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Universität des Saarlandes

Chair: Prof. Dr. Raimund Seidel
Universität des Saarlandes

Examiners: Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn
Max-Planck-Institut für Informatik

Prof. Dr. Angelika Steger
ETH Zürich
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Abstract

In the first part of this dissertation, we study the fundamental problem of sampling
from a discrete probability distribution. Specifically, given non-negative numbers
p1, . . . , pn the task is to draw i with probability proportional to pi. We extend the
classic solution to this problem, Walker’s alias method, in various directions:

1. We improve upon its space requirements by presenting optimal succinct sam-
pling data structures.

2. We present improved trade-offs between preprocessing and query time for
sorted inputs, and generalize this from proportional sampling to sampling sub-
sets.

3. For Bernoulli, geometric, and binomial random variates we present optimal
sampling algorithms on a bounded precision machine.

4. As an application, we speed up sampling of internal diffusion limited aggrega-
tion.

The second part of this dissertation belongs to the area of computational geome-
try and deals with algorithms for the Fréchet distance, which is a popular measure
of similarity of two curves and can be computed in quadratic time (ignoring loga-
rithmic factors). We provide the first conditional lower bound for this problem: No
polynomial factor improvement over the quadratic running time is possible unless
the Strong Exponential Time Hypothesis fails. Our various extensions of this main
result include conditional lower bounds under realistic input assumptions, which
do not match the known algorithms. We close this gap by presenting an improved
approximation algorithm for the Fréchet distance.
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Kurzfassung

Im ersten Teil dieser Dissertation untersuchen wir das fundamentale Problem des
Ziehens einer Zufallsvariablen anhand ihrer Wahrscheinlichkeitsverteilung. Gegeben
nicht-negative Zahlen p1, . . . , pn gilt es i mit Wahrscheinlichkeit proportional zu
pi zu ziehen. Wir erweitern die klassische Lösung dieses Problems in verschiedene
Richtungen:

1. Wir entwerfen Datenstrukturen, die weniger Speicher benötigen.

2. Wir erhalten einen optimalen Kompromiss zwischen Vorberechnungs- und An-
fragezeit für sortierte Eingaben sowie eine Verallgemeinerung auf das Ziehen
von Teilmengen.

3. Für Bernoulli-, geometrische und Binomialverteilungen entwerfen wir optimale
Algorithmen für ein Maschinenmodell mit beschränkter Präzision.

4. Als Anwendung verbessern wir die Simulation des internen diffusionsbegrenz-
ten Wachstums.

Der zweite Teil dieser Dissertation gehört zum Gebiet der Geometrie und behan-
delt Algorithmen für die Fréchetdistanz, ein beliebtes Ähnlichkeitsmaß für Kurven,
welches in quadratischer Zeit berechnet werden kann. Wir zeigen die erste bedingte
untere Schranke für dieses Problem: Keine Verbesserung der quadratischen Laufzeit
um einen polynomiellen Faktor ist möglich unter der starken Exponentialzeithy-
pothese. Unsere verschiedenen Erweiterungen dieses Resultats beinhalten bedingte
untere Schranken unter realistischen Eingabeannahmen, die nicht mit den bekann-
ten Algorithmen übereinstimmen. Wir schließen diese Lücke mit einem verbesserten
Approximationsalgorithmus für die Fréchetdistanz.
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Preface

The first part of this dissertation focuses on algorithms and data structures for
sampling from discrete distributions, and the second part deals with algorithms
for the Fréchet distance. During my studies I explored many other research areas
within theoretical computer science, with a strong focus on algorithms. This section
therefore aims to give a brief overview of my work.

At the time of writing, I have published 26 papers in conferences proceedings,
7 papers in journals, and another 4 manuscripts on ArXiv, which are currently
under submission. These papers are listed in the following. Please note that some
of these publications predate the start of my doctoral studies in April 2011.
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These papers can roughly be categorized as follows. The papers [6, 12, 17, 24, 25,
30, 33–37] study variants of Klee’s measure problem from the area of computational
geometry, where the task is to compute the volume of the union of a set of n
given axis-aligned boxes in d-dimensional Euclidean space. Most prominently, the
papers [24, 30] present an improved algorithm for the special case of all boxes being
cubes. The papers [34, 37] contain an approximation algorithm for a generalization
of this problem. A large part of these papers [6, 12, 17, 25, 33, 35, 36] deals with
the special case where all boxes have a common vertex at the origin, which is also
called the hypervolume indicator problem. For this special case, the worst-case and
average-case complexity is studied in [12, 17]. We also studied the complexity of
computing the least contributor [25, 33, 35, 36], i.e., the box whose deletion reduces
the volume of the union the least. More generally, the paper [6] investigates the
problem of choosing the subset of k boxes maximizing the volume of their union,
which is an optimization variant of Klee’s measure problem.

The hypervolume indicator problem is motivated by the field of evolutionary multi-
objective optimization, where it is used as an indicator for the quality of a popu-
lation. Beyond questions of computational geometry, we studied properties of the
hypervolume indicator that are related to evolutionary multi-objective optimiza-
tion [4, 19, 20, 22, 27–29, 31, 32]. In particular, the papers [20, 29, 31, 32] relate
the hypervolume indicator with classic notions of approximation and the papers [22,
28] study different strategies of selecting offspring populations to maximize the final
hypervolume indicator from the perspective of online algorithms.

The papers [10, 11, 23] study another problem of computational geometry: Given
a set of points in the plane we want to count the number of different straight-
line triangulations of this point set. For this problem we designed improved exact
algorithms as well as approximation algorithms, in particular for restricted classes
of point sets.

The papers [3, 7–9, 13, 15, 16, 26] study various other problems related to effi-
cient algorithms: the maximum load of a ball-into-bins process augmented by local
search [7], the average-case approximation ratio of heuristics for NP-hard prob-
lems [8, 13], fixed-parameter tractability of the graph problem Steiner Multicut [9],
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online checkpointing [15], scheduling with the objective of minimizing maximum
flow-time [16], de-anonymizing social networks, modeled using inhomogeneous ran-
dom graphs [3], and routing in social networks [26].

The first part of this dissertation is based on the papers [5, 14, 18, 21], which focus
on problems related to sampling from a discrete distribution. Chapter 2 studies the
space requirements of sampling data structures and is based on [18]. Chapter 3 con-
sists of a significantly improved version of [21], dealing with sorted distributions and
a generalization to sampling subsets. In Chapter 4 we consider special distributions
that can be sampled efficiently and exactly on a bounded precision machine, this is
based on [14] and partly on [5]. Finally, in Chapter 5 we present an application to
sampling a model from physics, based on [5].

The second part of this dissertation is based on the more recent papers [1, 2],
which consider the Fréchet distance, a popular measure of similarity of two curves.
In Chapter 7 we prove a near-quadratic conditional lower bound for computing the
Fréchet distance, based on [2]. Chapter 8 is based on [1] and deals with approxima-
tion algorithms for realistic input curves.
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1Introduction

Sampling from a probability distribution is a fundamental problem that lies at
the heart of randomized computation, and has never been as important as today,
as most sciences perform computer simulations of models involving randomness.
We approach this problem area from an algorithm theory perspective. The central
problem in the first part of this dissertation is proportional sampling, defined as
follows. We are given non-negative numbers p1, . . . , pn that define a probability
distribution on {1, . . . , n} by picking i with probability proportional to pi, i.e., the
probability of sampling i is pi∑

j pj
. The task is to build a data structure that supports

sampling from this distribution as a query. The classic solution to this problem is
the alias method by Walker from ’74 [38], which uses optimal O(1) query time and
optimal O(n) preprocessing time, i.e., the time for building the data structure is
O(n). We extend this classic result in different directions as follows.

Sampling algorithms such as the alias method are typically analyzed on the Real
RAM, where every memory cell can store an arbitrary real number and space usage
cannot be meaningfully analyzed. As we will see later, the alias method can also be
implemented on a bounded precision machine, specifically the Word RAM. This al-
lows one to analyze space usage and consider sampling as a problem in succinct data
structures. We show that the alias method’s space usage is sub-optimal, and present
novel optimal succinct data structures for proportional sampling, see Section 1.5 and
Chapter 2.

The preprocessing time of O(n) is only optimal for worst-case, unstructured input.
As a well-motivated example of structured input, we consider the case of sorted
input p1 > . . . > pn, and present a novel data structure for proportional sampling
with optimal trade-off between preprocessing and query time. In particular, we can
achieve a preprocessing and query time of O(log n/ log log n), see Section 1.6 and
Chapter 3.

Moreover, we consider a different sampling problem, which can be seen as a gen-
eralization of proportional sampling: In subset sampling we are given p1, . . . , pn and
consider n independent events, where event i occurs with probability pi. The task
is to sample the set of occurring events. As for proportional sampling, we consider
sorted and unsorted input sequences and in both cases present data structures with
optimal preprocessing-query time trade-offs, see Section 1.6 and Chapter 3.

Faster sampling methods are known for special distributions such as Bernoulli,
geometric, or binomial random variates. Again, these algorithms are analyzed on
the Real RAM and are not exact on bounded precision machines. We present optimal
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algorithms for sampling these special distributions on the Word RAM, see Section 1.7
and Chapter 4.

As an application, we use our insights for these fundamental sampling problems
to speed up a model from physics. The internal diffusion limited aggregation model
can trivially be sampled in time O(n2). We achieve a reduced sampling time of
O(n log2 n), see Section 1.8 and Chapter 5.

In the remainder of this chapter, we make this short discussion precise. First, in
Section 1.1 we introduce the two machine models considered in this dissertation, the
Real RAM and the Word RAM. We make the reader familiar with Walker’s alias
method and show how to implement it on a Word RAM in Section 1.2. In Section 1.3
we discuss related literature on sampling algorithms. We fix notation in Section 1.4.
Our results are discussed in Sections 1.5 to 1.8 and proven in Chapters 2 to 5.

1.1. Machine Models

We discuss two variants of random access machines (RAMs). Both are abstract
computational machine models with an arbitrary number of registers that can be
indirectly addressed. The classic RAM has been introduced by Cook and Reckhow
[39]. There, each register contains an arbitrarily large integer N0 and all basic math-
ematical functions can be performed in constant time. The two models relevant for
this dissertation are the Real RAM, which allows computation even with real num-
bers, and the Word RAM, which only allows computation with bounded precision.
The difference is what can be stored in the registers. In addition to the standard
definitions, we assume that a uniform random number can be sampled in constant
time.

1.1.1. Real RAM Model of Computation

The Real RAM is the main model of computability in computational geometry [40,
41] and is also used in numerical analysis. Here, each register can contain a real
number in the mathematical sense. All basic mathematical functions can be com-
puted in constant time. In particular, we will assume that the following operations
take constant time:

• Accessing the content of any memory cell.

• Performing any basic arithmetic operation involving real numbers like addi-
tion, multiplication, division, comparison, truncation, and evaluating any fun-
damental function like exp and log.

• Generating a uniformly distributed real number in the interval [0, 1].

The disadvantage of the model is that real numbers are infinite objects and all
physical computers can only handle finite portions of these objects. Hence, algo-
rithms designed for the Real RAM are typically not exact when run on real-life
computers using floating point approximations. On the positive side, it is easy to
design algorithms in this model; this holds in particular for sampling problems.

22



1.1.2. Word RAM Model of Computation

The Word RAM is a more realistic model of computation [42]. Here, each memory
cell contains a word, i.e., an integer in the range {0, . . . , 2w − 1}, where w is a
parameter of the model. We make the usual assumption that w = Ω(log n), to be
able to store pointers to all input elements (using a constant number of words). The
execution of basic instructions on words takes constant time. This includes bit level
operations, such as AND, OR, and NOT, and arithmetic operations, like addition,
multiplication, and integer division. For sampling we need an additional operation
Rand that produces a random word in constant time,1 i.e., we assume that we can
draw w random bits in constant time. Thus, we can only draw a random number
from a range {1, . . . , 2`}, for a positive integer ` = O(w), in constant worst-case
time, i.e., from a range with size a power of 2. For all other ranges {1, . . . , k},
k ∈ N, we can still uniformly sample from it in O(1) expected time when k 6 2O(w),
e.g., by sampling in the range {1, . . . , 2`}, where 2` > k is the next power of 2, and
rejecting as long as the sampled number does not lie in the desired range {1, . . . , k}.

We can compute with longer integers than w bits by representing them as lists
of words. This allows one, e.g., to add two L-bit integers in time O(1 + L/w). In
general, usual logical or arithmetic operations on two L-bit integers can be performed
in time O(1 + (L/w)O(1)). Moreover, we can use floating-point approximations of
reals by storing both mantissa and exponent as long integers. This allows one to
perform typical operations on two floating-point numbers with L-bit mantissas and
E-bit exponents in time O(1 + ((L+ E)/w)O(1)).

Note that the Word RAM offers an intrinsic parallelism where, in constant time,
an operation on w bits can be performed in parallel.

1.2. Walker’s Alias Method

We first focus on the Real RAM. For proportional sampling, the input consists of
non-negative reals p1, . . . , pn, and we want to build a data structure that supports the
operation ProportionalSampling, which returns i ∈ {1, . . . , n} with probability
pi∑
j pj

. We assume that
∑

j pj > 0. Multiple ProportionalSampling queries

shall be independent. This problem has a classic solution by Walker [38], with
preprocessing time improved by Kronmal and Peterson [43]; see also [44] for an
excellent explanation. The improved version of Walker’s alias method needs O(n)
preprocessing time, after which a ProportionalSampling query can be answered
in O(1) worst-case time. While the query time bound is clearly optimal, we will see
later that the preprocessing time is optimal as well.

The alias method works as follows. Consider n vases, where vase i contains an
amount of pi∑

j pj
of some liquid. We say that vase i contains pi∑

j pj
probability mass

1If we instead can only generate a random bit in constant time, then we can clearly simulate Rand
in time O(w). However, even for uniform sampling we need Ω(log n) random bits, so that we
cannot hope for better query times than Θ(logn) in this case.
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of outcome i. For preprocessing, we want to repeatedly pour liquid from some
vase to some other vase until we end up with (1) all vases containing exactly 1/n
probability mass and (2) each vase i containing probability mass of at most two
different outcomes i and vi; let qi denote the probability mass of outcome i so that
1/n− qi is the probability mass of outcome vi.

This structure allows to quickly sample as follows. First sample a uniformly
random i ∈ {1, . . . , n}. Then sample a Bernoulli random variate with success prob-
ability n qi. If this random variate was successful, then return i, else return vi. Note
that we can sample this Bernoulli random variable by sampling a uniformly random
number r ∈ [0, 1] and checking whether r 6 n qi.

Clearly, this procedure chooses a vase i and outcome j contained in this vase with
probability equal to the probability mass of outcome j in vase i. Since we poured
probability mass from some vases to others, but did not lose or gain any probability
mass, the total probability mass of outcome i over all vases is pi∑

j pj
. Hence, we

sample i with probability proportional to pi and Walker’s alias method is an exact
sampling algorithm.

It is left to show how to pour probability mass. To this end, we call a vase high
if it contains more than 1/n probability mass, low if it contains less than 1/n, and
good if it contains exactly 1/n probability mass. The preprocessing has the property
that any non-good vase i contains probability mass only of outcome i, and once a
vase becomes good we do not touch it again. As long as not all vases are good, there
exist a high and a low vase, since the sum of all probability masses is 1. Pick any
high vase i and low vase j, say these vases contain mi > 1/n > mj probability mass
of i and j, respectively. Now we pour 1/n−mj probability mass of vase i to vase j.
This adds probability mass of a second outcome to vase j and makes vase j good.
Vase i, on the other hand, may stay high or become good or low. After at most n
such pouring steps, all vases are good and we achieved properties (1) and (2). To
implement this preprocessing in time O(n), observe that we only need to maintain a
list of high and a list of low vases. Then in every step we can determine a high and
a low vase in constant time, and after each pouring step these lists can be updated
in constant time.

This method is typically analyzed on the Real RAM, where analyzing space usage
is not meaningful, since every memory cell may store an arbitrary real number so
that an arbitrary amount of information can be stored in each memory cell. For this
reason, we want to analyze the alias method on the Word RAM.

Our sampling problem is the following on the Word RAM: The input consists
of non-negative integers p1, . . . , pn, each of w bits. Build a data structure that
supports an operation ProportionalSampling, which returns i ∈ {1, . . . , n} with
probability pi/S, where S :=

∑
j pj is assumed to be positive. All invocations of

ProportionalSampling shall be independent.

Is Walker’s alias method efficient on the Word RAM? The biggest potential ob-
stacle to this would be the computation with numbers of excessive bit length. How-
ever, closely looking at the Real RAM version of the data structure, one can see
that all produced numbers are either integers less than n or rationals with denomi-
nator nS (more precisely, lcm(n, S)). To see this, note that initially all probability
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masses are pi
S , which has denominator dividing nS. Moreover, adding or subtract-

ing two rationals with denominator dividing nS results in a rational with denomi-
nator dividing nS. We can store such a number q

nS by storing only its numerator
q ∈ {0, . . . , nS} using dlog(nS + 1)e bits. Since S 6 n2w, the number of bits is
bounded by dlog(n22w + 1)e 6 w + 2 log n + O(1) 6 O(w). Thus, all considered
numbers fit in O(1) words and can be processed in constant time. A second point
that needs to be translated to the Word RAM is the sampling of a Bernoulli ran-
dom variable. However, a Bernoulli random variable with success probability q

nS
can be produced by sampling a uniformly random number r ∈ {1, . . . , nS} and
testing whether r 6 q. Hence, the data structure can easily be adapted and has
preprocessing time O(n).

There is one drawback: We need to draw uniformly in {1, . . . , n} and in {1, . . . , nS},
which can only be done in O(1) expected time. Thus, Walker’s alias method degen-
erates to O(1) expected query time, which is theoretically unappealing, but makes
not much difference for practice. In any case, no guarantee on worst-case query
time is possible for our Word RAM model, as any probability we can generate in
a bounded number of steps has as denominator a power of 2, but n and S are not
required to be powers of 2.

Considering space usage, for each vase i we need to store vi, the second outcome
that was added to this vase, and qi, the probability mass of outcome i that is left in
vase i. Since vi ∈ {1, . . . , n} we need log n + O(1) bits to store vi. The number qi
has denominator dividing nS and is at most 1/n, so we can store nSqi ∈ {0, . . . , S}.
Since S 6 n2w, we need w + log n + O(1) bits to store nSqi. In total, Walker’s
alias method needs n(w + 2 log n + O(1)) bits of space. Thus the data structure
has a space overhead of more than 2n log n bits compared to just storing the input
numbers. Using the terminology from the world of succinct data structures, we say
that the data structure has redundancy 2n log n+O(n) bits.

In summary, Walker’s alias method can be implemented on the Word RAM and
needs Θ(n) preprocessing time, Θ(1) expected query time, and n(w+2 log n+O(1))
bits of space.

1.3. Other Related Work

The fundamental problem of the generation of random values from discrete and
continuous distributions has been studied extensively in the literature, see, e.g., De-
vroye’s monograph [45]. Large parts of the literature deal with special distributions
such as geometric, binomial, or Bernoulli distributions. These algorithms typically
assume the Real RAM model of computation and are, thus, in general not exact
on bounded precision machines and cannot be meaningfully analyzed with respect
to space usage. We will discuss this branch of the literature in more detail in Sec-
tion 1.7.

In a seminal work, Knuth and Yao [46] initiated the study of the sampling power
of various restricted devices, like finite-state machines. They devise algorithms try-
ing to minimize the use of random bits. However, they do not guarantee efficient
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precomputation on general sequences of probabilities, so that their results are in-
comparable to ours. These ideas have been further developed in [47, 48]. See [49]
for a modern approach on sampling random variates such as Ber(e−1) using simple
programs without multi-precision arithmetic.

A dynamic version of proportional sampling, where the input p1, . . . , pn may
change over time, has been investigated in [50, 51]. Here, an update is of the form
“set pi to v” for some i ∈ {1, . . . , n} and v ∈ N. These papers achieve an update
time of O(1), while still having optimal preprocessing time O(n) and expected query
time O(1). Their query time guarantee is slightly weaker than Walker’s, since they
cannot achieve constant worst-case time, not even on the Real RAM.

In the remainder of this section, we discuss the folklore technique of rejection
sampling (see, e.g., [52]) that will find numerous applications throughout the first
part of this dissertation. Assume that we want to solve proportional sampling on
p1, . . . , pn, and we already have an algorithm for sampling proportional to p1, . . . , pn,
where pi > pi for all i. Then we obtain a sampling algorithm for p1, . . . , pn as follows.
First, we draw a sample i proportional to p1, . . . , pn. Then with probability pi

pi
we

return i and are done. Otherwise, we reject i, i.e., we throw away i and repeat the
process from the beginning.

Note that this algorithm samples proportional to p1, . . . , pn: In every iteration of
the implicit loop, we first sample i with probability pi/

∑
j pj , and then we return i

with probability pi/pi. Thus, in any iteration we sample i with probability pi/
∑

j pj ,
i.e., with probability proportional to pi. In total over all iterations, we still sample
proportional to pi, and since we eventually return a number in {1, . . . , n} with
probability 1, we sample i with probability pi/

∑
j pj .

The running time of this algorithm is governed by its expected number of re-
jections, i.e., number of iterations. Recall that in any iteration the probability of
returning i is pi/

∑
j pj . Summing up, in any iteration the probability of not reject-

ing is
∑

j pj/
∑

j pj . Hence, the expected number of iterations is O(
∑

j pj/
∑

j pj).
Thus, to obtain a fast sampling algorithm for p1, . . . , pn it suffices that

∑
j pj is not

much larger than
∑

j pj .

Variants of this technique are present in large parts of the literature on sampling
algorithms. Its use for proportional sampling is immediate from the above exposi-
tion, as we can reduce the problem to a restricted class of inputs p1, . . . , pn, e.g., we
can enforce that every pi is an (inverse) power of 2.

1.4. Notation

We say that a statement holds with high probability (w.h.p.) if it holds with probabil-
ity 1−O(n−c) for a constant c > 0 that can be chosen arbitrarily large. We abbrevi-
ate [n] = {1, . . . , n}. We write lnx for the natural logarithm of x, logt x = lnx/ ln t,
and log x = log2 x.

Specific notation, which is only used within a chapter, will be introduced in the
respective chapters.
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1.5. Succinct Sampling

The results in this section are proven in Chapter 2. We focus on the question of
whether Walker’s alias method has optimal space usage, or whether there are data
structures for sampling from a discrete distribution that use less space. This question
cannot be studied on the Real RAM, as any cell can store an infinite number of bits.
However, on the Word RAM this question is well-defined. Specifically, we consider
the following question: On the Word RAM, is there a data structure for sampling
from a discrete distribution with redundancy less than 2n log n + O(n) bits? Of
course, such a data structure should use the optimal O(n) preprocessing time and
O(1) expected query time, if possible.

We answer this question in two ways, in both cases improving upon Walker’s data
structure. First, we consider the systematic case, in which the input is read-only
and also available at query time. This is a reasonable model if the input numbers
may not be overwritten by the data structure, or if the input numbers are available
only implicitly, i.e., we can afford to recompute each pi when needed, but we cannot
afford to store each pi explicitly. In this case we present a data structure that uses
O(n+ w) redundant bits. In fact, Walker’s classic data structure is not systematic,
so that all n(w + 2 log n + O(1)) bits stored in his solution are redundant, i.e., we
improve by a factor of Θ(w) = Ω(log n) over the alias method. We then generalize
this result to further reduce the redundancy, at the cost of increasing the query time,
yielding the following trade-off.

Theorem 1.1. For any 1 6 r 6 n we can build a systematic data structure for
ProportionalSampling with r+O(w) bits of redundancy, O(n/r) expected query
time, and O(n) preprocessing time.

The question arises of whether one could save more than a factor of Θ(w) while
still having O(1) expected query time, or, more generally, whether one can reduce
the product rt further, where r is the redundancy and t the expected query time.
With the following theorem we prove that this is impossible, showing optimality of
the trade-off between redundancy and query time in Theorem 1.1.

Theorem 1.2. Consider any systematic data structure for sampling from a dis-
crete distribution, having redundancy r and supporting ProportionalSampling
in expected query time t. Then r · t = Ω(n).

This shows that the data structure of Theorem 1.1 is asymptotically optimal with
respect to all three aspects: space usage, query time, and preprocessing time (for
the latter see Theorem 1.7 in Section 1.6).

So far we considered the systematic case, in which the input is read-only and
always available. In the non-systematic case, on the other hand, the preprocessing
is given access to the input, but the query algorithm is not. Thus, the preprocessing
has to encode the input in some way in the data structure it outputs (possibly just
storing the input without modifications). It is not immediately clear that such a data
structure even needs to use nw bits of space, since two different inputs p1, . . . , pn
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and p̂1, . . . , p̂n represent the same distribution if there exists some α > 0 such that
pi = αp̂i for all i. E.g., answering range minimum queries in an array of n ordered
elements (given two indices i and j, return the index of the minimum element in
the sub-array from index i through j) can be done using only O(n) bits, although
one might first expect that Ω(n log n) bits are necessary, see, e.g., [53]. However, we
prove that such savings are not possible for sampling. More specifically, we prove
the following result:

Theorem 1.3. Any non-systematic data structure for ProportionalSampling
must use at least nw bits of space for any 1 6 w = o(n) and sufficiently large n.

Thus, in contrast to range minimum queries, it is not possible to save even a
single bit. As mentioned, Walker’s data structure is non-systematic and has space
usage n(w+ 2 log n+O(1)) bits, i.e., redundancy 2n log n+O(n) when analyzed as
a non-systematic data structure. Very surprisingly, we show that it is possible to
vastly improve over this bound in the non-systematic case. More precisely, we show
that we need only 1 redundant bit to achieve optimal query time and preprocessing
time!

Theorem 1.4. In the non-systematic case we can build a data structure for Pro-
portionalSampling that needs nw+1 bits of space, O(1) expected query time, and
O(n) preprocessing time.

This is an astonishing result since it is the strongest obtained separation between
the systematic and non-systematic case for any data structure problem: For redun-
dancy r and expected query time t the optimal bound is r·t = Θ(n) in the systematic
case, while we have r · t = O(1) in the non-systematic case. The largest previous
separation was obtained for Rank and Select queries, where any systematic data
structure must satisfy r = Ω((n/t) log t) [54], while there exist non-systematic data
structures achieving r = Θ(n/(log n/t)t) + Õ(n3/4) [55].

Finally, we believe that our data structures are not only interesting from a the-
oretical point of view, but may also be of practical use. In fact, our systematic
solution with O(1) query time is simpler than Walker’s alias method, while our
non-systematic solution with just 1 redundant bit is only slightly more involved.
Furthermore, all constants hidden in the O-notations are small.

Related Work in Succinct Data Structures In the field of succinct data struc-
tures, the focus is on designing data structures that have space requirements as close
to the information theoretic minimum as possible, while still answering queries effi-
ciently. Here, the space usage of a data structure is measured in the additive number
of redundant bits used compared to the information theoretic minimum. As men-
tioned, previous work has focused on two types of data structures called systematic
and non-systematic. Some of the most basic problems in the field include range
minimum queries, Rank and Select. The systematic case is well understood for
all three problems, with tight bounds for Rank and Select dating back to Raman
et al. [56] and Golynski [54]. For constant query time, the redundancy needed for
these two problems is Θ(n log log n/ log n). For range minimum, Brodal et al. [57]
proved that any systematic data structure with redundancy r must have worst-case
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query time t = Ω(n/r). They complemented this lower bound with a data structure
matching the entire trade-off curve.

The strongest separation between the systematic and non-systematic case had
been limited, until somewhat recently, to a mere log n factor in the redundancy for
constant query time data structures, see, e.g., [58]. In fact, it had been generally
believed that a stronger separation would not be possible for problems such as
Rank and Select. This belief was disproved in the seminal paper of Pǎtraşcu [55].
Here, Pǎtraşcu demonstrated an exponential separation between the two cases by
obtaining non-systematic Rank and Select data structures with redundancy r =
Θ(n/(log n/t)t) + Õ(n3/4). Observe that the redundancy goes down exponentially
fast with t and that redundancy O(n/ logc n) is possible in constant query time
for any constant c > 0. Reducing the redundancy all the way to a constant while
maintaining constant query time, as we do for our problem, was, however, proved
impossible by Pǎtraşcu and Viola [59]. More specifically, they proved a redundancy
lower bound of r > n/(log n)O(t), thus almost matching the upper bound of Pǎtraşcu,
except when t > log1−o(1) n.

Finally, we mention an interesting problem for which extremely low redundancy
and constant query time has been achieved before this work: The input to this
problem consists of an array of n trits, i.e., numbers in {0, 1, 2}, and the goal is
to represent the array in as close to dn log 3e bits as possible, such that each entry
can be retrieved efficiently. For this problem, Dodis et al. [60] showed that constant
query time can be achieved with a constant number of input-dependent redundant
bits plus O(log2 n) precomputed bits depending only on n and the word size. From
a separation point of view, this problem is, however, not interesting, as the problem
is not meaningful in the systematic setting.

1.6. Sorted Input and Subset Sampling

The results in this section are proven in Chapter 3. So far we studied proportional
sampling on general, worst-case input sequences p1, . . . , pn. Now we want to study
structured input. In particular, many natural distributions have sequences p1, . . . , pn
that change monotonicity only few times, meaning that they can be split into a small
number of monotone sequences. We focus on these monotone sub-problems, i.e., we
consider sorted p1 > . . . > pn.

Moreover, we consider a second fundamental sampling problem, which we call
subset sampling. Here, we have independent events 1, . . . , n and event i occurs with
probability pi. The task is to sample the set of occurred events. Our results below
show that this can be seen as a generalization of proportional sampling. We study
this problem both with respect to general and sorted input sequences. As we will
see, there is a rich interplay in designing efficient algorithms that solve these different
variants.

In all cases we obtain efficient preprocessing-query time trade-offs which we prove
to be asymptotically optimal.
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1.6.1. Proportional Sampling

Recall that in proportional sampling we are given p = (p1, . . . , pn) ∈ Rn>0 and
we want to sample a random variable Y = Yp such that Pr[Y = i] = pi/µ,
where µ =

∑n
i=1 pi is assumed to be positive. Depending on whether we consider this

problem on sorted or general (i.e., not necessarily sorted) sequences we call the prob-
lem SortedProportionalSampling or UnsortedProportionalSampling in
this section. Note that in the preceding sections we studied UnsortedPropor-
tionalSampling, in fact, all results for this problem variant that are listed in this
section follow from Walker’s alias method.

A single-sample algorithm for SortedProportionalSampling or Unsorted-
ProportionalSampling is given p as input and outputs a number s ∈ [n] that
has the same distribution as Y . In order to allow for sublinear running times, when
we speak of “input p” we mean that the algorithm gets to know n and can access
every pi in constant time. This can be achieved by storing all pi’s in an array, but
also, e.g., by a constant depth arithmetic circuit computing pi. In particular, the
algorithm does not know the number of i’s with pi = 0, and the input format is not
sparse. For this problem we prove the following result.

Theorem 1.5. There is a single-sample algorithm for SortedProportional-
Sampling with expected time O

( logn
log logn

)
and for UnsortedProportionalSamp-

ling with expected time O(n). Both bounds are asymptotically optimal.

We remark that all our lower bounds only hold for algorithms that work for all
n and all (sorted) sequences p1, . . . , pn. They are worst-case bounds over the input
sequence p and asymptotic in n. For particular instances p there can be faster
algorithms. To avoid any confusion, note that we mean worst-case bounds whenever
we speak of (running) time and expected bounds whenever we speak of expected
(running) time.

To obtain faster sampling times than in Theorem 1.5, we consider sampling data
structures that support ProportionalSampling as a query. We view building the
data structure as preprocessing of the input. More precisely, in this preprocessing-
query variant we consider the interplay of two algorithms. First, the preprocessing
algorithm P is given p as input and computes some auxiliary data D = D(p).
Second, the query algorithm Q receives input p and D, and samples Y , i.e., for any
s ∈ [n] we have Pr[Q(p, D) = s] = Pr[Y = s]. Here, the probability is taken only
over the random choices of Q, so that, after running the preprocessing once, running
the query algorithm multiple times generates multiple independent samples. In this
setting we prove the following tight result.

Theorem 1.6. Let β ∈ {2, . . . , n}. SortedProportionalSampling can be solved
in preprocessing time O(logβ n) and expected query time

tβq (n, µ) = O
(

min
{
β, logn

log logn

})
.

This is optimal, as for some constant ε > 0, SortedProportionalSampling has
no data structure with preprocessing time ε logβ(n) and expected query time ε tβq (n, µ)
for any µ = µ(n).

30



Note that if we can afford a preprocessing time of O(log n) then the query time
is already O(1), which is optimal. Thus, larger preprocessing times cannot yield
better query times. This is why we assume that the preprocessing time is of the
form O(logβ n). With varying β ∈ {2, . . . , n} this takes all values in the interval
[Θ(1),Θ(log n)] of reasonable values. Varying β yields a trade-off between prepro-
cessing and query time; if one wants to have a large number of samples, one should
set β = 2 to minimize query time, while large β yields superior running times if one
wants only a small number of samples. Note that we prove a matching lower bound
for this trade-off for all β.

For general input sequences, ProportionalSampling can be solved by Walker’s
alias method. This result will be used in the proofs of Theorem 1.9 and Theorem 1.10
below, so we include it here for completeness. Moreover, we prove a matching lower
bound.

Theorem 1.7. UnsortedProportionalSampling can be solved in preprocessing
time O(n) and query time O(1). This is optimal, as for some constant ε > 0,
UnsortedProportionalSampling has no data structure with preprocessing time
εn and expected query time εn for any µ = µ(n).

Note that any data structure with preprocessing time tp and expected query
time tq can be transformed into a single-sample algorithm with expected time tp+tq,
so the single-sample variant of the problem is also solved by the preprocessing-query
variant. Moreover, a single-sample algorithm with expected time t yields a data
structure with no preprocessing time and expected query time t. These arguments
show that Theorem 1.5 follows from Theorems 1.6 and 1.7.

1.6.2. Subset Sampling

In the previous section we considered the problem of sampling from a distribution.
Here, we consider n independent events with indicator random variables X1, . . . , Xn,
and Pr[Xi = 1] = pi. As a shorthand, we write p = (p1, . . . , pn) and µ = µp =∑n

i=1 pi = E
[∑n

i=1Xi

]
. Consider the random variable X = Xp = {i ∈ [n] | Xi = 1},

i.e., the set of all events that occurred; in particular, for any S ⊆ [n] we have

Pr[X = S] =

(∏
i∈S

pi

)
·
( ∏
i∈[n]\S

(1− pi)
)
.

We call the problem of sampling X SortedSubsetSampling or UnsortedSub-
setSampling, if we consider it on sorted or general input sequences, respectively.
As previously, we consider two variations of the problem. In the single-sample vari-
ant we are given p and we want to compute an output that has the same distribution
as X. Moreover, in the preprocessing-query variant we have a precomputation algo-
rithm that is given p and computes some auxiliary data D, and a query algorithm
that is given p and D and has an output with the same distribution as X. The
results of multiple calls to the query algorithm are independent.

Any query algorithm cannot run faster than Θ(1 +µ), as its expected output size
is µ and any algorithm requires a running time of Ω(1). Whether this query time
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is achievable depends on µ and the alloted preprocessing time, as our results below
make precise. Note that the single-sample variant of UnsortedSubsetSampling
can be solved trivially in time O(n); we just toss a biased coin for every pi. This
algorithm is optimal, as shown by the following tight result.

Theorem 1.8. There is a single-sample algorithm for SortedSubsetSampling
with expected time

t(n, µ) =

O(µ), if µ > 1
2 log n,

O
(
1 + logn

log( logn
µ

)

)
, otherwise,

and for UnsortedProportionalSampling with expected time O(n). Both bounds
are asymptotically optimal for any µ = µ(n).

Again, this theorem follows from our results on the preprocessing-query variant
presented in the following two theorems.

Theorem 1.9. Let β ∈ {2, . . . , n}. SortedSubsetSampling can be solved in
preprocessing time O(logβ n) and expected query time

tβq (n, µ) =


O(µ), if µ > 1

2 log n,

O(1 + βµ), if µ < 1
β logβ n,

O
( logn

log( logn
µ

)

)
, otherwise.

In particular, the query time is always bounded by O(1 + βµ). This is optimal,
as for some constant ε > 0, SortedSubsetSampling has no data structure with
preprocessing time ε logβ n and expected query time ε tβq (n, µ) for any µ = µ(n).

Observe that setting β = 2 in the above result yields a preprocessing time of
O(log n) and an (optimal) expected query time of O(1 + µ).

The next result addresses the case of general, i.e., not necessarily sorted, proba-
bilities.

Theorem 1.10. UnsortedSubsetSampling can be solved in preprocessing time
O(n) and expected query time O(1+µ). This is optimal, as for some constant ε > 0,
UnsortedSubsetSampling has no data structure with preprocessing time εn and
expected query time εn for any µ = µ(n).

Both positive results in the previous theorems highly depend on each other. In
particular, we prove them by repeatedly reducing the instance size n and switching
from the one problem variant to the other.

We also present a relation between ProportionalSampling and SubsetSamp-
ling that suggests that the classic problem ProportionalSampling is the eas-
ier of the two problems (or can be seen as a special case of SubsetSampling).
Specifically, we present a reduction that allows one to infer the upper bounds for
ProportionalSampling (Theorems 1.6 and 1.7) from the upper bounds for Sub-
setSampling (Theorems 1.9 and 1.10), see Section 3.3 for details.
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Related work for Subset Sampling A classic algorithm solves SubsetSamp-
ling for p1 = . . . = pn = p in the optimal expected time O(1 + µ), see, e.g., the
monographs [45] and [52], where also many other cases are discussed. Indeed, ob-
serve that the index i1 of the first sampled element is geometrically distributed,
i.e., Pr[i1 = i] = (1 − p)i−1p. Such a random value can be generated by setting
i1 = b log r

log(1−p)c, where r is chosen uniformly at random in (0, 1). Moreover, after
having sampled the index of the first element, we repeat the process starting at
i1 + 1 to sample the second element, and so on, until we arrive for the first time at
an index ik > n. In [61] the “orthogonal” problem is considered, where we want to
uniformly sample a fixed number of elements from a stream of objects. The problem
of UnsortedSubsetSampling was considered also in [62], where algorithms with
linear preprocessing time and sub-optimal query time O(log n + µ) were designed.
Our results improve upon this running time, and provide matching lower bounds.

1.6.3. Real RAM vs Word RAM

We present our results of Chapter 3 on the Real RAM model of computation. How-
ever, in Section 3.4 we argue that our algorithms can also be adapted to work on
the Word RAM model of computation, using that geometric random variates can
be sampled exactly and efficiently on the Word RAM, see Section 1.7 and Chap-
ter 4. The lower bounds hold for both models since we bound the number of probed
inputs pi, and in both models in unit time we can only read a single input pi.

1.7. Sampling from Special Distributions

The results in this section are proven in Chapter 4. We consider special distri-
butions like the geometric, binomial, or Bernoulli distribution. Folklore or classic
results show that such random variates can be efficiently sampled; we discuss these
results in detail below. These algorithms are, however, typically analyzed on the
Real RAM, which is highly problematic as real numbers are infinite objects and all
physical computers can only handle finite portions of these objects. Typical imple-
mentations with, e.g., double floating point precision are efficient but not exact, i.e.,
some outcomes might not be reachable and others might become more likely than
they should.

Our aim is the design of exact and efficient algorithms for sampling from spe-
cial distributions on a bounded precision machine, specifically on the Word RAM.
We show that this is possible in many cases and present fast algorithms in par-
ticular for Bernoulli, geometric, and binomial random variates. As an application,
this yields exact and efficient sampling algorithms for Erdős-Rényi and Chung-Lu
random graphs. It also allows the exact and efficient generation of very large non-
uniform random variates (e.g., for cryptographic applications [63]).

For exponential and normal distributions, there already exist implementations
of exact and efficient random number generators [64], which work similarly to our
algorithms for Bernoulli, geometric, and binomial random variates.
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1.7.1. Bernoulli Random Variates

A Bernoulli random variate Ber(p), p ∈ [0, 1], has outcome 1 with probability p
and outcome 0 otherwise. To sample this on a Real RAM, simply draw a uniformly
random real r ∈ [0, 1] and return whether r 6 p. This is an exact sampling algorithm,
since r 6 p happens with probability p. Moreover, as we can draw r in constant
time by assumption, this simple algorithm takes O(1) time.

If p is a rational a
b with small denominator b, then on the Word RAM we can

sample Ber(p) by drawing a uniformly random number s ∈ {1, . . . , b} and returning
whether s 6 a. However, if b is large or we can only approximate p then this method
is infeasible.

We describe a simple method for generating Bernoulli random variates on a Word
RAM, which is closely related to [48] and cannot be found in standard text books.
We simulate the Real RAM algorithm, which draws r ∈ [0, 1] uniformly at random
and compares it with p, by computing approximations of r and p. For r, an i-bit
approximation consists of i random bits. For p, we assume that we can compute an
i-bit approximation in time iO(1), although it would suffice if such an approximation
could be computed in time O((2 − ε)i) for some ε > 0. If r and p are sufficiently
far apart, then we can decide whether r 6 p just by comparing their i-bit approx-
imations. Otherwise we increase the precision parameter i and repeat. Since r is
uniformly random in [0, 1], it is unlikely to lie too close to p, and one can show that
this yields an algorithm with expected constant running time. See Section 4.2 for
details.

Theorem 1.11. Let p ∈ [0, 1] and assume that for any i ∈ N we can compute a
number pi ∈ [p − 2−i, p + 2−i] in time iO(1). Then the Bernoulli random variate
Ber(p) can be sampled in expected running time O(1) on a Word RAM.

1.7.2. Geometric Random Variates

A geometric random variate Geo(p), p ∈ (0, 1], counts the number of times we can
draw Ber(p) obtaining only zeroes before we see the first 1. Clearly, we can follow
this definition and sample Geo(p) by repeatedly sampling Ber(p). This method
has expected running time O(1/p), which is not efficient for p close to 0, i.e., the
asymptotic running time in terms of the parameter p is far from being optimal.

On the Real RAM, a folklore algorithm for sampling geometric random variates
in constant time works as follows. We draw r ∈ (0, 1) uniformly at random and
return ⌊ log(r)

log(1− p)

⌋
.

This takes value k ∈ N if and only if k 6 log(r)/ log(1− p) < k + 1, which happens
if and only if (1− p)k > r > (1− p)k+1, which happens with probability (1− p)k −
(1 − p)k+1 = p(1 − p)k, and this is equal to the probability of Geo(p) = k. Thus,
this method exactly samples the geometric random variate Geo(p).

We consider the problem of sampling geometric random variates on the Word
RAM. We first observe the following lower bound for any exact sampling algorithm,
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which follows from the expected output size being Ω(log(1/p)) bits. Recall that w
is the word size of our Word RAM, i.e., the number of bits in any cell.

Theorem 1.12. On a Word RAM, any algorithm sampling a geometric random
variate Geo(p) with parameter p ∈ (0, 1] has expected running time Ω(1+log(1/p)/w).

The Real RAM algorithm can be translated to the Word RAM by computing
log(r) and log(1 − p) using multi-precision arithmetic with a precision that is high
enough to determine dlog(r)/ log(1− p)e. This simple approach yields the following
result, which we prove in Section 4.3.

Theorem 1.13. On a Word RAM with word size w = Ω(log log(1/p)), a geometric
random variate Geo(p) with parameter p ∈ (0, 1] can be sampled in expected running
time O(1 + log(1/p) poly log log(1/p)/w).

To the best of our knowledge, this observation is not discussed in the literature so
far. It not only applies to geometric distributions, but to all distributions where the
inverse of the cumulative distribution is efficiently computable on a Word RAM. The
assumption on w is needed to handle pointers to an array as large as the expected
output size in constant time. This result is independent of the rest of this section
and demonstrates that the classical Real RAM algorithm implemented on a Word
RAM does not give an optimal running time matching Theorem 1.12, since this
algorithm, as well as many other approaches, does not avoid taking logarithms. Note
that it is a long-standing open problem in analytic number theory and computational
complexity whether the logarithm can be computed in linear time.

Our aim is a Word RAM algorithm which samples geometric random variates
exactly and in the optimal running time. In Section 4.4 we present an algorithm that
proves the following theorem. Here, we assume that a relative 2−i-approximation of
p can be computed in time iO(1), see Section 4.1 for details.

Theorem 1.14. On a Word RAM with word size w = Ω(log log(1/p)), a geometric
random variate Geo(p) with parameter p ∈ (0, 1] can be sampled in expected running
time O(1 + log(1/p)/w), which is optimal.

Observe that, as a sample of a geometric random variate can be arbitrarily large,
the aforementioned sampling algorithm cannot work in bounded worst-case time or
space. We remark that on a parallel machine with P Word RAM processors, the
running time decreases to O(1 + log(1/p)/(wP )).

1.7.3. Bounded Geometric Random Variates

For our applications in sampling random graphs, we need to sample a bounded
geometric random variate Geo(p, n) := min{n,Geo(p)} with p ∈ (0, 1] and n ∈ N.
Similarly to Theorem 1.12 for (unbounded) geometric random variates, we observe
the following lower bound.

Theorem 1.15. On a Word RAM, any algorithm sampling a bounded geometric
random variate Geo(p, n) with parameters p ∈ (0, 1] and n ∈ N has expected running
time Ω(1 + log(min{1/p, n})/w).
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We present an algorithm which achieves this optimal running time bound and
prove the following theorem in Section 4.5. Again, we assume that a relative
2−i-approximation of p can be computed in time iO(1), see Section 4.1 for details.

Theorem 1.16. On a Word RAM with word size w = Ω(log log(1/p)), a bounded
geometric random variate Geo(p, n) with parameters p ∈ (0, 1] and n ∈ N can be
sampled in expected running time O(1 + log(min{1/p, n})/w), which is optimal.

If p is a rational number with numerator and denominator fitting in O(1) words,
then our algorithm needs O(n) space in the worst case.

If p is an arbitrary real, then we cannot bound the worst-case space usage of
a sampling algorithm for Geo(n, p) in general. However, if p is a rational with
numerator and denominator fitting into a constant number of words of the Word
RAM, then Theorem 1.16 shows that this is indeed possible.

1.7.4. Random Graphs

As an application of our sampling algorithms for bounded and unbounded geomet-
ric random variates, we present optimal sampling algorithms for Erdős-Rényi and
Chung-Lu random graphs on the Word RAM.

This is motivated by the fact that a large fraction of empirical research on graph
algorithms is performed on random graphs. Random graph generation is also com-
monly used for simulating networking protocols on the Internet topology and the
spread of epidemics (or rumors) on social networks (see, e.g., [65]). It is also an
important tool in real world applications such as detecting motifs in biological net-
works (see, e.g., [66]). There is a large body of work on generating random regular
graphs (see, e.g., [67]), graphs with a prescribed degree distribution (see, e.g., [68]),
and graphs with a prescribed joint degree distribution (see, e.g., [69]). All these
algorithms converge to the desired distribution for n→∞. Note that this typically
implies for finite n that only an approximation of the true distribution is achieved.

The most studied random graph model is certainly the Erdős-Rényi [70] random
graph G(n, p), where each edge of a graph of n vertices is present independently with
probability p ∈ [0, 1]. Many experimental papers use algorithms with running time
Θ(n2) to draw from G(n, p). The reason for this is probably that most graph algo-
rithm software libraries such as JUNG, LEDA, BGL, and JDSL also do not contain
efficient random graph generators. However, there are several algorithms which can
sample from G(n, p) in expected time O(m+n) on a Real RAM, where m = Θ(pn2)
is the expected number of edges [71, 72]. This is done by using the fact that in an
ordered list of all Θ(n2) pairs of vertices the distance between two consecutive edges
is geometrically distributed. Using the Real RAM algorithm for sampling geometric
random variates, the resulting distribution is not exact if the algorithm is run on a
physical computer, which can only handle bounded precision. The available imple-
mentation in the library NetworkX [73] therefore also does not return the desired
distribution exactly. It is not obvious how to get an exact implementation even by
using algebraic real numbers [74] and/or some high accuracy floating-point repre-
sentation. The problem of sampling G(n, p) on a bounded precision model has been
studied by Blanca and Mihail [75]. They showed how to achieve an approximation
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of the desired distribution efficiently. Our aim is an exact and efficient generation
on a bounded precision model instead.

We also consider the Chung-Lu random graph G(n,W ) [76]. In this model, we are
given n ∈ N and W = (W1, . . . ,Wn) ∈ Rn>0 and build a graph on [n] by connecting
i, j ∈ [n], i 6= j, independently with probability min{WiWj/

∑
kWk, 1}. Usually the

weights W follow a power-law distribution. In this case, the expected number of
edges m is Θ(

∑n
i=1Wi) (in general, the expected number of edges m is only bounded

from above by O(
∑n

i=1Wi)). Moreover, in this case Miller and Hagberg [72] gave
an algorithm to sample Chung-Lu random graphs in expected time O(n+m) on the
Real RAM.

Our Results We focus on homogeneous and inhomogeneous random graphs and
consider Erdős-Rényi [70] and Chung-Lu graphs [76]. The key ingredient for gen-
erating such graphs with n vertices faster than the obvious Θ(n2) algorithm is an
efficient algorithm for sampling geometric random variates. In fact, our results be-
low follow from plugging our algorithm for sampling geometric random variables on
the Word RAM into the best algorithm known for sampling the respective graph
class.

For generating graphs with n vertices it is natural to assume w = Ω(log n).

Theorem 1.17. On a Word RAM with word size w = Ω(log n), the Erdős-Rényi
random graph G(n, p) can be sampled in expected time O(n+m), where m = Θ(pn2)
is the expected number of edges. This is optimal if w = O(log n). If p is a rational
number with numerator and denominator fitting into O(1) words, then the worst-case
space complexity of our algorithm is asymptotically equal to the size of the output
graph, which is optimal.

For Chung-Lu random graphs, we assume that the expected number of edges is
Θ(
∑n

i=1Wi). In particular, this holds if W follows a power-law distribution. In this
case, we obtain the following result.

Theorem 1.18. Let W = (W1, . . . ,Wn) be rationals with common denominator,
where all numerators and the common denominator fit into O(1) words. Then on
a Word RAM with word size w = Ω(log n), the Chung-Lu random graph G(n,W )
can be sampled in expected time Θ(n+m), where m is the expected number of edges.
This is optimal if w = O(log n). The worst-case space complexity of the algorithm
is asymptotically equal to the size of the output graph, which is optimal.

1.7.5. Binomial Random Variates

A binomial random variate Bin(n, 1
2) counts the number of times we see heads when

flipping n unbiased coins. Since flipping a coin is equivalent to sampling Ber(1
2), we

can turn this definition into an algorithm to sample Bin(n, 1
2) in time Θ(n).

The literature on sampling contains a large amount of algorithms that sample
binomial random variates much faster, specifically in constant time (see, e.g., [45]),
and implementations of these algorithms are readily available. However, all of these
algorithms are exact only in the Real RAM model of computation.
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On a Word RAM we assume w = Ω(log n), so that the output fits in a constant
number of cells. Until recently there was no algorithm known that samples Bin(n, 1

2)
faster than the trivial coin flipping on the Word RAM. The first algorithm with
sublinear preprocessing and polylogarithmic sampling time was proposed in [77].
We improve upon this algorithm here and show that constant expected sampling
time is possible, even without any preprocessing.

Theorem 1.19. On the Word RAM with w = Ω(log n), a binomial random variable
Bin(n, 1

2) can be sampled in expected time O(1). Moreover, our algorithm has a

running time that is larger than t > 0 with probability exp(−tΩ(1)).

1.8. Application: Sampling a Model from Physics

The results in this section are proven in Chapter 5. As an application of our insights
for the fundamental sampling problems discussed above, we consider a model that
was introduced in the physics community, but has also drawn attention of mathe-
maticians as well as computer scientists. Our general goal is to design more efficient
algorithms for generating such models in order to allow larger computer experi-
ments. Moreover, we want these algorithms to sample from the exact distribution,
maximizing reliability of their results. Indeed, for the simple model that we consider
we present an exact sampling algorithm with significantly reduced running time.

Internal diffusion limited aggregation (IDLA) is a random process that places n
particles on the two-dimensional integer grid Z2. Let A(i) ⊂ Z2 denote the set of
occupied grid points after placing i particles. The first particle is placed on the
origin, i.e., A(1) = {(0, 0)}. From there on, A(i + 1) is constructed from A(i) by
adding the first grid point in Z2 \ A(i) that is reached by a random walk on Z2

starting at the origin.

Particle diffusion processes are of considerable significance in various branches
of science. In fact, the IDLA process was introduced by Meakin and Deutch [78],
who used it as a model to describe the dynamics of certain chemical and physical
processes like corrosion or the melting of a solid around a source of heat. Since then,
the study of the typical properties of A(n), and most prominently its “shape,” has
been the topic of many works. In particular, numerical simulations in [78] indicated
that the surface of A(n) is typically extremely smooth such that the fluctuations
from a perfect circle are only of logarithmic order. Proving this rigorously turned
out to be a difficult and challenging mathematical problem, which was resolved only
recently, after many attempts by several different authors (see, e.g., [79–82]), by
Jerison, Levine and Sheffield [83].

We try to understand IDLA from a computational perspective by giving an effi-
cient algorithm for determining the set A(n). This line of research is driven by the
pursuit to get efficient algorithmic tools for coping with random walks and by the
wish to speed up models from physics, so that one may perform larger experiments.
Moreover, understanding such models from a computational perspective might add
to their understanding in general.
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Using the aforementioned results it is easy to see that a direct simulation of every
individual step for determining A(n) is likely to require a total time of Ω(n2), i.e.,
time Ω(n) per particle. Indeed, since A(n) typically resembles a perfect circle, it
has a radius of order n1/2. Moreover, the random walk of a particle can be viewed
as a combination of two independent one-dimensional random walks, one along the
horizontal and one along the vertical axis. Thus, if a particle is placed initially at
the origin, one of these two random walks has to travel a distance of order n1/2

in some direction in order to escape A(n). A quadratic running time then follows
immediately from the well-known fact that a one-dimensional random walk of length
` in expectation only deviates Θ(`1/2) hops from its initial position.

The computational complexity of determining A(n) was studied by Moore and
Machta [84]. Among other results they showed that the simulation of IDLA (given a
string of random bits) is complete for the class CC (even in the case of one particle),
which is the subset of P characterized by circuits that are composed of comparator
gates only. Moreover in [85], Friedrich and Levine give an algorithm that samples
A(n). They do not provide an analysis of the complexity (and it seems a quite
difficult task to do so), but their experiments indicate that it scales like O(n3/2),
while they inherently use space Ω(n).

Our Results We develop time and space-efficient algorithms for determining the
set A(n). We present the first algorithm that provably improves upon the “naive”
step-by-step simulation of the particles. Our best algorithm yields the following
result. It works on the Real RAM as well as the Word RAM.

Theorem 1.20. IDLA can be simulated in O(n log2 n) time and O(n1/2 log n) space,
both in expectation and with high probability.

Our algorithm simulates all particles consecutively. It crucially uses that the
shape of A(n) is almost a perfect circle, as discussed above. Let the in-circle be the
largest circle centered at the origin that contains only occupied grid points. As long
as the current particle n + 1 is within the in-circle of A(n), the random walk will
typically stay in A(n) for many steps. More precisely, if the current distance of the
particle to the in-circle of A(n) is d, then typically in the next Θ(d2) random walk
steps the particle will stay in A(n). We want to utilize this fact by combining many
steps to a single jump of the particle, without simulating all of these steps explicitly.
Building on this, we use drift analysis to show that typically O(log n) such jumps
are sufficient to simulate one particle. Intuitively, such a combination of steps to a
jump simply amounts to sampling the position of the particle after T ≈ d2 steps,
which can be done by sampling two binomial random variables Bin(T, 1

2). However,
there is an obstacle to this simple intuition: Within Θ(d2) steps we leave A(n) with
positive probability, so simply jumping to the outcome of Θ(d2) steps necessarily
introduces an error. As we want to design an exact sampling algorithm, we have to
overcome this hurdle.

We discuss different jump procedures to tackle this problem. The most elementary
jump procedure Jtime simply jumps to the outcome of d random walk steps (instead
of d2). As the distance to the in-circle is d, we cannot leave A(n) in d steps and we
thus get an exact sampling algorithm. However, the (expected) jumping distance of
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Jtime is small, so that we need many jumps to finally leave A(n). For the second
approach Jshape we take a ball S of radius d around the current particle position
and directly sample the position where the particle first leaves S. This yields a large
jumping distance, but it is computationally expensive, as the leaving distribution of
a ball is not sufficiently simple. Finally, we balance these two approaches to get long
jumps that can be efficiently computed. For this we either do d2/ log n steps of the
random walk or go to the position where the particle first leaves the ball S, whichever
happens first. With high probability this jump will end somewhere inside S after
d2/ log n steps. Thus, we may sample the outcome of d2/ log n steps, conditioned
on falling into S, and return this as the outcome of the jump. Of course, this does
not yet sample from the correct distribution, but we can patch this algorithm by
running, with a small probability pfail, a slow algorithm that corrects the probability
of unlikely events. Overall, this works in constant time in expectation and with high
probability and has a large jumping distance.

40



2Succinct Sampling

This chapter is based on [18]. Approximately, it can be split into two parts: Kasper
Green Larsen contributed the lower bounds and I contributed the novel data struc-
tures.

[18] K. Bringmann and K. G. Larsen. “Succinct Sampling from Discrete Distri-
butions.” In: Proc. 45th Annual ACM Symposium on Symposium on Theory
of Computing (STOC’13). 2013, 775–782.

In this chapter, we study ProportionalSampling from the perspective of suc-
cinct data structures. We show that the space usage of Walker’s alias method is
sub-optimal. In fact, we present optimal systematic and non-systematic succinct
data structures. We first restate the results of Section 1.5 that we will prove in this
chapter.

Theorem 1.1. For any 1 6 r 6 n we can build a systematic data structure for
ProportionalSampling with r+O(w) bits of redundancy, O(n/r) expected query
time, and O(n) preprocessing time.

Theorem 1.2. Consider any systematic data structure for sampling from a dis-
crete distribution, having redundancy r and supporting ProportionalSampling
in expected query time t. Then r · t = Ω(n).

Theorem 1.3. Any non-systematic data structure for ProportionalSampling
must use at least nw bits of space for any 1 6 w = o(n) and sufficiently large n.

Theorem 1.4. In the non-systematic case we can build a data structure for Pro-
portionalSampling that needs nw+1 bits of space, O(1) expected query time, and
O(n) preprocessing time.

This chapter is structured as follows. In Section 2.1, we present our systematic
data structures. In Section 2.2, we then demonstrate that it is possible to do much
better in the non-systematic case. In Section 2.3, we complement our systematic
data structures with a matching lower bound. Finally, in Section 2.4, we prove a
lower bound on the amount of bits needed to represent an input distribution.
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2.1. Sampling with Read-Only Input

In this section, we present a data structure that supports sampling from a discrete
distribution if the input is read-only, i.e., in the systematic case. We achieve any
desired redundancy of r+O(w) bits with expected query time O(n/r) and optimal
preprocessing time O(n), proving Theorem 1.1.

First, in the next section, we present a novel and practical data structure that uses
O(n log n + w) redundant bits, O(1) expected query time, and O(n) preprocessing
time. Then, in Section 2.1.2, we modify it to use only O(n+ w) redundant bits. In
Section 2.1.3, we show how to get any smaller redundancy while increasing query
time.

2.1.1. Redundancy of O(n logn+w)

Preprocessing We compute S =
∑

i pi and store it using O(w) bits. Additionally,
we store a sorted array A that contains numbers in [n] = {1, . . . , n}, specifically, A
contains, for each index i, the number i exactly bnpi/Sc + 1 times. This finishes
space usage.

Observe that A has size at most 2n, since we have

|A| =
∑
i

(⌊n pi
S

⌋
+ 1
)
6
∑
i

(n pi
S

+ 1
)

=
nS

S
+ n = 2n.

Moreover, A has entries in [n], so that we can store it using O(n log n) bits. Note
that A can easily be constructed in time O(n).

Sampling Intuitively, if we return the value A[k] for a uniform random k ∈
{1, . . . , |A|}, then this is close to sampling from the input distribution. We can
make this into an exact sampling method with a slight modification, using the re-
jection method as follows.

1. Pick a uniformly random k ∈ {1, . . . , |A|}.

2. Rejection: If k = 1 or A[k − 1] 6= A[k] then
with probability 1− frac(n pA[k]/S) goto step 1.

3. Return A[k].

Here, frac(x) = x − bxc is the fractional part of x. Note that in step 2 we check
whether k is the first occurrence of A[k] in A. If so, with some probability we throw
away k and go to step 1 again, i.e., there is an implicit loop.

Let i ∈ [n]. What is the probability qi of returning i in the first iteration of the
implicit loop? There are bn pi/Sc+1 occurrences of i in A. If we randomly pick k to
be the first occurrence of i in A, then we return i only with probability frac(n pi/S)
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and reject it otherwise. If we pick k to be any other occurrence of i, then we return
i right away. Thus, we have

qi =
bn pi/Sc+ frac(n pi/S)

|A|
=

n pi
S|A|

.

Let Q =
∑

j qj denote the probability of returning anything in the first iteration of
the implicit loop, i.e., the probability of leaving the loop in the first iteration. The
total probability of sampling i with the above method is∑

t>0

qi(1−Q)t =
n pi
S|A|

∑
t>0

(1−Q)t.

On the right hand side, the only term dependent on i is pi. Hence, the probability
of sampling i is proportional to pi. Since we only sample numbers from [n], this
implies that the probability of sampling i is pi/S, proving that the above method is
indeed an exact sampling algorithm.

To show that it is also fast, note that the probability of leaving the loop in the
first iteration is

Q =
∑
j

qj =
∑
j

n pj
S|A|

=
n

|A|
>

1

2
.

Hence, the expected number of iterations is constant. In every iteration we sample
uniform numbers in [n] and [S], which can be done in O(1) expected time, and, in
particular, in time independent of the sampled number. Thus, the above sampling
method needs in total O(1) expected time.

2.1.2. Redundancy of O(n+w)

A simple encoding of A as in the last section is very wasteful. We show how to reduce
the redundancy to O(n+w) bits. For this, we construct a bit array B of length |A|.
The entry B[k] is 1 if k is the first occurrence of A[k] in A, and 0 otherwise. We store
B in a data structure supporting Rank queries, where RankB(k) :=

∑k
j=1B[k]

(with summation over the integers). Using, e.g., [86], Rank queries can be answered
in constant time using a data structure of size (1 + o(1))|B| = O(n) bits.

Observe that we have RankB(k) = A[k]. Hence, using the Rank data structure
for B, we can simulate the query algorithm from the last section and whenever it
reads an array entry A[k] we instead query RankB(k). Since we only need to store
S and the Rank data structure for B, this reduces the redundancy to O(n + w)
bits.

2.1.3. Arbitrary Redundancy

We show that we can further reduce the redundancy to O(n/k+w) bits at the cost
of increasing the query time to O(k) for any integer k > 1. Choosing k = cn/r for
a sufficiently large constant c > 0 implies Theorem 1.1.
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We will partition [n] into blocks of k elements. First, we show how to sample the
block that contains the final sample. Then we show how to sample inside a block.

For ease of readability, assume that k divides n. On input p1, . . . , pn, consider the
auxiliary instance q1, . . . , qm, where m = n/k and qi =

∑k
j=1 pik+j . We first show

how to sample with respect to q1, . . . , qm. For this we make use of the data structure
from the last section. Since we are not given input q1, . . . , qm, but p1, . . . , pn, we
have to simulate this data structure and whenever it reads an input number qi, we
compute qi on the fly from the input p1, . . . , pn. This incurs an additional factor of
k on both preprocessing and query time, totaling in O(mk) = O(n) preprocessing
and O(k) query time. Moreover, we need only O(m + w) = O(n/k + w) bits of
redundancy.

Next, given i as sampled above, we show how to sample j ∈ {ik+1, . . . , (i+1)k} =:
J with probability pj/qi. To do so, we use a simple linear time sampling algorithm
(see, e.g., [52, p. 120]): First we compute qi =

∑
j∈J pj . Then we sample a uniform

random integer R ∈ {1, . . . , qi}. Finally, via linear search we determine the smallest
index ` such that

∑`
j=1 pik+j > R and return ik + `. This needs O(k) query time,

and no preprocessing or redundancy.

Putting both parts together, for any index j there is a block i with j ∈ {ik +
1, . . . , (i+1)k}. We have probability qi of sampling i in the first part and probability
pj/qi of sampling j in the second part. In total, this yields a probability of pj for
sampling j, so we indeed described an exact sampling algorithm. We get the desired
preprocessing time O(n), expected query time O(k), and redundancy O(n/k + w).

2.2. One Additional Bit

In this section, we show that there is a data structure for sampling from a discrete
distribution with redundancy 1 in the non-systematic case where the input is not
read-only, proving Theorem 1.4. More precisely, we construct a data structure using
nw+ 1 bits of space in total that supports the operation ProportionalSampling
in O(1) expected time and can be built in O(n) preprocessing time. Since we prove
in Section 2.4 that it takes at least nw bits to describe the input, this corresponds
to a redundancy of only 1 bit.

The First Bit Let c be a sufficiently large constant integer to be fixed later. We
start the description of the data structure by explaining the usage of the first bit of
memory: In this bit we store whether we have∑

i

pi > 2w−c−1n. (*)

Note that this can be computed in O(n) time preprocessing. The use of the rest of
the bits depends on this first bit; we describe both cases in the next two paragraphs.
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Large Sum Assume that (*) holds, i.e., the first bit that we have stored is 1.
Then the bound pi 6 2w for all i is on average a tight upper bound, which is the
standard situation to apply the rejection method.

In this case, in the remaining nw bits we simply store the plain input p1, . . . , pn.
This completes the description of space usage and preprocessing.

To perform a ProportionalSampling operation we proceed as follows.

1. Pick a uniformly random number i ∈ [n].

2. Rejection: With probability 1− pi/2w goto 1.

3. Return i.

The analysis of this sampling method is similar to the analysis in Section 2.1.1.
Note that in step 2 with some probability we go back to step 1, so there is an implicit
loop. The probability of returning i ∈ [n] in the first iteration of this loop is pi

2wn . Let
Q denote the probability of returning anything in the first iteration of the implicit
loop, i.e., the probability of leaving the loop in the first iteration. Then the total
probability of sampling i with above method is∑

t>0

pi
2wn

(1−Q)t.

Note that here the only term dependent on i is pi. Hence, the probability of sampling
i is proportional to pi, so it has to be pi/S, and we indeed have an exact sampling
method.

To bound the method’s expected running time, consider the probability Q in more
detail. We have

Q =
∑
i

pi
2wn

(∗)
> 2−c−1 = Ω(1).

Hence, the expected number of iterations of the implicit loop is bounded by a con-
stant. In every iteration we sample a random number in [n] and in [2w], which can be
done in O(1) expected time, and, in particular, in time independent of the sampled
number. Hence, in total the above method uses O(1) expected time.

Small Sum Assume that we do not have (*), i.e.,
∑

i pi < 2w−c−1n and the first bit
is 0. The intuition of how to proceed is as follows. Conditioned on

∑
i pi < 2w−c−1n,

the entropy of the input is much less than nw. This allows one to compress the input
to nw −Ω(n) bits, while still guaranteeing efficient access to each input number pi.
Now we use the algorithm of Section 2.1, which generates O(n) redundant bits and
performs a ProportionalSampling operation in O(1) expected time, if it is given
access to the input numbers. The total space usage of writing down the compressed
input and the redundant bits is then nw − Ω(n) + O(n) bits, which is at most nw
bits after adjusting constants.

In the following, we describe the details of the compression step. Let I := {i ∈
[n] | pi > 2w−c}. We store p1, . . . , pn in order, using w bits if i ∈ I, and only
the w − c least significant bits otherwise. This yields a bit string B. In order to
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read a value pi from B we need to know where its encoding begins in B, and how
many bits it uses. We achieve this by storing (the characteristic bit vector of) I in
a data structure supporting Rank queries in O(1) query time using O(n) bits of
space (using, e.g., [86]). Using this data, any value pi can be read in constant time:
Given i, we compute k = RankI(i − 1). Then there are k input numbers encoded
with w bits and i−1−k input numbers encoded with w−c bits preceding pi. Hence,
the encoding of pi starts at position kw + (i− 1− k)(w − c). Moreover, the length
of its encoding is w, if i ∈ I (if and only if RankI(i) > RankI(i − 1)), and w − c,
otherwise.

Since this compression of the input allows us to read any input value in constant
time, we can simulate the algorithm from Section 2.1 on the compressed input,
decoding pi whenever the algorithm reads it. This produces additional data of O(n)
bits and allows us to sample from the input distribution in O(1) expected time.

In total the compressed input and the auxiliary data need nw− (n− |I|)c+O(n)
bits. Since we are in the case where

∑
i pi < 2w−c−1n and every i ∈ I has pi > 2w−c,

we can bound |I| 6 n/2. Thus, the total number of bits is at most nw− n
2 c+O(n).

For sufficiently large c, this is less than nw.
In both cases we need O(n) preprocessing, O(1) query time, and at most nw + 1

bits of storage, which finishes the proof of Theorem 1.4.

2.3. Lower Bounds for Read-Only Inputs

In this section, we show a tight lower bound on the trade-off between redundancy and
expected query time for read-only data structures for sampling from a discrete dis-
tribution, proving Theorem 1.2. Throughout the section, we assume the availability
of such a data structure using r redundant bits and supporting Proportional-
Sampling in expected time t.

Hard Distribution For the proof, we consider a hard distribution over input
numbers. Let B > 1 be a parameter to be fixed later and assume B divides n. We
draw a random input X = X1, . . . , Xn in the following manner: Partition the indices
{1, . . . , n} into B consecutive groups of n/B indices each. For each group, select a
uniform random index j in the group and let the corresponding input number Xj

have the value 1. For all other indices in the group, we let the corresponding input
number store the value 0. This constitutes the hard input distribution.

As a technical remark regarding our input distribution, note that the previous
work on systematic Rank and Select structures allows access to multiple input
elements by assuming the input is packed in machine words. Even though our hard
distribution uses only 0’s and 1’s, we assume that the data structure may only access
a single input number in one read operation. We note that this is a completely valid
assumption, since we could just replace all 1’s with 2w− 1 (or some other very large
number) to enforce this restriction. Also, assuming that only one input number
can be accessed with one read operation is more appropriate for situations in which
the input numbers are given implicitly, i.e., have to be computed when requested.
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Finally, we note that the tight lower bound for range minimum by Brodal et al. [57]
also assumes that only one input element may be read in one operation.

For an intuition on why the above input distribution is hard, think of B as being
a sufficiently large constant times r. Running ProportionalSampling on such an
input must return an index j for which Xj = 1. Furthermore, the index returned
is uniformly random among the indices having the value 1. Thus, the Proportio-
nalSampling operation must find the location of a 1 inside a random block. Since
there are so few redundant bits, we have less than 1 bit of information about each
block on average, thus the only way to locate a 1 inside a block is to perform a linear
scan, costing Ω(n/B) = Ω(n/r) time. We prove that this intuition is correct in the
rest of the section.

Note that H(X) = B log(n/B) bits, where H(·) denotes binary Shannon entropy.
This is easily seen since X contains B 1’s, each uniformly distributed inside a range
of n/B indices.

An Encoding Proof We prove our lower bound using an encoding argument.
More specifically, we show that if a sampling data structures exists that is too
efficient in terms of redundancy r and expected query time t, then we can use this
data structure to encode (and decode) the random input X in less than H(X) bits
in expectation. This is an information theoretic contradiction.

The basic idea in the encoding procedure is to implement the claimed data struc-
ture on the input X and then run ProportionalSampling for k = B/2 times.
We will then write down the input numbers Xj that the data structure reads during
these executions along with the redundant bits. This will (essentially) be enough to
recover the entire input X and thus we derive a contradiction if these numbers Xj

and the redundant bits can be described in much less than H(X) bits. Since the
number of read operations depends on the query time, we derive lower bounds on
the trade-off between the redundant bits and the query time.

As a last technical detail before we present the encoding and decoding procedures,
we assume that on each invocation of ProportionalSampling, the sampling data
structure is given access to a finite stream of uniform random bits that it uses to
determine the index to return. Thus, if we fix the stream of random bits given to the
data structure, the latter becomes completely deterministic and always returns the
same index on the same input. The encoding and decoding procedures will share
such random streams, thus they both know what “randomness” was used by the
data structure when performing the k ProportionalSampling operations. More
formally, let R1, . . . , Rk be k finite sequences of uniform random bits. Both the
encoding and decoding procedure are given access to these sequences. Since X is
independent of R1, . . . , Rk, we have H(X | R1 · · ·Rk) = H(X), i.e., we still derive
a contradiction if the encoding uses less than H(X) bits in expectation when the
encoder and decoder share R1, . . . , Rk. We are finally ready to present the encoding
procedure.

Encoding Procedure Upon receiving the input numbers X = X1, . . . , Xn, we
first implement the claimed data structure on X. Then we run Proportional-

47



Sampling for k times, using Ri as the source of randomness in the i-th invocation.
We now do the following:

1. We write down the r redundant bits stored by the data structure on input X.

2. Now construct an initially empty set of indices C and an initially empty string
z. For i = 1, . . . , k we examine the input numbers Xj read during the i-th
ProportionalSampling operation. For each such number Xj , in the order
in which they are read, we first check whether j ∈ C. If not, we add j to C
and append the value Xj (just a bit) to z. Otherwise, i.e., if j is already in C,
we simply continue with the next number read. For each i = 1, . . . , k, if the
query algorithm is about to append the (4t+ 1)’st bit to z, we terminate the
procedure for that i and continue with the next ProportionalSampling.
Also, if the i-th ProportionalSampling operation terminates before 4t bits
have been appended to z, we pad with 0s such that a total of 4t bits are
always appended to z. Letting Y denote the number of 1s in z, the next part
of the encoding consists of logB bits specifying Y , followed by log

(
4tk
Y

)
bits

specifying z (there are
(

4tk
Y

)
strings of length |z| = 4tk having Y 1s).

We note that the reason why we maintain C and only encode each Xj at most
once, is that this forces Y to be proportional to the number of distinct 1s that
we have seen. Since each distinct 1 reveals much information about X, this
will eventually give our contradiction.

3. Finally, collect the set D containing all indices i for which Xi = 1 and where
either i ∈ C (it was read by one of the ProportionalSampling queries), or
the corresponding index was returned as the result of one of the Proportio-
nalSampling queries that terminated without appending more than 4t bits
to z during step 2 (the data structure might return an index without reading
the corresponding input number). For each j = 0, . . . , B − 1 (in this order),
let ij be the index of the 1 in X which is stored in the j-th group (numbers
Xj(n/B), . . . , X(j+1)(n/B)−1). If ij is not contained in D, we write down the
offset of ij within its group, i.e. we write down the value ij − j(n/B). Since
|D| > Y , this part of the encoding costs at most (B − Y ) log(n/B) bits.

Before analyzing the expected size of the encoding, we present the decoding pro-
cedure:

Decoding Procedure Recall we have access to the random streams R1, . . . , Rk
during the decoding, i.e., we conditioned on these variables. To recover X from the
above encoding, we now do the following:

1. First initialize an empty set C, which eventually will contain pairs (i,∆i),
where i is an index into X = X1, . . . , Xn and ∆i is the value stored at that
index, i.e. ∆i = Xi. Now for i = 1, . . . , k, start running the query procedure
for ProportionalSampling using Ri as the source of randomness. While
running the i-th ProportionalSampling, we maintain a pointer gi into the
string z which was constructed in step 2 of the encoding procedure. When
starting the i-th ProportionalSampling, gi points to the first bit that was
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appended by the i-th ProportionalSampling during step 2 of the encoding
procedure. This bit is exactly the ((i− 1)4t)-th bit of z (counting from 0).

When running the i-th ProportionalSampling operation, the query pro-
cedure starts by requesting either some of the redundant bits or some input
number. If it requests some of the redundant bits, we have those bits im-
mediately from step 1 of the encoding procedure and can continue with the
next step of the ProportionalSampling procedure. If on the other hand
it requests the number Xj , we first check whether there is a pair (j,∆j) in C
for some ∆j . If so, ∆j equals Xj and we can continue the procedure. If not,
we know from step 2 of the encoding procedure that the bit pointed to by gi
stores the value Xj and we can again continue the procedure after increment-
ing gi ← gi + 1 and adding the pair (j,Xj) to C. If at any step we are about
to increment gi for the (4t+ 1)’st time, we simply abandon the i-th Propor-
tionalSampling and continue with the next. Clearly these k invocations of
ProportionalSampling allow us to recover the set D.

2. From the set D recovered above, we can deduce the groups in X for which the
index of the corresponding 1 is not in D. It finally follows that we can recover
X from D and the bits written down during step 3 of the encoding procedure.

What remains is to analyze the size of the encoding and derive the lower bound.

Analysis The number of bits in the encoding, denoted by K, is precisely

K = r + logB + log

(
4tk

Y

)
+ (B − Y ) log(n/B)

6 r + logB + Y log(4etk/Y ) + (B − Y ) log(n/B)

= H(X) + r + logB − Y log(nY/4etkB)

= H(X) + r + logB − Y log(nY/2etB2).

The only random variable in the above is Y and since

Y log(nY/2etB2) = Y log Y + Y log(n/2etB2)

is convex, we get from Jensen’s inequality that

E[K] 6 H(X) + r + logB − E[Y ] log(nE[Y ]/2etB2).

Now observe that each of the k = B/2 calls to ProportionalSampling returns
an element not returned in any of the other ProportionalSampling operations
with probability at least 1/2. Furthermore, we get from Markov’s inequality that
each ProportionalSampling terminates within the first 4t steps with probability
at least 3/4. From a union bound, we conclude E[Y ] > B/8. Inserting this in the
above, we have

E[K] 6 H(X) + r + logB −B log(n/16etB)/8.
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Choosing B = 8r, we get (using r + log(8r) 6 4r):

E[K] 6 H(X) + 4r − r log(n/25etr),

from which we conclude that the claimed data structure must satisfy

4r > r log(n/25etr)⇒
4 + log(25e) > log(n/tr)⇒

tr = Ω(n).

This completes the proof of Theorem 1.2.

2.4. Space Lower Bound

In this section, we show that the information theoretic minimum number of bits
needed to sample from a discrete distribution is nw bits for any 1 6 w = o(n) and n
sufficiently large, proving Theorem 1.3. For this, observe that two inputs p1, . . . , pn
and p̂1, . . . , p̂n represent the same probability distribution only if there exists a value
α > 0 such that pi = αp̂i for all 1 6 i 6 n. We want to show that there are not
too many pairs of inputs for which this is true. To prove this, define an input set
of w-bit integers p1, . . . , pn to be irreducible if for all 0 < α < 1, there is at least
one i ∈ {1, . . . , n} for which αpi is not an integer. Clearly, any two distinct and
irreducible inputs represent two distinct probability distributions. First, we prove
that the following condition is sufficient to guarantee irreducibility:

Lemma 2.1. An input set of w-bit integers p1, . . . , pn is irreducible if there are at
least two distinct primes among p1, . . . , pn.

Proof. Assume pi = q and pj = q′ for some i 6= j and some primes q 6= q′. Assume
also that p1, . . . , pn is not irreducible. This implies the existence of a value 0 < α < 1
such that αq = c and αq′ = c′ for some integers c, c′ > 1. Now since α < 1, we have
c < q and hence q is not a prime factor in c. But c′ = αq′ = cq′/q and it follows that
q is not a prime factor in cq′, thus c′ cannot be integer, i.e., a contradiction.

For the remaining part of the proof, consider drawing each pi as a uniform random
integer in [2w]. The probability that a particular pi is prime is Ω(1/w). Thus,
for 2 6 w = o(n) and any sufficiently large n, the number of distinct primes in
the randomly chosen p1, . . . , pn is at least two with high probability, certainly with
probability at least 3/4. Since we chose p1, . . . , pn uniformly at random, we conclude
that at least (3/4)2nw of the 2nw possible inputs are irreducible. Therefore, any
sampling data structure must use at least

dlog ((3/4)2nw)e = nw

bits of space. In the case w = 1, the result follows immediately.
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3Sorted Input and Subset
Sampling

This chapter is based on [21]. I contributed more than 50% at all stages and to
all parts of this paper. Moreover, I contributed the substantial improvements over
the conference version that are incorporated in this chapter.

[21] K. Bringmann and K. Panagiotou. “Efficient Sampling Methods for Discrete
Distributions.” In: Proc. 39th International Colloquium on Automata, Lan-
guages, and Programming (ICALP’12). Vol. 7391. LNCS. 2012, 133–144.

In this chapter we consider the problems ProportionalSampling and Subset-
Sampling on sorted and unsorted input sequences, i.e., the problem variants Sor-
tedProportionalSampling, UnsortedProportionalSampling, SortedSub-
setSampling, as well as UnsortedSubsetSampling. Recall that we defined
SubsetSampling as follows. On input p = (p1, . . . , pn) we consider n indepen-
dent events with indicator random variables X1, . . . , Xn, and Pr[Xi = 1] = pi. For
shortcut we write µ = µp =

∑n
i=1 pi = E

[∑n
i=1Xi

]
. We want to sample the random

variable X = Xp = {i ∈ [n] | Xi = 1}, i.e., the set of all events that occurred; in
particular, for any S ⊆ [n] we have

Pr[X = S] =

(∏
i∈S

pi

)
·
( ∏
i∈[n]\S

(1− pi)
)
.

We restate our results from Section 1.6 that we will prove in this chapter.

Theorem 1.6. Let β ∈ {2, . . . , n}. SortedProportionalSampling can be solved
in preprocessing time O(logβ n) and expected query time

tβq (n, µ) = O
(

min
{
β,

log n

log log n

})
.

This is optimal, as for some constant ε > 0, SortedProportionalSampling has
no data structure with preprocessing time ε logβ(n) and expected query time ε tβq (n, µ)
for any µ = µ(n).

Theorem 1.7. UnsortedProportionalSampling can be solved in preprocessing
time O(n) and query time O(1). This is optimal, as for some constant ε > 0,
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UnsortedProportionalSampling has no data structure with preprocessing time
εn and expected query time εn for any µ = µ(n).

Note that the upper bound of Theorem 1.7 already follows from Walker’s alias
method. We prove the matching lower bound.

Theorem 1.9. Let β ∈ {2, . . . , n}. SortedSubsetSampling can be solved in
preprocessing time O(logβ n) and expected query time

tβq (n, µ) =


O(µ), if µ > 1

2 log n,

O(1 + βµ), if µ < 1
β logβ n,

O
( logn

log( logn
µ

)

)
, otherwise.

In particular, the query time is always bounded by O(1 + βµ). This is optimal,
as for some constant ε > 0, SortedSubsetSampling has no data structure with
preprocessing time ε logβ n and expected query time ε tβq (n, µ) for any µ = µ(n).

Theorem 1.10. UnsortedSubsetSampling can be solved in preprocessing time
O(n) and expected query time O(1+µ). This is optimal, as for some constant ε > 0,
UnsortedSubsetSampling has no data structure with preprocessing time εn and
expected query time εn for any µ = µ(n).

This chapter is structured as follows. In Section 3.1 we present our new algo-
rithms, proving (the upper bounds of) Theorem 1.6 in Section 3.1.1 and Theo-
rems 1.9 and 1.10 in Section 3.1.2. In Section 3.2 we present the lower bounds,
proving (the lower bounds of) Theorems 1.7 and 1.10 in Section 3.2.1, Theorem 1.6
in Section 3.2.2, and Theorem 1.9 in Section 3.2.3. We present our reduction from
ProportionalSampling to SubsetSampling in Section 3.3. We discuss relax-
ations to our input and machine model and possible extensions in Section 3.4.

3.1. Upper Bounds

3.1.1. A Simple Algorithm for Sorted Proportional Sampling

In this section, we prove the upper bound of Theorem 1.6 by presenting an algo-
rithm for SortedProportionalSampling with O(β) expected query time after
O(logβ n) preprocessing, where β ∈ {2, . . . , n} is a parameter.

We note that one may reduce the query time to O
(

min
{
β, logn

log logn

})
by adapting

the query algorithm as follows. If β > logn
log logn then we rerun the preprocessing with

β set to β̃ := logn
log logn . Then we run the query algorithm (with respect to β̃). This

takes total expected time O(logβ̃ n+ β̃) = O
( logn

log logn

)
. Hence, we only have to show

a query time of O(β).
Let p1, . . . , pn be an input sequence to SortedProportionalSampling. Con-

sider the blocks Bk := {i ∈ [n] | βk 6 i < βk+1} with 0 6 k 6 L := blogβ nc. Note
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that B0, . . . , BL partition [n] = {1, . . . , n}. For i ∈ Bk we set pi := pβk , which is an
upper bound for pi. Let µ :=

∑
i pi and µ :=

∑
i pi. We also set for 0 6 k 6 L

qk :=
∑
i∈Bk

pi = |Bk| · pβk =
(
min(βk+1, n+ 1)− βk

)
· pβk .

For preprocessing, we run the preprocessing of UnsortedProportionalSamp-
ling on q1, . . . , qL. This takes time O(L) = O(logβ n) using Theorem 1.7, since qk
can be evaluated in constant time.

Our query algorithm consists of two steps. First, we sample an index i with
distribution p1, . . . , pn. To this end, we sample a block Bk proportional to the dis-
tribution q1, . . . , qL and then sample an index i ∈ Bk uniformly at random. Second,
with probability 1 − pi/pi we reject i and repeat the whole process. Otherwise we
return i. This culminates into Algorithm 1.

Algorithm 1 SortedProportionalSampling

Input: p1 > . . . > pn > 0 and parameter β ∈ {2, . . . , n}

Preprocessing:
L := blogβ nc
qk := (min{βk+1, n+ 1} − βk) · pβk
Run preprocessing of UnsortedProportionalSampling(q0, . . . , qL)

Querying:
Repeat

k := UnsortedProportionalSampling(q1, . . . , qL)
pick i uniformly at random in {βk, . . . ,min{βk+1 − 1, n}}

Break with probability pi/pβk
Return i

Note that we pick index i ∈ Bk with probability proportional to pi and do not
reject it with probability pi/pi. Thus, the probability of returning a particular index
i is proportional to pi · pi/pi = pi and we obtained an exact sampling algorithm.
Moreover, in any iteration of the loop the probability r of not rejecting, i.e., of
leaving the loop, is

r =
1

µ

n∑
i=1

pi · pi/pi.

In this equation, note the first step of sampling with respect to p1, . . . , pn ( 1
µ

∑n
i=1 pi)

and the second step of rejection (pi/pi). Clearly, this simplifies to r = µ/µ. The
following lemma shows that µ 6 β · µ, implying r > 1/β. Hence, the expected
number of iterations of the loop is O(β), and in total querying takes expected time
O(β).

Lemma 3.1. We have µ 6 µ 6 β · µ.
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Proof. The first inequality follows from pi 6 pi. Note that for i ∈ Bk we have
di/βe 6 βk. Thus, pdi/βe > pβk . Hence,

µ =

n∑
i=1

pi 6
n∑
i=1

pdi/βe 6 β

n∑
i=1

pi = β · µ.

3.1.2. Subset Sampling

In this section we consider SortedSubsetSampling and UnsortedSubsetSamp-
ling and prove the upper bounds of Theorems 1.9 and 1.10. An interesting interplay
between both of these problem variants will be revealed on the way.

We begin with an algorithm for unsorted probabilities that has a quite large
preprocessing time, but will be used as a base case later. The algorithm uses Theo-
rem 1.7.

Lemma 3.2. UnsortedSubsetSampling can be solved in preprocessing time O(n2)
and expected query time O(1 + µ).

Proof. For i ∈ [n] let us denote by Si the smallest sampled element that is at least
i, or ∞, if no such element is sampled. Then Si is a random variable such that

Pr[Si = j] = pj
∏
i6k<j

(1− pk) and Pr[Si =∞] =
∏

i6k6n

(1− pk).

All these probabilities can be computed on a Real RAM in time O(n) for any i,
i.e., in time O(n2) for all i. After having computed the distribution of the Si’s,
we execute, for each i ∈ [n], the preprocessing of Theorem 1.7, which allows us to
quickly sample Si later on. This preprocessing takes time O(n2).

For querying, we start at i = 1 and iteratively sample the smallest element j > i
(i.e., sample Si), output j, and start over with i = j + 1. This is done until j =∞
or i = n + 1. Note that any sample of Si can be computed in O(1) time with
our preprocessing, so that sampling S ⊆ [n] will be done in time O(1 + |S|). The
expected running time is, thus, O(1 + µ).

After having established this base case, we turn towards reductions between Sor-
tedSubsetSampling and UnsortedSubsetSampling. First, we give an algo-
rithm for UnsortedSubsetSampling that reduces the problem to SortedSub-
setSampling. For this, we roughly sort the probabilities so that we get good upper
bounds for each probability. Then these upper bounds will be a sorted instance. Af-
ter querying from this sorted instance, we use rejection to sample with the original
probabilities.

Lemma 3.3. Assume that SortedSubsetSampling can be solved in preprocess-
ing time tp(n, µ) and expected query time tq(n, µ), where tp and tq are monotonically
increasing in n and µ. Then UnsortedSubsetSampling can be solved in prepro-
cessing time O(n+ tp(n, 2µ+ 1)) and expected query time O(1 + µ+ tq(n, 2µ+ 1)).
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Proof. Let p = (p1, . . . , pn) be an input sequence to UnsortedSubsetSampling.
For preprocessing, we permute the input p so that it is approximately sorted, by
putting it into buckets Uk := {i ∈ [n] | 2−k > pi > 2−k−1}, for k ∈ {0, 1, . . . , L− 1},
and UL := {i ∈ [n] | 2−L > pi}, where L = dlog ne. For each i ∈ Uk we set
pi := 2−k, which is an upper bound on pi. We sort the probabilities pi, i ∈ [n],
descendingly using bucket sort with the buckets Uk, yielding p′1 > . . . > p′n. In
this process we store the original index ind(i) corresponding to p′i, so that we can
find pind(i) corresponding to p′i in constant time. Then we run the preprocessing of
SortedSubsetSampling on p′1, . . . , p

′
n. Note that

µ :=

n∑
i=1

p′i =

n∑
i=1

pi 6
n∑
i=1

max

{
2pi,

1

n

}
6 2µ+ 1.

Thus, the total preprocessing time is bounded by

O(n) + tp(n, µ) = O(n+ tp(n, 2µ+ 1)),

establishing the first claim.
For querying, we query p′1, . . . , p

′
n using SortedSubsetSampling, yielding S′ ⊆

[n]. We compute S := {ind(i) | i ∈ S′}. Each i ∈ S was sampled with probability
pi > pi. We use rejection to get this probability down to pi. For this, we generate
for each i ∈ S a uniformly random number r ∈ [0, 1] and check whether it is smaller
than or equal to pi/pi. If this is not the case, we delete i from S. Note that we
have thus sampled i with probability pi, and all elements are sampled independently,
so S has the desired distribution. Moreover, since the expected size of S′ is µ, the
expected query time is bounded by

tq(n, µ) +O(1 + E[|S′|]) = O(1 + µ+ tq(n, 2µ+ 1)),

and the second claim is also established.

We also give a reduction in the other direction, solving SortedSubsetSampling
by UnsortedSubsetSampling.

Lemma 3.4. Let β ∈ {2, . . . , n}. Assume that UnsortedSubsetSampling can be
solved in preprocessing time tp(n, µ) and expected query time tq(n, µ), where tp and
tq are monotonically increasing in n and µ. Then SortedSubsetSampling can be
solved in preprocessing time O(logβ n + tp(1 + logβ n, βµ)) and expected query time
O(1 + βµ+ tq(1 + logβ n, βµ)). More precisely, our preprocessing computes a value
µ with µ 6 µ 6 βµ and the expected query time is O(1 + µ+ tq(1 + logβ n, µ)).

Proof. Let p1, . . . , pn be an input sequence to SortedSubsetSampling. As in
Section 3.1.1, we consider blocks Bk = {i ∈ [n] | βk 6 i < βk+1}, with k ∈ {0, . . . , L}
and L := blogβ nc, and let pi := pβk for i ∈ Bk. We will first sample with respect to
the probabilities pi – call the sampled elements potential – and then use rejection.
For this, let Xk be an indicator random variable for the event that we sample at
least one potential element in Bk. Then

qk := Pr[Xk = 1] = 1− (1− pβk)|Bk|.
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Moreover, let Yk be a random variable for the first potential element in block Bk
minus βk. Let Yk =∞, if no element in Bk is sampled as a potential element. Then
Pr[Yk = i] = pβk(1− pβk)i for i ∈ {0, . . . , |Bk| − 1}, and Pr[Yk =∞] = Pr[Xk = 0] =
1− qk. We calculate

Pr[Yk = i | Xk = 1] =
Pr[Yk = i]

Pr[Xk = 1]
=
pβk

qk
(1− pβk)i, i ∈ {0, . . . , |Bk| − 1}.

Since this is a (truncated) geometric distribution, we can sample from it in constant
time on the Real RAM, see Section 1.7.2.

For preprocessing, we first compute the probabilities qk, k ∈ {0, . . . , L}. This
can be done in time O(L) = O(logβ n) (as ab = exp(b log a) can be computed in
constant time on a Real RAM). Then we run the preprocessing of UnsortedSub-
setSampling on them; note that the qk’s are in general not sorted. In total, the
preprocessing time is at most

O(logβ n) + tp(1 + logβ n, ν), where ν =

blogβ nc∑
i=0

qk.

Using that (1− x)y > 1− xy for 0 < x < 1 and y > 1 we obtain

ν =

blogβ nc∑
i=0

1− (1− pβk)|Bk| 6

blogβ nc∑
i=0

pβk |Bk| =
n∑
i=1

pi = µ.

Using Lemma 3.1 we obtain ν 6 βµ, and the bound O(logβ n + tp(1 + logβ n, βµ))
for the total preprocessing time follows immediately.

For querying, we query the blocks Bk that contain potential elements using the
query algorithm for UnsortedSubsetSampling. Then, for each block Bk that
contains a potential element, we sample all potential elements in this block. Note
that the first of the potential elements in Bk is distributed as Pr[Yk = i | Xk = 1],
which is geometric, so we can sample from it in constant time, while all further
potential elements are distributed as Yk (but only on the remainder of the block),
which is still geometric. Then, after having sampled a set S of potential elements,
we keep each i ∈ S independently with probability pi/pi. This yields a random
sample S ⊆ S with the desired distribution. The overall query time is then at most

tq(1 + logβ n, ν) +O(1 + |S|) 6 tq(1 + logβ n, µ) +O(1 + |S|)

As the expected value of |S| is µ 6 βµ the proof is completed.

Next, we put the above three lemmas together to prove the upper bounds of
Theorems 1.9 and 1.10.

Proof of Theorem 1.10, upper bound. To solve UnsortedSubsetSampling, we use
the reduction Lemma 3.3 and then Lemma 3.4 (where we set β = 2), followed by
the base case Lemma 3.2. This reduces the instance size from n to O(log n), so
that preprocessing costs O(n) for the invocation of the first lemma, O(log n) for
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the second, and O(log2 n) for the third. Note that µ is increased only by constant
factors, so that we indeed get the a query time of O(1 + µ).

For SortedSubsetSampling we first prove a weaker statement than Theo-
rem 1.9, which follows from simply putting together the reductions of this section.

Lemma 3.5. Let β ∈ {2, . . . , n}. Then SortedSubsetSampling can be solved in
preprocessing time O(logβ n) and expected query time O(1 + βµ). More precisely,
our preprocessing computes a value µ with µ 6 µ 6 βµ and the expected query time
is O(1 + µ).

Proof. To solve SortedSubsetSampling, we use (in this order) the reductions
presented in Lemma 3.4, Lemma 3.3, and then again Lemma 3.4 (where this time
we set β = 2), followed by the base case Lemma 3.2. This reduces the instance size
from n to O(logβ n) and further down to O(log logβ n), while µ is increased to µ
with µ = O(1 + βµ). For precomputation this yields a running time of O(logβ n)
from Lemmas 3.4 and 3.3, O(log logβ n) from the second invocation of Lemma 3.4,

and O(log2 logβ n) from the base case Lemma 3.2, summing up to a total O(logβ n).
The expected query time is O(1 + µ) 6 O(1 + βµ).

Proof of Theorem 1.9, upper bound. Assume that we are allowed preprocessing time
O(logβ̃ n) for some β̃ ∈ {2, . . . , n}. Our algorithm for SortedSubsetSampling

simply runs the preprocessing of Lemma 3.5 with β = β̃ to satisfy the preprocessing
time constraint.

For querying, we improve upon the running time of Lemma 3.5 as follows. For
any β ∈ {2, . . . , n}, let µ(β) be the upper bound on µ computed by Lemma 3.5
given O(logβ n) preprocessing time. Initially, we set β := β̃ so that µ(β) = µ(β̃)

was computed by our preprocessing. If 1 + µ(β̃) 6 logβ̃ n then we run the query

algorithm of Lemma 3.5 and are done. Otherwise, we repeatedly set β := dβ1/2e
and rerun the preprocessing of Lemma 3.5, until β = 2 or 1 + µ(β) 6 logβ n. Then
we run the query algorithm of Lemma 3.5.

It remains to analyze the running time of this query algorithm. We consider three
cases. (1) If 1 + µ(β̃) 6 logβ̃ n then the β-decreasing loop does not start and the

query time is O(1+µ(β̃)) 6 O(1+ β̃µ). (2) If the β-decreasing loop breaks at β = 2,
then since it did not stop at β ∈ {3, 4} we have 1 + 4µ > log4 n, or µ = Ω(log n).
In this case, the total query time is O(1 + µ + log n) = O(µ). (3) Otherwise the
β-decreasing loop stopped at some β∗ with 1 + µ(β∗) 6 logβ∗ n. Using µ(β) 6 βµ

and that we decrease β by taking its square root, we obtain β∗ > γ1/2, where γ > 2
satisfies

1 + γµ = logγ n.

The above equation solves to γ = Θ
( logn

µ log
( logn

µ

))
. This yields a total query time

of O(logβ∗ n) = O(logγ n) = O
( logn

log( logn
µ

)

)
, which proves the claimed query time.
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3.2. Lower Bounds

We prove most of our lower bounds by reducing the various sampling problems to
the following fact, that searching in an unordered array of length m takes time Ω(m).
A notable exception is Lemma 3.9.

Fact 3.6. Consider problem ArraySearch: Given m and query access to an ar-
ray A ∈ {0, 1}m consisting of m bits, with exactly one bit set to 1, find the position
of this bit. Any randomized algorithm for ArraySearch needs Ω(m) accesses to
A in expectation.

3.2.1. Proportional Sampling on Unsorted Probabilities

The lower bound for Theorem 1.7 is provided by the following lemma that reduces
ArraySearch to UnsortedProportionalSampling. Moreover, the same proof
yields the lower bound of Theorem 1.10 for UnsortedSubsetSampling.

Lemma 3.7. Any single-sample algorithm for UnsortedProportionalSamp-
ling has expected time Ω(n). Moreover, any single-sample algorithm for Unsor-
tedSubsetSampling has expected time Ω(n).

Proof. Let A be an instance of ArraySearch of size n, say with 1-bit at position `∗.
We consider the instance

p = pA = (pA1 , . . . , p
A
n ) with pAi = A[i].

Any sampling algorithm for UnsortedProportionalSampling returns `∗ on in-
stance pA with probability 1. Thus, simulating any algorithm for UnsortedPro-
portionalSampling (by computing pAi on the fly) we obtain an algorithm for
finding the 1-bit of array A. Hence, by Fact 3.6, any algorithm for UnsortedPro-
portionalSampling takes expected time Ω(n). With varying µ, no better bound
is possible, either: simply set p̃Ai = µ · pAi .

Observe that on the same instance any sampling algorithm for UnsortedSubset-
Sampling returns the set {`∗} with probability 1. This needs expected time Ω(n)
for the same reasons. With varying µ, no better bound is possible, either: Consider
an ArraySearch instance A of length n − s, where s := dµ − 1e. Let pAi = A[i]
for 1 6 i 6 n− s and set the last s probabilities pAi to values that sum up to µ− 1.
Then we still need running time Ω(n − µ) by Fact 3.6. As we also need running
time Ω(µ) for outputting the result, the claim follows.

3.2.2. Proportional Sampling on Sorted Probabilities

In this subsection, we present the proof of the lower bound of Theorem 1.6 for
SortedProportionalSampling.

Proof of Theorem 1.6, lower bound. Let n ∈ N, β ∈ {2, . . . , n}, and α > 0. Let
si :=

∑i−1
j=0 β

j = (βi−1)/(β−1). For ease of readability, assume that n = sL for some
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L ∈ N. Then L = Θ(logβ n). We consider blocks Bi := {si, si+ 1, . . . , si+βi−1−1},
for i = 1, . . . , L, that partition {1, . . . , n}.

Let A be an instance of ArraySearch of size L, say with 1-bit at position `∗.
To construct the instance p = pA = (pA1 , . . . , p

A
n ) we set for any ` ∈ {1, . . . , L} and

j ∈ B`

pAj := α · β−`+A[`].

As block B` has size β`, the total probability mass of B` is
∑

j∈B` p
A
j = α · βA[`],

i.e., it is αβ for A[`] = 1, and α otherwise. Observe that

µ =
n∑
i=1

pAi = α(L+ β − 1),

since block B`∗ contributes α ·β and each of the other L− 1 blocks contributes α as
total probability mass. Furthermore, note that pA1 , . . . , p

A
n is indeed sorted, as the

probability of an element in block B` is smaller by a factor of (at least) β than the
probability of an element in B`−1, except if ` = `∗, in which case these probabilities
coincide.

In the following we will prove that for any β 6 logβ n there is no sampling algo-
rithm where the preprocessing reads at most εL input values and the querying reads
at most εβ input values in expectation, for a sufficiently small constant ε > 0, which
proves the claim as L = Θ(logβ n). Assume, for the sake of contradiction, that such

an algorithm exists. On pA we run the preprocessing and then K times the query
algorithm, sampling K numbers X1, . . . , XK ∈ {1, . . . , n}. Denote by Yk the block
of Xk, i.e., Xk ∈ BYk . If A[Yk] = 1 for some 1 6 k 6 K then we return Yk, otherwise
we linearly search for the 1-bit of A.

This yields an algorithm for ArraySearch, let us analyze its expected number
of accesses to A. Since the total probability mass of block B`∗ is α · β, we have

Pr[Yk = `∗] =
α · β
µ

=
β

L+ β − 1
= Ω

(β
L

)
.

Thus, Pr[@k : A[Yk] = 1] = (1 − Ω(β/L))K = exp(−Ω(Kβ/L)). Setting K =
Θ(log(1/ε)L/β) (with sufficiently large hidden constant), this probability is at most ε.
Hence, the expected number of accesses to A of the constructed algorithm is (count-
ing preprocessing, K queries, and a possible linear search through A)

εL+K · εβ + Pr[@k : A[Yk] = 1] · L 6 O(log(1/ε)εL).

For sufficiently small ε > 0 this contradicts Fact 3.6. Note that this lower bound
holds restricted to any µ = µ(n), since we still have the freedom of choosing α.

Note that the same proof also works for single-sample algorithms. In this case the
preprocessing reads no input values, and the only restriction is β 6 L. Setting β =
Θ(log(n)/ log log(n)) yields a lower bound of Ω(log(n)/ log log(n)) on the expected
running time of any single-sample algorithm for SortedProportionalSampling.

59



3.2.3. Subset Sampling on Sorted Probabilities

We first prove two lemmas proving lower bounds for SortedSubsetSampling in
different situations. Then we show how the lower bound of Theorem 1.9 follows from
these lemmas.

Lemma 3.8. Let β, γ ∈ {2, . . . , n} with γ 6 β. Consider any data structure for
SortedSubsetSampling with preprocessing time ε logβ n (where ε > 0 is a suf-
ficiently small constant) and query time tq(n, µ). Then for any µ = µ(n) with
γ(1 + µ) = O(logγ n) we have tq(n, µ) = Ω(γµ).

Proof. We closely follow the proof of the lower bound of Theorem 1.6 (Section 3.2.2).
Let si :=

∑i−1
j=0 γ

j = (γi − 1)/(γ − 1). For ease of readability, assume that n = sL
for some L ∈ N. Then L = Θ(logγ n). We consider blocks Bi := {si, si + 1, . . . , si +
γi−1 − 1}, for i = 1, . . . , L, that partition {1, . . . , n}.

Let A be an instance of ArraySearch of size L, say with 1-bit at position `∗.
To construct the instance p = pA = (pA1 , . . . , p

A
n ) we set for any ` ∈ {1, . . . , L}

and j ∈ B` the input to pAj := α · γ−`+A[`], for some α > 0. As block B` has

size γ`, the total probability mass of B` is
∑

j∈B` p
A
j = α · γA[`]. Observe that

µ =
∑n

i=1 p
A
i = α(L+ γ − 1). Furthermore, note that pA1 , . . . , p

A
n is indeed sorted.

Assume for the sake of contradiction that there is a data structure for Sorted-
SubsetSampling where the preprocessing reads at most ε logβ n 6 ε logγ n input
values and the querying reads at most εγµ input values in expectation, for a suffi-
ciently small constant ε > 0.

On pA we run the preprocessing and then K times the query algorithm, sampling
K sets X1, . . . , XK ⊆ {1, . . . , n}. For every x ∈

⋃K
k=1Xk we determine its block By

and check whether A[y] = 1. If so, we have found the 1-bit of A. Otherwise we
linearly search for the 1-bit of A.

This yields an algorithm for ArraySearch, let us analyze its expected number
of accesses to A. Let `∗ be the position of the 1-bit in A. The probability of not
sampling any i ∈ B`∗ in any of the K queries is∏

i∈B`∗
(1− pi)K = (1− α · γ−`∗+1)Kγ

`∗
6 exp(−Kαγ).

This probability becomes at most ε by setting K = dln(1/ε)/(αγ)e = Θ(1 +
log(1/ε)/(αγ)). Hence, the expected number of accesses to A of the constructed
algorithm is (counting preprocessing, K queries, and a linear search through A with
probability at most ε)

O(εL+K ·εγµ+ε ·L) 6 O(ε(L+γµ+log(1/ε)µ/α)) 6 O(ε(log(1/ε)(L+γ)+γµ)),

using µ = α(L+γ−1). Because of the conditions γ(1+µ) = O(logγ n) and γ 6 β we
can further bound the expected number of accesses to A by O(log(1/ε)εL), which
contradicts Fact 3.6 for sufficiently small ε > 0.
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Lemma 3.9. Consider any data structure for SortedSubsetSampling with pre-
processing time tp(n) and expected query time tq(n, µ). For any µ = µ(n) 6 O(1)
we have

tp(n) + tq(n, µ) = Ω
( log n

log logn
µ

)
.

Proof. Let (P,Q) be a preprocessing and a query algorithm, and let p be an instance.
Let D = P (p) be the result of the precomputation. By definition we have for any
S ⊆ [n]

Pr[Q(p, D) = S] =

(∏
i∈S

pi

) ∏
i∈[n]\S

(1− pi)

 =: Pp(S),

meaning that we sample a set with the right probability (independent of the possible
random choices in the preprocessing).

Let P ⊆ [n] be the positions i ∈ [n] at which the preprocessing reads the value
pi during the computation of D, note that |P| 6 tp = tp(n). Without loss of
generality, we can assume that 1, n ∈ P, i.e., that the preprocessing reads p1 and pn,
as this adjustment of the algorithm does not increase its running time asymptotically.
Furthermore, without loss of generality, we can assume that the query algorithm
reads all positions i in its return set S = Q(p, D).

For an instance p and S ⊆ Q ⊆ [n], let Pp(Q, S) be the probability that algorithm
Q(p, D) reads exactly the values pi with i ∈ Q and returns the set S. We clearly
have ∑

Q⊇S
Pp(Q, S) = Pp(S). (3.1)

Furthermore, if we assume an expected query time of at most tq = tq(n, µ), then
there is a set S∗ ⊆ [n] with ∑

Q⊇S∗
|Q|62tq

Pp(Q, S∗) > 1

2
Pp(S∗), (3.2)

since otherwise

Pr[Q(p, D) runs for time 6 2tq] 6
∑
Q,S⊆[n]
Q⊇S
|Q|62tq

Pp(Q, S) <
1

2

∑
S⊆[n]

Pp(S) =
1

2
,

in contrast to Markov’s inequality. Here, we used that |Q| is a lower bound on the
running time of Q(p, D).

From (3.2) we infer, using the maximum-arithmetic mean inequality, that there
is a set Q∗ ⊇ S∗ with

Pp(Q∗, S∗) > Pp(S∗)
/

2

(
n

2tq

)
. (3.3)
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Now we fix the instance p = (p1, . . . , pn) by setting

pi :=
α

i
,

for a parameter 0 < α 6 1/2 chosen such that
∑n

i=1 pi = αHn = µ = µ(n), so that
α = Θ(µ/ log n). Fixing sets S∗,Q∗ as above for this instance p, we define a second
instance p′ = (p′1, . . . , p

′
n) by setting

p′i := min{pj | i > j ∈ Q∗ ∪ P}.

That is, p and p′ agree on the read positionsQ∗ and P, and at all other positions p′i is
as large as possible with p′ still being sorted. This means that the preprocessing and
the query algorithm cannot distinguish between both instances, implying a critical
property we will use,

Pp′(Q∗, S∗) = Pp(Q∗, S∗).

With this, we obtain

Pp′(S
∗)

(3.1)

> Pp′(Q∗, S∗) = Pp(Q∗, S∗)
(3.3)

>
1

2
(
n

2tq

)Pp(S∗). (3.4)

We next bound Pp(S∗) and Pp′(S
∗). For the former we get

Pp(S∗) =

(∏
i∈S∗

pi

) ∏
i∈[n]\S∗

(1− pi)

 = W
n∏
i=1

(1− pi),

where W :=
∏
i∈S∗

pi
1−pi . Since pi 6 α 6 1/2 we have 1 − pi > 4−pi for all i ∈ [n],

which yields, as µ = µ(n) 6 O(1),

Pp(S∗) >W · 4−µ = Ω(W ). (3.5)

Denote the read positions by Q∗ ∪ P = {i1, . . . , ik} with i1 6 . . . 6 ik, and note
that k 6 tp+tq. By assumption, we have i1 = 1, ik = n, and we define ik+1 := n+1.
For Pp′(S

∗) we now get

Pp′(S
∗) =

(∏
i∈S∗

p′i

) ∏
i∈[n]\S∗

(1− p′i)


=

(∏
i∈S∗

pi

) ∏
i∈(Q∗∪P)\S∗

(1− pi)

( k∏
`=1

(1− pi`)
i`+1−i`−1

)
,

which simplifies to

Pp′(S
∗) = W

k∏
`=1

(1− pi`)
i`+1−i` .
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Using 1− x 6 e−x for x > 0 this yields

Pp′(S
∗) 6W · exp

(
−

k∑
`=1

pi`(i`+1 − i`)

)
= W · exp

(
−α

k∑
`=1

(
i`+1

i`
− 1

))
.

Using the arithmetic-geometric mean inequality we obtain

1

k

k∑
`=1

i`+1

i`
>

(
k∏
`=1

i`+1

i`

)1/k

> n1/k,

which yields Pp′(S
∗) 6 W · exp

(
−αk(n1/k − 1)

)
. Combining this with (3.4) and

(3.5),

exp
(
−kα(n1/k − 1)

)
> Ω(n−(2tq+1)).

Taking the logarithm twice and rearranging yields

k >
log n

log(1 + (2tq + 1) lnn/(kα))
.

Using tp + tq > k > 1, α = Θ(µ/ log n), and tq = O(log n) (otherwise the claim
follows directly), we obtain

tp + tq >
log n

log(O(log3(n)/µ))
= Ω

( log n

log(log(n)/µ)

)
.

A tedious case distinction now shows that the lower bound of Theorem 1.9 follows
from the above two lemmas.

Proof of Theorem 1.9, lower bound. We prove that any data structure for Sorted-
SubsetSampling with ε logβ n preprocessing time (where ε > 0 is a sufficiently

small constant) needs query time Ω(tβq (n, µ)) for any µ = µ(n), where

tβq (n, µ) =


O(µ), if µ > 1

2 log n,

O(1 + βµ), if µ < 1
β logβ n,

O
( logn

log( logn
µ

)

)
, otherwise.

We consider six cases depending on µ and β, in each case reducing the claim to
Lemma 3.8 or 3.9.

Case 1, µ > 1
2 log n: As the expected output size is µ, the expected query time is

always Ω(µ), which is tight in this case.

Case 2, 1 6 µ < 1
β logβ n: These inequalities imply β 6 βµ 6 logβ n. Thus,

Lemma 3.8 with γ := β applies, showing that the query time is Ω(βµ). As any
algorithm takes time Ω(1), the query time is also bounded by Ω(1 +βµ), as desired.

Case 3, µ > 1 and 1
β logβ n 6 µ < 1

2 log n: In this case, we can choose 2 6 γ 6 β

such that µ = Θ( 1
γ logγ n). Solving for γ yields γ = Θ

( logn
µ

/
log logn

µ

)
. We have
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γ 6 γµ 6 O(logγ n), so Lemma 3.8 is applicable, yielding a lower bound of Ω(γµ) =

Ω
( logn

log logn
µ

)
.

Case 4, µ < 1 and 1
β logβ n 6 µ < 1

2 log n: Note that µ > 1
β logβ n implies

β2 > β log β > 1
µ log n so that log β = Ω

(
log logn

µ

)
. Hence, the preprocessing time

is ε logβ n = O
(
ε logn

log logn
µ

)
. For sufficiently small ε > 0, Lemma 3.9 now implies

tq(n, µ) = Ω
( logn

log logn
µ

)
, as desired.

Case 5, µ < 1 and µ < 1
β3 log n: Note that µ < 1

β3 log n implies µ < 1
β logβ n.

Thus, if βµ < 1 then our query time is O(1), which is clearly optimal. Hence,
assume βµ > 1. Together with µ < 1

β3 log n this implies β 6
√

log n . Hence,

logβ n > Ω( logn
log logn)� O(

√
log n ) > β > Ω(β(1 + µ)),

where the last inequality uses µ < 1. Thus, Lemma 3.8 is applicable with γ := β
and we obtain a lower bound of tq(n, µ) = Ω(βµ) = Ω(1 + βµ), as desired.

Case 6, µ < 1 and 1
β3 log n 6 µ < 1

β logβ n: Then log β = Ω
(

log logn
µ

)
and

logβ n = O
( logn

log logn
µ

)
. Hence, with ε logβ n preprocessing time and sufficiently small

ε > 0, Lemma 3.9 implies that tq(n, µ) = Ω
( logn

log logn
µ

)
> Ω(logβ n) > Ω(βµ), where

the last inequality follows from µ < 1
β logβ n. Since any algorithm takes time Ω(1),

this yields a lower bound of Ω(1 + βµ), as desired.

3.3. Reduction: Proportional to Subset Sampling

In this section, we present a reduction from (Sorted or Unsorted) Propor-
tionalSampling to (Sorted or Unsorted) SubsetSampling. This yields an
alternative proof of the upper bounds for ProportionalSampling (Theorems 1.6
and 1.7) using the upper bounds for SubsetSampling (Theorems 1.9 and 1.10).
Moreover, it shows that the classic ProportionalSampling problem is easier than
SubsetSampling (or the former can be seen as a special case of the latter).

We present our reduction for the special case of 1/β 6 µ 6 1 first, where β > 1 is
a parameter. Then we reduce the general case with arbitrary µ to the special case.

3.3.1. Special Case 1/β 666 µ 666 1

Let p be an instance to SortedProportionalSampling or UnsortedPropor-
tionalSampling with µ in the range [1/β, 1]. Instead of p we consider p′ =
(p′1, . . . , p

′
n) with p′i := pi/(1 + pi). Note that if p is sorted then p′ is also sorted.

Moreover, µ′ :=
∑n

i=1 p
′
i is in the range [µ/2, µ], thus in the range [1/2β, 1].

Let Y = ProportionalSampling(p) be the random variable denoting propor-
tional sampling on input p, and X = SubsetSampling(p′) be the random variable
denoting subset sampling on input p′. Then conditioned on sampling exactly one
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element X = {i}, this element i is distributed exactly as Y , as formulated by the
following lemma.

Lemma 3.10. We have for all i ∈ [n]

Pr[X = {i} | |X| = 1] = Pr[Y = i].

Proof. By applying Bayes’ rule we infer that

Pr [X = {i} | |X| = 1] = Pr[X = {i}]/Pr[|X| = 1]

=

(
p′i

1− p′i

n∏
k=1

(1− p′k)

)
/

 n∑
j=1

p′j
1− p′j

n∏
k=1

(1− p′k)


=

(
p′i

1− p′i

)
/

 n∑
j=1

p′j
1− p′j


Plugging in the definition of p′i yields

Pr[X = {i} | |X| = 1] =
pi∑n
j=1 pj

= Pr[Y = i],

and the statement is shown.

Moreover, the probability of sampling exactly one element is not too small, as
shown in the following lemma. This bound is not best possible but sufficient for our
purposes.

Lemma 3.11. With the definitions and assumptions of this section we have

Pr[|X| = 1] > µ/4.

Proof. First, observe that by Markov’s inequality

Pr[|X| > 2] 6 E[|X|]/2 = µ′/2 6 1/2,

and thus, Pr[|X| ∈ {0, 1}] > 1/2. Moreover, the definition of X implies that

Pr[|X| = 0] =

n∏
k=1

(1− p′k)

and

Pr[|X| = 1] =
n∑
j=1

p′j
1− p′j

n∏
k=1

(1− p′k) = µ · Pr[|X| = 0].

By putting everything together we obtain that Pr[|X| = 1](1 + 1
µ) > 1/2, and thus

Pr[|X| = 1] > µ · 1

2(1 + µ)
>
µ

4
,
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as claimed.

We put these facts together to show the following result.

Lemma 3.12. Let β > 1. Assume that (Sorted or Unsorted) SubsetSampling
can be solved in preprocessing time tp(n, µ) and expected query time tq(n, µ), where
tp and tq are monotonically increasing in n and µ. Then (Sorted or Unsorted,
respectively) ProportionalSampling on instances with 1/β 6 µ 6 1 can be solved
in preprocessing time O(tp(n, µ)) and expected query time O( 1

µ · tq(n, µ)).

Proof. For preprocessing, given input p, we run the preprocessing of SubsetSamp-
ling on input p′. This does not mean that we compute the vector p′ explicitly,
but if the preprocessing algorithm of SubsetSampling reads the i-th input value,
we compute p′i = pi/(1 + pi) on the fly, so that preprocessing needs running time
O(tp(n, µ)) (recall that µ′ 6 µ). It allows to sample X later on in expected running
time O(tq(n, µ)) using the same trick of computing p′ on the fly.

For querying, we repeatedly sample X until we sample a set S of size one. Re-
turning the unique element of S results in a proper sample according to Sorted-
ProportionalSampling by Lemma 3.10. Moreover, by Lemma 3.11 and the fact
that sampling X needs expected time O(tq(n, µ)) after our preprocessing, the total
expected query time is O( 1

µ · tq(n, µ)).

3.3.2. General Case

In this subsection, we reduce the general case with arbitrary µ to the special case
1/β 6 µ 6 1. In the unsorted case, we simply compute µ exactly in time O(n),
which shows the following proposition. In the sorted case, we approximate µ using
an idea of Section 3.1.1, see Proposition 3.14.

Proposition 3.13. Assume that UnsortedSubsetSampling can be solved in pre-
processing time tp(n, µ) and expected query time tq(n, µ), where tp and tq are mono-
tonically increasing in n and µ. Then UnsortedProportionalSampling can be
solved in preprocessing time O(n+ tp(n, 1)) and expected query time O(tq(n, 1)).

Note that plugging Theorem 1.10 into the above proposition yields the upper
bound of Theorem 1.7.

Proof. In the preprocessing we compute µ in time O(n), and set p̃i := pi/µ for
i ∈ [n]. Then we run the algorithm guaranteed by Lemma 3.12 on p̃1, . . . , p̃n.

Proposition 3.14. Let β ∈ {2, . . . , n}. Assume that SortedSubsetSampling
can be solved in preprocessing time tp(n, µ) and expected query time tq(n, µ), where
tp and tq are monotonically increasing in n and µ. Then SortedProportional-
Sampling can be solved in preprocessing time O(logβ n+tp(n, 1)) and expected query

time O(max1/β6ν61
1
ν tq(n, ν)).

Note that plugging Theorem 1.9 into the above proposition yields the upper bound
of Theorem 1.6 (to see the bound on the query time, note that we can set tq(n, µ) =
O(1 + βµ) so that max1/β6ν61

1
ν tq(n, ν) = O(max1/β6ν61

1
ν (1 + βν)) = O(β)).
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Proof. Let p be an instance of SortedProportionalSampling with µ =
∑n

i=1 pi.
As in Section 3.1.1 we consider the blocks Bk := {i ∈ [n] | βk 6 i < βk+1} with
0 6 k 6 L := blogβ nc and set pi := pβk for i ∈ Bk. Then for µ :=

∑n
i=1 pi we have

µ 6 µ 6 β · µ by Lemma 3.1. Note that we can compute µ in time O(logβ n), as

µ =
L∑
k=0

pβk ·
(
min(βk+1, n+ 1)− βk

)
.

With these observations at hand, for preprocessing, we compute µ and consider
p′ = (p′1, . . . , p

′
n) with p′i := pi/µ. Since µ 6 µ 6 β · µ we have µ′ :=

∑n
i=1 p

′
i in the

range [1/β, 1]. Thus, we can run the preprocessing of SortedProportionalSamp-
ling on p′; Lemma 3.12 is applicable since p′ has µ′ ∈ [1/β, 1]. We do this without
computing the whole vector p′. Instead, if the preprocessing algorithm reads the
i-th input value, we compute p′i on the fly. This way we need a total running time
for preprocessing of O(logβ n+ tp(n, 1)).

For querying, Lemma 3.12 allows us to query according to p′ in expected running
time O( 1

µ′ tq(n, µ
′)) 6 O(max1/β6ν61

1
ν tq(n, ν)), where we again compute values of p′

on the fly as needed. As we want to sample proportionally to the input distribution,
a sample with respect to p′ has the same distribution as a sample with respect to
p, so that we simply return the sampled number.

3.4. Relaxations

In this section, we describe some natural relaxations for the input and machine
model studied so far in this chapter.

Large Deviations for the Running Times The query running times in Theo-
rems 1.6, 1.9, and 1.10 are, in fact, not only small in expectation, but they are also
concentrated, i.e., they satisfy large deviation estimates in the following sense. Let
t be the expected running time bound and T the actual running time. Then

Pr[T > kt] = e−Ω(k),

where the asymptotics are with respect to k. This is shown rather straightforwardly
along the lines of our proofs of these theorems. The fundamental reason for this is
that the size of the random set X is concentrated. Indeed, let Xi be an indicator
random variable for the i-th element as above. Then for any a > 1 we obtain along
the lines of the proof of the Chernoff bound

Pr[|S| > k(µ+ 1)] = Pr
[
a
∑n
i=1Xi > ak(µ+1)

]
6 E

[
a
∑n
i=1Xi

]
a−k(µ+1).
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The independence of the Xi’s implies that

Pr[|S| > k(µ+ 1)] 6
n∏
i=1

E[aXi ] · a−k(µ+1) =
n∏
i=1

(api + (1− pi)) · a−k(µ+1),

and we obtain

Pr[|S| > k(µ+ 1)] 6 exp {(a− 1)µ− k(µ+ 1) ln a} .

Setting a = k + 1 yields

Pr[|S| > k(µ+ 1)] 6 exp {kµ− k(µ+ 1) ln(k + 1)} 6 (k + 1)−k,

for any k > 2, as claimed.

Partially Sorted Input The condition of sorted input for SortedSubsetSamp-
ling and SortedProportionalSampling can easily be relaxed, as long as we have
sorted upper bounds of the probabilities. Given input p and sorted p with pi 6 pi
for all i ∈ [n], we simply sample according to p and use rejection to get down to
the probabilities p. This allows for the optimal query time O(1 + µ) as long as
µ =

∑n
i=1 pi = O(1 + µ), where µ =

∑n
i=1 pi.

Unimodular Input Many natural distributions p are not sorted, but unimodular,
meaning that pi is monotonically increasing for 1 6 i 6 m and monotonically
decreasing for m 6 i 6 n (or the other way round). Knowing m, we can run the
algorithms developed in this chapter on both sorted halfs, and combine the return
values, which gives an optimal query algorithm for unimodular inputs. Alternatively,
if we have strong monotonicity, we can search for m in time O(log n) using ternary
search.

This can be naturally generalized to k-modular inputs, where the monotonicity
changes k times.

Approximate Input In some applications it may be costly to compute the prob-
abilities pi exactly, but we are able to compute approximations pi(ε) > pi > p

i
(ε),

with relative error at most ε, where the cost of computing these approximations
depends on ε. We can still guarantee optimal query time, if the costs of computing
these approximations are small enough, see e.g. [87].

Indeed, we can surely sample a superset S with respect to the probabilities pi(
1
2).

Then we want to use rejection, i.e., for each element i ∈ S we want to compute a
uniformly random number r ∈ [0, 1] and delete i from S if r · pi(1

2) > pi, to get
a sample set S. This check can be performed as follows. We initialize k := 1.
If r · pi(1

2) > pi(2
−k) we delete i from S. If r · pi(1

2) 6 p
i
(2−k) we keep i and

are done. Otherwise, we increase k by 1. This method needs an expected number
of O(1) rounds of increasing k; the probability of needing k rounds is O(2−k). Hence,
if the cost of computing pi(ε) and p

i
(ε) is O(ε−c) with c < 1, the expected overall

cost is constant, and we get an optimal expected query time of O(1 + µ).
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Word RAM Throughout this chapter we worked in the Real RAM model of com-
putation. In the more realistic Word RAM model each cell consists of w = Ω(log n)
bits and any reasonable operation on two words can be performed in constant time,
see Section 1.1.2. In this dissertation, we prove that on the Word RAM Bernou-
lli and geometric random variates can be drawn in constant time (Chapter 4) and
the classic alias method for UnsortedProportionalSampling still works (see
Section 1.2). This already allows one to translate large parts of the algorithms of
this chapter to the Word RAM. Unfortunately, terms like

∏
16k6n(1− pk) (see Sec-

tion 3.1.2) cannot be evaluated exactly on the Word RAM, as the result would need
at least n bits. This difficulty can be solved by working with O(log n) bit approx-
imations and increasing the precision as needed, similarly to the generalization to
approximate input that we discussed in the last paragraph. This way one can obtain
a complete translation of our algorithms to the Word RAM. We omit the details.

Our lower bounds hold for both models since we bound the number of probed
inputs pi, and in both models in unit time we can only read a single input pi.
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4Sampling from Special
Distributions

This chapter is based on [14] and a small part of [5]. I contributed at least 50% at
all stages and to all parts of [14]. Moreover, I contributed the part of [5] presented
in Section 4.7.

[5] K. Bringmann, F. Kuhn, K. Panagiotou, U. Peter, and H. Thomas. “In-
ternal DLA: Efficient Simulation of a Physical Growth Model.” In: Proc.
41th International Colloquium on Automata, Languages, and Programming
(ICALP’14). Vol. 8572. LNCS. 2014, 247–258.

[14] K. Bringmann and T. Friedrich. “Exact and efficient generation of geometric
random variates and random graphs.” In: Proc. 40th International Collo-
quium on Automata, Languages, and Programming (ICALP’13). Vol. 7965.
LNCS. 2013, 267–278.

In this chapter, we present Word RAM algorithms for sampling from several
special distributions. In Section 4.1 we fix notation and our input model. We
consider Bernoulli random variates in Section 4.2. For geometric random variates,
in Section 4.3 we translate the Real RAM algorithm to the Word RAM via multi-
precision arithmetic and show that this yields sub-optimal running time, and in
Section 4.4 we present a lower bound and our optimal algorithm. We adapt this
algorithm for bounded geometric random variates in Section 4.5. The applications
to sampling random graphs are presented in Section 4.6. Finally, we show how
to sample binomial random variates in Section 4.7. We restate the theorems from
Section 1.7 that we prove in this chapter in the respective sections.

4.1. Preliminaries

Word RAM model Typically, on a Word RAM it is assumed that a pointer
consists of one cell and one may address only cells for which a pointer fits into a
cell. However, since a geometric random variate can be arbitrary large, we have
to adapt our machine model to allow potentially unbounded space usage. To this
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end, we could assume that any number of consecutive cells can form a pointer P ,
and accessing the memory cell pointed at takes time proportional to the number
of memory cells forming P . Our results would remain valid for even larger access
times, as long as the cost of accessing the i-th memory cell is O((2−ε)i/2w) for some
ε > 0.

For simplicity, we will instead assume that accessing any memory cell still takes
time O(1).

Probability distributions Let p ∈ (0, 1]. The Bernoulli distribution Ber(p)
takes values in {0, 1} such that Pr[Ber(p) = 1] = 1 − Pr[Ber(p) = 0] = p. The
geometric distribution Geo(p) takes values in N0 such that for any i ∈ N0, we
have Pr[Geo(p) = i] = p(1 − p)i. For n ∈ N0, we define the bounded geometric
distribution Geo(p, n) to be min{n,Geo(p)}. This means that Geo(p, n) takes values
in {0, . . . , n} such that for any i ∈ N0, i < n, we have Pr[Geo(p, n) = i] = p(1− p)i,
and Pr[Geo(p, n) = n] = (1 − p)n. The uniform distribution Uni[0, 1] takes values
in [0, 1] with uniform probability. For n ∈ N, we define the uniform distribution
Uni(n) to be the uniform distribution over {0, . . . , n−1}. The binomial distribution
Bin(n, p) takes values in {0, . . . , n} and has Pr[Bin(n, p) = i] =

(
n
i

)
2−n.

Random graph models In the Erdős-Rényi [70] random graph model G(n, p),
each edge of an n vertex graph is independently present with probability p. This
yields a binomial degree distribution and approaches a Poisson distribution in the
limit. As many real-world networks have power-law degree distributions, we also
study inhomogeneous random graphs. We consider Chung-Lu [76] graphs G(n,W )
with n vertices and weights W = (W1,W2, . . . ,Wn) ∈ Rn>0. In this model, an
edge between two vertices i and j is independently present with probability pi,j :=
min{WiWj/

∑
kWk, 1}. We will assume that the expected number of edges m is

Θ(
∑

iWi). This is known to hold if the Wi follow a power-law. The related def-
initions of generalized random graph [88] with pij = WiWj/(

∑
kWk + WiWj) and

Norros-Reittu random graphs [89] with pi,j = 1− exp(−WiWj/
∑

kWk) can be han-
dled in a similar way. However, we will focus on Chung-Lu random graphs.

Input model In all sections except for Section 4.2, we assume that we can compute
arbitrary precision floating point approximations of the input p. In particular, we
can compute an exponent k ∈ N0 such that 2−k > p > 2−k−2. Moreover, for any
i ∈ N we can compute a number pi 6 1 such that |pi − 2kp| 6 2−i. We can assume
that pi has at most i + 1 bits (otherwise take the first i + 1 bits of pi+1, which are
a 2−i-approximation of 2kp). Since we assumed w = Ω(log log(1/p)), the exponent
k fits into O(1) words; this resembles the usual assumption that we can compute
with numbers as large as the input or output size in constant time. Furthermore,
we want to assume that pi can be computed in time iO(1). This means that p can
be approximated efficiently. However, it would be sufficient even if the running time
was O((2−ε)i) for some constant ε > 0. All numbers other than the input parameter
p will be encoded as simple strings of words or floating point numbers, as discussed
in Section 1.1.2.
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Notation For integer division we write a div b := ba/bc for a, b ∈ Z.

4.2. Bernoulli Random Variates

We prove the following theorem from Section 1.7. Note that here we have a slightly
weaker assumption on the input p than for all other results in this chapter.

Theorem 1.11. Let p ∈ [0, 1] and assume that for any i ∈ N we can compute a
number pi ∈ [p − 2−i, p + 2−i] in time iO(1). Then the Bernoulli random variate
Ber(p) can be sampled in expected running time O(1) on a Word RAM.

Note that the running time is independent of p. Moreover, note that we can
assume that pi has at most i + 1 bits; otherwise take the first i + 1 bits b of pi+1,
which fulfill |b− p| 6 2−i, since |pi+1 − p| 6 2−i−1 and |b− pi+1| 6 2−i−1.

We can generate Ber(p) by generating a uniformly random real r ∈ [0, 1] and
returning 1 if r 6 p and 0, otherwise. We now describe how this can be efficiently
simulated without having to cope with the real number r at once.

Let r ∼ Uni[0, 1]. We get an approximation ri of r by sampling i random bits.
Then ri 6 r < ri + 2−i. Comparing ri and pi, it can happen that the intervals
[ri, ri + 2−i] and [pi− 2−i, pi + 2−i] are non-intersecting. In this case, ri < pi implies
r < p, and similarly ri > pi implies r > p, so we are done. Otherwise, we can increase
the precision i by 1 and repeat this process (remembering the former random choices
we made for r). Note that the probability that these intervals are non-intersecting
is at most 4 · 2−i; there are at most 4 choices for ri such that they intersect. Hence,
the probability that we need precision at least i is at most 4 · 2−i. Since we can
compute pi in time iO(1), and can clearly sample ri and compare both intervals also
in this time bound, we get an expected time of at most

∞∑
i=1

iO(1) · 4 · 2−i = O(1).

Note that we did not use any parallelism provided by the Word RAM in this
section. Regarding concentration, this has Pr[T > t] 6 exp(−tΩ(1)), since we take
time at least iO(1) with probability at most 2−Ω(i).

4.3. Multi-Precision Approach

In this section we illustrate the simple approach of translating a Real RAM algorithm
to the Word RAM via multi-precision arithmetic. We use geometric random variates
as an example. This shows the following sub-optimal result.

Theorem 1.13. On a Word RAM with word size w = Ω(log log(1/p)), a geometric
random variate Geo(p) with parameter p ∈ (0, 1] can be sampled in expected running
time O(1 + log(1/p) poly log log(1/p)/w).
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Let us first consider the following situation on a Real RAM. Let X = Xp be a
random variable with some parameter p, that we omit in the following discussion
as a subscript. Let X have cumulative distribution function F (x) = Pr[X 6 x] and
let U be a uniform real in [0, 1]. Then X can be sampled as X ∼ F−1(U); this is
called the inversion method (see, e.g., Devroye [45]). On a Real RAM this method
is applicable as long as F−1 is efficiently computable; the uniform variable U can be
sampled in unit time by assumption. It is easy to see that for a geometric random
variable X ∼ Geo(p) we have F−1(x) = blog1−p(1− x)c. Thus, since a logarithm of
a real number can be computed in unit time by assumption, Geo(p) can be sampled
in unit time on a Real RAM, i.e., in time that is independent of the parameter
p. Note that typical implementations for sampling geometric random variables use
the above algorithm (e.g. in C++11), but with the usual floating point precision,
although the algorithm is only exact if used with infinite precision.

The situation changes when we consider a bounded precision machine like the
Word RAM instead. We focus on the case where F−1(x) can be written as bg(x)c,
with g being a smooth and monotonically increasing function; note that this is
the case for geometric random variables. Suppose that we sample only an n-bit
approximation Ũ of U , i.e., we sample the first n bits of U , so that Ũ 6 U < Ũ+2−n.
Suppose further that we compute an n-bit approximation G̃ of g(Ũ), such that
G̃ 6 g(Ũ) 6 (1 + 2−n)G̃. bG̃c is not exactly distributed as X is; we make a certain
amount of error. So let us also compute an n-bit approximation G̃′ of g(Ũ + 2−n),
such that G̃′ > g(Ũ + 2−n) > (1 − 2−n)g(Ũ + 2−n). Then G̃ 6 g(U) 6 G̃′. Thus,
if G̃ and G̃′ lie in the same interval [k, k + 1), for some k ∈ N, we have correctly
identified F−1(U) = bg(U)c as the number k. Of course, it may be that both values
do not lie in the same interval. In this case we can increase n (e.g., double it) and
repeat the process, until at some point we have approximated g(U) well enough to
identify its integral part.

This method terminates with probability 1: Since g(U) 6∈ N with probability 1,
an approximation of g(U) with (strictly positive) additive error minm∈N |g(U)−m|
suffices. Since G̃, G̃′ → g(U) for n → ∞ (as g is smooth), we reach the necessary
precision after a finite number of incrementations of n. Thus, we have described an
exact algorithm for sampling X.

Let us now turn to the question of whether the above method is also efficient. More
precisely, let us bound its expected running time (asymptotically in terms of p). We
will first bound the final n in terms of g(U), g′(U), and δ := minm∈N |g(U)−m|.

Lemma 4.1. Let U ∈ [0, 1] with g(U) 6∈ N be fixed and consider the final n of the
sampling algorithm. Then n = O(1 + log(g(U) + g′(U)) + log(1/δ)).

Proof. Note that the smoothness of g implies g(Ũ + 2−n) − g(Ũ) = O(2−ng′(U)).
This yields g(Ũ) = g(U) − O(2−ng′(U)), and since (1 + 2−n)G̃ > g(Ũ), we have
(1+2−n)G̃+O(2−ng′(U)) > g(U). Using G̃ 6 g(U), we get G̃ > g(U)−O(2−n(g(U)+
g′(U))). Analogously, we have G̃′ 6 g(U) +O(2−n(g(U) + g′(U))). Hence, it suffices
to have n = c+log(g(U)+g′(U))+log(1/δ), for c large enough, to have G̃ > g(U)−δ
and G̃′ < g(U)+δ, i.e., the method terminates for some n = O(1+log(g(U)+g′(U))+
log(1/δ)).
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Now that we have bounded n, let the running time of one iteration be f(n) =
fw(n). We have f(n) = Ω(n), since for sampling the first n bits of U we need
running time Θ(n/w). Thus, doubling n after each iteration, the running time of
the algorithm is bounded by the running time of the last iteration. Moreover, assume
that f is at most polynomial in n, i.e., f(n) 6 O(nc) for some c > 0. Then plugging
in the above bound on n, we get a running time of at most

O(1 + f(log(g(U) + g′(U))) + f(log(1/δ))),

since for polynomial q(x) we have q(x+ y) = O(q(x) + q(y)). Now, if the expected
value of this term is small, then the above method is efficient.

We calculate this expected value for the geometric random variable Geo(p).

Lemma 4.2. For geometric random variables, i.e., for g(x) = log1−p(1 − x), we
have in the situation of this section

E[1 + f(log(g(U) + g′(U))) + f(log(1/δ))] = O(1 + f(log(1/p))).

Proof. In this case, g(x) = log1−p(1− x) and g′(x) = −1/((1− x) log(1− p)). Since
1/(1 − x) > − log(1 − x) holds for all x ∈ [0, 1], we have g(U) + g′(U) = Θ(g′(U)).
Because log(1− p) is asymptotically equal to −p, we even have log(g(U) + g′(U)) =
O(1)+log(1/(1−U))+log(1/p), so we can bound the running time of the algorithm
by O(1 + f(log(1/(1− U))) + f(log(1/p)) + f(log(1/δ))). We first analyze δ. Since
Pr[δ 6 x] = g−1(x) +

∑
k∈N g

−1(k + x) − g−1(k − x), the density function of δ is
1/g′(g−1(x)) +

∑
k∈N 1/g′(g−1(k + x))− 1/g′(g−1(k − x)). Since, furthermore, g′ is

monotonically increasing we have 1/g′(g−1(k + x)) − 1/g′(g−1(k − x)) 6 0, so the
density is bounded by 1/g′(g−1(δ)) 6 1/g′(0) = −1/ log(1 − p) 6 1/p. Thus, δ is a
random variable of the following form (with q = 1/p): Let Y be a random variable
with values in [0, 1] and density bounded from above by q > 1. Then we show
that E[f(log(1/Y ))] 6 O(f(log(q)) + 1). The expected value is maximized if Y is

uniform in [0, 1/q], and then it is equal to
∫ 1/q

0 q ·f(log(1/y))dy. Setting x = 1
qy , this

is equal to
∫∞

1 f(log(xq))x−2dx 6 O(
∫∞

1 f(log(q))x−2dx +
∫∞

1 logc(x)x−2dx) using
our assumption on f . This yields the desired bound. Note that this bound yields
not only an upper bound of O(f(log(1/p))+1) for the expected value of f(log(1/δ)),
but also an upper bound of O(1) for the expected value of f(log(1/(1− U))).

Hence, the geometric random variable Geo(p) can be sampled in time O(1 +
f(log(1/p))). Note that f(n), the running time of one iteration, is dominated
by the time for approximating a logarithm of an n-bit number up to precision
2−n. This can be done in time O(M(n) log(n)) (see, e.g., [90]), where M(n) is
the time to multiply two n-bit numbers. By using fast Fourier transforms, M(n) =
O( nw log( nw ) log log( nw )) [91]. The best known bound is M(n) = O( nw log( nw )2log∗( n

w
))

[92, 93]. It is conjectured that M(n) = Ω( nw log( nw )) [91]. This gives f(n) =
O(1 + n

w poly log(n)), which is efficient. A geometric random variable can thus

be sampled in expected time O(1 + log(1/p)
w poly log log(1/p)) which proves Theo-

rem 1.13. Despite its simplicity, to the best of our knowledge this approach has not
been formalized yet. Note that this approach does not, however, give linear running
time O(1 + log(1/p)/w).
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4.4. Geometric Random Variates

In this section, we prove the following two theorems from Section 1.7, i.e., a lower
bound for sampling geometric random variates and an algorithm matching the lower
bound.

Theorem 1.12. On a Word RAM, any algorithm sampling a geometric random
variate Geo(p) with parameter p ∈ (0, 1] has expected running time Ω(1+log(1/p)/w).

Theorem 1.14. On a Word RAM with word size w = Ω(log log(1/p)), a geometric
random variate Geo(p) with parameter p ∈ (0, 1] can be sampled in expected running
time O(1 + log(1/p)/w), which is optimal.

We assume that we can compute arbitrary precision floating point approximations
of the parameter p, as discussed in Section 4.1. In particular, we know an exponent
k with 2−k > p > 2−k−2.

We first prove that the expected output size is Θ(log(1/p)), which gives a lower
bound of Ω(1+log(1/p)/w) for the expected running time of any algorithm sampling
Geo(p) on the Word RAM since (at most) w bits can be processed in parallel. This
proves Theorem 1.12.

Lemma 4.3. For any p ∈ (0, 1], we have E[log(1 + Geo(p))] = Θ(log(1/p)), where
the lower bound holds for 1/p large enough.

Proof. For the upper bound we can use

E[log(1 + Geo(p))] 6 log(1 + E[Geo(p)]) = log(1/p).

For the lower bound we have

E[log(1 + Geo(p))] =
∞∑
i=1

log(i) · p(1− p)i−1

>
∞∑

i=d1/pe

log(i) · p(1− p)i−1

> p · log(1/p) ·
∞∑

i=d1/pe

(1− p)i−1

= p · log(1/p) · (1− p)d1/pe−1 · 1/p
> Ω(log(1/p)),

since e.g. for p 6 1/2 we have (1− p)d1/pe−1 > (1− p)1/p > (1− 1/2)2 = 1/4.

We now present an algorithm achieving this optimal expected running time. The
main trick is that we split up Geo(p) into Geo(p) div 2k and Geo(p) mod 2k. It is
easy to see that both parts are independent random variables. Now, Geo(p) div 2k

has constant expected value, so we can iteratively check whether it equals 0, 1, 2, . . ..
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On the other hand, Geo(p) mod 2k is sufficiently well approximated by the uniform
distribution over {0, . . . , 2k − 1}; the rejection method suffices for fast sampling.
These ideas are brought together in Algorithm 2.

Algorithm 2 GenGeo(p) samples Geo(p).

1: D ← 0
2: while Ber((1− p)2k) do
3: D ← D + 1

4: repeat

5: M
lazy←−− Uni(2k)

6: until Ber((1− p)M )
7: fill up M with random bits
8: return 2kD +M

Here, D represents Geo(p) div 2k, initialized to 0. It is increased by 1 as long as a

Bernoulli random variate Ber((1− p)2k) turns out to be 1. Then M , corresponding
to Geo(p) mod 2k, is chosen uniformly from the interval {0, . . . , 2k− 1}, but rejected
with probability (1 − p)M . We sample M lazily, i.e., a bit of M is sampled only
if needed by the test Ber((1 − p)M ). After we leave the loop, M is filled up with
random bits, so that we return the same value as if we had sampled M completely
inside of the second loop. The result is, naturally, 2kD +M .

We will next discuss correctness of this algorithm, describe the details of how to
implement it efficiently, and analyze its running time. We postpone the issue of
how to sample Ber((1 − p)n) to the end of this section. For the moment we will
just assume that this can be done in expected constant time, looking at the first
expected constant many bits of p and n.

Correctness Let n > 0. The probability of outputting n = 2kD + M should be
p(1 − p)n, i.e., it should be proportional to (1 − p)n. Following the algorithm step
by step we see that the probability is

(
(1− p)2k

)D · (1− (1− p)2k
)︸ ︷︷ ︸

first loop

·
∑
t>0

(
1−

2k−1∑
i=0

2−k(1− p)i
)t

2−k(1− p)M︸ ︷︷ ︸
second loop

,

where t is the number of iterations of the second loop; note that 2−k(1 − p)i is
the probability of outputting i in the first iteration of the second loop, so that∑2k−1

i=0 2−k(1− p)i is the probability of leaving the second loop after the first itera-
tion. Collecting the factors dependent on D and M we see that this probability is
proportional to (1− p)2kD+M = (1− p)n, showing correctness of the algorithm.

Implementation Details. We encode D and M as strings of words, which is the
easiest way of representing large integers. This way, incrementing the counter D
can be done in amortized constant time. Also, computing 2kD + M can be done
by shifting D by k and overwriting the last k bits of 2kD (which are all 0) with M
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(which is smaller than 2k), which has the cost of reading the output once. Note that
these operations can even be avoided, if we store D and M at the right positions in
a string of words right away.

Moreover, we want to sample M uniformly in the interval {0, . . . , 2k − 1}. This
can be done by generating dk/we uniformly random words and truncating the first
one to kmodw bits, in case w does not divide k. Thus, this can be done in time
O(1 + log(1/p)/w). However, for our purposes it actually makes more sense to
sample bits of M on demand: Sampling Ber((1−p)M ) requires an expected number
of O(1) bits of M , so we can sample these bits on demand, storing already sampled
bits, and filling up the rest of the bits of M after we leave the second loop. This has
the advantage that we sample a large number of random bits exactly once, not an
expected number of O(1) times, so that the running time of the algorithm is more
concentrated.

Running Time We show that the expected running time of Algorithm 2 is O(1+
log(1/p)/w). Again, assume that we can sample Ber((1− p)n) in expected constant
time. By the last section, incrementing the counter D can be done in amortized
constant time, and we only need an expected constant number of bits of M during
the second loop, after which we fill upM with random bits in timeO(1+log(1/p)/w).
Hence, if we show that the two loops run in expected constant time, then Algorithm 2
runs in expected time O(1 + log(1/p)/w).

We consider the probabilities of dropping out of the two loops. Since 2−k > p >
c2−k, for the first loop this is

1− (1− p)2k > 1− (1− p)c/p > 1− e−c, (4.1)

so we have constant probability to drop out of this loop in every iteration. Moreover,
the second loop terminates immediately if k = 0; otherwise we have

(1− p)M > (1− p)2k > (1− 2−k)2k > (1− 1/2)2 = 1/4, (4.2)

so for the second loop we also have constant probability of dropping out.

To show that each loop runs in expected constant time, let T be a random variable
denoting the number of iterations of the loop; note that E[T ] = O(1), since the
probability of dropping out of each loop is Ω(1). Furthermore, let Xi be the running
time of the i-th iteration of the loop; note that by assumption we can sample Ber((1−
p)n) in expected constant time, so that E[Xi | T > i] = O(1). The total running
time of the loop is X1+. . .+XT . Thus, the following lemma shows that the expected
running time of the loop is O(1). This finishes the proof of Theorem 1.14, aside from
sampling Ber((1− p)n).

Lemma 4.4. Let T be a random variable with values in N0 and Xi, i ∈ N, be
random variables with values in R; we assume no independence. Let α ∈ R with
E[Xi | T > i] 6 α for all i ∈ N. Then we have E[X1 + . . .+XT ] 6 α · E[T ].
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Proof. The variable Xi is part of the sum if and only if T > i. Hence, we have

E[X1 + . . .+XT ] =
∑
i>1

E[Xi | T > i] · Pr[T > i].

Using E[Xi | T > i] 6 α and the definition of E[T ], this yields

E[X1 + . . .+XT ] 6 α
∑
i>1

Pr[T > i] = α · E[T ].

We remark that the above lemma is an easy special case of Wald’s equation.
Note that the only points where this algorithm is using the Word RAM parallelism

are when we fill up M and when we compute with exponents. The generation
of Ber((1 − p)n), discussed in the remainder of this section, will use Word RAM
parallelism only for working with exponents. The filling of M can be done in time
O(1 + log(1/p)/w) as we assumed that we can generate random words in unit time.
Also note that given P processors, each one capable of performing Word RAM
operations, we can trivially further parallelize this algorithm to run in expected
time O

(
1 + log(1/p)

wP

)
.

Sampling Ber((1 − p)n) It is left to show how to sample a Bernoulli random
variable with parameter (1− p)n. We can use the fact that we know k with 2−k >
p > 2−k−2 and can approximate 2kp by pi, and that n ∈ N, n 6 2k. Note that we
can easily get an approximation ni of n of the form |2−kn−ni| 6 2−i in the situation
of Algorithm 2: In the first loop we have n = 2k, then simply pick ni = 1; in the
second loop n = M is uniform in {0, . . . , 2k − 1}, so that we get ni by determining
(i.e. flipping) the highest i bits of n. In this situation we can show the following
lemma.

Lemma 4.5. In the above situation for n = 2k or for uniformly random n in
{0, . . . , 2k − 1}, we can sample Ber((1− p)n) in expected constant time.

Recall that in Theorem 1.11 the only thing we need to efficiently sample Ber(q)
is to be able to compute an approximation qi of q with |q − qi| 6 2−i in time iO(1).
To get such an approximation for (1 − p)n, we make use of the binomial theorem

(1 − p)n =
∑n

j=0

(
n
j

)
(−p)j . Noting that

(
n
j

)
6 nj

j! and n 6 1/p, we see that the
j-th summand is absolutely bounded by 1/j!. Moreover, the absolute value of the
summands is monotonically decreasing in j, and their sign is (−1)j , implying∣∣∣∣ n∑

j=i+2

(
n

j

)
(−p)j

∣∣∣∣ 6 1/(i+ 2)! 6 2−i−1. (4.3)

Thus, by summing up only the first i + 2 summands we get a good approximation
of (1− p)n.

Moreover, we have

i+1∑
j=0

(
n

j

)
(−p)j =

1

(i+ 1)!

i+1∑
j=0

(−p)j
( i+1∏
h=j+1

h

) j−1∏
h=0

(n− h). (4.4)
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We will compute the right-hand side of this with working precision r. This means
that we work with floating point numbers, with an exact exponent encoded by
a string of words, and a mantissa which is a string of dr/we words. We get p
and n up to working precision r by plugging in 2−kpr and 2knr. Then we calculate
the numerator and denominator of the right-hand side independently with working
precision r. Note that adding or multiplying the floating point numbers takes time
O(poly(r)) for adding/multiplying the mantissas (even using the school method
for multiplication is fine for this), and O(1 + log(i)) for subtracting/adding the
exponents, as all exponents in equation (4.4) are absolutely bounded by O(poly(i)·k)
and k fits in O(1) words.

Regarding running time, noting that there are O(poly(i)) operations to carry out
in computing the right-hand side of equation (4.4), we see that we can compute the
latter with working precision r in time O(poly(r, i)). If we choose r large enough
so that this yields an approximation of equation (4.4) with absolute error at most
2−i−1, then combined with the error analysis from using only the first i + 2 terms
(equation (4.3)), we get a running time of O(poly(r, i)) to compute an approximation
of (1 − p)n with absolute error 2−i. Now, as long as we can choose r = poly(i),
this running time is small enough to use Theorem 1.11, since we only needed an
approximation of (1 − p)n with absolute error 2−i in time iO(1) for some ε > 0.
Under this assumption on r, we are done proving Lemma 4.5. The following lemma
shows that r = poly(i) is indeed sufficient.

Lemma 4.6. The absolute error of computing equation (4.4) with working precision
r = i+ α(1 + log(i)) is at most 2−i−1, for a large enough constant α.

Proof of Lemma 4.6. Consider computing a product c = a · b of floating point num-
bers. Note that we work with precision r, so already a and b should have some
relative error 1 + εa and 1 + εb relative to their correct values. Then what is
the relative error of c? We compute c to be the product of a and b rounded to
the next floating point number with precision r, so c has relative error at most
(1 + εa)(1 + εb)(1 + O(2−r)). As long as εa, εb 6 2−r/2 this product is less than
1 + εa + εb + O(2−r). Thus, computing a product like pj with working precision r
we get a relative error of 1 + O(j2−r), since we plugged in p with relative error at
most O(2−r). This assumes j 6 2r/2. Similarly, we get a relative error of O(i2−r)
for (i + 1)! and

∏i+1
h=j+1 h, assuming that i + 1 < 2r (so that each factor can be

represented exactly).

The subtraction n − h can be performed with relative error 1 + O(i2−r) if h 6
i+ 1 < 2r, since in this case the floating point representation of h is actually exact,
and the exponent of n−h can drop from the exponent of n by at most log(i). Thus,
the product

∏j−1
h=0(n− h) can be computed with relative error at most 1 +O(i22−r)

In general, for an addition c = a+ b we cannot hope for a relative approximation
of the resulting number c, at least not if a and b can have opposing signs. However,
if ea and eb are the exponents of a and b, we can hope for an approximation relative
to 2max{ea,eb}. So assume that we computed a and b with relative error 1 + εa,
1 + εb relative to some 2e

′
a > 2ea , 2e

′
b > 2eb . Then their sum will have relative

error at most 1 + εa + εb + O(2−r)) relative to 2max{e′a,e′b}. Observe that this is
sufficient for the sum of equation (4.4): Each summand is bounded by (i + 1)!, so
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we get approximations relative to 2e
′

= O((i + 1)!). Since we start with a relative
approximation error of 1 +O(i22−r) for each summand, this adds up to an error of
1 + O(i32−r) for the numerator, assuming i3 6 2r/2. Since this error is relative to
2e
′

= O((i+ 1)!), and the denominator is (i+ 1)!, we end up with an approximation
of equation (4.4) with absolute error at most O(i32−r). Thus, to get an absolute
error of at most 2−i−1 it suffices to set r = i+O(log(i)) with a large enough hidden
constant. Moreover, the above construction is explicit enough to allow for computing
the involved constants.

4.5. Bounded Geometric Random Variates

Generating a bounded geometric random variate Geo(p, n) in the obvious way,
min{n,Geo(p)}, takes expected time O(1 + log(1/p)/w). We show in this section
how to reduce the expected running time to O(1 + log(min{1/p, n})/w).

Theorem 1.16. On a Word RAM with word size w = Ω(log log(1/p)), a bounded
geometric random variate Geo(p, n) with parameters p ∈ (0, 1] and n ∈ N can be
sampled in expected running time O(1 + log(min{1/p, n})/w), which is optimal.

If p is a rational number with numerator and denominator fitting in O(1) words,
then our algorithm needs O(n) space in the worst case.

This is again optimal, as shown by the following theorem.

Theorem 1.15. On a Word RAM, any algorithm sampling a bounded geometric
random variate Geo(p, n) with parameters p ∈ (0, 1] and n ∈ N has expected running
time Ω(1 + log(min{1/p, n})/w).

Theorem 1.15 follows from Lemma 4.7 which bounds the expected output size.

Lemma 4.7. For any p ∈ (0, 1] and n ∈ N0, we have E[log(1 + Geo(p, n))] =
Θ(log(min{1/p, n+ 1})), where the lower bound holds for 1/p and n large enough.

Proof. We have

E[log(1 + Geo(p, n))] = log(n+ 1) · (1− p)n +
n−1∑
i=0

log(i+ 1) · p(1− p)i.

Thus, for n large enough and n 6 1/p, we have

E[log(1 + Geo(p, n))] > log(n+ 1) · (1− p)n

> log(n+ 1) · (1− 1/n)n

> log(n+ 1) · (1− 1/2)2 = Ω(log(n+ 1)).
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On the other hand, for 1/p large enough and 1/p < n, we have

E[log(1 + Geo(p, n))] >
b1/pc∑

i=b1/(2p)c

log(i+ 1) · p(1− p)i

> log(1/2p) p

b1/pc∑
i=b1/(2p)c

(1− p)i,

In this interval, (1 − p)i > (1 − p)1/p = Ω(1), and the interval is of length Ω(1/p),
yielding

E[log(1 + Geo(p, n))] = Ω(log(1/p)).

For the upper bound we may use

E[log(1 + Geo(p, n))] 6 log(1 + E[Geo(p, n)]).

As Geo(p, n) = min{n,Geo(p)}, we have

E[Geo(p, n)] 6 min{n,E[Geo(p)]} = min{n, 1/p− 1},

which finishes the proof.

Again we assume that we can compute arbitrary precision floating point approx-
imations of the parameter p, as discussed in Section 4.1. In particular, we know an
exponent k with 2−k > p > 2−k−2. Moreover, we assume that we are given n as a
string of words together with an exponent m with 2m > n = Ω(2m).

Algorithm 3 BoundedGeo(p, n) samples Geo(p, n).

1: D ← 0
2: while Ber((1− p)2k) do
3: D ← D + 1
4: if 2kD > 2m then return n

5: repeat

6: M
lazy←−− Uni(2k)

7: until Ber((1− p)M )
8: sample remaining bits of M (highest to lowest) until one of the bits is 1,
9: D and the current bits of M form a 2-approximation X of 2kD +M

10: if X > 2m then return n

11: fill up M with random bits
12: return min{n, 2kD +M}

We now slightly change Algorithm 2 and obtain Algorithm 3. Again, we sample
D = Geo(p) div 2k and M = Geo(p) mod 2k, the latter lazily as in Algorithm 2.
However, now we ensure that whenever we know that the output will be larger
than n, we exit and return n. To this end, we check after each incrementation of
D whether 2kD > 2m (note that this is a cheaper test than 2kD > n), returning
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n if true. Moreover, after having sampled D and exiting the second loop (so that
we have sampled some initial bits of M already), we sample more bits of M from
highest to lowest until we find a 1-bit, or until M is completely sampled. At this
point, we have a 2-approximation X of 2kD + M , since for a number N ∈ N with
highest bit j we have 2j 6 N < 2j+1. Since 2kD+M is at least X, we can return n
if X > 2m.

Correctness of this algorithm is clear, since Algorithm 2 was correct and we re-
turn n only if we are sure that the output will be at least n.

Implementation Details It is easy to argue that the tests 2kD > 2m and X >
2m+1 are implementable in constant time, again assuming that the exponents k and
m fit in O(1) words: We only have to know the highest bit j of the left hand side.
Then we have 2kD > 2m if and only if 2j > 2m, which is trivial to test. However,
the highest bit of the counter D is easy to remember, and we can remember the
highest bit of X during its construction.

We can also argue that computing min{n, Y }, with Y = 2kD+M , in the last step
of the algorithm works in time O(1 + log(Y )/w): First, we scan Y to determine its
exponent. If this is sufficiently smaller than m, we know that Y 6 n and return Y .
Otherwise, n is not much larger than Y , so we can afford to compare them and return
the minimum. Observe that at this point of the algorithm Y cannot be much larger
than n, otherwise we would have aborted and returned n earlier. In fact, we have
Y = O(min{n, Y }). Thus, the running time of this step is O(1 + log(1 + Y )/w) =
O(1 + log(1 + min{n, Y })/w), where min{n, Y } is the output. Thus, the second to
last line takes asymptotically only as much time as the return statement in the last
line.

Running Time Consider Algorithm 3 without the second to last line and without
the return statements. Observe that the remaining parts have an expected running
time of O(1), as shown by the analysis of Algorithm 2: The tests 2kD > 2m and X >
2m are one difference to Algorithm 2, but we argued that they can be implemented
in O(1) worst-case time. Another difference is the sampling of further bits of M
until we see the first 1-bit, but this clearly takes expected time O(1).

We also argued in the last section that the second-to-last line and the computation
of min{n, 2kD+M} can be done in the same asymptotic running time as returning
the result. Thus, the lines we did not consider so far take time O(1 + log(1 +Z)/w),
where Z is the returned value in this case. The expected value of any of the return
statements is thus bounded byO(1+E[log(1+Geo(p, n))]/w), which is itself bounded
by O(1 + log(min{n, 1/p})/w) by Lemma 4.7.

Space Usage Since Geo(p, n) is bounded, we could hope for a sampling algorithm
with bounded space usage, in contrast to Geo(p). In this section we show that
Algorithm 3 can be adapted to need O(n) words in the worst case. This is, of
course, possibly exponentially large in the input size, but it will help for generating
G(n, p)’s.

Again, we delay the discussion of the tests Ber((1−p)n). Observe that apart from
this, Algorithm 3 can be made to use O(1 + log(n)/w) words in the worst case: We
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have D 6 2m = O(n), otherwise we exit. Moreover, if we throw away initial 0 bits of
2kD+M in the process of computing X, we need only O(1) words in the worst case
for storing D and the initial bits of M when we arrive at X. At this point, either
we exit, or X < 2m, so that we have 2kD+M 6 2X 6 2m+2 = O(n), implying that
the remainder of the algorithm uses, again, only O(1+log(n)/w) words in the worst
case. This proves that Algorithm 3 has a space usage of O(1 + log(n)/w) words in
the worst case, apart from the tests Ber((1− p)n).

We cannot hope for the test Ber((1 − p)n) to run in bounded space if p is an
arbitrary real. However, we can achieve this if p is a rational with given numerator a
and denominator b fitting into a constant number of words:

Lemma 4.8. Let p be a given rational number with numerator and denominator
fitting in O(1) words, and let 2−k > p > 2−k−2. For n = 2k or for uniformly
random n in {0, . . . , 2k − 1}, we can sample Ber((1− p)n) using O(n) words in the
worst case. The algorithm runs in expected constant time using an expected constant
number of words.

Proof. To obtain a worst-case O(n) space bound, we can afford to compute and
store the numerator and denominator of (1 − p)n = (b − a)n/bn explicitly in O(n)
words (and O(poly(n)) time); call them A and B. We now show that Ber(A/B) can
be sampled using O(n) space in worst-case and expected time O(poly(n)). Later we
discuss how to reduce the expected time and space.

In order to sample Ber(A/B), we can take a random real number r ∈ [0, 1)
and return 1, if r 6 A/B and 0 otherwise, as usual. Such an r can be written
as
∑

i>1 bi2
−i with bi ∈ {0, 1} uniformly at random and independent. Let sk :=∑

i>k bi2
−i+k; sk is again a uniform random number in [0, 1). Then we have r = s0

and sk = 1
2(bk+1 + sk+1). Moreover, sk 6 A′/B, if and only if

sk+1 6
2A′ − bk+1B

B
.

Thus, we get a recursion for numerators Ak such that r 6 A/B if and only if
s0 6 A0/B if and only if sk 6 Ak/B. The recursion is A0 = A and Ak = 2Ak−1−bkB
for k > 1. Note that we are done with this test as soon as Ak/B < 0, since then
sk > 0 > Ak/B, or Ak/B > 1, since then sk 6 1 6 Ak/B. Also note that before
we are done, we always have 0 6 Ak 6 B, so we can store Ak/B using O(n) words.
Thus, this algorithm uses O(n) words in the worst case.

We show that this algorithm aborts after an expected number of O(1) incremen-
tations of k. Observe that we can solve the recursion to

Ak/B = 2kA/B − 2krk,

for any k > 0, where rk =
∑k

i=1 bi2
−i is an approximation of r by its first k bits.

Hence, we have Ak/B ∈ [0, 1] if and only if A/B− rk ∈ [0, 2−k], which can only hold
if A/B− r ∈ [−2−k, 2−k]. Since A/B is fixed, this happens with probability at most
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21−k. Thus, the expected running time of the algorithm is bounded by∑
k>1

O(poly(n, k)) · 21−k = O(poly(n)).

The above algorithm can be combined with the algorithm from Lemma 4.5: As
long as it needs O(n) storage we run the latter algorithm, but if we reach the point
where it would need more than n words, we switch to the new algorithm. This way
we have constant expected running time and space, while using O(n) words in the
worst case.

4.6. Generating Random Graphs

In this section we show that Erdős-Rényi and Chung-Lu random graphs can be
efficiently generated. For this we simply take the efficient generation on the Real
RAM from [71, 72] and replace the generation of bounded geometric variables by our
algorithm from the last section. This yields the following results from Section 1.7.

Theorem 1.17. On a Word RAM with word size w = Ω(log n), the Erdős-Rényi
random graph G(n, p) can be sampled in expected time O(n+m), where m = Θ(pn2)
is the expected number of edges. This is optimal if w = O(log n). If p is a rational
number with numerator and denominator fitting into O(1) words, then the worst-case
space complexity of our algorithm is asymptotically equal to the size of the output
graph, which is optimal.

Theorem 1.18. Let W = (W1, . . . ,Wn) be rationals with common denominator,
where all numerators and the common denominator fit into O(1) words. Then on
a Word RAM with word size w = Ω(log n), the Chung-Lu random graph G(n,W )
can be sampled in expected time Θ(n+m), where m is the expected number of edges.
This is optimal if w = O(log n). The worst-case space complexity of the algorithm
is asymptotically equal to the size of the output graph, which is optimal.

Consider the original efficient generation algorithm of Erdős-Rényi random graphs
described in [71], which is essentially the following. For each vertex u ∈ [n] we want
to sample its neighbors v ∈ [u − 1] in decreasing order. Defining v0 := u, the first
neighbor v1 of u is distributed as v1 ∼ v0 − 1 − Geo(p, v0 − 1), where the event
v1 = 0 represents that u has no neighbor. Then the next neighbor is distributed
as v2 ∼ v1 − 1 − Geo(p, v1 − 1) and so on. Sampling the graph in this way, we use
m + n bounded geometric variables, where m is the number of edges in the final
graph (which is a random variable).

In this algorithm we have to cope with indices of vertices, thus, it is natural to
assume w = Ω(log n). Under this assumption, all single operations of the original
algorithm can be performed in worst-case constant time on a Word RAM, except
for the generation of bounded geometric variables Geo(p, k), with k 6 n. The latter,
however, can be done in expected time O(1+log(min{n, 1/p})/w) = O(1) using our
algorithm from Theorem 1.16. Hence, the expected running time of the modified
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algorithm (with replaced sampling of bounded geometric variables) should be the
same as that of the original algorithm. To prove this, consider the running time the
modified algorithm spends on sampling bounded geometric variables. This random
variable can be written as X1 + . . .+XT , where T is a random variable denoting the
number of bounded geometric variables sampled by the algorithm, and Xi is the time
spent on sampling the i-th such variable. Note that E[Xi | T > i] = O(1). Thus, by
Lemma 4.4 we can bound E[X1 + . . .+XT ] by O(E[T ]). Since the original algorithm
spends time Ω(T ), the total expected running time of the modified algorithm is
asymptotically the same as the expected running time of the original algorithm,
O(n + pn2). This running time is optimal, as writing down a graph takes time
Ω(n+m) (each index needs Θ(1) words; this depends, however, on the representation
of the graph). Noting that the space requirements of the algorithm are met by
Theorem 1.16, this proves Theorem 1.17.

A similar result applies to Chung-Lu random graphs G(n,W ). Again we assume
w = Ω(log n). Let us further assume, for simplicity, that all given weights Wu, u ∈ V
are rational numbers with the same denominator, with each numerator and the
common denominator fitting in O(1) words. In this case, the sum S =

∑
u∈V Wu has

the same denominator as all Wu and numerator bounded by n times the numerator
of the largest Wu. Since w = Ω(log n), the numerator of S fits in O(1) more
words than used for the largest Wu. Hence, numerator and denominator of S fit in
O(1) words and can be computed in O(n) time. Moreover, the edge probabilities
pu,v = min{WuWv/S, 1} are also rationals with numerator and denominator fitting
in O(1) words that can be computed in constant time if S is available.

Carefully examining the efficient sampling algorithm for Chung-Lu random graphs,
Algorithm 2 of Miller and Hagberg [72], we see that now every step can be performed
in the same deterministic time bound as on a Real RAM, except for the generation
of bounded geometric variables and Bernoulli variables. Note that for any p ∈ (0, 1)
we have Ber(p) ∼ Geo(1− p, 1), so Theorem 1.16 shows that the bounded geometric
as well as the Bernoulli random variables can be sampled in expected constant time
and bounded space (for w = Ω(log n)). Thus, we can bound the expected running
time of the modified generation for Chung-Lu graphs analogously to the Erdős-Rényi
case, proving Theorem 1.18.

4.7. Binomial Random Variates

In this section we consider binomial random variates, more precisely, the number of
heads in a sequence of n coin flips.

Theorem 1.19. On the Word RAM with w = Ω(log n), a binomial random variable
Bin(n, 1

2) can be sampled in expected time O(1). Moreover, it can be sampled in a

running time that is larger than t > 0 with probability exp(−tΩ(1)).

We may assume that n is even, otherwise we split into Bin(n−1, 1
2)+Bin(1, 1

2) and
sample the latter in constant time. Thus, from now on we want to sample Bin(2n, 1

2)
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for some n ∈ N. We may also assume n > 2, otherwise we sample Bin(2n, 1
2) as a

sum of 2n random bits in constant time.

Upper bound for binomial coefficients. Let m ∈ N be an approximation of√
2n with m ∈ [

√
2n ,
√

2n + 3]. We obtain such an approximation by using any
(rough) approximation of the function

√
x , yielding m′ ∈ [

√
2n − 1,

√
2n + 1], and

considering m := dm′e+ 1.

Lemma 4.9. In the above situation we have for any k ∈ Z(
2n

n+ k ·m

)
6 22n 4

2|k|m
.

Proof. Since
(

2n
n+i

)
=
(

2n
n−i
)

we may assume k > 0. For 0 6 i 6 n, standard
calculations yield(

2n

n+ i

)/(
2n

n

)
=

i∏
j=1

n+ 1− j
n+ j

6
i∏

j=1

(
1− j

n+ 1

)

6 exp

− i∑
j=1

j

n+ 1

 = exp
(
− i(i+1)

2(n+1)

)
6 exp

(
− i2

2n

)
.

A well-known bound following from Stirling’s approximation is(
2n

n

)
6

22n

√
πn

,

so that we get (
2n

n+ i

)
6

22n

√
πn

exp
(
− i2

2n

)
.

For i = k ·m and m >
√

2n we have

exp
(
− i2

2n

)
6 exp(−k2) 6 21−k.

Finally, for m 6
√

2n + 3 and n > 2 we have
√
πn > m/2, which yields the

claim.

Partition Z into buckets of m consecutive numbers, Bk := {km, km+ 1, . . . , km+
m− 1} for k ∈ Z. Let

f(i) :=
4

2max{k,−k−1}m

for any i ∈ Bk, k ∈ Z. Moreover, set

p(i) :=

(
2n

n+ i

)
/22n,

with p(i) := 0 for |i| > n. Note that we have Pr[Bin(2n, 1
2) = n+ i] = p(i).
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Lemma 4.10. We have

1. f(i) > p(i) for all i ∈ Z and

2.
∑

i∈Z f(i) = 16.

Proof. The first statement follows from Lemma 4.9 and monotonicity of binomial
coefficients: For i ∈ Bk with k > 0 we have i > km so that

(
2n
n+i

)
6
(

2n
n+km

)
, which

yields p(i) 6
(

2n
n+km

)
/22n. Together with Lemma 4.9 this proves p(i) 6 f(i). For

k < 0 we argue similarly using i 6 (k + 1)m 6 0.
For the second statement we use symmetry of f around 0 and |Bk| = m to obtain∑

i<0

f(i) =
∑
i>0

f(i) =
∑
k>0

|Bk|
4

2km
= 4

∑
k>0

2−k = 8.

Note that the above Lemma implies that f(i) := f(i)/16 gives a probability
distribution.

Rejection sampling. We use rejection sampling with the function f to sample
from Bin(2n, 1

2) as follows. We first sample i ∈ Z with probability distribution f
(where f(i) = f(i)/16). Then we sample a Bernoulli random variate Ber(p(i)/f(i))
(which is 1 with probability p(i)/f(i)). If it turns out 1 then we return n + i and
are done. Otherwise we reject i, i.e., we throw away i and repeat the whole process.

1. Sample i ∈ Z with probability distribution f .

2. With probability p(i)/f(i): Return n+ i.

3. Otherwise: Reject i and goto 1.

Let us first argue about correctness and running time of this algorithm and then
fill in the details of how to implement steps 1 and 2. Note that the probability of
returning n+i in a particular iteration of this algorithm is f(i)· p(i)f(i) = p(i)/16. Thus,

the probability of returning n + i is proportional to p(i) = Pr[Bin(2n, 1
2) = n + i],

so that we have an exact sampling algorithm. Moreover, since p(i) is a probability
distribution we have

∑
i∈Z p(i)/16 = 1/16 = Ω(1). Hence, in every iteration the

stopping probability of the algorithm is constant, so that the expected number
of iterations of this algorithm is constant, and the number of iterations has an
exponential tail.

To implement step 1 of this algorithm, we first flip a random bit whether i > 0 or
i < 0 (making use of the fact

∑
i<0 f(i) =

∑
i>0 f(i)). Without loss of generality let

i > 0 so that f(i) = 4
2km

for i ∈ Bk, k > 0. The block Bk containing i is distributed
geometrically, so we can draw random bits X1, X2, . . . and let k > 0 maximal with
X1 = . . . = Xk = 1. Finally, we pick i uniformly at random in block Bk. This runs
in expected constant time (with exponential tail).

To implement step 2, we have to sample Ber(p(i)/f(i)) in expected constant time.
In general, to sample a Bernoulli random variate Ber(p) it suffices to be able to
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compute an additive 2−L-approximation of p in time LO(1) by Theorem 1.11. The
total running time of this is larger than t with probability exp(−tΩ(1)), as promised.

Note that since 0 6 p(i)/f(i) 6 1 it suffices to compute a relative 2−Ω(L)-
approximation of p(i)/f(i) in time LO(1).

Recall from Section 1.1.2 that on the Word RAM we can use floating-point ap-
proximations of reals by storing both mantissa and exponent as long integers. This
allows one to perform typical operations on two floating-point numbers with L-bit
mantissas and E-bit exponents in time O(1 + ((L + E)/w)O(1)). For the numbers
that we will consider, the exponents are O(L + log n)-bits numbers. If L 6 log(n)
the usual Word RAM assumption of w > Ω(log n) implies that we can compute with
these exponents in constant time. In any case, the running time for handling the
exponents is bounded by LO(1). For this reason, we will only discuss the mantissa
in the following.

Observe that once we have a floating-point approximation of p(i) with precision
2−Θ(L), we easily obtain a floating point approximation of p(i)/f(i) with precision
2−Θ(L), since f(i) is build of elementary functions. Moreover, to approximate p(i) =(

2n
n+i

)
/22n it suffices to be able to approximate factorials.

Hence, we are left with the following problem. Given n and L, compute a floating-
point approximation of n! with precision 2−L (i.e., with relative error 2−L). Note
that the standard Stirling’s approximation only allows one to approximate n! with
fixed precision (depending on n). Classic formulas that yield arbitrary precision ap-
proximations of n! are Lanczos approximation [94] and Spouge’s approximation [95].
A fixed precision version of the former is, for instance, implemented in the GNU Sci-
entific Library1. These classic formulas allow one to approximate n! up to precision
2−L in time LO(1). The only possible obstacle for us using these approximations is
that they are typically analyzed on the Real RAM model of computation, where we
can compute with real numbers in constant time and do not have to worry about
floating-point approximations. In the following we go through Spouge’s approxima-
tion to check that it indeed works on the Word RAM.

Spouge’s approximation [95] states that for any n,L ∈ N, L > 2,

n! ≈ (n+ L)n+1/2e−(n+L)

[
c0 +

L−1∑
k=1

ck
n+ k

]
,

where

c0 =
√

2π , ck =
(−1)k−1

(k − 1)!
(L− k)k−1/2eL−k,

with a relative error that is bounded by

L−1/2(2π)−(L+1/2) 6 2−L−1.

To evaluate this formula, it suffices to be able to compute (floating-point approxi-
mations of) π and the functions ex and

√
x . The standard algorithms for this also

work on the Word RAM.

1http://www.gnu.org/software/gsl/
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It remains to show that it suffices to compute all terms of the formula with pre-
cision 2−Θ(L) in order to obtain n! with precision 2−L = 2−L−1 + 2−L−1 (the error
from Spouge’s approximation plus the error of floating-point approximation). Note
that this requires an argument, since the terms ck/(n+ k) change in sign and could
cancel, making very high precision necessary. However, it is not hard to bound∣∣∣ ck

n+ k

∣∣∣ 6 2`1

with `1 = O(L). Moreover, using Spouge’s approximation guarantee and the easy
approximation n! = Θ((n/e)n+1/2) we obtain

c0 +
L−1∑
k=1

ck
n+ k

> (1− 2−L−1)
n!

(n+ L)n+1/2e−(n+L)
> 2−`2 ,

with `2 = O(L). Together, these inequalities show that `1 +`2 +C ·L = O(L) bits of
precision for a summand ck

n+k (or c0) yield a precision of C ·L bits relative to the sum

c0 +
∑L−1

k=1
ck
n+k . For C a sufficiently large constant, this precision suffices for the sum

to have a precision of L+ 1 bits so that we compute a relative 2−L−1-approximation
of n!, as desired. Since there are LO(1) terms in Spouge’s approximation, we obtain
a total running time of LO(1) to compute n! with precision 2−L. This finishes the
proof of Theorem 1.19.
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5Application: Sampling a
Model from Physics

This chapter is based on [5]. Improved algorithms with runtime o(n2) were inde-
pendently obtained by myself and the remaining authors. The final algorithm in the
paper improves upon both of our independent results. The work of writing the paper
was equally shared by Ueli Peter, Henning Thomas, and myself.

[5] K. Bringmann, F. Kuhn, K. Panagiotou, U. Peter, and H. Thomas. “In-
ternal DLA: Efficient Simulation of a Physical Growth Model.” In: Proc.
41th International Colloquium on Automata, Languages, and Programming
(ICALP’14). Vol. 8572. LNCS. 2014, 247–258.

In this chapter, we consider the internal diffusion limited aggregation (IDLA)
model from physics and present an improved algorithm to sample from this model.
Recall that IDLA is a random process defined as follows. IDLA places n particles
on the two-dimensional integer grid Z2. Let A(i) ⊂ Z2 denote the set of occupied
grid points after placing i particles. The first particle is placed on the origin, i.e.,
A(1) = {(0, 0)}. From there on, A(i + 1) is constructed from A(i) by adding the
first grid point in Z2 \A(i) that is reached by a random walk on Z2 starting at the
origin. Recall that we want to prove the following theorem.

Theorem 1.20. IDLA can be simulated in O(n log2 n) time and O(n1/2 log n) space,
both in expectation and with high probability.

As sketched in the introduction, see Section 1.8, we want to combine many steps
of the random walk to a single jump that we can perform quickly. We present a
general framework that utilizes jumps to efficiently simulate IDLA in Section 5.2.
Different jump procedures are discussed in Section 5.3, our best jump procedure
follows in Section 5.4. We close with a discussion of generalizations in Section 5.5.

5.1. Preliminaries

Notation For z = (x, y) ∈ Z2 we let |z| =
√
x2 + y2 be its 2-norm. For z ∈ Z2 and

r > 0 we define the ball with radius r around z as Bz(r) :=
{
w ∈ Z2 | |z − w| 6 r

}
.
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We write Γ(z) for the set of grid neighbors of z ∈ Z2, and for an arbitrary set
S ⊆ Z2 we write ∂S for the set of all position that can be reached from S, i.e.

∂S :=
{
z ∈ Z2 \ S | Γ(z) ∩ S 6= ∅

}
and S := S ∪ ∂S.

Whenever it is clear from the context, which particle we are simulating, we will
write A for A(i). For an IDLA shape A let rI = rI(A) and rO = rO(A) be its in-
and outradius (rounded for technical reasons), i.e.,

rI :=
⌊

minx∈Z2\A |x|
⌋

and rO :=
⌊

maxx∈A |x|
⌋

+ 1.

Moreover, we say that B0(rI) is the in- and B0(rO) the out-circle of A.

The Shape of IDLA Recently, Jerison, Levine and Sheffield proved a long open
conjecture which stated that A(n) = B0(

√
n/π )±O(log n) with high probability.

Theorem 5.1 (Theorem 1 in [83]). For every γ > 0 exists a constant α = α(γ) <∞
such that for sufficiently large r

Pr
[
B0(r − α log r) ⊂ A(bπr2c) ⊂ B0(r + α log r)

]
> 1− r−γ . (5.1)

Additionally using rO 6 n, this theorem implies that rO − rI = O(log n), both in
expectation and with high probability.

Drift Analysis Let Ω be some state space, Yk ∈ Ω (k ∈ N) a stochastic process
and g : Ω→ R>0 a function on Yk. Let the hitting time τ be the smallest k such that
g(Yk) = 0. We say that g(Yk) has an additive drift of at least ε if for all 0 6 k < τ

E [g(Yk+1)− g(Yk) | Yk] < −ε. (5.2)

The following theorem bounds the expected hitting time by the inverse of the addi-
tive drift.

Theorem 5.2 ([96]). In the situation of this paragraph we have E[τ ] 6 g(Y0)
ε .

5.1.1. Random Walks on Z and Z2

Let z = z0, z1, z2, . . . be a random walk starting in z ∈ Z2. Here, we always consider
the standard random walk on Z2 that chooses each adjacent grid point with proba-
bility 1/4. We write RWT (z) = zT for the outcome of a random walk of length T
starting in z and abbreviate RWT (0) = RWT . Note that RWT (z) ∼ z + RWT .

We also reach each adjacent grid point with probability 1/4 by flipping two coins
c1, c2 ∈ {1,−1} and choosing the next position to be

z + c1 · (1/2, 1/2) + c2 · (−1/2, 1/2).

This yields the following reformulation of a 2-dimensional random walk as a linear
combination of two independent 1-dimensional random walks.
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Lemma 5.3. Let z ∈ Z2 and T ∈ N. Let ST be the sum of T independent uniform
{1,−1} random variables, ST ∼ 2 Bin(T, 1/2) − T , and let X,Y be independent
copies of ST . Then

RWT (z) ∼ z +X · (1/2, 1/2) + Y · (1/2,−1/2).

In particular, the above lemma allows us to quickly sample RWT (z), even on a
Word RAM, since we presented an algorithm for sampling binomial random variables
in Section 4.7 (confer Theorem 1.19).

Lemma 5.4. For any T 6 nO(1) and z ∈ Z2, we can sample RWT (z) in expected
time O(1). Moreover, our algorithm has a running time that is larger than t > 0
with probability exp(−tΩ(1)).

We remark that Lemma 5.4 implies that m samples from Bin(T, 1
2) take total time

O(m), both in expectation and with high probability in m (we will show the latter
in Lemma 5.12).

Note that our random walks are “bipartite” in the sense that in even time steps
one can reach only the “even” positions of the grid {(x, y) ∈ Z2 | x+y ≡ 0 (mod 2)},
and similarly for odd time steps. We write z≡T x if z can be reached from x by a
walk of length ` ∈ N with ` ≡ T (mod 2).

In the remainder of this section, we present several easy or known facts about
random walks that are used throughout this chapter. For some of these facts we
need explicit constants in the error terms. Thus, although variants incorporating O-
notation could be found, e.g, in [97], we need to reprove them with explicit constants.

First, we need bounds for the probability of RWT to end up in a particular point
z ∈ Z2. A proof of this statement amounts to Stirling’s approximation on binomial
coefficients with explicitly bounding the error term constants.

Lemma 5.5. Let T ∈ N and z ∈ Z2 with |z| 6 1
2T and z ≡T (0, 0). Then we have

Pr[RWT = z] 6
2

T
exp

(
− |z|

2

2T

(
1− 2|z|

T

))
,

Pr[RWT = z] >
1

3T
exp

(
− |z|

2

2T

(
1 +
|z|
T

))
.

Proof. Let z = x · (1/2, 1/2) + y · (1/2,−1/2). Without loss of generality we can
assume that x, y > 0. With the notation of Lemma 5.3 we have

Pr[RWT = z] = Pr[X = x] · Pr[Y = y].

Counting the number of paths on Z from 0 to x (or y) yields

Pr[RWT = z] = 2−T
(
T
T+x

2

)
· 2−T

(
T
T+y

2

)
. (5.3)

Using Stirling’s approximation

n! = r1

√
2πn

(n
e

)n
with 1 6 r1 6 1.1
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yields after some simplifications

2−T
(
T
T+x

2

)
= r2

√
2T

π(T 2 − x2)

(
1− x2

T 2

)−T/2(
1 +

x

T

)−x/2(
1− x

T

)x/2
,

with (1.1)−2 6 r2 6 1.1. Note that by assumption x, y 6 |z| 6 T/2. This allows us
to bound T 2 > T 2 − x2 > 3

4T
2. Furthermore, for a > −1

2 we have exp(a(1 − a)) 6
1 + a 6 exp(a). Together we get

2−T
(
T
T+x

2

)
6 1.1

√
8

3πT
exp

(
x2

2T

(
1 +

x2

T 2

)
− x2

2T

(
1− x

T

)
− x2

2T

)
6 1.1

√
8

3πT
exp

(
− x2

2T

(
1− 2x

T

))
,

and, analogously,

2−T
(
T
T+x

2

)
> (1.1)−2

√
2

πT
exp

(
− x2

2T

(
1 +

x

T

))
.

Plugging this into equation (5.3), using |z|2 = x2 + y2 and x3 + y3 6 (x2 + y2)3/2 =
|z|3, and rounding the factors, in total we obtain

Pr[RWT = z] 6 (1.1)2 8

3πT
exp

(
− x2 + y2

2T
+
x3 + y3

T 2

)
6

2

T
exp

(
− |z|

2

2T

(
1− 2|z|

T

))
,

and, analogously,

Pr[RWT = z] >
1

3T
exp

(
− |z|

2

2T

(
1 +
|z|
T

))
.

Second, the outcome of a one-dimensional random walk of length T has standard
deviation Θ(

√
T ). Intuitively, this implies that with at least constant probability

the two-dimensional random walk RWT is further than
√
T away from the origin.

Moreover, in any direction ξ the expected jump length is large, as shown by the
following lemma.

Lemma 5.6. For any T ∈ N we have Pr[|RWT | >
√
T ] > Ω(1).

Moreover, let τ be a symmetric stopping time, i.e., for all z ∈ Z2 we have
Pr[RWτ = z] = Pr[RWτ = z′] where z′ is obtained from z by rotating it by 90◦.
Then for any ξ ∈ R2 with |ξ| = 1 and any T ∈ N we have

E[|ξ ·RWτ |] = Ω(Pr[|RWτ | >
√
T ] ·
√
T ).

Proof. For any small constant T the claim clearly holds. In the remaining cases we
proceed as follows. For any d > 1 the slice S := {z ∈ Z2 | d 6 |z| < 2d} contains
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Ω(d2) grid points. Using Lemma 5.5 this yields

Pr[RWT > d] > Pr[RWT ∈ S] > Ω

(
d2

T
exp

(
−(2d)2

2T

(
1 +

2d

T

)))
.

For d =
√
T the right hand side is Ω(1).

For the second statement, let w1, . . . , w4 be symmetric points around the origin,
i.e., w1, . . . , w4 form a square with midpoint the origin. Then there is a point wi
which forms an angle of at most 45 degrees with ξ, so that we have |ξ ·wi| = Ω(|wi|).
Thus, we have

4∑
i=1

|ξ · wi| = Ω(|wi|) = Ω

( 4∑
i=1

|wi|
)
.

As the stopping time is symmetric, we can use the above symmetry argument as
follows,

E[|ξ ·RWτ |] =
∑
w∈Z2

Pr[RWτ = w] · |ξ · w| =
∑
w∈Z2

Pr[RWτ = w] · Ω(|w|).

A rough upper bound now yields the claim,

E[|ξ ·RWτ |] > Ω

( ∑
w∈Z2

|w|>
√
T

Pr[RWτ = w] ·
√
T

)
= Ω

(
Pr[|RWτ | >

√
T ] ·
√
T
)
.

Finally, the Chernoff bound yields a tail bound for the probability of RWT to end
up too far away from the origin. Together with the reflection principle (see [97]) this
yields a tail bound for the probability of being too far away from the origin at any
time 0 6 t 6 T .

Lemma 5.7. For any T, k ∈ N we have

Pr[|RWT | > k] 6 4e−
k2

2T .

Moreover, let 0 = z0, z1, . . . be a random walk and set τ := mint>0{|zt| > k}. Then

Pr[τ 6 T ] 6 8e−
k2

2T .

Proof. Let X1, X2, . . . be independent copies of a uniform {1,−1} random vari-
able and let Si :=

∑i
j=1Xi. By Lemma 5.3 we have RWT ∼ X · (1/2, 1/2) +

Y · (1/2,−1/2), where X,Y are independent copies of ST . Since |RWT | = (X2 +
Y 2)1/2/

√
2 , if |RWT | > k then in particular one of |X| and |Y | is larger than k.

Hence, we have

Pr[|RWT | > k] 6 2 Pr[|ST | > k] = 2 Pr[|Bin(T, 1/2)− T/2| > k/2].
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With a Chernoff bound we obtain

Pr[|RWT | > k] 6 4e−
k2

2T .

The second claim now follows from the reflection principle (see [97]) which states
that

Pr[τ > T ] 6 2 Pr[|RWT | > k].

5.2. A General Framework

The main idea of our algorithms is to combine many steps of a particle’s random
walk to a jump as long as the current particle n+ 1 is in the in-circle of A = A(n).
In this section, we first formalize the notion of a jump. After that we provide a
framework that yields an IDLA simulation algorithm for any given jump procedure.
Throughout this chapter, a step refers to a single step in a particle’s random walk
and a jump refers to several steps at once.

5.2.1. The Concept of a Jump

Ideally, a jump does multiple steps of a random walk at once to save the effort of
simulating every single step. Jumps should be concatenable to form longer portions
of a random walk. More formally, let z = z0, z1, . . . be a random walk starting in
z and τ = τ(A, z) a stopping time of this random walk. Then z 7→ zτ defines a
jump procedure, and the concatenation of two such jumps is again the outcome of a
random walk at a certain stopping time. This concatenation property allows us to
add up jumps until we finally hit the boundary ∂A. A jump should make at least
one single step of the random walk in order to have guaranteed progress, i.e., we
require τ > 1 (with probability 1). Moreover, in order to have a correct simulation
of IDLA, jumps must stop at the latest when the random walk leaves A, since then
the particle’s simulation is complete. Additionally, all jump procedures considered
in this chapter are symmetric around z.

There are two important goals for the design of a jump procedure. First, the
(expected) running time to compute the outcome of a jump should be as small as
possible. In particular, it should be faster than simulating the random walk step-
by-step. Second, intuitively a jump should be the combination of as many single
steps as possible. This can be formalized by requiring the expected jumping distance
to be large. The following definition captures this concept of a jump.

Definition 5.8. A jump procedure is a randomized algorithm J with input (an
IDLA structure) A ⊂ Z2 and a point z ∈ A and output J(A, z) = zτ , where z =
z0, z1, . . . is a random walk and τ = τJ(A, z) is any stopping time. We require the
jump to make at least one single step of a random walk and to stop at the latest
when leaving A for the first time, i.e., Pr[1 6 τ 6 τ∂A] = 1, where τ∂A = min{t |
zt ∈ ∂A} is the hitting time of ∂A. Additionally, J shall be symmetric around z,
i.e., Pr[J(A, z) = z + w] = Pr[J(A, z) = z − w] for all w ∈ Z2.
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We say that J has running time bound tJ = tJ(n) if J(A, z) has running time TJ
with Pr[TJ > k tJ ] 6 O(k−c) for any k > 0 and a sufficiently large constant c > 0
(where Pr goes over the internal randomness of J). In particular, J(A, z) needs
expected time O(tJ). Moreover, we define the expected jumping distance as

∆J(A, z) := min|ξ|=1 E[|ξ · (J(A, z)− z)|].

When A is clear from the context we also write J(z) for J(A, z).

5.2.2. From Jumps to IDLA

Any jump procedure can be iterated to find the point where the random walk first
leaves the IDLA structure A. Let z0 := (0, 0) and zi+1 := J(A, zi), for every i =
0, 1, 2, . . . as long as zi is still in A. Moreover, let τ∗ = τ∗(J,A) := min{i | zi ∈ ∂A}
and J∗ = J∗(A) := zτ∗ . Note that since J is a randomized algorithm, J∗ and τ∗

are random variables. Clearly, J∗ is distributed exactly as the endpoint of an IDLA
particle. This way, any jump procedure gives rise to a simulation algorithm for
IDLA.

The following theorem gives an upper bound on the running time of an IDLA
simulation with jump procedure J .

Theorem 5.9. Let J be a jump procedure with running time bound tJ . Let ∆J be
its expected jumping distance, cJ > 0 some constant, BI := B0(rI − cJ lnn), set

δJ(A) := maxz∈BI
rO − |z|
∆J(A, z)

,

and assume that for some δJ = δJ(n) we have δJ(A) 6 δJ in expectation and with
high probability (over the randomness of A = A(n)). Then we can construct an
algorithm for simulating IDLA with running time

O(n · tJ · log n · (δ2
J + log n))

and space usage1 O(n1/2 log n), both in expectation and with high probability.

To see that O(n1/2 log n) bits are sufficient (in expectation) to store A(n), note
that by Theorem 5.1 we have with high probability B0(

√
n − O(log n)) ⊆ A(n) ⊆

B0(
√
n+O(log n)), andB0(

√
n+O(log n))\B0(

√
n−O(log n)) containsO(n1/2 log n)

grid cells, for each of which we can store whether it is occupied in 1 bit.

In Section 5.4 we present a jump procedure with tJ = O(1) and δ
2
J = O(log n),

and thereby provide a proof for Theorem 1.20.

In the remainder of this section we prove Theorem 5.9. First, in Section 5.2.3
we analyze the expected number of jumps that we need to simulate. Then, in Sec-
tion 5.2.4, we describe and analyze our data structures and finally, in Section 5.2.5,
we combine everything to prove Theorem 5.9.

1Not including the space used by the jump function.
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5.2.3. Number of Jumps

To bound the expected running time of the simulation of a particle using a jump
procedure J , we only have to bound the hitting time τ∗ of ∂A. The following lemma
provides such a bound.

Lemma 5.10. With the notation of Section 5.2.2, for any IDLA structure A and
k > 0 we have Pr[τ∗ > k (δ2

J(A) log n+ (rO − rI + log n)2)] 6 exp(−Ω(k)).

In particular, we have E[τ∗] 6 O
(
δ2
J(A) log n+ (rO − rI + log n)2

)
.

Proof. Consider again the stochastic process z0 = (0, 0), and zk+1 = J(A, zk) for
k > 0. Set σ :=

√
2 (rO − rI + cJ lnn). We analyze this process in phases. The

process starts in phase 1 and changes to phase 2 the first time it reaches a position
zk 6∈ BI . For the next σ2 jumps the process stays in phase 2. After that it returns
to phase 1, except if we are again outside BI , then we directly start another phase
2. This repeats until we hit ∂A. For these phases we prove the following.

(1) Starting phase 1 anywhere in BI , we stay in phase 1 for at most O(δ2
J(A) log n)

jumps in expectation.

(2) Starting phase 2 anywhere outside BI , the probability of hitting ∂A before the
end of the phase is Ω(1).

Using Markov’s inequality, (1) implies that after at most O(δ2
J(A) log n) jumps we

leave phase 1 with probability Ω(1). Together with (2) we obtain that, wherever we
start, within O(δ2

J(A) log n + σ2) jumps we hit ∂A with probability Ω(1). Hence,
within O(k(δ2

J(A) log n + σ2)) jumps we hit ∂A with probability 1 − exp(−Ω(k)),
yielding both expectation and concentration of the hitting time.

We first prove (2). Assume that phase 2 starts in zk 6∈ BI . We show that with
probability Ω(1) the random walk hits ∂A within the next σ2 steps; since each jump
consists of at least one step this proves the claim. Consider the boundary of a ball
with radius σ around zk, S := Bzk(σ). By Lemma 5.6, starting in zk we hit S in
σ2 steps with constant probability. Note that at least a quarter of S lies outside A
(even outside B0(rO)), specifically the set S′ := {x ∈ S | ^(zk, x − zk) ∈ [−π

4 ,
π
4 ]},

i.e., the set of points x ∈ S such that the angle between zk and x − zk is at most
π/4. This is because any such point has a distance to (0, 0) of

|x| > x · zk
|zk|

= |zk|+
(x− zk) · zk
|zk|

> |zk|+
1√
2
|x− zk|

> (rI − cJ lnn) + (rO − rI + cJ lnn) = rO.

By symmetry of the random walk, we not only hit S, but even hit S′ in σ2 steps
with constant probability. This means, however, that within σ2 steps we leave A
with constant probability, proving the claim.

To show (1) we apply additive drift analysis to prove that the stochastic process
z0, z1, . . . , zτ (for z0 ∈ BI and τ := min {k | zk /∈ BI}) has an expected hitting time
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as claimed. In order to apply Theorem 5.2 we need a suitable distance function
g : Z2 → R>0. We let

g(z) :=

{
ln(rO + 2− |z|), z ∈ BI
0, z ∈ Z2 \BI .

In the following we will show that g has an additive drift of minz∈BI
(∆J (A,z))2

2(rO+2−|z|)2 for

all 0 6 k < τ , i.e., for any zk ∈ BI

E [g(zk+1)− g(zk) | zk] 6 −minz∈BI
(∆J(A, z))2

2(rO + 2− |z|)2
. (5.4)

Applying Theorem 5.2 together with g(z) 6 O(log n) then yields an expected hitting
time of Z2 \BI of O(δ2

J(A) log n).

Whenever zk ∈ A we know that zk+1 ∈ A ⊆ B0(rO+1). In this case we can bound
g(zk+1) 6 ln(rO + 2 − |zk+1|). To shorten notation we let L(x) := ln(rO + 2 − x)
for any x ∈ R in the remainder of this proof. Hence, the expectation of g(zk+1)
conditioned on zk, zk ∈ BI , is at most2

∑
x∈Z2

Pr [zk+1 = x | zk] · L(|x|) 6
∑
x∈Z2

Pr [zk+1 = x | zk] · L
(
x
zk
|zk|

)
,

since the length of the projection of x is bounded by |x| in any direction. Using the
transformation yx := x − zk and the symmetry of jump procedures we can rewrite
this as∑

x∈Z2

Pr [zk+1 = x|zk] · L
(
|zk| − yx

zk
|zk|

)
=

1

2

∑
x∈Z2

Pr [zk+1 = x|zk] ·
(
L

(
|zk| − yx

zk
|zz|

)
+ L

(
|zk|+ yx

zk
|zk|

))
, (5.5)

where |yx zk
|zk| | 6 rO + 1− |zk| for all x with Pr [zk+1 = x|zk] > 0.

Now we use the following estimate that holds for any a, b ∈ R with a > 0 and
|b| 6 a:

ln(a+ b) + ln(a− b) 6 2 ln(a)− b2

a2
. (5.6)

Combining (5.5) and (5.6) yields

E [g(zk+1)|zk] 6
1

2

∑
x∈Z2

Pr [zk+1 = x|zk] ·
(

2L(|zk|)−
(yx · zk/|zk|)2

(rO + 2− |zk|)2

)
,

2Here, we define the corresponding summand to be 0 whenever the ln is undefined.
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which we further bound as

E [g(zk+1)|zk] 6 g(zk)−
E
[
(yzk+1

· zk/|zk|)2
∣∣zk]

2(rO + 2− |zk|)2
= g(zk)−

E
[
|(zk+1 − zk) zk

|zk| |
2
∣∣∣zk]

2(rO + 2− |zk|)2

6 g(zk)−
E
[
|(zk+1 − zk) zk

|zk| |
∣∣∣zk]2

2(rO + 2− |zk|)2
(5.7)

where the last inequality follows from Jensen’s inequality. Considering the definition
of the expected jumping distance ∆J (Definition 5.8) with ξ = zk

|zk| we obtain

E [g(zk+1)|zk] 6 g(zk)−
(∆J(A, zk))

2

2(rO + 2− |zk|)2

which proves the drift inequality (5.4) and, thus, the lemma.

5.2.4. Data Structure

Jump procedures need access to the IDLA structure A = A(n) in some way. In this
section we describe a data structure for storing A that fits the needs of our jump
procedures.

The most natural solution for storing the shape of A is a 2n × 2n matrix in
which each element contains the information whether the corresponding position
is occupied. The size of this matrix is Θ(n2) and already its initialization would
therefore exceed our desired running time. As we have rO− rI = O(log n) with high
probability, an O(

√
n )×O(

√
n ) matrix is sufficient (in most simulations). However,

in this case A contains the whole center B0(rI), so most of the information stored
in the matrix is still redundant.

To save space we split the grid in slices S0, S1, . . ., where slice Si contains all z ∈ Z2

with i 6 |z| < i+ 1. We store rI and rO, as well as A ∩ Si for all rI 6 i < rO. This
is sufficient information to reconstruct A, as A ∩ Si = Si for i < rI and A ∩ Si = ∅
for i > rO.

We would like to store each set A ∩ Si by a bit array, however, the natural index
set Si is not a range of integers. As a workaround, we first construct a perfect hash
function hi : Si → [ni] to map Si to a range of integers of length ni = O(|Si|) = O(i)
without collision. See, e.g., [98] for a construction of a perfect hash function with
O(ni) construction time, O(ni) space usage andO(1) evaluation time3. Additionally,
we store a bit array Bi[1..ni] with Bi[hi(z)] = [z ∈ A], i.e., for each z ∈ Si the bit
Bi[hi(z)] stores whether z is in A. In total this yields O(1) time to access/modify
[z ∈ A] with space requirement O(i). Note the similarities to storing a bit array for
A ∩ Si, only that this is not directly possible.

To allow for efficient updates of our data structure after placing a particle, we also
store |Si| and |A ∩ Si| for each rI 6 i < rO. Then whenever a new grid point z is
occupied (in slice Si), we do the following. If slice Si is not yet built, i.e., if rO was

3We remark that it is an easy exercise to explicitly construct a perfect hash function in our
situation, simply based on the angles of the grid points inside a slice.
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at most i, then we increase rO and initialize the data structure for A ∩ Si = {z}.
Specifically, we enumerate Si, compute |Si| and |A ∩ Si| = |{z}| = 1, build the
perfect hash function hi and initialize the bit array Bi. Otherwise, if the slice Si
was already built, then we simply update Bi[hi(z)] := 1 and |A∩Si|. Whenever the
slice SrI becomes full (i.e., |A ∩ SrI | = |SrI |) we trash everything we stored for this
slice (hrI , BrI , |SrI |, |A ∩ SrI |) and increase rI . We repeat this as long as SrI is full.
This way we satisfy an invariant of SrI being the innermost non-full slice and SrO
being the lowest empty slice. In particular, rI and rO are always the correct in- and
out-radius.

It is not hard to see that, when starting from the empty set, the updates of our
data structure take time O(r2

O) in total, and that it uses O(rO(rO − rI)) bits of
space. Since rO − rI (and, thus, also rO) is bounded both in expectation and with
high probability, we get the following lemma.

Lemma 5.11. We can construct a data structure for A that allows to

• query rI and rO in O(1) time,

• check z ∈ A in O(1) time, and

• add z ∈ Z2 to A.

Adding the n particles of an IDLA simulation one-by-one to this data structure
overall needs O(n) time and O(n1/2 log(n)) space, both in expectation and with high
probability.

5.2.5. Proof of Theorem 5.9

Theorem 5.9 is a consequence of Theorem 5.1, Lemma 5.10 and Lemma 5.11.

Proof of Theorem 5.9. We simulate the first
√
n particles in the naive step-by-step

way in expected time O(n). For all the remaining particles we use the jump proce-
dure. Since Theorem 5.1 together with rO 6 n implies E[(rO − rI)2] 6 O(log2 n),

we can read off Lemma 5.10 an expected number of jumps of O(log n(δ
2
J + log n)),

yielding an expected time of O(tJ log n(δ
2
J + log n)) to simulate the i-th particle.

Adding the running time of our data structure (Lemma 5.11), in total over all par-
ticles we obtain an expected time as claimed. Lemma 5.11 also directly implies the
statement about space usage.

Arguing about the concentration of the running time requires some more work.
Note that rO − rI = O(log n) for all

√
n < i 6 n with high probability. If this is

the case then the number of jumps needed for particle
√
n < i 6 n is more than

k log n(δ
2
J + log n) with probability exp(−Ω(k)) by Lemma 5.10. By the following

lemma, the total number of jumps for all these particles is O(n log n(δ
2
J+log n)) with

high probability. Moreover, the running time of the jump procedure is larger than
k tJ with probability at most O(k−c), therefore the following lemma shows that these

O(n log n(δ
2
J + log n)) jumps in total take time O(tJn log n(δ

2
J + log n)) also with

high probability. In total, the claimed running time O(tJn log n(δ
2
J + log n)) also
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holds with high probability for the particles
√
n < i 6 n. For the naive simulation

of the first
√
n particles we are in a similar situation. With high probability A(i)

is contained in B0(O(n1/4)) for all 1 6 i 6
√
n (Theorem 5.1). If this is the case,

then the simulation of one of the first
√
n particles takes time larger than k

√
n

with probability exp(−Ω(k)) for any k > 1, since after each block of Θ(
√
n ) steps

we leave the ball with radius Θ(n1/4) with constant probability (Lemma 5.6). Again
using the following lemma, we obtain that this naive simulation takes time O(n) in
total with high probability, finishing the proof.

Lemma 5.12. Let X1, . . . , Xm be independent positive random variables with Pr[Xi >
kv] 6 O(k−c) for some v > 0, constant c > 0, and all k > 1. Then we have

m∑
i=1

Xi 6 O(mv)

with probability at least 1−O(m−(c/3−1)).

Proof. Without loss of generality we can assume v = 1. Assume that all Xi are
at most M > 0 to be fixed later. By a union bound this happens with probability
at least 1 − O(mM−c). This assumption means that we instead consider bounded
random variables Yi with Pr[Yi 6 k] = Pr[Xi 6 k]/Pr[Xi 6 M ] for any k 6 M .
Using the Azuma-Hoeffding bound (see, e.g., [99, Chapter 5]) we obtain

Pr
[ m∑
i=1

(Yi − E[Yi]) > t
]
6 exp

(
−t2

2mM2

)
.

Hence, for sufficiently large constant α > 0 we have

Pr
[ m∑
i=1

Yi > αm
]
6 exp(−Ω(m/M2)),

and in total we get

Pr
[ m∑
i=1

Xi > αm
]
6 exp(−Ω(m/M2)) +O(mM−c).

Choosing M = m1/3 this error is O(m−(c/3−1)) as claimed.

5.3. Implementing Jumps

Here, we discuss two approaches for jump procedures. In Section 5.3.1, we ana-
lyze jumps that combine d steps, where d is the current distance of the particle to
the boundary of the in-circle. In Section 5.3.2 we discuss jumping directly to the
boundary of a bounding circle. Note that we present our best jump procedure in
Section 5.4.
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5.3.1. Time Jumps

Observe that, starting at some point z in the in-circle, a random walk cannot leave
A(n) within rI(A) − |z| steps. Building on this observation, the time jump Jtime

simply simulates rI(A) − |z| steps of a random walk at once, i.e., Jtime(z) = RWτ

with τ = τ(A, z) := max{brI(A)− |z|c, 1}.
Clearly, this is a stopping time and Jtime is symmetric. Since in this number of

steps we cannot leave A(n), we also have Pr[1 6 τ 6 τ∂A] = 1. For the expected
jumping distance, Lemma 5.6 yields a bound of ∆Jtime(z) > Ω(

√
max{rI − |z|, 1} ),

This is not very much: When the initial distance to the in-circle is Θ(n1/2), the
first jump has expected length only Θ(n1/4). However, Jjump can be computed
efficiently with running time bound tJtime = O(1), since we can sample RWτ in
expected constant time by Lemma 5.4. Note that in order to determine τ we need
to keep track of rI at all times, but this is done by our data structure for A(n) (see
Lemma 5.11). Plugging Jtime into Theorem 5.9 yields the following result. Note
that this is already faster than the naive simulation.

Corollary 5.13. Using time jumps we can simulate IDLA in O(n3/2 log n) time
and O(n1/2 log n) space, both in expectation and with high probability.

5.3.2. Shape Jumps

Alternatively, we take some shape S (think of a ball or square) around the particle’s
current position and directly jump to the first position where the particle leaves the
shape S. More precisely, let S ⊆ Bz(rI−|z|) (symmetric around z). Then S ⊆ A, so
we leave A after leaving S. Thus, a valid jump is to directly sample Jshape(z) := zτ∂S ,
where τ∂S is the hitting time of ∂S of a random walk z0 = z, z1, z2, . . .. Once the
particle is outside B0(rI) we just make single steps, i.e., Jshape(z) := z1.

The expected jumping distance of a shape jump is automatically very large, if
Bz(d) ⊆ S then ∆Jshape(z) = Ω(d). The crux lies in efficiently sampling Jshape(z).
For this we precompute the probabilities PS(w) := Pr[Jshape(z) = w] for all w ∈ ∂S.
After this precomputation we can sample Jshape(z) in constant time. In the following
we sketch the details of this.

For any v ∈ S and w ∈ ∂S let PS(w, v) be the probability that a random walk
starting in v leaves S (for the first time) at w. Clearly,

PS(w, v) =


∑

v′∈Γ(v)
1
4PS(w, v′) if v ∈ S,

1 if v = w,

0 if v ∈ ∂S \ {w}.

Solving this system yields PS(w, z) = PS(w), so solving this system for all w ∈ ∂S
computes the desired probability distribution.

How much time does it take to solve this linear system? It is not hard to see that
the resulting probabilities are rationals with numerator and denominator bounded
by 2O(|∂S|). Hence, Gaussian Elimination takes time O(|S|3|∂S|). Even if we could
solve the linear system faster (which seems possible, as this is a sparse system), this
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would still take time proportional to the output size, which is Ω(|S||∂S|). The total
time to compute all values PS(w) is then between O(|S|3|∂S|2) and Ω(|S||∂S|2).

Once we have computed the probability distribution PS(w) we bring them to a
common denominator of O(|∂S|2) bits. Then we use a data structure for sampling
from discrete distributions, e.g., Walker’s alias method. After some small preprocess-
ing this data structure allows to sample from the input distribution in expected time
O(1) plus the time to compare a random real in [0, 1] with a rational of O(|∂S|2)
bits. The latter can be done in expected constant time if we additionally store
approximations of this rational with a denominator of 2i bits for i = 1, 2, . . .. In
total we get that in time between O(|S|3|∂S|2) and Ω(|S||∂S|2) we can build a data
structure that allows to sample from PS(w) in expected constant time.

To get a simulation algorithm for IDLA we now do the following. We build a
data structure for sampling from PS(w) for S being a ball of radius 21, 22, . . . , 2k

with 2k = Θ(nε). When the particle is at position z we take the largest of these
balls (translated by z) that still lies in B0(rI) and directly jump to its boundary.
This sampling can be done in time tJshape = O(1), the precomputation takes time
between O(n8ε) and Ω(n4ε). The expected jumping distance now is

∆Jshape(z) = Θ(min{nε,max{rI − |z|, 1}}).

This allows to bound δ
2
Jshape

= O(n1−2ε). Setting ε = 1/5 and plugging this into

Theorem 5.9 yields an algorithm for IDLA with expected running time O(n8/5 log n),
which is worse than for time jumps. If the running time for solving the linear system
is near to the lower bound, the best possible from this approach is achieved for
ε = 1/3 with a running time of O(n4/3 log n). While this is faster than time jumps,
it is much worse than the long jumps that we present in the next section.

5.4. Long Jumps

In the previous section, we simulated the random walk either by a fixed amount of
steps, which we choose small enough to be safe to stay in A(n), or by the hitting
point of a surrounding shape, which has a complicated distribution that takes much
time to compute. In this section, we combine these two approaches to obtain jumps
that are both long and efficiently computable.

To this end, consider a particle at position z ∈ BI = B0(rI − cJ lnn) (for some
sufficiently large constant cJ > 0) and consider the ball S := Bz(σ) with midpoint
z and radius σ := rI − |z|, so that S is contained in B0(rI) ⊆ A. Let z0, z1, . . . be
a random walk starting in z0 = z, let τ∂S := min{i | zi ∈ ∂S} be its hitting time of
the boundary of S, and similarly let τ∂A := min{i | zi ∈ ∂A}. Note that a shape
jump as in Section 5.3.2 would return zτ∂S , while a time jump as in Section 5.3.1
would return zσ. In the current section we will directly jump to Jlong(z) := zτ with

τ := min{τ∂S , T},
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where

T :=
⌊ σ2

cJ ln(n/e)

⌋
= Θ

( σ2

log n

)
.

Whenever z 6∈ BI , we simply make one step of the random walk, i.e., τ := 1. This
way we make sure that τ > 1 (for all z ∈ A). Note that here we use τ∂S to ensure
τ 6 τ∂S 6 τ∂A, meaning that we stop at the latest when leaving A. Since τ is a
stopping time and Jlong is symmetric, this is a valid jump procedure according to
Definition 5.8. It is not clear at first sight that Jlong can be sampled efficiently for
all z ∈ BI . We present an algorithm with constant expected running time in the
next section and then analyze its correctness and running time. Note that in this
analysis we can assume that z ∈ BI , as otherwise we do single steps. After that, we
determine the expected jumping distance of Jlong. Overall, we obtain the following
result.

Lemma 5.14. The jump procedure Jlong has running time bound tJlong = O(1)

and for any z ∈ BI an expected jumping distance of ∆Jlong(A, z) = Ω(
√
T ) =

Ω
(
rI(A)−|z|√

logn

)
. Furthermore, it has a space usage of O(1) memory cells (in expecta-

tion and with high probability).

Plugging this into Theorem 5.9 proves the main result of this chapter, specifi-
cally that we can construct an algorithm for simulating IDLA with running time
O(n log2 n) and space O(n1/2 log n), both in expectation and with high probability.

Proof of Theorem 1.20. By Lemma 5.14 we can bound δJlong (as defined in Theo-
rem 5.9) by

maxz∈BI O
(√

log n · rO − |z|
rI − |z|

)
= O

(
rO − rI + log n√

log n

)
,

since the term on the left hand is is maximized at the boundary of BI , where
|z| = rI − cJ lnn. Since we have by Theorem 5.1 that rO − rI = O(log n) in
expectation and with high probability, we can set δJlong = O(

√
log n ). Plugging this

into Theorem 5.9 yields the desired running time.

5.4.1. An Algorithm for Sampling Long Jumps

Observe that with high probability a random walk of length T starting in z does not
leave S. Hence, the minimum of τ∂S and T is typically obtained at T . We will design
an algorithm that samples the position of zT (restricted to a certain subset) very
efficiently. Additionally, we have to patch this approximate algorithm by a second
(slow) algorithm that is executed only with small probability and that compensates
for any mistakes we might make by sampling only zT .

First consider Algorithm 4, which does not yet correctly sample a jump according
to the distribution of Jlong(z). It simply draws a point z′ = RWT (z) (see Lemma 5.4)
and rejects as long as z′ 6∈ 1

2S (where 1
2S is the ball with midpoint z and radius 1

2σ).
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Algorithm 4 Algorithm Long-Jump-Incomplete

1: repeat
2: z′ := RWT (z)
3: until z′ ∈ 1

2S
4: return z′.

For w ∈ Z2 let PJ(w) := Pr[Jlong(z) = w] and denote the probability of Algo-
rithm 4 to return w by PAlg4(w). To patch Algorithm 4 we choose a failure proba-
bility pfail (to be fixed later). Then, with probability 1 − pfail we run Algorithm 4,
but with probability pfail we patch the algorithm by exhaustively computing the
probabilities PJ(w) and PAlg4(w) for all w ∈ S and returning w ∈ S with probabil-
ity Prest(w), where

(1− pfail) · PAlg4(w) + pfail · Prest(w) = PJ(w). (5.8)

The above equation ensures that overall we draw w ∈ Z2 according to the right
probability distribution PJ . The approach is summarized in Algorithm 5.

Algorithm 5 Algorithm Long-Jump-Complete

1: choose p uniformly at random from [0, 1].
2: if p < pfail then
3: // fail compensate
4: calculate PJ(w) and PAlg4(w) for all w ∈ S
5: compute Prest(w) according to equation (5.8)
6: return w ∈ S drawn according to the distribution Prest(w)
7: else
8: run Algorithm 4

Correctness This algorithm is correct if pfail can be chosen in such a way that
Prest is a probability distribution. We analyze for which values of pfail this is the
case.

Lemma 5.15. The values Prest(w) for w ∈ S form a probability distribution if we
choose pfail > 28ecJ/2n−min{cJ/8,5cJ/16−1}.

Because of equation (5.8) and
∑

w PJ(w) =
∑

w PAlg4(w) = 1 we easily obtain the
equality

∑
w Prest(w) = 1. However, we have to prove that we can choose pfail (and

cJ) in such a way that Prest(w) is non-negative for all w ∈ S. It suffices to choose
pfail such that for all w ∈ S

(1− pfail)PAlg4(w) 6 PJ(w),

since then Prest(w) > 0 according to equation (5.8). Without loss of generality we
consider w ∈ 1

2S with w ≡T z, as otherwise we have PAlg4(w) = 0.
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We abbreviate PRW (w) := Pr[RWT (z) = w]. Since Algorithm 4 returns the
endpoint of a random walk of length T conditioned on being contained in 1

2S, we
clearly have

PAlg4(w) =
PRW (w)

1− Pr[RWT (z) 6∈ 1
2S]

. (5.9)

Since Pr[RWT (z) 6∈ 1
2S] = Pr[|RWT | > 1

2σ] and T 6 σ2

cJ ln(n/e) we can apply
Lemma 5.7 to get

PAlg4(w) 6
PRW (w)

1− 4(n/e)−cJ/8
. (5.10)

For PJ(w), any walk of length T starting in z and ending in w is counted, except
if it hits ∂S. Hence, we have

PJ(w) > PRW (w)− Pr[τ∂S 6 T ].

We want to write the right hand side of this as PRW (w) · (1− ρ), so that combined
with equation (5.10) we obtain PJ(w) > PAlg4(w) · (1 − ρ′). For this we need an
upper bound for Pr[τ∂S 6 T ] (provided by Lemma 5.7) and a lower bound for
PRW (w) (provided by Lemma 5.5). Combining the two yields (after some technical
simplifications that we postpone)

Pr[τ∂S 6 T ]

PRW (w)
6 24ecJ/2n1−5cJ/16. (5.11)

Thus,

PJ(w) > PRW (w)(1− 24ecJ/2n1−5cJ/16),

and together with equation (5.10) we obtain

PJ(w) > (1− 24ecJ/2n1−5cJ/16 − 4(n/e)−cJ/8)PAlg4(w).

Thus, we can safely set pfail > 28ecJ/2n−min{cJ/8,5cJ/16−1}.

In the following we show inequality (5.11). First note that by the definition of T
and σ > cJ lnn we have

T >
σ2

cJ ln(n/e)
− 1 >

σ2

cJ lnn
·
(

1 +
1

lnn

)
− 1 >

σ2

cJ lnn
+ cJ − 1 >

σ2

cJ lnn
,

for cJ > 1. Thus, |w| 6 1
2σ, |w|/T 6 1

2 and σ2

T 6 cJ lnn. Using this, we can combine
Lemmas 5.7 and 5.5 to obtain

Pr[τ∂S 6 T ]

PRW (w)
6

8(n/e)−cJ/2

1
3T exp

(
− |w|

2

2T

(
1 + |w|

T

)) 6 24T (n/e)−cJ/2 exp

(
3σ2

16T

)
6 24ecJ/2Tn−5cJ/16.
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Note that as S is completely filled with particles we have n > σ2 > T , finally yielding

Pr[τ∂S 6 T ]

PRW (w)
6 24ecJ/2n1−5cJ/16.

Running Time In the fail compensation part of our algorithm we have to compute
PAlg4 and PJ exactly. In this section we discuss how to do this efficiently, which
yields a bound on the running time of our algorithm.

Observe that for PRW (w) := Pr[RWT (z) = w] we have for all w ∈ 1
2S that

PAlg4(w) = PRW (w)/
∑
w∈ 1

2
S

PRW (w).

This reduces the calculation of PAlg4 to the calculation of PRW (w) for all w ∈ 1
2S.

For w 6≡T z we have PRW (w) = 0, so let w ≡T z. Then we can write w = x ·
(1/2, 1/2) + y · (1/2,−1/2) with x, y ∈ Z. With the notation of Lemma 5.3 we have

PRW (w) = Pr[X = x] · Pr[Y = y] = 2−T
(
T
T+x

2

)
· 2−T

(
T
T+y

2

)
.

Note that this probability has denominator 4T , so it can be stored using O(T )
bits. Moreover, as

(
T
i

)
can be computed in O(T ) multiplications and divisions of

a O(T ) bit number by a O(log T ) bit number, we can calculate PRW (W ) in time
O(T 2 log T ). The total running time for calculating PAlg4 is therefore O(σ2T 2 log T )
and the occupied space is O(σ2T ).

For computing PJ we use a simple iterative scheme. We recursively define Xt
w for

0 6 t 6 T and w ∈ S. For t = 0 we set

X0
w =

{
1 if w = z,

0 otherwise,

while for t > 0 we set

Xt
w =

{∑
v∈Γ(w)∩S

1
4X

t−1
v if w ∈ S,

Xt−1
w +

∑
v∈Γ(w)∩S

1
4X

t−1
v if w ∈ ∂S.

Observe that XT
w is equal to PJ(w) for every w ∈ S, and each probability Xt

w can be
stored using O(T ) bits. The total running time to calculate PJ is therefore O(σ2T 2)
and the space usage is O(σ2T ) bits.

As the ball S is completely filled with particles, we have n > σ2. Using T =
Θ(σ2/ log n) we get a running time of O(n3) and a space usage of O(n2) for com-
puting PJ and PAlg4.

Thus, the fail compensation is called with probability pfail and takes time O(n3).
The remaining part of the algorithm, Algorithm 4, has a loop for sampling z′,
which takes time O(1) in expectation and with high probability, as the probability
of RWT 6∈ 1

2S is small (smaller than pfail, as chosen in the last section). One
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iteration of this loop samples from the binomial distribution and takes time T with
Pr[T > t] 6 exp(−tΩ(1)), by Lemma 5.4. In total, the expected running time is

O(1 + pfail · n3) = O(1),

for sufficiently large constant cJ , so that Lemma 5.15 allows us to choose pfail suf-
ficiently small. Moreover, the total running time TJ satisfies Pr[TJ > k] 6 O(k−c).
The contribution of the fail compensation part is O(pfail) for any k 6 O(n3), which
is small enough. Hence, we obtain a running time bound of tJlong = O(1). This
proves the first part of Lemma 5.14.

Expected Jumping Distance In this section we analyze the expected jumping
distance ∆Jlong(z) of long jumps, proving the second part of Lemma 5.14. Recall
that the expected jumping distance at z ∈ BI is defined as

∆Jlong(A, z) = min|ξ|=1 E[|ξT (Jlong(A, z)− z)|].

Since the stopping time τ of Jlong is symmetric, we can use the second part of
Lemma 5.6 to obtain ∆Jlong(A, z) = Ω(Pr[|Jlong(A, z)−z| >

√
T ]·
√
T ). Observe that

we have Pr[|Jlong(A, z)−z| >
√
T ] > Pr[|RWT | >

√
T ], where the inequality comes

from some walks in RWmin{τ∂S ,T}(z) ending prematurely (if τ∂S 6 T ). Together

with the first part of Lemma 5.6, this shows ∆Jlong(A, z) > Ω(
√
T ) = Ω((rI(A) −

|z|)/
√

log n ).

5.5. Generalizations

A common generalization of the random walks considered in this chapter works as
follows. We have a “stencil”, which is a probability distribution p on Z2 with finite
support S = {x1, . . . , xm}. In each step of the random walk we sample a point x
according to the distribution p and go from the current point zk to zk+1 = zk +x. It
is not known whether for this generalization a sufficiently smooth ball emerges, too.
However, one might conjecture that a statement analogous to Theorem 5.1 holds
whenever the stencil is fixed (in particular the “width” maxi |xi| of the stencil is
constant) and symmetric (p(x) = p(−x), so that the random walk has no drift) and
maybe some more conditions are fulfilled. If this is the case, then the main results
of this chapter generalize. One statement that does not generalize is that random
walks can be split into two independent 1-dimensional random walks (Lemma 5.3).
This necessitates a different method for sampling RWT . One way to still sample this
in constant time is to first sample how many times the random walks takes a step
in direction x1, this is T1 ∼ Bin(T, p(x1)), then to sample how many times we go to
x2, this is T2 ∼ Bin(T − T1, p(x2)), and so on. Apart from this, the generalizations
are straightforward, at least once analogous lemmas to Section 5.1.1 are shown.
Unfortunately, it is very tedious to get explicit bounds on the involved constants,
which are needed to specify an explicit failure probability pfail for the long jump
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procedure. This means that it is relatively easy to show that an exact sampling
algorithm with expected running time O(n log2 n) exists, but it is tedious to show
which of the algorithms, parameterized by pfail, has these guarantees.
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PART II

Computing Fréchet Distances
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6Introduction

Intuitively, the (continuous) Fréchet distance of two curves P,Q is the minimal
length of a leash required to connect a dog to its owner, as they walk along P
or Q, respectively, without backtracking. The Fréchet distance is a very popular
measure of similarity of two given curves. In contrast to distance notions such as
the Hausdorff distance, it takes into account the order of the points along the curve,
and thus better captures the similarity as perceived by human observers [100].

Alt and Godau introduced the Fréchet distance to computational geometry in
1991 [101, 102]. For polygonal curves P and Q with n and m vertices1, respectively,
they presented an O(nm log(nm)) algorithm. Since Alt and Godau’s seminal paper,
Fréchet distance has become a rich field of research, with various directions such as
generalizations to surfaces (see, e.g., [103]), approximation algorithms for realistic
input curves ([104–106]), the geodesic and homotopic Fréchet distance (see, e.g., [107,
108]), and many more variants (see, e.g., [109–112]). Being a natural measure for
curve similarity, the Fréchet distance has found applications in various areas such as
signature verification (see, e.g., [113]), map-matching tracking data (see, e.g., [114]),
and moving objects analysis (see, e.g., [115]).

A particular variant that we will also discuss in this dissertation is the discrete
Fréchet distance. Here, intuitively the dog and its owner are replaced by two frogs,
and in each time step each frog can jump to the next vertex along its curve or stay
at its current vertex. Defined in [116], the original algorithm for the discrete Fréchet
distance has running time O(nm).

Quadratic time complexity? Recently, improved algorithms have been found
for some variants. Agarwal et al. [117] showed how to compute the discrete Fréchet
distance in (mildly) sub-quadratic time O

(
nm log logn

logn

)
. Buchin et al. [118] gave algo-

rithms for the continuous Fréchet distance with runtime O(n2
√

log n (log log n)3/2)
on the Real RAM and O(n2(log log n)2) on the Word RAM. However, the problem
remains open whether there is a strongly sub-quadratic2 algorithm for the Fréchet
distance, i.e., an algorithm with running time O(n2−δ) for any δ > 0. For a par-
ticular variant, the discrete Fréchet distance with shortcuts, strongly sub-quadratic
algorithms have been found recently [119], however, this seems to have no implica-
tions for the classical continuous or discrete Fréchet distance.

1We always assume that m 6 n.
2We use the term strongly sub-quadratic to differentiate between this running time and the (mildly)
sub-quadratic O(n2 log logn/ logn) algorithm from [117].
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The only known lower bound shows that the Fréchet distance takes time Ω(n log n)
(in the algebraic decision tree model) [120]. The typical way of proving (conditional)
quadratic lower bounds for geometric problems is via 3SUM [121], in fact, Alt con-
jectured that the Fréchet distance is 3SUM-hard. Buchin et al. [118] argued that the
Fréchet distance is unlikely to be 3SUM-hard, because it has strongly sub-quadratic
decision trees. However, their argument breaks down in light of a recent result
showing strongly sub-quadratic decision trees also for 3SUM [122]. Hence, it is com-
pletely open whether the Fréchet distance is 3SUM-hard and whether it has strongly
sub-quadratic algorithms.

Realistic Input Curves In attempts to break the apparent quadratic time barrier
at least for realistic inputs, various restricted classes of curves have been considered,
such as backbone curves [104], κ-bounded and κ-straight curves [105], and φ-low
density curves [106]. The most popular model of realistic inputs are c-packed curves.
A curve π is c-packed if for any point z ∈ Rd and any radius r > 0 the total length of
π inside the ball B(z, r) is at most cr, where B(z, r) is the ball of radius r around z.
This model is well motivated from a practical point of view. Examples of classes of c-
packed curves are boundaries of convex polygons and γ-fat shapes as well as algebraic
curves of bounded maximal degree (see [106]). The model has been used for several
generalizations of the Fréchet distance, such as map matching [123], the mean curve
problem [124], a variant of the Fréchet distance allowing shortcuts [110], and Fréchet
matching queries in trees [125]. Driemel et al. [106] introduced c-packed curves
and presented a (1 + ε)-approximation for the continuous Fréchet distance in time
O(cn/ε+ cn log n), which works in any Rd, d > 2. Thus, near-linear approximation
algorithms exist for realistic input curves.

We formally define the Fréchet distance in the next section. In the remainder of
this chapter, we discuss our new results.

6.1. Variants of the Fréchet Distance

In this section, we formally define the continuous and the discrete variant of the
Fréchet distance.

A (polygonal) curve P is defined by its vertices p1, . . . , pn. We view P as a
continuous function P : [0, n]→ Rd with P (i+λ) = (1−λ)pi +λpi+1 for i ∈ [n− 1],
λ ∈ [0, 1]. We write |P | = n for the number of vertices of P and ‖P‖ for its total
length

∑n−1
i=1 ‖pi − pi+1‖, where ‖.‖ denotes the Euclidean distance.

Let Φn be the set of all continuous and non-decreasing functions φ from [0, 1] onto
[0, n]. The continuous Fréchet distance between two curves P1, P2 with |P1| = n,
|P2| = m is defined as

dF(P1, P2) := inf
φ1∈Φn
φ2∈Φm

maxt∈[0,1] ‖P1(φ1(t))− P2(φ2(t))‖.
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We call (φ1, φ2) a (continuous) traversal of (P1, P2), and say that it has width D if
maxt∈[0,1] ‖P1(φ1(t))− P2(φ2(t))‖ 6 D.

In the discrete case, we let ∆n be the set of all non-decreasing functions φ from
[0, 1] onto [n]. The discrete Fréchet distance between two curves P1, P2 with |P1| = n,
|P2| = m is then defined as

ddF(P1, P2) := inf
φ1∈∆n
φ2∈∆m

maxt∈[0,1] ‖P1(φ1(t))− P2(φ2(t))‖.

We obtain an analogous notion of a (discrete) traversal and its width. Note that
any φ ∈ ∆n is a staircase function attaining all values in [n]. Hence, (φ1(t), φ2(t))
changes only at finitely many points in time t. At any such time step we jump to
the next vertex in P1 or P2 or both.

It is known that for any curves P1, P2 we have dF(P1, P2) 6 ddF(P1, P2) [116].
For r > 0 and z ∈ Rd we denote by B(z, r) the ball or radius r around z.

6.2. Lower Bounds Based On SETH

The results in this section are proven in Chapter 7. Instead of relating the Fréchet
distance to 3SUM, we consider the Strong Exponential Time Hypothesis.

Strong Exponential Time Hypothesis Exponential Time Hypothesis (ETH)
and Strong Exponential Time Hypothesis (SETH), both introduced by Impagliazzo,
Paturi, and Zane [126, 127], provide ways of proving conditional lower bounds. ETH
asserts that 3-SAT has no 2o(N) algorithm, where N is the number of variables, and
can be used to prove matching lower bounds for a wealth of problems, see [128] for a
survey. However, since this hypothesis does not specify the exact exponent, it is not
suited for proving polynomial time lower bounds, where the exponent is important.

The stronger hypothesis SETH asserts that there is no δ > 0 such that k-SAT has
an O((2− δ)N ) algorithm for all k. Here, we will use the following weaker variant,
which has also been used in [129, 130].

Hypothesis SETH′: There is no O∗((2 − δ)N ) algorithm for CNF-SAT for any
δ > 0. Here, O∗ hides polynomial factors in the number of variables N and the
number of clauses M .

While SETH deals with formulas of width k, SETH′ deals with CNF-SAT, i.e.,
unbounded width clauses. Thus, it is a weaker assumption and more likely to
be true. Note that exhaustive search takes time O∗(2N ), and the fastest known
algorithms for CNF-SAT are only slightly faster than that, namely of the form
O∗(2N(1−C/ log(M/N))) for some positive constant C [131, 132]. Thus, SETH′ is a
reasonable assumption that can be considered unlikely to fail. It has been observed
that one can use SETH and SETH′ to prove lower bounds for polynomial time prob-
lems such as k-Dominating Set and others [129], the diameter of sparse graphs [130],
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and dynamic connectivity problems [133]. However, it seems to be applicable only
for few problems, e.g., it seems to be a wide open problem to prove that 3SUM
has no strongly sub-quadratic algorithms unless SETH fails, similarly for matching,
maximum flow, edit distance, and other classic problems.

Main lower bound Our main result of this section gives strong evidence that
the Fréchet distance may have no strongly sub-quadratic algorithms by relating it
to the Strong Exponential Time Hypothesis.

Theorem 6.1. There is no O(n2−δ) algorithm for the (continuous or discrete)
Fréchet distance for any δ > 0, unless SETH′ fails.

Since SETH and its weaker variant SETH′ are reasonable hypotheses, by this
theorem one can consider it unlikely that the Fréchet distance has strongly sub-
quadratic algorithms. In particular, any strongly sub-quadratic algorithm for the
Fréchet distance would not only give improved algorithms for CNF-SAT that are
much faster than exhaustive search, but also for various other problems such as
Hitting Set, Set Splitting, and NAE-SAT via the reductions in [134]. Alternatively,
in the spirit of [129], one can view the above theorem as a possible attack on CNF-
SAT, as algorithms for the Fréchet distance now could provide a route to faster
CNF-SAT algorithms. In any case, anyone trying to find strongly sub-quadratic
algorithms for the Fréchet distance should be aware that this is as hard as finding
improved CNF-SAT algorithms, which might be impossible.

We remark that all our lower bounds (unless stated otherwise) hold in the Eu-
clidean plane, and thus also in Rd for any d > 2.

Extensions We extend our main lower bound in two important directions: We
show approximation hardness and we prove that the lower bound still holds for
restricted classes of curves.

First, it would be desirable to have good approximation algorithms in strongly
sub-quadratic time, say a near-linear time approximation scheme. We exclude such
algorithms by proving that there is no 1.001-approximation for the Fréchet distance
in strongly sub-quadratic time unless SETH′ fails. Hence, within no(1)-factors any
1.001-approximation takes as much time as an exact algorithm. We did not try
to optimize the constant 1.001, but only to find the asymptotically largest possible
approximation ratio, which seems to be a constant. We leave it as an open problem
whether there is a strongly sub-quadratic O(1)-approximation. The literature so far
contains no strongly sub-quadratic approximation algorithms for general curves at
all.

Second, it might be conceivable that if one curve has much fewer vertices than the
other, i.e., m � n, then after some polynomial preprocessing on the smaller curve
we can compute the Fréchet distance of the two curves quickly, e.g., in total time
O((n + m3) log n). Note that such a running time is not ruled out by the trivial
argument that any algorithm needs time Ω(n + m) for reading the input, and is
also not ruled out by Theorem 6.1, since the running time is not sub-quadratic for
n = m. We rule out such running times by proving that there is no O((nm)1−δ)
algorithm “for any m”, unless SETH′ fails. More precisely, we prove this lower bound
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for the “special case” m ≈ nγ for any constant 0 6 γ 6 1. To make this formal,
for any input parameter α and constants γ0 < γ1 in R ∪ {−∞,∞}, we say that a
statement holds for any polynomial restriction of nγ0 6 α 6 nγ1 if it holds restricted
to instances with nγ−δ 6 α 6 nγ+δ for any constants δ > 0 and γ0 + δ 6 γ 6 γ1− δ.
We obtain the following extension of the main lower bound, Theorem 6.1, which
yields tight lower bounds for any behavior of m and any (1 + ε)-approximation with
0 6 ε 6 0.001.

Theorem 6.2. There is no 1.001-approximation with running time O((nm)1−δ) for
the (continuous or discrete) Fréchet distance for any δ > 0, unless SETH′ fails. This
holds for any polynomial restriction of 1 6 m 6 n.

Realistic input curves We also consider realistic input assumptions, specifically
the popular model of c-packed curves. Recall that an algorithm by Driemel et
al. [106] yields a (1 + ε)-approximation for the continuous Fréchet distance on c-
packed curves in time O(cn/ε+ cn log n). This works in any Rd, d > 2. While this
algorithm is near-linear for small c and 1/ε, is is not clear whether its dependence on
c and 1/ε is optimal for c and 1/ε that grow with n. We give strong evidence that
the algorithm of [106] has optimal dependence on c for any constant 0 < ε 6 0.001.

Theorem 6.3. There is no 1.001-approximation with running time O((cn)1−δ) for
the (continuous or discrete) Fréchet distance on c-packed curves for any δ > 0,
unless SETH′ fails. This holds for any polynomial restriction of 1 6 c 6 n.

Since we prove this claim for any polynomial restriction c ≈ nγ , the above result
also excludes 1.001-approximations with running time, say, O(c2 + n).

Regarding the dependence on ε, in any dimension d > 5 we can prove a conditional
lower bound that matches the dependency on ε of [106] up to a polynomial.

Theorem 6.4. In Rd, d > 5, there is no (1+ε)-approximation for the (continuous or
discrete) Fréchet distance on c-packed curves running in time O(min{cn/

√
ε , n2}1−δ)

for any δ > 0, unless SETH′ fails. This holds for sufficiently small ε > 0 and any
polynomial restriction of 1 6 c 6 n and ε 6 1.

Outline of the main lower bound To prove the main result of this section,
we present a reduction from CNF-SAT to the Fréchet distance. Given a CNF-SAT
instance ϕ, we partition its variables into sets V1, V2 of equal size. In order to find
a satisfying assignment of ϕ we have to choose (partial) assignments a1 of V1 and
a2 of V2. We will construct curves P1, P2 where Pk is responsible for choosing ak.
To this end, Pk consists of assignment gadgets, one for each assignment of Vk. As-
signment gadgets are built of clause gadgets, one for each clause. The assignment
gadgets of assignments a1 of V1 and a2 of V2 are constructed such that they have
Fréchet distance at most 1 if and only if (a1, a2) forms a satisfying assignment of ϕ.
In P1 and P2 we connect these assignment gadgets with some additional curves to
implement an OR-gadget, which forces any traversal of (P1, P2) to walk along two
assignment gadgets in parallel. If ϕ is not satisfiable, then any pair of assignment
gadgets has Fréchet distance larger than 1, so that P1, P2 have Fréchet distance
larger than 1. If, on the other hand, a satisfying assignment (a1, a2) of ϕ exists,
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then we ensure that there is a traversal of P1, P2 that essentially only traverses the
assignment gadgets of a1 and a2 in parallel, so that it always stays in distance 1.

To argue about the running time, since Pk contains an assignment gadget for
every assignment of one half of the variables, and every assignment gadget has
polynomial size in M , there are n = O∗(2N/2) vertices on each curve. Thus, any
O(n2−δ) algorithm for the Fréchet distance would yield an O∗(2(1−δ/2)N ) algorithm
for CNF-SAT, contradicting SETH′.

Remark: Orthogonal Vectors Let Orthog be the problem of “finding a pair of
orthogonal vectors”: given two sets S1, S2 ⊆ {0, 1}d of n vectors each, determine if
there are u ∈ S1 and v ∈ S2 with 〈u, v〉 =

∑d
i=1 uivi = 0, where the sum is computed

over the integers, see [135, 136]. Clearly, Orthog can be solved in time O(n2d).
However, Orthog has no strongly sub-quadratic algorithms unless SETH′ fails. More
precisely, in [135] it was shown that SETH′ implies the following statement.

OrthogHypothesis: There is no algorithm for Orthog with running time O(n2−δdO(1))
for any δ > 0.

All known conditional lower bounds based on SETH′ implicitly go through Orthog
or some variant of this problem. In fact, this is also the case for our results, as is
easily seen by going through the proof in [135] and noting that we use the same
tricks. Specifically, given a CNF-SAT instance φ on variables x1, . . . , xN and clauses
C1, . . . , CM we split the variables into two halves V1, V2 of equal size and enumerate
all assignments Ak of true and false to Vk. Then every clause Ci specifies sets
Bi
k ⊆ Ak of partial assignments that do not make Ci become true. Clearly, a

satisfying assignment (a1, a2) ∈ A1 × A2 has to evade Bi
1 × Bi

2 for all i. This
problem is equivalent to an instance of Orthog with d = M and n = 2N/2, where
Sk contains a vector for every partial assignment ak ∈ Ak and the i-th position of
this vector is 1 or 0, depending on whether ak ∈ Bi

k or not. In our proof, we could
replace this instance by an arbitrary instance of Orthog, yielding a reduction from
Orthog to the Fréchet distance.

Hence, in Theorems 6.1, 6.3, and 6.4 we could replace the assumption “unless
SETH′ fails” by the weaker assumption “unless OrthogHypothesis fails”. This is a
stronger statement, since there is only more reason to believe that Orthog has no
strongly sub-quadratic algorithms than that there is for believing that CNF-SAT
takes time 2N−o(N). Moreover, it shows a relation between two polynomial time
problems, Orthog and the Fréchet distance.

For Theorem 6.2 we would need an imbalanced version of the OrthogHypothesis,
where the two sets S1, S2 have different sizes n1, n2. Then unless SETH′ fails there
is no O((n1n2)1−δdO(1)) algorithm for any δ > 0, and this holds for any polynomial
restriction of 1 6 n1 6 n2, which follows from a slight generalization of [135].
If we state this implication of SETH′ as a hypothesis OrthogHypothesis∗, then in
Theorem 6.2 we could replace “unless SETH′ fails” by the weaker assumption “unless
OrthogHypothesis∗ fails”.
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6.3. Improved Approximation for Realistic Inputs

The results in this section are proven in Chapter 8.
For c-packed curves, the conditional lower bounds from the last section leave two

particularly interesting open questions, asking for new algorithms or improved lower
bounds. Here, we use Õ to ignore any polylogarithmic factors in n, c, and 1/ε.

1. Is there a (1 + ε)-approximation with running time Õ(cn/
√
ε ) for the Fréchet

distance on c-packed curves?

2. In any dimension d ∈ {2, 3, 4}, is there a (1 + ε)-approximation with running
time Õ(cn) for the Fréchet distance on c-packed curves? Or is there even an
exact algorithm with running time Õ(cn)?

Here, we positively answer the first question, i.e., we improve upon the algorithm
by Driemel et al. [106] and present an algorithm that matches the conditional lower
bound of Theorem 6.4. The second question is left as an open problem.

Theorem 6.5. For any 0 < ε 6 1 we can compute a (1 + ε)-approximation for the
continuous and discrete Fréchet distance on c-packed curves in time Õ(cn/

√
ε ).

Specifically, our running time is O( cn√
ε

log(1/ε) + cn log n) for the discrete variant

and O( cn√
ε

log2(1/ε) + cn log n) for the continuous variant.

We want to highlight that in general dimensions (specifically, d > 5) this running
time is optimal (apart from lower order terms of the form no(1) unless SETH fails
by Theorem 6.4). Moreover, we obtained our new algorithm by investigating why
the conditional lower bound of Theorem 6.4 cannot be improved and exploiting
the discovered properties. Thus, the above theorem is the outcome of a synergistic
effect of algorithms and lower bounds. In particular, this shows one more reason why
conditional lower bounds such as Theorems 6.2, 6.3, and 6.4 should be studied, as
they can show tractable cases and suggest properties that make these cases tractable.

We remark that the same algorithm also yields improved running time guarantees
for other models of realistic input curves, like κ-bounded and κ-straight curves,
where we are also able to essentially replace ε by

√
ε in the running time bound.

In contrast to c-packed curves, it is not clear how far these bounds are from being
optimal. See Section 8.2.2 for details.

Outline of the Algorithm We give an improved algorithm that approximately
decides whether the Fréchet distance of two given curves π, σ is at most δ. Using
a construction of [106] to search over possible values of δ, this yields an improved
approximation algorithm. We partition our curves into sub-curves, each of which
is either a long segment, i.e., a single segment of length at least Λ = Θ(

√
ε δ), or a

piece, i.e., a sub-curve staying in the ball of radius Λ around its initial vertex. Now
we run the usual algorithm that explores the reachable free-space (see Section 8.1
for definitions), however, we treat regions spanned by a piece π′ of π and a piece
σ′ of σ in a special way. Typically, if π′, σ′ consist of n′,m′ segments then their
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free-space would be resolved in time O(n′m′). Our overall speedup comes from
reducing this running time to Õ(n′ + m′), which is our first main contribution. To
this end, we consider the line through the initial vertices of the pieces π′, σ′, and
project π′, σ′ onto this line to obtain curves π̂, σ̂. Since π′, σ′ are pieces, i.e., they
stay within distance Λ = Θ(

√
ε δ) of their initial vertices, this projection does not

change distances from π to σ significantly (it follows from the Pythagorean theorem
that any distance of approximately δ is changed, by the projection, by less than εδ).
Thus, we can replace π′, σ′ by π̂, σ̂ without introducing too much error. Note that
π̂, σ̂ are one-dimensional curves; without loss of generality we can assume that they
lie on R. Moreover, we show how to ensure that π̂, σ̂ are separated, i.e., all vertices
of π̂ lie above 0 and all vertices of σ̂ lie below 0. Hence, we reduced our problem to
resolving the free-space region of one-dimensional separated curves.

It is known3 that the Fréchet distance of one-dimensional separated curves can
be computed in near-linear time, essentially since we can walk along π and σ with
greedy steps to either find a feasible traversal or bottleneck sub-curves. However,
we face the additional difficulty that we have to resolve the free-space region of one-
dimensional separated curves, i.e., given entry points on π̂ and σ̂, compute all exits
on π̂ and σ̂. Our second main contribution is that we present an extension of the
known result to handle this much more complex problem.

3We thank Wolfgang Mulzer for pointing us to this result by Matias Korman and Sergio Cabello
(personal communication). To the best of our knowledge this result is not published.
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7Lower Bounds Based On
SETH

This chapter is based on the single author paper [2].

[2] K. Bringmann. “Why walking the dog takes time: Frechet distance has no
strongly subquadratic algorithms unless SETH fails.” In: Proc. 55th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’14). To ap-
pear. 2014.

In this chapter, we prove conditional lower bounds for algorithms computing the
Fréchet distance. All of our lower bounds assume a weaker variant of the Strong
Exponential Time Hypothesis (SETH’). We first restate the results from Section 6.2
that we will prove in this chapter.

Theorem 6.1. There is no O(n2−δ) algorithm for the (continuous or discrete)
Fréchet distance for any δ > 0, unless SETH′ fails.

Theorem 6.2. There is no 1.001-approximation with running time O((nm)1−δ) for
the (continuous or discrete) Fréchet distance for any δ > 0, unless SETH′ fails. This
holds for any polynomial restriction of 1 6 m 6 n.

Theorem 6.3. There is no 1.001-approximation with running time O((cn)1−δ) for
the (continuous or discrete) Fréchet distance on c-packed curves for any δ > 0,
unless SETH′ fails. This holds for any polynomial restriction of 1 6 c 6 n.

Theorem 6.4. In Rd, d > 5, there is no (1+ε)-approximation for the (continuous or
discrete) Fréchet distance on c-packed curves running in time O(min{cn/

√
ε , n2}1−δ)

for any δ > 0, unless SETH′ fails. This holds for sufficiently small ε > 0 and any
polynomial restriction of 1 6 c 6 n and ε 6 1.

This chapter is structured as follows. We start by defining notation and basic
properties of CNF-SAT in Section 7.1. Section 7.2 deals with general curves. We
prove the main result for the discrete Fréchet distance on 3 pages in Section 7.2.1.
This construction also already proves inapproximability. We generalize the proof to
the continuous Fréchet distance in Section 7.2.2 (which is more tedious than in the
discrete case) and to m � n in Section 7.2.3 (which is an easy trick). Section 7.3
deals with c-packed curves. In Section 7.3.1 we present a new OR-gadget that
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generates less packed curves; plugging in the curves constructed in the main result
proves Theorem 6.3. In Section 7.3.2 we make use of the fact that in > 4 dimensions
there are point sets Q1, Q2 of arbitrary size with each pair of points (q1, q2) having
distance exactly 1. This allows to construct less packed curves that we plug into the
OR-gadget from the preceding section to prove Theorem 6.4.

7.1. Preliminaries

Recall that a (polygonal) curve P is defined by its vertices p1, . . . , pn and we can
view P as a continuous function P : [0, n] → Rd with P (i + λ) = (1 − λ)pi + λpi+1

for i ∈ [n − 1], λ ∈ [0, 1]. We write |P | = n for the number of vertices of P .
For two curves P1, P2 we let P1 ◦ P2 be the curve on |P1| + |P2| vertices that first
follows P1, then walks along the segment from P1(|P1|) to P2(0), and then follows P2.
In particular, for two points p, q ∈ Rd the curve p◦ q is the segment from p to q, and
any curve P on vertices p1, . . . , pn can be written as P = p1 ◦ . . . ◦ pn.

Consider a curve P and two points p1 = P (λ1), p2 = P (λ2) with λ1, λ2 ∈ [0, n].
We say that p1 is within distance D of p2 along P if the length of the sub-curve of
P between P (λ1) and P (λ2) is at most D.

Realistic input curves Recall that a curve P is c-packed if for any point q ∈ Rd
and any radius r > 0 the total length of P inside the ball B(q, r) is at most cr. We
say that a curve P is Θ(c)-packed, if there are constants α > β > 0 such that P is
αc-packed but not βc-packed.

Satisfiability In CNF-SAT we are given a formula ϕ on variables x1, . . . , xN and
clauses C1, . . . , CM in conjunctive normal form with unbounded clause width. Let V
be any subset of the variables of ϕ. Let a be any assignment of T (true) or F (false)
to the variables of V . We call a a partial assignment and say that a satisfies a clause
C =

∨
i∈I xi∨

∨
i∈J ¬xi if for some i ∈ I ∩V we have a(xi) = T or for some i ∈ J ∩V

we have a(xi) = F. We denote by sat(a,C) whether partial assignment a satisfies
clause C. Note that assignments a of V and a′ of the remaining variables V ′ form
a satisfying assignment (a, a′) of ϕ if and only if we have sat(a,Ci)∨ sat(a′, Ci) = T
for all i ∈ {1, . . . ,M}.

All bounds that we prove in this chapter assume the hypothesis SETH′ (see Sec-
tion 6.2), which asserts that CNF-SAT has no O∗((2−δ)N ) algorithm for any δ > 0.
Here, O∗ hides polynomials factors in N and M . The following is an easy corollary
of SETH′.

Lemma 7.1. There is no O∗((2 − δ)N ) algorithm for CNF-SAT restricted to for-
mulas with N variables and M 6 2δ

′N clauses for any δ, δ′ > 0, unless SETH′ fails.

Proof. Any such algorithm would imply an O∗((2 − δ)N ) algorithm for CNF-SAT
(without restrictions on the input), since for M 6 2δ

′N we can run the given
algorithm, while for M > 2δ

′N we can decide satisfiability in time O(M2N ) =
O(M1+1/δ′) = O∗(1).
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7.2. General Curves

We first present a reduction from CNF-SAT to the Fréchet distance and show that it
proves Theorem 6.1 for the discrete Fréchet distance. In Section 7.2.2 we then show
that the same construction also works for the continuous Fréchet distance. Finally,
in Section 7.2.3 we generalize these results to curves with imbalanced numbers of
vertices n,m to show Theorem 6.2.

7.2.1. The Basic Reduction, Discrete Case

Let ϕ be a given CNF-SAT instance with variables x1, . . . , xN and clauses C1, . . . , CM .
We split the variables into two halves V1 := {x1, . . . , xN/2}, V2 := {xN/2+1, . . . , xN}.
For k ∈ {1, 2} let Ak be all assignments1 of T or F to the variables in Vk, so that
|Ak| = 2N/2. In the whole section we let ε := 1/1000.

We will construct two curves P1, P2 such that ddF(P1, P2) 6 1 if and only if ϕ is
satisfiable. In the construction we will use gadgets as follows.

Clause gadgets This gadget encodes whether a partial assignment satisfies a
clause. We set for i ∈ {0, 1}

ci1,T :=
(
i/3, 1

2 − ε
)
, ci1,F :=

(
i/3, 1

2 + ε
)
,

ci2,T :=
(
i/3,−1

2 + ε
)
, ci2,F :=

(
i/3,−1

2 − ε
)
,

see Figure 7.1a. Let k ∈ {1, 2}. For any partial assignment ak ∈ Ak and clause Ci,
i ∈ [M ], we construct a clause gadget consisting of a single point,

CG(ak, i) := cimod 2
k,sat(ak,Ci)

.

Thus, if assignment ak satisfies clause Ci then the corresponding clause gadget is
nearer to the clause gadgets associated with A3−k. Explicitly calculating all pairwise
distances of these points, we obtain the following lemma.

Lemma 7.2. Let ak ∈ Ak, k ∈ {1, 2}, and i, j ∈ [M ]. If i ≡ j (mod 2) and
sat(a1, Ci)∨sat(a2, Cj) = T then ‖CG(a1, i)−CG(a2, j)‖ 6 1. Otherwise ‖CG(a1, i)−
CG(a2, j)‖ > 1 + 2ε.

Assignment gadgets This gadget consists of clause gadgets and encodes the set
of satisfied clauses for an assignment. We set

r1 := (−1
3 ,

1
2), r2 := (−1

3 ,−
1
2).

1In later sections we will replace V1, V2 by different partitionings and A1, A2 by subsets of all
assignments. The lemmas in this section are proven in a generality that allows this extension.
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Figure 7.1: Construction of clause gadgets, assignment gadgets, and the final curves.

The assignment gadget for any ak ∈ Ak consists the starting point rk followed by
all clause gadgets of ak,

AG(ak) := rk ◦©i∈[M ]CG(ak, i),

(recall the definition of ◦ in Section 7.1). Figure 7.1b shows an assignment gadget
on M = 2 clauses at the top and an assignment gadget on M = 4 clauses at the
bottom. The arrows indicate the order in which the segments are traversed.

Lemma 7.3. Let ak ∈ Ak, k ∈ {1, 2}. If (a1, a2) is a satisfying assignment of ϕ then
ddF(AG(a1), AG(a2)) 6 1. If (a1, a2) is not satisfying then ddF(AG(a1), AG(a2)) >
1 + ε, and we even have ddF(AG(a1)◦π1, AG(a2)◦π2) > 1 + ε for any curves π1, π2.

Proof. If (a1, a2) is satisfying then the parallel traversal

(r1, r2), (CG(a1, 1), CG(a2, 1)), . . . , (CG(a1,M), CG(a2,M))

has width 1 by Lemma 7.2.

Assume for the sake of contradiction that (a1, a2) is not satisfying but there is a
traversal of (AG(a1)◦π1, AG(a2)◦π2) with width 1+ε. Observe that ‖r1−r2‖ = 1 and
‖rk − ci3−k,x‖ > 1 + 2ε for any k ∈ {1, 2}, i ∈ {0, 1}, x ∈ {T,F}. Thus, the traversal
has to start at positions (r1, r2) and then step to positions (CG(a1, 1), CG(a2, 1)),
as advancing in only one of the curves leaves us in distance larger than 1 + ε.
Inductively and using Lemma 7.2, the same argument shows that in the i-th step we
are at positions (CG(a1, i), CG(a2, i)) for any i ∈ [M ]. Since there is an unsatisfied
clause Ci, so that ‖CG(a1, i) − CG(a2, i)‖ > 1 + 2ε by Lemma 7.2, we obtain a
contradiction.

Construction of the curves The curve Pk will consist of all assignment gadgets
for assignments Ak, k ∈ {1, 2}, plus some additional points. The additional points
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implement an OR-gadget over the assignment gadgets, by enforcing that any traver-
sal of (P1, P2) with width 1 + ε has to traverse two assignment gadgets in parallel,
and traversing one pair of assignment gadgets in parallel suffices.

We define the following control points,

s1 := (−1
3 ,

1
5), t1 := (1

3 ,
1
5),

s2 := (−1
3 , 0), t2 := (1

3 , 0), s∗2 := (−1
3 ,−

4
5), t∗2 := (1

3 ,−
4
5).

Finally, we set

P1 :=©a1∈A1

(
s1 ◦AG(a1) ◦ t1

)
,

P2 := s2 ◦ s∗2 ◦
(
©a2∈A2 AG(a2)

)
◦ t∗2 ◦ t2.

Figure 7.1c shows these final curves in an example with M = 2 clauses and (unreal-
istically) only two assignments.

LetQk be the points that may appear in Pk, i.e., Q1 = {s1, t1, r1, c
0
1,F, c

0
1,T, c

1
1,F, c

1
1,T}

and Q2 = {s2, t2, r2, s
∗
2, t
∗
2, c

0
2,F, c

0
2,T, c

1
2,F, c

1
2,T}. Explicitly calculating all pairwise dis-

tances of all points, we obtain the following lemma.

Lemma 7.4. No pair (q1, q2) ∈ Q1 × Q2 has ‖q1 − q2‖ ∈ (1, 1 + ε]. Moreover, the
set {(q1, q2) ∈ Q1 ×Q2 | ‖q1 − q2‖ 6 1} consists of the following pairs:

(q, s2), (q, t2) for any q ∈ Q1,

(s1, q) for any q ∈ Q2 \ {t∗2},
(t1, q) for any q ∈ Q2 \ {s∗2},
(r1, r2),

(ci1,x, c
i
2,y) for x ∨ y = T where i ∈ {0, 1}, x, y ∈ {T,F}.

Correctness We show that if ϕ is satisfiable then ddF(P1, P2) 6 1, while otherwise
ddF(P1, P2) > 1 + ε.

Lemma 7.5. If ddF(P1, P2) 6 1 + ε then A1×A2 contains a satisfying assignment.

Proof. By Lemma 7.4 any traversal with width 1 + ε also has width 1. Consider
any traversal of (P1, P2) with width 1. Consider any time step T at which we are
at position s∗2 in P2. The only point in P1 that is within distance 1 of s∗2 is s1,
say we are at the copy of s1 that comes right before assignment gadget AG(a1),
a1 ∈ A1. Following time step T , we have to start traversing AG(a1), so consider the
first time step T ′ where we are at the point r1 in AG(a1). The only points in P2

within distance 1 of r1 are s2, t2, and r2. Note that we already passed s∗2 in P2 by
time T , so we cannot be in s2 at time T ′. Moreover, in between T and T ′ we are
only at s1 and r1 in P1, which have distance larger than 1 to t∗2. Thus, we cannot
pass t∗2, and we cannot be at t2 at time T ′. Hence, we are at r2, say at the copy of
r2 in assignment gadget AG(a2) for some a2 ∈ A2. The yet untraversed remainder
of Pk is of the form AG(ak) ◦ πk for k ∈ {1, 2}. Since our traversal of (P1, P2) has
width 1, we obtain ddF(AG(a1)◦π1, AG(a2)◦π2) 6 1. By Lemma 7.3, (a1, a2) forms
a satisfying assignment of ϕ.
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Lemma 7.6. If A1 ×A2 contains a satisfying assignment then ddF(P1, P2) 6 1.

Proof. Let (a1, a2) ∈ A1×A2 be a satisfying assignment of ϕ. We describe a traversal
through P1, P2 with width 1. We start at s2 ∈ P2 and the first point of P1. We stay
at s2 and follow P1 until we arrive at the copy of s1 that comes right before AG(a1)
(note that s2 has distance 1 to any point in P1). Then we stay at s1 and follow P2

until we arrive at the copy of r2 in AG(a2) (note that the only point that is too
far away from s1 is t∗2, but this point comes after all assignment gadgets in P2). In
the next step we go to positions (r1, r2) (in AG(a1), AG(a2)). Then we follow the
clause gadgets (CG(a1, i), CG(a2, i)) in parallel, always staying within distance 1 by
Lemma 7.2. In the next step we stay at CG(a2,M) and go to t1 in P1 (which has
distance 1 to any point in P2 except for s∗2, which we will never encounter again).
We stay at t1 in P1 and follow P2 completely until we arrive at its endpoint t2. Since
t2 has distance 1 to any point in P1, we can now stay at t2 in P2 and follow P1 to
its end.

Proof of Theorem 6.1, discrete case Note that we have

n = max{|P1|, |P2|} = O(M) ·max{|A1|, |A2|} = O(M · 2N/2).

Moreover, the instance (P1, P2) can be constructed in timeO(NM2N/2). Any (1+ε)-
approximation can decide whether ddF(P1, P2) 6 1 or ddF(P1, P2) > 1 + ε, which
by Lemmas 7.5 and 7.6 yields an algorithm that decides whether ϕ is satisfiable.
If such an algorithm runs in time O(n2−δ) for any small δ > 0, then the resulting
CNF-SAT algorithm runs in time O(M22(1−δ/2)N ), contradicting SETH′.

7.2.2. Continuous Case

The construction from the last section also works for the continuous Fréchet distance.
However, for unsatisfiable formulas it becomes tedious to argue that continuous
traversals are not much better than discrete traversals. For instance, we have to
argue that we cannot stay at a fixed point between the clause gadgets c0

1,T and c1
1,T

while traversing more than one clause gadget in P2.

We adapt the proof from the last section on the same curves P1, P2 to work for the
continuous Fréchet distance. To this end, we have to reprove Lemmas 7.5 and 7.6.
We will make use of the following property. Here, we set sym(CG(a1, i)) := CG(a2, i)
and sym(r1) := r2 and interpolate linearly between them to obtain a symmetric
point in AG(a2) for every point in AG(a1) (for any fixed a1 ∈ A1, a2 ∈ A2). We
also set sym(sym(p1)) := p1, to obtain a symmetric point in AG(a1) for every point
in AG(a2).

Lemma 7.7. Consider any points pk in AG(ak), k ∈ {1, 2}, with ‖p1− p2‖ 6 1 + ε.
Then we have ‖p2 − sym(p1)‖ 6 1

9 and ‖sym(p2)− p1‖ 6 1
9 .
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Proof. Let pk = (xk, yk) and note that we have |y1−y2| > 1−2ε. Thus, if |x1−x2| >
1
9 − 2ε then we have (recall that ε = 1/1000)

‖p1 − p2‖ >
√

(1
9 − 2ε)2 + (1− 2ε)2 > 1 + ε,

a contradiction. Since sym(p1) = (x1, y
′
1) with |y′1 − y2| 6 2ε, we obtain

‖p2 − sym(p1)‖ 6
√

(1
9 − 2ε)2 + (2ε)2 6 1

9 .

and the same bound holds for ‖sym(p2)− p1‖.

Lemma 7.8. (Analogue of Lemma 7.5) If dF(P1, P2) 6 1 + ε = 1.001 then A1 ×A2

contains a satisfying assignment.

Proof. In this proof, we say that two points p1 = (x1, y1), p2 = (x2, y2) have y-
distance D if |y1 − y2| 6 D.

Consider any traversal of (P1, P2) with width 1 + ε. Consider any time step T
where we are at position s∗2 in P2. The only points in P1 that are within distance
1 + ε of s∗2 are within distance 1/20 and y-distance ε of s1 (since no point in P1 has
lower y-value than s1 and

√
1 + (1/20)2 > 1 + ε). Say we are near the copy of s1

that comes right before assignment gadget AG(a1), a1 ∈ A1. Following time step
T , we have to start traversing AG(a1), so consider the first time step T ′ where we
are at the point r1 in AG(a1). The only points in P2 within distance 1 + ε of r1 are
near s2, t2, or r2. Note that we already passed s∗2 in P2 by time T , so we cannot
be near s2 at time T ′. Moreover, in between T and T ′ we are always near s1 or
between s1 and r1 in P1, so we are always above and to the left of s1 + (1/20, 0),
which has distance larger than 1 + ε to t∗2. Thus, we cannot pass t∗2, and we cannot
be near t2 at time T ′. Hence, we are near r2, more precisely, we are in distance
1/20 and y-distance ε of r2 (this is the same situation as for s1 and s∗2). After that,
the traversal has to further traverse AG(a1) and/or AG(a2). Consider the first time
step at which we are at CG(a1, 1) or CG(a2, 1), say we reach CG(a1, 1) first. By
Lemma 7.7, we are within distance 1/9 of CG(a2, 1). Since we were near r2 at time
T ′, we now passed r2, and since we did not pass CG(a2, 1) yet, we are even within
distance 1/9 of CG(a2, 1) along the curve P2. This proves the induction base of the
following inductive claim.

Claim 7.9. Let Ti be the first step in time at which the traversal is at CG(a1, i)
or CG(a2, i), i ∈ [M ]. At time Ti the traversal is within distance 1/9 of CG(ak, i)
along the curve Pk for both k ∈ {1, 2}.

Proof. Note that at all times Ti (and in between) Lemma 7.7 is applicable, so we
clearly are within distance 1/9 of CG(ak, i + 1) at time Ti+1 for any i ∈ [M ],
k ∈ {1, 2}. Since ‖CG(ak, i) − CG(ak, i + 1)‖ > 1/3, points within distance 1/9
of CG(ak, i) are not within distance 1/9 of CG(ak, i + 1). Hence, if we are within
distance 1/9 of CG(ak, i) along Pk for both k ∈ {1, 2} at time Ti, then at time Ti+1

we passed CG(ak, i) and did not pass CG(ak, i + 1) yet (by definition of Ti+1), so
that we are within distance 1/9 of CG(ak, i+ 1) along Pk for both k ∈ {1, 2}.
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Finally, we show that the above claim implies that (a1, a2) is a satisfying assign-
ment. Assume for the sake of contradiction that some clause Ci is not satisfied by
both a1 and a2. Say at time Ti we are at CG(a1, i) (if we are at CG(a2, i) instead,
then a symmetric argument works). At the same time we are at some point p in
AG(a2). By the above claim, p is within distance 1/9 of CG(a2, i) along P2. Note
that p lies on any of the line segments c0

2,T ◦ c1
2,F, c0

2,F ◦ c1
2,T, c0

2,F ◦ c1
2,F, or r2 ◦ c0

2,F,
since sat(a2, Ci) = F. In any case, the current distance ‖p − CG(a1, i)‖ is at least
the distance from the point c0

1,F to the line through c0
2,F and c1

2,T. We compute this
distance as

1
3(1 + 2ε)√

(1
3)2 + (2ε)2

> 1 + ε,

which contradicts the traversal having width 1 + ε.

Lemma 7.10. (Analogue of Lemma 7.6) If A1×A2 contains a satisfying assignment
then dF(P1, P2) 6 1.

Proof. Follows from Lemma 7.6 and the general inequality dF(P1, P2) 6 ddF(P1, P2).

7.2.3. Generalization to Imbalanced Numbers of Vertices

Assume that the input curves P1, P2 have different numbers of vertices n = |P1|,
m = |P2| with n > m. We show that there is no O((nm)1−δ) algorithm for the
Fréchet distance for any δ > 0, even for any polynomial restriction of 1 6 m 6 n.
More precisely, for any δ 6 γ 6 1−δ we show that there is no O((nm)1−δ) algorithm
for the Fréchet distance restricted to instances with nγ−δ 6 m 6 nγ+δ.

To this end, given a CNF-SAT instance ϕ we partition its variables x1, . . . , xN
into2 V ′1 := {x1, . . . , x`} and V ′2 := {x`+1, . . . , xN} and let A′k be all assignments
of V ′k, k ∈ {1, 2}. Note that |A′1| = 2|V

′
1 | = 2` and |A′2| = 2N−`. Now we use the

same construction as in Section 7.2.1 but replace Vk by V ′k and Ak by A′k. Again
we obtain that any 1.001-approximation for the Fréchet distance of the constructed
curves P1, P2 decides satisfiability of ϕ. Observe that the constructed curves contain
a number of points of

n = |P1| = Θ(M · |A′1|), m = |P2| = Θ(M · |A′2|).

Hence, any 1.001-approximation with running time O((nm)1−δ) for any small δ >
0 for the Fréchet distance yields an algorithm for CNF-SAT with running time
O(M2(2`2N−`)1−δ) = O(M22(1−δ)N ), contradicting SETH′.

Finally, we set ` := N/(γ + 1) (rounded in any way) so that |A′1| = Θ(2N/(γ+1))
and |A′2| = Θ(2Nγ/(γ+1)). Using Lemma 7.1 we can assume that 1 6 M 6 2δN/4.
Hence, we have

Ω(2N/(γ+1)) 6n 6 O(2N/(γ+1)+δN/4),

Ω(2Nγ/(γ+1)) 6m 6 O(2Nγ/(γ+1)+δN/4),

2For the impatient reader: we will set ` := N/(γ + 1) (rounded in any way).
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which implies Ω(nγ−δ/2) 6 m 6 O(nγ+δ/2). For sufficiently large n, we obtain the
desired polynomial restriction nγ−δ 6 m 6 nγ+δ. This proves Theorem 6.2.

7.3. Realistic Inputs: c-Packed Curves

7.3.1. Constant Factor Approximations

The curves constructed in Section 7.2.1 are highly packed, since all assignment
gadgets lie roughly in the same area. Specifically, they are not o(n)-packed. In this
section we want to construct c-packed instances and show that there is no 1.001-
approximation with running time O((cn)1−δ) for any δ > 0 for the Fréchet distance
unless SETH′ fails, not even restricted to instances with nγ−δ 6 c 6 nγ+δ for any
δ 6 γ 6 1− δ. This proves Theorem 6.3.

To this end, we again consider a CNF-SAT instance ϕ, partition its variables
x1, . . . , xN into two sets V1, V2 of size N/2, and consider the set Ak of all assignments
of T and F to the variables in Vk. Now we partition Ak into sets A1

k, . . . , A
`
k of size

Θ(2N/2/`), where we fix 1 6 ` 6 2N/2 later. Formula ϕ is satisfiable if and only if
for some pair (j1, j2) ∈ [`]2 the set Aj11 ×A

j2
2 contains a satisfying assignment. This

suggests to use the construction of Section 7.2.1 after replacing A1 by Aj11 and A2

by Aj22 , yielding a pair of curves (P j1j21 , P j1j22 ). Now, ϕ is satisfiable if and only if

dF(P j1j21 , P j1j22 ) 6 1 for some (j1, j2) ∈ [`]2. For the sake of readability, we rename

the constructed curves slightly so that we have curves (P j1 , P
j
2 ) for j ∈ [`2].

OR-gadget In the whole section we let ρ := 1/
√

2 . We present an OR-construction
over the gadgets (P j1 , P

j
2 ) that is not too packed, in contrast to the OR-construction

over assignment gadgets that we used in Section 7.2.1. We start with two building
blocks, where for any j ∈ N we set

UL(j) := (jρ, 0) ◦ ((j − 1)ρ, ρ) ◦ ((j − 1)ρ, 3ρ) ◦ ((j − 1)ρ, 2ρ) ◦ ((j − 1)ρ, ρ),

UR(j) := ((j + 1)ρ, ρ) ◦ ((j + 1)ρ, 2ρ) ◦ ((j + 1)ρ, 3ρ) ◦ ((j + 1)ρ, ρ) ◦ (jρ, 0),

see Figure 7.2a. Moreover, we set U(j) := UL(j) ◦ UR(j). For a curve π and z ∈ R
we let trz(π) be the curve π translated by z in x-direction. The OR-gadget now
consists of the following two curves,

R1 :=©`2

j=1

(
UL(2j) ◦ tr2jρ(P

j
1 ) ◦ UR(2j)

)
,

R2 := U(1) ◦©`2

j=1

(
tr2jρ(P

j
2 ) ◦ U(2j + 1)

)
,

see Figures 7.2b and 7.3.

We denote by Rj1 the j-th “summand” of R1, i.e., Rj1 = UL(2j)◦tr2jρ(P
j
1 )◦UR(2j).

Informally, we will use the term U -shape for the sub-curves Rj1 and U(2j + 1),
since they resemble the letter U. Moreover, we consider “summands” of R2, namely
Rj2 := U(2j−1)◦tr2jρ(P

j
2 )◦((2j+1)ρ, 0) and R̃j2 := ((2j−1)ρ, 0)◦tr2jρ(P

j
2 )◦U(2j+1).
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UL UR

U

(a) A U -shape showing the building blocks of
the OR-gadget.

(b) The OR-gadget consisting of the curves R1

(dotted) and R2 (solid) for `2 = 1.

Figure 7.2: This figure illustrates the construction of the OR-gadget.

Figure 7.3: The OR-gadget consisting of the curves R1 (dotted) and R2 (solid) for `2 = 4.
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Intuition Considering traversals that stay within distance 1, we can traverse one
U -shape in R1 and one neighboring U -shape in R2 together. Such traversals can be
stitched together to a traversal of any number j of neighboring U -shapes in both
curves. So far we can only traverse the same number of U -shapes in both curves, but
R2 has one more U -shape than R1. We will show that we can traverse two U -shapes
in R2 while traversing only one U -shape in R1, if these parts contain a satisfying
assignment.

In the unsatisfiable case, essentially we show that we cannot traverse two U -shapes
in R2 while traversing only one U -shape in R1, which implies a contradiction since
the number of U -shapes in R2 is larger than in R1. We make this intuition formal
in the remainder of this section.

Analysis In order to be able to replace the curves P j1 , P
j
2 constructed above by

other curves in the next section, we analyze the OR-gadget in a rather general way.
To this end, we first specify a set of properties and show that the curves P j1 , P

j
2

constructed above satisfy these properties. Then we analyze the OR-gadget using
only these properties of P j1 , P

j
2 .

Property 7.11. (i) If ϕ is satisfiable then for some j ∈ [`2] we have ddF(P j1 , P
j
2 ) 6

1.

(ii) If ϕ is not satisfiable then for all j ∈ [`2] and curves σ1, σ2, π1, π2 such that σ1

stays to the left and above (−ρ, ρ) and π1 stays to the right and above (ρ, ρ),
we have dF(σ1 ◦ P j1 ◦ π1, σ2 ◦ P j2 ◦ π2) > β, for some β > 1.

(iii) P jk is Θ(c)-packed for some c > 1 for all j ∈ [`2], k ∈ {1, 2}.

(iv) (0, ρ) is within distance 1 of any point in P j1 for all j ∈ [`2].

(v) (0, 0) is within distance 1 of any point in P j2 for all j ∈ [`2].

Lemma 7.12. The curves (P j1 , P
j
2 ) constructed above satisfy Property 7.11 with

β = 1.001 and c = Θ(M · 2N/2/`). Moreover, we have |P jk | = Θ(M · 2N/2/`) for all
j ∈ [`2], k ∈ {1, 2}.

Proof. Property 7.11.(i) follows from Lemma 7.6, since at least one pair (Aj11 , A
j2
2 )

contains a satisfying assignment. Properties (iv) and (v) can be verified by consid-
ering all points in the construction in Section 7.2.1.

Observe that |P jk | = Θ(M · 2N/2/`), since P jk consists of |Ajk| = Θ(2N/2/`) assign-
ment gadgets of size Θ(M). The upper bound of (iii) follows since any polygonal
curve with at most m segments is m-packed. The lower bound of (iii) follows from
P jk being contained in a ball of radius 1 (by (iv) and (v)) and every segment of P jk
having constant length.

For (ii), note that from any traversal of (σ1 ◦ P j1 ◦ π1, σ2 ◦ P j2 ◦ π2) with width

1.001 one can extract a traversal of (P j1 , P
j
2 ) with width 1.001, by mapping any point

in σk to the starting point sk of P jk and any point in πk to the endpoint tk of P jk ,
k ∈ {1, 2}. This does not increase the width, since (1) s2 and t2 are within distance 1
to all points in P j1 , and (2) s1 has smaller distance to any point in P j2 than any point

in σ1 has, since σ1 stays above and to the left of s1 while all points of P j1 lie below
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and to the right of s1. A similar statement holds for t1 and π1. Property (ii) now
follows from Lemma 7.8.

In the following lemma we analyze the OR-gadget.

Lemma 7.13. For any curves (P j1 , P
j
2 ), j ∈ [`2], that satisfy Property 7.11, the

OR-gadget (R1, R2) satisfies:

(i) |Rk| = Θ
(∑`2

j=1 |P
j
k |
)

for k ∈ {1, 2}.
(ii) R1 and R2 are Θ(c)-packed,

(iii) If ϕ is satisfiable then dF(R1, R2) 6 ddF(R1, R2) 6 1,

(iv) If ϕ is not satisfiable then ddF(R1, R2) > dF(R1, R2) > min{β, 1.2}.

Proof. (i) Precisely, we have |Rk| =
∑`2

j=1(|P jk |+ 10) + 10(k − 1) for k ∈ {1, 2}.

(ii) Let k ∈ {1, 2} and consider any ball B = B(q, r). If r 6 1 then B hits O(1) of
the curves P jk . Since these curves are c-packed, their contribution to the total length
of Rk in B is at most O(cr). Moreover, B hits O(1) segments of U or UL, UR, and
the connecting segments to P jk . Each of these segments has length at most 2r inside
B. This yields a total length of Rk in B of O((c+ 1)r).

Similarly, if r > 1 then B hits O(r) of the curves P jk . Note that the total length

of P jk is at most c, since the curve is c-packed and contained in a ball of radius 1

around (0, 0) or (0, ρ) by Property 7.11. Hence, the total length of of the curves P jk
in B is O(cr). Moreover, B hits O(r) segments of U,UL, UR, and the connectors to
P jk , each of constant length. This yields a total length of Rk in B of O((c+ 1)r).

In total, the curve Rk is O(c+ 1)-packed. As c > 1, it is also O(c)-packed. Since
for some α > 0 the curve P jk is not αc-packed, also Rk is not αc-packed, so Rk is
even Θ(c)-packed.

(iii) Note that dF(R1, R2) 6 ddF(R1, R2) holds in general, so we only have to show
that if ϕ is satisfiable then ddF(R1, R2) 6 1. First we show that we can traverse one
U -shape in R1 and one neighboring U -shape in R2 together.

Claim 7.14. For any j ∈ [`2], we have ddF(Rj1, U(2j − 1)) 6 1 and ddF(Rj1, U(2j +
1)) 6 1.

Proof. We only show the first inequality, the second is similar. We start by traversing
UL(2j) and the left half of U(2j − 1) in parallel, being at the i-th point of UL(2j)
and U(2j−1) at the same time. At any point in time we are within distance ρ. Now
we step to (2jρ, ρ) in U(2j − 1). We stay there while traversing tr2jρ(P

j
1 ) in Rj1,

staying within distance 1 by Property 7.11.(iv). Finally, we traverse UR(2j) and the
second half of U(2j − 1) in parallel, where again the largest encountered distance is
ρ.

We can stitch these traversals together so that we traverse any number j of
neighboring U -shapes in both curves together, because the parts in between the
U -shapes are near to a single point, as shown by the following claim. Note that
(2jρ, 0)◦((2j+2)ρ, 0) is the connecting segment in R1 between UR(2j) and UL(2j+2),
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while ((2j − 1)ρ, 0) ◦ tr2jρ(P
j
2 ) ◦ ((2j + 1)ρ, 0) is the part in R2 between U(2j − 1)

and U(2j + 1).

Claim 7.15. For any j ∈ [`2],

ddF((2jρ, 0) ◦ ((2j + 2)ρ, 0), ((2j + 1)ρ, 0)) 6 1,

ddF((2jρ, 0), ((2j − 1)ρ, 0) ◦ tr2jρ(P
j
2 ) ◦ ((2j + 1)ρ, 0)) 6 1.

Proof. The first claim is immediate. The second follows from Property 7.11.(v).

Thus, we can stitch together traversals of U -shapes in both curves. However, so
far we can only traverse the same number of U -shapes in both curves, but R2 has
one more U -shape than R1. Consider J ∈ [`2] with ddF(P J1 , P

J
2 ) 6 1, which exists

since ϕ is satisfiable, see Property 7.11.(i). Consider the two sub-curves (see also
Figure 7.2b)

R′1 := RJ1 = UL(2J) ◦ tr2Jρ(P
J
1 ) ◦ UR(2J),

R′2 := U(2J − 1) ◦ tr2Jρ(P
J
2 ) ◦ U(2J + 1).

We show that ddF(R′1, R
′
2) 6 1, i.e., we can traverse two U -shapes in R2 while

traversing only one U -shape in R1, using ddF(P J1 , P
J
2 ) 6 1. Adding simple traversals

of U -shapes before and after (R′1, R
′
2), we obtain a traversal of (R1, R2) with width

1, proving ddF(R1, R2) 6 1. It is left to show the following claim.

Claim 7.16. ddF(R′1, R
′
2) 6 1.

Proof. We traverse UL(2J) and U(2J − 1) in parallel until we are at point ((2J −
1)ρ, 2ρ) in UL(2J). We stay in this point and follow U(2J − 1) until its second-to-
last point. In the next step we can finish traversing UL(2J) and U(2J − 1). In the
next step we go to the first positions of (the translated) P J1 and P J2 . We follow any
traversal of (P J1 , P

J
2 ) with width 1. Finally, we use a traversal symmetric to the one

of (UL(2J), U(2J − 1)) to traverse (UR(2J), U(2J + 1)).

(iv) Note that the inequality ddF(R1, R2) > dF(R1, R2) holds in general, so we only
have to show that if ϕ is not satisfiable then dF(R1, R2) > min{β, 1.2}. Assume for
the sake of contradiction that there is a traversal of (R1, R2) with width min{β, 1.2}.
Essentially we show that it cannot traverse 2 U -shapes in R2 while traversing only
one U -shape in R1, which implies a contradiction since the number of U -shapes in
R2 is larger than in R1.

Let Yρ be the line {(x, y) ∈ R2 | y = ρ}. We inductively prove the following
claims.

Claim 7.17. (i) For any 0 6 j 6 `2, when the traversal is in R2 at the left highest
point (2jρ, 3ρ) of U(2j + 1), then in R1 we fully traversed Rj1 and are above
the line Yρ.

(ii) For any 1 6 j 6 `2, when the traversal is in R1 at the right highest point
((2j + 1)ρ, 3ρ) of Rj1, then in R2 it is in U(2j − 1).
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Note that claim (i) for j = `2 yields the desired contradiction, since after traversing
R`

2

1 the curve R1 has ended (at the point (2`2ρ, 0)), so that we cannot go above the
line Yρ anymore.

Proof. (i) Note that we have to be above the line Yρ because all points below Yρ
have distance at least 2ρ > 1.2 to the point (2jρ, 3ρ). For j = 0, claim (i) holds im-
mediately, since there is no sub-curve R0

1 (so this part of the statement disappears).
In general, claim (i) for any 1 6 j 6 `2 follows from claim (ii) for j: When we are
at z1 := ((2j + 1)ρ, 3ρ) in Rj1, we are still in U(2j − 1). Once we reach the endpoint
z2 := ((2j − 1)ρ, 0) of U(2j − 1), in R1 we are at a point p1 below the line Yρ, since
all points in R2 that follow z1 and lie above Yρ have distance more than 2ρ > 1.2 to
z2. Now we follow R2 until we reach p2 := (2jρ, 3ρ) in U(2j + 1). At this point we
have to be above the line Yρ in R1, but all points in Rj1 following p1 lie below Yρ.

Thus, at this point we have fully traversed Rj1 (and have to be in Rj+1
1 ).

(ii) This claim for any 1 6 j 6 `2 follows from claim (i) for j − 1. Assume for the
sake of contradiction that claim (ii) for some j does not hold. Consider the sub-curve
R′1 of Rj1 between (the first occurrence of) ((2j − 1)ρ, ρ) and ((2j + 1)ρ, 3ρ). Let R′2
be the sub-curve of R2 that the traversal traverses together with R′1. Since (R′1, R

′
2)

forms a sub-traversal of the traversal of (R1, R2), which has width min{β, 1.2}, we
have dF(R′1, R

′
2) 6 min{β, 1.2} (*). By claim (i) for j − 1, the starting point of

R′2 lies before tr2jρ(P
j
2 ) along R2, since we reach ((2j − 2)ρ, 3ρ) in U(2j − 1) only

after being in the starting point of R′1. Moreover, the endpoint of R′2 lies after
tr2jρ(P

j
2 ) along R2. Indeed, while being at the endpoint ((2j + 1)ρ, 3ρ) of R′1, we

cannot be in U(2j − 1) since we assumed that claim (ii) is wrong for j. We can
also not be in tr2jρ(P

j
2 ), since by Property 7.11.5 all points in this curve lie in

a ball of radius 1 around (2jρ, 0), so their distance to ((2j + 1)ρ, 3ρ) is at least
‖((2j+ 1)ρ, 3ρ)− (2jρ, 0)‖− 1 =

√
5 − 1 > 1.2. Hence, we already passed tr2jρ(P

j
2 ),

and R′2 is of the form σ2 ◦ tr2jρ(P
j
2 ) ◦ π2 for any curves σ2, π2. Note that R′1 is of

the form σ1 ◦ tr2jρ(P
j
1 ) ◦ π1 with σ1 staying above and to the left of ((2j − 1)ρ, ρ)

and π1 staying above and to the right of ((2j + 1)ρ, ρ). Thus, after translation
Property 7.11.(ii) applies, proving dF(R′1, R

′
2) > β, a contradiction to (*).

Proof of Theorem 6.3 Finally, we use the OR-gadget (Lemma 7.13) together
with the curves P j1 , P

j
2 we obtained from Section 7.2.1 (Lemma 7.12) to prove a

running time bound for c-packed curves: Any 1.001-approximation for the (discrete
or continuous) Fréchet distance of (R1, R2) decides satisfiability of ϕ. Note that R1

and R2 are c-packed with

c = Θ(M · 2N/2/`), n = max{|R1|, |R2|} = Θ(`2M · 2N/2/`).

Thus, any O((cn)1−δ) algorithm for the Fréchet distance implies a O(M22(1−δ)N )
algorithm for CNF-SAT, contradicting SETH′. Moreover, using Lemma 7.1 we can

assume that 1 6M 6 2δN/4. Setting ` := Θ(2
1−γ
1+γ

N/2
) for any 0 6 γ 6 1 we obtain

Ω(2
2

1+γ
N/2

) 6n 6 O(2
( 2
1+γ

+δ/2)N/2
), Ω(2

2γ
1+γ

N/2
) 6 c 6 O(2

( 2γ
1+γ

+δ/2)N/2
).
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Figure 7.4: Point sets Z1, Z2 in R4 with distance 1 between any pair of points (z1, z2) ∈ Z1 × Z2.
The left picture shows the projection onto the first two dimensions and the right picture shows
the projection onto the last two dimensions. Here, Z1 (circles) is placed along a quarter-circle in
the (1, 2)-plane and Z2 (crosses) is placed along a quarter-circle in the (3, 4)-plane.

From this it follows that Ω(nγ−δ/2) 6 c 6 O(nγ+δ/2), which implies the desired
polynomial restriction nγ−δ 6 c 6 nγ+δ for sufficiently large n.

7.3.2. Approximation Schemes

In this section, we consider the dependence on ε of the running time of a (1 + ε)-
approximation for the Fréchet distance on c-packed curves. We show that in Rd with
d > 5 there is no such algorithm with running time O(min{cn/

√
ε , n2}1−δ) for any

δ > 0 unless SETH′ fails (Theorem 6.4). This matches the dependence on ε of the
fastest known algorithm up to a polynomial. The result holds for sufficiently small
ε > 0 and any polynomial restriction of 1 6 c 6 n and ε 6 1.

We will reuse the OR-gadget from the last section, embedded into the first two
dimensions of R5. Specifically, we will reuse Lemma 7.13. However, we adapt the
curves P j1 , P

j
2 , essentially by embedding the same set of points in a different way. In

this new embedding we make use of the fact that in R4 there are point sets Z1, Z2

of arbitrary size such that any pair of points (z1, z2) ∈ Z1 × Z2 has distance 1. For
an example, see Figure 7.4.

Construction As usual, consider a CNF-SAT instance ϕ, partition its variables
x1, . . . , xN into two sets V1, V2 of size N/2, and consider any set Ak of assignments

of T and F to the variables in Vk. Fix any enumeration {a1
k, . . . , a

|Ak|
k } of Ak. Again

set ρ := 1/
√

2 . For h ∈ [|Ak|] and i ∈ {0, . . . ,M + 1} let

rot(ah1 , i) :=
(
ρ sin

(
π
4 + π

2
h(M+2)+i
|A1|·(M+2)

)
, ρ cos

(
π
4 + π

2
h(M+2)+i
|A1|·(M+2)

)
, 0, 0, 0

)
,

rot(ah2 , i) :=
(
0, 0, ρ sin

(
π
4 + π

2
h(M+2)+i
|A2|·(M+2)

)
, ρ cos

(
π
4 + π

2
h(M+2)+i
|A2|·(M+2)

)
, 0
)
.

Note that these points are placed along a quarter-circle in the (1, 2)-plane or (3, 4)-
plane, respectively, as in Figure 7.4. In particular, ‖rot(ah1 , i)− rot(ah

′
2 , i
′)‖ = 1 for

all h, h′, i, i′. Moreover, let e5 be the vector (0, 0, 0, 0, ρ). For ak ∈ Ak and i ∈ [M ]
we set

CG(ak, i) :=

{
(1− 2ε) rot(ak, i) + (imod 2) · 8

√
ε e5, if sat(ak, Ci) = T

(1 + ε) rot(ak, i) + (imod 2) · 8
√
ε e5, if sat(ak, Ci) = F

Thus, we align the clause gadgets of A1 roughly along a quarter-circle in the (1, 2)-
plane, and similarly the clause gadgets of A2 roughly along a quarter-circle in the
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(3, 4)-plane. Moreover, for ak ∈ Ak we set

rk(ak) := rot(ak, 0)− 8
√
ε e5,

s1(a1) := (1− 400ε) rot(a1, 0) + 10
√
ε e5,

t1(a1) := (1− 400ε) rot(a1,M + 1)− 10
√
ε e5,

s2 = t2 := (0, 0, 0, 0, 0),

s∗2 := (1 + 9
√
ε )e5, t∗2 := −(1 + 9

√
ε )e5.

We define assignment gadgets and the curves P1, P2 as in Section 7.2.1, i.e.,

AG(ak) := rk(ak) ◦©i∈[M ]CG(ak, i),

P1 :=©a1∈A1

(
s1(a1) ◦AG(a1) ◦ t1(a1)

)
,

P2 := s2 ◦ s∗2 ◦
(
©a2∈A2 AG(a2)

)
◦ t∗2 ◦ t2.

Analysis Again, we split the considered points into Q1, Q2, depending on whether
they may appear on P1 or P2, i.e., Q1 := {s1(a1), t1(a1), r1(a1), CG(a1, i) | a1 ∈
A1, i ∈ [M ]} and Q2 := {s2, t2, s

∗
2, t
∗
2, r2(a2), CG(a2, i) | a2 ∈ A2, i ∈ [M ]}. It is easy,

but tedious to verify that the constructed points behave as follows.

Lemma 7.18. The following pairs of points have distance at most 1 for any ak ∈ Ak:

(q, s2), (q, t2) for any q ∈ Q1,

(s1(a1), q) for any q ∈ Q2 \ {t∗2},
(t1(a1), q) for any q ∈ Q2 \ {s∗2},
(r1(a1), r2(a2)),

(CG(a1, i), CG(a2, i)) if assignment (a1, a2) satisfies clause Ci.

Moreover, the following pairs of points have distance more than 1+ε for any ak ∈ Ak:

(q, s∗2) for any q ∈ Q1 \ {s1},
(q, t∗2) for any q ∈ Q1 \ {t1},
(r1(a1), CG(a2, i)) for any i ∈ [M ],

(CG(a1, i), r2(a2)) for any i ∈ [M ],

(CG(a1, i), CG(a2, j)) for any i, j ∈ [M ], i 6≡ j mod 2,

(CG(a1, i), CG(a2, i)) if assignment (a1, a2) does not satisfy clause Ci.

Proof. Using that ε is sufficiently small, we only have to compute the largest order
term of ε for all distances. E.g., for all ak ∈ Ak

‖s1(a1)− r2(a2)‖ =

√
ρ2((1− 400ε)2 + 1 + (18

√
ε )2) =

√
1− 476ε+O(ε2) 6 1.

Now we use these curves in the OR-gadget from the last section. To this end, again
partition the set of all assignments of Vk into sets A1

k, . . . , A
`
k of size Θ(2N/2/`), where
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we fix 1 6 ` 6 2N/2 later. Use the above construction of P1, P2 after replacing A1 by
Aj11 and A2 by Aj22 for any j1, j2 ∈ [`] to obtain curves P j1j21 , P j1j22 . Slightly rename

these curves so that we have curves (P j1 , P
j
2 ) for j ∈ [`2]. Then these curves satisfy

Property 7.11.

Lemma 7.19. The curves P j1 , P
j
2 satisfy Property 7.11 with c = Θ(1 +

√
εM |Ak|)

and β = 1 + ε. Moreover, |P jk | = Θ(M2N/2/`) for any j ∈ [`2], k ∈ {1, 2}.

Proof. Using Lemma 7.18, we can follow the proof in Section 7.2.1, since everything
that we used about P1, P2 is captured by this lemma. This proves that if ϕ is
satisfiable then ddF(P j1 , P

j
2 ) 6 1 for some j ∈ [`2], and if ϕ is not satisfiable then

ddF(P j1 , P
j
2 ) > 1 + ε for all j ∈ [`2], i.e., Properties 7.11.(i) and (ii) in the discrete

case. The same adaptations as in Section 7.2.2 allow to prove correctness in the
continuous case, we omit the details.

It is easy to see that all constructed points lie within distance 1 of (0, 0, 0, 0, 0),
showing (iv). For (v) we use that we placed the points along the upper quarter-circle,
and not the full circle. This way, all points in P j1 have a distance to (0, ρ, 0, 0, 0) of
at most ‖(0, ρ)− (1

2 ,
1
2)‖+O(

√
ε ) < 1, for sufficiently small ε.

For (iii) observe that all segments of P jk (except for the finitely many segments inci-

dent to s∗2, t
∗
2) have length Θ(

√
ε +1/(M |Ajk|)), k ∈ {1, 2}. Moreover, the Θ(M |Ajk|)

segments of P jk are spread along a quarter-circle. Hence, any ball B(q, r) intersects

O(1 + min{1, r}M |Ajk|) segments of P jk . Since each of these segments has length

O(min{r,
√
ε + 1/(M |Ajk|)}) in B(q, r), the total length of P jk in B(q, r) is O(r(1 +√

εM |Ajk|)). Thus, P jk is O(1 +
√
εM |Ajk|)-packed. It is also Θ(1 +

√
εM |Ajk|)-

packed, since all Θ(M |Ajk|) segments of length Θ(
√
ε + 1/(M |Ajk|)) lie in a ball

of radius 1 around (0, 0, 0, 0, 0) or (0, ρ, 0, 0, 0) by (iv) and (v). Finally, note that
|Ajk| = 2N/2/` so that |P jk | = Θ(M2N/2/`).

Proof of Theorem 6.4 The above Lemma 7.19 allows to apply Lemma 7.13,
which constructs curves R1, R2 such that any (1 + ε)-approximation for the Fréchet
distance of (R1, R2) decides satisfiability of ϕ. Since R1 and R2 are c-packed with

c = Θ(1 +
√
εM2N/2/`), n = max{|R1|, |R2|} = Θ(`M2N/2),

we obtain that any (1+ε)-approximation for the Fréchet distance with running time
O((cn/

√
ε )1−δ) yields an algorithm for CNF-SAT with running time O(M22(1−δ)N ),

as long as ` = O(
√
εM2N/2). This contradicts SETH′.

Moreover, using Lemma 7.1 we can assume that 1 6 M 6 2δN/4. Setting ` :=

Θ(ε
1

2(1+γ) 2
1−γ
1+γ

N/2
) for any 0 6 γ 6 1, we obtain

ε
1

2(1+γ) 2
2

1+γ
N/2 6n 6 ε

1
2(1+γ) 2

( 2
1+γ

+δ/2)N/2
,

ε
γ

2(1+γ) 2
2γ
1+γ

N/2 6 c 6 ε
γ

2(1+γ) 2
( 2γ
1+γ

+δ/2)N/2
.

From this it follows that Ω(nγ−δ/2) 6 c 6 O(nγ+δ), which implies the desired
polynomial restriction nγ−δ 6 c 6 nγ+δ for sufficiently large n. Note that this works
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as long as
1 6 ` 6 O(

√
εM2N/2).

Since ` = Θ
((√

ε n/c
)1/2)

, the first inequality is equivalent to cn/
√
ε 6 n2, which is

a natural condition, since otherwise the exact algorithm for general curves is faster.

Plugging in the definition of ` = Θ(ε
1

2(1+γ) 2
1−γ
1+γ

N/2
), the second inequality becomes

1/ε 6
(
2NM (1+γ)/γ

)2
. Since (1 + γ)/γ > 2, n = O(`M2N/2) 6 O(M22N ), and

c > 1, this is implied by the first condition cn/
√
ε 6 n2. Hence, we may choose any

sufficiently small ε = ε(n) with cn/
√
ε 6 n2.
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8Improved Approximation for
Realistic Inputs

This chapter is based on [1]. I contributed approximately 50% to all parts of the
algorithm and at least 40% to the work of writing the paper.

[1] K. Bringmann and M. Künnemann. “Improved approximation for Fréchet
distance on c-packed curves matching conditional lower bounds.” Submitted.
2014. arXiv: 1408.1340 [cs.CG].

In this chapter, we present an improved (1 + ε)-approximation for the Fréchet
distance on c-packed curves, i.e., we prove the following theorem from Section 6.3.

Theorem 6.5. For any 0 < ε 6 1 we can compute a (1 + ε)-approximation for the
continuous and discrete Fréchet distance on c-packed curves in time Õ(cn/

√
ε ).

This chapter is structured as follows. We start with basic definitions and tech-
niques borrowed from [106] in Section 8.1. In Section 8.2 we present our approximate
decision procedure which reduces the problem to one-dimensional separated curves.
We solve the latter in Section 8.3. In the whole chapter, we focus on the continuous
Fréchet distance. It is straightforward to obtain a similar algorithm for the discrete
variant, in fact, then Section 8.3.1 becomes obsolete, which is why we save a factor
of log 1/ε in the running time.

8.1. Preliminaries

For i, j ∈ N, i 6 j, we let [i..j] := {i, i + 1, . . . , j}, which is not to be confused
with the real interval [i, j] = {x ∈ R | i 6 x 6 j}. Throughout the chapter we fix
the dimension d > 2. Recall that a (polygonal) curve π is defined by its vertices
(π1, . . . , πn) with πp ∈ Rd, p ∈ [1..n], and we can also view π as a continuous function
π : [1, n]→ Rd with πp+λ = (1−λ)πp+λπp+1 for p ∈ [1..n−1] and λ ∈ [0, 1]. We let
|π| = n be the number of vertices of π and ‖π‖ be its total length

∑n−1
i=1 ‖pi− pi+1‖.

We write πp..b for the sub-curve (πp, πp+1, . . . , πb). Similarly, for an interval I = [p..b]
we write πI = πp..b. For the second curve σ = (σ1, . . . , σm) we will use indices of the
form σq..d for the reader’s convenience.
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Free-space diagram The discrete free-space of curves π, σ is defined as Dd6δ(π, σ)
:= {(p, q) ∈ [1..n]× [1..m] | ‖πp − σq‖ 6 δ}. Note that any discrete traversal of π, σ
of width at most δ corresponds to a monotone sequence of points in the free-space
where at each point in time we increase p or q or both. Because of this property, the
free-space is a standard concept used in many algorithms for the Fréchet distance.

The continuous free-space is defined as D6δ(π, σ) := {(p, q) ∈ [1, n]× [1,m] | ‖πp−
σq‖ 6 δ}. Again, a monotone path from (1, 1) to (n,m) in D6δ(π, σ) corresponds to
a traversal of width at most δ. It is well-known [101, 102] that each free-space cell
Ci,j := {(p, q) ∈ [i, i+ 1]× [j, j+ 1] | ‖πp−σq‖ 6 δ} (for i ∈ [1..n− 1], j ∈ [1..m− 1])
is convex, specifically it is the intersection of an ellipsoid with [i, i + 1] × [j, j + 1].
In particular, the intersection of the free-space with any interval [i, i+ 1]× {j} (or
{i} × [j, j + 1]) is an interval Ihi,j (or Ivi,j), and for any such interval the subset that

is reachable by a monotone path from (1, 1) is an interval Rhi,j (or Rvi,j). Moreover,
in constant time one can solve the following free-space cell problem: Given intervals
Rhi,j ⊆ [i, i+1]×{j}, Rvi,j ⊆ {i}× [j, j+1], determine the intervals Rhi,j+1 ⊆ [i, i+1]×
{j + 1}, Rvi+1,j ⊆ {i+ 1} × [j, j + 1] consisting of all points that are reachable from

a point in Rhi,j ∪ Rvi,j by a monotone path within the free-space cell Ci,j . Solving
this problem for all cells from lower left to upper right we determine whether (n,m)
is reachable from (1, 1) by a monotone path and thus decide whether the Fréchet
distance is at most δ.

From approximate deciders to approximation algorithms An approximate
decider is an algorithm that, given curves π, σ and δ > 0, 0 < ε 6 1, returns one of
the outputs (1) dF(π, σ) > δ or (2) dF(π, σ) 6 (1 + ε)δ. In any case, the returned
answer has to be correct. In particular, if δ < dF(π, σ) 6 (1+ε)δ the algorithm may
return either of the two outputs.

LetD(π, σ, δ, ε) be the running time of an approximate decider and setD(π, σ, ε) :=
maxδ>0D(π, σ, δ, ε). We assume polynomial dependence on ε, in particular, that
there are constants 0 < c1 < c2 < 1 such that for any 1 < ε 6 1 we have
c1D(π, σ, ε/2) 6 D(π, σ, ε) 6 c2D(π, σ, ε/2). Driemel et al. [106] gave a construction
of a (1 + ε)-approximation for the Fréchet distance given an approximate decider.
(This follows from [106, Theorem 3.15] after replacing their concrete approximate
decider with running time “O(N(ε, π, σ))” by any approximate decider with running
time D(π, σ, ε).)

Lemma 8.1. Given an approximate decider with running time D(π, σ, ε) we can
construct a (1 + ε)-approximation for the Fréchet distance with running time

O
(
D(π, σ, ε) +D(π, σ, 1) log n

)
.

8.2. The Approximate Decider

Let π, σ be curves for which we want to (approximately) decide whether dF(π, σ) > δ
or dF(π, σ) 6 (1+ε)δ. We modify the curve π by introducing new vertices as follows.
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(a) This figure illustrates our partitioning of
a curve into pieces (contained in dashed cir-
cles) and long segments (bold edges).

(b) The free-space problem for pieces π′

and σ′ in the free-space diagram of π and
σ. Given entry intervals on the lower and
left boundary of the region, compute exit
intervals on the upper and right bound-
ary.

Figure 8.1: Definition and treatment of pieces.

Start with the initial vertex π1 as current vertex. If the segment following the current
vertex has length at least Λ = Λε,δ := min{1

2

√
ε , 1

4} · δ then mark this segment as
long and set the next vertex as the current vertex. Otherwise follow π from the
current vertex πx to the first point πy such that ‖πx−πy‖ = Λ (or until we reach the
last vertex of π). If πy is not a vertex, but lies on some segment of π, then introduce
a new vertex at πy. Mark πx..y as a piece of π and set πy as current vertex. Repeat
until π is completely traversed. Since this procedure introduces at most |π| new
vertices and does not change the shape of π, with slight abuse of notation we call
the resulting curve again π and set n := |π|. This partitions π into sub-curves
π1, . . . , πk, with πs = πps..bs , where every part πs is either (see also Figure 8.1a)

• a long segment : bs = ps + 1 and ‖πps − πbs‖ > Λ, or

• a piece: ‖πps − πbs‖ = Λ and ‖πps − πx‖ < Λ for all x ∈ [ps, bs).

Note that the last piece actually might have distance ‖πps−πbs‖ less than Λ, however,
for simplicity we assume equality for all pieces (in fact, a special handling of the last
piece would only be necessary in Lemma 8.7). Similarly, we introduce new vertices
on σ and partition it into sub-curves σ1, . . . , σ`, with σt = σqt..dt , each of which is a
long segment or a piece. Let m := |σ|.

We do not want to resolve each free-space cell on its own, as in the standard
decision algorithm for the Fréchet distance. Instead, for any pair of pieces we want
to consider the free-space region spanned by the two pieces at once, see Figure 8.1b.
This is made formal by the following sub-problem.

Problem 8.2 (Free-space region problem). Given δ > 0, 0 < ε 6 1, curves π, σ
with n and m vertices, and entry intervals R̃hi,1 ⊆ [i, i + 1] × {1} for i ∈ [1..n) and
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R̃v1,j ⊆ {1} × [j, j + 1] for j ∈ [1..m), compute exit intervals R̃hi,m ⊆ [i, i+ 1]× {m}
for i ∈ [1..n) and R̃vn,j ⊆ {n}× [j, j+1] for j ∈ [1..m) such that (1) the exit intervals
contain all points reachable from the entry intervals by a monotone path in D6δ(π, σ)
and (2) all points in the exit intervals are reachable from the entry intervals by a
monotone path in D6(1+ε)δ(π, σ).

To stress that we work with approximations, we denote reachable intervals by R̃
instead of R in the remainder of this chapter.

The standard solution to the free-space region problem would split it up into
n ·m free-space cells and resolve each cell in constant time, resulting in an O(n ·m)
algorithm (this solves the problem even exactly, i.e., for ε = 0). Restricted to pieces,
we will show the following improvement, which will yield the desired overall speedup
of a factor of

√
ε .

Lemma 8.3. If π and σ are pieces then the free-space region problem can be solved
in time O((n+m) log2 1/ε).

We will prove this lemma in Sections 8.2.3 and 8.3.

Algorithm 8.4. Using an algorithm for the free-space region problem on pieces as in
Lemma 8.3, we obtain an approximate decider for the Fréchet distance a follows. We
create a directed graph which has a node vs,t for every region [ps, bs]×[qt, dt] spanned
by pieces πs and σt, and a node ui,j for every remaining region [i, i+ 1]× [j, j + 1]
(which is not contained in any region spanned by two pieces), i ∈ [1..n), j ∈ [1..m).
We add edges between two nodes whenever their regions touch (i.e., have a common
interval I on their boundary), and direct this edge from the region that is to the left
or below I to the other one. With each node ui,j we store the entry intervals R̃hi,j
and R̃vi,j , and with each node vs,t we store the entry intervals R̃hi,qt ⊆ [i, i+ 1]×{qt}
for i ∈ [ps..bs) and R̃vps,j ⊆ {ps}× [j, j+1] for j ∈ [qt..dt). After correctly initializing

the outer reachability intervals R̃hi,1 and R̃v1,j , we follow any topological ordering of
this graph. For any node ui,j , we resolve its region by solving the corresponding free-
space cell problem in constant time. For any node vs,t, we solve the corresponding
free-space region problem on π′ = πs, σ′ = σt (and δ′ = δ, ε′ = ε) using Lemma 8.3.
Finally, we return dF(π, σ) 6 (1+ε)δ if (n,m) ∈ R̃hn−1,m and dF(π, σ) > δ otherwise.

Lemma 8.5. Algorithm 8.4 is a correct approximate decider.

Proof. Observe that if (n,m) ∈ R̃hn−1,m then there exists a monotone path from
(1, 1) to (n,m) in D6(1+ε)δ(π, σ), which implies dF(π, σ) 6 (1 + ε)δ. If dF(π, σ) 6 δ
then there is a monotone path from (1, 1) to (n,m) in D6δ(π, σ), implying (n,m) ∈
R̃hn−1,m.

In the above algorithm we can ignore unreachable nodes, i.e., nodes where all
stored entry intervals would be empty. To this end, we fix a topological ordering by
mapping a node corresponding to a region [x1, x2] × [y1, y2] to x2 + y2 and sorting
by this value ascendingly. This yields n+m layers of nodes, where the order within
each layer is arbitrary. For each layer we build a dictionary data structure (a hash
table), in which we store only the reachable nodes of this layer. This allows to
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quickly enumerate all reachable nodes of a layer. The total overhead for managing
the n+m dictionaries is O(n+m).

Let us analyze the running time of the obtained approximate decider. Let S be
the set of non-empty free-space cells Ci,j of D6(1+ε)δ(π, σ) such that i or j is not
contained in a piece. Moreover, let T be the set of all pairs (s, t) such that πs, σt are
pieces with initial vertices within distance (1+ε)δ+2Λ. Define N(π, σ, δ, ε) := |S|+∑

(s,t)∈T (|πs| + |σt|) and set N(π, σ, ε) := maxδ>0N(π, σ, δ, ε). Since the algorithm
considers only reachable cells and any reachable cell is also non-empty, the cost
over all free-space cell problems solved by our approximate decider is bounded by
O(|S|). Since every reachable (thus non-empty) region spanned by two pieces has
initial points within distance (1 + ε)δ + 2Λ, the second term bounds the cost over
all free-space region problems on pieces (apart from the log2 1/ε factor). Hence, we
obtain the following.

Lemma 8.6. The approximate decider has running time D(π, σ, ε) = O(N(π, σ, ε) ·
log2 1/ε).

8.2.1. Free-Space Complexity of c-Packed Curves

Recall that a curve π is c-packed if for any point z ∈ Rd and any radius r > 0 the
total length of π inside the ball B(z, r) is at most cr.

Lemma 8.7. Let π, σ be c-packed curves with n vertices in total and ε > 0. Then
N(π, σ, ε) = O(cn/

√
ε ).

Proof. Our proof uses a similar argument as [110, Lemma 4.4]. Let δ > 0 be
arbitrary. First consider the set S of non-empty free-space cells Ci,j of D6(1+ε)δ(π, σ)
such that i or j is not contained in a piece. Then one of the segments πi..i+1 and
σj..j+1 is long, i.e., of length at least Λ = min{1

2

√
ε , 1

4} · δ. We charge the cell Ci,j to
the shorter of the two segments. Let us analyze how often any segment v = πi..i+1

can be charged. Consider the ball B of radius r := 1
2‖v‖ + (1 + ε)δ + max{‖v‖,Λ}

centered at the midpoint of v. Every segment u = σj..j+1 with (i, j) ∈ S, which
charges v, is of length at least µ := max{‖v‖,Λ} (since it is longer than v and a
long segment) and contributes at least µ to the total length of σ in B. Since σ is
c-packed, the number of such charges is at most

‖σ ∩B‖
µ

6
cr

µ
6
c(1

2‖v‖+ (1 + ε)δ + µ)

max{‖v‖,Λ}
6 3

2c+
c(1 + ε)δ

min{1
2

√
ε , 1

4} · δ
= O

( c√
ε

)
.

Thus, the contribution of |S| to the free-space complexity N(π, σ, ε) is O(cn/
√
ε ).

Let T be the set of all pairs (s, t) such that πs, σt are pieces of π, σ with initial
vertices within distance (1 + ε)δ + 2Λ, and consider Σ :=

∑
(s,t)∈T (|πs| + |σt|). We

distribute Σ over the segments of π, σ by charging 1 to every segment of πs and σt

for any pair (s, t) ∈ T . Let us analyze how often any segment v of a piece πs can be
charged. Consider the ball B′ of radius r′ := (1 + ε)δ+ 3Λ around the initial vertex
πps of πs. Since ‖σt‖ > Λ, for any (s, t) ∈ T the piece σt contributes at least Λ to
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the total length of σ in B′. Since σ is c-packed, the number of such charges to v is
at most

‖σ ∩B′‖
Λ

6
cr′

Λ
=
c(1 + ε+ 3

2

√
ε )

min{1
2

√
ε , 1

4}
= O

( c√
ε

)
.

Hence, the contribution of Σ to the free-space complexity N(π, σ, ε) is also at most
O(cn/

√
ε ), which finishes the proof.

Combining Lemmas 8.7, 8.6, and 8.1, we obtain an approximation algorithm for
the Fréchet distance with running time O( cn√

ε
log2 1/ε + cn log n) = Õ( cn√

ε
), as de-

sired.

8.2.2. Free-Space Complexity of κ-Bounded and κ-Straight Curves

Definition 8.8. Let κ > 1 be a given parameter. A curve π is κ-straight if for any
p, b ∈ [1, |π|] we have ‖πp..b‖ 6 κ‖πp − πb‖. A curve π is κ-bounded if for all p, b
the sub-curve πp..b is contained in B(πp, r) ∪B(πb, r), where r = κ

2‖πp − πb‖.

The following lemma from [110] allows us to transfer our speedup for c-packed
curves directly to κ-straight curves.

Lemma 8.9. A κ-straight curve is 2κ-packed.

In the remainder of this section we consider κ-bounded curves, closely follow-
ing [110, Sect. 4.2].

Lemma 8.10. Let δ > 0, 0 < ε 6 1, λ > 0, and let π be a κ-bounded curve with
disjoint sub-curves π1, . . . , πk, where πs = πps..bs and ‖πps−πbs‖ > λ for all s. Then
for any z ∈ Rd, r > 0 the number of sub-curves πs intersecting B(z, r) is bounded
by O(κd(1 + r/λ)d).

Proof. Let πs1 , . . . , πs` be the sub-curves that intersect the ball B = B(z, r). Let
X = {s1, s3, . . . , } be the odd indices among the intersecting sub-curves. For all
s ∈ X pick any point πxs in πs ∩ B. Between any points πxs , πxs′ there must lie
an even sub-curve πs2i . As the endpoints of this even sub-curve have distance at
least λ, we have ‖πxs − πxs′‖ > λ/(κ + 1). Otherwise the even part would not fit
into B(πxs , r) ∪B(πxs′ , r) which has diameter (κ+ 1)‖πxs − πxs′‖. Hence, the balls
B(πxs , λ/2(κ + 1)) are disjoint and contained in B(z, r + λ). A standard packing
argument now shows that ` 6 2 · (r + λ)d/(λ/2(κ+ 1))d = O(κd(1 + r/λ)d).

Lemma 8.11. For any κ-bounded curves π, σ with n vertices in total, 0 < ε 6 1,
we have N(π, σ, ε) = O((κ/

√
ε )dn).

Proof. Let δ > 0 and consider the partitionings into long segments and pieces
π1, . . . , πk, σ1, . . . , σ` computed by our algorithm. Then σt = σqt..dt satisfies ‖σqt −
σdt‖ > Λ = min{1

2

√
ε , 1

4} · δ for all t. We use the same charging scheme as in
Lemma 8.7. Consider any segment v of a piece πs. The segment v can be charged
by a part σt which is either a long segment or a piece. In both cases, σt intersects
the ball B centered at the midpoint of ‖v‖ with radius r := (1 + ε)δ + 2Λ. By
Lemma 8.10 with λ := Λ, the number of such charges is bounded by O((κ/

√
ε )d).
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Figure 8.2: Projection of the pieces π, σ onto the line L through their initial vertices. This yields
one-dimensional separated curves π̂, σ̂.

Now consider any long segment v of π. The segment v can be charged by segments
of σ which are longer than v. Any such charging gives rise to a long segment σt

intersecting the ball B centered at the midpoint of v of radius r := (1 + ε)δ+ 1
2‖v‖.

By Lemma 8.10 with λ := ‖v‖, the number of such charges is bounded by O(κd(3
2 +

(1 + ε)δ/‖v‖)d) = O((κ/
√
ε )d), since ‖v‖ > Λ = min{1

2

√
ε , 1

4} · δ.
Hence, every segment of π is charged O((κ/

√
ε )d) times; a symmetric statement

holds for σ.

Plugging the above lemma into Lemma 8.1 we obtain the following result. The
best previously known running time was O((κ/ε)dn+ κdn log n) [110].

Theorem 8.12. For any 0 < ε 6 1 there is a (1 + ε)-approximation for the contin-
uous and discrete Fréchet distance on κ-bounded curves with n vertices in total in
time O((κ/

√
ε )dn log2 1/ε+ κdn log n) = Õ((κ/

√
ε )dn).

8.2.3. Solving the Free-Space Region Problem on Pieces

It remains to prove Lemma 8.3. Let (π, σ, δ, ε) be an instance of the free-space region
problem, where n := |π|, m := |σ|, with ‖π1 − πx‖, ‖σ1 − σy‖ 6 Λε,δ = Λ for any
x ∈ [1, n], y ∈ [1,m] (and entry intervals R̃hi,1 ⊆ [i, i + 1] × {1} for i ∈ [1..n) and

R̃v1,j ⊆ {1} × [j, j + 1] for j ∈ [1..m)). We reduce this instance to the free-space
region problem on one-dimensional separated curves, i.e., curves π̂, σ̂ in R such that
all vertices of π̂ lie above 0 and all vertices of σ̂ lie below 0.

Since π and σ stay within distance Λ of their initial vertices, if their initial vertices
are within distance ‖π1 − σ1‖ 6 δ − 2Λ then all pairs of points in π, σ are within
distance δ. In this case, we find a translation of π making ‖π1−σ1‖ = δ−2Λ and all
pairwise distances are still at most δ. This ensures that the curves π, σ are contained
in disjoint balls of radius Λ 6 1

4δ centered at their initial vertices.
Consider the line L through the initial vertices π1 and σ1. Denote by Π: Rd → L

the projection onto L. Now, instead of the pieces π, σ we consider their projec-
tions π̂ := Π(π) = (Π(π1), . . . ,Π(πn)) and σ̂ := Π(σ) = (Π(σ1), . . . ,Π(σm)), see
Figure 8.2. Note that after rotation and translation we can assume that π̂ and σ̂
lie on R ⊂ Rd and π̂ and σ̂ are separated by 0 ∈ R (since π and σ are contained in
disjoined balls centered on L). Now we solve the free-space region problem on π̂, σ̂,
δ̂ := δ, and ε̂ := 1

2ε (with the same entry intervals R̃hi,j , R̃
v
i,j)).
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Lemma 8.13. Any solution to the the free-space region problem on (π̂, σ̂, δ̂, ε̂) solves
the free-space region problem on (π, σ, δ, ε).

Proof. Let x, y be vertices of π, σ, respectively. Clearly, ‖Π(x) − Π(y)‖ 6 ‖x − y‖.
Hence, any monotone path in D6δ(π, σ) yields a monotone path in D6δ(π̂, σ̂) =
D6δ̂(π̂, σ̂), so it will be found.

Note that x and y have distance at most Λ to L. Since Π(x) − Π(y) and x −
Π(x)− (y −Π(y)) are orthogonal, we can use the Pythagorean theorem to obtain

‖x− y‖ =
√
‖Π(x)−Π(y)‖2 + ‖x−Π(x)− (y −Π(y))‖2

6
√
‖Π(x)−Π(y)‖2 + (2Λ)2 .

Hence, any monotone path in D6(1+ε̂)δ̂(π̂, σ̂) yields a monotone path in D6α(π, σ)

with α 6
√

(1 + ε̂)2δ̂2 + (2Λ)2 . Plugging in δ̂ = δ, ε̂ = 1
2ε, and Λ = min{1

2

√
ε , 1

4} ·δ

we obtain α 6
√

(1 + 1
2ε)

2 + ε · δ 6 (1 + ε) δ. Thus, the desired guarantees for the

free-space region problem are satisfied.

We prove the following lemma in Section 8.3, concluding the proof of Lemma 8.3.

Lemma 8.14. The free-space region problem on one-dimensional separated curves
can be solved in time O((n+m) log2 1/ε).

8.3. On One-Dimensional Separated Curves

In this section, we show how to solve the free-space region problem on one-dimensio-
nal separated curves in time O((n+m) log2 1/ε), i.e., we prove Lemma 8.14.

First, in Section 8.3.1, we show how to reduce this problem to a discrete version,
meaning that we can eliminate the continuous Fréchet distance and only consider
the much simpler discrete Fréchet distance (for general curves such a reduction is not
known to exist, but we only need it for one-dimensional separated curves). Moreover,
we simplify our curves further by rounding the vertices. This yields a reduction to the
following sub-problem. Note that we no longer ask for an approximation algorithm.

Problem 8.15 (Reduced free-space problem). Given one-dimensional sepa-
rated curves π, σ with n,m vertices and all vertices being multiples of 1

3εδ, and
given an entry set E ⊆ [1..n], compute the exit set F π ⊆ [1..n] consisting of all
points f such that ddF(πe..f , σ) 6 δ for some e ∈ E and the exit set F σ ⊆ [1..m]
consisting of all points f such that ddF(πe..n, σ1..f ) 6 δ for some e ∈ E.

Lemma 8.16. The reduced free-space problem can be solved in time O((n+m) log 1/ε).

As a second step, we prove the above lemma. We first consider the special case of
E = {1} and the problem of deciding whether n ∈ F π, i.e., the lower left corner (1, 1)
of the free-space is the only entry point and we want to determine whether the upper
right corner (n,m) is an exit. This is equivalent to deciding whether the discrete
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Fréchet distance of π, σ is at most δ, which is known to have a near-linear time
algorithm as π, σ are one-dimensional and separated (see the footnote in Section 6.3
for details). We present a greedy algorithm for this special case in Section 8.3.2. To
extend this to the reduced free-space problem, we prove useful structural properties
of one-dimensional separated curves in Section 8.3.3. With these, we first solve
the problem of determining the exit set F π assuming E = {1} in Section 8.3.4.
Then we show for general E ⊆ [1..n] how to compute F π (Section 8.3.4) and F σ

(Section 8.3.4).

8.3.1. Reduction from the Continuous to the Discrete Case

Essentially we use the following lemma to reduce the continuous free-space region
problem on one-dimensional separated curves to the discrete reduced free-space
problem.

Lemma 8.17. Let π, σ be one-dimensional separated curves with sub-curves πp..b,
σq..d. Then we have dF(πp..b, σq..d) = ddF(πp..b, σq..d). In particular, assume that we
subdivide any segments of π, σ by adding new vertices, which yields new curves π′, σ′

with sub-curves π′p′..b′ , σ
′
q′..d′ that are subdivisions of πp..b, σq..d. Then we have

ddF(π′p′..b′ , σ
′
q′..d′) = ddF(πp..b, σq..d) = dF(πp..b, σq..d).

Proof. It is known that dF(π, σ) 6 ddF(π, σ) holds for all curves π, σ. Thus, we
only need to show that any continuous traversal φ = (φ1, φ2) of πp..b, σq..d can be
transformed into a discrete traversal with the same width. We adapt φ as follows.
For any point in time t ∈ [0, 1], if φ1(t) is at a vertex of π we set φ′1(t) := φ1(t).
Otherwise φ1(t) is in the interior of a segment πi..i+1 of π. Let j ∈ {i, i+1} minimize
πj . We set φ′1(t) := j. Observe that φ′1 indeed is a non-decreasing function from
[0, 1] onto [1..n]. A similar construction, where we round to the value j ∈ {i, i+ 1}
maximizing σj , yields φ′2 and we obtain a discrete traversal φ′ = (φ′1, φ

′
2). The

width of φ′ is at most the width of φ since we rounded in the right way, i.e., we
have π(φ′1(t)) 6 π(φ1(t)) and σ(φ′2(t)) > σ(φ2(t)) so that ‖π(φ′1(t)) − σ(φ′2(t))‖ 6
‖π(φ1(t))− σ(φ2(t))‖ for all t ∈ [0, 1].

Note that the discrete Fréchet distance is in general not preserved under subdi-
vision of segments, but the continuous Fréchet distance is. Thus, the second state-
ment follows from the first one, ddF(πp..b, σq..d) = dF(πp..b, σq..d) = dF(π′p′..b′ , σ

′
q′..d′) =

ddF(π′p′..b′ , σ
′
q′..d′).

The above lemma allows the following trick. Consider any finite sets E ⊆ [1, n]
and F ⊆ [1, n]. Add πx as a vertex to π for any x ∈ E ∪ F , with slight abuse
of notation we say that π now has vertices at πi, i ∈ [1..n], and πx, x ∈ E ∪ F .
Mark the vertices πx, x ∈ E, as entries. Now solve the reduced free-space problem
instance (π, σ,E). This yields the set F π of all values f ∈ F such that there is an
e ∈ E with ddF(πe..f , σ) 6 δ, which by Lemma 8.17 is equivalent to dF(πe..f , σ) 6 δ.
Thus, we computed all exit points in F given entry points in E, with respect to
the continuous Fréchet distance. This is already near to a solution of the free-space
region problem, however, we have to cope with entry and exit intervals.
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For the full reduction we need two more arguments. First, we can replace all non-
empty input intervals R̃hi,1 by the leftmost point (yi, 1) in R̃hi,1∩D6δ(π, σ), specifically,

we show that any traversal starting in a point in R̃hi,1 can be transformed into a
traversal starting in (yi, 1). Thus, we add πyi as a vertex and mark it as an entry to
obtain a finite and small set of entry points. Second, for any segment πi..i+1 we call
a point f ∈ [i, i + 1] reachable if there is an e ∈ E with dF(πe..f , σ) 6 δ. We show
that if f is reachable then essentially all points f ′ ∈ [i, i+ 1] with πf ′ 6 πf are also
reachable. Thus, the set of reachable points is an interval with one trivial endpoint,
and we only need to search for the other endpoint of the interval, which can be
done by binary search. Moreover, we can parallelize all these binary searches, as
solving one reduced free-space problem can answer for every segment of π whether
a particular point on this segment is reachable (after adding this point as a vertex).
To make these binary searches finite, we round all vertices of π and σ to multiples
of γ := 1

4εδ and only search for exit points that are multiples of γ. This is allowed
since the free-space region problem only asks for an approximate answer. A similar
procedure yields the exits on σ reachable from entries on π, and determining the exits
reachable from entries on σ is a symmetric problem. Since for the binary searches
we reduce to O(log 1/ε) instances of the reduced free-space problem, Lemma 8.14
follows from Lemma 8.16.

In the following we present the details of this approach. Let π, σ be one-dimensional
separated curves, i.e., they are contained in R, all vertices of π lie above 0, and all
vertices of σ lie below 0. Let n = |π|, m = |σ|, δ > 0 and 0 < ε 6 1. Consider entry
intervals R̃hi,1 ⊆ [i, i+ 1]×{1} for i ∈ [1..n) and R̃v1,j ⊆ {1}× [j, j+ 1] for j ∈ [1..m).
We reduce this instance of the free-space region problem to O(log 1/ε) instances of
the reduced free-space problem.

First we change π, σ as follows. (1) Let Z ⊂ R be the set of all integral multiples1

of γ := 1
4εδ. We round all vertices of π, σ to values in Z, where we round down

everything in π and round up in σ, yielding curves π′, σ′. (2) Let I ⊆ [1..n) be the
set of all i with nonempty R̃hi,1 ∩D6δ(π

′, σ′). For any i ∈ I let (y′i, 1) be the leftmost

point in R̃hi,1 ∩ D6δ(π
′, σ′) and let yi 6 y′i be maximal with π′yi ∈ Z. Add π′yi as a

vertex to π′ and mark it as an entry. With slight abuse of notation, we say that
π′ now has its vertices at π′i, i ∈ [1..n] and π′yi , i ∈ I. We let E = {yi | i ∈ I}
be the indices of the entry vertices. Note that (π′, σ′, E) can be computed in time
O(n+m).

For every i ∈ [1..n) consider the multiples of γ on π′i..i+1, i.e., Si := {x ∈ [i, i+ 1] |
π′x ∈ Z}. Note that Si is either [i, i + 1] (if πi = πi+1) or it forms an arithmetic
progression, specifically Si = {i, i + 1/ti, i + 2/ti, . . . , i + 1} for some ti ∈ N, since
π′i, π

′
i+1 are in Z and π′x is a linear function in x. Thus, Si and sub-sequences of

Si can be handled efficiently, we omit these details in the following. We want to
determine the set Fi of all f ∈ Si such that there is an e ∈ E with ddF(π′e..f , σ

′) 6 δ.
We first argue that Fi is of an easy form.

Lemma 8.18. If Fi is non-empty then we have Fi = [a, b] ∩ Si for some a, b ∈ Si
with {a, b} ∩ {i, yi, i+ 1} 6= ∅ (or {a, b} ∩ {i, i+ 1} 6= ∅ if yi does not exist).

1Without loss of generality we assume 1/ε ∈ N so that δ ∈ Z.
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Proof. We show that if any f ∈ Si is reachable, i.e., there is an e ∈ E with
ddF(π′e..f , σ

′) 6 δ, then any f ′ ∈ Si with π′f ′ 6 π′f and yi 6∈ (f ′, f ] is also reach-
able. This proves the claim. Let φ be any traversal of π′e..f , σ

′ of width at most δ.
Note that e 6 f ′, since yi 6∈ (f ′, f ] and yi is the only entry on the segment containing
f and f ′. If f ′ 6 f then we change φ to stop at π′f ′ once it arrives at this point,
and we traverse the remaining part of σ staying fixed at π′f ′ . Since π′f ′ 6 π′f this
does not increase the width of the traversal and shows that f ′ is also reachable. If
f ′ > f then we append a traversal to φ that stays fixed at σ′m but walks in π′ from
π′f to π′f ′ . Again since π′f ′ 6 π′f this does not increase the width of the traversal and
shows that f ′ is also reachable.

Note that by solving the reduced free-space problem on (π′, σ′, E) we decide for
each f ∈ [n] ∪ {yi | i ∈ I} whether there is an e ∈ E with ddF(π′e..f , σ

′) 6 δ. By the
above lemma, this yields one of the endpoints of the interval Fi, say a, and we only
have to determine the other endpoint, say b. In the special case π′i = π′i+1 we even
determined both endpoints already, so from now on we can assume π′i 6= π′i+1 so that
|Si| <∞. We search for the other endpoint of Fi using a binary search over Si. To
test whether any z ∈ Si is in Fi, we add π′z as a vertex of π′ and solve the reduced
free-space problem on (π′, σ′, E). If z is in the output set F π then it is in Fi.

Note that any vertex π′x > δ on π′ does not have any point of σ within distance
δ, which is preserved by setting π′x := 2δ. Thus, we can assume that π′ takes values
in [0, 2δ], which implies |Si| 6 O(1/ε), so that our binary search needs O(log 1/ε)
steps. Moreover, note that we can parallelize these binary searches, since we can
add a vertex zi on every sub-curve π′i..i+1, so that one call to the reduced free-space
problem determines for every zi whether it is reachable. Here we use Lemma 8.17,
since we need that further subdivision of some segments of π′ does not change the
discrete Fréchet distance. Note that since we add O(n) vertices to π′ and since we
need O(log 1/ε) steps of binary search, Lemma 8.16 implies a total running time of
O((n+m) log2 1/ε).

We thus computed Fi = [a, b] ∩ Si with a, b ∈ Si. We extend Fi slightly to
F ′i = [a′, b′] ∩ Si by including the neighboring elements of a and b in Si. Finally,
we set R̃hi,m(π) := [a′, b′] × {m}. A similar procedure adding entries Eσ on σ′ and

doing a binary search over exits on π′ yields an interval R̃hi,m(σ) consisting of points
(f,m) ∈ [i, i+ 1]× {m} such that there is an e ∈ Eσ with ddF(π′1..f , σ

′
e..m) 6 δ. We

set R̃hi,m := R̃hi,m(π) ∪ R̃hi,m(σ), which will be again an interval (which follows from

the proof of Lemma 8.18). A symmetric algorithm determines R̃vn,j for j ∈ [1..m).
We show that we correctly solve the given free-space region problem instance.

Lemma 8.19. The computed intervals are a valid solution to the given free-space
region instance.

Proof. Let φ be any monotone path in D6δ(π, σ) that starts in a point (p, 1) ∈ R̃hj,1
and ends in (b,m), witnessing that ddF(πp..b, σ) 6 δ. After rounding down π to π′

and rounding up σ to σ′, φ is still a monotone path in D6δ(π
′, σ′). Moreover, we

can prepend a path from (y′j , 1) to (p, 1) to φ, since R̃hj,1 ∩ D6δ(π
′, σ′) is an interval

containing (y′j , 1) and (p, 1). We can also prepend a path from (yi, 1) to (y′i, 1), since
σ1 is a multiple of γ and π′yi is at most π′y′i

rounded up to a multiple of γ. Let r
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be the value of πb rounded down to a multiple of γ. This value r is attained at
some point πf on the same segment πi..i+1 as πb. If f 6 b then we change φ to stop
at πf whenever it reaches this point. If f > b then we change φ by appending a
path from (b,m) to (f,m). In any case, this yields a monotone path in D6δ(π

′, σ′)
from (yj , 1) to (f,m). Since such a continuous traversal is equivalent to a discrete
traversal by Lemma 8.17, we have f ∈ Fi. By the construction of F ′i , the point
(b,m) will be contained in the output R̃hi,m(π), so we find the reachable exit (b,m)
as desired. A similar argument with entries on σ shows that we satisfy property (1)
of the free-space region problem.

Consider any point (f,m) in the constructed output set R̃hi,m(π). By the con-
struction of F ′i , there is a point b on the same segment as f with |π′b − π′f | 6 γ
and there is an entry e ∈ E with ddF(π′e..b, σ

′) 6 δ, witnessed by a traversal φ. By
the construction of E, there is a point y ∈ R̃hi,1 with e 6 y and |π′y − π′e| 6 γ.
First assume y 6 f, b. In this case, we change φ so that it starts at π′y and stays
there while φ is at any point π′x, x 6 y. Moreover, if b 6 f we change φ so that
it stops at π′b once it reaches this point, and if b > f we change φ by appending
a path from (b,m) to (f,m). This shows ddF(π′y..f , σ

′) 6 δ + γ. Since π′, σ′ are
rounded versions of π, σ where all vertices are moved by less than γ, we obtain
ddF(πy..f , σ) 6 δ + 3γ 6 (1 + ε)δ. In the remaining cases e 6 f 6 y and e 6 b 6 y,
we have |π′y − π′x| 6 2γ for all x ∈ {e, b, f}. Hence, a traversal staying fixed in π′y
does the job, i.e., ddF(π′y, σ

′) 6 δ+2γ and ddF(πy, σ) 6 δ+4γ = (1+ε)δ. Thus, any
point (f,m) in the output set is reachable from the entry sets by a monotone path
in D6(1+ε)δ(π, σ), which together with a similar argument for entries on σ proves
that we satisfy property (2) of the free-space problem.

8.3.2. Greedy Decider for One-Dimensional Separated Curves

In the remainder of this chapter all indices of curves will be integral. Let π =
(π1, . . . , πn) and σ = (σ1, . . . , σm) be two separated polygonal curves in R, i.e.,
πi > 0 > σj . For indices 1 6 i 6 n and 1 6 j 6 m, define visσ(i, j) := {k | k >
j and σk > πi − δ} as the index set of vertices on σ that are later in sequence than
σj and are still in distance δ to πi (i.e, seen by πi) and, likewise, visπ(i, j) := {k |
k > i and πk 6 σj + δ}. Hence, the set of points that we may reach on σ by starting
in (πi, σj) and staying in πi can be defined as the longest contiguous sub-sequence
[j+1..j+k] such that [j+1..j+k] ⊆ visσ(i, j). Let reachσ(i, j) := [j+1..j+k] denote
this sub-sequence and let reachπ(i, j) be defined symmetrically. Note that πi 6 πi′

implies that visσ(i, j) ⊇ visσ(i′, j), however the converse does not necessarily hold.
Also, visσ(i, j) + visσ(i′, j) implies that visσ(i, j) ( visσ(i′, j) and πi > πi′ .

The visibility sets established above enable us to define a greedy algorithm for
the Fréchet distance of π and σ. Let 1 6 p 6 n and 1 6 q 6 m be arbitrary
indices on σ and π. We say that p′ is a greedy step on π from (p, q), written
p′ ← GreedyStepπ(πp..n, σq..m), if p′ ∈ reachπ(p, q) and visσ(i, q) ⊆ visσ(p′, q) holds
for all p 6 i 6 p′. Symmetrically, q′ ∈ reachσ(p, q) is a greedy step on σ from (p, q), if
visπ(p, i) ⊆ visπ(p, q′) for all q 6 i 6 q′. In pseudo code, GreedyStepπ(πp..n, σq..m)
denotes a function that returns an arbitrary greedy step p′ on π from (p, q) if such
an index exists and returns an error otherwise (symmetrically for σ). See Figure 8.3.
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Figure 8.3: An illustration of greedy steps. For better visibility, the one-dimensional sepa-
rated curves π, σ are drawn in the plane by mapping πi to (i, πi). In particular, the results
of MinGreedyStepπ(πp..n, σq..m), MaxGreedyStepπ(πp..n, σq..m), and stopπ(πp..n, σq..m) are
shown.

Consider the following greedy algorithm:

Algorithm 6 Greedy algorithm for the Fréchet distance of separated curves π1..n

and σ1..m in R
1: p← 1, q ← 1
2: repeat
3: if p′ ← GreedyStepπ(πp..n, σq..m) then
4: p ← p′

5: if q′ ← GreedyStepσ(πp..n, σq..m) then
6: q ← q′

7: until no greedy step was found in the last iteration
8: if p = n and q = m then return ddF(π, σ) 6 δ
9: else return ddF(π, σ) > δ

Theorem 8.20. Let π and σ be separated curves in R and δ > 0. Algorithm 6
decides whether ddF(π, σ) 6 δ in time O((n+m) log(nm)).

We will first prove the correctness of the algorithm in Lemma 8.22 below and
postpone the discussion how to implement the algorithm efficiently.

Correctness

Note that Algorithm 6 considers potentially only very few points of the curve ex-
plicitly during its execution. Call the indices (p, q) of point pairs considered in some
iteration of the algorithm (for any choice of greedy steps, if more than one exists)
greedy (point) pairs and all points contained in some such pair greedy points (of π
and σ). The following useful monotonicity property holds: If some greedy point on
π sees a point on σ that is yet to be traversed, all following greedy points on π will
see it until it is traversed.

Lemma 8.21. Let (p1, q1), . . . , (pi, qi) be the greedy point pairs considered in the
iterations 1, . . . , i. It holds that
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1. visσ(`, qi) ⊆ visσ(pi, qi) for all 1 6 ` 6 pi, and

2. visπ(pi, `) ⊆ visπ(pi, qi) for all 1 6 ` 6 qi.

Proof. Let k < i. We first show that visσ(`, qi) ⊆ visσ(pk+1, qi) holds for all pk 6 ` <
pk+1. If pk = pk+1, the claim is immediate. Otherwise pk+1 is the result of a greedy
step on π. By definition of visibility, we have visσ(`, qi) = visσ(`, qk) ∩ [qi..m] ⊆
visσ(pk+1, qk)∩ [qi..m] = visσ(pk+1, qi), where the inequality follows from pk+1 being
a greedy step from (pk, qk).

For arbitrary ` 6 i, let k < i be such that pk 6 ` < pk+1. Then visσ(`, qi) ⊆
visσ(pk+1, qi) ⊆ visσ(pk+2, qi) ⊆ · · · ⊆ visσ(pi, qi). The second statement is symmet-
ric.

We will exploit this monotonicity to prove that if Algorithm 6 finds a greedy point
pair that allows no further greedy steps, then no feasible traversal of π and σ exists.
We derive an even stronger statement using the following notion: For a greedy point
pair (p, q), define stopπ(πp..n, σq..m) := max(reachπ(p, q) ∪ {p}) + 1 as the index of
the first point after πp on π which is not seen by σq, or n+ 1 if no such index exists.
Let stopσ be defined symmetrically.

Lemma 8.22 (Correctness of Algorithm 6). Let (p, q) be a greedy point of π and
σ, pstop := stopπ(πp..n, σq..m) and qstop := stopσ(πp..n, σq..m). If on both curves no
greedy step from (p, q) exists then ddF(π, σ) > δ.

In particular, if qstop < m then for all 1 6 p′ 6 n we have ddF(π1..p′ , σ1..qstop) > δ,
and if pstop < n then ddF(π1..pstop , σ1..q′) > δ for all 1 6 q′ 6 m.

Note that the correctness of Algorithm 6 follows immediately: If the algorithm is
stuck then ddF(π, σ) > δ. Otherwise it finds a feasible traversal.

Proof of Lemma 8.22. Consider the case that no greedy step from (p, q) exists, then
the following stuckness conditions have to hold:

1. For all p′ ∈ reachπ(p, q), we have visσ(p′, q) ( visσ(p, q), and

2. for all q′ ∈ reachσ(p, q), we have visπ(p, q′) ( visπ(p, q).

In this case, we can extend the monotonicity property of Lemma 8.21 to include
all reachable and the first unreachable point.

Claim 8.23. If the stuckness conditions hold for (p, q), then we have visσ(i, q) ⊆
visσ(p, q) for all 1 6 i 6 pstop. In particular, if πp does not see σ` for some ` > q,
then no vertex πi with 1 6 i 6 pstop sees σ`. The symmetric statement holds for σ.

Proof. By the monotonicity of the previous claim, visσ(i, q) ⊆ visσ(p, q) holds for all
i 6 p. The first of the stuckness conditions implies visσ(i, q) ⊆ visσ(p, q) for all p <
i < pstop. If pstop = n+ 1, this already completes the proof of the claim. Otherwise,
note that πpstop > πp, since otherwise pstop ∈ reachπ(p, q). Hence visσ(pstop, q) ⊆
visσ(p, q) holds as well.
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We distinguish the following cases that may occur under the stuckness conditions:
Case 1: pstop 6 n or qstop 6 m. Without loss of generality, let pstop 6 n (the

other case is symmetric). Assume for contradiction that a feasible traversal φ of
π1..pstop and σ1..q′ exists for some 1 6 q′ 6 m. In φ, at some point in time we have
to move in π from pstop− 1 to pstop while moving in σ1..q′ from some σ`′ to σ` where
`′ ∈ {` − 1, `} and σ` sees πpstop . Since σq does not see πpstop , the previous claim
shows that ` > qstop. If qstop = m + 1 or qstop < q′, this is impossible, yielding a
contradiction. Otherwise, to do this transition, in some earlier step we have to move
in σ from qstop − 1 to qstop while moving in π from πk′ to πk for some k < pstop and
k′ ∈ {k − 1, k}. However, by definition qstop /∈ visσ(p, q), hence Claim 8.23 implies
that the transition is illegal, since πk does not see σqstop . This is a contradiction. By
a symmetric argument, it holds that ddF(π1..p′ , σ1..qstop) > δ.

Case 2: pstop = n + 1 and qstop = m + 1. In this case, reachπ(p, q) = [p + 1..n]
and reachσ(p, q) = [q+ 1..n]. By stuckness conditions, there exist an index pmax > p
such that no σq′ with q′ > q sees πpmax and an index qmin such that no πp′ with
p′ > p sees σqmin . Assume for contradiction that a feasible traversal φ exists. In φ,
at some point in time t, we have to cross either (1) from πp to πp+1 while moving in
σ from σ`′ to σ` with ` 6 q+1 6 qmin and `′ ∈ {`−1, `} or (2) from σq to σq+1 while
moving from π`′ to π` with ` 6 p + 1 6 pmax and `′ ∈ {` − 1, `}. In the first case,
` < qmin holds, since πp+1 does not see σqmin . For all consecutive times t′ > t, φ is
in a point πp′ (p′ > p + 1) that does not see σqmin , which still has to be traversed,
leading to a contradiction. Symmetrically, in the second case, for all times t′ > t, φ
is in a point σq′ (q′ > q+ 1) that does not see πpmax , which still has to be traversed.

This concludes the proof of Lemma 8.22.

Implementing greedy steps

To prove Theorem 8.20, it remains to show how to implement the algorithm to run
in time O((n + m) log(nm)). We make use of geometric range search queries. The
classic technique of fractional cascading [137–139] provides a data structure D with
the following properties: (i) Given n points P in the plane, D(P) can be constructed
in time O(n log n) and (ii) given a query rectangle Q := I1 × I2 with intervals I1

and I2, find and return q ∈ Q ∩ P with minimal y-coordinate, or report that no
such point exists, in time O(log n). Here, each interval Ii may be open, half-open or
closed.

By invoking the above data structure on P := {(i, πi) | i ∈ [1 . . . n]} for a given
curve π = π1..n (as well as all three rotations of P by multiples of 90◦), we obtain a
data structure Dπ such that:

1. Dπ can be constructed in time O(n log n),

2. the query Dπ.minIndex([x1, x2], [p, b]) (Dπ.maxIndex([x1, x2], [p, b])) returns
the minimum (maximum) index p 6 i 6 b such that x1 6 πi 6 x2 in time
O(log n), and

3. the query Dπ.minHeight([x1, x2], [p, b]) (Dπ.maxHeight([x1, x2], [p, b])) re-
turns the minimum (maximum) height x1 6 πi 6 x2 such that p 6 i 6 b in
time O(log n).
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The queries extend naturally to open and half-open intervals. If no index exists
in the queried range, all of these operations return the index ∞. We will use the
corresponding data structure Dσ for σ as well.

With these tools, we implement the following basic operations for arbitrary sub-
curves π′ := πp..b and σ′ := σq..d of π and σ. See also Figure 8.3.

1. Stopping points stopπ(π′, σ′). For points p, q,

stopπ(π′, σ′) := max(reachπ′(p, q) ∪ {p}) + 1

returns the index of the first point after πp on π′ which is not seen by σq, or
b+ 1 if no such index exists.

Algorithm 7 Finding the stopping point

1: function stopπ(πp..b, σq..d)
2: pstop ← Dπ.minIndex((σq + δ,∞), [p, b]) . First non-visible point on π
3: if pstop <∞ then return pstop

4: else return b+ 1

2. Minimal greedy steps MinGreedyStepπ(π′, σ′). This function returns the
smallest index p′ ∈ reachπ′(p, q) such that visσ′(p

′, q) ⊇ visσ′(p, q) or reports
that no such index exists.

Algorithm 8 Minimal greedy step

1: function MinGreedyStepπ(πp..b, σq..d)
2: qmin ← Dσ.minHeight([πp − δ,∞), [q, d]) . Lowest still visible point on σ
3: pcand ← Dπ.minIndex((−∞, σqmin + δ], [p+ 1, d]) . If p′ exists, it is pcand

4: pstop ← stopπ(πp..b, σq..d) . First non-visible point on π
5: if pcand < pstop then return pcand

6: else return “No greedy step possible.” . πpcand not reachable from πp

3. Maximal greedy steps MaxGreedyStepπ(π′, σ′). Let p′ ∈ reachπ′(p, q)
be such that (i) p′ is the largest index maximizing |visσ′(z, q)| among all z ∈
reachπ′(p, q) and (ii) visσ′(p

′, q) ⊇ visσ′(p, q). If p′ exists, MaxGreedyStepπ
returns this value, otherwise it reports that no such index exists. Note that if
p′ exists, then by definition there is no greedy step on π starting from (p′, q),
i.e., this step is a maximal greedy step.

4. Arbitrary greedy steps GreedyStepπ(π′, σ′). If, in some situation, it
is only required to find an arbitrary index p′ ∈ reachπ′(p, q) such that all
p 6 i 6 p′ satisfy visσ′(i, q) ⊆ visσ′(p

′, q) or report that no such index exists,
we use the function GreedyStepπ(π′, σ′) to denote that any such function
suffices; in particular, MinGreedyStepπ or MaxGreedyStepπ can be used.

For σ, we define the obvious symmetric operations. Note that in these operations, it
is not feasible to traverse all directly feasible points and check whether the visibility
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Algorithm 9 Maximal greedy step

1: function MaxGreedyStepπ(πp..b, σq..d)
2: qmin ← Dσ.minHeight([πp − δ,∞), [q, d]) . Lowest still visible point on σ
3: pstop ← stopπ(πp..b, σq..d) . First non-visible point on π
4: pmin ← Dπ.minHeight((−∞, σqmin + δ], [p+ 1, pstop − 1])
5: . Maximizes visibility among reachable points
6: if pmin =∞ then . No reachable point has better visibility than πp
7: return “No greedy step possible.”
8: else
9: qmin ← Dσ.minHeight([πpmin − δ,∞), [q, d])

10: . Lowest point on σ still seen by pmin

11: return Dπ.maxIndex((−∞, σqmin + δ], [pmin, pstop − 1])

criterion is satisfied, since this would not necessarily yield a polylogarithmic running
time.

Lemma 8.24. Using O((n + m) log nm) preprocessing time, MaxGreedyStepπ,
MinGreedyStepπ and stopπ can be implemented to run in time O(log nm).

Proof. In time O((n + m) log nm), we can build the data structure Dπ for π and
symmetrically Dσ for σ. Algorithms 7, 8 and 9 implement the greedy steps and
stopπ using only a constant number of queries to Dπ and Dσ, each with running
time O(log n) or O(logm).

For the reduced free-space problem, these operations can be implemented even
faster.

Lemma 8.25. Let π = π1..n and σ = σ1..m be input curves of the reduced free-
space problem. Using O((n + m) log 1/ε) preprocessing time, MaxGreedyStepπ,
MinGreedyStepπ and stopπ can be implemented to run in time O(log 1/ε).

Proof. We argue that range searching can be implemented with O(log 1/ε) query
time and O(n log 1/ε) preprocessing time. This holds since for the point set P =
{(i, πi) | i ∈ [1 . . . n]} (1) the x-values are 1, . . . , n, so that we can determine the
relevant pointers in the first level of the fractional-cascading tree in constant time
instead of O(log n) and (2) all y-values are multiples of γ = 1

4εδ and in [−2δ, 2δ], i.e.,
there are only O(1/ε) different y-values. For the latter, note that any point πp > δ
sees no point in σ, and this is preserved by setting πp to 2δ (and similarly for σ).
Using these properties it is straightforward to adapt the fractional-cascading data
structure, we omit the details.

8.3.3. Composition of One-Dimensional Curves

In this subsection, we collect essential composition properties of feasible traversals
of one-dimensional curves that enable us to tackle the reduced free-space problem
(see Figure 8.4 for an illustration of these results). The first tool is a union lemma
that states that two intersecting intervals I, J of π that each have a feasible traversal
together with σ prove that also πI∪J can be traversed together with σ.
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(a) Lemma 8.26. (b) Lemma 8.27. (c) Lemma 8.28.

Figure 8.4: Composition properties of feasible traversals of one-dimensional separated curves.

Lemma 8.26. Let π = π1..n and σ = σ1..m be one-dimensional separated curves and
let I, J ⊆ [1..n] be intervals with I ∩ J 6= ∅. If ddF(πI , σ) 6 δ and ddF(πJ , σ) 6 δ,
then ddF(πI∪J , σ) 6 δ.

Proof. If I ⊆ J , the claim is trivial. W.l.o.g, let I = [aI ..bI ] and J = [aJ ..bJ ], where
aI 6 aJ 6 bI 6 bJ . Let φI (and φJ) be a feasible traversal of (πI , σ) (and (πJ , σ),
respectively). By reparameterization, we can assume that φI(t) = (ψI(t), f(t)) and
φJ(t) = (ψJ(t), f(t)) for suitable (non-decreasing onto) functions ψI , ψJ : [0, 1] →
[1..n] and f : [0, 1]→ [1..m]. One of the following cases occurs.

Case 1: There is some 0 6 t 6 1 with ψI(t) = φJ(t). Then we can concatenate
φI(0, t) and φJ(t, 1) to obtain a feasible traversal of φI∪J .

Case 2: For all 0 6 t 6 1, we have ψI(t) < ψJ(t). Let σq be the highest
point on σ. By ddF(πI , σ) 6 δ and ddF(πJ , σ) 6 δ, the point σq sees all points on
πI∪J . There is some 0 6 t∗ 6 1 with f(t∗) = q. We can concatenate φI(0, t) and
the traversal of πψI(t∗)..ψJ (t∗) and σq to obtain a feasible traversal of πaI ..ψI(t∗) and
σ1..f(t∗). Appending φJ(t∗, 1) to this traversal yields ddF(πaI ..bJ , σ) 6 δ.

The second result formalizes situations in which a traversal φ of sub-curves has
to cross a traversal ψ of other sub-curves, yielding the possibility to follow φ up to
the crossing point and to follow ψ from there on.

Lemma 8.27. Let π = π1..n and σ = σ1..m be one-dimensional curves and consider
intervals I = [aI ..bI ] and J = [aJ ..bJ ] with J ⊆ I ⊆ [1..n], and K = [1..k] ⊆ [1..m].
If ddF(πI , σK) 6 δ and ddF(πJ , σ) 6 δ, then ddF(πaI ..bJ , σ) 6 δ.

Proof. Let φ be a feasible traversal of πI and σK and ψ a feasible traversal of πJ
and σ. We first show that φ and ψ cross, i.e., there are 0 6 t, t′ 6 1 such that
φ(t) = ψ(t′). For all k ∈ [1..K], let [sφk ..e

φ
k ] denote the interval of points that φ

traverses on π while staying in σk. Similarly, [sψk ..e
ψ
k ] denotes the interval of points

ψ traverses on π while staying in σk. Assume for contradiction that [sφk ..e
φ
k ] and

[sψk ..e
ψ
k ] are disjoint for all 1 6 k 6 K. Then initially, we have sφ1 = aI 6 aJ = sψ1

and hence eφ1 < sψ1 . This implies sφ2 6 eφ1 + 1 6 sψ1 6 sψ2 and inductively we obtain
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eφk < sψk 6 eψk for all k ∈ [1..K]. This contradicts eφK = bI > bJ > eψK . Hence, for

some 1 6 k 6 K, [sφk ..e
φ
k ] and [sψk ..e

ψ
k ] intersect, which gives φ(t) = (p, k) = ψ(t′)

for any p ∈ [sφk , e
φ
k ] ∩ [sψk , e

ψ
k ] and the corresponding 0 6 t, t′ 6 1. By concatenating

φ(0, t) with ψ(t′, 1), we obtain a feasible traversal of πaI ..bJ and σ.

The last result in our composition toolbox strengthens Lemma 8.26 to the case
that the traversal of πI uses only an initial sub-curve σ1..k of σ and not the complete
curve.

Lemma 8.28. Let π = π1..n and σ = σ1..m be one-dimensional separated curves and
consider intervals I = [aI ..bI ] and J = [aJ ..bJ ] with 1 6 aI 6 aJ 6 bI 6 bJ 6 n, and
K = [1..k] ⊆ [1..m]. If ddF(πI , σK) 6 δ and ddF(πJ , σ) 6 δ, then dF (πI∪J , σ) 6 δ.

Proof. Let φ be any feasible traversal of πJ and σ. There exists aJ 6 ` 6 bJ with
φ(t) = (`, k) for some 0 6 t 6 1. Hence φ restricted to [0, t] yields a feasible traversal
of πaJ ..` and σK , i.e., ddF(πaJ ..`, σK) 6 δ. Since I and [aJ ..`] are intersecting,
Lemma 8.26 yields that ddF(πaI ..`, σK) 6 δ. Let ψ be such a feasible traversal of
πaI ..` and σK . Concatenating ψ at ψ(1) = (`, k) = φ(t) with φ(t, 1), we construct a
feasible traversal of πaI ..bJ and σ, proving the claim.

8.3.4. Solving the Reduced Free-Space Problem

In this section, we solve the reduced free-space problems, using the structural prop-
erties derived in the previous section and the principles underlying the greedy al-
gorithm of Section 8.3.2. Recall that the greedy steps implemented as discussed in
Section 8.3.2 run in time O(log 1/ε) on the input curves of the reduced free-space
problem.

Single Entry

Given the separated curves π = (π1, . . . , πn) and σ = (σ1, . . . , σm) and entry set
E = {1}, we show how to compute F σ. We present the following recursive algorithm.

Algorithm 10 Special Case: Single entry

1: function Find-σ-exits(πp..b, σq..d)
2: if q = d then
3: if stopπ(πp..b, σq) = b+ 1 then
4: return {q} . The end of π is reachable while staying in σq
5: else return ∅

6: if p′ ←MaxGreedyStepπ(πp..b, σq..d) then
7: return Find-σ-exits(πp′..b, σq..d))
8: else if q′ ← GreedyStepσ(πp..b, σq..d) then
9: return Find-σ-exits(πp..b, σq..q′−1) ∪ Find-σ-exits(πp..b, σq′..d)

10: else
11: return Find-σ-exits(πp..b, σq..d−1) . No greedy step possible
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The following property establishes that a greedy step on a long curve is also a
greedy step on a shorter curve. Clearly, the converse does not necessarily hold.

Proposition 8.29. Let 1 6 p 6 P 6 n and 1 6 q 6 Q 6 m. Any greedy step on π
from (p, q) to (p′, q) with p′ 6 P is also a greedy step with respect to π̃ := πp..P and
σ̃ := σq..Q, i.e., if there is some p′ 6 P with visσ(i, q) ⊆ visσ(p′, q) for all p 6 i 6 p′,
then also visσ̃(i, q) ⊆ visσ̃(p′, q).

Proof. From the definition of visσ, we immediately derive visσ̃(i, q) = visσ(i, q) ∩
[q..Q] ⊆ visσ(p′, q)∩ [q..Q] = visσ̃(p′, q) for all p 6 i 6 p′. Restricting the length of π
also has no influence on the greedy property, except for the trivial requirement that
p′ still has to be contained in the restricted curve.

Lemma 8.30. Algorithm 10 correctly identifies F σ given the single entry E = {1}.

Proof. Clearly, if Find-σ-exits(π, σ) finds and returns an exit e on σ, then it is
contained in F σ, since the algorithm uses only feasible (greedy) steps. Conversely,
we show that for all I = [p..b] and J = [q..d], where (p, q) is a greedy point pair of π
and σ, and all e ∈ J with ddF(πI , σJ∩[1..e]) 6 δ, we have e ∈ Find-σ-Exits(πI , σJ),
i.e. we find all exits.

Consider some call of Find-σ-Exits(πI , σJ) for which the precondition is fulfilled.
If J consists only of a single point, then J = {e}, and a feasible traversal of πI and
σJ exists if and only if σe sees all points on πI . Let I = [p..b], then this happens if
and only if stopπ(πI , σe) = b+ 1, hence the base case is treated correctly.

Assume that I = [p..b] and a maximal greedy step p′ on π exists. By Property 8.29,
this step is a greedy step also with respect to σJ∩[1..e]. Hence by Lemma 8.22, if
there is a traversal of πp..b and σJ∩[1..e], then a traversal of π[p′..b] and σJ∩[1..e] also
exists.

Consider the case in which J = [q..d] and a greedy step q′ in σ exists. If e < q′,
then e ∈ [q..q′−1] and J∩ [1..e] = [q..q′−1]∩ [1..e]. Hence, e is found in the recursive
call with J ′ = [q..q′ − 1]. If e > q′, then by Property 8.29, this step is a greedy step
with respect to the curves πI and σJ∩[1..e]. Again, by Lemma 8.22, the existence
of a feasible traversal of πI and σJ implies that also a feasible traversal of πI and
σJ∩[q′..e] exists.

It remains to regard the case in which no greedy step exists. By Lemma 8.22,
there is no feasible traversal of π1..n and σ1..d. This implies e 6= d and all exits are
found in the recursive call with J ′ = [q, d− 1].

Lemma 8.31. Find-σ-Exits(πp..b, σq..d) runs in time O((d− q + 1) · log 1/ε).

Proof. Since the algorithm’s greedy steps on π are maximal, after each greedy step
on π, we split σ (by a greedy step on σ) or shorten σ (if no greedy step on σ is
found). Thus, it takes at most O(log 1/ε) time until σ is split or shortened. The
base case is also handled in time O(log 1/ε). In total, this yields a running time of
O((d− q + 1) log 1/ε).

Note that by swapping the roles of π and σ, Find-σ-Exits can be used to deter-
mine F π given the single entry σ1 on σ. This is equivalent to having the single entry
E = {1} on π. Thus, we can also implement the function Find-π-Exits(π1..n, σ1..m)
that returns F π given the single entry E = {1} in time O(n log 1/ε).
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Entries on π, Exits on π

In this section, we tackle the task of determining F π given a set of entries E on π.
It is essential to avoid computing the exits by iterating over every single entry. We
show how to divide π into disjoint sub-curves that can be solved by a single call to
Find-π-Exits each.

Assume we want to traverse πp..b and σq..d starting in πp and σq. Let u(p) :=
max{p′ ∈ [p, b] | ∃q 6 q′ 6 d : ddF(πp..p′ , σq..q′) 6 δ} be the last point on π that
is reachable while traversing an arbitrary sub-curve of σq..d that starts in σq. This
point fulfills the following properties.

Lemma 8.32. It holds that

1. If there are p 6 e 6 e′ 6 u(p) with ddF(πe..e′ , σq..d) 6 δ, then ddF(πp..e′ , σq..d) 6
δ.

2. For all p 6 e 6 u(p) < e′, we have that ddF(πe..e′ , σq..d) > δ.

Proof. By definition of u(p), there is a q 6 q′ 6 d with ddF(πp..u(p), σq..q′) 6 δ. Since
[e, e′] ⊆ [p, u(p)], Lemma 8.27 proves the first statement. For the second statement,
assume for contradiction that ddF(πe..e′ , σq..d) 6 δ. Then, Lemma 8.28 yields that
ddF(πp..e′ , σq..d) 6 δ. This is a contradiction to the choice of u(p), since e′ > u(p).

The above lemma implies that we can ignore all entries in [p..u(p)] except for p
and that all exits reachable from p are contained in the interval [p..u(p)]. This gives
rise to the following algorithm.

Algorithm 11 Given entry points E on π, compute all exits on π.

1: function π-exits-from-π(π, σ,E)
2: S ← ∅
3: while E 6= ∅ do
4: p̂ ← pop minimal index from E
5: p← p̂, q ← 1
6: repeat
7: if q′ ←MaxGreedyStepσ(πp..n, σq..m) then
8: q ← q′

9: if p′ ← GreedyStepπ(πp..n, σq..m) then
10: p ← p′

11: until no greedy step was found in the last iteration
12: p ← stopπ(πp..n, σq..m)− 1 . equals the maximal reachable point u(p̂)
13: S ← S ∪ Find-π-Exits(πp̂..p, σ)
14: E ← E ∩ [p+ 1, n] . drops all entries in [p̂, u(p̂)]

15: return S

Lemma 8.33. Algorithm 11 correctly computes F π.

Proof. We first argue that for each considered entry p̂, the algorithm computes
p = u(p̂). Clearly, p 6 u(p̂), since only feasible steps are used to reach p. If
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p = m, this already implies that also u(p̂) = m. Otherwise, let (p, q) be the greedy
point pair on the curves πp̂...n and σ for which no greedy step has been found.
Then by Lemma 8.22, for pstop := stopπ(πp..n, σq..m) and all 1 6 q′ 6 m, we have
that ddF(πp̂..pstop , σ1..q′) > δ. Hence, u(p̂) < pstop. Finally, note that Algorithm 11
computes p = pstop − 1, which proves p = u(p̂).

It is clear that every found exit is included in F π. Conversely, let e′ ∈ F π and
1 6 e 6 n be such that ddF(πe..e′ , σ) 6 δ. For some p̂ with p̂ 6 e 6 u(p̂) = p, we
run Find-π-Exits(πp̂..p, σ). Hence by Lemma 8.32 (2), e′ 6 u(p̂) and by Lemma
8.32 (1), ddF(πp̂..e′ , σ) 6 δ. Hence, the corresponding call Find-π-Exits(πp̂..p, σ)
will find e′.

Lemma 8.34. Using preprocessing time O((n + m) log 1/ε), Algorithm 11 runs in
time O(n log 1/ε).

Proof. We first bound the cost of all calls Find-π-Exits(πIi , σ). Clearly, all intervals
Ii are disjoint with

⋃
Ii ⊆ [1..n]. Hence, by Lemma 8.31, the total time spent in

these calls is bounded by O(
∑

i |Ii| log(1/ε)) = O(n log 1/ε). To bound the number
greedy steps, let p1, . . . , pk be the distinct indices considered as values of p during
the execution of π-exits-from-π(π, σ). Between changing p from each pi to pi+1,
we will make, by maximality, at most one call to MaxGreedyStepσ and at most
one call to GreedyStepπ. Since k 6 n, the total cost of greedy calls is bounded
by O(n log 1/ε) as well. The total time spent in all other operations is bounded by
O(n log 1/ε).

Entries on π, Exits on σ

Similar to the previous section, we show how to compute the exits F σ given entries
E on π, by reducing the problem to calls of Find-σ-Exits on sub-curves of π
and σ. This time, however, the task is more intricate. For any index p on π, let
Q(p) := min{q | ddF(πp..n, σ1..q) 6 δ} be the endpoint of the shortest initial fragment
of σ such that the remaining part of π can be traversed together with this fragment2.
Let P (p) := min{p′ | ddF(πp..p′ , σ1..Q(p)) 6 δ} be the endpoint of the shortest initial
fragment of π, such that σQ(p) can be reached by a feasible traversal.

Note that by definition, entries p with Q(p) = ∞ are irrelevant for determining
the exits on σ. In fact, if an entry p is relevant, i.e., Q(p) <∞, it is easy to compute
Q(p) due to the following lemma.

Lemma 8.35. Let Q′(p) := min{q | σq > maxi∈[p..n] πi − δ}. If Q(p) < ∞,
then Q(p) = Q′(p). Similarly, Q(p) < ∞ implies that P (p) = min{p′ | πp′ 6
mini∈[q..Q(p)] σi + δ} <∞.

Proof. Assume that Q(p) < Q′(p) holds, then no point in σ1..Q(p) sees the highest
point in πp..n. Hence no feasible traversal of these curves can exist, yielding a
contradiction. Assume that Q(p) > Q′(p) holds instead and consider the feasible
traversal φ of the shortest initial fragment of σ that passes through all points in
πp..n. At some point φ visits (πp′ , σQ′(p)) for some p 6 p′ 6 n. We can alter this
traversal to pass through the remaining curve πp′..n while staying in σQ′(p), since

2As a convention, we use min ∅ = max ∅ =∞.
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(a) Case q1 = q2. (b) Case q1 > q2.

Figure 8.5: Illustration of Lemma 8.36. For both pi, i ∈ {1, 2}, a feasible traversal of the curves
πpi..p′i and σ1..qi is depicted as monotone paths in the free-space.

σQ′(p) sees all points on πp′..n. This gives a feasible traversal of πp..n and σ1..Q′(p),
which is a contradiction to the choice of φ and Q(p) > Q′(p).

The statement for P (p) follows analogously by regarding the curves πp..n and
σ1..Q(p) and switching their roles.

Note that the previous lemma shows that for relevant entries p1 < p2, we have
Q(p1) > Q(p2), since for relevant entries, Q(p1) = Q′(p1) > Q′(p2) = Q(p2). We
will use the following lemma to argue that (i) if Q(p1) = Q(p2), entry p1 dominates
p2, and (2) if Q(p1) > Q(p2), we have p2 /∈ [p1..P (p1)]. Hence, we can ignore all
entries in [p1..P (p1)] except for p1 itself.

Lemma 8.36. Let p1 < p2 be indices on π with q1 := Q(p1) <∞ and q2 := Q(p2) <
∞. Let p′1 := P (p1) and p′2 := P (p2). If q1 = q2, then p′1 6 p′2. Otherwise, i.e., if
q1 > q2, we even have p′1 < p2.

Proof. See Figure 8.5 for illustrations. Let q1 = q2. Assume for contradiction that
p′1 > p′2, then we have ddF(πp1..p′1 , σ1..q1) 6 δ and ddF(πp2..p′2 , σ1..q1) 6 δ, where
[p2..p

′
2] ⊆ [p1..p

′
1]. Hence by Lemma 8.27, ddF(πp1..p′2 , σ1..q1) 6 δ and thus p′1 6 p′2,

which is a contradiction to the assumption.
For the second statement, let p be maximal such that πp > σq2 + δ. If p does not

exist or p < p1, we have that Q′(p1) = Q′(p2) and hence by Lemma 8.35, q1 = q2.
Note that additionally p < p2, since otherwise σq2 < πp − δ with p > p2 shows that
q2 6= Q′(p2) contradicting Lemma 8.35. Thus, in what follows, we can assume that
p1 < p < p2.

Assume for contradiction that q1 > q2 and p′1 > p2. Then a feasible traversal φ of
πp1..p′1 and σ1..q1 visits (πp, σq) for some 1 6 q 6 q1. It even holds that q < q1, since
otherwise there is a feasible traversal of σ1..q1 and πp1..p with p < p′1, contradicting
the choice of p′1. Clearly, σq > σq2 , since πp sees σq, while it does not see σq2 .
Since by choice of p, σq2 sees all of πp+1..n and σq sees only more (including πp), we
conclude that we can traverse all points of πp..n while staying in σq. Concatenating
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this traversal to the feasible traversal φ yields ddF(πp1..n, σ1..q) 6 δ and thus Q′(p1) 6
q < q1, which is a contradiction to Lemma 8.35. This proves that q1 > q2 implies
p′1 6 p2.

Algorithm 12 Given entry points E on π, compute all exits on σ.

1: function σ-exits-from-π(π, σ,E)
2: F ← ∅, q ← m
3: repeat
4: p̂ ← pop minimal index from E
5: p← p̂, q ← 1
6: Q′ ← Q′(p)
7: repeat
8: if q′ ←MaxGreedyStepσ(πp..n, σq..Q′) then
9: q ← q′

10: if q 6= Q′ and p′ ←MinGreedyStepπ(πp..n, σq..Q′) then
11: p ← p′

12: until q = Q′ or no greedy step was found in the last iteration
13: if q = Q′ then
14: F ← F ∪ Find-σ-Exits(πp..n, σQ′..q)
15: q ← Q′ − 1

16: E ← E ∩ [p+ 1, n]
17: until E = ∅
18: return F

Lemma 8.37. Algorithm 12 fulfills the following properties.

1. Let (p, q) with q < Q′(p̂) be a greedy point pair of πp̂..n and σ1..Q′(p̂) for which
no greedy step exists. For all e ∈ [p̂, p], we have Q(e) =∞.

2. For each considered p̂, if we have Q(p̂) <∞ then the algorithm starts a recur-
sive call Find-σ-Exits(πP (p̂)..n, σQ(p̂)..q). In this case, the point (P (p̂), Q(p̂))
is a greedy pair of πp̂..n and σ.

Proof. For the first statement, assume for contradiction Q(e) <∞. By Lemma 8.35,
Q(e) = Q′(e), which implies that for all q′ < Q′(e) 6 Q′(p̂), we have σq′ < σQ′(e)
and hence visπ(p, q′) ⊆ visπ(p,Q′(e)). Hence, stopσ(πp..n, σq..Q′(p̂)) 6 Q′(e), since
otherwise Q′(e)← GreedyStepσ(πp..n, σq..Q′(p̂)). By Lemma 8.22, this proves that
ddF(πp̂..n, σ1..Q′(e)) > δ. Since ddF(πp̂..e, σ1..q′) 6 δ for some q′ < Q′(e), Lemma 8.28
yields ddF(πe..n, σ1..Q′(e)) > δ. This is a contradiction to Q(e) = Q′(e).

For the second statement, note that if Q(p̂) < ∞, then by Lemma 8.35, Q(p̂) =
Q′(p̂). Hence Lemma 8.22 yields that the algorithm finds a feasible traversal of πp̂..p
and σ1..Q′(p̂) for some p̂ 6 p 6 n. This shows that P (p̂) 6 p <∞. Let σ′ := σ1..Q(p̂)

and assume that there is a p′ < p with ddF(πp̂..p′ , σ
′) 6 δ and let (p̃, q̃) be the greedy

point of πp̂..n and σ′ right before the algorithm made a greedy step on π to some
index in (p′, p]. By maximality of the greedy steps on σ, there exists q̃ < qmin <
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Q(p̂) such that πp̃ does not see σqmin , since otherwise Q(p̂) ∈ reachσ′(p̃, σ̃) with
visπ(p̃, q̃) ( visπ(p̃, Q(p̂)), i.e., Q(p̂) would be a greedy step on σ′. By minimality
of greedy steps on π, visσ′(p̃, q̃) ) visσ′(i, q̃) for all p̃ 6 i 6 p′. Hence, no vertex on
πp̃..p′ sees σqmin , which proves ddF(πp̃..p′ , σ

′) > δ. Since (p̃, σ̃) is a greedy pair of πp̂..p′

and σ′, this yields that ddF(πp̂..p′ , σ
′) > δ by Lemma 8.22, which is a contradiction

to the assumption. Hence, the algorithm calls Find-σ-Exits(πp..n, σQ′(p̂)..q), where
p = P (p̂) and Q′(p̂) = Q(p̂).

It remains to show that (P (p̂), Q(p̂)) is also a greedy pair of πp̂..n and the com-
plete curve σ. By Lemma 8.35, every p̂ 6 p < P (p̂) satisfies πp > πP (p̂) and
hence visσ(p, q) ⊆ visσ(P (p̂), q) for all 1 6 q 6 m. Hence, if at some greedy pair
(p, q), q 6 Q(p̂), a greedy step p′ ← GreedyStepπ(πp..n, σ) with p′ > P (p̂) ex-
ists, then also P (p̂) ← GreedyStepπ(πp..n, σ), which shows that (P (p̂), q) is a
greedy point of πp̂..n and σ. If q = Q(p̂), then (P (p̂), Q(p̂)) is a greedy point
pair. Otherwise, by Lemma 8.35, P (p̂) sees all of σq..Q(p̂) and σq < σQ(p̂), hence
Q(p̂) ∈ GreedyStepσ(πP (p)..n, σ) and (P (p̂), Q(p̂)) is a greedy step of πp̂..n and σ.

It is left to consider the case that for all greedy pairs (p, q), q 6 Q(p̂), of πp̂..n
and σ, no greedy step to some p′ > P (p̂) exists. Then there is some (p, q) with
p < P (p̂) and q 6 Q(p̂) for which no greedy step exists at all. We have pstop :=
stopπ(πp..n, σq..m) 6 P (p̂), since otherwise P (p̂) would be a greedy step. Since
Lemma 8.22 shows that ddF(πp̂..pstop , σ1..q) > δ, this contradicts ddF(πp̂..P (p̂), σ1..Q(p̂))
being at most δ.

Lemma 8.38. Algorithm 12 correctly computes F σ.

Proof. Clearly, any exit found is contained in F σ, since the methods σ-exits-from-π
and Find-σ-Exits only use feasible steps. For the converse, let e ∈ E be an arbitrary
entry and consider the set F σe = {q | ddF(πe..n, σ1..q) 6 δ} of σ-exits corresponding
to the entry e.

We first show that if F σe 6= ∅ and hence Q(e) <∞, we have

F σe = Find-σ-Exits(πP (e)..n, σQ(e)..m).

Let e ∈ F σe . By Lemma 8.37, (P (e), Q(e)) is a greedy pair of πe..n and σ and
hence also of πe..n and σ1..e. Lemma 8.22 thus implies ddF(πP (e)..n, σQ(e)..e) 6 δ and
consequently e ∈ Find-σ-Exits(πP (e)..n, σQ(e)..m). The converse clearly holds as
well.

Note that e is not considered as p̂ in any iteration of the algorithm if and only if
the algorithm considers some p̂ with e ∈ [p̂+1..p], where either (i) the algorithm finds
a greedy pair (p, q) of πp̂..n and σ1..Q′(p̂) that allows no further greedy steps, or (ii)
the algorithm calls Find-σ-Exits(πp..n, σQ′(p̂)..q), where p = P (p̂) by Lemma 8.37.
In the first case, F σe = ∅ since Lemma 8.37 proves Q(e) = ∞. In the second
case, if F σe 6= ∅, we have Q(e) < ∞, and hence by Lemma 8.36, Q(e) = Q(p̂) and
P (p̂) 6 P (e). Since σQ(p̂) sees all of πP (p̂)..n, any exit reachable from (P (e), Q(e)) is
reachable from (P (p̂), Q(p̂)) as well. Hence F σe ⊆ F σp̂ .

Let p̂1 6 .. 6 p̂k be the entries considered as p̂ by the algorithm. It remains
to show that the algorithm finds all exits

⋃k
i=1 F

σ
p̂i

. We inductively show that the
algorithm computes F σp̂i \

⋃
j<i F

σ
p̂j

in the loop corresponding to p̂ = p̂i. The base
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case i = 1 follows immediately. Note that for every i > 2, the corresponding loop
computes Find-σ-Exits(πP (p̂i)..n, σQ(p̂i)..Q(p̂i−1)−1) = F σp̂i∩ [Q(p̂i)..Q(p̂i−1)−1]. The
claim follows if we can show F σp̂i∩[Q(p̂i−1)..m] ⊆ Fp̂i−1

. Let e ∈ F σp̂i with e > Q(p̂i−1).
Then ddF(πp̂i..n, σ1..e) 6 δ. Together with ddF(πp̂i−1..n, σ1..Q(p̂i−1)) 6 δ, Lemma 8.27
shows that ddF(πp̂i−1..n, σ1..e) 6 δ and hence e ∈ F σp̂i−1

.

Lemma 8.39. Algorithm 12 runs in time O((n+m) log 1/ε).

Proof. Consider the total cost of the calls Find-σ-Exits(πIi , σJi). Since all Ji are
disjoint and

⋃
i Ji ⊆ [1..m], Lemma 8.31 bounds the total cost of such calls by

O(
∑

i |Ji| log(1/ε)) = O(m log(1/ε)). Let p1, . . . , pk denote the distinct indices con-
sidered as p during the execution of the algorithm. Between changing pi to pi+1,
we will make at most one call to MaxGreedyStepσ (by maximality) and at most
once call to MinGreedyStepπ. Hence k 6 n bounds the number of calls to greedy
steps by O(n log(1/ε)).
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[125] J. Gudmundsson and M. Smid. “Fréchet Queries in Geometric Trees.” In:
Proc. 21st Annual European Symposium on Algorithms (ESA’13). Vol. 8125.
LNCS. 2013, 565–576.

[126] R. Impagliazzo, R. Paturi, and F. Zane. “Which Problems Have Strongly
Exponential Complexity?” In: Journal of Computer and System Sciences 63.4
(2001), 512–530.

[127] R. Impagliazzo and R. Paturi. “On the Complexity of k-SAT.” In: Journal
of Computer and System Sciences 62.2 (2001), 367–375.

[128] D. Lokshtanov, D. Marx, and S. Saurabh. “Lower bounds based on the Ex-
ponential Time Hypothesis.” In: Bulletin of the EATCS 105 (2011), 41–72.
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