
UK – – 0.21 0.10 1.62 0.10 0.29 0.18 1.66 0.18 – – – – – 4,026.59

Slashdot 0.28 0.03 0.09 0.07 0.43 0.02 0.10 0.07 0.43 0.02 0.07 0.19 0.41 0.04 460.23 1.70
DBLP 0.84 0.06 0.10 0.12 0.57 0.11 0.10 0.12 0.57 0.11 0.09 0.23 0.55 0.22 6,451.58 10.36
Twitter – – 0.12 0.09 11.80 0.07 0.13 0.05 9.61 0.04 0.13 0.19 9.32 0.14 – 61.08

Table 5.6: Query Processing: Time [ms]/Relative Error, PathSketch (AL+Delta, compressed), budgeted expansion by vertex level (VL)) and Baselines

122

Experimental Evaluation 5.9

3 datasets (Wikipedia, UK, Twitter). The execution time of Path Sketch increases
steeply as the expansion budget is increased, which however leads to better estima-
tion accuracy and a larger number of synthesized paths. IS-Label offers compelling
query execution time for the datasets it was able to index. In concordance with the
previous section, when regarding the seed selection strategy DP-25 (top-25 vertices
by degree product), the best query processing performance of IS-Label (Slashdot
dataset) corresponds to twice the time consumed by Path Sketch (with no addi-
tional vertex expansions), and returns the correct distance, while Path Sketch over-
estimates the correct distance between 1% to 18% relative error. In the worst-case
for IS-Label (Wikipedia dataset), Path Sketch is able to answer the queries on aver-
age 200 times faster, at an approximation error of 7%. As expected, a higher number
of vertex expansion leads in most cases to a significant improvement of estimation
accuracy, however at a considerable impact on the query processing time. For the
datasets that could be indexed by PLL, it exhibits exceptionally good query pro-
cessing times, answering queries several times faster than the best Path Sketch and
IS-Label variants. However, as mentioned before, only 4 out of 7 datasets could
be indexed using this strategy. Bidirectional breadth-first search provides huge im-
provement over a plain BFS expansion, as can be seen from the query processing
times, typically in the range of tens of milliseconds per query. For the case of the
UK webgraph dataset, BBFS query processing amounts to roughly 4 seconds per
query, while the plain Path Sketch procedure answers the queries with just two in-
dex lookups as fast as 0.29 ms per query (at 18% error). Again, as the expansion
budget is increased, the query execution time of Path Sketch becomes slower. The
reason lies both in the time spent on random accesses to the graph but of course
also on the increased work done in online processing, where we have to check the
containment of the neighbors of expanded vertices in the respective other tree. In
addition the generation of a large number of paths has an impact on query pro-
cessing times as well, because of the effort to extract paths from the trees as well as
making sure that there are no duplicates among the generated paths.

Accuracy

In this section we discuss the estimation accuracy of the Path Sketch index, since it
provides approximate shortest paths, whereas IS-Label and PLL compute the exact
distance between the query vertices. In order to assess the relative approximation
error ε(Q), we define

ε(Q) =
∑(s,t)∈Q d̃(s, t)− d(s, t)

∑(s,t)∈Q d(s, t)
, (5.24)

where Q denotes the set of queries. Table 5.6 gives an overview of the relative error
obtained by Path Sketch for different seed strategies and budgets, using expansion
by vertex level. Starting with query processing without additional vertex expan-
sions (budget β = 0), we find that already in this fastest query processing variant,
the obtained approximate paths have a very high quality, ranging from relative er-
ror between 1% (BerkStan webgraph) to at most 18% (UK) for DP-25. In general,
the obtained path accuracy does not differ vastly for the seed selection strategies

123

Chapter 5 Distance and Shortest Path Approximation

Dataset
k = 10 k = 25 k = 50

QT ε P A QT ε P A QT ε P A

Wikipedia 0.06 0.11 10 1.00 0.12 0.07 25 1.00 0.23 0.05 50 1.00

Google 0.07 0.10 9 0.98 0.14 0.04 21 0.98 0.27 0.02 39 0.98
BerkStan 0.05 0.01 7 0.86 0.09 0.01 17 0.86 0.16 0.01 27 0.87
UK 0.18 0.32 16 0.94 0.29 0.18 26 0.94 0.44 0.11 41 0.94

Slashdot 0.05 0.11 10 1.00 0.10 0.07 25 1.00 0.19 0.05 50 1.00
DBLP 0.05 0.16 9 1.00 0.10 0.12 22 1.00 0.19 0.09 43 1.00
Twitter 0.08 0.07 10 1.00 0.13 0.05 25 1.00 0.22 0.03 50 1.00

Table 5.7: Query Processing: Time [ms] (QT), Error (ε), Number of Paths (P), Fraction of Answered Queries
(A), PathSketch (DP-25, AL+Delta, compressed), budget β = 0)

Dataset
k = 10 k = 25 k = 50

QT ε P A QT ε P A QT ε P A

Wikipedia 1.80 0.04 11 1.00 1.97 0.02 26 1.00 2.14 0.01 51 1.00

Google 2.55 0.06 9 0.99 3.05 0.03 21 0.99 3.59 0.01 39 0.99
BerkStan 4.87 0.01 7 0.92 5.29 0.01 17 0.92 5.19 0.01 28 0.92
UK 72.82 0.17 16 0.97 67.88 0.08 26 0.97 65.41 0.05 41 0.97

Slashdot 0.38 0.03 11 1.00 0.43 0.02 26 1.00 0.52 0.02 50 1.00
DBLP 1.28 0.08 9 1.00 1.49 0.05 22 1.00 1.68 0.03 44 1.00
Twitter 18.35 0.03 11 1.00 15.70 0.02 26 1.00 17.60 0.02 50 1.00

Table 5.8: Query Processing: Time [ms] (QT), Error (ε), Number of Paths (P), Fraction of Answered Queries
(A), PathSketch (DP-25, AL+Delta, compressed), budget β = ∞)

by closeness centrality (CC) and degree product (DP), especially as the expansion
budget is increased. Since seed selection by degree product can be obtained much
easier and faster, we advocate the use of the selection by vertex degree product as
the default strategy of Path Sketch. In contrast to these singleton seed strategies,
the number of seed sets for the random exponential (RE) strategy depends loga-
rithmically on the size of the graph measured by the number of vertices. Overall,
the approximation quality of this alternative seed selection strategy turns out to be
inferior when compared to the other methods, while requiring a larger index size.

In Tables 5.7 and 5.8 we compare the extreme settings of budgeted expansion by
vertex level, that is for budget β = 0 (no vertex expansions) and β = ∞ (continued
expansions until no better path can be found). It becomes clear, that the approxi-
mation quality increases for larger number of seeds, as expected. However, larger
index entries also incur an increase in query processing time. Using 25 seed ver-
tices, the index entries alone are sufficient to achieve approximation errors below
10% for all datasets. For an unlimited expansion budget, we achieve a very high
approximation quality with relative error of at most 8% for all datasets for 25 and
at most 5% for 50 seeds (DP).

124

Experimental Evaluation 5.10

Number of Paths

In the last part of our experimental evaluation, we discuss the number of com-
puted paths in more detail. As we have seen in the last section (cf. Tables 5.7,5.8),
for query processing without vertex expansions (budget β = 0), the number of
generated paths typically corresponds to at most (and often exactly to) the number
of used seed vertices. The number of paths discovered increases significantly when
vertices in the Path Sketch trees are expanded, culminating in as many as 120, 575
(RE-2) and 2, 694 (DP-25) paths using a budget of β = 5 expansions by vertex
degree for the Twitter dataset. We further find that for social networks we can typ-
ically generate a much larger number of connecting paths than for other datasets
such as web graphs. As shown in Table 5.9, expansion by degree leads to a much
larger number of generated paths than expansion by distance to the query vertices.
We thus propose the use of expansion by vertex level for the generation of few, high
quality paths, and the use of expansion by vertex degree for the scenario where a
large number of connecting paths is desired. Asmentioned before, in theory it may
happen that for a pair of vertices that is connected in the input graph, no path is
found by the Path sketch index. We report the fraction of such cases in Table 5.9. In
the vast majority of cases a path is found by the Path Sketch index. Using 25 seeds
by degree product, all queries can be answered for the case of Wikipedia, Slashdot,
DBLP and Twitter. For the web graphs, we can answer 92% of the queries for Berk-
Stan, 99% of the queries over the Google graph, and 97% of the queries over the
UK web graph. The fraction of missed paths further decreases if more seeds are
used, as can be seen from Table 5.9 where we report the numbers for the (larger
number of) random exponential seeds. In this setting, using expansion by vertex
degree, all queries can be answered in all datasets except for UK. Finally, it should
be remarked that for the Path Sketch variant employing budgeted expansion by de-
gree, we compute the vertex degrees on the fly prior to query execution. Thus, the
adjacency lists will already be cached before the queries are executed, giving some
advantage to this variant over the level-wise expansion strategy.

Summary and Discussion

In summary, the Path Sketch index structure provides very fast query processing at
high accuracy while satisfying a given vertex expansion budget. Major strengths of
the Path Sketch index structure are its robustness and scalability, which allows to
index graphs comprising billions of edges, which could not be processed using re-
cently proposed exact distance computation methods. Further, Path Sketch can be
adapted to a large number of scenarios,most notably, the computation ofmany con-
necting paths. For smaller and medium sized graphs, both PLL as well as IS-Label
provide compelling precomputation and query processing performance, however
only compute the distances rather than paths. While, in principal, both methods
can be extended to compute actual paths, the additional overheadwill have negative
impact on indexing time, index size, and query processing performance.

125

C
hapter

5
D
istance

and
Shortest

Path
A
pproxim

ation

Dataset

PS (CC-25) PS (DP-25) PS (RE-2)

VL, β = 5 VD, β = 5 VL, β = 5 VD, β = 5 VL, β = 5 VD, β = 5

QT ε P A QT ε P A QT ε P A QT ε P A QT ε P A QT ε P A

Wikipedia 0.49 0.07 25 1.00 1.10 0.03 68 1.00 0.49 0.07 25 1.00 1.10 0.03 72 1.00 0.48 0.42 6 1.00 2.68 0.08 207 1.00

Google 0.36 0.04 20 0.99 0.42 0.03 21 0.99 0.36 0.04 21 0.99 0.41 0.03 22 0.99 0.34 0.18 5 1.00 0.43 0.08 12 1.00
BerkStan 0.30 0.01 18 0.91 0.39 0.01 19 0.92 0.31 0.01 17 0.91 0.43 0.01 22 0.92 0.37 0.01 10 1.00 0.41 0.01 12 1.00
UK 0.47 0.10 24 0.94 1.81 0.09 25 0.97 0.55 0.18 26 0.94 2.14 0.15 29 0.97 – – – – – – – –

Slashdot 0.39 0.03 25 1.00 0.57 0.03 90 1.00 0.39 0.03 25 1.00 0.60 0.04 99 1.00 0.37 0.08 12 1.00 1.25 0.05 328 1.00
DBLP 0.33 0.11 22 1.00 0.39 0.09 34 1.00 0.34 0.11 22 1.00 0.40 0.09 35 1.00 0.33 0.23 8 1.00 0.40 0.11 27 1.00
Twitter 2.98 0.08 25 1.00 14.24 0.03 1,916 1.00 2.96 0.05 25 1.00 12.23 0.02 2,694 1.00 2.97 0.18 9 1.00 715.04 0.04 120,575 1.00

Table 5.9: Query Processing: Time [ms] (QT), Error (ε), Number of Paths (P), Fraction of Answered Queries (A), PathSketch (AL+Delta, compressed), Comparison of budgeted
expansion strategies (VL: vertex level , VD: vertex degree)

126

Summary 5.10

. Summary

The Path Sketch index structure provides a budget-aware framework for approxi-
mately answering shortest path queries, that scales to massive graphs with billions
of edges. The index consists of collections of paths from and to designated seed
vertices that are stored at the individual vertices. At query time, the paths assigned
to the query source and target are combined to generate multiple short paths as
candidate answers. The query processor optionally expands a limited number of
selected vertices in order to improve the obtained short paths by detecting poten-
tial shortcuts.

The distance estimates and corresponding paths can be computed very fast, with
query times of less than a millisecond at small relative error when compared to
the true distance. Our new indexing algorithms incorporate fast traversal methods
that avoid costly random accesses. Regarding query processing, the approximation
quality of our algorithms can be further improved by allowing a small budget of
random accesses to the graph, providing direct control over the tradeoff between
approximation quality and query processing time. The index can be computed effi-
ciently, requiring less than 3 hours to index a large social network with 1.5 billion
edges, and consuming only 20 GB of disk space.

127

6
Relatedness Cores

Q4: How can the relationship be characterized?

«Which European politicians are related to politicians in the United
States and how?»

«How can one summarize the relationship between China and coun-
tries from the Middle East over the last five years?»

131

Chapter 6 Relatedness Cores

. Problem Definition

In the previous two chapters, we have discussed in detail how the important algo-
rithmic primitives of reachability and distance as well as path approximation can be
computed quickly, in order to support relationship analysis over large-scale graphs.
In this chapter, we shift our focus from a purely efficiency-based point of view to-
wards facilitating semantically more meaningful analysis of relationships.
For this purpose, we focus on knowledge graphs, wherein (semantically typed) en-
tities are connected via semantic relationships. Such graphs have become a ma-
jor asset for search, recommendation, and analytics. Prominent examples are the
Google Knowledge Graph1, the Facebook Graph, and the Web of Linked Open
Data2, centered around public knowledge bases like DBpedia (Auer et al., 2007),
Freebase (Bollacker et al., 2008), and YAGO (Hoffart et al., 2013, Suchanek et al.,
2007).

In this chapter, we specifically address the problem of characterizing the relation-
ship between two sets of entities in a knowledge graph:

Problem: Relationship Characterization

Given Knowledge graph K, consisting of vertices corresponding to entities, that
are connected via semantically typed edges, together with two subsets of
entities Q1, Q2.

Goal «Characterize» the relationship between Q1 and Q2.

As an example, the goal of a relationship characterization algorithmover a know-
ledge graph containing facts about real-world entities – such as people, countries,
organizations, etc. – is to answer questions of the form «Which European politicians
are related to politicians in the United States, and how?» or «How can one summarize
the relationship between China and countries from the Middle East over the last few
years?»

In the remainder of this chapter, we describe an algorithm – coined Espresso – to
compute semantically meaningful substructures (so-called relatedness cores) from
the knowledge graph as answers to above questions. In our setting, a question is
specified bymeans of two sets of query entities. These sets of entities (e. g. European
politicians or United States politicians) can be determined by an initial query, e. g.,
expressed in the SPARQL language for RDF data, the Cypher query language for
property graphs (see Chapter 3, Sections 3.1.2 and 3.1.3), or simply enumerated. As
a first step, we analyze the (indirect) relationships that connect entities from both
sets (e. g., membership in organizations, statements made on TV, etc.), generate an
informative and concise result, and finally provide a user-friendly explanation of

1http://www.google.com/insidesearch/features/search/knowledge.html
2http://lod-cloud.net

132

http://www.google.com/insidesearch/features/search/knowledge.html
http://lod-cloud.net

Problem Definition 6.1

time

John Kerry

Joe Biden
Barack Obama

Hillary Clinton

Chuck Hagel

François
Hollande

Angela Merkel
David Cameron

Enrico Letta

Mariano Rajoy

2013 mass surveillance disclosures

Edward Snowden

National Security Agency

PRISM

Syrian Civil War

Bashar al-Assad

Syria

2013 Ghouta attacks

Figure 6.1: Relatedness Cores for Politicians from US and Europe

the answer. As output we aim to return concise subgraphs that connect entities
from the two sets and explain their relationships.

As an example, consider the graph depicted in Figure 6.1, which demonstrates
the desired output of a relationship characterization system. Here, we are inter-
ested in characterizing the political relationship between European countries and
the United States. For this purpose, compact and coherent subgraphs from the
proximity of important politicians from the specified countries are displayed. Each
such subgraph corresponds to a key event that is highly relevant to at least one entity
from each of the two input sets. These subgraphs form the core of the relationship
explanation; we thus call them relatedness cores. The full answer to the user query
can be derived by connecting relatedness cores with the entities in the two input
sets.

6.1.1 Problem Characteristics
Previous work on relationship explanation over graphs hasmainly focused on com-
puting the “best” subgraph providing a connection among the entities in a single
query set. Typically, in this setting, algorithms operate in two stages. In the first
stage, vertices and/or edges are assigned a score signifying their informativeness or
relatedness to the query entities. In the second stage, a solution (subgraph connect-
ing the query vertices) is constructed based on the previously assigned scores. We
briefly review the proposed approaches:

• Faloutsos et al. (2004) address the problem of computing a connection sub-
graph between two vertices in a large social network. A connection subgraph
is defined as a small (i. e. satisfying a budget on the size) subgraph containing
the query vertices thatmaximizes a goodnessmeasure. Thismeasure is based
on a notion of “flow” from source vertex to target vertex.

• Tong and Faloutsos (2006) generalize the notion of connection subgraphs to
the case of k ≥ 2 query vertices. The goal is to extract centerpiece subgraphs

133

Chapter 6 Relatedness Cores

(CePS), size constrained-graphs that connect all or k′ ≤ k of the query ver-
tices and maximize a goodness score. This approach is based on the identifi-
cation of centerpiece vertices, based on aggregated scores from random walks
with restart (RWR) from each query vertex, followed by a dynamic program-
ming approach to extract the best paths.

• InMing, Kasneci et al. (2009a) study the extraction of informative subgraphs
connecting k user-specified query entities, focusing on entity-relationship
graphs. Their approach relies on deriving a notion of informativeness, based
on the assignments of edge weights computed from co-occurrence statistics
of entity pairs in a Web corpus, followed by the computation of a connect-
ing Steiner tree. The approach is complemented by RWR processes over the
edge-weighted graph to establish informative connections.

• Fang et al. (2011) specifically address the problem of explaining the relation-
ship between a pair of entities. The proposed Rex algorithm is applied in the
context of Web search, where entities that are related to a keyword query en-
tity are displayed. Relationship explanations are used to provide information
why each of the displayed related entities was deemed important. A rela-
tionship explanation corresponds to an instance of a graph pattern that was
identified as most interesting and connects the entity pair. The interesting-
ness of a pattern is determined based on aggregatemeasures (such as number
of instances of a pattern) as well as distributional measures (e. g. rarity of a
pattern for the entity pair).

In this chapter we deviate from previous approaches for relationship explana-
tion, since we are interested in the relationship between two sets of query entities,
Q1, Q2, rather than among a set of entities. Similar to the prior work discussed
above, we view the problem of explaining the relationship between entities as an
issue of computing an informative subgraph. Our output is not focused on a sin-
gle coherent subgraph, but aims to find multiple sub-structures in the knowledge
graph that are highly informative.

To this end, we adapt and extend the above-mentionedCePS framework for com-
puting good subgraphs connecting entities contained in a single query set to the
case of two query sets in knowledge graphs. As a building block along these lines,
we define a notion of relationship centers, intermediate vertices that play an impor-
tant role in the relationship between entities from either set. Relationship centers
play a role similar to centerpiece vertices in CePS, with the difference that relation-
ship centers are informative vertices (by entity type restriction) for the relationship
between two sets rather than among a single set. To answer a query, we identify
a set of relationship centers, connect them to (subsets) of the query entities, and
subsequently expand the center vertices into relatedness cores: concise subgraphs
that represent key events connected to both input sets of entities. This outlined
method can be seen as the approximation of a combinatorial optimization problem
specified over the underlying graph and input entity sets (to be explained in Sec-
tion 6.3), extended to incorporate considerations regarding the semantics of the
generated solution, which cannot be easily compressed merely in terms of graph-
theoretic properties.

134

The Espresso Knowledge Graph 6.2

6.1.2 Contribution
The salient contributions we make in this chapter are as follows.

1. We introduce a model for the novel problem of explaining relationships be-
tween two intensionally specified sets of entities, in contrast to the previously
studied problem of explanations for a pair of single entities or among a single
set of query entities,

2. adapt and extend the CePS framework into a heuristic algorithm for comput-
ing explanations of the relationship between two sets (based on the notions
of relationship centers and relatedness cores) in a scalable manner,

3. discuss additional scenarios such as the integration of user-specified con-
straints on the computed solutions and the integration of temporal informa-
tion,

4. and present an experimental evaluation based on user assessments on the
usefulness of the generated explanations, as well as experiments highlighting
the efficiency of the heuristic algorithm.

We compute the solutions over an enriched entity-relationship graph derived
from existing knowledge bases and integrating additional data sources.

The remainder of the chapter is organized as follows. In Section 6.2we discuss the
knowledge graphwe use to compute relationship explanations. Section 6.3 presents
our computational model.

In Sections 6.4, 6.5, and 6.6 we present our heuristic algorithm for scalable com-
putation of relationship explanations, introducing the two major building blocks
of our solution, relationship centers and relatedness cores. Section 6.7 extends our
setting to considering temporal aspects in the relatedness of entities. Section 6.8
discusses related work. Section 6.9 presents experimental results, followed by a
summary of the chapter.

. The Espresso Knowledge Graph

The knowledge graph we use as input to our relationship characterization algo-
rithm – in this chapter referred to as Espresso Knowledge Graph – is derived from
the YAGO2 (Hoffart et al., 2010) and Freebase (Bollacker et al., 2008) knowledge
bases. More specifically, the set of entities we model as vertices are exactly the en-
tities present in the intersection of YAGO2 and Freebase. This way, we can discard
many concepts present in YAGO2 that do not correspond to actual entities, for ex-
ample overview pages from Wikipedia such as discographies, summaries (2013 in
film), etc. Two entities (e1, e2) in the Espresso Knowledge Graph are connected
via an undirected edge, if the corresponding Wikipedia article pages describing the
respective entities contain an intra-wiki link in either direction. Every edge is as-
signed the relationship label relatedTo as well as additional labels, corresponding to
the relation names for each fact contained in YAGO2 between the respective enti-
ties.

135

Chapter 6 Relatedness Cores

The Espresso Knowledge Graph contains a total of 3,674,915 vertices (corre-
sponding to entities), connected via 57,703,180 relationships labeled with one of
30 possible relationship names.

We enrich this knowledge graph by integrating several additional data sources,
including

• edge weights signifying the relatedness between entities, derived from struc-
tural properties (inlink overlap, Milne and Witten (2008)) , textual descrip-
tions of the entities based on the Wikipedia article text (Hoffart et al., 2012),
and co-occurrence in the ClueWeb12 corpus (Gabrilovich et al., 2013),

• semantic types associated with the entities, derived from YAGO2 (Wikipedia
categories, WordNet classes) and Freebase (types). Every entity is assigned
one or more of the 508,356 YAGO types and one or more of the 7,513 Free-
base types. On average, an entity is associated with 15.8 YAGO types and
3.3 Freebase types, translating to a total of 58,023,593 entity-YAGO type and
12,278,102 entity-Freebase type relationships.

• the popularity of individual entities over time, extracted from the page view
statistics of the respective Wikipedia pages 3, a total of 2,827,668,135 triples
of the form (entity,day,views) reflecting the page view counts of each entity
in daily granularity in the time frame 01/01/2012 to 07/31/2014.

TheEspresso algorithmdescribed later in this chapter relies on identifying query-
relevant entities of informative types, e. g. – as used in the experimental evaluation
of this chapter – entities of type event. In principle, events can be identified by
considering all entities typed Event (WordNet class) in YAGO or /time/event in
Freebase. However, in order to increase both precision as well as recall, we employ
a machine learning approach to identify entities of the event type. For this pur-
pose, we have trained a linear SVM classifier by manually identifying 1,786 entities
corresponding to real-world events from a pool of 28,000 training examples. The
features used to classify an entity are the entity name and short snippets describing
the entities (extracted from Freebase). We use the model to classify each of the 3.6
million entities as either event or not event, resulting in a total of 89,321 entities
marked as event.

This rich, integrated data collection is made publicly available for further studies
on relationship analysis4.

3http://dumps.wikimedia.org/other/pagecounts-ez/
4http://espresso.mpi-inf.mpg.de/

136

http://dumps.wikimedia.org/other/pagecounts-ez/
http://espresso.mpi-inf.mpg.de/

Computational Model 6.3

. ComputationalModel

This chapter is based on the notion of a knowledge graph, introduced in Chapter 2,
that we now define formally:
Definition 6.1 (Knowledge Graph). A knowledge graph, denoted by

K = (V, E, `V , `E, T, R),

is a labeled graph with a set V of entities as vertices, a set E of relationships as edges,
and two labeling functions `V : V → 2T and `E : E→ 2R that assign to each vertex
a set of type names (from a set T of possible types) and to each edge a set of relation
names (from a set R of possible relations) as labels. Each edge e and each vertex v can
optionally have weights ω(e) and ω(v).

Example. As an example, the vertex Hillary Clinton in Figure 6.1 may have type la-
bels female politician,USDemocratic Partymember,US Secretary of State, First Lady
of the United States, and more, and the edge between Hillary Clinton and Barack
Obama could have relation labels competed with (in US presidential primaries) and
served under (in the US government).

Starting with two sets Q1 and Q2 of entities, such as United States politicians and
European politicians, the explanation of their relationships aims to identify one or
more key events that connect the two sets. Key events are themselves groups of
strongly interrelated entities. We call the corresponding subgraphs Si relatedness
cores, or cores for short. As a general framework, we place the following desiderata
to exemplify what constitutes a “good” core:

• Informativeness
1. Critical: The core Si is important, i. e. it describes an important event

or topic.
2. Comprehensive: The core Si is self-explanatory, i. e. gives insight into

the topic without requiring further explanation.
3. Compact: The core Si does not overload the user with information by

satisfying an upper bound on the size, i. e. the number of contained
vertices.

4. Coherent: The core Si describes a single event or topic rather than a
mixture of topics. For this purpose, the entities contained in the core
should be strongly interrelated, corresponding to a subgraph with high
pair-wise edge weights or high degrees within Si.

• Relevance
1. The core is relevant to some or all query entities, i. e. Si should be highly

related to both entity sets Q1 and Q2, for example in terms of edges or
paths between Si and each of the two query sets, total or average edge
weight of paths connecting them, or another way that captures related-
ness between vertices v ∈ Si and query vertices q ∈ Q1 ∪Q2.

137

Chapter 6 Relatedness Cores

2. Temporal relevance: The topic was important/the event happened dur-
ing a user-specified time interval.

Further desiderata can be introduced, for example controversiality of the topic,
following the intuition that points of disagreement (conflicts) give more insight
into the dynamics of a relationship than general events, as well as the diversity of
computed cores.

One way of formalizing these desiderata into a computational model is to aim for
identifying one or more subgraphs as relatedness cores with high edge weights (i)
within each subgraph and (ii) regarding the connections to each of the two input
sets. When considering paths between some core Si and a query set Q1 or Q2, we
need to combine edge weights by an aggregation function like average, maximum,
or minimum applied to the shortest path (or K shortest paths) between vertices in
Si and all or some of the vertices in Q1 or Q2. We denote the path score between
vertices x and y as ω(x ?←→ y). Formally, we cast these ideas into the following
edge-weighted relatedness cores problem.

Definition 6.2 (Edge-Weighted Cores Problem).
Given an edge-weighted knowledge graph K = (V, E, `V , `E, T, R), two query sets
Q1 ⊂ V and Q2 ⊂ V and a budget B, compute up to k connected subgraphs
S1 = (V1, E1), . . . , Sk = (Vk, Ek) such that

k

∑
i=1

∑
e∈Ei

ω(e) + ∑
x

?←→y,
x∈Q1,y∈Vi

ω(x ?←→ y) + ∑
x

?←→y,
x∈Q2,y∈Vi

ω(x ?←→ y)

 = max!

with |Vi| ≤ B and each Vi ∩Q1 6= ∅ 6= Vi ∩Q2.

Intuitively, in this setting we aim to find up to k coherent cores that explain the
relationship between Q1 and Q2, while observing a size budget for each core. The
density of each Si is measured by the total weight of edges in Si, and the relatedness
to Q1 and Q2 is measured by the total score of paths that connect vertices in Si with
vertices in Q1 and Q2, respectively. This problem formulation is well-suited for the
scenario where we seek an explanation involving all entities from both query sets.
Regarding complexity, the NP-hardness of the edge-weighted cores problem can
be derived as follows. Consider the special case of the problem where we set the
number of cores, k, to 1 and choose singleton query sets Q1 = {v1} and Q2 =
{v2}. Suppose an efficient algorithm exists for computing the densest subgraph
of fixed cardinality B that contains two designated vertices v1, v2. Then, we could
derive an efficient algorithm for the more general problem of computing a dense
subgraph with fixed cardinality B, by running above algorithm for each possible
pair of vertices in V ×V and keeping the densest solution. However, the problem
of computing the densest subgraph with fixed cardinality has been shown to be
NP-hard (Feige et al., 2001).

138

Computational Model 6.3

Above problem formulation considers paths (or, more precisely, distances) be-
tween the query and core vertices to assess the relevance. In many cases, it makes
more sense to assess relevance by more involved measures (such as proximity de-
rived from random walks). We now consider the case where the individual core
vertices are assigned a score signifying their relevance. This leads to the following,
combined problem with a tunable coefficient β to balance between relevance and
coherence.

Definition 6.3 (Edge- and Vertex-weighted Cores Problem).
Given an edge-weighted knowledge graph K = (V, E, `V , `E, T, R), two query sets
Q1 ⊂ V and Q2 ⊂ V and a budget B, compute up to k connected subgraphs
S1 = (V1, E1), . . . , Sk = (Vk, Ek) such that

k

∑
i=1

(
β ∑

e∈Ei

ω(e) + (1− β) ∑
v∈Vi

ω(v)

)
= max!

with |Vi| ≤ B and each Vi ∩Q1 6= ∅ 6= Vi ∩Q2.

By encoding the relevance of core vertices to the query entities in the form of
vertex weights, we can support different scenarios, including the case where only
subsets of the query sets have to be related to a core.

The special case with β = 0 (i. e., vertex weights only) is also known to be
NP-hard, following from the intuition given for the hardness of the edge-weighted
core problemand the fact that the general problemof computing the heaviest vertex-
weighted tree spanning k vertices has been shown to be NP-hard (Fischetti et al.,
1994).

As vertices and edges have type and relation labels, respectively, we can further
extend this family of problems by imposing constraints on the vertices and edges
that are eligible for the desired cores. Two important kinds of constraints are the
following:
Definition6.4 (Type covering constraint). In the edge-weighted, or edge- and vertex-
weighted problem, enforce the constraint that the vertices Vi of each core Si = (Vi, Ei)
contain all types of a specified subset of types T′ ⊆ T, that is:⋃

v∈Vi

`V(v) ⊇ T′.

Definition 6.5 (Relation filtering constraint). In the edge-weighted, or edge- and
vertex-weighted problem, enforce the constraint that the edges Ei of each core Si =
(Vi, Ei) have relation labels that are included in a specified subset of relations R′ ⊆ R,
that is: ⋃

e∈Ei

`E(e) ⊆ R′.

More constraints along similar lines can be added to the framework. In par-
ticular, when the knowledge graph associates entities and/or relational edges with

139

Chapter 6 Relatedness Cores

textual descriptions (e. g., by connecting entities with Wikipedia articles or other
high-quality texts), we can also apply text filter predicates by requiring that each
core contains certain keywords. One variant of this extension could require that
all vertices of each core are associated with at least one keyword from a specified
set of words. Another variant could require that each core contains at least one
vertex that matches at least one of the given keywords. Again, more variations are
conceivable, and could easily be added.

. Relationship Centers

The idea of the Espresso algorithm is to identify relatedness cores using a two-
stage algorithm. In the first stage, we identify a set of relationship centers, interme-
diate vertices that play an important role in the relationship – similar to centerpiece
vertices in CePS (Tong and Faloutsos, 2006). These centers are subsequently con-
nected to the query vertices. In the second stage, the neighborhoods of the best
relationship centers are expanded, in order to obtain the relatedness cores, concise
subgraphs that represent key events connected to both input sets of entities. In this
section, we discuss how the relationship centers – i. e. vertices that exhibit a high
potential for explaining the relationship between the two input sets of entities – can
be computed.

Intuitively, the goal is to identify vertices in the knowledge graph that have strong
relations with vertices in both input sets. We adopt the idea of identifying central
vertices by performing random walks over the graph (Tong and Faloutsos, 2006).
For this purpose, we operate on an entity-relationship graph that we derive from
the given knowledge graph and additional statistics. The importance of a vertex
for explaining the relationship between the query sets is quantified by assigning
each vertex in the graph a numeric score based on the random walk processes. For
the example of explaining the connections between European and US politicians,
the PRISM surveillance program, G8 summits, etc. represent entities for which we
would desire a high vertex score. In the following, we first define the relatedness
graph, and then present our method for random-walk based scoring of vertices.

Entity-Entity Relatedness Graph Our extraction algorithm operates over the edge-
weighted Espresso Knowledge Graph described in Section 6.2.
For edge weights, we consider the following similarity measures, based on struc-
tural properties (inlink overlap) aswell as textual descriptions of the entities (partial
keyphrase overlap):

Inlink Overlap Milne andWitten (2008) propose a relatednessmeasure based solely
on structural properties of the entity-relationship graph. In this setting, given
entities u, v, the MW-similarity is given by

simMW(u, v) = 1−
log
(
max{|Iu|, |Iv|}

)
− log(|Iu ∩ Iv|

)
log(n)− log

(
min{|Iu|, |Iv|}

) , (6.1)

where Iu and Iv denote the set of entities linking to u and v, respectively and
n corresponds to the total number of entities in the knowledge base.

140

Relationship Centers 6.4

Keyphrase Overlap For entities that are prominently covered in Wikipedia with
many incoming links, above measure works very well. However, it is less
suitable for long-tail entities with few links, and it does not easily extend to
entities outside Wikipedia (e. g., entities in social media or specialized do-
mains such as the medical domain). This shortcoming is addressed in the
work of Hoffart et al. (2012), that proposes the idea of computing the seman-
tic relatedness of two entities by considering the (partial) overlap of associ-
ated keyphrases. Here, every entity u is associated with a set of keyphrases,
Pu = {p1, p2, . . .}, each consisting of one or more terms. Every term is as-
sociated with a weight (inverse document frequency) and every keyphrase is
weighted with respect to the respective entity, by normalized mutual infor-
mation. The KORE similarity for entities u, v is then defined as

simKORE =
∑p∈Pu ,q∈Pv PO(u, v)2 ·min

(
ϕu(p), ϕ f (q)

)
∑p∈Pu ϕu(p) + ∑q∈Pv ϕv(q)

(6.2)

where PO(p, q) denotes theweighted Jaccard similarity of a pair of keyphrases:

PO(p, q) =
∑w∈p∩q min

(
γ(w), γ(w)

)
∑w∈p∪q max(γ(w), γ(w))

. (6.3)

The values γ(w) and ϕu(p) denote the term weight of w and the weight of
the keyphrase p with respect to entity u, respectively. The salient keyphrases
can be automatically mined from Wikipedia and/or other sources that pro-
vide textual descriptions of entities, such as online communities with user
comments on new songs.

The above two measures are just two of many possibilities for entity relatedness. In
a recent work, Ceccarelli et al. (2013) cast the problem of determining entity relat-
edness as a learning-to-rank problem and give an overview over effective features
for determining the degree of relatedness between entities.

Given the relatedness measure, we obtain the weighted adjacency matrix of the
graph, given by

M ∈ Rn×n, M[i, j] =

{
sim(vi, vj) if (vi, vj) ∈ E,
0 otherwise.

(6.4)

Following the intuition given by Tong and Faloutsos (2006), we construct the
transition matrix for the random walks by introducing

M̂ = D−1/2MD−1/2, i. e. M̂[i, j] =
M[i, j]√

∑n
k=1 M[i, k]

√
∑n

k=1 M[j, k]
, (6.5)

where D is the diagonal matrix with entries D[i, i] = ∑n
k=1 M[i, k]. Note that with

this use of the normalized graph Laplacian for constructing M̂, the column vectors
are no longer stochastic (Tong et al., 2006), so we need to add a normalization step
after executing a random walk.

141

Chapter 6 Relatedness Cores

In the next subsections we discuss how the transition matrix is used to conduct
randomwalks with restart (RWR) in order to identify vertices relevant to the query.
We first describe how CePS employs RWRs to identify centerpiece vertices that are
related to query vertices belonging to a single set Q.

The CePS approach The CePS algorithm executes one random walk with restart
(RWR) from each query vertex q ∈ Q. As a result, each vertex v ∈ V in the graph
is assigned |Q| scores, rq(v), q ∈ Q. The random walk computation from q ∈ Q
works as follows:

• We set the starting probability vector s ∈ Rn to s[q] = 1 and s[v] = 0, v ∈
V \ {q}.

• At vertex v, with probability αM̂[v, w], we walk to a neighboring vertex w,
M̂[x, y] denotes the transition probability from vertex v to vertex w. With
probability 1− α, we jump back to start vertex q.

• To obtain the steady-state probabilities, we iterate the equation

xi+1 = (1− α)s + αM̂xi, x0 = s. (6.6)

until convergence or for a predetermined number of iterations.

The score rq(v) then corresponds to the steady-state probability x[v]. The in-
dividual scores are aggregated into an overall score of the vertex v, depending on
the desired scenario. Tong and Faloutsos (2006) distinguish between the scenarios
AND (all query vertices should be highly related v), OR (at least one query vertex
should be highly related to v) and Soft-AND (at least k of the |Q| query vertices
should be highly related to v). Since the score rq(v) is interpreted as the probability
for a random walk particle starting at q to be located at v, in the AND-scenario the
scores (probabilities) are simply multiplied to aggregate a total score:5

scoreCePS-AND(v) = ∏
q∈Q

rq(v). (6.7)

Conversely, for the OR-scenario, the aggregated score corresponds to the probabil-
ity that one or more random walk particles from the individual random walks are
located at v:

scoreCePS-OR(v) = 1− ∏
q∈Q

(
1− rq(v)

)
. (6.8)

With this approach, CePS can identify vertices with high proximity to all or at
least one (at least k) of the query vertices. Again, to compute the corresponding
scores, it requires to perform |Q| random walks with restart over the input graph.

We now discuss how this framework can be extended in order to identify vertices
relevant to two sets of query vertices.
5If we use the transition matrix as defined in Equation 6.5, the resulting scores rq(v) are strictly speak-

ing not probabilities anymore, see also Tong et al. (2006). For this reason, we normalize the scores to
sum to 1 by dividing each individual score rq(v) by ∑v∈V rq(v) prior to the score aggregation step.
This is also the default configuration used in the original implementation of CePS.

142

Relationship Centers 6.4

Relationship Centrality We present an extension of the CePS method to find ver-
tices highly related to the two sets Q1, Q2 ⊆ V. Suppose all query entities from
either set should be related to the center. Then, an appropriate score of a vertex
with respect to the query sets is given by

scoreCePS2-AND(v) =

(
∏

q∈Q1

rq(v)

)(
∏

q∈Q2

rq(v)

)
(6.9)

= ∏
q∈Q

rq(v) = scoreCePS-AND(v),

i. e., in this case we can directly apply the previous score aggregation for the case of
a single query set. This scenario requires however, that all query entities should be
related to the central vertices. In many practical settings, including our envisioned
applications, it is a far more common assumption that only certain subsets of the
query entities are related. To this end, we propose the following generalization of
the CePS scoring mechanism to deal with two sets of query entities. Continuing
the description above, in this scenario we quantify the relatedness of a vertex to
the query sets Q1, Q2 as the probability that at least one random walk particle from
either set is located at vertex v. This is expressed in the formula

scoreCePS2-OR(v) =

(
1− ∏

q∈Q1

(
1− rq(v))

)(
1− ∏

q∈Q2

(
1− rq(v))

)
. (6.10)

We can expect this approach to capture vertices that are in close proximity to
subsets of the two query sets. However, while Equation 6.10 is an appropriate gen-
eralization of the original CePS approach to sets, we are still facing the problem of
having to conduct |Q| random walks. To this end, Tong and Faloutsos (2006) and
Tong et al. (2006) propose substantial improvements over straightforward imple-
mentations of RWRs (like partitioning and low-rank matrix approximation), how-
ever, very large graphs in combination with many query vertices can remain chal-
lenging, especially in our envisioned scenario of an interactive, user-facing system.
To overcome this problem, we propose a faster approach to identify candidates for
relationship centers, i. e. vertices in close proximity to subsets from both query sets.
This approach requires only two random walks with restart, one from each of the
query sets. The score derived from the set-based RWR from each of the query sets
directly captures the proximity of a vertex v ∈ V to the set. More precisely, we
modify above procedure for computing the scores as follows, where, without loss
of generalization, we compute relatedness scores with respect to query set Q1:

• For each q ∈ Q1, we set the starting probability to s[q] = 1/|Q1| and to
s[v] = 0 for v ∈ V \Q1.

• As before, with probability αM̂[v, w], we walk from v to w. With probability
1− α, we jump back to a vertex in Q1, chosen uniformly at random.

• To obtain the steady-state probabilities, we likewise iterate Equation 6.6 until
convergence or for a predetermined number of iterations.

143

Chapter 6 Relatedness Cores

This procedure is performed for both Q1 and Q2, resulting in scores xQ1 [v] and
xQ2 [v] for each vertex v. The relationship center score (RC) of v ∈ V is the product
of the two scores multiplied by a prior pr(v), derived from the overall importance
or prominence of v (e. g., its PageRank score in M̂, popularity determined from
external sources, etc):

RC(v) = xQ1 [v] · xQ2 [v] · pr(v). (6.11)

With this approach for vertex scoring, we can restrict the computational effort to
two RWR processes in order to compute the scores. This makes the computation
time independent of the input query sizes. In the experimental evaluation of this
chapter, we show that for the considered queries the quality of results is comparable
to the CePS2-OR (Eq. 6.10) approach, while leading to a substantial speed-up of
score computation.

As a final remark, recall that among the best vertices according to above score,
we aim to select vertices that help explain the relationship. The type(s) associated
with the individual vertices can be very helpful to distinguish informative, high-
scoring vertices from other, more generic high-scoring vertices. For knowledge
graphs containing facts about real-world entities (such as the Espresso Knowledge
Graph) we found that limiting relationship center candidates to entities that are (i)
relatively prominent and (ii) of type event is an effective strategy that works well
over a diverse range of queries. However, entity types of informative relationship
centers could also be derived in amore principled way, i. e. bymeasures likemutual
information between query entity types and possible candidate types.

. Connection to Query Entities

As a next step, we consolidate relatedness cores by connecting the selected rela-
tionship centers with the query entities, and expand the centers into tightly knit
sub-graphs. The entities in such a core should be highly related with both Q1 and
Q2 and also within the core itself. In this section, we discuss the first step, i. e. es-
tablishing the connections between the query sets and the center. We remark that
in contrast to the original work of CePS, which was motivated by a social network
application, in our envisioned querying scenario we expect the case of central en-
tities directly connected to the query sets as far more common. We could even go
so far as to say that entity sets that are not immediately connected via one interme-
diate hop can be deemed as too unrelated, which in many settings constitutes an
appropriate answer (retrieval setting). Nevertheless, for the sake of completeness,
we discuss how central vertices can be connected to the query sets if there is no
direct connection.

In general, establishing indirect connections is a challenging problem for the fol-
lowing reasons: (i) we need to determine what makes for a “good” connection be-
tween the center and the query entities, and (ii), given the budget on the number
of vertices we include in our solution, we might have to decide for only a subset
of the query entities that will be connected to the center. Regarding this problem,
the original CePS algorithm proceeds by connecting the identified central vertices

144

Connection to Query Entities 6.5

with 1 to |Q| (depending on the scenario) of the query entities, employing a dy-
namic programming algorithm to identify good paths. The score of a path is eval-
uated as the sum of vertex weights divided by the number of vertices that have to
be added to the partially constructed solution. CePS connects query entities in
descending order of relatedness to the central vertex, and continues until either a
sufficient number of query vertices according to the scenario (1 for OR, k for SOFT-
AND, all for AND) have been connected to the center, or the available budget has
been spent. For the set-based relatedness measure from Equation 6.10, the original
CePS subgraph extraction algorithm would connect one vertex from either query
set to the next center until the budget is exhausted.

In this section, we describe alternative ways to connect the best central vertices
to the query sets, for the following reasons. First, the extraction used by CePS
requires knowledge of the scores assigned by individual random walks from the
query vertices, whichwe do not have in Espressowherewe just perform twoRWRs
from the query sets. Second, rather than connecting the central vertex to 1 or k
query entities (1 might be too less, while a fixed number k is unrealistic for the user
to specify), it might be desirable to fix a certain budget we can spend to connect as
many query vertices as possible.

One possibility along these lines is to compute a shortest path tree from the center
and connect it to the closest query entities until the budget has been spent. This is
the default strategy used by Espresso.

An alternative algorithm we propose is based on (i) computing the relatedness
between the relationship center c and the other vertices in the graph, and (ii) com-
puting a cheap (i. e. satisfying the budget) subgraph connecting the relationship
center with as many highly related query entities as possible. For the former, we
rely on the computation of an additional random walk with restart, this time from
the relationship center, c. This results in a score assigned to each vertex v – denoted
by xc[v]. If the relationship center in a real-world knowledge graph is an actual
event, the score xc[q] of a query entity q can be interpreted as the degree of involve-
ment of the entity in the event. Regarding step (ii), we solve certain instances of the
prize-collecting Steiner tree (PCST) problem (Segev, 1987), where we regard the
relatedness score xc[q] of a query entity q as a “penalty” we have to pay whenever
entity q is not included in the computed solution:
Problem: Prize-Collecting Steiner Tree (PCST)

Given Undirected graph G = (V, E, c, π) with a non-negative cost function de-
fined on the edges, c : E → R≥0, and a non-negative penalty function
defined on the vertices: π : V → R≥0.

Goal Identify a subtree T = (VT , ET) of G, minimizing the sum of costs of the
included edges and the penalties of the vertices not included:

T := arg min
T∈T (G)

c(ET) + π(V \VT). (6.12)

where T (G) denote the set of subtrees of G.

Here, we are interested in the rooted variant, where a designated vertex – in our

145

Chapter 6 Relatedness Cores

case the relationship center – has to be spanned by the resulting tree. As penalties,
w. l. o. g. we assign – as stated above – to each query entity q ∈ Q1 the value xc[q],
and zero penalty to the other (non-query-)vertices in the graph. The PCST algo-
rithm trades off the cost of the edges included in the output tree against the sum of
penalties for vertices that are not included in the tree. Thus, the number of query
entities that are connected to the relationship center (and thus the size of the result-
ing tree) is governed by the relationship between edge weights and vertex penalties.
In order to include as many query entities as possible while satisfying the size con-
straint, we introduce a scale factor λ ∈ [0, 1] in order to directly control the tradeoff
between solution size and number of included query entities. As a result, given one
set of query entities – w. l. o. g. the set Q1 – we try to identify (approximate) a tree
containing the relationship center and satisfying

T = (VT , ET) := arg min
T∈T (G),c∈VT

(1− λ)c(ET) + λ

 ∑
v∈Q1\VT

xc[v]

 , (6.13)

The last remaining issue then is to identify an appropriate value λ ∈ [0, 1] such
that the budget on the solution size is satisfied. We use a binary search over the
parameter range, as shown in the complete Algorithm 10. The value d used in the
termination criterion of the binary search in line 7 can be regarded as a discretiza-
tion of the interval for λ, trading off speed for solution quality.

Algorithm 10: ConnectQueryEntities-PCST(G, vc, Q, b, xc)

Data: Graph G = (V, E), relationship center vc ∈ V, query entity set Q ⊆ V,
budget b, relatedness scores xc w. r. t. center vc

1 begin
. Are some query entities connected directly to the relationship center?

2 Q′ ← {q ∈ Q | (vc, q) ∈ E}
3 if Q′ 6= ∅ then
4 return

(
{vc} ∪Q′, {(vc, q) | q ∈ Q′})

5 (λ1, λ2)← (0, 1)
6 (VT , ET)← (∅, ∅)
7 while λ2 − λ1 > 1/d do
8 λ← λ1 +

λ2−λ1
2

9 (VT , ET)← RootedPCST(G, vc, xc, λ) . compute solution for PCST rooted at vc

10

11 if |VT | > b then
12 (λ1, λ2)← (λ1, λ)

13 else
14 (λ1, λ2)← (λ, λ2)

15 return (VT , ET)

146

Relatedness Cores 6.6

Theprocedure RootedPCST solves the rooted variant of the Prize-Collecting Stei-
ner Tree problem, e. g. using the algorithm by Goemans and Williamson (1992),
over the input graph G with scaled edge costs, as shown in Equation 6.13. As
discussed previously, the original algorithm incurs running time quadratic in the
number of vertices with non-zero penalties, i. e. the number of entities in a query
set. Faster variants of the algorithm have been proposed by Cole et al. (2001) and,
very recently, by Hegde et al. (2014). Both variants solve the unrooted version of
the problem and thus require to add a very high penalty to the desired root ver-
tex, the relationship center c. A nice property of above formulation is its ability to
deal with skewness in the involvement scores. Whereas in CePS, query entities are
connected to the center in descending order of their score, this might lead to sub-
optimal solutions if the query entity scores are rather uniform. The PCST solution
takes the skewness of involvement scores into account in a natural way.

. Relatedness Cores

In the previous sections we have discussed the identification of relationship centers
and the ensuing connection to the query entities. Now, we discuss how the relation-
ship centers can be expanded further to provide better relationship explanations.

To this end, we use the following three-phase heuristic algorithm to construct a
coherent, yet compact subgraph around a relationship center c.

(i) Phase 1: Key Entity Discovery. We compile a set of entities from the neigh-
borhood of c, based on the relationship strength with c, e. g. as measured by
the underlying entity-entity relatedness measure (see Section 6.4). For exam-
ple, when starting with the event 2013 mass surveillance disclosures as center
entity c, we would like to add entities like Edward Snowden, Glenn Greenwald,
etc.

(ii) Phase 2: Center Context Generation. The set of entities compiled in Phase
1 is further extended with entities that fill in the context necessary for expla-
nation. Entities that should added in this step typically have a broader scope
and less specific relatedness, in the sense that they are also involved in many
other events, e. g. United States, The Guardian, etc.

(iii) Phase 3: Query Context Generation. In addition, we finally add entities that
are highly related both to the relationship center as well as to a part of the
query entities. Continuing above example, if we assume that New Zealand is
a query entity, an appropriate query context entity is given by Five Eyes, the
alliance of intelligence agencies involving the United States, United Kingdom,
Australia, Canada and New Zealand, since this entity is highly related both to
the central entity as well as to the query entity New Zealand.

147

Chapter 6 Relatedness Cores

6.6.1 Key Entity Discovery
Starting with the initial set Vc = {c} comprising just the center vertex, the algo-
rithm works by iteratively adding the adjacent entity that is most related to c, based
on the entity-entity similarity score measure introduced in Section 6.4, or on the
degree-of-involvement scores, xc. This procedure is repeated until the set Vc is suffi-
ciently large, say dγB′/2e vertices, where B′ is the bound on the size of a relatedness
core (the user-specified size constraint per core minus the number of vertices used
to establish connections to the query sets) and the parameter γ ∈ [0, 1] controls
the fraction of key and context entities versus query context entities in a core.

6.6.2 Center Context Entities
Given the current set of key entities, Vc, the goal of the second phase is the genera-
tion of additional context by adding generally important entities that are related to
many of the key entities in Vc but are not necessarily specific to c. Our algorithm
to this end computes a dense subgraph around Vc, using the following greedy pro-
cedure: First, we mark each vertex v ∈ Vc currently contained in the solution after
key entity discovery as a terminal that must remain in the resulting solution. Sec-
ond, we add all entities adjacent to the center c ∈ Vc to an initial graph structure
Gc = (Cc, Ec), with

Cc = Vc ∪
{

v ∈ V | (c, v) ∈ E
}

, (6.14)
and Ec =

{
(v, w) ∈ E | v, w ∈ Cc

}
. (6.15)

Based on the idea of computing dense subgraphs by iterative removal of low-
weight vertices (Charikar, 2000, Sozio and Gionis, 2010), we expand the related-
ness core as follows. We identify the non-terminal vertex v̂ ∈ Cc with the smallest
weighted degree with respect to the key entities:

v̂ = arg min
v∈Cc\Vc

∑
w∈Vc :(v,w)∈Ec

sim(v, w) · xc[w]. (6.16)

The vertex v̂ is deleted from the graph Gc, and the procedure is repeated until the
size constraint of γB′ vertices is satisfied. The resulting subgraph thus consists of
d γB′

2 e key and b γB′
2 c context entities.

6.6.3 Query Context Entities
Given the expanded relatedness core, the goal of the third phase is the addition of
query context entities should give further insight into the relationship of the cen-
ter entity to the query vertices by highlighting certain aspects of the relationship
center that explain the involvement of the query entities. This is especially impor-
tant for the frequently encountered case where some query entities are already di-
rectly connected to the relationship center, and no indirect connections have been
added. For this purpose, we add the best B′−dγB′e vertices according to the score
xQ1 [v]xQ2 [v]xc[v] · pr(v), i. e. additional, prominent vertices that are highly related
both to the query entities as well as to the relationship center.

148

Relatedness Cores 6.6

The complete Espresso algorithm is outlined in Algorithm 11. In the algo-
rithm we refer to the procedure that connects the center with the query entities as
ConnectQueryEntities, which can be the ConnectQueryEntities-PCST approach dis-
cussed previously, or another method.

6.6.4 Handling very large query sets
In some cases, the query sets can be very large. In these cases, we can potentially
improve query context entity discovery by employing the following modification.
After the relatedness center scores RC(v), v ∈ V have been computed, and the best
center events c1, c2, . . . have been selected, we compute the relatedness score of the
vertices in the graph with respect to relationship center ci (corresponding to vector
xci discussed in the previous section). As outlined above, these scores indicate the
degree of involvement of the query entities in the relationship center. Once these
scores are computed, we can recompute the relationship center scores xQ1 , xQ2 by
biasing the required random walks with restarts such that, w. l. o. g. we have for
Q1 the starting probability for q ∈ Q1 corresponding to xci [q], i. e. the degree
of involvement of q in the relationship center. We then rerun the computation of
relatedness scores in order to bias the scores towards the query entities that exhibit a
high relevance to the center. This approach can help remove the noise due to a large
number of query entities affecting the relatedness scores, leading to a potentially
better selection of query context entities that are relevant to both the center as well
as the related query entities.

6.6.5 Considering Type Constraints
Recall from Section 6.3 that our framework can be enhanced with additional con-
straints regarding vertex and edge labels. In the following, we discuss how we han-
dle covering constraints on type labels for entity vertices. For a broad domain of
interest, such as sports, we assume a set of types that should be covered by the enti-
ties in a relatedness core. For example, for a center entity of type teamsportsMatch,
we want to ensure that we capture related entities of types Team, Stadium, Tourna-
ment (or League), etc. These types can also be determined automatically by mutual
informationwith respect to the center entity type, potentially in a hierarchicalman-
ner.

For a given set of entity types and the constraint that a core must contain entities
that together cover all of these types, we extend the Espresso algorithm as follows.

In the first phase, we assign to every edge in the graph a weight corresponding
to the reciprocal similarity between the corresponding entities, turning similarity
into a distance measure. Then, starting with the center vertex c, we compute a tree
containing c and at least one vertex for every required type t, such that the sum of
the weights of the included edges is minimized. This problem is known as Group
Steiner Tree (Reich and Widmayer, 1990), which generalizes the classical Steiner
tree problem and is thus NP-hard. However, there are quite a few polynomial-time
algorithms with good approximation ratios (Garg et al., 2000, Helvig et al., 2001).
In our implementation of Espresso we include a modified version of the algorithm

149

Chapter 6 Relatedness Cores

Algorithm 11: Espresso(G, Q1, Q2, B, pr, k, γ)

Input: graph G = (V, E), query sets Q1, Q2 ⊆ V, size constraint B ≥ 1 per core, entity
prior pr : V → R≥0, k number of relationship centers to use, γ ∈ [0, 1] fraction
of key vs. context entities

Result: relatedness cores explaining the relationship between Q1 and Q2
1 begin

. Compute relationship center scores according to Equation (6.11)

2 xQ1 ← RWR(G, Q1)
3 xQ2 ← RWR(G, Q2)

4 (Vrc, Erc)← (∅, ∅)
5 while |Vc| < kB do

. identify relationship center (restricted to events)

6 c← arg maxv∈V,v/∈Vrc
xQ1 [v] · xQ2 [v] · pr(v)

7 Vc ← {c}

. compute relatedness of vertices to the relationship center

8 xc ← RWR(G, {c})

. find a connection to the query entities, budget for connection if half of the core budget

9 (V′, E′)← ConnectQueryEntities(G, c, Q1, (B− 1)/4)
10 (V′′, E′′)← ConnectQueryEntities(G, c, Q2, (B− 1)/4)

. add connections to solution

11 Vc ← Vc ∪V′ ∪V′′

. size of partially constructed core

12 B′ ← B− |Vc|

. add key entities

13 i← 1
14 Vkey ← ∅
15 while i < dγB′/2e do
16 v∗ = arg maxv∈V,(c,v)∈E xc[v] · pr(v)
17 Vkey ← Vkey ∪ {v∗}
18 i← i + 1

19 Vc ← Vc ∪Vkey

. add context entities

20 Cc ← {v ∈ V \Vc | (c, v) ∈ E}
21 while |Cc| > γB′ do
22 v̂← arg minv∈Cc\Vkey

∑w∈Cc :(v,w)∈E sim(v, w) · xc[w]

23 Cc ← Cc \ {v̂}
24 Vc ← Vc ∪ Cc

. add query context

25 while |Vc| < B do
26 v∗ = arg maxv∈V,(c,v)∈E xQ1 [v] · xQ2 [v] · xc[v] · pr(v)
27 Vc ← Vc ∪ {v∗}
28 Vrc ← Vrc ∪Vc

29 return (Vrc, (u, v) ∈ E | u, v ∈ Vrc)

150

Integration of Temporal Information 6.7

by Reich andWidmayer (1990), based on expansion of the graph around the center
c until all requirements are met, followed by a cleanup phase to prune redundant
vertices.

. Integration of Temporal Information

In our model so far, entity-entity relatedness was time-invariant. Here we extend
our model by considering the temporal dimension as an additional asset for en-
suring the coherence of relatedness cores. The entities in a core are often centered
around a key event that connects the two input sets (e. g., the 2013 mass surveillance
disclosures, connecting US politicians and European politicians). We want to en-
sure that the core is temporally coherent in the sense thatmany participating entities
are relevant as of the time of the key event.

With each vertex v ∈ V in the knowledge graph, we associate an activity function
that captures the importance of (or public interest in) an entity as a function of time:

αv : T → R

One way of estimating the values of this function is to analyze the edit history of
Wikipedia: the more edits take place for an article in a certain time interval, the
higher the value of the activity function. Other kinds of estimatorsmay tap into lon-
gitudinal corpora that spans decades or centuries such as news archives or books.
Our implementation is based on Wikipedia page view statistics. This entails that
the estimated activity function is a discrete time-series, but we use the notation of
continuous functions for convenience.

To make different entities comparable, we normalize the activity function of an
entity as follows:
Definition 6.6 (Normalized Activity Function). Let v ∈ V denote an entity with
activity function αv : T → R. The normalized activity function of v is defined as

Av(t) =
αv(t)− µαv

σαv

, (6.17)

with µαv = E[αv] and σαv =
√

E
[
(αv − µαv)

2
]
.

Thus Av captures, for every time point, the number of standard deviations from
the mean activity of v. A similar technique is proposed by Das Sarma et al. (2011)
based on the time-dependent connection discovery for co-buzzing entities.

To assess whether two entities are temporally coherent, we compare their activity
functions. It turns out that many entities exhibit very pronounced peaks of activity
at certain points. These peaks are highly characteristic for an entity. Therefore, we
specifically devise a form of temporal peak coherence for comparing entities.
Definition 6.7 (Temporal Peak Coherence). Let x, y ∈ V denote two entities and
T = [ts, te] a time interval of interest. The T-peak coherence of x and y is given by

tpc(x, y, T) =
∫ te

ts
max

(
min

(
Ax(t), Ay(t)

)
− θ, 0

)
dt (6.18)

151

Chapter 6 Relatedness Cores

01-2012 04-2012 07-2012 10-2012 01-2013

θ

UEFA Euro 2012

Spain national football team

peak coherence area

Figure 6.2: Peak Coherence (example)

where θ is a thresholding parameter to avoid over-interpreting low and noisy values.

In this definition, the time interval T can be set in various ways: the overall time-
span covered by the knowledge graph, the overlap of the lifespans of the two entities
(relevant for people or organizations), or the temporal focus specified by the user
in the query that determines the two input sets Q1 and Q2.

Example. As an example, for the entity UEFA Euro 2012, we want to identify en-
tities that exhibit high activity during the tournament, as opposed to famous ones
who missed the tournament or did not advance into later stages. High scores will
be assigned to successful teams (e. g. Spain national football team), notable players
(e. g. Andrés Iniesta), and important locations (Olimpiyskiy National Sports Com-
plex).

Figure 6.2 provides an example for the concepts introduced in this section.

Temporal Peak Coherence for Relatedness Cores We harness the notion of temporal
peak coherence in the algorithm for expanding relationship centers into relatedness
cores, see Algorithm 11 in Section 6.6. Specifically, when computing key entities
surrounding the relationship center c (line 15), we can enforce that only entities v
are chosen with temporal coherence tpcT(c, v) above a (tunable) threshold τ.

. RelatedWork

Explaining Relationships between Entities
Knowledge discovery in large graphs has been studied along several dimensions.
Most relevant to this work is the extraction of subgraphs that explain the relation-
ship between two ormore input entities. Faloutsos et al. (2004) proposed the notion
of connection subgraphs. Given an edge-weighted graph, a pair of query vertices,
(s, t), and a budget b, the goal is to extract a connected subgraph containing s and

152

Related Work 6.8

t and at most b other vertices with a maximum value of a specified goodness func-
tion.

Tong and Faloutsos (2006) later generalized this model to the case of a query
vertex set Q with |Q| ≥ 2. In this approach, coined centerpiece subgraphs (CePS),
the vertices in the graph are assigned a score based on random walks with restart
from the query vertices. Ramakrishnan et al. (2005) proposed a connection sub-
graph discovery algorithm over RDF graphs, based on an edge-weighting scheme
taking into account the edge-semantics of the respective RDF schema. Kasneci
et al. (2009a) addressed the extraction of informative subgraphs with respect to a
set of query vertices in the context of entity-relationship graphs. This approach is
based on first computing a Steiner tree and then expanding it within a given budget.
Cheng et al. (2009) partitioned graphs into communities that define the context of
a vertex. Then, a subgraph is computed that connects all query vertices, aiming for
strong connections at the intra-community and the inter-community levels. The
methods outlined above have been used for improved graph visualization (Chau
et al., 2008) and interactive graphmining (Rodrigues et al., 2006). Recently, Akoglu
et al. (2013) considered a similar problem, where, given a set of vertices, simple
pathways connecting these are found, which are used to partition the input vertices
into clusters of related vertices.

Fang et al. (2011) considered entity-relationship graphs in order to explain the
relationship between pairs of individual entities that co-occur in queries. The al-
gorithm first enumerates subgraph patterns by combining paths between the two
query entities, and then ranks patterns based on interestingness measure derived
from pattern instances.

Keyword Search over Graphs
Another area of related work is keyword search over (semi-)structured and rela-
tional data. In this setting, each vertex of a graph (e. g. derived from foreign-key
relationships in a database) is associated with a textual description. The result of a
query Q = {t1, t2, . . .}, consisting of several terms (keywords) ti, is a cost-minimal
tree T (e. g., a Steiner tree based on edge weights) connecting a set of vertices such
that for every term t in the query at least one of the vertices in T is a match for
term t. This field has been studied extensively (Agrawal et al., 2002, Bhalotia et al.,
2002, He et al., 2007, Hristidis and Papakonstantinou, 2002, Hristidis et al., 2003,
Kacholia et al., 2005, Kargar andAn, 2011), most prominent results being themeth-
ods/systems DISCOVER (Hristidis and Papakonstantinou, 2002, Hristidis et al.,
2003), DBXplorer (Agrawal et al., 2002), BANKS (Bhalotia et al., 2002, Kacholia
et al., 2005), and BLINKS (He et al., 2007). The combination of keyword search
over graphs and relationship analysis has been addressed by Kasneci et al. (2009b).
Coffman and Weaver (2013) give an overview and experimental comparisons for
this research area.

153

Chapter 6 Relatedness Cores

Dense Subgraph Mining
Here the goal is to identify a set of vertices S ⊆ V maximizing ameasure of density.
A widely used notion of density is the average-degree, given by 2|E(S)|/|S|, where
E(S) the set of edges contained in the spanning subgraph of S. In the unconstrained
case, computing the densest subgraph is polynomially solvable using a max-flow
technique (Goldberg, 1984). With cardinality constraints, the problem becomes
NP-hard, though. Lee et al. (2010) gives an overview over this area.

A greedy approximation algorithm computing the densest subgraph with a given
number of vertices was proposed by Asahiro et al. (2000). Charikar (2000) devel-
oped an (1/2)-approximation algorithm. Andersen and Chellapilla (2009) studied
further variants of the problem. Sozio andGionis (2010) addressed the community-
search problem with the goal of extracting dense components including a set of
query vertices. Bahmani et al. (2012) studied the dense subgraph problem in the
streaming as well as in the MapReduce model. Tsourakakis et al. (2013) investigate
an alternative notion of density based on subgraph diameter.

Event Identification
In some sense, the extraction of relatedness cores resembles event detection over
graph data. In this direction, Das Sarma et al. (2011) studied the discovery of events
on the time axis (e. g., over query logs or news streams), but did not consider rela-
tionships between entities. Instead, themajor asset for detecting events is the inten-
sity of entity co-occurrence during certain time windows. In contrast to Espresso,
this approach is not driven by given user query but aims to find all events in a real-
time manner.

With a similar focus on real-time discovery, Angel et al. (2012) combined dense
subgraph mining with a temporal analysis. Underlying is a graph of entities where
edge weights are dynamically updated based on co-occurrence patterns in news or
social-media streams. In this setting, events (or “stories”) correspond to dense sub-
graphs – continuously maintained as content items – that refer to multiple entities.
More remotely related, Hossain et al. (2012) studied the problem of storytelling
in entity-relationship graphs, where directed chains between target entities are ex-
tracted.

. Experimental Evaluation

This section presents experimental comparisons of Espresso with different base-
line methods at two levels: (i) computing relationship centers, and (ii) end-to-end
evaluations comparing the full explanation for the relationship between two entity
sets. We discuss both the informativeness of the outputs, as judged in user studies,
and the efficiency of the computation, as determined in run-time measurements.

154

Experimental Evaluation 6.9

6.9.1 Setup
All experiments were conducted on a Dell PowerEdge M610 server, equipped with
two Intel Xeon E5530 CPUs, 48 GB of main memory, and running Debian Linux
(kernel 3.10.40.1.amd64-smp) as operating system. All algorithms have been im-
plemented in C++11 (GCC 4.7.2).

Data As previously described in Section 6.2, for the evaluation of our approaches
we have extracted a large entity-relationship graph from the intersection of the
YAGO2 and FreeBase knowledge bases, comprising roughly 3.7 million distinct
entities, corresponding to Wikipedia articles. Using the links between Wikipedia
pages, we have extracted an undirected graph by mapping each link from page u
to page v to an undirected edge, (u, v) for the corresponding entities. The result-
ing graph structure comprises almost 60 million edges. Wherever YAGO2 knows
specific relationship labels between two entities, these are taken as edge labels for
the knowledge graph, in addition to the generic label relatedTo for all edges. The
complete dataset is available for download for further studies6.

Queries We have manually created a set of 15 queries, each consisting of two sets
of entities, Q1, Q2. There are 5 queries from each of the three categories Politi-
cians, Organizations, and Countries. An overview of the structure and contents of
all queries is given in Table 6.1.

Evaluation Metrics As all methods for identification of relationship centers yield
ranked results, we evaluate the informativeness of the competitors by two metrics
from information retrieval: precision and normalized discounted cumulative gain
(NDCG). For this purpose, we have conducted a user study, in which a total of six
judges assessed the relevance of the top-5 outputs (best entities of type event (man-
ually identified) as relationship centers) for each of the 15 different test queries.
The task of each judge was to evaluate the relevance of the output event with re-
spect to the two input sets Q1, Q2, using a graded relevance scheme with values 0
(not relevant) to 3 (very relevant). The grades of the six judges were averaged for
each test case. Each item was evaluated by all six evaluators. To compute precision,
we mapped average grades from [0, 1.5) onto 0 (irrelevant) and from [1.5, 3] to 1
(relevant). The precision at rank k then is the fraction of relevant items among the
first k results in the ranked list R = (r1, r2, . . . , rk):

Prec@k(R) =

∣∣{ri ∈ R
∣∣ i ≤ k, rel(ri) ≥ 1.5}

∣∣
k

. (6.19)

The evaluation by NDCG uses the average grades assigned by the judges on the
full scale from 0 to 3. To compute the normalization for NDCG, we used a pooling
approach: for each query, the results returned by all considered algorithms and
settings are combined into a single list and ranked with respect to the relevance
grades assigned by the human annotators. This list is denoted by C. We compare
6http://espresso.mpi-inf.mpg.de/

155

http://espresso.mpi-inf.mpg.de/

C
hapter

6
RelatednessC

ores

Query Area Q1 Q2 |Q1|/|Q2|

Q1 Politics Heads of State (North America)
Barack Obama, Stephen Harper

Heads of State (5 largest EU member states)
AngelaMerkel, François Hollande, David Cameron, Giorgio

Napolitano, Mariano Rajoy
2/5

Q2 Politics Heads of State (North America)
Barack Obama, Stephen Harper

Heads of State (Asian G20 member states)
Xi Jinping, Li Keqiang, PranabMukherjee, NarendraModi, . . .

2/8

Q3 Politics Heads of State (Pakistan)
Mamnoon Hussain, Nawaz Sharif, Asif Ali Zardari, . . .

Heads of State (India)
PranabMukherjee, NarendraModi, Prathiba Patil, . . .

9/5

Q4 Politics Russian Prime Ministers
Vladimir Putin, Dmitriy Medvedev, Viktor Zubkov

Presidents of the United States
Barack Obama, GeorgeW. Bush, Bill Clinton

6/3

Q5 Politics Heads of State (Japan)
Naoto Kan, Yoshihiko Noda, Shinzō Abe, . . .

Heads of State (China)
Hu Jintao, Xi Jinping, Li Keqiang, Wen Jiabao

5/4

Q6 Organizations
Terrorist Organizations

KurdistanWorkers’ Party, Liberation Tigers of Tamil Eelam, al
Qaeda, ETA, . . .

North American and Western European Countries
United States, Canada, Portugal, France, Spain, Germany, . . .

11/18

Q7 Organizations
Peace Organizations

Amnesty International, Grameen Bank, Intergovernmental Panel
on Climate Change

Countries in Asia
China, Japan, India, South Korea, Indonesia, . . .

14/26

Q8 Organizations Environmentalism Organizations
Earth First, Friends of the Earth, Green Cross, Greenpeace, . . .

Oil Companies
BP, Chevron Corporation, ExxonMobil, . . .

7/ 6

Q9 Organizations Health and Human Rights Organizations
World Health Organization, UNICEF, Oxfam, . . .

Food Industry
Nestlé, Groupe Danone, PepsiCo, Arla Foods, . . .

7/16

Q10 Organizations
Privacy Advocate Organizations

Privacy International, Electronic Privacy Information Center,
American Civil Liberties Union, . . .

Internet Companies
Apple Inc., Google, Yahoo!, Microsoft Corporation, . . .

8/6

Q11 Countries Eurozone Countries
Austria, Belgium, Cyprus, . . .

Investment Banks
JPMorgan Chase, Merrill Lynch, Goldman Sachs, . . .

18/10

Q12 Countries China United Kingdom 1/1

Q13 Countries Russia Countries in Asia
China, Japan, India, South Korea, Indonesia, . . .

1/26

Q14 Countries Western European Countries
Portugal, France, Spain, Germany, Netherlands, . . .

North African Countries
Algeria, Egypt, Libya, Morocco, . . .

15/7

Q15 Countries United States Countries from South and Middle America
Argentina, Brazil, Mexico, Colombia,

1/23

Table 6.1: Overview of the 15 test queries

156

Experimental Evaluation 6.9

the top-k result lists from the competing algorithms against the respective ideal
ranking of the combined results. Here, ideal ranking means that results are sorted
in descending order of the judges’ average grades. For ranking R = (r1, r2, . . . , rk)
we compute

DCGk(R) =
k

∑
i=1

2reli − 1
log2(i + 1)

, (6.20)

where reli denotes the average grade of the i-th item in R, obtained in the user study.
We finally normalize by the ideal ranking C:

nDCG@k(R) =
DCGk(R)
DCGk(C)

(6.21)

6.9.2 Results: Extracting Relationship Centers

Baseline: CePS

We compare our method for extracting relationship centers against the extension
of the centerpiece sub-graph algorithm by Tong and Faloutsos (2006) for sets, con-
sidering both the CePS-AND (cf. Equation 6.9) as well as the CePS2-OR (cf. Equa-
tion 6.10) variant. Recall that this baseline performs random walks with restarts
from all query nodes qi ∈ Q, given a single node set. These approaches are abbre-
viated as CePS-AND and CePS2-OR, respectively.

Informativeness

We evaluate the relevance of computed relationship centers by Espresso and CePS
in the following scenarios. First, we use two different entity-entity relatednessmea-
sures, MW and KORE. Second, we use the plain top-5 ranking (based only on ran-
dom walk scores) and the top-5 after reranking. In this setting, the reranking pro-
cedure multiplies the relatedness score with the entity prior (as described in Equa-
tion 6.11), which, in this experiment, corresponds to the square root of the relative
amount of Wikipedia pageviews for the corresponding article over the time period
from January 1, 2013 to July 31, 2014.

A total number of six judges responded to the study, which comprises 249 dis-
tinct (question, event) pairs. The results of comparing the relationship centers of
our set-based random walk algorithm described in Section 6.4 – denoted by RC –
against those by the extension of CePS for query sets are shown in Table 6.2, for the
top-5 results.

The explicit distinction between the two input sets of entities, Q1, Q2 benefits
Espresso and CePS2-OR, whereas CePS-AND requires central vertices relevant
to all query entities. For 6 of the 12 settings (area, relatedness measure, rerank-
ing), CePS2-OR is slightly better than Espresso (RC), for 3 queries both achieve
the same precision, and Espresso even produces the best result for 3 queries. Over
all queries, Espresso achieves average precision of 0.75, whereas CePS2-OR and
CePS-ANDachieve average precision of 0.77 and 0.58, respectively. Thus, Espresso
manages to attain 97% of the precision of CePS2-OR, while only requiring two

157

Chapter 6 Relatedness Cores

RWRs from the query sets.
The results obtained by using Milne-Witten inlink overlap (MW) as relatedness
compare favorably with the results obtained from employing the KORE measure.
Reranking based on entity popularity improves the result quality significantly for
the MW measure. Thus, the combination of MW and popularity-based reranking
is used as the default strategy for Espresso and CePS.

TheNDCGresults for the two algorithms,RC and theCePS variants are shown in
Table 6.3. Overall, Espresso achieved average NDCG@5 of 0.67, while CePS2-OR
and CePS-AND achieved scores of 0.68 and 0.55, respectively. Espresso thus re-
tains 98% of the score.

Table 6.4 shows sample results based on the RC scores for three queries, together
with the averaged relevance grades obtained from the judges in the user study.

Run-Time Efficiency

From an asymptotic complexity perspective, the analysis is straightforward:

• The CePS variants require a random walk process from each of the |Q1| +
|Q2| query vertices. Each RWR iteration has a time complexity of O(|E|).
In our implementation we use a fixed number of I iterations. Thus, the time
complexity for this method is Θ

(
(|Q1|+ |Q2|)I|E|

)
.

• For our random walk approach RC described in Section 6.4, we conduct one
random walk with restart from each query set. With a fixed number of I
iterations, this procedure results in a time complexity of Θ(2I|E|).

It is evident that the time for computing RC scores is independent of the input set
sizes and only depends on the size of the overall graph, whereas the CePS method
has linear dependence on the size of the input entity set(s).

For the 15 test queries, the running-times of Espresso and CePS are shown in
Table 6.5. In our implementation we use I = 25 iterations for the random walk
and a restart probability of 0.5. As expected, the time required to compute RC
scores remains constant (∼ 25 seconds for MW,∼ 58 seconds for KORE) across all
queries, while the time required to compute CePS scores varies between 25 (MW)
and 56 (KORE) seconds forQ12 and 505 (MW) aswell as 1,141 (KORE) seconds for
Q7. The algorithms are significantly faster when the MW measure is used, simply
because for this measure many of the edges receive zero weight (for the case of
no inlink overlap). These edges are not included in the graph, resulting in faster
running times.

158

Experimental Evaluation 6.9

Algorithm Relatedness Rerank Q1 Q2 Q3 Q4 Q5 Avg

RC KORE ! 1.00 0.40 0.60 1.00 0.60 0.72
RC KORE % 1.00 0.80 0.80 1.00 1.00 0.92
RC MW ! 1.00 1.00 0.80 0.80 1.00 0.92
RC MW % 1.00 1.00 0.40 0.60 1.00 0.80

CePS SETS-OR KORE ! 1.00 0.40 0.60 1.00 0.80 0.76
CePS SETS-OR KORE % 1.00 0.80 0.80 1.00 1.00 0.92
CePS SETS-OR MW ! 1.00 1.00 0.80 0.80 1.00 0.92
CePS SETS-OR MW % 1.00 1.00 0.60 0.60 1.00 0.84

CePS SETS-AND KORE ! 0.80 0.80 0.40 0.80 0.60 0.68
CePS SETS-AND KORE % 1.00 0.80 0.40 0.80 0.60 0.72
CePS SETS-AND MW ! 1.00 1.00 0.60 0.80 0.60 0.80
CePS SETS-AND MW % 1.00 1.00 0.60 0.80 0.60 0.80

(a) Q1-5: Politicians

Algorithm Relatedness Rerank Q6 Q7 Q8 Q9 Q10 Avg

RC KORE ! 1.00 0.60 1.00 0.60 0.80 0.80
RC KORE % 1.00 0.60 1.00 1.00 1.00 0.92
RC MW ! 0.80 1.00 1.00 0.80 1.00 0.92
RC MW % 0.60 1.00 0.80 0.60 1.00 0.80

CePS SETS-OR KORE ! 1.00 0.60 1.00 0.80 0.80 0.84
CePS SETS-OR KORE % 0.80 0.80 1.00 1.00 0.80 0.88
CePS SETS-OR MW ! 0.80 1.00 1.00 0.60 1.00 0.88
CePS SETS-OR MW % 0.80 0.80 0.80 0.60 1.00 0.80

CePS SETS-AND KORE ! 0.40 0.80 1.00 0.60 0.80 0.72
CePS SETS-AND KORE % 0.40 0.80 1.00 0.60 0.80 0.72
CePS SETS-AND MW ! 0.60 0.60 1.00 0.60 1.00 0.76
CePS SETS-AND MW % 0.60 0.40 1.00 0.60 1.00 0.72

(b) Q6-10: Organizations

Algorithm Relatedness Rerank Q11 Q12 Q13 Q14 Q15 Avg

RC KORE ! 0.60 0.40 0.40 0.40 0.40 0.44
RC KORE % 1.00 0.40 0.20 0.40 0.80 0.56
RC MW ! 1.00 1.00 0.20 0.60 0.60 0.68
RC MW % 0.80 1.00 0.00 0.00 0.80 0.52

CePS SETS-OR KORE ! 0.60 0.40 0.40 0.60 0.40 0.48
CePS SETS-OR KORE % 1.00 0.40 0.20 0.40 0.60 0.52
CePS SETS-OR MW ! 1.00 1.00 0.40 0.80 0.80 0.80
CePS SETS-OR MW % 0.80 1.00 0.40 0.20 0.80 0.64

CePS SETS-AND KORE ! 0.20 0.40 0.40 0.40 0.00 0.28
CePS SETS-AND KORE % 0.20 0.40 0.20 0.40 0.00 0.24
CePS SETS-AND MW ! 0.20 1.00 0.00 0.20 0.00 0.28
CePS SETS-AND MW % 0.20 1.00 0.00 0.20 0.00 0.28

(c) Q11-15: Countries

Table 6.2: Prec@5 over the set of 15 test queries

159

Chapter 6 Relatedness Cores

Algorithm Relatedness Rerank Q1 Q2 Q3 Q4 Q5 Avg

RC KORE ! 0.88 0.31 0.68 0.39 0.70 0.59
RC KORE % 0.92 0.79 0.63 0.55 0.79 0.73
RC MW ! 0.96 0.88 0.54 0.49 0.66 0.71
RC MW % 0.95 0.87 0.30 0.52 0.72 0.67

CePS SETS-OR KORE ! 0.95 0.40 0.68 0.39 0.80 0.64
CePS SETS-OR KORE % 0.92 0.73 0.65 0.56 0.79 0.73
CePS SETS-OR MW ! 0.95 0.88 0.55 0.51 0.67 0.71
CePS SETS-OR MW % 0.95 0.89 0.41 0.52 0.72 0.70

CePS SETS-AND KORE ! 0.75 0.70 0.50 0.48 0.74 0.63
CePS SETS-AND KORE % 0.86 0.73 0.50 0.58 0.74 0.68
CePS SETS-AND MW ! 0.92 0.82 0.40 0.76 0.67 0.71
CePS SETS-AND MW % 0.92 0.82 0.40 0.76 0.66 0.71

(a) Q1-5: Politicians

Algorithm Relatedness Rerank Q6 Q7 Q8 Q9 Q10 Avg

RC KORE ! 0.90 0.53 0.91 0.69 0.78 0.76
RC KORE % 0.90 0.66 0.89 0.91 0.84 0.84
RC MW ! 0.83 0.69 0.90 0.83 0.82 0.81
RC MW % 0.64 0.78 0.75 0.70 0.86 0.74

CePS SETS-OR KORE ! 0.90 0.53 0.91 0.80 0.76 0.78
CePS SETS-OR KORE % 0.83 0.68 0.92 0.91 0.77 0.82
CePS SETS-OR MW ! 0.83 0.65 0.81 0.71 0.83 0.76
CePS SETS-OR MW % 0.69 0.62 0.75 0.67 0.85 0.71

CePS SETS-AND KORE ! 0.53 0.63 0.88 0.54 0.76 0.67
CePS SETS-AND KORE % 0.53 0.64 0.89 0.54 0.76 0.67
CePS SETS-AND MW ! 0.62 0.45 0.88 0.59 0.81 0.67
CePS SETS-AND MW % 0.64 0.34 0.88 0.60 0.81 0.65

(b) Q6-10: Organizations

Algorithm Relatedness Rerank Q11 Q12 Q13 Q14 Q15 Avg

RC KORE ! 0.36 0.40 0.56 0.53 0.40 0.45
RC KORE % 0.98 0.39 0.50 0.40 0.48 0.55
RC MW ! 0.96 0.80 0.26 0.76 0.57 0.67
RC MW % 0.81 0.79 0.26 0.10 0.63 0.52

CePS SETS-OR KORE ! 0.36 0.40 0.56 0.59 0.40 0.46
CePS SETS-OR KORE % 0.98 0.39 0.48 0.48 0.42 0.55
CePS SETS-OR MW ! 0.96 0.80 0.37 0.86 0.68 0.73
CePS SETS-OR MW % 0.83 0.79 0.46 0.20 0.63 0.58

CePS SETS-AND KORE ! 0.18 0.40 0.44 0.51 0.11 0.33
CePS SETS-AND KORE % 0.18 0.39 0.33 0.51 0.11 0.30
CePS SETS-AND MW ! 0.18 0.80 0.11 0.27 0.05 0.28
CePS SETS-AND MW % 0.22 0.79 0.11 0.28 0.05 0.29

(c) Q11-15: Countries

Table 6.3: nDCG@5 over the set of 15 test queries

160

Experimental Evaluation 6.9

Rank Event Relevance

1 Canada–South Korea Free Trade Agreement 2.66
2 2013 G-20 Saint Petersburg summit 2.42
3 39th G8 summit 2.58
4 40th G7 summit 2.66
5 APEC Indonesia 2013 2.00

(a) Q2: heads of State (North America) and heads of state (Asian G-20 members)

Rank Event Relevance

1 Stop Esso campaign 3.00
2 Exxon Valdez oil spill 3.00
3 Global warming conspiracy theory 2.17
4 Global warming controversy 2.66
5 Deepwater Horizon oil spill 3.00

(b) Q8: environmentalism organizations and oil companies

Rank Event Relevance

1 World War II 1.33
2 Second Opium War 3.00
3 Panda diplomacy 1.83
4 Boxer Rebellion 2.83
5 Operation Minden 2.50

(c) Q12: China and United Kingdom

Table 6.4: Example results: top-5 extracted relationship centers (MW+reranking)

6.9.3 Results: Explaining Relationships between Entity Sets

We also conducted end-to-end experiments for generating relationship explana-
tions for each of our 15 test queries, comparing Espresso to an extension of the
recently proposed Rex approach of Fang et al. (2011) to sets of input entities rather
than individual pairs, as well as the CePS algorithm.

Baseline: REX The Rex algorithm in its original form computes relationship expla-
nations in the form of instances of informative graph patterns (edge-labeled tem-
plates) that connect two nodes. Due to its restriction to a single pair of query nodes
we extend Rex in the following way: Given input sets Q1, Q2 of entities, we choose
K pairs of query entities (qi

1, qi
2) ∈ Q1 ×Q2, 1 ≤ i ≤ K and aggregate the individ-

ual results into a combined result. Specifically, this involves three steps: (1) select
query entity pairs, (2) for each (q1, q2) pair compute the best p patterns P1, . . . , Pp
(for pattern ranking we use a combination of the size andmonocount measures de-
scribed in the original paper (Fang et al., 2011), and (3) add the heaviest (in terms
of sum of edge weights) i instances of each of the p best patterns to the candidate
subgraph C = (Vc, Ec). Subsequently, in order to satisfy the size constraint on the
output, while maintaining a coherent relationship explanation, we prune the can-
didate subgraph as follows. We arrange the vertices in C that do not correspond

161

Chapter 6 Relatedness Cores

Algorithm Relatedness Q1 Q2 Q3 Q4 Q5 Avg

RC KORE 57.61 57.20 56.63 56.69 56.66 56.96
RC MW 25.38 25.39 25.32 25.35 25.36 25.36

CePS KORE 200.57 316.16 403.98 172.72 259.22 270.53
CePS MW 88.38 138.81 176.71 75.78 113.61 118.66

(a) Q1-5: Politicians

Algorithm Relatedness Q6 Q7 Q8 Q9 Q10 Avg

RC KORE 57.03 57.70 57.61 57.54 57.72 57.52
RC MW 25.41 25.40 25.39 25.33 25.35 25.37

CePS KORE 833.65 1141.20 371.81 628.13 368.90 668.74
CePS MW 366.09 504.89 164.11 277.71 164.08 295.38

(b) Q6-10: Organizations

Algorithm Relatedness Q11 Q12 Q13 Q14 Q15 Avg

RC KORE 57.55 57.55 57.82 57.77 57.19 57.58
RC MW 25.37 25.39 25.41 25.40 25.34 25.38

CePS KORE 794.49 56.44 770.82 657.75 659.62 587.82
CePS MW 353.35 25.33 340.93 290.45 290.35 260.08

(c) 11-15: Countries

Table 6.5: Running times [s] over the set of 15 test queries for center computation (Espresso (RC) vs. CePS-
AND)

to query entities in a min-heap based on the weighted degree in C. As long as the
cardinality constraint is violated, we repeatedly identify a vertex for pruning. For
this purpose we select the vertex from the heap with lowest weighted degree that
does not disconnect C, in the sense that each inner vertex vi ∈ Vc \ (Q1 ∪ Q2)
remains connected to at least one vertex in both Q1 and Q2. If no such vertex ex-
ists, we simply prune the inner vertex vi with lowest weighted degree, potentially
having to prune dangling vertices (i. e. vertices with degree 1 after deletion of vi)
afterwards. This way, we aim to obtain a coherent, dense graph that maintains as
much informativeness as possible.

We used the following parameters for the extended Rex algorithm. The pat-
tern size was restricted to 4. For each query we use up to 20 pairs of query entities
(q1, q2) ∈ Q1×Q2 to compute pairwise explanations. If it holds |Q1||Q2| > 20, we
randomly select 20 pairs. Our implementation uses bidirectional expansion from
the pair of query vertices to generate the path patterns. In order to cope with the
combinatorial explosion, we restricted the number of generated paths per pair to
20,000. We have implemented the PathUnionBasic algorithm to generate the pat-
terns, as described by Fang et al. (2011). For each pair of query entities we compute
the 5 best patterns as measured by size (smaller better) and monocount (larger bet-
ter). Finally, for each of the patterns, we add the heaviest two instances to the can-
didate subgraph, followed by the pruning phase to consolidate a small and dense
connecting subgraph. The algorithmwas implemented in C++ and compiled at the

162

Experimental Evaluation 6.9

highest available optimization level. As input graph we used the Espresso Knowl-
edge Graph with MW-weighted edges, and add additional directed, labeled edges
for YAGO2 facts between the entities.

Baseline: CePS As second baseline, we implemented the entire algorithm for cen-
terpiece subgraph (CePS) extraction, as described by Tong and Faloutsos (2006),
and compute results in the CePS2-OR setting, i. e. random walks with restarts from
all query entities with the aggregation based on Equation 6.10, followed by the EX-
TRACT algorithm to connect the best query entity from either set to the centerpiece
vertices (via a so-called key path) in a dynamic programming fashion. Regarding
the dynamic programming procedure to extract key paths, in our implementation
we will directly connect a query entity to the current center if the latter is already
present in the partially built graph and a direct edge exists, rather than extracting
a key path. The input graph used is the Espresso Knowledge Graph with MW-
weighted edges. Since our previous user study indicated the combination of MW-
weights with popularity based reranking as entity prior to be the superior strategy,
we incorporate the reranking as follows. After all random walk processes have fin-
ished, we multiply the resulting aggregated score for each individual vertex with
the entity prior (square-rooted relative popularity). In addition, after the aggre-
gated score has been computed, we also multiply the scores obtained by each indi-
vidual random walk process with the entity prior. We implemented CePS in C++,
compiled using the highest available optimization level.

The cardinality constraint we used in this experiment was 6, for all three algo-
rithms (Rex, CePS, Espresso). For the random walks in CePS and Espresso we
use 5 iterations and set the restart probability to 0.5. For Espresso, the parameters
we specify are a number of 3 relationship centers to use, fraction of key and context
entities vs. query context entities set to γ = 0. This represents the first stage visual-
ization of the proposed Espresso system, where we rather show more yet compact
events, to give a good overview. In a user-facing system, the individual eventswould
then be shown with more key/context and query-context when selected by the user
(leading to recomputation with a higher value for γ and cardinality constraint).

For all queries, there was at least one query entity from either query set directly
connected to an event. As a result, it was not required to compute the connections
to the query entities, rather we only had to connect the event with the appropriate
query entities and could add one query context entity to each of the relationship
centers. As discussed previously, one approach to ensure informativeness of the
central entities is to ensure a certain level of prominence of the considered events.
In CePS, wherewe do not filter by entity types, the prominence of the center entities
is ensured by the popularity-based reranking step. In the Espresso algorithm, we
discard event entities from consideration with less than 50 daily pageviews on aver-
age, and amaximumnumber of daily pageviews of less than 500, prior to reranking.
As a result, out of the 89,321 entities originally marked as events in the Espresso
Knowledge Graph, a total number 7,056 events remains as candidates for relation-
ship centers.

Both CePS as well as Espresso include the subgraph induced by the query and
center entities, i. e. all edges appearing between any pair of vertices in the computed

163

Chapter 6 Relatedness Cores

solution, including edges within the query sets. The labels displayed are the most
specific ones associated with each included edge for CePS and Espresso, and the
labels contained in the best patterns for Rex. We omit the generic label relatedTo
in the displayed solutions.

Informativeness The resulting explanations were assessed by human judges. For
every query, the output of the three algorithms Espresso, extended Rex, as well
as CePS2-OR was presented pairwise to the users, who had to choose whether (i)
the first graph provides a better explanation, (ii) both graphs are equally good or
(iii) the second graph provides a better explanation. For each of the 15 queries the
users evaluated all 3 possible pairings (Rex vs CePS2-OR, CePS2-OR vs Espresso,
Espresso vs Rex). We used the same graph layout for all three algorithms. A total
number of six judges responded to the study. We show the resulting judgements
in Tables 6.6(a)-(c). It becomes clear that the judges clearly favor the graphs com-
puted by Espresso over the two baseline solutions. In 82% of all considered cases,
the solution returned by Espresso was favored over the solution returned by Rex,
while both were rated equally good in 10% of all cases. When compared with CePS,
Espresso returned the better solution in 61% of all cases, and both were evaluated
equally good in 23% of all cases. The comparison between CePS and Rex shows
that both were evaluated equally good in 22% of the considered cases, while CePS
computed the better solution for 57% of the queries.

Rex better both equal CePS2-OR better total

19 (21%) 20 (22%) 51 (57%) 90

(a) Rex vs. CePS

Rex better both equal Espresso better total

7 (8%) 9 (10%) 74 (82%) 90

(b) Rex vs. Espresso

CePS2-OR better both equal Espresso better total

14 (16%) 21 (23%) 55 (61%) 90

(c) CePS2-OR vs. Espresso

Table 6.6: Results of the end-to-end evaluation of Rex, CePS2-OR, and Espresso

164

Experimental Evaluation 6.9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

1

10

100

1000

10000
tim

e
[s
]

CePS REX Espresso

Figure 6.3: End-to-end computation time for CePS, Rex, and Espresso

Efficiency Regarding the efficiency, we compare the end-to-end running times of
the considered algorithms in Figure 6.3. Espresso is the fastest of all three al-
gorithms, and exhibits execution times always below 23 seconds over all queries,
highlighting its independence from the size of the query sets. In general, the num-
ber of random walks executed from the relationship centers differs for the different
questions, since sometimes the extracted cores overlap, leaving budget for addi-
tional relationship centers. Thus, for 9 of 15 queries the running time of Espresso
amounts to∼ 16 seconds, for 4 queries to∼ 19 seconds, and for one query (Q3) to
23 seconds.

On the other hand, the running time of CePS is directly dependent on the size of
the query sets, since it executes a random walk from each query entity. The over-
all running times range from 6 seconds (Q12) to 123 seconds (Q7), while CePS
is slower than Espresso for 12 of the 15 queries. The time required to compute
the relationship explanation with the extended Rex algorithm ranges from 2 sec-
onds (Q5) to 16,000 seconds (Q13), depending highly on the number of generated
paths between the query entities, and the resulting number of path patterns that are
subsequently combined in order to identify informative connecting patterns. As a
result, Rex is the slowest algorithm for 10 of the 15 considered queries.

6.9.4 Discussion
In this section we summarize the findings from our user studies and efficiency ex-
periments. The Rex algorithm relies on informative patterns, which in turn de-
pend on the available labels annotated with the edges in the knowledge graph. As
it turns out, for the case of the Espresso Knowledge Graph, which carries most of
the relationship labels present in the YAGO2 knowledge base, this strategy seems
ineffective. One reason is the sparsity of labels apart from the generic and overly
prominent label relatedTo. This label makes up for about 56 million of the 60 mil-
lion labeled edges. As a result, many of the generated patterns include this generic
label, limiting the informativeness of generated patterns. Regarding the computa-
tion time, Rex is highly dependent on the local density of the query entities, directly
influencing the number of generated paths. It turns out that amoderate pattern size
of 4 vertices is already computationally challenging, due to the combinatorial ex-
plosion. However, we remark that we implemented the more basic version of the

165

Chapter 6 Relatedness Cores

pattern enumeration algorithm described by Fang et al. (2011), so we can expect
better running times from an optimized implementation. Finally, the original Rex
algorithm is geared towards explaining the relationship between entity pairs, rather
than sets of entities. In our extended implementation, we compute (a subset of) all
possible pairs, resulting in multiple executions of the original pairwise algorithm.

Regarding the comparison with CePS, it is clear that the original algorithm pro-
posed by Tong and Faloutsos (2006) is geared towards computing a good subgraph
providing a connection among some (soft-and query) or all (and query) query en-
tities rather than between two sets. However, as far as the identification of center-
piece vertices is concerned, we have shown in Equation 6.9 and 6.10 on page 143
that the relatednessmeasure can be adapted to queries comprising two sets of query
entities.

Indeed, the CePS2-OR approach computes slightly better scores when compared
to Espresso, albeit at increased running time. Afterwards CePS connects the high-
scoring centerpiece vertices with the query sets. As it turns out, for knowledge
graphs and the querying scenarios (e. g. of a political analyst researching a story
background) envisioned in this work, computing good paths between query and
center entities is less important, because usually either a salient connection (event)
involving query entities from either set exists, or not, in which case the query en-
tities can be deemed too unrelated. Indeed, for most considered queries, the cen-
terpiece vertices were directly connected to both query sets, so that just the best
vertices according to score were added and edges to the query sets included, and
only few key paths were extracted by CePS. In this case, popularity-based rerank-
ing of results had adversary effect, boosting very generic entities such as countries.
This happened because, in contrast to Espresso, there is no notion of entity types
in CePS.

We can thus reason, that in the knowledge graph scenarios, it is very important
to enforce informativeness of the central entities. In the experimental evaluation of
Espresso, this is ensured by focusing on central vertices of type event, and extract-
ing coherent cores by combining the relatedness center scores w. r. t. to the query
entities with relatedness scores w. r. t. the center event, in order to identify good
query context entities.

The restriction to entities typed event gives an advantage to Espresso, sincemany
non-informative entities are not considered as central vertices (e. g. for the case of
countries in the two query sets, we can expect other related/bordering countries to
be assigned high scores – however, connections via such vertices are hardly infor-
mative and do not givemuch insight into the relationship). Themain insight is thus,
that entity type restriction is a crucial step for a good relationship explanation. It
should further be mentioned, that for the settings of Espresso with core cardinal-
ity B = 1, and CePS in the CePs2-SETOR setting employing an event-filtering step
similar to Espresso, we would expect very similar results. Espresso can however
support further analysis by expanding the identified events into coherent explana-
tions via the addition of key, context, and query context entities.

It remains a challenging problem to automatically identify appropriate entity
types, to distinguish between potentially informative and less informative central
vertices. For many queries involving real-world entities, the restriction to events

166

Summary 6.10

works very well. This advantage carries a certain risk however, if good connections
are missed because no event exists that involves the query entities (but, rather, sub-
sets of the two query sets are for example members of the same organization, etc.).

One strength of Espresso lies in its flexibility to adapt to a wide range of user
specifications, such as the budget to spend for connecting the query sets to the
central event (using the PCST algorithm), using temporal coherence to detect key
entities, etc.
We show some anecdotal examples for the solutions computed by Espresso in the
description of the system demonstration in Appendix A.

. Summary

Entities and their relationships play an increasingly important role as semantic fea-
tures for numerous kinds of search, recommendation, and analytics tasks – on the
Web, for social media, and in enterprises. Explaining relationships between en-
tities and between sets of entities is a key issue within this bigger picture. The
Espresso framework presented in this chapter is a novel contribution along these
lines. Our experiments, including user studies, demonstrate the practical benefits
of Espresso.

Future technicalwork include the automatic derivation of informative entity types
based on the query as well as harnessing our methods for better summarization of
online contents, for both individual documents (e. g., articles in news ormagazines)
and entire corpora (e. g., entire discussion threads, entire forums, or even one day’s
or one week’s entire news). Users are overwhelmed with content; explaining and
summarizing content at a cognitively higher level is of great value.

167

Part III

The Big Picture

171

7
Summary & Future Directions

Summary of Contributions
In this thesis, we have discussed the problem of analyzing the relationship between
entities – represented as vertices in a graph – from two different angles.
First, with a focus on facilitating the interactive application of fundamental analysis
tasks, we have proposed:

1. The Ferrari index structure for reachability analysis of large, memory-resi-
dent graphs. Reachability queries allow to answer questions of the following
form:

• Which relationships exist in the data?

• Is there a relationship between a certain pair of entities?

In this work, we treat entities as vertices in a graph. Thus, the former ques-
tion corresponds to the graph-theoretic concept of (efficiently) computing
or approximating the transitive closure of the graph and the latter to prob-
ing the graph for the existence of a path between the specified vertices. The
proposed Ferrari index structure can be regarded as an adaptive compres-
sion of the transitive closure, representing for each vertex in the graph the
set of reachable vertices by a combination of exact and approximate identi-
fier ranges. While this compression approach trades off scalability for accu-
racy of representation, the answers returned by the Ferrari index are exact.
This is achieved by combining the approximate representation of reachabil-
ity encoded in the index entries with additional online search during query
processing. The compact nature of the index together with restricted online
search effort, relying on the combination of several effective heuristics, lead
to a space-efficient yet fast index structure for reachability queries. The Fer-

173

Chapter 7 Summary & Future Directions

rari index allows processing of this kind of queries over large graphs with
query processing times in the order of a few microseconds.

2. The PathSketch index for distance and shortest path queries over massive
graphs that may reside on secondary storage (disk or flash). Distance queries
enable to answer questions of the form:

• How closely related is a pair of entities?
The second query type – (approximate shortest) path queries – allow to an-
swer questions of the form:

• What is the structure of the relationship between a pair of entities?
The former question is answered by a number, indicating the strength of the
relationship, whereas an answer to the latter question corresponds to a path
– a sequence of intermediate entities that provide an (indirect) connection
between the query entities. The PathSketch index allows efficient process-
ing of both query types. The index entries of PathSketch consist of vertex
labels, containing for every vertex in the graph, two trees connecting the ver-
tex to a set of carefully selected seeds. At query time, given a pair of query
vertices (s, t), multiple short paths connecting s with t are generated by in-
tersecting the respective trees. In order to retrieve a potentially shorter path
as well as additional connections, a limited number of additional vertices is
expanded by retrieving the adjacency list from the graph. The number of
vertices that can be expanded during query processing is upper-bounded by
a predefined budget, providing a direct control over the tradeoff between de-
sired accuracy of results and query processing time. We propose algorithms
for efficient index construction, together with serialization and compression
techniques ensuring a compact size of the index entries. PathSketch pro-
vides approximate answers to shortest path and distance queries overmassive
graphs with up to billions of edges in the order of a few milliseconds.

In the second part of this work, we have switched our focus from the efficiency
aspect towards facilitating a more expressive variant of relationship analysis. To
this end, we have proposed

3. the Espresso algorithm for explaining the relationship between two sets of
entities in a knowledge graph. We have proposed a novel graph-theoretic
concept – relatedness cores – to describe a relationship by identifying certain
key events that played an important role in the interaction of the involved
query entities. This allows us to answer questions of the form

• How can we characterize the relationship between the United States and
countries from the Middle East over the last few years?

• In what way have American technology companies interacted with coun-
tries from Asia?

Theproposed solution concept of relatedness cores can be regarded as a small,
semantically coherent set of intermediate entities that are relevant to both in-
put sets. TheEspresso algorithmworks by first identifying a central event en-
tity, corresponding to a real-world event such as a conflict involving countries

174

7.0

from the query sets, high-profile political meetings, sports events, etc. These
central entities are determined by combining the results of randomwalk pro-
cesses from either query set. In the second algorithmic stage, a coherent
subgraph is computed from the surroundings of the central event entity and
connected to the query vertices. Espresso combines features from several
data sources, including semantic types of entities derived from the YAGO
knowledge base, relatedness measures computed both from the structure of
the knowledge graphs as well as textual descriptions of the entities, and en-
tity importance over time extracted frompage view statistics of theWikipedia
encyclopedia. The usefulness of the solutions computed by Espresso is con-
firmed by several user studies.

The combination of the techniques proposed in this thesis allows to conduct in-
sightful and interactive forms of relationship analysis over very large graphs.

Future Directions
We see a number of open issues that should be addressed in future work:

• Integrated Relationship Analysis Platform. In this thesis, we provide three
algorithmic building blocks for relationship analysis. A logical and promising
direction for future work is to extend and combine the proposed approaches
into an integrated platform. Interesting research problems arise with regard
to visualization, novel query languages, integration of the proposed index
structures into other, higher-order graph algorithms, and the addition of fur-
ther algorithmic building blocks.

• Specialized Index Structure for Knowledge Graphs. The notion of knowl-
edge graphs has gained significant momentum over recent years, to a large
part due to their application inweb search and content recommendation. The
amount of knowledge encoded in these structures is growing at rapid pace via
large-scale harvesting over web sources. This class of graphs offers appeal-
ing opportunities for further research regarding efficient processing. Distin-
guishing properties such as semantically typed vertices and labeled relation-
ships bear potential for dedicated index structures that can speed up analysis
tasks over this important class of graphs, including – but not restricted to –
label-constrained reachability and path queries.

• Semantic Graph Mining. On a similar note, knowledge graphs offer many
interesting possibilities for novel data mining and graph mining approaches
that compute semantically meaningful results. The Espresso algorithm has
focused on extracting explanations of relationships in knowledge graphs, spe-
cifically targeting the computation of (semantically) coherent and interesting
results. Mapping these requirements into the space of graph algorithmics is
a challenging problem. Examples range from new graph theoretic concepts
(such as relatedness cores) to the integration of external data sources (such as
disambiguated news articles, textual descriptions, popularity over time, etc.)
into an enriched, multi-modal graph structure.

175

Part IV

Appendix

179

A
The Instant Espresso System

Demonstration

We have created a web-based interface showcasing the Espresso algorithm de-
scribed in detail in Chapter 6. Using this interface, which is available online at
the URL

http://espresso.mpi-inf.mpg.de

users can specify two sets of entities from the Espresso Knowledge Graph, and are
displayed a graph visualization of the computed relatedness cores. The input inter-
face is shown in Figure A.1.

We show examples for computed graph visualizations in Figures A.2-A.2. The
thickness of an individual edge reflects the relationship strength. In addition each

Figure A.1: User input to select query entity sets

181

Appendix A The Instant Espresso System Demonstration

Figure A.2: Anecdotal result: Espresso relatedness cores for Q2

individual entity is shown with a thumbnail image. Upon clicking on an entity ver-
tex, a short description snippet of the entity is shown together with a larger image
and a link to the respective Wikipedia article.

182

A

Figure A.3: Anecdotal result: Espresso relatedness cores for Q8

Figure A.4: Anecdotal result: Espresso relatedness cores for Q12

183

Bibliography

Daniel J. Abadi, Adam Marcus, Samuel Madden, and Kate Hollenbach. SW-Store:
A Vertically Partitioned DBMS for Semantic Web Data Management. The VLDB
Journal, 18(2):385–406, 2009. (cited on page 32)

Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. High-
way Dimension, Shortest Paths, and Provably Efficient Algorithms. In SODA’10:
Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 782–793. ACM/SIAM, 2010. ISBN 978-0-898716-98-6. (cited on page 109)

Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F.
Werneck. VC-Dimension and Shortest Path Algorithms. In Automata, Lan-
guages and Programming, volume 6755 of Lecture Notes in Computer Science,
pages 690–699. Springer, 2011. (cited on page 111)

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Hier-
archical Hub Labelings for Shortest Paths. In ESA’12: Proceedings of the 20th An-
nual European Conference on Algorithms, volume 7501 of Lecture Notes in Com-
puter Science, pages 24–35. Springer, 2012. (cited on page 109)

Alok Aggarwal and Jeffrey S. Vitter. The Input/Output Complexity of Sorting and
Related Problems. Communications of the ACM, 31(9):1116–1127, September
1988. ISSN 0001-0782. (cited on page 34)

Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Efficient Management of
Transitive Relationships in Large Data and Knowledge Bases. In Proceedings of
the 1989 ACM SIGMOD International Conference on Management of Data, pages
253–262. ACM, 1989. (cited on pages 45, 46, 47, 52, 56, 61 and 63)

Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A System for
Keyword-Based Search over Relational Databases. In ICDE’02: Proceedings of
the 18th IEEE International Conference on Data Engineering, pages 5–16. IEEE,
2002. (cited on page 153)

Deepak Ajwani, Roman Dementiev, and Ulrich Meyer. A Computational Study of
External-Memory BFS Algorithms. In SODA’06: Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 601–610. ACM/SIAM,
2006. (cited on page 35)

185

Appendix A Bibliography

Deepak Ajwani, Ulrich Meyer, and Vitaly Osipov. Improved External Memory BFS
Implementations. In ALENEX’07: Proceedings of the Ninth Workshop on Algo-
rithm Engineering and Experiments. SIAM, 2007. (cited on page 35)

DeepakAjwani, UlrichMeyer, andDavidVeith. I/O-efficienHierarchical Diameter
Approximation. In ESA’12: Proceedings of the 20th Annual European Conference
on Algorithms, volume 7501 of Lecture Notes in Computer Science, pages 72–83.
Springer, 2012. (cited on page 35)

Takuya Akiba, Christian Sommer, and Ken-ichi Kawarabayashi. Shortest-Path
Queries for ComplexNetworks: Exploiting LowTree-widthOutside the Core. In
EDBT’12: Proceedings of the 15th International Conference onExtendingDatabase
Technology, pages 144–155. ACM, 2012. (cited on pages 110 and 111)

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast Exact Shortest-Path Distance
Queries on Large Networks by Pruned Landmark Labeling. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data, pages
349–360. ACM, 2013. (cited on pages 109 and 113)

Leman Akoglu, Duen Horng Chau, Christos Faloutsos, Nikolaj Tatti, Hanghang
Tong, and Jilles Vreeken. Mining Connection Pathways for Marked Nodes in
Large Graphs. In SDM’13: Proceedings of the 13th SIAM International Conference
on Data Mining, pages 37–45. SIAM, 2013. (cited on page 153)

Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approxi-
mating the Frequency of Moments. In STOC’96: Proceedings of the 28th Annual
ACM Symposium on Theory of Computing, pages 20–29. ACM, 1996. (cited on page
35)

ReidAndersen andKumarChellapilla. FindingDense Subgraphswith Size Bounds.
In Algorithms and Models for the Web-Graph, volume 5427 of Lecture Notes in
Computer Science, pages 25–37. Springer, 2009. (cited on page 154)

Albert Angel, Nikos Sarkas, Nick Koudas, and Divesh Srivastava. Dense Subgraph
Maintenance under Streaming Edge Weight Updates for Real-time Story Identi-
fication. Proceedings of the VLDB Endowment (PVLDB), 5(6):574–585, February
2012. (cited on page 154)

Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily
Finding a Dense Subgraph. Journal of Algorithms, 34(2):203–221, 2000. (cited on
page 154)

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In The Semantic
Web, volume 4825 ofLectureNotes inComputer Science, pages 722–735. Springer,
2007. (cited on page 132)

Bahman Bahmani, Ravi Kumar, and Sergej Vassilvitskii. Densest Subgraph in
Streaming and MapReduce. In Proceedings of the VLDB Endowment (PVLDB),
volume 5, pages 454–465. VLDB Endowment, 2012. (cited on page 154)

186

Bibliography A

Albert-László Barabási and Albert Réka. Emergence of Scaling in Random Net-
works. Science, 286:509–512, 1999. (cited on page 17)

Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik
Schultes. In Transit to Constant Time Shortest-Path Queries in Road Networks.
InALENEX’07: Proceedings of the Ninth Workshop on Algorithm Engineering and
Experiments. SIAM, 2007. (cited on pages 22 and 111)

Scott Beamer, Krste Asanović, and David Patterson. Direction-Optimizing
Breadth-First Search. In SC’12: Proceedings of the 2012 International Confer-
ence on High Performance Computing, Networking, Storage and Analysis. IEEE,
2012. (cited on pages 95 and 103)

Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and
Shashank Sudarshan. Keyword Searching and Browsing in Databases using
BANKS. In ICDE’02: Proceedings of the 18th IEEE International Conference on
Data Engineering, pages 431–440. IEEE, 2002. (cited on page 153)

Burton Howard Bloom. Space/Time Tradeoffs in Hash Coding with Allowable Er-
rors. Communications of the ACM, 13:422–426, 1970. (cited on page 87)

Paolo Boldi, Massimo Santini, and Sebastiano Vigna. A Large Time-Aware Graph.
SIGIR Forum, 42(2):33–38, 2008. (cited on pages 66 and 112)

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: A Collaboratively Created GraphDatabase for Structuring HumanKnowl-
edge. InProceedings of the 2008ACMSIGMODInternational Conference onMan-
agement of Data, pages 1247–1250. ACM, 2008. (cited on pages 91, 132 and 135)

Béla Bollobás and Oliver Riordan. The Diameter of a Scale-Free Random Graph.
Combinatorica, 24:5–34, 2004. (cited on page 17)

Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. Computer Networks and ISDN Systems, 30:107–117, 1998. (cited
on page 21)

Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph Structure
in the Web. Computer Networks, 33(1-6):309–320, 2000. (cited on page 23)

Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: An Archi-
tecture for Storing and Querying RDF Data and Schema Information. In Spin-
ning the Semantic Web: Bringing the World Wide Web to Its Full Potential, pages
197–222. MIT Press, 2003. (cited on page 32)

Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Salva-
tore Trani. Learning Relatedness Measures for Entity Linking. In CIKM’13: Pro-
ceedings of the 22nd ACM International Conference on Information and Knowl-
edge Management, pages 139–148. ACM, 2013. (cited on page 141)

187

Appendix A Bibliography

Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P. Gum-
madi. Measuring User Influence in Twitter: The Million Follower Fallacy. In
ICWSM’10: Proceedings of the 4th International AAAI Conference on Weblogs
and Social Media. AAAI, 2010. (cited on page 66)

Moses Charikar. Greedy Approximation Algorithms for Finding Dense Compo-
nents in a Graph. In Proceedings of the Third International Workshop on Approx-
imation Algorithms for Combinatorial Optimization, APPROX ’00, pages 84–95.
Springer, 2000. (cited on pages 148 and 154)

Duen Horng Chau, Christos Faloutsos, Hanghang Tong, Jason I. Hong, Brian Gal-
lagher, and Tina Eliassi-Rad. Graphite: AVisual Query System for LargeGraphs.
In ICDMW’08: Proceedings of the 8th IEEE International Conference on Data
Mining (Workshops), pages 963–966. IEEE, 2008. (cited on page 153)

Yangjun Chen and Yibin Chen. An Efficient Algorithm for Answering Graph
Reachability Queries. In ICDE’08: Proceedings of the 24th IEEE International
Conference on Data Engineering, pages 893–902. IEEE, 2008. (cited on pages 45
and 63)

James Cheng, Yiping Ke, Wilfred Ng, and Jeffrey Xu Yu. Context-Aware Object
Connection Discovery in Large Graphs. In ICDE’09: Proceedings of the 25th
IEEE International Conference on Data Engineering, pages 856–867. IEEE, 2009.
(cited on page 153)

James Cheng, Zechao Shang, Hong Cheng, Haixun Wang, and Jeffrey Xu Yu. K-
Reach: Who is in Your Small World. Proceedings of the VLDB Endowment
(PVLDB), 5(11):1292–1303, 2012. (cited on page 109)

Jiefeng Cheng and Jeffrey Xu Yu. On-Line Exact Shortest Distance Query Process-
ing. In EDBT’09: Proceedings of the 12th International Conference on Extending
Database Technology, pages 481–492. ACM, 2009. (cited on page 109)

Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar-
ren Erik Vengroff, and Jeffrey Scott Vitter. External-Memory Graph Algorithms.
In SODA’95: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 139–149. SIAM, 1995. (cited on page 35)

Joel Coffman and Alfred Weaver. An Empirical Performance Evaluation of Rela-
tional Keyword Search Techniques. IEEE Transactions on Knowledge and Data
Engineering, 99, 2013. (cited on page 153)

Edith Cohen. Size-Estimation Framework with Applications to Transitive Closure
and Reachability. In Journal of Computer and System Sciences, volume 55, pages
441–453, Orlando, FL, USA, December 1997. Academic Press, Inc. (cited on page
56)

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and Dis-
tance Queries via 2-Hop Labels. In SODA’02: Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms. ACM/SIAM, 2002. (cited on pages
45, 63 and 108)

188

Bibliography A

Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and Ely Porat. A Faster Im-
plementation of the Goemans-Williamson Clustering Algorithm. In SODA’01:
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 17–25. SIAM, 2001. (cited on page 147)

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. MIT Press, 3rd edition, 2009. (cited on pages 23 and 56)

Anish Das Sarma, Alpa Jain, and Cong Yu. Dynamic Relationship and Event Dis-
covery. In WSDM’11: Proceedings of the 4th ACM International Conference on
Web Search and Data Mining, pages 207–216. ACM, 2011. (cited on pages 151
and 154)

AtishDas Sarma, SreenivasGollapudi,MarcNajork, andRina Panigrahy. A Sketch-
Based Distance Oracle for Web-Scale Graphs. In WSDM’10: Proceedings of
the 3rd ACM International Conference on Web Search and Data Mining, pages
401–410. ACM, 2010. (cited on pages 75, 77, 78, 91, 93, 105 and 110)

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI’04: Proceedings of the 6th USENIX Symposium on Oper-
ating System Design and Implementation, pages 137–150. USENIX Association,
2004. (cited on pages 4 and 36)

Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Trading Off Space for
Passes in Graph Streaming Problems. ACM Transactions on Algorithms, 6(1):
1–17, December 2009. (cited on page 36)

Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer, 4 edition, July 2010. (cited on page 23)

Edsger. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik, 1:269–271, 1959. (cited on page 75)

David Easley and Jon Kleinberg. Networks, Crowds, and Markets. Cambridge Uni-
versity Press, July 2010. (cited on page 23)

Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. Fast Discovery of
Connection Subgraphs. In KDD’04: Proceedings of the 10th ACM SIGKDD In-
ternational Conference on Knowledge Discovery andDataMining, pages 118–127.
ACM, 2004. (cited on pages 133 and 152)

Lujun Fang, Anish Das Sarma, Cong Yu, and Philip Bohannon. REX: Explain-
ing Relationships between Entity Pairs. Proceedings of the VLDB Endowment
(PVLDB), 5(3):241–252, 2011. (cited on pages 23, 134, 153, 161, 162 and 166)

Uriel Feige, Guy Kortsarz, and David Peleg. The Dense k-Subgraph Problem. Al-
gorithmica, 29:410–421, 2001. (cited on page 138)

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddarth Suri, and Jian
Zhang. On Graph Problems in a Semi-Streaming Model. In Josep Díaz, Juhani
Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata, Languages

189

Appendix A Bibliography

and Programming, volume 3142 of Lecture Notes in Computer Science, pages
531–543. Springer, 2004. (cited on pages 27, 36 and 95)

Matteo Fischetti, Horst W Hamacher, Kurt Jørnsten, and Francesco Maffioli.
Weighted k-Cardinality Trees: Complexity and Polyhedral Structure. Networks,
24:11–21, 1994. (cited on page 139)

Philippe Flajolet and G. Nigel Martin. Probabilistic Counting Algorithms for Data
Base Applications. Journal of Computer and System Sciences, 31:182–209, 1985.
(cited on page 35)

Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, and Raymond Chi-Wing Wong.
IS-LABEL: An Independent-Set baed Labeling Scheme for Point-to-Point Dis-
tance Querying. In Proceedings of the VLDB Endowment (PVLDB), 2013. (cited
on pages 109, 110 and 113)

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag Subramanya. FACC1:
Freebase Annotation of ClueWeb Corpora, Version 1 (release data 2013-06-26,
format version 1, correction level 0). http://lemurproject.org/clueweb12/

FACC1/, 2013. (cited on page 136)

JunGao, Ruoming Jin, Jiashuai Zhou, Jeffrey XuYu, Xiao Jiang, and TengjiaoWang.
Relational Approach for Shortest Path Discovery over Large Graphs. Proceedings
of the VLDB Endowment (PVLDB), 5(4):358–369, 2011. (cited on page 111)

Naveen Garg, Goran Konjevod, and R. Ravi. A Polylogarithmic Approximation
Algorithm for the Group Steiner Tree Problem. Journal of Algorithms, 37(1):
66–84, 2000. (cited on page 149)

Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance Labeling in
Graphs. Journal of Algorithms, 53(1):85–112, October 2004. (cited on page 108)

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contrac-
tion Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks.
In WEA’2008: Proceedings of the 7th International Workshop on Experimental
Algorithms, volume 5038 of Lecture Notes in Computer Science, pages 319–333.
Springer, 2008. (cited on pages 22 and 111)

Michel X. Goemans and David P. Williamson. A General Approximation Tech-
nique for Constrained Forest Problems. In SODA’92: Proceedings of the
3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 307–316.
ACM/SIAM, 1992. (cited on page 147)

Andrew V. Goldberg. Finding a Maximum Density Subgraph. Technical report,
University of California at Berkeley, 1984. (cited on page 154)

AndrewV.Goldberg andChrisHarrelson. Computing the Shortest Path: A∗ Search
Meets Graph Theory. Technical Report MSR-TR-2004-24, Microsoft Research,
2004. (cited on pages 78 and 110)

190

http://lemurproject.org/clueweb12/FACC1/
http://lemurproject.org/clueweb12/FACC1/

Bibliography A

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In
OSDI’12: Proceedings of the 10th USENIX Symposium on Operating System De-
sign and Implementation, pages 17–30. USENIX Association, 2012. (cited on page
38)

GangGou andRadaChirkova. Efficient Algorithms for Exact RankedTwig-Pattern
Matching over Graphs. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, pages 581–594, 2008. (cited on page 74)

Andrey Gubichev, Srikanta Bedathur, Stephan Seufert, and Gerhard Weikum. Fast
and Accurate Estimation of Shortest Paths in Large Graphs. In CIKM’10: Pro-
ceedings of the 19th ACM International Conference on Information andKnowledge
Management, pages 499–508. ACM, 2010. (cited on pages 75, 76, 79, 93, 110, 111 and 117)

Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald. TriAD: A
Distributed Shared-Nothing RDF Engine based onAsynchronousMessage Pass-
ing. In Proceedings of the 2014 ACM SIGMOD International Conference on Man-
agement of Data, pages 289–300. ACM, 2014. (cited on page 32)

Peter E.Hart, Nils J. Nilsson, andBertramRaphael. A Formal Basis for theHeuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science
and Cybernetics, 4:100–107, 1968. (cited on page 110)

Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. BLINKS: Ranked Keyword
Searches on Graphs. In Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pages 305–316. ACM, 2007. (cited on page
153)

ChinmayHegde, Piotr Indyk, and Ludwig Schmidt. A Fast, Adaptive Variant of the
Goemans-Williamson Scheme for the Prize-Collecting Steiner Tree Problem. In
11th DIMACS Implementation Challenge in Collaboration with ICERM: Steiner
Tree Problems, 2014. (cited on page 147)

C. S. Helvig, Gabriel Robins, and Alexander Zelikovsky. An Improved Approxima-
tion Scheme for the Group Steiner Problem. Networks, 37, 2001. (cited on page
149)

Johannes Hoffart, Fabian Suchanek, Klaus Berberich, and Gerhard Weikum.
YAGO2: A Spatially and Temporally Enhanced Knowledge Base from
Wikipedia. Research Report MPI-I-2010-5-007, Max Planck Institute for In-
formatics, November 2010. (cited on page 135)

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Man-
fred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
Robust Disambiguation of Named Entities in Text. In EMNLP’11: Proceedings of
the 2011 Conference on Empirical Methods in Natural Language Processing, pages
782–792. Association for Computational Linguistics, 2011. (cited on page 23)

191

Appendix A Bibliography

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen, Martin Theobald, and Gerhard
Weikum. KORE: Keyphrase Overlap Relatedness for Entity Disambiguation. In
CIKM’12: Proceedings of the 21th ACM International Conference on Information
and Knowledge Management, pages 545–555. ACM, 2012. (cited on pages 66, 136
and 141)

Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
YAGO2: A Spatially and Temporally Enhanced Knowledge Base from
Wikipedia. Artificial Intelligence, 194:28–61, 2013. (cited on pages 23, 32, 44, 91
and 132)

M. Shahriar Hossain, Patrick Butler, Arnold P. Boedihardjo, and Naren Ramakr-
ishnan. Storytelling in Entity Networks to Support Intelligence Analysts. In
KDD’12: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1375–1383. ACM, 2012. (cited
on page 154)

Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER: Keyword Search in
Relational Databases. In VLDB’02: Proceedings of the 28th International Confer-
ence on Very Large Data Bases, pages 670–681. VLDB Endowment, 2002. (cited
on page 153)

Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient IR-Style
Keyword Search over Relational Databases. In VLDB’03: Proceedings of the 29th
International Conference on Very Large Data Bases, pages 850–861. VLDB En-
dowment, 2003. (cited on page 153)

Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL Querying of Large
RDF Graphs. Proceedings of the VLDB Endowment (PVLDB), 4(11):1123–1134,
2011. (cited on page 32)

H. V. Jagadish. A Compression Technique to Materialize Transitive Closure. ACM
Transactions on Database Systems, 15(4):558–598, December 1990. (cited on page
63)

Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently Answering
Reachability Queries on Very Large Directed Graphs. In Proceedings of the 2008
ACMSIGMODInternational Conference onManagement ofData, pages 595–608.
ACM, 2008. (cited on pages 45 and 66)

Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-HOP: A High-
Compression Indexing Scheme for Reachability Query. In Proceedings of the
2009 ACM SIGMOD International Conference on Management of Data, pages
813–826. ACM, 2009. (cited on pages 45, 64 and 66)

Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. Path-Tree: An Efficient
Reachability Indexing Scheme for Large Directed Graphs. ACM Transactions on
Database Systems (TODS), 36(1):7, 2011. (cited on pages 45, 63, 64 and 65)

192

Bibliography A

Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu Yu. SCARAB: Scaling Reacha-
bility Computation on Large Graphs. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 169–180, 2012a. (cited
on page 63)

Ruoming Jin, Ning Ruan, YangXiang, andVictor Lee. AHighway-Centric Labeling
Approach for Answering Distance Queries on Large Sparse Graphs. In Proceed-
ings of the 2012ACMSIGMOD International Conference onManagement of Data,
pages 445–456. ACM, 2012b. (cited on page 109)

Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S Sudarshan, Rushi Desai,
and Hrishikesh Karambelkar. Bidirectional Expansion for Keyword Search on
Graph Databases. In VLDB’05: Proceedings of the 31st International Conference
on Very Large Data Bases, pages 505–516. VLDB Endowment, 2005. (cited on page
153)

Mehdi Kargar and Aijun An. Keyword Search in Graphs: Finding r-Cliques. Pro-
ceedings of the VLDB Endowment (PVLDB), 4(10):681–692, 2011. (cited on page
153)

Gjergji Kasneci, Shady Elbassuoni, andGerhardWeikum. MING:Mining Informa-
tive Entity-Relationship Subgraphs. In CIKM’09: Proceedings of the 18th ACM
International Conference on Information and Knowledge Management, pages
1653–1656. ACM, 2009a. (cited on pages 134 and 153)

Gjergji Kasneci, Maya Ramanath, Mauro Sozio, Fabian M. Suchanek, and Ger-
hard Weikum. STAR: Steiner-Tree Approximation in Relationship Graphs. In
ICDE’09: Proceedings of the 25th IEEE International Conference on Data Engi-
neering, pages 868–879. IEEE, 2009b. (cited on page 153)

Irit Katriel and Ulrich Meyer. Algorithms for Memory Hierarchies, volume 2625 of
Lecture Notes in Computer Science, pages 62–84. Springer, 2003. (cited on page 35)

Jon Kleinberg, Aleksandrs Slivkins, and Tom Wexler. Triangulation and Embed-
ding via a Small Set of Beacons. In FOCS’04: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 444–453. IEEE, 2004.
(cited on page 77)

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a
Social Network or a News Media? In WWW’10: Proceedings of the 19th Inter-
national World Wide Web Conference, pages 591–600. ACM, 2010. (cited on page
112)

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-Scale Graph
Computation on Just a PC. In OSDI’12: Proceedings of the 10th USENIX Sym-
posium on Operating System Design and Implementation. USENIX Association,
2012. (cited on page 38)

Victor E. Lee, NingRuan, Ruoming Jin, andCharuAggarwal. Managing andMining
Graph Data, volume 40 of Advances in Database Systems, chapter 10: A Survey

193

Appendix A Bibliography

of Algorithms for Dense Subgraph Discovery, pages 303–336. Springer, 2010.
(cited on page 154)

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-
munity Structure in Large Networks: Natural Cluster Sizes and the Absence of
Large Well-Defined Clusters. Internet Mathematics, 6:29–123, 2009. (cited on
pages 111 and 112)

Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph Algorithms in
MapReduce. In MLG’10: Proceedings of the 8th Workshop on Mining and Learn-
ing with Graphs, pages 78–85. ACM, 2010. (cited on page 37)

Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. GraphLab: A New Framework for Parallel Machine
Learning. In UAI’10: Proceedings of the 26th Conference on Uncertainty in Arti-
ficial Intelligence, pages 340–349. AUAI Press, 2010. (cited on page 38)

Yucheng Low, Danny Bickson, Joseph E. Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M. Hellerstein. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. Proceedings of the VLDB Endowment
(PVLDB), 5:716–727, April 2012. (cited on page 38)

Anirban Majumder, Samik Datta, and K. V. M. Naidu. Capacitated Team Forma-
tion Problem on Social Networks. In KDD’12: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1005–1013, 2012. (cited on page 74)

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-Scale
Graph Processing. In Proceedings of the 2010 ACM SIGMOD International Con-
ference onManagement of Data, pages 135–146. ACM, 2010. (cited on pages 4 and 37)

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008. (cited on page 107)

William F. McColl. Scalability, Portability, and Predictability: The BSP Approach
to Parallel Programming. Future Generation Computer Systems, pages 265–272,
1996. (cited on page 37)

Kurt Mehlhorn and Ulrich Meyer. External-Memory Breadth-First Search with
Sublinear I/O. In ESA’02: Proceedings of the 10th Annual European Conference
on Algorithms, pages 723–735. Springer, 2002. (cited on page 35)

Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Tool-
box. Springer, 2008. (cited on page 34)

Ulrich Meyer and Norbert Zeh. I/O-Efficient Shortest Path Algorithms for Undi-
rected Graphs with Random of Bounded Edge Lenghts. ACM Transactions on
Algorithms, 8(3 (Article 22)), 2012. (cited on page 35)

194

Bibliography A

DavidMilne and IanH.Witten. AnEffective, Low-CostMeasure of Semantic Relat-
edness Obtained from Wikipedia Links. In WIKIAI’08: Proceedings of the 2008
AAAI Workshop on Wikipedia and Artificial Intelligence. AAAI, 2008. (cited on
pages 136 and 140)

Alan Mislove, Massimiliano Marcon, Krishna Gummadi, Peter Druschel, and
Bobby Bhattacharjee. Measurement and Analysis of Online Social Networks.
In IMC’07: Proceedings of the 7th ACM SIGCOMM Conference on Internet Mea-
surement, pages 29–42. ACM, 2007. (cited on page 22)

Kameshwar Munagala and Abhiram Ranade. I/O-Complexity of Graph Algo-
rithms. In SODA’99: Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 687–694. SIAM, 1999. (cited on page 35)

J. Ian Munro and Mike S. Paterson. Selection and Sorting with Limited Storage.
Theoretical Computer Science, 12:315–323, 1980. (cited on page 35)

S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science, 1:117–236, 2005. (cited on page 36)

Thomas Neumann and Gerhard Weikum. The RDF-3X Engine for Scalable Man-
agement of RDF Data. The VLDB Journal, 19(1):91–113, 2010. (cited on pages 32
and 113)

EskoNuutila. AnExperimental Study onTransitive Closure Representations. Tech-
nical Report TKO-B134, Helsinki University of Technology, 1996. (cited on pages
63 and 64)

Christopher R. Palmer, Phillip B. Gibbons, and Christos Faloutsos. ANF: A Fast
and Scalable Tool for Data Mining in Massive Graphs. In KDD’02: Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 81–90. ACM, 2002. ISBN 1-58113-567-X. (cited on page 56)

David Peleg. Proximity-Preserving Labeling Schemes. Journal Graph Theory, pages
167–176, 2000. (cited on page 108)

Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis. Fast
Shortest Path Distance Estimation in Large Networks. In CIKM’09: Proceedings
of the 18th ACM International Conference on Information and Knowledge Man-
agement, pages 867–876. ACM, 2009. (cited on pages 75, 77, 78 and 110)

Jeffrey Pound, Alexander K. Hudek, Ihab F. Ilyas, and Grant Weddell. Interpreting
Keyword Queries over Web Knowledge Bases. In CIKM’12: Proceedings of the
21th ACM International Conference on Information and Knowledge Management,
pages 305–314. ACM, 2012. (cited on page 23)

Zichao Qi, Yanghua Xiao, Bin Shao, and Haixun Wang. Toward a Distance Oracle
for Billion-Node Graphs. Proceedings of the VLDB Endowment (PVLDB), 7(2):
61–72, 2013. (cited on page 110)

195

Appendix A Bibliography

Miao Qiao, Hong Cheng, Lijun Chang, and Jeffrey Xu Yu. Approximate Short-
est Distance Computing: A Query Dependent Local Landmark Scheme. IEEE
Transactions on Knowledge and Data Engineering, 2012. (cited on pages 77 and 110)

Cartic Ramakrishnan, William H. Milnor, Matthew Perry, and Amit P. Sheth.
Discovering Informative Connection Subgraphs in Multi-Relational Graphs.
SIGKDD Explorations, 7(2):56–63, 2005. (cited on page 153)

Gabriele Reich and Peter Widmayer. Beyond Steiner’s Problem: A VLSI Oriented
Generalization. In Proceedings of the 15th International Workshop on Graph-
theoretic Concepts in Computer Science, pages 196–210. Springer, 1990. (cited on
pages 149 and 151)

Michael Rice and Vassilis J. Tsotras. Graph Indexing of Road Networks for Short-
est Path Queries with Label Restrictions. Proceedings of the VLDB Endowment
(PVLDB), 4(2):69–80, November 2010. ISSN 2150-8097. (cited on page 111)

Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases. O’Reilly Media,
2013. (cited on pages 27, 29 and 30)

José F. Rodrigues, Jr., Hanghang Tong, Agma J. M. Traina, Christos Faloutsos, and
Jure Leskovec. Gmine: A System for Scalable, Interactive Graph Visualization
and Mining. In VLDB’06: Proceedings of the 32nd International Conference on
Very Large Data Bases, pages 1195–1198. VLDB Endowment, 2006. (cited on page
153)

Ning Ruan. personal communication, 2012. (cited on page 65)

Jan Matthias Ruhl. Efficient Algorithms for New Computational Models. PhD thesis,
Massachusetts Institute of Technology, September 2003. (cited on page 36)

Semih Salihoglu and Jennifer Widom. GPS: A Graph Processing System. In SS-
DBM’13: Proceedings of the 25th International Conference on Scientific and Sta-
tistical Database Management. ACM, 2013. (cited on page 37)

Semih Salihoglu and Jennifer Widom. Optimizing Graph Algorithms on Pregel-
like Systems. Proceedings of the VLDB Endowment (PVLDB), 7:577–588, March
2014. (cited on page 37)

Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact Shortest
Path Queries. In ESA’05: Proceedings of the 13th Annual European Conference
on Algorithms, pages 568–579. Springer, 2005. (cited on pages 22 and 111)

Ralf Schenkel, Anja Theobald, and Gerhard Weikum. HOPI: An Efficient Connec-
tion Index for Complex XML Document Collections. In EDBT’04: Proceedings
of the 9th International Conference on Extending Database Technology, volume
2992 of Lecture Notes in Computer Science, pages 237–255. Springer, 2004. (cited
on pages 45, 64 and 109)

196

Bibliography A

Ralf Schenkel, Anja Theobald, and Gerhard Weikum. Efficient Creation and In-
cremental Maintenance of the HOPI Index for Complex XML Document Col-
lections. In ICDE’06: Proceedings of the 22th IEEE International Conference on
Data Engineering, pages 360–371. IEEE, 2006. (cited on pages 108 and 109)

Arie Segev. The Node-Weighted Steiner Tree Problem. Networks, 17:1–17, 1987.
(cited on page 145)

Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and GerhardWeikum. FER-
RARI: Flexible and Efficient Reachability RangeAssignment for Graph Indexing.
In ICDE’13: Proceedings of the 29th IEEE International Conference on Data Engi-
neering. IEEE, 2013. (cited on page 29)

Clifford A. Shaffer. Data Structures and Algorithm Analysis. Dover Publications,
Mineola, NY, United States, 2011. (cited on page 106)

John C. Sheperdson andHoward E. Sturgis. Computability of Recursive Functions.
Journal of the ACM, 10:217–255, 1963. (cited on page 34)

Julian Shun and Guy Blelloch. Ligra: A Lightweight Graph Processing Framework
for Shared Memory. In PPoPP’13: Proceedings of the 2013 ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 135–146. ACM,
2013. (cited on pages 95 and 103)

Christian Sommer. Shortest Path Queries in Static Networks. Preprint, 2012. (cited
on page 111)

Mauro Sozio and Aristides Gionis. The Community-search Problem and How
to Plan a Successful Cocktail Party. In KDD’10: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 939–948. ACM, 2010. (cited on pages 148 and 154)

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A Core of
Semantic Knowledge. In WWW’07: Proceedings of the 16th International World
Wide Web Conference, pages 697–706. ACM, 2007. (cited on page 132)

Yufei Tao, Cheng Sheng, and Jian Pei. On k-skip Shortest Paths. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data, pages
421–432. ACM, 2011. (cited on page 111)

MikkelThorup andUri Zwick. Approximate Distance Oracles. Journal of the ACM,
52(1):1–24, 2005. (cited on page 109)

Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. From ”Think Like a Vertex” to ”Think Like a Graph”. Proceed-
ings of the VLDB Endowment (PVLDB), 7(3):193–204, November 2013. (cited on
page 37)

Hanghang Tong and Christos Faloutsos. Center-Piece Subgraphs: Problem Defini-
tion and Fast Solutions. In KDD’06: Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 404–413.
ACM, 2006. (cited on pages 133, 140, 141, 142, 143, 153, 157, 163 and 166)

197

Appendix A Bibliography

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast Random Walk with
Restart and its Applications. In ICDM’06: Proceedings of the 6th IEEE Inter-
national Conference on Data Mining, pages 613–622, 2006. (cited on pages 141, 142
and 143)

Jeffrey Travers and Stanley Milgram. An Experimental Study of the Small World
Problem. Sociometry, 32(4):425–443, 1969. (cited on page 22)

KonstantinTretyakov, AbelArmas-Cervantes, LucianoGarcía-Ba nuelos, JaakVilo,
and Marlon Dumas. Fast Fully Dynamic Landmark-Based Estimation of Short-
est Path Distances in Very Large Graphs. In CIKM’11: Proceedings of the
20th ACM International Conference on Information and Knowledge Management,
pages 1785–1794. ACM, 2011. (cited on page 111)

Silke Trißl and Ulf Leser. Fast and Practical Indexing and Querying of Large
Graphs. In Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, pages 845–856. ACM, 2007. (cited on pages 45 and 64)

Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, FrancescoGullo,
and Maria A. Tsiarli. Denser than the Densest Subgraph: Extracting Optimal
Quasi-Cliques with Quality Guarantees. In KDD’13: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 104–112. ACM, 2013. (cited on page 154)

Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications of
the ACM, 33(8):103–111, 1990. (cited on page 37)

Sebastiaan J. van Schaik and Oege de Moor. A Memory Efficient Reachability Data
StructureThrough Bit Vector Compression. In Proceedings of the 2011ACMSIG-
MOD International Conference on Management of Data, pages 913–924. ACM,
2011. (cited on pages 29, 45, 52, 63 and 64)

Vijay V. Vazirani. Approximation Algorithms. Springer, 2001. (cited on page 23)

Monique V. Vieira, Bruno M. Fonseca, Rodrigo Damazio, Paulo B. Golgher, Davi
de Castro Reis, and Berthier Ribeiro-Neto. Efficient Search Ranking in Social
Networks. In CIKM’07: Proceedings of the 16th ACM International Conference
on Information and Knowledge Management, pages 563–572. ACM, 2007. (cited
on page 74)

Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. Dual Labeling:
Answering Graph Reachability Queries in Constant Time. In ICDE’06: Pro-
ceedings of the 22th IEEE International Conference on Data Engineering, page 75.
IEEE, 2006. (cited on pages 45 and 63)

Fang Wei. TEDI: Efficient Shortest Path Query Answering on Graphs. In Proceed-
ings of the 2010ACMSIGMOD International Conference onManagement of Data,
pages 99–110. ACM, 2010. (cited on page 111)

198

Bibliography A

KevinWilkinson, Craig Sayers, HarumiA.Kuno, andDaveReynolds. Efficient RDF
Storage and Retrieval in Jena2. In SWDB’03: Proceedings of the 1st International
Workshop on Semantic Web and Databases, pages 131–150. VLDB Endowment,
2003. (cited on page 32)

Yanghua Xiao, Wentao Wu, Jian Pei, Wei Wang, and Zhenying He. Efficiently
Indexing Shortest Paths by Eploiting Symmetry in Graphs. In EDBT’09: Pro-
ceedings of the 12th International Conference on Extending Database Technology,
pages 493–504. ACM, 2009. (cited on page 111)

Jeffrey Xu Yu and Jiefeng Cheng. Managing and Mining Graph Data, volume 40 of
Advances in Database Systems, chapter 6: Graph Reachability Queries: A Survey,
pages 181–215. Springer, 2010. (cited on page 63)

Hilmi Yıldırım, Vineet Chaoji, and Mohammed J. Zaki. GRAIL: Scalable Reacha-
bility Index for Large Graphs. In Proceedings of the VLDB Endowment (PVLDB),
volume 3, pages 276–284. VLDB Endowment, 2010. (cited on pages 29, 45, 50, 52
and 64)

Hilmi Yıldırım, Vineet Chaoji, and Mohammed J. Zaki. GRAIL: A Scalable In-
dex for Reachability Queries in Very Large Graphs. The VLDB Journal, 21(4):
509–534, 2012. (cited on pages 29, 45, 50, 51, 52, 62, 64, 65, 66 and 67)

Xianghong Zhou, Ming-Chih J. Kao, and Wing Hung Wong. Transitive Functional
Annotation by Shortest-Path Analysis of Gene Epression Data. Proceedings of
the National Academy of Sciences, 99(20):12783–12788, 2002. (cited on page 74)

199

	I Introduction
	1 Analyzing Relationships at Web-Scale
	1.1 Challenges and Opportunities
	1.2 Contributions
	1.3 Key Problems in Relationship Analysis
	1.4 Thesis Organization

	2 Preliminaries
	2.1 A Primer on Graph Theory
	2.2 Approximation Algorithms

	3 Graph Data Processing: State of the Art & Directions
	3.1 Representing, Indexing, and Querying Graph-Structured Data
	3.2 Large-Scale Graph Processing

	II Algorithmic Building Blocks
	4 Reachability Analysis
	4.1 Problem Definition
	4.2 Interval Labeling
	4.3 Approximate Interval Labeling
	4.4 The Ferrari Reachability Index
	4.5 Query Processing
	4.6 Related Work
	4.7 Experimental Evaluation
	4.8 Summary

	5 Distance and Shortest Path Approximation
	5.1 Problem Definition
	5.2 Seed-Based Distance Estimation
	5.3 The Path Sketch Index
	5.4 Budgeted Query Processing
	5.5 Restricted and Diverse Paths
	5.6 Index Construction
	5.7 Physical Index Layout
	5.8 Related Work
	5.9 Experimental Evaluation
	5.10 Summary

	6 Relatedness Cores
	6.1 Problem Definition
	6.2 The Espresso Knowledge Graph
	6.3 Computational Model
	6.4 Relationship Centers
	6.5 Connection to Query Entities
	6.6 Relatedness Cores
	6.7 Integration of Temporal Information
	6.8 Related Work
	6.9 Experimental Evaluation
	6.10 Summary

	III The Big Picture
	7 Summary & Future Directions

	IV Appendix
	A The Instant Espresso System Demonstration
	Bibliography

