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ABSTRACT

Incremental computation strives for efficient successive runs of applications by re-
executing only those parts of the computation that are affected by a given input
change instead of recomputing everything from scratch. To realize the benefits of
incremental computation, researchers and practitioners are developing new sys-
tems where the application programmer can provide an efficient update mecha-
nism for changing application data. Unfortunately, most of the existing solutions
are limiting because they not only depart from existing programming models, but
also require programmers to devise an incremental update mechanism (or a dy-
namic algorithm) on a per-application basis.

In this thesis, we present incremental parallel and distributed systems that
enable existing real-world applications to automatically benefit from efficient in-
cremental updates. Our approach neither requires departure from current models
of programming, nor the design and implementation of dynamic algorithms.

To achieve these goals, we have designed and built the following incremen-
tal systems: (i) Incoop — a system for incremental MapReduce computation; (ii)
Shredder — a GPU-accelerated system for incremental storage; (iii) Slider — a
stream processing platform for incremental sliding window analytics; and (iv) iThreads
— a threading library for parallel incremental computation. Our experience with
these systems shows that significant performance can be achieved for existing ap-
plications without requiring any additional effort from programmers.
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KURZDARSTELLUNG

Inkrementelle Berechnungen ermöglichen die effizientere Ausführung aufeinan-
derfolgender Anwendungsaufrufe, indem nur die Teilbereiche der Anwendung
erneut ausgefürt werden, die von den Änderungen der Eingabedaten betroffen
sind. Dieses Berechnungsverfahren steht dem konventionellen und vollständig
neu berechnenden Verfahren gegenüber. Um den Vorteil inkrementeller Berech-
nungen auszunutzen, entwickeln sowohl Wissenschaft als auch Industrie neue Sys-
teme, bei denen der Anwendungsprogrammierer den effizienten Aktualisierungsmech-
anismus für die Änderung der Anwendungsdaten bereitstellt. Bedauerlicherweise
lassen sich existierende Lösungen meist nur eingeschränkt anwenden, da sie das
konventionelle Programmierungsmodel beibehalten und dadurch die erneute En-
twicklung vom Programmierer des inkrementellen Aktualisierungsmechanismus
(oder einen dynamischen Algorithmus) für jede Anwendung verlangen.

Diese Doktorarbeit stellt inkrementelle Parallele- und Verteiltesysteme vor, die
es existierenden Real-World-Anwendungen ermöglichen vom Vorteil der inkre-
mentellen Berechnung automatisch zu profitieren. Unser Ansatz erfordert weder
eine Abkehr von gegenwärtigen Programmiermodellen, noch Design und Imple-
mentierung von anwendungsspezifischen dynamischen Algorithmen.

Um dieses Ziel zu erreichen, haben wir die folgenden Systeme zur inkrementellen
parallelen und verteilten Berechnung entworfen und implementiert: (i) Incoop —
ein System für inkrementelle Map-Reduce-Programme; (ii) Shredder — ein GPU-
beschleunigtes System zur inkrementellen Speicherung; (iii) Slider — eine Plat-
tform zur Batch-basierten Streamverarbeitung via inkrementeller Sliding-Window-
Berechnung; und (iv) iThreads — eine Threading-Bibliothek zur parallelen inkre-
mentellen Berechnung. Unsere Erfahrungen mit diesen Systemen zeigen, dass
unsere Methoden sehr gute Performanz liefern können, und dies ohne weiteren
Aufwand des Programmierers.
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CHAPTER 1

Introduction

1.1 The Promise of Incremental Computation

Many real-world applications are inherently used in an incremental workflow, that

is, they are invoked repeatedly with only small changes in input. Common exam-

ples span a wide spectrum of applications including scientific simulations, large-

scale data analytics, reactive systems, robots, traffic control systems, scheduling

systems, etc. All these applications naturally arise in a number of domains, in-

cluding software systems, graphics, robotics, databases, and networked systems.

These applications interact with the physical world observing their input data con-

tinuously evolving over time, causing incremental and continuous modifications

to the property being computed. Therefore, these applications must respond to

such incremental modifications correctly and efficiently.

Such applications, when confronted with localized modifications to the input,

often require only small modifications to the output. Therefore, if we have tech-

niques for quickly identifying the parts of the output that are affected by the mod-

ifications and updating them while reusing the rest of the output, we will be able

to incrementally update the output in a significantly more efficient (and thus faster

and cheaper) way than recomputing the entire output from scratch [130].

To realize the benefits of incremental computation, researchers and practition-

ers are developing new systems where programmers can provide efficient update



mechanism for changing application data. These systems for incremental compu-

tation can be significantly more efficient than recomputing from scratch. How-

ever, most of the existing approaches have two major limitations: first, these sys-

tems depart from existing programming models, which prevents existing, non-

incremental programs from taking advantage of these techniques. Second, and

more importantly, these systems require programmers to develop efficient incre-

mental update mechanisms (or a dynamic algorithm) on a per-application basis.

While dynamic algorithms can be asymptotically more efficient than their con-

ventional non-dynamic versions, they can be difficult to design, implement, and

adapt even for simple problems because of their highly specialized nature [55, 60,

70, 71, 78, 83, 118]. Furthermore, dynamic algorithms are overwhelmingly de-

signed for the uniprocessor computing model, and thus cannot take advantage

of the parallelism offered in parallel and distributed platforms, which are increas-

ingly important in today’s computing world, as motivated next.

1.2 The Inevitability of Parallel & Distributed Systems

Parallel and distributed computing is the most prominent way of computing in

the modern environment. Clusters of multicore nodes have become ubiquitous,

powering not only some of the most popular consumer applications — Internet

services such as web search and social networks — but also a growing number of

scientific and enterprise workloads. This computing model is a departure from

the uniprocessor computing model where programs run on a single core machine.

This shift towards adopting parallel and distributed computing frameworks is

driven mainly by a continuous increase in the demand for computing cycles and

I/O bandwidth to support these modern applications. The uniprocessor comput-

ing model is unable to meet these requirements mainly because increasing a pro-
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cessor’s speed to get a boost in performance leads to the heat dissipation problem.

Also, the I/O bandwidth is limited by available disk and network bandwidth per

machine.

To overcome these limitations, the computing platforms are being designed

to increase the parallelism by scaling-them-up as well as by scaling-them-out. In the

scaled-up architecture each node consists of a diverse mix of 100s of cores com-

prising of CPUs and GPUs. These cores operate at a lower frequency to minimize

the heat dissipation problem. The scaled-out architecture consists of tens of thou-

sands of those nodes with their corresponding networking and storage subsystems

to facilitate I/O parallelization. Thus, the combination of parallel and distributed

computing platform provides even more compute cycles and also mitigating the

I/O bottlenecks.

The parallel and distributed computing platforms comes with several chal-

lenges requiring programmers to manage parallelization, synchronization, load-

balancing, fault-tolerance, distributing the data, and communication. To reduce

these complexity, programming models such as MapReduce [67], and pthread [15].

Due to the growing importance of these computing frameworks, in this work, we

focus on building systems to support incremental computation in parallel and dis-

tributed systems.

1.3 Thesis Research: Incremental Systems

Thesis statement Incremental systems enable practical, automatic, and efficient in-

cremental computation in real-world parallel and distributed computing.

To this end, our work targets building incremental systems that require neither

a radical departure from current models of programming nor complex, application-
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specific dynamic algorithms (which, to reiterate, are challenging to design and

implement).

The focus of our work is on two common computing paradigms, namely par-

allel and distributed computing. In particular, we focus on large-scale data pro-

cessing for distributed incremental computation, and multithreaded programs for

parallel incremental computation. To establish the practicality and benefit of the

envisioned incremental parallel and distributed frameworks, a crucial aspect of

this work is to design and implement incremental systems, and then evaluate the

solution with widely applicable case studies to demonstrate the benefits.

1.4 Self-Adjusting Computation

Our approach is to shift the burden of reasoning about how to efficiently process

incremental updates from the programmer to the system itself by building on the

principles that were developed in the field of self-adjusting computation [24, 25,

27, 59, 87, 88, 103, 104] (a sub-field of programming languages research). The

key idea behind self-adjusting computation is to divide a computation into sub-

computations, and maintain a dependence graph between sub-computations. Given

changes in the input data, a change-propagation algorithm is used to update the

output by identifying the parts of the computation that are affected by the changes

and rebuilding only those parts. More precisely, self-adjusting computation com-

bines the following three techniques to incrementally update the output: dynamic

dependence graph, change propagation, and memoization.

The dynamic dependence graph or DDG can be viewed as a representation of the

data and control dependences in a computation. The DDG of a program is built

as the program is executed by tracking the control and data flow operations, and

using it to update the computation and the output when the inputs are modified.

4



Memoization caches the output of the sub-computations to avoid re-execution. Fi-

nally, the change propagation mimics a complete re-execution of the program with

the modified data, but only re-executes parts of the computation that depend on

the modification. Conceptually similar to cell updates in spreadsheets, the change

propagation algorithm takes full advantage of previously computed results rather

than re-executing everything from scratch on each input change.

Although the work on self-adjusting computation offers a general-purpose

framework for developing computations that can perform incremental updates

efficiently, it has not been applied to parallel and distributed systems. In this the-

sis, we extend the work on self-adjusting computation to support parallel and dis-

tributed computing.

1.5 Thesis Contributions

In this thesis, we present the design and implementation of the following incremen-

tal systems to enable practical, transparent, and efficient incremental computation

for real-world parallel and distributed computing.

Incoop is a system for incremental MapReduce computation [51, 53, 52]. Incoop

transparently detects changes between two files that are used as inputs to con-

secutive MapReduce jobs, and efficiently propagates those changes until the new

output is produced. The design of Incoop is based on memoizing the results of

previously run tasks, and reusing these results whenever possible. Doing this

efficiently introduces several technical challenges that are overcome with novel

techniques, such as a large-scale storage system called Inc-HDFS that efficiently

computes deltas between two inputs, a contraction phase for fine-grained updates,

and a memorization-aware scheduling algorithm.

5



Shredder is a GPU-accelerated system for incremental storage [50]. Shredder was

initially designed to improve Inc-HDFS, which has high computational require-

ments for detecting duplicate content using content-based chunking [114]. To ad-

dress the computational bottleneck, we designed Shredder, a high performance

content-based chunking framework for identifying deltas between two inputs in

Inc-HDFS. Shredder exploits the massively parallel processing power of GPUs to

overcome the CPU bottlenecks of content-based chunking in a cost-effective man-

ner. Shredder provides several novel optimizations aimed at reducing the cost

of transferring data between host (CPU) and GPU, fully utilizing the multicore

architecture at the host, and reducing GPU memory access latencies. We used

shredder to implement a GPU-accelerated Inc-HDFS for incremental MapReduce

computation. In addition, we show that Shredder is a generic system to accelerate

incremental storage based on data deduplication

Slider is a batched stream processing platform for incremental sliding window

computation [47, 48]. Slider does not require programmers to explicitly manage

the intermediate state for overlapping windows, allowing the existing single-pass

applications to incrementally update the output every time the computation win-

dow slides. The design of Slider incorporates self-adjusting contraction trees, a set

of data structures and algorithms for transparently updating the output of data-

parallel sliding window computations as the window moves, while reusing, to the

extent possible, results from prior computations. Self-adjusting contraction trees

organize sub-computations into self balancing trees, with a structure that is better

suited to each type of sliding window computation (append-only, fixed-width, or

variable-width slides). Furthermore, they enable a split processing mode, where

a background processing leverages the predictability of input changes to pave

the way for a more efficient foreground processing when the window slides. We

6



also provide an extension of self-adjusting contraction trees to handle multiple-job

workflows such as query processing.

iThreads is a threading library to support parallel incremental computation tar-

geting unmodified C/C++ pthread-based multithreaded programs [49]. iThreads

supports shared-memory multithreaded programs: it can be used as a replace-

ment for pthreads by a simple exchange of dynamically linked libraries, with-

out even recompiling the application code. To enable such an interface, we de-

signed algorithms and an implementation to operate at the compiled binary code

level by leveraging operating system mechanisms encapsulated in a dynamically

linkable shared library. iThreads makes use of parallel algorithms for incremental

multithreading. The parallel algorithms record the intra- and inter-thread control

and data dependencies using a concurrent dynamic data dependency graph, and

use the graph to incrementally update the output as well as the graph on input

changes.

The newly proposed systems for incremental computation are limiting be-

cause they not only require substantial programming effort, but also lose backwards-

compatibility with widely deployed systems. Thus, there is still room for an im-

provement that can ignite the widespread adoption of these newly proposed sys-

tems. Our incremental systems push the limits of the state-of-the-art by applying

the principles and lessons learned in prior algorithms- and programming-language-

centric work to parallel and distributed systems, with the goal of building practical

incremental frameworks that enable existing real-world applications to automati-

cally benefit from efficient incremental updates. Our approach neither requires de-

parture from current models of programming, nor the invention and implementa-

tion of application-specific dynamic algorithms for incremental computation. Our

experience with these systems shows that our techniques can yield very good per-
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formance, both in theory and practice, without requiring programmers to write

any special-purpose algorithms for incremental computation.

1.6 Organization

The remainder of the thesis is organized as follows.

In Chapter 2, we present the design and implementation of Incoop.

In Chapter 3, we present the design and implementation of Shredder.

In Chapter 4, we present the design and implementation of Slider.

In Chapter 5, we present the design and implementation of iThreads.

Finally, in Chapter 6, we conclude.
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CHAPTER 2

Incoop: Incremental Batch Processing

In this chapter, we describe the design, implementation, and evaluation of

Incoop, a MapReduce framework for incremental computation. Incoop detects

changes to the input and automatically updates the output by employing an effi-

cient, fine-grained result reuse mechanism.

This chapter is organized as follows. We first motivate the design of Incoop

in Section 2.1. We next briefly highlight the contributions of Incoop in Section 2.2.

Thereafter, we present a brief background MapReduce in Section 2.3. We next

present an overview of Incoop in Section 2.4. The system design is detailed in

Sections 2.5, 2.6, and 2.7. We present an experimental evaluation of Incoop in

Section 2.9, and case-studies in Section 2.10. We present the related work in Sec-

tion 2.11. Limitations and conclusion are discussed in Section 2.12 and Section 2.13,

respectively.

2.1 Motivation

Distributed processing of large data sets has become an important task in the life

of various companies and organizations, for whom data analysis is an important

vehicle to improve the way they operate. This area has attracted a lot of attention

from both researchers and practitioners over the last few years, particularly after



the introduction of the MapReduce paradigm for large-scale parallel data process-

ing [67].

A usual characteristic of the data sets that are provided as inputs to large-scale

data processing jobs is that they do not vary dramatically over time. Instead, the

same job is often invoked consecutively with small changes in this input from one

run to the next. For instance, researchers have reported that the ratio between

old and new data when processing consecutive web crawls may range from 10 to

1000X [110].

Motivated by this observation, there have been several proposals for large-

scale incremental data processing systems, such as Percolator [121] or CBP [110],

to name a few early and prominent examples. In these systems, the programmer

is able to devise an incremental update handler (or a dynamic algorithm), which

can store state across successive runs, and contains the logic to update the output

as the program is notified about input changes. While this approach allows for

significant improvements when compared to the “single shot” approach, i.e., re-

processing all the data each time that part of the input changes or that inputs are

added and deleted, it also has the downside of requiring programmers to adopt a

new programming model and API. This has two negative implications. First, there

is the programming effort to port a large set of existing applications to the new

programming model. Second, it is often difficult to devise a dynamic algorithm

for incrementally updating the output as the input changes.

2.2 Contributions

In this chapter, we present the design and implementation of Incoop, a system for

large-scale incremental MapReduce computation [53]. Incoop extends the Hadoop
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open source implementation of the MapReduce paradigm to run unmodified MapRe-

duce programs in an incremental way.

The idea behind Incoop is to enable the programmer to automatically incre-

mentalize existing MapReduce programs without the need to make any modifica-

tions to the code. To this end, Incoop records information about executed MapRe-

duce tasks so that they can be reused in future MapReduce computations when

possible.

The basic approach taken by Incoop consists of (1) splitting the computation

into sub-computations, where the natural candidate for a sub-computation is a

MapReduce task; (2) memoizing the inputs and outputs of each sub-computation;

(3) in an incremental run, checking the inputs to a sub-computation and using the

memoized output without rerunning the task when the input remains unchanged.

Despite being a good starting point, this basic approach has several shortcomings

that motivated us to introduce several technical innovations in Incoop, namely:

• Incremental HDFS. We introduce a file system called Inc-HDFS that pro-

vides a scalable way of identifying the deltas in the inputs of two consecutive

job runs. This reuses an idea from the LBFS local file system [114], which is

to avoid splitting the input into fixed-size chunks, and instead split it based

on the contents such that small changes to the input keep most chunk bound-

aries. The new file system is able to achieve a large reuse of input chunks

while maintaining compatibility with HDFS, which is the most common in-

terface to provide the input to a job in Hadoop.

• Contraction phase. To avoid rerunning a large Reduce task when only a

small subset of its input changes, we introduce a new phase in the MapRe-

duce framework called the Contraction phase. This consists of breaking up

the Reduce task into smaller sub-computations that form an inverted tree,
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such that, when a small portion of the input changes, only the path from the

corresponding leaf to the root needs to be recomputed.

• Memoization-aware scheduler. We modified the scheduler of Hadoop to

take advantage of the locality of memoized results. The new scheduler uses

a work stealing strategy to decrease the amount of data movement across ma-

chines when reusing memoized outputs, while still allowing tasks to execute

on machines that are available.

We implemented Incoop by extending Hadoop and evaluated it using five

MapReduce applications. We also employed Incoop to demonstrate two important

use cases of incremental processing: incremental log processing, where we use Incoop

to build a framework to incrementally process logs as more entries are added to

them; and incremental query processing, where we layer the Pig framework on top

of Incoop to enable relational query processing on continuously arriving data.

2.3 Background

We first present a brief background on MapReduce programming model and the

associated run-time system.

2.3.1 MapReduce Programming Model

The MapReduce programming model, and a framework that implements it, was

first presented by Google [67] to simplify the development and deployment of

large-scale data-parallel applications. The framework provides two basic program-

ming constructs: Map and Reduce. The Map function takes a set of input values and

maps each value to a set of key-value tuples. The Reduce function takes a key and

a list of values as input and reduces the list to a final output value. Next, we de-
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scribe Hadoop1, an open-source implementation of the MapReduce programming

framework, that forms the basis of our system.

2.3.2 Hadoop Architecture

Hadoop provides a programming and runtime environment for developing and

deploying MapReduce programs on large clusters. The framework consists of two

main components: the Hadoop distributed file system (HDFS) and the Hadoop MapRe-

duce engine, which we describe next.

2.3.2.1 Hadoop Distributed File System

Large-scale data-parallel applications often process and generate tremendous amounts

of data, and managing data storage at that scale raises its own challenges. To ad-

dress these, the Hadoop storage component provides the Hadoop Distributed File

System (HDFS) that is specifically engineered to handle huge amounts of data, such

as the data that is used as input, or produced as the output of MapReduce jobs.

In HDFS, the data is distributed across multiple Data-nodes, which are typ-

ically the same nodes that also execute the MapReduce jobs. To cope with the

failure of an individual Data-node, data is replicated among a configurable number

of different nodes. Files in HDFS are split into smaller chunks of fixed size (e.g.,

64MB). To locate data blocks in HDFS, a centralized directory service running on

the Name-node enables clients to look up and access data. To cut the overhead for

maintaining data consistency, HDFS does not allow for modifying data once writ-

ten and provides only append-only interface. This design decision is driven by the

fact that MapReduce jobs only write data once and do not modify it afterwards,

since intermediate and final results of the jobs are written into new files.

1Hadoop: http://hadoop.apache.org/
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2.3.2.2 Hadoop MapReduce Engine

The Hadoop MapReduce engine implements the logic to coordinate the execution of

a MapReduce job on a cluster and distributes tasks to nodes. Users submit jobs to

the Job Tracker that splits the job into multiple Tasks, which can either consist of ap-

plying the Map function to a specific partition of the input, or applying the Reduce

function to a key and the associated values generated by the all Map functions. The

job execution is divided into the Map phase where all the Map tasks are executed,

and the Reduce phase, which starts upon completion of the Map phase, and where

the output of all the Map tasks is processed by the Reduce tasks.

The Job Tracker is responsible for keeping track of cluster utilization and progress

of the job, and performs all the scheduling decisions that determine where each

task is run. The granularity of Map tasks is determined by the fact that each Task

processes a file split (one or more chunk of the input file). On the other hand, the

granularity of Reduce tasks depends only on the input to the computation, given

that each Reduce task processes a single key and all corresponding values that were

emitted by the union of all Map tasks.

2.4 Overview

We present first a basic design that we use as a starting point, highlight the limita-

tions of this basic design, the challenges in overcoming them, and briefly overview

the main ideas behind Incoop, which addresses the limitations of the basic design.

Our basic strategy is to adapt the principles of self-adjusting computation to the

MapReduce paradigm, and in particular to Hadoop.
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2.4.1 Basic design

Our goal is to design a system for large-scale incremental data processing that is

able to leverage the performance benefits of incremental computation, while also

being transparent, meaning that it does not require changes to existing programs.

To achieve this goal, we apply the principles of self-adjusting computation to

the MapReduce paradigm. To remind the reader, self-adjusting computation [24,

26, 25, 87, 59] offers a solution to the incremental computation problem by enabling

any computation to respond to changes in its data by efficiently recomputing only

the subcomputations that are affected by the changes. To this end, a self-adjusting

computation tracks dependencies between the inputs and outputs of subcompu-

tations, and, in incremental runs, only rebuilds subcomputations affected (transi-

tively) by modified inputs. To identify the affected subcomputations, the approach

represents a computation as a dependency graph of subcomputations, where two

sub-computations are data-dependent if one of them uses the output of the other

as input and control-dependent if one takes place within the dynamic scope of

another. Subcomputations are also memoized based on their inputs to enable

reuse even if they are control-dependent on some affected subcomputation. Given

the “delta”, the modifications to the input, a change-propagation algorithm pushes

the modifications through the dependency graph, rebuilding affected subcompu-

tations, which it identifies based on both data and control dependencies. Before

rebuilding a subcomputation, change propagation recovers subcomputations that

can be re-used, even partially, by using a computation memoization technique that

remembers (and re-uses) not just input-output relationships but also the depen-

dency graphs of memoized subcomputations [25].

In order to apply self-adjusting computation techniques to the Map-Reduce

paradigm, we first need to decide what forms a sub-computation. The natural
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Figure 2.1: Basic design of Incoop.

candidate is to use Map and Reduce tasks as sub-computations; this makes it pos-

sible to view the data-flow graph of the MapReduce job as the dependency graph.

Since the MapReduce framework implicitly keep track of this graph when imple-

menting the data movement and synchronization between the various tasks, the

dependency graph also captures the control dependencies.

This decision leads to our basic design, which is shown in Figure 2.1. In this

design, the MapReduce scheduler orchestrates the execution of every MapReduce

job normally, by spawning and synchronizing tasks and performing data move-

ment as in a normal MapReduce execution. To record and update the dependency

graph implicitly, our design includes a memoization server that stores a mapping

from the input of a previously run task to the location of the corresponding mem-

oized output. When a task completes, its output is memoized persistently, and a

mapping from the input to the location of the output is stored in the memoization

server. Then, during an incremental run, when a task is instantiated, the memoiza-

tion server is queried to check if the inputs to the task match those of a previous

run. If so, the system reuses the outputs from the previous run. Otherwise, the
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task runs normally and the mapping from its input to the location of the newly

produced output is stored in the memoization server.

This basic design raises a series of challenges, which we describe next. In

subsequent sections, we describe our key technical contributions that we propose

to address these challenges.

2.4.2 Challenge: Transparency

Self-adjusting computation requires knowing the modifications to the input in or-

der to update the output. To this end, it requires a new interface for making

changes to the input, so that the edits, which are clearly identified by the inter-

face, can be used to trigger an incremental update. We wish to achieve the effi-

ciency benefits of self-adjusting computation transparently without requiring the

programmer to change the way they run MapReduce computations. This goal

seems to conflict with the fact that HDFS (the system employed to store inputs to

MapReduce computations in Hadoop) is an append-only file system, making it im-

possible to convey input deltas (other than appends). To overcome this challenge,

we store the inputs and outputs of consecutive runs in separate HDFS files and

compute a delta between two HDFS files in a way that is scalable and performs

well.

2.4.3 Challenge: Efficiency

To achieve efficient incremental updates, we must ensure that MapReduce compu-

tations remain stable under small changes to their input, meaning that, when exe-

cuted with similar inputs, many tasks are repeated and their results can be reused.

To define stability more precisely, consider performing MapReduce computations

with inputs I and I ′ and consider the respective set of tasks that are executed, de-

noted T and T′. We say that a task t ∈ T′ is not matched if t 6∈ T, i.e., the task that is

17



performed with input I ′ is not performed with the input I. We say that a MapRe-

duce computation is stable if the time required to execute the unmatched tasks is

small, where small can be more precisely defined as sub-linear in the size of the

input.

In the case of MapReduce, stability can be affected by several factors, which we

can group into the following two categories: (a) making a small change to the in-

put can change the input to many tasks, causing these tasks to become unmatched;

(b) even if a small number of tasks is unmatched, these tasks can take a long time

to execute. To address these issues, we introduce techniques for (1) performing a

stable input partitioning; (2) controlling the granularity and stability of both Map

and Reduce tasks; and (3) finding efficient scheduling mechanisms to avoid unnec-

essary movement of memoized data.

Stable input partitioning. To see why using HDFS as an input to MapReduce

jobs leads to unstable computations, consider inserting a single data item in the

middle of an input file. Since HDFS files are partitioned into fixed-sized chunks,

this small change will shift each partition point following the input change by a

fixed amount. If this amount is not a multiple of the chunk size, all subsequent

Map tasks will be unmatched. (On average, a single insert will affect half of all Map

tasks.) The problem gets even more challenging when we consider more complex

changes, like the order of records being permuted; such changes can be common,

for instance, if a crawler uses a depth-first strategy to crawl the web, and a single

link change can move the position of an entire subtree in the input file. In this case,

using standard algorithms to compute the differences between the two input files

is not viable, since this would require running a polynomial-time algorithm (e.g.,

an edit-distance algorithm). We explain how our new file system called Inc-HDFS

leads to stable input partitioning without compromising efficiency in Section 2.5.
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Granularity control. A stable partitioning leads directly to the stability of Map

tasks. The input to the Reduce tasks, however, is determined only by the outputs

of the Map tasks, since each Reduce task processes all values produced in the Map

phase and associated with a given key. Consider, for instance, the case when a

single key-value pair is added to a Reduce task that processes a large number of

values (e.g., linear in the size of the input). This is problematic since it causes the

entire task to be re-computed. Furthermore, even if we found a way of dividing

large Reduce tasks into multiple smaller tasks, this per se would not solve the

problem, since we would still need to aggregate the results of the smaller tasks

in a way that avoids a large recomputation. Thus, we need a way to (i) split the

Reduce task into smaller tasks and (ii) eliminate potentially long (namely linear-

size) dependencies between these smaller tasks. We solve this problem with a

new Contraction phase, where Reduce tasks are broken into sub-tasks organized

in a tree. This breaks up the Reduce task while ensuring that long dependencies

between tasks are not formed, since all paths in the tree will be of logarithmic

length. Section 2.6 describes our proposed approach.

Scheduling. To avoid a large movement of memoized data, it is important to

schedule a task on the machine that stores the memoized results that are being

reused. To ensure this, we introduce a modification to the scheduler used by

Hadoop, in order to incorporate a notion of affinity. The new scheduler takes into

account affinities between machines and tasks by keeping a record of which nodes

have executed which tasks in previous runs. This allows for scheduling tasks in a

way that decreases the movement of memoized results, but at the cost of a poten-

tial degradation of job performance due to stragglers [150]. This is because a strict

affinity of tasks results in deterministic scheduling, which prevents a lightly loaded

node from performing work when the predetermined node is heavily loaded. Our
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Figure 2.2: Chunking strategies in HDFS and Inc-HDFS

scheduler therefore needs to strike a balance between work stealing and affinity of

memoized results. Section 2.7 describes our modified scheduler.

2.5 Incremental HDFS

In this section we present Incremental HDFS (Inc-HDFS), a distributed file system

that enables stable incremental computations in Incoop, while keeping the inter-

face provided by HDFS. Inc-HDFS builds on HDFS, but modifies the way that files

are partitioned into chunks to use content-based chunking, a technique that was

introduced in LBFS [114] for data deduplication. At a high-level, content-based

chunking defines chunk boundaries based on finding certain patterns in the input,

instead of using fixed-size chunks. As such, insertions and deletions cause small

changes to the set of chunks. In the context of MapReduce, this ensures that the

input to Map tasks remains mostly unchanged, which translates into a stable re-

computation. Figure 2.2 illustrates the differences in the strategies for determining

chunk boundaries in HDFS and Inc-HDFS. To perform content-based chunking,

we scan the entire file, examining the contents of a fixed-width window whose ini-
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tial position is incremented one byte at a time. For each window, we compute its

Rabin fingerprint, and if the fingerprint matches a certain pattern (called a marker)

we place a chunk boundary at that position. (We explain how the marker is se-

lected in § 3.3.) In addition, this approach is extended to avoid creating chunks

that are too small or too large, which could affect the overheads and load balanc-

ing properties of MapReduce. (Note that all the system designer can tune is the

likelihood of finding a marker, but the actual spacing depends on the input.) This

is achieved by setting minimum and maximum chunk sizes: after we find a marker

mi at position pi, we skip a fixed offset O and continue to scan the input after po-

sition pi + O. In addition, we bound the chunk length by setting a marker after

M content bytes even if no marker is found. Despite the possibility of affecting

stability in rare cases, e.g., when skipping the offset leads to skipping disjoint sets

of markers in two consecutive runs, we found this to be a very limited problem in

practice.

An important design decision is whether to perform chunking during the cre-

ation of the input or when the input is read by the Map task. We chose the former

because the cost of chunking can be amortized when chunking and producing the

input data are done in parallel. This is relevant in cases where the generation of

input data is not limited by the storage throughput.

In order to parallelize the chunking process on multicore machines, our imple-

mentation uses multiple threads, each of which starts the search for the marker at

a different position. The markers that each thread finds cannot be used immedi-

ately to define the chunk boundaries, since some of them might have to be skipped

due to the minimum chunk size. Therefore, we collect the markers in a centralized

list, and scan the list to determine which markers are skipped; the remaining ones

form the chunk boundaries. We next describe, how the MapReduce framework

uses these chunks to control the granularity of the Map phase.
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2.6 Incremental MapReduce

This section presents our design for incremental MapReduce computations. We

split the presentation by describing the Map and Reduce phases separately.

Incremental Map. For the Map phase, the main challenges have already been ad-

dressed by Inc-HDFS, which partitions data in such a way that the input to Map

tasks ensures stability and also allows for controlling the average granularity of the

input that is provided to these tasks. In particular, this granularity can be adjusted

by changing how likely it is to find a marker, and it should be set in a way that

strikes a good balance between the following two characteristics: incurring the

overhead associated with scheduling many Map tasks when the average chunk

size is low, and having to recompute a large Map task if a small subset of its input

changes when the average chunk size is large.

Therefore, the main job of Map tasks in Incoop is to implement task-level mem-

oization. To do this, after a Map task runs, we store its results persistently (instead

of discarding them after the job execution) and insert a corresponding reference to

the result in the memoization server.
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During incremental runs, Map tasks query the memoization server to deter-

mine if their output has already been computed. If so, they output the location

of the memoized result, and conclude. Figure 2.3 illustrates this process: part (a)

describes the initial run and part (b) describes the incremental run where chunk 2

is modified (and replaced by chunk 4) and the Map tasks for chunks 1 and 3 can

reuse the memoized results.

Incremental Reduce. The Reduce task processes the output of the Map phase:

each Reduce task has an associated key k, collects all the key-value pairs generated

by all Map tasks for k, and applies the Reduce function. For efficiency, we apply

two levels of memoization in this case. First, we memoize the inputs and outputs

of the entire Reduce task to try to reuse these results in a single step. Second, we

break down the Reduce phase into a Contraction phase followed by a smaller in-

vocation of the Reduce function to address the stability issues we discussed.

The first level of memoization is very similar to that of Map tasks: the memo-

ization server maintains a mapping from a hash of the input to the location of the

result of the Reduce task. A minor difference is that a Reduce task receives input

from several Map tasks, and as such the key of that mapping is the concatenation

of the collision-resistant hashes all these outputs. For the Reduce task to compute

this key, instead of immediately copying the output from all Map tasks, it fetches

the hashes only to determine if the Reduce task can be skipped entirely. Only if

this is not the case the data is transferred from Map to Reduce tasks.

As we mentioned, this first level has the limitation that small changes in the

input cause the entire Reduce task to be re-executed, which can result in work that

is linear in the size of the original input, even if the delta in the input is small. In

fact it may be argued that the larger the Reduce task the more likely it is that a part

of its input may change. To prevent this stability problem, we need to find a way

to control the granularity of the sub-computations in the Reduce phase, and orga-
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nize these sub-computations in way that avoids creating a long dependence chain

between sub-computations, otherwise a single newly computed sub-computation

could also trigger a large amount of recomputation.

To reduce the granularity of Reduce tasks, we propose a new Contraction Phase,

which is run by Reduce tasks. This new phase takes advantage of Combiners, a fea-

ture of the MapReduce frameworks [67], also implemented by Hadoop, which orig-

inally aims at saving bandwidth by offloading part of the computation performed

by the Reduce task to the Map task. To this end, the programmer specifies a Com-

biner function, which is invoked by the Map task, and pre-processes a part of the

Map output, i.e., a set of 〈key,value〉 pairs, merging them into a smaller number

of pairs. The signature of the combiner function uses the same input and output

type in order to be interposed between the Map and Reduce phase, its inputs and

output arguments are a sequence of 〈key,value〉 pairs. In all the MapReduce ap-

plications we analyzed so far, the Combiners and the Reduce functions perform

similar work.

The Contraction phase uses Combiners to break up Reduce tasks into several

applications of the Combine function. In particular, we start by splitting the Re-

duce input into chunks, and apply the Combine function to each chunk. Then we

recursively form chunks from the aggregate result of all the Combine invocations

and apply the Combine function to these new chunks. The data size gets smaller

in each level, and, in the last level, we apply the Reduce function to the output of

all the Combiners from the second to last level.

Given the signature of Combiner functions we described before, it is syntacti-

cally correct to interpose any number of Combiner invocations between the Map

and Reduce functions. However, semantically, Combiners are invoked by the

MapReduce or Hadoop frameworks at most once per key/value pair that is output

by a Map task, and therefore MapReduce programs are only required to ensure the
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Figure 2.4: Stability of the Contraction phase

correctness of the MapReduce computation for a single Combiner invocation, that

is:

R ◦ C ◦M = R ◦M

where R, C, and M represent the Reduce, Combiner and Map function, respectively.

Our new use of Combiner functions introduces a different requirement, namely:

R ◦ Cn ◦M = R ◦M, ∀n > 0

It is conceivable to write a Combiner that meets the original requirement but

not the new one. However, we found that, in practice, all of the Combiner func-

tions we have seen obey the new requirement.

Stability of the Contraction phase. When deciding how to partition the input to

the Contraction phase, the same issue that was faced by the Map phase arises: if

a part of the input to the Contraction phase is removed or a new part is added,

then a fixed-size partitioning of the input would not ensure the stability of the

dependence graph. This problem is illustrated in Figure 2.4, which shows two con-

secutive runs of a Reduce task, where a Map task (#2) produces in the second but

not in the first run a value associated with the key being processed by this Reduce

task. In this case, a partitioning of the input into groups with a fixed number of
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input files would cause all groups of files to become different from one run to the

next.

To solve this, we again employ content-based chunking, which is applied to

every level of the tree of combiners that forms the Contraction phase. The way we

perform content-based chunking in the Contraction phase differs slightly from the

approach we took in Inc-HDFS, for both efficiency and simplicity reasons. In par-

ticular, given that the Hadoop framework splits the input to the Contraction phase

into multiple files coming from different Mappers, we require chunk boundaries

to be at file boundaries (in other words, the unit of chunking is a sequence of Map-

per output files). This way we leverage the existing input partitioning, which not

only simplifies the implementation, but also avoids reprocessing this input. This is

because we can use the hash of each input file to determine if a marker is present,

namely by testing if the hash modulo a pre-determined integer M is equal to a

constant k < M.

Figure 2.4 also illustrates the importance of content-based chunking. In this

example, the marker that delimits the boundaries between groups of input files

form a chunk is present only in outputs #5, 7, and 14. Therefore, inserting a new

map output will change the first group of inputs but none of the remaining ones.

This figure also illustrates how this change propagates to the output: it leads to a

new Combiner invocation (labelled 1-2-3-5) and the final Reduce invocation. For

all the remaining Combiners we can reuse their memoized outputs without re-

executing them.

2.7 Memoization Aware Scheduler

The Hadoop scheduler assigns Map and Reduce tasks to nodes for efficient exe-

cution, taking into account machine availability, cluster topology, and the locality
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of input data. The Hadoop scheduler, however, is not well-suited for incremental

computations because it does not consider the locality of memoized results.

To enable efficient reuse of previously computed intermediate results, Reduce

tasks should preferentially be scheduled on the node where some or all of the

memoized results they use are stored. This is important in case the Contraction

phase needs to run using a combination of newly computed and memoized results,

which happens when only a part of its inputs has changed. In addition to this de-

sign goal, the scheduler also has to provide some flexibility by allowing tasks to be

scheduled on nodes that do not store memoized results, otherwise it can lead to the

presence of stragglers, i.e., individual poorly performing nodes that can drastically

delay the overall job completion [150].

Based on these requirements, Incoop includes a new memoizationaware sched-

uler that strikes a balance between exploiting the locality of memoized results and

incorporating some flexibility to minimize the straggler effect. The scheduler tries

to implement a location-aware policy that prevents the unnecessary movement

of data, but at the same time it implements a simple work-stealing algorithm to

adapt to varying resource availability. The scheduler works by maintaining a sep-

arate task queue for each node in the cluster (instead of a single task queue for all

nodes), where each queue contains the tasks that should run on that node in order

to maximally exploit the location of memoized results. Whenever a node requests

more work, the scheduler dequeues the first task from the corresponding queue

and assigns the task to the node for execution. In case the corresponding queue

for the requesting node is empty, the scheduler tries to steal work from other task

queues. The scheduling algorithm searches the task queues of other nodes, and

steals a pending task from the task queue with maximum length. If there are mul-

tiple queues of maximum length, the scheduler steals the task that has the least

amount of memoized intermediate results. Our scheduler thus takes the location
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of the memoized results into account, but falls back to a work stealing approach

to avoid stragglers and nodes running idle. Our experimental evaluation (Section

2.9.4) shows the effectiveness of this approach.

2.8 Implementation

We built our prototype of Incoop based on Hadoop-0.20.2. We implemented Inc-

HDFS by extending HDFS with stable input partitioning, and incremental MapRe-

duce by extending Hadoop with a finer granuality control mechanism and the

memoization-aware scheduler.

The Inc-HDFS file system provides the same semantics and interface for ac-

cessing all native HDFS calls. It employs a content-based chunking scheme which

is computationally more expensive than the fixed-size chunking used by HDFS.

As described in §2.5, the implementation minimizes the overhead using two opti-

mizations: (i) we skip parts of the file contents when searching for chunk markers,

in order to reduce the number of fingerprint computations and enforce a minimum

chunk size; and (ii) we parallelize the search for markers across multiple cores. To

implement these optimizations, the data uploader client skips a fixed number of

bytes after the last marker is found, and then spawns multiple threads that each

compute the Rabin fingerprints over a sliding window on different parts of the

content. For our experiments, we set the number of bytes skipped to 40MB unless

otherwise stated.

We implemented the memoization server using a wrapper around Memcached

v1.4.5, which provides an in-memory key-value store. Memcached runs as a dae-

mon process on the name node machine that acts as a directory server in Hadoop.

Intermediate results memoized across runs are stored on Inc-HDFS with the repli-

cation factor set to 1, and, in case of data loss, the intermediate results are recom-
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puted. A major issue with any implementation of memoization is determining

which intermediate results to remember and which intermediate results to purge.

As in self-adjusting computation approaches, our approach is to cache the fresh re-

sults from the “last run”, i.e., those results that were generated or used by the last

execution, and purge all the other obsolete results. This suffices to obtain the effi-

ciency improvements shown in §2.9.5. We implement this strategy using a simple

garbage collector that visits all cache entries and purges the obsolete results.

2.9 Evaluation

We evaluate the effectiveness of Incoop for a variety of applications implemented

in the traditional MapReduce programming model. In particular, we will answer

the following questions:

• What performance benefits does Incoop provide for incremental workloads

compared to the unmodified Hadoop implementation? (§2.9.3)

• How effective are the optimizations we propose in improving the overall per-

formance of Incoop? (§2.9.4)

• What overheads does the memoization in Incoop impose when tasks are ex-

ecuted for the first time? (§2.9.5)

2.9.1 Applications and Data Generation

For the experimental evaluation, we use a set of applications in the fields of ma-

chine learning, natural language processing, pattern recognition, and document

analysis. Table 2.1 lists these applications. We chose these applications to demon-

strate Incoop’s ability to efficiently execute both data-intensive (WordCount, Co-Matrix,
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Application Description

K-Means

K-means clustering is a method of cluster analysis for partition-
ing n data points into k clusters, in which each observation be-
longs to the cluster with the nearest mean.

Word-Count Word count determines the frequency of words in a document.

KNN
K-nearest neighbors classifies objects based on the closest train-
ing examples in a feature space.

CoMatrix

Co-occurrence matrix generates an N× N matrix, where N is the
number of unique words in the corpus. A cell mij contains the
number of times word wi co-occurs with word wj.

BiCount
Bigram count measures the prevalence of each subsequence of
two items within a given sequence.

Table 2.1: Applications used in the performance evaluation of Incoop

BiCount), and computation-intensive (KNN and K-Means) jobs. For the data-

intensive applications, the computational work done by the Map and the Reduce

phases is roughly the same. Whereas, for compute-intensive applications the com-

putational work is mostly done in the Map phase only.

The three data-intensive applications take as input documents written in a

natural language. In our benchmarks, we use a publicly available dataset with

the contents of Wikipedia.2 The computation-intensive applications take as input

a set of points in a d-dimensional space. We generate this data synthetically by

uniformly randomly selecting points from a 50-dimensional unit cube. To ensure

reasonable running times, we chose all the input sizes such that the running time

of each job would be around one hour. We note that we did not make any changes

to the original code for all applications,.

2.9.2 Measurements

Metrics: work and time. For comparing different runs, we consider two types of

measures, work and time, which are standard measures for comparing efficiency

2Wikipedia data-set: http://wiki.dbpedia.org/
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in parallel applications. Work refers to the total amount of computation performed

by all tasks and measured as the total running time of all tasks. Time refers to the

amount of (end-to-end) time that it takes to complete a parallel computation. Im-

provements in total work often directly lead to improvements in time but also in

the consumption of other resources, e.g., processors, power, etc. As we describe in

our experiments, our approach reduces work by avoiding unnecessary computa-

tions, which translates to improvements in time (and use of other resources).

Initial run and dynamic update. The most important measurements we perform

involve the comparison of the execution of a MapReduce job with Hadoop vs. with

Incoop. For the Incoop measurements, we consider two different runs. The initial

run refers to a run starting with an empty memoization server that has no memo-

ized results. Such a run executes all tasks and populates the memoization server by

storing the performed computations and the location of their results. The dynamic

update refers to a run of the same job with a modified input, but that happens af-

ter the initial run, avoiding re-computation when possible. It also memoizes the

intermediate results for newly executed tasks for the next incremental run.

Speedup. To assess the effectiveness of dynamic updates, we measure the work

and time after modifying varying percentages of the input data and comparing

them to those for performing the same computation with Hadoop. We refer to the

ratio of the Hadoop run to the incremental run (Incoop dynamic update) as speedup

(in work and in time). When modifying p% of the input data, we randomly chose

p% of the input chunks and replaced them with new chunks of equal size and

newly generated content.

Hardware. Our measurements were gathered using a cluster of 20 machines, run-

ning Linux with kernel 2.6.32 in 64-bit mode, connected with gigabit ethernet. The

name node and the job tracker ran on a master machine which was equipped with
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a 12-core Intel Xeon processor and 12 GB of RAM. The data nodes and task track-

ers ran on the remaining 19 machines equipped with AMD Opteron-252 proces-

sors, 4GB of RAM, and 225GB drives. We configured each task tracker per worker

machine to use in total four worker threads: two threads for Map tasks and two

threads for Reduce tasks.

2.9.3 Performance Gains
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(b) Time speedups versus change size

Figures 2.5(a) and 2.5(b) show the work and time speedups, which are com-

puted as the ratio between the work and time of a dynamic run using Incoop and

those of Hadoop. From these experimental results we can observe the following:

(i) Incoop achieves substantial performance gains for all applications when there

are incremental changes to the input data. In particular, work and time speedups

vary between 3-fold and 1000-fold for incremental modifications ranging from 0%

to 25% of data. The speedups with 0% changes mean that the incremental run is

run with the same input without any changes. Therefore, speedups peak at 0%

changes because we can reuse the entire work from the initial run. (ii) We ob-

serve higher speedups for computation-intensive applications (K-Means, KNN)

than for data-intensive applications (WordCount, Co-Matrix, and BiCount).

This is because for the data-intensive application, we require large amounts of data

32



 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16
N

or
m

al
iz

ed
 r

un
tim

e 
(w

.r
.t.

 H
ad

oo
p)

Normalized input size

Time Incoop
Time Hadoop

Figure 2.5: Co-Matrix: Time versus input size

movement to restore the memoized intermediate results. (iii) Both work and time

speedups decrease as the size of the incremental change increases, because larger

changes allow fewer computation results from previous runs to be reused. With

very small changes, however, speedups in total work are not fully translated into

speedups in parallel time; this is expected because decreasing the total amount of

work dramatically (e.g., by a factor 1000) reduces the amount of parallelism, caus-

ing the scheduling overheads to be larger. As the size of the incremental change

increases, the gap between the work speedup and time speedup closes quickly.

The previous examples all consider fixed-size inputs. We experimented with

other input sizes. This is shown in Figure 2.5, which illustrates the time to run

Incoop and Hadoop using the Co-Matrix application, and for a modification of a

single chunk. This figure shows that the relative improvements hold for various

different input sizes.

2.9.4 Effectiveness of Optimizations

We evaluate the effectiveness of the optimizations in improving the overall perfor-

mance of Incoop by considering (i) the granularity control with the introduction

of the Contraction phase; and (ii) the scheduler modifications to minimize unnec-

essary data movement.
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Figure 2.6: Performance gains comparison between Contraction and task variants

Granularity control. To evaluate the effectiveness of the Contraction phase, we

consider the two different levels of memoization in Incoop: (i) using only the

coarse-grained, task-level memoization performed in the implementation, denoted

as Task, and (ii) adding the fine-grained approach that also includes the Contrac-

tion phase in the implementation, denoted as Contraction. Figure 2.6 shows

our time measurements with CoMatrix as a data-intensive application and KNN

as a computation-intensive application. The effect of the Contraction phase is neg-

ligible with KNN but significant in CoMatrix. The reason for the negligible im-

provements with KNN is that in this application, Reduce tasks perform relatively

inexpensive work and thus benefit little from the Contraction phase. Thus, even

when not helpful, the Contraction phase does not degrade efficiency.

Scheduler modification. We now evaluate the effectiveness of the scheduler mod-

ification in improving the performance of Incoop. The Incoop scheduler avoids

unnecessary data movement by scheduling tasks on the nodes where intermediate

results from previous runs are stored. Also, the scheduler employs a work steal-

ing algorithm that allows some task scheduling flexibility to prevent nodes from

running idle when runnable tasks are waiting. We show the performance compar-

ison between the Hadoop scheduler and the Incoop scheduler in Figure 2.7, where
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Figure 2.7: Effectiveness of scheduler optimizations.

the Y-axis shows runtime relative to the Hadoop scheduler. The Incoop scheduler

saves around 30% of time for data-intensive applications, and almost 15% of time

for compute-intensive applications, which supports the necessity and effectiveness

of location-aware scheduling for memoization.

2.9.5 Overheads

The memoization performed in Incoop introduces runtime overheads for the initial

run when no results from previous runs can be reused. Also, memoizing interme-

diate task results imposes an additional space usage. We measured both types,

performance and space overhead, for each application and present the results in

Figure 2.8.

Performance overhead. We measure the worst-case performance overhead by cap-

turing the runtime for the initial run. Figure 2.8(a) depicts the performance penalty

for both the Task and the Contraction memoization based approach. The over-

head varies from 5%− 22%, and, as expected, it is lower for computation intensive

applications such as K-Means and KNN, since their run-time is dominated by the

actual processing time rather than storing, retrieving and transferring data. For the

data intensive applications such as WordCount, Co-Matrix and BiCount, the
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Figure 2.8: Overheads imposed by Incoop in comparison to Hadoop

first run with Task level memoization is faster than Contraction memoization.

This difference in performance can be attributed to the extra processing overheads

for all levels of the tree formed in the Contraction phase. Importantly, this perfor-

mance overhead is a one-time cost and the subsequent runs benefit from a high

speedup.

Space overhead. We measure the space overhead by quantifying the space used

for remembering the intermediate computation results for the initial run. Fig-

ure 2.8(b) illustrates the space overhead as a factor of the input size with Task-

and Contraction-level memoization. The results show that the Contraction-level

memoization requires more space, which was expected because it stores results for

all levels of the Contraction tree. Overall, space overhead varies substantially de-

pending on the application, and can be as high as 9X (CoMatrix application) of

the input size. However, our approach for garbage collection prevents the storage

utilization from growing over time.

36



2.10 Case Studies

The success of the MapReduce paradigm enables our approach to transparently

benefit an enormous variety of bulk data processing workflows. In particular, and

aside from the large number of existing MapReduce programs, MapReduce is also

being used as an execution engine for other systems. In this case, Incoop will also

transparently benefit programs written for these systems.

In this section, we showcase two workflows where we use Incoop to transpar-

ently benefit systems from efficient incremental processing in their context, namely

incremental log processing and incremental query processing.

2.10.1 Incremental Log Processing

Log processing is an essential workflow in Internet companies, where various logs

are often analyzed in multiple ways on a daily basis [111]. For example, in the area

of click log analysis, traces collected from various web server logs are aggregated in

a single repository and then processed for various purposes, from simple statistics

like counting clicks per user, or more complex analyses like click sessionization.

To perform incremental log processing, we integrated Incoop with Apache

Flume 3 – a distributed and reliable service for efficiently collecting, aggregating,

and moving large amounts of log data. In our setup, Flume aggregates the data

and dumps it into the Inc-HDFS repository. Then, Incoop performs the analytic

processing incrementally, leveraging previously computed intermediate results.

We evaluate the performance of using Flume in conjunction with Incoop for

incremental log processing by comparing its runtime with the corresponding run-

time when using Hadoop. For this experiment, we perform document analysis on

an initial set of logs, and then append new log entries to the input, after which

3Apache Flume: https://github.com/cloudera/flume
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Figure 2.9: Speedup for incremental log processing

we process the resulting larger collection of logs incrementally. In Figure 2.9, we

depict the speedup for running Incoop as a function of the size of the new logs that

are appended after the first run. Incoop achieves a speedup of a factor of 4 to 2.5

with respect to Hadoop when processing incremental log appends of a size of 5%

to 25% of the initial input size, respectively.

2.10.2 Incremental Query Processing

We showcase incremental query processing as another workflow that exemplifies

the potential benefits of Incoop. Query processing is an important medium in

Internet companies for analyzing large data sets. Query processing frameworks

consist of a high-level language, similar to SQL, for easily expressing data analysis

programs.

Query processing also follows incremental computing workflow, where the

same query is processed frequently for an incrementally changing input data set [115].

We integrated Incoop with Pig to evaluate the feasibility of incremental query pro-

cessing. Pig [116] is a query processing platform to analyze large data sets built

upon Hadoop. Pig provides Pig Latin, an easy-to-use high-level query language

similar to SQL. The ease of programming and scalability of Pig made the system
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very popular for very large data analysis tasks, which are conducted by major In-

ternet companies today.

Since Pig programs are compiled down to multi-staged MapReduce jobs, the

integration of Incoop with Pig was seamless, just by using Incoop as the under-

lying execution engine for incrementally executing the multi-staged MapReduce

jobs. We evaluate two Pig applications, word count and the PigMix4 scalability

benchmark, to measure the effectiveness of Incoop. We observe a runtime over-

head of around 15% for first run, and a speedup of a factor of around 3 for an

incremental run with unmodified input. The detailed result breakdown is shown

in Table 2.2.

Application Features M/R stages Overhead Speedup

Word Count
Group_by,
Order_by, Filter

3 15.65 % 2.84

PigMix scalabilty
benchmark

Group_by,
Filter

1 14.5 % 3.33

Table 2.2: Results for incremental query processing

2.11 Related Work

There are several systems for performing incremental parallel computations with

large data sets. We broadly divide them into two categories: non-transparent and

transparent approaches. Examples of non-transparent systems include Google’s

Percolator [121] which requires the programmer to write a program in an event-

driven programming model based on observers. Observers are triggered by the

system whenever user-specified data is modified. Observers in turn can modify

other data forming a dependence chain that implements the incremental data pro-

cessing. Similarly, continuous bulk processing (CBP) [110] proposes a new data-

4Apache PigMix: http://wiki.apache.org/pig/PigMix
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parallel programming model, which offers primitives to store and reuse prior state

for incremental processing. There are two drawbacks to these approaches, both of

which are addressed by our proposal. The first is that they depart from the MapRe-

duce programming paradigm and therefore require changes to the large existing

base of MapReduce programs. The second, more fundamental problem is that

they require that programmer to devise a dynamic algorithm in order to efficiently

process data in an incremental manner.

Examples of transparent approaches include DryadInc [122], which extends

Dryad to automatically identify redundant computations by caching previously

executed tasks. One limitation of this basic approach is that it can only reuse com-

mon identical sub-DAGs of the original computation, which can be insufficient to

achieve efficient updates. To improve efficiency the paper suggests the program-

mers specify additional merge functions. Another similar system called Nectar [84]

caches prior results at the coarser granularity of entire LINQ sub-expressions. The

technique used to achieve this is to automatically rewrite LINQ programs to facil-

itate caching. Finally, although not fully transparent, Haloop [56] provides task-

level memoization techniques for memoization in the context of iterative data pro-

cessing applications. The major difference between the aforementioned transpar-

ent approaches and our proposal is that we use a well-understood set of principles

from related work to eliminate the cases where task-level memoization provides

poor efficiency. To this end, we provide techniques for increasing the effective-

ness of task-level memoization via stable input partitions and by using a more

fine-grained memoization strategy than the granularity of Map and Reduce tasks.

Our own short position paper [51] makes the case for applying techniques in-

spired by self-adjusting computation to large-scale data processing in general, and

uses MapReduce as an example. This position paper, however, models MapRe-

duce in a sequential, single-machine implementation of self-adjusting computa-
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tion called CEAL [87], and does not offer anything close to a full-scale distributed

design and implementation such as we describe here.

The Hadoop online prototype (HOP) [62] extends the Hadoop framework to

support pipelining between the map and reduce tasks, so that reducers start pro-

cessing data as soon as it is produced by mappers. This enables two new features in

the framework. First, it can generate an approximate answer before the end of the

computation (online aggregation) and second, it can support continuous queries,

where jobs run continuously, and process new data as it arrives.

NOVA [115] is a workflow manager recently proposed by Yahoo!, designed for

the incremental execution of Pig programs upon continually-arriving data. NOVA

introduces a new layer called the workflow manager on top of the Pig/ Hadoop

framework. Much like the work on incremental view maintenance, the workflow

manager rewrites the computation to identify the parts of the computation affected

by incremental changes and produce the necessary update function that runs on

top of the existing Pig/Hadoop framework. However, as noted by the authors

of NOVA, an alternative, more efficient design would be to modify the underly-

ing Hadoop system to support this functionality. In our work, and particularly

with our case study of incremental processing of Pig queries, we explore precisely

this alternative design of adding lower-level support for reusing previous results.

Furthermore, our work is broader in that it transparently benefits all MapReduce

computations, and not only continuous Pig queries.

We provide a detailed comparison of our approach of using contraction with

modern streaming systems such as D-streams [149], Naiad [113], etc. in Chapter 4.
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2.12 Limitations and Future Work

While Incoop is a significant step towards transparent support for incremental

computation, plenty of opportunities remain to further increase its efficiency.

Firstly, Incoop is designed to detect arbitrary changes in the input and update

the output accordingly. For that Incoop relies on Inc-HDFS, which uses content-

based chunking to detect changes in the input data across successive runs of MapRe-

duce jobs. Content-based chunking is a computationally demanding task because

chunking methods need to scan the entire file contents, computing a fingerprint

over a sliding window of the data. Therefore, as we scale the system to handle

increasing amounts of data, we need to address this computational bottleneck. We

address this limitation using Shredder, as described in Chapter 3.

Secondly, since Incoop is designed to handle arbitrary changes to the input,

the Contraction tree is not optimized to perform efficient change propagation. In

particular, the Contraction tree does not construct the dependency graph of sub-

computations explicitly, and resort solely to reuse of memoized results for updat-

ing the output. While this approach simplifies the design and the implementation,

it can yield asymptotically suboptimal performance, because it requires touching

all subcomputations (for the purposes of memoization and reuse) even if they may

not be affected by the input modifications. For cases with structured changes in

the input, we can further optimize the Contraction tree to perform change propa-

gation. We address this limitation using Slider, as described in Chapter 4.

2.13 Summary

In this chapter, we presented Incoop, a novel MapReduce framework for large-

scale incremental computations. Incoop is based on several novel techniques to
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maximize the reuse of results from a previous computation. In particular, In-

coop incorporates content-based chunking to the file system to detect incremental

changes in the input file and to partition the data so as to maximize reuse; it adds

a Contraction phase to control the granularity of tasks in the Reduce phase, and a

new scheduler that takes the location of previously computed results into account.

We implemented Incoop as an extension to Hadoop. Our performance evaluation

shows that Incoop can improve efficiency in incremental runs (the common case),

at a modest cost in the initial, first run (uncommon case) where no computations

can be reused.
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CHAPTER 3

Shredder: Incremental Storage

In this chapter, we describe the design, implementation and evaluation of

Shredder, a high performance content-based chunking library for supporting incre-

mental storage. Shredder was initially designed to accelerate content-based chunk-

ing in Inc-HDFS for incremental computation. However, our design of Shredder

library is generic to accelerate incremental computation as well as incremental stor-

age systems. Shredder exploits the massively parallel processing power of GPUs to

overcome the CPU bottlenecks of content-based chunking in a cost-effective man-

ner.

This chapter is organized as follows. We first motivate the design of Shred-

der in Section 3.1. We next briefly highlight the contributions of Shredder in Sec-

tion 3.2. In Section 3.3, we provide background on content-based chunking, and

discuss specific architectural features of GPUs. An overview of the GPU accelera-

tion framework and its scalability challenges are covered in Section 3.4. Section 3.5

presents present a detailed system design, namely several performance optimiza-

tions for increasing Shredder’s throughput. We present the implementation and

evaluation of Shredder in Section 3.6. We present two case studies for Shredder

in Section 3.8. We discuss the related work in Section 3.9. Finally, we present the

limitation of Shredder in Section 3.10, and conclude in Section 3.11.



3.1 Motivation

With the growth in popularity of Internet services, online data stored in data cen-

ters is increasing at an ever-growing pace. In 2010 alone, mankind is estimated

to have produced 1, 200 exabytes of data [19]. As a result of this “data deluge,”

managing storage and computation over this data has become one of the most

challenging tasks in data center computing.

A key observation that allows us to address this challenge is that a large frac-

tion of the data that is produced and the computations performed over this data

are redundant; hence, not storing redundant data or performing redundant com-

putation can lead to significant savings in terms of both storage and computational

resources. To make use of redundancy elimination, there exist a series of research

and product proposals (detailed in §3.9) for performing data deduplication and in-

cremental computation, which avoid storing or computing tasks based on redundant

data, respectively.

Both data deduplication schemes and incremental computation rely on stor-

age systems to detect duplicate content. In particular, the most effective way to

perform this detection is using content-based chunking, a technique that was pio-

neered in the context of the LBFS [114] file system, where chunk boundaries within

a file are dictated by the presence of certain content instead of a fixed offset. For

instance, Incoop relies on Inc-HDFS, which uses content-based chunking to detect

changes in the input data across successive runs of MapReduce jobs.

Even though content-based chunking is useful, it is a computationally de-

manding task. Chunking methods need to scan the entire file contents, computing

a fingerprint over a sliding window of the data. This high computational cost has

caused some systems to simplify the fingerprinting scheme by employing sam-

pling techniques, which can lead to missed opportunities for eliminating redun-
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dancies [30]. In other cases, systems skip content-based chunking entirely, thus

forgoing the opportunity to reuse identical content in similar, but not identical

files [85]. Therefore, as we get flooded with increasing amounts of data, address-

ing this computational bottleneck becomes a pressing issue in the design of storage

systems for data center-scale systems.

3.2 Contributions

In this chapter, we present Shredder, a system for performing efficient content-

based chunking to support scalable incremental storage and computation. Shred-

der builds on the observation that neither the exclusive use of multicore CPUs

nor the use of specialized hardware accelerators is sufficient to deal with large-

scale data in a cost-effective manner: multicore CPUs alone cannot sustain a high

throughput, whereas the specialized hardware accelerators lack programmability

for other tasks and are costly. As an alternative, we explore employing modern

GPUs to meet these high computational requirements (while, as evidenced by

prior research [89, 96], also allowing for a low operational cost). The application of

GPUs in this setting, however, raises a significant challenge — while GPUs have

shown to produce performance improvements for computation intensive applica-

tions, where CPU dominates the overall cost envelope [89, 90, 96, 137, 138], it was

unclear when we started this work whether GPUs are equally as effective for data

intensive applications, which need to perform large data transfers for a signifi-

cantly smaller amount of processing.

To make the use of GPUs effective in the context of storage systems, we de-

signed several novel techniques, which we apply to two proof-of-concept applica-

tions. In particular, Shredder makes the following technical contributions:
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GPU acceleration framework. We identified three key challenges in using GPUs

for data intensive applications, and addressed them with the following techniques:

• Asynchronous execution. To minimize the cost of transferring data between

host (CPU) and GPU, we use a double buffering scheme. This enables GPUs

to perform computations while simultaneously data is transferred in the back-

ground. To support this background data transfer, we also introduce a ring

buffer of pinned memory regions.

• Streaming pipeline. To fully utilize the availability of a multicore archi-

tecture at the host, we use a pipelined execution for the different stages of

content-based chunking.

• Memory coalescing. Finally, because of the high degree of parallelism, mem-

ory latencies in the GPU will be high due to the presence of random access

across multiple bank rows of GPU memory, which leads to a higher num-

ber of conflicts. We address this problem with a cooperative memory access

scheme, which reduces the number of fetch requests and bank conflicts.

We implemented Shredder as a generic C++/CUDA library. We also present

two case study applications of Shredder to accelerate storage systems. The first

case study is the integration of Shredder with Inc-HDFS to accelerate incremental

computation. The second case study is a backup architecture for a cloud envi-

ronment, where VMs are periodically backed up. We use Shredder on a backup

server and use content-based chunking to perform efficient deduplication and sig-

nificantly improve backup bandwidth.

3.3 Background

In this section, we first present background on content-based chunking, to explain

its cost and potential for parallelization. We then provide a brief overview of the
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massively parallel compute architecture of GPUs, namely their memory subsystem

and its limitations.

3.3.1 Content-based Chunking

Identification of duplicate data blocks has been used for deduplication systems in

the context of both storage [114, 128] and incremental computation frameworks [53].

For storage systems, the duplicate data blocks need not to be stored and, in the case

of incremental computations, a sub-computation based on the duplicate content

may be reused. Duplicate identification essentially consists of:

1. Chunking: This is the process of dividing the data set into chunks in a way

that aids in the detection of duplicate data.

2. Hashing: This is the process of computing a collision-resistant hash of the

chunk.

3. Matching: This is the process of checking if the hash for a chunk already

exists in the index. If it exists then there is a duplicate chunk, else the chunk

is new and its hash is added to the index.

In this chapter, we focus on the design of chunking schemes (step 1), since this

can be, in practice, one of the main bottlenecks of a system that tries to perform

this class of optimizations [30, 85]. Thus we begin by giving some background on

how chunking is performed.

One of the most popular approaches for content-based chunking is to compute

a Rabin fingerprint [129] over sliding windows of w contiguous bytes. The hash

values produced by the fingerprinting scheme are used to create chunk boundaries

by starting new chunks whenever the computed hash matches one of a set of mark-

ers (e.g., its value mod p is lower or equal to a constant). In more detail, given a
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w-bit sequence, it is represented as a polynomial of degree w − 1 over the finite

field GF(2):

f (x) = m0 + m1x + · · ·+ mw−1xw−1 (3.1)

Given this polynomial, an irreducible polynomial div(x) of degree k is chosen. The

fingerprint of the original bit sequence is the remainder r(x) obtained by division

of f (x) using div(x). A chunk boundary is defined when the fingerprint takes

some pre-defined specific value in a set of values called markers. In addition, prac-

tical schemes define a minimum min and maximum max chunk size, which implies

that after finding a marker the fingerprint computation can skip min bytes, and

that a marker is always set when a total of max bytes (including the skipped por-

tion) have been scanned without finding a marker. The minimum size limits the

metadata overhead for index management and the maximum size limits the size

of the RAM buffers that are required. Throughout the rest of the paper, we will use

min = 0 and max = ∞ unless otherwise noted.

Rabin fingerprinting is computationally very expensive. To minimize the com-

putation cost, there has been work on reducing chunking time by using sampling

techniques, where only a subset of bytes are used for chunk identification (e.g.,

SampleByte [30]). However, such approaches are limiting because they are suited

only for small sized chunks, as skipping a large number of bytes leads to missed

opportunities for deduplication. Thus, Rabin fingerprinting still remains one of

the most popular chunking schemes, and reducing its computational cost presents

a fundamental challenge for improving systems that make use of duplicate identi-

fication.

When minimum and maximum chunk sizes are not required, chunking can be

parallelized in a way that different threads operate on different parts of the data

completely independent of each other, with the exception of a small overlap of the

size of the sliding window (w bytes) near partition boundaries. Using min and

49



max chunk sizes complicates this task, though schemes exist to achieve efficient

parallelization in this setting [105, 107].

3.3.2 General-Purpose Computing on GPUs

GPU architecture. GPUs are highly parallel, multi-threaded, many-core proces-

sors with tremendous computational power and very high memory bandwidth.

The high computational power is derived from the specialized design of GPUs,

where more transistors are devoted to simple data processing units (ALUs) rather

than used to integrate sophisticated pre-fetchers, control flows and data caches.

Hence, GPUs are well-suited for data-parallel computations with high arithmetic

intensity rather than data caching and flow control.

Figure 3.1 illustrates a simplified architecture of a GPU. A GPU can be mod-

eled as a set of Streaming Multiprocessors (SMs), each consisting of a set of scalar

processor cores (SPs). An SM works as SIMT (Single Instruction, Multiple Threads),

where the SPs of a multiprocessor execute the same instruction simultaneously but

on different data elements. The data memory in the GPU is organized as multiple

hierarchical spaces for threads in execution. The GPU has a large high-bandwidth

device memory with high latency. Each SM also contains a very fast, low latency

on-chip shared memory to be shared among its SPs. Also, each thread has access

to a private local memory.

Overall, a GPU architecture differs from a traditional processor architecture in

the following ways: (i) an order of magnitude higher number of arithmetic units;

(ii) minimal support for prefetching and buffers for outstanding instructions; (iii)

high memory access latencies and higher memory bandwidth.

Programming model. The CUDA [11] programming model is amongst the most

popular programming models to extract parallelism and scale applications on GPUs.

In this programming model, a host program runs on the CPU and launches a ker-
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Figure 3.1: A simplified view of the GPU architecture.

nel program to be executed on the GPU device in parallel. The kernel executes as

a grid of one or more thread blocks, each of which is dynamically scheduled to

be executed on a single SM. Each thread block consists of a group of threads that

cooperate with each other by synchronizing their execution and sharing multipro-

cessor resources such as shared memory and registers. Threads within a thread

block get executed on a multiprocessor in scheduling units of 32 threads, called a

warp. A half-warp is either the first or second half of a warp.

3.3.3 SDRAM Access Model

Offloading chunking to the GPU requires a large amount of data to be transferred

from the host to the GPU memory. Thus, we need to understand the performance

of the memory subsystem in the GPU, since it is critical to chunking performance.

The global memory in the Nvidia C2050 GPU is GDDR5, which is based on

the DDR3 memory architecture [5]. Memory is arranged into banks and banks

are organized into rows. Every bank also has a sense amplifier, into which a row

must be loaded before any data from the row can be read by the GPU. Whenever

a memory location is accessed, an ACT command selects the corresponding bank

and brings the row containing the memory location into a sense amplifier. The
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appropriate word is then transferred from the sense amplifier. When an access to a

second memory location is performed within the same row, the data is transferred

directly from the sense amplifier. On the other hand, if the data is accessed from a

different row in the bank, a PRE (pre-charge) command writes the previous data

back from the sense amplifier to the memory row. A second ACT command is

performed to bring the row into the sense amplifier.

Note that both ACT and PRE commands are high latency operations that con-

tribute significantly to overall memory latency. If multiple threads access data from

different rows of the same bank in parallel, that sense amplifier is continually acti-

vated (ACT) and pre-charged (PRE) with different rows, leading to a phenomenon

called bank conflict. In particular, a high degree of uncoordinated parallel access

to the memory subsystem is likely to result in a large number of bank conflicts.

3.4 Overview

In this section, we first present the basic design of Shredder . Next, we explain the

main challenges in scaling up our basic design.
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3.4.1 Basic GPU-Accelerated Framework

Figure 3.2 depicts the workflow of the basic design for the Shredder chunking ser-

vice. In this initial design, a multithreaded program running in user mode on the

host (i.e., on the CPU) drives the GPU-based computations. The framework is

composed of four major modules. First, the Reader thread on the host receives the

data stream (e.g., from a SAN), and places it in the memory of the host for content-

based chunking. After that, the Transfer thread allocates global memory on the

GPU and uses the DMA controller to transfer input data from the host memory

to the allocated GPU (device) memory. Once the data transfer from the CPU to

the GPU is complete, the host launches the Chunking kernel for parallel sliding

window computations on the GPU. Once the chunking kernel finds all resulting

chunk boundaries for the input data, the Store thread transfers the resulting chunk

boundaries from the device memory to the host memory. When minimum and

maximum chunk sizes are set, the Store thread also adjusts the chunk set accord-

ingly. Thereafter, the Store thread uses an upcall to notify the chunk boundaries to

the application that is using the Shredder library.

The chunking kernel is responsible for performing parallel content-based chunk-

ing of the data present in the global memory of the GPU. Accesses to the data

are performed by multiple threads that are created on the GPU by launching the

chunking kernel. The data in the GPU memory is divided into equal sized sub-

streams, as many as the number of threads. Each thread is responsible for han-

dling one of these sub-streams. For each sub-stream, a thread computes a Rabin

fingerprint in a sliding window manner. In particular, each thread examines a 48-

byte region from its assigned sub-stream, and computes the Rabin fingerprint for

the selected region. The thread compares the resulting low-order 13 bits of the re-

gion’s fingerprint with a pre-defined marker. This leads to an expected chunk size
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Parameter Value
GPU Processing Capacity 1030 GFlops
Reader (I/O) Bandwidth 2 GBps

Host-to-Device Bandwidth 5.406 GBps
Device-to-Host Bandwidth 5.129 GBps

Device Memory Latency 400 - 600 cycles
Device Memory Bandwidth 144 GBps

Shared Memory Latency L1 latency (a few cycles)

Table 3.1: Performance characteristics of the GPU (NVidia Tesla C2050)

of 4 KB. If the fingerprint matches the marker then the thread defines that partic-

ular region as the end of a chunk boundary. The thread continues to compute the

Rabin fingerprint in a sliding window manner in search of new chunk boundaries

by shifting a byte forward in the sub-stream, and repeating this process.

3.4.2 Scalability Challenges

The basic design for Shredder that we presented in the previous section corre-

sponds to the traditional way in which GPU-assisted applications are implemented.

This design has proven to be sufficient for computation-intensive applications,

where the computation costs can dwarf the cost of transferring the data to the

GPU memory and accessing that memory from the GPU’s cores. However, it re-

sults in only modest performance gains for data intensive applications that per-

form single-pass processing over large amounts of data, with a computational cost

that is significantly lower than traditional GPU-assisted applications.

To understand why this is the case, we present in Table 3.1 some key perfor-

mance characteristics of a specific GPU architecture (NVidia Tesla C2050), which

helps us explain some important bottlenecks for GPU-accelerated applications. In

particular, and as we will demonstrate in subsequent sections, we identified the

following bottlenecks in the basic design of Shredder.
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GPU device memory bottleneck. The fact that data needs to be transferred to the

GPU memory before being processed by the GPU represents a serial dependency:

such processing only starts to execute after the corresponding transfer concludes.

Host bottleneck. The host machine performs three serialized steps (performed by

the Reader, Transfer, and Store threads) in each iteration. Since these three steps are

inherently dependent on each other for a given input buffer, this serial execution

becomes a bottleneck at host. Also, given the availability of multicore architecture

at the host, this serialized execution leads to an underutilization of resources at

host.

High memory latencies and bank conflicts. The global device memory on the

GPU has a high latency, the order of 400 to 600 cycles. This works well for HPC

algorithms, which are quadratic O(N2) or a higher degree polynomial in the input

size N, since the computation time hides the memory access latencies. Chunking

is also compute intensive, but it is only linear in the input size (O(N), though

the constants are high). Hence, even though the problem is compute intensive on

traditional CPUs, on a GPU with an order of magnitude larger number of scalar

cores, the problem becomes memory-intensive. In particular, the less sophisticated

memory subsystem of the GPU (without prefetching or data caching support) is

stressed by frequent memory access by a massive number of threads in parallel.

Furthermore, a higher degree of parallelism causes memory to be accessed ran-

domly across multiple bank rows, and leads to a very high number of bank con-

flicts. As a result, it becomes difficult to hide the latencies of accesses to the device

memory.

55



0

100

1000

5000
10000

4K 16K 32K 64K 256K 1M 4M 16M 32M 64M

T
hr

ou
gh

pu
t [

M
B

/S
ec

]

Buffer Size

HostToDevice-Pageable
HostToDevice-Pinned

DeviceToHost-Pageable
DeviceToHost-Pinned

Figure 3.3: Bandwidth test between host and device.

3.5 Optimizations

In this section, we describe several optimizations that extend the basic design to

overcome the challenges we highlighted in the previous section.

3.5.1 Device Memory Bottlenecks

3.5.1.1 Concurrent Copy and Execution

The main challenge we need to overcome is the fact that traditional GPU-assisted

applications were designed for a scenario where the cost of transferring data to the

GPU is significantly outweighed by the actual computation cost. In particular, the

basic design serializes the execution of copying data to the GPU memory and con-

suming the data from that memory by the Kernel thread. This serialized execution

may not suit the needs of data intensive applications, where the cost of the data

transfer step becomes a more significant fraction of the overall computation time.

To understand the magnitude of this problem, we measured the overhead of a

DMA transfer of data between the host and the device memory over the PCIe link

connected to GPU. Figure 3.3 summarizes the effective bandwidth between host

memory and device memory for different buffer sizes. We measured the band-
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Figure 3.4: Concurrent copy and execution.

width both ways between the host and the device to gauge the DMA overhead for

the Transfer and the Store thread. Note that the effective bandwidth is a property

of the DMA controller and the PCI bus, and it is independent of the number of

threads launched in the GPU. In this experiment, we also varied the buffer type al-

located for the host memory region, which is allocated either as pageable or pinned

memory regions. (The need for pinned memory will become apparent shortly.)

Highlights. Our measurements demonstrate the following: (i) small sized buffer

transfers are more expensive than those using large sized buffers; (ii) the through-

put saturates for buffer sizes larger than 32 MB (for pageable memory region) and

256 KB (for pinned memory region); (iii) for large sized buffers (greater than 32

MB), the throughput difference between pageable and pinned memory regions is

not significant; and (iv) the effective bandwidth of the PCIe bus for data transfer is

on the order of 5 GB/sec, whereas the global device memory access time by scalar

processors in GPUs is on the order of 144 GB/sec, an order of magnitude higher.

Implications. The time spent to chunk a given buffer is split between the memory

transfer and the kernel computation. For a non-optimized implementation of the

chunking computation, we spend approximately 25% of the time performing the

transfer. Once we optimize the processing in the GPU, the host to GPU memory

transfer may become an even greater burden on the overall performance.
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Optimization. In order to avoid the serialized execution of the copy and data con-

sumption steps, we propose to overlap the copy and the execution phases, thus

allowing for the concurrent execution of data communication and the chunking

kernel computations. To enable this, we designed a double buffering technique

as shown in Figure 3.4, where we partition the device memory into twin buffers.

These twin buffers will be alternatively used for communication and computation.

In this scheme, the host asynchronously copies the data into the first buffer and, in

the background, the device works on the previously filled second buffer. To be able

to support asynchronous communication, the host buffer is allocated as a pinned

memory region, which prevents the region from being swapped out by the pager.

Effectiveness. Figure 3.5 shows the effectiveness of the double buffering approach,

where the histogram for transfer and kernel execution shows a 30% time overlap

between the concurrent copy and computation. Even though the total time taken

for concurrent copy and execution (Concurrent) is reduced by only 15% as com-

pared to the serialized execution (Serialized), it is important to note that the

total time is now dictated solely by the compute time. Hence, double buffering is

able to remove the data copying time from the critical path, allowing us to focus

only on optimizing the computation time in the GPU (which we address in § 3.5.3).
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Supporting, the concurrent copy and execution, however, requires us to pin

memory at the host, which reduces the memory allocation performance at the host.

We next present an optimization to handle this side effect and ensure that double

buffering leads to an end-to-end increase in chunking bandwidth.

3.5.1.2 Circular Ring Pinned Memory Buffers

As explained above, the double buffering requires an asynchronous copy between

host memory and device memory. To support this asynchronous data transfer, the

host side buffer should be allocated as a pinned memory region. This locks the

corresponding page so that accessing that region does not result in a page fault

until the region is subsequently unpinned.

To quantify the allocation overheads of using a pinned memory region, we

compared the time required for dynamic memory allocation (using malloc) and

pinned memory allocation (using the CUDA memory allocator wrapper). Since

Linux follows an optimistic memory allocation strategy, where the actual alloca-

tion is deferred until memory initialization, in our measurements we initialized

the memory region (using bzero) to force the kernel to allocate the desired buffer
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size. Figure 3.6 compares the allocation overhead of pageable and pinned memory

for different buffer sizes.

Highlights. The important take away points are the following: (i) pinned memory

allocation is more expensive than the normal dynamic memory allocation; and

(ii) an adverse side effect of having too many pinned memory pages is that it can

increase paging activity for unpinned pages, which degrades performance.

Implications. The main implication for our system design is that we need to min-

imize the allocation of pinned memory region buffers, to avoid increased paging

activity or even thrashing.

Optimization. To minimize the allocation of pinned memory region while restrict-

ing ourselves to using the CUDA architecture, we designed a circular ring buffer

built from a pinned memory region, as shown in Figure 3.7, with the property that

the number of buffers can be kept low (namely as low as the number of stages in

the streaming pipeline, as described in §3.5.2). The pinned regions in the circular

buffer are allocated only once during the system initialization, and thereafter are

reused in a round-robin fashion after the transfer between the host and the device
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Buffer size (bytes) 16M 32M 64M 128M 256M

Device execution time (ms) 11.39 22.74 42.85 85.7 171.4
Host kernel launch time (ms) 0.03 0.03 0.03 0.08 0.09
Total execution time (ms) 11.42 22.77 42.88 85.78 171.49
Host RDTSC ticks @ 2.67 GHz 3.0e7 6.1e7 1.1e8 2.7e8 5.3e8

Table 3.2: Host spare cycles per core due to asynchronous data-transfer and kernel
launch.

memory is complete. This allows us to keep the overhead of costly memory alloca-

tion negligible and have sufficient memory pages for other tasks.

Effectiveness. Figure 3.6 shows the effectiveness of our approach, where we com-

pare the time for allocating pageable and pinned memory regions. Since we incur

the additional cost of copying the data from pageable memory to the pinned mem-

ory region, we add this cost to the total cost of using pageable buffers. Overall, our

approach is faster by an order of magnitude, which highlights the importance of

this optimization.

3.5.2 Host Bottleneck

The previously stated optimizations alleviate the device memory bottleneck for

DMA transfers, and allow the device to focus on performing the actual computa-

tion. However, the host side modules can still become a bottleneck due to the serial-

ized execution of the following stages (Reader→Transfer→Kernel→Store).

In this case, the fact that all four modules are serially executed leads to an under-

utilization of resources at the host side.

To quantify this underutilization at the host, we measured the number of idle

spare cycles per core after the launch of the asynchronous execution of the ker-

nel. Table 3.2 shows the number of RDTSC tick cycles for different buffer sizes.

The RDTSC [21] (Read-Time Stamp Counter) instruction keeps an accurate count

of every cycle that occurs on the processor for monitoring the performance. The
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device execution time captures the asynchronous copy and execution of the ker-

nel, and the host kernel launch time measures the time for the host to launch the

asynchronous copy and the chunking kernel.

Highlights. These measurements highlight the following: (i) the kernel launch

time is negligible compared to the total execution time for the kernel; (ii) the host is

idle during the device execution time; and (ii) the host has a large number of spare

cycles per core, even with a small sized buffer.

Implications. Given the prevalence of host systems running on multicore architec-

tures, the sequential execution of the various components leads to the underutiliza-

tion of the host resources, and therefore these resources should be used to perform

other operations.

Optimization. To utilize these spare cycles at the host, Shredder makes use of a

multi-stage streaming pipeline as shown in Figure 3.8. The goal of this design is

that once the Reader thread finishes writing the data in the host main memory, it

immediately proceeds to handling a new window of data in the stream. Similarly,

the other threads follow this pipelined execution without waiting for the next stage

to finish.

To handle the specific characteristics of our pipeline stages, we use different

design strategies for different modules. Since the Reader and Store modules deal

with I/O, they are implemented as Asynchronous I/O (as described in §3.6.2.1),
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whereas the transfer and kernel threads are implemented using multi-buffering (a

generalization of the double buffering scheme described in §3.5.1.1).

Effectiveness. Figure 3.9 shows the average speedup from using our streaming

pipeline, measured as the ratio of time taken by a sequential execution to the time

taken by our multi-stage pipeline. We varied the number of pipeline stages that can

be executed simultaneously (by restricting the number of buffers that are admitted

to the pipeline) from 2 to 4. The results show that a full pipeline with all four

stages being executed simultaneously achieves a speedup of 2; the reason why

this is below the theoretical maximum of a 4X gain is that the various stages do not

have equal cost.

3.5.3 Device Memory Conflicts

We have observed (in Figure 3.5) that the chunking kernel dominates the overall

time spent by the GPU. In this context, it is crucial to try to minimize the contribu-

tion of the device memory access latency to the overall cost.

Highlights. The very high access latencies of the device memory (on the order of

400-600 cycles @ 1.15 GHz) and the lack of support for data caching and prefetch-
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ing can imply a significant overhead in the overall execution time of the chunking

kernel.

Implications. The hierarchical memory of GPUs provides us an opportunity to

hide the latencies of the global device memory by instead making careful use of

the low latency shared memory. (Recall from § 3.3.2 that the shared memory is

a fast and low latency on-chip memory which is shared among a subset of the

GPU’s scalar processors.) However, fetching data from global to the shared mem-

ory requires us to be careful to avoid bank conflicts, which can negatively impact

the performance of the GPU memory subsystem. This implies that we should try

to improve the inter-thread coordination in fetching data from the device global

memory to avoid these bank conflicts.
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Optimization. We designed a thread cooperation mechanism to optimize the pro-

cess of fetching data from the global memory to the shared memory, as shown

in Figure 3.10. In this scheme, a single block that is needed by a given thread is

fetched at a time, but each block is fetched with the cooperation of all the threads,

and their coordination to avoid bank conflicts. The idea is to iterate over all data

blocks for all threads in a thread block, fetch one data block at a time in a way that

different threads request consecutive but non-conflicting parts of the data block,

and then, after all data blocks are fetched, let each thread work on its respective

blocks independently. This is feasible since threads in a warp (or half-warp) exe-

cute the same stream of instructions (SIMT). Figure 3.10 depicts how threads in a

half-warp cooperate with each other to fetch different blocks sequentially in time.

In order to ensure that the requests made by different threads when fetching

different parts of the same data block do not conflict, we followed the best practices

suggested by the device manufacturer to ensure these requests correspond to a

single access to one row in a bank [11, 12, 135]. In particular, Shredder lets multiple

threads of a half-warp read a contiguous memory interval simultaneously, under

following conditions: (i) the size of the memory element accessed by each thread is

either 4, 8, or 16 bytes; (ii) the elements form a contiguous block of memory; i.e, the
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Nth element is accessed by the Nth thread in the half-warp; and (iii) the address of

the first element is aligned at a boundary of a multiple of 16 bytes.

Effectiveness. Figure 3.11 shows the effectiveness of the memory coalescing op-

timization, where we compare the execution time for the chunking kernel using

the normal device memory access and the optimized version. The results show

that we improve performance by a factor of 8 by reducing bank conflicts. Since the

granularity of memory coalescing is 48 KB (which is the size for the shared mem-

ory per thread block), we do not see any impact from varying buffer sizes (16 MB

to 512 MB), and the benefits are consistent across different buffer sizes.

3.6 Implementation

We implemented Shredder in CUDA [11], and for an experimental comparison,

we also implemented an optimized parallel pthreads-based host-only version of

content-based chunking. This section describes these implementations and evalu-

ates them.

3.6.1 Host-Only Chunking using pthreads

We implemented a library for parallel content-based chunking on SMPs using

POSIX pthreads. We derived parallelism by creating pthreads that operate in dif-

ferent data regions using a Single Program Multiple Data (SPMD) strategy and

communicate using a shared memory data structure. At a high level, the imple-

mentation works as follows: (1) divide the input data equally in fixed-size regions

among N threads; (2) invoke the Rabin fingerprint-based chunking algorithm in

parallel on N different regions; (3) synchronize neighboring threads in the end to

merge the resulting chunk boundaries.
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An issue that arises is that dynamic memory allocation can become a bottle-

neck due to the serialization required to avoid race conditions. To address this, we

used the Hoard memory allocator [43] instead of malloc.

3.6.2 Shredder Implementation

The Shredder library implementation comprises two main modules, the host driver

and the GPU kernel. The host driver runs the control part of the system as a multi-

threaded process on the host CPU running Linux. The GPU kernel uses one or

more GPUs as co-processors for accelerating the SIMT code, and is implemented

using the CUDA programming model from the NVidia GP-GPU toolkit [11]. Next

we explain some key implementation details for both modules.

3.6.2.1 Host Driver

The host driver module is responsible for reading the input data either from the

network or the disk and transferring the data to the GPU memory. Once the data

is transferred then the host process dispatches the GPU kernel code in the form of

RPCs supported by the CUDA toolkit. The host driver has two types of function-

ality: (1) the Reader/Store threads deal with reading and writing data from and to

I/O channels; and (2) the Transfer thread is responsible for moving data between

the host and the GPU memory. We implemented the Reader/Store threads using

Asynchronous I/O and the Transfer thread using CUDA RPCs and page-pinned

memory.

Asynchronous I/O (AIO). With asynchronous non-blocking I/O, it is possible to

overlap processing and I/O by initiating multiple transfers at the same time. In

AIO, the read request returns immediately, indicating that the read was success-

fully initiated. The application can then perform other processing while the back-

ground read operation completes. When the read response arrives, a signal regis-
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tered with the read request is triggered to signal the completion of the I/O trans-

action.

Since the Reader/Store threads operate at the granularity of buffers, a single

input file I/O may lead to issuing multiple aio-read system calls. To minimize

the overhead of multiple context switches per buffer, we used lio-listio to

initiate multiple transfers at the same time in the context of a single system call

(meaning one kernel context switch).

3.6.2.2 GPU Kernel

The GPU kernel can be trivially derived from the C equivalent code by implement-

ing a collection of functions in equivalent CUDA C with some assembly annota-

tions, plus different access mechanisms for data layout in the GPU memory. How-

ever, an efficient implementation of the GPU kernel requires a bit more understand-

ing of vector computations and the GPU architecture. We briefly describe some of

these considerations.

Kernel optimizations. We have implemented minor kernel optimizations to ex-

ploit vector computation in GPUs. In particular, we used loop unrolling and instruction-

level optimizations for the core Rabin fingerprint block. These changes are im-

portant because of the simplified GPU architecture, which lacks out-of-order ex-

ecution, pipeline stalling in register usage, or instruction reordering to eliminate

Read-after-Write (RAW) dependencies.

Warp divergence. Since the GPU architecture is Single Instruction Multiple Threads

(SIMT), if threads in a warp diverge on a data-dependent conditional branch, then

the warp is serially executed until all threads in it converge to the same execution

path. To avoid a performance dip due to this divergence in warp execution, we

carefully restructured the algorithm to have little code divergence within a warp,

by minimizing the code path under data-dependent conditional branches.
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Figure 3.12: Throughput comparison of content-based chunking between CPU and
GPU versions.

3.7 Evaluation

We now present our experimental evaluation of the performance of Shredder.

Experimental setup. We used a fermi-based GPU architecture, namely the Tesla

C2050 GPU consisting of 448 processor cores (SPs). It is organized as a set of

14 SMs each consisting of 32 SPs running at 1.15 GHz. It has 2.6 GB of off-chip

global GPU memory providing a peak memory bandwidth of 144 GB/s. Each SM

has 32768 registers and 48 KB of local on-chip shared memory, shared between its

scalar cores.

We also used an Intel Xeon processor based system as the host CPU machine.

The host system consists of 12 Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz with 48

GB of main memory. The host machine is running Linux with kernel 2.6.38 in 64-

bit mode, additionally patched with GPU direct technology [7] (for SAN devices).

The GCC 4.3.2 compiler (with -O3) was used to compile the source code of the host

library. The GPU code is compiled using the CUDA toolkit 4.0 with NVidia driver

version 270.41.03. The posix implementation is run with 12 threads.

Results. We measure the effectiveness of GPU-accelerated content-based chunk-

ing by comparing the performance of different versions of the host-only and GPU
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based implementation, as shown in Figure 3.12. We compare the chunking through-

put for the pthreads implementation with and without using the Hoard memory

allocator. For the GPU implementation, we compared the performance of the sys-

tem with different optimizations turned on, to gauge their effectiveness. In par-

ticular, GPU Basic represents a basic implementation without any optimizations.

The GPU Streams version includes the optimization to remove host and device

bottlenecks using double buffering and a 4-stage pipeline. Lastly GPU Streams +

Memory represents a version with all optimizations, including memory coalesc-

ing.

Our results show that a naive GPU implementation can lead to a 2X improve-

ment over a host-only optimized implementation. The observation clearly high-

lights the potential of GPUs to alleviate computational bottlenecks. However, this

implementation does not remove chunking as a bottleneck since SAN bandwidths

on typical data servers exceed 10 Gbps. Incorporating the optimizations lead to

Shredder outperforming the host-only implementation by a factor of over 5X.

3.8 Case Studies

In this section, we apply Shredder to two case study applications: (1) incremental

HDFS, and (2) incremental cloud backup solution.

3.8.1 GPU-accelerated Incremental HDFS

This section presents a case study of applying Shredder in the context of incremen-

tal computation by integrating Shredder with Incoop.

GPU-Accelerated Incremental HDFS. We use Shredder to support Incoop by de-

signing a GPU-accelerated version of Inc-HDFS, which is integrated with Incoop

as shown in Figure 3.13. In particular, Inc-HDFS leverages Shredder to perform
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content-based chunking instead of using fixed-size chunking as in the original

HDFS, thus ensuring that small changes to the input lead to small changes in the

set of chunks that are provided as input to Map tasks. This enables the results of

the computations performed by most Map tasks to be reused.

Implementation. We built our prototype GPU-accelerated Inc-HDFS on Hadoop-

0.20.2. It is implemented as an extension to Inc-HDFS, where the computationally

expensive chunking is offloaded to the Shredder-enabled HDFS client (as shown

in Figure 3.14), before uploading chunks to the respective data nodes that will be

storing them.

Inc-HDFS client. We integrated the Shredder library with Inc-HDFS client using

a JAVA-CUDA interface. Once the data upload function is invoked, the Shredder

library notifies the chunk boundaries to the Store thread, which in turn pushes the

chunks from the memory of the client to the data nodes of HDFS.

Semantic chunking framework. The default behavior of the Shredder library is

to split the input file into variable-length chunks based on the contents. However,

since chunking is oblivious to the semantics of the input data, this could cause
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chunk boundaries to be placed anywhere, including, for instance, in the middle of

a record that should not be broken. To address this, we leverage the fact that the

MapReduce framework relies on the InputFormat class of the job to split up the

input file(s) into logical InputSplits, each of which is then assigned to an individual

Map task. We reuse this class to ensure that we respect the record boundaries in

the chunking process.

3.8.2 GPU-accelerated Incremental Cloud Backup

In this section, we present our second case study where we use Shredder in the

context of a consolidated incremental backup system.

Background: Cloud Backup. Figure 3.15 describes our target architecture, which

is typical of cloud back-ends. Applications are deployed on virtual machines

hosted on physical servers. The file system images of the virtual machines are

hosted in a virtual machine image repository stored in a SAN volume. In this

scenario, the backup process works in the following manner. Periodically, full im-

age snapshots are taken for all the VM images that need to be backed up. The

core of the backup process is a backup server and a backup agent running inside

the backup server. The image snapshots are mounted by the backup agent. The
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backup server performs the actual backup of the image snapshots onto disks or

tapes. The consolidated or centralized data backup process ensures compliance of

all virtual machines with the agreed upon backup policy. Backup servers typically

have very high I/O bandwidth since, in enterprise environments, all operations

are typically performed on a SAN [99]. Furthermore, the use of physical servers

allows multiple dedicated ports to be employed solely for the backup process.

GPU-Accelerated Data Deduplication. The centralized backup process is eminently

suitable for deduplication via content-based chunking, as most images in a data-

center environment are standardized. Hence, virtual machines share a large num-

ber of files and a typical backup process would unnecessarily copy the same con-

tent multiple times. To exploit this fact, we integrate Shredder with the backup

server, thus enabling data to be pushed to the backup site at a high rate while

simultaneously exploiting opportunities for savings.

The Reader thread on the backup server reads the incoming data and pushes

that into Shredder to form chunks. Once the chunks are formed, the Store thread

computes a hash for the overall chunk, and pushes the chunks in the backup setup
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as a separate pipeline stage. Thereafter, these hashes collected for the chunks are

batched together to enqueue in an index lookup queue. Finally, a lookup thread

picks up the enqueued chunk fingerprints and looks up in the index whether a

particular chunk needs to be backed up or is already present in the backup site.

If a chunk already exists, a pointer to the original chunk is transferred instead of

the chunk data. We deploy an additional Shredder agent residing on the backup

site, which receives all the chunks and pointers and recreates the original uncom-

pressed data. The overall architecture for integrating Shredder in a cloud backup

system is described in Figure 3.16.

Implementation and Evaluation. Since high bandwidth fiber channel adapters

are fairly expensive, we could not recreate the high I/O rate of modern backup

servers in our testbed. Hence, we used a memory-driven emulation environment

to experimentally validate the performance of Shredder. On our backup agent, we

keep a master image in memory using memcached [9]. The backup agent creates

new file system images from the master image by replacing part of the content

from the master image using a predefined similarity table. The master image is

divided into segments. The image similarity table contains a probability of each

segment being replaced by a different content. The agent uses these probabilities

to decide which segments in the master image will be replaced. The image gener-
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ation rate is kept at 10 Gbps to closely simulate the I/O processing rate of modern

X-series employed for I/O processing applications [99].

In this experiment, we also enable the requirement of a minimum and max-

imum chunk size, as used in practice by many commercial backup systems. As

mentioned in Section 3.4, our current implementation of Shredder is not optimized

for including a minimum and maximum chunk size, since the data that is skipped

after a chunk boundary is still scanned for computing a Rabin fingerprint on the

GPU, and only after all the chunk boundaries are collected will the Store thread dis-

card all chunk boundaries within the minimum chunk size limit. As future work,

we intend to address this limitation using more efficient techniques that were pro-

posed in the literature [105, 107].

As a result of this limitation, we observe in Figure 3.17 that we are able to

achieve a speedup of only 2.5X in backup bandwidth compared to the pthread

implementation, but still we manage to keep the backup bandwidth close to the

target 10 Gbps. The results also show that even though the chunking process oper-

ates independently of the degree of similarity in input data, the backup bandwidth

decreases when the similarity between the data decreases. This is not a limitation

of our chunking scheme but of the unoptimized index lookup and network access,

which reduces the backup bandwidth. Combined with optimized index mainte-

nance (e.g., [68]), Shredder is likely to achieve the target backup bandwidth for the

entire spectrum of content similarity.

3.9 Related Work

Our work builds on contributions from several different areas, which we survey.

GPU-accelerated systems. GPUs were initially designed for graphics rendering,

but, because of their cost-effectiveness, they were quickly adopted by the HPC
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community for scientific computations [6, 119]. Recently, the systems research

community has leveraged GPUs for building other systems. In particular, Packet-

Shader [89] is a software router for general packet processing, and SSLShader [96]

uses GPUs in web servers to efficiently perform cryptographic operations. GPUs

have also been used to accelerate functions such as pattern matching [138], net-

work coding [137], and complex cryptographic operations [90]. In our work, we

explored the potential of GPUs for large scale data, which raises challenges due to

the overheads of data transfer. Recently, GPUs were used in software-based RAID

controllers [66] for performing high-performance calculations of error correcting

codes. However, this work does not propose optimizations for efficient data trans-

fer.

The most closely related work to Shredder proposes a framework for using

GPUs to accelerate computationally expensive MD-based hashing primitives in

storage systems [31, 82]. Our work focuses on large-scale data systems where

the relative weight of data transfer can be even more significant. In particular,

our chunking service uses Rabin fingerprinting, which is less computationally

demanding than MD5, and is impacted more significantly by the serialization

and memory latency issues. In addition, while the two papers address similar
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bottlenecks in GPU-based systems, our techniques go beyond the ones proposed

in [31, 82]. In particular, this prior work proposes memory management optimiza-

tions to avoid memory bank conflicts when accessing the shared memory, whereas

in contrast we address the issue of bank conflicts in the global device memory of

the GPU, which required us to introduce a thread co-operation mechanism using

memory coalescing. In comparison to the remaining two optimizations we pro-

pose in Shredder, this prior work does not mention an execution pipeline that uses

multicores at the host, and support for asynchronous data transfer is mentioned

but not described in detail in their paper. We also present two real life end-to-end

case studies of incremental MapReduce and cloud backup that benefit from Shred-

der.

Incremental Storage. Data deduplication is commonly used in storage systems. In

particular, there is a large body of research on efficient index management [46, 68,

106, 146, 151]. In this paper, we focus on the complementary problem of content-

based chunking [79, 98, 114]. High throughput content-based chunking is particu-

larly relevant in environments that use SANs, where chunking can become a bottle-

neck. To overcome this bottleneck, systems have compromised the deduplication

efficiency with sampling techniques or fixed-size chunking, or they have tried to

scale chunking by deploying multi-node systems [61, 75, 76, 142]. A recent pro-

posal shows that multi-node systems not only incur a high cost but also increase

the reference management burden [85]. As a result, building a high throughput,

cost-effective, single node systems becomes more important. Our system can be

seen as an important step in this direction.

Network Redundancy Elimination. Content-based chunking has also been pro-

posed in the context of redundancy elimination for content distribution networks

(CDNs), to reduce the bandwidth consumption of ISPs [30, 35, 36, 124]. Also,

many commercial vendors (such as Riverbed, Juniper, Cisco) offer middleboxes
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to improve bandwidth usage in multi-site enterprises, data centers and ISP links.

Our proposal is complementary to this work, since it can be used to improve the

throughput of redundancy elimination in such solutions.

3.10 Limitations and Future Work

While Shredder is a significant step towards general support for incremental stor-

age, there are several interesting avenues for future work. First, we would like to

incorporate into the library several optimizations for parallel content-based chunk-

ing [105, 107]. Second, our proposed techniques need to continuously adapt to

changes in the technologies that are used by GPUs, such as the use of high-speed

InfiniBand networking, which enables further optimizations in the packet I/O en-

gine using GPU-direct [7]. Third, we would like explore new applications like

middleboxes for bandwidth reduction using network redundancy elimination [35].

Finally, we would like to incorporate Shredder as an extension to recent proposals

to devise new operating system abstractions to manage GPUs [134].

3.11 Summary

In this chapter, we have presented Shredder, a novel framework for content-based

chunking using GPU acceleration. We have proposed several optimizations to im-

prove the performance of content-based chunking on GPUs. We have applied

Shredder to two incremental storage and computation applications, and our ex-

perimental results show the effectiveness of the optimizations that are included in

the design of Shredder. We believe that Shredder can be a useful building block in

the construction of efficient solutions for redundancy elimination in areas such as

data backup, incremental computation, and CDNs.
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CHAPTER 4

Slider: Incremental Stream Processing

In this chapter, we describe the design, implementation, and evaluation of

Slider, a batched stream processing framework for incremental sliding window

analytics. The design of Slider incorporates self-adjusting contraction trees, a set

of data structures and algorithms for transparently updating the output of data-

parallel sliding window computations as the window moves, while reusing, to the

extent possible, results from prior computations.

This chapter is organized as follows. We first motivate the design of Slider

in Section 4.1. We next briefly highlight the contributions of Slider in Section 4.2.

Thereafter, we present present an overview of the basic approach in Section 4.3.

Next, we present the detailed design of self-adjusting contraction trees in Sec-

tions 4.4, 4.5 and 4.6. The architecture of Slider is described in Section 4.7. Sec-

tion 4.8 presents an experimental evaluation of Slider, and our experience with the

case studies is reported in Section 4.9. We present the related work in Section 4.10.

Finally, limitations and conclusion are presented in Section 4.11 and Section 4.12,

respectively.

4.1 Motivation

"Big data" systems (as mentioned in Chapter 2) are very often used for analyzing

data that is collected over very long periods of time. Either due to the nature of the



analysis, or in order to bound the computational complexity of analyzing a mono-

tonically growing data set, applications often resort to a sliding window analysis.

In this type of processing, the scope of the data analysis is limited to an interval

over the entire set of collected data, and, periodically, newly produced inputs are

appended to the window and older inputs are discarded from it as they become

less relevant to the analysis.

Stream processing is the state-of-the-art distributed computing medium for

large-scale sliding window analytics. Broadly speaking, stream processing plat-

forms can be classified based on the programming model as trigger-based stream-

ing systems and batch-based streaming systems. Trigger-based systems provide

an event-driven programming model; whereas, batch-based systems provide a

simply but powerful data-parallel programming model for the application devel-

opers. (We provide a detailed comparison of the trade-offs involved between the

two types of streaming systems in Section 4.10.)

At a high-level, trigger-based streaming systems provide a mechanism for in-

crementally updating the output for sliding window analytics. However, these sys-

tems rely on the application programmers to devise the incremental update mecha-

nism by designing and implementing application-specific dynamic algorithms. While

these systems can be efficient, they require programmers to design dynamic al-

gorithms. Such algorithms, as explained previously, are often difficult to design,

analyze, and implement even for simple problems.

On the other hand, batch-based streaming systems provide a "one-shot" com-

puting mechanism for sliding window analytics, where the entire window is re-

computed from scratch whenever the window slides. Consequently, even old, un-

changed data items that remain in the window are reprocessed, thus consuming

unnecessary computational resources and limiting the timeliness of results.
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In this chapter, we answer the following question: Is it possible to achieve the

benefits of incremental sliding window analytics without requiring dynamic algo-

rithms in batch-based streaming systems? We showed in the case of Incoop that

it is possible to obtain performance gains for incremental computation in batch-

processing systems in a transparent way, i.e., without changing the original (sin-

gle pass) data analysis code. However, Incoop did not leverage the particular

characteristics of sliding windows and resorted solely to the memoization of sub-

computations, which still requires time proportional to the size of the whole data

rather (albeit with a small constant) than the change itself.

4.2 Contributions

In this chapter, we present self-adjusting contraction trees, a set of data structures for

incremental sliding window analytics, where the work performed by incremental

updates is proportional to the size of the changes in the window rather than the

whole data. Using these data structures only requires the programmer to devise

a non-incremental version of the application code expressed using a conventional

data-parallel programming model. We then guarantee an automatic and efficient

update of the output as the window slides. Moreover, we make no restrictions on

how the window slides, allowing it to shrink on one end and to grow on the other

end arbitrarily. However, as we show, more restricted changes lead to simpler

algorithms and more efficient updates. Overall, our contributions include:

• Self-adjusting contraction trees: A set of self-adjusting data structures that

are designed specifically for structuring different variants of sliding window

computation as a (shallow) balanced dependence graph. These balanced

graphs ensure that the work performed for incremental updates is propor-
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tional to the size of the changes in the window (the “delta”) incurring only a

logarithmic—rather than linear—dependency on the size of window (§4.4).

• Split processing algorithms: We introduce a split processing model, where

the incremental computation is divided into a background pre-processing

phase and a foreground processing phase. The background processing takes

advantage of the predictability of input changes in sliding window analytics

to pave the way for a more efficient foreground processing when the window

slides (§4.5).

• Query processing—multi-level trees: We present an extension of the pro-

posed data structures for multi-level workflows to support incremental data-

flow query processing (§4.6).

We implemented self-adjusting contraction trees in a system called Slider, which

extends Hadoop [8], and evaluated the effectiveness of the new data structures by

applying Slider to a variety of micro-benchmarks and applications. Furthermore,

we report on three real world use cases: (i) building an information propagation

tree [132] for Twitter; (ii) monitoring Glasnost [74] measurement servers for detect-

ing traffic differentiation by ISPs; and (iii) providing peer accountability in Akamai

NetSession [28], a hybrid CDN architecture.

4.3 Overview

Our primary goal is to design data structures for incremental sliding window an-

alytics, so that the output is efficiently updated when the window slides. In addi-

tion, we want to do so transparently, without requiring the programmer to change

any of the existing application code, which is written assuming non-incremental

(batch) processing. In our prototype system called Slider, non-incremental com-
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Figure 4.1: Strawman design and contraction phase

putations are expressed under the MapReduce [67] programming model (or alter-

natively as Pig [116] programs), but the data structures can be plugged into other

data-parallel programming models that allow for decomposing computations into

associative sub-computations, such as Dryad [95] and Spark [148].

4.3.1 Strawman Design

The design of self-adjusting contraction trees is based on self-adjusting compu-

tation [24] (summarized in Chapter 2), where the basic idea is to create a graph

of data dependent sub-computations and propagate changes through this graph.

Just like in Incoop, when applying the principles of self-adjusting computation

to MapReduce, vertices in the dependence graph correspond to Map and Reduce

tasks, and edges represent data transferred between tasks (as depicted in Figure 4.1).

When applying the strawman design for sliding window analytics, new data

items are appended at the end of the previous window and old data items are

dropped from the beginning. To update the output incrementally, we launch a

Map task for each new “split” (a partition of the input that is handled by a single
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Map task) and reuse the results of Map tasks operating on old but live data. We

then feed the newly computed results together with the reused results to Reduce

tasks to compute the final output.

This initial strawman design highlights an important limitation: even a small

change to the input can preclude the reuse of all the work after the first level of

nodes in the graph. This is because the second level nodes (i.e., the Reduce tasks)

take as input all values for a given key (< ki >, < v1, v2, .., vn >). In the example

shown in Figure 4.1, as the computation window slides from time T1 to T2, it invali-

dates the input of all Reduce tasks because of the removal of the M0 output and the

addition of new Map outputs (M5 & M6) to the window. To address this limitation,

we refine the strawman design by organizing the second level nodes (correspond-

ing to the Reduce phase) into a contraction phase, as proposed in Incoop (Chapter 2).

The contraction phase is interposed between the Map and the Reduce phase, we

briefly explain the contraction phase next.

4.3.2 Adding the Contraction Phase

As explained in Chapter 2, the idea behind the contraction phase is to break each

Reduce task into smaller sub-computations, which are structured in a contraction

tree, and then propagate changes through this tree. We construct the contraction

tree by breaking up the work done by the (potentially large) Reduce task into many

applications of the Combiner function. Combiner functions [67] were originally de-

signed to run at the Map task for saving bandwidth by doing a local reduction of

the output of Map, but instead we use Combiners at the Reduce task to form the

contraction tree. More specifically, we split the Reduce input into small partitions

(as depicted in Figure 4.1), and apply the Combiner to pairs of partitions recur-

sively in the form of a binary tree until we have a single partition left. Finally, we

apply the Reduce function to the last Combiner, to get the final output. This re-
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Algorithm 1: Basic algorithm for sliding windows

11 Require changes:
a
← (−δ1,+δ2)

2 /* Process new input +δ2 by running Map tasks*/
3 for i = Tend to Tend + (+δ2) do
4 Mi({k})← run_maptask(i);

5 /* Propagate
a

using contraction tree*/
6 forall the keys k do
7 /* Delete Map outputs for −δ1*/
8 for i = Tstart to Tstart − (−δ1) do
9 contraction_tree·delete(Mi(k));

10 /* Insert Map outputs for +δ2*/
11 for i = Tend to Tend + (+δ2) do
12 contraction_tree·insert(Mi(k)));

13 /* Perform change propagation*/
14 contraction_tree·update(k);

15 /*Adjust the window for the next incremental run*/
16 Tstart ← Tstart − (−δ1);
17 Tend ← Tend + (+δ2);

quires Combiner functions to be associative, an assumption that is met by every

Combiner function we have come across.

The final strawman design we obtain after adding the contraction phase is

shown in Algorithm 1. As a starting point, changes (
a

) in the input are specified

by the user as the union of old items (−δ) that are dropped and new items (+δ)

that are added to the window. Subsequently,

1. the items that are added to the window (+δ) are handled by breaking them

up into fixed-sized chunks called “splits”, and launching a new Map task to

handle each split (line 3-4);

2. the outputs from these new Map tasks along with the old splits that fall out

from the sliding window (−δ) are then fed to the contraction phase instead

of the Reduce task for each emitted key k (line 6-14);
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3. finally, the computation time window is adjusted for the next incremental

run (line 16-17).

4.3.3 Efficiency of the Contraction Tree

The efficiency of self-adjusting computation in responding to an input modifica-

tion is determined by the stability of the computation. For change propagation to

be efficient, it is important that (a) the computation is divided into small enough

sub-computations; and (b) no long chain of dependencies exists between sub-computations.

We call such computations stable because few of their sub-computations change

when the overall input is modified by a small amount.

The Contraction tree proposed in Incoop provides stability for arbitrary changes

in the input. However, the (plain) Contraction tree does not construct the depen-

dency graph of subcomputations explicitly, and thus does not perform change

propagation on the dependency graph. Instead, the graph is recorded implicitly by

memoizing subcomputations—MapReduce tasks—and change propagation is per-

formed by re-visiting all subcomputations and reusing those that can be reused via

memoization. While this approach simplifies the design and the implementation,

it can yield asymptotically suboptimal performance, because it requires touching

all subcomputations (for the purposes of memoization and reuse) even if they may

not be affected by the input modifications. In contrast, Slider proposes a series of

data structures that perform change propagation by taking advantage of the fact

that in sliding window computations the input changes happen only at the end

points of the computation window. Furthermore, Slider takes advantage of the pre-

dictability of changes in sliding window computations to improve the timeliness

of the results by enabling a split processing mode, where a background processing

leverages the predictability of input changes to pave the way for a more efficient

foreground processing when the window slides.
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We next present a set of novel data structures, called self-adjusting contraction

trees, that replace the simple binary tree in the strawman design of the contrac-

tion phase. The goal of these data structures is to ensure that the path from the

newly added and dropped inputs to the root has a low depth, and that as many

unaffected sub-computations as possible are outside that path. Furthermore, these

data structures must perform a form of rebalancing after each run, i.e., a change

in the sliding window not only triggers an update to the output but also to the

structure of the contraction tree, to ensure that the desirable properties of our data

structures hold for subsequent runs.

4.4 Self-Adjusting Contraction Trees

In this section, we present the general case data structures for incremental sliding

window analytics. When describing our algorithms, we distinguish between two

modes of running: an initial run and an incremental run. The initial run assumes

all input data items are new and constructs the self-adjusting contraction tree from

scratch. The incremental run takes advantage of the constructed tree to incremen-

tally update the output.

4.4.1 Folding Contraction Tree

Our first data structure, called a self-adjusting folding tree, permits shrinking and

extending the data window arbitrarily, i.e., supports variable-width window slides.

The goal of this data structure is to maintain a small height for the tree, since this

height determines the minimum number of Combiner functions that need to be

recomputed when a single input changes.

Initial run. Given the outputs of the Map phase consisting of M tasks, we con-

struct a folding tree of height ⌈log2 M⌉ and pair each leaf with the output of a Map
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task, such that all Map tasks are mapped to a contiguous subset of the leaves with

no unpaired leaves in between. The leaf nodes that cannot be filled in the complete

binary tree (adding up to 2height−M nodes) are marked as void nodes; these nodes

will be occupied by future Map tasks. To compute the output, we apply Reduce to

the root of the folding tree.

Figure 4.2 illustrates an example. At time T1, we construct a complete binary

tree of height two, where the leaves are the Map outputs of {0, 1, 2}, and with an

additional void node to make the number of leaves a power of two. We then apply

combiners {C0, C1, C2} to pairs of nodes to form a binary tree.

Incremental run. When the window slides, we want to keep the folding tree bal-

anced, meaning that the height of the tree should be roughly be equal to logarith-

mic to the current window size (H = ⌈log2 M⌉), which is the minimum possible

height. The basic idea is to assign the outputs of new Map invocations to the void

leaf nodes on the right hand side of the tree, and mark the leaf nodes on the left
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hand side corresponding to Map tasks that were dropped from the window as

void. Adding new nodes on the right hand side may require a change in the tree

size, when the new Map outputs exceed the number of void nodes. Conversely,

dropping nodes from the left hand side can cause the entire left half of the tree to

contain void leaves. These are the two cases that lead to a change in the height of

the tree, and they are handled by folding and unfolding units of complete (sub-)trees,

i.e., increasing or decreasing the tree height by one, while maintaining a complete

tree.

In particular, when inserting items, we first try to fill up the void nodes to the

right of the non-void leaves that still have not been used in the previous run. If

all void nodes are used, a new complete contraction tree is created, whose size is

equal to the current tree, and we merge the two trees. This increases the height of

the tree by one. When removing items, we always attempt to reduce the tree height

in order to make incremental processing more efficient by checking if the entire left

half of the leave nodes are void. If so, we discard half of the tree by promoting the

right hand child of the root node to become the new root.

Figure 4.2 shows a set of example incremental runs for this algorithm. At

time T2, two Map outputs (nodes 3 & 4) are inserted, causing the tree to expand to

accommodate node 4 by constructing another subtree of height two and joining the

new subtree with the previous tree, which increases the height to three. Conversely,

at time T3 the removal of three Map outputs (nodes 1, 2, & 3) causes the tree height

to decrease from three to two because all leaf nodes in the left half of the tree are

void.

4.4.2 Randomized Folding Tree

The general case algorithm performs quite well in the normal case when the size of

the window does not change drastically. However, the fact that tree expansion and
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contraction is done by doubling or halving the tree size can lead to some corner

cases where the tree becomes imbalanced, meaning that its height is no longer

H = ⌈log2 M⌉. For example, if the window suddenly shrinks from a large value

of M elements to M′ = 2 elements, and the two remaining elements happen to be

on different sides with respect to the root of the tree, then the algorithm ends up

operating on a folding tree with height ⌈log2(2M + 1)⌉when the window is of size

M′ << M.

One way to address this problem is to perform an initial run whenever the size

of the window is more than some desired constant factor (e.g., 8, 16) smaller than

the number of leaves of the folding tree. On rebalancing, all void nodes are garbage

collected and a freshly balanced folding tree is constructed ( H = ⌈log2(M′)⌉)

similar to the initial run. This strategy is attractive for workloads where large

variations in the window size are rare. Otherwise, frequently performing the initial

run for rebalancing can be inefficient.

For the case with frequent changes in the window size, we designed a random-

ized algorithm for rebalancing the folding tree. This algorithm is very similar to

the one adopted in the design of skip lists [126], and therefore inherits its analyti-

cal properties. The idea is to group nodes at each level probabilistically instead of

folding/unfolding complete binary trees. In particular, each node forms a group

boundary with a probability p = 1/2. In the expected case, and by analogy to the

skip list data structure, the average height of the tree is H = ⌈log2(current_window_size)⌉.

Figure 4.3 shows an example of a randomized folding tree with 4 levels for 16

input leaf nodes. The tree is constructed by combining nodes into groups, starting

from left to right, where for each node a coin toss decides whether to form a group

boundary: with probability p = 1/2, a node either joins the previous group or

creates a new group. In the example, leaf nodes 0, 1, 2 join the same group C0, and

leaf node 3 creates a new group C1 which is joined by nodes 4, 5, 6. This process
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is repeated at all the levels. When nodes are deleted, all nodes on paths from

the deleted nodes to the root are recomputed. In the example, after nodes 0 and

1 are deleted, nodes C0, C6, C9, C11 are recomputed. Similarly, the newly inserted

items are grouped probabilistically at all the levels, and then the merged nodes

(combination of new and old nodes) are re-computed.

4.5 Split Processing Algorithms

We now consider two special cases of sliding windows, where, in addition to offer-

ing specialized data structures, we also introduce a split processing optimization.

In the first special case, the window can be extended on one end and reduced on

the other, as long as the size of the window remains the same (§4.5.1). (This is also

known as fixed-width window processing.) In the second case, the window is only

extended monotonically on one end by append operations (§4.5.2). (This is also

known as bulk-appended data processing.)
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In both these cases, since we know more in advance about the type of change

that is going to take place in the next run, we leverage this fact for improving the

responsiveness of incremental updates by preparing for the incremental run before

it starts. More precisely, we split the change propagation algorithm into two parts:

a foreground processing and a background pre-processing. The foreground process-

ing takes place right after the update to the computation window, and minimizes

the processing time by combining new data with a pre-computed intermediate re-

sult. The background pre-processing takes place after the result is produced and

returned, paving the way for an efficient foreground processing by pre-computing

an intermediate result that will be used in the next incremental update. The back-

ground pre-processing step is optional and we envision performing it on a best-

effort basis and bypassing it if there are no spare cycles in the cluster.

4.5.1 Rotating Contraction Trees

In fixed-width sliding window computations, new data is appended at the end,

while the same amount of old data is dropped from the beginning of the win-

dow, i.e., w new splits (each processed by a new Map task) are appended and

w old splits are removed. To perform such computations efficiently, we use rotat-

ing contraction trees (depicted in Figure 4.4). Here, w splits are grouped using the

combiner function to form what we call a bucket. Then, we form a balanced binary

contraction tree where the leaves are the buckets. Since the number of buckets re-

mains constant when the window slides, we just need to rotate over the leaves in

a round-robin fashion, replacing the oldest bucket with the newly produced one.

Initial run. In this case, the steady state of incremental runs is only reached when

the window fills up. As such, we need to consider the sequence of initial runs

during which no buckets are dropped. At each of these runs, we combine the

w newly produced Map outputs to produce a new bucket. By the time the first
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window fills, we construct the contraction tree by combining all bucket outputs in

pairs hierarchically, to form a balanced binary tree of height ⌈log2(N)⌉, where N

is the total number of buckets in a window. Figure 4.4(a) shows an example with

w = 2 and N = 4. At T1, the first level of the tree (C00, C01, C10, C11) is constructed

by invoking combiners on the N buckets of size w = 2, whose results are then

recursively combined to form a balanced binary tree. The output of the combiner

at the root of the tree is then used as input to the Reduce task.

Incremental run. We organize the leaf nodes of the contraction tree as a circular

list. When w new splits arrive and w old splits are removed from the data set, we

replace the oldest bucket with the new bucket and update the output by recomput-

ing the path affected by the new bucket. Figure 4.4(a) shows an example. At T2

the new bucket 4 replaces the oldest bucket 0. This triggers a propagation of this

change all the way to the root, where each step combines a memoized combiner

output with a newly produced combiner output. In this example, we reuse the
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memoized outputs of combiners C01, and C1. In total, this requires recomputing

a number of combiners that is equal to log(N). The rotation of buckets requires

commutativity in addition to the associativity of the combiner invocations. Both

properties were held by Combiner functions in the applications we analyzed.

Background pre-processing. As explained before, this background step anticipates

part of the processing since in this case we can predict the window change that will

take place. In particular, in this case we know exactly what are the subtrees of the

next incremental run whose outputs will be reused – these are the subtrees that fall

outside the path from the next bucket to be replaced to the root. We take advan-

tage of this by pre-combining all the combiner outputs that are at the root of those

subtrees. For example, in Figure 4.4(b), we can pre-compute the combiner output

I0 by combining C01 and C1 along the update path of bucket 0 in the background.

This way, the incremental run only needs to invoke the Reduce task with the out-

put of this pre-computed Combiner invocation (I0) and the outputs of the newly

run Map tasks.

4.5.2 Coalescing Contraction Trees

In the append only variant, the window grows monotonically as the new inputs are

appended at the end of the current window, i.e., old data is never dropped. For

this kind of workflow we designed a data structure called a coalescing contraction

tree (depicted in Figure 4.5).

Initial run. The first time input data is added, a single-level contraction tree is

constructed by executing the Combiner function (C1 in Figure 4.5(a)) for all Map

outputs. The output of this combiner is then used as input to the Reduce task,

which produces the final output (R1 in Figure 4.5(a)).
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Incremental run. The outputs of the new Map tasks (C′2 in Figure 4.5(a)) are com-

bined, and the result is combined with the output of the contraction tree from the

previous run to form a new contraction tree (C2 combines the outputs of C1 and

C′2). The output of the root of this new tree is then provided to a Reduce task (R2

in the example), which produces the new output.

Background pre-processing. In the foreground processing step (see Figure 4.5(b))

the new output is computed directly by invoking the Reduce task on the root of

the old contraction tree and on the output of a Combiner invocation on the new

Map inputs. In the background pre-processing phase, we prepare for the next in-

cremental run by forming a new root of the contraction tree to be used with the

next new input data. This is done by combining the root of the old tree with the

output of the previous Combiner invocation on the new Map inputs. Figure 4.5(b)

depicts an example for background pre-processing. We perform the final reduc-

tion (R2) directly on the union of the outputs of the combiner invocation from the

previous run (C1), and the combiner invocation, which aggregates the outputs of

the newly run Map tasks (C′2). In the background, we run the new combiner that
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will be used in the next incremental run (C2), using the same inputs as the Reduce

task, to anticipate the processing that will be necessary in the next run.

4.6 Query Processing: Multi-Level Trees

We next present an extension of self-adjusting contraction trees to integrate them

with tools that support declarative data-flow query languages, such as Pig [116]

or DryadLINQ [95]. These languages have gained popularity in the context of

large-scale data analysis due to the ease of programming using their high-level

primitives. To support these systems, we leverage the observation that programs

written in these query languages are compiled to a series of pipelined stages where

each stage corresponds to a program in a traditional data-parallel model (such as

MapReduce or Dryad), for which we already have incremental processing support.

In particular, our query processing interface is based on Pig [116]. Pig consists

of a high-level language (called Pig-Latin) similar to SQL, and a compiler that trans-

lates Pig programs to a workflow of multiple pipelined MapReduce jobs. Since our

approach handles MapReduce programs transparently, each stage resulting from

this compilation can run incrementally by leveraging contraction trees. A chal-

lenge, however, is that not all the stages in this pipeline are amenable to a sliding

window incremental computation. In particular, after the first stage MapReduce

job that processes the input from the sliding window, changes to the input of subse-

quent stages could be at arbitrary positions instead of the window ends. Thus, we

adapt the strategy we employ at different stages as follows: (1) in the first stage, we

use the appropriate self-adjusting contraction tree that corresponds to the desired

type of window change; and, (2) from the second stage onwards in the pipeline,

we use the strawman contraction tree (§4.3) to detect and propagate changes.
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4.7 Implementation

We implemented self-adjusting contraction trees in a system called Slider, as an

extension to Incoop. Here, we highlight only the additional components we built

on the top of Incoop. An overview of the implementation is depicted in Figure 4.6.

Self-adjusting contraction trees. Our data structures are implemented by insert-

ing an additional Contraction phase between the shuffle stage and the sort stage.

To prevent unnecessary data movement in the cluster, the new Contraction phase

runs on the same machine as the Reduce task that will subsequently process the

data.

In-memory distributed cache. The implementation includes an in-memory dis-

tributed data caching layer to provide fast access to memoized results. The use

of in-memory caching is motivated by two observations: first, the number of sub-

computations that need to be memoized is limited by the size of the sliding win-

dow; second, main memory is generally underutilized in data-centric computing,
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thus creating an opportunity for reusing this resource [37]. We designed a simple

distributed caching service that memoizes the outputs of sub-computations. The

distributed cache is coordinated by a master node (in our case, the namenode of

Hadoop), which maintains an index to locate the data items.

Fault-tolerance. Storing memoized results in the in-memory data cache is benefi-

cial for performance, but it can lead to reduced memoization effectiveness when

machines fail, as the loss of memoized results will trigger otherwise unnecessary

recomputations. To avoid this situation, we built a fault-tolerant memoization

layer, which, in addition to storing memoized data in the in-memory cache, cre-

ates two replicas of this data in persistent storage. The replication is transparently

handled by a shim I/O layer that provides low-latency access to the in-memory

cache when possible and falls back to the persistent copies when necessary.

Garbage collection. To ensure that the storage requirements remain bounded, we

developed a garbage collector (implemented at the master node) that manages the

space used by the memoization layer. The garbage collector can either automati-

cally free the storage occupied by data items that fall out of the current window, or

have a more aggressive user-defined policy.

Memoization-aware scheduling. Slider makes use of the memorization aware sched-

uler of Incoop (described in Section 2.7) to schedule Reduce tasks where the previ-

ously run objects are memoized.

4.8 Evaluation

Our evaluation answers the following questions:
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• How does the perfomance of Slider compare to recomputing over the en-

tire window of data and with the memoization-based strawman approach?

(§ 4.8.2)

• How effective are the optimizations we propose in improving the perfor-

mance of Slider? (§ 4.8.3)

• What are the overheads imposed during a fresh run of an application? (§ 4.8.4)

4.8.1 Experimental Setup

Applications and dataset. Our micro-benchmarks span five MapReduce applica-

tions that implement typical data analysis tasks. Two are compute-intensive appli-

cations: K-means clustering (K-Means), and K-nearest neighbors (KNN). As input

to these tasks we use synthetically generated data by randomly selecting points

from a 50-dimensional unit cube. The remaining three are data-intensive appli-

cations: a histogram-based computation (HCT), a co-occurrence matrix computa-

tion (Matrix), and a string computation extracting frequently occurring sub-strings

(subStr). As input we use a publicly available dataset of Wikipedia [22].

Cluster setup. Our experiments run on a cluster of 25 machines. We configured

Hadoop to run the namenode and the job tracker on a master machine, which was

equipped with a 12-core Intel Xeon processor and 48 GB of RAM. The data nodes

and task trackers ran on the remaining 24 machines equipped with AMD Opteron-

252 processors, 4 GB of RAM, and 225 GB drives.

Measurements. We consider two types of measures: work and time. Work refers

to the total amount of computation performed by all tasks (Map, contraction, and

Reduce) and is measured as the sum of the active time for all the tasks. Time refers

to the (end-to-end) total amount of running time to complete the job.
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Figure 4.7: Performance gains of Slider compared to recomputing from scratch for
the append-only windowing mode

Methodology. To assess the effectiveness of Slider, we measured the work and

run-time of each micro-benchmark for different dynamic update scenarios, i.e.,

with different amounts of modified inputs, ranging from 5% to 25% of input data

change. For the append-only case, a p% incremental change of the input data

means that p% more data was appended to the existing data. For the fixed-width

and variable-width sliding window cases, the window is moved such that p% of

the input buckets are dropped from the window’s beginning, and replaced with

the same number of new buckets containing new content appended to the win-

dow’s end.

4.8.2 Performance Gains

Speedups w.r.t. recomputing from scratch. We first present the performance gains

of Slider in comparison with recomputing from scratch. For the comparison, we

compared the work and time of Slider to an unmodified Hadoop implementation.

Figures 4.7, 4.8, and 4.9 show the performance gains for append-only, fixed-width,

and variable-width windowing modes, respectively. These results show that the

gains for compute-intensive applications (K-Means and KNN) are the most sub-

stantial, with time and work speedups between 1.5 and 35-fold. As expected, the
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Figure 4.8: Performance gains of Slider compared to recomputing from scratch for
the fixed-width windowing mode
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Figure 4.9: Performance gains of Slider compared to recomputing from scratch for
the variable-width windowing mode

speedup decreases as the overlap between the old and the new window becomes

smaller. Nonetheless, for these two benchmarks, even for a 25% input change, the

speedup is still between 1.5 and 8-fold depending on the application. Speedups

for data-intensive applications (HCT, Matrix, and subStr) are between 1.5-fold and

8-fold. Despite these also being positive results, the speedup figures are lower

than in the case of applications with a higher ratio of computation to I/O. This

is because the basic approach of memoizing the outputs of previously run sub-

computations is effective at avoiding the CPU overheads but still requires some

data movement to transfer the outputs of sub-computations, even if they were
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Figure 4.10: Performance breakdown for work

memoized. The performance gains for variable-width sliding windows are lower

than for the append-only and fixed-width window cases because updates require

rebalancing the tree, and thus incur a higher overhead.

Performance breakdown. Figure 4.10(a) and Figure 4.10(b) show the normalized

execution time breakdown in the incremental run with 5% and 25% changes in the

input, respectively. The Map and Reduce contributions to the total time for the

baseline vanilla Hadoop are shown in the bar labelled “H”. The “H” bar break-

down shows that the compute-intensive applications (Kmeans and KNN) perform

around 98% of the work in the Map phase, whereas the other applications (HCT,

Matrix, and SubStr) perform roughly the same amount of work in each phase.

The same figures also show the breakdown for all three modes of operation

(“A” for Append, “F” for Fixed-width, and “V” for Variable-width windowing),

where the Slider-Map and Slider-contraction + Reduce portions in these bars rep-

resent the execution time computed as a percentage of the baseline Hadoop-Map

and Hadoop-Reduce (H) times, respectively. In other words, the percentage exe-

cution time for Slider-Map is normalized to Hadoop-Map, while the percentage

execution time for Slider-contraction + Reduce is normalized to Hadoop-Reduce.
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For the Map phase of Slider, the breakdown shows that the percentage of Map

work (compared to the non-incremental baseline) in the incremental run is propor-

tional to the input change, as expected. In contrast, the work done by the Reduce

phase is less affected by the amount of input change. In particular, the contrac-

tion + Reduce phase execution averages 31% of the baseline Reduce execution time

(min: 18.39%, max: 59.52%) for 5% change, and averaged 43% (min: 26.39%, max:

80.95%) for 25% change across all three modes of operation.

Speedups w.r.t. memoization (strawman approach). Figures 4.11, 4.12, and 4.13

present the work and time speedup of Slider w.r.t. the memoization-based straw-

man approach (as presented in Section 4.3) for append-only, fixed-width, and variable-

width windowing modes, respectively. The processing performed in the Map

phase is the same in both approaches, so the difference lies only in the use of self-

adjusting contraction trees instead of the strawman contraction tree. The work

gains range from 2X to 4X and time gains range from 1.3X to 3.7X for differ-

ent modes of operation with changes ranging from 25% to 5% of the input size.

The work speedups for the compute-intensive applications (Kmeans and KNN)

decrease faster than other applications as the input change increases because most

performance gains were due to savings in the Map phase. Overall, although less

pronounced than in the comparison to recomputing from scratch, the results show

considerable speedups due to the data structures that are specific to each type of

sliding window processing, when compared to the strawman approach.

4.8.3 Effectiveness of Optimizations

We now evaluate the effectiveness of the individual optimizations in improving

the overall performance.
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Figure 4.11: Performance gains of Slider compared to the memoization based ap-
proach (the strawman design) for the append-only windowing mode
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(a) Work – Fixed-width (F)
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(b) Time – Fixed-width (F)

Figure 4.12: Performance gains of Slider compared to the memoization based ap-
proach (the strawman design) for the fixed-width windowing mode

Split processing. Slider is designed to take advantage of the predictability of fu-

ture updates by splitting the work between background and foreground process-

ing. To evaluate the effectiveness in terms of latency savings from splitting the

execution, we compared the cost of executing with and without it, for both the

append-only and the fixed-width window categories. Figures 4.14(a) and 4.14(b)

show the time required for background preprocessing and foreground processing,

normalized to the total time (total update time = 1) for processing the update with-

out any split processing. Figure 4.14(a) shows this cost when a new input with 5%

of the original input size is appended, for different benchmarking applications,
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(a) Work – Variable-width (V)
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(b) Time – Variable-width (V)

Figure 4.13: Performance gains of Slider compared to the memoization based ap-
proach (the strawman design) for the variable-width windowing mode
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(a) Append-only case
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(b) Fixed-width case

Figure 4.14: Effectiveness of Split processing

whereas Figure 4.14(b) shows the same cost for a 5% input change in the fixed-

width window model. The results show that with the split processing model, we

are on average able to perform foreground updates up to 25%-40% faster, while

offloading around 36%-60% of the work to background pre-processing.

The results also show that the sum of the cost of background pre-processing

and foreground processing exceeds the normal update time (total update time = 1)

because of the extra merge operation performed in the split processing model. Our

results show that the additional CPU usage for the append-only case is in the range

of 1% to 23%, and 6% to 36% for the fixed-window processing.
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Figure 4.15: Query processing speedups using Slider

Data-flow query interface. To demonstrate the potential of incremental query-

based sliding-window computations, we evaluate Slider using the PigMix [3] bench-

mark, which generates a long pipeline of MapReduce jobs derived from Pig Latin

query scripts. We ran the benchmark in our three modes of operation with changes

to 5% of its input. Figure 4.15 shows the resulting run-time and work speedups.

As expected, the results are in line with the previous evaluation, since ultimately

the queries are compiled to a set of MapReduce analyses. We observe an average

speedup of 2.5X and 11X for time and work, respectively.

In-memory distributed memoization caching. For evaluating the effectiveness of

performing in-memory data caching, we compared our performance gains with

and without this caching support. In particular, we disabled the in-memory caching

support from the shim I/O layer, and instead used the fault-tolerant memoiza-

tion layer for storing the memoized results. Therefore, when accessing the fault-

tolerant memoization layer, we incur an additional cost of fetching the data from

the disk or network. Table 4.1 shows reduction in the time for reading the memo-

ized state with in-memory caching for fixed-width windowing. This shows that we

can achieve 50% to 68% savings in the read time by using the in-memory caching.
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48.68% 56.87% 53.19% 67.56% 66.2%

Table 4.1: Read time reduction with memory caching
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Figure 4.16: Randomized folding tree

Randomized folding tree. To evaluate the effectiveness of the randomized fold-

ing tree, we compared the gains of the randomized version with the normal fold-

ing tree (see Figure 4.16). We compare the performance for two update scenarios:

reducing the window size by two different amounts (25% and 50%) and, in both

cases, performing a small update adding 1% of new items to the window. We re-

port work speedups for two applications (K-Means and Matrix), representing both

compute and data-intensive applications.

The experiments show that a large imbalance (of 50% removals to 1% addi-

tions) is required for the randomized data structure to be beneficial. In this case,

the randomized version leads to a performance improvement ranging from 15% to

22%. This is due to the fact that decreasing the window size by half also reduces

the height of the randomized folding tree by one when compared to the original

version (leading to more efficient updates). In contrast, with 25% removals to the

same 1% additions the standard folding tree still operates at the same height as the

randomized folding tree, which leads to a similar, but slightly better performance

compared to the randomized structure.

107



 0

 10

 20

 30

 40

 50

 60

 70

 80

K-Means HCT KNN Matrix subStr

W
or

k 
ov

er
he

ad
 (

%
)

Microbenchmark applications

Append-only
Fixed-width

Variable-width

(a) Work overhead

 0

 10

 20

 30

 40

 50

 60

 70

 80

K-Means HCT KNN Matrix subStr

T
im

e 
ov

er
he

ad
 (

%
)

Microbenchmark applications

Append-only
Fixed-width

Variable-width

(b) Time overhead

Figure 4.17: Performance overheads of Slider for the initial run

4.8.4 Overheads

Slider adds two types of overhead. First, the performance overhead for the initial

run (a one time cost only). Second, the space overhead for memoizing intermediate

results.

Performance overheads. Figure 4.17(a) and Figure 4.17(b) show the work and

time overheads for the initial run, respectively. Compute-intensive applications

(K-means & KNN) show low overhead as their run-time is dominated by the ac-

tual processing time and are less affected by the overhead of storing intermediate

nodes of the tree. For data-intensive applications, the run-time overhead is higher

because of the I/O costs for memoizing the intermediate results.

The overheads for the variable-width variant are higher than those for fixed-

width computations, and significantly higher than the append case. This addi-

tional overhead comes from having more levels in the corresponding self-adjusting

contraction tree.

Space overhead. Figure 4.18 plots the space overhead normalized by the input

size. Again, the variable-width sliding-window computation shows the highest

overhead, requiring more space than the other computations, for the same reasons
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Figure 4.18: Space overheads of Slider

that were mentioned in the case of the performance overheads. Space overhead

highly depends on the application. Matrix has the highest space overhead of 12X,

while K-Means and KNN have almost no space overhead.

The results show that the overheads, despite being visible, are a one-time cost

likely to be worth paying in workloads where the initial run is followed by many

incremental runs that reap the benefit of incremental computations. Furthermore,

the garbage collection policy can further limit the space overheads.

4.8.5 Analytical Comparison with memoization based approach

and batch-based stream processing

We next analytically compare the performance gains of Slider with batch-based

streaming processing (D-Streams), memoization-based approach (Incoop), and re-

computation from scratch. Our comparison is based on a simulation that analyzes

how many tasks have to be revisited in the incremental run for both Spark and

Slider. We simulated a fixed configuration of a single MapReduce job with a single

insertion and deletion as a function of window size. Figure 4.19 depicts number

of items processed for Slider compared with Incoop [53] (a memoization-based

system), D-Streams [149] (a state-of-the-art batch-based streaming platform), and

recomputation from scratch. As expected, recomputing requires an amount of ef-
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fort that is linear in the size of the window. Furthermore, Incoop is also showing a

linear growth, due to the fact that all previously run tasks are revisited to check if

their input has changed (even if this is a short-lived effort because in many cases

the memoized results are still valid). In contrast, Slider has an effort that is log-

arithmic in the size of the window, because it propagates changes through the

contraction tree.

When comparing our approach with D-Streams, we consider the following

two cases for the analytical comparison: re-computation from scratch and inverse

function. (We note that we did not perform empirically comparison between D-

Streams and Slider because the underlying platforms have different characteristics

for data management.) Our two comparisons with D-streams build on the observa-

tion that D-Streams, by default, re-computes over the entire window from scratch,

even if there is overlap between two consecutive windows. For incremental up-

dates to the output, D-Streams require an inverse function to exist [149], which

may not be trivial to devise for complex computations. As shown in Figure 4.19,

D-Streams with an inverse function requires processing of constant number of el-

ements (equal to the window displacement size), and therefore, it is much better

than Slider. However, for the default option of re-computation from scratch option,

D-Streams require work linearly proportional to the size of the window. In our

work, we address these limitations in batch-based streaming systems by propos-

ing a transparent approach for incremental sliding window computations without

requiring programmers to devise an application-specific inverse function.

4.9 Case Studies

We used Slider to evaluate three real-world case studies covering all three opera-

tion modes for sliding windows. Our case studies include: (i) building an informa-
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Figure 4.19: Analytical comparison of Slider with batch-based stream processing,
memoization-based approach, and re-computation from scratch

tion propagation tree [132] for Twitter for append-only windowing; (ii) monitor-

ing Glasnost [74] measurement servers for detecting ISPs traffic differentiation for

fixed-width windowing; and (iii) providing peer accountability in Akamai NetSes-

sion [28], a hybrid CDN for variable-width windowing.

4.9.1 Information Propagation in Twitter

Analyzing information propagation in online social networks is an active area of

research. We used Slider to analyze how web links are spread in Twitter, repeating

an analysis done in [132].

Implementation. The URL propagation in Twitter is tracked by building an in-

formation propagation tree for posted URL based on Krackhardt’s hierarchical

model. This tree tracks URL propagation by maintaining a directed edge between

a spreader of a URL and a receiver, i.e., a user “following” the account that posted

the link.

Dataset. We used the complete Twitter snapshot data from [132], which comprises

54 million users, 1.9 billion follow-relations, and all 1.7 billion tweets posted by

Twitter users between March 2006 and September 2009. To create a workload
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Time inter-
val

Mar’06
Jun’09

Jul’09 1-7 Jul’09 8-14 Jul’09 15-21 Jul’09 22-28

Tweets (M) 1464.3 74.2 81.5 79.4 85.6
Change - 5.1% 5.3% 4.9 % 5.0%
Time
speedup

- 8.9 9.2 9.42 9.25

Work
speedup

- 14.22 13.67 14.22 14.34

Table 4.2: Summary of the Twitter data analysis

where data is gradually appended to the input, we partitioned the dataset into

five non-overlapping time intervals as listed in Table 4.2. The first time interval

captures all tweets from the inception of Twitter up to June 2009. We then add

one week worth of tweets for each of the four remaining time intervals. For each

of these intervals, an average cumulative change of 5% was performed with every

new append.

Performance gains. We present the performance gains of incrementally building

the information propagation tree using Slider in Table 4.2. The speedups are almost

constant for the four time intervals, at about 8X for run-time and about 14X for

work. The run-time overhead for computing over the initial interval is 22%.

4.9.2 Monitoring of a Networked System

Year
2011

Jan-
Mar

Feb-
Apr

Mar-
May

Apr-
Jun

May-
Jul

Jun-
Aug Jul-Sep Aug-

Oct
Sep-
Nov

#files 4033 4862 5627 5358 4715 4325 4384 4777 6536
Change
size 4033 1976 1941 1441 1333 1551 1500 1726 3310

%
change
size

100 % 40.65 % 34.50 % 26.89 % 28.27 % 35.86 % 34.22 % 36.13 % 50.64 %

Time
speedup - 2.07 2.8 3.79 3.32 2.44 2.56 2.43 1.9

Work
speedup - 2.13 2.9 4.12 3.37 3.15 2.93 2.46 1.91

Table 4.3: Summary of the Glasnost network monitoring data analysis
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Glasnost [74] is a system that enables users to detect whether their broadband traf-

fic is shaped by their ISP. The Glasnost system tries to direct users to a nearby

measurement server. Slider enabled us to evaluate the effectiveness of this server

selection.

Implementation. For each Glasnost test run, a packet trace of the measurement

traffic between the measurement server and the user’s host is stored. We used this

trace to compute the minimum round-trip time (RTT) between the server and the

user’s host, which represents the distance between the two. Taking all minimum

RTT measurements of a specific measurement server, we computed the median

across all users that were directed to this server.

Dataset. For this analysis, we used the data collected by one Glasnost server be-

tween January and November 2011 (see Table 4.3). We started with the data col-

lected from January to March 2011. Then, we added the data of one subsequent

month at a time and computed the mean distance between users and the measure-

ment server for a window of the most recent 3 months. This particular measure-

ment server had between 4, 033 and 6, 536 test runs per 3-month interval, which

translate to 7.8 GB to 18 GB of data per interval.

Performance gains. We measured both work and time speedups as shown in Ta-

ble 4.3. The results show that we get an average speedup on the order of 2.5X, with

small overheads of less than 5%.

4.9.3 Accountability in Hybrid CDNs

Content distribution networks (CDN) operators like Akamai recently started de-

ploying hybrid CDNs, which employ P2P technology to add end user nodes to the

distribution network, thereby cutting costs as fewer servers need to be deployed.
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% clients online
to upload logs

100% 95% 90% 85% 80% 75%

Time speedup 1.72 1.85 1.89 2.01 2.1 2.24
Work speedup 2.07 2.21 2.29 2.44 2.58 2.74

Table 4.4: Akamai NetSession data analysis summary

However, this also raises questions about the integrity of the answers that are pro-

vided by these untrusted clients [28].

Implementation. Aditya et al. [28] presented a design of a hybrid CDN that em-

ploys a tamper-evident log to provide client accountability. This log is uploaded

to a set of servers that need to audit the log periodically using techniques based on

PeerReview. Using Slider, we implemented these audits as a variable-sized sliding-

window computation, where the amount of data in a window varies depending on

the availability of the clients to upload their logs to the central infrastructure in the

hybrid CDN.

Dataset. To evaluate the effectiveness of Slider, we used a synthetic dataset gen-

erated using trace parameters available from Akamai’s NetSession system, a peer-

assisted CDN operated by Akamai (which currently has 24 million clients). From

this data set, we selected the data collected in December 2010. However, due to the

limited compute capacity of our experimental setup, we scaled down the data logs

to 100, 000 clients. In addition to this input, we also generated logs corresponding

to one week of activity with a varying percentage of clients (from 100% to 75%) up-

loading their logs to the central infrastructure, so that the input size varies across

weeks. This allows us to create an analysis with a variable-width sliding window

by using a window corresponding to one month of data and sliding it by one week

in each run.

Performance gains. Table 4.4 plots the performance gains for log audits for a dif-

ferent percentage of client log uploads for the 5th week. We observe a speedup of
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2X to 2.5X for a fraction of clients uploading the log in the final week that varied

from 75% to 100%. Similarly, the run-time speedups are between 1.5X and 2X.

4.10 Related Work

We compare our work to two major classes of systems that are suitable for sliding

window analytics: trigger-based windowing systems, and batch-based window-

ing systems. We conclude with a broader comparison to incremental computation

mechanisms.

Trigger-based windowing systems. These systems follow record-at-a-time process-

ing model, where every new data entry triggers a state change and possibly pro-

duces new results, while the application logic, known as a standing query, may run

indefinitely. This query can be translated into a network with stateless and/or

stateful nodes. A stateful node updates its internal state when processing incom-

ing records, and emits new records based on that state. Examples of such systems

include Storm [18], S4 [4], StreamInsight [32], Naiad [113], Percolator [121], Pho-

ton [38], and streaming databases [40]. Despite achieving low latency, these sys-

tems also raise challenges [149]:

(1) Fault-tolerance: To handle faults, these systems either rely on replication with syn-

chronization protocols such as Flux [136] or Borealis’s DPC [40], which have a high

overhead, or on checkpointing upstream backup mechanisms, which have a high

recovery time. In addition, neither fault tolerance approach handles stragglers.

(2) Semantics: In a trigger-based system, it can be difficult to reason about global

state, as different nodes might be processing different updates at different times.

This fact, coupled with faults, can lead to weaker semantics. For instance, S4 pro-

vides at most once semantics, and Storm [18] provides at-least-once semantics. Na-

iad [113] is an exception in this category, which provides strong semantics. Na-
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iad makes use of timely dataflow using which the global state of a computation’s

progress is always known.

(3) Programming model: The record-at-a-time programming model in trigger-based

systems requires the users to manage the intermediate state and wire the query

network topology manually. Furthermore, programmers need to understand how

to update the output of each node in the query network as its input evolves. The

design of the update logic is further complicated by the weak semantics provided

by the underlying platform. While supporting incremental computation for ag-

gregate operations is straightforward, this can be very challenging for non-trivial

computations like matrix operations or temporal joins [127, 20].

Batch-based windowing systems. These systems model sliding window analyt-

ics as a series of deterministic batch computations on small time intervals. Such

systems have been implemented both on top of trigger-based systems (e.g., Tri-

dent [20] built over Storm [18] or TimeStream [127] built over StreamInsight [32])

and systems originally designed for batch processing (e.g., D-Streams [149] built

over Spark [148] or MapReduce online [62] and NOVA [115] built over MapRe-

duce [67]). These systems divide each application into a graph of short, determin-

istic tasks. This enables simple yet efficient fault recovery using recomputation

and speculative execution to handle stragglers [150]. In terms of consistency, these

systems trivially provide “exactly-once” semantics, as they yield the same output

regardless of failures. Finally, the programming model is the same as the one used

by traditional batch processing systems.

We build on this line of research, but we observe that these systems are not

geared towards incremental sliding window computation. Most systems recom-

pute over the entire window from scratch, even if there is overlap between two

consecutive windows. The systems that allow for an incremental approach require

an inverse function to exist [149], which may not be trivial to devise for complex
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computations. In this work, we address these limitations in batch-based window-

ing systems by proposing a transparent solution for incremental sliding window

analytics.

Incremental Computation. While there exists some prior work on enabling incre-

mental computations in batch processing systems, this work did not leverage the

particular characteristics of sliding windows, among other important differences.

In more detail, incremental computation in batched processing systems such as In-

coop (Chapter 2), Haloop [56], Nectar [84], DryadInc [122] requires linear time in

the size of the input data, even to process a small slide in the window. The reasons

for this are twofold: Firstly, these systems assume that inputs of consecutive runs

are stored in separate files and simply compute their diffs to identify the input

changes. The change detection mechanism relies on techniques such as content-

based chunking (as in Incoop using IncHDFS [53]), which requires performing

linear work in the size of the input [50]. In contrast, sliding window computa-

tion provides diffs naturally, which can be leveraged to overcome the bottleneck

of identifying changes. Second, and more importantly, these systems do not per-

form change propagation, relying instead on memoization to recover previously

computed results. Consequently, they require visiting all tasks in a computation

even if the task is not affected by the modified data, i.e. the delta, thus requiring

an overall linear time. In contrast, this chapter proposes an approach that only re-

quires time that is linear in the delta, and not the entire window, and we propose

new techniques that are specific to sliding window computation.

4.11 Limitations and Future Work

Both Incoop and Slider rely on Combiners for aggregating the intermediate data

by performing local reduction, and henceforth, they reduce the volume of the data
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that needs to be processed by subsequent stages. Although, this property holds for

almost all Combiners we analyzed in practice (Apache Hama [1] and Mahout [2]),

there might be cases where a Combiner lacks the ability to perform aggregation.

For such cases, our approach of building Contraction trees may not yield any per-

formance benefits.

Secondly, rotation contraction trees require commutativity in addition to the

associativity of the combiner invocations to be able to rotate the buckets. Both

properties were held by Combiner functions in most applications we analyzed in

Apache Hama [1] and Mahout [2]. Nonetheless, this restriction can be lifted using

the most general solution for a variable-width window.

Furthermore, while Slider is a significant step towards supporting incremental

sliding window analytics, plenty of opportunities remain to further increase the

range of supported workloads.

First, we would like to incorporate the notion of assigning weights to the data

elements, which can change as the window moves. This would also be amenable

to incremental computations, but would require a change in the framework that

would enable a new class of computations for weighted sliding window computa-

tions.

Secondly, as we know that a fundamental challenge for data analytics is to be

able to efficiently tune and debug multi-step dataflows. We would like to extend

the infrastructure of Slider to provide time travel debugging using incremental

computation. By extending the notion of lineage in the dependence graph, we

should be able to discover record-level data lineage for debugging errors in analyt-

ics.
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4.12 Summary

In this chapter, we presented self-adjusting contraction trees for incremental slid-

ing window analytics. The idea behind our approach is to structure distributed

data-parallel computations in the form of balanced trees that can perform updates

in asymptotically sublinear time, thus much more efficiently than recomputing

from scratch. We present several algorithms and data structures for supporting

this type of computations, describe the design and implementation of Slider, a sys-

tem that uses our algorithms, and present an extensive evaluation showing that

Slider is effective on a broad range of applications. This shows that our approach

provide significant benefit to sliding window analytics, without requiring the pro-

grammer to write the logic for handling updates.
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CHAPTER 5

iThreads: Incremental Multithreading

In this chapter, we describe the design, implementation, and evaluation of

iThreads, a threading library for parallel incremental computation. iThreads sup-

ports unmodified shared-memory multithreaded programs: it can be used as a

replacement for pthreads by a simple exchange of libraries linked, without even

recompiling the application code.

This chapter is organized as follows. We first motivate the design of iThreads

in Section 5.1. We next briefly highlight the contributions of iThreads in Section 5.2.

Thereafter, we present an overview of our approach 5.3. We next detail the mem-

ory consistency and synchronization model for iThreads in Section 5.4. We then

present our algorithms for incremental multithreading in Section 5.5. Thereafter,

we present an implementation of the algorithms in Section 5.6. Next, we present

an empirical evaluation of iThreads in Section 5.7 and case-studies in Section 5.8.

We present the related work in Section 5.9. Finally, we present the limitations of

iThreads in Section 5.10, and conclude in Section 5.11.

5.1 Motivation

The advent of multicores has made parallel programs ubiquitous. Parallel pro-

grams are being used in a variety of domains, from scientific computing to computer-

aided design and engineering. To take advantage of incremental computation in



multithreaded programs automatically, only recently researchers in the programming-

languages community have proposed two compiler- and language-based approaches

for incremental multithreading [57, 86].

An important lesson from these recent proposals is that by leveraging a language-

based approach, these two prior proposals [57, 86] have achieved substantial speedups,

thus establishing that the promise of incremental computation can be realized in

parallel programs. Specifically, these systems enable efficient and correct incremen-

tal updates to the output through the use of new programming languages with

special data types (§5.9), and by requiring a strict fork-join programming model,

where threads communicate only at end points (i.e., when forking/joining).

These choices reflect a difficult design tradeoff: they provide the compiler and

runtime system with the information required to maximize reuse, but they also im-

pose a cost on the programmer, who has to provide appropriate type annotations

and, in some cases, also application-specific functions to safely implement the new

type system. Furthermore, due to the restricted programming model, they also

preclude support for many existing shared-memory multithreaded programs and

synchronization primitives (such as R/W locks, mutexes, semaphores, barriers, and

conditional wait/signal).

In this chapter, we instead target increased generality, and to this end, we pro-

pose an operating systems-based approach to parallel incremental computation.

More specifically, we present iThreads, a threading library for parallel incremental

computation, which achieves the following goals.

• Practicality: iThreads supports the shared-memory multi-threaded program-

ming model with the full range of synchronization primitives in the POSIX

API.

• Transparency: iThreads supports unmodified programs written in C/C++,

without requiring the use of a new language with special data types.
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• Efficiency: iThreads achieves efficiency, without limiting the available appli-

cation parallelism, as its underlying algorithms for incremental computation

are parallel as well.

5.2 Contributions

In this chapter, we present the design of iThreads. iThreads relies on recording the

data and control dependencies in a computation during the initial run by construct-

ing a Concurrent Dynamic Dependence Graph (CDDG). The CDDG tracks the input

data to a program, all sub-computations (a sub-computation is a unit of the compu-

tation that is either reused or recomputed), the data flow between them, and the

final output. For the incremental run, a (parallel) change propagation algorithm up-

dates the output and the CDDG by identifying sub-computations that are affected

by the input changes and recomputing only those sub-computations. Overall, we

make the following contributions:

• We present the design of our parallel algorithms for incremental multithread-

ing. Our algorithms record the intra- and inter-thread control and data de-

pendencies using a concurrent dynamic data dependency graph, and use the

graph to incrementally update the output as well as the graph on input changes.

• We have implemented our algorithms by leveraging operating system mech-

anisms encapsulated in a dynamically linkable shared library using the Dthreads

infrastructure [109], which we call iThreads.

• We empirically demonstrate the effectiveness of iThreads by applying it to ap-

plications of multithreaded benchmark suites (PARSEC [54] and Phoenix [131])

and case-studies.
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5.3 Overview

In this section, we present an overview of the basic design, and design choices for

iThreads.

5.3.1 iThreads Overview

We base our design on POSIX threads, or pthreads, a widely used threading

library for shared-memory multithreading with a rich set of synchronization prim-

itives. This choice has several advantages, namely that the POSIX interface is

portable across different architectures and OSes, and also that pthreads is used

as the underlying threading library for many higher level abstractions for parallel

programming (e.g., OpenMP). Therefore, our design choice to be compatible with

pthreads targets a large class of existing parallel programs.

The iThreads library is easy to use (see Figure 5.1 for the workflow): the user

just needs to preload iThreads to replace pthreads by using the environment

variable LD_PRELOAD. The dynamically linkable shared library interface allows

existing executables to benefit from iThreads.

For the first run of a program (or the initial run), iThreads computes the output

from scratch and records an execution trace. All subsequent runs for the program

are incremental runs. For an incremental run, the user modifies the input and spec-

ify the changes; e.g., assuming that the program reads the input from a file, the

user specifies the offset and len for the changed parts of the file. Thereafter,

iThreads incrementally updates the output based on the specified input changes

and the recorded trace from the previous run.
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$ LD_PRELOAD=iThreads.so // preload iThreads
$./<program_executable> <input-file> // initial run
$ emacs <input-file> // input modified
$ echo "<off> <len>" >> changes.txt // specify changes
$./<program_executable> <input-file> // incremental run

Figure 5.1: How to run an executable using iThreads

5.3.2 The Basic Approach

Our design adapts the principles of self-adjusting computation [24] for shared-

memory multithreading, and also makes use of techniques from record-replay

systems employed for reliable multithreading (§5.9). At a high level, the basic

approach proceeds in the following three steps:

1. Divide a computation into a set of sub-computations N.

2. During the initial run, record an execution trace to construct a Concurrent

Dynamic Dependence Graph (or CDDG). The CDDG captures a partial order

O = (N,→) among sub-computations with the following property: given a

sub-computation n (where n ∈ N) and the subset of sub-computations M

that precede it according to →, i.e., M = {M ⊂ N | ∀m ∈ M, m → n},

if the inputs to all m ∈ M are unchanged and the incremental run follows

the partial order →, then n’s input is also unchanged and we can reuse n’s

memoized effect without recomputing n.

3. During the incremental run, propagate the changes through the CDDG. That

is, the incremental run follows an order that is consistent with the recorded

partial order →, reusing the sub-computations whose input is unchanged

and re-computing the ones whose input has changed.
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Thread 1 (T1) Thread 2 (T2)
/* T1.a */ lock();
read={y} z = ++y;
write={y, z} unlock();

ց
lock(); /* T2.a */
x++; read={x}
unlock(); write={x}
↓

lock(); /* T2.b */
y = 2*x + z; read={x, z}
unlock(); write={y}

Figure 5.2: A simple example of shared-memory multithreading

Sub-computations
Case Input Thread schedule Reused Recomputed

A x, y*, z T1.a→ T2.a→ T2.b T2.a T1.a, T2.b
B x, y, z (T2.a→ T2.b→ T1.a)* T2.a T1.a, T2.b
C x, y, z T1.a→ T2.a→ T2.b T1.a, T1.b, T2.a —

Figure 5.3: For the incremental run, some cases with changed input or thread
schedule (changes are marked with *)

5.3.3 Example

To provide more information on how our approach works, we present a simple

example, shown in Figure 5.2. The example considers a multi-threaded execution

with two threads (T1 & T2) modifying three shared variables (x, y, & z) using a

lock.

Step #1: Identifying sub-computations. We divide a thread execution into sub-

computations at the boundaries of lock()/unlock(). (We explain this design

choice in §5.4.) We identify these sub-computations as T1.a for thread T1, and T2.a

& T2.b for thread T2. For the initial run, let us assume that thread T2 acquired the

lock after execution of sub-computation T1.a. This resulted in the following thread

schedule for sub-computations: T1.a→ T2.a→ T2.b.
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Step #2: Construct the CDDG. To understand the dependencies that need to be

recorded to build the CDDG, we consider incremental runs with changes either in

the input data or the thread schedule (shown in Figure 5.3).

We first consider the case of change in the input data. An important function of

the CDDG is to propagate the changes through the graph by determining whether

a sub-computation is transitively affected by the input change. For example con-

sider case A in Figure 5.3, when the value of variable y is changed—in this case,

we need to recompute T1.a because it reads the modified value of y. In contrast,

we can still reuse T2.a because it is independent of y and also not affected by the

writes made by T1.a. However, we need to recompute T2.b even though it does

not directly depends on y, since it is still transitively affected (via modified z) by

the writes made by T1.a. Therefore, the CDDG needs to record data dependencies

(meaning the modifications in an incremental run to a value that is read by a sub-

computation) to determine whether a sub-computation can be reused or if it has to

be recomputed.

We next consider the case of change in the thread schedule. In the general case,

multi-threaded programs are non-deterministic because the OS scheduler is free to

interleave sub-computations in different ways. As a result, a problem can arise if

the initial and the incremental runs follow different schedules. This might unnec-

essarily alter the shared state, and therefore cause unnecessary re-computations

even without any changes to the input. For example consider case B in Figure 5.3:

if thread T1 acquires the lock after the execution of T2.b (i.e., a changed thread

schedule of T2.a → T2.b → T1.a) then sub-computations T1.a and T2.b need to be

recomputed because the value of variable y has changed. Therefore, (and as ob-

served by prior work on deterministic multithreading (§5.9)) the CDDG should

also record all happens-before order among synchronization events to ensure that,

given unchanged input and that all threads acquire locks in the same order as
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Algorithm 2: Basic algorithm for the incremental run
1 dirty-set← {changed input};
2 executeThread()
3 forall the sub-computations in the thread do
4 // Check a sub-computation’s validity in happens-before order
5 if (read-set ∩ dirty-set) then
6 – recompute the sub-computation
7 – add the write-set to the dirty-set
8 else
9 – skip execution of the sub-computation

10 – write memoized value of the write-set to the address space

dictated by→, all sub-computations are efficiently reused (as shown in case C in

Figure 5.3).

Step #3: Change propagation. The previous observations allow us to reach a re-

fined explanation of our basic algorithm (see Algorithm 2). The starting point is the

CDDG that records the happens-before order (→) between sub-computations, ac-

cording to the synchronization events. Furthermore, data dependencies are recorded

implicitly in the CDDG by storing the read and write sets: if we know what data

is read and written by each sub-computation, we can determine whether a data

dependency exists, i.e., if a sub-computation is reading data that was modified by

another sub-computation. Therefore, the incremental run visits sub-computations

in an order that is compatible with →, and, for each sub-computation, uses the

read and write sets to determine whether part of its input was modified during

the incremental run. If the read-set is modified then the sub-computation is re-

computed, otherwise we skip the execution of the sub-computation, and directly

write the memoized value of the write-set to the address space.

5.4 System Model

Memory consistency model. As we explained in the previous section, the happens-

before order→ implicitly records read-after-write data dependencies between sub-

computations using the read and write sets. The efficiency of the mechanism that
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records→ depends on the memory model we use, and consequently on the gran-

ularity of sub-computations. As a design choice, our approach relies on the use

of the Release Consistency [81] (RC) memory model to define the granularity of

sub-computations. To understand why this is the case, consider a possible option

of using a strict memory model such as Sequential Consistency [101] (SC). Under

the SC model, one would have to define a single instruction as the granularity of

a sub-computation. This is because any write made by a thread can potentially af-

fect the execution of another thread. Intercepting this inter-thread communication

would be prohibitively expensive, essentially requiring tracking the order in which

threads access the shared memory at the granularity of individual instructions.

To efficiently record the communication between threads of the program, our

approach relies on using a memory model that restricts the points for inter-thread

communication (i.e., the points at which updates performed by one thread to the

shared memory is visible to all other threads). In particular, we weaken the mem-

ory model by implementing RC instead of SC. The RC memory model requires

writes made by one thread to become visible to another thread only at synchroniza-

tion points, thus restricting inter-thread communication to such points. Therefore,

this allows us to define the granularity of a sub-computation at the boundaries of

synchronization points, which is essential to achieving feasible runtime overheads.

Note that the RC memory model still guarantees correctness and liveness for

applications that are data-race-free [29]. In fact, the semantics provided by iThreads

is no more restrictive than pthreads semantics [16], which mandates that all ac-

cesses to shared data structures must be properly synchronized using pthreads

synchronization primitives, and which guarantees only that any updates become

visible to other threads when invoking a pthreads synchronization primitive.

Synchronization model. We support the full range of synchronization primitives

in the pthreads API. However, due to the weakly consistent RC memory model,
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our approach does not support ad-hoc synchronization mechanisms [147] such as user-

defined spin locks. While ad-hoc synchronization mechanisms have been shown to

be error-prone in practice, introducing bugs or performance issues [147], they are

nonetheless used for either flexibility or performance reasons in some applications.

In many such cases, it may be possible to replace these mechanisms with equiva-

lent pthreads API calls; for instance, user-defined spin locks can be replaced by

pthreads spin lock API calls [17]. An interesting direction for future work would

be to extend iThreads with an interface for specifying ad-hoc synchronization

primitives (e.g., at the level of gcc’s built-in atomic primitives) to identify thunk

boundaries, thereby paving the way for transparent support for lock-free and wait-

free data structures in iThreads.

5.5 Algorithms

We next formally present two parallel algorithms for incremental multithreading.

The first algorithm is for the initial run that executes the program from scratch

and constructs the CDDG. The second algorithm is for the incremental run that

performs change propagation through the CDDG. The core of our approach is the

CDDG, which we explain first.

5.5.1 Concurrent Dynamic Dependence Graph (CDDG)

The CDDG is a directed acyclic graph with vertices representing sub-computations

(or thunks), and two types of edges to record dependencies between thunks: happens-

before edges and data-dependence edges. We next explain how to derive vertices

and edges.

Thunks (or sub-computations). We define a thunk as the sequence of instructions

executed by a thread between two pthreads synchronization API calls. We model
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an execution of thread t as a sequence of thunks (Lt). Thunks in a thread are totally

ordered based on their execution order using a monotonically increasing thunk

counter (α). We refer to a thunk of thread t using the counter α as an index in the

thread execution sequence (Lt), i.e., Lt[α].

Happens-before edges. We derive happens-before edges by modeling synchro-

nization primitives as acquire and release operations. During synchronization, a

synchronization object S is released by one set of threads and subsequently acquired

by a corresponding set of threads blocked on the synchronizing object. For exam-

ple, an unlock(S) operation releases S and a corresponding lock(S) operation

acquires it. Similarly, all other synchronization primitives can also be modeled as

acquire and release operations [80, 123].

Under the acquire-release relation, a release operation happens-before the cor-

responding acquire operation. Given that a thunk’s boundaries are defined based

on synchronization primitives, the acquire and release operations also establish the

happens-before ordering between thunks of different threads. In addition, thunks

of the same thread are ordered by their execution order.

More specifically, there are two types of happens-before edges: control edges,

which record the intra-thread execution order, and synchronization edges, which

record explicit inter-thread synchronization events. Formally, two thunks L(t1)
[α]

and L(t2)[β] are connected by a

• control edge iff they belong to the same thread (t1 = t2) and L(t1)
[α] was exe-

cuted immediately before L(t2)[β]; and by a

• synchronization edge iff L(t1)
[α] releases a synchronization object S and L(t2)[β]

is the thunk that acquires S.

Data-dependence edges. Data dependencies are tracked to establish the update-

use relationship between thunks. Intuitively, such a relationship exists between two

130



Algorithm 3: The initial run algorithm
1 ∀S, ∀i ∈ {1, ..., T} : CS[i]← 0; // All sync clocks set to zero executeThread(t)
2 begin
3 initThread(t);
4 while t has not terminated do
5 startThunk(); // Start new thunk
6 repeat
7 Execute instruction of t;
8 if (instruction is load or store) then
9 onMemoryAccess();

10 until t invokes synchronization primitive;
11 endThunk(); // Memoize the end state of thunk
12 α← α + 1; // Increment thunk counter
13 // Let S denote invoked synchronization primitive
14 onSynchronization(S);

thunks if one reads data written by the other and they can be ordered based on

the happens-before order. More formally, for a thunk Lt[α], the read-set Lt[α].R and

the write-set Lt[α].W are the set of addresses that were read-from and written-to,

respectively, by the thread t while executing the thunk. Two thunks L(t1)
[α] and

L(t2)[β] are then connected by a

• data-dependence edge iff L(t2)[β] is reachable from L(t1)
[α] via happens-before

edges and L(t1)
[α].W ∩ L(t2)[β].R 6= ∅.

5.5.2 Algorithm for the Initial Run

During the initial run, we record the execution of the program to construct the

CDDG. Algorithm 3 presents the high-level overview of the initial run algorithm,

and details of subroutines used in the algorithm are presented in Algorithm 4. The

algorithm is executed by multiple threads in parallel. The algorithm employs run-

time techniques to derive the information needed for the CDDG. In particular,

during a thread execution, the thread traces memory accesses on load/store

instructions (using routine onMemoryAccess()), and adds them to the read and

the write set of the executing thunk. (In our implementation, described in §5.6,

we actually derive the read and write sets at the granularity of memory pages
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Algorithm 4: Subroutines for the initial run algorithm
1 initThread(t)
2 begin
3 α← 0; // Initializes thunk counter (α) to zero
4 ∀i ∈ {1, ..., T} : Ct[i]← 0; // t’s clock set to zero

5 startThunk()
6 begin
7 Ct[t]← α; // Update thread clock with thunk counter (α) value
8 ∀(i ∈ {1, ..., T}) : Lt[α].C[i]← Ct[i]; // Update thunk’s clock
9 Lt[α].R/W ← ∅; // Initialize read/write sets to empty set

10 onMemoryAccess()

11 begin
12 if load then
13 Lt[α].R← Lt[α].R ∪ {memory-address}; // Read access
14 else
15 Lt[α].W ← Lt[α].W ∪ {memory-address}; // Write access

16 endThunk()
17 begin
18 memo (Lt[α].W)← content(Lt[α].W); //(globals and heap)
19 memo (Lt[α].Stack)←content(Stack);
20 memo (Lt[α].Reg)←content(CPU_Registers);

21 onSynchronization(S)

22 begin
23 switch Syncronization type do
24 case release(S):
25 // Update S’s clock to hold max of its and t’s clocks
26 ∀i ∈ {1, ..., T} : CS[i]← max(CS[i], Ct[i]);
27 sync(S); // Perform the synchronization

28 case acquire(S):
29 sync(S); // Perform the synchronization
30 // Update t’s clock to hold max of its and S’s clocks
31 ∀i ∈ {1, ..., T} : Ct[i]← max(CS[i], Ct[i]);

using the OS memory protection mechanism.) The thread continues to execute in-

structions and perform memory tracing until a synchronization call is made to the

pthreads library. At the synchronization point, we define the end point for the

executing thunk and memoize its end state (using routine endThunk()). There-

after, we let the thread perform the synchronization. Next, we start a new thunk

and repeat the process until the thread terminates.

To infer the CDDG, control and synchronization edges are derived by order-

ing thunks based on the happens-before order. To do so, we use vector clocks

(C) [112] to record a partial order that defines the happens-before relationship be-

tween thunks during the initial run, and in the incremental run we follow this
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partial order to propagate the input changes. Our use of vector clocks is motivated

by its efficiency for recording a partial order in a decentralized manner, rather than

having to serialize all synchronization events in a total order.

Our algorithm maintains one vector clock for each threads, thunks, and syn-

chronization objects. (A vector clock is an array of size T, where T denotes the

number of threads in the system, which are numbered from 1 to T.) Each thread t

has a vector clock, called its thread clock Ct, to track its local logical time, which is

updated at the start of each thunk (using routine startThunk()) by setting Ct[t]

to the thunk index α. Further, each thunk Lt[α] has a thunk clock Lt[α].C that stores

a snapshot of Ct[t] to record the thunk’s position in the CDDG.

Finally, each synchronization object S has a synchronization clock CS that is used

to order release and acquire operations (see onSynchronization()). More pre-

cisely, if a thread t invokes a release operation on S, then t updates CS to the

component-wise maximum of its own thread clock Ct and CS. Alternatively, if

t invokes an acquire operation on S, it updates its own thread clock Ct to the

component-wise maximum of Ct and S’s synchronization clock CS. This ensures

that a thunk acquiring S is thus always ordered after the last thunk to release S.

At the end of the initial run algorithm, the CDDG is defined by the read/write

sets and the thunk clock values of all thunks.

5.5.3 Algorithm for the Incremental Run

The incremental run algorithm takes as input the CDDG (∀t : Lt) and the modified

input (named the dirty set M), and performs change propagation to update the

output as well as the CDDG for the next run. As explained in the basic change

propagation algorithm (Algorithm 2), each thread transitions through its list of

thunks by following the recorded happens-before order to either reuse or recom-
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pute thunks. To make this algorithm work in practice, however, we need to address

the following three limitations.

(1) Missing writes. When a thunk is recomputed during the incremental run, it

may happen that the executing thread no longer writes to a previously written

location because of a data-dependent branch. For such cases, our algorithm should

update the dirty set with the new write-set of the thunk as well as the missing

writes. The missing writes include the set of memory locations that were part of

the thunk’s write-set in the previous run, but are missing in the current write-set.

(2) Stack dependencies. As briefly mentioned previously, we transparently derive

read and write sets by tracking the global memory region (heap/globals) using the

OS memory protection mechanism (detailed in §5.6). Unfortunately, this mecha-

nism is inefficient for tracking the per-thread stack region (which usually resides

in a single page storing local variables) because the stack follows a push/pop model,

where the stack is written (or gets dirty) when a call frame is pushed or popped,

even without a local variable being modified. To avoid the overheads of tracking

these accesses to the stack, we do not track the stack. Instead, we follow a conser-

vative strategy to capture the intra-thread data dependencies. In our design, once

a thunk is recomputed (or invalidated) in a thread, all remaining thunks of the

thread are also invalidated in order to capture a possible change propagation via

local variables.

(3) Control flow divergence. During the incremental run, it may happen that the

control flow diverges from the previously recorded execution. As a result of the

divergence, new thunks may be created or existing ones may be deleted. The al-

gorithm we propose addresses the stack problem and, more generally, the control

flow divergence by reusing a prefix of each thread and striving to make this prefix

as large as possible using a simple state machine approach, as explained next.
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Algorithm 5: The incremental run algorithm
Data: Shared dirty set M ← { modified pages } and Lt

1 ∀S, ∀i ∈ {1, ..., T} : CS[i]← 0; // All sync clocks set to 0
2 executeThread(t)
3 begin
4 initThread(t); // Same as initial run algorithm
5 while (t has not terminated and isValid(Lt[α]) ) do
6 // Thread t is valid
7 await (isEnabled(Lt[α]) or ! isValid(Lt[α]) );
8 if (isEnabled(Lt[α]) then
9 resolveValid(Lt[α]);

10 Ct[t]← α; // Update thread clock
11 α← α + 1; // Increment thunk counter

12 // The thread has terminated or a thunk has been invalidated
13 L′t ← Lt; // Make a temp copy for missing writes
14 while (t has not terminated or α < |L′t|) do
15 // Thread t is invalid
16 if (α < |L′t|) then
17 M ← M ∪ L′t[α].W; // Add missing writes
18 Ct[t]← α; // Update thread clock

19 if (t has not terminated) then
20 resolveInvalid(Lt[α]);

21 α← α + 1; // Increment thunk counter

22 // The thread has terminated
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Invalid

Reused and applied

memoized e!ects
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Figure 5.4: State transition for thunks during incremental run

Details. Algorithm 5 presents the overview of the incremental run algorithm, and

details of subroutines used in the algorithm are presented in Algorithm 6. The in-

cremental run algorithm allows all threads to proceed in parallel, and associates

a state with each thunk of every thread. The state of each thunk follows a state

machine (shown in Figure 5.4) that enforces that each thread waits until all thunks

that happened-before its next thunk to be executed are resolved (i.e., either recom-

puted or reused), and only when it is certain that reusing memoized results is not

possible will it start to re-execute its next thunk. In particular, the state of a thunk
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Algorithm 6: Subroutines for the incremental run algorithm
1 isEnabled(Lt[α])

2 begin
3 if (∀i ∈ {1, ..., T} \ {t} : (Ci[i] > Lt[α].C[i])) then
4 // All thunks happened-before are resolved
5 return (isValid(Lt[α])); // check if it’s valid

6 return false;

7 isValid(Lt[α])

8 begin
9 if ((Lt[α].R ∩M) = ∅) then

10 return true; // Read set does not intersects with dirty set

11 return false;

12 resolveInvalid(Lt[α])

13 begin
14 startThunk(); // Same as initial run algorithm
15 repeat
16 Execute instruction of t;
17 if (instruction is load or store) then
18 onMemoryAccess(); // Same as initial run algorithm

19 until t invokes synchronization primitive;
20 M ← M ∪ Lt[α].W; // Add the new writes
21 endThunk(); // Same as initial run algorithm
22 onSynchronization(S); // Same as initial run algorithm

23 resolveValid(Lt[α])

24 begin
25 address space← memo(Lt[α].W); // Globals and heap
26 stack← memo(Lt[α].Stack);
27 CPU registers← memo(Lt[α].Reg); // Also adjusts PC
28 onSynchronization(S); // Same as initial run algorithm

is either resolved or unresolved. The state of a thunk is resolved when the thunk

has either been reused (resolved-valid) or re-executed (resolved-invalid).

Otherwise, the thunk is still unresolved. An unresolved thunk is in one of the fol-

lowing states: pending, enabled or invalid.

Initially, the state of all thunks is pending, except for the initial thunk, which

is already enabled. A pending thunk is not “ready” to be looked at yet. A

pending thunk of a thread is enabled (state transition 1©) when all thunks (of any

thread) that happened-before are resolved (either resolved-validor resolved-invalid).

To check for this condition (using routine isEnabled()), we make use of the

strong clock consistency condition [112] (if C(a) < C(b) then a → b) provided

by vector clocks to detect causality. In particular, we compare the recorded clock
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value of the thunk against the current clock value of all threads to check that all

threads have passed the time recorded in the thunk’s clock.

An enabled thunk transitions to invalid (state transition 2©) if the read

set of the thunk intersects with the dirty set. Otherwise, the enabled thunk transi-

tions to resolved-valid (state transition 3©), where we skip the execution of the

thunk and directly apply the memoized write-set to the address space including

performing the synchronization operation (using the resolveValid() routine).

A pending thunk transitions to invalid (state transition 4©) if any earlier

thunk of the same thread is invalid or resolved-invalid. The invalid

thunk transitions to resolved-invalid (state transition 5©) when the thread

re-executes the thunk and adds the write set to the dirty set (including any miss-

ing writes). The executing thread continues to resolve all the remaining invalid

thunks to resolved-invalid until the thread terminates. To do so, we re-

initialize the read/write sets of the new thunk to the empty set and start the re-

execution similar to the initial run algorithm (using the resolveInvalid() rou-

tine). While re-executing, the thread updates the CDDG, and also records the state

of the newly formed thunks for the next incremental run.

5.6 Implementation

We implemented iThreads as a 32-bit dynamically linkable shared library for the

GNU/Linux OS (Figure 5.5). iThreads reuses two mechanisms of the Dthreads

implementation [109]: the memory subsystem (§5.6.1) and a custom memory allo-

cator (§5.6.4). Additionally, our implementation also includes the iThreads memo-

izer, which is a stand-alone application. We next describe the iThreads implemen-

tation in detail.
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Figure 5.5: iThreads architecture (components are in grey)

5.6.1 iThreads Library: Memory Subsystem

The iThreads memory subsystem implements the RC memory model and derives

per-thunk read/write sets.

Release consistency memory model. To implement the RC memory model, iThreads

converts threads into separate processes using a previously proposed mechanism [44].

This “thread-as-a-process” approach provides each thread with its own private ad-

dress space, and thus allows iThreads to restrict inter-thread communication. In

practice, iThreads forks a new process on pthread_create() and includes a

shared memory commit mechanism [97, 58] that enables communication between

processes at the synchronization points, as required by the RC memory model.

At a high level, throughout the application execution, iThreads maintains a

copy of the address space contents in a (shared) reference buffer, and it is through

this buffer, with instrumentation provided by iThreads at the synchronization points,

that the processes transparently communicate (Figure 5.6). Communication be-

tween processes is implemented by determining the thunk write-set, as explained

next, which is then used to calculate a byte-level delta [109].

To compute the byte-level delta for each dirty page (which are located by de-

riving the process write set, as explained later), Slider performs a byte-level com-

parison between the dirty page and the corresponding page in the reference buffer,

and then applies atomically the deltas to the reference buffer. In case there are over-
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lapping writes to the same memory location, made by different processes, Slider

resolves the conflict by using a last-writer wins policy.

Furthermore, for efficiency reasons, the implementation of the communication

mechanism relies on private memory mapped files – this allows different processes

to share physical pages until processes actually write to the pages, and still keeps

performance overheads low by virtue of the OS copy-on-write mechanism.

Read and write set. Besides serving as the foundation for the RC memory model,

the adopted thread-as-a-process mechanism is also essential for tracking memory

references: by splitting the original multi-threaded process into multiple single-

threaded processes, iThreads can easily derive per-thread read and write sets.

Since each thread is implemented as a separate process, iThreads uses the

OS memory protection mechanism to track the read and write sets. In particular,

iThreads renders the address space inaccessible by invoking mprotect(PROT_NONE)

at the beginning of each thunk, which ensures that a signal is triggered the first

time a page is read or written by the thunk. Hence, within the respective signal

handler, iThreads is able to record the locations of the accesses made to memory

at the granularity of pages. Immediately after recording a memory access, the
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iThreads library proceeds to reset the page protection bits, allowing the thunk to

resume the read/write operation as soon as the signal handler returns. In addition,

resetting the memory permissions also ensures that subsequent accesses proceed

without further page faults. In this way, iThreads incurs at most two page faults

(one for reads and one for writes) for each accessed page.

5.6.2 iThreads Library: Recorder and Replayer

The iThreads library executes the application in either recording or replaying mode.

We next describe the two sub-components, recorder and replayer, that realize these

modes of execution by implementing the algorithms described in §5.5.

Recorder. Since iThreads reuses the Dthreads memory subsystem, which serial-

izes memory commit operations from different threads, the implementation of the

recording algorithm is greatly simplified. Due to the resulting implicit serializa-

tion of thunk boundaries, the employed thread, thunk, and synchronization vector

clocks effectively reduce to scalar sequence numbers, which allows the recorder to

simply encode the thread schedule using thunk sequence numbers.

The recorder is further responsible for memoizing the state of the process at

the end of each thunk. To this end, using an assembly routine, iThreads stores

the register values in the stack, takes a snapshot of the dirty pages in the address

space, and stores the snapshot in the memoizer (§5.6.4). In addition, the recorder

also stores the CDDG, consisting of thunk identifiers (thread number and thunk

sequence number) and their corresponding read/write sets, to an external file.

Replayer. Similarly to the recorder, the replayer relies on thunk sequence num-

bers to enforce the recorded schedule order. The replayer first reads the file with

the input changes and the CDDG to initialize the replay algorithm. During an in-

cremental run, whenever memoized thunks can be reused, the replayer retrieves
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the appropriate state from the memoizer, patches the address space and restores

the state of registers.

5.6.3 iThreads Library: OS Support

As practical applications depend on OS services, there are two important aspects

related to the OS that iThreads needs to address. First, system calls are used by

the application to communicate with the rest of the system, so the effects of system

calls (on the rest of the system and on the application itself) need to be addressed;

in particular, input changes made by the user need to be handled. Second, there

are OS mechanisms that can unnecessarily change the memory layout of the appli-

cation across runs, preventing the reuse of memoized thunks.

System calls and input changes. Since iThreads is a user-space library running on

top of an unmodified Linux kernel, it has no access to kernel data structures. The

effects of system calls cannot thus be memoized or replayed. To support system

calls, iThreads instead considers system calls to be thunk delimiters (in addition

to synchronization calls). Hence, immediately before a system call takes place,

iThreads memoizes the thunk state, and immediately after the system call returns,

iThreads determines whether it still can reuse the subsequent thunks according to

the replayer algorithm.

To guarantee that system calls take effect (externally and internally), iThreads

invokes system calls in all executions, even during replay runs. To guarantee that

effects of system calls on the application (i.e., the return values and writes made

to the process address space) are accounted for by the thunk invalidation rules,

iThreads infers the write-set of the system calls and checks whether the return val-

ues match previous runs by leveraging knowledge of their semantics (e.g., some

system call parameters represent pointers where data is written).
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Importantly, to infer the write-set of system calls that may read large volumes

of data (e.g., mmap), iThreads allows the user to specify input changes (which po-

tentially modify the write-set of these system calls) explicitly using an external file

that lists byte offset ranges as specified by the file changes.txt in Figure 5.1.

In practice, our implementation intercepts system calls through wrappers at

the level of glibc library calls.

Memory layout stability. To avoid causing unnecessary data dependencies be-

tween threads, iThreads reuses the custom memory allocator of Dthreads, which

is based on HeapLayer [45]. The allocator isolates allocation and deallocation re-

quests on a per-thread basis by dividing the application heap into a fixed number

of per-thread sub-heaps. This ensures that the sequence of allocations in one thread

does not impact the layout of allocations in another thread, which otherwise might

trigger unnecessary re-computations.

In addition, iThreads ensures that the Address Space Layout Randomization

(ASLR) [13], an OS feature that deliberately randomizes the application memory

layout, is disabled.

5.6.4 iThreads Memoizer

The memoizer is responsible for storing the end state of each thunk so that its

effects can be replayed in subsequent incremental runs. The memoizer is imple-

mented as a separate program that stores the memoized state in a shared memory

segment, which serves as the substrate to implement a key-value storage that is

accessible by the recorder/replayer. The memoized state is stored in-memory for

fast access, and asynchronously replicated to disk for persistence across reboots.
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Figure 5.7: Performance gains of iThreads with respect to pthreads for the incre-
mental run

5.7 Evaluation

Our evaluation answers the following three main questions:

• What performance gains does iThreads provide for the incremental run? (§ 5.7.1)

• How do these gains scale with increases in the size of the input, the compu-

tation (work), and the input change? (§ 5.7.2)

• What overheads does iThreads impose for memoization and performance for

the initial run? (§ 5.7.3)

Experimental setup. We evaluated iThreads on a six-core Intel(R) Xeon(R) CPU

X5650 platform with 12 hardware threads running at 2.67 GHz and 32 GB of main

memory.
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Figure 5.8: Performance gains of iThreads with respect to Dthreads for the incre-
mental run

Applications and datasets. We evaluated iThreads with applications from two

benchmark suites: PARSEC [54] and Phoenix [131]. Table 5.1 lists the applications

evaluated and their respective used input sizes in terms of 4KB pages. In addition,

we also report the gains with two case studies (§5.8).

Metrics: work and time. We consider two types of measures, work and time. Work

refers to the total amount of computation performed by all threads and is mea-

sured as the sum of the total runtime of all threads. Time refers to the end-to-end

runtime that it takes to complete the parallel computation. Time savings reflect re-

duced end user perceived latency, whereas work savings reflect improved overall

resource utilization.
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Figure 5.9: Scalability with data (work and time speedups)

Measurements. For all measurements, each application was executed 12 times.

We exclude the lowest and highest measurements, and report the average over

the 10 remaining runs.

5.7.1 Performance Gains

We first present a comparison of iThreads ’s incremental run with pthreads and

Dthreads, as shown in Figure 5.7 and Figure 5.8 respectively. In this experiment,

we modified one randomly chosen page of the input file prior to the incremental

run. We then measured the work and time required by iThreads ’s incremental run,

as well as by pthreads and Dthreads, which re-compute everything from scratch.
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Figure 5.10: Scalability with work

We report the work and time speedups (i.e., iThreads ’s performance normalized

by the performance of pthreads/Dthreads) for a varying number of threads rang-

ing from 12 to 64 threads. When comparing the performance, we use the same

number of threads in iThreads and pthreads/Dthreads.

The experiment shows that the benefits of using iThreads vary significantly

across applications. In over half of the evaluated benchmarks (7 out of 11), iThreads

was able to achieve at least 2X time speedups. In contrast, for applications such

as canneal and reverseindex, iThreads can be very inefficient, by a factor of

more than 15X, an effect that we explain in further detail in §5.7.3. Overall, the

results show that iThreads is effective across a wide range of benchmark tasks, but

also that the library is not a one-size-fits-all solution.

As expected, we observed that increasing the number of threads tended to

yield higher speedups. This is because, for a fixed input size, a larger number

of threads translates to less work per thread. As a result, iThreads is forced to

recompute fewer thunks when a single input page is modified.

Note that work speedups do not directly translate into time speedups. This

is because even if just a single thread is affected by input changes, the end-to-end

runtime is still dominated by the (slowest) invalidated thread’s execution time.

146



 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations
Blackscholes

String_match
PCA Canneal

Word_count
Reverse_index

W
or

k 
sp

ee
du

p

<0.01 <0.01

Number of dirty pages
2 4  8 16 32 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations
Blackscholes

String_match
PCA Canneal

Word_count
Reverse_index

T
im

e 
sp

ee
du

p

<0.1 <0.1

Number of dirty pages
2 4  8 16 32 64

Figure 5.11: Scalability with input change compared to pthreads for 64 threads

5.7.2 iThreads Scalability

In a second experiment, we investigated the scalability of iThreads w.r.t. increases

in the size of the input, the amount of computation, and the size of the input

change.

Input size. We first present the performance of iThreads as we increase the input

data size for the three application benchmarks (histogram, linear regression,

and string match) that are available in three input sizes: small (S), medium (M),

and large (L). (We used the large size in §5.7.1.) Figure 5.9 shows a bar plot of the

work and time speedups w.r.t. pthreads for different input sizes (S, M, L) with a

single modified page for 64 threads. For reference, the normalized input size is also
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Figure 5.12: Performance overheads of iThreads with respect to pthreads for the
initial run

shown by the line plot in the same figure. In summary, this result shows that the

speedups increase as expected with the input size due to increased work savings.

Computation (work). We next present iThreads’s incremental run performance

for two applications (swapations and blackscholes) that allow the amount of

work required to be tuned with a parameter. Figure 5.10 reports the normalized

total work as the required work is increased (from 1X to 16X) for a single modified

page and 64 threads. The result shows the gap between pthreads and iThreads

widens as the total work increases, which directly translates to higher speedups.

Input change. Finally, we present iThreads’s incremental run performance in the

case of multiple modified input pages. To avoid localization of changes to a single

thread, we modified multiple non-contiguous pages of the input that are read by
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Figure 5.13: Performance overheads of iThreads with respect to Dthreads for the
initial run

different threads. Figure 5.11 shows speedups w.r.t pthreads with different change

sizes (ranging for 2 to 64 dirty pages) when the application is running with 64

threads. As expected, the result confirms that speedups decrease as larger portions

of the input are changed because more threads are invalidated.

5.7.3 Overheads

iThreads imposes two types of overheads: (1) space overheads; and (2) perfor-

mance overheads during the initial run.

Space overheads. Table 5.1 shows the space overheads for memoizing the end

state of the thunks and storing the CDDG. We report the overheads in terms of

4KB pages for 64 threads (space overhead grows with the number of threads). To
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Application Input size Memoized state CDDG
Histogram 230400 347 (0.15%) 57 (0.02%)
Linear-reg. 132436 192 (0.14%) 33 (0.02%)
Kmeans 586 1145 (195.39%) 27 (4.61%)
Matrix-mul. 41609 4162 (10.00%) 64 (0.15%)
Swapations 143 1473 (1030.07%) 1 (0.70%)
Blackscholes 155 201 (129.68%) 1 (0.65%)
String match 132436 128 (0.10%) 33 (0.02%)
PCA 140625 3777 (2.69%) 43 (0.03%)
Canneal 9 15381 (170900.00%) 4 (44.44%)
Word count 12811 10191 (79.55%) 24 (0.19%)
Rev-index 359 260679 (72612.53%) 64 (17.83%)

Table 5.1: Space overheads in 4KB pages and input percentage
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Figure 5.14: Work overheads breakdown w.r.t. Dthreads

put the overheads into perspective, we also report overheads as a percentage of the

input size. The space overheads varied significantly across applications. We found

that three applications (canneal, swapations and reverse-index) incur in

very high overheads (exceeding 1000% of the input size), but, interestingly, nearly

half of the applications (5/11) have a very low overhead (ranging from 0.1% to 10%

of the input size).

Performance overheads. We measured iThreads ’s performance overheads during

the initial run (in terms of work and time) by comparing it against both pthreads

and Dthreads (Figures 5.12 and 5.13). Our results show that most of the appli-

cations (7/11) incur modest overheads when compared with either pthreads (i.e.,
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lower than 50%) or Dthreads (i.e., lower than 25%). In fact, linear-reg and

string-match even performed better during the initial run of iThreads than

with pthreads, which is explained by the fact that private address space mecha-

nism avoid false sharing, as previously noted by Sheriff [108]. At the other end of

the spectrum, applications such as canneal and reverse-index incur in high

overheads mainly due to the high number of memory pages written by these appli-

cations (as shown in Table 5.1), because each dirty page incurs a write page fault.

When compared to Dthreads as the baseline, iThreads incurs work over-

heads of up to 3.58X and time overheads of up to 3.13X. The iThreads imple-

mentation incurs the additional overheads on top of Dthreads mainly from two

sources: memoization of intermediate state and read page faults to derive the read

set (Dthreads incurs write faults only). We show the work overheads along with

a breakdown of these two sources of overheads with respect to Dthreads for 64

threads in Figure 5.14. The overheads are dominated by read page faults (around

98%) for most applications. For instance, histogram incurs overheads of roughly

3.5X due the large number of page faults while reading a large input file (as shown

in Table 5.1). In contrast, some application such as canneal and reverse-index
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suffer a significant overhead for memoization (around 24%) due to a large number

of dirtied pages, which lead to high number of write page faults.

5.8 Case Studies

In addition to the benchmark applications, we report the performance gains for

two case-study applications: (1) Pigz [14], a parallel gzip compression library com-

pressing a 50MB file, and (2) a scientific monte-carlo simulation [10]. To compute

speedups, we modified a random input block and compared the performance of

the iThreads incremental run with the pthreads run. Figure 5.15 shows the work

and time speedups with a varying number of threads (from 12 to 64). The perfor-

mance gains peak at 24 threads for both applications, while increasing the number

of threads beyond 24 lead to diminishing gains. In particular, iThreads achieves

a time speedup of 1.45X and a work speedup of 4X for gzip compression, and a

time speedup of 2.28X and a work speedup of 22.5X for the monte-carlo simula-

tion with 24 threads.

To conclude, while there exist specific workloads for which our OS-based ap-

proach is not suitable due to inherent memoization and read/write set tracking

costs, our evaluation is overall positive: iThreads is able to achieve significant time

and work speedups both for many of the benchmark applications and also for the

two considered case-studies.

5.9 Related Work

Incremental computation is a well-studied area in the programming languages

community; see [130] for a classic survey. Earlier work on incremental compu-

tation was primarily based on dependence graphs [69, 93] and memoization [23,

91, 125]. In the past decade, with the development of self-adjusting computa-
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tion [24, 25, 27, 59, 87, 88, 103, 104], the efficiency of incremental computation has

much improved. In contrast to iThreads, however, most prior work in this area

targets sequential programs only. Nonetheless, iThreads’s central data structure,

the CDDG, is inspired and informed by these foundations.

For supporting parallel incremental computation, the existing proposals [57,

86] require a strict fork-join programming model without any support for syn-

chronization primitives. Furthermore, these proposals rely on the use of a new

programming language with special data types (e.g., isolation, versioned, cumulative,

merge function [57] and read, write, mod, and letpar [86]). In contrast, our approach

targets unmodified multithreaded programs supporting the full range of synchro-

nization primitives in the POSIX API.

In very recent work, Tseng and Tullsen [141] proposed compiler-based whole-

program transformations to eliminate redundant computation, which can be lever-

aged for faster incremental computation. The transformed programs rely on un-

derlying hardware [139] and software [140] support to dynamically identify redun-

dant code that can be skipped. In contrast, our approach directly operates at the

binary level without requiring access to source code. A further design difference

is that iThreads realizes incremental computation based on explicit change prop-

agation, and that iThreads memoizes and reuses intermediate results of previous

runs.

In the context of increased reliability, prior work has yielded a large range of

hardware and software solutions to eliminate non-determinism from multithreaded

programs. Most relevant to iThreads are the wide range record and replay tech-

niques (e.g., [34, 77, 92, 100, 102, 120, 133, 143, 144, 145]) and deterministic multi-

threading approaches (e.g., [39, 41, 42, 44, 63, 64, 65, 72, 73, 94, 109, 117]). As de-

scribed throughout the paper, these proven techniques are leveraged by iThreads,
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which applies them in a novel context, namely transparent parallel incremental

computation.

5.10 Limitations and Future Work

While iThreads is a significant step towards general and practical support for par-

allel incremental computation, plenty of opportunities remain to further increase

the range of supported workloads.

For one, iThreads’s memory model currently lacks support for ad-hoc syn-

chronization mechanisms [147]. While such mechanisms have been shown to be

error-prone in practice, introducing bugs or performance issues [147], they are

nonetheless used for either flexibility or performance reasons in some applications.

In many such cases, it may be possible to replace these mechanisms with equiv-

alent pthreads API calls; for instance, user-defined spin locks can be replaced by

pthreads spin lock API calls [17]. An interesting direction for future work would be

to extend iThreads with an interface for specifying ad-hoc synchronization primi-

tives (e.g., at the level of gcc’s built-in atomic primitives) to identify thunk bound-

aries, thereby paving the way for transparent support for lock-free and wait-free

data structures in iThreads.

Another interesting research challenge is improving support for small, local-

ized insertions and deletions in the input data. Whereas iThreads is currently

tuned for in-place modifications of the input data, insertions and deletions lead

to the displacement of otherwise unchanged data, which causes an excessively

large dirty-set. Prior work has solved the displacement problem in the context

of data-deduplication by replacing fixed-size input chunking with variable-size,

content-based chunking [114]. We plan to explore similar approaches in the con-

text of iThreads.
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Lastly, our current implementation assumes the number of threads in the sys-

tem remains the same. However, our approach can be extended to handle dynam-

ically varying number of threads by considering newly forked threads or deleted

threads as invalidated threads, where the writes of deleted threads are handled as

“missing writes". The happens-before relationship for dynamically varying num-

ber of threads can be detected using interval tree clocks [33].

5.11 Summary

In this chapter, we have explored a new dimension for supporting parallel incre-

mental computations. Our approach targets shared-memory multi-threaded pro-

grams supporting the full range of synchronization primitives in the POSIX API.

Our ambitious goals to be transparent, practical, and efficient pushed us to inves-

tigate a new set of challenges. In the process of the investigation, we have made

a set of assumptions and design choices. The end result of our efforts is iThreads,

a straightforward solution to use: it simply replaces the pthreads library, allowing

existing C/C++ applications to run in incremental fashion by a simple exchange

of libraries linked, without even recompiling the code.
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CHAPTER 6

Conclusions

How should we design systems to support incremental computation for paral-

lel and distributed computing? This dissertation shows that, in many cases, a sim-

ple abstraction of self-adjusting computation can enable practical, automatic, and ef-

ficient incremental computation in real-world parallel and distributed computing.

Our approach neither requires departure from current models of programming,

nor the invention and implementation of application-specific dynamic algorithms

for incremental computation.

To illustrate our approach, this dissertation presents the design and imple-

mentation of the following four systems for incremental parallel and distributed

computation: (i) Incoop — a system for incremental MapReduce computation; (ii)

Shredder — a GPU-accelerated system for incremental storage; (iii) Slider — a

batched stream processing platform for incremental sliding window computation;

and (iv) iThreads — a threading library to support parallel incremental computa-

tion for unmodified C/C++ pthread-based multithreaded programs. Our expe-

rience with these systems shows that our techniques can yield very good perfor-

mance, both in theory and practice, without requiring programmers to write any

special-purpose algorithms for incremental computation.

While cluster infrastructure will continue to evolve, we hope that our design

choices will provide a useful reference point for system designers of parallel and

distributed computing frameworks.
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