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A B S T R A C T

Three-dimensional structures of protein-ligand and protein-protein complexes can
provide key insights into biochemical processes within living cells, yet, their exper-
imental determination is often expensive, time-consuming, or can fail due to the
heterogeneity in the complex composition and thus the binding affinities of differ-
ent components. A computational prediction of these structures can overcome these
problems in certain cases and is thus highly demanded in many areas of research.

In this work, we address two questions: first, can one predict conformational
changes of the protein backbone upon ligand binding, using the energetically most
favorable motions obtained from normal mode analysis of elastic network models,
and second, can one computationally assemble large protein complexes, using the
structures and stoichiometries of their monomers and the approximate interaction
geometries.

For the first problem, using a diverse set of 433 pairs of bound and unbound protein
conformations, we could show that the benefit from such motions is small: modeling
ligand-induced conformational changes using normal modes is rather ineffective. To
solve the second problem, we have developed a novel scoring function and an efficient
algorithm for iterative complex assembly based on pairwise dockings, 3D-MOSAIC,
that, on a diverse benchmark set of 308 complexes, can accurately and efficiently
assemble protein complexes of up to 60 monomers and 15 protein types.
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Z U S A M M E N FA S S U N G

Dreidimensionale Strukturen von Protein-Ligand- und Protein-Protein-Komplexen
können wichtige Einblicke in biochemische Prozesse in Zellen bieten, doch ihre
Bestimmung ist oft teuer, aufwändig, oder misslingt wegen der Heterogenität der
Komplexzusammensetzung und der Bindungsstärken der verschiedenen Komponen-
ten. Die computergestützte Vorhersage solcher Komplexe kann diese Probleme in
bestimmten Fällen überwinden und ist daher in vielen Forschungsbereichen hoch
gefragt.

In dieser Arbeit gehen wir folgende Fragestellungen an: Erstens, kann man mittels
der durch Normalmoden-Analyse eines Elastic-Network-Models vorhergesagten ener-
getisch günstigsten Bewegungen des Proteinrückgrats die Konformationsänderungen
bei Ligandaufnahme modellieren, und zweitens, kann man große Proteinkomplexe
computergestützt assemblieren, wenn nur Struktur und Stöchiometrie der Monomere,
sowie die groben Interaktionsgeometrien bekannt sind?

Zur ersten Frage konnten wir auf einer diversen Menge von 433 Paaren gebundener
und ungebundener Proteinstrukturen zeigen, dass der Nutzen solcher Normalmoden
klein ist: die Modellierung ligand-induzierter Konformationsänderungen beim Dock-
ing mittels solcher Bewegungen erweist sich als ineffektiv. Zur Lösung des zweiten
Problems entwickelten wir eine neue Bewertungsfunktion und einen effizienten Algo-
rithmus, 3D-MOSAIC, der auf einer diversen Testmenge von 308 Komplexen akkurat
und effizient Proteinkomplexe von bis zu 60 Monomeren und 15 Proteintypen assem-
blieren kann.
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F O U N D AT I O N S





1
I N T R O D U C T I O N

Computational Biology and hence the work presented in this thesis stands in the long
tradition of the evolution of medicine as a science over the course of the last millennia
as well as modern, more specialized areas of science. The latter comprise the natural
sciences biology, physics, and chemistry, together with the comparatively new field of
computer science, and provide the methodological background on which this thesis
is based.

In this introductory chapter, we will first present selected discoveries and research
from the above mentioned scientific areas, many of them related to protein structure
determination, prediction, modeling and drug design. The presented experimental
methods, theoretical concepts, algorithms and experimental data form the breeding
ground on which the research presented in this work could dwell.

In the subsequent section, we will introduce the reader to the two main problems
tackled in this thesis: the application of elastic network normal modes in protein-small
molecule docking and the assembly of oligomeric protein complexes.

Finally, we will conclude the chapter with a structural overview of the main part of
this thesis.

1.1 discoveries and research relevant for protein structure model-
ing

The field of modern molecular structure determination is based on an observation Wil-
helm Konrad Röntgen made in 1895 when he began to systematically study a certain
kind of electromagnetic radiation which he became aware of during his experiments.
This radiation which he named X-rays [1] would later form the basis for the field of
X-ray crystallography, to date the state-of-the-art method to determine the structures
of proteins and other molecules from X-ray diffraction patterns of crystals of these
molecules. Such patterns were first observed by Max von Laue in 1913 [2] and are
explained by Bragg’s Law, proposed in 1912 by William Henry and William Lawrence
Bragg [3]. In 1929, Linus Pauling established five rules to describe the principles that
govern the structure of complex ionic crystals [4] and should facilitate the process of
crystal structure determination.

A key event of macromolecular structure determination took place in 1951 when
Linus Pauling first determined a protein secondary structure using X-ray crystallog-
raphy [5]. Five years earlier, another method relevant for structure determination,
called nuclear magnetic resonance (NMR), was developed by Edward Mills Purcel
and Felix Bloch [6, 7]. In 1953, James Watson and Francis Crick developed a model
suggesting a double-helix structure for DNA [8], supported by experimental data ob-
tained by Rosalind Franklin. The first complete monomeric protein structure, sperm
whale myoglobin, was determined in 1958 by John Kendrew [9] using X-ray crystal-
lography. Its tetrameric pendant, hemoglobin, was resolved in 1968 by Max Perutz
[10] and represents the first structurally determined protein complex. 1968 was also
the year that BRAD (Brookhaven RAster Display) [11], the first program to visualize
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protein structures in 3D, became available. Three years later, the Protein Data Bank
(PDB), the major source for protein structural data, was born [12].

Parallel to the progress in protein structure determination, advances were also
made in the fields of structure prediction, modeling and drug design.

First experimental observations related to that area date back to 1827, when Robert
Brown observed particles moving through water in a seemingly random fashion [13].
The underlying mechanism, which many to-date drug absorption simulations try to
model, would later be explained by Albert Einstein and become known as Brownian
Motion (1905) [14]. In 1840, another fundamental theory relevant for such simulations
and docking methods was proposed by Germain Hess, stating that the energy differ-
ence between two states of a chemical reaction is solely dependent on the the reaction
partners and not on the reaction pathway [15].

In 1894, Emil Fischer was the first to compare the mechanism by which a substrate
is bound by a biochemical macromolecule to a key fitting its lock [16]. In 1958, David
Koshland extended the lock-and-key principle by Emil Fisher to the so-called induced-
fit theory [17]. It postulates that any catalytic activity upon substrate binding requires
an exact orientation of the catalytic groups in the active site, and that this orientation
can be reached through conformational changes induced by the binding process. One
of the first approaches able to model these conformational changes was developed in
1959 by Alder and Wainwright: the method of molecular dynamics (MD) simulations
[18], modeling the interactions and movements between a set of atoms over time.

In the same year that Crick and Watson presented their DNA model (1953), Nicolas
Metropolis introduced the Monte Carlo Method [19], a stochastic sampling algorithm
that employs Boltzmann’s constant and was developed in the late 1940’s at the Los
Alamos National Laboratory. The Boltzmann constant (and the field of statistical me-
chanics which greatly affected the field of thermodynamics) has its origins in 1877

when Ludwig Boltzmann derived statistical descriptions of entropy, a measure for the
disorder of a thermodynamic system [20], and was introduced by Max Planck in 1901

[21].
An extension of the Monte Carlo Method, the so-called simulated annealing (first

developed by Kirkpatrick, Gelatt and Vecchi in 1983) [22], represents one of the state-
of-the-art methods for medium-scale sampling of energy landscapes of biological
macromolecules and global optimization of protein-ligand interactions. The genetic
algorithm, a related method emulating evolutionary processes by selecting only the
fittest members of a population in each generation, was introduced in the mid 1970’s
by John Holland [23, 24].

Similarly, continuous research in the field of potential energy functions to simulate
small molecules led to the development of CHARMM [25], a program for energy
and dynamics calculations as well as the minimization of macromolecular systems.
CHARMM was developed by Martin Karplus and featured significant contributions
from Karplus’ fellow 2013’s Nobel Prize winners Arieh Warshal and Michael Levitt, a
pioneer on the field of protein energy calculations [26].

Many of the first steps in the field of bioinformatics primarily involved the devel-
opment of methods that investigate the evolutionary relationships between genetic
sequences as well as their similarity, such as Fitch’s phylogeny algorithm in 1967

[27], the Needleman-Wunsch algorithm for pairwise global alignment of molecular
sequences in 1970 [28], and the Smith-Waterman algorithm for local sequence align-
ment developed in 1981 [29].
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The 1990’s, following the pioneering DOCK algorithm (1982) [30], became a decade
of structural bioinformatics and witnessed the emergence of a wealth of docking algo-
rithms trying to computationally predict the interactions between proteins and their
binding partners. While the first methods considered proteins as rigid bodies, the
rapidly increasing computational power soon led to the first algorithms incorporat-
ing ligand flexibility. A ground-breaking contribution to the field was made in 1996,
when FlexX, the first program that was able to quickly screen through libraries of
thousands of flexible ligands, became available [31]. Nowadays, there exists a wealth
of docking algorithms, both for modeling protein-small molecule as well as protein-
protein complexes. Because the problem of molecular docking is an integral part of
this thesis, the underlying principles and the algorithms used throughout this work
are described in detail in Section 3.3; Chapter 4 shortly discusses further prominent
protein-small molecule docking algorithms and related techniques.

1.2 specific objectives of this thesis

Nowadays, a rapidly increasing amount of data on structures of proteins and other
macromolecules becomes available. In addition, the technological progress of methods
to determine, manipulate and measure the biochemical properties of proteins has led
to a manifold of algorithms and databases from which information on these structures
and their interactions can be obtained. This vast amount of structural and interaction
data allows for a thorough investigation of the complex interplay of these structures in
all its facets from atomic to cellular levels. Consequently, bioinformatics methods have
become increasingly indispensable not only when it comes to processing, filtering,
and analyzing, but also to integrating and interpreting this information.

Insights into cellular process can be gained, for example, through determination of
the structure and biochemical properties of proteins and oligomeric assemblies. These
properties are the main determinants of a protein’s function (or that of an assembly),
hence, investigating such structures to understand the resulting function (or dysfunc-
tion) and the interplay with other biochemical compounds or macromolecules repre-
sents one of the key approaches to detect, treat and possibly cure diseases. The data
used for such a study can for example comprise high- and low-resolution structural
data, e.g., X-ray structures and electron density maps, protein dynamics data from
MD simulations or conformational ensembles from NMR studies, as well as interac-
tion data obtained from experiments or predicted computationally, e.g. by docking
methods, correlated mutations or homology modeling.

In this thesis, we investigate two different areas related to the prediction of protein
structure and interaction research.

As stated in the previous section, computational power now allows for the incor-
poration of structural flexibility into docking methods. However, while the treatment
of flexible ligands can be considered feasible with state-of-the-art computers, model-
ing protein flexibility still represents a major challenge. In particular, a fast prediction
of protein backbone flexibility upon ligand binding, as required for high-throughput
drug screening, is hardly doable. In this context, we investigate the applicability of
normal modes, a technique to efficiently model the most dominant movements of a
protein based on a coupled harmonic potential, a so-called elastic network, using a
coarse-grained protein representation.
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The second field of research addresses the modeling of macromolecular protein
complexes consisting of a large number of protein monomers. Their structural de-
termination is often difficult or even impossible. The aim of this work is thus to as-
semble these complexes from sub-complexes of pairs of monomers obtained from
docking. While the prediction of interactions and binding modes from pairwise dock-
ings is nowadays a standard technique, the extension of this methodology to multi-
component systems still presents a major problem.

For example, the formation of a homomeric complex with m monomers requires
that at least m − 1 connections between the participating monomers must be estab-
lished. If we can choose between d docking poses to establish each of these m − 1
connections, an exhaustive search leads to a theoretically possible number of dm−1

unique combinations of docking poses from which a complex can be obtained. We
thus observe an exponential increase in the number of solutions for increasing m.
Such problems are known as combinatorial problems and rapidly lead to a large
space of theoretically possible solutions, a phenomenon that is commonly known as
combinatorial explosion and, if treated naïvely or exhaustively, becomes intractable
even for small values of m (and d to a much smaller extent).

In this thesis, we present an iterative tree-based greedy algorithm, called 3D-
MOSAIC, which only requires a high-resolution representative structure for each
kind of monomer present in the complex as well as pairwise dockings sampling the
assumed native interactions. To this end, it uses a novel scoring function that we de-
veloped and which can rapidly discriminate between reasonable and unreasonable
solutions, and can thus be used to effectively prune the combinatorial space that has
to be considered.

1.3 overview

This thesis is divided into five parts. The first part subsumes the state-of-the-art knowl-
edge providing the basis for this thesis and comprises two additional chapters besides
the above introduction. Chapter 2 presents the structural hierarchy of proteins, their
synthesis as well as their functions and the molecular machineries of which they can
be part. Chapter 3 introduces the methods which are used throughout or are related
to this work.

The second part is based on our publication on the applicability of elastic network
model normal modes in small-molecule docking and is divided into chapters with an
introduction into the field, a description of normal-mode related methods, a discus-
sion of the results and conclusions drawn from this study.

The third part addresses the three-dimensional modeling of macromolecular
oligomeric assemblies and is organized as follows: after a short introduction follows
a chapter presenting all the notations and prerequisites required for the development
of an algorithm to assemble such complexes from pairwise dockings. The subsequent
chapter treats the development of the transformation match score. This score repre-
sents the core component or our algorithm 3D-MOSAIC which is presented in the
next chapter. The experimental design and the evaluation of our algorithm are pre-
sented in the two subsequent chapters. Finally, a concluding chapter summarizes the
work presented in this part.
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The fourth part contains an outlook on future projects and improvements of 3D-
MOSAIC, followed by the fifth part (the appendix) which contains supplementary
information on parts two and three.





2
T H E S T R U C T U R E O F P R O T E I N S A N D T H E I R R O L E I N
B I O C H E M I C A L P R O C E S S E S

Together with DNA and RNA, proteins comprise the three kinds of macromolecules
that mainly determine the biochemical behavior and functionality of every living cell
(other macromolecules play important roles as well, e.g., lipids which are an integral
part of cell membranes). Proteins perform a large variety of different tasks, e.g. energy
acquisition, structural functions, message passing, catalytic functions, and replication
(some of these functions are addressed in more detail in different contexts throughout
this chapter) [32].

The reason why proteins are able to perform such diverse tasks lies in the struc-
tural flexibility of the protein main chain and the chemical diversity of amino acids,
the basic building blocks proteins are composed of. The general structural properties
of amino acids and proteins are explained in detail in Section 2.1. Section 2.2 de-
scribes the interactions within and between proteins and other compounds, and the
mechanism by which proteins are synthesized in cells is shortly sketched in Section
2.3.

We will conclude this Chapter by presenting some of the tasks performed by pro-
teins in more detail, first from a more functional (Section 2.4) and then from a struc-
tural perspective. In the latter part, we explicitly present some examples where these
functions are carried out by macromolecular assemblies (Section 2.5), whose predic-
tion is the subject of the second project presented in this thesis.

2.1 the structural hierarchy of protein building blocks

The molecular function a protein is able to perform is to a large extent the result of its
three-dimensional structure. In analogy to the large variety of different roles proteins
can assume in an organism, their structural diversity is very high. To systematically
investigate and classify proteins and their structures, one commonly distinguishes
four different levels of structural hierarchy: the protein’s primary, secondary, tertiary
and quaternary structure.

In the following subsections, we will explain this hierarchy with its elements and
principles in more detail before we present some examples of protein functions re-
sulting from particular combinations of elements, especially the so-called tertiary and
quaternary structure (Sect. 2.4 and 2.5). For more detailed information, the interested
reader is referred to [32, 33] which, unless stated otherwise, provide the main sources
for the following subsections.

2.1.1 Primary Structure

The bottom level of structural hierarchy is the primary structure, the amino-acid se-
quence. In general, a set of 20 different natural amino acids is considered to comprise
the standard repertoire of building blocks for peptides and proteins. Each of these 20

9
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amino acids is composed of two structural segments, one that is common to all amino
acids and one that determines the individual chemical property of the amino acid, the
so-called side chain.

Cα 

C’ N 

R 

H 

H OH 

O 

Amino group Carboxyl group 

Side chain 

Figure 2.1: The general struc-
ture of amino acids, consist-
ing of an amino and a car-
boxyl group, as well as a side
chain, all attached to a central
Cα atom. Inspired by [32].

The structural segment all 20 amino acids have in
common consists of an amino group (NH2), a carboxyl
group (CO(OH)) and a hydrogen (Fig. 2.1) which are all
covalently bound to a central carbon atom, the Cα atom.
Through this element, amino acids are capable of inter-
connecting with other amino acids and thus forming
chains thereof. The sequence of amino acids in such a
chain defines the primary structure.

These chains are formed by establishing a bond be-
tween the carboxyl carbon (C’) of one amino acid and
the nitrogen of the succeeding amino acid under release
of a water molecule. This water molecule is the result
of a process called hydrolysis which entails a chemi-
cal reaction of the hydroxyl group from the carboxyl
unit and a hydrogen from the amino group. The bond
connecting the two amino acids is called a peptide bond and hence, a sequence of
connected amino acids is called a polypeptide chain (Fig. 2.2). All atoms involved in
the peptide bonds of such a chain as well as the Cα atoms and attached hydrogens
comprise the chain’s backbone. The process of forming polypeptide chains is called
protein synthesis and is sketched in Section 2.3. The vast majority of proteins is linear,
containing a start and an end residue (N- and C-terminus), however circular proteins
have also been observed [34].

The side chains are unique for all 20 amino acids and are bound via the remaining
fourth valence of the Cα atom. Each type exhibits a specific combination of biochem-
ical properties such as hydrophobicity, charge, polarity, and aromaticity. The number
of theoretically possible amino acid sequences with a length corresponding to the
average number of amino acids proteins in the human body consist of (around 300

amino acids) is 20300, yet only about 100,000 different types of functional proteins are
assumed to be present in human cells [35].

Amino acid sequences corresponding to natural proteins exhibit properties which
are not characteristic for random amino acid sequences, rather, functional sequences
have been selected through evolutionary pressure to efficiently serve specific pur-
poses in the cell [35]. The respective combination of amino acids in such functional se-
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Figure 2.2: The formation of a rigid peptide bond (gray plane) between two amino acids under
cleavage of a water molecule (hydrolysis). The N- and C-terminus (red and green) provide
points of attachment for further amino acids, indicated by the dashed, curved lines. Inspired
by [32].
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quences provides the biochemical environment for interactions with other molecules,
and in many cases enables the protein to assume a three-dimensional structure to
perform its function. However, there are also many functional proteins that have no
stable three-dimensional structure, contain at least disordered regions [36, 37, 38] or
function through transition between ordered and disordered states of the polypeptide
chain or parts thereof [39]. The process of adopting a three-dimensional structure is
called protein folding and is addressed in Section 2.3.1.1.

It is worth noting that, due to the fact that all amino acids except glycine have four
different groups attached to the Cα atom, they can exist in two different chiralities
which are called D- and L-form. In the L-form, the carboxyl, side chain, and amino
groups are arranged in a clockwise manner around the hydrogen–Cα axis and in a
counter-clockwise fashion in the D-form. However, evolutionary selection has led to
a strong preference of L-amino acids and the D-form is almost irrelevant in natural
proteins.

2.1.2 Secondary Structure

Cα 

C’ 

Rn-1 

O 

Cα 

C’ N 

Rn 

H O 

Cα 

N 

H 

Rn+1 

φ ψ 

(a) ϕ and ψ torsional angles of the protein back-
bone. Inspired by [32].

(b) Exemplary Ramachandran plot showing the
core and extended regions for different secondary
stucture elements, most importantly the α-helix
(α), the parallel (↑↑) and anti-parallel (↑↓) beta-
sheets (image adapted from [40]).

Figure 2.3: Backbone torsional angles and Ra-
machandran plot.

The protein secondary structure is the
result of regular three-dimensional ar-
rangements of segments of the primary
structure. As explained above, each pep-
tide bond involves the carbonyl group
and the NH group between two con-
secutive Cα atoms; the formation of
such a bond results in a mesomeric sys-
tem where the electrons of the carbonyl
group, the C’–N bond, and the nitro-
gen’s free electron pair are delocalized
over the corresponding atoms and cova-
lent bonds (rather than being associated
with a single one). This mesomeric sys-
tem stabilizes the involved atoms in an
almost rigid peptide plane, hence, the
only remaining degrees of freedom in
the protein backbone are the rotation
angles ϕ and ψ around the respective
nitrogen–Cα bond and the Cα–C’ bond
of each amino acid (Fig. 2.3a).

These degrees of freedom are the de-
terminants of the space of possible back-
bone conformations. Often, subsequent
backbone segments show regular pat-
terns in their backbone conformations,
the most prominent ones being the α-
helix, the β-sheet, and the rather irreg-
ular loop regions (Fig. 2.4). Fig. 2.3b
shows a so-called Ramachandran plot
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which contains the distributions of ϕ and ψ for the different regular secondary struc-
ture elements.

Figure 2.4: The most common secondary struc-
ture elements: α-helix (red), (anti-parallel) beta-
sheet (yellow), and irregular loops (green) with
backbone trace (sticks), side chains (lines), and
illustration of the secondary structure (car-
toon). Isolated from 1HCY.

The main characteristics of the α he-
lix are its repetitive ϕ and ψ angles of
-60
◦ and -50

◦ of a segment of consecutive
amino acids, resulting in 3.6 amino acids
on average per helix turn. This structure
is stabilized by hydrogen bonds between
the n-th C’=O and the n+ 4-th NH group
in the amino acid sequence and shows a
rise of about 1.5Å per residue. Depend-
ing on the sequence, the length of the
helices can vary greatly between differ-
ent structures. Other types of helices ex-
ist, but are much rarer.

In contrast, β-sheets are not formed
by one single segment of amino acid
residues but rather require several
stretches which are arranged in a paral-
lel (same directionality) or anti-parallel
(alternating directionality) way. Typi-
cally, β-sheets prefer to be exclusively
one or the other although mixtures of
both have been rarely observed.

The allowed ϕ- and ψ-angles cover a
very wide range of -60

◦ to -150
◦ for ϕ

and -90
◦ to -175

◦ for ψ. In both forms, all possible backbone hydrogen bonds are
formed for the internal strands, but those in parallel sheets are evenly spaced while
the ones in anti-parallel strands are alternatingly wide- and narrow-spaced.

To connect the aforementioned secondary structure elements and to allow for
changes in spatial orientation of the polypeptide chain, a third, rather irregular el-
ement is required: the loop region. Loops are very flexible and exhibit no particular
shape. In the case of soluble proteins, loops can often be found at the protein sur-
face forming hydrogen bonds to the surrounding solvent while the more regular sec-
ondary structure elements form the hydrophobic core and often the center of activity
of the protein.

2.1.3 Tertiary Structure

The three-dimensional arrangement of combinations of secondary structure elements
of a single polypeptide chain comprises the tertiary structure. Here, helices and sheets
are tightly packed to form functional units, so-called domains. Commonly, domains
are defined as contiguous segments of a protein or polypeptide chain that “fold into
compact, local, semi-independent units” [41]. However, there also exist domains that
do not consist of contiguous segments [42]. Depending on the purpose, slightly alter-
native definitions of domains are used, for example a more evolution-oriented defini-
tion as “an evolutionary unit observed in nature either in isolation or in more than
one context in multidomain proteins” [43].
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(a) EF-hand, isolated from par-
valbumin (pdb code 1B8R).

(b) β-hairpin, isolated from
bovine trypsin inhibitor (pdb
code 4J2K).
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1 

(c) Greek key motif (non-transparent,
numbered sheets), from staphylococ-
cal nuclease (pdb code 2SNS) includ-
ing a schematic drawing of the motif
(upper left).

(d) β-barrel, isolated from green fluo-
rescent protein (pdb code 1RRX).

Figure 2.5: Examples of motifs of secondary structure elements.

Domains are comprised of secondary structure elements [44] and simpler supersec-
ondary structure motifs combining several few α-helices and/or β-sheets [32]. Such
motifs can be distinguished by the number and frequency of the different secondary
structure elements they contain as well as the special geometric topology they ex-
hibit. The same motif is often present in a large variety of different proteins, and the
combination of motifs determines the protein’s specific functional properties.

One of the simplest and most prominent motifs observed in many proteins is the
calcium-binding EF hand consisting of a helix, a loop turn and a second helix with
the two helices arranged in an almost orthogonal fashion (similar to the outstretched
thumb and forefinger of a hand, Fig. 2.5a) and the loop in between containing the
calcium ion. Another common and very elementary motif is the β-hairpin (Fig. 2.5b)
which directly connects two antiparallel strands of β-sheets and can be found in very
many different proteins. Generally, the number of possibilities to connect the individ-
ual strands of β-sheets increases rapidly with the number of strands. For example,
one frequently occurring way of connecting four anti-parallel β-strands is the Greek
key motif (Fig. 2.5c), borrowing its name from the meandering patterns often found
in Greek art, which is reminiscent of the way the sheets are connected by loops in the
motif.

From these and many further simple motifs, more complex motifs such as β-barrels
(Fig. 2.5d), domains and ultimately fully functional proteins are formed. The sec-
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ondary and tertiary structure elements belonging to the same motif or domain are
often found to be close in the primary structure, the protein’s sequence. However,
backbone segments forming parallel β-sheets are necessarily more distant in sequence,
because here, the chain segment connecting two strands in the sheet must be longer to
arrange the strands in an parallel fashion and can even contain other secondary struc-
ture elements. The process of forming a protein’s secondary and tertiary structure is
called protein folding and is described in Section 2.3.1.1.

While all individual secondary structure elements (including more exotic ones not
described here) except loops are relatively rigid due to their strong hydrogen bonding
patterns, the connections between the individual components of a motif are often not
so strong and thus allow for a certain amount of flexibility. According to Koshland’s
induced fit theory [17], this flexibility represents the key mechanism of the molecular
recognition of binding partners and hence the functions of the protein. Some examples
of essential protein functions and pathways are described in Section 2.4.

2.1.4 Quaternary Structure

In addition to forming specific tertiary structures, several protein molecules often as-
semble to form a quaternary structure, or a protein complex. The mechanisms that
govern the complex assembly process are the same as those resulting in the formation
of the tertiary structure (see Section 2.2). But in the case of the quaternary structure,
the interactions are established between different polypeptide chains rather than be-
tween secondary structure elements or domains within a single chain, as in the case of
the tertiary structure. Yet, proteins present as individual components and assembling
into a quaternary structure in one species may be covalently linked, often through fur-
ther secondary structure elements such as unstructured loops, to form a multi-domain
protein (tertiary structure) in other species.

A popular example of a protein complex is hemoglobin (e.g. pdb code: 2HHB, Fig.
2.6), the first structurally resolved complex. Hemoglobin is responsible for the oxy-
gen transport mainly in vertebrates and consists of two α-globin and β-globin chains
(sequence identity 40.268%).

Figure 2.6: The hetero-
tetrameric deoxy-
hemoglobin, consisting
of two α-globin (green,
purple) and β-globin chains
(cyan, yellow) each.

Another example of a protein complex is the molecu-
lar chaperone GroEL (example pdb code: 1XCK) which,
in presence of ATP and the GroES complex, can assist in
protein folding (see Section 2.3.1.1) and recovery of de-
naturated proteins.

The proteins involved in such an assembly often per-
form their function cooperatively, for example through al-
losteric modulation as in the case of the aforementioned
hemoglobin [45], where the binding of an oxygen to one
chain induces conformational changes in the complex
that facilitate the uptake of oxygen in the other chains.
Complexes can also be scaffolds for the ordered execu-
tion of subsequent chemical reactions, and are capable
of feedback regulations which can, for example, adjust
the rates of the individual chemical reactions to the rate-
limiting step of the whole reaction cascade [46].
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Protein complexes can be obligate, i.e., permanently assembled as in the case of
hemoglobin, or transient, i.e., they assemble to perform their function and dissociate
after completion as for example in the case of the GroEL-GroES complex. Of partic-
ular interest in the context of this thesis are the so-called oligomeric macromolecular
assemblies which are discussed in Sect. 2.5.

2.2 protein interactions and interfaces

In the previous section, we have outlined the structural hierarchy of proteins. This
structural hierarchy allows for a large variety of different proteins and thus functions.
This functional diversity is to a large extent the result of the various three-dimensional
structures proteins can adopt as well as their interactions with biochemical com-
pounds and other macromolecules. Both, the assumption of a three-dimensional fold
(see Section 2.3.1.1) as well as the establishment of interactions with other molecules
is only possible if the resulting situation is energetically favorable w.r.t. to the envi-
ronment (e.g. the cytosol or membrane).

The three-dimensional structure of folded proteins or macromolecular complexes
results from internal interactions between the comprising amino acids, sometimes
prosthetic groups (permanently bound biochemical compounds that contribute to the
protein’s function), and interactions with the environment. In many instances, interac-
tions with other molecules in the environment take place at special sites, mostly at the
surface of the protein, called binding sites, binding pockets, active sites or interfaces
and are typically very specific w.r.t. the molecule to be bound.

The establishment of such interactions is due to two major factors: enthalpy and
entropy. The enthalpy is an energetic term that reflects the internal energy of the sys-
tem that largely depends on the non-covalent interactions between its components
as well as solvent effects. These interactions are the result of forces that act on the
interaction partners and are caused by their biochemical properties. Non-covalent in-
teractions comprise van der Waals interactions, i.e. dispersion effects arising from
induced dipoles in the binding partners as well as repulsion effects between the in-
teraction partners for atoms whose distance is smaller than the sum of their van der
Waals radii. Non-covalent interactions also include electrostatic interactions, i.e., inter-
actions between charged and/or dipolic atoms or functional groups and lead to the
formation of ionic, dipole/dipole and hydrogen bonds.

Solvent effects include the preference of hydrophobic or hydrophilic surface patches
to be in contact with the same kind of surface patch, the latter often water-mediated.
In the case of hydrophobic surfaces, this effect is enhanced by the fact that in solution
– the native environment of most proteins – water molecules are removed from that
area upon binding. This phenomenon is known as desolvation and describes the effect
that water molecules located at hydrophobic surfaces, where they are less capable
of forming hydrogen bonds, restore that ability when being surrounded by water
molecules again. The water molecules released from the surface can form hydrogen
bonds and thus increase enthalpy.

The entropic contribution arises from an effect described by the second law of ther-
modynamics. It determines that the creation of order (i.e., a reduction in the number
of degrees of freedom) in a thermodynamic system requires a certain amount of en-
ergy. Such order is not only found when hydrophobic patches are in contact with
water, rather, folded proteins in general represent highly ordered systems. In addi-
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tion, the interaction with other molecules reduces the number of degrees of freedom
in all binding partners, and thus also the entropy.

Consequently, a system can only be stable if the enthalpy arising from energetically
favorable interactions outweighs the loss of energy due to entropic effects arising from
the loss of disorder upon realizing the interaction. As stated by David Koshland’s
induced-fit theory [17], the binding process, and thus the establishment of energeti-
cally favorable interactions, can be supported by conformational changes of the inter-
action partners, to bring the complementary groups into close contact. The flexibility
in the protein can hereby be restricted to a change of the rotameric state of the side
chains, local backbone rearrangements or even large domain motions.

The strength of the binding is measured by the binding free energy ∆Gbind, the
difference between the free energies of the molecules in the bound and unbound
state:

∆Gbind = Gbound − Gunbound (2.1)

Accurately estimating ∆Gbind for a given complex structure is the aim of most scor-
ing functions employed in docking methods (see Section 3.3). Experimentally, ∆Gbind
can be determined from the association and dissociation rates kon and koff of the in-
volved molecules. The ratio of these rates is known as the inhibition constant ki, whose
logarithm is proportional to ∆Gbind [47]:

∆Gbind = −RT ln
(

kon

koff

)
= −RT ln ki (2.2)

Here, the scaling factor −RT is a product of the temperature T at which the experi-
ment is performed and the gas constant R. Obviously, for an interaction to take place,
the bound state should be preferred over the unbound one, i.e., its free energy should
be lower. Consequently, if ∆Gbind < 0, an interaction can be considered favorable.

2.3 the process of protein bio-synthesis

As already stated in Section 2.1.1, proteins are polypeptide chains, i.e., polymers com-
posed of amino acids. In most organisms, the blueprint containing the information on
the amino acid sequence of a protein is encoded in the DNA (though many viruses
for example encode this information in form of RNA), in particular a gene. A gene
is loosely defined as “a locatable region of genomic sequence, corresponding to a
unit of inheritance, which is associated with regulatory regions, transcribed regions
and/or other functional sequence regions” [48]. Genes coding for proteins are called
(protein-)coding genes as opposed to non-coding (RNA) genes which are translated
into functional RNA [49] rather than proteins. Because this thesis focuses on research
related to proteins and their structure, we here sketch the process of protein bio-
synthesis from DNA.

Before the actual protein synthesis can take place, the encoding gene must first be
transcribed to messenger RNA (mRNA). Gene transcription is heavily regulated to
allow for an adaption of the cell to environmental conditions and to prevent the cell
from damage and uncontrolled cell growth (see Subsection 2.4.3). During transcrip-
tion, RNA nucleotides complementary to the DNA template strand are attached to
the 3’-end of the growing RNA molecule by a protein called RNA polymerase [50, 51].
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In a post-processing step, the non-coding parts of the mRNA molecule, called introns,
are spliced and the exons encoding the protein structure are joined. The final mRNA
molecule can then leave the nucleus towards the ribosome where the protein synthesis
takes place.

In the context of this process [52, 53, 54], three different roles of RNA are of supe-
rior importance: the aforementioned mRNA as well as the transfer and the ribosomal
RNA (tRNA [55] and rRNA respectively [56]). Whereas the mRNA is the messenger
carrying the information from which the protein is to be built, the rRNA and tRNA
are directly involved in the synthesis itself: in complex with a minimum of 50 other
proteins, the rRNA forms the ribosome, the biological factory where new proteins are
synthesized. rRNA contributes two subunits to the complex, the large subunit (LSU)
and the small one (SSU), which, in total, make up the majority of the molecular weight
of the whole ribosome. The protein synthesis can be divided into three steps, per-
formed at the ribosome’s three different binding sites (A,P,E): the (aminoacyl-)tRNA
which links a sequence of three nucleotides (a so-called codon) to one of the 20 dif-
ferent amino acids, is bound to the ribosome at site A according to a complementary
three-nucleotide sequence provided by the mRNA. Here, the aminoacyl-tRNA forms
a peptide bond with the amino acid held by another (peptidyl-)tRNA located at site
P and elongates the protein under synthesis by another elementary module. After for-
mation, the tRNA at site A is moved to P (becoming the new peptidyl-tRNA), while
that at P is moved to E, where it is dissected from the peptide chain and released. This
process is iterated until the whole mRNA is processed and the polypeptide chain has
been built.

2.3.1 Protein Folding and Co- and Post-Translational Modifications

Even before the translation has been completed, the already synthesized part of the
polypeptide chain may undergo several post-translational modifications that enable
the protein’s functionality. For example, the polypeptide chain may correspond to sev-
eral proteins instead of a single one. In that case, a cleavage at the corresponding pep-
tide bonds in the chain is performed. Furthermore, the methionine at the N-terminus
of the protein, corresponding to the start codon of the gene encoding for the polypep-
tide chain, is often removed. In addition, the insertion of membrane proteins into the
membrane is performed, either co- or post-translationally [57, 58].

2.3.1.1 Protein Folding

However, the most vital change to which the polypeptide chain is subject is the step
of protein folding [59]: here, it assumes its three-dimensional structure which ulti-
mately determines the protein function. This can happen domain-wise in a more or
less spontaneous fashion during the translation process (co-translationally) or after
synthesis of the complete polypeptide chain. Though many proteins fold within mi-
croseconds, some of them require hours to achieve their native fold [60, 61] or even do
not fold without further assistance by a special class of proteins, so-called molecular
chaperones.

The folding process does not only depend on the amino acid sequence but to some
extent also on the environmental conditions, such as pH and salt concentration, and
is mainly governed by the amino-acid sequence and the resulting repulsive and at-
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tractive forces, especially the burial of hydrophobic patches as well as interactions via
hydrogen bonds between the residues (compare Section 2.2).

Molecular chaperones [62] which we briefly introduced in Subsection 2.1.4 can as-
sist in the folding process and are essential for folding of some proteins. These chaper-
ones provide favorable environments for protein folding as well as complex formation
and can either actively assist the folding process under energy consumption (present
in form of ATP) or by binding intermediate folding stages to prevent them from ag-
gregation (which is likely to occur in an crowded environment such as cells) until the
folding is completed.

Furthermore, disulfide bridges, i.e., a covalent linkage of cystein residues, may be in-
troduced in secreted proteins (predominantly) by an enzyme called protein disulfide
isomerase [63]. Some proteins also require the presence of additional cofactors that
enhance the protein’s functionality or activity, for example the hemoglobin presented
in Subsection 2.1.4. These so-called prosthetic groups are typically also introduced
during protein folding.

2.3.1.2 Acetylation and Phosphorylation

Not only the activity of genes but also that of proteins can be regulated via mod-
ifications. Two significant processes that can enable or disable protein activity are
acetylation [64] and phosphorylation [65].

The acetylation usually takes place on lysine residues, replacing one of the hy-
drogens by an acetyl group. This mechanism requires the presence of an acetylase
protein as well as an acetyl-CoenzymeA complex which provides the corresponding
acetyl group. The attached acetyl groups can then modify the protein’s activity or be
recognized by other proteins and regulate their respective activities, as for example
in the case of histones, where the (de-)methylation (acetylation by means of a methyl
group) influences DNA transcription.

Phosphorylation works analogously to acetylation, however, in this case, a phos-
phate group instead of an acetyl group is attached by kinases (or removed by phos-
phatases). Target residues susceptible to phosphorylation are histidine, serine, threo-
nine and tyrosine. A common property of these amino acids is their hydrophobicity;
an addition of a three-fold negatively charged phosphate group turns their hydropho-
bic character into a highly polar one. As a result, a repulsion from surrounding hy-
drophobic residues and an attraction to residues with complementary charge or po-
larity takes place. These forces lead to changes in the biochemical properties of the
functional site of the protein and sometimes also in its conformation, and eventually
activate or deactivate the protein.

Phosphorylation is for example found in signalling pathways, e.g., as an mecha-
nism of inhibition on the insulin pathway or degradation via the ubiquitination/pro-
teasome pathway [66] (comp. Subsection 2.5.2) whereas acetylation is often associated
with gene regulation and metabolism.

2.4 protein functions in the molecular machinery of a cell

In Section 2.3 we have outlined some of the most essential life processes, and while
this description is very superficial it nevertheless gives a good overview of the com-
plexity of macromolecular mechanisms leading to the biochemical entity called cell.
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Proteins are ubiquitous: so far, we have seen that they are relevant for DNA structure
organization, replication, modification, transcription, and translation, but the tasks
they have to perform are much more distinguished.

They perform structural tasks such as establishing the cell skeleton and preserv-
ing its structure, and are relevant for signal transduction, energy recovery, as well as
metabolism. Via forming complex machineries they can assist in the synthesis of new
proteins, can help with folding each other, or protect proteins from denaturation, di-
gest proteins, RNA, and DNA. They are ultimately even responsible for the apoptosis
– the cell’s death (see Subsection 2.5.2).

Because proteins can be considered to comprise the machinery of the cell, under-
standing their properties, behavior, and interplay among each other, as well as with
nucleic acids and other biochemical compounds provides a key path to the detection,
alleviation and cure of diseases. In the following, we want to present some basic con-
cepts of processes in which proteins play a major role and which are indispensable
for a cell to function properly. While the following concepts might not be as well-
separable in Nature as presented here, distinguishing them from each other might
help to gain a deeper understanding of the basic principles.

2.4.1 Enzymatic Catalysis

Proteins catalyzing chemical reactions form one of the most essential classes of pro-
teins: enzymes. The main function of enzymes is the accelerated and energy-efficient
metabolization of biochemical compounds. They are often highly substrate-specific:
they can only process a certain compound or class of compounds.

Typically, an enzymatic catalysis is performed in the following way: one or more
compounds whose reaction is to be catalyzed, so-called substrates, serve as the educts
of the reaction. These compounds bind non-covalently to the active site of the enzymes
performing the specific reaction. Here, they are converted via a cascade of chemical
events to the reaction products and released again [67].

By providing a well-defined environment for the catalytic reaction and assisting in
the reaction itself, the energy barrier for the reaction to take place is decreased and the
reaction equilibrium is reached much faster. In fact, without these catalytic reactions
most of the biological processes relevant to sustain life would not be possible at a
sufficient rate.

The reason for the tremendous increase in the reaction rate (up to several million
times faster than in the unaided case) [68] is the lowering of the activation energy
required for the reaction to take place. Several mechanisms to lower the activation
energy have been observed: when a chemical reaction takes place, the reactants of-
ten enter an intermediate transition state before being transformed into the reaction
products. This transition state can be stabilized for example via electrostatic effects or
providing charges complementary to the functional groups of the reactants. In addi-
tion, enzymes bring the substrates in the correct orientation to each other or to the
catalytic center; they thus increase the rate of correct encounters between the reaction
sites which in turn increases the rate of metabolization.

This process is often aided by cofactors which provide/store additional energy or
improve the chemical environment of the catalytic reaction. These cofactors can either
associate with the protein upon reaction or can be bound permanently. In the former
case, they are called coenzymes, in the latter prosthetic groups. There exist many
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different kinds of cofactors, the most prominent of them being the anorganic heme
group in complex with an iron (Fe2+) ion required for example for oxygen binding
in hemoglobin [69] (cmp. Fig. 2.6) and in cytochromes performing redox reactions
such as the hydroxylation of steroid hormones [70], e.g., progesterone, or the electron
transport in photosynthesis and the respiratory chain.

2.4.2 Signal Transduction

Signal transduction, also known as cell signaling, is a very important cellular process
that enables the communication between cells and their environment. Typically, this
communication occurs between cells in the same organism, but signal transduction
between cells of different organisms has also been observed [71].

Proteins responsible for the mediation of signals from the cell’s environment to
its interior typically obey the following structural organization, consisting of three
parts: one or more receptor domains at the cell surface, a transmembrane part that
integrates the protein into the cell membrane, and one or several domains on the
inside of the cell, responsible for the signal mediation into the cell interior. Proteins
that are anchored in and cross the cell membrane are called transmembrane proteins,
e.g. G-protein coupled receptors (GPCR’s, only in eukaryotes) [72], ligand-gated ion
channels [73], or receptor tyrosine kinases (RTK’s) [74].

In general, the process of signal transduction can be summarized as follows: a mes-
senger compound sent from the environment of the cell reaches the cell surface, where
it is recognized by the specific receptor domain(s). Once that substrate has been re-
ceived, i.e., bound to the receptor domain(s), the receptor is activated. Typically, the
activation entails a change of the protein conformation. In the case of ligand-gated ion
channels this results in the opening of the gate, enabling the corresponding ion(s) to
pass. A ligand-induced conformational change in GPRC’s in contrast activates the het-
erotrimeric G-protein (subunits: Gα, Gβ, Gγ), causing Gα to dissociate and expose the
other two subunits (new results indicate the possibility that the G-protein might bind
only after activation [75]). Both the Gα and the Gβγ units can then fulfill signaling
functions. The activation of RTK’s causes the monomeric RTK domains to dimerize
through phosphorylation (see Subsection 2.3.1.2) of a tyrosine in each monomer on
the intra-cellular side. This results in the creation of a binding site to which other
proteins can bind and propagate the message. During any stage, the corresponding
message can be amplified or received by multiple receptors in the cytoplasm. These
receptors can then again trigger further actions, a phenomenon which is called signal
cascade.

One important function relying on cell signaling is the development of im-
mune responses against pathogens [76], i.e., foreign and possibly malicious sub-
stances, viruses, and microorganisms such as bacteria: here, for example, so-called
T-lymphocytes (or T-cells) recognize specific antigens, i.e., small fragments of the
pathogen, presented to them by surface proteins (so-called MHCs) of antigen-
presenting cells. The recognition takes place via the T-lymphocytes’ transmembrane
T-cell receptor (TCR). The TCR then triggers a signal cascade leading to an activation
of the T-cell and ultimately a proper immune response, in the case of T-killer cells the
search and destruction of cells with the same antigen.

Further examples of signal transduction pathways are the MAPK/ERK [77] path-
way and the insulin signaling pathway [78]. The MAPK/ERK pathway involves
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GPCR’s and is associated with cell division. Defects on that pathway often lead to
cancer, the result of unregulated cell growth and division. The insulin pathway in
turn relies on RTK’s and is involved in the regulation of metabolic pathways, e.g.,
the carbohydrate metabolism. Aberrations on that pathway can for example lead to
diabetes mellitus type II.

2.4.3 Gene Regulation

The final target of signal transduction pathways are often gene regulatory pro-
cesses. Especially the above-mentioned immune response and MAPK/ERK pathways
strongly affect gene regulation. The purpose of this regulation is the alteration of
the concentrations of the respective gene products, proteins in many cases, in the cell.
During a cell’s life cycle, not all proteins are needed at any time or can have adversary
effects when present at the wrong time or in the wrong place. In addition, a change
in the environmental conditions can require an adaption of the cell’s behavior. This
behavior strongly depends on the entirety of proteins and their concentrations, the
proteome. Hence, it is vital to the cell to be able to regulate the activity of specific
genes and thus influence the proteome [79].

Several different mechanisms of gene regulation are known. For example, the ac-
cess to these genes and the frequency by which the gene products are synthesized
can be regulated by epigenetic modifications [80, 81]. Through these modifications,
the gene transcription rate can be increased, decreased or the gene expression can be
silenced completely. Epigenetic modifications can either be acquired during lifetime
as a response to the environmental conditions but are also heritable and represent an
inherently essential prerequisite for tissue-specific gene expression and cell differenti-
ation.

Another example of a regulatory mechanism, is the direct modulation of the gene
expression level by affecting the activity of RNA polymerase: repression, activation,
or enhancement [50]. The corresponding proteins comprise the class of transcription
factors and bind to specific regions of DNA, that typically preceed the actual gene to
be transcribed, either blocking or changing the capability of RNA polymerase to bind
to the promoter region of the corresponding gene.

2.5 macromolecular protein assemblies

Many of the processes presented in the previous subsections require the formation of
(at least transient) macromolecular assemblies. There exist a manifold of different rea-
sons for such a behavior [82, 83]. First and foremost, one has to keep in mind that cells
form a very crowded environment where no space is wasted. For any biological pro-
cess to be performed at a sufficient rate, all involved macromolecular participants have
to be located close to each other. Not only can these assemblies perform processes of
which individual proteins are not capable, but often they also show a cooperative be-
havior. For example, hemoglobin [69] which is responsible for the oxygen transport in
many higher-order organisms, especially vertebrates, consists of four subunits, two α-
and two β-chains each of which is able to bind one oxygen molecule. The uptake of
oxygen in one of the subunits induces a conformational change that also causes the
other three subunits to assume a conformation as if they also had bound an oxygen.
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Hence, binding of additional oxygens is facilitated by the uptake of the previous ones,
an effect called cooperativity.

Another advantage is that, similar to the active site of an enzyme, a protein as-
sembly can provide a well-defined environment where biochemical reactions might
be facilitated and accelerated. This may also involve keeping toxic or highly-reactive
intermediate products such as free radicals or electrons from entering the cytosol and
cause damage to the cell, as for example in the electron transport system in the res-
piratory chain. Here, the energy of activated electrons is gradually transformed to
chemical energy via a system of different redox reactions [84, 85, 86]. Releasing these
highly reactive electrons into the cell might harm the cell in an unpredictable manner.

A further benefit is especially imminent for proteins involved in the same metabolic
pathway. They all perform a cascade of enzymatic reactions (compare Subsection 2.4.1)
and an assembly of these proteins into an oligomeric complex bears the advantage
that the molecules to be processed can be directly passed from one protein to the
next in line, similar to a production line in a factory. Furthermore, such complexes
are capable of a very efficient mechanism – the feedback regulation [87, 88]. This
mechanism allows for the adaption of reaction rates of the individual proteins to the
environmental conditions present at the beginning and the end of the pathway. If, for
example, the final substrates produced by the assembly pile up, the last protein in
the pipeline may reduce its activity, which again causes its predecessor to reduce its
activity and hence propagate the signal to the starting protein in the assembly.

Signal transduction and cellular responses (see Subsection 2.4.2) can also involve
complexes. For example, the already mentioned cell-membrane-bound G-protein cou-
pled receptors (GPCRs) which are able to detect and bind messenger molecules ar-
riving outside the cell represent an assembly of several proteins, namely the trans-
membrane receptor and the G-protein. The G-protein itself is again a heterotrimeric
complex consisting of an α-, β-, and γ-subunit, which dissociates upon signal trans-
duction into the Gβγ-subunit and a GTP (guanosine triphosphate)-activated Gα sub-
unit which can then stimulate intracellular processes.

Even gene storage and their regulation (see Subsection 2.4.3) as well as the process
of protein biosynthesis (see Subsection 2.3) heavily rely on such macromolecular as-
semblies. In the former case, we have for example the octamer-forming histones and
the complexes RNA polymerase temporarily forms with DNA and transcription fac-
tors. An even more remarkable complex is the ribosome, the complex responsible for
translation of mRNA into a protein during protein biosynthesis. It is not only formed
by several proteins and a two units of a particular type of RNA, the ribosomal RNA,
but is a very stable and active macromolecular assembly.

In the following, we want to address some assemblies of special interest with very
integral functions in more detail.

2.5.1 Pyruvate Dehydrogenase Complex

The pyruvate dehydrogenase complex (PDC) is a large complex of mainly three differ-
ent protein types that bridges the gap between glycolysis and tricarboxylic acid cycle.
It’s predominant function is the degradation of pyruvate – an organic acid produced
by the glycolysis – in acetyl-CoA which can then enter the tricarboxylic acid cycle
where it is further degraded and prepared for the ultimate energy recovery in the
respiratory chain [89].
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One of the most severe diseases associated with a malfunctioning of PDC is the
pyruvate dehydrogenase deficiency caused by a mutation in the E1 alpha gene located
on the X-chromosome. The resulting phenotype can take two forms, a metabolic and
a neurological one. In the former, it leads to a lactic acidose with some symptoms
being lethargy, nausea and tachycardia. In the latter case, the untreated progress of
the disease can lead to spasms, blindness and mental retardation [90, 91].

The three main protein types the complex is composed of are the pyruvate dehy-
drogenase (E1), the dihydrolipoyl transacetylase (E2), and the dihydrolipoyl dehydro-
genase (E3). The overall structure of the complex differs with 24 subunits forming
a cubic core in gram-negative bacteria such as E. coli and an icosahedral composi-
tion (corresponding to a pentagonal dodecahedron) of 60 subunits in gram-positive
bacteria and eucaryotes [92].

(a) Structure (pdb code 1B5S) and topology (spheres: pro-
tein centroids, edges: interfaces, colors: types) of the PDC
core w.r.t. the five-fold axis.

(b) Model of the Pyruvate Dehydrogenase
Complex w.r.t. the three-fold axis of the E2

core (gray) and satellite E1 (purple) and E3

(yellow) components1.

Figure 2.7: The pyruvate dehydrogenase complex.

This core (Fig. 2.7a) is solely composed of dihydrolipoyl transacetylase (E2) proteins
with E1 hetero-tetramers and E3 dimers attaching to it as satellite proteins (Fig. 2.7b).
Here, three copies of E2 at a time are assembled into a trimeric structure forming one
of the corners of the core body and are considered to be the centers of acetyl-CoA
synthesis [93]. In eukaryotes, where the complex resides in the mitochondrial matrix,
each of these E2 trimers can bind up to a trimer of E1 proteins, while one copy of
the E3 dimer can be bound above the center of each of the faces, i.e., the planes
surrounded by a pentagon of E2 trimers. In theory, the complex can thus consist
of 60 E2 trimer copies, up to 60 E1 tetramer copies and 12 dimer E3 copies in the
complex. However, due to mutually exclusive binding of E1 and E3, the total number
of proteins forming the complex is typically thought to be 96 with varying relative
stoichiometries of E1 and E3 (30:6 in mammals) [94, 95].

1 This research was originally published in Journal of Biological Chemistry. Milne, J. L. S., Wu, X., Borgnia,
M. J., Lengyel, J. S., Brooks, B. R., Shi, D., Perham, R. N., and Subramaniam, S. Molecular Structure of
a 9-MDa Icosahedral Pyruvate Dehydrogenase Subcomplex Containing the E2 and E3 Enzymes Using
Cryoelectron Microscopy. Journal of Biological Chemistry. 2006; 281:4364–4370. © the American Society for
Biochemistry and Molecular Biology.
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The PDC is not only of great interest because of its pharmaceutical relevance but it
is also one of the largest presently known complexes, having a diameter of approxi-
mately 250Å. It possesses some unusual features, the most remarkable one being the
following: the edges between the corners of the complex, i.e., trimers of E2, are formed
by very small interfaces between two instances of a trimer (in fact, one monomer in
each of the two trimers is involved in forming that bridge). Hence, these brides are
very flexible and allow the complex to “breathe” [96].

Due to the size of the complex, no high-resolution structure is available at present
(a model of the E2 core with an resolution of 4.4Å can be found under pdb code 1b5s),
and many details about the mechanisms of pyruvate degradation remain unknown.

2.5.2 Proteasome

The function of proteasome complexes, which are present in all eukaryotes as well
as some bacteria and archaea, is to acquire and recycle resources from proteins that
are no longer required, have been misfolded or damaged for example by a heat shock
and are thus unable to further perform their task. The proteins to be degraded carry
a certain kind of marker: a so-called polyubiquitin chain that is attached by the ubiq-
uitylation system (which again forms a separate complex) [97, 98].

Proteasomes present a valuable pharmaceutical target, because the efficient and
irreversible degradation of proteins by the proteasome can trigger the activation or
repression of many processes in the cell: many regulatory proteins depend on normal
turnover rates of the proteasome to function properly. In particular, inhibition of the
proteasome in healthy cells can stop the cell division [99] or can induce the synthesis
of glutathione. An increase of glutathione can help to protect cells from oxidative
stress which in turn is assumed to be tightly connected to Parkinson’s disease [100].

Cancer cells are especially susceptible to proteasome inhibition: here, blocking the
proteasome activity can lead to the induction of a selective apoptosis of cancer cells
[101, 99, 102, 103]. Though not completely understood, the inhibition of the protea-
some in cancer cells is assumed to restore mechanisms related to cell proliferation
and the suppression of apoptosis to normal function.

(a) Side view of the 2OS core particle structure
and topology

(b) Top view of the 2OS core particle structure
and topology

Figure 2.8: Structure (pdb code 1RYP) and topology (spheres: protein centroids, edges: inter-
faces, colors: types) of the 2OS proteasome core particle.
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Figure 2.9: Electron density map of the the 26S proteasome (image source: [109]). (A) Compo-
nents. Red: 20S core particle, blue: regulatory particles, orange: AAA-ATPase, (B) Isosurface
colored by local resolution (Å).

The core of the proteasome (CP) is formed by the 20S subunit which consists of
four stacked rings, each being a heptamer (Fig. 2.8a). Together, they form a hollow
cylindric structure with an approximately 53Å-wide degradation chamber in its cen-
ter (Fig. 2.8b). The overall size of the 20S subunit is about 150Å×115Å. [104, 105] The
composition w.r.t. the involved protein types may differ among the organisms, but
the overall topology remains the same: the 28 subunits of the four heptameric rings
in the 20S yeast proteasome (e.g. pdb code 1z7q [106]) comprise 14 different protein
types, each with a stoichiometry of 2. The outer two rings – the α rings – serve as
gatekeepers that restrict the access to the degradation chamber and interact with reg-
ulatory components while the inner two β rings perform the catalytic reaction and
the proteolysis.

Electron microscopy and X-ray structures of the 20S proteasome first became avail-
able in 1986 [107] and 1995 [104], respectively. A more complete structural model – the
26S proteasome (Fig. 2.9) which is composed of one 20S unit and two regulatory 19S
caps (RP) and is assumed to be the predominant form of proteasomes in mammals
– determined by an integrative approach combining data from various sources, has
been proposed recently [108, 109].

Compared to the 20S core, the 19S caps are even more diverse in function and types
of involved proteins [110]. Unfortunately, this also makes a direct structural determi-
nation much more difficult, because the binding affinities of the different proteins
are very heterogeneous. Upon crystallization, the 19S particle dissociates into several
sub-complexes and proteins of which some have not yet been structurally determined.
Furthermore, some of the subunits are assumed to exhibit a considerable amount of
conformational flexibility, making it hard to obtain an interpretable electron diffrac-
tion pattern for the these subunits [109].

Many details on the exact function of the involved proteins and their orientation
are still unknown at present, hence, the structural prediction and investigation of the
proteasome (and the ubiquitine/proteasome pathway) presents a field of intensive
research.
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2.5.3 Viral Capsids

Viruses are the cause for a large number of diseases in all kinds of living systems.
They require a host cell in which they can replicate because viruses themselves do not
possess the complete replicative machinery nor do they show any kind of metabolic
activity or cellular organization. On the other hand, they contain genetic information,
can replicate (by using the host infrastructure) and are subject to selective evolutionary
pressure. Hence, their membership in the realm of living organisms is a matter of
ongoing dispute [111].

A virus typically consists of two components: the genetic material required for the
replication and a protective hull of proteins surrounding the genome called capsid or
coat. In some cases this coat is surrounded by an envelope of lipids acquired from
the host cell. The viral capsid consists of proteins encoded by the viral genome and is
synthesized by the infected host cell. They fulfill a variety of different functions, the
most important one being the protection of the genetic material, but also the transport
and binding to the host cell as well as the packaging of the genetic material. [112]
These viral capsids are thus of great pharmaceutical interest as their destabilization
and disintegration can severly affect the virus life cycle and destroy it before it is able
to infect a new host cell. Hence, the knowledge of their structure can provide valuable
information in the process of developing antiviral drugs.

The structure of these capsids is very diverse and is considered to be a result of
evolutionary pressure itself with the capsids exhibiting simpler topologies being the
fittest [113]. The basic properties of capsid structure have been known since the 1950’s
[114]: they often assemble from sub-complexes of point-symmetric protein rings of
varying stoichiometry, so-called protomers [115]. Spherical capsids, one of the most
prominent types, typically consists of 12 pentameric rings (or a pentavalent subunit
cluster) and a varying number of interconnecting hexamers (hexavalent subunit clus-
ters) showing various types of symmetry [116, 117].

In recent years, more and more X-ray and electron microscopy structures have be-
come available, allowing for a deeper investigation of the structural assemblies [118],
a systematic representation of viral capsids as a kind of periodic table [113] and an
assessment of their structural fold space [119]. One of the most recent achievements
in capsid structure determination is the modeling of a mature HIV-1 viral capsid, con-
sisting of 12 pentamers (Fig. 2.10a) and different numbers of hexamers (Fig. 2.10b):
216 and 186 (Figures 2.10c and 2.10d) [120].

Besides rendering viruses inoperable or at least alleviating their pathogenicity by
attacking their viral coat, understanding the principles and dynamics of capsid assem-
bly is of great importance for the pharmaceutical treatment of diseases by the use of
viral vectors [121, 122].
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(a) Pentameric protomer of the
HIV-1 capsid

(b) Hexameric protomer of the
HIV-1 capsid

90◦ 90◦ 90◦ 

(c) Model of a mature HIV-1 capsid with 186 hexamers (blue) and 12 pentamers (red), pdb code 3J3Y.

90◦ 90◦ 90◦ 

(d) Model of a mature HIV-1 capsid with 216 hexamers (blue) and 12 pentamers (red), pdb code 3J3Q.

Figure 2.10: Protomers and models of the mature HIV-1 capsid.





3
E X P E R I M E N TA L A N D C O M P U TAT I O N A L T E C H N I Q U E S A N D
R E L AT E D A P P R O A C H E S

3.1 protein structure determination

The determination of protein structures is a key prerequisite to the work presented
in this thesis. To this end, several methods have been developed, each with their own
advantages and disadvantages. The two most common techniques are X-ray crystal-
lization and nuclear magnetic resonance (NMR) spectroscopy. We will discuss the
workflow of these methods as well as their advantages and shortfalls. Subsequently,
we will briefly present some additional methods not yet suitable to compete against
the aforementioned ones, but promising w.r.t. future developments.

3.1.1 X-ray Crystallography

The most prominent method to determine the structure of proteins, biochemical com-
pounds and other macromolecules, is X-ray crystallography [123]. It is based on the
observation that atoms in a crystal form regular, repeating patterns. This observation
provides the key prerequisite to X-ray crystallography, because this regular arrange-
ment of the atoms or molecules in the crystal allows for a sufficiently strong diffrac-
tion signal to resolve the molecule’s structure using X-rays.

However, the crystallization of proteins and other macromolecules is hard to do
and often involves many iterations of trial-and-error. The problems and limitations of
protein crystallization are depicted in the next section. In this section, we first describe
some of the basic concepts relevant to this work; for more detail, the interested reader
is referred to [124, 125].

The general procedure is as follows: first, a crystal of the molecule under investiga-
tion is grown. Such a crystal must have a sufficient size (> 0.1mm) to afford signals
that are strong enough for the resolution of the molecule.

X-ray beams are then sent through this crystal and detected on a screen behind
the crystal. During their journey through the crystal, the beams are diffracted by the
atoms, or rather their electrons, contained in the crystal. As a result, they produce a
scattering pattern on the screen.

The produced diffraction patterns show spots at regular distances (known as reflec-
tions), and blank or blurred spaces at others, as predicted by Bragg’s law: the scattered
waves cancel in most directions, but are amplified in a few directions producing the
spots. The amplification can only happen when the lengths of the traveled paths for
rays scattered at different atoms under the same incident angle equals an integer mul-
tiple of the beam’s wavelength. In that case, the beams scattered by the corresponding
atoms remain in phase, i.e., they have the same phase when arriving at the screen,
which leads to a constructive inference and an amplification of the signal. If that con-
dition is not fulfilled, a phase shift has happened, leading to a less amplified or even
canceled signal.

29
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The diffraction pattern measurement is repeatedly performed from different angles,
typically the crystal is rotated in between the measurements. From the set of measure-
ments, an electron density map can be computed. Such maps then show the stochastic
distribution of electrons, and hence the approximate positions of the corresponding
atoms in the crystal.

From this electron density map, an atomic model can then be produced, which
amongst others involves the application of chemical information about atomic va-
lences, standard bond lengths and angles, removal of crystal contacts and packing
artifacts, as well as the structural refinement and sometimes the fitting of secondary
structure elements into the density map.

3.1.1.1 Limitations of the crystallization process

For the X-ray crystallization to succeed, sufficiently pure, regular and large crystals
have to be grown from a solution containing the molecule in an accordingly large
number of copies. However, this crucial step is often very difficult. The larger the
molecule under investigation, the higher in general the number of degrees of freedom
it exhibits. To obtain a good crystal of large proteins, special care must be taken to
reproduce the native environmental conditions of the proteins to prevent the proteins
from undergoing large conformational changes or even unfolding.

The crystallization typically starts with a small crystal nucleus around which the
crystal growth can then take place. However, the conditions to produce the nucleus
are intrinsically required to be different from those of the growth, and a good trade-
off must be found in order to produce one single nucleus from which a large crystal
can grow instead of many small nuclei or none at all. The determination of these
conditions becomes extremely difficult with increasing size of the protein (or protein
complex), and some environmental conditions, for example those of transmembrane
proteins such as GPCR’s which are natively found in a hydrophobic environment, the
lipid bilayer of the cell membrane, are especially hard to reproduce. The prediction
of good conditions is impossible, hence screening experiments covering a wide range
of different conditions are often performed. In some cases, for example GPCR’s, sta-
blizing compounds or structural modifications which link certain key residues in the
structure have to be introduced [126, 127, 128], if the crystallization is to succeed at
all.

In the case of large macromolecular assemblies the problem of crystallization is two-
fold: first, there are typically no covalent bonds between the individual components
of the complexes, and the overall topology is only preserved through non-covalent in-
teractions in the complex interfaces. Hence, wrong conditions can cause the complex
to fall apart. Especially in the case of hetero-oligomers, this can prove to be an infeasi-
ble problem, because each interface may require different properties, and conditions
suiting the needs of all interfaces may simply not exist.

A second problem is the size of the complexes. As a rule of thumb, we can say, the
larger a structure under investigation, the lower the resolution. This is due to the many
atoms diffracting the X-ray beams. The resulting pattern of spots is smeared, and the
computed electron density map is thus blurred, making an accurate estimation of the
atomic positions not possible. Hence, the information content of the resulting crystal
structure is reduced to where only a fold recognition or only statements about the
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general topology but no secondary structure elements or even atomic positions are
possible.

3.1.2 Nuclear Magnetic Resonance Spectroscopy

Another method to determine protein structures at an atom-resolution level is Nu-
clear Magnetic Resonance (NMR) [129, 130] spectroscopy. The main advantages of
this method compared to X-ray crystallography are that NMR spectroscopy does not
require the crystallization of proteins which can be a very difficult process and force
the molecule into a nonnative conformation, as we have seen in Sections 3.1.1 and
3.1.1.1. NMR spectroscopy can thus capture protein structures in a more native state.

The underlying quantum-mechanical principle is that of nuclear magnetic reso-
nance: atomic nuclei aligned in a magnetic field are able to absorb and re-emit electro-
magnetic radiation that is initially emitted by a radiation source perpendicular to the
magnetic field. Only atoms and isotopes with a non-zero net magnetic momentum,
which corresponds to the sum of magnetic momenta (spins) of the protons and neu-
trons of the atom nucleus, are detectable by this method.

The resonance of these nuclei arises from the absorption and emittance of energy
upon changes in the magnetic momenta, i.e., transitions between spin states. The cor-
responding resonance spectra and frequencies are characteristic for each type of nu-
cleus. However, in a molecule, shielding effects arising from neighboring atoms may
occur: their electrons (or rather the distribution thereof) may induce a local magnetic
field that shields the nucleus from the external magnet field. As a result, a variation
of the resonance frequency of the nucleus w.r.t. a reference sample is observable, an
effect that is called chemical shift. A measurement of the chemical shifts of all nuclei
in the molecule at a given magnetic field strength is called an NMR spectrum.

The chemical shift, and thus the NMR spectrum depends on the strength of the ap-
plied magnetic field. Furthermore, the responses of nuclei in different neighborhoods
to a change of the strength of the magnetic field are different. Hence, measuring the
same structure at different strengths can provide information on the composition of
that neighborhood, and combined over all nuclei, about the structure of the molecule
under investigation.

Further indirect information on the structure can be obtained with methods em-
ploying Nuclear Overhauser Effect (NOE) spectroscopy [131]. This effect can be used
to determine the distance between pairs of nuclei (most importantly protons) in space
from multi-dimensional NMR spectra, with closer nuclei leading to a stronger NOE
signal. The corresponding distance geometry information can then be used as addi-
tional restraints during structure calculation and optimization.

An additional advantage of NMR spectroscopy over X-ray crystallization is, that it
can also be used to study dynamic processes such as conformational changes in the
structure, because it investigates proteins in their native state. This is possible because
the local neighborhoods of the individual atoms and hence the chemical shifts change
when a conformational change occurs. The resulting collection of structures is called
an NMR ensemble.

However, NMR spectroscopy is generally limited to smaller protein structures (less
than 25 to 50 kDA [131]) and thus less well suited for the structural determination
of oligomeric structures. Yet, TROSY-based (Transverse Relaxation Optimized Spec-
troscopY) NMR methods [132] which are experimentally very demanding (NMR spec-
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trometer with > 700 MHz operating frequency with an assumed optimum at 1Ghz,
probe temperatures below−150.0 ◦C and most protons in the macromolecule replaced
with deuterons [131, 133]) can achieve a better sensitivity already for molecules with
molecular masses greater than 15− 20 kDA and can be used to study complexes with
molecular masses of up to 1 MDa, for example the 900K GroEL–GroES complex [134].

3.1.3 Cryo-EM and Cryo-ET

Cryo-electron microscropy (cryo-EM) [135, 136] and tomography (cryo-ET) [137, 138,
139] are two related methods that gain more and more relevance in protein structure
determination and prediction. Though their resolution is not yet comparable to that
of X-ray crystallization or NMR spectroscopy, they nevertheless represent promising
approaches due to their ability to determine much larger macromolecular structures
as well as cells and even supercellular objects.

To this end, the target structure is cooled down to a cryogenic temperature (<
−150.0 ◦C). Then, similar to X-ray crystallography, electrons emitted by an electron
microscope or tomograph are scattered w.r.t. the investigated structure. The three-
dimensional structure can then again be obtained from the combination of such scat-
tering patterns taken from different angles.

Currently, their predictive value lies in the fact that they can be combined with high-
resolution techniques in a hybrid fashion: the corresponding high-resolution struc-
tures can be fitted into the overall topology of, for example, oligomeric assemblies
provided by the EM or ET electron maps [140, 141].

Depending on the resolution of the underlying density map, the fitting can be per-
formed manually using visualization tools or algorithmically: in the latter case, the
fitting of the high-resolution monomers is for example done by optimization of the
cross-correlation between fitted monomer and density map. However, rigidly fitting
monomers into an EM map can be hampered by the fact that the monomers in the
high-resolution crystal structure may adapt a different conformational state than in
the assembly given by the density map. This can for example be due to conformational
changes during the assembly process but also depend for example on the crystalliza-
tion conditions of the high-resolution structure [142]. Hence approaches accounting
for flexibility during the fitting procedure, for example by molecular dynamics simu-
lations [143, 141] or elastic network models (ENM; a definition is given in Section 5.1),
can be required [144, 145].

The process of fitting high-resolution monomers into low-resolution density maps
is to some extent complementary to the research we present in Part iii, i.e. the as-
sembly of macromolecular oligomeric assemblies from pairwise dockings between
protein monomers: for example, the complexes obtained with our approach can be
post-scored against such density maps using established quality-of-fit measures ap-
plied in the above fitting procedures. Furthermore, information about binding modes
in the assembly can for example be deduced from density maps and in turn be used
to generate pairwise docking poses which can be used in the assembly process.

On the other hand, our approach does not rely on the availability of such density
maps but can use a manifold of different data sources to derive pairwise docking
poses (see Section 3.5 and Chapter 8) and can thus even be applied in cases where
either the fitting procedure fails or low-resolution density maps are not available.
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3.2 protein structure classification

To determine structural relationships and potential common ancestors, a classification
of protein structures is often useful. For example, a rule of thumb states that protein
function is conserved between proteins with a sequence identity of about 30%–40% or
more [146]. However, finer classification schemes are often required. In the following,
we address the two widely used classification schemes SCOP [147] and CATH [148],
and subsequently shortly discuss further approaches of classification.

3.2.1 SCOP

SCOP (Structural Classification of Proteins) is a widely used classification scheme
among structural biologists [147]. The rationale behind this scheme is the grouping
of proteins according to their functional and evolutionary relatedness. It is mostly
manually curated and thus not as extensive w.r.t. the number of classified proteins
as other methods. However, the accuracy is generally considered to be higher than
that of (semi-)automated methods (see Subsection 3.2.3), because particularly distant
evolutionary relationships are difficult to resolve without expert knowledge.

The unit by which SCOP classifies proteins is that of a domain. As stated in Subsec-
tion 2.1.3, a unique definition of the term domain does not exist, and hence the SCOP
curators have their own notion of a domain, which they define as “an evolutionary
unit observed in nature either in isolation or in more than one context in multido-
main proteins” [43] and as “a region of the protein that has its own hydrophobic core
and has relatively little interaction with the rest of the protein, so that it is essentially
structurally independent” even though often evolutionary information must be taken
into account for a correct annotation [149]. In particular, the SCOP curators consider
most proteins, i.e., those with a small to medium number of residues (though no exact
value is given), to consist of a single domain, multiple domains are in general only
present in large proteins.

The hierarchical classification scheme of SCOP comprises a bottom-up clustering of
protein domains at the following levels of decreasing similarity: family, superfamily,
common fold and class. The first two primarily account for structural and evolution-
ary relationships, while the latter two solely consider structural similarity.

Proteins belong to the same family cluster if they are assumed to have a common
evolutionary origin, which is defined by the authors as having more than 30% se-
quence identity or, if they are known to perform the same function, a sequence simi-
larity between 15% and 30% sequence is sufficient [147]. If these criteria are not met,
proteins can still belong to the same superfamily cluster if their structural and func-
tional features indicate a distant common ancestor.

If two proteins are not assumed to share a common ancestor, but exhibit the same
secondary/supersecondary structure content and overall structural topology, they are
part of the same common fold cluster. Here, the structural similarity is assumed to be
due to a preference of certain packings and structural topologies of domains induced
by the physics and chemistry of proteins [147].

Two clusters on the common fold level can then be further grouped into the same
class, mostly depending on the secondary structure elements they are composed of:
i) all-α for domains consisting predominantly of α-helices, ii) all-β for those mainly
comprised of β-sheets, iii) α/β for domains with intermixed α-helices and β-sheets, iv)
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α+β for those with separated α-helices and β-sheets, and v) multi-domain containing
proteins without known homologues and a different fold. The classification scheme
at the class level is however somewhat illogical because, in addition to the aforemen-
tioned classes that are purely based on the secondary structure element content, the
class level also provides several classes based on different criteria: classes accounting
for more unusual proteins such as membrane and cell surface proteins, small proteins,
peptides, as well as theoretical models, nucleic acids, and carbohydrates.

It is worth noting that on November 29, 2013 a prototype for a new SCOP ver-
sion, termed SCOP2, became available [150]. The main improvement of SCOP2 is
that it essentially replaces the tree-like structure of previous SCOP versions by a di-
rected acyclic graph where each node represents a particular type of relationship, e.g.,
the evolutionary and structural relationships explained above. Each child node can
have more than one parent, hence, SCOP2 can account for more complex relation-
ships between proteins and domains than SCOP. In addition, it differentiates between
structural and functional classes and thus compensates the inconsistent classification
scheme of previous SCOP versions. However, the work in this thesis relies on the clas-
sification scheme as present in SCOP 1.75, hence, for more detailed information on
differences between SCOP and SCOP2, the interested reader is referred to Andreeva et
al. [150].

3.2.2 CATH

In contrast to SCOP, CATH (Class, Architecture, Topology, Homologous superfamily)
[148] is a semi-automated top-down structure classification method of protein do-
mains, relying mainly on automated techniques for classification and prediction, for
example CATHEDRAL [151] for the automated determination of folds and domains
from multi-domain protein structures, or Hidden-Markov-Models for the assignment
into superfamily classes [152], but it also incorporates expert knowledge on the Archi-
tecture level.

In CATHEDRAL, a domain is defined as an individual folding unit of evolution that
adopts a specific fold. However, automated domain (boundary) assignment is difficult,
because domains can considerably vary in their compactness and their separation
in protein structure and sequence. In particular, discontiguous domains where the
secondary structure content of the domain is distributed over several discontinuous,
discrete parts of the protein sequence [42] pose a hard challenge to fully automated
methods. Hence, in CATHEDRAL, domains of a query protein are detected iteratively
through structural comparison against the contents of a library of manually curated
domains in the CATH database.

The top level in the CATH classification hierarchy is the Class level (C-Level), where
domains are classified according to the secondary structure elements they contain,
i.e., Class 1 comprises domains consisting mostly of α-helices, Class 2 those that are
mainly composed of β-sheets, Class 3 encompasses domains that provide a signifi-
cant number of both α-helices and β-sheets, and Class 4 is reserved for domains that
contain a very small of amount of secondary structure.

Each of these four classes is then split into Architecture (A-Level) categories with
each category containing domains with similar three-dimensional arrangement of the
secondary structure elements within the domains, regardless of their connectivity.
The assignment of the domains to the individual architecture categories is done man-
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ually, taking into account the description of the overall structure in the literature (for
example barrel-like; compare Fig. 2.5d).

Each architecture category is then further partitioned into fold groups, also called
topologies (hence T-level), which in addition to the three-dimensional arrangement of
the secondary structure elements on the A-Level also account for their connectivity.

The bottom level is the H-Level where domains from a T-level category are sub-
divided into homologous superfamilies. Criteria for classification are structural, se-
quence and functional similarities. Further sub-categories at the H-level exist and
depend on the sequence similarity of the contained proteins, yielding families in four
different levels: S, O, L, I with all proteins in the same family having < 35%, < 60%,
< 95%, and 100% sequence identity, respectively.

Because of the semi-automated nature of CATH, it contains a considerably higher
number of domains than SCOP (173,000 domains from 51,334 PDB entries in CATH
vs. 110,800 domains from 38,221 PDB entries in SCOP v1.75) and 1313 vs. 1195 folds
(though fold classification entails more subjective criteria, and is thus less meaningful)
[148]. However, because the SCOP entries are all manually curated, the SCOP database
is believed to be more accurate.

Often, differences between SCOP and CATH are due to the philosophy behind
the expert-based domain assignment. The alleviation of these differences to some
extent is one of the aims of the Genome3D consortium, which was brought to life in
January 2013 [153]. It consists, amongst others, of experts from both the CATH and
SCOP groups which aim at a more accurate and unified classification of superfamilies
as well as providing information on the philosophy behind alternative groupings of
related proteins. To this end, Genome3D provides a mapping between SCOP and
CATH entries which is approved by curators from both groups.

3.2.3 Other Structure Classification Methods

Besides the previously presented classification approaches SCOP (manually curated)
and CATH (semi-automated), several fully automated methods exist. One of them,
SUPERFAMILY [154] is strongly relying on the corresponding SCOP superfamily
classification. Given such a SCOP superfamily classification, Hidden Markov Mod-
els (HMM) [155] are learned via an automated post-processing step from multiple
sequence alignments of the SCOP superfamilies. Using these HMMs, the superfam-
ily of a given query protein sequence can the be predicted automatically. Following
SCOP releases, the latest release is SUPERFAMILY 1.75 [154].

The second method is called FSSP (Family of Structurally Similar Proteins) [156]
and contains a collection of fully automated annotations and classifications of struc-
turally superimposed proteins into more than 330 families, each with a representative
protein chain. However, the FSSP service retired in 2014, while SUPERFAMILY is still
under active development.

3.3 protein-small molecule and protein-protein docking

In Section 2.2, we have pointed out that the functionality of most proteins is associ-
ated with interactions with small biochemical compounds, proteins or other biolog-
ical macromolecules such as DNA and RNA. However, experimental determination
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of such interactions is not always possible or too time-consuming, for example in the
process of drug screening, an approach to find novel active compounds (hit structures)
for a given protein target in the process of drug development.

In such cases, one aims at a computational prediction of possible interactions and
the strength of their binding. Computational methods capable of such predictions
are called docking methods. The molecules to be docked are generally named ligand
and receptor. The ligand denotes the structure which is kept mobile during docking
while the receptor, a protein to which the ligand is docked, is typically kept fixed.
In protein-small molecule docking, the ligand is a small chemical, often drug-like
compound while in protein-protein docking, the ligand refers to another protein (or
peptide).

Docking methods typically consist of two essential steps: A sampling phase and a
scoring phase. In the sampling phase, the orientation of the ligand w.r.t. to the receptor
(and depending on the approach also the ligand and possibly receptor conformation)
is probed, leading to a set of receptor-ligand complex candidates, so-called poses. In
the scoring phase, the quality of these poses is then assessed w.r.t. the strength of their
interactions. This is typically done by estimating the binding free energy (equations
2.1 and 2.2) by the means of a scoring function [157].

Even for rigid docking methods, where no conformational changes are introduced,
sampling and scoring can become computationally very intensive. However, confor-
mational changes are often required because neither ligand nor receptor typically have
the same conformation in the bound (holo) and unbound (apo) state. The amount of
protein flexibility that needs to be modeled depends on the situation: in the simplest
case, the protein is known to be rigid or the used holo conformation (obtained for
example from a protein structure database such as the PDB, see Section 3.5.1) can be
assumed to be similar to that with the ligand in question bound. This is often the case
in drug screening experiments, where large libraries of biochemical compounds are
searched for structures that are similar to a reference ligand with known protein holo
conformation. However, if no appropriate holo structure is available or if one strives to
determine compounds with new binding modes, protein side chain or even backbone
flexibility has to be taken into account. This problem is even more imminent in the
protein-protein docking case where the number of degrees of freedom can become
much greater, depending on the allowed degree of flexibility in both binding part-
ners, and differential binding affinities are smaller, especially given the fact that often
proteins are known to interact but the structure and topology of the protein-protein
complex is not known.

Hence, to avoid extensive sampling of unfavorable regions in the solution space and
thus improve the computational efficiency, the scoring is in general already performed
in the sampling stage to guide the sampling towards favorable receptor-ligand inter-
actions. To this end, the score of each pose must be quickly computable, which often
restrains the scoring function to comparatively simple sums of terms that approxi-
mate the true interaction energies more or less well. Consequently, the poor power of
discriminating near-native poses from decoys (incorrect poses) as well as the accuracy
in estimating the free binding energy, is still a major problem of scoring functions
[158, 159, 160]: while algorithms are very often able to sample a near-native pose, an
inaccurate scoring in the presence of a large number of decoys often leads to a bad
ranking of near-native poses.
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In particular, one typically distinguishes between three types of scoring functions
(comprehensive lists of scoring functions and their respective type can for example be
found in [161, 162]): force-field based, empirical, and knowledge-based scoring func-
tions. Force-field based functions employ a physics-based approach using molecular
mechanics force fields such as CHARMM [25]. They typically include several terms
for covalent and non-covalent interactions. Covalent forces comprise terms for devi-
ations in bond lengths, bond angles, and torsional angles, the non-covalent forces a
Lennard-Jones potential accounting for attractive and repulsive forces between pairs
of uncharged atoms as well as a Coulomb term for attractive forces between pairs of
charged atoms. In general, entropic effects have to be considered as well, but are often
neglected because they are difficult to model. In comparison, knowledge-based and
empirical scoring functions often employ simpler terms. Knowledge-based scoring
functions rely on the concept of classical statistical physics, i.e., that the distribution
of the interaction geometries (for example atomic distance) between pairs of atom
types in a given data set, e.g. the protein-ligand or protein-protein complexes in the
Protein Data Bank (see Section 3.5.1) or a set of drugs known to bind to a biological
target, can be used to derive pairwise potential functions that reflect the observed
interaction geometry distributions for any pair of atom types present in the data set.
Using these pairwise potential functions, the score then corresponds to the sum of
the contributions of all pairs of atoms a, b between receptor and ligand determined
by the respective pairwise potential for the atom types and the observed interaction
geometry of a and b. In contrast, empirical scoring functions mainly consist of addi-
tive terms that reflect physical effects known to contribute to the binding affinity. The
contribution of each term to the docking score is scalable by an individual parameter.
The individual scoring functions differ in their parametrization and the modeling of
the physical effects but typically include terms accounting for hydrogen bonds, polar
interactions, hydrophobic and steric effects as well as the loss of translational, rota-
tional, and torsional degrees of freedom. Furthermore, two additional types of scoring
functions are worth mentioning in this context: mixed scoring functions incorporat-
ing terms from several of the above classes as well as the so-called consensus scoring
functions which calculate the score of a docking pose from the weighted contribution
of the scores obtained from several other scoring functions [161, 162].

Many different docking approaches exist, both in terms of the underlying algorithm
as well as the type and parametrization of the scoring function. Each of them has its
own field of application where it performs well and others where its suitability is
questionable. Many studies trying to compare different docking methods have been
performed, however there exists no algorithm that is clearly superior to the others
[163, 164, 165, 166, 167, 168]. In the following, we present some popular protein-small
molecule and protein-protein docking approaches of different complexity that are
used throughout this work, further relevant and widely used docking algorithms are
shortly addressed in Chapter 4. Subsequently, we present some approaches related to
this thesis that algorithmically assemble macromolecular oligomeric assemblies.

3.3.1 FlexX/FlexE

FlexX [31] and FlexE [169] are two docking tools used for protein-small molecule
docking. The difference between those two is that FlexX keeps the protein absolutely
rigid while FlexE is an extension that can additionally handle protein flexibility. How-
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ever, it is not capable of introducing that flexibility on its own but rather relies on an
externally provided ensemble of different superimposed protein conformations into
which the ligand can be docked. The conformational space is hereby mainly restricted
to different side-chain orientations but small conformational changes in the backbone
are also tolerated.

Both methods implement an iterative so-called incremental construction algorithm:
in the preparation phase, the ligand in question is first cut at rotatable bonds into
rigid or almost rigid fragments to break down the conformational space that has
to be handled. From this set of fragments, a so-called base fragment is determined,
which ideally is large, almost rigid and provides many hydrogen bonds. Each ligand
atom is assigned an interaction geometry, fragments containing rings are optimized
with CORINA [170]. Analogously, interaction geometries are assigned to the proteins.

In the first iteration of the incremental construction, each of a small number of
selected base fragments is placed into the binding pocket at positions that maximize
the complementarity of interaction geometries and thus the score between protein
and ligand. Different scoring functions are available, by default, F-score [31] which
is based on Böhm’s empirical scoring function LUDI [171, 172] is used. It comprises
terms for electrostatic interactions (ionic interactions and hydrogen bonds) as well as
entropic, aromatic and hydrophobic effects.

In each of the following iterations, the candidate poses are each extended by another
fragment (under the condition that the original covalent bond to the already placed
fragment is restored, using appropriate torsion angles from the MIMUBA database
[173]) such that additional favorable interactions are established.

Because many solutions obtained in a particular iteration can be expected to be
similar, geometric hashing is applied to find these solutions and reduce and diversify
the space of candidates, from which only the k best-scoring ones are kept for the next
iteration (known as k-greedy scheme).

In FlexE, the principle of ligand fragmentation is also applied to the protein:
residues corresponding to conformationally different parts of the binding pocket are
cut into fragments at peptide and backbone-side chain bonds. From these fragments
a unified protein description is derived. Upon incremental construction, an appropri-
ate protein conformation for each ligand candidate fragment is determined using a
self-consistent mean field (SCMF) approach.

3.3.2 GOLD

GOLD (Genetic Optimisation for Ligand Docking) [174] employs a genetic algorithm
(GA) for protein-small molecule docking with protein and ligand flexibility. In genetic
algorithms, the degrees of freedom of a specific problem to be optimized are encoded
in a special data structure, that in analogy to genetics is called chromosome. In GOLD,
these degrees of freedom correspond to the angles of rotatable bonds, separated into
two binary strings (chromosomes): one encoding the rotational angles of the protein,
the other of the ligand. Two additional integer strings are used that map possible
hydrogen donors in the ligand to acceptors in the protein and vice versa.

Initially, a population of candidates with random values for these features is cre-
ated and evaluated by a fitness function. This fitness function mimics the process of
evolutionary selection. To this end, GOLD first performs a least-square fitting of the
mapping of hydrogen bonds, i.e., the computation of an orientation of the ligand w.r.t.
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the protein that maximizes the number of hydrogen bonds w.r.t. to the torsional con-
figuration of protein and ligand. Subsequently, the energy of the hydrogen bonding
pattern, a complex energy term containing the steric interactions between both part-
ners and the internal energy of the ligand are calculated and comprise the total fitness
score. Besides this fitness function, called GoldScore, the current version of GOLD also
provides three additional scoring functions: ChemScore, ALP and CHEMPLP [174] as
well as the possibility to alter existing or implement new scoring functions.

Once the fitness score for all candidates has been evaluated, the fittest members of
the population are chosen to breed children. Children are generated according to the
so-called island model which assumes that there exist different sub-populations which
are locally optimized w.r.t. to the environmental conditions. In this model, three differ-
ent evolutionary operators are applied: cross-over, mutation and migration. Mutation
is the simplest one, altering one of the degrees of freedom of the parent. In cross-
over, two parents are chosen to exchange a certain fraction of their chromosome and
in migration a member of one sub-population is copied to another sub-population,
providing more diverse features which may prove beneficial upon cross-over in later
generations.

The generated children then replace the least fit members, if not already present in
the algorithm. This process it then iterated 100,000 times (by default) and the final set
of solutions is returned.

3.3.3 AutoDock

In its first version, the protein-small molecule docking algorithm AutoDock imple-
mented a Simulated Annealing (SA) [175] approach to solve the problem of protein-
ligand docking. Here, the sampling converges from a global search at high tempera-
tures, where large changes in the states of instances of an optimization problem are
allowed, to a local search in later iterations, where the magnitude of the transition
between two states is bounded by low temperatures.

While retaining the SA functionality, versions 3 and 4 now use a genetic algorithm
by default [176, 177]. The modus operandi of a GA has been described in the previous
section, introducing the docking program GOLD. In addition, AutoDock 4.2 features,
besides ligand flexibility, also the definition of a number of flexible residues of the
receptor [178].

However, contrary to GOLD, this genetic algorithm is enhanced by an adaptive
local search component, where individual members of the population are not only
generated by genetic operators, but are also allowed to locally optimize their features
on their own. Through learning from the outcome of previous optimization trials, the
local search adapts the step size of the minimization procedure according to whether
previous trials were successful or not.

Methods combining GA’s with local search (LS) heuristics are called Lamarckian
Genetic Algorithms (LGA) [179]. Because they overcome the rather coarse-grained
global sampling of conventional GA’s by the use of a computationally expensive local
optimization, they can be expected to increase docking accuracy. However, depending
on the complexity of the scoring function used for local optimization, this may result
in a increase in total computational time. Yet, on the other hand, directed optimization,
especially when performed on only a small fraction of the population (6% was found
to already be sufficient for AutoDock [176]), often helps to reduce the total number of
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generations required to find a plausible solution, and can thus also often reduce the
total running time of the algorithm.

To restrict the torsional space to be sampled during optimization to reasonable areas
and to allow for an easy switch between GA and LS, the torsional degrees of freedom
are real-valued as compared to the binary strings employed in GOLD. In addition,
translational and rotational degrees of freedom are encoded in the chromosomes.

Further differences to GOLD are that AutoDock does not consider island popula-
tions, i.e., there is no migration operator. However, cross-over and mutation are used
consecutively, i.e., a child is generated first by cross-over of the chromosomes of two
parents and then mutated w.r.t. to translational, orientational and torsional degrees
of freedom at random according to a Cauchy distribution. A user-defined number of
children can then be optimized using LS. The children then replace the parents in the
new iteration as compared to GOLD where the parents are kept if their fitness score
permits it.

AutoDock uses a more sophisticated and computationally expensive scoring func-
tion than GOLD which implements energy terms for hydrophobic and repulsive (van
der Waals) forces, hydrogen bonds, electrostatic, torsional and solvent effects. To re-
duce the amount of computation time required, AutoDock relies on a predefined grid
where for each lattice point, the corresponding energy terms for all pairs of atom
types are precalculated.

3.3.4 RosettaDock

RosettaDock [180, 181] is a more versatile docking tool than the previously introduced
algorithms in the sense that it is mainly designed for the purpose of protein-protein
docking, but like the previously presented algorithms can also perform protein-ligand
docking. RosettaDock employs a Monte-Carlo (MC) based sampling approach per-
forming rigid-body pertubations of the receptor-ligand complex configuration. The
rationale behind this method is that biophysically relevant encounters between recep-
tor and ligand should occur more often than random contacts.

The algorithm consists of two stages which are iteratively repeated and can be
individually switched on or off. The first stage is a low-resolution stage that represents
the protein side chains by pseudo-atoms called centroids. In the second stage, a full-
atom optimization is employed that also allows for side-chain flexibility.

During the low-resolution stage, 500 sampling steps (by default) altering rotational
and translational degrees of freedom according to a Gaussian distribution are per-
formed. Complex scores are computed using four terms: a contact term, a term for
steric clashes, as well as two terms derived from Bayesian statistics estimating the
plausibility of each candidate pose: a residue-residue specific energy term as well as a
term accounting for the residue environment. The lowest-energy conformation in this
stage is then taken and optimized in the second stage.

Here, the side-chain centroids used in the low-resolution stage are first replaced
by the all-atom side-chain conformations from the unbound state of the binding part-
ners. Subsequently, the position of the second binding partner is slightly perturbed
according to a Gaussian distribution and minimized. Finally, side-chain optimization
is performed by rotamer trials w.r.t. the Metropolis criterion [182] which forces the
algorithm to sample low-energy conformations more efficiently and thus leads to a
faster convergence of the optimization algorithm.
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In the second stage, a high-resolution all-atom scoring function is used. The com-
puted terms account for Van der Waals effects, solvation, hydrogen bonding, electro-
statics, side-chain conformation energy, and pairwise residue-residue interactions.

RosettaDock is capable of both local and global docking, i.e., a perturbation around
a predefined input dimer configuration or a sampling of the full orientational space
of receptor-ligand complexes. However, global docking is only recommendable when
protein and ligand have less than approximately 450 residues in total [183].

3.3.5 CombDock

CombDock [184, 185] is a combinatorial algorithm for assembling macromolecular
homo- and hetero-oligomeric assemblies from all-vs-all pairwise dockings. The algo-
rithm consists of three separate stages.

In the first stage, dockings between all pairs of proteins are performed. In particu-
lar, if the complex consists of N components, the number of pairwise dockings to be
performed amounts to N(N − 1)/2. This is also done for homo-multimers, where all
components are identical and in principle only one pairwise docking would have to
be carried out. The used docking algorithm performs a global docking relying primar-
ily on geometric shape matching. First, for each protein, a molecular grid and surface
representation is created, and local features of the protein surface are determined. Sub-
sequently, the binding partners are matched w.r.t. a maximization of complementarity
of these local features. Finally, the solutions are clustered and scored w.r.t. shape com-
plementarity. The underlying algorithm combines two different methods [186, 187]
and follows a similar principle as PatchDock [188, 189].

From each of the pairwise dockings the K best-scoring solutions (100 by default),
represented as transformations, are retained and used during combinatorial assembly.
The combinatorial assembly is then treated as graph theory problem: Each protein in
the complex is represented by a node, and each of the retained solutions forms an
edge between the corresponding vertices, weighted by the score of the solution, yield-
ing a complete multi-graph with K edges between any pair of proteins. Each subset of
N − 1 edges such that all nodes are connected, i.e., a spanning tree, forms a potential
complex. However, two restrictions have to be considered: first, edges may be in-
compatible in that sense that the corresponding transformations induce steric clashes
when applied to the corresponding proteins. Second, spanning-trees built from trans-
formations with a good score are considered to be more realistic. Hence a clash-free
minimum spanning-tree (MST) is required.

An exhaustive search for the MST is NP-complete, hence spanning-trees are created
hierarchically and selected by a greedy approach. Initially, each vertex forms a sepa-
rate tree, and in each subsequent iteration two trees are joined via an edge and kept,
if no significant steric clashes are produced. Since the search space is still very large,
only a parameter-controlled subspace is searched.

The final scoring is performed using a function accounting for geometrical and
chemical compatibility (non-polar buried surface area). Solutions are then ranked and
clustered to remove redundancy.
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3.3.6 HADDOCK

HADDOCK (High Ambiguity-Driven DOCKing) [190, 191] is a multi-body docking
program that can assemble complexes with up to six monomers. The docking process
can be efficiently guided by constraints derived from data obtained by experimental
or bioinformatics methods. It relies on the assumption that the protein complexes to
be assembled exhibit a symmetry, where arbitrary combinations of two-, three-, and
five-fold cyclic symmetries are supported.

Based on the supplied interaction data, active residues are defined as those residues
taking part in an interaction, passive residues are the solvent-accessible ones around
the active ones. In addition, for interacting residues, ambiguous interaction restraints
(AIR) are generated, demanding that the corresponding residues should be close in
the resulting complex. From these, an AIR network is generated.

The three-stage docking protocol of HADDOCK is as follows: the first stage consists
of a rigid-body energy minimization of the molecules to be docked, the second stage
performs a refinement of the conformation of the contacting residues expressed as tor-
sional angles, and the last stage comprises a flexible refinement in explicit solvent. The
scoring function employed during this protocol contains van der Waals, electrostatic,
desolvation, buried surface area as well as AIR and symmetry violation terms.

Finally, a clustering based on an RMSD [192] cutoff of 7.5Å and a final scoring and
ranking based on the average score of each cluster is performed.

3.3.7 ClusPro Multimer Docking

This N-mer assembly algorithm developed by Comeau et al. [193] generates symmetric
complexes of homo-oligomeric assemblies of up to six units. Though it does not re-
quire any input parameters, it nevertheless assumes that the assembled complex will
exhibit a certain kind of symmetry. Consequently, all possible symmetries are tried
during the assembly.

The algorithm requires a single monomeric structure and follows a six-stage pro-
tocol consisting of the following steps: first, in excess of 20, 000 poses between two
identical instances of the monomer are generated using the DOT docking program
[194], employing a global docking, i.e., an unrestricted sampling of the full rotational
and translational space of the ligand molecule around the receptor. From these, the
top 500 solutions w.r.t. desolvation energy and the first 1,500 w.r.t. electrostatic in-
teraction energy (using the scoring function implemented in ClusPro [195, 196]) are
kept. In step three, depending on the number N of monomers in the complex, all
possible symmetries are then tried via translational and rotational search along the
corresponding symmetry axes. The total score of each solution corresponds to the
sum of scores of the corresponding dimer interactions. Fourth, a clustering is applied
according to a 5Å Cα RMSD [192]. Each cluster is then assigned the maximum score
over all solutions contained therein. Finally, from each cluster the solution showing
the best overall symmetry is retained.

The obtained solutions are then minimized with CHARMM [25] for 300 steps and
returned.
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3.4 modeling of protein flexibility and protein complexes

The structural modeling of proteins is an important area of research relevant for drug
design and prediction of protein-protein interactions. Several approaches exist, among
them de novo methods that do not require any structural information but instead try
to predict the protein structure from the amino-acid sequence alone. Though success-
ful applications have been rare for many years, this field has recently received new
attention through co-evolution based methods that use statistical approaches to de-
tect significantly co-mutated residues from a large batch of homologous sequences
[197, 198, 199, 200]. These co-mutated residues can then be employed to derive dis-
tance constraints which can be used to guide the protein folding process.

The other end of the spectrum is marked by homology modeling methods, for ex-
ample the widely used MODELLER [201, 202]. Homology modeling relies on the
availability of sequence and structural data of closely related, homologous, protein
structures, so-called templates, to model an unknown target structure. The assump-
tion is that, for proteins with the same or a similar function, the overall protein con-
formation should not be altered significantly, despite the introduction of, e.g., point-
mutations. This assumption is for example justified by the structural classification
schemes described in Section 3.2, where structurally and functionally related struc-
tures are classified into the same domain category despite potential differences in the
amino-acid sequences.

However, structural modeling of proteins is not only required for proteins of un-
known structure or with differences in amino-acid sequence. The docking methods
presented in the previous section already demonstrate that structural changes, es-
pecially conformational adaptions, have to be considered when predicting binding
modes between proteins and ligands or other proteins. Another field where confor-
mational changes are important is the study of protein dynamics. For example, tra-
jectories (the movements of one or several objects or atoms trough space over time)
obtained from molecular dynamics (MD) simulations [203] may reveal detailed in-
sights of the whole binding process that can not be derived from the snapshot that
is given by a docking result. However, all-atom MD simulations of a whole protein,
due to their implementation of Newton’s laws of motion, often require several days,
and are hence mostly inapplicable in docking studies, especially in a high-throughput
scenario.

A method suitable for modeling whole-protein dynamics is the so-called normal
mode analysis. This method is capable of determining the collective, energetically fa-
vorable, motions of a given protein conformation w.r.t. an underlying potential energy.
The applicability of normal mode analysis in the context of protein-small molecule
docking is in the focus of the study presented in Part ii and will hence be discussed
there in detail.

In this section, we describe two backbone-dependent methods used throughout this
thesis to predict side-chain rotamers in protein-small molecule and protein-protein
docking.

3.4.1 SCWRL

SCWRL (Side-Chains With a Rotamer Library) [204] is probably the most prominent
approach to model protein side-chain conformations. Existing side chains can also be
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replaced by different amino acids, making this tool suitable for homology modeling
purposes.

SCWRL relies on Dunbrack’s popular backbone-dependent rotamer library (BBDep
[205], for example also used in RosettaDock, see 3.3.4) which contains a small number
of different side-chain conformations per amino acid. These side-chain conformations
are associated with specific backbone-conformations for which they are energetically
favorable.

Initially, a protein model is created from the input coordinates by assigning the
BBDEP rotamers, furthermore the self-energies of each rotamer and pairwise energies
of rotamer pairs are calculated. Both energy terms comprise hydrogen bonding as well
as attractive and repulsive vdW terms; the self-energy term in addition accounts for
the rotamer probabilities of the respective side chain w.r.t. to the residue’s backbone
conformation. Subsequently, high-energy rotamers are removed, disulfide bonds are
determined and an interaction graph of the residues in the model is constructed (each
residue is represented by a vertex, an edge between two vertices is added if at least
one pair of rotamers, one from each corresponding residue, has a non-zero interaction
energy).

The determination of the optimal side-chain conformations starts with two prepro-
cessing steps: first, edges whose interaction energy deviates less than a predefined
threshold from the sum of the interactions of the residues connected by that edge
are removed and the self-interactions of the corresponding residues are adjusted ac-
cordingly. Furthermore, a dead-end elimination (DEE) algorithm using Goldstein’s
criterion [206] to efficiently reject rotamers that cannot be contained in the globally
optimal solution is applied. The steps are iteratively repeated until no further removal
is possible.

From the remaining rotamers, a graph is constructed to divide the side-chain op-
timization problem into independent sub-problems. First, the disconnected compo-
nents (called clusters) are determined, subsequently the optimal side-chain conforma-
tions in each cluster are determined via tree decomposition (adapted from Xu [207])
and dynamic programming.

Finally, the globally optimal side chains from all independent sub-problems are
collected and the global minimum energy conformation (GMEC) is returned.

3.4.2 IRECS

IRECS (Iterative REstriction of Conformational Space) [208] is an alternative method
relying on simulated annealing to predict side-chain conformations of a protein struc-
ture. Its advantage over SCWRL lies in the fact that it is also able to generate structures
with ensembles of side-chain rotamers, a feature especially useful in docking applica-
tions. This can be achieved by specifying a so-called rotamer density, i.e., an average
number of rotamers per residue.

In a first step, IRECS discards all side-chain conformations present in the given
input protein structure and rebuilds them from the standard parameters for bond
lengths and angles as defined in the CHARMM force field [25, 209]. The correspond-
ing side-chain rotamers for each residue are then sampled w.r.t. to the BBDEP. Initially,
each rotamer receives a uniformly distributed probability that describes the influence
of this rotamer on the other rotamers in the ensemble. In addition, effective energies
are assigned to each rotamer taking into account all interactions of the rotamer with
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all other rotamers in the ensemble, weighted by the probability of the respective ro-
tamer.

In each iteration, IRECS determines the side chain with the largest range of effective
energies according to the ROTA scoring function [210] and removes the rotamer with
the worst energy. Subsequently the probabilities of the rotamers of this side chain as
well as the effective energies are updated. Hence, the number of active rotamers is
iteratively reduced.

If no more rotamers can be removed, either because there is no side chain with
more than one rotamer left or because the target rotamer density has been reached,
the algorithm stops and generates a pdb file with the structural ensemble.

3.5 protein structure and interaction databases

In the previous sections we have seen how structural information on proteins and
other molecules can be obtained from experiments or computational modeling. Many
different databases exist that store and provide information and data on protein struc-
tures, conformational ensembles and/or interactions between them. In the following,
we present a selection of databases that are either used as data source in this thesis or
are otherwise related to the work therein.

3.5.1 Protein Data Bank

The major source of protein structural data is the Protein Data Bank (PDB) [211] whose
origin dates back to the 1970’s [212]. According to the holdings report of July 24, 2014

[213] it contained a total of 101,948 searchable structural entries, 94,415 (92.61%) of
which are proteins. Of these, 84,441 were determined using X-ray crystallography
(see Subsection 3.1.1), 9,262 by NMR spectroscopy (see Subsection 3.1.2) and 565 by
electron microscopy, 61 by hybrid and 86 using other methods (see Subsection 3.1.3).

Table 3.1 contains an excerpt of the content report generated on July 24, 2014 [214]
that reveals the rapid growth of the database over the last 10 years.

Y 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 (2014)

A 5176 5355 6464 7194 6936 7362 7878 8039 8905 9607 (5439)

T 28769 34124 40588 47782 54718 62080 69958 77997 86902 96509 (101948)

Table 3.1: Content growth of the PDB over the last 10 years, showing the (Y)ear, the yearly
(A)dded and the (T)otal number of structures. This table was generated on July 24, 2014,
hence, values for 2014 are preliminary and thus written in brackets.

Besides the actual structures, the Protein Data Bank also provides a comprehen-
sive tool set to find homologous proteins, visualize protein secondary structure on a
sequence level, related literature and many more.

3.5.2 3D Complex

3D complex [83] is a database that contains topological information on protein com-
plexes from the PDB. The information comprises contact information, as well as
sequence and structural similarity measurements with the protein complexes rep-
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resented as graph structures that describe the interactions between the individual
components of the complex.

Polypeptide chains are represented as nodes, and interactions by edges. The nodes
provide additional features: color and shape, with identical chains exhibiting the same
color and shape, while homologous chains are differently colored but have the same
shape.

The complexes are classified hierarchically according to their quaternary structure
topology. The hierarchy contains 12 levels of increasingly strict definitions of similarity
according to the following criteria: 1) the complex topology in terms of the number of
components and their interactions, 2) the SCOP domain architecture (see Subsection
3.2.1) of each component, 3) the number of different chains per architecture, 4) amino
acid sequence similarities of the components to other complexes, and 5) complex
symmetry. The fourth criterion is further subdivided into sequence similarities from
20% to 100%, in steps of 10%.

The current version 2.0 features the SCOP hierarchy v1.73 (the follow-up version
v1.75 has been available since June, 2009), indicating that the database is somewhat
outdated both w.r.t. to the contained structures as well as the structural classification
of the available complexes. As of July 24, 2014, the hierarchy contains the following
number of entries at each level [215]:

Level QS Topologies QS Families QS QS30 QS70 QS100 All

Hierarchy 1 200 3785 3849 6441 9173 15270 30001

Hierarchy 2 191 3473 3530 5852 8328 14112 28266

Table 3.2: Number of entries contained in different hierarchy levels of the 3D complex
database. Hierarchy 2 disregards all structures that are assigned errors by the manually cu-
rated PiQSi [216] database.

3.5.3 Database of Macromolecular Motions

The Database of Macromolecular Motions [217] tries to classify conformational
changes of protein domains. Given two conformations of a protein structure, molec-
ular modeling techniques are applied to interpolate between those conformations.
However, the database is of limited use, because the set of proteins for which confor-
mational changes are available is rather small and in addition depends on the used
input conformations. Hence, the covered conformational space is restricted to the con-
formational difference between both proteins.

3.5.4 Interactome 3D

Interactome 3D [218] provides structural pairwise protein-protein interaction data,
both experimentally determined and modeled, on a network basis. The database pro-
vides different services such as interaction annotation, interaction browsing in protein-
protein interaction networks as well as visualization and download of structural in-
formation of interactions.
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3.5.5 STRING Database

Similarly, the STRING database [219] provides information on physical as well as
functional annotations of proteins, obtained from genomic context, high-throughput
screening, and conserved coexpression experiments as well as from literature, to-
gether with a confidence score. As such, both STRING and Interactome 3D might
provide a useful starting point to obtain binary interface information for the assembly
of oligomeric assemblies from pairwise dockings.

3.6 methods of evaluating the accuracy of structural models

This thesis focuses on the structural modeling of binary protein-ligand complexes
and oligomeric protein assemblies. The accuracy of the obtained models is performed
using the methods presented in this section.

3.6.1 Root-Mean-Square-Deviation

A standard measure for the difference between two protein structures, small
molecules, or generally speaking a mapping of two vectors of Cartesian points
S = (S1, S2, ..., Sn) and T = (T1, T2, ..., Tn), each of cardinality n, is the so-called root-
mean-square-deviation (RMSD), which is defined as follows [192]:

RMSD(S, T) =

√
1
n

n

∑
i=1

d(Si, Ti)2 (3.1)

with d representing the Euclidean distance between two vectors Si and Ti. In three
dimensions, we have:

d(s, t) =
√
(sx − tx)2 + (sy − ty)2 + (sz − tz)2 (3.2)

Typically, S and T comprise the heavy atoms of the structures to compare, but
can, depending on the purpose only contain protein backbone atoms or, even more
coarse-grained, only the Cα atoms of the structure.

When developing computational methods to predict protein-small molecule or
protein-protein interactions, the RMSD is typically used to compare a computed with
a given reference structure. In general, the lower the RMSD of the prediction to the
reference, the more accurate the prediction is considered to be. However, sometimes,
the restriction of the RMSD to a selected subset of point pairs is more meaningful
than that between the whole structures. For example, the quality of the structural
alignment and the RMSD between structures with different loop conformations may
improve when the points belonging to the loop are excluded. On the other hand, ex-
cluding too many atoms may diminish the informative value of the obtained RMSD.
Hence, a tradeoff between RMSD and alignment coverage must be found in such
cases.
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3.6.2 Interaction RMSD

The aforementioned standard RMSD provides a simple measure of the deviation be-
tween arbitrary coordinate sets involving rotational, translational, as well as confor-
mational changes.

However, sometimes, for example when comparing or classifying interfaces be-
tween distant homologous proteins, the interest lies in the overall structural similarity
of the interfaces and not in the local conformational differences between the individ-
ual homologous dimers.

To this end, Aloy et al. derived the interaction RMSD (iRMSD) measure [220]. Here,
each monomer is represented by a set of seven standard points: the protein’s centroid
and six additional points which correspond to displacements by ±5Å in the direction
of x-, y-, and z-axes through the monomer centroid.

The iRMSD between two dimers P1–Q1 and P2–Q2 is computed as follows: first, the
structurally similar proteins P1 and P2 as well as Q1 and Q2 are optimally superim-
posed to remove the impact of the proteins’ different coordinate frames. Subsequently,
the seven standard points for each protein are calculated. Consequently, each dimer
consists of 14 standard points, seven for each protein, in the same orientation as the
corresponding protein.

The interaction RMSD between the two dimers in standard point representation
PS

1 –QS
1 and PS

2 –QS
2 is then computed using Equation 3.1 as RMSD(PS

1 –QS
1 , PS

2 –QS
2).

Based on iRMSD, we develop a measure called topology RMSD which is described
in Subsection 11.2.9 and can be used to compare the topology of protein complexes.

3.7 statistical methods of assessing the quality of a prediction

model

In this section, we shortly introduce the measures and methods that are used for the
scientific evaluation of the studies carried out in this thesis. For detailed information
on the theoretical background of such methods as well as the field of statistical learn-
ing, the reader is referred to [221] which also provides the basis for the following
sections.

3.7.1 Cross-Validation

When developing predictive methods in a supervised learning scenario [221], the
methods learn (are trained) from known data, represented by a set of N observations
X = (X1, ..., XN) and corresponding outcomes Y = (Y1, ..., YN), where each observa-
tion Xi = (X1i, ..., Xpi) is described by a set of p features. The aim of such methods is
to generalize the learned knowledge to unseen data by learning an estimator function
f̂ that predicts Yi given Xi. These methods typically require, besides the input fea-
tures, external parameters, e.g., to select the properties of f̂ (also called model) that
minimizes the training error, which is given as:

err =
1
N

L(Y, f̂ (X)) =
1
N

N

∑
i=1

L(Yi, f̂ (Xi)) (3.3)



3.7 statistical methods of assessing the quality of a prediction model 49

where Yi is the true outcome for the i-th observation, f̂ (Xi) is the corresponding
predicted outcome according to a feature vector Xi and an estimator f̂ learned from
the set of observations X. L is the so-called loss function which measures the error
between true outcome and prediction. Depending on the underlying data, several
choices for this loss function are possible, for example the Euclidean distance (cmp.
Eq. 3.2) or RMSD (cmp. Eq. 3.1).

Once such an estimator f̂ has been trained, the following problem arises: a realistic
assessment of the model quality. Obviously, it is a bad idea to use the training error
as a measure of accuracy, because it is always possible to achieve a perfect fit: if the
feature space is large enough, i.e., p ≥ N, the model can fit each observation indepen-
dently and thus correctly predict the whole training set. However, when predicting
unseen data X′ with known outcome Y′, such models can be expected to perform
poorly, i.e., they have a high expected prediction error, given as:

Err = E[L(Y′, f̂ (X′))] (3.4)

This effect is called over-training, a situation that should be avoided. However, one
often encounters data-scarce situations, where an additional set on which the predic-
tion accuracy can be evaluated is not available. For such settings, methods of sample
re-use exist, one of them being the so called cross-validation [221].

Here, the available data is first randomly split into K folds X1, ..., XK and corre-
sponding outcomes Y1, ..., YK. Each of of the K folds is then predicted in turn, the k-th
fold by a model f̂−k trained on the remaining k− 1 folds. The cross-validation error
is then given as:

CV =
1
K

K

∑
k=1

L(Yk, f̂−k(Xk)) (3.5)

A question that often arises is how many folds should be used. For K = N, i.e.,
when each fold consists of a single observation, we speak of leave-one cross-validation
(LOOCV). However, such an approach often introduces an artificially low cross-
validation error. For smaller K and thus smaller training sets, the cross-validation
error is considered to be more realistic and often 5-fold or 10-fold cross-validation
runs are assumed to be good choices [221].

3.7.2 Receiver Operator Characteristic (ROC) Curve

The receiver operator characteristic (ROC) curve can be used to demonstrate the dis-
criminative power of a prediction method on a set X of N observations given a binary
ground truth label yi for each element xi ∈ X [221]. To this end, the true positive
rate (TPR) is plotted against the false positive rate (FPR) for a varying discrimina-
tion threshold. In a ranked scenario, as for example in docking scenarios where the
generated poses are typically ranked according to the score obtained from a scoring
function, this threshold typically corresponds to the best n solutions for varying n.

Let Y = (y1, y2, ..., yN) be a vector of ground truth labels that correspond to the
sorted best N elements of X starting with the best element. Then, the number of true
positives TPn for the first n solutions (where n is a selectable threshold) is given as:

TPn =
n

∑
i=1

yi (3.6)
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Analogously, the false positives FPn, the number of wrong solutions among the first
n predictions, are given by:

FPn =
n

∑
i=1

1− yi (3.7)

The true negatives TNn comprise the wrong solutions that are beyond rank n and
hence correctly rejected:

TNn =
N

∑
i=n+1

1− yi (3.8)

Analogously, false negatives FNn are correct solutions which are not considered
because they are beyond rank n:

FNn =
N

∑
i=n+1

yi (3.9)

From these values, the true positive and false positive rates for the first n solutions,
TPRn and FPRn respectively, can be calculated:

TPRn =
TPn

TPn + FNn
(3.10)

and

FPRn =
FPn

FPn + TNn
(3.11)

The corresponding values TPRn can then be plotted against FPRn.

3.7.3 Area Under the ROC Curve (ROC AUC)

While a ROC curve provides a graphical interpretation of the discriminative power of
a prediction method or model, one is often interested in a single value reflecting the
general behavior of the curve. This is possible by computing the area under the ROC
curve w.r.t. to set of N ROC points {(x1, y1), ..., (xN , yN)}, sorted by increasing FPR,
through linear interpolation between subsequent points:

AUC =
1
2

N−1

∑
i=1

(xi+1 − xi)(yi+1 − yi) (3.12)

If FPRN = 0, i.e., all solutions are correct, the AUC is set to 1. Analogously, if
TPRN = 0, AUC is set to 0.
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4
I N T R O D U C T I O N

The molecular basis of diseases resides in processes pertaining to the function and in-
teraction of proteins and other biological macromolecules. The aim of computer-aided
drug design is to develop drugs that influence the activity of these molecules and
lessen or neutralize the effects of functional disorders. Such drugs can, for example,
stimulate signal-transduction pathways, inhibit a protein’s catalytic function, modu-
late protein-protein interactions, or change the rate at which a gene is transcribed
[222, 223, 224, 225].

However, the accurate and fast prediction of promising candidate molecules and
the correct protein-ligand complex conformation – preferably combined with an accu-
rate estimation of the respective binding affinities – is still a largely unsolved problem.
To be useful in a high-throughput virtual screening, i.e., the in silico testing of chemi-
cal compounds from a large virtual library for their suitability as potential drugs w.r.t.
to a biological target [226], docking must be computationally very efficient but still
produce reliable results [227, 228]. However, fast and accurate scoring functions that
efficiently guide the search for the final protein-ligand complex for arbitrary protein-
ligand complexes are currently not available, and are not likely to be discovered in
the near future. To make matters worse, the energy landscape of the protein changes
through the binding of a ligand: on the one hand, the ligand itself changes the land-
scape by establishing interactions with the protein. On the other hand, both protein
and ligand are not rigid bodies but are able to undergo substantial conformational
changes [229, 230, 231]. To tackle these problems in a reasonable computation time,
docking algorithms are forced to apply simplifications which, however, typically re-
duce the accuracy of the predictions.

In this context, the treatment of ligand- and protein flexibility is usually differ-
ent. While ligands are chemically much more diverse than proteins, they contain
significantly fewer degrees of freedom. Thus, approaches to handling ligand flex-
ibility use different global optimization schemes, such as Monte Carlo methods,
e.g., ICM [232] or LigandFit [233], genetic algorithms such as AutoDock [234] or
GOLD [174], incremental construction like FlexX [31], or grid-based methods like
Glide [235, 236]. Protein flexibility, in contrast, requires a different strategy, since
here the number of degrees of freedom becomes forbiddingly large, even for small
proteins. In a first step, the protein’s movements are decomposed into side-chain
re-arrangement and backbone movement. Side-chain conformers can be described
suitably by a discrete set of rotamers [205], but optimizing their arrangement via ex-
haustive sampling incurs the risk of combinatorial runtime explosion. Most of the
earliest methods able to capture small induced fit effects [17] thus concentrated on
locally sampling the side-chain conformations of the active site during the docking
process [237, 238, 239, 240, 241, 242, 190, 243, 244]. Others used pre-generated pro-
tein ensembles and, in some cases, also considered different backbone conformations
[245, 169, 246, 177, 247, 248, 249, 250]. Such molecular structure ensembles are as-
sumed to be representative for the conformational space the protein can explore, but
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they usually fail when large-scale backbone movements are involved, as for example
observed in HIV-1 protease [251] or aldose reductase [252].

To describe such conformational alternatives of proteins, different techniques can
be applied. One possibility is to carry out a principal component analysis of move-
ments, determined by MD simulations [253, 254]. These so-called essential modes
have been shown to improve the docking performance significantly [255, 256]. But
because MD simulations are computationally expensive, approximating the global
dynamics of proteins by normal mode analysis (NMA) on the basis of coarse-grained
elastic network models (ENM) [257], i.e., models considering only a subset of atoms
of the protein structure, has become increasingly popular over the last years. Due
to its ability to reproduce the collective (or global) motions of proteins, i.e., mo-
tions involving a large part of the protein, without significant loss of accuracy
[258, 259, 260, 261, 262, 263, 264, 265, 266], NMA has been applied to many different
problems, for example protein domain decomposition [259, 267, 268], guiding MD
simulations along normal modes [269, 270], or fitting proteins into electron density
maps obtained from cryo-EM or X-ray crystallography [271, 272, 273, 274].

The benefit of coarse-graining compared to the use of an all-atom representation is
that a large number of the normal modes corresponding to local movements, so-called
non-collective or local normal modes, which involve only a small number of atoms, in
particular those not incorporated in the coarse-grained representation, do not need to
be computed. Consequently, the number of modes that need to be considered for con-
formational sampling is substantially reduced. In this context, several levels of coarse-
graining exist: besides the convenient strategy to use the Cα trace of the backbone, sets
of atoms or residues can be combined into blocks [275, 276, 277, 278, 279]. Other ap-
proaches explore subsets of protein components [280, 281, 282], use additional grains
that represent side-chain centroids [283], or employ a mixed coarse-graining with a
higher resolution in important protein regions [284]. So far, several studies have es-
tablished the ability of elastic network models to also predict conformational changes
during protein-protein docking [285, 286, 287, 288]. Moreover, a recent paper has pro-
posed a sophisticated method to sample protein conformations using an ENM [289].

However, in protein-ligand docking, the binding interfaces are typically much
smaller than in protein-protein docking and there are theoretical arguments for the
assumption that normal modes may not be suitable to model backbone movements
involved in ligand binding: on the one hand, the primary purpose of normal modes
is to describe large-scale collective motions of a system and thus they may not be
well-suited to model the more local movements related to ligand binding using only
a small number of normal modes. On the other hand, differences between several
conformations of the same protein which are interpreted to be due to protein motion
may, in fact, be the result of uncertainties in the coordinates of experimentally deter-
mined structures. Thus it may not be adequate to use normal modes to interpret such
differences. However, despite these assumptions, normal modes have already been
successfully applied in select cases of protein-ligand docking as, for example, in two
studies using normal modes from heavy-atom and all-atom ENM [290, 291].

These studies indicate that backbone conformational changes observed in protein-
small molecule binding may, in some cases, only be modeled when using non-
collective modes accounting for local movements of small parts of the protein back-
bone. The question arises how this observation translates to coarse-grained ENMs
using Cα atoms, where the number of modes that have to be considered is drasti-
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cally reduced, and how suitable they are for such problems where alternative protein
conformations are needed to improve docking results, for example when only the con-
formation of the protein in the unbound (apo) state is available but the protein may
undergo conformational changes upon ligand binding. In this context, May et al. have
shown in a cross-docking study with six different CDK2 inhibitors [292] that NMA
can significantly improve docking results while Cavasotto et al. have reported similar
results in their study with cAPK [293].

In this study, we thus investigate on a larger scale how suitable binding-pocket re-
stricted normal modes from a Cα-ENM are for protein-ligand docking, with a focus on
high-throughput applications. By establishing a best-case scenario for conformational
sampling on a diverse data set derived from the Astex Diverse [294] and Non-Native
[295] Set, we evaluate how the number of modes used to reproduce a ligand-bound
(holo) conformation from its respective unbound (apo) state influences the docking
accuracy. The corresponding ligands are docked into the reproduced holo structures
using AutoDock [234], GOLD [174], and FlexX [31].
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5.1 normal mode analysis for elastic network models

The aim of performing a Normal Mode Analysis (NMA) on biological macro-
molecules [296, 297] is to determine the global and energetically most favorable mo-
tions of a system close to its energetic minimum. Here, the assumption is that a protein
in an energetically stable conformation oscillates harmonically around this equilib-
rium. A normal mode represents a collective motion within such a system at a certain
oscillation frequency. Each mode has its own unique frequency which is proportional
to the energy required w.r.t. the underlying potential to perform a unit length motion
along the mode.

To determine these modes, we use an Elastic Network Model (ENM) [261], an exten-
sion of the Gaussian Network Model (GNM) [258, 259, 260, 262] that accounts for the
anisotropy of motions of a system’s components in Cartesian space. Here, an artificial
harmonic potential V is constructed around an assumed minimum energy protein
conformation R0 consisting of N point masses (Cα atoms in our case), such that R0

becomes the minimum conformation of V (Fig. 5.1). For a conformation

R :=


R1
...

RN

 ∈ R3N (5.1)

where Ri ∈ R3 is a column vector representing the coordinates of the i-th point mass,
i ∈ {1, ..., N}, the potential energy in this elastic network model is given by:

V(R) =
1
2

N

∑
i=1

N

∑
j=i+1

k
(∣∣∣R0

i −R0
j

∣∣∣) (∣∣Ri −Rj
∣∣− ∣∣∣R0

i −R0
j

∣∣∣)2
(5.2)

The quadratic term describes a spring between two point masses i and j that is
relaxed in R0. It can be easily seen that V(R) = 0 when R = R0 and V(R) > 0
anywhere else. Furthermore, to scale the influence of each spring according to the
distance of the participating point masses in the minimum conformation, each spring
is assigned a spring constant by a function k(d) which decreases with the distance d
between the involved point masses. In this way, close spatial neighbors can be made
to contribute more strongly to the potential than remote atoms.

To apply NMA to an ENM, one assumes that V(R) can be approximated by
quadratic Taylor Expansion around R0:

V(R) ≈ 1
2
(
R−R0)T

H
(
R−R0) (5.3)

where H := HV(R = R0) is the Hessian matrix containing all second partial deriva-
tives of V(R) evaluated at R = R0 (a detailed derivation of the Hessian in an ENM
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(a) (b) (c)

Figure 5.1: Exemplary construction of a Cα-atom ENM: (a) from the all-atom structure (pdb
code 1gpk), (b) the Cα trace (one sphere corresponds to one Cα atom) is extracted, and (c)
the springs with corresponding strengths between the atoms are calculated (sticks: springs,
stick color: spring strength from weak (ivory) to strong (red); for illustrative purposes, only a
subset of stronger springs is shown).

can, for example, be found in Atilgan et al. [261]). HV(R) can be interpreted as a block
matrix of 3× 3 submatrices of the form:

HV(R) =


H11(R) . . . H1N(R)
...

. . .
...

HN1(R) . . . HNN(R)

 (5.4)

where each submatrix Hij(R), 1 ≤ i, j ≤ N contains the second partial derivatives
of V(R) w.r.t. the x-, y-, and z-components of point masses i and j:

Hij(R) =


∂2V(R)

∂Rix∂Rjx

∂2V(R)
∂Rix∂Rjy

∂2V(R)
∂Rix∂Rjz

∂2V(R)
∂Riy∂Rjx

∂2V(R)
∂Riy∂Rjy

∂2V(R)
∂Riy∂Rjz

∂2V(R)
∂Riz∂Rjx

∂2V(R)
∂Riz∂Rjy

∂2V(R)
∂Riz∂Rjz

 (5.5)

For example, according to the above elastic network model, the second mixed-
derivative w.r.t. to the x-components of i and j, i 6= j, i.e., the upper left entry of
Hij(R) for R = R0, is given by:

∂2V(R)

∂Rix∂Rjx

∣∣∣∣
R0

= −k
(∣∣∣R0

j −R0
i

∣∣∣) (Rjx −Rix
) (

Rjx −Rix
)(∣∣Rj −Ri

∣∣)2

∣∣∣∣∣
R0

(5.6)

The other entries of Hij(R) for R = R0 are calculated analogously. Likewise, the
second order derivative of point mass i w.r.t. its x-component is given as:

∂2V(R)

∂Rix
2

∣∣∣∣
R0

=
N

∑
j=1,j 6=i

k
(∣∣∣R0

j −R0
i

∣∣∣) (Rjx −Rix
) (

Rjx −Rix
)(∣∣Rj −Ri

∣∣)2

∣∣∣∣∣
R0

= −
N

∑
j=1,j 6=i

∂2V(R)

∂Rix∂Rjx

∣∣∣∣
R0

(5.7)

By construction, H is positive semi-definite and hence has real eigenvectors and all
eigenvalues are either positive or zero. The normal modes are defined as the eigen-
vectors U of H, which, together with the eigenvalues Λ, are obtained by carrying out
an eigenvalue decomposition on the Hessian:

H = UΛUT (5.8)
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Usually, the normal modes are sorted in ascending order w.r.t. their eigenvalues as
these correspond to the energetic cost required to perform a unit length movement
along a mode in the energetic model of the ENM: assume, we are given a movement
along a normal mode ui with |ui| = 1 and eigenvalue λi. The obtained conformational
change is then given by:

R = R0 + ui (5.9)

Insertion into Eq. 5.3 yields:

V(R) =
1
2

uT
i ·H · ui =

1
2

uT
i · λi · ui =

1
2

λi · uT
i · ui =

1
2

λi (5.10)

Modes that require little energy (i.e., a unit-length movement along such modes
imposes little stress on the spring network) are associated with collective motions
that involve a large part of the underlying system, in contrast, modes requiring large
amounts of energy correspond to non-collective, local motions. The first six modes
have zero eigenvalues and correspond to the translational and rotational degrees of
freedom of the whole system – in the case of an elastic network model, these obviously
require no energy.

5.2 extracting binding pocket normal modes

In protein-ligand docking we are particularly interested in the conformational
changes of the binding site. But by calculating the normal modes for the whole protein,
we will obtain many normal modes that are associated with collective movements else-
where in the protein. Hence, to restrict the normal mode set to those modes that are
collective for the binding pocket and thus relevant for protein-ligand docking, we use
an approach described in Zheng et al. [280] and Ming et al. [281]: we divide the protein
into two components, the binding pocket and the remaining protein, by rearranging
H such that we obtain four submatrices:

H =

[
Hpp Hpe

Hep Hee

]
(5.11)

Hpp and Hee contain the couplings within binding pocket and environmental pro-
tein, respectively, Hpe the stress imposed on the environment by changes in the pocket
and for Hep vice versa. Let rp and re be the conformational changes in the pocket and
the environment, insertion into Eq. 5.3 yields:

V

([
rp

re

])
=

1
2

[
rp

re

]T [
Hpp Hpe

Hep Hee

] [
rp

re

]

=
1
2

rp
THpprp +

1
2

rp
THpere︸ ︷︷ ︸

Vre (rp)

+
1
2

re
THeprp +

1
2

re
THeere︸ ︷︷ ︸

Vrp (re)

(5.12)

where Vre(rp) and Vrp(re) denote the contributions of rp and re to the overall poten-
tial energy, respectively.
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We can now assume that upon a given conformational change rp in the binding
pocket, the environmental residues perform an adaptive movement re that minimizes
the total energy in the elastic network, i.e. Vrp(re) = 0. re is given by (the final equation
is also presented in [280]):

Vrp(re) = 0

⇔ 1
2 re

THeprp +
1
2 re

THeere = 0

⇔ 1
2 re

THeere = − 1
2 re

THeprp

⇔ Heere = −Heprp

⇔ re = −H−1
ee Heprp

(5.13)

Substitution of re in Vre(rp) by the right-hand side of Eq. 5.13 yields:

Vre(rp) = 1
2 rp

THpprp +
1
2 rp

THpere
Eq. 5.13
= 1

2 rp
THpprp +

1
2 rp

THpe
(
−H−1

ee Heprp
)

= 1
2 rp

THpprp − 1
2 rp

THpeH−1
ee Heprp

= 1
2 rp

T (Hpp −HpeH−1
ee Hep

)
rp

= 1
2 rp

THeffrp

(5.14)

Consequently, under the assumption Vrp(re) = 0, the effective Hessian for our bind-
ing pocket is defined as [280, 281]:

Heff = Hpp −HpeH−1
ee Hep (5.15)

The normal modes Ueff for the binding pocket can then be obtained from Heff using
Eq. 5.8. The resulting modes provide an orthonormal basis set which is again sorted
in ascending order according to the modes’ eigenvalues and thus to their degree of
collectivity. Hence, the first modes describe the most collective motions within the
subsystem represented by Heff. The adaptive modes for the remaining protein can be
calculated from Ueff and Eq. 5.13.

In the following, we describe how we establish a best-case scenario to demonstrate
how well the binding-pocket normal Ueff modes can be used in docking applications to
model the induced-fit backbone conformational changes in the binding pocket upon
ligand binding: we establish a diverse benchmark set of pairs of apo/holo confor-
mation which we use to generate intermediate structures that optimally reproduce
the holo conformation w.r.t. increasing subsets of the most-collective modes of Ueff
obtained from the apo conformation. The respective ligands from the holo conforma-
tion are then docked into these intermediate structures to assess the improvement in
docking performance w.r.t. to the size of the normal-mode subset used to generate
the intermediate conformation.

5.3 data set

The data set we used is derived from the Astex Diverse [294] and the Astex Non-
Native Set [295]. The Astex Diverse Set comprises 85 diverse protein crystal struc-
tures, bound to drug-like ligands, with a resolution of less than 2.5Å. The structures
have been automatically and manually checked for structural problems, i.e., clashes,
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Figure 5.2: Distribution of Cα-RMSDs [Å] in the extended active site.

interactions with symmetry units, and dubious ligand binding. The Non-Native Set
was set up analogously and consists of 1112 non-native (alternative) protein confor-
mations, apo structures as well as holo conformations with corresponding ligand, for
65 of the reference structures contained in the Diverse Set. The binding pockets of the
non-native structures are unmutated w.r.t. those of the reference structure and have
been superimposed onto the reference pocket for a better comparability of the results
of cross-docking studies.

In our study, the aim is to address the question whether and if so, how well, reduced
sets of normal modes can model conformational changes observed during binding
of small molecules. We thus chose only reference structures with at least one apo
structure in the Non-Native Set to avoid bias of the protein backbone conformation
towards any ligand.

For each of the 29 remaining reference structures, we determined the residues that
are involved in substrate binding in any of the corresponding holo structures and
are thus associated with possible conformational changes in the protein binding site:
we first independently defined the binding pocket for each holo structure as consist-
ing of those residues that have at least one heavy atom within a distance of 6.0Å
to a heavy atom of the corresponding ligand. These pockets were then aligned and
merged into one extended active site (EAS) that comprises for each conformation all
the residues that are in contact with any of the ligands. The respective residues make
up the residues contributing to Heff; the remaining residues form the environment
which is assumed to perform an adaptive movement that minimizes the global en-
ergy required for the conformational changes in the binding site. For each of the 29

reference structures we only kept those apo/holo pairs that have no mismatches or
indels in the EAS between apo and holo structure. The resulting data set consisted of
283 apo/holo pairs from 20 reference structures, with 260 having a Cα-RMSD below
0.5Å in the EAS.

To gain more data on structural differences exceeding a Cα-RMSD of 0.5Å while
keeping the effect of structural mutations on the protein dynamics small, we decided
to also incorporate apo/holo pairs with a Cα-RMSD of at least 0.5Å and at most
five mismatches which, however, must not occur within the EAS. In this way, we
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augmented our data set by 150 additional apo/holo pairs while ensuring that the
docking results do not suffer from mutations in the binding pocket. The complete
data set contains 433 apo/holo pairs from 21 different reference structures. For each
apo/holo pair, the respective apo structure was optimally superimposed onto the
corresponding holo conformation w.r.t. the EAS Cα atoms. A distribution of the Cα-
RMSDs can be found in Figure 5.2. Each structure in this data set was converted
into pdb format, missing atoms and side chains were added with BALL [298]. The
corresponding ligands were converted into mol2 format using OpenBabel [299].

5.4 establishing a best-case scenario

From the apo/holo pairs of the data set derived in the previous section, we then
generated intermediate structures that optimally reproduce the holo conformation.
For each apo structure, we first calculated the effective modes Ueff for the residues
contained in its EAS as described in the previous sections and established subsets of
the first m (m =10%, 20%, ..., 100%) of these modes.

Let S be the matrix containing the first m modes,

S =
[

U1 U2 . . . Um

]
(5.16)

we then orthogonally projected the conformational difference between apo and holo
binding pockets, RA and RH onto S:

P = ST(RH −RA) (5.17)

From this projection, we can then obtain the amplitudes A for the modes that mini-
mize the distance between this projection and the space S:

A = (STS)−1P (5.18)

We can then generate an approximate conformation R*
H of the holo binding pocket

from that of the apo structure w.r.t. the underlying space S by:

R*
H = RA + SA (5.19)

Due to the orthogonal projection, the distance between the Cα trace of the holo
conformation, RH, and R*

H is minimal w.r.t. S. Thus, a conformational sampling in
the same subspace can never yield a conformation that is closer to the original holo
structure than our intermediate structure. Our intermediate structures can thus be
considered as an upper bound for the accuracy achievable with conformational sam-
pling algorithms w.r.t. the underlying normal mode subspace.

Applying the above procedure to each of the generated mode subsets leads to in-
creasingly well reproduced holo Cα conformations. This makes it possible to investi-
gate how the docking performance relates to the number of modes used to reconstruct
the holo conformation and to estimate how many modes are needed to sufficiently
reproduce the conformational change upon ligand binding.

To prepare these conformations for docking, the all-atom structures were recon-
structed by translating the side chains and remaining backbone atoms according to
the displacement of the corresponding Cα atom. We then relaxed the resulting struc-
ture for 0, 10, and 50 steps using the AMBER96 [300] force field and an L-BFGS
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Figure 5.3: Schematic description of our best-case scenario (shown for acetylcholinesterase,
pdb code 1gpk). The native ligands are sequentially docked into a set of increasingly well
reconstructed holo conformations to assess how the docking performance depends on the
number of modes used for the reconstruction.

minimizer [301, 302] to resolve possible steric clashes between side chains and/or
backbone atoms while keeping Cα atoms fixed. In this context, when using all avail-
able modes (m = 100%), we obtain a so-called 100% reconstructed holo conformation,
i.e., the Cα trace of the holo conformation binding pocket is exactly reproduced while
the remaining part of the protein (side chains, non-Cα backbone atoms) may show
deviations from the original holo structure due to the reconstruction procedure. A
validation of this reconstruction procedure can be found in Section A.2. With this
procedure, we obtained 33 intermediate structures per apo/holo pair, in total. The
full data set to be docked contained 15,304 protein conformations derived from 433

apo/holo pairs and the original holo structures (see Section A.1 for more details on
the data set composition). A schematic representation of our best-case scenario is
given in Figure 5.3.

5.5 docking experiments

To analyze the quality of the structures w.r.t. docking, we performed two different
docking rounds. In the first round, we investigated the capability of normal modes
without considering the side-chain conformations. We established six different dock-
ing protocols, consisting of a standard and a soft docking setup for each of the docking
programs AutoDock [234], GOLD [174], and FlexX [31]. The standard protocols used
the default parameters of the respective docking program; for AutoDock and GOLD,
the number of runs was set to 25 in both the standard and soft docking protocol.
Furthermore, for the soft docking protocols, we adjusted the parameters to reduce
the impact of steric clashes. In AutoDock, FE_coeff_vdW was reduced by a factor
of 0.5 while in GOLD, start_vdw_linear_cutoff was set to 4 and the binding pocket
residues were assigned a 2-4 vdW potential. In FlexX, MAX_OVERLAP_VOL and
DOT_OVERLAP_VOL were increased by a factor of 1.5.

In the second round, side-chain flexibility was explicitly taken into account as it can
have a significant impact on the docking performance. We therefore selected those
apo/holo pairs from the first round for which the ligand could be successfully re-
docked into the original holo structures (i.e., with a minimum pose RMSD below
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2.0Å) with at least one of the above described docking protocols, but failed to do so
for the 100% reconstructed holo conformation. We established three additional dock-
ing protocols that account for side-chain flexibility. AutoDock directly incorporates
side-chain flexibility (at the cost of greatly increased running times), but the maxi-
mum number of torsions is restricted to 32. We thus iteratively chose binding pocket
residues with growing distance to the ligand as long as the total number of torsions
did not exceed this threshold. The second protocol uses FlexX with binding pocket
side-chain conformations generated with SCWRL [204], the third employs FlexE [169]
with side-chain ensembles derived with IRECS [208] (rotamer density 3 and at most 3

additional side-chain conformations per binding pocket residue). All protocols used
the default parameters of the respective docking algorithm; the number of runs for
AutoDock was again set to 25.

In contrast to the EAS which is used to define the residues supposedly involved in
the backbone movements relevant for the binding pocket, for both docking rounds,
we used the smaller, ligand-specific binding pocket which we defined as consisting of
all residues with heavy atoms within a distance of at most 6.0Å to any of the ligand’s
heavy atoms.

The resulting docking poses were evaluated by calculating the symmetry-corrected
RMSD to the crystallized ligand structure using the smartrms program included in
GOLD. However, the obtained docking poses also depend to some degree on the used
protein conformation: the reconstructed structures used for docking are not identical
with the original holo structure, and the RMSD between the ligand in the crystal
structure and the docked pose may thus be slightly biased towards the quality of
the superimposition between crystal structure and the input protein conformation.
But the ligand may nevertheless be able to adapt itself to slightly different protein
conformations and establish the same interactions as present in the crystal structure.
We thus additionally calculated the symmetry-corrected fraction of native ligand con-
tacts of the crystal structure realized in each docked pose. The ligand contacts were
determined using HBPLUS and HBADD [303] as implemented in LigPlot [304], the
symmetry-corrected fraction of a pose is given as the maximum fraction of native
ligand contacts over all its automorphisms as calculated by OpenBabel [299].



6
R E S U LT S A N D D I S C U S S I O N

6.1 selecting a spring force function

Several types of Elastic Network Models have been proposed, the main difference
lying in the choice of the spring force function and its parameters. We tested five
different spring force functions for their ability to concentrate the motions of interest
within the first few modes:

k1(d) =
(

d
d0

)−6
d0 = 3.8Å

k2(d) = e−
(

d
d0

)2

d0 = 3.0Å

k3(d) = e−
(

d
d0

)2

d0 = 7.0Å

k4(d) =
( 1

d

)2

k5(d) =

{
1 if d < d0

0 else
d0 = 15.0Å

The behaviors of these functions w.r.t. the atomic distance are shown in Figure 6.1.
While k5 is a step function that equally weighs all atom pairs that have a distance
of less than 15Å [260], the other four functions decrease with a growing distance
between the atoms. k1 is a modified version of a function presented by Kovacs et
al. [305]: the original function includes an additional term a · sij scaling the influence
of the normalized residue contact area sij [306] between pairs i, j of residues by a
factor a, which was fitted on a small benchmark of only ten proteins and which we
thus set to zero. This function by design pays special attention to Cα atoms that are
consecutive in the protein backbone. Their average distance is 3.8Å, which exactly
corresponds to this function’s distance threshold d0. k2 uses an inverse exponential
with a distance threshold of 3.0Å [259] and generally assigns weaker forces to springs
than k1. k3 uses the same function but with a threshold of 7.0Å [307] that imposes a
stronger force on more distant atoms than the other distance-dependent functions. k4

is a parameter-free spring force function that does not employ a distance threshold
and uses an inverse quadratic function to model the force values [308].

We have investigated how well each of the five functions is able to capture the
conformational change from apo to holo structure in the first 10, 25 and 50 non-zero
modes. The results are given in Table 6.1. The left-hand side shows the mean perfor-
mance in terms of the fraction of the conformational change from apo to holo confor-
mation that could be achieved using the respective number of modes. The righthand
side shows the average rank when ranking the performances of each function on a
per-apo/holo-pair basis. For comparison, the results (based on the binding pocket
RMSD) using a full Hessian approach instead of an effective Hessian are also shown.

Regarding the mean performance, two groups are observable: the first one compris-
ing k1, k3, and k2, the second one consisting of k4 and k5. The mean performance
in each group is similar; a comparison with the behavior of these functions (Figure
6.1) provides an explanation for these results: the first group contains those functions

65
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Figure 6.1: Spring force as a function of the atom distance. The insert shows a magnification
of the curves beyond a distance of 5Å.

that clearly favor springs between close atoms while the second group is made up
of those that hardly differentiate between springs for neighboring and remote atoms.
The performance of group 1 is approximately 16-18% better than that of group 2. This
clearly demonstrates the importance of adapting the spring strength to the distance
between the participating atoms.

The table contains the average performances and ranks of each spring force func-
tion over the complete data set. Data rows and columns are set up to facilitate the
comparison of performance according to the aforementioned criteria for the first 10,
25, and 50 modes.

Furthermore, it can be observed that the models based on the effective Hessian are
superior to the models based on the full Hessian. This result is expected, as the normal
mode space of the effective models is much smaller than that of the full models. The
moderate difference between effective and full models shows that at least some of the
conformational change in the binding pocket can be attributed to global, collective
motions. However, some of the first modes in the full models describe movements
elsewhere in the molecule and thus negatively influence the performance.

Because the results are quite similar among the models in group 1, the decision on
which force function to use in the upcoming experiments was made by additionally
determining the mean rank of each function over all apo/holo pairs. Here, a clear
preference for k1 is observable for all three mode sets, having a mean rank of about
1.9 - 2.0. While k3 behaves similarly for the first 10 modes, the difference of mean
ranks to k1 increases with large mode sets. k2 shows a similar behavior to k3 for the
larger sets while the ranking of k4 and k5 is clearly worse than that of the former three
functions.

We thus decided to use k1 for the upcoming experiments. This choice seems rea-
sonable as k1 strongly penalizes relative movements of subsequent Cα atoms, allows
a certain amount of movement for close atom pairs, and lessens the impact of springs
representing long-range interactions.
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Mean performance Mean ranks
(fraction of RMSD reduced)

Effective Hessian Full Hessian Effective Hessian Full Hessian
#modes 10 25 50 10 25 50 10 25 50 10 25 50

10 0.266 0.140 1.994 2.145

k1 25 0.411 0.307 1.871 2.256

50 0.560 0.482 1.907 2.160

10 0.264 0.130 2.079 2.849

k3 25 0.400 0.288 2.234 2.769

50 0.556 0.468 2.422 2.621

10 0.252 0.156 2.546 2.356

k2 25 0.402 0.317 2.303 2.168

50 0.549 0.478 2.446 2.082

10 0.144 0.094 4.549 4.062

k4 25 0.282 0.238 4.452 4.155

50 0.463 0.401 3.968 4.041

10 0.178 0.117 3.833 3.588

k5 25 0.311 0.255 4.140 3.653

50 0.459 0.410 4.256 4.097

Table 6.1: Overview of the performances for the investigated spring force functions and Hes-
sian models.

6.2 comparison with normal modes from a molecular mechanics

force field

The main focus of this study is the investigation and application of normal modes in a
high-throughput scenario where computational efficiency is of great importance. Elas-
tic Network Model normal modes are especially suitable for this task as they do not
require any preprocessing of the input structures. In contrast, to obtain normal modes
from a molecular mechanics force field, a thorough energy minimization of the input
structure is necessary, because the underlying assumption of normal mode analysis
is that the protein oscillates harmonically around an energetically stable minimum
conformation.

Nevertheless, the comparison of the performance of normal modes obtained with
the spring force function we selected in the previous section with those derived from
a molecular mechanics force field may gain additional insights into the suitability of
elastic network normal modes to model binding pocket related backbone movements.

The generation of force field normal modes was carried out using the GROMOS
G53a6 [309] united-atom force field as implemented in GROMACS 4.5 [310]. Param-
eters and topologies for hetero groups that are not defined in the force field were
obtained from the PRODRG2 Server [311]. Seven of 69 apo structures were removed
from the data set because they contain prosthetic groups, cofactors, or other hetero
groups with elements that PRODRG2 cannot handle, e.g., the Nickel-reconstituted
heme group in 1qsi and 1qsh. The remaining apo structures were fully minimized to
a maximum force Fmax < 0.001.

During the energy minimization of the remaining 416 apo/holo pairs, the Cα RMSD
between the minimized apo and the crystal holo conformation (RMSDmin) usually
increased in comparison with that of crystal apo and holo structures (RMSDcryst); the
corresponding distribution of ∆RMSD = RMSDmin - RMSDcryst is given in Figure 6.2.
It can be clearly seen that there is a significant difference in most cases, with 250 pairs
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Figure 6.2: Distribution of difference between RMSD of minimized apo/cystal holo and cyrstal
apo/crystal holo.

#modes
ENM modes on ENM modes on Force-field based Force-field based

crystal apo minimized apo modes (Cα) modes (all-atom)

10 0.266 0.159 0.044 0.040

25 0.412 0.314 0.112 0.105

50 0.561 0.509 0.242 0.269

Table 6.2: Mean reconstruction performance of the different approaches in terms of fraction
of Cα RMSD that could be reduced using the different mode subsets.

having a ∆RMSD > 0.5, which makes a direct comparison of the performance of our
ENM-based approach to force-field based normal modes difficult.

On the minimized apo conformations, we thus computed normal modes using three
different approaches:

• a force-field based effective Hessian with only the extended active site (EAS) Cα

atoms

• an effective Hessian of the force-field comprising all EAS atoms (side chain and
backbone)

• a recomputation of the effective Hessian of the ENM containing the EAS Cα

atoms to account for the ∆RMSD of the apo/holo pairs as shown in Figure 6.2

The results are given in Table 6.2. For reasons of a better comparison, the ENM
results on the corresponding 416 crystal apo/holo pairs are also included.

It can be seen that, for all three mode subsets, the performance of the ENM normal
modes on the minimized apo structure is clearly superior to that of both approaches
using force-field based normal modes. It is interesting to note that the performance
of the ENM modes on the minimized apo conformation rapidly approaches that on
the crystal apo structure. In contrast, the performance of both approaches using force-
field based normal modes is already very similar when using the subset containing
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Figure 6.3: Mode amplitude spectra for a reconstruction of different dihydrofolate reductase
holo structures from one single apo structure (1pdb). The modes are sorted by increasing
eigenvalues. Modes and amplitudes (dimensionless scalar factors) differ for a reconstruction
of the individual holo conformations.

only 10 modes. A possible reason for this may be the derivation of the effective Hes-
sian: Hee, the matrix containing all couplings of atoms outside the EAS (see Section
5.2) is very large. Inverting such a large matrix can incur numerical problems, which
may be reflected in the above results. Moreover, all these detailed couplings may add
a certain amount of randomness to the motion of the Cα atoms in the binding pocket
and thus also to the normal modes. The normal modes in a Cα ENM where such
details are neglected may thus be better able to capture binding-pocket related collec-
tive motions. A more detailed investigation of the reasons for the poor performance
using force-field based binding pocket normal modes seems interesting, but would
be beyond the focus of this study.

6.3 analysis of normal mode amplitude spectra

The general assumption of using normal modes in protein-protein docking as well as
conformational studies of proteins is that only a few modes are required to reproduce
most collective, global conformational changes that the protein is able to perform.

To investigate whether this assumption also holds in the protein-small molecule
docking case, we thus first compared the mode amplitude spectra for a full recon-
struction of the Cα trace of different holo structures using the normal modes obtained
from the effective Hessian of one common apo conformation. If the initial assumption
also holds for protein-small molecule docking, the used modes and the correspond-
ing amplitudes should be similar for a reconstruction of different holo conformations.
Figure 6.3 shows such a spectrum for the protein dihydrofolate reductase (for a better
insight into the differences, the absolute amplitude values are shown). The modes are
sorted by increasing eigenvalues, such that only the first few modes should suffice to
represent a conformational change if the fundamental assumption behind the normal
modes procedure is valid.
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The main difference between the displayed structures comprises a conformational
change in two loops, while the rest of the system remains relatively rigid. While
these movements do not involve the entire protein, they exhibit a certain amount of
collectivity on the scale of the binding pocket, on which we focus with our effective
Hessian approach. Hence, the spectrum should contain regions with a clearly similar
behavior for all holo structures.

It can be clearly seen that this is not the case: not only do the amplitudes differ, but
also modes that strongly contribute to reproducing one conformation have almost
no influence for other conformations and vice versa, a fact which makes an a priori
selection of relevant modes difficult. For example, a conformational change from 1pdb
to 1s3v (red) requires a large amplitude for mode 23, while a reconstruction of 1drf
(blue) can be performed very accurately without using that mode. On the other hand,
generating the backbone conformation of 1drf cannot be achieved without using mode
58 (with an even higher amplitude than mode 23 for 1s3v) while this mode plays
almost no role for 1s3v.

One reason for this difference in the relevance of modes is that the eigenvalues
which correspond to the energy required to perform a movement along a mode are
very similar for a large fraction of the modes: a protein that is excited by a certain
amount of energy distributes this energy evenly among all its degrees of freedom.
Movements that require less energy thus dominate those that need much energy.

However, if there are many energetically similarly demanding modes, the space of
possible motions grows exponentially and the conformations become more diverse as
a result. In addition, elastic network models do not account for anharmonic motions,
which may become especially important for small-scale, local backbone movements;
a fact that may also contribute to the different relevance of the modes. Furthermore, a
bound ligand can shift the minima on the protein energy landscape and, thus, confor-
mations that are less likely in absence of a ligand may attain a lower overall energy in
the bound complex due to favorable interactions with a ligand. This is in concordance
with the observation that, as soon as the eigenvalues increase significantly (approx.
mode 130 in the case of 1pdb), the mode amplitudes decrease for the whole set of
reconstructed holo conformations.

The results for the whole set of apo/holo pairs are summarized in Figure 6.4 and
confirm the findings detailed for dihydrofolate reductase: the distribution of the num-
ber of modes with an absolute amplitude greater than average indicates that a sam-
pling in a small set of modes is not sufficient to reconstruct a holo structure with
high accuracy. On average, 51 modes are responsible for the largest part of the con-
formational shift, an observation that is consistent with the results shown in Figure
6.3. The corresponding fractions of modes (Figure 6.4b) to be used range from 0.19 to
0.46 with a mean value of 0.34. Accordingly, at least one third of all modes must be
considered in a conformational sampling.

However, an a priori selection of modes seems hard at best, as the amplitude vectors
greatly differ in their composition between complexes with different ligands. Figure
6.4c shows the distribution of pairwise angles between amplitude vectors for a re-
construction of different holo structures from the same apo conformation. The main
fraction of angles lies between 50 and 90 degrees (mean value 63.1), a fact that not only
confirms the assumption that the relevance of modes highly depends on the bound
ligand, but also shows that many amplitude vectors are almost perpendicular to each
other and that modes which are switched off in one complex are essential in another.
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(a) (b) (c)

Figure 6.4: Distributions of the number (a) and fraction of modes (b), as well as the pair-wise
angles between amplitude vectors (c) for a reconstruction of different holo structures from the
same apo structure.

Thus, in the normal case that the bound conformation is unknown and an a priori
predictor for the modes relevant for individual ligands does not exist, the number of
modes that has to be sampled can be expected to be well above the average number
of 51.

6.4 docking into reconstructed holo structures

The analysis of the mode amplitudes has shown the highly diverse nature of tran-
sitions from apo to different holo structures and demonstrated that the important
modes are distributed over almost the full range of modes. However, it has yet to be
clarified whether all these modes or only a subset of the most collective ones (i.e.,
those with the lowest eigenvalues) are required to achieve a conformational change
that results in a successful docking of the ligand.

We established 18 docking series, consisting of 6 different protocols using
AutoDock, GOLD, and FlexX each in a standard and a soft setup, for each of the
3 different minimization lengths (0, 10, and 50 steps). While many (partially contra-
dictory) studies that compare the performance of different docking tools exist, our
primary aim of using different docking programs here is to ensure that the obtained
results are not due to peculiarities of any of these tools. We thus do not compare
the actual performances of the different programs but rather use them to frame a sta-
ble picture of the capability of normal modes to improve small-molecule docking. In
some cases, the docking failed due to structural problems, e.g., when the reconstruc-
tion procedure produced irresolvable clashes or the atom types could not be assigned
properly. The missing results were interpolated using natural splines; eight apo/holo
pairs were excluded because they produced five or more missing values in at least
one of the docking series.

Figure 6.5 illustrates the docking results for the remaining 425 pairs for each dock-
ing series. The results have been normalized to account for the unbalanced distribu-
tion of the number of apo conformations associated with each holo structure and the
number of holo structures per protein. In addition to the data series for the three
minimization protocols, a minimum envelope (ME) curve which considers only the
optimum value obtained from the three protocols for each apo/holo pair and a linear
least-squares fitted line for the ME curve are shown in each plot. For the data points
on the ME curve in the pose RMSDs, the standard errors in the mean are also shown.
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(a)

(b)

Figure 6.5: Best pose RMSD (a) and maximum fraction of contacts (b) for holo reconstructions
with an increasing normal mode subset size averaged over the full data set.
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In the ideal case, one would expect a steep decrease of the minimum RMSD for
the most collective modes that diminishes as the normal mode subspace grows. This
would indicate that only the first modes are required to produce a conformational
change that is sufficient for a successful docking.

However, in our best-case scenario, the overall drop in minimum RMSD is small
and essentially linear (Figure 6.5a). This tendency is observable in each of the 18

docking series and even more imminent in the ME curves. Regardless of the actual
docking performance of the different protocols, the reduction in RMSD compared to
the docking results with the apo structure is at most 0.6Å (mean value 0.4Å) when
including 100% of the modes in the holo reconstruction; for the first 20% of the modes
the average reduction amounts to only 0.26Å. This behavior is also reflected by the
fitted lines: the steepest decay was found to be −0.0046 with a residual sum of squares
(RSS) of 0.07. The standard errors of the means for the 100% (and 0%) reconstruction in
the standard protocols of AutoDock, FlexX and GOLD are 0.24 (0.26), 0.20 (0.22), and
0.28 (0.25), respectively. The values for the soft protocols are comparable, indicating a
significant improvement in all six protocols.

Similarly, the maximum fraction of native contacts (Figure 6.5b) grows linearly and
increases by at most 0.081 when including all modes, and only by 0.049 for the first
20% of the modes. The fitted ME lines have a maximum slope of 0.00042 with an RSS
of 0.0015.

We also investigated the top scores and the corresponding poses (data not shown),
and the results reveal another factor that negatively affects the usability of normal
modes for sampling binding pocket conformations: the top scores differ by ≈8%, on
average, between apo and the reconstructed holo structures, which is, from our expe-
rience, far below the standard deviation of scores obtained from a typical docking run.
A linear least-squares fit gave a maximum decay of −0.023 with an RSS of 1.68, show-
ing that there is basically no decline in the top scores. Likewise, the top-pose RMSDs
were reduced by at most 0.5Å using a full reconstruction and only 0.17Å for the first
20% of the modes. These results show that, even in the case that a conformational
sampling in the most collective modes would reproduce the original holo structure,
it will be difficult to find the correct protein-ligand complex in the set of generated
protein conformations with today’s scoring functions, unless additional terms that
estimate the plausibility of the different protein conformations are incorporated.

Because normal modes are expected to reproduce the large-scale motions of a pro-
tein especially well, we also investigated the subset of 165 apo/holo pairs with a Cα

RMSD > 0.5Å (Figure 6.6). The results are mostly comparable to those on the full
data set: Due to the larger conformational difference between apo and holo structure,
the best-pose RMSDs obtained from docking into the apo conformation are larger on
average than for the full data set (cmp. Figure 6.5).

The standard errors of the means for the 100% (and 0%) reconstruction in the stan-
dard protocols of AutoDock, FlexX and GOLD have values of 0.36 (0.46), 0.43 (0.47),
and 0.54 (0.39), respectively. This implies that, at least in some cases, the significance
of improvement in docking performance is questionable, however, both AutoDock
protocols and the GOLD standard protocol can be considered to achieve a significant
improvement.

In comparison to the full data set, the best-pose RMSD decreases faster as more
modes are used to reconstruct the holo structures. But the decay in RMSD is, in
essence, still linear (maximum slope of the linear least-squares fit −0.0085, RSS 0.12)
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(a)

(b)

Figure 6.6: Best pose RMSD (a) and maximum fraction of contacts (b) for holo reconstructions
with an increasing normal mode subset size averaged over the subset of apo/holo pairs with
a Cα RMSD > 0.5.
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and the best-pose RMSDs for the 100% reconstructed holo conformations are 0.36Å
greater than those of the full data set, on average.

The best results for a single protein (data not shown) were obtained for aldose
reductase (pdb code in the Astex Diverse Set: 1t40) where the best-pose RMSD result-
ing from docking into the apo structure consistently dropped from values of between
3.89Å and 4.34Å to below 2.0Å after an inclusion of 50% of the modes in four of the
six docking protocols. Although such an increase in performance seems encouraging,
at first sight, using 50% of the modes is still an infeasible task for a conformational
sampling, especially in a high-throughput setting.

These findings indicate that, even for larger Cα RMSDs, the movements in the bind-
ing pocket upon ligand binding are not collective enough to be represented by a small
set of normal modes, in general. Thus it may be indispensable to use the ligand in
some way to perform a pre-selection of the required modes, or to directly guide the
conformational change upon ligand binding. To do so seems difficult, however, given
the problems of today’s scoring functions in discriminating between correct poses and
decoys.

6.5 docking with side-chain flexibility

In this section, we study how strongly the previous results depend on the side-chain
conformations in the binding pocket. To this end, we selected the 59 apo/holo pairs
from our data set that were successfully redocked into the original holo structure with
a best-pose RMSD of less than 2.0Å in at least one of the docking series, but failed to
do so for the corresponding 100% reconstructed holo structure. Because the Cα trace
of this structure is identical to that of the crystal holo structure, the problem reduces
to non-Cα backbone atoms and, more importantly, the side-chain conformation.

Figure 7 shows the results for the three additional docking protocols: AutoDock
with flexible sidechains, FlexE with IRECS-computed side-chain ensembles and FlexX
using side chains generated with SCWRL. AutoDock with flexible side chains as well
as SCWRL+FlexX show no clear tendency towards an improvement, the fitted ME
lines have slopes (RSS) of −0.0005 (0.46) and 0.0016 (0.49), respectively. In contrast,
the line for IRECS+FlexE demonstrates that using a side-chain ensemble may help to
improve the docking performance on a protein conformation generated using normal
modes. The corresponding slope and RSS are −0.0134 and 0.97 respectively.

Partial improvements over the original best-pose RMSD and successful dockings
could be obtained with all docking protocols, as can be seen in Table 6.3. In total,
improvements in best-pose RMSD were achieved for 46 of the 59 apo/holo. AutoDock
and FlexE both gave better results in 25 cases, FlexX in 14 cases. Altogether, at least
one docking pose with an RMSD below 2.0Å could be obtained for 26 of the 59

apo/holo pairs. FlexE was most successful with 19 poses in total and had the absolute
minimum RMSD in comparison to the other docking results in 15 of these cases (last
column). For the AutoDock protocol these numbers were 8 and 7, respectively, for
FlexX they were 10 and 4, respectively. Nevertheless, not all docking results could
be improved. The side-chain rotamers are backbone-dependent, but even in the 100%
reconstructed conformations, where the Cα trace is equal to that of the original holo
structure, the conformation of the non-Cα backbone atoms can differ slightly from that
of the original structure since the elastic network only acts on the Cα atoms and the
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Figure 6.7: Performances of the three docking protocols explicitly accounting for side-chain
flexibility.

Improvements
Successes (best pose RMSD < 2.0Å)

Protocol overall best in comparison

AutoDock, flex. side chains 25 8 7 (27%)

Irecs + FlexE 25 19 15 (58%)

SCWRL + FlexX 14 10 4 (15%)

46 (78%) 26 (44%)

Table 6.3: Results for the docking protocols with flexible side chains on the fully reconstructed
holo structures.

remaining ones are approximately reconstructed from these (see Section 5.4). Using
normal modes obtained from a backbone heavy-atom ENM instead yields the correct
backbone conformation for a 100% reconstruction; however, doing so increases the
set of resulting normal modes by a factor of 4, which leads to the conclusion that the
chance to achieve better results in such a scenario is small, at best.

These results imply that the poor docking performance on normal-mode generated
protein conformations may be improved when including side-chain flexibility. For
docking algorithms that do not model side-chain flexibility explicitly, it may even
be necessary to include not only one side-chain rotamer but an ensemble thereof to
effectively increase the chances of a good docking result. However, this can greatly
increase the computational effort required for conformational sampling, both for the
generation of protein conformations and the dockings to be performed. But even
when including side-chain flexibility, 70% of the modes were required, on average,
to obtain a pose with an RMSD below 3.0Å. This shows that the capability of nor-
mal modes to model binding pocket rearrangements is strongly limited even when
accounting for side-chain conformations.
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C O N C L U S I O N S

The aim of this study was to empirically gain insight into the usability of binding-
pocket normal modes obtained from Cα-ENMs in protein-small molecule docking.
We have established a scenario that provides an upper bound for conformational sam-
pling algorithms: for known holo structures, we have generated optimal reconstruc-
tions w.r.t. differently sized normal mode subspaces retrieved from corresponding
apo structures.

The analysis of mode amplitude spectra and the subsequent docking experiments
have shown that the use of normal modes in protein-small molecule docking is lim-
ited: the amplitude vectors to be used differ greatly when reconstructing holo struc-
tures for different ligands from the same apo structure. This may not always be the
case. If the conformation changes globally upon ligand binding, an improvement in
docking accuracy can be achieved with a small set of modes, as shown in May et al.
[292] and Cavasotto et al. [293]. In this study, Cavasotto et al. also introduced a measure
of relevance to determine the modes that are involved in binding pocket conforma-
tional changes. This method makes is possible to narrow down the sampling space to
a small set of modes and does not necessarily require the calculation of the effective
Hessian as done in our study. Ensembles generated from such mode sets in this study
have shown to improve docking results for several ligands of cAPK Kinase ligands.
This approach is especially powerful if the mobility of a binding pocket is well-defined
and mostly independent of the ligand, as for example in the conformational selection
stage during protein movement. However, in case of local ligand-specific induced fit
movements, if the binding pocket motions are unknown or cannot be well captured
by a small set of relevant modes, this method is difficult to apply.

Even if the conformational change is not fully represented by the most collective
modes, the amplitude vectors for the conformational change upon binding different
ligands may show a high degree of similarity. For example in the case of calmodulin,
a protein that changes its tertiary structure from an elongated form to a globular
conformation when binding a ligand [312], the amplitude vectors are very similar -
even if the ligands are highly diverse - due to the dominating complexity and the
highly distinct conformations in the bound and unbound state [291]. However, in our
study, the conformational changes are less extensive, and our results give rise to the
assumption that, in such cases, the ligand information is of great importance when
selecting the relevant modes, as most of the modes are energetically almost equivalent
and nearly equally likely to be activated when binding a ligand.

But the problem how to include information on the ligand in the selection proce-
dure is unsolved: state-of-the-art scoring functions are hardly accurate enough to even
reliably select the original pose from the set of generated solutions in the redocking
case. Hence, their general usability in helping to find the relevant modes for the given
ligand during a conformational search is more than questionable. To our knowledge,
approaches to directly use the ligand as a predictor for the relevant normal modes
do not exist, and the question whether this is possible at all has not even been ap-
proached.
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Due to the mutual dependence of finding the correct ligand conformation and de-
termining the true protein conformation, researchers are currently forced to apply
conformational sampling strategies. Our docking results show that sampling with a
fraction of only the first few, most collective modes is not sufficient to significantly
improve the docking performance in general, i.e., when no large-scale motions are
involved in ligand binding. Furthermore, although sampling with large fractions of
the normal mode space can improve the results, the computational effort increases ex-
ponentially with the number of modes and thus the docking may become infeasible.

The additional docking experiments accounting for flexible side chains show that
it is often indispensable to adjust the side-chain conformations upon backbone move-
ment and that doing so can enhance the docking performance when applied in com-
bination with normal modes. But while the docking results could be improved using
flexible side chains, the number of modes required for obtaining reasonable results
was still too large to be applicable in high-throughput settings.

Summarizing these observations, the general reduction in the complexity of mod-
eling protein flexibility with normal modes in protein-ligand docking is small if rele-
vant modes cannot be determined from some external criterion, because even in our
best-case scenario, where the actual holo conformation and the path from the apo con-
formation are known, the gain in docking performance is small and will be hard to
achieve in an actual sampling scenario. Moreover, structural uncertainties in the atom
coordinates or the fact that normal modes are designed to mainly detect collective
motions of a system and that a large number of normal modes is typically required
to describe local changes involving single atoms can cause the normal modes to fail
in protein-ligand docking. This leads to the strong assumption that the use of normal
modes in protein-small molecule docking may be restricted to select cases where only
few collective motions are responsible for binding a ligand.



Part III

A S S E M B L I N G M A C R O M O L E C U L A R C O M P L E X E S B A S E D
O N PA I RW I S E D O C K I N G S
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I N T R O D U C T I O N

In Sections 2.3 and 2.4 we have already seen that the biochemical processes in cells
are the result of the complex interplay between DNA, RNA, and proteins as well as
other macromolecules and chemical compounds. In Section 2.5, we have addressed
some examples of how proteins arrange themselves into multimeric protein assem-
blies to enable a highly efficient metabolism, for example regarding the conversion
of energy, to synthesize and decompose molecules, effect communication, or to carry
out protective functions.

To this end, the individual protein subunits of the complex must be able to assem-
ble and to find their respective position in the complex (sometimes with assistance of
molecular chaperones) and under the complicating conditions of the crowded interior
of cells. However, the concepts of self-recognition and whether and how different hi-
erarchical sub-stages during assembly are involved are still largely unknown, though
hydrophobic and sometimes electrostatic interactions are deemed to be the major driv-
ing forces [313, 314, 315, 316, 317]. An experimental determination of such interactions
and the resulting complexes can be expensive and time-consuming. Here, the use of
bioinformatics methods and algorithms, such as docking, alignment and assembly
tools in this context, can help to efficiently guide or sometimes even replace such
experiments and to enhance the rational understanding of the processes involved in
complex assembly.

The diversity of protein complexes can be assumed to be immense, as we have
already seen in Sections 2.3 to 2.5. They can greatly differ in size of the individ-
ual monomers, the size of the total complex, the number of components as well as
the number of different protein types involved, the contacts established between the
monomers and their symmetry properties. This assumption is not only confirmed by
the 3D complex database [83], but also shown by the following examples: the yeast
ribosome which is responsible for protein biosynthesis (see Section 2.3) contains 79

proteins which are all unique (and in addition four different rRNA molecules; dis-
tributed over pdb codes 3U5E, 3U5F, 3U5G, 3U5H) and consist of 46 to 387 amino
acids [318]. It has a diameter of ≈ 30nm and exhibits no symmetry. The nuclear pore
complex (NPC) which serves as a gate that restricts the exchange of macromolecules
and chemical compounds between nucleus and cytoplasm of eukaryotic cells is even
larger, in fact probably the largest protein complex in the cell: in vertebrates the com-
plex has a diameter of ≈ 145nm, a molecular mass of ≈ 125 MDa, and consists of
more than 450 proteins of about 30 distinct protein types [319, 320]. Even though
the NPC contains almost six times as many proteins as the ribosome, it comprises
not even half as many distinct protein types, but shows an octagonal symmetry. The
range of diversity observable in protein complexes can even be expected to increase
with the technological progress of current protein structure determination methods
(see Section 3.1) and the availability of newly resolved complex structures.

From an algorithmic perspective, assembling oligomeric complexes from their
monomers can be perceived roughly as solving a three-dimensional jigsaw puzzle.
However, in contrast to a real jigsaw puzzle, the interfaces are not so well defined
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in terms of the complementarity of both their surfaces and their biochemical prop-
erties. In addition, conformational changes upon assembly can alter the interfaces to
some extent. If the interfaces are roughly known, for example from site-directed mu-
tagenesis [321], studies on correlated mutations [322, 323, 197, 324, 199], cross-linking
experiments [325, 326, 327], or databases such as Interactome3D [218], one typically
employs docking methods for local sampling, yielding a set of hundreds to thousands
of plausible docking poses. While state-of-the-art docking algorithms are able to find
and sample near-native binding modes, scoring and ranking the solutions appropri-
ately still presents a major problem [158].

Hence, computationally, the assembly of large protein complexes poses a challeng-
ing combinatorial problem which has recveived attention from the algorithm develop-
ment community only in the last decade. Multi-body docking approaches are scarce
(see Sect. 3.3), the most prominent being HADDOCK [191], an information-driven
docking algorithm that facilitates the simultaneous docking of up to six proteins (see
Sect. 3.3.6). Most approaches rely on prior symmetry information: e.g., the multi-body
docking algorithm implemented in ClusPro uses pairwise dockings and symmetry
constraints to assemble homo-oligomeric complex [193] (see Sect. 3.3.7). For reasons
of computational complexity, both HADDOCK and the ClusPro multi-docking algo-
rithm limit the size of the complexes that can be assembled to a maximum number
of six components. A recent approach uses particle swarm optimization and addi-
tionally employs molecular dynamics conformational sampling to predict symmetric
homo-oligomers, the largest with 24 subunits [328]. Other approaches that rely on
symmetry information are SymmDock [189] and Rosetta’s symmetry docking proto-
col [329]. DockTrina [330] does not pre-suppose any symmetry and can predict non-
symmetric trimers by scanning pairs of pairwise dockings via an RMSD-based test.
CombDock [184, 185] (see Sect. 3.3.5) and an ant-colony approach proposed by Venka-
traman et al. [331] both combine pairwise dockings to generate clash-free minimum
weight spanning trees.

8.1 problem statement

In this work, we develop 3D-MOSAIC, a novel combinatorial algorithm that employs
a tree-based greedy scheme to iteratively assemble protein complexes from binary
docking data. Contrary to approaches that rely for example on electron density maps
or other low-resolution information on the full complex topology to generate a corre-
sponding high-resolution model of the respective assembly, the focus of our work is
the stepwise assembly of such complexes from the monomeric proteins.

The iterative approach acknowledges the fact that the formation of macromolecular
complexes most likely does not happen by a spontaneous and simultaneous assembly
of all involved monomers. Rather, analogous to the mechanisms involved in folding
of polypeptide chains, it can be assumed that the strongly interacting monomers of
the complex assemble first to provide one or several stable cores. After these core
components have formed, they may associate over a set of more weakly interacting
interfaces and additional monomers may be attached until the full complex has been
established (compare Sections 2.1.3 to 2.2).

With our method, we aim at modeling complexes for which no structural infor-
mation of the full assembly, for example in the form of low-resolution data, can be
obtained, but high-resolution data of the individual components (monomers) of the
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complex is available. Because there exist a manifold of different possibilities to obtain
information on interactions between the monomers of a complex (see Section 3.5),
we can assume that at least vague information on the interfaces and binding modes
between the individual monomers of the complex is available, for example in terms
of potential interactions between individual residue pairs. These assumed binding
modes can then be sampled using a pairwise docking algorithm of the user’s choice.
Several ways of providing the information on such interface locations and binding
modes to the docking algorithm are possible: for example through interaction con-
straints derived from this information or by providing start dimers to the algorithm
in which the respective interface areas of the monomeric proteins are roughly ori-
ented towards each other. In addition, the parameters of the docking algorithm can
be adjusted such that only the local neighborhood of the start dimer or areas in the
search space for which the interaction constraints are fulfilled are sampled.

Furthermore, incorporating both side-chain and backbone flexibility in docking
methods still represents a major problem, because it greatly increases the compu-
tational time required both during the sampling space, as conformational degrees of
freedom must also be taken into account, and second, also during scoring, because
often, more expensive scoring functions must be employed and the individual ener-
gies arising from the internal interactions of each protein conformation must also be
computed to obtain a reasonable docking score [288, 332]. We thus assume that the
conformations of the proteins used during docking do not deviate too much from
those in the complex and that the set of obtained docking poses contains dimers that
are similar to the respective binding modes in the complex. Small conformational dif-
ferences in side-chain or backbone orientation are tolerated and can be dealt with by
allowing for a certain amount of penetration of the individual complex partners. The
models generated by our approach can then be used as an input for more compute-
intensive methods such as all-atom energy minimizations and MD simulations using
molecular mechanics force fields.

To make the algorithm applicable to a wide range of different scenarios, it should
use only a minimum amount of information: high-resolution structural data for the
involved protein types and their stoichiometries as well as the rough knowledge of
the binding modes present in the complex, represented by sets of pairwise docking
poses as explained above.

However, commonly used scoring functions are generally limited in their power of
ranking near-native binary poses and discriminating them from decoy poses [160]. To
deal with this ranking problem, we introduce a novel measure, called transformation
match score (herafter, tms), which scores (sub-)complexes based solely on the mutual
compatibility of docking poses obtained by the employed docking algorithm (Roset-
taDock [180, 181] in this study).

In Nature, complexes assemble without the intrinsic objective of being symmetric.
Though the formation of symmetric protein complexes is assumed to have several
different beneficial reasons, for example stability, error control in translation, finite-
ness of the assembly and folding efficiency [333, 334], symmetry is not a prerequisite
for function and can even be disadvantageous, for example in the case of ribosomes
or polymerases where symmetry would counteract the directionality associated with
reading nucleotide sequences. The symmetry in viral capsids is also often broken to
allow for the insertion of additional monomers and thus an increase of the volume
available for storage of genetic material encompassed by the capsid [334] (compare



84 introduction

Section 2.5.3). Hence, our algorithm should not rely on a priori symmetry information.
Even if a complex is known to be symmetric, the type of symmetry present in the com-
plex is often unknown and the potential number of different symmetries grows with
the number of monomers in the complex. Hence, either the type of symmetry must
be known beforehand or all possible symmetries must be tried. In addition, the gener-
ation of partial complexes might be difficult or impossible with these methods, even
though such complexes might still be of use for further studies. Consequently, we de-
cided not to incorporate a restriction regarding symmetry in our algorithm, however,
if a near-symmetric complex is generated, the algorithm infers the symmetry from the
assembly and optimizes the complexes accordingly. Furthermore, symmetric binding
modes can be identified from the provided docking poses.

Our development constitutes a major step forward from previous approaches in
terms of both the number of distinct protein types in the assembly and the total num-
ber of monomers comprising the complex, which are often only able to assemble com-
plexes with a small number of monomers (typically six for computational reasons),
consider only homo-oligomers and often take symmetry information into account, as
described in the introductory part of this chapter. However, complexes can be very
diverse, as described in Sections 2.3 to 2.5 and the introduction to Chapter 8. Our ap-
proach should thus be able to account for this diversity and will be tested on a diverse
benchmark set of 308 protein complexes we will derive throughout the remainder of
this thesis, yielding symmetric and asymmetric complexes with 6 to 60 monomers, 1

to 15 distinct protein types, and 1-50 different binding modes.
Furthermore, we want to assist in cases where integrative approaches are applied

to predicting the structure of protein complexes, and the integration of the vari-
ous sources of information is performed (at least partially) manually or in a semi-
automated fashion [335]. For such application scenarios, we want to provide a fast
and automatic algorithm with which the manual intervention is reduced to a mini-
mum and is only required to generate starting dimers.

Summarizing, we can state the aims of our approach as follows:

• Considerably extend the scope of current algorithms to the modeling of
oligomeric macromolecular assemblies with many more than six monomers

• Require only a minimum of information for the complex assembly: the protein
types and representative high-resolution structure for each type, their respec-
tive stoichiometries and docking poses sampling each of the assumed native
complex binding modes

• Handle both homo- and heteromeric complexes with a large number of distinct
protein types

• Reduce the amount of required manual intervention to data collection and input
preparation

• Do not assume a complex symmetry beforehand

• Provide a flexible algorithm that can handle a broad range of diverse complexes
in terms of size, composition, topology, (a)symmetry

In the following chapters, we will describe and evaluate how these goals are accom-
plished: we develop a novel, efficient scoring function, called transformation match
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score (tms), and 3D-MOSAIC, a combinatorial algorithm that iteratively assembles
protein complexes from binary docking data using a greedy scheme based on tms.
Furthermore, we establish a diverse benchmark set of protein complexes to evaluate
the performance of our algorithm.
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P R E L I M I N A R I E S

This chapter defines the concepts used during development of 3D-MOSAIC.

9.1 rigid transformations

To determine the structure of macromolecular oligomeric assemblies, we require a
description of the placement, i.e., the position and orientation of each of the complex
monomers w.r.t. to a base configuration.

Assuming that the monomer is a rigid body, i.e., no conformational changes occur
during placement, the description of its placement in three-dimensional Euclidean
space requires two distance-preserving (i.e., isometric), so-called proper rigid body
transformations [336]: a proper rotation R ∈ R3×3 (an orthonormal matrix that does
not allow reflections, i.e., det(R) = +1) and a translation t ∈ R3.

These two parameters determine how points in one reference frame are represented
in another reference frame: let P, P′ be the position of the same point, once measured
in the reference frame {F} and once in the reference frame {C}, the transformation of
P from {F} to P′ in {C} is given by [336]:

P′ = R · P + t (9.1)

To simplify the notation of proper rigid transformations and combinations thereof,
R and t can be combined into a single matrix T ∈ R(4,4) using homogeneous coor-
dinates (see [337]): in such matrices, not only the combination of rotations but also
translations and thus arbitrary rigid transformations can be performed via a single
matrix multiplication, as opposed to the matrix multiplication and vector addition
required in the classical formulation. Such a matrix T has the form:

T =


Rxx Rxy Rxz tx

Ryx Ryy Ryz ty

Rzx Rzy Rzz tz

0 0 0 1

 (9.2)

where Rxx, Rxy, ..., Rzz denote the components of R and tx, ..., tz the components of t.
When applying a transformation T to a point P, T is decomposed again into the

rotation matrix R and translation vector t and can then be applied as defined in Eq.
9.1 (technically, the transformation is applied in four-dimensional projective space,
where each point is extended by a fourth coordinate with value 1, however, rigid
transformations yield the above result in Euclidean space) [337].

In the following, the term transformation always refers to proper rigid transforma-
tions as expressed in Eq. 9.2.
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9.2 rigid docking poses

Typically, in rigid binary protein-protein docking, a docking pose comprises a dock-
ing score or (estimated) interaction energy and a transformation describing the place-
ment of one of the binding partners in the bound configuration (the other binding
partner is typically kept fixed) relative to its configuration in the unbound state (see
Section 9.1). However, when assembling macromolecular oligomeric complexes using
pairwise dockings, we require the following additional information for each docking
pose to decide which docking poses may be considered during a particular stage of
the assembly process.

Firstly, protein complexes often consist of a number of different monomeric pro-
teins, i.e., proteins with different amino-acid sequences. To distinguish between them,
we introduce the concept of different protein types: given a complex consisting of
proteins with n different amino-acid sequences, let seq(a) be the amino-acid sequence
of protein a in the complex. Two proteins a and b are labeled with the same protein
type p ∈ {1, ..., n} if and only if seq(a) = seq(b). We denote the set of protein types by
P ⊆N+.

Secondly, two proteins that interact with each other typically can do this in one
of a small number of distinct orientations, called binding modes, and a unique iden-
tification of distinct binding modes is necessary during the assembly process. In a
binding mode, each protein contributes its interface which is the surface patch of
the protein that is in contact with its binding partner. The two interfaces are comple-
mentary w.r.t. their shapes and biochemical properties. The information on potential
binding modes can for example be obtained from studies on correlated mutations
[322, 323, 197, 199] or cross-linking experiments [326]. Computationally, such binding
modes can be sampled using a docking algorithm. To attribute each docking pose to
one of the n unique (supposedly) native binding modes in a complex, we equip each
binding mode between a pair of protein types with a unique id b ∈ {1, ..., n}. The set
of ids corresponding to binding modes occurring in a complex is denoted by B.

Thirdly, to determine compatible docking poses, we require the artificial concept
of directionality of interactions and interfaces. In protein-protein docking, the larger
protein is often considered the receptor, yielding a transformation for the smaller
protein, the ligand. However, in the context of this thesis, we consider both protein
monomers M1 and M2 of a docking pose alternatively to be receptors and ligands,
regardless of their size.

We thus obtain two transformations T1 and T2 with T−1
2 = T1. T2 describes the

placement of M2 w.r.t. M1 and T1 the placement of M1 w.r.t. M2, as shown in Fig.
9.1. Each transformation in a set of docking poses describing the placement of M2

is labeled with a directionality +1, whereas each inverse transformation placing M1

w.r.t. M2 is labeled with directionality −1.
Using the discrimination between protein types and binding modes, as well as the

directionality of interactions, the interfaces present in a macromolecular oligomeric
complex can be uniquely described as follows: given two proteins with types p1, p2 ∈
P, we denote the directed interface that p1 provides for the interaction with p2 in the
binding mode represented by id b ∈ B by a tuple i+ := (+1, b, p1, p2). Analogously,
the complementary (reverse) interface that p2 provides for contact with p1 in the same
binding mode b is given as i− := (−1, b, p2, p1) = −i+. The set of directed interfaces
present in a complex is denoted by I.
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Figure 9.1: The two rigid transformations obtained from a binding mode: Each of the two
monomers (M1, magenta and M2, cyan) is alternatively considered receptor and ligand. The
respective receptor is first superimposed to a copy centered at the origin (M1,O resp. M2,O).
The transformation of the corresponding ligand in the docking pose (M2,D resp. M1,D) is then
calculated w.r.t. its counterpart at the origin (M2,O resp. M1,O).

Having introduced the above notation of interfaces in a macromolecular oligomeric
complex, we define a docking pose as used for the assembly of such a complex as
follows:

Definition 9.1 (Docking pose). A docking pose is represented by an ordered triple d :=
(i, e, T) comprising the following elements: a directed interface i ∈ I, an interaction energy
e ∈ R, and a rigid transformation T ∈ R(4,4). The set of docking poses obtained from the
docking runs sampling the (assumed) binding modes in a complex is denoted by D.

The interaction energy e represents the net score for the interaction between the two
protein monomers M1 and M2 in the docking pose:

e = eM1+M2 − (eM1 + eM2) (compare Eq. 2.1) (9.3)

where eM1+M2 corresponds to the score of the protein monomers M1 and M2 in
the pose obtained from binary docking and eM1 , eM2 account for the scores of both
monomers in their respective unbound states which can be non-zero, depending on
the scoring function used during docking.

The use of the net interaction energy e instead of eM1+M2 is necessary to correctly
determine the total interaction energy of a particular complex, the so-called complex
energy, which is the sum of the interaction energies of all docking poses used dur-
ing the assembly of that particular complex. Using eM1+M2 alone, the unbound-state
scores of some monomers might be added multiple times during the assembly of
macromolecular oligomeric complexes from pairwise dockings: for example, when
two monomers are attached via docking poses to the same monomer, the score of that
monomer from the unbound state would be counted twice. This is an undesirable
artifact of the assembly procedure, leading to a wrong complex energy as well as po-
tentially to a wrong ranking of the assembled complexes w.r.t. their complex energies.
We thus use the net interaction energy e as defined in Eq. 9.3.

For a docking pose d ∈ D, the following labels are used in Chapters 10 and 11:

• I(d) ∈ I is the directed interface of d.

• R(d) ∈ P the type of the protein considered as the receptor of d (Fig. 9.1).
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• L(d) ∈ P the type of the protein considered as the the ligand of d (Fig. 9.1).

• E(d) ∈ R is the interaction energy of d.

• T(d) ∈ R(4,4) is the transformation describing the placement of the ligand
monomer associated with d.

• L(i) ∈ P the protein type of the ligand of interface i = I(d) of d.

9.3 complex candidates

In this section, we introduce the information that is required for assembling protein
complexes using binary docking data which we will describe in Section 11.2.

Firstly, each complex consists of one or more protein types, each type occurring at
a certain multiplicity. The stoichiometry of a complex associates each type with the
respective multiplicity and is represented by a map S : P → N+, p 7→ n, assigning
each protein type p ∈ P a multiplicity n ∈ N+. The complex size K in terms of the
number of proteins contained therein is the sum of the multiplicities of the individual
protein types:

K = ∑
p∈P

S(p) (9.4)

Secondly, we require information on the protein type and placement of each
monomer in the complex which we can represent as follows:

Definition 9.2 (Complex Monomer). A complex monomer is represented by an ordered
tuple m := (p, T) where p ∈ P denotes a protein type and T ∈ R(4,4) a transformation of
the monomer from its unbound state to its bound state in the complex. We denote the set of
complex monomers by L.

The iterative assembly process we will describe in Section 11.2 yields in each iter-
ation a set of solutions, each solution represented by a so-called complex candidate,
which represents a (partial) complex and may be considered in the subsequent itera-
tion of the algorithm. Each new complex candidate is derived from a solution of the
previous iteration, i.e., a parent complex candidate p and extends that parent solution
by exactly one new (ligand) complex monomer l ∈ L (Def. 9.2); consequently the it-
erative scheme induces a sequence in monomer attachment and thus a sequence of
ancestor complex candidates for each new complex candidate where each ancestor
complex candidate represents the attachment of one new complex monomer.

The attachment of complex monomer l can happen to any complex monomer repre-
sented by one of the ancestor complex candidates of p (including p itself); the ancestor
complex candidate representing the monomer to which l is attached is called receptor
complex candidate.

Furthermore, for the purpose of describing the algorithm in Section 11.2, we require
the following (redundant) information to be associated with a complex candidate: a
unique id, the complex match score (see Sections 10.3 and 11.2.7) and interaction en-
ergy (the sum of the interaction energies of all docking poses used for the assembly)
of the complex candidate, and the number of symmetry mappings (see Def. 9.8) deter-
mined for the complex candidate. Finally, we require information on the number of
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steric clashes in the complex, i.e., the number of atoms with a distance less than a cer-
tain threshold that indicates a significant penetration of the volumes of the respective
atoms, leading to large repulsive forces between both atoms (compare Section B.4).

Definition 9.3 (Complex Candidate). We denote by a complex candidate an ordered tuple
c := (i, l, p, r, s, e, c, o) comprising the following elements: a unique id i ∈ N, the ligand
complex monomer l ∈ L (Def. 9.2), the unique ids p, r ∈ N of the parent and receptor
complex candidates respectively (0 only if none is present), s, e ∈ R the total score (Sect.
10.3) and interaction energy of the complex candidate, respectively, as well as c, m ∈ N the
number of steric clashes and symmetry mappings (Def. 9.8), respectively, in the (sub-)complex
represented by c.

Let c be a complex candidate and m the complex monomer represented by c, we
use the following labels throughout Chapter 11:

• M(c) ⊆ L is the set of complex monomers over c and its ancestor complex
candidates.

• P(c) ⊆ P contains all protein types p ∈ P whose count over the complex
monomers represented by c and its ancestor complex candidates does not exceed
their respective allowed stoichiometry S(p).

• S(c) ∈ R is the complex match score of c (see Sections 10.3 and 11.2.7).

• E(c) ∈ R is the total interaction energy of c.

• C(c) ∈N is the number of clashes between monomers of c.

• T(m) ∈ R(4,4) is the transformation describing the placement of m.

9.4 mapping complexes

When considering docking poses or protein complexes assembled by sequentially
attaching new monomers w.r.t. such docking poses, the pairwise similarity of some
solutions will inevitably be greater than that of others. The consideration of solutions
that are similar w.r.t. a certain similarity measure during the course of an algorithm
is typically undesirable, because it often leads to an increase in computation and a
comparatively low gain in information. Hence, the determination of the similarity of
a set of solutions and the removal of the most similar ones to only consider a set
of diverse solutions is an important step during the course of an iterative complex
assembly algorithm that can avoid becoming stuck in local optima. In addition, in a
benchmark scenario where the native reference complex is known, the comparison
of an assembled complex with that reference complex based on a similarity measure
is useful. Finally, the determination of similarity of a complex to itself under a set of
(symmetry) mappings (see Section 9.5) can be used to optimize the complex structure.

We thus need to derive a definition of complex similarity. The simplest possibility
would be to use the standard RMSD (see Section 3.6.1). Because complexes are com-
posed of several monomers, we can do this using a slightly modified version of the
RMSD for two complexes C1 and C2, each with m monomers:

RMSDT(C1, C2) =

√√√√ 1
n

m

∑
i=1

ni

∑
j=1
|(R · xMi,1

j + t)− xMi,2
j |2 (9.5)
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where ni denotes the number of atoms of the equally-sized monomers Mi,1, Mi,2

of complex C1 and C2, respectively. xMi,k
j represents the atomic position of atom j in

monomer i of complex Ck. R and t denote the rotation and translation given by a
transformation T that can be applied to superimpose C1 onto C2, if required.

However, when iteratively assembling protein complexes (see Section 11.2), it may
happen that two equal (or similar) protein complexes are generated that differ in the
ordering of their complex monomers, which is an artifact resulting from the sequential
attachment of new complex monomers during assembly as well as the docking poses
used for the attachment (compare Section 9.3).

We thus need to find a mapping between the monomers in two complexes (or a
set of mappings) under which the two complexes are similar w.r.t. a given RMSD
threshold dmax (an example is presented in Figures B.2a and B.2b).

In a first step, we can determine those proteins in two complexes that are mappable
onto each other, i.e., those that have the same protein type:

Definition 9.4 (Equivalence-Mapping). Given two complexes C1, C2 each consisting of m
proteins. Let li,1, li,2 ∈ P be the protein type of the i-th protein, i ∈ {1, ..., m}, in complex
C1 and C2 respectively. A bijective function ϕ : {1, ..., m} → {1, ..., m} is called equivalence-
mapping from the proteins of C1 onto those of C2 if lϕ(i),1 = li,2 ∀i ∈ {1, ..., m}. The complex
C1 with proteins reordered according to ϕ is denoted by Cϕ.

To determine whether there exists an equivalence mapping under which both com-
plexes reveal structural similarity, we adapt a concept from graph theory, which is
related to our problem, called graph isomorphism: two graphs G = (VG, EG) and
H = (VH, EH) are isomorphic if there exists a bijective mapping ϕ between the ver-
tices of both graphs, such that an edge (u, v) ∈ EG if and only if (ϕ(u), ϕ(v)) ∈ EH

[338].
However, we do not have strict adjacency between the proteins: the information on

whether two proteins are in contact (or adjacent), e.g., whether a number of atom
pairs, one atom per pair from each protein, are closer than a certain distance (and
thus interacting), depends on the chosen thresholds for the distance as well as the
number of interactions above which the two proteins are considered to be in contact.
Two monomers being in contact w.r.t. to such thresholds in one complex might not be
in contact in another, even though the overall complex structure is similar.

We thus adapt the notion of graph isomorphism to our problem by replacing the
adjacency information by information on the overall complex similarity using the
RMSD measure between the complex monomers under a particular mapping:

Definition 9.5 (Complex Similarity Mapping). Given two complexes C1, C2 each consist-
ing of m proteins. An equivalence-mapping ϕ from the proteins of C1 onto those of C2 s.t. a
transformation Tϕ that optimally superimposes Cϕ onto C2 yields an RMSDTϕ(Cϕ, C2) ≤
dmax for a given threshold dmax is called a complex similarity mapping. Tϕ is called a similar-
ity transformation. Depending on the selected threshold dmax, several mappings might exist.
If at least one such complex similarity mapping can be found for two complexes C1 and C2, we
consider them similar under dmax.

9.5 approximate complex symmetry

Symmetry is a concept inherent to many objects in Nature [339] and with small per-
turbations to the observed symmetry pattern (approximate symmetry) also found in
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protein complexes [334]. An object is symmetric if it is invariant under a particular
transformation [340, 341].

To determine whether such transformations exist for a particular complex, we adapt
the notion of automorphisms, i.e., isomorphisms between a graph and itself [338],
from graph theory to our problem, using the notion of complex similarity mappings
given in Def. 9.5.

However, depending on the selected RMSD threshold dmax, the set of obtained
complex similarity mappings might contain elements ϕ1, ϕ2 with ϕ1 6= ϕ2 such that
ϕ1(i) = ϕ2(i) for at least one i ∈ {1, ..., m} where i corresponds to the i-th of m pro-
teins of the complex under consideration. However, given ideal symmetry, such two
mappings for a protein complex cannot exist: first, due to the chirality of the amino
acids proteins are composed of, the only symmetry operations for protein assemblies
are rotations [342]. Second, because (acyclic) proteins are intrinsically asymmetric, no
rotational symmetry operations (except identity) are possible that map a protein onto
itself. Consequently, no two mappings ϕ1, ϕ2 with ϕ1 6= ϕ2 with ϕ1(i) = ϕ2(i) might
exist under ideal symmetry.

However, given approximate symmetry, such two (or more) mappings might indeed
be found, depending on the chosen RMSD threshold. Yet, for the above reasons, only
one of them can be valid. In such cases, we consider the one with the minimum RMSD
the better one and discard the others.

To describe when a set of symmetry mappings is valid, we thus define when two
mappings are disjoint:

Definition 9.6 (Disjointness of Complex Similarity Mappings). Given two complexes
C1, C2 each with m proteins. Two mappings ϕ1 and ϕ2 from C1 to C2 are disjoint if and only
if ϕ1(i) 6= ϕ2(i) ∀i ∈ {1, ..., m}.

A valid set of symmetry mappings can then be defined as follows:

Definition 9.7 (Symmetry Mappings). Let Φ contain all complex similarity mappings
w.r.t. a given threshold dmax between a given complex C of m proteins and itself, ordered by
increasing RMSD. The set of symmetry mappings S ⊆ Φ is constructed from Φ as follows:
for each ϕ ∈ Φ, ϕ is added to S if and only if ϕ is disjoint from all mappings already present
in S. The corresponding set of similarity transformations is called symmetry transformation
set and is denoted by TS, with TS(ϕ) being the symmetry transformation corresponding to
mapping ϕ.

In the ideal case, the symmetry mappings form a group, however depending on the
threshold dmax and the geometry of the complex C, the requirement for closure (see
[343]) may not be fulfilled. Obviously, the set of symmetry mappings always contains
the identity mapping from each monomer in C onto itself, because RMSD(C, C) = 0.
Consequently, symmetries in a complex can only occur if further symmetry mappings
in addition to the trivial one are found. Hence, we define the concept of complex
symmetry based on a set of symmetry mappings as follows:

Definition 9.8 (Complex Symmetry). A complex C is considered to be symmetric if there
exists a set S of symmetry mappings for C that contains at least one mapping apart from
the trivial one, i.e., |S| > 1. Each such mapping s ∈ S induces a symmetry operation, i.e., a
transformation that optimally superimposes the monomers in the complex w.r.t. to the mapping
s.
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D E V E L O P I N G T H E T R A N S F O R M AT I O N M AT C H S C O R E

As explained in Sect. 8.1, the aim of this project is the assembly of oligomeric protein
complexes on the basis of pairwise docking data. Intuitively, this task can be consid-
ered similar to solving a three-dimensional jigsaw puzzle. In the following section, we
will address the basic properties both problems have in common and the differences
between them.

In the subsequent section, we demonstrate on a set of complexes exemplarily as-
sembled from pairwise docking data, which differences arise in the actual assembly
process compared to a jigsaw puzzle, where pitfalls arise and how they can be dealt
with.

In the concluding section of this chapter, we will present a novel scoring function
that does not rely on scores and ranking of the obtained pairwise dockings, but rather
makes use of the mutual compatibility of docking poses w.r.t. the orientation of dif-
ferent monomers in a protein complex.

10.1 macromolecular complexes as three-dimensional jigsaw puz-
zles

The process of assembling a complex from its monomers is faintly reminiscent of
solving a three-dimensional jigsaw puzzle: the monomers are the pieces to be put
together, while the information on the interface locations and binding modes can be
considered the equivalent to the tabs and blanks, i.e., the prominent and cut-out areas
of the individual pieces of the puzzle, respectively, that are interlocked upon solving
the puzzle. In the following, we will use that analogy to demonstrate the relevant
properties of macromolecular assemblies.

In the ideal scenario of assembling macromolecular complexes, one would have
perfect knowledge of the binding interfaces, corresponding to a puzzle with perfectly
fitting pieces (Fig. 10.1a) and the effort of modeling the complex structure is compa-
rable to that of solving a 3D-jigsaw puzzle with as many pieces.

However, in more realistic cases the information on the location of the interfaces
is too fuzzy to precisely infer the interlocking of the corresponding pieces. Moreover,
the shape and biochemical properties of the binding site(s) might change due to con-
formational rearrangements during the assembly of the complex. Speaking in terms
of a puzzle, this scenario corresponds to roughly fitting pieces, where the tabs and
blanks are only crudely complementary, as shown in Fig. 10.1b: due to the poorly
defined interfaces, multiple different orientations where the interface areas of the two
pieces are in contact can be considered equally valid without further knowledge.

In order to find the true or a near-native binding mode based on this approximate
knowledge of the binding site(s), docking methods are commonly applied to exten-
sively sample the assumed interface location(s) of each pair of interacting monomers
for low-energy poses. However, this approach also produces many false positive poses
which cannot be reliably filtered out using state-of-the-art scoring functions. Owing
to the necessity of being fast, scoring functions typically employed in docking algo-
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(a) The ideal scenario: The interfaces are
well-known, represented by perfectly matching
pieces.

(b) The real scenario: The interfaces are only
roughly known. The uncertainty of the exact
binding mode is expressed by roughly fitting
pieces.

Figure 10.1: Quality of available interface information and corresponding representation of
puzzle pieces.

rithms are often not very accurate in predicting binding affinities and often fail to
rank the near-native docking poses among the top ranks. Clustering and re-scoring of
the obtained poses with a computationally more expensive scoring function are often
applied as a post-filter step. Such a practice can help to alleviate this problem to some
extent and removes the most implausible solutions [344, 345, 346, 347]. However, the
remaining number of putative candidates is typically still so large that a near-native
solution is unlikely to be found among the top ranks.

We are thus left with an ensemble of dockings per interface, from which we ulti-
mately have to chose a single pose for the attachment of the next puzzle piece. This
problem is further aggravated by the following: in contrast to a traditional jigsaw puz-
zle where each piece is typically unambiguously described by a unique combination
of shape and a section of the image to be put together (in a typical puzzle, at least
either shape or image section are different), a biological assembly often contains mul-
tiple copies of each protein type involved in forming the complex. This means that, in
contrast to the jigsaw puzzle where each piece can only be used once, each sampled
pose can be used multiple times to assemble the complex.

Let us consider an example: given a homomeric complex with m monomers, we
need to establish at least m− 1 contacts between the monomers to generate a complex
in which each monomer is bound to another. If we have d docking poses available
to attach two monomers of the same kind, an exhaustive search for the best solution
by trying all docking poses and combinations thereof entails d(m−1) distinct solutions.
For m = 11 and d = 100 (a comparatively small number of sampled poses for a
roughly known interface), we would have to consider 10010 = 1020 theoretically pos-
sible solutions.

Typically, most of the generated solutions exhibit a severe overlap between two or
more monomers and are thus implausible. While such solutions can easily be filtered
out, the reduced space of solutions is typically still too large to be computationally
tractable. Fortunately, a general property of complexes can help to avoid considering
the majority of implausible solutions: the fact that every monomer usually establishes
connections to several other monomers in the complex, leading to compact assemblies
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with a dense network of connections between the individual components [83]. In the
following sections, we describe how we can make use of that observation and pro-
vide a simple yet effective score for the quality of (sub-)complexes when generating
macromolecular assemblies from binary dockings.

10.2 observations on assembling complexes from pairwise dockings

I- 

I+ 

Figure 10.2: Interfaces I+

(blue) and I− (red).

To illustrate our score, assume that we are faced with
the task to assemble a homomeric complex C with four
subunits, i.e., a complex with one protein type p ∈ P

with corresponding multiplicity S(p) = 4. The simplest
way to form an assembly with these criteria is when there
exists only one asymmetric binding mode between two
instances of p.

For asymmetric binding modes to be established be-
tween monomers of the same protein type, the protein
must provide two complementary interfaces I+ and I− (or at least two different ways
of binding to the same interface), as depicted in Fig. 10.2.

According to our assumption from Section 8.1, none of the interfaces is exactly
known. Hence, we need to perform a local docking between two instances MA and MB

of the same protein, where MA provides I+ and MB provides I− as docking interface
(or vice versa). By considering each of the two monomers once as receptor and the
respective other as ligand, in analogy to our puzzle example, we obtain two sets of
puzzle pieces, denoted by D+ and D−, one w.r.t. I+ and one w.r.t. I−, respectively, as
described in Sect. 9.2. In each of the two sets, the pieces overlap and form a docking
pose ensemble, as shown in Fig. 10.3.

Figure 10.3: Exemplary docking pose
sets D+ (blue) and D− (red) for I+ and
I−.

Let us now consider a simple example how
to iteratively assemble such a complex from an
initial, centered monomer M1: in every iteration
i ∈ {2, 3, 4}, we select a docking pose di with
corresponding transformation Ti from pose set
D− (from the red interface) and attach a new lig-
and monomer Mi by Ti w.r.t. to the orientation
of receptor monomer Mi−1 (the ligand in the pre-
vious iteration). This process is repeated until all
four monomers have been put into place.

Three exemplary complexes are given in 10.4.
Obviously, complexes C2 and C3 establish an
additional interaction between M1 and M4, and
thus should represent energetically (cmp. Sec-
tion 2.2) more favorable complexes than C1, where this additional contact is not found.
Furthermore, complex C3 is more regular than C2 and provides a 4-fold rotational
symmetry. Given the observation that many (of the known) complexes in Nature ex-
hibit at least partial symmetries [339] and that symmetry is assumed to be the result
of a bias towards low-energy complexes [348, 334, 333], we can assume C3 to be ener-
getically more favorable and thus superior to C2 [333].

An accurate energy function should be able to rank the three complexes according
to that observation, i.e., ∆G(C3) > ∆G(C2) > ∆G(C1) (cmp. Section 2.2). However,
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Complex C1 Complex C2 Complex C3 

M1 M1 

M2 

M2 M2 

M3 

M3 

M3 

M4 

M4 

M4 
M1 

Figure 10.4: Three exemplary complexes, generated by subsequently attaching a new
monomer Mi to monomer Mi−1, i ∈ {2, 3, 4} according to one of the docking poses from
interface I−.

accurate all-atom energy calculations are very expensive and not applicable for large
complexes, especially when taking into account that an additional energy minimiza-
tion might be necessary to remove steric clashes introduced by the transformations.
Standard docking scoring functions are computationally less intensive but lack the
power to discriminate between near-native and decoy poses and thus to determine
additional interfaces.

Hence, we need a fast scoring function to determine whether an additional interac-
tion has been established by the iterative assembly of the complexes.

10.3 the transformation match score

Fig. 10.5 provides a more formal representation of the situation described in the previ-
ous section (cmp. Fig. 10.4): in complexes C2 and C3 we observe a ring closure: when
monomer M4 is attached, it comes close to interface I+ (blue) of M1. In turn, M1 is
close to the red interface (I−) of monomer M4 (cmp Fig. 10.2). It is thus intuitive to
search the set of M1’s docking poses at interface I+ for a pose with a transformation
TDock that is similar to the transformation TAs of M4 induced by the assembly, as
shown in Fig. 10.5. While TDock can be directly obtained from the dockings (for a cen-
tered monomer), TAs is the result of cascading transformations that put the individual
antecedent monomers in place.

Formally, we can define TAs as follows: given n monomers with monomer Mi−1

being the receptor of monomer Mi for i ∈ {2, ..., n}, let Ti be the transformation of a
docking pose d ∈ I− that positions the i-th monomer w.r.t. to its receptor. Because the
first monomer M1 in an assembly is always centered at the origin, T1 is the identity
transformation. TAs is then obtained by subsequently applying the transformations
on the transformation path PT := [T2, ..., Tn]:

TAs :=
n

∏
i=2

Ti (10.1)
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Complex C1 Complex C2 Complex C3 

TAs 

TDock 

TAs 

TDock 

TAs 

TDock 

M1 M1 

M2 

M2 M2 

M3 

M3 

M3 

M4 

M4 

M4 
M1 

Figure 10.5: The three exemplary complexes from Fig. 10.4, represented as jigsaw puzzle. In
each of the three complexes, TAs corresponds to the transformation induced by the assembly
for the respective monomer M4. TDock represents the most similar transformation obtained
from the dockings at interface I+ of monomer M1 in each case.

In the general case, i.e., when considering a monomer M∗ which is not centered at
the origin, TAs relative to the placement TM∗ of M∗ can be computed as:

TAs := T−1
M∗ ·

n

∏
i=2

Ti (10.2)

In the example above, the pairwise docking transformation TDock that is most sim-
ilar to the generated TAs is obtained from a docking pose dDock from D+ at interface
I+ of M1 as follows:

TDock := T(dDock) with dDock := arg max
d∈D+

sim(T(d), TAs) (10.3)

where sim : R(4,4)xR(4,4) → R represents a similarity function between TDock and
TAs that we will now derive.

Intuitively, one would compare the root-mean-square deviation (see Section 3.6.1)
between the placement and the docking pose. However, depending on the number of
atoms in the protein, a naïve calculation of the RMSD according to Eq. 3.1 leads to a
large number of arithmetic operations to be performed and is thus computationally
too expensive.

Eq. 10.3 indicates that the comparison of the corresponding transformations should
be sufficient to appropriately determine similar transformations. However, while sev-
eral general similarity measures for such transformations exist, they are often defined
for very specific purposes, yield different results for the same transformations and of-
ten lack an intuitive interpretation (an overview of some popular measures is given in
Huyn [349]). We thus propose two novel, easily interpretable, cutoff-based similarity
measures relevant for structural modeling based on rigid transformations.

For the remainder of this section, let tA and tB be the translations and RA and RB

the rotations given by two rigid transformations TA and TB, respectively.
The first measure we propose is a heuristic measure comparing the translational

displacement between two transformations as well as their angular difference. Let lmax

and amax be the respective maximum thresholds for displacement length and rotation
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angle between two transformations. The heuristic similarity measure we propose, Sda

is defined as:

Sda(TA, TB) := max
(

1− |t
AB|

lmax
, 0
)
·max

(
1− αAB

amax
, 0
)

(10.4)

where tAB is the difference of the translations tB and tA and αAB denotes the angular
deviation between the two rotations RA and RB, given by [350]:

αAB = arccos

(
tr((RA)−1RB)− 1

2

)
(10.5)

where tr(M) denotes the trace, i.e. the, sum of the diagonal elements of a matrix
M.

With these two thresholds, it is easily possible to decouple the influence of the
angular and translational deviation between two transformations when looking for
matching transformations and adapt the parameters individually to the complex to
be assembled, if required. While default parameters should already be applicable in
most cases, different applications for such a decoupling are thinkable: for example,
depending on the size and shape of the monomers as well as the complex topology,
angular deviations between matching transformations might be more tolerable than
translational differences or vice versa. Furthermore, if additional information on the
sampling parameters of the docking algorithm used to generate the transformations
is available, e.g., if the rotational degrees of freedom are sampled more densely than
the translational ones, the allowed maximum angular deviation amax could, e.g., be set
to smaller values while lmax, the cut-off for the translational distance, might require
larger values to determine matching transformations.

Later, we could show that the RMSD of a protein P under two rigid transformations
can be calculated in constant time, solely based on the two transformations and the
covariance matrix cov(P) of the protein’s atomic positions. The proof and the results of
the corresponding benchmark simulations we performed can be found in our related
work [351]. The closed formula for the constant-time RMSD measure is as follows:

RMSD(TA, TB) =

√
|tAB|2 + 1

n
tr(RAB · cov(P)) (10.6)

with n being the number of atoms in protein P. Let rmsdmax be the threshold for
the RMSD between the two transformations TA and TB, we define the RMSD-based
transformation match score as follows:

Srmsd(TA, TB) :=
(

max
(

1− RMSD(TA, TB)

rmsdmax
, 0
))2

(10.7)

Both scoring functions return a similarity score of 1 for identical transformations
and yield a score of 0 obtained when any of the cutoffs is reached or exceeded. While
Sda decreases linearly w.r.t. the rotational and angular deviation, Srmsd decreases har-
monically w.r.t. the RMSD. An exemplary decay of the RMSD-based score and the
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Figure 10.6: An exemplary decay of the RMSD-based transformation matching score and the
values of the complexes C1, C2, and C3. rmsdmax is set to 5Å. C3 achieves an optimal score
of 1 because an identical transformation could be identified in the set of docking poses (cmp.
Fig. 10.5). For C2, a roughly matching transformation was found, corresponding to a reduced
score. The best transformation found for C1 achieves an RMSD that is beyond rmsdmax and
thus yields a score of 0.

corresponding values for the three complexes C1, C2, and C3 with an (arbitrarily
chosen) cutoff of 5Å for rmsdmax is shown in Fig. 10.6.

Contrary to the heuristic deviation/angle-based measure, the RMSD-based score
is an exact expression of protein distances, even for proteins with principal axes of
different length, and uses an established measure to describe the deviation between
two poses. In contrast, the angle-/displacement-based score provides the possibility
to independently adjust the impact of angular and translational deviation. Because it
does not account for a rotation axis and instead implements only an angular deviation
cutoff, it disregards the actual shape of the protein subject to the transformation. Both
scores are implemented and will be discussed in the Results.
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A L G O R I T H M I C M O D E L I N G O F O L I G O M E R I C P R O T E I N
A S S E M B L I E S F R O M B I N A RY D O C K I N G D ATA

In the previous chapter, we have derived two similarity measures to score matching
transformations obtained when assembling protein complexes from pairwise dock-
ing data. In the following sections, we will now present how these measures can be
used to solve the problem of assembling a macromolecular oligomeric complex of K
proteins from binary dockings.

Based on the transformation matching score, we first formally define our assem-
bly problem in terms of an Integer Quadratic Program which describes theoretically
how oligomeric protein complexes can be assembled. However, we will demonstrate
several challenges for setting up and applying the IQP formulation in practice.

Consequently, in the concluding section of this chapter, we will present our heuris-
tic, greedy, iterative assembly algorithm that is able to assemble a large variety of dif-
ferent protein complexes. The algorithm is called 3D-MOSAIC (3-Dimensional Model-
ing of Oligomeric Structural Assemblies based on pairwise Interaction Combination).

11.1 an integer quadratic program formulation of the complex as-
sembly problem

To formally describe the problem of assembling macromolecular oligomeric assem-
blies from pairwise dockings, we can represent it as a discrete optimization problem
in the form of an Integer Quadratic Program (IQP) [352]. The aim of our IQP is to
determine a complex of size K, i.e., containing K monomers in total, that yields a
maximal overall transformation match score of the involved monomers w.r.t. the un-
derlying set of pairwise docking poses D from which the complex is assembled. In
the following, we describe the prerequisites and the definition of an IQP to solve the
the complex assembly problem.

11.1.1 Prerequisites

In this section, we formally define the representation and properties of the monomer
placements that can be obtained for a complex of size K on the basis of a set D of
docking poses and which are required for the IQP.

11.1.1.1 Monomer Placements

Each pairwise docking pose d ∈ D with d = (i, e, T) (Def. 9.1) w.r.t. to the directed
interface i = (z, b, p1, p2) (see Section 9.2) describes the orientation of a ligand protein
of type p2 ∈ P w.r.t. to a receptor protein of type p1 ∈ P in a binding mode labeled
with id b ∈ B, according to transformation T.

The assembly of complexes using such pairwise docking poses requires the place-
ment of an initial monomer which does not depend on any docking pose. The place-
ment of such a monomer can be described through introduction of additional artificial
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start docking poses (cmp. Def. 9.1), one per protein type p ∈ P. Such poses do not cor-
respond to a complex binding mode (b = 0), require no receptor protein type (r = 0),
no direction (z = 0), no interaction energy (e = 0) and no explicit transformation
(T = I). These poses comprise the identity set D0:

D0 := {((0, 0, 0, p), 0, I)|p ∈ P} (11.1)

The full set of docking poses is then given by:

D∗ := D0 ∪D (11.2)

For a complex comprising K monomers, a product of k ∈ {1, ..., K} transformations
associated with k sequentially chosen docking poses d1, ..., dk ∈ D∗ (each docking pose
can be chosen multiple times) represents a so-called k-combination of transformations.
Such a k-combination is considered a valid monomer placement M, if the following
restriction are fulfilled:

1. The first pose d1 used for a particular k-combination must be from the set of
initial poses, i.e., d1 ∈ D0.

2. The protein type of the receptor of di, the i-th pose in the k-combination, must
be equal to the protein type of the ligand of pose di−1, i ∈ {2, ..., k}, i.e. R(di) =

L(di−1) (Sect. 9.2).

3. When considering distinct interfaces, the interfaces I(di−1), I(di) ∈ I (Sect. 9.2)
associated with two sequentially chosen poses di−1, di, i ∈ {2, ..., k} for the k-
combination must satisfy I(di) 6= −I(di−1) (Sect. 9.2). That is, no pose di may
be used whose associated directed interface is equal to the reverse of the inter-
face associated with di−1. By choosing pose di−1, the i− 1-th monomer is placed,
consequently the corresponding interface of this monomer, which is given by
−I(di−1) is considered occupied. Because it is occupied, a pose di must be asso-
ciated with a different interface, hence I(di) 6= −I(di−1).

The set of valid monomer placements w.r.t. D∗ is called M.

11.1.1.2 Information Associated with Monomer Placements

The definition of constraints for our IQP requires additional information on the prop-
erties of the placements contained in M. Hence, we assume that each monomer place-
ment Mi ∈M, i ∈ {1, ..., |M|} has the following labels:

• T(i) ∈ R(4,4), the transformation of Mi, i.e., the product of the transforma-
tions associated with the individual docking poses selected for k-combination
Mi (cmp. Eq. 10.1).

• Protein(i) ∈ P, the protein type of the monomer which is placed by k-
combination Mi.

• Parent(i) ∈ {0, ..., |M|}, the index of the (k − 1)-combination which yields k-
combination Mi as T(Mi) = T(MParent(i)) · T, where T denotes the transforma-
tion associated with a docking pose selected from D∗. The parent is 0 if and only
if k = 1, i.e., if Mi corresponds to the placement of an initial monomer.

• Inter f ace(i) ∈ I, the interface at Mi’s parent MParent(i) via which the most recent
docking pose is attached (compare Section 9.2).
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11.1.1.3 Compatibility of Monomer Placements

Not all pairs of monomer placements are necessarily compatible with each other: the
proteins corresponding to these placements might overlap significantly, leading to
severe steric clashes. Such pairs of placements will not lead to a plausible solution.
We thus assume that the information on clashing pairs of monomer placements is
represented by a matrix C ∈ N(|M|,|M|), where each entry Ci,j denotes the number of
clashing atoms for the proteins Protein(i) and Protein(j) w.r.t. monomer placements
Mi, Mj ∈ M, where M denotes the set of valid monomer placements as described in
Section 11.1.1.1.

Similarly, we require the transformation match score for any pair Mi, Mj with
Protein(i) = Protein(j). To this end, let sim(T1, T2) denote one of the transforma-
tion match scores between two transformations T1, T2, as presented in the previous
chapter, i.e., Sda(T1, T2) (Eq. 10.4) or Srmsd(T1, T2) (Eq. 10.7). We assume that the pair-
wise transformation match scores for any two monomer placements Mi, Mj ∈M w.r.t.
the transformations T(i), T(j) are given by a matrix S as follows:

Si,j =

{
sim(T(i), T(j)) if Protein(i) = Protein(j)

−1 otherwise
(11.3)

Cases with Protein(i) 6= Protein(j) are never considered in practice, because only
the matching of transformations corresponding to the same protein type is reasonable,
hence Si,j = −1 in such cases.

11.1.2 Representation as an Integer Quadratic Program

For our IQP, we require two different kinds of indicator variables. The first one, bi ∈
{0, 1} , i ∈ {1, ..., |M|}, indicates whether the monomer represented by Mi ∈ M is
built, i.e., has been selected to be considered part of the complex.

The number of instances per protein id p ∈ P in the complex is given by its stoi-
chiometry S(p), thus we must guarantee that only the allowed number of instances
per protein id is built:

|M|

∑
i=1

bi · δProtein(i),p = S(p) ∀p ∈ P (11.4)

Moreover, all built monomers in the complex must be connected: for each monomer
there must be a second monomer in the complex that acts as a parent for the first
monomer. Only one built monomer acts as the initial one and has no parent:

|M|

∑
i=1

bi · δ0,Parent(i) = 1 (11.5)

All other built monomers must have another built monomer as a parent:

|M|

∑
i=1

|M|

∑
j=1

bi · bj · δi,Parent(j) = K− 1 (11.6)
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Furthermore we do not allow severe clashes between pairs of built monomers.
Given an upper threshold N on the allowed number of clashing atoms, we obtain:

bi · bj ·Ci,j ≤ N ∀i, j ∈ {1, ..., |M|} (11.7)

Each set of bi fulfilling the above conditions is considered a potential complex solu-
tion.

For any particular Mi ∈M in this candidate solution, we now want to find docking
poses that, when applied w.r.t. the orientation of other monomers in the complex
candidate, produce monomers M′i that result in a similar transformation to that of Mi.
The greater the similarity, the greater the support for the hypothesis that Mi is a good
choice in the context of the surrounding monomers. Because M contains all possible
valid combinations of docking poses from D∗ for a complex of size K, M′i must also
be part of M.

To indicate whether we use a particular monomer Mj to match monomer Mi, i, j ∈
{1, ..., |M|}, we introduce a second set of indicator variables mi,j ∈ {0, 1}.

Finding the maximal matching between monomers can then be formulated as a
maximization problem of the following form:

max
b,m

|M|

∑
i=1

bi ·
|M|

∑
j=1

mi,j · Si,j (11.8)

To guide the use of matching monomers, we have to impose some additional con-
straints on the matching monomers. In the remainder of this section, let h, i, j be
∈ {1, ..., |M|}. A monomer i can be matched by at most K other monomers in a
complex of size K:

|M|

∑
j=1

mi,j ≤ K ∀i ∈ {1, ..., |M|} (11.9)

In particular, the monomer optimally matching a built monomer i w.r.t. its parent
is monomer i itself, thus we have:

mi,i = 1 ∀i ∈ {1, ..., |M|} (11.10)

In all other cases, when a monomer j is built, it must not be used to match another
built monomer i 6= j (if bj = 1, mi,j must equal zero, otherwise it can assume 0 or 1):

mi,j ≤ 1− bj ∀i, j ∈ {1, ..., |M|} , i 6= j (11.11)

Each monomer j may be used at most once to match another monomer:

|M|

∑
i=1

mi,j ≤ 1 ∀j ∈ {1, ..., |M|} (11.12)

If a monomer j is used to match a built monomer i, i and j have to be of the same
kind of protein (trivial for the above equation).

mi,j ·
(

1− δProtein(i),Protein(j)

)
= 0 ∀i, j ∈ {1, ..., |M|} (11.13)
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Furthermore, j must have a parent monomer h among the built monomers:

mi,j ·
(

1−
|M|

∑
h=1

bh · δh,Parent(j)

)
= 0 ∀i, j ∈ {1, ..., |M|} (11.14)

Any two monomers i, j with i 6= j used to match the same monomer h must origi-
nate from different parents:

mh,i ·mh,j · δParent(i),Parent(j) = 0 ∀h, i, j ∈ {1, ..., |M|} , i 6= j (11.15)

Furthermore, they must be obtained via assembly from different interfaces (in the
distinct interface case):

mh,i ·mh,j · δInter f ace(i),Inter f ace(j) = 0 ∀h, i, j ∈ {1, ..., |M|} , i 6= j (11.16)

Summarizing, the transformation match score optimization problem can then be
written as an Integer Quadratic Program of the form:

Constraints

max
b,m

|M|

∑
i=1

bi ·
|M|

∑
j=1

mi,j · Si,j

s.t
|M|

∑
i=1

bi · δProtein(i),p = S(p) ∀p ∈ P |P|

|M|

∑
i=1

bi · δ0,Parent(i) = 1 1

|M|

∑
i=1

|M|

∑
j=1

bi · bj · δi,Parent(j) = K− 1 1

bi · bj · Ci,j ≤ N ∀i, j ∈ {1, ..., |M|} |M|2
|M|

∑
j=1

mi,j ≤ K ∀i ∈ {1, ..., |M|} |M|

mi,i = 1 ∀i ∈ {1, ..., |M|} |M|
mi,j ≤ 1− bj ∀i, j ∈ {1, ..., |M|} , i 6= j |M|2 − |M|
|M|

∑
i=1

mi,j ≤ 1 ∀j ∈ {1, ..., |M|} |M|

mi,j ·
(

1− δProtein(i),Protein(j)

)
= 0 ∀i, j ∈ {1, ..., |M|} |M|2

mi,j ·
(

1−
|M|

∑
h=1

bh · δh,Parent(j)

)
= 0 ∀i, j ∈ {1, ..., |M|} |M|2

mh,i ·mh,j · δParent(i),Parent(j) = 0 ∀h, i, j ∈ {1, ..., |M|} , i 6= j |M|3 − |M|2

mh,i ·mh,j · δInter f ace(i),Inter f ace(j) = 0 ∀h, i, j ∈ {1, ..., |M|} , i 6= j |M|3 − |M|2

In the above formulation, the number of indicator variables amounts to |M|2 + |M|
(mi,j with i, j ∈ {1, ..., |M|} and bi with i ∈ {1, ..., |M|}). Furthermore, we require
a grand total of constraints of 2|M|3 + 2|M|2 + 2|M| + |P| + 2. In the worst case,
|M| itself is exponential in the number K of monomers in the complex, i.e., |M| =
∑K

k=1 |D|(k−1) (M contains all possible k-combinations of transformations). We thus
see that an exact solution of the complex assembly problem using the above IQP is
impracticable even for small K and |D|.
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11.2 3d-mosaic : a heuristic algorithm to solve the complex assembly

problem

In the previous section, we have presented a formal definition of our complex assem-
bly problem in an integer quadratic program (IQP) representation. However, we have
seen that solving the IQP is impracticable even for complexes with a small number of
monomers and small sets of pairwise docking poses.

Algorithmically, an exhaustive search for the solution maximizing the complex
match score, i.e., the sum of transformation match scores obtained for all monomers
(Section 10.3), would require the construction of a tree that describes all possible
monomer placements w.r.t. the used set of pairwise docking poses, because an esti-
mation of the solution maximizing the complex match score from a sub-tree is impos-
sible: for example, sub-complexes with a maximal score may become invalid when
the last monomer to be attached produces severe steric clashes. For sub-complexes
with a non-maximal score, attaching the last monomer may greatly increase the com-
plex match score such that all previously maximal solutions are outperformed. Conse-
quently, sub-solutions and their scores cannot be used to reliably estimate the globally
optimal structure and the full combinatorial space must be explored to find the solu-
tion maximizing the complex match score. This task is computationally not tractable,
even for small complex sizes and numbers of docking poses (cmp. Sect. 10.1).

As a practical, albeit inexact alternative, we employ a heuristic tree-based greedy
strategy implementing the transformation match score presented in Section 10.3 to
assemble oligomeric complexes from monomeric building blocks. The algorithm is
called 3D-MOSAIC (3-Dimensional Modeling of Oligomeric Structural Assemblies
by efficient pairwise Interaction Combination).

Like the IQP, the only types of information the algorithm requires are high-
resolution representative structures and the stoichiometry of the individual protein
types involved as well as the pairwise dockings corresponding to the assumed native
binding modes between the components of the complex. Prior symmetry information
is not required and is inferred in the course of the algorithm.

In the first subsection, we present a short, intuitive summary of 3D-MOSAIC and
present an exemplary assembly tree to illustrate the top-level algorithm. Susequently,
we address the algorithm in more detail, especially the assembly, generation of candi-
date solutions through monomer attachment, the complex candidate scoring, as well
as the post-processing including clustering and symmetry optimization. Several op-
tions have been implemented to adapt the algorithm to different use cases. They are
shortly presented in Sect. B.13; here we describe the default workflow of the algo-
rithm.

11.2.1 Algorithm Outline

3D-MOSAIC requires the 3D structures of all monomers of the complex and informa-
tion on their stoichiometry. In addition, pairwise docking poses for each pair of in-
teracting proteins, grouped w.r.t. the corresponding binding mode, must be provided.
Using these poses, 3D-MOSAIC iteratively assembles protein complexes as follows.

Starting from a core monomer with a maximum number of interfaces, in each iter-
ation, new child complex candidates, each extended by one monomer, are generated.
Each monomer in an ancestor solution can act as a receptor in subsequent iterations,
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as long as it still provides unoccupied interfaces. For potential ligand protein types
that have not exceeded their stoichiometry in the complex, a new monomer can be
attached to a receptor provided that i) a docking pose of the ligand with the receptor
is available, ii) the two proteins interact across an interface identical to an unoccupied
one in the complex, and iii) no significant steric clashes to other monomers in the
parent complex candidate are found.

Subsequently, it is investigated whether additional interfaces to the ancestor
monomers in the parent complex candidate are established: using the transformation
match score, the ancestor interfaces are queried for a docking pose that best matches
the placement of the new ligand monomer. The total score over all such poses (com-
plex match score) provides the main ranking criterion for the new set of solutions,
followed by a ranking w.r.t. complex energy for solutions with equal complex match
score. A subsequent clustering of complex candidates ensures a diverse solution set
for the next iteration. After the final iteration, a symmetry optimization is applied if
possible.

An illustration of 3D-MOSAIC and an exemplary assembly can be found in Fig.
11.1.

11.2.2 Preliminary Remarks

In the following subsections, we will present details on individual parts of the algo-
rithm that are of particular importance for this work. Details on algorithms of sec-
ondary importance (e.g., those used for clustering and clash checking) can be found
in Appendix B. The notation used throughout the remainder of this chapter as well as
in the presented pseudocode follows the definitions given in Chapter 9. Non-trivial
capitalized functions are either tagged with a link to the corresponding pseudocode
or, where no pseudocode is given, to the corresponding section explaining the respec-
tive algorithm.

The pseudocode presented in the following subsections does not necessarily com-
ply with the real implementation in terms of the order of instructions (which can
for example be different to achieve runtime speed-ups) nor is it complete w.r.t. the
different possible use cases to which the algorithm can be applied. They rather rep-
resent a simplified description of the steps performed by 3D-MOSAIC to assemble
macromolecular oligomeric complexes.

Finally, for the sake of simplicity, we also assume all essential data (options, protein
and complex representations, etc.) to be globally accessible throughout the algorithm.

11.2.3 Initialization

Before the actual assembly can start, several initialization steps have to be performed.
First, the algorithm options, protein structures A(p) (A for atom set) corresponding
to the individual protein types p ∈ P of the complex, their stoichiometries S and
the docking poses D from which the complexes will be assembled must be retrieved.
If a reference complex against which to evaluate the generated complexes and an
alignment of the reference chains against the monomers used for the assembly are
given, they must also be available.
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Figure 11.1: Illustration of 3D-MOSAIC on an exemplary assembly of the homo-hexameric
hemocyanin from the California Spiny Lobster (panulirus interruptus, pdb code 1hcy). In each
iteration, new monomers can be attached to all previously retained solutions. If a matching
interface is found, the complex score might increase and the corresponding complex might
be ranked further up in the list of solutions (green double-tilted arrows). Solutions similar to
better-ranked ones or yielding severe steric clashes are discarded. After complex construction,
a symmetry optimization can be performed.

The set of poses D is then split into subsets w.r.t. the interfaces with which the
poses are associated: we obtain a map D, with D(i) providing the set of docking
poses associated with interface i ∈ I.

Subsequently, D is used to detect interfaces representing symmetric binding modes.
For each such mode, asymmetric poses are disabled and the corresponding two in-
terfaces are implicitly treated as a single one (Section B.2). Furthermore I is used to
determine whether the underlying complex forms a mono-layered ring, because here,
a transformation matching is only allowed when the last monomer is attached (Sec-
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tion B.3 respectively). If a mono-layered ring is found, a boolean variable t is set to
FALSE, indicating that transformation matching is not to be perfomed until the final
iteration, otherwise to TRUE.

Protein representations for steric clash checking, complex matching, and, if re-
quested, evaluation against a reference complex are generated (Sections B.4, B.8, B.11).
In addition, the maps for the determination of best-matching poses (Sect. B.5) are
filled with all enabled docking poses, one map for each interface i ∈ I of each pair of
interacting protein types.

11.2.4 Iterative Assembly

The iterative assembly process is described in Alg. 11.1. It serves as a wrapper for
the repeated extension of complex candidates obtained from the previous iteration.
The data it requires are the map D containing the docking poses grouped w.r.t. the
corresponding interfaces I, the protein types P with the map S of corresponding
stoichiometries, as well as the boolean variable t indicating whether transformation
matching is enabled.

First, the final complex size K must be calculated: it corresponds to the number
of monomers in the complex and can be determined as the sum over the individual
monomer stoichiometries S(p), p ∈ P. The level variable k corresponds to the k-th
monomer the algorithm is about to attach, while counter id denotes the unique ID of
the next complex candidate to be generated. Both are initialized with 1.

In addition, the following basic data structures are required: a complex candidate
tree T (intially NIL) as well as an initially empty set C of complex candidates. The
tree T will store information about the relationships between complex candidates as
well as about the match scores for the given docking poses (Sect. B.6); furthermore,
it keeps track of which poses are enabled or disabled and which interfaces of each
complex candidate are locked for attachment.

In case the assembly is to be picked up at a certain checkpoint, i.e., a set of complex
candidates representing sub-complexes produced by a previous 3D-MOSAIC run, a
restart file F must be given (Section B.12): the tree T with corresponding relationships
between complex candidates as well as the so-far determined best match scores for
each docking pose is then retrieved from F. Furthermore, both the set of complex
candidates C obtained in the most recent iteration before the file was written (k− 1)
and the next unique id are loaded from F.

If no restart file is given, additional data must be initialized: the core protein type
p0 is determined as the receptor protein type with a maximum number of interfaces.
From p0, an initial monomer m0 ← (p0, I) is created using the identity transformation
I (which places a protein instance A(p0) at the origin, since all proteins A(p), p ∈ P

are centered).
m0 in turn is used to initialize the root complex candidate c0 ← (0, m0, 0, 0, 0, 0, 0, 0)

which is then inserted into the initial complex candidate set C ←
{

c0}. T is then
initialized from this initial set and the initial match score of each docking pose is set
to zero.

Now, the actual iterative assembly can start: as long as the full complex size K is
not reached, i.e., level k < K, a new tree level is populated with complex candidates,
yielding a set of child candidates C′ (Sect. 11.2.5) from the parent generation C. The
finalization phase of the current tree level (Sect. 11.2.8) entails the following two steps:
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Algorithm 11.1 Iterative Assembly
1: function assembleComplexes(D, I,P, S, t)
2: . Total and current complex size, candidate id and initial set of candidates
3: K ← ∑p∈P S(p)
4: k← 1
5: id← 1
6: C ← ∅
7: T ← NIL
8:

9: . Load data from restart file if present
10: F ← getOption(“RESTART_INFILE”) ↪→Sect B.12

11:

12: if F 6= NIL then
13: (C, k, id, T)← load(F) ↪→Sect. B.12

14: else
15: . Find core protein type and initialize root monomer, candidate and tree
16: p0 ← getMaxInterfaceType(I,P)
17: m0 ← (p0, I)
18: c0 ← (0, m0, 0, 0, 0, 0, 0, 0)
19: C ←

{
c0}

20: T ← initTree(T, C, D)
21: end if
22:

23: . Iteratively assemble and post-process (e.g., placement interpolation and clus-
24: . tering) the solutions in each iteration until the full complex is constructed
25: while k < K do
26: (C′, id)← populateLevel(C, D,P, I, T, id, t) ↪→Alg. 11.2
27: C ← finalizeLevel(C′, T) ↪→Alg. 11.5
28: k← k + 1
29: end while
30:

31: . Write and Evaluate complex candidates
32: for all candidates c ∈ C do
33: writeAndEvaluate(c) ↪→Sect. B.12

34:

35: . Try symmetry-optimization and re-evaluate if successful
36: cs ← optimizeSymmetry(c) ↪→Sect. B.10

37:

38: if cs 6= NIL then
39: writeAndEvaluate(cs)
40: end if
41: end for
42: end function
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the placement of the most recently attached monomer of each complex candidate in
C′ can be optionally interpolated from all matching transformations (see Fig. 11.2 in
Sect. 11.2.8), and a set C of diverse solutions which can serve as the starting point for
the next iteration is obtained from C′.

After the complexes haven been fully assembled, i.e., a final set of complex candi-
dates C has been obtained, each single complex candidate c ∈ C is transformed into
a PDB structure that is written to a file. In addition, if a reference complex is given,
c can be evaluated (Sect. B.11) against that structure (this functionality is used for
validating the algorithm on data sets with known complex structure). Subsequently,
a symmetry optimization (Sect. B.10) of the current complex candidate is attempted,
yielding cs if successful. cs can then be written and evaluated as well.

The algorithm then terminates after all final solutions have been processed.

11.2.5 Level Population

The level population, i.e., the generation of new complex candidates through attach-
ment of new monomers to a set of parent solutions is presented in Alg. 11.2.

The algorithm requires the parent set C, the docking poses D used for attachment,
as well as the protein types P and interfaces I present in the complex. Furthermore,
the complex candidate tree T, the unique id of the next complex candidate to be
generated and a variable t indicating whether transformation matching should be
performed are given.

First, a new empty set C′ ← ∅ storing the solutions generated in the current iter-
ation is initialized. Additionally, a set Ds is required to store the matching docking
poses found in the current level, along with their corresponding match score.

Then, the set of candidates C obtained in the previous iteration is sequentially pro-
cessed, i.e., each complex candidate c ∈ C is iteratively considered. First, the protein
types P(c) ⊆ P whose stoichiometries have not yet been exceeded in c are deter-
mined. Similarly, the unoccupied interfaces I(m) ⊆ I of each monomer m ∈ M(c) of
the complex candidate are identified.

The algorithm then tries to extend each complex candidate c as follows: for each
receptor monomer r ∈ M(c) the algorithm iterates over all free interfaces i ∈ I(r)
whose ligand protein type L(i) is present in the set of available protein types P(c).

Each docking pose d ∈ D(i) is then checked in turn: if d is enabled, it can be used
to attempt the attachment of a new monomer l to the current complex candidate c at
receptor monomer r (see Sect. 11.2.6). From the attempt, a new complex candidate c′

with corresponding ligand monomer l is obtained.
If the attempt was successful, i.e., c′ 6= NIL, the monomer match score Sm of c′,

i.e., the sum of the transformation match scores (see Sect. 10.3) over all ancestor
monomers a ∈ M(c) \ {r} that provide a suitable docking pose matching l at any
of their interfaces, is determined (see Sect. 11.2.6). In other words, Sm indicates how
well the placement of l coincides with suitable interfaces at any previously present
monomers, i.e., how well native binding modes with other monomers in the complex
are resembled upon placement of l. Based on the assumptions made in Section 10.2,
we can consider complexes with a large score to be energetically favorable.

The monomers and poses from which the monomer match score is obtained as well
as their individual match scores are stored in Dm.
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Algorithm 11.2 Level Population
1: function populateLevel(C, D,P, I, T, id, t)
2: u← getOption(“NUM_TMP_SOLUTIONS_TO_KEEP”)
3:

4: . New complex candidate set C′ and set Ds for scored poses
5: C′ ← ∅
6: Ds ← ∅
7:

8: . Try to generate new solutions from each previously generated candidate
9: for all candidates c ∈ C do

10:

11: . Determine all protein types whose stoichiometry is not exceeded in c
12: P(c)← availableProteinTypes(c,P)
13:

14: . Determine the unused interfaces of each monomer
15: for all monomers m ∈ M(c) do
16: I(m)← availableInterfaces(m, I, T)
17: end for
18:

19: . Each free interface at each monomer of c can act as a site for attachment
20: for all receptor monomers r ∈ M(c) do
21: for all available interfaces i ∈ I(r) do
22:

23: . Examine only interfaces with available ligand protein type
24: if ligand type L(i) ∈ P(c) then
25:

26: . Consider only the enabled docking poses of interface i
27: for all docking poses d ∈ D(i) do
28: if enabled(d, T) then
29:

30: . Try to attach a new ligand without severe clashes
31: (c′, l)← attemptAttachment(d, r, c, i, id, T) ↪→Alg. 11.3
32:

33: if c′ 6= NIL then
34: (Sm, Dm)← monomerMatchScore(c′, r, l, i, I, D, t, T)
35: ↪→Alg. 11.4
36: S(c′)← S(c) + 1 + Sm

37: id← id + 1
38: C′ ← insert(C′, c′, u)
39: Ds ← updateScores(Ds, Dm)
40: end if
41: end if
42: end for
43: end if
44: end for
45: end for
46: end for
47:

48: T ← updatePoseScores(Ds, T)
49:

50: return C′, id
51: end function
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The overall complex match score S(c′) is then calculated as follows:

S(c′) := 1 + S(c) + Sm (11.17)

In other words, the complex match score of c′ is the sum of three terms. First, the
score for the actual attachment of a new monomer l to r: obviously, w.r.t. receptor r, d
is already the docking pose yielding an optimal, in fact perfect, transformation match
score. Hence, the contribution of the pose used for the attachment itself to the overall
score is 1. The second term corresponds to the already calculated S(c) for the parent
complex candidate c and the third term to the above explained monomer match score
Sm.

By construction, the complex match score of the monomeric complex c0 (cmp. Sect.
11.2.4) is S(c0) = 0, because no attachment or matching can be performed with a
single monomer. Consequentially, the score for any dimer c� is S(c�) = 1 + S(c0) = 1,
because a transformation matching to other monomers can only take place if the
complex candidate has at least three monomers. Hence, while in subsequent iterations
ranking is performed based on the transformation matching score, in the first iteration
the algorithm must rely on the ranking w.r.t. computed complex energy which is the
sum of all docking scores used for assembly and transformation matching (which is
updated in line 24 of Alg. 11.3 and line 43 of Alg. 11.4).

Fortunately, in the first iteration, near-native solutions are likely to be found among
the first several hundreds or thousands docking poses, a still tractable number. But
unless these poses are ranked very well, the combinatorial explosion will likely lead
to a severe down-ranking of viable solutions when relying on docking scores in subse-
quent iterations. Hence, finding the near-native solutions using docking scores alone
will become an infeasible task.

In contrast, the transformation match score which estimates how well the placement
of l conforms with native interactions with other complex monomers does not rely
on the docking scores but favors complex candidates where as many binding modes
as possible are simultaneously satisfied; docking scores are only used as a ranking
criterion for complex candidates c1, c2 ∈ C′, c1 6= c2 when S(c1) = S(c2).

Along with the complex match score, the following updates are performed: c′ is
added to the set of new complex candidates C′, if |C′| < u (the maximum number of
temporary solutions to keep) or if its complex match score is greater than the smallest
one in C′. In the latter case, the smallest one is discarded, hence |C′| never exceeds u.

Furthermore, the unique id is increased and Ds, containing the matching poses with
the obtained match scores, is updated by Dm, the corresponding matching poses and
scores obtained for c′.

Once all complex candidates c ∈ C have been processed, the match scores of all
matching poses in Ds are updated, i.e., if for a particular pose d from Ds the new
match score is better than the one already stored in the tree T, T is updated w.r.t. the
new score of d.

Finally, the new set of complex candidates C′ along with the unique id counter is
returned.

11.2.6 Monomer Attachment

Alg. 11.3 represents the process of monomer attachment. It requires a docking pose d
as well as the parent complex candidate c, its receptor monomer r and the interface i,
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Algorithm 11.3 Monomer Attachment
1: function attemptAttachment(d, r, c, i, id, T)
2: tc ← getOption(“MAX_CLASHES”)
3:

4: . Initialize transformation and type for a potential new monomer m
5: . to be attached, as well as overall clash count
6: Tr,d ← T(r) · T(d)
7: l ← L(d)
8: m← (l, Tr,d)

9: nc ← 0
10:

11: . Check for clashes of m with all ancestor monomers
12: for all monomers a ∈ M(c) \ {r} do
13: na ← countClashes(m, a) ↪→Sect. B.4
14:

15: if na > tc then
16: return (NIL,NIL)
17: end if
18:

19: nc ← nc + na

20: end for
21:

22: . If no significant clashes have been found, determine total energy,
23: . total number of clashes, and generate a new complex candidate
24: E← E(c) + E(d)
25: Nc ← C(c) + nc

26:

27: c′ ← (id, m, c, r, 0, E, Nc, 0)
28:

29: . Mark the interfaces i of monomer r and −i of m used for attachment
30: . in c′ as locked for later levels of tree T
31: T ← lockInterfaces(r, i, m,−i, c′, T) ↪→Sect. B.1
32:

33: return (c′, m)

34: end function
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where the attachment is to be attempted. In addition, the unique id of a potential new
complex candidate, as well as the underlying complex candidate tree T are needed. A
threshold tc for the maximum allowed number of steric clashes is obtained from the
options.

First, the transformation Tr,d ← T(r) · T(d) placing a potential new monomer is
determined from the transformations T(r) and T(d) of receptor r and docking pose
d. A new monomer m is then generated from Tr,d and ligand type L(d). Likewise, a
counter nc for the overall number of clashes of m to other monomers in c is initialized.

Each of these monomers a ∈ M(c) \ {r} is then subject to a clash check with
monomer m (see Sect. B.4): if the obtained number of clashes na exceeds the threshold
tc, the attachment fails and the algorithm terminates by returning NIL for both the
potential new complex candidate and the potential new monomer.

If tc is not exceeded, the overall clash count nc is increased by the number of clashes
na between monomers a and m. If m produces no significant steric clashes with any
of the other monomers, it is a valid placement.

In that case, first the overall energy E← E(c)+ E(d) and the total number of clashes
Nc ← C(c) + nc for the new complex candidate are determined. A new complex can-
didate c′ ← (id, m, c, r, 0, E, Nc, 0) is then initialized from the unique id, the monomers
m and r, the parent complex candidate c, as well as energy E and clash count Nc.

Subsequently, the interface i of monomers r and the reverse interface −i of m (Sec-
tion 9.2) of c′ are locked in tree T for attachment during subsequent iterations.

Finally, the new complex candidate c′ and the new monomer m are returned.

11.2.7 Monomer Match Scoring

The monomer match scoring is a procedure that tries to determine whether an at-
tached ligand monomer satisfies additional interfaces of other monomers than the
actual receptor and is described in Alg. 11.4. The required input data are: the com-
plex candidate c′, the receptor and ligand monomers r and l, the interface i over which
the attachment occurred as well as the map D of docking poses partitioned w.r.t. the
corresponding interfaces, the available interfaces I, a variable t indicating whether a
transformation matching is to be performed and the underlying complex candidate
tree T.

First of all, the monomer match score Sm is set to zero. In addition, an empty set Dm

storing the best-matching docking poses of each monomer and interface, including
the corresponding match score, is initialized.

If no transformation matching is to be performed, e.g., a mono-layered ring was
detected during initialization and the attachment of the most recent monomer cannot
have led to a ring, Sm and Dm are returned and the algorithm terminates, otherwise
the algorithm proceeds as follows.

Each ancestor monomer a ∈ M(c), except the receptor r, is considered in turn.
First, the relative transformation Tl,a of the placement T(l) of ligand l w.r.t. to the
transformation T(a) of the ancestor is determined (cmp. Eq. 10.2):

Tl,a ← T(a)−1 · T(l) (11.18)

Then, each interface ia ∈ I(a), except interface i at which the ligand is attached,
is processed to determine potential matching transformations: the poses D(ia) corre-
sponding to interface ia are searched for a pose d that is most similar to transformation
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Algorithm 11.4 Monomer Match Scoring
1: function monomerMatchScore(c′, r, l, i, D, I, t, T)
2: . Match score, set of best-matching poses with scores, and match list
3: Sm ← 0
4: Dm ← ∅
5: matches← []
6:

7: . Do not match if we have a mono-layered ring and it is not yet closed
8: if t = FALSE and not isLastRingMonomer(c′, l, G) then ↪→Sect. B.3
9: return (Sm, Dm)

10: end if
11:

12: . Find for each interface of each ancestor monomer the best-matching pose
13: for all monomers a ∈ M(c′) \ {r, l} do
14: . Determine relative orientation of ligand monomer w.r.t. ancestor
15: Tl,a ← T(a)−1 · T(l)
16:

17: for all interfaces ia ∈ I(a) \ {i} do
18: (d, s)← findAndScoreBestMatchingPose(Tl,a, D(ia)) ↪→Sect. B.5
19:

20: if d 6= NIL then
21: matches← matches + [(s, d, ia, m)]

22: end if
23: end for
24: end for
25:

26: matches←sortBestToWorst(matches)
27: Imatch ← ∅
28: Mmatch ← ∅
29:

30: . Determine overall complex score w.r.t. a set of matching docking poses
31: . where no interface or monomer occurs twice
32: for all p ∈ matches do
33: (s, d, i, m)← p
34:

35: . Only consider the current match if the respective monomer or
36: . interface has not already been used in a match elsewhere
37: if i /∈ Imatch and m /∈ Mmatch then
38: Imatch ← Imatch ∪ {i}
39: Mmatch ← Mmatch ∪ {m}
40:

41: Sm ← Sm + s
42: Dm ← Dm ∪ {(s, d, m)}
43: E(c′)← E(c′) + E(d)
44:

45: . Lock interfaces i and −i connecting monomers m and l for c′ in T
46: T ← lockInterfaces(r, i, l,−i, c′, T) ↪→Sect. B.1
47: end if
48: end for
49:

50: return (Sm, Dm)

51: end function
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Tl,a. d is obtained as given in Eq. 10.3, the actual score s can then be obtained using
either the heuristic displacement-/angle-based transformation match score Sda (Eq.
10.4) or the RMSD-based score Srmsd (Eq. 10.7).

If a matching docking pose d with a score greater than zero has been found, the list
of matches is extended by another tuple containing the score s obtained for the pose
d at interface ia of monomer m.

After all ancestors and corresponding interfaces have been investigated, the list of
obtained potential matches is sorted, from best to worst score. In addition, two empty
sets Mmatch and Imatch are initialized, which are used to keep track of the interfaces
and monomers that have already been considered, and are updated in the following
procedure.

Because the ligand monomer l can only establish an interaction with one other
monomer over a particular interface, and can only use one interface to interact with a
particular monomer, we now must determine a set of docking poses where each inter-
face and monomer are only considered once. Assuming that better-matching docking
poses provide better support for a potential interaction between two monomers, we
investigate the list of matches from the best match down to the worst as follows:

For each potential match p from the list of matches, first the corresponding infor-
mation s, d, i, and m for the score, the used docking pose and interface as well as the
matching monomer is obtained. If i and m are present in the corresponding sets Imatch
and Mmatch, they have already been used for another matching docking pose.

Otherwise, they are added to the corresponding sets, Sm is increased by s, the set
of best-matching poses Dm is updated by d, meaning that d at interface i of monomer
m matches the placement of ligand monomer l, and the complex energy is updated.
Consequently, i at m and the corresponding reverse interface −i at l is locked in c′

w.r.t. to tree T.
After the full set Dm of best matching poses has been obtained, it is returned along

with the monomer match score Sm, before the algorithm terminates.

11.2.8 Level Finalization

Once the set of potential complex candidates for the current level has been obtained,
the final subset must be selected. This task is performed by the algorithm presented
in Alg. 11.5. The data it requires consist of the set C′ of complex candidates generated
in the current iteration as well as the underlying complex candidate tree T.

First, the number k of solutions to be retained for the next iteration as well as an
indicator variable interpolate are obtained from the options. Subsequently, an empty
set C of final solutions is initialized. The determination of the final solution set C is
performed as follows:

As long as the size of C is smaller than the given number of solutions k, the next-
best solution c′ ∈ C′ is considered. If no more solution is available, i.e., c′ = NIL, the
loop terminates.

If interpolate is set to TRUE, an interpolation is attempted (Sect. B.7): the final place-
ment of the most recently attached monomer is averaged using the original placement
and all transformations matching that placement (given by Dm, line 42 in Alg. 11.4);
the original candidate c′ is returned if the attempt failed due to steric clashes of the
interpolated ligand placement. If the attempt was successful, c′ is instead updated by
the new ligand placement as well as the number of clashes of the new ligand place-
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Algorithm 11.5 Level Finalization
1: function finalizeLevel(C′, T)
2: k← getOption(“NUM_SOLUTIONS_TO_KEEP”)
3: interpolate← getOption(“INTERPOLATE_LIGAND”)
4:

5: . The final, diverse set of complex candidates
6: C ← ∅
7:

8: . Iteratively process all generated solutions, from best to worst, until
9: . the k diverse solutions to retain for the next level are found

10: while |C| < k do
11: c′ ← next(C′)
12:

13: . Stop if no more solutions are available
14: if c′ = NIL then
15: break
16: end if
17:

18: . Try to interpolate the most recently attached monomer if requested
19: if interpolate then
20: c′ ← attemptInterpolation(c′) ↪→Sect. B.7
21: end if
22:

23: . Check whether c′ can be clustered to a representative from the
24: . diverse set C
25: representative← cluster(c′,C) ↪→Sect. B.9
26:

27: . If no representative could be found, add c′ to C
28: if representative = NIL then
29: C ← C ∪ {c′}
30: end if
31: end while
32:

33: updateTree(T, C)
34:

35: . Remove any ancestor candidate without descendant in C
36: pruneAndDelete(T)
37:

38: . Write data to restart file if present
39: F ← getOption(“RESTART_OUTFILE”) ↪→Sect B.12

40:

41: if F 6= NIL then
42: write(F, C, T) ↪→Sect. B.12

43: end if
44:

45: return C
46: end function
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Figure 11.2: Illustration of the interpolation procedure, in analogy to the illustration scheme
used in Figures 10.4 and 10.5: TAs corresponds to the transformation used for attaching a
new monomer during assembly, TDock to a transformation of a matching docking pose found
during monomer match scoring (Sect. 11.2.7) w.r.t. monomer M1. Instead of using TAs to place
the new monomer, an interpolated transformation TAs,inter that describes a mean placement
of the monomer w.r.t. TAs and TDock can be applied.

ment w.r.t. all other monomers in c′ (an exemplary illustration of the interpolation
procedure is given in Fig. 11.2).

Then, a clustering procedure is applied to reduce the size of the solution space
by removal of the most similar solutions w.r.t. to a given threshold (see Sect. B.9):
c′ is tested for similarity to all previously retained solutions in the final set C. If no
representative candidate could be found in C, i.e., c′ is not similar to any solution
c ∈ C, c′ is added to C.

After the set of diversified solutions C has been obtained, the tree T is updated
accordingly, i.e., the relationships between the complex candidates from the current
and previous iteration are established.

Furthermore, because only k solutions are retained for the next iteration, T is inves-
tigated for parent complex candidates from the previous iteration that have no child
complex candidate in the current iteration and is pruned accordingly. The removal of
a childless complex candidate may produce another childless parent farther up in the
tree, hence this pruning procedure must be recursively repeated bottom-up whenever
a parent complex candidate without children is encountered.

Finally, when all updates have been performed, a restart file containing all the
information about tree structure, retained complex candidates and match scores for
docking poses can be written upon request.

Before terminating, the algorithm returns the diverse solution set C and the updated
tree T.

11.2.9 Topology-RMSD Based Evaluation

All solutions c ∈ C retained in the final iteration of the algorithm can be matched and
superimposed onto a reference complex R, if requested. The process of matching a
particular c onto R is described in detail in Sect. B.11, together with the standard mea-
sures that have been implemented to compare the quality of model c with reference
R.

However, such standard measures as for example Cα RMSD and fraction of native-
contacts can underestimate the quality of the obtained structure, in particular, when
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the monomers used to assemble the complex and corresponding ones present in the
reference exhibit conformational differences. For example alternative loop conforma-
tions can influence the obtained RMSD and thus the estimated quality of the model.
Consequently, the RMSD could indicate a wrong solution even though the overall
topology, i.e., the placements of the monomers and connectivities between them is
correct.

Based on the interaction RMSD (iRMSD) proposed by Aloy et al. [220] (described
in Subsect. 3.6.2) which can be used to compare structures of protein dimers and is
robust against conformational differences between the corresponding monomers in
the compared dimers, we propose a novel measure called topology-RMSD (tRMSD)
to compare the overall topology of the assembled complex with the reference. It is ap-
plicable to complexes with at least 3 monomers, while the original iRMSD is intended
for protein dimers. The performance evaluation of 3D-MOSAIC mainly relies on this
measure.

We provide two versions of tRMSDs which are applied to multimeric complexes as
follows: the global gtRMSD represents the iRMSD between all reduced monomer rep-
resentations (each monomer is represented by seven points as described in Subsect.
3.6.2) in c and the corresponding ones in the reference R after an optimal rigid su-
perimposition of the whole complex. In contrast, the local tRMSD, which we mainly
refer to in this thesis, represents the average over all iRMSDs of dimers interacting
in the reference R after optimal rigid superimposition to the corresponding matching
dimers in c.

From our experience by visual inspection, solutions with a local tRMSD ≤ 2.5Å can
generally be considered near-native reconstructions with an overall correct topology
and monomer orientation; smaller tRMSDs correspond to a higher structural similar-
ity to the reference.

11.2.10 Runtime Complexity

To determine the runtime complexity of 3D-MOSAIC, we use the following variables:
i = |I| the number of overall interfaces types of a complex, t = |P| the number of
protein types, m the size of the fully assembled complex in terms of the number of
monomers (the complexity of the iterative assembly will be dominated by the last
iteration), n the total number of atoms of the fully assembled complex, d = |D| the
total number of docking poses, k the solutions to retain per iteration, u the number of
temporary solutions to store.

The runtime complexities of the individual sub-algorithms are given in Chapter B,
here, we present the overall complexity.

level population The level population (Alg. 11.2) first iterates over at most k
solutions retained from the previous iteration, where the following is done for each
solution: i) the available protein types and ii) interfaces are determined, the former be-
ing in O(m), the latter in O(mi), because here, the open interfaces for each monomer
have to be checked. Now, for each of the monomers, the attachment via all open inter-
faces and docking poses is attempted, i.e., O(d) elements have to be considered (the
d docking poses are distributed over all interfaces), yielding iii) O(md) in total. For
each potential attachment, iv) the clashes to all other monomers in the current solution
have to be checked, leading to O(mn2) operations (Alg. 11.3). For allowed monomer
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attachments where no significant clashes are found, we v) try to find matching trans-
formations to all other monomers (Alg. 11.4). This step is in O(md · log(md)) because,
in the worst case, all the docking poses of all interfaces at all monomers have to be
investigated and sorted w.r.t. the match score (the calculation of the match score be-
tween two transformations is constant). The insertion into the set of child solutions
requires vi) O(log(u)), because only u potential child candidates with the best com-
plex scores are retained for level finalization. Furthermore, the update of the match
scores of each the d docking poses is in vii) O(m) (we can have at most m matching
poses per attached monomer). In total, the generation of child candidates from one
particular parent thus yields the following complexity (we can assume O(i) ∈ O(d)
because the d poses are distributed over i interfaces):

O(m)︸ ︷︷ ︸
i)

+O(mi)︸ ︷︷ ︸
ii)

+O(md)︸ ︷︷ ︸
iii)

·

O(mn2)︸ ︷︷ ︸
iv)

+O(md · log(md))︸ ︷︷ ︸
v)

+O(log(u))︸ ︷︷ ︸
vi)

+O(m)︸ ︷︷ ︸
vii)


= O(md · (mn2 + md · log(md) + log(u) + m))

= O(m2n2d + m2d2 · log(md) + md · log(u))
(11.19)

The above is done for all k solutions obtained from the previous iteration. Afterwards,
the match scores of all docking poses are updated, which is in O(d log(d)), leading
to a total complexity for one iteration of the level population of O(m2n2dk + m2d2k ·
log(md) + mdk · log(u)).

level finalization From the level population, we can have obtained at most u
new candidates from which now k have to be selected in the level finalization step
(Alg. 11.5).

For each of the u solutions the following complexity is obtained: the ligand interpo-
lation (O(m2n2) if enabled, see Section B.7) and the clustering have to be performed
(O(m5nku) over the whole set of u solutions, see Section B.9). In total, the complexity
of diversifying the data set is:

O(u) · O(m2n2) +O(m5nku)

= O(u · (m2n2 + m5nk))

= O(m5nku + m2n2u)

(11.20)

The tree update is in O(k), i.e., k retained solutions are inserted into the tree, the
tree pruning in O(km), because each previous level can only contain k solutions.

In total, the finalization of a particular level thus takes O(m5nku + m2n2u + km + k).
Because k ∈ O(u) we obtain O(m5nku + m2n2u).

iterative assembly The iterative assembly performs the previous two steps m
times, hence we obtain:

O(m) · (O(km2n2d + km2d2 · log(md) + mdk · log(u)) +O(m5nku + m2n2u))

= O(km3n2d + km3d2 · log(md) + m2dk · log(u) + m6nku + m3n2u)

= O(m6nku + m3n2dk + m3n2u + m3d2k · log(md) + m2dk · log(u))
(11.21)
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Because k ∈ O(u), we can further simplify:

O(m6nku + m3n2dk + m3n2u + m3d2k · log(md) + m2dk · log(u))

= O(m6nu2 + m3n2du + m3n2u + m3d2k · log(md) + m2du · log(u))

= O(m6nu2 + m3n2du + m3d2k · log(md) + m2du · log(u))

(11.22)

total complexity In total, the initialization including reading and sorting of
the docking poses (O(d log(d))), their registration in the transformation hash maps
(O(d), the reading of the proteins (O(tn)), the ring detection (O(im)+O(t)), the clash-
tree construction (O(tn4)) and the generation of the required protein representations
(O(n3)), as well as reading a potential restart file (O(d log(d)) +O(km)) (see Chapter
B), has the following complexity:

O(d log(d) + im + tn4 + km) (11.23)

The evaluation and symmetry optimization of one solution are in O(m5n + n2) and
O(m7n + m5n3), which, for k final solutions gives a complexity of:

O(m7nk + m5n3k) (11.24)

In total, summarizing over initialization, iterative assembly and post-processing, we
get the following complexity:

O(d log(d) + im + tn4 + km)

+ O(m6nu2 + m3n2du + m3d2k · log(md) + m2du · log(u))

+ O(m7nk + m5n3k)

= O(m7nk + m6nu2 + m5n3k + m3n2du + m3d2k · log(md) + m2du · log(u) + d log(d)

+im + tn4 + km)

= O(m7nk + m6nu2 + m5n3k + m3n2du + m3d2k · log(md) + m2du · log(u) + im + tn4)

(11.25)

We thus see that the overall performance is strongly dominated by the number
of monomers m the complex contains. The particularly complex part hereby is the
matching of the monomers of two complexes, especially during symmetry optimiza-
tion, where in addition to the matching, the interpolation of the transformations for
the obtained symmetry mappings has to be performed.

However, this detailed analysis also shows the contribution of the different parts
of the algorithm to the complexity, in particular that the population of a individual
level is comparatively cheap (O(m2n2dk +m2d2k · log(md) +mdk · log(u)) and that the
complexity during assembly is dominated by the level finalization, in particular the
clustering.

However, the actual performance of the algorithm strongly depends on the chosen
parameters, and how the above determined runtime complexities translate to practical
running times will be addressed in Subsection 13.1.10 of the results chapter.
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B E N C H M A R K D ATA S E T A N D E X P E R I M E N TA L D E S I G N

To thoroughly assess the performance of 3D-MOSAIC, we require a diverse bench-
mark data set that is representative of the protein complexes present in the PDB. In
addition, a careful experimental design testing the algorithm in a broad range of ap-
plication scenarios is required.

In the following sections, we will present the derivation of such a benchmark data
set, the preparation for the use with 3D-MOSAIC, and how the experiments have been
designed.

12.1 benchmark data set

The benchmark set on which 3D-MOSAIC is evaluated is based on the protein com-
plexes present in the PDB as of Oct. 23, 2012. Based on this set, we want to demon-
strate the strengths and weaknesses of the algorithm in dependence of the size of the
macromolecular assemblies, the number of distinct proteins involved, their stoichiom-
etry, and their topology. Second, we want to gain insights into how the assembly
performance changes in dependence of the source of the monomers used for the as-
sembly, i.e., whether the monomers are taken from an unbound structure, a dimer, a
foreign or the same complex.

We queried the Protein Data Bank for three different data sets of X-ray structures:
monomeric proteins (M), dimers (D), and oligomers (O) with at least three chains and
without modified polymeric residues, DNA, RNA, or antibodies (to avoid the inclu-
sion of designed antibodies). The query result contained 4601 ambiguous PDB entries
for which multiple biological assemblies with different copy numbers of the involved
proteins or the complex have been observed or are believed to be likely by the au-
thors. Additionally, hypothetical assembly variants may have been generated by the
PISA [353] or PQS [354] software, sometimes confirmed by the authors, but often not.
And furthermore, the biological assembly annotated by the authors in the PDB is not
always the same as the one assumed to be the correct one in the corresponding publi-
cation. We automatically removed the PDB entries with multiple biological assemblies
from the monomeric and dimeric sets, leaving 22906 monomers, 16602 dimers, and
12604 complexes. The remaining structures were ranked according to their structural
quality as defined by the PDB.

We then assigned the SCOP (version 1.75) [355] (cmp. Sect. 3.2.1) superfamily signa-
tures, i.e., the combination of all superfamilies of all chains in the assembly. Structures
having chains without SCOP assignment were discarded. For each chain of the remain-
ing complexes we then determined equivalent chains in the three data sets using the
100% sequence identity clusters from the PDB.

We derived four source data sets for the complexes to be assembled, called unbound,
dimer, foreign, and same as follows: for each protein type of each complex we first de-
termined all sequence-identical chains in the set of monomers (M), dimers (D), or
oligomers (O) described above. Each such sequence-identical chain was checked for
structural issues and discrepancies in the sequence provided by the RESSEQ entry in

125



126 benchmark data set and experimental design

the PDB file (PDB format specification [356]) and the amino-acid sequence present in
the actual structure: chains with missing internal loops, mutations or non-standard
residues were removed. If for a protein multiple sequence-identical chains were found,
the one with the highest structural quality as defined by the PDB was retained. Sub-
sequently, the complex categories unbound, dimer, foreign, and same were established
as follows: if all proteins of a particular complex have a sequence-identical chain in
M (D), this complex together with the corresponding chains from M (D) is added
to unbound (dimer). In the case of foreign, and same, all proteins of the complex must
have sequence-identical chains in O, in foreign these chains originate from a different
complex than the one under consideration, in same they are taken from the complex
itself. The four initial source data sets comprise 480, 842, 6003, and 9882 assemblies
and their corresponding sequence-identical chains, respectively.

All complexes were checked for structural problems. Some assemblies were found
to be split into several MODEL entries (PDB format specification [356]); here a unifi-
cation into one single structure, chain renaming and clash checking were performed.
Structures with more than 10 steric clashes per pair of monomers (heavy-atom dis-
tance 1.5Å), multiple connected components (heavy-atom contact range 6.5Å), or
those exceeding the limitations of the PDB format (more than 100,000 atoms or 62

chains) were discarded. When aiming for assembling even larger complexes, other file
formats must be used, however, the above restrictions apply to only 83 of the 12,604

complexes obtained from the PDB. Furthermore, by allowing for complexes with up
to 62 chains, our benchmark set already significantly extends the limits and diversity
of benchmark sets used in other studies [184, 185, 193] and is thus well-suited to
demonstrate the capabilities of 3D-MOSAIC.

Many of the retained structures contain hetero groups such as ligands or solvent
molecules. In such cases, the question often arises whether such compounds are re-
quired in docking applications. Cofactors for example can be considered an essential
part of the protein and should thus be explicitly dealt with in docking experiments.
In contrast, solvent molecules can often be ignored because they are often expected
to have no significant influence on the protein conformation or the interactions at
protein-protein interfaces and are mainly used to buffer the solution during crystal-
lization. Despite the sheer amount of hetero groups present in the PDB, to the best of
our knowledge, an extensive database with annotated functions of the hetero groups
present in the PDB is not available and can only be found for special subsets of com-
pounds of great interest, e.g., the EBI cofactor database [357].

We thus manually inspected all hetero groups present in at least 50 of the structures
of our data sets (186 compounds) and divided them into two sets, one containing
cofactors, ligands, and ions considered to be essential, the other one molecules which
can be ignored (mostly solvent). We also added the cofactors reported in the EBI
cofactor database to the former set. Ignored hetero groups were removed from the
structures, entries with compounds not present in one of the two lists were discarded.
We further discarded all structures with hetero groups not accountable for by the
atom parameter sets provided by the employed docking algorithm (RosettaDock, see
Sect. 12.6), leaving 285, 491, 3229, and 5043 entries for the unbound, dimer, foreign, and
same data sets, respectively.

Yielding a data set with a sufficient number of protein complexes of six or more
monomers, we decided to remove all complexes with fewer components. For each
remaining signature in the four data sets, we selected the assembly with the highest
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structural quality [358] as the representative of that signature. These 576 structures
were then manually verified against the corresponding literature and related PDB
entries. When no evidence could be found that the assembly under consideration is
correctly annotated, it was discarded from the data set and replaced (if available) by
the next-ranked valid structure of the corresponding signature. Complexes automat-
ically resolved by the Protein Structure Initiative (PSI) [359] were kept in the data
set.

The final source data sets sum up to 350 complexes in total, with unbound, dimer,
foreign, and same being comprised of 9, 10, 122, and 209 complexes, respectively.

12.2 binding mode detection

A general property of most complexes is that of recurring binding modes (modes
of protein-protein interactions). For example, the hexameric haemocyanin from pan-
ulirus interruptus - our initial test example during the development of 3D-MOSAIC -
consists of two trimers stacked on top of each other. Each monomer establishes inter-
actions to both other monomers in the same trimer (horizontal interactions, Fig. 12.1a),
and, due to a slight rotation of the trimers against each other, also two interfaces to two
monomers of the other trimer (vertical interactions, Fig. 12.1b). All horizontal binding
modes are identical, with our monomer being once on each side of the protein-protein
interface. The vertical binding modes of a particular monomer are distinct, however,
each of the monomers again establishes both of the interfaces. Furthermore, the ver-
tical binding modes are symmetric w.r.t. to the participating monomers. In total, we
thus have three distinct binding modes: the horizontal one with a redundancy of six,
the other two with a redundancy of three each.

(a) Horizontal, asymmetric binding modes of
1HCY

(b) Vertical, symmetric binding modes of 1HCY

Figure 12.1: The unique binding modes of 1HCY, the hexameric haemocyanin from panulirus
interruptus

Because it is sufficient to perform one binary docking run per unique binding mode,
we first determined the respective unique binding modes for each of the 350 com-
plexes as follows: for each monomer in each of the complexes, we aligned the cor-
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responding highest-quality sequence-identical chain (reference monomer) from the
corresponding source data set using the align command in PyMol [360]. The contacts
between pairs of aligned monomers were determined as those residues in both chains
whose Cα atoms are closer than 10.0Å from any residue in the other chain. The re-
sulting dimers, i.e., pairs of contacting chains, were then clustered with a Cα cluster
RMSD of 5.0Å. From each cluster, the one with the least severe clashes (heavy-atom
distance < 1.5Å) was kept as the representative of a unique binding mode.

12.3 single residue-pair interaction constraints (srpic)

In the previous section, we have determined the approximate binding modes of all
proteins in a complex. While such information is often available, for example from
low-resolution electron density maps [361] or protein-protein interactions in homolo-
gous proteins [362], this is not always the case.

But even in data-scarce situations, assumptions about potential binding modes be-
tween pairs of proteins can be made: for example studies on correlated mutations
[322, 323, 197, 199] of individual residues or cross-linking studies [326] can provide
information on whether a specific pair of residues from two proteins might interact.
We thus want to investigate if knowing one single interacting residue pair per native
binding mode is sufficient to successfully reconstruct the full complex.

To simulate such experiments, we determined for each unique binding mode in
a subset of complexes those pairs of surface residues (one from each monomer par-
ticipating in the binding mode) whose Cα atom distance is at most 10.0Å. For each
unique binding mode, one such residue pair was randomly selected and a docking
start dimer (required by RosettaDock) was generated as follows: The protein centroids
were determined and the monomers were rotated so that the Cα atoms and the cen-
troids were placed on a straight line such that the Cα atoms are placed between the
centroids at a Cα-Cα distance of 10.0Åİn addition, we derived distance constraints for
the Cα atoms of the interacting residues, so-called single residue-pair interaction con-
straints (SRPIC), which were applied during docking as explained in the following
section.

Analogously, we generated 10 false-positive dimers obtained from residue-pairs
where at least one of the residues was not involved in any binding mode, mimicking
a situation where noisy or wrong experimental data is available or additional dimer
binding modes are known or plausible. A manual optimization of the starting dimer
was intentionally not carried out to simulate the case where only very little knowledge
is available.

12.4 dimer preparation and docking experiments

All starting dimers were prepared for docking with RosettaDock’s prepack protocol
to pack side chains into low-energy conformations. For the tests in this work, we
employed two different docking scenarios. The docking poses generated for the vali-
dation on the benchmark set and the evaluation on Comeau’s data set [193] were gen-
erated using RosettaDock’s standard parameters (-dock_pert 3 8, -spin, -ex1 and -ex2aro)
for a local docking protocol in low-resolution mode (side chains are represented by
centroid atoms). The local refinement in the high-resolution stage was skipped as it
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can be expected that optimal side-chain and rigid-body orientations of the dimers
will differ from those in the complex because of additional energy contributions of
the other surrounding components. For each interface 10,000 decoys were generated.

For the SRPIC experiments (Section 12.3), we performed constraint dockings pe-
nalizing any pose whose constrained residues’ Cα atom distance exceeds 10.0Å by
applying a bounded harmonic penalty score (slope 1) in dependence on the deviation
from that threshold. Here, because the side-chain and rigid-body orientation optimiza-
tion can have critical influence on that penalty, we applied the full docking protocol
including local refinement. In addition, due to the straightforward generation of start-
ing dimers, we increased the perturbation parameters significantly to -dock_pert 20
30 to achieve an extensive, wide-range sampling of the whole orientational space sat-
isfying the interaction constraints. Again, we generated 10,000 docking poses. Due
to the wide-range sampling, poses obtained from the dockings w.r.t. one start dimer
might better fulfill a constraint that is different from the one the original start dimer
was created from. In such a case, the pose was reassigned to the binding mode for
which the lowest constraint penalty was achieved. We then repeated the following
clustering procedure until a stable clustering was achieved: Using the constant-time
RMSD-based clustering approach we proposed in [351] and a Ward-distance of 5.0, all
poses assigned to one interface were clustered and singleton clusters were removed.
Once no more singleton clusters were found, the clustering was considered stable and
the iteration stopped.

For each reference monomer used during binding mode detection, a randomly ro-
tated copy centered at the origin was created and used for assembly. The docking
transformations were determined w.r.t. to these centered monomers and grouped into
binding modes and interfaces as described in Sect. 9.2.

12.5 rescoring docking poses

To provide an estimate of the overall interaction energy of the assembled complexes,
redundant score contributions of the same monomer to the total complex energy must
be avoided (compare Sect. 9.2). To this end, we rescored all poses using RosettaDock’s
cen_std weights and determined the interaction energy (Eq. 9.3) of each pose by sub-
tracting the scores of the individual isolated monomers from the total score of the
docking pose.

12.6 assembly experiments

To evaluate our algorithm, we use three different scenarios of increasing difficulty.
The first scenario corresponds to cases where the information about the approximate
location of the binding modes is available. The second scenario simulates a situation
where less detailed information is available: only one pair of interacting residues per
binding mode is known, furthermore additional false positive interactions correspond-
ing to binding modes that are plausible but not natively present in the complex are
introduced. In the third scenario, we use global dockings, without any information
on protein-protein interactions.
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12.6.1 Benchmark Experiments

Due to the high diversity in our benchmark set, we ran our algorithm with differ-
ent parameter configurations. In the benchmark validation, we used different parame-
ters for pre-/intra-/post-clustering Cα RMSD (1.0Å/2.0Å/3.0Å and 1.0Å/3.0Å/5.0Å),
clash checking (10, 25, 50, 150 allowed clashes [363] between any two monomers) and
dis-/enabled interpolation between matching docking transformations. We also in-
vestigated the effect of the selected transformation similarity measure. For Sda (Eq.
10.4) the following combinations for lmax/amax were used: 1.0Å/5.0◦, 1.5Å/10.0◦,
and 2.5Å/15.0◦. Analogously, runs for Srmsd (Eq. 10.6) used configurations for
displacement-based prefiltering (lmax) and rmsdmax of 1.0Å/3.0Å, 1.5Å/4.5Å, and
2.5Å/7.5Å. In total, this yielded 96 parameter sets. The RMSD threshold for detection
of symmetric binding modes was set to 0.5Å, the fraction of poses with an RMSD be-
low that threshold to 1%. All runs were performed using a solution reduction scheme,
considering 2000 solutions in the first iteration, reduced by 50% in each subsequent it-
eration until a threshold of 100 solutions is reached. For performance comparison,
we also performed runs with smaller clustering values, i.e., 1.0Å/0.0Å/1.0Å and
1.0Å/1.0Å/2.0Å for pre-/intra-/post-clustering (96 parameter sets).

Analogously, we performed a baseline study demonstrating the effectiveness of
the transformation match score. Similar configurations were used, but completely
disabling the influence of other factors on the assembly process. Symmetric bind-
ing mode determination was turned off and pre-/intra-/post-clustering was set to
0.0Å/0.0Å/0.0Å and 1.0Å/0.0Å/0.0Å respectively (96 parameter sets in total). In do-
ing so, we can investigate how well the transformation match score is able to rank
near-native (sub-)complexes such that they survive subsequent iterations when no
clustering (or only pre-clustering to diversify the docking poses) is applied. For com-
parison, we performed runs completely disabling the transformation match score. In
this case, the parameters configuring Sda and Srmsd have no effect, hence only eight
configurations combining the cluster and clash parameters are generated.

In all of the above experiments, we changed the parameters for large complexes
with more than 20 or 40 monomers as follows to reduce the required computational
time: after adding the 20th monomer, the cluster parameters were reduced by a factor
of 5. In addition, the number of solutions per level was reduced to 50. After attach-
ment of the 40th monomer, cluster parameters were again reduced by a factor of 2

and the number of solutions per level was set to 25. In addition, in the first 20 levels,
all docking poses were considered; after 20 (40) levels, only the 500 (250) poses of each
interface yielding the highest transformation matching score were used.

12.6.2 SRPIC Experiments

In the SRPIC experiments (single residue-pair interaction constraint experiments, Sec-
tion 12.3), the complexes can be expected to be more diverse due to the wide-range
sampling, hence we only used a Cα RMSD threshold of 1.0Å/3.0Å/5.0Å for pre-/intra-
/post-clustering. Clash checking values of 50 and 150 were used. For runs involving
Sda (Eq. 10.4) the following combinations for lmax/amax were used: 2.5Å/15.0◦ and
3.0Å/20.0◦. For Srmsd (Eq. 10.6) we used the following parameters for (lmax) and dmax

2.5Å/7.5Å and 3.0Å/9.0Å. Symmetric binding mode detection was turned off, be-
cause the very diverse set of obtained poses can not be expected to produce any reli-
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able information on the symmetry of protein-protein interfaces. However, we tested
an additional feature in half of the runs: the pre-ranking of the poses obtained in a
level by the number of detected symmetry mappings (Def. 9.5) with a subsequent
ranking of transformation match score for (sub-)complexes with the same number of
mappings. The number of solutions again followed a solution reduction scheme with
2000 solutions in the first level, 50% reduction rate in subsequent levels, towards a
threshold of 250 solutions. 32 parameter sets were obtained in total.

Again some changes in parameter configuration were introduced to reduce the
computational cost for larger complexes: after 6 (16) levels, only the 500 (250) poses
yielding the highest transformation matching score were considered. In addition, the
number of solutions per level was reduced to 100 solutions after the attachment of the
16th monomer. Due to the diversity of the docking poses, the clustering parameters
were kept unchanged.

Assembly experiments were performed with dockings corresponding to the follow-
ing binding modes: i) native ones only, ii) native ones + three false positives, iii) native
ones + six false positives, and iv) native ones + all (ten) false positives.

12.6.3 Comparison with CombDock

To compare our algorithm to CombDock, we ran CombDock on all benchmark com-
plexes with the standard parameter configuration provided by CombDock. From the
docking poses, we obtained the corresponding transformations as described in Sect.
12.5 and Fig. 9.1. Because CombDock performs an all-vs-all pairwise docking and only
considers the best 100 solutions of each docking, we generated the following four as-
sembly data sets: i) all pairs of dockings, with 100 solutions per pair, ii) all pairs of
dockings, with all available solutions per pair, iii) dockings corresponding to natively
interacting protein types, with 100 solutions per pair, ii) dockings corresponding to
natively interacting protein types, with all available solutions per pair. The latter two
cases only apply to hetero-oligomers, because in the homo-oligomeric case, only one
protein type is present.

The comparison with CombDock employs parameters that are a hybrid of the
benchmark and SRPIC runs: because CombDock employs global dockings, the so-
lutions can be expected to be even more diverse than in the SRPIC experiments,
however, we refrained from increasing the transformation match score parameters
even more, because we do not want to risk assigning transformation match scores to
false-positive matchings. Solution and clustering reduction scheme were applied as
in the benchmark data set because CombDock typically produces less solutions per
protein-protein-docking than RosettaDock. All other parameters were the same as in
the SRIPC experiments, except the following: because of the global docking, we do
not have distinct interfaces, and hence, the flag prohibiting attachment of multiple
proteins to the same interface was turned off. In addition, the rejection of all non-
matching solutions once at least one complex candidate with matching docking poses
was found in a particular level was turned off to make the algorithm robust to chance
matchings. 32 parameter sets were generated in total.
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12.6.4 Computational Resources

All docking and assembly experiments were performed on the high-performance clus-
ter MOGON at the Johannes Gutenberg University in Mainz, Germany. MOGON con-
sists of 535 nodes, each with 4 CPUs and 16 cores per CPU, each clocked with 2.1 Ghz.
The maximum allowed running time of a job was limited to 5 days by the queuing
system.
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E VA L U AT I O N O F 3 D - M O S A I C I N D I F F E R E N T A P P L I C AT I O N
S C E N A R I O S

In this chapter, we present the results obtained with 3D-MOSAIC in three different
application scenarios of increasing difficulty. In the first section, we focus on the per-
formance of 3D-MOSAIC on the benchmark data set that we established.

The second section comprises the results for the assembly of complexes when only
a single residue-residue interaction per binding mode is known.

The concluding section then summarizes how well 3D-MOSAIC can assemble
macromolecular complexes when no interaction information is given and global dock-
ings have to be applied.

13.1 benchmark data set

In this section, we present the results of 3D-MOSAIC for the assembly of complexes
from our benchmark data set. The first section, however, deals with the results ob-
tained from the RosettaDock docking runs and the selection of proper binding modes.
We present the docking results obtained for all determined binding modes and ad-
dress the selection of those binding modes that are considered irrelevant for the as-
sembly process and are thus not considered during assembly.

We then present the overall performance of 3D-MOSAIC on our benchmark data
set using 96 different parameter combinations for clustering, clash-checking, interpo-
lation and transformation matching. From the 96 parameter sets used for the valida-
tion of 3D-MOSAIC on our benchmark data set we then determine well-performing
parameter sets that are assessed using 1000 times ten-fold cross-validation and an
evaluation on a previously unseen set of complexes.

Subsequently, we address the individual effects of some of 3D-MOSAIC’s modules:
we demonstrate the importance of the transformation match score by dissecting the
contributions of the most relevant components of 3D-MOSAIC (clustering and trans-
formation matching) to the overall assembly performance in several baseline runs.
Thereafter, we present the symmetry-based post-ranking scheme that we use to as-
sess the performance in all assembly experiments. Throughout this chapter, we will
always refer to the symmetry-based ranks.

We conclude this chapter by addressing the limitations of our algorithm, present
a selection of examples which could be assembled with 3D-MOSAIC but are beyond
the capabilities of other algorithms and demonstrate the running time behavior of
3D-MOSAIC in dependence of different parameter combinations.

13.1.1 Docking Results and Native Binding Mode Determination

By design, 3D-MOSAIC can be expected to favor complex topologies with a high inter-
connectivity of the individual components, because here, a docking pose might match
interfaces from many other surrounding monomers. To avoid an overestimation of the

133



134 evaluation of 3d-mosaic in different application scenarios

0 20
0

2

4

6

8

10

12

14

16

R
M

S
D

[

� A
]

200 400 600 800 1000 1200 1400
C
�

 contacts

kept interfaces

discarded (noise/small)

removed (intertwined)

150

0

H
e
a
v
y
-a

to
m

 c
la

sh
 c

o
u
n
t

Figure 13.1: Best docking dimer Cα-RMSDs per binding mode vs. Cα contact count (radius
10Å). The results for the range from 0-20 Cα contacts are scaled by a factor of 2.5 compared
to the range from 20-1,400. The heat map indicates the number of heavy-atom clashes (atom
distance < 1.5Å) occurring in the docking start dimer which is generated using monomers
from the respective source data set (unbound, dimer, foreign, same).
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Figure 13.2: Cα contact distribution. The red line indicates the chosen cutoff of 20 residues.
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Figure 13.3: Distribution of minimum, median and maximum dimer Cα RMSD over all 10,000

dockings per binding mode.

performance of our algorithm, we first removed all binding modes from the initial set
of 1,461 modes that are unlikely to contribute significantly to the complex stability.
To this end, we determined the number of contacts (i.e., the number of residues in a
protein-protein interface with a Cα atom distance of at most 10.0Å to a residue in the
respective binding partner) as well as the minimum RMSD of all poses obtained from
the dockings w.r.t. a particular binding mode.

An investigation of the minimum RMSD over all docking poses per binding mode
w.r.t. the number of contacts between the two monomers in the respective binding
mode (Fig. 13.1) reveals that RosettaDock is often unable to find a near-native bind-
ing conformation when the number of residues in the interface of the binding mode
is less than 20. This indicates that these binding modes are likely to be incidental
contacts that do not contribute significantly to the association of the complex. These
observations are in good concordance with the Cα distribution of encountered con-
tacts between residues of both dimer monomers (Fig. 13.2): there is a distinct over-
representation of binding modes with less than 20 contacts (first two bars, bin size
10).

Thus, we discarded all 230 binding modes that form less than 20 Cα contacts. 10

complexes (and additional 14 binding modes) had to be excluded because they de-
composed into several connected components when all binding modes with less than
20 residues in the protein-protein interface were removed. In such cases, smaller
oligomers often assemble independently before being able to provide sufficiently
large interfaces for the final complex formation [364], as for example in the case of
1IXR (RuvA-RuvB complex), where two tetrameric sub-complexes of RuvA assemble
into an octameric shell to which satellite RuvB units become attached. Even more
remarkably, in the case of 2A3X (serum amyloid P component), the dimerization of
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Figure 13.4: Distributions of the number of distinct protein types, the number of monomers,
the number of distinct binding modes and the number of monomer sources of all complexes.

two pentameric rings into a decamer is the result of a ligand-mediated non-covalent
linkage of both pentamers [365].

In the 44 cases where the lowest Cα RMSD between the generated pairwise docking
poses and the native dimer was greater than 3.0Å (diamond-shaped data points, see
Fig. 13.1), the docking algorithm was not able to reproduce the near-native binding
mode despite the interfaces being sufficiently large. In all these cases, the two binding
partners significantly protrude into one another, some of them forming inter-chain
β-sheets that leave only a very small docking funnel. Since this can be considered an
artifact of the docking procedure, we discarded the corresponding 32 complexes with
173 binding modes from the data set, leaving 308 complexes (1,044 binding modes)
in total, with 9, 8, 108, and 183 complexes in the unbound, dimer, foreign, same sets,
respectively.

An assessment of the minimum, median and maximum dimer Cα RMSD over
all 10,000 poses per binding mode (Fig. 13.3) reveals that RosettaDock was able to
find a near-native dimer for 1,031 of the remaining binding modes, with a mean
(standard deviation) RMSD for the minimum-RMSD distribution of 0.654Å (0.326Å).
However, the distributions of median and maximum RMSDs per binding mode with
mean values (standard deviations) of 12.457Å (3.718Å) and 22.756Å (7.046Å), respec-
tively, show that our docking protocol yielded an interface sampling with a sufficient
amount of decoys to provide a reasonable test scenario for our algorithm.

The 308 complexes of the benchmark set are diverse in nature of the number of
monomers (6-60), different protein types (1-15), binding modes (1-50), and pdb source
structures used for the assembly of the respective complex (1-5). Distributions of the
respective properties are given in Fig. 13.4. A complete overview of all benchmark
complexes including the above properties can be found in Tab. C.1.
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13.1.2 Benchmark Performance

3D-MOSAIC combines various different components, most notably the transforma-
tion match score, the clustering procedure, and the symmetry optimization, to allow
for a successful reconstruction of a diverse range of protein complexes. In later sec-
tions, we will discuss the individual effects of these components; in particular, we will
show in section 13.1.5 that the transformation match score we proposed in this work
is the main driving force for a successful assembly, even when other modules such as
clustering are disabled.

In this section, we will first present the overall performance of the 3D-MOSAIC as
a whole, i.e., when all of these components are enabled. To this end, we established
48 parameter sets for each of the two transformation match scores, Sda and Srmsd,
with different thresholds for clustering, clash checking, and transformation match-
ing. Apart from the tms-specific parameters, the parameter sets are identical for both
transformation match scores. A list of the 48 parameter sets employed for each of the
transformation match scores can be found in Tabs. C.7 and C.9.

An overview of the successful benchmark runs for each benchmark complex, dif-
ferentiated w.r.t. Sda and Srmsd can be found in Figs. 13.5a and 13.5b, respectively
(a detailed view on the performances of each individual parameter set is presented
in Tabs. C.8 and C.10, respectively). It can be clearly seen that, regardless of which
transformation match score is used, the overall number of successful assemblies per
parameter set is good: the average number of complexes per parameter set for which
a near-native solution could be obtained (tRMSD ≤ 2.5Å), is 198.96 for Sda and 202.50
for Srmsd. The corresponding distributions are presented in Fig. 13.6, their main char-
acteristics are given in Tab. 13.1

A Wilcoxon signed-rank test comparing the two distributions of the number of
near-native complexes per parameter set w.r.t. Sda and Srmsd yielded a p-value of
0.0052, showing that the distributions are significantly different w.r.t to a significance
level α = 0.05. Hence, we observe that Srmsd on average (∆Srmsd,Sda mean 3.54) yields a
near-native solution for more complexes per parameter set.

On the other hand, while using Srmsd yields more complexes with near-native solu-
tions on average, Sda yields a greater total number of such complexes over all param-
eter sets. In total, with Srmsd, 267 (86.7%) complexes could be reconstructed, whereas
Sda yields 272 (88.3%) complexes. In total, over all benchmark runs, 278 (90.3%) of the
complexes could be reconstructed.

We did not observe any significant difference w.r.t. the underlying data set, i.e.,
whether the monomers used for the assembly originate from an unbound structure, a
dimer, a foreign or the same complex. Unfortunately, the number of complexes to be
assembled from unbound or dimer sources is too small (9 respectively 8 complexes) to
yield any reliable statement on performance differences to corresponding complexes
from the other data sets, yet we observe that all but one of the 17 structures (3SBA,
dimer set) could be successfully reconstructed. In addition, we performed a Wilcoxon
signed-rank test over the success rates (fraction of parameter sets with correct re-
construction) of the 64 corresponding structures from the foreign and same data sets,
which yielded a p-value of 0.29, showing that there is no significant difference in
performance.

We also observe that some parameter sets are more promising than others: in
particular, for example, we notice the following in Fig. 13.5: parameter sets with a
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Parameter set
(a) Parameter sets using Sda

1A5L_1_foreign
1A5M_1_same
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1H2I_1_same
1HI9_1_same
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1T9G_1_same
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2G0J_3_same

2G9T_1_dimer
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2H1L_1_same
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Figure 13.5: Matrix of successes of 3D-MOSAIC w.r.t. the benchmark runs over all complexes
for the two transformation match scores: each column corresponds to one parameter set, each
line to one complex; green matrix entries denote a successful reconstruction of the correspond-
ing complex using the respective parameter set, white ones a failure. The small bars below
and to the right of the main plot represent the corresponding average success per parameter
set and per complex, respectively.
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low number of allowed clashes per pair of monomers (every fourth parameter set
ben_i, i = 4j + 1, j ∈ {0, ..., 23}) perform worse on average than the subsequent three
sets ben_i + 2, ..., ben_i + 4. This is especially important, because typically, applying as
many as 96 different parameter sets is not doable in a real application scenario. In this
case, such a parameter set can possibly considered to be a bad choice.
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Figure 13.6: Distributions for the number of complexes with near-native solutions over all
parameter sets for the two transformation match scores Sda and Srmsd and their difference
∆Srmsd ,Sda .

Number of complexes with near-native solution

Mean σ

Sda
198.96 8.43

Srmsd
202.50 12.93

∆Srmsd,Sda 3.54 8.43

Table 13.1: Main characteristics of the distributions for the number of complexes with near-
native solutions over all parameter sets for the two transformation match scores Sda and Srmsd

and their difference ∆Srmsd ,Sda .

When only a small number of parameter sets can be used, it is thus important
to determine that parameter set (or a combination thereof) for which the expected
rate of successful reconstructions of previously unknown complexes is maximal. The
process of selecting and assessing promising parameter sets and their evaluation on
previously unseen complexes is described in the the following two sections.

In addition, Fig. 13.5 indicates that there are some complexes for which none of the
benchmark parameter leads to a correct assembly. Likewise, some complexes can be
assembled with a large variety of different parameter sets. The determination of the
common properties of such complexes is presented in Subsect. 13.1.8.
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Sda Srmsd

Parameter set Coverage covcv Coverage covcv

Best single 223 (72.4%) 70.8% 221 (71.8%) 69.1%

Best pair 250 (81.2%) 78.7% 245 (79.5%) 76.7%

Best triple 258 (83.8%) 80.4% 252 (81.8%) 78.1%

Table 13.2: Best-covering single, pair and triple parameter sets for both transformation match
scores Sda and Srmsd and corresponding cross-validation coverage rates. A benchmark complex
is considered correctly reconstructed if 3D-MOSAIC could generate a solution with tRMSD
leq2.5Åto the reference.

13.1.3 Selection of Parameter Sets and Cross-Validation Coverage

In Subsection 13.1.2, we assessed the general capability of 3D-MOSAIC to assemble
oligomeric complexes under a wide variety of different parameter sets, including
different values for clash checking, clustering, as well as transformation matching.
However, in a real application scenario, the number of parameter sets that can be
tried is typically small, for example because the computational resources are limited
or because the total solution space to be visually inspected becomes too large when
using too many different parameter sets.

Hence, we are now interested in selecting a small number of parameter sets that
are able to cover a wide range of different complexes, i.e., the number of benchmark
complexes that can be reconstructed with the selected parameter sets is maximal. In
Subsect. 13.1.1, we have already seen that the benchmark set that we determined is di-
verse w.r.t. the number of monomers, the different protein types, binding modes, and
pdb source structures used for the assembly of the respective complex. Thus, we can
not expect to reconstruct all complexes using a single parameter set; an assumption
that is confirmed by the findings presented in Subsect. 13.1.2.

Consequently, we consider three different cases for the parameter set selection: i)
the single parameter set, ii) the pair of parameter sets, and iii) the triple of parameter
sets which yields the highest number (coverage) of reconstructed complexes, respec-
tively. Due to the diversity of the benchmark data set and because we aim at pro-
viding parameter sets that are generally applicable, we did not investigate parameter
sets that are tuned to complexes with specific properties. Like in Subsect. 13.1.2, a
reconstruction is considered successful if tRMSD ≤ 2.5Å.

In addition to the actual selection of the best-covering single (and pair and triple)
parameter set we also perform a cross-validation (see Subsect. 3.7.1) to estimate how
well such a selection generalizes to previously unseen complexes. To this end, we
employ a 1000 times 10-fold cross-validation, i.e., the following is repeated for 1000 it-
erations: the set of 308 benchmark complexes is randomly divided into 10 folds, where
each of the ten folds in turn is once used for reconstruction (validation) while the best-
covering parameter set (combination) is selected from the other 9 training folds. We
use a binary loss function L which returns 1 if the complex is correctly reconstructed
and 0 otherwise. The cross-validation coverage covcv is then the mean percentage of
successfully reconstructed complexes over all 10 validation folds, averaged over 1000

cross-validation runs.
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The results are presented in Tab. 13.2. We hereby differentiate between the two
transformation match scores Sda and Srmsd to investigate potential differences in their
performance. As can be seen, the coverage of Sda is marginally better than that of
Srmsd over all parameter sets and combinations thereof with 223, 250, and 258 vs. 221,
245, and 252 correctly reconstructed complexes for the best single, pair and triple of
parameter sets using Sda and Srmsd, respectively. The corresponding parameter sets
for Sda and Srmsd are highlighted in Tables C.7 and C.9. Moreover, the difference in
coverage increases slightly from 0.6% over 1.6% to 1.9% when considering the best
pair or triple of parameter sets.

This observation is confirmed by the corresponding cross-validation coverage covcv:
first, the comparatively small deviation between the estimated covcv and the observed
coverage for the respective best combination of parameter sets (maximum respective
deviation 3.7%, found for Srmsd, best triple set) demonstrates that none of the chosen
parameter sets (or a combination thereof) is overly well adapted (overtrained) to the
underlying set of complexes and that the parameter sets can be expected to perform
similarly well on unseen data. Second, a comparison of the respective cross-validation
coverages for the two transformation match scores underlines the initial observation
that Sda performs slightly better than Srmsd: the difference in cross-validation cover-
ages ranges from 1.7% (best single) over 2.0% (best pair) to 2.3% (best triple) and is
even a bit higher than the respective differences in the observed coverages.

However, scoring with Sda requires two parameters, i.e., a maximum allowed dis-
placement and angular deviation between two transformations, whereas Srmsd only
requires a maximum RMSD deviation. Because this additional parameter can account
for some of the variance in the underlying data set, Sda can be expected to better cover
the underlying set of complexes than Srmsd. Hence, using the Srmsd instead of Sda can
be considered an equally valid choice, especially given the fact that it relies on an
exact computation of the difference between two docking poses.

13.1.4 Evaluation on Comeau’s Data Set

In the previous section, we have assessed the quality of our selected parameter sets
and shown that they are not prone to any over-fitting w.r.t. the respective data set
they have been trained on. Thus, they represent valid choices to assemble previously
unseen complexes.

To the best of our knowledge, there are no data sets that exhibit a diversity com-
parable to the one we established. To nevertheless evaluate our approach on previ-
ously unseen complexes, we use a data set of homo-hexamers used to benchmark
the ClusPro Multi-Docking algorithm [193]. The respective data set, given in Tab. C.2
comprises 17 hexameric complexes containing one-layered rings as well as dimers
of trimers and trimers of dimers. In that context, it is worth mentioning that two of
these 17 complexes (1I40, 1NSF) are also contained in our benchmark data set, how-
ever using foreign monomers for the assembly. In the following, we will thus give all
performance results once on all 17 and once on the non-redundant set of 15 complexes
excluding the aforementioned two. The results are presented in Tab. 13.3.

The evaluation was performed using the best-performing single, pair and triple
parameter sets from the benchmark runs, for both Srmsd and Sda. When comparing
these results to the performance of the respective parameter set combinations in the
benchmark scenario (Tab. 13.2), we observe the following: first, with exception of
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Sda Srmsd

Parameter set All Non-redundant All Non-redundant

Best single 12 (70.6%) 11 (73.3%) 13 (76.5%) 12 (80.0%)

Best pair 14 (82.4%) 13 (86.7%) 14 (82.4%) 13 (86.7%)

Best triple 15 (88.2%) 14 (93.3%) 12 (70.6%) 11 (73.3%)

Table 13.3: Performance of the selected best-covering single, pair and triple parameter sets
for both transformation match scores Sda and Srmsd obtained from the benchmark data set
on Comeau’s data set. Columns denoted by “All” take all 17 complexes into account, those
denoted by “Non-redundant” disregard the two complexes 1I40 and 1NSF for which related
entries are present in the benchmark data set.

two outliers (the best single parameter set for Sda and the best triple for Srmsd) the
observed performances are slightly better than in the benchmark case. Compared to
the respective cross-validation coverage rates, none of the observed coverages can be
considered significantly worse.

Besides the lower diversity of the test set, the major reason is the comparatively
small size of the data set (17 in total and 15 when disregarding complexes with re-
lated entries in the benchmark data set). Hence, an additional complex that can be
successfully reconstructed has a larger impact on the overall observed coverage rate.
This is also the reason why the two outliers mentioned above have occurred: in the
case of the best single parameter set for Sda, one additional successfully reconstructed
complex would have yielded a better coverage rate than that obtained from the re-
spective benchmark run. Similarly, this is true for the best triple for Srmsd, though in
this case two additional complexes would have to be successfully reconstructed.

This observation is also underlined by the coverage rates for the non-redundant
set: here only 15 complexes are considered. Whereas 1NSF could consistently not be
reconstructed among all (combinations of) parameter sets, the opposite is true for
1I40. Hence, the overall data set size is decreased by two complexes, from which one
could not be reconstructed. As a consequence, the obtained coverage rates are slightly
higher.

Summarizing, the overall results, even though obtained on a small and less diverse
data set, are comparable to those of the corresponding cross-validation coverage rates
determined in the previous subsection and none of the presented results is signifi-
cantly worse than the corresponding cross-validation coverage covcv presented in Tab.
13.2. This demonstrates that our selected parameter sets are indeed good choices and
are not overtrained on the benchmark data set.

13.1.5 The Importance of the Transformation Match Score

The core component of our algorithm is the transformation match score (tms) that we
developed in Ch. 10. To differentiate its influence on the performance from that of the
clustering procedure, we disabled the intra- and post-clustering and compared how
the algorithm performs on the benchmark set when the transformation match score
is enabled or disabled.

Over all 29,568 baseline runs with enabled transformation match score (Sda and
Srmsd), only 16 cases (0.05%) did not produce any solution compared to 8 failed runs
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Parameter set With tms, no clustering No tms, no clustering No tms, but clustering

Worst single 155 44 62

Best single 184 60 110

Best pair 208 69 125

Best triple 216 73 128

Total 243 76 135

Table 13.4: Comparison of baseline runs, demonstrating the superiority of 3D-MOSAIC runs
with enabled transformation match score.

(0.3%) for the 2,464 runs without tms. Among the 96 parameter sets with tms, the
worst single parameter set could still reconstruct 155 complexes as compared to the
best parameter set without tms with 60 correct solutions (improvement factor i f of
2.58), demonstrating that there is a large performance difference in both scenarios.
The worst single parameter set without tms can generate even fewer correct solutions
(44), the best one with enabled tms 184.

When choosing the best-performing triple (pair) combination of parameter sets
without transformation match score, we could correctly reconstruct 73 (69) complexes
(with tms 216 (208), i f = 2.96 (3.01)). The average ranking of the first correct solution
per assembly was also significantly improved when tms was enabled: 3.23 compared
to 8.92 for the best performing parameter set and 7.02 (5.70) vs. 29.16 (22.07) for the
best-performing triple (pair) combination thereof. The average ranking for the best
single parameters set is 2.17 for the tms-enabled one and 8.63 without tms.

In total, without clustering and tms enabled, 243 complexes could be reconstructed
(76 without tms).

We can also compare the results of runs with enabled tms but disabled intra- and
post-clustering to runs where tms is disabled, but clustering is enabled. In doing so,
we can gain insight into whether the clustering procedure can compensate the effects
of the transformation match score.

For the 16 parameter sets (4,928 assembly runs) performed in the latter case, we
obtain the following values: 16 runs (0.3%) failed without producing any solution.
In total, 135 complexes could be correctly reconstructed. The best single parameter
configuration yielded 110 correct complexes (i f = 1.67). With the best pair and triple
of parameter sets 125 (i f = 1.66) and 128 (i f = 1.69) complexes could be correctly
reconstructed.

The average ranking for the first correct solution obtained with best single, pair,
and triple parameter set is 6.76, 12.98 and 12.35, respectively.

A summary of the comparison of the baseline runs, demonstrating the power of the
transformation match score, is given in Tab. 13.4. Detailed information for the runs
with enabled tms, split into those employing Sda and Srmsd, can be found in Tables
C.16 and C.18, respectively. Full accounts on those runs with disabled tms and with
clustering en-/disabled are given in Tables C.21 and C.22.

13.1.6 Symmetry Optimization and Ranking of Assembled Complexes

As already stated in Sect. 9.5, many protein complexes exhibit at least partial symme-
tries. However, when assembling unknown complexes, the respective type of symme-
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Figure 13.7: The effect of symmetry optimization on the tRMSD to the reference complex. The
distributions of tRMSD after and before symmetry optimization as well as their difference are
shown.

try is also often unknown. Hence, 3D-MOSAIC assembles complexes without prior
assumptions about the complex symmetry. Nevertheless, after completed assembly of
the complex, the symmetry can often be guessed and optimized (see Section B.10).

The symmetry-optimized assembled complexes can be expected to be more similar
to the native complex than the corresponding solution before symmetry optimiza-
tion. To investigate whether this assumption is valid, we determined all symmetry-
optimized complexes present in the benchmark assemblies (see Subsect. 13.1.2) and
calculated the respective difference between the tRMSD after and before the symmetry
optimization.

The results are presented in Fig. 13.7. In total, over all 29,568 runs, N=633,922

symmetry-optimized complexes were found. The corresponding distributions of
tRMSD before and after the symmetry optimization look similar at first sight, espe-
cially when considering the corresponding means and standard deviations presented
in Tab. 13.5a). However, they are not: since our data can be understood as pairs of cor-
responding tRMSDs, an appropriate test statistic is given by the Wilcoxon signed-rank
test [366]. This method tests whether the null hypothesis that corresponding pairs of
values represent samples from the same distribution is true. The obtained p-value was
found to be below the floating point accuracy of MATLAB, hence p-value < 5e− 324,
demonstrating that both distributions are significantly different.

From Tab. 13.5a, we can also see that on average, the symmetry optimization yields
a tRMSD improvement of 0.4Å and thus has a large impact on the structural quality
of the resulting complexes.

Consequently, the question whether a complex is symmetry-optimized, or rather
how many symmetry mappings (cmp. Def. 9.7) were obtained for a particular com-
plex, can serve as a ranking criterion, because the number of symmetry mappings that
can be obtained for a complex candidate (m at most for a complex with m monomers)
w.r.t. a given (reasonable) RMSD threshold can be considered an indicator of the qual-
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tRMSD

Mean σ

Before 2.66Å 2.06Å

After 2.26Å 2.20Å

∆ -0.40Å 0.55Å
(a) Main characteristics of the dis-
tributions of tRMSDs for com-
plexes after and before symmetry
optimization and their respective
difference.

Rank

Mean σ

Before 4.14 11.65

After 3.19 9.73

∆ -0.95 7.44

(b) Main characteristics of
the rank distributions after
and before symmetry-based
re-ranking and their respective
difference.

Rank

≤ 10 ≤ 25

Not re-ranked 92.8% (1.8%) 95.7% (1.2%)

Re-ranked 94.9% (2.4%) 97.1% (1.6%)
(c) Average percentage of complexes per benchmark run
for which a near-native solution was found among the top
10 and 25 ranks

Table 13.5: Effects of symmetry optimization and symmetry-based re-ranking.

ity of the solution: given two solutions for which we have determined the number of
symmetry mappings, the one with the greater number of symmetry mappings typ-
ically exhibits a more regular topology (otherwise, less symmetry mappings would
have been found). Hence, the number of symmetry mappings also provides informa-
tion on the quality of the solutions.

By default, 3D-MOSAIC ranks all complexes by tRMSD, however, the number of ob-
tained symmetry mappings of each symmetry-optimized complex are also returned.
With this knowledge, we can re-rank the solutions of a particular 3D-MOSAIC run
according to the following criteria, in decreasing priority: i) by the number m of sym-
metry mappings, ii) for complexes with equal m by tRMSD, and iii) complexes equal
in i) and ii) by accumulated interaction score of all monomers. W.r.t. this ranking, we
then determined the rank of the first near-native structure with an tRMSD ≤ 2.5Å.

The characteristics of the obtained distributions are presented in Tab. 13.5b. Again,
we applied a Wilcoxon signed-rank test for pairs of ranks before and after symmetry
optimization and obtained a p-value of 7.3e− 242, showing that the two distributions
are significantly different. On average, the ranking of the first near-native structure
was improved by 1, with an standard deviation of 7.4.

In absolute numbers, using the symmetry-based re-ranking scheme, we could im-
prove the rank of the first near-native solution in 2,149 cases, a worsening was ob-
served in 830 cases. In Tab. 13.5c, we present the rank improvement in dependence
of the number of benchmark runs for which a near-native assembly was obtained at
all, i.e., at any rank. The results are first averaged over all successful assemblies per
parameter set, subsequently over all parameter sets.

The first remarkable result is that, even without re-ranking, in 92.8% (95.7%) of the
benchmark runs, a near-native complex with a tRMSD ≤ 2.5Å can be found among
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F3 MF N Signature

1.00 0.93 5 All beta proteins | Small proteins

1.00 0.90 7 Small proteins

1.00 0.73 6 Multi-domain proteins (alpha and beta)

0.86 0.81 7 All alpha proteins | Alpha and beta proteins (a+b)

0.87 0.78 15 All beta proteins | Alpha and beta proteins (a/b)

0.85 0.77 13 Alpha and beta proteins (a+b) | Alpha and beta proteins (a/b)

0.78 0.68 32 All alpha proteins

0.77 0.68 82 Alpha and beta proteins (a/b)

0.66 0.59 58 Alpha and beta proteins (a+b)

0.62 0.57 39 All beta proteins

0.61 0.55 44 Others

Table 13.6: The performance of 3D-MOSAIC w.r.t. to the SCOP class signatures. F3 denotes the
fraction of structures in the respective signature for which a successful reconstruction could
be obtained in at least one third of the parameter sets, MF the fraction of parameter sets for
which a successful reconstruction of the respective assembly could be obtained, averaged over
all structures in the respective signature, and N the number of assemblies with corresponding
signature.

the top 10 (25) ranks. These outstanding values are even improved upon symmetry-
based re-ranking: here, in 94.9% (97.1%) of the cases where a correct assembly could
be obtained, the first near-native solution is located among the top 10 (25) solutions,
yielding an improvement of 2.1% (1.4%)

Hence, from these observations, we can not only summarize that a symmetry-
based re-ranking can improve ranking performance, but, more importantly, that if
3D-MOSAIC could generate a near-native solution, it is almost always located among
the top 25 solutions.

13.1.7 Performance w.r.t. SCOP Class Signature

To assess how the performance of 3D-MOSAIC depends on the general structural
properties, i.e., the secondary and supersecondary structure elements the complexes
are composed of, we determined the SCOP class signature of each complex (in anal-
ogy to the SCOP superfamily signature determination described in Section 12.1). The
results are presented in Table 13.6; all signatures containing less than five members
were combined into one signature termed “Others”.

The general observation is that 3D-MOSAIC performs particularly well for signa-
tures comprised of more than one SCOP class (as well as multi-domain proteins):
F3, the average number of structures for which a correct reconstruction could be ob-
tained in at least one third of the parameter sets (which corresponds to applying
3D-MOSAIC with three randomly selected parameter sets) ranges from 100% to 85%.
Likewise, MF, the fraction of parameter sets average over all complexes in that signa-
ture for which a correct reconstruction could be obtained (corresponding to randomly
selecting one parameter set for use with 3D-MOSAIC) ranges from 93% to 68%. One
reason for the good performance in such classes may be that complexes comprising
different secondary and supersecondary structure elements may provide more spe-
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cific interfaces for the individual binding modes. Furthermore, signatures including
small proteins comprise the top two ranks: because we generate 10,000 docking poses
per binding mode regardless of the size of the involved proteins, the interfaces of
small proteins may be sampled more densely. In addition, the interfaces in small pro-
teins are closer to each other, which may additionally restrict the space of compatible
solutions.

A comparatively bad performance is observed for complexes comprising monomers
that consist only of β-sheets or exhibit β-sheets which are separated from (and not
intermixed with) the α-helices in the respective domains. These structures often form
additional β-sheets with other monomers, however the non-specific interface in terms
of surface complementarity and the comparatively low tolerance in the orientation
of the two monomers to each other for the interaction to be established represents
a challenge to many docking algorithms in general and particularly RosettaDock in
our case. Yet, we still observe a successful reconstruction in at least one third of the
parameter sets for 62% of the complexes (F3), and on average for 57% of the complexes
when using only one parameter set (MF).

13.1.8 Limitations and Hard Cases

Due to the diversity of our data set, a general rule on limitations and hard cases
is difficult to obtain. While for example graph-based measures like average shortest
path length between monomers (with interacting monomers connected by an edge)
in a complex can give at least a weak indication of difficult cases (the longer the
shortest path the less likely a transformation matching), they cannot be used to predict
the performance beforehand. The reason is that in an application scenario, the real
complex topology is unknown and can hardly be predicted from binary docking poses
ahead of the actual assembly process.

However, a comparatively simple measure deduced from the stoichiometry of the
protein types and their interfaces can provide some information on how well a com-
plex can be assembled. This is the minimum number of interfaces over all protein
types (degree), degmin divided by the number of monomers in the complex with the
same degree nmin:

rmin :=
degmin

nmin
(13.1)

The rationale behind this measure is as follows: the smaller the minimum degree
and the more monomers share that degree, the more difficult can we expect the as-
sembly process to be. In particular, the degree contains some information about the
immediate neighborhood of the respective protein type: if the degree is small, many
of the docking poses lead to a valid attachment, because in a sparse neighborhood,
only few potential attachments lead to clashes.

We compare this measure to the average ROC AUC (cmp. Subsections 3.7.2 and
3.7.3) for each complex over all benchmark parameter sets. We thus incorporate the
information on the ranking and the distribution of correct solutions among the set of
all generated solutions. An AUC > 0 denotes that a solution has been found, with
smaller values corresponding to cases where the first correct solutions tend to be
found among the last ranks. A value of 0.5 denotes an equal true and false positive
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Figure 13.8: The mean AUCs of the four difficulty classes including the respective standard
deviations.

rate among all ranks, and values close to 1 represent cases where correct solutions out-
balance false ones. Fig. 13.9 shows the ROC AUCs over all benchmark runs presented
in Subsect. 13.1.2.

The mean AUCs (small vertical bars) show a wide distribution, with some com-
plexes performing especially well and others where correct solutions are scarce. We
classify the complexes into four groups of difficulty w.r.t. the mean AUCs: 1) com-
plexes with mean AUC ≤ 0.25, 2) > 0.25 and ≤ 0.5, 3) > 0.5 and ≤ 0.75, 4) > 0.75
and ≤ 1. The average AUCs of each of these groups are presented in Fig. 13.8.

We see that these four classes fall into two categories, those with a mean AUC
less or equal to and those above 0.5. A Wilcoxon rank-sum test [366] over all pairs
of classes confirms this observation: all p-values except those between class 1 and 2

(p-value 0.52) as well as 3 and 4 (p-value 0.33) are below statistical significance w.r.t.
significance level α = 0.05 (max. p-value 2.29e-05).

Consequently, we can state that our measure rmin provides at least some information
on how well a particular complex can be assembled. Especially for cases where rmin is
below approximately 0.25, we can expect that the correct solutions are hard to obtain.

This is especially true for two complex topology classes: one-layered rings and
cage-like complexes. An example of a one-layered ring, where many poses lead to
a valid attachment of monomers, and the corresponding topology are shown in Figs.
13.10a and 13.10b, respectively. Similarly, cage-like complexes mainly comprise assem-
blies that consist of patches of small sub-complexes, for example trimers, with sparse
connections between these sub-complexes. They are related to ring-like structures, be-
cause here, rings are formed across sub-complex patches. An example, the pyruvate
dehydrogenase complex E2 core (cmp. Subsect. 2.5.1) and its topology are shown in
Figs. 13.10c and 13.10d, respectively.

In addition to these topology classes, the we have also observed a poor performance
for complexes with monomers that are mostly helical or that are heavily intertwined
with other monomers. In the former case, the reason is that the monomers show vir-
tually no surface complementarity, hence, a large variety of different poses are nearly
equally likely and near-native poses are hard to discriminate from decoys (see Figs.
13.10e and 13.10f). In the latter case, the intertwining greatly reduces the number of
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(a) Parameter sets using Sda
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Parameter set
(b) Parameter sets using Srmsd

Figure 13.9: ROC AUCs of all benchmark runs: each column corresponds to one parameter
set, each line to one complex; matrix entries colored with darker green shades denote larger
ROC AUC values, as specified by the color bar on the right. The small bars below and to the
right of the main plot represent the corresponding average ROC AUCs per parameter set and
per complex, respectively.
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(a) T4 lysozyme hexamer (3SBA) (b) Ring-like topology of 3SBA

(c) Pyruvate dehydrogenase E2 60-mer core
complex (1B5S)

(d) Cage-like topology of 1B5S

(e) Helical monomers of inovirus coat pro-
tein filament (2C0W)

(f) Topology of 2C0W

(g) Interchain β-sheet of human cystatin C
(1R4C)

(h) Topology of 1R4C

Figure 13.10: Examples of complexes and corresponding topology graphs for hard cases. Node
colors correspond to protein types, edge colors to binding modes.
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docking poses that are compatible and most of them will likely to lead to steric clashes.
Such an example, where the intertwining leads to a formation of interchain β-sheets,
and the corresponding topology are shown in Figs. 13.10g and 13.10h, respectively.
Yet, typically, in such cases, the dimeric structure interacts so strongly that the dimer
instead of the monomers can be used for the assembly.

13.1.9 Examples of Successful Assemblies

In the previous section, we have presented the most prominent factors that can ham-
per the assembly process and the generation of near-native solutions. Yet, many of
such difficult cases could also be reconstructed across different parameter sets, despite
the complex size or the number of different protein types. In particular, in addition
to the 278 correctly reconstructed complexes in the benchmark scenario, near-native
solutions for further 8 complexes were observed in the baseline runs used to demon-
strate the effectiveness of the transformation match score (Subsect. 13.1.5), summing
up to 286 out of 308 (93%) complexes with a near-native solution. In the following, we
shortly discuss some examples whose assembly is beyond the capabilities of current
methods (Ch. 8) in terms of complex size, monomer sources and number of protein
types, but could be achieved by 3D-MOSAIC.

One of the most prominent examples that we already introduced in Subsect. 2.5.2
is the proteasome. Our benchmark set comprises three proteasome versions: the 20s
proteasome from yeast complexed with proteasome activator PA26 (1Z7Q, 15 pro-
tein types, 42 monomers) in the same data set, as well as the stand-alone 20s yeast
proteasome (1RYP, 14 protein types, 28 monomers) in the same and foreign sets. In
the latter case, five different monomer sources are used (1Z7Q, 1FNT, 3L5Q, 3UN4,
1VSY), which is the maximum number over all structures in the foreign set. All of
these complexes exhibit a two-fold symmetry, because the minimum stoichiometry
over all protein types is 2, hence the effect of the symmetry optimization on the
structural quality of the final model is comparatively small, making the generation
of good-quality models during the iterative assembly stage especially important. The
best tRMSDs for the three complexes are 0.78Å (Fig. 13.11a), 0.68Å and 0.67Å (Fig.
13.11b). The latter result is insofar remarkable as an assembly of equal quality could
be obtained regardless of the source(s) from which the complex monomers originate.

Another interesting example, composed of 11 different protein types, each with a
stoichiometry of 2, is the cytochrome BC 1 complex (pdb code 1BE3, tRMSD 0.91Å)
which is located in the membrane of the mitochondria, and is part of the final stages of
energy recovery in the electron transport chain [367]: it serves as a proton pump which
ultimately sets the ATP synthase motor [368, 369] into rotation. This motor can then
synthesize ATP, the universal energy storage molecule. 1BE3 is of special importance,
because it represents a trans-membrane protein complex, a class of proteins which
are typically hard to determine structurally because a removal of the membrane upon
crystallization often leads to a denaturation of the protein complex and thus causes
the crystallization to fail in many cases.

The next example is sTALL-1 (pdb code 1JH5), a member of the tumor necrosis
factors family (TNF) which are, amongst others relevant for tumor regression. The
structure we present here (Fig. 13.11d) has been experimentally determined to form
a homo-60-mer with a virus-like appearance [370]. 1JH5 is especially remarkable, be-
cause it was found to be the complex for which an assembly with the lowest tRMSD
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(a) 1Z7Q, same, tRMSD 0.78Å

(b) 1RYP, foreign, tRMSD 0.67Å

(c) 1BE3, same, tRMSD 0.91Å (d) 1JH5, same, tRMSD 0.06Å

(e) 1STM, same, tRMSD 0.23Å (f) 2BUK, foreign, tRMSD 0.31Å

Figure 13.11: Examples of successful assemblies obtained with 3D-MOSAIC superimposed
onto the corresponding reference complex
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over all complexes and parameter set was generated (0.06Å). despite the fact that it is
one of the largest complexes in our data set, both in terms of the number of monomers
and the diameter (≈ 200Å).

Finally, the structural determination of viral capsids is an important field, because
these capsids represent potential target sites for anti-viral drug treatment (see Subsect.
2.5.3). Figures 13.11e and 13.11f show two examples: the capsids of the satellite pan-
icum mosaic virus (pdb code 1STM) and satellite tobacco necrosis virus (2BUK), with
respective tRMSDs of 0.23Å and 0.31Å. Both of them are composed of 60 monomers
with two-, three- and five-fold rotational symmetries and show three different binding
modes.

13.1.10 Running Times and Memory Consumption

In the previous subsections, we have demonstrated the success of 3D-MOSAIC in as-
sembling macromolecular oligomeric complexes from pairwise docking data. In this
subsection we will discuss the running times and memory requirements of the algo-
rithm. The corresponding results are summarized in Fig. 13.12, all experiments were
carried out on the high-performance cluster MOGON (see Sect. 12.6.4 for details).

The distribution of maximum memory requirements per complex is presented in
Fig. 13.12a. As can be observed, the largest fraction of complexes (273, 88.6%) requires
less than 2GB for the assembly. The required memory is largely dependent on the
input data, i.e., the number of docking poses. In the benchmark scenario, we use a
constant number of 10,000 docking poses per interface, consequently, complexes with
many interfaces require more memory. In particular the hetero-complexes 1Z7Q (15

protein types, 50 binding modes), 1RYP (14 protein types, 35 binding modes) and
1BE3 (11 protein types, 25 binding modes) require 16.22, 10.1 and 7.15 GB. Similarly,
the preparation times (Fig. 13.12b) are dominated by the time required to insert the
docking poses into the hash maps which also grows w.r.t. the number of interfaces.

The population of a level, i.e., the attachment of new monomers to all solutions
retained from the previous level (Subsect. 11.2.5), mainly depends on the number of
allowed clashes per pair of monomers as well as the the parameters for the transfor-
mation match scores. Figs. 13.12c and 13.12d show the mean population times per
level and the respective accumulated population time up to a particular level. Each
data line represents the average over all complexes w.r.t. a particular combination of
number of allowed clashes and the allowed max. displacement lmax. Corresponding
data lines of Sda and Srmsd using the same lmax value were combined, because no
significant difference in running time was observed.

The dashed vertical lines indicate the following: the area between dashed lines at 1

and 6 (area 1), the initial number of 2000 retained solutions is reduced by a factor of
2 after each level until the lower bound of 100 is reached (area 2). The dashed lines
at 20 and 40 (areas 3 and 4) correspond to a reduction of the clustering parameters
as well as the number of solutions and best-matching poses that are considered for
further assembly (see Subsect. 12.6.1).

In general, we observe that the running time per level strongly depends on the
max. allowed displacement. In particular, the data lines with lmax = 2.5 dominate the
other lines. As a second criterion the number of clashes is relevant, with a smaller
running time for smaller clash values. The solution reduction scheme strongly affects
the overall running time per level: the attachment of the first monomer to the initial
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(b) Distribution of mean preparation times
over all complexes.
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w.r.t. max number of allowed clashes and
displacement lmax.
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intra- and post-clustering Cα RMSD and lig-
and interpolation (y/n).
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Figure 13.12: Memory requirements and running times (for used hardware see Sect. 12.6.4).
In the area between dashed lines at 1 and 6, the number of solutions is reduced by a factor
of 2 in each iteration, starting at 2000, ending at 100. The vertical dashed lines at 20 and 40

correspond to a reduction of the clustering parameters and the number of matching poses
used for further assembly.
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receptor considers all docking poses and thus can require up to 25 minutes on average.
Subsequently, the reduction in the number of retained solution leads to a decrease of
running times, even though the number of potential interfaces that can be investigated
as well as the pairs of monomers that have to be checked typically grows with the
number of monomers in the sub-complex.

In area 2, the number of solutions per level is constantly kept at 100. Here, the
running times increase again due to the increasing number of interfaces and clash
checks to be performed. The drop after the attachment of the 14th monomer results
from a completion of 10% of the remaining complexes. Typically, population times in
the last stages before completion take longer because here the number of clash checks
to be performed with neighboring monomers is commonly the highest.

After monomer 20, the number of solutions is set to 50 and only the 500 best-
matching poses from initially 10,000 per interface are considered. The effects on the
running time are two-fold: i) a 95% smaller solution space per interface, consisting
only of the most reasonable docking poses, has to be investigated and ii) these poses
typically fit well and thus less clash checks are required.

After monomer 40, both of the above values are reduced again to 25 and 250, again
leading to a drop. However this drop only occurs stepwise until monomer 42. The rea-
son here is, similar to the peak at monomer 14, that 1Z7Q is about to be finished, again
leading to higher number of clash checks. After monomer 42, the drop is complete
and the curves slightly increase again.

The finalization times show a similar behavior (Fig. 13.12e and 13.12f). Here, the
main parameters are the values for intra- and post-clustering as well as the choice
whether ligand interpolation should be enabled. To obtain more detailed information,
we applied additional runs with smaller clustering parameters than those used in
the benchmark scenario. In particular, the RMSD thresholds for intra-/post-clustering
were set to 0.0Å/1.0Å and 1.0Å/2.0Å. The former is a special case insofar as a clus-
tering is only applied when a complex has been completely assembled, leading to
distinct peaks in the corresponding data lines at the respective locations in the plot.

In general, the higher the clustering parameters, the higher the running times. En-
abling ligand interpolation leads to higher running times, because the interpolation
leads to the generation of solutions that are more similar than in the runs using no
interpolation. In area 1, the mean running times remain constant, because after each
iteration less solutions have to be clustered to determine the set to be retained for
the next iteration. In area 2, the running times then increase because the number of
complex similarity mappings rapidly grows with the complex size. A drop is again
observed at the beginning of area 3 and 4, because here, the clustering parameters are
reduced by a factor of 5 and then again by 2. The reason for this reduction is, that the
overall RMSD between two complexes is less and less affected by the attachment of an
additional monomer, the more monomers the complex already contains. Yet, the run-
ning time required for clustering is soon again dominated by the actual complex size
and the number of potential mappings between two complexes that can be obtained.

Consequently, also the running times for evaluation and symmetry optimization
(Fig. 13.12g) depend on these mappings, even three-fold. First, an evaluation against
the reference complex is performed (Sect. B.11), subsequently a symmetry optimiza-
tion is attempted (Sect. B.10) and if successful, an evaluation against the reference is
performed again. Because the symmetry optimization performs up to twenty itera-
tions by default, trying partial symmetry optimizations until either a clash-free com-
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plete set of symmetry mappings is obtained or the iteration threshold is reached, this
heavily affects the running time for large complexes. However, the use of restart files
allows for a heavily parallel evaluation of all solutions obtained in the final iteration
of complex assembly.

The running times required to generate the docking poses are not considered: they
strongly depend on the employed docking algorithm, its parameterization, the num-
ber of atoms of the monomers to be docked and the number of poses to be generated.
In our case, we employed RosettaDock in low-resolution mode and generated 10,000

dockings. Depending on the proteins to be docked, we observed running times from
several hours to two days when applying serial docking. However, in a real case study
where the poses have to be generated for only one instead of 308 complexes, the dock-
ing with RosettaDock can be parallelized, and thus the required running time can be
drastically reduced.

Summarizing, the assembly process is heavily dominated by the finalization stage,
in particular the clustering. For complexes of size 60, the running time in the final-
ization stage is 100 times greater than that of the population stage, when using the
parameters that perform worst in the respective part of the algorithm. Consequently,
in the average worst case, the accumulated finalization time of about 6,000 minutes
(4.2 days) for a complex of size 60 is approximately 15 times greater than that of the
population stage.

However, all 60-mers but 1HQK could be reconstructed even in the additional runs
using small clustering parameters. Hence, several additional scenarios not tested in
this work are thinkable: for example, clustering is only applied in the cheap early
stages of the algorithm to diversify the solution space, and later stages do not apply
clustering at all. Alternatively, clustering could only be applied in every k-th iteration
to decrease the overall running times. The latter is especially important in cases where
the solutions obtained from the population are very similar. In particular, we encoun-
tered a few cases (less than 15 in total for complexes 1KIB, 2F1D and 3KA3), where the
finalization took unusually long when employing ligand interpolation. Here, using
the restart feature, one would typically reduce the clustering parameter or the num-
ber of solutions to be retained; however we refrained from introducing such changes
to keep the parametrization consistent over all benchmark runs.

13.2 single-residue pair interaction constraints

In this section, we concentrate on a scenario where only little information about poten-
tial binding modes is available. In particular, we assume that we only know one pair
of interacting residues per native binding mode in the complex as described in Sec-
tion 12.3, for example from correlated mutation studies [322, 323, 197, 199]. To further
increase the difficulty in this scenario, we also included additional false-positive (non-
native) binding modes. Such binding modes can for example have been observed in
homologous proteins, obtained by protein-protein interaction prediction tools such as
PRISM [371], or correspond to native binding modes which are, however, not present
in the complex (Sect. 12.3).

In this section, we thus want to assess how well 3D-MOSAIC performs on dock-
ing poses obtained using wide-range sampling parameters under consideration of
constraints derived for residues assumed to interact, so-called single residue-pair in-
teraction constraints (SRPIC), as explained in Section 12.4.
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Binding Mode

Structure A B C

1HI9 0.165 (124) 0.567 ( 68) 0.839 ( 68)

1KW6 1.138 ( 62) 0.351 (162) 0.792 (188)

1PVV 1.938 ( 38) 1.251 ( 56) 2.299 ( 6)

1QK1 1.053 (100) 0.670 ( 74) 0.491 ( 30)

1X1O - ( 0) 2.280 ( 8) 0.615 ( 6)

1YNB 2.343 ( 4) 0.347 ( 96) 0.653 ( 58)

2BJK - ( 0) - ( 0) 0.202 ( 50)

2F1D 1.026 (104) 0.546 (104) 1.580 (108)

2UYU - ( 0) 0.723 ( 34) 1.034 (274)

3Q46 0.167 (346) 0.461 (122) 0.195 (108)

Table 13.7: Docking results for the respective three native binding modes of the ten complexes
selected for the SRPIC experiments. Per structure and binding mode, the Cα RMSD of the best
pose (and the number of poses) with a CαRMSD ≤ 3.0Å is given.

Due to the increased computational effort required for both the docking pose gen-
eration and clustering as well as the subsequent assembly, we randomly selected ten
homo-oligomers, each with three native binding modes, which proved to be successful
in the benchmark experiments. The following complexes (with number of monomers)
where selected: 1HI9 (10), 1KW6 (8), 1PVV (12), 1QK1 (8), 1X1O (6), 1YNB (6), 2BJK
(6), 2F1D (24), 2UYU (8), 3Q46 (6).

In the following, we first discuss the results obtained from the dockings for the
individual binding modes. Subsequently, we investigate the overall performance of
3D-MOSAIC using these docking poses. In particular, we address how the perfor-
mance of 3D-MOSAIC changes when only the docking poses corresponding to the
native binding modes are used or when additional docking poses corresponding to
false-positive (non-native) binding modes are included. Finally, we present the results
of the cross-validation we performed on the employed parameter sets, once when
using only docking poses that correspond to native binding modes, and once when
additionally using docking poses corresponding to false binding modes.

13.2.1 Pairwise Docking Results

In this subsection, we present the results obtained from the docking of the start dimers
corresponding to the individual single residue-pair interaction constraints. The ran-
dom selection of pairs of interacting residues is described in Sect. 12.3, the obtained
constraints are listed in Tab. C.3. The generation of start dimers from these constraints
and the corresponding docking and clustering procedures are described in Sect. 12.4.

The results of the dockings w.r.t. the three native binding modes (Sect. 12.2) of each
of the ten structures is listed in Tab. 13.7: for each of the binding modes the Cα RMSD
of the best pose with a CαRMSD ≤ 3.0Å and the corresponding number of poses
fulfilling this criterion are presented.

First of all, we see that for three structures, at least one of the binding modes does
not possess a corresponding pose with a Cα RMSD ≤ 3.0Å. In the case of 1X1O and
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2UYU, one of the binding modes misses such a pose (binding mode A in both cases),
in the case of 2BJK, two native binding modes (A and B) could not be found among
the dockings. In addition, several binding modes have a low number of low-RMSD
poses: in particular 1PVV C, 1X1O B and C, and 1YNB A have less than ten poses with
a Cα RMSD ≤ 3.0Å to the respective binding mode. In addition, in three of these cases
(all but 1X1O C) the lowest-RMSD pose yields a quite poor Cα RMSD ∈

[
2.0Å, 3.0Å

]
.

In the other cases, we find a better coverage of the corresponding binding modes,
with values between 30 and 346, and very good best-pose Cα RMSDs ≤ 1.0Å. Only
for 1KW6 A, 1PVV A and B, 1QK1 A, 2F1D A and C, as well as 2UYU C, the best
pose yielded a Cα RMSD ∈

[
1.0Å, 2.0Å

]
to the respective binding mode.

When additionally including false-positive constraints not corresponding to the na-
tive binding modes present in the complex, the above values are slightly different.
This is due to the fact that each pose is assigned to the binding mode correspond-
ing to the constraint for which the lowest penalty score was obtained. Hence, the
subsequent iterative procedure of clustering and singleton removal (see Sect. 12.4)
might yield slightly different results. The corresponding results are presented in Tab.
C.4 (differences are underlined), demonstrating that the employed procedure can be
considered robust against the inclusion of additional constraints.

13.2.2 Assembly Performance

To assess the performance of 3D-MOSAIC when only one pair of interacting residues
per assumed complex binding mode is known (see Section 12.3), we performed 32

runs with different parameters to assess whether 3D-MOSAIC is able to find near-
native complexes in such a scenario. The parameters used in these runs differ from
those used in the benchmark scenario, in particular, greater values for transformation
matching are used. In addition, based on the observation that many complexes exhibit
symmetries, in 16 of these runs, we try to pre-rank the obtained sub-complexes by the
number of symmetry mappings that have been found for the corresponding solution.
A full list of the used parameters is given in Tab. C.25.

We now discuss the results for the assembly of our ten exemplary complexes with
3D-MOSAIC, before we investigate how this performance changes when additional
false-positive binding modes are introduced. In this subsection, we will address the
overall performance and will provide a more detailed look on the performance in de-
pendence of the number of false-positive binding modes used in the next subsection.

In total, we could reconstruct a native assembly (tRMSD to the reference complex
≤ 2.5Å) for seven of ten complexes when using only docking poses corresponding to
native binding modes. The complexes for which such an assembly could be obtained,
are 1HI9, 1KW6, 1QK1, 1X1O, 1YNB, 2F1D and 3Q46. An overview of the overall
performance is given in Tab. 13.8. A comparison with the docking results already
presented in Tab. 13.7 shows that these complexes coincide well with those complexes
for which good docking poses have been obtained for all native binding modes.

In particular, 2BJK and 2UYU could be considered a hard case, because here, two
respectively one binding modes were not covered by a sufficiently good docking pose.
The same is true for binding mode A of 1X1O, the other two are also poorly covered:
only 8 and 6 good poses with respective best-pose RMSDs of 2.280Å and 0.615Å were
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Complex 1HI9 1KW6 1PVV 1QK1 1X1O 1YNB 2BJK 2F1D 2UYU 3Q46

Monomers 10 8 12 8 6 6 6 24 8 6

Correct 24 12 0 31 4 10 0 1 0 32

Mean Rank 7.17 1.17 - 5.25 85 29.8 - 70 - 1.03

Table 13.8: Overview of the reconstruction performance of the SRPIC experiments using only
the docking poses corresponding to native binding modes. “Correct” denotes the number of
parameter sets for which a near-native complex was found, “Mean rank” the average rank of
the first pose with a tRMSD ≤ 2.5Å over all successful parameter sets.

found for binding modes B and C respectively. Yet, 1X1O could be reconstructed in 4

of 32 models (12.5%).
1X1O is with six monomers a comparatively small dimer of tightly bound trimers,

which increases the likelihood of being reconstructable. Here, not the transformation
match score is responsible for the correct reconstruction but a tolerant clash checking
(150 clashes per pair in all four models) and the final symmetry optimization. For ex-
ample, for several solutions generated by 3D-MOSAIC using parameter set srpic_06,
a full set of six symmetry mappings could be determined during symmetry optimiza-
tion, yielding an overall good topology. In particular, the top-ranked solution after
re-ranking by the number of symmetry mappings that could be performed during
symmetry optimization, originates from a solution that was originally ranked at 41

and yielded a tRMSD of 3.41Å. After symmetry optimization, the tRMSD improved
to 1.883Å.

In contrast, 1PVV had at least mediocre poses for each of the three binding modes,
even though one (C) showed a poor coverage. Yet, it was not reconstructable. There are
two main reasons for that. First, 1PVV’s topology resembles that of a hollow sphere.
Consequently, many different poses lead to a valid attachment of a new monomer,
because the number of direct neighbors is comparatively low and thus, less clashes
can occur. In comparison, the monomers of a tight complex like 1X1O must fit better
into their neighborhood, even if no matching poses from other monomers can be
found. The second reason is the size: 1PVV is built from twelve monomers, which
vastly increases the number of potential solutions in comparison to 1X1O. Hence, if
the transformation match score can not determine well-matching poses (which can be
assumed from the docking results), a native solution (if possible at all) will be further
down-ranked in any subsequent iteration and soon be dropped.

Given these observations it comes a bit as a surprise that the 24-mer 2F1D could be
reconstructed. And indeed, there was only one parameter set (srpic_16) with which
3D-MOSAIC could reconstruct 2F1D sufficiently well. The corresponding tRMSD of
the best pose is 2.21Å, the rank for this pose 94. The first pose with an tRMSD ≤
2.5Å was found at rank 70 (tRMSD 2.49Å). Here, no symmetry optimization could
be performed, but the overall complex match scores of 38.867 and 38.824 for the first
and best pose with tRMSD ≤ 2.5Å can be considered reasonable (by experience, as
a rule of thumb, we found that complexes with a complex match score ≥ 1.5 times
the number of monomers can be considered to show at least the general properties of
the original complex topology). While a near-native assembly was obtained for only
one parameter set, at least one pose with a tRMSD ≤ 4.0Å was found for ten different
parameter sets.
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1HI9 1KW6 

1QK1 1X1O 

1YNB 2F1D 

3Q46 

Figure 13.13: The seven complexes that could be reconstructed using only docking poses that
correspond to native binding modes in the reference complex. Each assembled complex is
superimposed onto the respective reference.
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We do not consider such complexes to be near-native, however, they can potentially
help to derive more detailed information on the individual near-native binding modes.
This information could then be used to re-dock the respective binding modes at a
more local scale and obtain a higher sampling density for the respective interfaces.
This in turn could lead to an improved quality of the assembly. In addition, it has to
be kept in mind that we intentionally performed a very wide-range sampling for each
of the constraints (Sect. 12.4), neglecting the fact that additional expert knowledge
might be available. Such knowledge could already be used to further limit the space
that has to be sampled for each binding mode, and thus to obtain a higher sampling
rate in the vicinity of the native binding modes (or constraints).

To summarize the above presented findings, we can say that the assembly suc-
ceeded in five out of ten cases (1HI9, 1KW6, 1QK1, 1YNB, and 3Q46) with a sufficient
number of parameter sets (≥ 10 (≈ 30%)) and a reasonable average rank. Two addi-
tional complexes (1X1O, 2F1D) could be assembled in a small number of parameter
sets and three complexes (1PVV, 2BJK, 2UYU) could not be assembled at all. Here,
the quality of the docking poses and to some extent also the complex topology are
the crucial factors for a successful assembly. An overview of the seven reconstructed
complexes is given in Fig. 13.13.

13.2.3 Performance When Introducing Non-Native Binding Modes

In the previous subsection, we presented the results of assemblies using only the dock-
ing poses corresponding to the constraints derived from the native binding modes
(called scenario i)). However, we can also investigate how the performance of 3D-
MOSAIC changes when additional docking poses corresponding to false-positive con-
straints are included.

In addition to scenario i) which uses only docking poses from the native binding
modes, the following assembly data sets were compiled for each of the complexes: ii)
native and three false-positive binding modes, iii) native and six false-positive binding
modes, and iv) native and all (ten) false-positive binding modes. In total, we thus yield
40 assembly data sets, four per complex.

False positives 1HI9 1KW6 1PVV 1QK1 1X1O 1YNB 2BJK 2F1D 2UYU 3Q46 Total

0 24 12 0 31 4 10 0 1 0 32 7

3 0 10 0 24 0 0 0 0 0 32 3

6 0 8 0 12 0 0 0 0 0 12 3

10 0 2 0 9 0 0 0 0 0 0 2

Table 13.9: Overview of the reconstruction performance of 3D-MOSAIC in the SRPIC ex-
periments using docking poses corresponding to different numbers of false-positive binding
modes in addition to those of the native binding modes. The last column denotes the num-
ber of complexes that could be reconstructed using the respective number of false-positive
positive binding modes.

From the seven complexes that could be reconstructed using only the docking poses
that correspond to the native binding modes, three could also be reconstructed when
including up to six false-positive constraints. The three complexes are 1KW6, 1QK1,
and 3Q46, three complexes for which good docking poses similar to each of the native
binding modes could be obtained at a high coverage (≥ 50 poses, cmp. Tab. 13.7), as
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Number of parameter sets

Experiment N single pair triple

CV1 10 0.244 0.489 0.578

CV2 40 0.279 0.298 0.304

Table 13.10: Mean cross-validation coverages when a) considering only complexes assembled
from docking poses corresponding to native binding modes, and b) including docking poses
of up to ten additional false-positive binding modes. N corresponds to the number of assem-
bly data sets, as described in Subsect. 13.2.2

compared to the remaining 4 complexes (1HI9, 1X1O, 1YNB, and 2F1D) which have
(with the exception of 1HI9) a low coverage for at least one of their native binding
modes or exhibit a more difficult topology (2F1D).

This indicates that if a sufficiently high coverage can be achieved such that highly
compatible poses yielding a large match score are available, the noise introduced by
additional decoy poses does not severely affect the assembly process. In fact, two
of the complexes (1KW6 and 1QK1) could also be reconstructed when including all
docking poses corresponding to all ten false-positive binding modes.

Summarizing over all scenarios, a near-native complex could be generated for 15

out of 40 assembly data sets (37.5%).

13.2.4 Cross-Validation

In the previous sections, we have seen that 3D-MOSAIC is, in principle, able to cor-
rectly reconstruct oligomeric assemblies in an information-scarce situation. We are
now interested in how well the above parameter sets can be expected to perform in
the general case, i.e., on unseen data for which only information on one interacting
pair of residues per assumed complex binding mode is available. To this end, we
performed two cross-validation experiments over the above presented parameters as
follows: in the first cross-validation experiment (CV1), we consider only those ten
assemblies from scenario i), i.e., we use for each complex only those docking poses
which correspond to native binding modes. The second experiment (CV2) then com-
prises all forty complexes from scenarios i)-iv).

In both cross-validation experiments, we use a 5-fold cross-validation, because the
data sets are comparatively small (ten and 40 complexes, respectively). In CV1, rather
than providing an estimate, the exact average CV coverage can be easily computed
because only (10

8 ) = 45 (data set size 10, training set size 8) different training folds can
be generated. In CV2, we average over 1000 5-fold cross-validation runs.

As in the cross-validation experiments from Subsect. 13.1.3, we again perform the
cross-validation in the following three setups: the single best-performing parameter
set on the training data is used for prediction, and analogously, the combination of
two (and three) parameter sets that yield a maximum number of correctly recon-
structed benchmark complexes in the training set. The results are summarized in Tab.
13.10.

As can be seen, there is a clear difference between both experiments. The cross-
validation coverage for experiment CV1 is better than that of CV2, at least when
more than one parameter set is selected in the training stage. In CV1, on average, 5
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respectively 6 out of ten complexes can be reconstructed when using the best pair
or triple of parameter sets. Given the fact that only 7 complexes in total could be
reconstructed, we can assume that three different parameter sets suffice to reconstruct
the majority of complexes, at least if the complexes are similar to those used in our
SRPIC experiments.

In experiment CV2, the obtained coverages are much lower, however, this results
from the decreasing performance of 3D-MOSAIC when additional docking poses for
false-positive binding modes are included. As described in Subsect. 13.2.3, a successful
reconstruction was observed only for 15 of 40 assembly data sets (37.5%). Hence, the
assembly data sets for which a successful reconstruction can be achieved are well-
covered already with two models. Yet, these values have to be taken with care, due
to the low performance of 3D-MOSAIC when docking poses corresponding to non-
native binding modes are included in the assembly.

13.3 global dockings and comparison to combdock

CombDock is an algorithm that, similar to 3D-MOSAIC, uses docking poses that are
generated independently of the actual assembly process. In this section, we will thus
compare the assembly performance of both approaches on the global docking poses
generated by CombDock’s docking protocol.

First, we will investigate the overall performance of the docking protocol and the
quality of the corresponding docking protocol. Subsequently, we will discuss and
compare the results of the assembly stage employed in both methods.

13.3.1 Docking Results

The CombDock algorithm entails, besides the actual assembly, also the generation
of the docking poses between all pairs of monomers in the complex. The poses are
obtained from a rigid, global docking protocol, i.e., no interaction or binding mode
information is required (Subsect. 3.3.5). The employed algorithm uses a local feature
mapping to generate poses which are then subsequently scored by shape comple-
mentarity, neglecting any biochemical properties. The obtained docking poses are not
constraint to specific interfaces, but rather the mobile protein can be globally docked
at any surface patch of the binding partner that yields a promising interaction score.

Unlike our previous experiments, in this case, a discrimination into distinct inter-
faces is not given, due to the global nature of the docking algorithm. A clustering of
the docking poses could yield a rough discrimination into groups of similar poses;
clusters with a high coverage could be interpreted as potential native binding modes.
However, performing such a clustering would give us an unfair advantage over Comb-
Dock which uses the global dockings without further knowledge of potential binding
modes.

In addition, CombDock performs an all-vs-all docking. For hetero-oligomers, we
thus also obtain docking poses between pairs of protein types that do not natively
interact in the resulting complex. We refrained from excluding such poses during the
assembly with 3D-MOSAIC to keep the comparison to CombDock fair.

Nevertheless, we can assess how well the docking stage of the CombDock algorithm
was able to find near-native poses for pairs of natively interacting protein types. To
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Figure 13.14: Distributions of Cα RMSDs obtained from the CombDock-generated docking
poses for all native binding modes.

this end, we calculated for each of the obtained poses the Cα RMSD to any of the
dimers representing native binding modes as determined in Sect. 13.1.1.

By default, CombDock uses the first 100 poses per pair of monomers to assemble
the complex. The corresponding distributions of minimum, median and maximum
RMSD are given in Fig. 13.14a. The distributions over all values is given in Fig. 13.14b.
In can be clearly seen that CombDock is not able to find a near-native pose for most
of the binding modes.

In fact, only in 61 cases (6%), at least one pose with a Cα RMSD≤ 3.0Å was obtained
(the corresponding complexes and binding modes are given in Tab. C.5). Among
them, only 2 complexes have such a pose for each of their native binding modes:
1XXC_1_foreign, a dimer of trimers and the cage-like 3M4B_3_same (12 monomers);
each of them contains two native binding modes. In 18 of these cases (2%), a pose
with a Cα RMSD ≤ 2.0Å and only in one case (0.1%) at least one below 1Å was found.
These findings do not change drastically when investigating all poses instead of the
first 100, implying two conclusions: if CombDock is able to detect a native binding
mode, it can be found among the top 100, and because the scoring function only
accounts for shape complementarity, the size of the interface must be comparatively
large.

13.3.2 Comparison of Performance of CombDock and 3D-MOSAIC using CombDock’s Pair-
wise Global Docking Poses

In the following, we address and compare the overall performance of CombDock and
3D-MOSAIC, both using the 100 best-scored poses (generated by CombDock) between
all pairs of monomers in the complex (including those between monomers that do not
interact natively).

Similar to 3D-MOSAIC, CombDock tries to solve a combinatorial problem. How-
ever, while 3D-MOSAIC does so in an iterative fashion, i.e., by attaching one monomer
to all sub-complexes obtained from the previous iteration, CombDock first constructs
a complete graph with an edge between two monomers for each corresponding pose.
Subsequently, a clash-free minimum spanning tree is determined by iteratively join-
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Figure 13.15: Structure and underlying topology graph of 2BWE. Spheres of the same color
correspond to the same protein type, analogously equally colored edges between two spheres
correspond to the same binding mode.

ing sub-trees for each edge between a pair of vertices in both sub-trees that does not
lead to steric clashes. The best trees are then greedily selected for further processing.

This procedure is computationally very intensive, leading to an immediate abortion
of CombDock arising from a too large input space in 58 cases. The assemblies for
further 60 complexes could not be completed within the running time threshold of
the queue (5 days), leaving 190 complexes for the comparison (3D-MOSAIC generated
complexes for all 308 assemblies).

Overall, CombDock and 3D-MOSAIC were able to reconstruct only one respec-
tively none of the complexes when using the pairwise global docking poses gener-
ated by CombDock. The one complex that CombDock was able to assemble (tRMSD
2.12Å, rank 1966) is 2BWE_1_same, a linear, slightly turreted complex of nine small
monomers of the same protein type and an additional single monomer of another
type attached to one of the other nine (see Fig. 13.15). The overall topology is rather
unusual, yet explicitly discussed in the accompanying article [372]. The binding mode
between two helical monomers (yellow) is one of the 61 cases for which a pose with a
good RMSD (1.99Å) was found.

In the general case, none of both algorithms performed well. Besides the aforemen-
tioned 2BWE, none of the complexes is even close to being correct, as indicated by the
corresponding topology RMSDs. However, even though 3D-MOSAIC did not yield

tRMSD [Å] (rank)

Assembly CombDock 3D-MOSAIC ∆tRMSD

1E7P_1_same 7.34 ( 42) 9.65 (27) -2.31

1MQM_2_same 8.44 ( 15) 8.60 (14) -0.16

2BWE_1_same 2.12 (1966) 3.95 (38) -1.83

2HEY_1_foreign 6.23 ( 27) 6.51 (13) -0.28

2HEY_1_same 6.39 ( 1) 6.83 (46) -0.44

Table 13.11: Cases where CombDock obtained a minimum tRMSD complex better than 3D-
MOSAIC.
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Figure 13.16: Distributions of minimum tRMSDs obtained over all complexes generated by
CombDock and 3D-MOSAIC. Dotted lines correspond to tRMSD thresholds of 2.5Å and 5.0Å.

any solution with tRMSD ≤ 2.5Å for any of the benchmark complexes, it was in gen-
eral able to generate solutions with significantly better tRMSDs for almost all of the
complexes. Only five cases could be determined where the tRMSD of the best Comb-
Dock complex is better than that generated by 3D-MOSAIC, shown in Tab. 13.11.

Fig. 13.16 shows the overall distributions of the minimum topolgy RMSD per com-
plex, for both 3D-MOSAIC and CombDock. While the overall performance is poor, it
is still clearly observable that 3D-MOSAIC produces assemblies of significantly better
quality (ranksum statistics p-value 1.31e− 46): the means (and standard deviations σ)
for the tRMSD of 3D-MOSAIC and CombDock are 6.13Å (1.17Å) and 10.95Å (4.34Å),
respectively. The mean (median) difference between the corresponding tRMSDs of
3D-MOSAIC and CombDock is 4.82Å (3.88Å).

As can be seen from Fig. 13.16a, 3D-MOSAIC generates assemblies with a topology
RMSD below 5.0Å in 21 cases, compared to two for CombDock. While such complexes
lack the structural accuracy to be considered near-native, they can potentially still
provide information on approximate binding modes, which are addressed in Sects.
13.1 and 13.2.

In such a case, an iterative refinement employing several subsequent turns of dock-
ings and assemblies could possibly be performed. However, besides the questionable
chance of success, such an approach is only applicable in a single-case study as it
requires intensive investigation of the individual generated complexes. In addition,
secondary software to assess the structural quality must possibly be applied, hence
this approach is not applicable in a benchmark scenario as presented here.

Yet, even in such a coarse-grained scenario as framed by the global dockings ob-
tained from CombDock, the results indicate that 3D-MOSAIC can determine com-
plexes of better structural quality, even though the structural quality is still insufficient
in most of the cases.

13.3.3 All vs. Natively Interacting Protein Types

In the previous subsection, we performed a comparison between 3D-MOSAIC and
CombDock at the conditions of CombDock: only 100 poses per pair for each pair
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Comparison a b c d e

Mean [Å] -0.60 -0.54 -0.54 -0.60 -1.20

σ [Å] 1.18 1.16 1.07 1.10 1.81

Table 13.12: Mean and standard deviations for the tRMSD distributions comparing the five
different scenarios shown in Fig. 13.17.

of protein types present in the complex. We thus have neglected two facts: i) some
of the interfaces in complexes are comparatively small, and can thus not be found
among the first 100 poses, and ii) even though no knowledge about the approximate
interfaces is available, one might at least be able to exclude pairs of protein types that
are certain to not interact in the complex.

While this information can not be incorporated into CombDock, we can neverthe-
less investigate and compare the performance of 3D-MOSAIC in the following four
scenarios: 100 poses at all interfaces, 100 poses for each pair of natively interacting pro-
tein types, and the same scenarios again with all CombDock-generated poses instead
of only the first 100.

A comparison of these scenarios is presented in Fig. 13.17, the main characteristics
of the respective comparisons are summarized in Tab. 13.12. 56 complexes could be
determined for which CombDock produced dockings between pairs of protein types
that do not interact in the native complex. As expected, only considering the docking
poses corresponding to natively interacting pairs of protein types, yields an increase
in assembly performance: when considering only the top 100 as well as all poses,
we obtain (Fig. 13.17a and 13.17b) distributions favoring the scenario where only na-
tive pairs of protein types are considered. The corresponding mean tRMSDs (σ) are
−0.60Å (1.18Å) and −0.54Å (1.16Å).

In contrast, it is not so intuitive to answer what happens, when more poses are
included. To this end, we can consider the scenarions 100 vs. all poses for both cases,
where all and only the true interactions are considered. In the former case, all 308

complexes are considered, in the latter case only those 56 where dockings between
non-interacting pairs of protein types have been performed. These comparisons are
shown in Fig. 13.17c and 13.17d, respectively. Interestingly, we also observe slight im-
provements in these cases, when considering all poses: the distributions show means
(σ) of −0.54Å (1.07Å) and −0.60Å (1.10Å).

The reason here is, that when only considering the best 100 poses, poses correspond-
ing to smaller native binding modes might be missed. Hence, even though the use of
all poses also entails the inclusion of a large number of decoy poses, poses similar to
smaller binding modes can help the transformation match score to detect and better
score those complex candidates that better correspond to native complexes.

This assumption is especially supported by the distribution shown in Fig. 13.17e.
Here, we compare the 100 best poses of all pairs of protein types vs. all poses of
the natively interacting protein type pairs: while poses corresponding to non-native
pairs of protein types are removed, the full set of poses generated by CombDock is
considered for the remaining pairs. Here, a mean tRMSD difference of −1.20Å and a
standard deviation of 1.81Å are observed.

From these observations, we can thus conclude that not only those docking poses
involving the largest interfaces are of relevance for the complex topology, and that
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Figure 13.17: Distribution of difference between corresponding best tRMSDs for 3D-MOSAIC
in five different pairs of scenarios. In each case, the second scenario produces smaller (better)
tRMSDs, yielding a shift of the distribution towards the negative.
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chance to detect corresponding poses and thus the quality of the complexes assembled
from the obtained dockings.

13.3.4 Comparison of CombDock and 3D-MOSAIC in Their Own Workflows

In the previous sections, we have compared the performance of 3D-MOSAIC and
CombDock when using the pairwise global docking poses generated by CombDock.
In this section, we want to compare the performances of both methods at their own
respective conditions and assumptions. In the benchmark scenario used to assess the
performance of 3D-MOSAIC (Sect. 13.1.2), we assume that the interaction geometries
of the binding modes which are established when forming the native complex are
roughly known. According to these assumptions, each assumed binding mode is lo-
cally sampled, yielding 10,000 docking poses per binding mode which are then used
for assembly. In contrast, CombDock does not incorporate such information and in ad-
dition only uses 100 (global) docking poses per pair of interacting monomers. Further-
more, it also generates docking poses for pairs of protein types that do not natively
interact in the complex.

When comparing both methods in their own workflows, 3D-MOSAIC clearly out-
performs CombDock: 3D-MOSAIC yielded solutions for all 308 complexes, while an
immediate abortion of the CombDock was observed in 58 cases. Further 60 cases
could not be completed within the allowed running time of the queue. 3D-MOSAIC
was able to overcome this limitation, if required, by using the implemented restart
feature.

Even when using one single parameter set, 223 and 221 benchmark complexes could
be reconstructed with 3D-MOSAIC using Sda and Srmsd, respectively. These numbers
increase to 258 and 252, respectively, when using the best-covering triple of parameter
sets. In contrast, CombDock was able to correctly reconstruct one benchmark complex
(2BWE_1_same, tRMSD 2.12Å, Sect. 13.3.2), however with a very low rank (1966). In
comparison, in 94.9% (97.1%) of the benchmark runs where 3D-MOSAIC yielded a
correctly reconstructed complex, the first correct solution was found among the top
10 (25). Furthermore, the worst rank at which a correct solution can be found when
using 3D-MOSAIC is rank 125: only 125 solutions are generated for hexamers (due
to the solution reduction scheme, see Sect. 12.6.1), 100 for complexes with up to 20

monomers, and 50 (25) for complexes comprising at most 40 (60) monomers.
Even with as little information as one single interacting residue pair per assumed

binding mode and under the aggravating conditions of additional false binding
modes (Sect. 13.2.2), 3D-MOSAIC performs better than CombDock: none of the ten
complexes tested in the SRPIC experiments could be reconstructed using CombDock;
3D-MOSAIC yielded correct reconstructions for seven of them when using the dock-
ing poses corresponding to native binding modes, 3 and 2 when additionally using
docking poses corresponding to up to 6 and 10 false binding modes, respectively.

We thus can conclude that, because CombDock is not able to incorporate additional
information on potential binding modes in its workflow, 3D-MOSAC represents the
better alternative if such information is available.
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D I S C U S S I O N

14.1 summary

In this work, we have presented a novel combinatorial greedy algorithm, called 3D-
MOSAIC, to assemble large oligomeric protein complexes from pairwise docking data.
We introduced two new scoring functions of biological relevance to measure the sim-
ilarity between two rigid (docking) transformations of the same protein: Sda which
is based on a heuristic displacement/angle distance threshold and Srmsd which em-
ploys an exact constant-time calculation of transformation RMSDs from protein co-
variance matrices. We derived a large and comprehensive benchmark set of protein
complexes which are diverse w.r.t. to their size, composition and toplogy. In addition,
we devised a new measure, called topology RMSD, for the comparison of oligomeric
macromolecular assemblies generated from pairwise dockings. The robustness of this
measure against conformational differences between monomers in the assembled and
the reference complex makes it especially suitable when monomers with conforma-
tional differences are used during assembly. And finally, we validated our algorithm
on a broad range of different scenarios.

Due to the high diversity of our benchmark set, we tested our algorithm with 96

different parametrizations, 48 for each of the two transformation matching scores. Us-
ing these parameter sets, we have shown that we can assemble 278 of the complexes
in our benchmark set, a large fraction (258) thereof using no more than three differ-
ent parameter sets. We performed a cross-validation to assess the predictive power
of these parameter sets for unseen complexes and could show that they are indeed
well suitable to be used for the assembly of unknown complexes. In addition, we
evaluated these parameter sets on a second data set consisting of homo-hexameric
structures, yielding successful assemblies for 15 of 17 complexes, underlining the gen-
eral capability of our algorithm to assemble a large variety of different complexes.

Running time investigations showed that even complexes with 60 monomers could
be successfully assembled in approximately one to two days. Compared to the effort
required for a structural determination (if possible at all), we have thus developed
an algorithm that can greatly contribute to and facilitate the efforts to structurally de-
termine large oligomeric complexes. Running time limitations arise when clustering
large complexes, but these can be alleviated by interactively reducing or disabling
the clustering threshold after several levels using the provided restart feature. The
required memory was typically in the range of at most 2GB, but can exceed that limit
when assembling heteromeric complexes with a large number of different interfaces.

A baseline study of runs without intra- and post-clustering comparing enabled
and disabled transformation match scoring clearly demonstrated the importance and
efficiency of our scoring function for complex assembly from pairwise dockings: the
number of correctly assembled complexes was increased by a factor of 2.96 for an
enabled score when using the respective three best-performing parameter sets. We
could thus demonstrate its capability to filter the near-native poses from large, diverse
dimer decoy sets produced by RosettaDock.
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An evaluation of 3D-MOSAIC on pairwise dockings using a non-local sampling for
docking start dimers generated in a straightforward fashion from single-pair residue
interaction constraints showed that the algorithm can find near-native solutions in 7 of
10 cases when considering only the docking poses corresponding to the native binding
modes. In two of the failed cases, the docking algorithm could not provide docking
poses that are sufficiently close to the native binding mode. When adding an equal
rate of noise with false positive constraints (3 artificial binding modes), 3 complexes
could still be reconstructed, 2 of which could still be successfully assembled with as
many as 10 artificial binding modes.

A comparison to CombDock using the 100 best global dockings generated by Comb-
Dock’s integrated docking algorithm demonstrated that the use of global docking
poses is unlikely to yield any reliable results. In particular, CombDock could assem-
ble only one and 3D-MOSAIC none of the benchmark complexes. Overall, we could
show that incorporating additional docking poses corresponding to smaller patches
of complementary surfaces can improve the assembly results to some extent, even
though the results were still not sufficiently good to yield a near-native solution.

In a number of cases, 3D-Mosaic did not perform well. These were complexes with
a low connectivity, i.e., such with a low number of interfaces for all monomers. This
is especially prevalent for cage-like or mono-layered ring-like structures with many
subunits: here, the algorithm must rely on a good ranking based on the docking
scores, until in the final iteration a ring closure is possible and the transformation match
score can be applied. Furthermore, helical monomers as well as heavily intertwined
proteins can hamper the assembly process.

Summarizing, 3D-MOSAIC extends the potential of docking-based reconstruction
of large complexes by increasing the number of subunits as well as the number of
protein types that are involved. The algorithm can already find near-native complexes
with a few number of parameter sets, yet for difficult cases, it provides many addi-
tional features, which can be adjusted to suit specific use cases. It is applicable to
asymmetric and symmetric complexes with the benefit of an additional symmetry
optimization of the latter ones.

14.2 conclusion

In this project, based on the transformation match score and 3D-MOSAIC, we could
thus show that oligomeric protein complexes can be computationally assembled using
pairwise dockings sampling the assumed native complex binding modes.

With 3D-MOSAIC, we aimed at overcoming the limitations of current algorithms
in terms of complex size, number of different protein types, symmetry assumptions,
and topological properties. On our diverse benchmark set of 308 complexes, we could
successfully demonstrate that this goal was indeed achieved.

We also wanted to reduce the amount of information required for a successful as-
sembly: 3D-MOSAIC only requires a representative high-resolution structure for each
protein type, the respective multiplicity in the complex, and docking poses sampling
each of the assumed native complex binding modes. The benchmark and SRPIC ex-
periments demonstrated that this information is indeed sufficient to obtain correct re-
constructions, however, using the global dockings provided by CombDock, we could
also show that missing knowledge on potential complex binding modes will likely
not lead to a successful reconstruction.
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While 3D-MOSAIC fails when no assumptions about complex binding modes can
be made, such information can often be obtained from various experiments, e.g., cross-
linking and correlated-mutation studies. Our method is thus applicable whenever
such information is available and can thus represent an alternative or complemen-
tary approach for integrative methods: here, many different data sources providing
information on distances between the complex components are combined to obtain
structural models of oligomeric protein complexes at medium-to-high resolution. In
this context, the incorporation of additional data sources such as cryo-EM data which
can help to guide the assembly process, and the generation of sub-complexes to over-
come 3D-MOSAIC’s limitations w.r.t. assembling weakly connected complexes, are
currently explored.
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R E T R O S P E C T I V E A N D O U T L O O K

As stated in introductory chapter of this thesis (Section 1.2), the aim of this work
was to deepen the knowledge related to protein structure and protein interaction
prediction. We have addressed two different questions: the first one whether elastic
network model normal modes can be used to predict the conformational changes
upon binding of small molecules, and the second whether macromolecular oligomeric
assemblies can be constructed from pairwise dockings.

We could show that elastic network model based normal modes on coarse-grained
protein structures are in general not suitable to predict the conformational changes
associated with ligand binding. The main reasons here can be considered the locality
of the movements to be performed as well as the presence of the ligand itself. The
interactions with the ligand can lead to additional energetic contributions that influ-
ence the energy required for certain parts of the backbone to move and consequently
also the normal modes. In addition, the binding itself represents a continuous process,
where not all parts of the protein are equally involved during all stages of the ligand
uptake. This again can affect the conformational behavior of the protein.

A first step towards a better understanding of this processes is, for example, the
use of tools to investigate the residue-residue interaction networks of a particular pro-
tein in different protein conformations, e.g. by tools such as RINalyzer [373]. Such
knowledge in turn could then be used to derive residue-residue interaction-specific
distance constraints that could for example be used to establish more sophisticated
spring force functions used during normal mode analysis. In contrast to current ap-
proaches where the forces only depend on residue-residue distances, such constraints
can for example weigh the contributions of individual residue-residue interactions
based on how conserved they are in a set of alternative protein conformations. How-
ever, in general, we consider the potential gain from using elastic network model
normal modes during protein-small molecule docking to be low in the general case,
and have thus abandoned this field of research.

The assembly of macromolecular oligomeric complexes from pairwise docking
poses has proven to be more successful. We could assemble a large majority of the
complexes in our diverse benchmark set, and have developed a simple scoring func-
tion that is able to recognize near-native docking poses by scoring the mutual infor-
mation from interfaces in the immediate neighborhood of a monomer to be attached.

We could demonstrate that 3D-MOSAIC, the algorithm we developed to this end,
in its current form is already capable to assemble complexes of up to 60 monomers
within a few days. Compared to the time required for crystallization of the respective
complexes (if possible at all), this can be considered a great success. Even more im-
portant, modeling such assemblies before the actual crystallization process can help
to identify (or limit) the conditions at which a successful crystallization is likely.

Likewise, 3D-MOSAIC is also suitable to assist in integrative approaches by pro-
viding an automated assembly tool. Distance constraints for example can be used
to guide the docking process. The resulting poses are then used as the input to our
algorithm.
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However, several developments could help to improve the performance of 3D-
MOSAIC even further: for example, the incorporation of the recognition and use of
patches of monomers during the assembly process. For example, in the case of the
pyruvate dehydrogenase E2 core, we have seen that trimers of E2 are formed which
weakly interact over small bridges with other trimers (see Subsection 2.5.1). Here, de-
tecting these trimeric patches could help to reduce the combinatorial space and thus
to increase the likelihood that such complexes can be assembled. Furthermore, these
patches can also be expected to lead to a significant increase in running time: we have
seen that in later stages of the algorithm, the running time drastically increases with
the number of components present in the complex. The identification and use of such
patches instead of the individual monomers would thus require, for example in the
case of a 60-mer with trimers as described above, only 20 iterations instead of 60.

Further improvements in running time can certainly be achieved through more ef-
ficient implementations, especially during complex similarity matching. For example,
the RMSD computation using rigid transformations [351] that we established during
the later stages of the development of 3D-MOSAIC, would render the use of the in-
dividual protein representations used during matching (see Section B.8) obsolete and
would thus lead to a considerable speed-up. In addition, the exact computation in
combination with a geometric hashing approach, can reduce the running time com-
plexity by several orders of magnitudes.

Moreover, features such as the scoring of sub-complexes against low-resolution elec-
tron density maps or simple constraints such as the expected diameter of the complex
can be expected to improve the performance of 3D-MOSAIC in difficult cases.

The scientific work with 3D-MOSAIC will also be continued. The following three
problems are currently tackled: the assembly of the glycolysis complex, a hetero-
oligomeric complex of several proteins on the glycolysis pathway, for which neither
the exact stoichiometry nor the proteins that comprise the complex are exactly known.
A large variety of data, for example on the potentially participating proteins and their
interactions, has been collected by Sebastian Mock (Johannes-Gutenberg University,
Mainz) under guidance of professors Elmar Jaenicke and Heinz Decker (Institute for
Molecular Biophysics, Johannes-Gutenberg University, Mainz) and will be used as
constraints to generate appropriate docking poses and guide the assembly process.

Furthermore, viral capsids are a field of interest. Often high-resolution monomeric
structures are known, and in some cases also low-resolution capsid structures, for ex-
ample the Dengue or Hepatitis B Virus. Here the aim is to determine high-resolution
assemblies of the full viral capsids and to provide detailed information on their topol-
ogy. Here, a successful application of 3D-MOSAIC can be considered to be an integral
contribution to the research regarding anti-viral drug treatment.

The third project, which is currently in a very early stage, addresses the generation
of protein complexes from homologous monomeric proteins and the fitting of the
obtained complexes into electron density maps. Due to the use of homologous pro-
teins, a successful assembly in that case may also entail the application of homology
modeling approaches such as MODELLER [201, 202].

Finally, providing a web service for 3D-MOSAIC, possibly in collaboration with
third-party docking servers such as RosettaDock, is desirable and would serve the
applicability of 3D-MOSAIC and its accessibility by the scientific community.
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A D D I T I O N A L R E S U LT S F O R E X P E R I M E N T S W I T H E N M
N O R M A L M O D E S

a.1 data set composition

Astex Diverse Set [294] pdb code Protein name #holos #apo/holo pairs

1g9v Deoxy hemoglobin 4 62

1gm8 Penicillin G acylase 1 1

1gpk Acetylcholinesterase 4 28

1ia1 Dihydrofolate reductase 5 5

1l2s Beta-lactamase 2 2

1l7f Neuraminidase 12 12

1n1m Dipeptidyl Peptidase IV 3 3

1n2v TGT 9 9

1oq5 Carbonic anhydrase 32 137

1oyt Thrombin 2 2

1p2y Cytochrome P450cam 21 24

1r55 ADAM33 1 1

1s3v Dihydrofolate reductase 7 7

1sg0 Quinone reductase 2 4 4

1t40 Aldose reductase 20 40

1uml Adenosine deaminase 10 10

1v0p Protein kinase 5 1 1

1w1p Chitinase B 4 4

1ywr p38 kinase 20 39

2br1 Chk1 4 4

2bsm Heat shock protein 90 19 38

Table A.1: Overview of the proteins, corresponding holo structures, and apo/holo pairs used
in the data set.

a.2 validation of the reconstruction procedure

To ensure that the docking performance on the different normal mode subsets is
not an artifact of the reconstruction procedure, we also compared the results of our
dockings into the reconstructed holo conformations to those into the crystal holo
structures. The results are given in Figure A.1.

The three histograms demonstrate that our reconstruction procedure indeed pro-
duces valid conformations. When only the standard protocol is taken into account,
the distribution has a slight tail towards greater RMSD values, however, this tail is re-
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(a) (b) (c)

Figure A.1: Histograms of the difference in RMSD [Å] between the best poses obtained from
docking (across all docking protocols) for each apo/holo pair into the 100% reconstructed
holo conformation and the respective crystal holo structure (∆RMSD = RMSD_reconstruction
- RMSD_crystal). a) Standard protocols only, b) with soft protocols, c) with soft protocols and
explicitly accounting for side-chain flexibility.

duced when additionally taking the soft dockings into account and it totally vanishes
when, in addition, explicitly accounting for side-chain flexibility. The corresponding
mean (and standard deviation) values are 0.33Å (0.93Å), 0.21Å (0.79Å), and 0.08Å
(0.56Å), respectively. In the last case, 355 apo/holo pairs have a ∆RMSD < 0.5Å and
only 24 have a ∆RMSD > 1.0Å. None of these 24 apo/holo pairs is part of the subset
of 59 apo/holo pairs considered in Section 6.5. Thus, it can be expected that these
results can be further improved.

Figure A.2 demonstrates in detail how these results translate to Figure 6.5 of the
main article: again the baseline is the best pose RMSD obtained from docking into the
crystal holo structure but, in contrast to Figure A.1, here we consider only the best
pose produced by the respective docking protocol (both standard and soft protocols
take the respective standard docking into the crystal structure as basis, because this
is the native conformation and soft docking is not needed).

The difference in RMSD between the best pose obtained from all three minimization
protocols for the 100% reconstructed holo and the best pose from docking into the
crystal holo for the standard protocols of AutoDock, FlexX and GOLD is 0.23Å, 0.24Å
and −0.14Å respectively (ME lines in the plot). Given the fact that a docking pose
is considered correct when its RMSD from the native crystal pose is below 2.0, the
obtained values are very small, with GOLD showing an even better performance on
the 100% reconstructed holo conformations. The corresponding values for the soft
protocols are 0.5Å, 0.09Å, 1.59Å. The values here are more diverse, with the GOLD
soft protocol being an outlier. Yet, also in this case, we obtain docking results on
the 100% reconstructed holo structure that are comparable with those of the bound
docking using the same protocol.

However, some proteins may undergo considerable side-chain movements upon
transition from apo to holo state; these are cases our reconstruction procedure can-
not account for. Such cases can be dealt with by introducing additional side-chain
rotamers, as done in section Docking with side-chain flexibility in the main article.
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Figure A.2: Baseline best pose RMSDs for the reconstructions after subtracting the best pose
RMSD from the docking into the corresponding holo crystal structure.





B
A L G O R I T H M I C D E TA I L S O F 3 D - M O S A I C

b.1 interface locking

As already stated in the introductory chapter (Ch. 8), we assume that the locations
of the interfaces and the corresponding binding modes are roughly known and that
these binding modes are distinct. Each binding mode corresponds to two complemen-
tary interfaces (Sect. 9.2), and once a docking pose from such an interface has been
used, we can assume that this interface of the receptor is occupied, i.e., locked.

Moreover, the ligand monomer which is generated from the docking pose w.r.t. to
the placement of the receptor has also used up one interface: the complementary or
reverse interface to that of the receptor, since this is the interface via which the ligand
interacts with the receptor.

Finally, as we will see in Sect. B.5, the docking poses from interfaces at other
monomers in a complex can provide additional information on the reliability of the
ligand placement. If this placement is supported by a binding mode presented by an-
other monomer in the vicinity of the ligand, i.e., if there exists a docking pose for that
monomer that would yield a ligand placement that is similar to the current one, we
can assume that the ligand and that particular monomer interact as well. The interface
of that monomer this docking pose belongs to as well as the reverse one of the ligand
can thus also be locked.

The locking of all interfaces at which an interaction occurs hence prevents the al-
gorithms from attaching multiple monomers over the same distinct binding mode. It
thus avoids the generation of false positive or implausible solutions and reduces the
combinatorial space.

However, in some cases, we cannot assume that the binding modes are distinct,
especially in the case of global dockings. For such cases, the interface locking can be
turned off.

b.2 symmetric binding mode detection

In many assemblies, we encounter symmetric binding modes, i.e., where each of the
monomers in a homo-dimer has the same relative orientation to the other. Given a set
of docking poses corresponding to a particular interface, determining whether this in-
terface is symmetric can help to reduce the combinatorial space: first, if a symmetric
interface has been detected, all poses in that interface that do not result in a symmet-
ric binding mode can be discarded. Second, two interfaces are associated with one
binding mode (cmp. Sect. 9.2). However, in a symmetric binding mode, these are not
distinct w.r.t. to their location on the underlying protein, in fact, they are identical.
Hence, when locking one of these interfaces, we must ensure that the other one is
locked as well to prevent the algorithm from twice attaching a monomer at the same
interface.
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To determine the properties of symmetric docking poses, we take a closer look at
Fig. 9.1), showing two exemplary transformations: T1 brings the monomer M1,O from
the origin into its ligand position M1,D. Likewise, T2 moves monomer M2,O from the
origin to position M2,D. It is obvious that the inverse transformations T−1

1 and T−1
2

bring the corresponding ligand monomers back to their original placement at the
origin.

Intuitively, when applying a rigid transformation T−1
1 to the dimer (M1,D,M2,O) (the

left dimer in the figure), we obtain the dimer orientation (M1,O,M2,D) (the right dimer),
because rigid transformations do not alter any distances of the object and T1, T2 are
obtained from the dimer itself. Analogously, T−1

2 yields (M1,O,M2,D) when applied to
(M1,D,M2,O).

We can thus conclude that:

T−1
1 = T2 and T−1

2 = T1 (B.1)

In a homo-dimer corresponding to a symmetric binding mode, we also have:

T1 = T2 (B.2)

because, as already stated, both monomers have the same relative orientation to
each other and T1 transforms monomer M1,O w.r.t. to M2,O (and T2 M2,O w.r.t. to
M1,O). Since for a homo-dimer, M1,O = M2,O (i.e., the protein type is the same and we
use only one centered instance of each protein type), so is M1,D = M2,D and hence
T1 = T2.

From Eq. B.1 and Eq. B.2, we can transitively conclude that in symmetric dimers:

T1 = T−1
1 and T2 = T−1

2 (B.3)

When working with protein structures or docking poses, a binding mode cannot be
expected to be exactly but only approximately symmetric. Hence, we need to allow
for a certain amount of deviation from the ideal geometry: given an RMSD-threshold
dsymm, in analogy to Eq. B.3, we say that a docking pose with a transformation T is
symmetric, if (cmp. Eq. 10.6):

RMSD(T, T−1) < dsymm (B.4)

However, depending on the outcome of the docking algorithm, we might find sym-
metric poses even for non-symmetric binding modes. Conversely, not all dockings ob-
tained for a symmetric binding mode are necessarily symmetric. Hence, we consider
a binding mode to be symmetric only if a certain fraction fsymm of all corresponding
poses is found to be symmetric.

For two corresponding interfaces I1 and I−1 in a binding mode, one containing the
docking poses of M1 w.r.t. M2 and the other those of M2 w.r.t. M1, the binding mode
is considered to be symmetric if in both interfaces, the fraction of symmetric poses is
above fsymm.

If a binding mode is found to be symmetric, all asymmetric poses are disabled,
because they are not expected to be relevant for complex assembly. Furthermore, the
two complementary interfaces corresponding to that symmetric binding mode will be
implicitly treated as one single interface throughout the course of the algorithm.
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complexity The check for symmetric binding modes is done in the preprocessing
phase of the algorithm. Overall, each pose at each interface has to be considered once
for the symmetry check (RMSD calculation between two transformations is in O(1))
and probably a second time when a symmetric interface is detected, hence, the overall
complexity of the symmetry detection is in O(d) where d = |D|.

b.3 ring-structure detection

One of the underlying assumptions of our algorithm is, that complexes are highly
connected. However, this is not always the case: for example, some of them form one-
layered rings where each protein interacts only with its two neighbors in the ring.
The simplest example would be a trimer, however, much larger rings can exist. The
problem with such rings is that a transformation matching can only take place upon
ring closure. Before, the algorithm has to rely on the interaction energies obtained
from the docking alone.

Typically, the ring closure should occur when the final monomer is attached. How-
ever, depending on the docking poses, a premature transformation might also happen:
for example, in a hexa-homomeric ring with ideal geometry, the angle between three
sequentially attached monomers is exactly 60◦. The angle between such a sequence of
proteins in a corresponding penta-homomeric ring is exactly 54◦. If the set of docking
poses now contains one or several docking poses that cause a bend of this angle by 6◦

towards the center of the ring, we might find a matching transformation already after
the attachment of the fifth monomer and not only after the sixth.

This is not only an unfavorable situation because it artificially and erroneously in-
creases the overall match score, but it in fact stops the assembly process when distinct
interfaces are used: when attaching a new monomer, not only the corresponding in-
terfaces of receptor and ligand are locked but also those between ligand and any
monomer with a matching docking pose. In a partial ring, only two distinct inter-
faces are open at any time, one at the initial and one at the most recently attached
monomer; if more interfaces were open, at least one monomer could accept a third
monomer, leading to a branching at that particular monomer and the underlying com-
plex would be no one-layered ring. If a premature transformation matching happens,
both of these interfaces will be locked, leaving no further interface to proceed with
the attachment of the remaining monomers.

Hence, it is beneficial to investigate whether a given set of binding modes, corre-
sponding protein types, and stoichiometries thereof can only result in a one-layered
ring-like structure, and not in any other kind of complex with higher connectivity. For
structures found to be ring-like, the search for matching transformations can then be
disabled for all but the attachment of the last monomer.

Detecting such rings is done as follows: first, all terminal protein types, i.e., those
that provide only one interface for attachment, are detected, because they cannot be
part of a cycle. Then, for each non-terminal type, we try to find all potential cycles,
starting with an initially empty path, as follows: i) the current protein type is added to
the current path, ii) its stoichiometry is decremented, and iii) all protein types reach-
able via one of the interfaces of the current type are detected. These steps are then
recursively repeated for each of the reachable types, until no further protein types are
reachable, no more instances thereof are left, or more than one unique minimal cycle
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has been detected. A minimal cycle hereby denotes the smallest possible cycle using
a particular order of interfaces and protein types.

This procedure is based on the possible connections between interfaces and detects
only ring-like structures for which we can guarantee that no branching leading to
a ring can take place. Conversely, not every structure where a branching occurs is
necessarily highly connected: for example, a homomeric complex may have a protein
type with two distinct interfaces which can either alternate in a ring or lead to a
branching. However, in such a case, the topology cannot be detected from the interface
composition alone but only in complex assembly.

complexity The check for terminal protein types requires the iteration over all
protein types and is hence in O(t) where t = |P|. In the worst case, we have a
homo-multimer with i = |I| interfaces, where none leads to an ultimate ring closure.
Hence, for a complex of size m, we have to consider each interface in each of the
m iterations, leading to a worst case complexity of O(im) for the detection of cycles
in non-terminal protein types. While in practice, this complexity is never reached
because i) the number of interfaces is small, ii) cycles are found much earlier than
in the last iteration, and iii) only two rings that are different under all rotational
permutations of their members need to be found for the algorithm to stop, the total
complexity in the worst case is O(im) +O(t).

b.4 hierarchical clash checking

When attaching a new monomer to a complex candidate, it may occur that the place-
ment of this monomer is incompatible with the other monomers in the complex candi-
date, because it significantly overlaps with a particular monomer and produces steric
clashes, i.e., large repulsive forces, with the atoms in that monomer. Hence, a proce-
dure to determine such clashes is required. The first approach we implemented relied
on a hash-grid approach, but proved to be impractical for our purposes [363]. How-
ever, the clash distance table for pairs of AMBER force field atom types described
therein was kept and extended to all possible pairs of atom types.

We then decided to implement a clustering scheme based on a hierarchical subdi-
vision of atom sets into spheres. The initial suggestion was made by André Müller
(Computational Geometry/Computer Graphics, Mainz University), the underlying
principles can be found in [374]. Based on these principles, we implemented the fol-
lowing hierarchical clash checking algorithm which uses a hierarchical sphere repre-
sentation of (subsets of) a protein’s atoms.

Such a sphere representation is especially comfortable when testing the intersection
of two spheres. Because spheres are invariant under rotations, two spheres S1 and S2

with radii r1 and r2 and centers C1, C2 ∈ R(3,1) intersect under transformations T1 and
T2 if the distance of their transformed centers is less than the sum of their radii:

||(R1 · C1 + t1)− (R2 · C2 + t2)|| < r1 + r2 (B.5)

where R1,R2 and t1,t2 denote the rotation and translation given by T1,T2 respec-
tively.

Initially, all atoms of a protein are contained in one single root sphere. To make the
intersection test efficient, we are looking for the minimum-bounding sphere, i.e., the
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sphere with minimum radius comprising all atoms. This sphere is computed using
an integrated version of the Smallest Enclosing Balls (SEB) software [375, 376].

P+ 

P- 

n 

c 

r 

Figure B.1: Two hemispheres of a sphere of ra-
dius r w.r.t. a plane through center C with nor-
mal vector n.

Subsequently, the covariance matrix of
the atoms in the sphere is computed and
the vector n of the first principal com-
ponent [377], i.e., the direction with the
highest variance in the atomic coordi-
nates, is determined. The set of atoms
is then divided by the plane orthogonal
to the first principal component through
the center C of the sphere, yielding
two hemispheres as shown in Fig. B.1.
Each hemisphere contains a subset of the
atoms, one those in the non-negative and
the other those in the negative half-space
w.r.t. that plane (denoted by P0+ and P−, respectively). For example, an arbitrary point
P lies on a plane defined by A and n as the normal vector or in its positive half-space
P+, if

(P− C) · n ≥ 0 (B.6)

Consequently, all points for which this inequality does not hold are located in P−.
For each of the two sets, a minimum-bounding sphere is computed, yielding two

child spheres. The atom sets are again subdivided as described above and the whole
process is repeated until the spheres contain a single atom (atomic spheres). Taking
into account that the above SEB algorithm operates on point sets rather than on sets
of atoms with volumes, we add the maximum radius of all atoms contained in the
sphere to each sphere’s radius.

The clash checking between two proteins is then performed as follows: first, the
two root spheres are checked for intersection. If these two spheres do not intersect, no
clashes can occur, because the spheres comprise all of the proteins’ respective atoms. If
an intersection between two parent spheres is detected, the four pairs of child spheres
are tested for intersection. This process is recursively repeated as long as intersections
are found, until the atomic spheres are reached. Because only intersecting spheres a
further investigated, the clash checking quickly focuses on the contact region between
two proteins.

A clash is then eventually reported if the distance between two atomic spheres is
below the clash distance value of the corresponding AMBER atom types in the clash
distance table. The clash checking stops either if no more tests have to be performed
or if a predefined threshold for the allowed number of clashes has been reached.

complexity Sphere trees are computed for each protein type in the preprocessing
phase of the algorithm. The computation of a sphere containing n points in d dimen-

sions can be done in O(d2n + eO(
√

d log d)) [378]. In our case, we are operating on
points in three-dimensional space (d = 3 is fixed), hence the computation of a single
sphere is linear in the number of points and thus takes O(n) time.

To divide a set S of n points within a sphere into two parts w.r.t. the above de-
scribed half-planes, we must determine the principal components of S. This requires
the calculation of a covariance matrix of the n points which can be done in O(n2) and
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the subsequent calculation of the eigenvectors, requiring O(n3) (the used Eigen li-
brary [379] implements a Schur decomposition [380]). The subsequent division of the
points in S in both subspheres requires O(n) time. We thus yield a total complexity
of O(n3).

For a hierarchical sphere tree to be constructed, in the worst case, i.e., an unbal-
anced scenario, we yield a tree of depth n. In each level, such a sphere has to be com-
puted, followed by the division into two subsets. In the preprocessing phase of the
3D-MOSAIC algorithm, we thus have a complexity of O(n) · (O(n) +O(n3)) which
is in O(n4) for the sphere tree construction of particular protein. For t = |P| protein
types, we thus have O(tn4).

The actual clash-checking is applied in the iterative phase of 3D-MOSAIC. To check
for clashes between to point sets of size n1 and n2, we must check all pairs of spheres
in the worst case. This corresponds to the complexity of the trivial algorithm and
requires O(n1 · n2).

b.5 finding matching transformations

To determine matching transformations, we use a grid-based approach: the Euclidean
space is divided into axis-aligned cubic boxes with a certain edge length (spacing),
each box filled with the set of docking poses whose transformation places the ligand’s
center of mass into the space confined in that box.

Each docking pose is initially represented by the ligand’s center of mass C = (0, 0, 0)
(each ligand is centered at the origin of the coordinate system). A docking pose with
transformation T and corresponding translation t then obviously translates C to t,
yielding c∗. For a given grid spacing s ∈ R, the integer box coordinates are then given
by b = bt/sc.

In addition, given a threshold for a maximum allowed displacement lmax, we also
insert the pose into all neighboring boxes bn which are less distant from c∗ than lmax.
All corresponding boxes must lie within or intersect a solid sphere of radius lmax

around c∗, a fast and simple algorithm (including source code) to check for such
intersections is presented in [381]. To obtain all such boxes, we simply have to check
all neighboring boxes by stepwise moving outward from b until no more intersecting
boxes can be found. The docking pose is then inserted into the box at position b and
the corresponding neighboring boxes.

Hence, when a look-up is performed for a query pose transformation T′, the grid
box at position b′ = bt′/sc contains all docking poses d ∈ D with ||td − t′|| ≤ lmax,
where td, t′ denote the translations induced by the transformation T(d) associated
with d and the query transformation T′, respectively.

However, due to the coarse-graining of the Euclidean space by the used grid-based
approach, the boxes might also contain some poses that actually have larger devia-
tions than lmax. This is a necessary overhead resulting from the need to ensure that
the boxes contain at least all valid poses. Hence, each docking pose in the obtained
pose set has to be post-checked to make sure that only docking pose transforma-
tions with a displacement of at most lmax are considered for the determination of the
best-matching docking pose. Additionally, for the displacement/angle-based score,
we have to discard all docking poses with an angular deviation larger than amax from
the query transformation (cmp. Sect. 10.3 and Eq. 10.5).
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From all poses meeting the respective requirements, the docking pose d whose
associated transformation Td yields a maximum transformation match score to T (see
Section 10.3 and Eq. 10.3) is then iteratively determined.

complexity In the preprocessing phase, each pose has to be inserted into the
corresponding grid boxes. Because we use a fixed lmax, the number of boxes into
which a particular pose has to be inserted is constant, i.e., in O(1). Using a hash map
to index the grid boxes, insertion takes amortized constant time, hence the overall
insertion of d = |D| also takes time O(d).

A look-up of a particular transformation during iterative assembly is also in O(1),
however we may, in the worst case, obtain all d poses. The best-matching one has to
be computed from all of these poses. Angular deviation, displacement as well as the
RMSD calculation all take constant time, thus the overall complexity of a particular
look-up including the subsequent determination of the best-matching pose is in O(d).

b.6 scoring of docking poses

In the beginning of the complex assembly, the set of docking poses can be considered
to contain a large fraction of poses that do not correspond to a near-native binding
mode and are thus not relevant for the complex assembly. However, typically, these
poses must be considered, because the information whether a particular pose is useful
cannot be deduced from the pose itself.

However, we have seen in the previous section that docking poses at interfaces of
other monomers can help to determine whether a particular placement of a ligand
monomer is reasonable in the context of the surrounding monomers.

For each such optimally matching pose, a score is obtained that can be used to gain
information on the usefulness of that particular pose: poses with a high score can
be considered to well support a particular complex topology. Hence, this information
can help to discriminate between useful and unprofitable poses.

Because this topology is unknown at first and the optimal match score of each
docking pose depends on the so-far assembled sub-complexes, their determination
and updates are repeatedly carried out after each iteration. Due to the fact that they
depend on the input data and the ultimate complex is unknown, this can be consid-
ered an unsupervised learning process.

The algorithm can then only consider the subset of the best-scoring N solutions per
interface, where N is freely configurable by the user.

complexity The actual scoring is performed during transformation matching.
However the sorting of all d = |D| poses according to their scores must be performed
to determine the best N poses. Sorting d elements typically requires O(d log2 d) time.

b.7 interpolation between transformations

The necessity of interpolating between a set of transformations may arise in two dif-
ferent stages of the algorithm: i) when a new monomer is attached to a receptor w.r.t.
a docking pose and a corresponding set of matching transformations to interfaces of
other monomers in the complex candidate has been found, or ii) when sets of symme-
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try transformations (cmp. Def. 9.8) for the monomers in a complex candidate could
be determined.

In the former case, the interpolation leads to a monomer placement that equally
takes the docking pose and all matching transformations into account (the contribu-
tions could also be weighed by interaction energy, however, we consider each match-
ing transformation to be equally important). In the latter case, the interpolation be-
tween all symmetry transformations for each monomer in the complex leads to a
symmetry-optimized version of the complex candidate.

Let T denote a set of transformations for which an interpolated transformation
shall be generated. We denote the rotational and translational contributions of each
transformation Ti ∈ T by Ri and ti.

The interpolation of the translations is straightforward, simply the average of all
translations:

t =
1
|T|

|T|

∑
i=1

ti (B.7)

To interpolate rotations, several methods exist [382]. The method we use throughout
this work is presented in Curtis et al. [383] and, contrary to intuition, also relies on
additive averaging. In the following, we will briefly describe the method. First the
sum of all rotations is computed:

Rsum =
|T|

∑
i=1

Ri (B.8)

In a second step, a singular value decomposition is performed on Rsum:

Rsum = UΣV (B.9)

Finally, the average rotation is obtained as:

R = UV∗ (B.10)

where V∗ is the adjoint matrix of V. The final average transformation is then a 4× 4
matrix of the form:

T =

(
R t
→
0 1

)
(B.11)

When interpolating a monomer placement during complex construction, the inter-
polation is only accepted if it does not produce severe steric clashes (i.e., more than
a given treshold cmax) to any other monomer present in the complex candidate (see
Sect. B.4). If the interpolation is accepted, the complex candidate with the interpolated
monomer position replaces the original one.

complexity In a complex of size m, a transformation can be matched by at most
m− 1 other transformations, yielding a total set of m transformations for the interpola-
tion. Computing the sums of translations and rotations can be done in O(m) because
a transformation matrix has a fixed size of 4× 4 (the sum of two such matrices is then
in O(1)). Consequently, singular value decomposition of the summed rotation matrix
can also be considered to be in O(1).
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The subsequent clash checking of two particular monomers of sizes n1 and n2 takes
O(n1 · n2) time and has to be performed for m · (m − 1)/2 pairs in the worst case,
which is in O(m2). Let n denote the maximum number of atoms contained in any
of the monomers, we can thus give the overall complexity by O(m) +O(m2) · O(n2)

which is in O(m2n2).

b.8 structural matching of (sub-)complexes

As already stated in Sect. 9.4, the correct structural matching between pairs of protein
complexes is very important to maintain a diverse solution space. The problem we are
faced with during the course of our algorithm is that two (sub-)complexes may have
a similar overall topology but seem to be very different because the corresponding
monomers have been attached in different iterations of the algorithm.
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(a) Two complexes C1 and C2 with three monomers each. Monomers with the same color correspond to
the same iteration (level) of attachment.

M1,1 M2,1 M3,1 

M1,2 M2,2 M3,2 

M1,1 M2,1 M3,1 

M3,2 M2,2 M1,2 

(b) Two possible matchings between the monomers of C1 and C2. Naïve (left): Cα RMSD 40.16. Optimal
(right): Cα RMSD of 1.59.

Figure B.2: The problem of finding an optimal matching between the monomers of two com-
plexes.

For example, consider two complexes C1 and C2 as shown in Fig. B.2a. The task is
to find the RMSD-minimizing matching, i.e., the optimal complex similarity mapping
(see Def. 9.5), between monomers Mi,1 and Mi,2 for i ∈ {1, ..., 3}. Fig. B.2b presents
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two possible solutions, the naïve one with a Cα RMSD of 40.16 (left), the optimal one
with a Cα RMSD of 1.59 (right).

The task of finding such a mapping is similar to the so-called point set registration
[384], where an optimal superimposition between two sets of points is required. How-
ever, there are two main differences between our problem of determining a complex
similarity mapping w.r.t. a similarity threshold dmax and the point set registration:
in our case, we do not have independent points, rather, the atomic coordinates are
grouped into point sets corresponding to monomers with an intrinsic order of atoms.
Applying point set registration to such a problem would almost inevitably lead to
mismatches of atoms from one chain of one complex to atoms from several chains
in the second complex. Even when considering the chain in the second complex to
which the majority of a chain in the first complex is matched as the matching chain,
the matching might become ambiguous or even wrong.

Furthermore, we are not only interested in the optimal matching but also in sub-
optimal ones, especially in the case of symmetry optimization: here all symmetry
mappings (cmp. Def. 9.7) with an RMSD of at most dmax. We thus use a heuristic
greedy two-stage algorithm to match the corresponding chains of two complexes with
m components each.

To this end, each protein is represented in two different levels of coarse-graining: i)
by its centroid c, ii) by six representative points (SRP representation), as follows. First,
the principal components (pc) of the centered protein are calculated; subsequently
each atomic position is orthogonally projected onto each pc. For each pc the orthog-
onal projection with the largest distance from the origin is retained, yielding three
points p1,p2,p3 w.r.t. to the three principal components. The six representatives are
then obtained by c± pi, i ∈ {1, 2, 3}.

In the first stage, we generate triplets of matching monomers from complexes C1

and C2 as follows. For each pair of monomers Mi,1, Mj,2 i, j ∈ {1, ..., m} in complexes
C1 and C2 with the same protein type, we compare the respective distances to the com-
plex centroid. If these distances are similar (deviate by less then a certain threshold;
20% by default), this pair of monomers represents an initial match ϕ =

{
(Mi,1, Mj,2)

}
.

The indices of the matched monomers from C1 and C2 are stored in two sets Iϕ,1 and
Iϕ,2, i.e., Iϕ,1 = {i} and Iϕ,2 = {j} after the initial match.

Each matching is then iteratively extended to matching triplets as follows: the re-
spective neighborhoods of the most recently added matching pairs (consisting of the
six closest monomers and the corresponding distances) is investigated, and if for a
pair Mk,1, Ml,2 k, l ∈ {1, ..., m} , k /∈ Iϕ,1, l /∈ Iϕ,2 the respective distances to all pre-
viously added monomers and the centroid are similar and they belong to the same
type of protein, we generate a new matching ϕ′ ← ϕ ∪ {(Mk,1, Ml,2)}. Analogously,
the index sets are updated: I′ϕ,1 ← Iϕ,1 ∪ {k} and I′ϕ,2 ← Iϕ,2 ∪ {l}. This process is re-
peated once more for any so-obtained matching, yielding a unique set Φ3 of matching
triplets.

Having obtained such matching point triplets, we can now determine for each
ϕ ∈ Φ3 an unambiguous RMSD-minimizing transformation Tϕ between the respec-
tive centroids and sort the triplets by increasing RMSD. Given an RMSD tolerance
threshold ε (15.0Å by default), and let RMSD(ϕ1) denote the centroid RMSD of the
best-matching triplet ϕ1, any triplet ϕ ∈ Φ3 with RMSD(ϕ) > RMSD(ϕ1) + ε is dis-
carded from Φ. This process is then repeated using the computationally more expen-
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sive SRP representation. In doing so, we determine those triplets that provide good
starting points to determine the complex similarity mappings Φ between C1 and C2.

In the second stage of the algorithm, we iteratively extend each matching triplet ϕ

using the following greedy scheme: the centroids of both complexes are superimposed
w.r.t. Tϕ, subsequently the pairwise distances between the centroids of any pair of
unmatched monomers Mi,1, i /∈ Iϕ,1 and Mj,2, j /∈ Iϕ,2 belonging to the same protein
type are computed and the matching is extended: the pair with the smallest distance
is added to ϕ and the index sets of matched monomers are updated accordingly. Tϕ

is then recomputed w.r.t. the extended matching.
Any complete matching is added to the set of complex similarity mappings Φ which

is then again subject to an outlier removal as described above; furthermore it is sorted
according to the increasing RMSDs w.r.t. the coarse-grained SRP representation. De-
pending on the purpose, Φ can then be used during clustering (Sect. B.9), symmetry
optimization, or evaluation against a reference complex.

complexity In the preprocessing phase of 3D-MOSAIC, the protein representa-
tions for each protein type must be computed once. To obtain these representations
for a particular protein with n atoms, we need to calculate the covariance matrix
and the subsequent calculation of the eigenvectors, requiring O(n3) (cmp. Section
B.4). The centroid has already been obtained during covariance matrix computation,
subsequent calculation of the six further points in the representation requires the or-
thongonal projection of each of the n points onto the three eigenvectors, which is in
O(n). The preprocessing thus takes O(n3) +O(n) which is in O(n3).

If two complexes with m monomers have to be matched, the neighbour lists of the
m monomers in both complexes have to be calculated once. This entails the calculation
and sorting of the distances of the respective centroids and is thus in O(m2 log2(m

2))

for both complexes. Subsequently, the initial matches are computed. In the worst case,
all pairs of monomers from both complexes can be potential initial matches, leading
to a complexity O(m2). Then, they are extended by two matching triplets (i.e., by two
additional monomers), which because of the neighbor list requires O(62 · 62) which is
in O(1) and the overall generation of matching triplets is thus still in O(m2).

During attachment of each of the remaining m− 3 unmatched monomers in both
complexes, the following is repeatedly performed, once for each pair to add, i.e.,
m− 3 ∈ O(m) times: the calculation of the optimally superimposing transformation
w.r.t. the already matched points requires O(m2) (in centroid and SRP representation),
as does the subsequent computation of the distances between all remaining pairs of
monomers (the number of monomers per complex is m − 3 ∈ O(m) in the worst
case). This iterative extension thus takes O(m) · O(m2) for each of the O(m2) initial
matching triples, yielding a total complexity of O(m5).

Including the RMSD computation which will then be applied during clustering,
symmetry optimization, and evaluation (see the following sections B.9, B.10, B.11),
the overall complexity is increased by a factor n where n is the number of atoms
contained in a fully assembled complex (i.e., the sum over the atom counts of
all proteins times their respective stoichiometries), yielding a total complexity of
O(m5n) +O(m2 log2(m

2)) = O(m5n).
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b.9 clustering of (sub-)complexes

After every iteration of the algorithm, the obtained solutions can be clustered to obtain
a diverse solution space. Due to the potentially large number of complex candidates,
an all-vs-all clustering is computationally intractable. Hence we compare each com-
plex candidate only to the previously retained cluster representatives, following an
all-vs-first strategy.

Let the list L of complex candidates be sorted by decreasing complex match score.
Then, intuitively, the first complex candidate c1 from L is the initial element in the list
R of representatives, R = [c1].

Given an RMSD-threshold dmax, for each following complex candidate c, we iter-
ate over all previous representatives cr from L and compute the complex similarity
mappings Φ between c and any cr.

For each mapping ϕ ∈ Φ for c and a particular cr, the Cα-RMSD RMSD(ϕ) between
cr and c is computed. If RMSD(ϕ) ≤ dmax, c is discarded, otherwise if RMSD(ϕ) >

dmax ∀ϕ ∈ Φ, L is extended by a new representative: L← L + [c].
As soon as the required number k of solutions to be retained for the next level is

reached, the clustering procedure terminates.

complexity We denote the number of complex candidates obtained after the most
recent iteration of level population by u. In the worst case, each candidate has to be
compared to k− 1 ∈ O other complexes (the retained representatives), where k is the
number of solutions to be retained. Hence the total number of matchings is in O(ku).

The structural matching including RMSD computation takes O(m5n) (Section B.8),
hence the overall complexity of clustering is O(m5nku).

b.10 symmetry optimization

As already stated in Sect. 9.5, many complexes exhibit at least partial symmetries.
When modeling macromolecular oligomeric assemblies from binary dockings, where
the native binding modes are only roughly known, we often obtain structures that are
to some extent distorted as compared to an ideal symmetry. Consequently, optimizing
the symmetry of such a complex can help to improve the structural quality of the
model.

To this end, given a complex C, centered at the origin, we can first determine the set
Φ of all complex similarity mappings of C onto itself as described in Sect. B.8. From
Φ, we can then construct the set S of symmetry mappings and the corresponding
symmetry transformations TS for C as explained in Def. 9.7.

Let m be the number of monomers in C, we now have to determine the symmetry-
optimized placement of each monomer Mi, i ∈ {1, ..., m}. Each mapping ϕ ∈ S maps
Mi onto a different monomer Mϕ(i) in the C. Consequently, Ti,ϕ(i) := TS(ϕ) · Ti repre-
sents an alternative placement of Mϕ(i) w.r.t. to symmetry transformation TS(ϕ) (Def.
9.7) induced by ϕ and the transformation Ti representing the placement of monomer
Mi in C.

Let Si denote the set of symmetry placements for monomer Mi, i.e., Si :={
Th,ϕ(h)|ϕ ∈ S∗ ∧ ϕ(h) = i

}
, we can interpolate the transformation for the symmetry-

optimized placement of Mi from Si as described in Sect. B.7.
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S∗ is determined in an iterative fashion: initially S∗ contains the RMSD-minimal
mapping from S. In every iteration, the mapping ϕ′ with the next-smallest RMSD
is included in S∗, each Si is updated and the corresponding symmetry-optimizing
transformations are re-interpolated for the new Si. If the inclusion of ϕ′ produces
severe steric clashes for any pair of monomers in the symmetry-optimized complex,
ϕ′ is discarded from S∗.

Finally, a complex C∗ which is symmetry-optimized w.r.t. S∗ is returned.

complexity The determination of all potential symmetry mappings is performed
as described in Section B.8, yielding a complexity of O(m5n), where m is the num-
ber of monomers in the complex and n is the overall number of atoms. The iterative
extension of S∗ requires the re-interpolation of all symmetry-optimizing transforma-
tions of all m. Each monomer can have at least m such transformations, hence one
such an interpolation takes O(m), for m monomers thus O(m2). The subsequent clash
checking entails a pairwise comparison of all n atoms in both complexes and is thus
in O(n2). Hence, the overall complexity is O(m5n) · (O(m2) + O(n2)) which is in
O(m7n) +O(m5n3).

b.11 complex evaluation against a reference

To evaluate a particular complex candidate c against a reference complex R, the follow-
ing procedure is applied: using a pairwise sequence-alignment between the individual
protein types of the complex and the corresponding chains in R, each reference chain
is first superimposed to the input orientation of the corresponding protein type used
for the assembly. For each chain, the centroid and SRP representation are then gener-
ated and transformed back to the original orientation of the corresponding chain.

We can then match each assembled complex candidate c onto the reference complex
R as described in Sect. B.8. Each matching ϕ in the set of obtained complex similarity
mappings Φ is then in turn applied to c which is then subsequently evaluated against
R.

For each c, the evaluation generates a statistic containing the following basic mea-
surements: the complex match score (CMS, see Eq. 11.17), the accumulated interface
scores (AIS) over all docking poses used during assembly and matching (which is only
an approximation due to the non-perfect matching), the overal number of clashes in
the complex as well as the overall Cα and backbone RMSD to the reference.

Furthermore, it also comprises several standard measures from protein-protein in-
teraction prediction, especially the CAPRI assessments [385, 386]: the fractions of na-
tive and non-native-contacts fnat and fnon−nat as well as the interface RMSD Irms, using
an heavy-atom contact range of 5Å to identify interacting residues.

In addition, we provide the number of native and non-native interfaces, as well
as the RMSD obtained from the SRP representation, called Prms. Both, Irms and Prms

are available in a global and local version: the global version is based on the optimal
superimposition of the whole complex, the local version on an average RMSD over
the optimal superimpositions of any pair of corresponding interacting dimers in R
and c.

Finally, the statistic provides a measure called topology-RMSD (tRMSD), which is
the main measure on which the results presented in this thesis rely. This measure is
described in detail in Sect. 11.2.9.
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complexity Again the structural matching between the reference and the complex
to be evaluated takes O(m5n) time, with m the number of monomer in the complexes
and n the total number of atoms. For the dimers interacting in the reference, the topol-
ogy RMSD is calculated; the maximum number of pairs of interacting monomers is
obviously in O(m2) and because, in the case of the tRMSD, each monomer is repre-
sented by seven points (see Subsection 11.2.9), the computation of all contributions to
the tRMSD also takes O(m2) time. All other RMSD and interaction computations are
performed pairwise on a subset of all n atoms in both complexes, leading to a O(n2)

complexity.
In total, we thus have for the evaluation of a particular complex a complexity of
O(m5n) +O(m2) +O(n2) which is in O(m5n) +O(n2).

b.12 restart files

A typical run of 3D-MOSAIC performs a complex assembly from scratch and only
stops when the full complex is assembled. However, in some cases it might prove use-
ful to stop and resume at sub-complexes of a certain size. Such a feature is especially
useful when parameter options, e.g., thresholds for clustering have to be changed or
disabled. In addition, in queuing systems where the jobs on the queues must not ex-
ceed a certain running time, the generation of intermediate checkpoints from which
the assembly can be restarted, is especially important.

Furthermore, such restart files provide the possibility to first generate core protein
complexes: the stoichiometries of protein types not corresponding to that core can be
initially set to zero to prevent them from being considered for attachment. Hence, the
assembly only uses the core protein types with a non-zero stoichiometry. Once such
complexes have been assembled, the resulting restart file can, after reset of the non-
core types to the original stoichiometries act as the anchor point for the attachment of
the satellite proteins.

Moreover, an expert-guided selection of promising complex candidates (the restart
files use a simple text-based format and are thus easily editable) can be effortlessly
accomplished.

Such a restart file contains all relevant information on the complex candidate tree,
the complex candidates as defined in Sect. 9.3 and their relationship as well as the
docking poses and their best match score obtained so far. Together with the restart
file, the original input data must be provided.

b.13 additional features

3D-MOSAIC is highly configurable via various options, the most important ones be-
ing RMSD thresholds for pre-, intra- and post-clustering, clash checking, transforma-
tion matching parameters and symmetry optimization RMSD. These options include
some additional features that are worth to be mentioned briefly.

First, while the possibility to generate restart files provides full control over the
course of the algorithm, some of the parameters should adapt themselves in each
iteration. The most important feature here is the the solution reduction scheme the
algorithm provides: starting with a predefined number of solutions to be retained
after attachment of the first ligand, the user can specify a factor by which this number
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should be reduced in any subsequent iteration, until a final lower bound of solutions
has been reached. This feature takes account of the fact that the algorithm has to rely
on the docking scores alone during the first iteration, but also considers that the most
plausible solutions should already be among the first ranks of the solutions set, which
reduces the overall number of candidates to be considered for the next iteration.

In addition, several assembly order modes can be employed. By default, the algo-
rithm allows attachment of new monomers at all available interfaces of a complex
candidate. Two more modes are available: i) attachment is only allowed at the most
recently attached protein, and ii) a strict order is estimated based on several heuris-
tics. These include, in decreasing order of importance, usage of different interfaces
for subsequent attachments, balancing of protein stoichiometries, palindromic assem-
bly orders (in analogy to the structural symmetry of complexes), and the number of
potential matches to previously added monomers. In both modes, dead-ends can be
possible, for example if proteins with terminal nodes, i.e., ones that provide only in-
teractions to one other protein, are encountered. If such cases are detected, the default
attachment algorithm is used as a fall-back.

A second feature is the re-ranking of complex candidates by the number symmetry
mappings that can be determined for a complex candidate. In situations where the
set of underlying docking poses results from a docking run performing coarse wide-
range sampling, docking poses corresponding to near-native binding modes can be
expected to be scarce relative to the total number of docking poses. Here, the proba-
bility for matching non-native docking poses is greatly increased and can reduce the
discriminative power of the transformation match score. However, as already stated,
many complexes exhibit (partial) symmetries, and detecting such symmetries in early
stages of the algorithm can help to discriminate between near-native sub-complexes
and decoys. Though, due to the computational complexity, this feature is only recom-
mendable for early iterations.

Third, after a complex has been assembled, a model refinement may be required,
especially regarding the side-chain orientations in the contact regions between indi-
vidual monomers. To this end, 3D-MOSAIC implements a side-chain optimization of
the first n complexes using SCWRL and a subsequent re-evaluation of the complex
w.r.t. a reference complex.

Finally, it benefits from the free choice of the docking algorithm, which is intention-
ally left to suit the user’s preferences. Several application scenarios are thinkable here:
low or intense docking samplings, local pertubation runs, global dockings, as well as
the combination of docking results from different scenarios and/or algorithms.

b.14 implementation in ball

The 3D-MOSAIC algorithm is implemented in C++ as part of the open-source frame-
work BALL (Biochemical Algorithms Library) [298]. Besides the main algorithm, an
all-in-one tool (MOSAICInputGenerator) to easily generate the required input data
from the sets of pairwise dockings, the protein stoichiometries, and, in case an evalu-
ation against a reference is requested, a sequence alignment between the monomers
and the corresponding chains in the reference complex is provided.

Within BALL, the algorithm can be swiftly extended to employ subsequent energy
minimizations, MD simulations, or docking of small-molecules as well as immediate
visual inspection. Its highly object-oriented design allows for quick adaptations to
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specific needs, even the use of stand-alone components such as the hierarchical clus-
tering or the complex clustering is effortlessly possible. Finally, the integration into
external pipelines can be easily achieved using BALLaxy, BALL’s gallaxy interface.



C
P E R F O R M A N C E A N D PA R A M E T E R D E TA I L S F O R
E X P E R I M E N T S W I T H 3 D - M O S A I C

This chapter contains supplementary information on parameter sets, performances
and data sets.

c.1 data sets

Number of

Protein Binding Monomer Date of

Assembly types Monomers modes sources Quality deposition Monomer PDB sources

1A5L_1_foreign 3 9 4 1 0.230 1998-02-17 1A5O

1A5M_1_same 3 9 4 1 0.267 1998-02-17 1A5M

1A8R_1_foreign 1 10 2 1 0.230 1998-03-27 1N3R

1A92_1_same 1 8 3 1 0.277 1998-04-15 1A92

1AHV_1_same 1 8 3 1 0.083 1997-04-10 1AHV

1AUS_1_foreign 2 16 7 2 0.216 1995-06-21 1RCO, 1RCX

1AVO_1_same 2 14 3 1 0.068 1997-09-18 1AVO

1B4A_1_same 1 6 3 1 0.121 1998-12-18 1B4A

1B4F_1_unbound 1 8 2 1 0.240 1998-12-20 1F0M

1B5S_1_same 1 60 2 1 -0.403 1999-01-10 1B5S

1BE3_2_same 11 22 25 1 0.013 1998-05-19 1BE3

1BGG_1_foreign 1 8 2 1 0.185 1997-05-12 1BGA

1C3K_2_foreign 1 8 2 1 0.245 1999-07-28 1C3N

1C3K_2_same 1 8 2 1 0.245 1999-07-28 1C3K

1COA_1_same 1 6 3 1 0.269 1999-09-28 1EOI

1DE4_1_same 3 6 3 1 0.092 1999-11-12 1DE4

1DM5_1_same 1 6 2 1 0.255 1999-12-13 1DM5

1E32_1_foreign 1 6 1 1 0.062 2000-06-05 1S3S

1E32_1_same 1 6 1 1 0.062 2000-06-05 1E32

1E4I_1_same 1 8 2 1 0.250 2000-07-06 1E4I

1E7P_1_same 3 6 5 1 0.032 2000-09-01 1E7P

1EAA_1_foreign 1 24 2 1 0.159 1992-12-16 1EAC

1EXB_1_same 2 8 3 1 0.249 2000-05-02 1EXB

1FR9_1_unbound 1 8 3 1 0.364 2000-09-07 1E5K

1FSF_1_foreign 1 6 2 1 0.294 2000-09-08 1FS5

1FSF_1_unbound 1 6 2 1 0.294 2000-09-08 2WU1

1FX0_1_foreign 2 6 2 1 -0.037 2000-09-25 1KMH

1FX0_1_same 2 6 2 1 -0.037 2000-09-25 1FX0

1FZE_1_foreign 3 6 4 2 0.015 1998-12-23 2XNY, 1RF0

1FZE_1_same 3 6 4 1 0.015 1998-12-23 1FZE

1G31_2_same 1 14 2 1 0.181 1998-03-27 1G31

1GQ6_1_foreign 1 6 3 1 0.401 2001-11-20 1GQ7

1GQ6_1_same 1 6 3 1 0.401 2001-11-20 1GQ6

1GQM_1_foreign 1 6 2 1 0.089 2001-11-26 2WC8

1GQM_1_dimer 1 6 2 1 0.089 2001-11-26 2WCF

1GQM_1_same 1 6 2 1 0.089 2001-11-26 1GQM

1GUT_1_foreign 1 6 3 1 0.445 2002-01-28 1GUN

1GUT_1_same 1 6 3 1 0.445 2002-01-28 1GUT

1H05_1_foreign 1 12 2 1 0.476 2002-06-11 3N86

1H2I_1_foreign 1 11 2 1 0.108 2002-08-09 1KN0

1H2I_1_same 1 11 2 1 0.108 2002-08-09 1H2I

1HI9_1_same 1 10 3 1 0.149 2001-01-04 1HI9

1HKX_1_same 1 14 2 1 0.098 2003-03-12 1HKX

1HQK_1_foreign 1 60 3 1 0.389 2000-12-18 1NQW

Continued on next page
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Continued from previous page

Number of

Protein Binding Monomer Date of

Assembly types Monomers modes sources Quality deposition Monomer PDB sources

1HQK_1_same 1 60 3 1 0.389 2000-12-18 1HQK

1HX5_1_foreign 1 7 1 1 0.021 2001-01-11 1P3H

1I40_1_foreign 1 6 2 1 0.756 2001-02-19 2AU6

1IHP_2_unbound 1 6 2 1 0.189 1997-02-04 3K4P

1J1J_5_foreign 1 8 2 1 0.190 2002-12-06 3QB5

1J1J_5_same 1 8 2 1 0.190 2002-12-06 1J1J

1J70_1_foreign 1 6 3 1 0.168 2001-05-15 1JEC

1J70_1_same 1 6 3 1 0.168 2001-05-15 1J70

1JH5_2_foreign 1 60 3 1 0.081 2001-06-27 1OTZ

1JH5_2_same 1 60 3 1 0.081 2001-06-27 1JH5

1JPU_1_foreign 1 8 2 1 0.349 2001-08-03 1JQ5

1JSM_2_dimer 2 6 5 1 0.262 2001-08-17 1JSN

1JYO_1_same 2 6 5 1 0.268 2001-09-12 1JYO

1K6W_1_unbound 1 6 2 1 0.399 2001-10-17 3RN6

1KIB_1_same 1 24 2 1 0.063 2001-12-03 1KIB

1KP8_1_same 1 14 3 1 0.242 2001-12-30 1KP8

1KQ3_2_same 1 8 3 1 0.478 2002-01-03 1KQ3

1KW6_1_foreign 1 8 3 1 0.519 2002-01-28 1EIQ

1KW6_1_same 1 8 3 1 0.519 2002-01-28 1KW6

1L2W_5_same 2 6 5 1 0.225 2002-02-25 1L2W

1L7A_1_same 1 6 3 1 0.478 2002-03-14 1L7A

1L9V_1_same 1 8 2 1 0.098 2002-03-26 1L9V

1L9V_1_unbound 1 8 2 1 0.098 2002-03-26 4G0J

1LNL_1_same 1 6 3 1 0.015 2002-05-03 1LNL

1MGQ_1_foreign 1 7 1 1 0.327 2002-08-16 1I81

1MQM_2_foreign 2 6 5 2 0.095 2002-09-16 1MQL, 1MQN

1MQM_2_same 2 6 5 1 0.095 2002-09-16 1MQM

1MTY_1_same 3 6 6 1 0.366 1996-07-10 1MTY

1NOG_2_same 1 12 2 1 0.430 2003-01-16 1NOG

1NQT_3_foreign 1 6 3 1 0.010 2003-01-23 1NR7

1NQT_3_same 1 6 3 1 0.010 2003-01-23 1NQT

1NSF_1_foreign 1 6 1 1 0.282 1998-06-26 1D2N

1NTH_1_foreign 1 6 3 1 0.457 2003-01-30 1TV3

1NTH_1_same 1 6 3 1 0.457 2003-01-30 1NTH

1OFH_1_same 2 18 6 1 0.123 2003-04-14 1OFH

1OGC_1_foreign 1 10 3 1 0.269 2003-04-30 1OGF

1OGC_1_same 1 10 3 1 0.269 2003-04-30 1OGC

1P3H_3_same 1 14 3 1 0.077 2003-04-17 1P3H

1PKH_1_foreign 1 6 3 1 0.501 2003-06-05 1OGH

1PKH_1_same 1 6 3 1 0.501 2003-06-05 1PKH

1PMM_1_same 1 6 3 1 0.287 2003-06-11 1PMM

1POI_1_same 2 8 4 1 0.171 1997-01-24 1POI

1PVV_1_foreign 1 12 3 1 0.266 2003-06-29 1A1S

1PVV_1_same 1 12 3 1 0.266 2003-06-29 1PVV

1QK1_1_same 1 8 3 1 0.151 1999-07-08 1QK1

1QW9_1_foreign 1 6 2 1 0.654 2003-09-01 1QW8

1QW9_1_same 1 6 2 1 0.654 2003-09-01 1QW9

1R4C_5_foreign 1 8 3 1 0.200 2003-10-06 1G96

1RA0_1_foreign 1 6 2 1 0.721 2003-10-31 1R9X

1RGX_2_same 1 6 3 1 0.314 2003-11-13 1RGX

1RYP_1_foreign 14 28 35 5 0.196 1997-02-26 1Z7Q, 1FNT, 3L5Q, 3UN4, 1VSY

1RYP_1_same 14 28 35 1 0.196 1997-02-26 1RYP

1S2L_1_foreign 1 6 2 1 0.201 2004-01-08 1S2G

1S2L_1_same 1 6 2 1 0.201 2004-01-08 1S2L

1STM_1_same 1 60 3 1 0.277 1995-07-12 1STM

1SVD_2_same 2 16 6 1 0.390 2004-03-29 1SVD

1SVT_1_foreign 2 21 6 1 0.082 2004-03-29 1PCQ

1SVT_1_same 2 21 6 1 0.082 2004-03-29 1SVT

1SX3_1_foreign 1 14 3 1 0.235 2004-03-30 1SS8

1T6Q_1_foreign 1 6 3 1 0.242 2004-05-07 1T6U

1T6Q_1_same 1 6 3 1 0.242 2004-05-07 1T6Q
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1T9G_1_same 3 6 4 1 0.082 2004-05-17 1T9G

1TH7_1_same 1 7 1 1 0.356 2004-06-01 1TH7

1TR0_1_foreign 1 12 3 1 0.354 2004-06-18 1SI9

1TZY_1_same 4 8 8 1 0.304 2004-07-12 1TZY

1U11_2_foreign 1 8 3 1 0.446 2004-07-14 2FWJ

1U11_2_same 1 8 3 1 0.446 2004-07-14 1U11

1U6I_1_foreign 1 6 3 1 0.220 2004-07-30 3IQE

1U6I_1_same 1 6 3 1 0.220 2004-07-30 1U6I

1UMR_3_foreign 2 8 2 1 0.153 2003-08-28 1UOS

1UP8_1_same 1 12 4 1 0.232 2003-09-29 1UP8

1V4L_1_same 2 8 2 1 0.059 2003-11-14 1V4L

1V7Z_1_foreign 1 6 2 1 0.427 2003-12-26 1J2U

1V7Z_1_same 1 6 2 1 0.427 2003-12-26 1V7Z

1VAO_1_foreign 1 8 3 1 0.110 1997-04-10 1AHV

1VDM_1_same 1 12 3 1 0.159 2004-03-23 1VDM

1WPB_1_same 1 24 3 1 0.273 2004-09-01 1WPB

1WPS_1_foreign 1 6 3 1 0.097 2004-09-13 1VEA

1WPS_1_same 1 6 3 1 0.097 2004-09-13 1WPS

1WRV_2_foreign 1 6 3 1 0.449 2004-10-27 2EJ3

1WRV_2_same 1 6 3 1 0.449 2004-10-27 1WRV

1X1O_1_same 1 6 3 1 0.280 2005-04-08 1X1O

1X36_1_foreign 1 60 3 1 0.123 2005-04-29 1VB4

1X36_1_same 1 60 3 1 0.123 2005-04-29 1X36

1X9F_1_foreign 4 12 7 1 0.139 2004-08-20 2GTL

1X9J_1_same 1 8 2 1 0.049 2004-08-21 1X9J

1XSJ_1_foreign 1 6 2 1 0.256 2004-10-19 1XSK

1XSJ_1_same 1 6 2 1 0.256 2004-10-19 1XSJ

1XXC_1_foreign 1 6 2 1 -0.013 1995-11-03 1XXA

1XXC_1_same 1 6 2 1 -0.013 1995-11-03 1XXC

1Y88_2_same 1 6 3 1 0.308 2004-12-10 1Y88

1YG6_1_foreign 1 14 2 1 0.275 2005-01-04 2FZS

1YG6_1_same 1 14 2 1 0.275 2005-01-04 1YG6

1YHU_1_same 4 24 8 1 0.046 2005-01-10 1YHU

1YI5_1_same 2 10 3 1 -0.140 2005-01-11 1YI5

1YNB_2_same 1 6 3 1 0.325 2005-01-24 1YNB

1YNT_1_same 4 7 5 1 0.040 2005-01-25 1YNT

1YQ2_1_same 1 6 2 1 0.331 2005-02-01 1YQ2

1YZV_2_same 1 24 2 1 0.313 2005-02-28 1YZV

1Z6B_4_foreign 1 6 2 1 0.256 2005-03-22 3AZ8

1Z7Q_1_same 15 42 50 1 0.003 2005-03-26 1Z7Q

1ZCC_1_same 1 6 3 1 0.119 2005-04-11 1ZCC

1ZKE_4_same 1 6 2 1 0.393 2005-05-02 1ZKE

1ZYE_1_same 1 24 4 1 0.038 2005-06-10 1ZYE

2A2L_1_same 1 8 3 1 0.147 2005-06-22 2A2L

2A6Q_3_same 2 6 5 1 0.234 2005-07-04 2A6Q

2AEQ_1_same 3 12 4 1 0.021 2005-07-23 2AEQ

2AHM_1_same 2 16 10 1 0.166 2005-07-28 2AHM

2AVU_1_same 2 6 5 1 0.078 2005-08-30 2AVU

2BDN_1_same 3 6 4 1 0.118 2005-10-20 2BDN

2BJK_1_foreign 1 6 3 1 0.544 2005-02-04 2EHU

2BJK_1_same 1 6 3 1 0.544 2005-02-04 2BJK

2BM8_1_foreign 1 6 2 1 0.155 2005-03-10 2BM9

2BM8_1_same 1 6 2 1 0.155 2005-03-10 2BM8

2BOB_1_foreign 3 12 7 3 0.111 2005-04-09 3IGA, 3OR6, 2ATK

2BSE_1_foreign 2 6 2 2 0.076 2005-05-20 2X54, 2WZP

2BSE_1_same 2 6 2 1 0.076 2005-05-20 2BSE

2BUK_1_foreign 1 60 3 1 0.094 2005-06-14 3RQV

2BWE_1_same 2 10 2 1 0.056 2005-07-13 2BWE

2C0W_1_same 1 55 2 1 0.064 2005-09-08 2C0W

2CB5_2_same 1 6 3 1 0.331 1999-03-02 2CB5

2CHV_1_foreign 1 6 1 1 -0.248 2006-03-16 2CHQ
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2CZ8_1_foreign 1 12 2 1 0.438 2005-07-11 2DEG

2D00_2_same 1 12 3 1 0.193 2005-07-21 2D00

2D69_1_foreign 1 8 3 1 0.317 2005-11-10 2CXE

2D69_1_same 1 8 3 1 0.317 2005-11-10 2D69

2F1D_1_same 1 24 3 1 0.047 2005-11-14 2F1D

2FY8_1_dimer 1 8 2 1 0.104 2006-02-07 3RBX

2FZ6_5_foreign 1 8 4 1 0.200 2006-02-09 2GVM

2FZ6_5_same 1 8 4 1 0.200 2006-02-09 2FZ6

2G0J_3_same 1 8 4 1 0.098 2006-02-13 2G0J

2G9T_1_dimer 1 12 3 1 0.229 2006-03-07 3R24

2GJV_2_same 1 6 1 1 0.169 2006-03-31 2GJV

2GMY_1_same 1 6 2 1 0.434 2006-04-07 2GMY

2H1L_1_foreign 2 12 2 2 0.008 2006-05-16 1KZY, 4E2I

2H1L_1_same 2 12 2 1 0.008 2006-05-16 2H1L

2H64_1_same 3 6 4 1 0.257 2006-05-30 2H64

2H7C_1_foreign 1 6 2 1 0.279 2006-06-02 1YA4

2H85_1_same 1 6 2 1 0.145 2006-06-06 2H85

2HDA_2_same 1 6 2 1 0.256 2006-06-20 2HDA

2HEX_2_foreign 1 10 3 1 0.188 1998-08-01 1B0C

2HEX_2_dimer 1 10 3 1 0.188 1998-08-01 1EAW

2HEX_2_same 1 10 3 1 0.188 1998-08-01 2HEX

2HEX_2_unbound 1 10 3 1 0.188 1998-08-01 5PTI

2HEY_1_foreign 2 6 3 2 0.253 2006-06-22 2HEW, 2HEV

2HEY_1_same 2 6 3 1 0.253 2006-06-22 2HEY

2HFN_1_foreign 1 10 2 1 0.290 2006-06-24 2HFO

2HFN_1_same 1 10 2 1 0.290 2006-06-24 2HFN

2HMV_1_foreign 1 8 2 1 0.210 2006-07-11 2HMT

2HMV_1_same 1 8 2 1 0.210 2006-07-11 2HMV

2HMZ_1_foreign 1 8 3 1 0.387 1990-10-18 2HMQ

2HMZ_1_same 1 8 3 1 0.387 1990-10-18 2HMZ

2HY5_1_foreign 3 6 7 1 0.370 2006-08-04 2HYB

2HY5_1_same 3 6 7 1 0.370 2006-08-04 2HY5

2I00_4_same 1 6 2 1 0.165 2006-08-09 2I00

2I1O_1_foreign 1 6 3 1 0.167 2006-08-14 1YTE

2IBZ_1_same 11 11 19 1 0.179 2006-09-12 2IBZ

2J12_1_foreign 2 6 3 2 0.498 2006-08-08 1UXA, 1KAC

2J12_1_dimer 2 6 3 2 0.498 2006-08-08 2WBW, 1P6A

2J12_1_same 2 6 3 1 0.498 2006-08-08 2J12

2JB7_1_foreign 1 6 2 1 0.405 2006-12-04 2GL0

2JB7_1_same 1 6 2 1 0.405 2006-12-04 2JB7

2NS1_1_same 2 6 3 1 0.312 2006-11-02 2NS1

2NUU_3_foreign 2 6 3 2 0.151 2006-11-09 1GNK, 2NS1

2NV1_1_foreign 1 12 3 1 0.290 2006-11-10 2NV2

2O39_1_foreign 2 6 3 2 0.078 2006-12-01 3INB, 3EXV

2O39_1_same 2 6 3 1 0.078 2006-12-01 2O39

2PO0_1_foreign 2 6 2 1 0.192 2007-04-25 2PNZ

2PO0_1_same 2 6 2 1 0.192 2007-04-25 2PO0

2QGF_1_same 2 12 6 1 0.232 2007-06-28 2QGF

2QMH_1_same 1 6 3 1 0.087 2007-07-16 2QMH

2QVJ_1_same 1 10 2 1 0.071 2007-08-08 2QVJ

2RSL_1_same 1 6 2 1 0.196 1993-09-08 2RSL

2UX9_1_same 1 12 2 1 0.521 2007-03-27 2UX9

2UYU_1_foreign 1 8 3 1 0.265 2007-04-20 2V9N

2UYU_1_same 1 8 3 1 0.265 2007-04-20 2UYU

2V1W_1_same 1 8 3 1 0.315 2007-05-30 2V1W

2V78_1_foreign 1 6 3 1 0.302 2007-07-27 2VAR

2V78_1_same 1 6 3 1 0.302 2007-07-27 2V78

2VHX_1_foreign 1 6 3 1 0.290 2007-11-26 2VHW

2VHX_1_same 1 6 3 1 0.290 2007-11-26 2VHX

2VWS_1_foreign 1 6 3 1 0.528 2008-06-26 2VWT

2WCD_1_same 1 12 1 1 0.060 2009-03-11 2WCD
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2WQA_1_foreign 2 6 6 2 0.098 2009-08-14 3BSZ, 1ICT

2WQA_1_same 2 6 6 1 0.098 2009-08-14 2WQA

2X6L_1_same 1 10 3 1 0.125 2010-02-17 2X6L

2XW6_1_foreign 1 6 3 1 0.765 2010-11-01 2X8W

2XW6_1_same 1 6 3 1 0.765 2010-11-01 2XW6

2Z9H_1_same 1 6 1 1 0.067 2007-09-20 2Z9H

2ZBT_1_same 1 12 3 1 0.396 2007-10-29 2ZBT

2ZTD_1_foreign 1 8 2 1 0.149 2008-10-01 2ZTE

2ZTE_1_same 1 8 2 1 0.005 2008-10-01 2ZTE

3A9S_1_foreign 1 6 3 1 0.438 2009-11-05 3A9R

3A9S_1_same 1 6 3 1 0.438 2009-11-05 3A9S

3AQD_1_foreign 1 11 1 1 0.045 2010-10-29 2ZD0

3AQD_1_same 1 11 1 1 0.045 2010-10-29 3AQD

3B07_1_same 2 8 2 1 0.166 2011-06-06 3B07

3BE7_1_same 1 8 3 1 0.155 2007-11-16 3BE7

3BH3_1_same 1 12 3 1 0.225 2007-11-27 3BH3

3BJK_1_same 1 6 3 1 0.316 2007-12-04 3BJK

3BP9_1_same 1 6 1 1 0.093 2007-12-18 3BP9

3BXV_1_same 1 24 3 1 0.157 2008-01-14 3BXV

3CIM_1_foreign 1 6 1 1 0.547 2008-03-11 3DNC

3D03_1_foreign 1 6 3 1 0.303 2008-04-30 2ZO9

3D5O_1_foreign 2 6 2 2 0.078 2008-05-16 3RY6, 2A3X

3D5O_1_same 2 6 2 1 0.078 2008-05-16 3D5O

3D6N_1_same 2 12 5 1 0.231 2008-05-20 3D6N

3DBY_1_same 1 6 3 1 0.218 2008-06-02 3DBY

3DDO_1_same 1 6 2 1 0.455 2008-06-06 3DDO

3EJ3_1_foreign 2 6 3 2 0.370 2008-09-17 1S0Y, 3EJ9

3EJ9_1_same 2 6 3 1 0.420 2008-09-17 3EJ9

3EK6_1_foreign 1 6 2 1 0.181 2008-09-18 3EK5

3EK6_1_same 1 6 2 1 0.181 2008-09-18 3EK6

3EVO_1_foreign 1 6 2 1 0.482 2008-10-13 3EJM

3EVO_1_same 1 6 2 1 0.482 2008-10-13 3EVO

3EZZ_1_same 1 24 2 1 0.103 2008-10-24 3EZZ

3F9K_13_same 2 9 6 1 0.079 2008-11-14 3F9K

3GCB_1_foreign 1 6 3 1 0.318 1998-02-27 1A6R

3GE3_1_foreign 4 8 7 4 0.465 2009-02-24 3GE8, 3RMK, 3I63, 3DHH

3GE3_1_same 4 8 7 1 0.465 2009-02-24 3GE3

3H47_1_foreign 1 6 1 1 0.257 2009-04-18 3H4E

3H4E_1_same 1 6 1 1 0.107 2009-04-19 3H4E

3H8G_1_foreign 1 6 3 1 0.494 2009-04-29 3H8F

3H8G_1_same 1 6 3 1 0.494 2009-04-29 3H8G

3KA3_1_foreign 1 24 3 1 0.555 2009-10-18 3RE7

3L7Z_1_same 3 9 4 1 0.126 2009-12-29 3L7Z

3LWZ_1_same 1 12 2 1 0.424 2010-02-24 3LWZ

3M0E_1_same 1 7 1 1 0.139 2010-03-02 3M0E

3M4B_3_same 1 12 2 1 0.144 2010-03-10 3M4B

3M4D_1_foreign 1 7 1 1 0.261 2010-03-10 3M4E

3N2N_1_same 1 6 2 1 0.327 2010-05-18 3N2N

3NAH_1_dimer 1 6 2 1 0.061 2010-06-02 3QID

3NAH_1_same 1 6 2 1 0.061 2010-06-02 3NAH

3P83_1_same 2 6 6 1 0.112 2010-10-13 3P83

3Q46_1_same 1 6 3 1 0.887 2010-12-23 3Q46

3Q83_3_unbound 1 6 2 1 0.131 2011-01-06 3Q89

3QJG_1_same 1 12 2 1 0.227 2011-01-28 3QJG

3RHS_1_foreign 1 6 2 1 0.373 2011-04-12 3LCJ

3RHS_1_same 1 6 2 1 0.373 2011-04-12 3RHS

3RUV_1_foreign 1 16 2 1 0.226 2011-05-05 3RUS

3RUV_1_same 1 16 2 1 0.226 2011-05-05 3RUV

3S0C_1_foreign 1 10 3 1 0.333 2011-05-13 3S1U

3S1W_1_same 1 10 3 1 0.348 2011-05-16 3S1W

3SBA_1_dimer 1 6 2 1 0.086 2011-06-03 3SB9
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3SHH_2_foreign 1 8 3 1 0.410 2011-06-16 3TU2

3SHH_2_same 1 8 3 1 0.410 2011-06-16 3SHH

3SHX_1_same 1 24 3 1 0.578 2011-06-17 3SHX

3SSR_1_same 1 12 2 1 0.447 2011-07-08 3SSR

3T2B_1_foreign 1 8 3 1 0.470 2011-07-22 3T2F

3T2F_1_same 1 8 3 1 0.335 2011-07-22 3T2F

3T63_1_same 2 24 5 1 0.471 2011-07-28 3T63

3TJF_1_foreign 1 10 2 1 0.293 2011-08-24 3TJG

3UAV_1_foreign 1 6 2 1 0.550 2011-10-22 1XE3

3V60_1_same 2 6 2 1 0.136 2011-12-18 3V60

3V60_1_unbound 2 6 2 1 0.136 2011-12-18 3V61

3VAV_1_same 1 10 2 1 0.376 2011-12-29 3VAV

4ADS_1_same 2 24 4 1 -0.037 2012-01-03 4ADS

4AGE_1_same 1 7 1 1 -0.147 2012-01-26 4AGE

4AT1_1_foreign 2 12 5 2 0.184 1990-04-26 6AT1, 1TUG

4DU6_1_same 1 10 3 1 0.249 2012-02-21 4DU6

4EGG_1_same 1 12 2 1 0.214 2012-03-30 4EGG

4ELD_1_same 1 48 3 1 0.133 2012-04-10 4ELD

4FNK_1_foreign 2 6 5 1 0.337 2012-06-19 4FQY

Table C.1: Benchmark data set composition.

PDB Description Topology Remark

1G41 Heat shock protein Hslu One-layered ring

1G6O Traffic ATPase One-layered ring

1LJO Archaeal Sm-like protein Af-Sm2 One-layered ring

1NSF N-Ethylmaleimide sensitive factor One-layered ring foreign in benchmark data set

1RRE ATP-dependent protease One-layered ring

1BE4 Nucleoside diphosphate kinase isoform B Dimer of trimers

1EHW Nucleoside diphosphate kinase Dimer of trimers

1EKR Molybdenum cofactor biosynthesis protein C Dimer of trimers

1I40 Inorganic pyrophosphatase Dimer of trimers foreign in benchmark data set

1JX7 Hypothetical protein Ychn Dimer of trimers

1LCP Leucine aminopeptidase Dimer of trimers

1PJH Enoyl-CoA isomerase Dimer of trimers

1J2T Creatinine amidohydrolase Trimer of dimers

1JE0 50-Methylthioadenosine phosphorylase Trimer of dimers

1NNG Putative acyl-CoA thioester hydrolase Trimer of dimers superseded by 1YLI

1PJC L-Alanine dehyrogenase Trimer of dimers

1R6L Ribonuclease pH Trimer of dimers

Table C.2: Evaluation data set including annotation taken from Comeau et al. [193]. PDB entry
1NNG is superseded by 1YLI; 1NSF and 1I40 are part of the benchmark data set, however,
using foreign monomer sources.
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Assembly Constraint Residue Pairs Native Assembly Constraint Residue Pairs Native

1HI9_1

(CA 81A, CA 179A) y

1KW6_1

(CA 276A, CA 121A) y

(CA 270A, CA 82A) y (CA 131A, CA 129A) y

(CA 226A, CA 113A) y (CA 282A, CA 221A) y

(CA 129A, CA 225A) n (CA 103A, CA 175A) n

(CA 133A, CA 41A) n (CA 123A, CA 124A) n

(CA 147A, CA 189A) n (CA 154A, CA 114A) n

(CA 172A, CA 185A) n (CA 155A, CA 165A) n

(CA 184A, CA 186A) n (CA 16A, CA 224A) n

(CA 215A, CA 226A) n (CA 176A, CA 186A) n

(CA 222A, CA 33A) n (CA 258A, CA 246A) n

(CA 239A, CA 20A) n (CA 266A, CA 103A) n

(CA 45A, CA 25A) n (CA 78A, CA 33A) n

(CA 52A, CA 74A) n (CA 83A, CA 267A) n

1PVV_1

(CA 310A, CA 313A) y

1QK1_1

(CA 31A, CA 264A) y

(CA 57A, CA 85A) y (CA 206A, CA 57A) y

(CA 37A, CA 42A) y (CA 5A, CA 45A) y

(CA 168A, CA 222A) n (CA 113A, CA 336A) n

(CA 189A, CA 77A) n (CA 133A, CA 356A) n

(CA 193A, CA 18A) n (CA 163A, CA 323A) n

(CA 196A, CA 221A) n (CA 240A, CA 14A) n

(CA 1A, CA 6A) n (CA 255A, CA 165A) n

(CA 203A, CA 218A) n (CA 301A, CA 189A) n

(CA 211A, CA 273A) n (CA 324A, CA 2A) n

(CA 21A, CA 233A) n (CA 325A, CA 227A) n

(CA 248A, CA 155A) n (CA 347A, CA 205A) n

(CA 44A, CA 230A) n (CA 66A, CA 335A) n

1X1O_1

(CA 143A, CA 17A) y

1YNB_2

(CA 47A, CA 72A) y

(CA 28A, CA 13A) y (CA 135A, CA 31A) y

(CA 242A, CA 195A) y (CA 28A, CA 22A) y

(CA 125A, CA 160A) n (CA 102A, CA 173A) n

(CA 13A, CA 235A) n (CA 113A, CA 68A) n

(CA 204A, CA 256A) n (CA 114A, CA 48A) n

(CA 58A, CA 40A) n (CA 118A, CA 141A) n

(CA 62A, CA 210A) n (CA 143A, CA 88A) n

(CA 72A, CA 40A) n (CA 148A, CA 96A) n

(CA 74A, CA 158A) n (CA 150A, CA 12A) n

(CA 84A, CA 268A) n (CA 75A, CA 90A) n

(CA 89A, CA 252A) n (CA 76A, CA 11A) n

(CA 96A, CA 98A) n (CA 76A, CA 24A) n

2BJK_1

(CA 461A, CA 512A) y

2F1D_1

(CA 135A, CA 71A) y

(CA 225A, CA 453A) y (CA 100A, CA 103A) y

(CA 2A, CA 168A) y (CA 123A, CA 123A) y

(CA 207A, CA 173A) n (CA 129A, CA 145A) n

(CA 249A, CA 513A) n (CA 130A, CA 129A) n

(CA 349A, CA 12A) n (CA 140A, CA 94A) n

(CA 385A, CA 227A) n (CA 185A, CA 36A) n

(CA 387A, CA 276A) n (CA 30A, CA 157A) n

(CA 392A, CA 473A) n (CA 59A, CA 21A) n

(CA 406A, CA 405A) n (CA 61A, CA 96A) n

(CA 427A, CA 395A) n (CA 73A, CA 162A) n

(CA 440A, CA 516A) n (CA 78A, CA 132A) n

(CA 62A, CA 494A) n (CA 91A, CA 167A) n

2UYU_1

(CA 251A, CA 186A) y

3Q46_1

(CA 40A, CA 84A) y

(CA 110A, CA 47A) y (CA 135A, CA 47A) y

(CA 7A, CA 8A) y (CA 128A, CA 116A) y

(CA 126A, CA 257A) n (CA 14A, CA 103A) n

(CA 130A, CA 189A) n (CA 152A, CA 80A) n

(CA 132A, CA 132A) n (CA 167A, CA 26A) n

(CA 163A, CA 49A) n (CA 172A, CA 138A) n

(CA 186A, CA 182A) n (CA 177A, CA 47A) n

(CA 272A, CA 264A) n (CA 177A, CA 78A) n

(CA 36A, CA 16A) n (CA 56A, CA 84A) n

(CA 39A, CA 157A) n (CA 6A, CA 83A) n

(CA 83A, CA 167A) n (CA 76A, CA 127A) n

(CA 97A, CA 209A) n (CA 98A, CA 61A) n

Table C.3: Randomly selected homo-multimers from the same data set including randomly
chosen residue id pairs. The three topmost per structure correspond to natively interacting
residue pairs, one per native binding mode. In addition, ten artifical, non-native interactions
have been derived.



208 performance and parameter details for experiments with 3d-mosaic

c.2 docking results

This section contains additional information on the performance of docking runs car-
ried out for the different assembly experiments.

Binding Mode

Structure A B C

1HI9 0.165 (124) 0.567 ( 68) 0.839 ( 68)

1KW6 1.138 ( 62) 0.351 (162) 0.792 (188)

1PVV 1.938 ( 38) 1.251 ( 56) 2.299 ( 6)

1QK1 1.053 (100) 0.670 ( 74) 0.491 ( 30)

1X1O - ( 0) 2.280 ( 8) 0.615 ( 6)

1YNB 2.343 ( 4) 0.347 ( 96) 0.653 ( 58)

2BJK - ( 0) - ( 0) 0.202 ( 50)

2F1D 1.026 (104) 0.546 (104) 1.580 (108)

2UYU - ( 0) 0.723 ( 34) 1.034 (274)

3Q46 0.167 (346) 0.461 (122) 0.195 (108)

(a) Native binding modes

Binding Mode

Structure A B C

1HI9 0.165 (124) 0.567 ( 68) 0.839 ( 70)

1KW6 1.138 ( 62) 0.351 (162) 0.792 (188)

1PVV 1.938 ( 38) 1.251 ( 58) 2.299 ( 6)

1QK1 1.053 (100) 0.670 ( 74) 0.491 ( 30)

1X1O - ( 0) 2.280 ( 10) 0.615 ( 6)

1YNB 2.343 ( 6) 0.347 ( 96) 0.653 ( 58)

2BJK - ( 0) - ( 0) 0.202 ( 50)

2F1D 1.026 (104) 0.546 (104) 1.580 (110)

2UYU - ( 0) 0.723 ( 34) 1.034 (274)

3Q46 0.167 (346) 0.461 (122) 0.195 (108)

(b) Native binding modes and three non-
natives

Binding Mode

Structure A B C

1HI9 0.165 (122) 0.567 ( 68) 0.839 ( 70)

1KW6 1.138 ( 62) 0.351 (162) 0.792 (188)

1PVV 1.938 ( 38) 1.251 ( 58) 2.299 ( 6)

1QK1 1.053 (100) 0.670 ( 74) 0.491 ( 30)

1X1O - ( 0) 2.280 ( 10) 0.615 ( 6)

1YNB 2.343 ( 6) 0.347 ( 96) 0.653 ( 58)

2BJK - ( 0) - ( 0) 0.202 ( 50)

2F1D 1.026 (104) 0.546 (104) 1.580 (110)

2UYU - ( 0) 0.723 ( 34) 1.034 (274)

3Q46 0.167 (346) 0.461 (122) 0.195 (108)

(c) Native binding modes and six non-
natives

Binding Mode

Structure A B C

1HI9 0.165 (122) 0.567 ( 68) 0.839 ( 68)

1KW6 1.138 ( 62) 0.351 (162) 0.792 (192)

1PVV 1.938 ( 38) 1.251 ( 58) 2.299 ( 6)

1QK1 1.053 (100) 0.670 ( 72) 0.491 ( 32)

1X1O - ( 0) 2.280 ( 10) 0.615 ( 6)

1YNB 2.343 ( 6) 0.347 ( 96) 0.497 ( 64)

2BJK - ( 0) - ( 0) 0.202 ( 50)

2F1D 1.026 (104) 0.546 (104) 1.580 (108)

2UYU - ( 0) 0.959 ( 32) 1.034 (274)

3Q46 0.167 (524) 0.461 (122) 0.195 (112)

(d) Native binding modes and ten non-
natives

Table C.4: CαRMSD of the best pose (and the number of poses) with a Cα RMSD ≤ 3.0Å
for the four different constraint data sets. Differences (underlined) to the table for the three
native binding modes (upper left) are introduced through the procedure of i) assignment of
each pose to the (native or non-native) binding mode for which the lowest constraint penalty
is achieved, and ii) subsequent clustering. Only minor differences are found, demonstrating
the validity and robustness of the procedure.
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Binding Number Cα RMSD (Å)

Complex Mode of poses Minimum Median Maximum

1B4F_1_unbound A_C 1062 2.40477 12.60620 17.23500

1COA_1_same A_G 232 2.64568 11.46795 14.77530

1FSF_1_unbound A_B 4670 1.70606 20.02570 27.36400

1H05_1_foreign A_C 3082 1.71168 16.20505 21.31170

1HKX_1_same A_C 2722 2.20795 16.59135 25.16790

1I40_1_foreign A_B 3564 2.26239 17.38875 23.16630

1JH5_2_foreign 0_y 1102 2.29004 14.28135 23.09530

1MGQ_1_foreign A_B 1662 2.64627 13.23880 19.13440

1NQT_3_same A_E 1026 2.63105 26.46755 36.65520

1PVV_1_foreign A_G 4006 1.71501 20.45280 29.01770

1PVV_1_same A_G 3430 1.89115 20.47285 28.94420

1RYP_1_foreign 1_J 2158 2.63893 19.72550 27.67650

1RYP_1_foreign K_Z 1165 2.19702 16.50270 23.39540

1RYP_1_same D_L 2615 2.72419 20.47900 28.32150

1RYP_1_same K_Z 1362 2.33735 16.97135 24.33850

1STM_1_same 0_H 898 2.78696 15.65315 27.68160

1SVT_1_foreign O_P 1994 2.51698 16.56615 24.63360

1T6Q_1_foreign A_E 480 2.78487 12.38515 20.01440

1T6Q_1_same A_E 676 2.80217 13.45995 18.89670

1U6I_1_foreign A_F 892 2.91429 18.63165 27.10630

1U6I_1_same A_F 1154 2.87041 19.38770 27.46910

1WPB_1_same A_T 1442 1.94007 21.79635 36.86480

1XXC_1_foreign A_B 1444 2.62902 11.88930 16.26340

1XXC_1_foreign A_D 394 2.11021 10.66495 14.54750

1XXC_1_same A_B 1366 2.97289 11.74790 16.16110

1Y88_2_same A_B 2858 1.96670 18.64985 28.81980

1YHU_1_same A_M 2034 2.69661 17.37440 22.77990

1Z7Q_1_same H_V 5090 2.17127 19.17450 25.66560

2BWE_1_same A_B 702 1.99184 10.46940 14.49300

2C0W_1_same 0_p 58 1.99115 26.00655 36.38660

2F1D_1_same A_I 1030 2.74020 16.48495 22.51160

2FZ6_5_same B_H 84 2.99573 11.11770 12.39430

2G9T_1_dimer A_C 1264 2.96804 15.11365 19.81720

2HDA_2_same A_B 1064 1.91210 10.90855 15.42930

2HEY_1_foreign A_C 3486 2.69606 15.63405 22.31770

2HEY_1_same A_C 3666 2.05475 16.17690 22.73600

2HFN_1_foreign A_B 1250 2.84099 14.17280 19.22650

2HFN_1_same A_B 1550 2.90909 14.14595 19.30440

2HY5_1_foreign A_C 1182 2.54804 14.93840 21.15330

2NUU_3_foreign A_B 5198 2.87646 23.81670 31.21660

2V1W_1_same A_B 152 2.65130 11.78095 16.78880

2VHX_1_foreign A_B 806 1.38012 19.13030 28.29080

2VWS_1_foreign A_B 2732 2.54116 20.42620 29.12030

2X6L_1_same C_D 822 1.78907 13.24215 18.40400

Continued on next page
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Continued from previous page

Binding Number Cα RMSD (Å)

Complex Mode of poses Minimum Median Maximum

3AQD_1_foreign A_B 670 2.42805 12.71255 18.58670

3AQD_1_same A_B 1282 1.42724 12.86745 17.68650

3D5O_1_foreign B_F 1726 2.85327 19.50855 27.10090

3D5O_1_same B_F 1535 2.49097 19.70290 27.10290

3EJ9_1_same A_C 1222 2.46750 15.20800 21.88210

3EVO_1_same A_C 1682 1.91074 15.86605 21.46160

3GE3_1_foreign A_C 1773 1.86621 17.11900 30.88050

3GE3_1_same A_C 2246 2.83510 17.35080 32.87590

3KA3_1_foreign A_G 2260 0.88395 17.31155 28.96070

3LWZ_1_same A_D 1138 2.27340 15.92850 20.36630

3M4B_3_same A_E 2618 2.73586 15.28175 22.93070

3M4B_3_same A_G 854 1.18737 12.77455 17.58670

3P83_1_same A_D 395 2.93880 17.95700 25.09990

3P83_1_same E_F 2278 2.64979 20.69110 33.19940

3RHS_1_same A_B 4474 1.83169 17.67305 23.95900

3SHX_1_same A_G 2128 1.38985 18.76985 29.37180

4AT1_1_foreign A_E 3292 2.86391 22.87240 30.83220

Table C.5: The 61 cases for which CombDock could reproduce at least one docking pose
with a Cα RMSD ≤ 3.0Å. The native binding mode is specified by the pair of chains in the
corresponding reference complex.
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c.3 assembly parameters and results

This section comprises the full parameter sets and the results obtained from running
3D-MOSAIC with the corresponding configuration on the respective data set, i.e.,
the benchmark data set, the evaluation set (Comeau), the SRPIC experiments, or the
CombDock-generated dockings. Pairs of tables for parameter sets and respective 3D-
MOSAIC results are arranged side-by-side on a double page for easy cross-checking.

The parameters varied throughout the experiments, sorted by categories, are listed
in Tab. C.6.

Parameters in category Scope

Clustering

Cα pre-cluster RMSD R+
0

Cα intra-cluster RMSD R+
0

Cα post-cluster RMSD R+
0

Clash checking

Max number of clashes per dimer N

Number of solutions to consider

Number of solutions to keep in first iteration N+

Number of solutions to keep at least per iteration N+

Solutions reduction rate R+ \ [0, 1[

Transformation matching

Transformation Match Score Sda/Srmsd

Max transformation angle R+
0

Max transformation displacement R+
0

Max transformation RMSD R+
0

Discard non-matching solutions true/false (y/n)

Enable transformation matching true/false (y/n)

Limitation of solution/search space

Number of best poses per interface to keep N

Symmetric pose fraction per interface R+
0

Symmetric pose RMSD R+
0

Keep symmetric interface poses only true/false (y/n)

Distinct interfaces true/false (y/n)

Others

Interpolate ligand transformation true/false (y/n)

Max complex size for pre-ranking by number of symmetry mappings N

Table C.6: List of parameters varied within and across different experiments and their respec-
tive categories and scopes.
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Clustering Allowed Transformation Matching Ligand

Code Pre Intra Post Clashes Displacement Angle Interpolation

ben_01 1.0 2.0 3.0 10 1.0 5.0 n

ben_02 1.0 2.0 3.0 25 1.0 5.0 n

ben_03
3

1.0 2.0 3.0 50 1.0 5.0 n

ben_04 1.0 2.0 3.0 150 1.0 5.0 n

ben_05 1.0 2.0 3.0 10 1.5 10.0 n

ben_06 1.0 2.0 3.0 25 1.5 10.0 n

ben_07 1.0 2.0 3.0 50 1.5 10.0 n

ben_08 1.0 2.0 3.0 150 1.5 10.0 n

ben_09 1.0 2.0 3.0 10 2.5 15.0 n

ben_10 1.0 2.0 3.0 25 2.5 15.0 n

ben_11 1.0 2.0 3.0 50 2.5 15.0 n

ben_12 1.0 2.0 3.0 150 2.5 15.0 n

ben_13 1.0 3.0 5.0 10 1.0 5.0 n

ben_14 1.0 3.0 5.0 25 1.0 5.0 n

ben_15 1.0 3.0 5.0 50 1.0 5.0 n

ben_16 1.0 3.0 5.0 150 1.0 5.0 n

ben_17 1.0 3.0 5.0 10 1.5 10.0 n

ben_18 1.0 3.0 5.0 25 1.5 10.0 n

ben_19 1.0 3.0 5.0 50 1.5 10.0 n

ben_20 1.0 3.0 5.0 150 1.5 10.0 n

ben_21 1.0 3.0 5.0 10 2.5 15.0 n

ben_22 1.0 3.0 5.0 25 2.5 15.0 n

ben_23 1.0 3.0 5.0 50 2.5 15.0 n

ben_24
2,3

1.0 3.0 5.0 150 2.5 15.0 n

ben_25 1.0 2.0 3.0 10 1.0 5.0 y

ben_26 1.0 2.0 3.0 25 1.0 5.0 y

ben_27
2

1.0 2.0 3.0 50 1.0 5.0 y

ben_28 1.0 2.0 3.0 150 1.0 5.0 y

ben_29 1.0 2.0 3.0 10 1.5 10.0 y

ben_30 1.0 2.0 3.0 25 1.5 10.0 y

ben_31 1.0 2.0 3.0 50 1.5 10.0 y

ben_32
3

1.0 2.0 3.0 150 1.5 10.0 y

ben_33 1.0 2.0 3.0 10 2.5 15.0 y

ben_34 1.0 2.0 3.0 25 2.5 15.0 y

ben_35 1.0 2.0 3.0 50 2.5 15.0 y

ben_36 1.0 2.0 3.0 150 2.5 15.0 y

ben_37 1.0 3.0 5.0 10 1.0 5.0 y

ben_38 1.0 3.0 5.0 25 1.0 5.0 y

ben_39 1.0 3.0 5.0 50 1.0 5.0 y

ben_40 1.0 3.0 5.0 150 1.0 5.0 y

ben_41 1.0 3.0 5.0 10 1.5 10.0 y

ben_42 1.0 3.0 5.0 25 1.5 10.0 y

ben_43 1.0 3.0 5.0 50 1.5 10.0 y

ben_44 1.0 3.0 5.0 150 1.5 10.0 y

ben_45 1.0 3.0 5.0 10 2.5 15.0 y

ben_46 1.0 3.0 5.0 25 2.5 15.0 y

ben_47 1.0 3.0 5.0 50 2.5 15.0 y

ben_48
1

1.0 3.0 5.0 150 2.5 15.0 y

Table C.7: Parameters for benchmark runs with Sda transformation matching. Superscript
numbers indicate the best-performing single (1), pair (2), and triple (3) of parameter sets.



C.3 assembly parameters and results 213

CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

ben_01 307 170 ( 4.21) 94 ( 2.99) 47 ( 6.85) 164 ( 5.40) 137 ( 5.53) 57 ( 8.05)

ben_02 306 192 ( 2.96) 136 ( 1.88) 95 ( 3.39) 190 ( 3.82) 171 ( 2.63) 98 ( 4.48)

ben_03 307 195 ( 1.90) 157 ( 1.98) 126 ( 3.61) 198 ( 3.65) 177 ( 2.05) 129 ( 3.68)

ben_04 308 208 ( 1.81) 172 ( 2.22) 139 ( 3.26) 208 ( 2.32) 192 ( 2.29) 141 ( 3.37)

ben_05 306 182 ( 3.91) 124 ( 2.66) 72 ( 4.86) 180 ( 4.13) 161 ( 4.72) 79 ( 5.23)

ben_06 308 198 ( 2.21) 144 ( 1.65) 116 ( 3.76) 196 ( 2.69) 177 ( 2.46) 121 ( 6.26)

ben_07 308 209 ( 2.15) 168 ( 1.60) 139 ( 3.37) 216 ( 3.29) 199 ( 2.45) 143 ( 4.55)

ben_08 307 211 ( 1.82) 179 ( 1.74) 152 ( 4.01) 212 ( 2.38) 202 ( 2.19) 154 ( 3.57)

ben_09 306 188 ( 3.30) 129 ( 2.09) 77 ( 4.48) 188 ( 3.59) 164 ( 3.61) 91 ( 7.60)

ben_10 306 206 ( 2.26) 161 ( 2.09) 121 ( 2.87) 208 ( 2.83) 190 ( 2.14) 131 ( 4.18)

ben_11 306 204 ( 1.92) 171 ( 2.04) 143 ( 3.42) 214 ( 3.87) 193 ( 2.88) 152 ( 4.64)

ben_12 306 212 ( 1.73) 187 ( 2.00) 154 ( 3.19) 217 ( 2.31) 206 ( 2.15) 165 ( 3.75)

ben_13 305 168 ( 5.32) 77 ( 2.19) 19 ( 1.42) 160 ( 5.78) 130 ( 4.88) 41 ( 2.46)

ben_14 307 189 ( 2.20) 123 ( 2.28) 74 ( 2.54) 183 ( 3.55) 162 ( 3.11) 77 ( 3.42)

ben_15 308 201 ( 1.87) 156 ( 1.63) 101 ( 2.19) 197 ( 1.96) 184 ( 2.14) 107 ( 2.22)

ben_16 308 202 ( 2.11) 163 ( 1.46) 122 ( 2.66) 201 ( 2.15) 190 ( 1.82) 125 ( 3.07)

ben_17 307 186 ( 4.20) 125 ( 3.82) 39 ( 1.82) 173 ( 4.23) 156 ( 4.67) 59 ( 3.20)

ben_18 308 202 ( 2.26) 147 ( 2.03) 97 ( 2.34) 204 ( 2.79) 186 ( 2.80) 100 ( 3.97)

ben_19 308 208 ( 1.50) 174 ( 1.60) 128 ( 2.96) 214 ( 2.00) 204 ( 1.97) 126 ( 4.15)

ben_20 307 210 ( 1.43) 179 ( 1.41) 144 ( 2.61) 216 ( 1.73) 206 ( 1.84) 146 ( 4.51)

ben_21 305 187 ( 3.69) 124 ( 3.68) 41 ( 1.73) 181 ( 5.04) 163 ( 5.21) 61 ( 3.67)

ben_22 307 201 ( 2.25) 152 ( 2.57) 105 ( 3.11) 207 ( 2.62) 184 ( 2.65) 107 ( 3.91)

ben_23 306 210 ( 1.88) 171 ( 1.47) 133 ( 2.69) 214 ( 1.87) 200 ( 1.62) 135 ( 3.56)

ben_24 307 214 ( 1.46) 182 ( 1.68) 147 ( 2.82) 218 ( 2.18) 206 ( 1.87) 155 ( 3.02)

ben_25 305 173 ( 4.61) 100 ( 2.42) 50 ( 6.06) 158 ( 5.28) 140 ( 4.91) 60 ( 5.73)

ben_26 306 192 ( 2.70) 137 ( 1.68) 95 ( 2.76) 194 ( 3.15) 169 ( 2.21) 96 ( 5.56)

ben_27 307 198 ( 1.68) 155 ( 1.58) 120 ( 3.36) 199 ( 3.42) 180 ( 2.08) 125 ( 4.38)

ben_28 308 209 ( 1.77) 176 ( 1.91) 133 ( 2.34) 212 ( 2.30) 198 ( 2.17) 137 ( 2.87)

ben_29 307 188 ( 4.47) 130 ( 3.27) 72 ( 4.43) 188 ( 4.64) 166 ( 4.13) 83 ( 6.33)

ben_30 308 197 ( 2.19) 145 ( 1.79) 117 ( 3.00) 197 ( 3.09) 182 ( 2.81) 126 ( 4.73)

ben_31 308 205 ( 1.98) 168 ( 2.55) 136 ( 2.23) 213 ( 4.15) 199 ( 2.50) 144 ( 3.87)

ben_32 308 214 ( 1.96) 184 ( 2.65) 151 ( 3.17) 220 ( 2.94) 208 ( 2.53) 157 ( 3.92)

ben_33 306 193 ( 3.02) 136 ( 2.74) 82 ( 3.83) 193 ( 3.90) 171 ( 3.55) 91 ( 6.16)

ben_34 306 202 ( 2.17) 156 ( 2.88) 121 ( 2.61) 209 ( 3.81) 187 ( 2.82) 131 ( 4.50)

ben_35 306 207 ( 2.01) 173 ( 2.28) 142 ( 2.41) 217 ( 4.75) 198 ( 2.12) 152 ( 2.93)

ben_36 306 215 ( 1.75) 187 ( 2.12) 153 ( 3.70) 219 ( 2.57) 209 ( 1.89) 165 ( 3.45)

ben_37 307 168 ( 5.12) 77 ( 2.40) 27 ( 2.78) 154 ( 5.70) 123 ( 5.09) 40 ( 2.90)

ben_38 308 182 ( 2.08) 121 ( 2.02) 71 ( 2.90) 179 ( 2.78) 160 ( 2.71) 76 ( 3.54)

ben_39 308 189 ( 1.47) 147 ( 1.65) 98 ( 3.20) 186 ( 1.82) 176 ( 2.26) 100 ( 2.45)

ben_40 308 202 ( 1.65) 163 ( 1.72) 119 ( 2.82) 205 ( 1.85) 193 ( 1.93) 117 ( 2.68)

ben_41 308 191 ( 3.92) 117 ( 3.24) 33 ( 2.18) 185 ( 5.37) 156 ( 4.80) 53 ( 4.47)

ben_42 308 203 ( 3.65) 148 ( 1.97) 96 ( 2.00) 202 ( 3.30) 188 ( 3.41) 106 ( 3.48)

ben_43 308 208 ( 1.68) 170 ( 2.04) 130 ( 2.55) 213 ( 2.29) 198 ( 1.73) 126 ( 3.59)

ben_44 308 207 ( 1.35) 171 ( 1.64) 140 ( 2.30) 214 ( 2.05) 202 ( 1.76) 140 ( 2.58)

ben_45 306 193 ( 4.47) 128 ( 3.63) 40 ( 1.38) 187 ( 4.72) 169 ( 5.14) 62 ( 4.02)

ben_46 305 207 ( 2.52) 151 ( 1.85) 98 ( 3.60) 210 ( 3.46) 192 ( 4.06) 106 ( 3.52)

ben_47 307 206 ( 1.72) 172 ( 1.82) 127 ( 2.03) 214 ( 2.19) 200 ( 2.08) 130 ( 2.28)

ben_48 307 215 ( 1.56) 185 ( 2.11) 151 ( 3.00) 223 ( 1.93) 209 ( 2.28) 154 ( 2.66)

div2 308 241 ( 13.90) 207 ( 14.48) 170 ( 18.04) 250 ( 4.35) 232 ( 2.34) 180 ( 5.79)

div3 308 249 ( 18.75) 218 ( 17.89) 185 ( 22.95) 258 ( 5.90) 244 ( 3.58) 188 ( 6.11)

all 308 262 (265.49) 235 (255.52) 204 (303.07) 272 (47.09) 265 (48.74) 216 (48.25)

Table C.8: Performance of benchmark models for the Sda transformation match score. First
(second) half corresponds to disabled (enabled) ligand interpolation.
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Clustering Allowed Transformation Matching Ligand

Code Pre Intra Post Clashes Displacement RMSD Interpolation

ben_49 1.0 2.0 3.0 10 1.0 3.0 n

ben_50
3

1.0 2.0 3.0 25 1.0 3.0 n

ben_51
2

1.0 2.0 3.0 50 1.0 3.0 n

ben_52 1.0 2.0 3.0 150 1.0 3.0 n

ben_53 1.0 2.0 3.0 10 1.5 4.5 n

ben_54 1.0 2.0 3.0 25 1.5 4.5 n

ben_55 1.0 2.0 3.0 50 1.5 4.5 n

ben_56 1.0 2.0 3.0 150 1.5 4.5 n

ben_57 1.0 2.0 3.0 10 2.5 7.5 n

ben_58 1.0 2.0 3.0 25 2.5 7.5 n

ben_59 1.0 2.0 3.0 50 2.5 7.5 n

ben_60 1.0 2.0 3.0 150 2.5 7.5 n

ben_61 1.0 3.0 5.0 10 1.0 3.0 n

ben_62 1.0 3.0 5.0 25 1.0 3.0 n

ben_63 1.0 3.0 5.0 50 1.0 3.0 n

ben_64
3

1.0 3.0 5.0 150 1.0 3.0 n

ben_65 1.0 3.0 5.0 10 1.5 4.5 n

ben_66 1.0 3.0 5.0 25 1.5 4.5 n

ben_67 1.0 3.0 5.0 50 1.5 4.5 n

ben_68 1.0 3.0 5.0 150 1.5 4.5 n

ben_69 1.0 3.0 5.0 10 2.5 7.5 n

ben_70 1.0 3.0 5.0 25 2.5 7.5 n

ben_71 1.0 3.0 5.0 50 2.5 7.5 n

ben_72
1,2,3

1.0 3.0 5.0 150 2.5 7.5 n

ben_73 1.0 2.0 3.0 10 1.0 3.0 y

ben_74 1.0 2.0 3.0 25 1.0 3.0 y

ben_75 1.0 2.0 3.0 50 1.0 3.0 y

ben_76 1.0 2.0 3.0 150 1.0 3.0 y

ben_77 1.0 2.0 3.0 10 1.5 4.5 y

ben_78 1.0 2.0 3.0 25 1.5 4.5 y

ben_79 1.0 2.0 3.0 50 1.5 4.5 y

ben_80 1.0 2.0 3.0 150 1.5 4.5 y

ben_81 1.0 2.0 3.0 10 2.5 7.5 y

ben_82 1.0 2.0 3.0 25 2.5 7.5 y

ben_83 1.0 2.0 3.0 50 2.5 7.5 y

ben_84 1.0 2.0 3.0 150 2.5 7.5 y

ben_85 1.0 3.0 5.0 10 1.0 3.0 y

ben_86 1.0 3.0 5.0 25 1.0 3.0 y

ben_87 1.0 3.0 5.0 50 1.0 3.0 y

ben_88 1.0 3.0 5.0 150 1.0 3.0 y

ben_89 1.0 3.0 5.0 10 1.5 4.5 y

ben_90 1.0 3.0 5.0 25 1.5 4.5 y

ben_91 1.0 3.0 5.0 50 1.5 4.5 y

ben_92 1.0 3.0 5.0 150 1.5 4.5 y

ben_93 1.0 3.0 5.0 10 2.5 7.5 y

ben_94 1.0 3.0 5.0 25 2.5 7.5 y

ben_95 1.0 3.0 5.0 50 2.5 7.5 y

ben_96 1.0 3.0 5.0 150 2.5 7.5 y

Table C.9: Parameters for benchmark runs with Srmsd transformation matching. Superscript
numbers indicate the best-performing single (1), pair (2), and triple (3) of parameter sets.
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

ben_49 306 189 ( 4.33) 118 ( 2.97) 70 ( 4.09) 180 ( 4.26) 161 ( 5.26) 82 ( 7.89)

ben_50 306 196 ( 2.49) 150 ( 2.49) 115 ( 3.71) 198 ( 3.01) 183 ( 2.55) 120 ( 5.70)

ben_51 306 200 ( 2.01) 169 ( 2.30) 138 ( 2.90) 207 ( 3.98) 193 ( 2.60) 144 ( 4.22)

ben_52 308 202 ( 1.58) 174 ( 1.75) 152 ( 3.47) 209 ( 2.73) 197 ( 2.03) 156 ( 4.61)

ben_53 303 180 ( 3.26) 132 ( 3.05) 79 ( 4.13) 180 ( 3.86) 162 ( 4.06) 93 ( 8.31)

ben_54 307 191 ( 2.00) 153 ( 1.69) 120 ( 2.50) 198 ( 3.16) 183 ( 2.40) 122 ( 4.17)

ben_55 307 204 ( 2.07) 171 ( 1.65) 143 ( 2.94) 208 ( 3.64) 195 ( 2.24) 154 ( 3.40)

ben_56 307 208 ( 1.63) 181 ( 1.87) 156 ( 4.17) 215 ( 2.72) 203 ( 2.63) 162 ( 3.49)

ben_57 305 190 ( 3.62) 132 ( 2.72) 75 ( 3.84) 192 ( 4.44) 170 ( 4.23) 93 ( 6.15)

ben_58 304 200 ( 2.12) 160 ( 2.08) 124 ( 3.07) 203 ( 2.72) 192 ( 2.83) 129 ( 3.98)

ben_59 305 205 ( 2.08) 176 ( 1.51) 144 ( 3.03) 211 ( 3.70) 196 ( 1.95) 153 ( 3.33)

ben_60 305 208 ( 1.45) 185 ( 1.64) 155 ( 3.83) 216 ( 3.12) 203 ( 2.00) 164 ( 3.27)

ben_61 305 183 ( 4.76) 109 ( 3.37) 37 ( 3.24) 174 ( 4.95) 150 ( 5.09) 54 ( 3.24)

ben_62 307 199 ( 2.55) 150 ( 2.11) 90 ( 4.47) 203 ( 2.80) 180 ( 2.79) 97 ( 3.89)

ben_63 308 208 ( 1.65) 168 ( 1.64) 124 ( 3.61) 215 ( 3.41) 198 ( 2.36) 131 ( 4.27)

ben_64 308 214 ( 1.55) 183 ( 1.37) 147 ( 2.67) 216 ( 1.70) 206 ( 1.96) 148 ( 2.80)

ben_65 305 187 ( 3.21) 120 ( 2.78) 47 ( 2.30) 184 ( 4.84) 159 ( 4.77) 67 ( 5.00)

ben_66 305 200 ( 2.60) 152 ( 1.95) 101 ( 2.55) 198 ( 2.41) 183 ( 2.58) 99 ( 2.86)

ben_67 305 201 ( 1.71) 169 ( 1.54) 132 ( 3.44) 207 ( 2.00) 192 ( 2.03) 133 ( 4.07)

ben_68 305 213 ( 1.61) 177 ( 1.65) 147 ( 2.61) 215 ( 2.56) 201 ( 1.71) 147 ( 2.73)

ben_69 304 194 ( 3.13) 132 ( 2.30) 50 ( 2.10) 190 ( 4.13) 171 ( 3.53) 68 ( 4.19)

ben_70 305 202 ( 2.19) 157 ( 2.00) 106 ( 3.07) 208 ( 2.92) 190 ( 2.83) 110 ( 3.48)

ben_71 305 209 ( 1.77) 175 ( 1.58) 135 ( 3.36) 214 ( 2.42) 193 ( 1.65) 143 ( 3.32)

ben_72 305 211 ( 1.66) 178 ( 1.63) 146 ( 3.42) 221 ( 2.96) 207 ( 2.39) 151 ( 2.62)

ben_73 307 185 ( 4.02) 119 ( 4.18) 70 ( 4.97) 180 ( 3.94) 163 ( 5.20) 83 ( 7.43)

ben_74 307 198 ( 2.17) 150 ( 2.12) 118 ( 3.33) 203 ( 2.82) 186 ( 2.74) 121 ( 3.79)

ben_75 306 204 ( 1.83) 169 ( 1.66) 139 ( 3.20) 207 ( 3.15) 194 ( 1.82) 145 ( 3.63)

ben_76 306 209 ( 1.51) 178 ( 1.76) 147 ( 3.65) 209 ( 2.19) 201 ( 1.85) 151 ( 3.26)

ben_77 307 184 ( 4.25) 137 ( 2.52) 80 ( 4.03) 184 ( 4.34) 165 ( 4.04) 94 ( 7.05)

ben_78 306 199 ( 2.71) 156 ( 2.36) 120 ( 2.74) 206 ( 3.68) 190 ( 3.16) 125 ( 4.87)

ben_79 307 206 ( 2.01) 172 ( 2.27) 138 ( 2.64) 212 ( 3.51) 199 ( 2.51) 149 ( 3.78)

ben_80 307 212 ( 1.58) 184 ( 2.15) 150 ( 3.09) 217 ( 2.72) 206 ( 2.26) 165 ( 3.07)

ben_81 303 191 ( 3.27) 134 ( 2.51) 75 ( 3.81) 196 ( 5.19) 175 ( 3.75) 93 ( 4.99)

ben_82 306 199 ( 2.23) 161 ( 2.01) 125 ( 2.60) 203 ( 2.98) 188 ( 2.96) 134 ( 3.48)

ben_83 306 204 ( 2.08) 169 ( 2.18) 141 ( 3.67) 209 ( 3.98) 196 ( 2.20) 151 ( 3.30)

ben_84 304 207 ( 1.56) 178 ( 1.57) 152 ( 4.09) 208 ( 2.54) 196 ( 1.67) 164 ( 3.87)

ben_85 305 181 ( 4.63) 108 ( 2.56) 40 ( 2.40) 172 ( 4.40) 145 ( 4.34) 50 ( 3.36)

ben_86 306 193 ( 2.82) 136 ( 1.97) 90 ( 2.79) 193 ( 2.77) 173 ( 2.97) 89 ( 2.96)

ben_87 306 204 ( 1.90) 166 ( 1.84) 114 ( 2.65) 205 ( 1.90) 194 ( 1.93) 125 ( 4.10)

ben_88 308 210 ( 1.64) 176 ( 1.76) 141 ( 2.71) 213 ( 2.19) 203 ( 1.98) 148 ( 4.16)

ben_89 306 191 ( 3.96) 125 ( 3.73) 36 ( 2.69) 181 ( 4.75) 160 ( 4.19) 60 ( 4.53)

ben_90 303 200 ( 2.48) 146 ( 2.10) 100 ( 3.47) 197 ( 2.78) 181 ( 3.18) 109 ( 5.37)

ben_91 305 204 ( 1.86) 169 ( 1.62) 131 ( 2.17) 207 ( 2.12) 196 ( 2.45) 136 ( 3.31)

ben_92 306 216 ( 1.63) 183 ( 2.09) 150 ( 2.76) 218 ( 2.30) 205 ( 1.90) 153 ( 2.70)

ben_93 304 196 ( 2.91) 132 ( 2.56) 43 ( 1.56) 189 ( 3.31) 169 ( 3.51) 72 ( 5.15)

ben_94 305 203 ( 2.96) 155 ( 2.27) 104 ( 2.38) 214 ( 3.48) 188 ( 3.11) 113 ( 3.12)

ben_95 305 211 ( 2.07) 170 ( 1.70) 136 ( 2.72) 215 ( 2.12) 201 ( 2.01) 143 ( 3.09)

ben_96 305 215 ( 1.73) 182 ( 2.25) 146 ( 3.36) 220 ( 2.63) 208 ( 2.45) 154 ( 2.97)

div2 308 232 ( 8.84) 199 ( 9.85) 164 ( 11.05) 245 ( 4.34) 228 ( 3.15) 173 ( 5.95)

div3 308 238 ( 13.48) 205 ( 13.94) 170 ( 15.50) 252 ( 4.58) 234 ( 4.06) 181 ( 8.35)

all 308 259 (177.22) 229 (160.47) 199 (205.01) 267 (59.88) 256 (36.46) 217 (41.51)

Table C.10: Performance of benchmark models for the Srmsd transformation match score. First
(second) half corresponds to disabled (enabled) ligand interpolation.
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Clustering Allowed Transformation Matching Ligand

Code Pre Intra Post Clashes Displacement Angle Interpolation

sc_01 1.0 0.0 1.0 10 1.0 5.0 n

sc_02 1.0 0.0 1.0 25 1.0 5.0 n

sc_03 1.0 0.0 1.0 50 1.0 5.0 n

sc_04 1.0 0.0 1.0 150 1.0 5.0 n

sc_05 1.0 0.0 1.0 10 1.5 10.0 n

sc_06 1.0 0.0 1.0 25 1.5 10.0 n

sc_07 1.0 0.0 1.0 50 1.5 10.0 n

sc_08 1.0 0.0 1.0 150 1.5 10.0 n

sc_09 1.0 0.0 1.0 10 2.5 15.0 n

sc_10 1.0 0.0 1.0 25 2.5 15.0 n

sc_11 1.0 0.0 1.0 50 2.5 15.0 n

sc_12 1.0 0.0 1.0 150 2.5 15.0 n

sc_13 1.0 1.0 2.0 10 1.0 5.0 n

sc_14 1.0 1.0 2.0 25 1.0 5.0 n

sc_15 1.0 1.0 2.0 50 1.0 5.0 n

sc_16 1.0 1.0 2.0 150 1.0 5.0 n

sc_17 1.0 1.0 2.0 10 1.5 10.0 n

sc_18 1.0 1.0 2.0 25 1.5 10.0 n

sc_19 1.0 1.0 2.0 50 1.5 10.0 n

sc_20 1.0 1.0 2.0 150 1.5 10.0 n

sc_21 1.0 1.0 2.0 10 2.5 15.0 n

sc_22 1.0 1.0 2.0 25 2.5 15.0 n

sc_23 1.0 1.0 2.0 50 2.5 15.0 n

sc_24 1.0 1.0 2.0 150 2.5 15.0 n

sc_25 1.0 0.0 1.0 10 1.0 5.0 y

sc_26 1.0 0.0 1.0 25 1.0 5.0 y

sc_27 1.0 0.0 1.0 50 1.0 5.0 y

sc_28 1.0 0.0 1.0 150 1.0 5.0 y

sc_29 1.0 0.0 1.0 10 1.5 10.0 y

sc_30 1.0 0.0 1.0 25 1.5 10.0 y

sc_31 1.0 0.0 1.0 50 1.5 10.0 y

sc_32 1.0 0.0 1.0 150 1.5 10.0 y

sc_33 1.0 0.0 1.0 10 2.5 15.0 y

sc_34 1.0 0.0 1.0 25 2.5 15.0 y

sc_35 1.0 0.0 1.0 50 2.5 15.0 y

sc_36 1.0 0.0 1.0 150 2.5 15.0 y

sc_37 1.0 1.0 2.0 10 1.0 5.0 y

sc_38 1.0 1.0 2.0 25 1.0 5.0 y

sc_39 1.0 1.0 2.0 50 1.0 5.0 y

sc_40 1.0 1.0 2.0 150 1.0 5.0 y

sc_41 1.0 1.0 2.0 10 1.5 10.0 y

sc_42 1.0 1.0 2.0 25 1.5 10.0 y

sc_43 1.0 1.0 2.0 50 1.5 10.0 y

sc_44 1.0 1.0 2.0 150 1.5 10.0 y

sc_45 1.0 1.0 2.0 10 2.5 15.0 y

sc_46 1.0 1.0 2.0 25 2.5 15.0 y

sc_47 1.0 1.0 2.0 50 2.5 15.0 y

sc_48 1.0 1.0 2.0 150 2.5 15.0 y

Table C.11: Parameters for runs with Sda transformation matching and small clustering pa-
rameters.
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

sc_01 303 147 ( 2.58) 90 ( 2.74) 49 ( 7.06) 149 ( 3.74) 126 ( 3.18) 70 ( 6.09)

sc_02 304 163 ( 2.27) 123 ( 2.33) 87 ( 3.41) 167 ( 2.34) 148 ( 3.24) 98 ( 4.07)

sc_03 307 171 ( 1.67) 135 ( 2.33) 101 ( 3.60) 173 ( 2.38) 159 ( 2.19) 115 ( 3.63)

sc_04 307 180 ( 1.90) 145 ( 1.65) 121 ( 3.60) 183 ( 1.83) 167 ( 2.01) 128 ( 4.27)

sc_05 306 158 ( 3.93) 102 ( 2.89) 59 ( 6.90) 159 ( 5.16) 134 ( 3.17) 65 ( 6.02)

sc_06 306 170 ( 1.74) 132 ( 2.46) 96 ( 5.08) 176 ( 2.00) 158 ( 3.16) 110 ( 5.53)

sc_07 307 182 ( 1.79) 144 ( 1.66) 116 ( 3.67) 181 ( 2.23) 169 ( 2.40) 127 ( 4.56)

sc_08 307 182 ( 1.91) 152 ( 2.14) 126 ( 5.17) 186 ( 2.15) 173 ( 2.71) 129 ( 3.68)

sc_09 302 155 ( 3.05) 106 ( 2.98) 59 ( 5.29) 162 ( 3.32) 137 ( 2.87) 76 ( 8.28)

sc_10 305 167 ( 2.20) 125 ( 2.66) 93 ( 4.77) 175 ( 2.61) 153 ( 3.30) 104 ( 3.44)

sc_11 307 179 ( 2.04) 143 ( 2.75) 113 ( 4.31) 187 ( 2.68) 170 ( 2.07) 120 ( 3.57)

sc_12 307 180 ( 2.21) 154 ( 2.71) 121 ( 4.25) 193 ( 3.42) 176 ( 2.19) 131 ( 3.76)

sc_13 307 170 ( 5.85) 104 ( 3.15) 61 ( 6.61) 158 ( 4.04) 139 ( 5.40) 75 ( 6.68)

sc_14 307 188 ( 4.14) 139 ( 2.27) 107 ( 4.13) 183 ( 1.90) 171 ( 2.92) 111 ( 4.06)

sc_15 307 195 ( 2.68) 155 ( 2.33) 126 ( 2.68) 190 ( 2.18) 181 ( 2.50) 135 ( 3.18)

sc_16 308 203 ( 1.84) 167 ( 1.94) 138 ( 3.93) 201 ( 1.66) 190 ( 1.89) 145 ( 3.57)

sc_17 306 181 ( 4.33) 129 ( 2.45) 86 ( 5.58) 178 ( 3.69) 163 ( 5.01) 96 (10.06)

sc_18 308 193 ( 2.61) 150 ( 2.08) 124 ( 4.79) 189 ( 1.75) 182 ( 3.08) 129 ( 4.98)

sc_19 308 201 ( 1.88) 164 ( 1.71) 142 ( 3.94) 203 ( 2.03) 191 ( 2.43) 149 ( 3.56)

sc_20 308 204 ( 1.92) 175 ( 2.05) 152 ( 4.27) 204 ( 2.80) 194 ( 2.34) 159 ( 4.43)

sc_21 306 186 ( 3.95) 128 ( 1.85) 92 ( 5.45) 186 ( 4.38) 166 ( 5.04) 99 ( 8.58)

sc_22 308 193 ( 3.19) 151 ( 3.85) 120 ( 4.49) 200 ( 2.93) 182 ( 3.59) 125 ( 5.58)

sc_23 308 204 ( 1.80) 170 ( 2.29) 141 ( 4.40) 213 ( 1.98) 195 ( 1.89) 147 ( 3.84)

sc_24 308 208 ( 1.74) 182 ( 2.24) 150 ( 3.88) 214 ( 2.29) 199 ( 2.02) 161 ( 4.00)

sc_25 303 147 ( 3.54) 88 ( 3.47) 46 ( 4.54) 145 ( 3.10) 126 ( 4.72) 65 ( 5.80)

sc_26 306 163 ( 2.54) 121 ( 2.24) 80 ( 2.89) 168 ( 2.11) 150 ( 2.86) 91 ( 3.00)

sc_27 306 168 ( 1.26) 132 ( 2.08) 98 ( 2.86) 170 ( 1.45) 154 ( 2.31) 107 ( 3.93)

sc_28 307 177 ( 2.38) 144 ( 1.65) 107 ( 3.63) 183 ( 2.08) 167 ( 2.00) 115 ( 4.10)

sc_29 305 157 ( 2.73) 100 ( 2.55) 56 ( 7.34) 157 ( 3.92) 132 ( 2.91) 66 ( 6.32)

sc_30 307 165 ( 2.05) 131 ( 2.15) 96 ( 5.08) 171 ( 1.67) 157 ( 3.48) 107 ( 4.21)

sc_31 305 176 ( 1.51) 146 ( 1.81) 118 ( 3.62) 180 ( 2.28) 169 ( 2.49) 125 ( 3.38)

sc_32 307 181 ( 2.13) 152 ( 1.69) 129 ( 4.61) 183 ( 2.01) 173 ( 2.38) 132 ( 3.96)

sc_33 305 159 ( 2.74) 108 ( 2.91) 57 ( 5.98) 164 ( 3.68) 141 ( 2.47) 74 ( 6.46)

sc_34 306 163 ( 2.64) 128 ( 2.87) 93 ( 4.20) 166 ( 2.52) 149 ( 3.09) 101 ( 3.17)

sc_35 307 172 ( 1.81) 138 ( 2.36) 110 ( 3.21) 175 ( 2.69) 164 ( 2.51) 117 ( 4.61)

sc_36 305 172 ( 2.36) 144 ( 1.47) 119 ( 4.23) 182 ( 2.60) 168 ( 2.04) 121 ( 3.86)

sc_37 304 173 ( 4.83) 104 ( 2.61) 61 ( 5.89) 162 ( 4.13) 140 ( 4.85) 74 ( 6.47)

sc_38 306 191 ( 3.73) 141 ( 2.31) 103 ( 5.26) 186 ( 2.15) 171 ( 2.94) 107 ( 4.86)

sc_39 306 198 ( 2.43) 159 ( 2.95) 128 ( 3.41) 197 ( 2.15) 183 ( 3.09) 133 ( 3.94)

sc_40 308 202 ( 1.96) 170 ( 2.22) 138 ( 2.79) 201 ( 2.13) 189 ( 2.30) 149 ( 3.90)

sc_41 307 179 ( 4.32) 127 ( 2.84) 89 ( 5.17) 177 ( 3.94) 162 ( 5.23) 95 ( 8.03)

sc_42 308 196 ( 2.64) 156 ( 2.10) 127 ( 4.50) 195 ( 1.63) 187 ( 2.76) 137 ( 4.39)

sc_43 308 206 ( 2.04) 173 ( 2.07) 148 ( 3.19) 211 ( 2.69) 195 ( 2.45) 157 ( 3.63)

sc_44 308 207 ( 1.61) 180 ( 2.21) 153 ( 3.72) 213 ( 2.36) 200 ( 2.71) 164 ( 3.68)

sc_45 305 184 ( 3.58) 128 ( 2.39) 89 ( 6.24) 183 ( 3.71) 161 ( 4.27) 99 ( 7.18)

sc_46 307 197 ( 2.71) 153 ( 2.80) 126 ( 3.64) 193 ( 1.68) 182 ( 2.86) 135 ( 3.33)

sc_47 307 203 ( 2.23) 173 ( 3.18) 143 ( 3.03) 211 ( 2.46) 194 ( 2.32) 153 ( 3.04)

sc_48 308 211 ( 1.75) 183 ( 2.30) 153 ( 4.05) 216 ( 1.64) 203 ( 1.76) 163 ( 4.09)

div2 308 229 ( 12.72) 200 ( 12.68) 172 ( 15.20) 235 ( 1.78) 223 ( 2.47) 184 ( 5.57)

div3 308 234 ( 23.25) 202 ( 22.47) 170 ( 24.29) 242 ( 5.50) 228 ( 6.16) 180 ( 9.64)

all 308 249 (328.69) 216 (291.38) 187 (361.32) 261 (59.96) 242 (32.89) 204 (33.79)

Table C.12: Performance of models for the Sda transformation match score and small cluster-
ing parameters. First (second) half corresponds to disabled (enabled) ligand interpolation.
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Clustering Allowed Transformation Matching Ligand

Code Pre Intra Post Clashes Displacement RMSD Interpolation

sc_49 1.0 0.0 1.0 10 1.0 3.0 n

sc_50 1.0 0.0 1.0 25 1.0 3.0 n

sc_51 1.0 0.0 1.0 50 1.0 3.0 n

sc_52 1.0 0.0 1.0 150 1.0 3.0 n

sc_53 1.0 0.0 1.0 10 1.5 4.5 n

sc_54 1.0 0.0 1.0 25 1.5 4.5 n

sc_55 1.0 0.0 1.0 50 1.5 4.5 n

sc_56 1.0 0.0 1.0 150 1.5 4.5 n

sc_57 1.0 0.0 1.0 10 2.5 7.5 n

sc_58 1.0 0.0 1.0 25 2.5 7.5 n

sc_59 1.0 0.0 1.0 50 2.5 7.5 n

sc_60 1.0 0.0 1.0 150 2.5 7.5 n

sc_61 1.0 1.0 2.0 10 1.0 3.0 n

sc_62 1.0 1.0 2.0 25 1.0 3.0 n

sc_63 1.0 1.0 2.0 50 1.0 3.0 n

sc_64 1.0 1.0 2.0 150 1.0 3.0 n

sc_65 1.0 1.0 2.0 10 1.5 4.5 n

sc_66 1.0 1.0 2.0 25 1.5 4.5 n

sc_67 1.0 1.0 2.0 50 1.5 4.5 n

sc_68 1.0 1.0 2.0 150 1.5 4.5 n

sc_69 1.0 1.0 2.0 10 2.5 7.5 n

sc_70 1.0 1.0 2.0 25 2.5 7.5 n

sc_71 1.0 1.0 2.0 50 2.5 7.5 n

sc_72 1.0 1.0 2.0 150 2.5 7.5 n

sc_73 1.0 0.0 1.0 10 1.0 3.0 y

sc_74 1.0 0.0 1.0 25 1.0 3.0 y

sc_75 1.0 0.0 1.0 50 1.0 3.0 y

sc_76 1.0 0.0 1.0 150 1.0 3.0 y

sc_77 1.0 0.0 1.0 10 1.5 4.5 y

sc_78 1.0 0.0 1.0 25 1.5 4.5 y

sc_79 1.0 0.0 1.0 50 1.5 4.5 y

sc_80 1.0 0.0 1.0 150 1.5 4.5 y

sc_81 1.0 0.0 1.0 10 2.5 7.5 y

sc_82 1.0 0.0 1.0 25 2.5 7.5 y

sc_83 1.0 0.0 1.0 50 2.5 7.5 y

sc_84 1.0 0.0 1.0 150 2.5 7.5 y

sc_85 1.0 1.0 2.0 10 1.0 3.0 y

sc_86 1.0 1.0 2.0 25 1.0 3.0 y

sc_87 1.0 1.0 2.0 50 1.0 3.0 y

sc_88 1.0 1.0 2.0 150 1.0 3.0 y

sc_89 1.0 1.0 2.0 10 1.5 4.5 y

sc_90 1.0 1.0 2.0 25 1.5 4.5 y

sc_91 1.0 1.0 2.0 50 1.5 4.5 y

sc_92 1.0 1.0 2.0 150 1.5 4.5 y

sc_93 1.0 1.0 2.0 10 2.5 7.5 y

sc_94 1.0 1.0 2.0 25 2.5 7.5 y

sc_95 1.0 1.0 2.0 50 2.5 7.5 y

sc_96 1.0 1.0 2.0 150 2.5 7.5 y

Table C.13: Parameters for runs with Srmsd transformation matching and small clustering
parameters.
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

sc_49 306 156 ( 2.94) 92 ( 2.88) 58 ( 5.81) 157 ( 4.20) 138 ( 3.29) 64 ( 7.80)

sc_50 307 170 ( 3.04) 126 ( 1.87) 100 ( 4.37) 178 ( 2.73) 157 ( 3.80) 107 ( 3.80)

sc_51 306 183 ( 1.40) 141 ( 1.55) 119 ( 3.27) 190 ( 2.52) 173 ( 2.01) 128 ( 3.72)

sc_52 306 185 ( 1.97) 149 ( 1.76) 130 ( 4.78) 187 ( 2.04) 173 ( 1.92) 135 ( 4.24)

sc_53 304 154 ( 3.30) 100 ( 3.12) 59 ( 4.12) 157 ( 3.59) 132 ( 3.16) 72 ( 5.01)

sc_54 307 167 ( 2.44) 127 ( 2.14) 98 ( 3.41) 172 ( 2.22) 156 ( 3.46) 110 ( 4.19)

sc_55 306 176 ( 1.34) 139 ( 1.83) 111 ( 2.68) 186 ( 2.54) 167 ( 1.78) 122 ( 4.24)

sc_56 307 183 ( 1.80) 154 ( 1.53) 127 ( 3.93) 195 ( 2.51) 179 ( 2.42) 134 ( 4.57)

sc_57 302 155 ( 2.76) 100 ( 3.36) 60 ( 3.92) 155 ( 3.06) 134 ( 2.44) 79 ( 4.72)

sc_58 305 168 ( 2.65) 129 ( 2.67) 96 ( 5.08) 172 ( 2.62) 159 ( 3.34) 105 ( 3.90)

sc_59 305 177 ( 1.85) 142 ( 1.68) 112 ( 4.11) 186 ( 1.75) 175 ( 2.38) 119 ( 2.67)

sc_60 306 181 ( 2.22) 148 ( 1.43) 119 ( 3.73) 188 ( 2.59) 178 ( 2.54) 131 ( 3.88)

sc_61 307 177 ( 3.62) 124 ( 3.56) 84 ( 5.36) 178 ( 4.31) 160 ( 4.86) 96 ( 9.16)

sc_62 307 191 ( 3.03) 155 ( 3.07) 122 ( 5.58) 192 ( 2.46) 176 ( 2.59) 130 ( 4.91)

sc_63 307 202 ( 2.44) 166 ( 2.33) 140 ( 4.19) 204 ( 2.22) 192 ( 2.14) 150 ( 3.43)

sc_64 308 204 ( 1.65) 174 ( 1.99) 148 ( 3.72) 206 ( 1.55) 198 ( 2.51) 156 ( 3.40)

sc_65 305 178 ( 3.57) 130 ( 2.28) 87 ( 4.97) 177 ( 3.60) 156 ( 2.99) 99 ( 8.55)

sc_66 308 191 ( 2.61) 152 ( 2.76) 120 ( 3.27) 194 ( 1.98) 182 ( 2.70) 130 ( 4.68)

sc_67 307 198 ( 1.81) 168 ( 2.60) 143 ( 3.59) 206 ( 2.96) 190 ( 2.40) 147 ( 3.53)

sc_68 308 206 ( 1.94) 177 ( 2.25) 150 ( 3.55) 212 ( 1.52) 195 ( 1.58) 161 ( 3.81)

sc_69 303 184 ( 4.19) 128 ( 2.03) 84 ( 6.07) 182 ( 3.09) 169 ( 4.63) 101 ( 5.51)

sc_70 308 189 ( 3.21) 152 ( 2.64) 125 ( 3.98) 199 ( 2.90) 185 ( 2.68) 128 ( 3.18)

sc_71 308 201 ( 2.64) 169 ( 2.54) 143 ( 3.79) 210 ( 2.94) 194 ( 2.04) 151 ( 3.36)

sc_72 308 206 ( 2.04) 174 ( 2.11) 145 ( 3.54) 210 ( 2.55) 196 ( 1.56) 158 ( 4.11)

sc_73 304 155 ( 3.67) 91 ( 3.07) 57 ( 5.16) 155 ( 4.11) 133 ( 3.76) 63 ( 4.73)

sc_74 307 169 ( 2.38) 128 ( 1.75) 97 ( 3.91) 176 ( 2.41) 155 ( 2.79) 109 ( 4.38)

sc_75 307 175 ( 1.45) 140 ( 1.83) 103 ( 2.59) 179 ( 2.09) 163 ( 1.77) 120 ( 4.94)

sc_76 307 180 ( 2.09) 150 ( 1.91) 119 ( 4.82) 191 ( 2.37) 175 ( 1.74) 124 ( 4.66)

sc_77 305 158 ( 3.57) 103 ( 2.68) 58 ( 6.16) 161 ( 3.18) 136 ( 3.80) 76 ( 6.20)

sc_78 306 166 ( 1.96) 128 ( 1.88) 93 ( 3.91) 169 ( 1.57) 151 ( 2.62) 103 ( 4.30)

sc_79 306 171 ( 1.64) 138 ( 1.47) 109 ( 2.45) 178 ( 2.09) 161 ( 2.71) 117 ( 3.82)

sc_80 307 177 ( 2.90) 147 ( 1.85) 122 ( 5.32) 189 ( 3.10) 169 ( 2.66) 127 ( 4.91)

sc_81 305 156 ( 3.14) 105 ( 2.75) 62 ( 4.94) 156 ( 3.76) 137 ( 2.30) 78 ( 4.17)

sc_82 304 163 ( 2.20) 127 ( 2.32) 96 ( 4.92) 169 ( 2.20) 155 ( 2.51) 104 ( 3.77)

sc_83 307 168 ( 2.23) 136 ( 2.07) 113 ( 5.86) 175 ( 2.17) 164 ( 2.85) 120 ( 3.63)

sc_84 307 173 ( 2.46) 139 ( 2.05) 112 ( 5.53) 182 ( 2.52) 166 ( 2.07) 124 ( 3.55)

sc_85 306 181 ( 3.78) 132 ( 3.15) 89 ( 5.35) 181 ( 3.84) 163 ( 3.63) 95 ( 6.73)

sc_86 307 196 ( 3.65) 155 ( 2.88) 126 ( 5.37) 201 ( 2.74) 184 ( 2.56) 134 ( 4.13)

sc_87 307 201 ( 2.19) 167 ( 2.29) 141 ( 3.29) 200 ( 1.98) 187 ( 1.68) 148 ( 3.34)

sc_88 307 206 ( 1.77) 177 ( 2.04) 152 ( 3.35) 205 ( 1.40) 200 ( 2.25) 160 ( 3.97)

sc_89 305 178 ( 3.96) 133 ( 2.42) 92 ( 5.30) 176 ( 3.38) 159 ( 3.21) 100 ( 8.58)

sc_90 307 195 ( 2.91) 155 ( 2.51) 127 ( 3.80) 192 ( 1.94) 180 ( 2.49) 132 ( 2.70)

sc_91 305 200 ( 1.99) 167 ( 2.23) 144 ( 3.36) 203 ( 2.40) 191 ( 2.58) 151 ( 2.84)

sc_92 308 206 ( 1.72) 180 ( 2.12) 151 ( 3.98) 208 ( 2.17) 196 ( 2.22) 162 ( 3.43)

sc_93 306 178 ( 3.49) 126 ( 2.07) 92 ( 4.90) 179 ( 2.81) 164 ( 4.61) 105 ( 5.76)

sc_94 307 193 ( 2.51) 154 ( 2.06) 125 ( 3.37) 199 ( 2.38) 185 ( 2.46) 131 ( 2.54)

sc_95 307 204 ( 1.97) 169 ( 2.24) 143 ( 2.87) 208 ( 2.86) 195 ( 1.92) 150 ( 2.48)

sc_96 307 203 ( 1.63) 178 ( 2.59) 149 ( 4.19) 210 ( 2.29) 197 ( 2.28) 154 ( 2.61)

div2 308 219 ( 12.88) 184 ( 12.96) 158 ( 16.53) 232 ( 5.15) 214 ( 2.96) 169 ( 6.60)

div3 308 225 ( 16.25) 196 ( 16.46) 167 ( 17.74) 240 ( 5.10) 222 ( 3.79) 184 ( 8.47)

all 308 247 (258.34) 214 (298.07) 181 (260.99) 255 (37.87) 243 (34.54) 204 (61.16)

Table C.14: Performance of models for the Srmsd transformation match score and small clus-
tering parameters. First (second) half corresponds to disabled (enabled) ligand interpolation.
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Clustering Allowed Transformation Matching Ligand

Code Pre Intra Post Clashes Displacement Angle Interpolation

to_01 0.0 0.0 0.0 10 1.0 5.0 n

to_02 0.0 0.0 0.0 25 1.0 5.0 n

to_03 0.0 0.0 0.0 50 1.0 5.0 n

to_04 0.0 0.0 0.0 150 1.0 5.0 n

to_05 0.0 0.0 0.0 10 1.5 10.0 n

to_06 0.0 0.0 0.0 25 1.5 10.0 n

to_07 0.0 0.0 0.0 50 1.5 10.0 n

to_08 0.0 0.0 0.0 150 1.5 10.0 n

to_09 0.0 0.0 0.0 10 2.5 15.0 n

to_10 0.0 0.0 0.0 25 2.5 15.0 n

to_11 0.0 0.0 0.0 50 2.5 15.0 n

to_12 0.0 0.0 0.0 150 2.5 15.0 n

to_13 1.0 0.0 0.0 10 1.0 5.0 n

to_14 1.0 0.0 0.0 25 1.0 5.0 n

to_15 1.0 0.0 0.0 50 1.0 5.0 n

to_16 1.0 0.0 0.0 150 1.0 5.0 n

to_17 1.0 0.0 0.0 10 1.5 10.0 n

to_18 1.0 0.0 0.0 25 1.5 10.0 n

to_19 1.0 0.0 0.0 50 1.5 10.0 n

to_20 1.0 0.0 0.0 150 1.5 10.0 n

to_21 1.0 0.0 0.0 10 2.5 15.0 n

to_22 1.0 0.0 0.0 25 2.5 15.0 n

to_23 1.0 0.0 0.0 50 2.5 15.0 n

to_24 1.0 0.0 0.0 150 2.5 15.0 n

to_25 0.0 0.0 0.0 10 1.0 5.0 y

to_26 0.0 0.0 0.0 25 1.0 5.0 y

to_27 0.0 0.0 0.0 50 1.0 5.0 y

to_28 0.0 0.0 0.0 150 1.0 5.0 y

to_29 0.0 0.0 0.0 10 1.5 10.0 y

to_30 0.0 0.0 0.0 25 1.5 10.0 y

to_31 0.0 0.0 0.0 50 1.5 10.0 y

to_32 0.0 0.0 0.0 150 1.5 10.0 y

to_33 0.0 0.0 0.0 10 2.5 15.0 y

to_34 0.0 0.0 0.0 25 2.5 15.0 y

to_35 0.0 0.0 0.0 50 2.5 15.0 y

to_36 0.0 0.0 0.0 150 2.5 15.0 y

to_37 1.0 0.0 0.0 10 1.0 5.0 y

to_38 1.0 0.0 0.0 25 1.0 5.0 y

to_39 1.0 0.0 0.0 50 1.0 5.0 y

to_40 1.0 0.0 0.0 150 1.0 5.0 y

to_41 1.0 0.0 0.0 10 1.5 10.0 y

to_42 1.0 0.0 0.0 25 1.5 10.0 y

to_43 1.0 0.0 0.0 50 1.5 10.0 y

to_44 1.0 0.0 0.0 150 1.5 10.0 y

to_45 1.0 0.0 0.0 10 2.5 15.0 y

to_46 1.0 0.0 0.0 25 2.5 15.0 y

to_47 1.0 0.0 0.0 50 2.5 15.0 y

to_48 1.0 0.0 0.0 150 2.5 15.0 y

Table C.15: Parameters for runs with enabled Sda transformation matching but disabled intra-
and post-clustering.
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

to_01 308 164 ( 4.61) 107 ( 5.94) 49 ( 6.88) 164 ( 3.75) 151 ( 6.67) 62 ( 8.69)

to_02 308 167 ( 2.32) 128 ( 3.42) 90 ( 8.91) 172 ( 2.98) 159 ( 4.59) 97 ( 8.34)

to_03 308 172 ( 1.70) 139 ( 2.58) 106 ( 9.20) 176 ( 2.52) 165 ( 2.12) 111 ( 8.18)

to_04 308 179 ( 1.44) 154 ( 2.40) 115 ( 8.00) 184 ( 2.17) 174 ( 2.65) 126 ( 8.64)

to_05 307 173 ( 3.17) 118 ( 7.15) 56 ( 5.91) 166 ( 3.23) 153 ( 5.12) 78 (12.44)

to_06 308 173 ( 2.20) 131 ( 3.97) 97 ( 7.00) 175 ( 3.52) 159 ( 4.82) 100 ( 6.52)

to_07 308 174 ( 2.93) 140 ( 3.31) 110 ( 6.41) 172 ( 2.94) 165 ( 3.99) 109 ( 5.07)

to_08 308 180 ( 2.05) 153 ( 2.98) 125 ( 8.15) 184 ( 3.11) 172 ( 3.88) 127 ( 6.32)

to_09 308 167 ( 2.17) 121 ( 7.88) 64 ( 7.52) 167 ( 3.03) 154 ( 4.79) 78 ( 9.00)

to_10 307 172 ( 2.55) 132 ( 3.10) 96 ( 4.75) 174 ( 3.35) 160 ( 4.50) 106 ( 5.07)

to_11 307 177 ( 2.83) 142 ( 3.23) 113 ( 5.75) 176 ( 2.22) 167 ( 3.42) 117 ( 3.87)

to_12 307 179 ( 1.87) 145 ( 2.44) 120 ( 4.88) 181 ( 2.65) 173 ( 3.71) 123 ( 3.73)

to_13 308 166 ( 3.28) 108 ( 5.19) 59 ( 16.08) 159 ( 3.03) 139 ( 6.60) 70 (14.09)

to_14 308 173 ( 2.65) 127 ( 4.31) 92 ( 6.67) 170 ( 3.28) 152 ( 4.12) 102 ( 7.39)

to_15 308 179 ( 1.53) 140 ( 2.27) 107 ( 7.98) 175 ( 2.78) 163 ( 3.05) 118 ( 9.25)

to_16 308 180 ( 1.69) 150 ( 2.13) 121 ( 8.88) 179 ( 3.94) 168 ( 2.61) 123 ( 9.57)

to_17 308 168 ( 4.03) 111 ( 5.77) 61 ( 8.89) 160 ( 4.12) 141 ( 5.34) 75 ( 9.77)

to_18 308 178 ( 2.75) 132 ( 5.32) 97 ( 7.01) 176 ( 3.40) 157 ( 4.34) 102 ( 7.13)

to_19 308 181 ( 2.14) 145 ( 4.90) 114 ( 5.57) 179 ( 4.20) 165 ( 3.28) 120 ( 5.72)

to_20 308 179 ( 1.90) 149 ( 3.72) 123 ( 6.05) 179 ( 3.66) 167 ( 3.19) 125 ( 6.89)

to_21 307 173 ( 4.28) 123 ( 5.13) 67 ( 6.76) 171 ( 3.53) 147 ( 4.20) 86 ( 9.66)

to_22 308 180 ( 2.87) 139 ( 3.35) 105 ( 5.03) 180 ( 3.53) 165 ( 3.35) 119 ( 6.31)

to_23 308 180 ( 2.37) 144 ( 2.35) 120 ( 5.29) 180 ( 3.34) 172 ( 3.77) 123 ( 5.29)

to_24 308 181 ( 1.74) 150 ( 2.96) 126 ( 6.14) 181 ( 2.93) 171 ( 3.84) 131 ( 6.21)

to_25 308 156 ( 3.91) 101 ( 8.89) 42 ( 10.07) 158 ( 4.85) 139 ( 6.88) 57 (12.81)

to_26 308 159 ( 2.81) 119 ( 4.15) 78 ( 4.92) 162 ( 3.24) 145 ( 2.91) 77 ( 9.52)

to_27 307 170 ( 2.91) 129 ( 3.21) 89 ( 5.63) 168 ( 3.14) 154 ( 3.69) 91 ( 7.20)

to_28 308 170 ( 2.81) 144 ( 3.39) 96 ( 7.38) 176 ( 3.02) 162 ( 2.44) 95 ( 7.35)

to_29 307 167 ( 3.94) 105 ( 6.09) 52 ( 7.92) 164 ( 3.48) 149 ( 5.21) 71 (14.06)

to_30 308 165 ( 2.92) 117 ( 5.15) 81 ( 3.17) 164 ( 3.09) 146 ( 3.52) 80 ( 4.99)

to_31 308 170 ( 3.41) 136 ( 3.82) 102 ( 5.44) 168 ( 3.24) 158 ( 4.10) 100 ( 4.28)

to_32 308 173 ( 2.58) 143 ( 2.17) 105 ( 4.31) 170 ( 3.19) 157 ( 3.83) 106 ( 5.13)

to_33 308 170 ( 4.00) 113 ( 5.98) 64 ( 9.97) 168 ( 4.85) 150 ( 4.91) 75 ( 9.95)

to_34 307 163 ( 3.02) 116 ( 3.86) 85 ( 5.11) 167 ( 2.76) 145 ( 3.76) 86 ( 4.41)

to_35 306 168 ( 3.27) 130 ( 2.86) 98 ( 3.78) 162 ( 3.42) 155 ( 2.99) 101 ( 4.96)

to_36 306 167 ( 1.70) 133 ( 1.86) 103 ( 2.73) 165 ( 2.81) 150 ( 2.59) 106 ( 5.36)

to_37 308 154 ( 4.24) 101 ( 7.62) 47 ( 15.57) 155 ( 3.30) 136 ( 8.01) 65 (18.97)

to_38 308 163 ( 2.96) 120 ( 5.04) 76 ( 8.13) 164 ( 2.65) 145 ( 5.25) 85 ( 9.62)

to_39 308 168 ( 1.88) 131 ( 2.56) 94 ( 6.91) 163 ( 2.50) 150 ( 4.02) 96 ( 8.71)

to_40 308 173 ( 2.14) 146 ( 2.93) 101 ( 7.12) 172 ( 3.44) 158 ( 4.23) 104 ( 6.43)

to_41 308 164 ( 2.88) 105 ( 4.17) 56 ( 10.02) 155 ( 3.91) 137 ( 5.64) 69 (12.29)

to_42 308 163 ( 4.40) 122 ( 5.45) 85 ( 5.69) 160 ( 3.37) 145 ( 3.93) 98 ( 4.41)

to_43 308 165 ( 2.12) 134 ( 3.87) 101 ( 7.53) 163 ( 2.71) 151 ( 3.44) 105 ( 5.46)

to_44 308 170 ( 1.89) 141 ( 4.34) 108 ( 9.31) 168 ( 3.46) 157 ( 3.01) 113 ( 7.44)

to_45 308 166 ( 3.81) 116 ( 5.39) 61 ( 7.98) 162 ( 3.46) 139 ( 3.51) 77 (12.17)

to_46 308 161 ( 3.68) 123 ( 3.57) 90 ( 3.84) 162 ( 2.40) 148 ( 3.80) 100 ( 5.08)

to_47 308 164 ( 1.93) 137 ( 3.22) 110 ( 5.95) 166 ( 2.12) 156 ( 2.88) 115 ( 5.68)

to_48 308 168 ( 2.16) 141 ( 3.83) 109 ( 5.83) 168 ( 2.96) 159 ( 4.22) 117 ( 5.81)

div2 308 200 ( 11.20) 162 ( 17.82) 125 ( 25.80) 205 ( 4.59) 198 ( 5.38) 132 ( 5.68)

div3 308 208 ( 21.20) 173 ( 18.32) 139 ( 27.58) 213 ( 7.59) 203 ( 8.97) 147 (12.27)

all 308 225 (274.62) 192 (199.74) 160 (360.17) 234 (82.15) 222 (52.99) 175 (93.02)

Table C.16: Performance of models with enabled Sda transformation match score and dis-
abled intra- and post-clustering. First (second) half corresponds to disabled (enabled) ligand
interpolation.
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Clustering Allowed Transformation Matching Ligand

Code Pre Intra Post Clashes Displacement RMSD Interpolation

to_49 0.0 0.0 0.0 10 1.0 3.0 n

to_50 0.0 0.0 0.0 25 1.0 3.0 n

to_51 0.0 0.0 0.0 50 1.0 3.0 n

to_52 0.0 0.0 0.0 150 1.0 3.0 n

to_53 0.0 0.0 0.0 10 1.5 4.5 n

to_54 0.0 0.0 0.0 25 1.5 4.5 n

to_55 0.0 0.0 0.0 50 1.5 4.5 n

to_56 0.0 0.0 0.0 150 1.5 4.5 n

to_57 0.0 0.0 0.0 10 2.5 7.5 n

to_58 0.0 0.0 0.0 25 2.5 7.5 n

to_59 0.0 0.0 0.0 50 2.5 7.5 n

to_60 0.0 0.0 0.0 150 2.5 7.5 n

to_61 1.0 0.0 0.0 10 1.0 3.0 n

to_62 1.0 0.0 0.0 25 1.0 3.0 n

to_63 1.0 0.0 0.0 50 1.0 3.0 n

to_64 1.0 0.0 0.0 150 1.0 3.0 n

to_65 1.0 0.0 0.0 10 1.5 4.5 n

to_66 1.0 0.0 0.0 25 1.5 4.5 n

to_67 1.0 0.0 0.0 50 1.5 4.5 n

to_68 1.0 0.0 0.0 150 1.5 4.5 n

to_69 1.0 0.0 0.0 10 2.5 7.5 n

to_70 1.0 0.0 0.0 25 2.5 7.5 n

to_71 1.0 0.0 0.0 50 2.5 7.5 n

to_72 1.0 0.0 0.0 150 2.5 7.5 n

to_73 0.0 0.0 0.0 10 1.0 3.0 y

to_74 0.0 0.0 0.0 25 1.0 3.0 y

to_75 0.0 0.0 0.0 50 1.0 3.0 y

to_76 0.0 0.0 0.0 150 1.0 3.0 y

to_77 0.0 0.0 0.0 10 1.5 4.5 y

to_78 0.0 0.0 0.0 25 1.5 4.5 y

to_79 0.0 0.0 0.0 50 1.5 4.5 y

to_80 0.0 0.0 0.0 150 1.5 4.5 y

to_81 0.0 0.0 0.0 10 2.5 7.5 y

to_82 0.0 0.0 0.0 25 2.5 7.5 y

to_83 0.0 0.0 0.0 50 2.5 7.5 y

to_84 0.0 0.0 0.0 150 2.5 7.5 y

to_85 1.0 0.0 0.0 10 1.0 3.0 y

to_86 1.0 0.0 0.0 25 1.0 3.0 y

to_87 1.0 0.0 0.0 50 1.0 3.0 y

to_88 1.0 0.0 0.0 150 1.0 3.0 y

to_89 1.0 0.0 0.0 10 1.5 4.5 y

to_90 1.0 0.0 0.0 25 1.5 4.5 y

to_91 1.0 0.0 0.0 50 1.5 4.5 y

to_92 1.0 0.0 0.0 150 1.5 4.5 y

to_93 1.0 0.0 0.0 10 2.5 7.5 y

to_94 1.0 0.0 0.0 25 2.5 7.5 y

to_95 1.0 0.0 0.0 50 2.5 7.5 y

to_96 1.0 0.0 0.0 150 2.5 7.5 y

Table C.17: Parameters for runs with enabled Srmsd transformation matching but disabled
intra- and post-clustering.
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

to_49 308 168 ( 3.70) 116 ( 6.45) 56 ( 6.25) 162 ( 4.71) 146 ( 6.73) 74 ( 13.43)

to_50 308 174 ( 2.70) 128 ( 3.51) 97 ( 5.09) 169 ( 3.37) 154 ( 3.08) 104 ( 6.20)

to_51 308 172 ( 2.67) 142 ( 3.37) 110 ( 8.49) 173 ( 2.57) 161 ( 3.18) 117 ( 7.20)

to_52 308 179 ( 2.04) 149 ( 3.60) 116 ( 8.49) 180 ( 3.37) 168 ( 4.49) 123 ( 7.51)

to_53 308 173 ( 4.63) 117 ( 6.50) 69 ( 8.41) 168 ( 3.70) 151 ( 6.65) 79 ( 9.68)

to_54 308 168 ( 2.36) 130 ( 2.94) 96 ( 4.03) 173 ( 3.28) 155 ( 3.70) 102 ( 3.80)

to_55 308 176 ( 1.18) 141 ( 2.99) 110 ( 3.98) 181 ( 2.24) 163 ( 2.44) 117 ( 4.28)

to_56 308 178 ( 1.47) 149 ( 1.85) 116 ( 3.49) 183 ( 2.04) 168 ( 2.58) 126 ( 4.22)

to_57 307 165 ( 3.67) 111 ( 5.10) 67 ( 6.78) 162 ( 2.68) 148 ( 4.16) 82 ( 9.91)

to_58 308 164 ( 3.02) 121 ( 4.55) 87 ( 4.83) 167 ( 2.63) 150 ( 4.11) 93 ( 5.40)

to_59 308 168 ( 3.12) 133 ( 3.47) 103 ( 3.13) 174 ( 2.47) 158 ( 3.28) 109 ( 2.62)

to_60 307 172 ( 2.45) 139 ( 3.18) 107 ( 2.79) 174 ( 1.97) 162 ( 3.75) 113 ( 3.01)

to_61 308 163 ( 4.01) 109 ( 3.47) 61 ( 7.48) 159 ( 3.31) 141 ( 5.80) 72 ( 10.22)

to_62 308 177 ( 3.01) 134 ( 3.16) 101 ( 5.40) 174 ( 3.05) 157 ( 3.13) 110 ( 6.32)

to_63 308 183 ( 2.23) 143 ( 2.77) 117 ( 7.95) 176 ( 2.97) 165 ( 2.84) 119 ( 6.85)

to_64 308 185 ( 2.42) 150 ( 2.67) 123 ( 7.15) 179 ( 2.84) 169 ( 2.55) 129 ( 6.85)

to_65 308 173 ( 4.45) 116 ( 3.37) 73 ( 5.90) 161 ( 3.20) 144 ( 3.17) 87 ( 9.37)

to_66 308 177 ( 3.10) 135 ( 3.01) 96 ( 4.95) 176 ( 2.68) 162 ( 3.52) 102 ( 3.96)

to_67 308 181 ( 1.97) 141 ( 2.35) 113 ( 6.35) 179 ( 2.73) 167 ( 2.57) 115 ( 3.70)

to_68 308 184 ( 1.98) 152 ( 2.57) 119 ( 4.05) 183 ( 2.21) 170 ( 2.34) 121 ( 4.29)

to_69 308 166 ( 4.49) 110 ( 4.35) 70 ( 5.19) 157 ( 2.71) 143 ( 3.57) 86 ( 7.27)

to_70 308 173 ( 2.45) 128 ( 3.52) 93 ( 3.55) 174 ( 2.37) 156 ( 3.26) 103 ( 3.83)

to_71 308 177 ( 3.08) 135 ( 3.00) 106 ( 4.93) 173 ( 2.09) 163 ( 2.10) 113 ( 4.34)

to_72 308 183 ( 1.96) 143 ( 2.19) 111 ( 2.95) 176 ( 1.86) 165 ( 2.30) 121 ( 4.26)

to_73 308 158 ( 3.68) 110 ( 7.50) 49 ( 12.69) 156 ( 4.87) 142 ( 6.34) 64 ( 11.66)

to_74 308 162 ( 2.83) 116 ( 3.71) 77 ( 5.00) 161 ( 3.51) 144 ( 2.50) 88 ( 7.52)

to_75 308 168 ( 2.21) 129 ( 3.09) 94 ( 5.32) 162 ( 3.33) 151 ( 3.23) 97 ( 6.36)

to_76 308 168 ( 1.78) 137 ( 2.08) 98 ( 7.14) 168 ( 2.36) 153 ( 2.22) 105 ( 7.52)

to_77 308 171 ( 4.30) 114 ( 3.86) 59 ( 9.69) 165 ( 3.64) 148 ( 4.24) 74 ( 10.03)

to_78 308 170 ( 2.49) 122 ( 3.42) 82 ( 4.65) 169 ( 2.02) 149 ( 2.74) 90 ( 5.03)

to_79 308 173 ( 2.23) 133 ( 2.62) 103 ( 3.28) 171 ( 2.93) 159 ( 3.55) 105 ( 4.89)

to_80 308 173 ( 2.22) 138 ( 2.63) 107 ( 5.68) 174 ( 2.57) 160 ( 3.07) 111 ( 6.15)

to_81 308 162 ( 3.92) 106 ( 2.84) 68 ( 10.97) 160 ( 3.76) 141 ( 2.93) 78 ( 9.55)

to_82 308 159 ( 2.23) 115 ( 4.43) 75 ( 5.73) 162 ( 1.75) 144 ( 3.52) 86 ( 9.44)

to_83 307 158 ( 2.80) 119 ( 2.32) 96 ( 3.35) 163 ( 3.12) 143 ( 2.62) 97 ( 3.67)

to_84 307 157 ( 2.18) 125 ( 1.81) 97 ( 5.49) 161 ( 3.25) 147 ( 2.57) 100 ( 3.31)

to_85 308 165 ( 3.49) 110 ( 7.65) 54 ( 7.24) 158 ( 3.82) 141 ( 5.65) 68 ( 9.29)

to_86 308 167 ( 3.51) 118 ( 5.35) 82 ( 5.46) 164 ( 3.44) 148 ( 3.58) 91 ( 8.07)

to_87 308 172 ( 2.89) 129 ( 3.10) 95 ( 7.02) 167 ( 2.95) 152 ( 3.36) 97 ( 5.10)

to_88 308 177 ( 2.43) 139 ( 2.61) 103 ( 6.28) 172 ( 2.24) 159 ( 2.18) 109 ( 4.65)

to_89 308 171 ( 3.13) 114 ( 5.24) 63 ( 6.29) 162 ( 3.26) 145 ( 3.55) 79 ( 9.16)

to_90 308 168 ( 3.26) 121 ( 2.81) 84 ( 4.30) 168 ( 3.51) 149 ( 3.61) 93 ( 3.96)

to_91 308 171 ( 1.57) 129 ( 2.91) 97 ( 5.65) 166 ( 1.86) 155 ( 1.66) 101 ( 4.23)

to_92 308 174 ( 2.20) 139 ( 2.40) 100 ( 5.01) 171 ( 1.49) 161 ( 2.23) 107 ( 4.41)

to_93 308 162 ( 4.57) 114 ( 4.00) 67 ( 5.12) 156 ( 3.04) 140 ( 2.56) 87 ( 6.78)

to_94 308 161 ( 3.54) 118 ( 3.32) 86 ( 2.98) 162 ( 2.81) 149 ( 2.98) 97 ( 3.97)

to_95 308 157 ( 2.60) 121 ( 2.49) 94 ( 4.95) 161 ( 2.60) 147 ( 2.09) 97 ( 2.24)

to_96 308 159 ( 2.01) 126 ( 1.98) 95 ( 4.17) 161 ( 2.16) 147 ( 2.94) 101 ( 3.46)

div2 308 202 ( 12.54) 162 ( 15.59) 122 ( 25.54) 200 ( 4.96) 187 ( 4.83) 130 ( 9.85)

div3 308 206 ( 16.51) 161 ( 16.58) 127 ( 26.39) 209 ( 8.30) 192 ( 7.76) 136 ( 11.91)

all 308 225 (247.19) 188 (216.98) 154 (410.51) 231 (92.50) 216 (39.47) 166 (136.83)

Table C.18: Performance of models with enabled Srmsd transformation match score and dis-
abled intra- and post-clustering. First (second) half corresponds to disabled (enabled) ligand
interpolation.
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Clustering Allowed

Code Pre Intra Post Clashes

co_01 1.0 0.0 1.0 10

co_02 1.0 0.0 1.0 25

co_03 1.0 0.0 1.0 50

co_04 1.0 0.0 1.0 150

co_05 1.0 1.0 2.0 10

co_06 1.0 1.0 2.0 25

co_07 1.0 1.0 2.0 50

co_08 1.0 1.0 2.0 150

co_09 1.0 2.0 3.0 10

co_10 1.0 2.0 3.0 25

co_11 1.0 2.0 3.0 50

co_12 1.0 2.0 3.0 150

co_13 1.0 3.0 5.0 10

co_14 1.0 3.0 5.0 25

co_15 1.0 3.0 5.0 50

co_16 1.0 3.0 5.0 150

Table C.19: Parameters for runs with disabled transformation match score (and thus ligand
interpolation) but enabled clustering.

Clustering Allowed

Code Pre Intra Post Clashes

base_01 0.0 0.0 0.0 10

base_02 0.0 0.0 0.0 25

base_03 0.0 0.0 0.0 50

base_04 0.0 0.0 0.0 150

base_05 1.0 0.0 0.0 10

base_06 1.0 0.0 0.0 25

base_07 1.0 0.0 0.0 50

base_08 1.0 0.0 0.0 150

Table C.20: Parameters for the baseline runs. Only the number of clashes and pre-clustering
differ. Intra- and post-clustering as well as transformation matching and hence ligand inter-
polation are disabled.
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

co_01 307 60 ( 6.95) 23 ( 6.35) 9 ( 4.00) 63 ( 8.68) 46 ( 6.52) 19 (15.68)

co_02 307 65 ( 8.02) 25 ( 5.12) 11 ( 1.36) 62 ( 4.79) 54 ( 7.52) 21 ( 4.10)

co_03 307 67 ( 3.93) 31 ( 2.39) 18 ( 9.50) 68 ( 4.85) 53 ( 3.06) 26 ( 6.65)

co_04 307 63 ( 6.17) 36 ( 2.14) 21 ( 16.95) 65 ( 5.12) 55 ( 2.25) 28 ( 3.04)

co_05 307 77 ( 10.12) 31 ( 5.42) 15 ( 4.40) 79 (11.97) 60 (13.52) 26 ( 9.23)

co_06 307 86 ( 7.44) 40 ( 4.00) 24 ( 7.00) 87 ( 9.36) 67 ( 6.69) 34 (10.53)

co_07 307 94 ( 7.12) 45 ( 4.18) 32 ( 5.44) 87 ( 5.18) 71 ( 6.72) 40 ( 5.60)

co_08 307 89 ( 5.04) 47 ( 1.96) 34 ( 11.76) 89 ( 3.97) 74 ( 2.68) 41 ( 4.10)

co_09 307 84 ( 10.18) 36 ( 10.92) 17 ( 8.65) 86 ( 9.87) 64 (10.92) 25 ( 3.80)

co_10 307 95 ( 8.44) 47 ( 3.66) 27 ( 6.26) 91 ( 8.67) 71 ( 5.34) 34 ( 4.09)

co_11 307 101 ( 5.27) 53 ( 3.43) 37 ( 5.65) 97 ( 8.56) 79 ( 5.09) 42 ( 3.07)

co_12 307 99 ( 5.98) 58 ( 2.59) 39 ( 6.92) 101 ( 6.21) 82 ( 3.07) 44 ( 3.93)

co_13 307 96 ( 11.86) 35 ( 10.51) 11 ( 4.18) 88 (10.16) 64 (10.11) 25 (11.80)

co_14 307 106 ( 8.52) 50 ( 5.62) 24 ( 3.83) 103 ( 8.98) 78 ( 7.99) 32 ( 5.00)

co_15 307 113 ( 5.39) 61 ( 3.98) 33 ( 1.85) 110 ( 6.76) 92 ( 6.12) 42 ( 4.40)

co_16 307 111 ( 4.15) 62 ( 1.58) 38 ( 2.74) 109 ( 4.54) 89 ( 2.90) 45 ( 4.69)

div2 307 123 ( 30.04) 73 ( 34.74) 46 ( 33.72) 125 (12.98) 103 (13.09) 52 ( 5.90)

div3 307 125 ( 28.66) 76 ( 47.41) 45 ( 36.89) 128 (12.35) 107 (13.87) 52 ( 6.88)

all 307 130 (197.23) 82 (303.63) 54 (291.13) 135 (75.37) 113 (69.90) 60 (44.70)

Table C.21: Performance of models with disabled transformation match score and enabled
intra- and post-clustering. Models in one block use the same clustering parameters.

CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

base_01 307 45 ( 8.31) 13 ( 7.00) 8 ( 4.25) 44 ( 7.61) 32 ( 7.84) 13 (17.62)

base_02 307 45 ( 5.84) 16 ( 7.00) 9 ( 3.22) 51 ( 6.80) 36 ( 5.08) 14 ( 4.50)

base_03 307 49 ( 3.53) 24 ( 4.29) 13 ( 5.00) 54 ( 5.22) 40 ( 1.70) 20 ( 8.30)

base_04 307 46 ( 1.37) 28 ( 5.82) 11 ( 5.36) 55 ( 7.07) 44 ( 3.27) 20 ( 7.65)

base_05 307 46 ( 5.09) 16 ( 5.50) 8 ( 4.50) 50 ( 6.26) 35 ( 5.57) 12 (11.83)

base_06 307 51 ( 7.12) 19 (10.89) 9 ( 3.22) 56 ( 7.36) 41 ( 6.80) 15 ( 4.27)

base_07 307 52 ( 4.44) 24 ( 3.50) 13 ( 3.15) 60 ( 8.63) 46 ( 4.85) 21 ( 6.29)

base_08 307 48 ( 3.35) 31 ( 4.06) 14 ( 3.00) 56 ( 7.38) 47 ( 5.53) 23 ( 3.30)

div2 307 60 ( 22.67) 32 (17.53) 14 (24.14) 69 (22.07) 56 (18.54) 26 (16.00)

div3 307 67 ( 39.81) 34 (32.06) 14 (25.29) 73 (29.16) 59 (20.39) 26 (16.00)

all 307 72 (104.22) 35 (54.91) 15 (47.67) 76 (65.64) 63 (39.38) 29 (26.83)

Table C.22: Performance of baseline models with disabled transformation match score and
disabled intra- and post-clustering. First (second) half with disabled (enabled) pre-clustering
(pre-cluster RMSD 1.0Å)
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

com_01 17 13 (3.38) 9 (1.33) 7 (1.29) 12 (3.50) 10 (1.10) 7 (1.29)

com_02 17 13 (1.00) 11 (1.09) 10 (1.80) 13 (2.77) 11 (1.27) 10 (1.40)

com_03 17 14 (1.00) 13 (1.15) 11 (1.91) 15 (4.87) 12 (1.33) 11 (1.64)

com_04 17 15 (1.00) 15 (1.20) 12 (2.08) 16 (2.00) 14 (1.43) 11 (1.73)

com_05 17 11 (2.09) 8 (3.62) 7 (1.14) 11 (4.27) 9 (1.11) 7 (3.57)

com_06 17 11 (1.00) 10 (1.40) 8 (2.62) 12 (2.92) 10 (1.30) 9 (1.89)

com_07 17 12 (1.00) 12 (1.25) 10 (2.90) 13 (2.15) 11 (1.09) 10 (1.80)

com_08 17 12 (1.00) 12 (1.17) 10 (2.70) 13 (2.08) 12 (5.17) 10 (2.30)

com_09 17 11 (2.00) 9 (1.67) 8 (1.50) 11 (3.36) 9 (1.00) 9 (3.00)

com_10 17 12 (1.08) 10 (1.30) 9 (2.89) 12 (2.92) 10 (1.30) 9 (2.00)

com_11 17 12 (1.08) 11 (1.18) 9 (2.22) 12 (2.17) 10 (1.00) 9 (1.22)

com_12 17 12 (1.25) 11 (1.18) 9 (1.67) 12 (2.17) 11 (5.73) 9 (1.22)

com_13 17 12 (2.33) 6 (1.00) 4 (1.25) 12 (3.33) 9 (9.56) 2 (1.00)

com_14 16 13 (1.00) 13 (1.38) 7 (1.43) 14 (2.43) 11 (1.00) 6 (1.00)

com_15 17 13 (1.00) 13 (1.77) 8 (1.50) 15 (3.40) 12 (1.00) 10 (2.90)

com_16 17 14 (1.00) 13 (1.77) 9 (1.89) 14 (2.21) 12 (1.00) 8 (2.25)

com_17 17 12 (2.58) 8 (1.00) 5 (1.00) 11 (3.45) 10 (8.00) 4 (1.00)

com_18 17 12 (1.42) 11 (1.64) 8 (1.25) 12 (2.75) 10 (1.20) 7 (1.29)

com_19 17 11 (1.00) 11 (2.36) 8 (1.75) 12 (2.58) 10 (1.10) 8 (2.75)

com_20 17 11 (1.00) 11 (2.36) 9 (1.56) 12 (2.67) 10 (1.30) 9 (2.22)

com_21 17 12 (2.67) 9 (1.67) 6 (5.00) 11 (3.36) 10 (8.60) 4 (8.25)

com_22 17 12 (1.50) 11 (1.73) 8 (1.88) 12 (2.75) 10 (1.20) 8 (1.75)

com_23 17 11 (1.00) 11 (2.36) 9 (3.56) 12 (2.50) 10 (1.00) 9 (3.78)

com_24 17 11 (1.00) 11 (2.45) 9 (2.44) 12 (2.58) 10 (1.00) 9 (2.44)

com_25 17 14 (3.14) 9 (1.11) 6 (1.33) 13 (3.23) 11 (1.00) 6 (3.83)

com_26 17 13 (1.00) 11 (1.09) 10 (1.70) 13 (2.77) 11 (1.27) 10 (1.90)

com_27 17 13 (1.00) 12 (1.17) 10 (1.40) 13 (2.08) 11 (1.00) 10 (1.10)

com_28 17 13 (1.00) 13 (1.15) 10 (1.60) 14 (2.00) 12 (1.00) 10 (1.30)

com_29 17 11 (2.09) 8 (3.62) 7 (1.86) 11 (4.27) 9 (1.11) 6 (3.67)

com_30 17 11 (1.18) 10 (1.40) 8 (2.50) 12 (3.00) 10 (1.40) 8 (1.50)

com_31 17 11 (1.00) 11 (1.27) 9 (3.33) 12 (2.25) 10 (1.10) 9 (1.89)

com_32 17 11 (1.00) 11 (1.18) 9 (3.22) 12 (2.17) 11 (8.27) 9 (1.89)

com_33 17 11 (2.45) 9 (1.67) 8 (1.75) 11 (3.45) 9 (1.33) 9 (4.89)

com_34 17 12 (1.08) 10 (1.40) 9 (2.33) 12 (2.92) 10 (1.30) 9 (2.22)

com_35 17 12 (1.08) 11 (1.27) 9 (2.89) 12 (2.17) 10 (1.10) 9 (2.11)

com_36 17 12 (1.25) 11 (1.18) 9 (1.67) 12 (2.17) 11 (8.00) 9 (1.44)

com_37 17 12 (2.42) 7 (2.14) 3 (1.00) 12 (3.33) 9 (8.89) 3 (3.00)

com_38 16 13 (1.38) 13 (2.23) 8 (2.00) 14 (3.21) 12 (2.00) 8 (3.50)

com_39 17 14 (1.00) 14 (1.64) 8 (1.50) 16 (4.25) 13 (1.00) 9 (3.00)

com_40 17 14 (1.00) 13 (1.77) 9 (2.22) 14 (2.21) 12 (1.08) 9 (1.44)

com_41 17 11 (2.64) 7 (1.14) 5 (2.40) 10 (3.70) 9 (9.11) 2 (1.00)

com_42 17 12 (1.42) 11 (1.64) 7 (1.43) 12 (2.75) 10 (1.20) 8 (6.50)

com_43 17 12 (1.17) 11 (2.27) 8 (1.38) 12 (2.58) 10 (1.30) 8 (3.88)

com_44 17 11 (1.00) 11 (2.09) 8 (2.75) 12 (2.58) 10 (1.10) 9 (2.78)

com_45 17 12 (2.83) 9 (2.33) 4 (7.50) 11 (3.18) 10 (8.70) 3 (2.67)

com_46 17 12 (1.50) 11 (2.00) 9 (3.22) 12 (2.83) 10 (1.40) 9 (2.56)

com_47 17 12 (1.25) 11 (2.36) 9 (3.56) 12 (2.50) 10 (1.20) 9 (5.00)

com_48 17 11 (1.00) 11 (2.09) 9 (3.22) 12 (2.58) 10 (1.10) 9 (3.00)

Table C.23: Performance of benchmark models for Sda transformation match score on
Comeau’s data set.
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

com_49 17 11 (2.00) 10 (1.00) 8 ( 1.50) 11 (2.00) 9 (1.11) 9 ( 2.33)

com_50 17 11 (1.09) 10 (1.60) 8 ( 2.25) 12 (3.17) 10 (1.40) 8 ( 2.12)

com_51 17 11 (1.00) 11 (1.36) 9 ( 1.67) 12 (2.25) 11 (5.91) 9 ( 1.44)

com_52 17 11 (1.00) 11 (1.36) 9 ( 1.67) 12 (2.25) 11 (6.27) 9 ( 1.56)

com_53 17 11 (2.36) 9 (1.44) 7 ( 1.71) 11 (2.36) 9 (1.44) 8 ( 2.88)

com_54 17 12 (1.08) 10 (1.50) 9 ( 2.89) 12 (3.08) 11 (3.64) 9 ( 1.78)

com_55 17 12 (1.08) 11 (1.36) 9 ( 2.33) 12 (2.25) 11 (6.18) 9 ( 1.22)

com_56 17 12 (1.25) 11 (1.36) 9 ( 1.67) 12 (2.25) 11 (6.45) 9 ( 1.33)

com_57 17 12 (6.08) 9 (1.22) 7 ( 1.29) 12 (6.50) 9 (1.22) 8 ( 2.62)

com_58 17 12 (1.08) 10 (1.40) 9 ( 2.00) 13 (8.46) 11 (3.64) 9 ( 1.89)

com_59 17 12 (1.00) 12 (1.25) 9 ( 2.00) 13 (2.15) 12 (5.75) 9 ( 1.56)

com_60 17 12 (1.00) 12 (1.25) 9 ( 1.78) 13 (2.15) 12 (6.00) 9 ( 1.22)

com_61 17 12 (2.58) 8 (1.38) 5 ( 4.20) 11 (3.27) 10 (9.60) 3 (12.67)

com_62 17 12 (1.33) 11 (2.09) 9 ( 1.56) 12 (3.17) 10 (1.00) 8 ( 2.12)

com_63 17 12 (1.33) 11 (1.82) 8 ( 1.50) 13 (2.15) 10 (1.10) 9 ( 3.56)

com_64 17 11 (1.09) 11 (1.73) 9 ( 1.78) 12 (2.25) 10 (1.10) 9 ( 3.00)

com_65 17 12 (2.83) 8 (1.75) 5 ( 6.80) 11 (2.73) 10 (8.50) 4 (10.75)

com_66 17 12 (1.42) 11 (1.55) 9 ( 1.67) 12 (2.50) 10 (1.20) 8 ( 1.75)

com_67 17 12 (1.33) 11 (1.73) 8 ( 1.75) 13 (1.92) 10 (1.10) 8 ( 3.25)

com_68 17 11 (1.09) 11 (1.55) 9 ( 1.56) 12 (2.08) 10 (1.00) 9 ( 4.89)

com_69 17 12 (2.83) 9 (1.89) 6 ( 1.50) 12 (5.50) 10 (8.50) 4 ( 7.25)

com_70 17 12 (1.00) 12 (1.42) 9 ( 3.00) 13 (2.38) 12 (4.92) 8 ( 3.25)

com_71 17 12 (1.00) 12 (1.67) 9 ( 2.11) 13 (1.92) 11 (1.09) 9 ( 4.22)

com_72 17 12 (1.08) 12 (1.50) 9 ( 1.56) 13 (2.00) 11 (1.00) 9 ( 3.11)

com_73 17 11 (2.00) 10 (3.00) 8 ( 2.00) 11 (2.00) 9 (1.33) 8 ( 7.38)

com_74 17 11 (1.00) 10 (1.40) 9 ( 1.89) 12 (3.08) 10 (1.30) 9 ( 2.11)

com_75 17 11 (1.00) 11 (1.45) 9 ( 1.89) 12 (2.33) 11 (5.82) 9 ( 1.67)

com_76 17 11 (1.00) 11 (1.36) 9 ( 2.11) 12 (2.25) 11 (6.00) 9 ( 2.11)

com_77 17 11 (2.36) 9 (1.56) 7 ( 1.29) 11 (2.36) 9 (1.56) 8 ( 1.62)

com_78 17 11 (1.00) 10 (1.50) 9 ( 2.11) 12 (3.08) 11 (3.82) 9 ( 2.22)

com_79 17 12 (1.08) 11 (1.36) 10 (10.40) 12 (2.33) 11 (9.18) 9 ( 1.33)

com_80 17 12 (1.25) 11 (1.36) 9 ( 2.00) 12 (2.33) 11 (7.36) 9 ( 1.78)

com_81 17 12 (5.92) 9 (1.44) 8 ( 3.38) 12 (6.33) 9 (1.22) 8 ( 2.38)

com_82 17 12 (1.00) 11 (2.00) 9 ( 2.56) 13 (2.92) 12 (3.58) 9 ( 2.56)

com_83 17 12 (1.00) 12 (1.42) 9 ( 1.56) 13 (2.23) 11 (1.09) 9 ( 1.33)

com_84 17 12 (1.00) 12 (1.42) 9 ( 1.67) 13 (2.23) 12 (7.33) 9 ( 1.56)

com_85 17 12 (2.50) 8 (1.38) 4 ( 2.25) 11 (3.18) 10 (8.40) 2 ( 3.50)

com_86 17 12 (1.33) 11 (2.27) 9 ( 2.11) 12 (3.25) 10 (1.40) 9 ( 3.11)

com_87 17 12 (1.33) 11 (2.27) 8 ( 2.75) 12 (2.25) 10 (1.30) 9 ( 3.00)

com_88 17 11 (1.09) 11 (1.73) 9 ( 2.00) 12 (2.25) 10 (1.20) 9 ( 1.78)

com_89 17 12 (2.83) 8 (1.62) 5 ( 5.80) 11 (2.82) 10 (9.00) 3 (11.00)

com_90 17 12 (1.42) 11 (1.45) 9 ( 1.56) 12 (2.50) 10 (1.30) 8 ( 1.88)

com_91 17 12 (1.25) 11 (1.91) 9 ( 2.00) 12 (2.00) 10 (1.00) 9 ( 2.11)

com_92 17 11 (1.09) 11 (1.55) 9 ( 1.44) 12 (2.08) 10 (1.10) 9 ( 1.44)

com_93 17 12 (2.67) 10 (1.70) 5 ( 4.80) 12 (5.17) 10 (8.40) 3 ( 7.00)

com_94 17 12 (1.00) 12 (1.58) 9 ( 1.67) 13 (2.38) 12 (5.25) 9 ( 2.00)

com_95 17 12 (1.00) 12 (1.75) 9 ( 2.67) 13 (1.92) 11 (1.00) 9 ( 2.89)

com_96 17 12 (1.08) 12 (1.50) 9 ( 1.44) 13 (2.00) 11 (1.00) 9 ( 1.44)

Table C.24: Performance of benchmark models for Srmsd transformation match score on
Comeau’s data set.
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Clustering Allowed Transformation Matching Ligand Match

Code Pre Intra Post Clashes Displacement Angle/RMSD Interpolation Score Nsymm

srpic_01 1.0 3.0 5.0 50 2.5 15.0 n Sda
0

srpic_02 1.0 3.0 5.0 150 2.5 15.0 n Sda
0

srpic_03 1.0 3.0 5.0 50 3.0 20.0 n Sda
0

srpic_04 1.0 3.0 5.0 150 3.0 20.0 n Sda
0

srpic_05 1.0 3.0 5.0 50 2.5 15.0 y Sda
0

srpic_06 1.0 3.0 5.0 150 2.5 15.0 y Sda
0

srpic_07 1.0 3.0 5.0 50 3.0 20.0 y Sda
0

srpic_08 1.0 3.0 5.0 150 3.0 20.0 y Sda
0

srpic_09 1.0 3.0 5.0 50 2.5 7.5 n Srmsd
0

srpic_10 1.0 3.0 5.0 150 2.5 7.5 n Srmsd
0

srpic_11 1.0 3.0 5.0 50 3.0 9.0 n Srmsd
0

srpic_12 1.0 3.0 5.0 150 3.0 9.0 n Srmsd
0

srpic_13 1.0 3.0 5.0 50 2.5 7.5 y Srmsd
0

srpic_14 1.0 3.0 5.0 150 2.5 7.5 y Srmsd
0

srpic_15 1.0 3.0 5.0 50 3.0 9.0 y Srmsd
0

srpic_16 1.0 3.0 5.0 150 3.0 9.0 y Srmsd
0

srpic_17 1.0 3.0 5.0 50 2.5 15.0 n Sda
6

srpic_18 1.0 3.0 5.0 150 2.5 15.0 n Sda
6

srpic_19 1.0 3.0 5.0 50 3.0 20.0 n Sda
6

srpic_20 1.0 3.0 5.0 150 3.0 20.0 n Sda
6

srpic_21 1.0 3.0 5.0 50 2.5 15.0 y Sda
6

srpic_22 1.0 3.0 5.0 150 2.5 15.0 y Sda
6

srpic_23 1.0 3.0 5.0 50 3.0 20.0 y Sda
6

srpic_24 1.0 3.0 5.0 150 3.0 20.0 y Sda
6

srpic_25 1.0 3.0 5.0 50 2.5 7.5 n Srmsd
6

srpic_26 1.0 3.0 5.0 150 2.5 7.5 n Srmsd
6

srpic_27 1.0 3.0 5.0 50 3.0 9.0 n Srmsd
6

srpic_28 1.0 3.0 5.0 150 3.0 9.0 n Srmsd
6

srpic_29 1.0 3.0 5.0 50 2.5 7.5 y Srmsd
6

srpic_30 1.0 3.0 5.0 150 2.5 7.5 y Srmsd
6

srpic_31 1.0 3.0 5.0 50 3.0 9.0 y Srmsd
6

srpic_32 1.0 3.0 5.0 150 3.0 9.0 y Srmsd
6

Table C.25: Parameters for SRPIC experiments. Nsymm denotes the maximum complex size
until which pre-ranking by the number of symmetry-optimizations is to be performed. Com-
pared to benchmark runs, symmetric interface detection is additionally disabled and the lower
bound on the number of solutions per level set to 250.
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

srpic_01 40 5 ( 1.20) 3 ( 1.00) 3 ( 1.00) 4 ( 18.75) 3 ( 1.00) 3 (1.00)

srpic_02 40 7 ( 32.86) 3 ( 1.00) 3 ( 1.00) 6 ( 42.50) 3 ( 1.00) 3 (1.00)

srpic_03 40 5 ( 1.40) 3 ( 1.33) 3 ( 1.33) 5 ( 5.80) 3 ( 1.33) 3 (2.33)

srpic_04 40 7 ( 9.57) 3 ( 1.67) 3 ( 1.67) 6 ( 12.00) 3 ( 1.67) 3 (2.67)

srpic_05 40 5 ( 1.00) 4 ( 1.00) 2 ( 1.00) 4 ( 1.00) 4 ( 1.00) 3 (1.00)

srpic_06 40 6 ( 1.33) 3 ( 1.00) 3 ( 2.00) 6 ( 1.33) 6 ( 1.33) 2 (1.00)

srpic_07 40 4 ( 1.00) 3 ( 1.00) 3 ( 1.33) 6 ( 25.50) 3 ( 1.00) 3 (3.33)

srpic_08 40 5 ( 1.20) 4 ( 1.25) 4 ( 2.50) 7 ( 2.71) 5 ( 1.20) 3 (3.00)

srpic_09 40 5 ( 1.00) 5 ( 1.00) 4 ( 1.00) 5 ( 1.00) 5 ( 1.00) 4 (1.00)

srpic_10 40 5 ( 1.00) 5 ( 1.00) 4 ( 1.00) 5 ( 1.00) 5 ( 1.00) 4 (1.00)

srpic_11 40 4 ( 1.00) 4 ( 1.00) 3 ( 2.00) 4 ( 1.00) 4 ( 1.00) 3 (2.00)

srpic_12 40 5 ( 4.60) 4 ( 1.00) 3 ( 2.67) 4 ( 1.00) 4 ( 1.00) 3 (2.67)

srpic_13 40 5 ( 1.00) 5 ( 1.20) 4 ( 2.50) 5 ( 1.00) 5 ( 1.00) 3 (1.67)

srpic_14 40 6 ( 2.00) 5 ( 1.20) 4 ( 2.25) 6 ( 12.50) 5 ( 1.00) 3 (2.67)

srpic_15 40 6 ( 13.67) 4 ( 1.00) 4 ( 2.25) 5 ( 1.00) 5 ( 1.00) 3 (1.33)

srpic_16 40 5 ( 2.20) 4 ( 1.00) 4 ( 2.00) 6 ( 24.50) 4 ( 1.00) 3 (2.33)

srpic_17 40 8 ( 1.00) 7 ( 1.29) 4 ( 1.25) 9 ( 28.78) 7 ( 1.00) 4 (2.00)

srpic_18 40 8 ( 1.00) 7 ( 1.43) 6 ( 2.00) 8 ( 1.12) 7 ( 1.14) 6 (2.17)

srpic_19 40 8 ( 1.25) 7 ( 1.43) 4 ( 2.50) 8 ( 27.12) 7 ( 1.14) 4 (1.75)

srpic_20 40 8 ( 1.25) 7 ( 1.29) 5 ( 2.20) 8 ( 1.38) 8 ( 1.50) 4 (2.25)

srpic_21 40 8 ( 1.00) 7 ( 1.43) 5 ( 3.60) 7 ( 1.43) 6 ( 1.00) 5 (1.00)

srpic_22 40 9 ( 1.00) 9 ( 1.11) 6 ( 2.00) 9 ( 1.11) 9 ( 1.11) 8 (1.50)

srpic_23 40 8 ( 1.00) 7 ( 1.00) 6 ( 1.83) 7 ( 1.00) 7 ( 1.00) 7 (9.00)

srpic_24 40 10 ( 3.00) 8 ( 1.00) 6 ( 4.50) 8 ( 1.00) 8 ( 1.00) 7 (1.00)

srpic_25 40 11 ( 2.09) 10 ( 1.00) 10 ( 1.70) 11 ( 1.64) 10 ( 1.00) 10 (1.40)

srpic_26 40 12 ( 16.17) 10 ( 1.00) 9 ( 2.00) 12 ( 16.17) 10 ( 1.00) 9 (1.67)

srpic_27 40 6 ( 1.00) 6 ( 1.00) 6 ( 1.50) 7 ( 2.71) 6 ( 1.00) 6 (1.00)

srpic_28 40 7 ( 23.00) 6 ( 1.00) 6 ( 1.67) 8 ( 36.12) 6 ( 1.00) 6 (1.00)

srpic_29 40 9 ( 1.00) 9 ( 1.00) 8 ( 1.62) 9 ( 1.00) 9 ( 1.00) 6 (1.50)

srpic_30 40 10 ( 1.00) 9 ( 1.00) 9 ( 1.44) 9 ( 1.00) 9 ( 1.00) 6 (1.17)

srpic_31 40 10 ( 1.00) 10 ( 1.00) 9 ( 1.33) 10 ( 1.00) 10 ( 1.00) 6 (1.83)

srpic_32 40 11 ( 5.64) 9 ( 1.00) 8 ( 1.38) 9 ( 1.00) 9 ( 1.00) 8 (1.62)

div2 40 14 ( 40.93) 13 (38.54) 12 ( 43.42) 14 ( 17.29) 13 ( 1.31) 11 (2.00)

div3 40 14 ( 33.86) 12 (18.92) 11 ( 31.27) 15 ( 52.00) 12 ( 1.08) 10 (1.30)

all 40 15 (190.87) 13 (86.46) 13 (241.92) 15 (180.87) 14 (21.14) 12 (2.17)

Table C.26: Performance of models for the SRPIC experiments for assemblies using docking
poses with a constraint score of ≤ 1.0. First (second) half with disabled (enabled) symmetry
pre-ranking.
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Clustering Allowed Transformation Matching Ligand Match

Code Pre Intra Post Clashes Displacement Angle/RMSD Interpolation Score Nsymm

comb_01 1.0 3.0 5.0 50 2.5 15.0 n Sda
0

comb_02 1.0 3.0 5.0 150 2.5 15.0 n Sda
0

comb_03 1.0 3.0 5.0 50 3.0 20.0 n Sda
0

comb_04 1.0 3.0 5.0 150 3.0 20.0 n Sda
0

comb_05 1.0 3.0 5.0 50 2.5 15.0 y Sda
0

comb_06 1.0 3.0 5.0 150 2.5 15.0 y Sda
0

comb_07 1.0 3.0 5.0 50 3.0 20.0 y Sda
0

comb_08 1.0 3.0 5.0 150 3.0 20.0 y Sda
0

comb_09 1.0 3.0 5.0 50 2.5 7.5 n Srmsd
0

comb_10 1.0 3.0 5.0 150 2.5 7.5 n Srmsd
0

comb_11 1.0 3.0 5.0 50 3.0 9.0 n Srmsd
0

comb_12 1.0 3.0 5.0 150 3.0 9.0 n Srmsd
0

comb_13 1.0 3.0 5.0 50 2.5 7.5 y Srmsd
0

comb_14 1.0 3.0 5.0 150 2.5 7.5 y Srmsd
0

comb_15 1.0 3.0 5.0 50 3.0 9.0 y Srmsd
0

comb_16 1.0 3.0 5.0 150 3.0 9.0 y Srmsd
0

comb_17 1.0 3.0 5.0 50 2.5 15.0 n Sda
6

comb_18 1.0 3.0 5.0 150 2.5 15.0 n Sda
6

comb_19 1.0 3.0 5.0 50 3.0 20.0 n Sda
6

comb_20 1.0 3.0 5.0 150 3.0 20.0 n Sda
6

comb_21 1.0 3.0 5.0 50 2.5 15.0 y Sda
6

comb_22 1.0 3.0 5.0 150 2.5 15.0 y Sda
6

comb_23 1.0 3.0 5.0 50 3.0 20.0 y Sda
6

comb_24 1.0 3.0 5.0 150 3.0 20.0 y Sda
6

comb_25 1.0 3.0 5.0 50 2.5 7.5 n Srmsd
6

comb_26 1.0 3.0 5.0 150 2.5 7.5 n Srmsd
6

comb_27 1.0 3.0 5.0 50 3.0 9.0 n Srmsd
6

comb_28 1.0 3.0 5.0 150 3.0 9.0 n Srmsd
6

comb_29 1.0 3.0 5.0 50 2.5 7.5 y Srmsd
6

comb_30 1.0 3.0 5.0 150 2.5 7.5 y Srmsd
6

comb_31 1.0 3.0 5.0 50 3.0 9.0 y Srmsd
6

comb_32 1.0 3.0 5.0 150 3.0 9.0 y Srmsd
6

Table C.27: Parameters for CombDock experiments. Nsymm denotes the maximum complex
size until which pre-ranking by the number of symmetry-optimizations is to be performed.
Compared to benchmark runs, symmetric interface detection is additionally disabled and the
locking of interfaces is turned off, i.e., the algorithm considers the interfaces to be non-distinct.
Furthermore, discarding of non-matching solutions once a matching solution in the current
level has been found is disabled.
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CαRMSD (avg. rank) tRMSD (avg. rank)

Code Nbuilt ≤ 10 ≤ 5 ≤ 3 ≤ 2.5 ≤ 2.0 ≤ 1.0

comb_01 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_02 727 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_03 727 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_04 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_05 727 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_06 727 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_07 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_08 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_09 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_10 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_11 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_12 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_13 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_14 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_15 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_16 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_17 728 1 ( 15.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_18 727 1 ( 4.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_19 727 1 ( 21.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_20 728 2 ( 3.50) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_21 727 1 ( 5.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_22 727 2 ( 10.50) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_23 728 1 ( 4.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_24 728 2 ( 7.50) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_25 728 0 ( -1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_26 728 2 ( 1.50) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_27 728 1 ( 27.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_28 728 2 ( 2.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_29 728 1 ( 8.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_30 728 2 ( 1.50) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_31 728 1 ( 22.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

comb_32 728 2 ( 1.50) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

all 728 2 (1419.50) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00) 0 (-1.00)

Table C.28: Performance on CombDock-generated docking poses using non-distinct inter-
faces.
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[342] B. Kojić-Prodić and Z. Štefanić. Symmetry versus asymmetry in the molecules
of life: Homomeric protein assemblies. Symmetry, 2(2):884–906, 2010.

[343] D. F. Holt, B. Eick, and E. A. O’Brien. Handbook of computational group theory.
CRC Press, 2005.

[344] D. Kozakov, K. H. Clodfelter, S. Vajda, and C. J. Camacho. Optimal clustering
for detecting near-native conformations in protein docking. Biophysical Journal,
89(2):867–875, 2005.

[345] S. Lorenzen and Y. Zhang. Identification of near-native structures by clustering
protein docking conformations. Proteins: Structure, Function, and Bioinformatics,
68(1):187–194, 2007.



bibliography 257

[346] B. Pierce and Z. Weng. A combination of rescoring and refinement significantly
improves protein docking performance. Proteins: Structure, Function, and Bioin-
formatics, 72(1):270–279, 2008.

[347] S. Vajda and D. Kozakov. Convergence and combination of methods in protein-
protein docking. Current Opinion in Structural Biology, 19(2):164–170, 2009.

[348] Peter G Wolynes. Symmetry and the energy landscapes of biomolecules. Proceed-
ings of the National Academy of Sciences of the United States of America, 93(25):14249,
1996.

[349] D. Q. Huynh. Metrics for 3D rotations: Comparison and analysis. Journal of
Mathematical Imaging and Vision, 35(2):155–164, 2009.

[350] T. Bajd, M. Mihelj, and M. Munih. Introduction to Robotics. Springer, 2013.

[351] A. K. Hildebrandt, M. Dietzen, T. Lengauer, H.-P. Lenhof, E. Althaus, and
A. Hildebrandt. Efficient computation of root mean square deviations under
rigid transformations. Journal of Computational Chemistry, 35(10):765–771, 2014.

[352] C. J. Albers, F. Critchley, and J. C. Gower. Quadratic minimisation problems in
statistics. Journal of Multivariate Analysis, 102(3):698–713, 2011.

[353] E. Krissinel and K. Henrick. Inference of macromolecular assemblies from crys-
talline state. Journal of Molecular Biology, 372(3):774–797, 2007.

[354] K. Henrick and J. M. Thornton. PQS: a protein quaternary structure file server.
Trends in Biochemical Sciences, 23(9):358–361, 1998.

[355] A. Andreeva, D. Howorth, J.-M. Chandonia, S. E. Brenner, T. J. P. Hubbard,
C. Chothia, and A. G. Murzin. Data growth and its impact on the SCOP
database: new developments. Nucleic Acids Research, 36(Database issue):D419–
D425, 2008.

[356] http://www.wwpdb.org/documentation/format32/v3.2.html, 2012.

[357] J. D. Fischer, G. L. Holliday, and J. M. Thornton. The CoFactor database: organic
cofactors in enzyme catalysis. Bioinformatics, 26(19):2496–2497, 2010.

[358] http://www.rcsb.org/pdb/statistics/clusterStatistics.do, 2012.

[359] P. D. Gabanyi, M. J.and Adams, K. Arnold, L. Bordoli, L. G. Carter, J. Flippen-
Andersen, L. Gifford, J. Haas, A. Kouranov, W. A. McLaughlin, D. I. Micallef,
W. Minor, R. Shah, T. Schwede, Y. P. Tao, J. D. Westbrook, M. Zimmerman, and
H. M. Berman. The Structural Biology Knowledgebase: a portal to protein struc-
tures, sequences, functions, and methods. Journal of Structural and Functional
Genomics, 12(2):45–54, 2011.

[360] Schrödinger, LLC. Pymol. The PyMOL Molecular Graphics System, Ver-
sion 1.5.0.1, Schrödinger, LLC., 2012.

[361] R. B. Russell, F. Alber, P. Aloy, F. P. Davis, D. Korkin, M. Pichaud, M. Topf, and
A. Šali. A structural perspective on protein-protein interactions. Current Opinion
in Structural Biology, 14(3):313–324, 2004.

http://www.wwpdb.org/documentation/format32/v3.2.html
http://www.rcsb.org/pdb/statistics/clusterStatistics.do


258 bibliography

[362] N. Zaki. Protein-protein interaction prediction using homology and inter-
domain linker region information. In Advances in Electrical Engineering and Com-
putational Science, pages 635–645. Springer, 2009.

[363] M. M. F. Bugalho and A. L. Oliveira. Constant time clash detection in protein
folding. Journal of Bioinformatics and Computational Biology, 7(1):55–74, 2009.

[364] K. Yamada, T. Miyata, D. Tsuchiya, T. Oyama, Y. Fujiwara, T. Ohnishi,
H. Iwasaki, H. Shinagawa, M. Ariyoshi, K. Mayanagi, and K. Morikawa. Crystal
structure of the RuvA-RuvB complex: a structural basis for the Holliday junc-
tion migrating motor machinery. Molecular Cell, 10(3):671–681, 2002.

[365] J. G. S. Ho, P. I. Kitov, E. Paszkiewicz, J. Sadowska, D. R. Bundle, and K. K.-S.
Ng. Ligand-assisted aggregation of proteins. Dimerization of serum amyloid
P component by bivalent ligands. Journal of Biological Chemistry, 280(36):31999–
32008, 2005.

[366] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1(6):80–83,
1945.

[367] A. R. Crofts. The cytochrome bc1 complex: function in the context of structure.
Annual Review of Physiology, 66:689–733, 2004.

[368] P. D. Boyer. The ATP synthase – a splendid molecular machine. Annual Review
of Biochemistry, 66(1):717–749, 1997.

[369] G. Oster and H. Wang. ATP synthase: two motors, two fuels. Structure, 7(4):R67–
R72, 1999.

[370] Y. Liu, L. Xu, N. Opalka, J. Kappler, H.-B. Shu, and G. Zhang. Crystal structure
of sTALL-1 reveals a virus-like assembly of TNF family ligands. Cell, 108(3):383–
394, 2002.

[371] U. Ogmen, O. Keskin, A. S. Aytuna, R. Nussinov, and A. Gursoy. PRISM: protein
interactions by structural matching. Nucleic acids research, 33(suppl 2):W331–
W336, 2005.

[372] E. D. Lowe, N. Hasan, J.-F. Trempe, L. Fonso, M. E. M. Noble, J. A. Endicott,
L. N. Johnson, and N. R. Brown. Structures of the Dsk2 UBL and UBA domains
and their complex. Acta Crystallographica Section D: Biological Crystallography,
62(2):177–188, 2006.

[373] N. T. Doncheva, K. Klein, F. S. Domingues, and M. Albrecht. Analyzing and
visualizing residue networks of protein structures. Trends in Biochemical Sciences,
36(4):179–182, 2011.

[374] C. Ericson. Real-Time Collision Detection. Taylor & Francis US, 2005.

[375] B. Gärtner. Fast and robust smallest enclosing balls. In Algorithms-ESA’99, pages
325–338. Springer, 1999.

[376] K. Fischer, B. Gärtner, and M. Kutz. Fast smallest-enclosing-ball computation in
high dimensions. In Algorithms-ESA 2003, pages 630–641. Springer, 2003.



bibliography 259

[377] K. Pearson. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[378] B. Gärtner. A subexponential algorithm for abstract optimization problems.
SIAM Journal on Computing, 24(5):1018–1035, 1995.

[379] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[380] I. Schur. Ein Satz über quadratische Formen mit komplexen Koeffizienten. Amer-
ican Journal of Mathematics, pages 472–480, 1945.

[381] J. Arvo. A simple method for box-sphere intersection testing. In Graphics Gems,
pages 335–339. Academic Press Professional, Inc., 1990.

[382] I. Sharf, A. Wolf, and M. B. Rubin. Arithmetic and geometric solutions for
average rigid-body rotation. Mechanism and Machine Theory, 45(9):1239–1251,
2010.

[383] W. D. Curtis, A. L. Janin, and K. Zikan. A note on averaging rotations. In IEEE
Virtual Reality Annual International Symposium, pages 377–385. IEEE, 1993.

[384] A. W. Fitzgibbon. Robust registration of 2D and 3D point sets. Image and Vision
Computing, 21(13):1145–1153, 2003.

[385] M. F. Lensink, R. Méndez, and S. J. Wodak. Docking and scoring protein
complexes: CAPRI 3rd edition. Proteins: Structure, Function, and Bioinformatics,
69(4):704–718, 2007.

[386] J. Janin. Protein-protein docking tested in blind predictions: the CAPRI experi-
ment. Molecular BioSystems, 6(12):2351–2362, 2010.


	Abstract
	Zusammenfassung
	Publications
	Awards
	Danksagung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Foundations
	1 Introduction
	1.1 Discoveries and Research Relevant for Protein Structure Modeling
	1.2 Specific Objectives Of This Thesis
	1.3 Overview

	2 The Structure of Proteins and Their Role in Biochemical Processes
	2.1 The Structural Hierarchy of Protein Building Blocks
	2.1.1 Primary Structure
	2.1.2 Secondary Structure
	2.1.3 Tertiary Structure
	2.1.4 Quaternary Structure

	2.2 Protein Interactions and Interfaces
	2.3 The Process of Protein Bio-Synthesis
	2.3.1 Protein Folding and Co- and Post-Translational Modifications

	2.4 Protein Functions in the Molecular Machinery of a Cell
	2.4.1 Enzymatic Catalysis
	2.4.2 Signal Transduction
	2.4.3 Gene Regulation

	2.5 Macromolecular Protein Assemblies
	2.5.1 Pyruvate Dehydrogenase Complex
	2.5.2 Proteasome
	2.5.3 Viral Capsids


	3 Experimental and Computational Techniques and Related Approaches
	3.1 Protein Structure Determination
	3.1.1 X-ray Crystallography
	3.1.2 Nuclear Magnetic Resonance Spectroscopy
	3.1.3 Cryo-EM and Cryo-ET

	3.2 Protein Structure Classification
	3.2.1 SCOP
	3.2.2 CATH
	3.2.3 Other Structure Classification Methods

	3.3 Protein-Small Molecule and Protein-Protein Docking
	3.3.1 FlexX/FlexE
	3.3.2 GOLD
	3.3.3 AutoDock
	3.3.4 RosettaDock
	3.3.5 CombDock
	3.3.6 HADDOCK
	3.3.7 ClusPro Multimer Docking

	3.4 Modeling of Protein Flexibility and Protein Complexes
	3.4.1 SCWRL
	3.4.2 IRECS

	3.5 Protein Structure and Interaction Databases
	3.5.1 Protein Data Bank
	3.5.2 3D Complex
	3.5.3 Database of Macromolecular Motions
	3.5.4 Interactome 3D
	3.5.5 STRING Database

	3.6 Methods of Evaluating the Accuracy of Structural Models
	3.6.1 Root-Mean-Square-Deviation
	3.6.2 Interaction RMSD

	3.7 Statistical Methods of Assessing the Quality of a Prediction Model
	3.7.1 Cross-Validation
	3.7.2 Receiver Operator Characteristic (ROC) Curve
	3.7.3 Area Under the ROC Curve (ROC AUC)



	Modeling Backbone Flexibility in Protein-Ligand Docking
	4 Introduction
	5 Materials and Methods
	5.1 Normal Mode Analysis for Elastic Network Models
	5.2 Extracting Binding Pocket Normal Modes
	5.3 Data Set
	5.4 Establishing a Best-Case Scenario
	5.5 Docking Experiments

	6 Results and Discussion
	6.1 Selecting a Spring Force Function
	6.2 Comparison with Normal Modes from a Molecular Mechanics Force Field
	6.3 Analysis of Normal Mode Amplitude Spectra
	6.4 Docking into Reconstructed Holo Structures
	6.5 Docking with Side-Chain Flexibility

	7 Conclusions

	Assembling Macromolecular Complexes Based on Pairwise Dockings
	8 Introduction
	8.1 Problem Statement

	9 Preliminaries
	9.1 Rigid Transformations
	9.2 Rigid Docking Poses
	9.3 Complex Candidates
	9.4 Mapping Complexes
	9.5 Approximate Complex Symmetry

	10 Developing the Transformation Match Score
	10.1 Macromolecular Complexes as Three-Dimensional Jigsaw Puzzles
	10.2 Observations on Assembling Complexes From Pairwise Dockings
	10.3 The Transformation Match Score

	11 Algorithmic Modeling of Oligomeric Protein Assemblies from Binary Docking Data
	11.1 An Integer Quadratic Program Formulation of the Complex Assembly Problem
	11.1.1 Prerequisites
	11.1.2 Representation as an Integer Quadratic Program

	11.2 3D-MOSAIC: A Heuristic Algorithm To Solve the Complex Assembly Problem
	11.2.1 Algorithm Outline
	11.2.2 Preliminary Remarks
	11.2.3 Initialization
	11.2.4 Iterative Assembly
	11.2.5 Level Population
	11.2.6 Monomer Attachment
	11.2.7 Monomer Match Scoring
	11.2.8 Level Finalization
	11.2.9 Topology-RMSD Based Evaluation
	11.2.10 Runtime Complexity


	12 Benchmark Data Set and Experimental Design
	12.1 Benchmark Data Set
	12.2 Binding Mode Detection
	12.3 Single Residue-Pair Interaction Constraints (SRPIC)
	12.4 Dimer Preparation and Docking Experiments
	12.5 Rescoring Docking Poses
	12.6 Assembly Experiments
	12.6.1 Benchmark Experiments
	12.6.2 SRPIC Experiments
	12.6.3 Comparison with CombDock
	12.6.4 Computational Resources


	13 Evaluation of 3D-MOSAIC in Different Application Scenarios
	13.1 Benchmark Data Set
	13.1.1 Docking Results and Native Binding Mode Determination
	13.1.2 Benchmark Performance
	13.1.3 Selection of Parameter Sets and Cross-Validation Coverage
	13.1.4 Evaluation on Comeau's Data Set
	13.1.5 The Importance of the Transformation Match Score
	13.1.6 Symmetry Optimization and Ranking of Assembled Complexes
	13.1.7 Performance w.r.t. SCOP Class Signature
	13.1.8 Limitations and Hard Cases
	13.1.9 Examples of Successful Assemblies
	13.1.10 Running Times and Memory Consumption

	13.2 Single-Residue Pair Interaction Constraints
	13.2.1 Pairwise Docking Results
	13.2.2 Assembly Performance
	13.2.3 Performance When Introducing Non-Native Binding Modes
	13.2.4 Cross-Validation

	13.3 Global Dockings and Comparison To CombDock
	13.3.1 Docking Results
	13.3.2 Comparison of Performance of CombDock and 3D-MOSAIC using CombDock's Pairwise Global Docking Poses
	13.3.3 All vs. Natively Interacting Protein Types
	13.3.4 Comparison of CombDock and 3D-MOSAIC in Their Own Workflows


	14 Discussion
	14.1 Summary
	14.2 Conclusion


	Future Work
	15 Retrospective and Outlook

	Appendix
	A Additional Results for Experiments with ENM Normal Modes
	A.1 Data Set Composition
	A.2 Validation of the Reconstruction Procedure

	B Algorithmic Details of 3D-MOSAIC
	B.1 Interface Locking
	B.2 Symmetric Binding Mode Detection
	B.3 Ring-Structure Detection
	B.4 Hierarchical Clash Checking
	B.5 Finding Matching Transformations
	B.6 Scoring of Docking Poses
	B.7 Interpolation between Transformations
	B.8 Structural Matching of (Sub-)Complexes
	B.9 Clustering of (Sub-)Complexes
	B.10 Symmetry Optimization
	B.11 Complex Evaluation Against a Reference
	B.12 Restart Files
	B.13 Additional Features
	B.14 Implementation in BALL

	C Performance and Parameter Details for Experiments with 3D-MOSAIC
	C.1 Data Sets
	C.2 Docking Results
	C.3 Assembly Parameters and Results

	Bibliography


