
Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s Thesis

Processing Semantic Information
from Procedural Modelling rules

for Driving Simulation

Daniel Braun

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Supervisor:
Dr. Christian Müller, German Research Center for Artificial Intelligence

Advisor:
Rafael Math, M.Sc., German Research Center for Artificial Intelligence

Reviewers:
Dr. Christian Müller, German Research Center for Artificial Intelligence
Prof. Dr. Dr. hc. mult. Wolfgang Wahlster, Saarland University

Submitted
May 05, 2014

Saarland University
Department 6.2 - Computer Science
Campus - Building E 1.1
66123 Saarbrücken

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any other
media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek
der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public by having
them added to the library of the Computer Science Department.

Saarbrücken,
(Datum / Date) (Unterschrift / Signature)

Abstract

Driving simulators are a safe and cheap way to evaluate automotive user interfaces, which is oth-
erwise often not only very expensive but also dangerous and restricted by laws. But the creation
of realistic simulation environments, especially for urban areas, can be very expensive too. So
called procedural modelling is an approach to solve this problem by rule-based generation of mod-
els. Although there is a lot of information in these rules that could be useful for simulations, this
information usually gets lost during the export process. This thesis compares different driving
simulators and procedural modelling applications, presents an approach to make use of the in-
formation contained in the procedural modelling rules and shows how this information could be
processed using CityEngine, a tool for procedural modelling, and OpenDS, an open-source driving
simulator.

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal Description . 2

2 Background 5

2.1 Driving Simulation . 5

2.1.1 STISIM Drive . 6

2.1.2 SCANeR . 6

2.1.3 TORCS . 7

2.1.4 OpenDS . 7

2.2 Procedural Modelling . 8

2.2.1 City Kit . 9

2.2.2 Blended Cities . 9

2.2.3 CityEngine . 10

2.2.4 Procedural Modelling Application Comparison 13

2.3 File Formats . 13

2.3.1 3D Formats . 14

2.3.2 Semantic Information Formats . 18

2.3.3 File Format Comparison . 21

2.4 Related Work . 21

2.4.1 A declarative approach to procedural modeling of virtual worlds 21

2.4.2 Pro-SiVIC and Roads, a software suite for sensors simulation and virtual
prototyping of adas . 22

2.4.3 Semantic Road Network Models for Rapid 3D Traffic Scenario Generation . 22

2.4.4 Related Work Comparison . 23

III

TABLE OF CONTENTS

3 Practical Implementation 25

3.1 Concept . 25

3.2 Model Export . 26

3.3 Semantic Information Export . 27

3.4 Integrated Solution . 28

4 Evaluation 31

4.1 Mathematical Evaluation . 31

4.2 User Survey Evaluation . 33

5 Summary and Outlook 37

5.1 Conclusion . 37

5.2 Future Work . 37

A Appendix 39

A.1 openDS-Exporter Manual . 39

A.1.1 Installation . 39

A.1.2 Usage . 39

A.1.3 Settings . 39

A.2 CityEngine OpenDS-Exporter User Survey: Questionnaire 42

A.3 CityEngine OpenDS-Exporter User Survey: Results 47

Bibliography 49

IV

List of Figures

1.1 US-states that have (or are considering) bills related to automated driving (source:
[26]) . 1

1.2 Parisian like city, created with procedural modelling using CityEngine 2

2.1 STISIM (M500) setup (source: [6]) . 7

2.2 CityEngine-scene in OpenDS (source: [27]) . 8

2.3 Blended Cities options screen . 9

2.4 City created with Blended Cities . 10

2.5 CityEngine user interface . 11

2.6 Street network in CityEngine . 12

2.7 Small street network with intersection . 19

2.8 Illustration of the workflow for rapid scenario generation using Trian3DBuilder[9] . 22

3.1 Implementation schema . 25

3.2 Structure of the model exporter implementation 27

4.1 First model: skyscraper (textured and wireframe) 31

4.2 Second model: District of an antique city (wireframe) 32

4.3 Third model: District of an modern city (wireframe) 32

4.4 Results for: “I am familiar with CityEngine” . 33

4.5 Results for: “I am familiar with OpenDS” . 34

4.6 Results for: “I am familiar with Blender” . 34

4.7 Results for: “Overall, I am satisfied with how easy it is to use this system.” 35

4.8 Results for: “Overall, this system made the export easier.” 35

4.9 Results for: “The system gave error messages that clearly told me how to fix problems.” 35

4.10 Results for: “The performance of the exported models in openDS is better.” 36

4.11 Results for: “Overall, I was more satisfied with the generated models.” 36

V

LIST OF FIGURES

A.1 Project folder in CityEngine . 39

A.2 Python console in CityEngine . 40

VI

List of Tables

2.1 Comparison matrix for procedural modelling applications 13

2.2 Illumination models in OBJ[2] . 16

2.3 Comparison matrix for file formats . 21

2.4 Comparison matrix for related work . 23

4.1 Evaluation of the first model . 32

4.2 Evaluation of the second model . 32

4.3 Evaluation of the third model . 33

A.1 User survey results: Question IDs . 47

A.2 User survey results: Q1 - Q11 . 48

A.3 User survey results: Q12 - Q23 . 48

VII

1 Introduction

1.1 Motivation

Road tests of new automotive systems are often very problematic: Not only that they are expensive,
but also they often can only be conducted on cordoned-off test tracks, due to legal restrictions (cf.
figure 1.1, which shows the legal situation using the example of automated driving in the US in
February 2014) or safety reasons. For many experiments, like reaction time tests or lane keeping
tasks, it is not possible to provide realistic conditions on cordoned-off test tracks, like oncoming
traffic or visual distraction. Even if testing on public roads is possible, it is not possible to control all
parameters there, like weather, traffic situation, etc. and reproduce them, what may be necessary
to get reliable results. For these and more reasons, driving simulators became very popular in
automotive research.

Figure 1.1: US-states that have (or are considering) bills related to automated driving (source:
[26])

In order to conduct realistic driving experiments in such simulators, the environmental modelling is
very important. The creation of complex models, like urban areas (cf. figure 1.2), can be very time-
consuming and therefore expensive. Procedural modelling can help to reduce this effort. Instead
of modelling each and every single building and street by hand, streets and buildings are generated
randomly and automatically, according to given rules. Most often these models are exported to a
common 3D format in order to use them in driving simulators.

During this export process, information contained in the procedural modelling rules can be lost.
E.g. there can be additional (so called semantic) information about the number of lanes of a street
during the process of procedural modelling, but after the export this information will be only
available hidden in the texture of a 3D-object and not as structured information, although this
could be very useful. Additional semantic information about the 3D-objects can help to improve

1

CHAPTER 1. INTRODUCTION

Figure 1.2: Parisian like city, created by procedural modeling using CityEngine 1

driving simulations, as it could enable features like “in-game” navigation and could help to better
interpret results, as it could e.g. help to determine parameters like the visual distraction.

For OpenDS 2, a modular open-source driving simulator developed at the German Research Center
for Artificial Intelligence (DFKI)[14] (see also section 2.1.4), this thesis will present an approach
to process the semantic information of the procedural modelling process in a way that it can be
used in the driving simulation.

1.2 Goal Description

The major goal of this thesis is to create a 3D-model export plugin, which allows us to create
semantically enriched 3D-models for driving simulations, with a procedural modelling application.

Therefore, the following objectives should be achieved:

• Find an appropriate procedural modelling application

Find and compare existing procedural modelling applications with regard to the suitability
for the goals of this thesis.

• Examine the available semantic information

Depending on the chosen procedural modelling application the available semantic information
has to be examined and rated according to the utility for a driving simulation.

1Example project available at http://www.arcgis.com/home/item.html?id=

a6bfebeec4664a00a1ff1eacaadac961
2http://www.opends.eu

2

http://www.arcgis.com/home/item.html?id=a6bfebeec4664a00a1ff1eacaadac961
http://www.arcgis.com/home/item.html?id=a6bfebeec4664a00a1ff1eacaadac961
http://www.opends.eu

1.2. GOAL DESCRIPTION

• Find a suitable export format

Get an overview of existing file formats for 3D-models in simulators and check if these formats
can store semantic information. If there is no appropriate format, define a new format or
extend an existing format.

• Implement an export plugin

Implement a plugin or program that can export a 3D-model enriched with semantic infor-
mation from the chosen procedural modelling application.

• Evaluate the export plugin

Evaluate the export plugin and the created models with regard to appearance and perfor-
mance as well as usability.

3

2 Background

2.1 Driving Simulation

Because of the different areas of application for driving simulators, requirements vary greatly and
there are a lot of specialized solutions for exactly one task. Although we will only consider sim-
ulators for research purposes here, there are of course many simulators for other purposes, like
driver’s education or entertainment. An example for a specialized driving simulation for research
purposes is the LCT Kit developed at the Leibniz Research Centre for Working Environment and
Human Factors[4] which implements the popular lane-change-task (LCT), introduced by [15]. An-
other example is a simulator developed by Kim et al., which simulates a multi-vehicle platoon[12].
Both of these examples are very specialized and each consist of only one straight road without any
additional environment models. The advantages of such specialized systems are obvious: They are
easier to implement and therefore cheaper than universal systems, that can handle different tasks.

But this is only true as long as no other task has to be simulated, since every task has to be
built from scratch again. In the long term it is therefore better to develop and use an universal
driving simulator that can easily be adapted to new tasks. Because different tasks need different
environments, driving simulators with an universal approach have to provide a possibility to load
different environment models. Most simulators therefore support ordinary 3D-models in different
formats. Sections 2.1.1 to 2.1.4 will present some of the most popular available driving simulators
for research purposes.

While the user can easily visually distinguish between streets, buildings, trees and other 3D-objects,
the simulator can not. The common 3D formats only store information about the shape and the
texture of an object (cf. section 2.3.1 for a closer look at 3D-formats). This means, the simulator
that loads these objects does not know anything about the objects except for the shape and the
texture. Although this can be satisfactory for some simple tasks, in general it is necessary, or at
least desirable, to have more information about an object, so called semantic information. Since
there is no consensus about the term “semantic information” and its exact meaning, neither in
general nor in this special case (and this is a rather philosophical question[5]), we will interpret the
term generously in this thesis and call everything semantic information that describes an object,
which is represented by a 3D-model, in more detail.

The most basic example for semantic information in this context is maybe the information which
sort of object a 3D-model represents (e.g. a street, a car, a tree, a building, a pedestrian etc.).
Depending on the object there are a lot of other semantic information. For streets e.g.:

• number of lanes

• track width

• speed limit and other traffic rules

• street name

• . . .

5

CHAPTER 2. BACKGROUND

For buildings e.g.:

• number of floors

• number of windows

• façade colour

• house number

• number of residents

• . . .

Of course, these lists are not complete and rather random. This raises the question which semantic
information is of interest for driving simulations. As mentioned before, this depends on the observed
object, but it also depends on the task that should be simulated. If we want to examine if a driver
can obey the road rules while he is texting, we need accurate knowledge about speed limits and
traffic rules, whereas information about surrounding buildings is not that important for this task.
But for other tasks, like calculating the visual distraction of a driver, this information can be of
great importance. Since all this information is not included in ordinary 3D-formats, there are some
existing approaches to store this information. Some of these approaches will be introduced later.

In the following, we present a selection of driving simulators:

2.1.1 STISIM Drive

STISIM Drive1 is a commercial driving simulator developed by System Technology Inc. from
Hawthoren, California. STISIM Drive is offered as software and as whole system with hardware
(cf. figure 2.1). It is advertised for research, rehabilitation, assessment and driver education. The
heart of the software is the STISIM Drive Scenario Definition Language (SDL). The SDL is used to
define the environment and place models (including streets, vehicles, pedestrians, signs, buildings,
flora and fauna and other objects), to control traffic and pedestrians and to activate built in
standard tasks like car following, divided attention and simple pedal reaction times.[11] STISIM
Drive comes with a bunch of different ready-made models but also supports (non-animated) user
generated models in OGRE-XML format (for more information about the format see section 2.3.1).
Moreover, STISIM Drive offers a module interface, that allows the user to write own modules for
STISIM Drive in C, VB and other languages that support Microsoft’s Component Object Model.
STISIM Drive is very popular and is used for many research projects, like “The impact of cell
phones on simulated driving performance”[1], “Measuring distraction potential of operating in-
vehicle devices”[20] or “Following slower drivers: Lead driver status moderates driver’s anger and
behavioural responses and exonerates culpability”[25].

2.1.2 SCANeR

Another very popular[23] commercial driving simulator is SCANeR2, from the french company
OKTAL. SCANeR is offered in two different packages, SCANeR studio, dedicated to engineering
and research, and SCANeR DT, dedicated to training and safety awareness.[22] SCANeR uses
the RoadXML format for saving 3D information, as well as semantic information. We will take
a closer look on RoadXML in section 2.3.2. SCANeR also offers a powerful tool for scenario

1http://www.stisimdrive.com/
2http://www.scanersimulation.com/

6

http://www.stisimdrive.com/
http://www.scanersimulation.com/

2.1. DRIVING SIMULATION

Figure 2.1: STISIM (M500) setup (source: [6])

generation, called SCANeR studio Terrain, which offers automatic road network creation from
a GIS representation.[21] In contrast to the later presented procedural modelling applications,
SCANeR studio Terrain does not offer automatic generation of buildings.

2.1.3 TORCS

TORCS 3 is one of the few open source driving simulators. Although TORCS was originally made
for racing simulation, it is often used for non-racing research, due to its adaptability. TORCS also
comes with pre-programmed AI cars. Though TORCS misses a lot of comfort functions that are
offered by commercial systems, e.g. there is no ready-to-use interface for plugins or data exchange
with other programs. TORCS uses its own format (“acc”, an extension of the “ac”-format) for
3D-objects.

2.1.4 OpenDS

OpenDS (cf. figure 2.2) is a modular, cross-platform, open source driving simulation software for
research, developed at the DFKI, fostered by the EU-project GetHomeSafe. OpenDS is based on
the open source game engine jMonkeyEngine. Beside the advantages of an open source software,
OpenDS also offers a lot of comfort function that are usually only known from commercial systems,
like a graphical driving task editor, that allows the user to place objects (like road signs or traffic
lights) on the map while driving around, and an automatic drive analyser, which can be used to
record and visualize information like position, speed or fuel consumption.[14]

Although the jMonkeyEngine supports 3D-models in Wavefront OBJ and OGRE-XML format
(both will be introduced in section 2.3.1), the OGRE-XML support is considered to be more
reliable. Beneath the models, each OpenDS driving task consist of five additional XML files:

• a main file, from where the driving task is started and all files are linked

• an interaction file, where triggers and activities are defined

3http://torcs.sourceforge.net/

7

http://torcs.sourceforge.net/

CHAPTER 2. BACKGROUND

Figure 2.2: CityEngine-scene in OpenDS (source: [27])

• a scenario file, where environment variables (e.g. weather), driver and car variables (e.g.
tires, max. speed and transmission) and traffic variables can be set

• a scene file, where the 3D-models are included

• a settings file, where additional simulation parameters (e.g. controller and connection to
network services) can be set

At the moment OpenDS does not support any file format for semantic information.

2.2 Procedural Modelling

The main idea behind so called procedural modelling is the (semi-) automatic generation of complex
3D-models based on a given set of rules. The aim is to create a model that is rich in variety and
realistic. Today, procedural modelling is mostly used in the game industry, where it is often
necessary to create huge realistic landscapes with vegetation. While there are a lot of procedural
modelling applications on the market for trees or landscapes, the market for procedural modelling
applications for urban areas is quite small, probably due to the complexity of the task. Another
reason may be that there are many tools for (semi-) automatic creation of 3D city models from real
data, like satellite images or maps. Pascal Müller (who developed the first version of CityEngine)
introduced some methods that are now very popular for the procedural modelling of cities in his
papers [18], [16] and [17].

For this thesis, we are looking for a procedural modelling application that is compatible with
OpenDS. Moreover we are looking for a powerful way to describe rules and a possibility to export
semantic information, e.g. with a built in scripting engine.

8

2.2. PROCEDURAL MODELLING

2.2.1 City Kit

City Kit4 is a plugin for the 3D modelling application CINEMA 4D. City Kit only consists of two
texture sets, one for day and one for night. Moreover it does not support the usage of custom rules
and only very basic parameters (like the city size or maximal building height) can be manipulated.
CINEMA 4D and therefore City Kit can not export OGRE-XML files.

2.2.2 Blended Cities

Blended Cities5 is another plugin, which works with the popular open source 3D graphics software
Blender and is open source itself. In contrast to City Kit, Blended Cities offers a lot of manipulat-
able parameters (cf. figure 2.3), like street width, number of lanes, footway width etc. Moreover
Blended Cities allows the usage of own textures and, due to the fact that it is open source, it is
completely adaptable. Another advantage is that Blender, and therefore Blended Cities, supports
a lot of different export formats, including OGRE-XML.

Figure 2.3: Blended Cities options screen

Nevertheless Blended Cities has some negative aspects. As figure 2.4 shows the level of detail of
the generated scenes is very low and the variety rate of the buildings is low. Additionally there is
no easy way to change the road network manually.

4http://greyscalegorilla.com/blog/store/city-kit/?page=training
5http://jerome.le.chat.free.fr/index.php/en/download/blender/city-engine-download.html

9

http://greyscalegorilla.com/blog/store/city-kit/?page=training
http://jerome.le.chat.free.fr/index.php/en/download/blender/city-engine-download.html

CHAPTER 2. BACKGROUND

Figure 2.4: City created with Blended Cities

2.2.3 CityEngine

CityEngine6 is a commercial procedural modelling application formerly developed by Procedural
Inc., now Esri. At the moment CityEngine is most likely the most powerful application for the
procedural modelling of urban areas. It comes with different ready-to-use assets, an easy to use
WYSIWYG7 editor (cf. figure 2.5) and a powerful rule description language called CGA8. Moreover
CityEngine supports many different output formats and has an integrated Python scripting engine.

CGA-Rules

The CGA rule language is a powerful scripting language, therefore it is not possible to cover the
whole functionality here, nonetheless we want to give a short insight how CityEngine implements
the procedural modelling concept, based on the minimal example from listing 2.1.

1 randomHeight = rand (10 ,100)

2
3 attr facadeColor = 60%: "# ff7777"

4 else: "#58 FA58"

5
6
7 Lot --> extrude(randomHeight) Mass

8 Mass --> comp(f) { top: Top | all: Facade }

9 Top --> roofShed (10, 2) Roof

10
11 Roof -->

12 color ("# C0C0C0 ")

13
14 Facade -->

6http://www.esri.com/software/cityengine
7what you see is what you get
8Computer Generated Architecture

10

http://www.esri.com/software/cityengine

2.2. PROCEDURAL MODELLING

Figure 2.5: CityEngine user interface

15 color(facadeColor)

Listing 2.1: CGA rule example

As mentioned before, one of the key concepts of procedural modelling is the random variation of
values within given rules. In the short example above we have two different manifestations of this
concept. In line 1 we set the variable “randomHeight” to a random value between 10 and 100, a
concept that is available in all common scripting languages. In line 3 and 4, there is a different,
a probabilistic, concept. The attribute “facadeColor” is set to the colour “#ff7777” (red) with a
probability of 60%. It follows, that it is set to colour “#58FA58” (green) with a probability of
40%.

Semantic Information

The available semantic information about buildings strongly depends on the given rules. In the
example above a red façade colour could describe a residential house and a green could describe
commercial properties. We could also rewrite the generation of the random height to something
like this:

1 floors = rand (4,40)

2
3 Lot --> extrude (2.5 * floors) Mass

Listing 2.2: CGA rule with semantic information about the number of floors

11

CHAPTER 2. BACKGROUND

With this change our buildings will still have a height between 10 and 100 meters, but we also get
additional semantic information, the number of floors. In general, any information can be attached
to a model in CityEngine using the report(identifier, value) command. It can store a string
identifier and a string, boolean or float value.

The situation for streets is a bit different, since we always have some guaranteed minimal amount
of semantic information about streets in CityEngine. This information is not contained in the
CGA rules, but in the street network.

Figure 2.6: Street network in CityEngine

Figure 2.6 shows such a street network in CityEngine. It is represented by a graph with nodes, for
junctions, and edges for stretches of road. Moreover, each edge has some attributes:

• street width

• sidewalk width left

• sidewalk width right

• street type (minor or major street)

Of course there can be more semantic information about a road (e.g. street names, a speed limit or
a one-way street), this additional information could again be modelled with CGA rules. Especially
detailed lane information (width, positioning, direction) is not available from the street network
and has to be modelled with CGA rules.

Supported Export Formats

CityEngine supports eight different exports format:

12

2.3. FILE FORMATS

• Keyhole Markup Language (KML)

• CityEngine WebScene

• COLLADA

• Wavefront OBJ

• Autodesk FBX

• E-On Software Vue

• Picar RenderMan

• Esri FileGDB

Although none of these formats is particularly suitable to be used with OpenDS, the OBJ format
can be converted easily in OGRE-XML. Furthermore, none of these formats can store additional se-
mantic information. Both problems can be solved using the built in scripting engine of CityEngine.

Scripting Engine

CityEngine has a built in Python scripting engine that uses Jython9. This scripting engine can be
used during the creation of models, but also during the export of models. Scripts can be executed
automatically before the export, after the export and during the export, after the preparation of
each model. We could execute a script after the export that converts the generated OBJ files to
OGRE-XML and we could execute a script during the export that saves the semantic information
of a model stored with the report command.

2.2.4 Procedural Modelling Application Comparison

If we compare the procedural modelling applications introduced in this section, it is pretty obvious
that CityEngine is the only application that is suitable for the goals of this thesis, especially due
to its powerful rule language and its scripting engine. A detailed comparison of the introduced
applications (and the desired functionality) can be found in table 2.1.

Application Comp. Export Format User-Friendly Rule Language Scripting Engine

City Kit - + - -
Blended Cities + - - +

CityEngine o + + +

Desired + + + +

Table 2.1: Comparison matrix for procedural modelling applications

2.3 File Formats

In this section, we will introduce some common file formats for 3D-models and semantic information
that could be useful for the goals of this thesis.

9http://www.jython.org/

13

http://www.jython.org/

CHAPTER 2. BACKGROUND

2.3.1 3D Formats

Wavefront OBJ

Wavefront OBJ is a geometry definition file format, that was developed by Wavefront Technologies
in the 1980s. OBJ uses MTL auxiliary files to define material information for OBJ files. The OBJ
definition itself is very open (e.g. the faces definition), but many programs only implement a subset
of the OBJ definition[3]. Therefore, we focus on the syntax of the subset of OBJ at this point that
is implemented by CityEngine:

Geometry definition syntax

• Vertices

A vertex is defined by a line starting with a v, followed by x, y and z coordinates.

v 10.123 -10.000 1.337

• Texture coordinates

Lines that define texture coordinates start with vt and contain a u and a v coordinate.

vt 1.2818 0.1667

• Normals

Normals are defined by vn and x, y and z coordinates.

vn 0.33 -1.00 0.66

• Polygons

As already indicated, the definition of polygons in OBJ is very loose. The simplest possi-
ble definition of a polygon starts with a f, followed by three vertices indexes. Each vertex,
texture coordinate and normal, has a index, starting with one (for each group) for the first
entry. So a polygon could look like this:

f 1 13 5

The number of vertices a polygon could consist of is not limited by the OBJ definition.
A polygon doesn’t even have to be coplanar. But due to restrictions from CityEngine and
the jMonkeyEngine, we only work with coplanar triangles. Moreover, CityEngine uses a more
complex way to define polygons, using not only vertices, but also texture coordinates and
normals. The definition schema is: f v/vt/vn v/vt/vn v/vt/vn, where v is the index of a
vertex, vt is the index of a texture coordinate and vn is the index of a normal.

f 1/3/5 13/1/6 5/120/137

• Groups

In OBJ, groups are used to group polygons, unlike OGRE-XML, OBJ does not group ver-
tices. Every polygon below the definition of a group belongs to this group. The definition of
a group starts with a g, followed by the name of the group.

g Floor 3

• Reference Materials

Two commands are used to refer to materials defined in MTL files. First we need to integrate
the MTL file that contains the material. This can be done with mtllib and the name of the

14

2.3. FILE FORMATS

MTL file.

mtllib new scene.mtl

Second we need to choose a material from the MTL file. This can be done with “usemtl”
and the name of the material. The choosen material will be used for the polygons that follow.

usemtl FacadeSets 1

Material definition syntax

• Material Name

Every material needs a name to be addressed from the OBJ file. The name of a material can
be defined using “newmtl”:

newmtl FacadeSets 1

• Material colour

There are three material colour options: the ambient material colour, the diffuse material
colour and the specular material colour. All three colours can be controlled by giving a
rgb-value (as usual, each value has to be between 0 and 256). The command for ambient is
Ka, for diffuse Kd and for specular Ks.

Ka 236 30 209

Kd 236 30 209

Ks 236 30 209

• Transparency

The transparency of a material can be set using the letter d. The default value is 1.0 (no
transparency), 0.0 means completely transparent.

d 1.0

• Shininess

The shininess can be set to a value between 0 (default) and 1000 using Ns.

Ns 0.0

• Illumination

With illum the illumination model can be chosen. There are 11 illumination models avail-
able with numbers from 0 to 10 (cf. table 2.2).

illum 3

• Optical Density

The optical density (or index of refraction) can be a value between 0.001 and 10, where 1.0
means that light is not bended by the material.

Ni 1.0

• Textures

Textures can be applied with map Kd and the name of the corresponding image file.

map Kd genCourInterieure1.png

15

CHAPTER 2. BACKGROUND

Model number Properties

0 Colour on and Ambient off
1 Colour on and Ambient on
2 Highlight on
3 Reflection on and Ray trace on
4 Transparency: Glass on; Reflection: Ray trace on
5 Reflection: Fresnel on and Ray trace on
6 Transparency: Refraction on; Reflection: Fresnel off and Ray trace on
7 Transparency: Refraction on; Reflection: Fresnel on and Ray trace on
8 Reflection on and Ray trace off
9 Transparency: Glass on; Reflection: Ray trace off
10 Casts shadows onto invisible surfaces

Table 2.2: Illumination models in OBJ[2]

OGRE-XML

OGRE-XML is a geometry definition file format developed for the Object-Oriented Graphics Ren-
dering Engine (OGRE), a multi platform open source rendering engine. OGRE-XML uses .mesh

files to save the geometry definition and MATERIAL auxiliary files to define material informa-
tion. Because OGRE-XML is a XML based format, it is easy to read and edit, but large in file
size. Therefore OGRE-XML and MATERIAL files can be converted to a binary format, using the
OgreXMLConverter. Again, we focus on the subset of the OGRE-XML definition that is relevant
for our task.

Geometry definition syntax

• Vertices

In OGRE-XML, each vertex is defined using not only a x, y and z coordinate, but also a
texture coordinate and a normal. A vertex in OGRE-XML looks like listing 2.3.

1 <vertex >

2 <position x=" -44.280" y="0.250" z=" -186.694"/>

3 <normal x=" -0.914" y="0.000" z="0.405"/>

4 <texcoord u="0.0000" v="1.0"/>

5 </vertex >

Listing 2.3: Vertex in OGRE-XML

Vertices are grouped in a vertexbuffer, which are grouped in geometry, cf. listing 2.4.

1 <geometry vertexcount="2">

2 <vertexbuffer positions="true" normals="true" texture_coords="1">

3 <vertex >

4 <position x=" -44.280" y="0.250" z=" -186.694"/>

5 <normal x=" -0.914" y="0.000" z="0.405"/>

6 <texcoord u="0.0000" v="1.0"/>

7 </vertex >

8 <vertex >

9 <position x=" -35.967" y="0.250" z=" -167.945"/>

10 <normal x=" -0.914" y="0.000" z="0.405"/>

11 <texcoord u="1.2818" v="1.0"/>

12 </vertex >

13 </vertexbuffer >

16

2.3. FILE FORMATS

14 </geometry >

Listing 2.4: Group of vertices in OGRE-XML

• Polygons

In OGRE-XML polygons only consist of vertices, because each vertex has his own normal
and texture coordinate. Another difference is, that OGRE-XML starts counting with 0, not
with 1. Polygons are grouped in faces, cf. listing 2.5.

1 <faces count="2">

2 <face v1="0" v2="1" v3="2"/>

3 <face v1="0" v2="2" v3="3"/>

4 </faces>

Listing 2.5: Polygon in OGRE-XML

• Groups

Groups are expressed in OGRE-XML as submeshes (cf. listing 2.6). Each submesh has a
name and information about its material. Unlike OBJ, OGRE-XML also groups vertices.
That means, each submesh starts counting vertices with 0.

1 <mesh>

2 <submeshes >

3 <submesh material="FacadeGF" usesharedvertices="false">

4 <faces/>

5 <geometry/>

6 </submesh >

7 </submeshes >

8 </mesh>

Listing 2.6: Submesh in OGRE-XML

Material definition syntax

• Material name

As in OBJ, every material needs a name to be addressed:

material FacadeSets 2{}

• Material colour

As for OBJ files, we have three colour options, one for ambient, one for diffuse and one for
specular, each as rgb value. Additionally, in OGRE-XML, a fourth value is added to each
colour. For ambient and diffuse a alpha value is added (equal to d in OBJ), for specular a
shininess value is added (corresponds to Ns).

ambient 1.0 1.0 1.0 1.0

diffuse 0.0 0.0 0.0 1.0

specular 0.5 0.5 0.5 1.0

• Textures

Texture files can be used equivalent to OBJ, only the keyword is replaced by texture.

texture genCourInterieure1.png

17

CHAPTER 2. BACKGROUND

2.3.2 Semantic Information Formats

CityGML

The City Geography Markup Language (CityGML) was developed by the Special Interest Group
3D and is a file format for the representation and exchange of virtual 3D cities, containing both,
3D and semantic information. The latest version of the standard (2.0.0) has been released in 2012.
CityGML can represent very detailed 3D information for buildings and streets, even interiors of
buildings can be represented with CityGML. Therefore CityGML can also store a lot of semantic
information about buildings, like windows, number of floors etc. Unfortunately CityGML can not
save semantic information about streets, like speed limits or traffic rules and can not be extended
about these aspects.[8] Furthermore the 3D representation of CityGML is not compatible with
OpenDS.

RoadXML

RoadXML is a XML file format for the description of road networks developed by OKTAL, e.g.
used by SCANeR, as mentioned before. In contrast to CityGML, which allows the very detailed
description of buildings, RoadXML does not represent buildings, neither as 3D information nor as
semantic information. Instead it supports very detailed 3D and semantic information about roads
and road networks.

OpenDRIVE

Another XML format is OpenDRIVE, developed by VIRES Simulationstechnologie and supported
by companies like Rheinmetall, BMW and Daimler. According to his developers, “OpenDRIVE
is the leading open format and de-facto standard for the description of road networks in driving
simulation applications”[7]. OpenDRIVE saves very detailed semantic information about road
networks and road objects, like traffic lights or pylons. While the OpenDRIVE definition does not
define a schema for buildings, it is very extensible and can store arbitrary semantic information
about buildings or other objects.

Listing 2.7 is the representation of the street network from figure 2.7 in OpenDRIVE.

1 <?xml version ="1.0" standalone ="yes"?>

2 <OpenDRIVE >

3 <header revMajor="1" revMinor="3" name="test" version="1.00

" date="Tue Mar 11 08:53:30 2014" north="0.00" south="

0.00" east="0.00" west="0.00" maxRoad="3" maxJunc="0"

maxPrg="0" vendor="Daniel Braun">

4 </header >

5 <road name="" length="10.00" id="1" junction="-1">

6 <link>

7 <successor elementType="road" elementId="2"

contactPoint="start" />

8 </link >

9 <planView >

10 <geometry s="0.00" x="0.00" y="0.00" hdg="

45.00" length="10.00">

11 <line/>

12 </geometry >

13 </planView >

18

2.3. FILE FORMATS

1 2 3

4

5

j1

Figure 2.7: Small street network with intersection

14 </road>

15 <road name="" length="10.00" id="2" junction="1">

16 <link>

17 <predecessor elementType="road" elementId="

2" contactPoint="end" />

18 <successor elementType="junction" elementId

="1" />

19 </link >

20 <planView >

21 <geometry s="0.00" x="10.00" y="0.00" hdg="

45.00" length="10.00">

22 <line/>

23 </geometry >

24 </planView >

25 </road>

26 <road name="" length="10.00" id="3" junction="1">

27 <link>

28 <predecessor elementType="junction"

elementId="1" />

29 </link >

30 <planView >

31 <geometry s="0.00" x="20.00" y="0.00" hdg="

45.00" length="10.00">

32 <line/>

33 </geometry >

34 </planView >

35 </road>

36 <road name="" length="10.00" id="4" junction="1">

37 <link>

38 <predecessor elementType="junction"

elementId="1" />

39 </link >

19

CHAPTER 2. BACKGROUND

40 <planView >

41 <geometry s="0.00" x="20.00" y="0.00" hdg="

0.00" length="10.00">

42 <line/>

43 </geometry >

44 </planView >

45 </road>

46 <road name="" length="10.00" id="5" junction="1">

47 <link>

48 <predecessor elementType="junction"

elementId="1" />

49 </link >

50 <planView >

51 <geometry s="0.00" x="20.00" y="0.00" hdg="

180.00" length="10.00">

52 <line/>

53 </geometry >

54 </planView >

55 </road>

56 <junction name="" id="1">

57 <connection id="0" incomingRoad="2" connectingRoad=

"3" contactPoint="start"></connection >

58 <connection id="1" incomingRoad="2" connectingRoad=

"4" contactPoint="start"></connection >

59 <connection id="2" incomingRoad="2" connectingRoad=

"5" contactPoint="start"></connection >

60
61 <connection id="3" incomingRoad="3" connectingRoad=

"2" contactPoint="end"></connection >

62 <connection id="4" incomingRoad="3" connectingRoad=

"4" contactPoint="start"></connection >

63 <connection id="5" incomingRoad="3" connectingRoad=

"5" contactPoint="start"></connection >

64
65 <connection id="6" incomingRoad="4" connectingRoad=

"2" contactPoint="end"></connection >

66 <connection id="7" incomingRoad="4" connectingRoad=

"3" contactPoint="start"></connection >

67 <connection id="8" incomingRoad="4" connectingRoad=

"5" contactPoint="start"></connection >

68
69 <connection id="9" incomingRoad="5" connectingRoad=

"2" contactPoint="end"></connection >

70 <connection id="10" incomingRoad="5" connectingRoad

="3" contactPoint="start"></connection >

71 <connection id="11" incomingRoad="5" connectingRoad

="4" contactPoint="start"></connection >

72 </junction >

73 </OpenDRIVE >

Listing 2.7: OpenDRIVE representation of the street network from figure 2.7

Buildings or other objects can be described in the road element with the structure presented in
listing 2.8.

20

2.4. RELATED WORK

1 <objects >

2 <object id="1" type="type" name="some object" s="10.00" t="

10.00" length="5.00" width="5.00" height="5.00">

3 <userData >

4 </userData >

5 </object >

6 </objects >

Listing 2.8: Representation of an object in OpenDRIVE

Where “s” and “t” describe the position of the object, relative to the road it is attached to and
“user data” can store arbitrary semantic information.

2.3.3 File Format Comparison

As the best results with the jMonkeyEngine can only be achieved with OGRE-XML and OGRE-
XML can not be extended by semantic information, we will need to use two file formats, one for
3D information and one for semantic information. OpenDRIVE fits our needs perfect: We do not
need 3D information but we do need a very flexible solution for semantic information, because our
available semantic information varies, depending on the rules we use to create our models. Table
2.3 shows a detailed comparison of the different file formats.

Format 3D info. Sem. info. (Bldg. / St.) Editable Extendable jME comp.

OBJ + -/- + - o
OGRE + -/- + - +

CityGML + +/- + - -
RoadXML o10 -/+ + - -

OpenDRIVE - -/+ + + n.a.

Desired + +/+ + + +

Table 2.3: Comparison matrix for file formats

2.4 Related Work

2.4.1 A declarative approach to procedural modeling of virtual worlds

In their paper “A declarative approach to procedural modeling of virtual worlds”[24], from 2011,
Smelik et al. presented an approach to make procedural modelling more easy and intuitive. In
their opinion, today’s procedural modelling applications “are complex and unintuitive to use, hard
to control”[24].

To solve these problems, they combined manual modelling and procedural modelling in a new way
in an application called SketchaWorld : In a first step, the user draws rivers, lakes, streets, and
boundaries for forests and cites on a 2D map. In the next step trees and houses will be automatically
generated in between these boundaries. In contrast to “classic” procedural modelling applications,
SketchaWorld does not need user rules to create cities. SketachWorld derives its own rules from
the landscape. E.g. in the centre of a city, SketchaWorld will place high-class residential and
commercial buildings, while heavy industries will be placed at the borders of the city and near

10RoadXML files do not contain 3D information about buildings.

21

CHAPTER 2. BACKGROUND

rivers. Each building also influences the attractivity of an area and therefore its neighbourhood.
That way, SketachWorld creates a lot of semantic information, without any user rules.

SketachWorld supports export as 3D-models in OpenSceneGraph-, COLLADA- or GIS-format.

2.4.2 Pro-SiVIC and Roads, a software suite for sensors simulation and
virtual prototyping of adas

In 2010, Hiblot et al. (from the company Civitec) presented ROADS in their paper “Pro-SiVIC
and Roads, a software suite for sensors simulation and virtual prototyping of adas”[10]. ROADS
is a procedural modelling application for road networks. Like SketchaWorld, ROADS offers the
possibility to draw roads on a 2D map, but in contrast to SketchaWorld, it does not support
any additional objects, like buildings. In exchange, ROADS does not only support the export of
3D-models (in OBJ format), but also the export of semantic information in OpenDRIVE format.
Moreover ROADS offers the automatic creation of roads along a path, defined by points (e.g. GPS
points), and the automatic connection of road segments.

While ROADS is only dedicated to the creation of road networks, Civitec offers another software,
dedicated to scenario modelling and simulation, called Pro-SiVIC 11. Pro-SiVIC can import road
networks created with ROADS, but does not offer any procedural modelling functions itself.

2.4.3 Semantic Road Network Models for Rapid 3D Traffic Scenario
Generation

A highly related work, called “Semantic Road Network Models for Rapid 3D Traffic Scenario
Generation”[9], was published in 2013 by Haubrich et al. They presented an approach to convert
real world information (from OpenStreetMap) into both, semantic and 3D information. The aim
was the creation of a road network that can be used for traffic simulation, as part of the AVeSi
project (“Agentenbasierte Verkehrssimulation”).

OpenStreetMap

Trian3D Builder

OpenDRIVE File

OBJ File

Unity Game Engine

Road Description

Im
p

ort

Im
p

ort

Scene

Figure 2.8: Illustration of the workflow for rapid scenario generation using Trian3DBuilder[9]

11http://www.civitec.com/solutions/pro-sivic-base-edition.html

22

http://www.civitec.com/solutions/pro-sivic-base-edition.html

2.4. RELATED WORK

Figure 2.8 illustrates the workflow of Haubrich et al. They imported the data from OpenStreetMap
in Trian3D Builder12. From there, they exported 3D information in OBJ format and semantic
information in OpenDRIVE format. For the actual simulation, they used the Unity Engine13.

2.4.4 Related Work Comparison

If we compare the related work presented in this section with the goals of this thesis (cf. table 2.4),
we see that all these works use procedural modelling (in different ways). But none of these papers
allows completely user generated rules for buildings and streets, what is absolutely necessary, if
we want to create highly controlled environments for simulations. Moreover none of the presented
approaches uses OGRE-XML for saving 3D information, the format we want to use because of the
jMonkeyEngine support, but [10] and [9] use OBJ, which can easily be converted to OGRE-XML.
Although all three have additional semantic information, only [10] and [9] can export this semantic
information. The fact that both tools use OpenDRIVE endorse our decision to use this format
too.

Work Procedural Modelling User rules jME comp. 3D inf. Semantic inf.

[24] + - - + o
[10] + - o + +
[9] + - o + +

This thesis + + + + +

Table 2.4: Comparison matrix for related work

12http://www.triangraphics.de/?q=en/produkte/Trian3d-Builder
13http://www.unity3d.com

23

http://www.triangraphics.de/?q=en/produkte/Trian3d-Builder
http://www.unity3d.com

3 Practical Implementation

After we decided which procedural modelling application (CityEngine) and which file formats we
will use (OGRE-XML and OpenDRIVE), we will present the concrete implementation of a tool that
automatically exports 3D and semantic information from CityEngine for OpenDS. As CityEngine
has a built in Python scripting interface, we will implement our tool as a Python script that can
be executed in CityEngine.

3.1 Concept

We will develop the export tool in three steps: First we are going to develop a Python script
that exports models from CityEngine in OBJ format and converts them to OGRE-XML. Second
we will develop a script that exports only semantic information from CityEngine and saves the
information in OpenDRIVE format. Finally we will create an integrated solution that exports 3D
and semantic information from CityEngine and bring it in a format that can easily be shared with
the OpenDS community.

Bachelor-Seminar WS 13/14 21

Umsetzung
CityEngine!
!
!
!
!
!
!
(3)

Semantic
Information
Exporter (2)!
!
!

3D model converter (1)!
!
!
!
!
!
!
!

Python
Scripting
Engine!

meshConverter materialConverter

Model
Export!
!

makeScene

.scene.material.mesh.xodr

Figure 3.1: Implementation schema

Figure 3.1 shows the schema of the implementation. As we can see, the first part, the model
converter, consists of three components: The “meshConverter”, that converts the OBJ geometry
file to an OGRE-XML geometry file, the “materialConverter”, that converts the OBJ material file
to an OGRE-XML material file and “makeScene”, that creates a scene file for OpenDS. This scene
file gathers all exporter models and materials and make it easier to import them into OpenDS,
because just one file has to be imported, instead of importing each model and material file on its
own.

25

CHAPTER 3. PRACTICAL IMPLEMENTATION

3.2 Model Export

As just mentioned, the model converter consists of three components. Two of these components are
working with the OBJ files exported from CityEngine, one with the converted OGRE-XML export.
Before something can be converted, we need to export the models in OBJ format. Fortunately the
CityEngine Python-API has a command that allows us to easily export objects in OBJ format.
While there are some options that have to be fixed in order to create models that are compatible
with OpenDS (e.g. the usage of texture coordinates) other options can be set by the user in the
script directly (cf. listing 3.1).

1 """

2 ///////////////////////////////////

3 SETTINGS

4 ///////////////////////////////////

5 """

6
7 #GENERAL

8 OUT_PATH = os.path.dirname(os.path.dirname(__file__))+’\models ’ #

folder

9 FILE_NAME = "openDS" #String

10 EXPORT_CONTENT = "FALLBACK" #"FALLBACK", "MODEL"

11 TERRAIN_LAYERS = "TERRAIN_NONE" #"TERRAIN_ALL_VISIBLE", "

TERRAIN_ALL_SELECTED", "TERRAIN_ALL", "TERRAIN_NONE"

12
13 #GRANULARITY

14 FILE_GRANULARITY = "MEMORY_BUDGET" #"MEMORY_BUDGET", "START_SHAPE"

15 MAX_FILESIZE = 500 #mb

16
17 #GEOMETRY

18 OFFSET = [0,0,0]#x,y,z

19
20 #DEBUG

21 KEEP_OBJ = False #True;False

22
23 """

24 ///////////////////////////////////

25 """

Listing 3.1: Settings section in the model converter

More information about these settings can be found in the manual of the script (see section A.1 in
the appendix). After the export finished, the script iterates over all exported OBJ geometry files
and calls the meshConverter for each file.

The meshConverter reads each file line by line and stores all information in lists of vertices (for
vertices, texture coordinates, and normals) or polygons (cf. section 2.3.1), which are defined in
the geometry class that comes with the script. After reading a whole group, the meshConverter
converts the content of the group in OGRE-XML and saves it. While the conversion in general is
very simple and does not need many changes, there are two things that have to be minded: While
OBJ starts counting with 1, OGRE-XML starts with 0, and while OBJ counts vertex numbers
global, OGRE-XML counts them per group.

After all geometry files are converted, the script iterates over all OBJ material files and calls the
materialConverter for each. Again each file is read line by line. The conversion of the material files
is pretty straight forward, because only keywords have to be exchanged and no further conversion
has to be done (cf. section 2.3.1).

26

3.3. SEMANTIC INFORMATION EXPORT

Finally the script starts makeScene and creates a .scene file containing all mesh and material
files. Overall the script for the model export consist of about 520 lines of code. Figure 3.2 shows
the rough structure of the code.

Main
ce
selection
settings
newFile

sceneMaker
makeScene

MaterialConverter
materialConverter
textureConverter

MeshConverter
vertices
normals
textureVertices
polygons
vOffset
nOffset
tOffset
pOffset

meshConverter
mkEmpty
convertVertex
convertNormal
convertTextureVertex
convertPolygons
createSubmseh

_

_

_

_

_

_

Polygon
v
vt

init
getVertices
getTextureC

__ __

Vertex
x
y
z
vt
vn

init
getX
getY
getZ
getVN
getVT
setVN
setVT

__ __

Figure 3.2: Structure of the model exporter implementation

For sharing the script with users, all code can be put in one file. Section A.1 in the appendix
describes how the exporter can be used with CityEngine.

3.3 Semantic Information Export

First, we will take a look at the implementation of the semantic information export for the street
network. Before we can export the information, we have to choose a starting point for our street
network. Although we could choose any section to be the first it can be useful to not choose a
random section. We distinguish three types of street networks:

1. circular networks: each street segment adjoin to at least two other street segments

2. non circular networks: at least one street is a dead end

3. independent networks: two or more street segments are not connected, i.e. we have two or
more independent road networks

For case one it obviously does not matter where we start our street network and we can choose a
random segment. For case two it is advisable to choose a dead end street as start point as it makes
it easier to iterate through the graph. For the third case we can handle each independent network
according to the first two rules.

To do so, we first create a list of all marked nodes and search for a node, that has only one outgoing
edge and make it the start node (cf. listing 3.2).

27

CHAPTER 3. PRACTICAL IMPLEMENTATION

1 ce = CE()

2
3 #get selected nodes

4 selectedNodes = ce.getObjectsFrom(ce.selection (), ce.isGraphNode)

5
6 startNode = selectedNodes [0] #random node

7
8 #search for node with one outgoing edge

9 for node in selectedNodes:

10 edges = ce.getObjectsFrom(node , ce.isGraphSegment)

11
12 if(len(edges) < 2):

13 startNode = node

14 break

Listing 3.2: Search for the start node

Starting there, we have to go through the whole graph. To do so, we do a breadth-first search
(BFS) over all edges that iterates trough the graph. If the script reaches a node that should not be
exported or was already visited, this branch of the BFS stops. For each node with more than two
outgoing edges, we create an intersection entry in the OpenDRIVE file, for each edge we create a
road entry. While CityEngine describes a road segment with a start and an end point, OpenDRIVE
uses a starting point, the length of the segment and its angle. Given the start point A = (x1, y1)
and the end point B = (x2, y2), we can easily calculate the length l and the angle α:

l = |−−→AB| = |(x2 − x1, y2 − y1)| =
√

(x2 − x1)2 + (y2 − y1)2

m = ∆y
∆x = y2−y1

x2−x1

α = arctan(m)

The advantage of this method is, that we only use information from the CityEngine street network
and this information does not depend on the CGA rules (cf. section 2.2.3). On the other hand we
have some disadvantages: We only have one reference line in the middle of the street, we do not
have detailed information about specific lanes or if there is a central reservation. Furthermore the
reference line does not describe the accurate angle of curves, but rather an approximation.

To solve this problems we would have to take the CGA rules into account. But this would means
that we have to set up name conventions for CGA rules and our script would not work with rules
that do not obey these rules. Therefore we decided to not take the CGA rules into account, for
the time being.

The situation for buildings is a bit easier, as we do not have any guaranteed information (except
for the outlines) from CityEngine and no fixed structure in OpenDRIVE. We can just iterate over
all selected buildings and write an <object>-entry for each of them in the road element next
to them. For each parameter defined in the CGA file (with the report command), we add an
<userData>-element to the object.

3.4 Integrated Solution

The aim of our integrated solution is an export plugin for CityEngine that is easy to use, easy to
install and allows the user to export semantic and 3D information for OpenDS in one step. As we
already implemented both exporters, we now just have to put them together into one file and add
some feedback for the user.

28

3.4. INTEGRATED SOLUTION

1 #export selected models as obj

2 print "Step 1/6: Exporting models"

3 ce.export(selection , settings)

4 print "Done!"

5
6 #convert meshes

7 print "Step 2/6: Convert meshes"

8 for filename in glob.glob(os.path.join(settings.getOutputPath (),

settings.getBaseName ()+’*.obj’)):

9 meshFiles.append(os.path.splitext(os.path.basename(filename

))[0])

10 newFile = os.path.splitext(os.path.basename(filename))[0]+"

.mesh.xml"

11 meshConverter(filename ,settings.getOutputPath ()+"/"+

newFile)

12 if(not KEEP_OBJ):

13 os.remove(filename)

14 print "Done!"

15
16 #convert materials

17 print "Step 3/6: Convert materials"

18 for filename in glob.glob(os.path.join(settings.getOutputPath (),

settings.getBaseName ()+’*.mtl’)):

19 materialFiles.append(os.path.splitext(os.path.basename(

filename))[0])

20 newFile = os.path.splitext(os.path.basename(filename))[0]+"

.material"

21 materialConverter(filename ,settings.getOutputPath ()+"/"+

newFile)

22 if(not KEEP_OBJ):

23 os.remove(filename)

24 print "Done!"

25
26 #check for tif textures

27 print "Step 4/6: Check textures"

28 for filename in glob.glob(os.path.join(settings.getOutputPath (), ’

*.tif’)):

29 print "WARNING: TIF -textures found , pleas convert them to png"

30 break

31 print "Done!"

32
33 #generate scene -file

34 print "Step 5/6: Generate scene -file"

35 makeScene(meshFiles , materialFiles , settings.getOutputPath ()+"/"+

settings.getBaseName ()+".scene")

36 print ("Done!")

37
38 #export semantic information

39 print "Step 6/6: Export Semantic information"

40 makeOpenDrive(selection , settings.getOutputPath ()+"/"+settings.

getBaseName ()+".xodr")

41 print ("Done! Files saved at " + settings.getOutputPath () + "")

42
43 print "Stop openDS -Exporter"

Listing 3.3: Integrated solution with user feedback

29

CHAPTER 3. PRACTICAL IMPLEMENTATION

The integrated solution in listing 3.3 now just consists of one file and is therefore easy to share and
can be used just like the script that is described in section A.1 of the appendix. The files exported
by the integrated solution could now be used in OpenDS. In order to connect 3D and semantic
information, OpenDS could use the position information from both formats and match them. This
is necessary because the 3D-models do not have unique identifiers that could be matched with the
OpenDRIVE identifiers.

30

4 Evaluation

Since semantic information from OpenDRIVE files can not be used in OpenDS yet, the evaluation
focuses on the model export. We used two different methods to evaluate our results. First we
evaluated the models that were exported mathematically and compared them, second we did a
user survey and asked users how satisfied they are with the usability and the output of our export
tool. The results of the usability questions are also applicable for the export of semantic information
(more or less), because the workflow is the same.

For both methods, we wanted to compare our export tool with OGRE-XML files that were gener-
ated with Blender from the CityEngine OBJ files, as this was the best practice so far.

4.1 Mathematical Evaluation

To evaluate the exported models, we compared 10 different models, with regard to the number of
vertices and polygons of the models, each in three versions:

1. OBJ files generated from CityEngine

2. OGRE-XML files generated with Blender from OBJ files

3. OGRE-XML files generated with our export script

We expected that the number of vertices and polygons are equal for all three versions, what means
that we converted the models one-to-one. A lower number of vertices or polygons would mean a
loss of details. Surprisingly, we found out that the OGRE-XML export plugin for Blender adds
additional vertices during the export. Here are three examples from the evaluated models:

Figure 4.1: First model: skyscraper (textured and wireframe)

31

CHAPTER 4. EVALUATION

Export Method #vertices #polygons

CityEngine 353 183
Blender 363 183
Export script 353 183

Table 4.1: Evaluation of the first model

Figure 4.2: Second model: District of an antique city (wireframe)

Export Method #vertices #polygons

CityEngine 596981 402039
Blender 1007995 402039
Export script 596981 402039

Table 4.2: Evaluation of the second model

Figure 4.3: Third model: District of an modern city (wireframe)

32

4.2. USER SURVEY EVALUATION

Export Method #vertices #polygons

CityEngine 7904 5436
Blender 10916 5436
Export script 7904 5436

Table 4.3: Evaluation of the third model

These examples show, that, while the models converted with our script are one-to-one copies, the
models exported with Blender have up to 50% more vertices compared to the original models.
The smaller the models are, the smaller the is the difference between the original model and the
Blender export.

This was unexpected, because the models do not benefit from these additional vertices (you can
not add additional information that was not contained in the original model) but we can expect
that the additional vertices lead to lower performance in the simulator. We tried to measure the
performance difference in the form of fps1 rates but although we saw a tendency to lower fps rates
(up to 10%), the values were too inconstant and vague to draw a final conclusion.

4.2 User Survey Evaluation

The user survey was realized using the open source on-line survey tool LimeSurvey2. A print version
of the questionnaire can be found in section A.2. The questionnaire consists of four parts and a
text box for additional feedback. The first part consists of questions about the knowledge of the
user about CityEngine, OpenDS and Blender. The second part is about the usability of the export
tool and is based on ISONORM 9241/10[19] and the Computer System Usability Questionnaire
(CSUQ)[13]. The third part is about the appearance and performance of the generated models,
while the last part asks about the age, the sex and the profession of the user.

As we wanted to compare our export tool with the Blender export, we were looking for partici-
pants that are familiar with OpenDS, CityEngine and Blender. Unfortunately, we found only five
participants for our survey, but four of them were familiar with CityEngine (cf. figure 4.4), four
with OpenDS (cf. figure 4.5) and five with Blender (cf. figure 4.6) and all of them already exported
models from CityEngine to OpenDS using Blender.

+
+

+

+
+ +

+
/- -

-
-

-
-

-

0

2

4

1 1

2

0

1

0 0

#
vo

te
s

Figure 4.4: Results for: “I am familiar with CityEngine”

1frames per second
2http://www.limesurvey.org/

33

http://www.limesurvey.org/

CHAPTER 4. EVALUATION

+
+

+

+
+ +

+
/
- -

-
-

-
-

-

0

2

4

1 1

2

1

0 0 0

#
vo

te
s

Figure 4.5: Results for: “I am familiar with OpenDS”

+
+

+

+
+ +

+
/- -

-
-

-
-

-

0

2

4

1 1

3

0 0 0 0

#
vo

te
s

Figure 4.6: Results for: “I am familiar with Blender”

While all participants were satisfied with how easy it was to use the system (cf. figure 4.7) and
thought that the tool made the export easier (cf. figure 4.8), only one of them thought that the
system gave error messages that clearly told him how to fix problems (cf. figure 4.9). The reason
might be, that CityEngine only allows script output on the Python console (cf. figure A.2), which
is automatically hidden during export.

Another negative point was the performance of the exported models in OpenDS. Two participants
thought the performance of the models exported with Blender was better, compared to the export
with the script, three participants could not see a difference (cf. figure 4.7). As our mathematical
evaluation showed that this is objectively not true, the reason may be, that Blender offers an
optimization function during the export, that causes better performance and less details. The
results of the survey show that this function is used often and could be added to future releases of
the export script.

Nonetheless, overall all participants were more (or equal) satisfied with the models generated by
the export script (cf. figure 4.11). All results of the survey can be found in section A.3.

34

4.2. USER SURVEY EVALUATION

+
+

+

+
+ +

+
/- -

-
-

-
-

-

0

2

4

1

4

0 0 0 0 0

#
vo

te
s

Figure 4.7: Results for: “Overall, I am satisfied with how easy it is to use this system.”

+
+

+

+
+ +

+
/- -

-
-

-
-

-
0

2

4

3

2

0 0 0 0 0

#
vo

te
s

Figure 4.8: Results for: “Overall, this system made the export easier.”

+
+

+

+
+ +

+
/- -

-
-

-
-

-

0

2

4

0 0

1

2

1 1

0

#
vo

te
s

Figure 4.9: Results for: “The system gave error messages that clearly told me how to fix problems.”

35

CHAPTER 4. EVALUATION

+
+

+

+
+ +

+
/- -

-
-

-
-

-

0

2

4

0 0 0

3

0

1 1

#
vo

te
s

Figure 4.10: Results for: “The performance of the exported models in openDS is better.”

+
+

+

+
+ +

+
/- -

-
-

-
-

-

0

2

4

1

0

2 2

0 0 0

#
vo

te
s

Figure 4.11: Results for: “Overall, I was more satisfied with the generated models.”

36

5 Summary and Outlook

5.1 Conclusion

In this thesis we examined the possibilities of procedural modelling for driving simulations in
urban areas with regard to the creation and usage of semantic information. We have found out
that semantic information can help to improve driving simulations, but there is no fixed set of
semantic information that is always interesting or available for models generated with procedural
modelling.

Moreover, we compared three procedural modelling applications and showed that none of them
can export semantic information, although this information is available. As we compared different
file formats, we concluded that the best way of saving semantic information for driving simulations
is the OpenDRIVE format and we should save 3D and semantic information in different formats
for compatibility reasons.

Finally we implemented a prototype that processes and saves semantic information from the proce-
dural modelling rules of CityEngine and exports them, together with 3D information, for OpenDS.
We evaluated the export script mathematically and based on an user survey. The evaluation of the
script and its models showed that the script works, is easy to use and the models are one-to-one
copies, as we expected it.

5.2 Future Work

The next logical step is the integration of OpenDRIVE support in OpenDS. After the integration,
the semantic exporter should be evaluated with OpenDS and OpenDS could be extended by new
features, like navigation. The 3D model exporter could be extended by an optimization function
for complex 3D-models. Moreover the prototype of the semantic information exporter could be
extended in the future, with regard to the support of different lanes and more detailed road
networks.

Although we found out that there is no fixed set of semantic information that works for all cases,
it could be useful to declare a minimal set of semantic information for buildings and streets that
should always be available for OpenDS. In order to do this with CityEngine, it would be necessary
to create a common standard for CGA rule files.

37

A Appendix

A.1 openDS-Exporter Manual

This manual provides you with a short introduction into the OpenDS-exporter for CityEngine.
For more information about OpenDS please visit www.opends.eu, for more information about
CityEngine please visit www.esri.com.

A.1.1 Installation

Open CityEngine and copy the “openDSExporter.py” file to the “scripts” folder of an existing
CityEngine project (see figure A.1).

Figure A.1: Project folder in CityEngine

A.1.2 Usage

After you select the objects you want to export from your scene, there are two ways of using the
openDS-exporter:

1. Open the model export dialogue from File > Export Models... (or press Ctrl + E)
and select “Script Based Export (Python)”. After that, click on Browse and select the
“openDSExporter.py” file.

2. Double click on the “openDSExporter.py” in the “scripts” folder. Press F9 or choose Python
> Run Script from the menu.

The export status is printed out in the python console on the right side of CityEngine (see figure
A.2).

A.1.3 Settings

Some export parameters can be manipulated in the python file directly:

39

www.opends.eu
www.esri.com

APPENDIX A. APPENDIX

Figure A.2: Python console in CityEngine

OUT PATH
Possible values: any folder path
Default value: os.path.dirname(os.path.dirname(file))+’\models’
Description: Defines the output folder.

FILE NAME
Possible values: any string with valid characters for file names
Default value: openDS

Description: Defines the file names of the exported files.

EXPORT CONTENT
Possible values: “FALLBACK”, “MODEL”
Default value: FALLBACK

Description: Defines if export falls back to shapes if model can’t be generated.

TERRAIN LAYERS
Possible values: “TERRAIN ALL VISIBLE”, “TERRAIN ALL SELECTED”, “TERRAIN ALL”,
“TERRAIN NONE”
Default value: TERRAIN NONE

Description: Defines which terrain layers will be exported.

FILE GRANULARITY
Possible values: “MEMORY BUDGET”, “START SHAPE”
Default value: MEMORY BUDGET

Description: Defines the partition of the generated export into files.

MAX FILESIZE
Possible values: file size in mb
Default value: 500

Description: If FILE GRANULARITY is set to MEMORY BUDGET, maximum file size is defined here.

OFFSET
Possible values: float triple
Default value: [0,0,0]

40

A.1. OPENDS-EXPORTER MANUAL

Description: Defines global model offset (x, y, z).

KEEP OBJ
Possible values: True or False
Default value: False

Description: Defines if OBJ files should be kept after conversion to OGRE-XML.

41

APPENDIX A. APPENDIX

A.2 CityEngine OpenDS-Exporter User Survey: Question-
naire

Welcome to the CityEngine openDS-Exporter user survey.

Please fill out this quick survey to help us improving our tool.

If you have any questions, please mail to: daniel.braun@dfki.de

There are 11 questions in this survey.

Background

Please give us some information about your technical background.

42

A.2. CITYENGINE OPENDS-EXPORTER USER SURVEY: QUESTIONNAIRE

Usability

43

APPENDIX A. APPENDIX

Export Results

44

A.2. CITYENGINE OPENDS-EXPORTER USER SURVEY: QUESTIONNAIRE

45

APPENDIX A. APPENDIX

Personal Information

46

A.3. CITYENGINE OPENDS-EXPORTER USER SURVEY: RESULTS

A.3 CityEngine OpenDS-Exporter User Survey: Results

Question ID Question

Q1 I am familiar with [CityEngine]
Q2 I am familiar with [openDS]
Q3 I am familiar with [Blender]
Q4 I allready exported a CityEngine-model for openDS:
Q5 I converted the model to OGRE XML using Blender
Q6 Pleas rate the usability of the CityEngine openDS-Exporter:

[Overall, I am satisfied with how easy it is to use this system.]
Q7 Pleas rate the usability of the CityEngine openDS-Exporter: [I

could effectively use this system to export models.]
Q8 Pleas rate the usability of the CityEngine openDS-Exporter: [I

felt comfortable using this system.]
Q9 Pleas rate the usability of the CityEngine openDS-Exporter: [It

was easy to learn to use this system.]
Q10 Pleas rate the usability of the CityEngine openDS-Exporter: [I

believe I could become productive quickly using this system.]
Q11 Pleas rate the usability of the CityEngine openDS-Exporter: [The

system gave error messages that clearly told me how to fix prob-
lems.]

Q12 Pleas rate the usability of the CityEngine openDS-Exporter:
[Whenever I made a mistake using the system, I could recover
easily and quickly.]

Q13 Pleas rate the usability of the CityEngine openDS-Exporter: [The
documentation provided with this system was clear.]

Q14 Pleas rate the usability of the CityEngine openDS-Exporter: [This
system has all the functions and capabilities I expect it to have.]

Q15 Pleas rate the usability of the CityEngine openDS-Exporter:
[Overall, I am satisfied with this system.]

Q16 Pleas rate the usability of the CityEngine openDS-Exporter, com-
pared to the export method you used before: [Overall, this system
made the export easier.]

Q17 Pleas rate the usability of the CityEngine openDS-Exporter, com-
pared to the export method you used before: [I could export mod-
els faster using this system.]

Q18 Pleas rate the export results of the CityEngine openDS-Exporter:
[Overall, I am satisfied with the generated models.]

Q19 Pleas rate the export results of the CityEngine openDS-Exporter:
[The exported models look like I expect it.]

Q20 Pleas rate the export results of the CityEngine openDS-Exporter:
[The performance of the exported models in openDS is good.]

Q21 Pleas rate the export results of the CityEngine openDS-Exporter,
compared to the export method you used before: [Overall, I was
more satisfied with the generated models.]

Q22 Pleas rate the export results of the CityEngine openDS-Exporter,
compared to the export method you used before: [The exported
models look better.]

Q23 Pleas rate the export results of the CityEngine openDS-Exporter,
compared to the export method you used before: [The perfor-
mance of the exported models in openDS is better.]
Table A.1: User survey results: Question IDs

47

APPENDIX A. APPENDIX

User Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

1 +++ +++ + Yes Yes +++ +++ +++ +++ +++ +
2 + + ++ Yes Yes ++ ++ + +++ ++ -/+
3 - -/+ + Yes Yes ++ ++ + +++ +++ -/+
4 ++ ++ + Yes Yes ++ ++ ++ ++ ++ - -
5 + + +++ Yes Yes ++ ++ ++ ++ ++ -

Table A.2: User survey results: Q1 - Q11

User Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

1 + +++ ++ +++ +++ +++ +++ +++ + +++ +++ -/+
2 -/+ ++ - ++ ++ +++ ++ ++ - + + -/+
3 -/+ +++ -/+ + +++ +++ +++ +++ -/+ -/+ -/+ -/+
4 - ++ + + ++ ++ + + - - + + - - -
5 - ++ -/+ + +++ +++ ++ ++ - - -/+ ++ - -

Table A.3: User survey results: Q12 - Q23

48

Bibliography

[1] Kristen E Beede and Steven J Kass. Engrossed in conversation: The impact of cell phones on
simulated driving performance. Accident Analysis & Prevention, 38(2):415–421, 2006.

[2] Linda Rose Diane Ramey and Lisa Tyerman. Mtl material format (lightwave, obj). Technical
report, Alias—Wavefront, Inc., 1995.

[3] Johannes Diemke. Wavefront obj format. In Übung im Modul OpenGL mit Java. Carl von
Ossietzky Universität Oldenburg, 2010.

[4] Christoph Endres, Rafael Math, and Daniel Braun. Simulator-based evaluation on the impact
of visual complexity and speed on driver’s cognitive load. In Adjunct Proceedings of the 4th In-
ternational Conference on Automotive User Interfaces and Interactive Vehicular Applications
(AutomotiveUI 2012), pages 30–31, 2012.

[5] Luciano Floridi. Is semantic information meaningful data? Philosophy and Phenomenological
Research, 70(2):351–370, 2005.

[6] UAB Center for Research on Applied Gerontology. Uab driving simulator core. http://crag.
uab.edu/drivesim/index.asp, 2013. Accessed: 2014-05-01.

[7] VIRES Simulationstechnologie GmbH. Opendrive R© / opencrg R© product data sheet. Tech-
nical report, VIRES Simulationstechnologie GmbH, 2011.

[8] G Gröger, TH Kolbe, C Nagel, and K Häfele. Opengis city geography markup language
(citygml) encoding standard v2. 0.0. Open Geospatial Consortium Standard. Open Geospatial
Consortium, 2012.

[9] Tobias Haubrich, Sven Seele, Rainer Herpers, Martin E. Müller, and Peter Becker. Semantic
road network models for rapid 3d traffic scenario generation. In Tagungsband ASIM/GI-
Fachgruppentreffen STS/GMMS, Workshop Simulation technischer Systeme - Grundlagen und
Methoden in Modellbildung und Simulation, Simulation technischer Systeme und Grundlagen
und Methoden in Modellbildung und Simulation, pages 51–55. Arbeitsgemeinschaft Simulation
ASIM, February 2013.

[10] Nicolas Hiblot, Dominic Gruyer, Jean-Sébastien Barreiro, and Bertrand Monnier. Pro-sivic
and roads. a software suite for sensors simulation and virtual prototyping of adas. In Proceed-
ings of DSC, 2010.

[11] System Technology Inc. M100K STISIM Drive Software Datasheet, 2012.

[12] Kwangsoo Kim and Dong-il Cho. A multi-vehicle platoon simulator. In FISITA World Auto-
motive Congress, 2000.

[13] James R Lewis. Ibm computer usability satisfaction questionnaires: psychometric evaluation
and instructions for use. International Journal of Human-Computer Interaction, 7(1):57–78,
1995.

[14] Rafael Math, Angela Mahr, Mohammad Mehdi Moniri, and Dr. Christian Müller. Opends: A
new open-source driving simulator for research. In Andrew L. Kun, Linda Ng Boyle, Bryan
Reimer, and Andreas Riener, editors, Adjunct Proceedings of the 4th International Conference
on Automotive User Interfaces and Interactive Vehicular Applications. International Confer-
ence on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI-
12), October 17-19, Portsmouth, New Hampshire, USA. ACM, ACM Digital Library, 2012.

49

http://crag.uab.edu/drivesim/index.asp
http://crag.uab.edu/drivesim/index.asp

BIBLIOGRAPHY

[15] S. Mattes. The lane-change-task as a tool for driver distraction evaluation. In Quality of Work
and Products in Enterprises of the Future (Proceedings of the GfA/17th Annual Conference
of the International Society for Occupational Ergonomics ans Safety, ISOES), pages 57–60,
2003.

[16] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. Procedural
modeling of buildings. In Acm Transactions On Graphics (Tog), volume 25, pages 614–623.
ACM, 2006.

[17] Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based procedural modeling
of facades. In ACM Transactions on Graphics (TOG), volume 26, page 85. ACM, 2007.

[18] Yoav IH Parish and Pascal Müller. Procedural modeling of cities. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pages 301–308. ACM,
2001.

[19] J Prümper and M Anft. Isonorm 9241/10–beurteilung von software auf grundlage der inter-
nationalen ergonomie-norm iso 9241/10, 1993.

[20] Thomas A Ranney, GH Baldwin, Scott M Vasko, and Elizabeth N Mazzae. Measuring dis-
traction potential of operating in-vehicle devices. Technical report, National Highway Traffic
Safety Administration, 2009.

[21] OKTAL S.A. ScanerTM studio terrain - the unique road database creation tool. Technical
report, OKTAL S.A., 2010.

[22] OKTAL S.A. ScanerTM studio v1.0 - feature overview. Technical report, OKTAL S.A., 2010.

[23] OKTAL S.A. Driving simulator scientific references. http://www.scanersimulation.com/

scientific-papers.html, 2012. Accessed: 2014-03-14.

[24] Ruben Michaël Smelik, Tim Tutenel, Klaas Jan de Kraker, and Rafael Bidarra. A declarative
approach to procedural modeling of virtual worlds. Computers & Graphics, 35(2):352–363,
2011.

[25] Amanda N. Stephens and John A. Groeger. Following slower drivers: Lead driver status
moderates driver’s anger and behavioural responses and exonerates culpability. Transportation
Research Part F: Traffic Psychology and Behaviour, 22(0):140 – 149, 2014.

[26] Gabriel Weiner and Bryant Walker Smith. Automated driving: Legislative and reg-
ulatory action. http://cyberlaw.stanford.edu/wiki/index.php/Automated_Driving:

_Legislative_and_Regulatory_Action, 2014. Accessed: 2014-05-01.

[27] white c. Opends website - about. http://opends.eu/index.php/introduction/about, 2013.
Accessed: 2014-03-14.

50

http://www.scanersimulation.com/scientific-papers.html
http://www.scanersimulation.com/scientific-papers.html
http://cyberlaw.stanford.edu/wiki/index.php/Automated_Driving:_Legislative_and_Regulatory_Action
http://cyberlaw.stanford.edu/wiki/index.php/Automated_Driving:_Legislative_and_Regulatory_Action
http://opends.eu/index.php/introduction/about

	Introduction
	Motivation
	Goal Description

	Background
	Driving Simulation
	STISIM Drive
	SCANeR
	TORCS
	OpenDS

	Procedural Modelling
	City Kit
	Blended Cities
	CityEngine
	Procedural Modelling Application Comparison

	File Formats
	3D Formats
	Semantic Information Formats
	File Format Comparison

	Related Work
	A declarative approach to procedural modeling of virtual worlds
	Pro-SiVIC and Roads, a software suite for sensors simulation and virtual prototyping of adas
	Semantic Road Network Models for Rapid 3D Traffic Scenario Generation
	Related Work Comparison

	Practical Implementation
	Concept
	Model Export
	Semantic Information Export
	Integrated Solution

	Evaluation
	Mathematical Evaluation
	User Survey Evaluation

	Summary and Outlook
	Conclusion
	Future Work

	Appendix
	openDS-Exporter Manual
	Installation
	Usage
	Settings

	CityEngine OpenDS-Exporter User Survey: Questionnaire
	CityEngine OpenDS-Exporter User Survey: Results

	Bibliography

