fir Kinstliche
Intelligenz GmbH

E | , Deutsches Document
’ ’i; - l Forschungszentrum D-97-06

DFKI Workshop
on
Natural Language Generation

Tilman Becker, Stephan Busemann, Wolfgang Finkler (eds.)

September 1997

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
67608 Kaiserslautern, FRG 66123 Saarbriicken, FRG
Tel.: +49 (631) 205-3211 Tel.: +49 (681) 302-5252

Fax: +49 (631) 205-3210 Fax: +49 (681) 302-5341

Deutsches Forschungszentrum
far
Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fir
Kunstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbricken is a non-profit organiza-
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and
Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry
of Education, Science, Research and Technology, by the shareholder companies, or by other
industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

O Intelligent Engineering Systems

O Intelligent User Interfaces

0O Computer Linguistics

O Programming Systems :

O Deduction and Multiagent Systems

O Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Dr. Dr. D. Ruland
Director

DFKI Workshop
on
Natural Language Generation

Tilman Becker, Stephan Busemann, Wolfgang Finkler (eds.)

DFKI-D-97-06

This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research and Technology (FKZ ITWM-01 IV 701 VO0).

(© Deutsches Forschungszentrum fir Kiinstliche Intelligenz 1997

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum fir Kinstliche Intelligenz, Kaiserstautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fir Kinstliche Intelligenz.

ISSN 0946-008X

DFKI Workshop
on
Natural Language Generation

Tilman Becker, Stephan Busemann, Wolfgang Finkler (eds.)
April 23, 1997

Abstract

On the Saarbriicken campus sites as well as at DFKI, many research
activities are pursued in the field of Natural Language Generation (NLG).
We felt that too little is known about the total of these activities and
decided to organize a workshop in order to share ideas and promote the
results.

This DFKI workshop brought together local researchers working on
NLG. Several papers are co-authored by international researchers. Al-
though not all NLG activities are covered in the present document, the
papers reviewed for this workshop clearly demonstrate that Saarbriicken
counts among the important NLG sites in the world.

il

Contents

Preface v
Workshop Programme vi

Tilman Becker:
Syntactic Generation with a Preprocessed HPSG Grammar 1

Stephan Busemann:
Putting Semantic-Head-Driven Generation to the Limits: Ezperi-
ments with Multi-Purpose Semantic Representations 8

Stephan Busemann, Helmut Horacek:
Generating Air Quality Reports from Environmental Data 15

Wolfgang Finkler:
Nonmonotonic Aspects of Incremental Natural Language Produc-
tion: Performing Self-Corrections in a Situated Generator 22

Helmut Horacek:
Structural Changes in Natural Language Generation 28

Xiaorong Huang, Armin Fiedler:
PROVERB: Verbalizing Proofs 35

Xiaorong Huang, Tianfang Yao, Huanye Sheng:
The Project ACNLG: Applying Natural Language Generation in
China 42

Anne Kilger:
Microplanning in Verbmobil as a Constraint-Satisfaction Problem 47

Elke Teich, Erich Steiner, Renate Henschel, John Bateman:
AGILE: Automatic Drafting of Technical Documents in Czech, Rus-
sian, and Bulgarian 54

Peter Poller:
EFFENDI - EFfizientes FormulierEN von DlIalogbeitragen 59

11

Preface

On the Saarbriicken campus sites as well as at DFKI, many research activ-
ities are pursued in the field of Natural Language Generation (NLG). We
felt that too little is known about the total of these activities and decided
to organize a workshop in order to share ideas and promote the results.

This DFKI workshop took place on April 23, 1997. It brought together
local researchers working at different DFKI labs, the Computer Science
Department, and the “Institut fiir Angewandte Sprachwissenschaft sowie
Ubersetzen und Dolmetschen” at the University of the Saarland. Several
papers are co-authored by international researchers. The Call for Papers
included NLG and related fields, but eventually all contributions concen-
trated on NLG proper. The workshop produced a valuable exchange of
results on completed and ongoing work. Although not all NLG activities
are covered in the present document, the papers reviewed for this workshop
clearly demonstrate that Saarbriicken counts among the important NLG
sites in the world.

During the final discussion it was agreed to strive for a joint public
presentation of the Saarbriicken NLG activities by providing information
on a central WWW page. This page links up to the different individual
system or project pages. It is maintained by DFKI, while the maintainance
of the links remains with their respective owners.

We hope that the NLG page, being updated on a regular basis, will pro-
vide a complete and useful picture of current work on NLG in Saarbriicken.

The URL is http://www.dfki.de/services/NLG/.

Saarbriicken, September 1997
Tilman Becker

Stephan Busemann
Wolfgang Finkler

Workshop Programme

9.00
9.05

9.40

10.05

10.40

11.05

11.30

12.05

12.30

14.00

14.35

15.10

15.35

16.00

16.25

16.50

17.00

9.05
9.40

10.05

10.40

11.05

11.30

12.05

12.30

14.00

14.35

15.10

15.35

16.00

16.25

16.50

17.00

18.00

Introduction

Anne Kilger:

Microplanning in Verbmobil as a Constraint-Satisfaction Problem
Tilman Becker:

Syntactic Generation with a Preprocessed HPSG Grammar
Stephan Busemann:

Putting Semantic-Head-Driven Generation to the Limits:
Experiments with Multi-Purpose Semantic Representations

Break

Stephan Busemann, Helmut Horacek:

Generating Air Quality Reports from Environmental Data
Xiaorong Huang, Armin Fiedler:

PROVERB: Verbalizing Proofs

Xiaorong Huang, Tianfang Yao, Huanye Sheng;
presented by Yufang Wang:

The Project ACNLG: Applying Natural Language Generation
in China

Lunch

Wolfgang Finkler:

Nonmonotonic Aspects of Incremental Natural Language Producti
Performing Self-Corrections in a Situated Generator

Peter Poller:

EFFENDI-EFfizientes FormulierEN von DIalogbeitragen
Break

Thomas Weis:
Resource-Adaptive Dialog Planning
Helmut Horacek:

Structural Changes in Natural Language Generation
Elke Teich, Erich Steiner, Renate Henschel,
John Bateman:

AGILE: Automatic Drafting of Technical Documents
in Czech, Russian, and Bulgarian

Break

Final Discussion

vi

Syntactic Generation with a Preprocessed HPSG
Grammar

Tilman Becker

German Research Center for Artificial Intelligence (DFKI GmbH)

Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
becker@dfki.uni-sb.de

Abstract

The syntactic generator in the dialog translation system Verbmobil is fed by a microplanning
component which — after a lexical choice step — generates an annotated dependency structure for the
selected words. In order to make maximal use of this input, the Head-driven Phrase-Structure Gram-
mar (HPSG) which is the basis for the syntactic generator is preprocessed to create the complete set
of maximal projections from all lexical types in the grammar. With these projections, the generation
task consists of finding a suitable combination of such projections. Although there remains a certain
trade-off, this setup eliminates the need to apply the HPSG schemata online and allows the use of
simpler and cheaper unification steps. The preprocessing we employ is also known as a ‘compilation’
of HPSG to a Tree Adjoining Grammar (TAG) since the resulting projections are the elementary
trees of a TAG grammar.

1 Natural Language Generation in Verbmobil

Verbmobil (see [Wah93, BWW97]), is a system for speech-to—speech dialog translation. The input for
the Generation VM-GECO! module is generated by a semantic-based transfer component (see [DE96)).
The interface language chosen comprises the encoding of target language-specific semantic information
following a combination of the Discourse Representation Theory and Minimal Recursion Semantics.
The internal architecture of the generation module is modularized: the generation process is separated
into two phases, realized by a microplanner and a syntactic generator. Throughout the system, we
emphasize declarativity, which is also a necessary precondition for a comprehensive off-line preprocessing
of external knowledge bases (in particular a preprocessing of the grammar which has been developed at
CSLI in the HPSG framework) to perform regularly repeated computations in advance.

2 Modularization: Microplanning and Syntactic Generation

The microplanning component also carries out word-choice. It generates an annotated dependency struc-
ture which is used by the syntactic generation component to realize a surface string.

One goal of this modularization is a stepwise constraining of the search—space of alternative linguistic
realizations, using different views in the different modules. In each step, only an abstraction of the
multitude of information contained in an alternative needs to be considered. These abstractions also allow
for the expression of generalizations over classes of alternatives, resulting in more efficient processing as
well as more compact knowledge bases.

1VerbMobil GEneration COmponents

3 Declarativity in the Syntactic Generator

All modules of the generator utilize external, declarative knowledge bases. For the syntactic generator,
extensive off-line preprocessing of the highly declarative HPSG grammar for English? is applied. The
grammar very closely reflects the latest developments of the underlying linguistic theory (see [PS94]) and
has not been written exclusively as a generation grammar®. It is specialized, however, in that it covers
phenomena of spoken language. The high level of abstraction which is achieved in the hierarchically
organized grammar description (see [F1i87]) allows for easy maintenance as well as off-line preprocessing,.
The off-line preprocessing steps described in the next section keep the declarative nature of the grammar
intact, i.e. they retain explicitly the phrase structures and syntactic features as defined by the HPSG
grammar.

In general, declarative knowledge bases allow for an easier adaptation of the system to other domains and
languages. This is a huge benefit in the current second phase of the Verbmobil project [BFKW96] where
the generator is extended to cover German, English and Japanese as well as additional and extended
domains with a considerably larger vocabulary.

4 Off-Line Preprocessing: HPSG to TAG Compilation

The subtasks in a syntactic generation module based on an HPSG grammar will always include the
application of schemata such that all syntactic constraints introduced by a lexical item (especially the
SUBCAT list are fulfilled. This results in a constant repetition of e.g. building up the projection of a
verb in a declarative sentence. In preprocessing the HPSG grammar we aim at computing all possible
partial phrase structures which can be derived from the information in a lexicon entry. Given such sets
of possible syntactic realization together with a set of selected lexicon entries for an utterance and finally
their dependencies, the task of a syntactic generator is simplified considerably. It now does not need to
explore all possible, costly applications of HPSG schemata but merely has to find suitable precomputed
syntactic structures for each lexical item and combine them appropriately.

For this preprocessing of the HPSG grammar, we adapted the process described in [KKNVS95]. The
basis for the compilation is an identification of syntactically relevant selector features which express
subcategorization requirements of a lexical item, e.g. the VALENCE features. In general, a phrase structure
is complete when these selector features are empty.

Starting from the feature structure for a lexical item, HPSG schemata are applied such that the current
structure is unified with a daughter feature of the schema. The resulting structure is again subject to this
process. This compilation process stops when certain termination criteria are met, e.g. when all selector
features are empty. Thus, all projections from the lexical item are collected as a set of minimally complete
phrase structures which can also be interpreted as elementary trees of a Tree—Adjoining Grammar (TAG).
Instead of applying this compilation process to all lexical items, certain abstractions over the lexical
entries are specified in the HPSG grammar. In fact, the needs of the compilation process have led to
a clear—cut separation of lexical types and lexical entries as shown in Figure 1. A typical lexical entry
is shown in Figure 2 and demonstrates that only three kinds of information are stored: the lexical type
(MV_NP_TRANS_LE*), the semantic contribution (the relation SUIT_REL) and morphological information
(the stem and potentially irregular forms). By expanding the lexical type, the full feature structure can
be obtained.

Some of the trees which result from the preprocessing of the lexical type MV_NP_TRANS_LE are shown
in Figure 2. The figure shows only the phrase structure and an abstraction of the node’s categories. All
nodes still represent the full HPSG feature structures. E.g., the tree MV_NP_TRANS_LE.2 of Figure 2
represents an imperative clause. As a consequence PERSON has the value SECOND and CL-MODE is set
to IMPERATIVE. Note that the compilation process stopped at this node since the selector features are
empty.

From these trees, two kinds of knowledge bases are built. For the microplanner, the relation between

2The HPSG grammar is being developed at CSLI, Stanford University. Development is carried out on a grammar
development platform which is based on TDL [KS94].

3In fact, most of the testing during grammar development depends on the use of a parser.

4MV_NP_TRANS_LE represents ‘transitive main verb with NP object.’

Lexicon Hierarchy - Phrase Structure

Syntactic Semantic : HPSG
Types Types : Principles

Lexical Type

approx. 200 types Schemata

approx. 25 schemata

orphological
Information

approx. 2,600 entries

Figure 1: Organization of the HPSG grammar.

suit_vl := mv_np_trans_le &
[STEM < "suit" >,
SYNSEM.LOCAL.CONT.STEMLISZT <! [PRED _suit_rel 1 !> 1].

MV_NP_TRANS_LE.1 MV_NP_TRANS_LE.2 MV_NP_TRANS_LE.3 MV_NP_TRANS_LE.4
VP S S S
N | N N
v NPl VP NP.S.COMP | VP NP.S.COMP | VP
N SN N
MV_NP_TRANS_LE v NPl) v NPJ v NPl
MV_NP_TRANS_LE MV_NP_TRANS_LE MV_NP_TRANS_LE

Figure 2: Specification of a lexical instance for the verb “suit” and some of the trees for transitive
verbs. They are compiled from the corresponding lexical type MV_NP_TRANS_LE as defined in the

HPSG grammar. Trees 3 and 4 differ only with respect to their feature structures which are not shown
in this figure.

the lexical and syntactic realization and the semantic representation (encoded in the SYNSEM LO-
CAL CONT feature) is extracted as a constraint. For the syntactic generator, the relevant syntactic
information is extracted in the form of a Feature-Based Lexicalized TAG (FB-LTAG) grammar, see
[JLT75, VSJ91, SAJ88]. This includes the phrase structure and a selected part of the feature structure
(mainly the SYNSEM LOCAL CAT and SYNSEM NON-LOCAL features). Figure 3 shows the bottom fea-

ture structure extracted from the root node of MV_NP_TRANS_LE.2. Note that some of the feature paths
are abbreviated, e.g. SLCI stands for SYNSEM LOCAL CONT INDEX. The elementary TAG trees which
are built from the compilation result have so—called restricted feature structures which can be exploited
for an efficient, specialized unification algorithm.

Bottom Dag at selected node:

[:ROOT: [SLC: [HEAD: [PRD: (- +)]
[MOOD: (SUBJUNCTIVE MODAL_SUBJ INDICATIVE)]
[VOICE: (PASSIVE ACTIVE)]
[TENSE: (FUTURE PAST PRESENT)]
[VFORM: BSE]
(INV: -]
[AUX: -]
[ROOT: +]
[CL-MODE: IMPERATIVE]
{RULE: IMPERATIVE_RULE]
[SLCI: NIL]
[SYNSEM: [NON-LOCAL: [QUE: -]

Figure 3: The bottom feature structure of the S node of tree MV_NP_TRANS_LE.2.

The node names shown in the figures represent a disjunction of possible categories, e.g. NP.S.COMP in
tree MV_NP_TRANS_LE.3 implies that the subject of a transitive verb may be a nominal or sentential
phrase.

Finally, the leave nodes of the trees (except for the lexical item itself) are marked either as substitution
nodes or as a foot node, thus creating an auxiliary tree. In a TAG derivation, substitution nodes are
replaced with trees bearing the correct category and a unifyable feature structure at their root node.
Auxiliary trees can be inserted into other trees by the adjunction operation.

5 The Syntactic Generator VM-GIFT

The task of the syntactic generator is the construction of a sentence (or phrase, given the often incomplete
utterances in spoken dialogs) from the microplanning result which is then sent to a speech-synthesis
component. It proceeds in four major steps which are also depicted in Figure 4.

e A preprocessing phase computes the necessary auxiliary verbs from the tense, aspect, and sentence
mood information. It also rearranges the dependency tree accordingly (e.g. subject arguments are
moved from the main verb to become dependents of the inflected auxiliary verb).

e A tree selection phase determines the set of relevant TAG trees. A first tree retrieval step maps
every object of the dependency tree into a set of applicable elementary TAG trees. The main tree
selection phase uses information from the microplanner output to further refine the set of retrieved
trees.

e A combination phase finds a successful combination of trees to build a (derived) phrase structure
tree.

e An inflection phase uses the information in the feature structures of the leaves (i.e. the words) to
apply appropriate morphological functions, including the use of irregular forms as provided by the
HPSG lexicon and regular inflection function as supplied (as LISP code) by the HPSG grammar.

The two main phases are the tree selection and the combination phase. The tree selection phase consists
of two steps. First, a set of possible trees is retrieved and then appropriate trees are selected from this
set. The retrieval is driven by the HPSG instance or word class that is supplied by the microplanner. It
is mapped to a lexical type by a lexicon that is automatically compiled from the HPSG grammar. The
lexical types are then mapped to a tree family, i.e., a set of elementary TAG trees representing all possible
minimally complete phrase structures that can be build from the instance. The additional information in
the dependency tree is then used to add further feature values to the trees. This additional information
acts as a filter for selecting appropriate trees in two stages:

Preprocessing Tree selection - Tree combination

— - .
3 (expand auxiliaries) and sorting (adjoining and substitution) Inflection =
= &
) 3
5 w
o
3

Irregular
Forms

Inflection
Functions

Figure 4: Steps of the syntactic generator.

e Some values are incompatible with values already present in the trees. These trees can therefore
be filtered immediately from the set. E.g., a syntactic structure for an imperative clause is marked
as such by a feature and can be discarded if a declarative sentence is to be generated.

e Additional features can prevent the combination with other trees during the combination phase.
This is the case, for example with agreement features.

The combination phase explores the search space of all possible combinations of trees from the candidate
sets for each lexical item (instance). An inefficient combination phase is a possible drawback of using
the precomputed TAG trees. Fortunately, there is sufficient information available from the microplanner
result and from the trees such that a well-guided best-first search strategy can be employed in the current
system. The difference in run-time can be as dramatic as 24 seconds (comprehensive breadth-first) versus
1.5 seconds (best-first).

As part of the tree selection phase, based on the rich annotation of the input structure, the tree sets are
sorted locally. Then a backtracking algorithm traverses the dependency tree in a bottom-up fashionS.
At each node, and for each subtree in the dependency tree, a candidate for the phrase structures of the
subtree is constructed. Then all possible adjunction or substitution sites are computed, possibly sorted
(e.g. allowing for preferences in word order) and the best candidate for a combined phrase structure is
returned. Since the combination of two partial phrase structures by adjunction or substitution might fail
due to incompatible feature structures, a backtracking algorithm must be used. A partial phrase structure
for a subtree of the dependency is finally checked for completeness. These tests include the unifiability
of all top and bottom feature structures and the satisfaction of all other constraints (e.g. obligatory
adjunctions or open substitution nodes) since no further adjunctions or substitutions will occur in this
subtree.

The necessity of a spoken dialog translation system to produce output robustly calls for some relaxations
in these tests. E.g. ‘obligatory’ arguments may be missing in the utterance and the tests in the syntactic
generator must accept a sentence with a missing subject if no other complete phrase can be generated.
Figure 5 shows an example for the input of from the microplanner after the preprocessing phase has
inserted the entity LGV1 for the auxiliary will.

In the tree retrieval phase for L6-WORK_ACCEPTABLE, first the HEAD information is used to determine the lexical
types of the possible realizations SUIT_V1 and SUIT.V2, namely MV_.NP_TRANS_LE and MV_EXPL_PREP_TRANS_LE
respectively. These types are then mapped to their respective sets of elementary trees, a total of 25 trees.

5The algorithm stores intermediate results with a memoization technique.

((ENTITY LGV1
((CAT V) (HEAD WILL_AUX_P0S) (INTENTION WH-QUESTION) (FUNC AUX)
(TENSE FUTURE) (MOOD INDICATIVE) (VOICE ACTIVE) (FORM ORDINARY)
(VFORM FIN)))
(ENTITY L5-WORK_ACCEPTABLE
((FORM ORDINARY) (VFORM BSE) (CAT V) (GOVERNED-BY WH-SENTENCE)
(OPTIONAL-AGENT NO) (HEAD (OR SUIT_V1 SUIT_V2)) (REALIZED LOCAL)
(REG LGV1)))
(ENTITY L13-PRON
((REALIZED LOCAL) (CAT PPRON) (PERS 3) (NUM SG) (GENDER NTR)
(TYPE NORMAL) (GOVERNED-BY V) (IS-COMPLEMENT T) (FORM CONTINUQUS)
(REG LGV1) (FUNC AGENT)))
(ENTITY L10-PRON
((REALIZED LOCAL) (CAT PPRON) (PERS 2A) (NUM SG) (GENDER FEM) (TYPE NORMAL)
(GOVERNED-BY (OR V PREP SENTENCE)) (FORM CONTINUOUS) (REG LS5-WORK_ACCEPTABLE)
(FUNC PATIENT)))
(ENTITY L6-TEMP_LOC
((CAT ADV) (REAL WH_QUEST) (SORT TIME) (POINTED-BY TEMP_LOC)
(GOVERNED-BY (OR V N ADV SENTENCE)) (PRED TIME) (HEAD WHEN1)
(REALIZED LOCAL) (WH-FOCUS T) (REG L5-WORK_ACCEPTABLE) (FUNC TEMP-SPEC)))
(ENTITY L15-TEMP_LOC
((CAT ADV) (HEAD THEN_ADV) (REALIZED GROUP-TIME-DEMONSTRATIVE)
(REAL (OR ADV WH_QUEST YOFC)) (SORT (SUBSORT TIME)) (POINTED-BY TEMP_LOC)
(GOVERNED-BY (OR V N ADV SENTENCE)) (REG L5-WORK_ACCEPTABLE) (FUNC TEMP-SPEC))))

Figure 5: Example for input from microplanning after preprocessing for auxiliaries

In the tree selection phase, this number is reduced to six. For example, the tree MV_NP_TRANS_LE.2
in Figure 2 has a feature CL-MODE with the value IMPERATIVE. Now, the microplanner output for the
root entity LGV1 contains the information (INTENTION WH-QUESTION). The INTENTION information is unified
with all appropriate CL-MODE features, which in this case fails. Therefore the tree MV_NP_TRANS_LE.2
is discarded in the tree selection phase.

The combination phase uses the best-first bottom-up algorithm described above to determine one suitable
tree for every entity and also a target node in the tree that is selected for the governing entity. For the
above example, the selected trees and their combination nodes are shown in Figure 6.

T SR ey ~ S
e SIADV . M. ADV! S/ADV -
’ ~ < N - ’ - - ~
S S . . ’ 5 _ - \\
/ v VPIADV "7 VP VP

4

1 A i A\
ADV v NPl - NP v NPl, NP VP ADV

C T
when will it suit you then

L6-TEMP_LOC LGV1 L13-PRON L5-SUIT L10-PRON L15-TEMP_LOC

Figure 6: The trees finally selected for the entities of the example sentence. The dashed lines connect to
suitable substitution or adjunction nodes. They correspond to the dependency tree.

SNote that the node labels shown in Figures 6 are only a concession to readability. The TAG requirement that in an
auxiliary tree the footnode must have the same category label as the root-node is formally fulfilled in our system.

The inflection function finally uses attribute values like verb-form, number and person from the final tree
to derive the correct inflections. Information about the sentence mode WH-QUESTION can be used to
annotate the resulting string for the speech-synthesis module.

6 Conclusion

We have shown how preprocessing an HPSG grammar can be used to avoid the costly on-line application

(unification) of HPSG schemata in a modularized generation system with a microplanner and a separate

syntactic generator. The compilation of an HPSG grammar to TAG grammar allows the use of an efficient
. syntactic generator without sacrificing the declarative nature of the HPSG grammar.

References

[BFKW96]

[BWW97)

[DE96]
[F1i87]
[JLT75)

[KKNVS95]

[KS94]

[PS94]

[SAJ88)

[VSJ91]

[Wah93]

T. Becker, W. Finkler, A. Kilger, and W. Wahlster. Vorhabensbeschreibung zur Sprach-
generierung innerhalb des Teilprojektes 5 (Sprachgenerierung und —synthese) in Verbmobil,
Phase 2. Document, German Research Center for Artificial Intelligence (DFKI GmbH),
Saarbriicken, Germany, August 1996.

Th. Bub, W. Wahlster, and A. Waibel. Verbmobil: The combination of deep and shal-

low processing for spontaneous speech translation. In Proceedings of ICASSP 97, 1997.
(forthcoming).

M. Dorna and M. Emele. Semantic-based transfer. In Proceedings of the 16th International
Conference on Computational Linguistics (COLING ’96), 1996.

Daniel P. Flickinger. Lexical Rules in the Hierarchical Lexicon. PhD thesis, Stanford Uni-
versity, 1987.

A.K. Joshi, L. S. Levy, and M. Takahashi. Tree Adjunct Grammars. J. Comput. Syst. Sci.,
10(1), 1975.

R. Kasper, B. Kiefer, K. Netter, and K. Vijay-Shanker. Compilation of hpsg to tag. In
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics,
pages 92-99, Cambridge, Mass., 1995.

Hans-Ulrich Krieger and Ulrich Schifer. 7DL—a type description language for constraint-
based grammars. In Proceedings of the 15th International Conference on Computational
Linguistics, COLING-9/4, pages 893-899, 1994.

Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Studies in Contem-
porary Linguistics. University of Chicago Press, Chicago, 1994.

Y. Schabes, A. Abeillé, and A.K. Joshi. Parsing strategies with ‘lexicalized’ grammars:
Application to Tree Adjoining Grammars. In Proc. 12th International Conference on Com-
putational Linguistics (COLING-88), pages 578-583, Budapest, August 1988.

K. Vijay-Shanker and Aravind K. Joshi. Unification Based Tree Adjoining Grammars. In

J. Wedekind, editor, Unification-based Grammars. MIT Press, Cambridge, Massachusetts,
1991.

W. Wahlster. Verbmobil: Translation of face-to—face dialogs. Research Report RR-93-34,
German Research Center for Artificial Intelligence (DFKI GmbH), Saarbriicken, Germany,
1993.

Putting Semantic-Head-Driven Generation to the Limits:
Experiments with multi-purpose semantic representations

Stephan Busemann
German Research Center for Artificial Intelligence (DFKI GmbH)
Stuhlsatzenhausweg 3, 66123 Saarbriicken (Germany)
busemann@dfki.uni-sb.de

Abstract

Constraint-based grammars can, in princi-
ple, serve as the major linguistic knowl-
edge source for both parsing and genera-
tion. Surface generation starts from input
semantics representations that may vary
across grammars. For many declarative
grammars, the concept of derivation im-
plicitly built in is that of parsing. They
may thus not be interpretable by a gener-
ation algorithm. We show that linguisti-
cally plausible semantic analyses can cause
severe problems for semantic-head-driven
approaches for generation (SHDG). We
use SEREAL, a variant of SHDG and the
Disco grammar of German, both devel-
oped at DFKI, as our source of examples.
We propose a new approach that explic-
itly accounts for the interface between the
grammar and the generation algorithm by
adding a control-oriented layer to the lin-
guistic knowledge base that reorganizes the
semantics in a way suitable for generation.

1 Introduction

Semantic-Head-Driven Generation (SHDG) (Shieber
et al., 1990) is one of the most widespread algorithms
for sentence realization with constraint-based gram-
mars. It is largely theory-independent and has been
used for Head-Driven Phrase Structure Grammars
(HPSG), Definite Clause Grammars, and Categorial
Unification Grammars. Since its publication, SHDG
had to compete with other algorithms (e.g. (Russell
et al., 1990), (Strzalkowski, 1994), (Martinovic and
Strzalkowski, 1992)) which led to numerous ways of
improving the basic procedure.

A major question remained unsolved (and it is
unsolved for other algorithms as well), namely that
of the algorithm’s requirements on the properties of

the grammar used. In previous work, Shieber im-
posed a condition on “semantic monotonicity” that
holds for a grammar if for every phrase the seman-
tic structure of each immediate subphrase subsumes
some portion of the semantic structure of the entire
phrase (Shieber, 1988, p. 617). Semantic monotonic-
ity is very strict and could be relaxed in SHDG: It
was shown that semantically non-monotonic gram-
mars can be processed by SHDG. It is a yet open
question whether all semantically monotonic gram-
mars can be processed by SHDG and what the class
of SHDG-processable grammars is.

In this paper we show that additional problems
may occur with semantic representations that are
linguistically well motivated. Using the semantics
of the Disco system (Dialogue System for Coop-
erating agents) developed at DFKI (Uszkoreit et
al., 1994) as an example, we show that there are
semantically monotonic grammars that cannot be
processed directly by SHDG. We discuss possible
methods to solve the problem and propose a new
approach that explicitly accounts for the interface
between the grammar and the generation algorithm
by adding a control-oriented layer to the linguistic
knowledge base that reorganizes the semantics in a
way suitable for generation.

The kind of problem investigated in this paper re-
lates to the fundamental question of how to organize
a modular system consisting of linguistic knowledge
(a grammar) and control knowledge (parser or gen-
erator). It turns out that declarative grammars con-
tain hidden assumptions about processing issues.

2 SHDG and the Grammar Interface

We briefly review some essential points of SHDG.!
The algorithm is centered around the notion of a
pivot node, which provides an essential feature spec-
ification from which it first generates all descendants

'We assume the reader to be familiar with SHDG as
described by (Shieber et al., 1990).

;
(com« SEMANTICS — AND |
PRED TEMP — IN
com | < PRED KOMM | [GOAL [24][] >
= 3
CONTENT AGENT [22
[22]1] THEME [TEMP [TENSE PRESH
QFORCE |]
VAR
[T
CONN SEMANTICS — AND
- PRED IDENTITY — [- 0]
PRED TOMORROW
SUB-WFFS (| SOURCE
LIST)
QUANT THEME PETER QFORCE[]
VAR
QFORCE IOTA
VAR
L | LAST ()

Figure 1: Semantic Feature Structure for Peter kommt morgen [Peter arrives tomorrow).

in a top-down manner, and then tries to connect the
newly generated subtree to a higher node (or the
root node) in bottom-up fashion. Both generating
descendants and connecting to higher nodes involves
the application of grammar rules. Correspondingly,
rules are subdivided into two classes: chain rules are
used for bottom-up connection while non-chain rules
are applied for top-down expansion. Chain rules dif-
fer from non-chain rules in that their left-hand side
essential feature is identical to the essential feature
of one of their right-hand side elements. This el-
ement is called the “semantic head” of the chain
rule. Lexical entries are non-chain rules in a triv-
ial way since they have no categorial right-hand side
elements.

The only specific assumption SHDG makes about a
grammar is that chain rules and their semantic heads
can be identified. However, the property of being a
chain rule (or non-chain rule) is often assigned by
the grammar writer on purely linguistic grounds al-
though it determines the processing strategy: If the
set of chain rules happens to be empty, SHDG oper-
ates strictly top-down. If the set of non-chain rules
consists of lexicon entries only, SHDG behaves like
a bottom-up generator. Having the linguist uncon-
sciously influence the processing strategy of SHDG
can lead to uninterpretable grammars, as we will
show below.

We now introduce some basic assumptions about
grammars. A grammar induces a context-free back-
bone and has separate layers to represent morpho-
logical, syntactic, and semantic properties of cate-
gories. We assume furthermore that the generator
can be told how to identify mother and daughter cat-
egories of grammar rules. The generator is guided
by its input layer, the semantics. Thus we refer to
the input layer as the essential feature.

The under-specification of the essential feature at
execution time is a well-known phenomenon (Rus-
sell et al., 1990). It can show up during top-down
expansion of a grammar rule that does not share the
essential features of the daughters with parts of the
mother. Non-termination or failure to find a deriva-
tion will result. However, a generator must termi-
nate on all allowable input. We thus formulate a
condition on generator/grammar pairs that ensures
successful recursive applicability of the generation
procedure:

Essential Feature Specification Con-
dition (EFSC): The essential feature
must specify exactly the constituent to be
generated at the time the generation proce-
dure is executed on it.

Obviously, this requirement needs to be con-
cretized in terms of specific algorithms since the or-

der in which a generator processes right-hand side
elements of rules is crucial. EFSC for SHDG depends
on the order in which nodes of a local tree are re-
cursively expanded. (Shieber et al., 1990) quite ar-
bitrarily assume a strict left-to-right processing of
non-semantic-head daughter nodes. EFSC is easily
violated by a daughter of a non-chain rule that influ-
ences the essential feature of a preceding daughter.

3 The System Setup

This section introduces the generator/grammar pair
used for the present study. After a sketch of our
variant of SHDG we discuss the semantics layer of the
constraint-based grammar of German to the extent
necessary to demonstrate violation of EFSC and to
describe a solution.

3.1

The SEREAL (Sentence Realizer) is a Common Lisp
SHDG implementation that uses kernel components
of the Disco NL understanding system (Uszkoreit
et al., 1994).

Disco is a linguistic core engine capable of ana-
lyzing NL sentences as quasi-logical form representa-
tions that can subsequently be submitted to further
semantic analysis. The DiSco grammar is encoded
in TDL (Krieger and Schifer, 1994), a powerful type
definition language and type inference mechanism
for feature structures. The basic processing engine
is the feature constraint solver UDINE, which is used
to perform (destructive) unification during parsing
and generation. A mapping between word forms
and morpho-syntactically annotated word stems is
achieved by the MORPHIX-3 system (Finkler and
Neumann, 1988).

SEREAL is integrated into the Disco system to
the extent that it uses the same grammar, UDINE,
TDL, and MorPHIX-3. It can be fed with the
parser’s semantics output and thus serve as a useful
grammar development tool.

A special mechanism had to be developed for ef-
ficient lexicon access. The SHDG algorithm simply
assumes all lexicon entries to be available as non-
chain rules. This is, however, not advisable for large
lexicons. Rather, only the relevant entries should be
accessed. Therefore, SEREAL indexes the lexicon
according to semantic information. Consider, for
instance, the semantic representation in Figure 1.2

The SEREAL system

2This is a simplified version of a semantic represen-
tation taken from a parse with the Disco grammar. For
presentation purposes we adopt the familiar matrix no-
tation for feature structures. < and > are print macros
for lists that expand into the common feature structure
notation for lists (cf. (Shieber, 1986, page 29)). Although

10

Lexical indices usually are semantic predicates de-
noted by the PRED feature, e.g. KOMM is the index for
the main verb (arrive). Exceptions include deter-
miners, which are indexed according to the value of
QFORCE and proper names, which are indexed ac-
cording to the value of THEME. A priority system
on indices (THEME > QFORCE > PRED) reduces the
number of accessible indices. This way an index
points to very few lexicon entries.® Indices are re-
trieved as values of some path in the essential feature
specification. Insertion of an entry into a derivation
requires its essential feature to subsume the input
structure in order to prevent the violation of the co-
herence condition.

Clearly both indices and path descriptions are
grammar dependent and form a part of the inter-
face between SEREAL and the DiscO grammar. In
Figure 1, the following indices are used to access
lexicon entries: KOMM, PETER, TEMP-IN.

The algorithm has been criticized for not termi-
nating on left-recursive rules (Strzalkowski, 1994).
Under the assumption of semantic monotonicity,
the determination of a pivot can be conditioned
by a check for semantic content. If the semantics
is “empty” (i.e., it corresponds to the top feature
structure), processing fails and alternative possibili-
ties have to be explored. Since left recursion occurs
only in top-down direction, we are dealing with non-
chain rules, which ensures that the semantics of a
right-hand side element differs from that of the left-
hand side. Semantic monotonicity ensures that it is
“smaller” in some sense, thus guaranteeing termina-
tion.

(Martinovic and Strzalkowski, 1992) criticized the
possible failure of top-down expansion due to the
strict left-to-right processing of the list of right-hand
side elements. Since the instantiation of the seman-
tics of some right-hand elements can depend on the
previous successful expansion of others, a strict order
that does not consider such relations is inadequate.
In SEREAL, the left-most right-hand side element of
arule is expanded first that has a non-empty seman-
tics instantiated.

3.2 The DIsCcO semantics layer

The DiscoO grammar is a semantically monotonic
lexicalized, HPSG-style grammar of German with
about 20 rules, 13 of them binary. The remaining
ones are unary (lexical) rules that serve to introduce

TDL defines typed feature structures, we omit type in-
formation here as it is not relevant.

3This depends on how many lexemes carry the same
index. Usually we have one to three, in rare cases up to
fifteen, entries per index.

morer | 1T 1] W
LAST 0
[HEAD
SYN =] .
CAT | LOCAL [SUBCAT [6][]] }
[CONTENT
SEM
QUANT LIST 0
I L LAST [14](]
. . = . 5 =
MorPH | T |
LAST 8]
COMP-DTR | CAT SYN | LOCAL | SUBCAT ()]]
sew | quant | T]
| | LAST i 1]
DTRS MORPH [LIST
LAST
[HEAD [3]
SYN
HEAD-DTR | CAT | LOCAL [suBcAT ([17]|[6])]
[coNTENT
SEM
quant | “°T
| i | L LAST 11

Figure 2: A Head-Complement Rule (simplified for expository purposes).

syntactic features for lexemes in particular environ-
ments. For instance, verb lexemes can be made fi-
nite or infinite, adjectives can be made attributive
or predicative. The binary rules account for comple-
ment and adjunct realization.

The development of the DISCO grammar was, as
many others, based on purely linguistic motivations.
Although a declarative representation is used, the
concept of derivation implicitly built in is that of
(bottom-up) parsing. Again, this is common. The
parsing view of the grammar developer influences
the goals that a semantic representation should ful-
fill. The Disco semantics layer should

e represent a linguistically well motivated (sur-

face) propositional semantics of NL sentences,

provide the interface to subsequent non-
compositional, extra-grammatical semantic in-
terpretation (e.g. anaphora resolution, scope
disambiguation), and

represent the essential feature for grammar-
based sentence realization.

The semantics layer corresponds to quasi-logical

11

forms (Alshawi, 1992) that are defined through the
grammar and represented with help of feature struc-
tures (Nerbonne, 1992). The relevance of the surface
ordering of complements and adjuncts during later
semantic processing made it necessary to encode or-
dering information at the semantics layer. This is
reflected by the QUANT feature, which contains a list
of the semantics of the complements and adjuncts in
the order they occur at the surface. The relations
between them are expressed by the CONTENT feature
with help of the VAR feature.

Consider as an example the semantics structure
in Figure 1. QUANT has two elements, the first one
representing the proper name and the second one the
temporal adverb tomorrow. CONTENT represents a
CONDition on the meaning consisting of a conjunction
of sub-formulae. The first formula represents a one-
place predicate KOMM, the argument of which points,
via VAR, into the first element of the QUANT list. The
second sub-formula represents a two-place predicate
TEMP-IN. Its first argument points into the second
element of QUANT, and its second argument relates
to the whole CONTENT feature. Thus the predicate is
to be interpreted as a temporal sentential modifier.

Semantic information mainly originates from lex-
ical entries. A few general principles of feature dis-
tribution are represented with the grammar rules.
Figure 2 shows a head-complement rule with the
complement being the first element of the head’s
subcategorization list. The complement is preced-
ing the head (not shown). CONTENT is shared be-
tween the mother (CAT) and the head daughter. In
a rule’s left-hand side constituent, QUANT denotes the
concatenation of the QUANT values of the sequence of
right-hand side elements.

List concatenation is encoded using difference
lists. Thus it is not necessary to use functional fea-
ture values such as append. The difference list type
built into in TDL denotes a list L by defining a list
L1 under the feature LIST and another list L2 under
the feature LAST such that L2 is a tail of L1 and the
concatenation of L and L2 yields L1. This can easily
be achieved by choosing appropriate coreferences.

In the case of bottom-up processing, this mecha-
nism is used like a stack: at the mother node, the
QUANT feature of the complement semantics has been
pushed onto the list of elements collected so far (at
the head daughter).

4 A Violation of EFSC

Investigation of the grammar rules shows that there
are no binary chain rules since the QUANT feature
within SEM differs at all nodes of a rule (cf. Figure 2).
With the resulting top-down strategy the QUANT list
at the mother node must be split into two sublists
in order to instantiate the QUANT lists of the daugh-
ter nodes. This is a nondeterministic problem that,
given the present implementation of difference lists,
leads to under-specification.

Unification of some input semantics with the
mother node (in Figure 2 under CAT.SEM?) does
not specify how the QUANT list should be split, i.e.
the QUANT.LAST feature of the COMP-DTR semantics,
which is shared with the QUANT.LIST feature of the
HEAD-DTR semantics, is not affected at all by this
unification operation. Any further expansion steps
using similar rules will not specify the semantics any
further, and hence non-termination results.®

This problem is not specific to the DISCO gram-
mar. Difference lists are a common descriptive de-

4We use the period between feature names to denote
feature path descriptions.

°It may be argued that the CONTENT feature could
serve as a pivot. It is indeed shared between mother
and head in most rules, which would then be chain rule
candidates. However, semantic information necessary to
guide the generation of many phrasal constituents may
be represented only by QUANT.

12

vice used in many constraint-based grammars. For
instance, the same problem arises with the mini-
mal recursion semantics, a framework for seman-
tics within HPSG, which was developed to sim-
plify transfer and generation for machine translation
(Copestake et al., 1995).

Neither is the problem specific to SEREAL or
SHDG. It is specific to top-down processing of dif-
ference lists in general.

5 Reorganizing Semantic
Information

Whenever a grammar /generator pair violates EFSC,
two basic directions offer themselves as remedies:
Either the generator is modified to account for the
grammatical analysis, or the grammar is adapted to
the needs of the generator.

[sem [CONTENT [1] (]]

[1000 [LIST [2] (] J I
LAST [3](]

PIVOT

CONTENT-GEN [I]
DONE [

GEN LIST]
Figure 3: The Organization of the GEN Layer.

QUINPUT [

LIST]

LAST [4][]

LAST [4]

Grammar writing should be guided by linguistic
adequacy considerations rather than by algorithmic
issues. Linguistically plausible analyses should not
be rejected because they are not processed by the
generator used. On the other hand, designers of
generation (or parsing) algorithms want to create
generic tools that can be used for large classes of
grammars. Such algorithms, including those of the
SHDG type, should not be geared towards a partic-
ular grammar. Moreover, in a large grammar, pro-
cessing problems may occur with several phenom-
ena, and solving them either way would eventually
sacrifice the modularity of the grammar and the gen-
erator.

In conclusion, neither of the two ways is satisfac-
tory. In this contribution we present a novel ap-
proach that complements a single grammar by an
explicit and modular interface layer that restruc-
tures the semantic information in such a way that
it supports bottom-up processing within SEREAL.

[[[LIST 17 1
TODO
LAST
LIST
CAT | GEN | PIVOT [35] | QUINPUT
l [LAST [29]]]]
LIST
DONE
| | LAST |
I LIST W |
SEM | QUANT [}
i] LAST [39] !
LIST
T0DO
COMP-DTR | CAT | LAST]
GEN | PIVOT [QUINPUT]
DTRS DONE LIST
I | i LAST
[[[LIST
TODO
| LAST]
HEAD-DTR | CAT | GEN | PIVOT
LIST
DONE W
i i L L i LAST 1

Figure 4: The GEN Feature

This method improves over previous approaches in
various ways:

e The interface is defined declaratively;

¢ Reversibility properties of the grammar are pre-
served;

e The modularity of the grammar and the gener-
ator are preserved.

This layer, GEN, is assigned to every category of the
grammar (cf. Figure 3). Its definition does not mod-
ify the grammar, rather a new module is added to
it. Since semantic information is not constrained,
but just restructured in GEN, reversibility properties
of the grammar are not touched. Parsing results are
completely independent from the presence of GEN.
Since the restructuring is achieved by using corefer-
ences with the parts of the semantic layer, genera-
tion uses the same kind of semantic information as
parsing. Hence, SEREAL will deliver all sentences
for a semantic representation restructured in GEN
that yield that semantic representation when they
are parsed.

Within GEN we define a new essential feature,
PIVOT, that shares the semantic content (under

in a Head-Complement Rule.

13

CONTENT-GEN) and contains the QUANT list of the in-
put (under QUINPUT). We specify explicitly the sub-
list of QUINPUT covered by the subtree represented
by the category at hand using the list DONE, and
we also note the list of remaining elements that still
need to be processed (TODO). This is encoded using
difference lists.

The binary grammar rules are extended as follows
(Figure 4 shows the GEN feature added to the rule in
Figure 2). Mother and head daughter share their
PIVOT features, which yields us chain rules (and the
desired bottom-up processing strategy). Obviously
the mother’s DONE list must be the concatenation
of all daughters’ DONE lists. Moreover, the comple-
ment daughter’s TODO list must be empty, which is
why QUINPUT and DONE coincide. QUINPUT of the
complement daughter is shared with SEM.QUANT. It
is completely specified after the subtree represented
by the head daughter has been completed.

6 Conclusion

Interfaces between constraint-based grammars and
generation systems must be defined in a very special-
ized way. In this paper we have introduced a general
condition on grammars, EFSC, which offers the pos-

sibility to identify different sources of failure. In view
of the disadvantages of current approaches dealing
with EFSC violations, we have introduced into the
descriptive framework a new, control-oriented layer
of representation, GEN, that reorganizes semantic in-
formation in such a way that it does not violate
EFSC for the generation algorithm used.

GEN is the essential feature of a generation pro-
cedure and serves to define the interface between a
grammar and a generator. This way, the interface is
explicitly and declaratively defined. Besides archi-
tectural advantages, this approach has considerable
practical benefits compared to compilation methods.
It uses the same representational means that serve
for the implementation of the grammar. If a gram-
mar writer chooses to modify the encoding of cer-
tain linguistic phenomena, potential clashes with the
interface definitions can be detected and removed
more easily.

Although the method is generally applicable, the
GEN layer must be defined explicitly for every gram-
mar/generator pair. Depending on whether and
where EFSC is violated, GEN may just co-specify
the semantics (the trivial case), or reconstruct the
semantics in an EFSC-compatible fashion. An in-
stance of the latter was described above for the
Disco grammar and SEREAL. If a different gen-
erator is chosen for the D1SCO grammar, neither the
algorithm nor the grammar needs to be modified.
The same holds true, if SEREAL was to interpret a
different grammar. In both cases, it is the definition
of GEN that would have to be replaced.

The techniques presented are implemented in
TDL and CommonLisp within the SEREAL system.

Acknowledgments

This work has been supported by a grant from The
German Federal Ministry for Research and Technol-
ogy (FKZ ITW 9402). I am grateful to Feiyu Xu
for implementing a first version of the interface, and
to Jan Alexandersson, Edmund Grimley Evans, and
Harald Lochert for implementing parts of the SE-
REAL system.

References

Hiyan Alshawi, editor. 1992. The Core Language En-
gine. ACL-MIT Press Series in Natural Language Pro-
cessing. MIT Press, Cambridge MA.

Ann Copestake, Dan Flickinger, Robert Malouf, Susanne
Riehemann, and Ivan A. Sag. 1995. Translation with
minimal recursion semantics. In Proc. 6th Interna-
tional Conference on Theoretical and Methodological
Issues in Machine Translation, Leuven.

14

Wolfgang Finkler and Giinter Neumann. 1988.
Morphix: A fast realization of a classification-
based approach to morphology. In H. Trost, ed-
itor, Proceedings der 4. Osterreichischen Artificial-
Intelligence Tagung, Wiener Workshop Wissens-
basierte Sprachverarbeitung, pages 11-19, Berlin, Au-
gust. Springer.

Hans-Ulrich Krieger and Ulrich Schifer. 1994. TDC-a
type description language for constraint-based gram-
mars. In Proceedings of the 15th International Confer-
ence on Computational Linguistics, COLING-94, Ky-
oto, Japan.

Miroslav Marti-
novic and Tomek Strzalkowski. 1992. Comparing two
grammar-based generation-algorithms: A case study.
pages 81-88, Newark, Delaware.

John Nerbonne. 1992. Constraint-based semantics.
In Paul Dekker and Martin Stokhof, editors, Pro-
ceedings of the 8" Amsterdam Colloquium, pages
425-444. Institute for Logic, Language and Compu-
tation. Also available as Research Report RR-92-18,
Deutsches Forschungszentrum fir Kiinstliche Intelli-
genz, Saarbriicken, Germany.

Grabham Russell, Susan Warwick, and John Carroll.
1990. Asymmetry in parsing and generating with uni-
fication grammars: Case studies from elu. In Proc.
Conf. of the 28th Annual Meeting of the ACL, pages
205-211., Pittsburgh.

Stuart M. Shieber, Gertjan van Noord, Robert C. Moore,
and Fernando C. N. Pereira. 1990. A semantic-head-
driven generation algorithm for unification-based for-
malism. Computational Linguistics, 16(1):30-42.

Stuart M. Shieber. 1986. An Introduction to Unification-
Based Approaches to Grammar, volume 4 of CSLI Lec-
ture Notes. Stanford University, Stanford (CA).

Stuart M. Shieber. 1988. A uniform architecture for
parsing and generation. In Proceedings of the 12th In-
ternational Conference on Computational Linguistics
and the 2{th Annuael Meeting of the Association for
Computational Linguistics, pages 614-619, Budapest,
Hungary, August 22-27.

Tomek Strzalkowski. 1994. A general computational
method for grammar inversion. In Tomek Strza-
lkowski, editor, Reversible Grammars in Natural Lan-
guage Processing, pages 175-200. Kluwer, Boston,
Dordrecht, London. ‘

Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Ab-
del Kader Diagne, Elizabeth A. Hinkelman, Walter
Kasper, Bernd Kiefer, Hans-Ulrich Krieger, Klaus
Netter, Giinter Neumann, Stephan Oepen, and
Stephen P. Spackman. 1994. DISCO-An HPSG-
based NLP System and its Application for Appoint-
ment Scheduling. In Proceedings of the 15th In-
ternational Conference on Computational Linguistics,
COLING-94, Kyoto, Japan.

Generating Air Quality Reports From Environmental Data,

Stephan Busemann, Helmut Horacek*
German Research Center for Artificial Intelligence (DFKI GmbH)
Stuhlsatzenhausweg 3, 66123 Saarbriicken (Germany)
{busemann, horacek}@dfki.de

Abstract

This paper describes ongoing work on the generation of German and French air quality
reports on the basis of up-to-date environmental measurements. This real-world appli-
cation is characterized by a simple and small sublanguage. The system is called with
a bundle of user requests entered through a hyper-link navigator. For text planning, a
schema-based component produces domain-specific semantic content representations that
are fed to the TG/2 production system [Busemann, 1996] for linguistic realization. The
semantics interface between the two components is tailored to the task and domain at
hand. It is independent from the particular language chosen. It is argued that these de-
sign decisions have important practical benefits over more general, linguistic approaches.
The texts produced are designed for administrative use. A version for the general public
is foreseen as well.

1 The application scenario

This paper describes ongoing work on the generation of German and French air quality reports
on the basis of regularly updated environmental measurements. Such data is made available on
a server under development for TEMSIS (Transnational Environmental Management Support
and Information System). It includes the pollutant, the measurements, the location and the
time the measurements were taken, and thresholds that may cause some activity if over-
stepped. Besides such data, the server provides meta data that allow for descriptions of the
measuring locations, of the pollutants measured and of regulations or laws according to which
a comparison between measurements and thresholds can be performed.

With TEMSIS, an environmental information system is designed and implemented as
part of a transnational cooperation between the communities in the German-French urban
agglomeration, Moselle Est and Stadtverband Saarbriicken. Networked information kiosks
will be installed in a number of communities to provide public and expert environmental
information.

The timely availability of relevant information about the current environmental situation
improves the planning and reactive capabilities of the administration considerably. The sum-
marization of information in natural languages saves time by reducing the need of looking
up heterogeneous data on the server. The domain of air quality reports is especially promis-
ing in this respect since the underlying data are relatively complex and highly structured.
The generated texts can be complemented with graphical presentations of the development
of measurements over time or comparisons with earlier periods. The generated texts can be
edited by the administration to fit additional needs. '

The generation system has interfaces to the server (access to data and meta data) and
to the navigator, through which the user selects his request from a hierarchy of options.

*This work was funded by the European Union within the TEMSIS project (Telematics Applications C9,
no. 2945).

15

Moreover, an interface to a diagram graphics generator is foreseen. The results are presented
on the Web as an HTML document. The generation system must fulfill two tasks:

Text structuring: A schema-based component generates the text structure on the basis of
the user’s request. It combines fixed text blocks with dynamic text in an as language-
neutral way as possible.

Surface realization: The production system TG/2 [Busemann, 1996] is reused for language-
specific processing. It will operate with grammars partly tuned towards the domain and
task requirements.

In addition, in order to be cooperative and helpful, the system must exhibit robustness
in all its parts. Any of the interfaces in the generator may provide unexpected input. For
instance, the number of available measurements may be insufficient to fit a schema, or the
user request may be ill-formed. Nevertheless the generator has to capture such failures and
produce adequate meta-level comments.

2 Text structuring using real world data

The overall task of the text planning component in TEMSIS is the production of an inter-
mediate structure of an air pollution report suiting a small set of user specifications. These
specifications determine a report structure and access paths to the concrete data to be in-
cluded in the report. The report structure is taken out of a small set of pre-defined structures,
which were defined on the basis of analyses carried out by domain experts in Germany and
France. Each report consists of a set of assertions whose composition is obtained in varying
degrees of cannedness (numbers refer to the sample report in Figure 1):

e Canned texts taken from the database (2), (6); these assertions constitute descriptions
of the major domain concepts involved. Their inclusion into the report is optional.

e Freely generated, but data-independent assertions (1), (3); these assertions represent
confirmations of user parameters. Their inclusion into the report is optional, too.

e Freely generated, data-dependent assertions (4), (5), (7); these assertions constitute
presentations of stored or derived data, selected from the database in accordance with
the user’s specifications. Moreover, even the structure of these assertions depends to
some extent on the database content; in case the data stored are considered insufficient
for a reliable statement about the requested data, a suitable qualifying statement about
the requested information is added. This is one of the places where cooperativeness
meets robustness.

In addition, vectors of data are depicted as diagrams in some report types. Diagrams will
not be produced by our system, but inserted into the text if appropriate at locations defined
through the text structure. If a graphics component is not available, the information to be
diagrammed can alternatively be presented as a formatted table.

In more technical terms, major tasks in the text organization part of the TEMSIS system
are the following:

16

(1) Zur Betrachtung der Luftbelastung im Winter 1996/97 haben Sie die MeBstation Vélklingen-
City ausgewahlt. (optional)

[In order to inform yourself about the air pollution during winter 1996/97, you have
chosen the measurement station of V6lklingen-City.]

(2) Die Lage der MeBstation Volklingen-City kann wie folgt charakterisiert werden: Die Station
liegt mitten in der Volklinger Innenstadt auf 220 Meter Meereshohe. Gemessen wird in 4
m Hohe iiber dem Boden. Die Station ist von Gebauden umgeben und liegt an einer stark
befahrenen StraBe. (optional)

[The location of the measurement station of V6lklingen-City can be described as follows:
It is located ... at 220m of altitude...]

(3) Sie wollen sich tber die Konzentration von Schwefeldioxyd in der Luft informieren. (op-
tional)

[You want to know the concentration of sulfur dioxide.]

(4) Im Winter 1996/97 wurde der MIK-Wert nach VDI-Richtlinie 2310 von 1000 pg/m3 an der
MeBstation Volklingen-City nicht erreicht. Der MIK-Wert fiir eine 24-stiindige Einwirkungs-
dauer (300 ug/m?®) wurde dreimal iiberschritten.

[During the winter 1996/97, the MIK value according to VDI directive 2310 of 1000
pg/m3 was not reached at the measurement station of Vélklingen-City. The MIK value
for an exposition of 24 hours (300 pg/m3) was exceeded three times.]

(5) Im Winter 1995 wurde der MIK-Wert nicht erreicht. Der MIK-Wert fiir eine 24-stiindige
Einwirkungsdauer wurde einmal uberschritten.

[During winter 1995/96, the MIK value was not reached. The MIK value for an expo-
sition of 24 hours was exceeded once.]

(6) Schwefeldioxyd ist ein gasformiger Schadstoff, der im wesentlichen durch die Verbrennung
von Kohle, Heizol und Gas bei der Hausheizung, Stromerzeugung und ahnlichen Produkti-
onsprozessen entsteht. Er verteilt sich im allgemeinen zu einer gleichmaBigen Luftbelastung.
Er gefahrdet die menschliche Gesundheit. (optional)

[Sulfur dioxide is a gaseous pollutant... It is dangerous to human health.]

(7) Der Grenzwert fiir den Schadstoff Schwefeldioxyd liegt in der Bundesrepublik bei 30 ug/m?
Luft fir die Langzeitbetrachtung von Durchschnittswerten. Die Kurzzeitbelastung darf nicht
hoher als 3000 ug/m3 liegen (nachzulesen in der TA Luft). (optional)

[The threshold value for the pollutant sulfur dioxide is, in Germany, at 30 ug/m3 for a
long-term observation of average values. The short-term exposition must not be higher
than 3000 pg/m3 (according to the technical directive “TA Luft”).]

Figure 1: A sample target text. The user has chosen from the navigator menus the pollutant
SO., the location Volklingen, and the period “winter season 1996”. In addition, a description
of threshold passings was preferred to one of absolute values.

17

e Report structures must be defined in such a way that their parameters (corresponding
to user specifications), their ingredients in terms of assertion patterns, and the required
database calls whose results should fill certain places in these patterns are associated
to each other in a declarative, flexible, and easily maintainable manner. In particular,
common specifications are shared across report types, and data preparation procedures
take care of filling specification parameters and data obtained from the database into
appropriate places of assertion patterns.

e The instantiation of report structures must be organized in a systematic way, which
comprises the selection and the refinement of assertion patterns, depending on relevant
database values, lexical material, and context.

e The assertion specifications must be manipulated according to the textual context.
Temporal, local, and subject circumstances are not repeated in the presentation.

The second task is the most interesting one in the above list. Assertion specifications orig-
inally available in terms of the condensed user parameters ultimately have to be related to
lexical specifications in both French and German, the target languages in TEMSIS. In or-
der to achieve these transitions in a systematic way, distinct predicates are defined on three
ontological levels, corresponding to:

1. user parameters,
2. conceptual representations,
3. language-neutral representations

There is an increasing degree of explicitness from level 1 to 3. Assume a certain threshold
value is included in a report.

1. It is implicitly associated with certain combinations of report specifications, according
to a deep analysis of the underlying relations.

2. Its representation on a conceptual level comprises a semantically rich predicate and a
value.

3. The concept is expanded into a description at the language-neutral level, distinguishing
the threshold from its justification (that is, the law by which it is introduced, and the
time period determining its validity).

The techniques of mapping structures across representation levels works on the basis of a
small set of compositional schemata, as described in detail in [Horacek, 1996]. The system’s
functionality within the domain of air quality reporting is well-defined and sufficiently limited
for using more condensed mapping schemata than in [Horacek, 1996]. A deep analysis of the
underlying relations would be unnecessarily time-consuming in our application.

A fourth ontological level is that of language-specific representation. Here the resulting
description may be realized by different word groups in the target language (for instance,
'valeur limite autorisé’ and ’gesetzlich zulassiger Grenzwert’, respectively, none of the French

words corresponding to a single German word and vice versa). This level is implemented
through the TG/2 realizer.

18

[LANGUAGE german 1
CcOoP threshold — exceeded

_PRED season

SEASON winter
NAHE [YE‘.AR 1996]

TIME

THRESHOLD-VALUE AMOUNT 180 }

UNIT mkg—m3

:STATUS yes
EXCEEDS TES]
DURATION DAY 3]

Figure 2: A sample TG/2 input representation for the German version of During the winter
1996/97, the legally admissible threshold for a three-day assessment of 180 pg/m3 was exceeded
seven times.

3 Language-specific realization with TG /2

The system TG /2 [Busemann, 1996, Wein, 1996] is a flexible and reusable, application-oriented
text realization system that can be smoothly integrated with deep generation processes. It
integrates canned text, templates, and context-free rules into a single production-rule formal-
ism.

TG/2 is based on production system techniques [Davis and King, 1977] that preserve
modularity of processing and linguistic knowledge, hence making the system transparent and
reusable for various applications.

In the application at hand, the interface between the text planner and TG/2 consists of
domain speechact representations. An example is shown in Figure 2. These representations
are ignorant with respect to the differences between German and French. Basically, they
express a speechact (COOP) combined with a set of domain roles. The roles express e.g. the
pollutant, the type and the value of thresholds, actual measurements, information about the
time and the place the measurements were taken etc.

The text planner uses this intermediate representation every time it feeds an assertion
to TG/2. The planner knows which roles must be expressed for TG/2 to generate output.
On the basis of contextual knowledge, it also knows which information should be left out
since it is already known to the user. In utterance (4) of Figure 1, the pollutant need not be
mentioned, since it was introduced in (3) already. Similarly, utterance (5) need not repeat
many parts mentioned already in (4), e.g. details about the threshold, or the location. The
text planner decides which types of informations are passed on for realization in TG/2.

Formally, the representations are encoded as feature structures. This allows for a very
comfortable adaptation to a TG/2-internal format through the unification with a predefined
structure that expresses the necessary mappings as coreferences. The internal representation
is looked up by the grammar interpreter in order to determine which production rules can be
applied, and what information must be realized into natural language.

Grammar rules are designed as productions (cf. Figure 3). They are encoded in the

19

(defproduction wertueberschreitung "WUOG"
(:PRECOND (:CAT DECL
:TEST ((pred-eq ’threshold-exceeded)
(not (threshold-type-p))))
:ACTIONS (:TEMPLATE "Der gesetzlich zulaessige Grenzwert von "
(:RULE VAL (get-param ’threshold-value))
(:0OPTRULE POLL (get-param ’pollutant))
"wurde "
(:OPTRULE PPtime (get-param ’time))
(:RULE DUR (get-param ’duration))
(:0PTRULE SITE (get-param ’site))
(:RULE EXCEEDS (get-param ’exceeds))
u_u)))

Figure 3: A TGL rule for German encoding a template to be used for input as shown in
Figure 2. Information about the threshold value, the duration and about threshold violation
are mandatory; all other slots are optional. The function get-param extracts the relevant
information from the translated input representation.

language TGL [Busemann, 1996]. A rule is applicable, if its preconditions are met. The
rule in Figure 3 is applicable to input material as shown in Figure 2, because the COOP slot
matches, and there is no information about the threshold type (such information would lead
to a different sentence pattern). TGL rule development in previous applications showed that
it is possible to separate general, linguistic rules from specific ones, thus allowing the general
portions to be reused in other applications.! The use of different levels of abstraction from
underlying message information (canned text, templates, context-free grammars) allows the
grammar writer to model general, reusable linguistic knowledge as well as more specific task
and domain-oriented wordings. In particular, standardized linguistic realizations of typical
situations can be directly encoded into the grammar as canned text.

By associating canned text with domain speech acts, TG/2 behaves in a domain and task
specific way. The loss of flexibility in the wording, which the text planner cannot influence,
is hardly a problem in technical documents. However, repetition of known information can
be avoided. The possibility of omission is reflected in the grammar through the notion of
optional rule applications (OPTRULE, cf. Figure 3). Optional rules are ignored if the input
structure does not contain relevant information. In the domain and for the task at hand,
it was possible to design the text templates in such a way that this compositional approach
leads to fluent text.

If alternative formulations for some message are encoded in the TGL grammar, they can
be ordered according to a set of preference criteria that cause the system to prefer certain
formulations over others. Grammar rules leading to preferred formulations are selected first
from a conflict set of concurring rules. This way, different formulations can be generated as
well as texts of different length. The preference mechanisms will be used to tailor texts for
administrative and public uses, respectively.

'For instance, a sub-grammar describing dates in the domain of appointment scheduling
[Busemann et al., 1997] could be reused here with minor extensions.

20

4 Conclusion and Future Work

We described ongoing work on the generation of German and French air quality reports on
the basis of up-to-date environmental measurements. A prototype implementation has been
achieved and is being tested with real data. The texts are generated in either German or
French. They are presented as HTML documents (alternatively, I#TEX or plain ASCII text
is provided on demand).

We claimed that a simple, compositional approach to text structuring and realization be
sufficient for this domain. Obviously there is a large class of relatively simple NLG applications
that can be captured by the approach presented in this paper. However, other applications
may require some interdependency between the text planner and the realizer, thus calling for
a more elaborate and flexible interface including e.g. logical forms for the utterances. While
such representations can be handled within TG/2, as was shown in [Busemann, 1996], they
require much more effort for grammar development and extension than the flat ones adopted
here.

Future work will place particular emphasis on the application-oriented design of the in-
terface between the text structuring component and the realizer. We believe that gathering
experience with real applications is a good starting point for determining relations between
requirements imposed by the applications and the level of abstraction chosen for the inter-
mediate representations. As a result we will be able to tailor systems better according to the
complexity of NLG applications.

References

[Busemann et al., 1997] Stephan Busemann, Thierry Declerck, Abdel Kader Diagne, Luca
Dini, Judith Klein, and Sven Schmeier. Natural language dialogue service for appointment
scheduling agents. In Proc. 5th Conference on Applied Natural Language Processing, pages
25-32, Washington, DC., 1997.

[Busemann, 1996] Stephan Busemann. Best-first surface realization. In Donia Scott, editor,
Eighth International Natural Language Generation Workshop. Proceedings, Herstmonceux,
Univ. of Brighton, England, 1996. Also available as Research Report RR-96-05, Deutsches
Forschungszentrum fir Kiinstliche Intelligenz, Saarbriicken, Germany.

[Davis and King, 1977] Randall Davis and Jonathan King. An overview of production sys-
tems. In E. W. Elcock and D. Michie, editors, Machine Intelligence 8, pages 300-332. Ellis
Horwood, Chichester, 1977.

[Horacek, 1996] Helmut Horacek. Lexical choice in expressing metonymic relations in multiple
language. Machine Translation, (11):109-158, 1996.

[Wein, 1996] Michael Wein. FEine parametrisierbare Generierungskomponente mit gener-
ischem Backtracking. Master’s thesis, Department for Computer Science, University of
the Saarland, 1996.

21

Nonmonotonic Aspects of Incremental Natural Language Production:
Performing Self—Corrections in a Situated Generator

Wolfgang Finkler
German Research Center for Artificial Intelligence, Saarbriicken

Abstract

In an incremental generation system the pro-
duction of output starts before the complete
input specification to the generation system is
known. That runs the risk of being forced
to perform a self-correction. We present an
interdisciplinary approach to generation that
deals with nonmonotonic aspects of incremen-
tal processing by utilizing a reason maintenance
system. For the first time, a generator has
been presented which can realize typical self-
corrections, and is able to create declarative
representations for the generated spontaneous
utterances. The results of an extensive corpus
analysis of self—corrections are a basis for the
implemented system PERFECTION.

1 Motivation

The effective use of automatically produced spoken lan-
guage output in a user interface requires the observation
of a number of constraints on the design and realiza-
tion of a natural language generator. Besides general
aspects such as tailoring output to specific users, pro-
ducing output that is well-formed and adequate with
respect to the contents, there is a need to pay attention
to temporal factors of the generation process. Research
results in the field of Human—Computer interaction show
that speech systems are subject to strong real-time con-
straints. Speech output of a system demands the human
addressee to preserve steady attention in order to avoid
missing some part of the transitory output. Therefore,
the delay of the output shouldn’t be too long. Further-
more, a dialogue partner might utilize a possibility for
turn—taking, when there is an initial delay in a dialog
contribution that differs too much from typical delays.

22

2 Incremental Processing during
Natural Language Production

In order to fulfill these real-time constraints on Human—
Computer interaction we suggest the utilization of the
incremental processing mode in a user interface with spo-
ken language output being highly relevant from a practi-
cal perspective. Hereby, the production of output starts
before the complete input to the generation system is
known. A prompt system reaction may result that pro-
vides immediate feedback to elements of users’ input. A
user may exert influence on a computation while perceiv-
ing fragments of the system output. Such tight coupling
of applications and their usage has been envisaged for
intelligent user interfaces [Marcus and van Dam, 1991].
In addition, applications such as simultaneous interpre-
tation of natural language or reporting about ongoing
events typically utilize the incremental processing mode.
From a theoretical point of view, the incremental pro-
cessing mode is part of psychologically plausible mod-
els of human language production (see, e.g., [Kempen,
1978], [Levelt, 1989]).

2.1 Incremental Output and the Need for
Self-Corrections

Gains in the responsive nature of a system cannot be ex-
pected to be obtainable without running a risk. During
incremental generation the computation as well as the
articulation of the beginning of an utterance are per-
formed in spite of temporarily incomplete input data. If
further input increments specify unexpected additional
data or even demand the modification or deletion of
previously specified data, revisions in the computation
have to be dealt with [De Smedt and Kempen, 1987),
[De Smedt, 1991]. Eventually, parts of the already ar-
ticulated system output are affected. They have to be
identified and repaired in an adequate continuation of
the utterance [Finkler, 1996].

We present aspects of an implemented approach to
incremental syntactic generation that goes well beyond
previously published incremental generators (see, e.g.,

MUMBLE by [Meteer et al., 1987], IPG by [Kempen and
Hoenkamp, 1987], POPEL-HOW by [Finkler and Neu-
mann, 1989] and [Reithinger, 1991], IPF by [De Smedt,
1990], the generation component in $DM DIALOG by
[Kitano, 1990], FIG by [Ward, 1994], SYNPHONICS-
Formulator by [Abb et al, 1993], and TAG-GEN by
[Kilger and Finkler, 1995]). The additional capability
of our system is related to a sophisticated realization of
self-corrections during incremental output production.
Special emphasis was laid on the treatment of nonmono-
tonic cases of the incremental processing mode and on
situated aspects of language production. A natural lan-
guage generation system modifies its environment by
means of spoken language output. Speech output cannot
be withdrawn in the same way as is possible for inter-
nal results of computations of a system. It is utilized as
a situational influence on the further processing of the
generator. These observations are of specific interest to
tasks that necessitate modifications of the current out-
put because of nonmonotonic input specifications. The
generator is able to perform self—corrections of the al-
ready produced output by means of computing an ad-
equate moment of interruption, editing terms, and the
continuation of the utterance. Instead of merely realiz-
ing a technical repair such as a complete restart, it may
simulate and represent certain types of self-corrections
as they typically occur in human language production.!

2.2 A corpus analysis as the empirical
basis for automatic production of
self—corrections

In order to broaden the knowledge of the shape of typi-
cal self-corrections in dialog situations, an extensive cor-
pus analysis has been realized for a selection of collected
speech data of the VERBMOBIL-project. In that ef-
fort, 1251 self—corrections have been identified in a set of
acoustic data of approximately 8 hours duration contain-
ing 4590 dialog turns. Thereby, hypotheses of psycholin-
guistic models about the shape and the course of self-
corrections have been checked and improved by means of
additional qualifications ([Levelt, 1983], [Kempen, 1991],
[Finkler, 1996]). The results of the corpus analysis have
been utilized to guide the production of self—corrections
in the proposed model for generation. Utterance 1 illus-

'For our applications it is not desirable to simulate phe-
nomena such as stuttering and speech errors and their cor-
rections. Instead, we have tried to mimic phenomena of hu-
man language performance that are compatible with prob-
lems caused by temporal and nonmonotonic aspects of incre-
mental processing.

23

trates a simple case of a self—correction.

Utterance 1:

. eine schéne Auswahl +/von verschiede-
nen Progra=/+ <”ah> von verschiedenen <!1
verschiedne> Speisen .

(--. a good selection +/of diverse progra=/+
<uh> of diverse dishes .)

[VERBMOBIL CD 1, Dialog N004K.TRL:MM4010]

This utterance shows several of the properties that
seem to be typical for self-corrections in spoken language
use for languages such as Dutch, German, and English
according to research results of Psycholinguistics and re-
lated disciplines (see, e.g., [Levelt, 1983], [Finkler, 1996],
[Carletta et al., 1993]). These properties are related to
the moment of interruption, the location of a within—
word interruption, the editing phase and the continua-
tion of the flow of speech. Concerning specific phenom-
ena that can be identified in Utterance 1 our analysis of
self~corrections of the exchange type (N = 405) revealed
the following distributions in our corpus:

o There is an immediate interruption of the original
utterance at the reparandum element ‘Progra’. In
our corpus the original utterance typically is in-
terrupted not later than three syllables after the
reparandum (in 89.81 % of all cases).

e There is a within-word interruption at the reparan-
dum. In our corpus within-word interruptions at
the reparandum take place in 40.22 % of all cases of
immediate interruptions of the original utterance at
the reparandum position. Within-word interrup-
tions inside non-reparandum words take place in
22.54 % of all cases of delayed interruptions.

e The hesitation element ‘4h’ has been used in Utter-
ance 1 in the editing phase. In our corpus there is
a surprisingly high frequency of unfilled pauses in
the editing phase (73.09 %). However, if the editing
phase contains a hesitation element the vocal artic-
ulation ‘dh’ is the most common one. It is used in
88 % of those cases.

e The utterance continues by restarting at a phrase
boundary and by repeating elements that have been
articulated before the reparandum, i.e., by means
of an anticipatory retracing. In our corpus there
is a restart at a phrase boundary in 90.72 % of all
cases of immediate interruptions at the reparandum.
When a noun is used as reparans, the utterance typ-
ically continues by means of an anticipatory retrac-
ing (66.23 %) in contrast to the usage of a direct
replacement.

3 Some Aspects of Situated Generation

Instead of presenting more details of a descriptive view
of self-corrections we illustrate how they may be con-
structed by our incremental generator. We conceive the
process of incremental natural language generation as
a situated activity. Thereby, we take into account the
fact that speech output of a generation system changes
the environment of the system. The process of speech
production should pay attention to the situational influ-
ences of the already produced incremental output. That
view of a generation system discloses a particular con-
nection to planning systems within which planning and
execution take place in an interleaved fashion and that
allow for reactive behavior. There is an obvious corre-
spondence between a robot that has to patch its partially
executed plan after having obtained information about
its unexpectedly modified environment and a generator
that tries to repair its partially produced and articulated
utterance after having identified the inappropriateness of
parts of its output with respect to the current situation.
Our approach also resembles certain aspects of the re-
active approach to explanation as introduced in [Moore,
1989]. A system’s output is to be continued according to
input that has been provided on the fly during the nat-
ural language generation process. In contrast to [Moore,
1989] who focuses on the what-to-say part of natural
language generation, we have developed a syntactic gen-
erator for the how-to—say and when—to—say tasks of nat-
ural language generation that may process and output
utterances of an increment size below the clause level.

(1) - 1| will bring you a new pc next week
(@) — will bring |you a new pc next week

uh a new pc next week
I mean a new one next week
which is new next week

I mean a new pc
That new pc ...

Figure 1: A variety of spoken language utterances for
differing specification times of an optional input element

Figure 1 illustrates some of the results of alternative
techniques that might be used for continuing an utter-
ance in a situated generation process. The borderline

24

that separates Figure 1 into a left and a right part in-
dicates the current output position of the generator for
each of the 11 rows when that component is forced to
integrate the modifying element ‘new’ into its ongoing
verbalization. The resulting utterance of the rows (1) to
(4) doesn’t contain a self-correction, since the optional
element was known in due time. The rows numbered (5)
to (10) illustrate several self-corrections that are caused
by a late insertion of the modifying element. There are
several options to avoid redundancy in the continuation
of the utterance (see rows (6) and (9)). Row (7) shows
a kind of a hidden repair by appending a relative clause
[Finkler and Schauder, 1992]. Note, that this option is
no longer available, when the next word has been ar-
ticulated (see row (8)). There exist various possibilities
of metacomments to integrate the verbalization of the
modifier into a further utterance (e.g., see row (10)).
Row numbered (11) illustrates a strategy that hides the
self-correction in an elegant way.

We have developed a classification of structural prop-
erties of overt utterances in relation to the reparandum.
The resulting situation classes are used in order to distin-
guish relevant situations and to guide the selection of an
adequate continuation strategy. We give two examples:
One situation class comprises cases where the already
produced output is unrelated to the reparandum (rows
(1) to (3) in Figure 1)). Another of the 12 defined sit-
uation classes specifies that the reparandum has been
completely articulated and that the current output po-
sition is located inside the following constituent. That
condition is fulfilled for row number 8 in Figure 1. The
situation classes are used in the editor component of the
generator as described in Section 5.1.

4 Design Principles for Incremental
Syntactic Generation

We introduce several prominent design principles for in-
cremental syntactic generation that have been obeyed
in the realization of our system. Requirements on the
generator that arise from dealing with incremental in-
put are described as briefly as possible since they have
been discussed for several incremental generators. First
of all, exploiting parallelism might be useful during in-
cremental processing since a suitable segmentation of the
underlying representation structure is a prerequisite for
the use of an incremental processing mode. The syn-
tactic representation formalism should allow for flexible
expansion operations because input increments may ar-
rive in an arbitrary order. The generation process should
be lexically guided and the representation as well as the
processing of hierarchical and positional constraints of
the grammar should be separated. These design princi-
ples have already been realized in [Finkler and Neumann,
1989], [De Smedt, 1990], and [Kilger and Finkler, 1995).

Some important design principles that are related to in-
cremental output production are as follows:

1. The processes for syntactic generation, i.e., select-
ing, constructing and linearizing syntactic structures at
one hand and output production, i.e., deliberating how
to compose chunks of inner speech to be sent to the syn-
thesis component at the other hand should be decou-
pled. That facilitates a natural timing of articulation
since pauses may be utilized at utterance positions that
are not restricted by the shape of atomic building blocks
of the syntactic generation component. We realized an
output manager that may buffer some already computed
inner speech before feeding the speech synthesis compo-
nent and that updates a representation of the current
output position of overt speech. '

2. There should be a controlling device for trigger-
ing self-corrections and for synchronizing their compu-
tation with the ongoing production process. Global in-
formation about the effects of decisions during incre-
mental generation and about the current state of input
consumption and output production provide the basis
for guiding the generation of adequate self-corrections.
We have conceived a production oriented approach to
monitoring that differs from the perception—oriented ap-
proach as described by [Levelt, 1989]. By means of a
direct access to internal representations of the syntac-
tic generator the controlling device is able to identify
affected structures when decisions are to be revised.

3. There should be a declarative representation for
all generated utterances. In particular, that holds
for utterances containing automatically produced self-
corrections. Such an approach allows for a uniform pro-
cessing in cases where repeated self—corrections have to
be produced and integrated into one utterance. In our
approach, syntactic generation makes use of a lexical-
ized unification-based grammar. The grammar encodes
elementary syntactic structures that typically occur in
self-corrections as well as elementary syntactic struc-
tures that are used in the normal case, i.e. in utterances
without repairs. The grammar is organized in two lay-
ers in order to separate both types of grammar rules.
Constructions of the second layer — for self—corrections
— observe results of psycholinguistic studies of self-
corrections and of our corpus analysis. The resulting
utterances are similar to coordination constructions (see
[Levelt, 1983], [Kempen, 1991]). Figure 2 shows a rep-
resentation of a self-correction in our variant of Tree
Adjoining Grammar for the utterance “I will bring vou

a pc uh a new pc”.?

*Note, that we have separated both encoding and pro-
cessing of synctactic constraints for dominance and linear
precedence relations in our grammar. In particular, the il-
lustrated syntactic structures are not tree structures. Their
linear order is interpreted on the basis of context—dependent

25

V|P _.--"NP (< (any (1 2 3)))
e S |NPOETP NP
susy ¥ oiu OBz w%e T
NP,] 1 P
I "will bring” NP, o whe A2
up Np N your -
N ~ /@ NP
Specifier N RTINS |
DET * : " NP
rope AIl)JP NP
8 AII)J Specifier N

“

new DFT npcn

ng"

Figure 2: Representing constructions of spontaneous
speech in a declarative grammar

The auxiliary structure enclosed in a rectangular box
belongs to the second layer of the grammar. It connects
the original utterance with the continuation of the self-
correction. After having performed operations of adjunc-
tion and substitution (as indicated by the numbered ar-
rows) the complete dominance structure is represented.

5 Performing Self-Corrections during
Incremental Generation

Figure 3 illustrates both a functional view of the gener-
ation system and aspects of data—flow and control-flow
between the submodules of our component.

Input data to be verbalized may be specified in a ran-
dom order. They encode entities, i.e., content words
and semantic relations between them. As exemplified by
the rightmost input increment in Figure 3 there may
be nonmonotonic input specifications (CE represents:
exChange-Entity). The example specification forces the
exchange of the filler of the agent role. When the sys-
tem’s output has gone beyond a point that is to be mod-
ified, a self—correction is performed as indicated in the
lower part of Figure 3.

We present a sketch of the computation inside the syn-
tactic generator. The component consists of four mod-
ules working in parallel: Input manager and output man-
ager as the interface modules consume input data and
provide incremental output of the system. Monitor and
Editor are used as controlling devices during the pro-
duction of self-corrections (see Section 5.1). The pro-
cessing of input data is performed in a distributed par-
allel model by a set of cooperating objects which are
dynamically created.> Each of these objects runs its
own program, selects syntactic structures for verbaliz-
ing its input data and communicates with other objects

linearization rules.

3That aspect is similar to the use of parallelism in IPF
[De Smedt, 1990] and POPEL [Finkler and Neumann, 1989).

Incremental Input
(Additions, Deletions, Exchanges)

Environmental
Information

Qutput 1: 24 time units

ES: E3: R1: ...
pprisgl [bring agent E3 E5| |E Noise: 60 - 63
INPUT MANAGER »
e MONITOR
Distributed
Parallel X
Model
N
EDITOR
OUTPUT MANAGER
v
Incremental Output

Figure 3: Architecture and functional view of the gener-
ation model

to combine syntactic structures. We utilize operations
for distributed adjunction and substitution in a variant
of tree adjoining grammars as described in [Kilger, 1994].
Linearization is performed in an interplay between the
output manager and individual objects. The produced
inner speech as well as overt speech are controlled by the
output manager. The input manager as well as the ob-
jects deliver information about selected representations
and partial results to a reason maintenance system.?
That system serves as device for book-keeping of de-
pendencies among choices. Monitor and Editor realize
a production—oriented approach to control the syntactic
generation.

5.1

The Monitor repeatedly checks for fulfillment of condi-
tions to trigger self-corrections. Possible causes of self-
corrections are unexpected input specifications such as
optional elements that are given too late, nonmonotonic
input specifications, or local problems of objects during
combination or linearization of syntactic structures. Fur-
thermore, information about superposition of environ-
mental noise might be used to trigger a self—correction
of the ‘repetition’ type. The Editor performs a tempo-
rary global management of the generator after having
received an alert of the Monitor. It is responsible for

Controlling Self-Corrections

“In our system we use the original implementation of the
monotonic JTMS of [Forbus and De Kleer, 1993].

interrupting the original utterance and evaluates the in-
ternal state and the situation class of the current output
in order to determine the strategy for continuing the
utterance. The editor interrupts the computation of all
objects for a moment in order to prevent them from mod-
ifying the system state before the editing phase and the
continuation of the self-correction have been initialized
properly. After that, the processing of the self-correction
is done by a set of new objects that have been created
by the Editor.

5.2 Dealing with Nonmonotonic Aspects

26

of Incremental Generation

In general, an incremental system has to deal with non-
monotonic aspects of processing. It is not uncommon
that there is a need for withdrawal of decisions and
for retraction of assumptions. Reason maintenance sys-
tems are useful in such applications. We have utilized
a JTMS in our incremental generator and solve the en-
coding problem in a way that differs from previous usage
of RMS in systems for NL analysis (e.g. [Wirén, 1992],
[Zernik and Brown, 1988]) and generation (e.g. [Inui et
al., 1992]). None of these systems explicitly mentions
the case of having forwarded output to a next compo-
nent that cannot be kept as turns out later. Instead, all
revisions to be handled by utilizing an RMS are local
tasks inside the NL component.

We have dealt with a stronger constraint. More
than revising internal decisions by utilizing dependency-
directed backtracking there is a need for a kind of ‘un-
speaking’, i.e., repairing by means of continuing. There-
fore, whenever there are nodes in the dependency net-
work which represent parts of overt speech and which
obtain a labelling of ‘OUT’, the problem solver coupled
to the RMS, i.e. the Editor in our generator interprets
those data as being related to the reparandum in a self-
correction. That information is used to determine the
situation class as indicated in the previous section.

6 Conclusions

We presented an advanced model for incremental syntac-
tic generation of natural language. The current environ-
ment has to be considered when producing spoken lan-
guage output. The implemented system PERFECTION
is able to cope with nonmonotonic aspects of the incre-
mental processing mode and thereby may simulate self-
corrections of the already produced output as in human
language production. There is a declarative representa-
tion for all generated utterances.

References

[Abb et al., 1993] B. Abb, M. Herweg, and K. Lebeth.
The incremental generation of passive sentences. In

Proc. 6th EACL, pages 3-11, Utrecht, The Nether-
lands, 1993.

[Carletta et al., 1993] J. Carletta, R. Caley, and S. Is-
ard. A collection of self-repairs from the map task cor-
pus. Technical Report HCRC/TR-47, Human Com-
munication Research Centre, University of Edinburgh,
Edinburgh, Scotland, 1993.

[De Smedt and Kempen, 1987] K. De Smedt and
G. Kempen. Incremental sentence production, self-
correction and coordination. In G. Kempen, editor,
Natural Language Generation, pages 365-376. Marti-
nus Nijhoff, Dordrecht, 1987.

[De Smedt, 1990] K. De Smedt. Incremental Sentence
Generation: a Computer Model of Grammatical En-
coding. PhD thesis, Nijmegen Institute for Cognition
Research and Information Technology, Nijmegen, the
Netherlands, 1990. NICI TR No 90-01.

[De Smedt, 1991] K. De Smedt. Revisions during gener-
ation using non-destructive unification. In Proc. Third
European Workshop on Natural Language Generation,
pages 63-70, Judenstein, Austria, 1991.

[Finkler and Neumann, 1989] W. Finkler and G. Neu-
mann. Popel-how — a distributed parallel model for
incremental natural language production with feed-
back. In Proc. 11th IJCAI, pages 1518-1523, Detroit,
MI, 1989.

[Finkler and Schauder, 1992] W. Finkler and A.
Schauder. Effects of incremental output on incremen-
tal natural language generation. In Proc. 10th ECAI,
pages 505-507, Vienna, Austria, 1992.

[Finkler, 1996] W. Finkler. Automatische Selbstkorrek-
tur bei der inkrementellen Generierung gesprochener
Sprache unter Realzeitbedin-
gungen: Ein empirisch-simulativer Ansatz unter Ver-
wendung eines Begrindungsverwaltungssystems. PhD
thesis, Technische Fakultat, Universitdt Saarbriicken,
Saarbriicken, Germany, november 1996.

[Forbus and De Kleer, 1993] K.D.
Forbus and J. De Kleer. Building Problem Solvers.
The MIT Press, Cambridge, MA, 1993.

[Inui et al., 1992] K. Inui, T. Tokunaga, and H. Tanaka.
Text revision: A model and its implementation. In
R. Dale, E.H. Hovy, D. Rosner, and O. Stock, editors,
Aspects of Automated Natural Language Generation,
pages 215-230. Springer, 1992.

[Kempen and Hoenkamp, 1987] G. Kem-
pen and E. Hoenkamp. An incremental procedural
grammar for sentence formulation. Cognitive Science,
11(2):201-258, 1987.

[Kempen, 1978] G. Kempen. Sentence construction by a,
psychologically plausible formulator. In R. Campbell

27

and P. Smith, editors, Recent Advances in the Psychol-
ogy of Language, Volume 2: Formal and Ezperimental
Approaches. Plenum Press, New York, NY, 1978.

[Kempen, 1991] G. Kempen. Conjunction reduction and
gapping in clause-level coordination: An inheritance—

based approach. Computational Intelligence, 7:357—
360, 1991.

[Kilger and Finkler, 1995] A. Kilger and W. Finkler. In-
cremental generation for real-time applications. Re-
search Report RR-95-11, German Research Center for
Al, Saarbriicken, Germany, 1995.

[Kilger, 1994] A. Kilger. Using utags for incremental
and parallel generation. Computational Intelligence,
10(4):591-603, 1994.

[Kitano, 1990] H. Kitano. Incremental sentence pro-
duction with a parallel marker—passing algorithm.
In Proc. 13th COLING, volume 2, pages 217-221,
Helsinki, Finland, 1990.

[Levelt, 1983] W.J.M. Levelt. Monitoring and self-
repair in speech. Cognition, 14:41-104, 1983.

[Levelt, 1989] W.J.M. Levelt. Speaking: From Intention
to Articulation. The MIT Press, Cambridge, MA,
1989.

[Marcus and van Dam, 1991] A. Marcus and A. van
Dam. User-interface developments for the nineties.
Computer, 24(9):49-57, 1991.

[Meteer et al., 1987] M.W. Meteer, D.D. McDonald,
S.D. Anderson, D. Forster, L.S. Gay, A.K. Huettner,
and P. Sibun. MUMBLE-86: Design and Implemen-

tation. COINS Technical Report 87-87, University of
Massachusetts, 1987.

[Moore, 1989] J.D. Moore. A Reactive Approach to Ez-
planation in Ezpert and Advice-Giving Systems. PhD
thesis, University of California, Los Angeles, CA,
1989.

[Reithinger, 1991] N. Reithinger. Popel- an incremen-
tal and parallel natural language generation system.
In Natural Language Generation in Artificial Intelli-
gence and Computational Linguistics, pages 179-199.
Kluwer, Norwell, MA, 1991.

[Ward, 1994] N. Ward. A Connectionist Language Gen-
erator. Ablex, Norwood, NJ, 1994.

[Wirén, 1992] M. Wirén. Studies in Incremental
Natural-Language Analysis. PhD thesis, Department
of Computer and Information Science, Linkdping,
Sweden, 1992. Dissertation No. 292.

[Zernik and Brown, 1988] U. Zernik and A. Brown. De-
fault reasoning in natural language processing. In

Proc. 12th COLING, pages 801-805, Budapest, Hun-
gary, 1988.

Structural Changes in Natural Language Generation

Helmut Horacek
Universitat des Saarlandes
FB 14 Informatik
D-66041 Saarbriicken, Deutschland
horacek@cs.uni-sb.de

Abstract

In many domains and applications, an adequate and systematically developed natural
language presentation of formally represented data is hindered by crucial discrepancies
in the associated representations: formal specifications respectively raw data from which
natural’ texts are intended to be produced may differ fundamentally from dedicated
natural language representations in both ontological and structural terms. Existing tech-
niques in natural language generation and, even more, application-oriented systems take
this fact into account in an insufficient manner only, and systematic approaches that ad-
dress this issue in a sufficiently broad way are rare. Motivated by these shortcomings, we
describe three methods that enable bridging structural as well as ontological differences
between the underlying representations in one or another way. These methods pursue
widely complementary goals to bridge differences in degrees of explicitness, detail, and
perspective, and they apply distinct mechanisms, including inference rules, terminological
logic, and pattern-based equivalence definitions. A suitable selection and combination of
these methods that is oriented on the demands of a specific application should enable one
to build a system with improved presentation capabilities.

1 Introduction

In many domains and applications, an adequate and systematically developed natural lan-
guage presentation of formally represented data is hindered by crucial discrepancies in the
associated representations: formal specifications respectively raw data from which 'natural’
texts are intended to be produced may differ fundamentally from dedicated natural language
representations in both ontological and structural terms. The demands of information stor-
age, such as in databases, and the demands of problem solving, such as in knowledge-based
systems significantly differ from presentation demands in natural language, and these dif-
ferences manifest themselves in the underlying representations, too. The major differences
are:

o Varying degrees of explicitness — formal representations typically are as detailed and
explicit as needed for application purposes, while natural language representations must
take into account that texts frequently leave a number of things implicit, thereby relying
on the inferential capabilities of the audience.

o Varying degrees in granularity — formal representations typically rely on a particular level
of granularity in terminological representations, according to application needs, while
natural language representations must support the production of texts on a variety of
granularity levels, meeting the demands of the audience.

28

e Varying perspectives — formal representations typically appear in a neutral or some
application-oriented perspective, while natural language representations must enable
textual presentations from largely varying perspectives, thereby meeting the demands
of a given situation.

Existing techniques in natural language generation and, even more, application-oriented
systems, take into account these discrepancies in an insufficient manner only, and systematic
approaches that address this issue in a sufficiently broad way are rare. They do not abstract
far enough from the original specifications, which may cause a variety of deficits in the texts
produced. Motivated by these deficits, we intend to support the production of a commu-
nicatively adequate presentation by three methods that enable bridging structural as well as
ontological differences between the underlying representations in one or another way. These
methods pursue complementary goals, and they apply the following distinct mechanisms:

e the selection of a suitable ontological granularity in technical descriptions, which is
realized by terminological transformations,

e the implicit conveyance of contextually inferable information, which is realized by in-
corporating inference rules into an RST-based text planner, and

¢ a flexible and rich lexicalization method, which is realized by elementary and composi-
tional mapping schemata.

In the following, we briefly summarize each of these methods, which are described in
detail in two chapters in our ’Habilitationsschrift’, and in two long and recent journal papers,
respectively. We conclude this paper by some considerations about how these methods can
be meaningfully combined and applied in view of concrete demands and dedicated, that is,
restricted coverage of a particular application.

2 Terminological transformations

Adequately presenting the results obtained by a database access or by the inference component
of a knowledge-based system to the user of that system requires, among others, adapting the
terminology used to the particularities indicated by a user profile. A special task in this
presentation issue lies in explaining specific terms which might be unknown to the user, or
whose precise meaning in the context of the domain and in view of the system’s command of
domain knowledge the user might be unaware of.

In order to support this task, an intermediate representation level mediating between rep-
resentations oriented on storage or problem-solving purposes and those oriented on natural
language purposes is built from which conceptual and lexical representations can be built
more systematically, and to which these representations can be transformed easier (follow-
ing [Horacek, 1996b]). Guidelines for the adequate design of this intermediate representation
level include principles of conciseness, explicitness, and uniformity. The intermediate repre-
sentation level, in fact, comprises special forms of conceptual representations.

Terminological transformations being applied on that representation level serve the pur-
pose of reexpressing the meaning associated with individual representation elements (Concepts
and Roles) in more explicit terms. By building hierarchically organized Concept definitions,
such alternatives are available for Concepts. For Roles, the special definitions introduced in

29

the course of a refinement task in domain modeling provide for these alternatives (see below
for more details).

Terminologically equivalent expressions (more compact or more detailed ones) can be ob-
tained by applying some kind of elementary operations to individual representation elements,
which can be repeated in a recursive way. These operations comprise:

e FEzpanding a conceptual description by replacing subexpressions according to termino-
logical definitions, which express explicit definitions for certain aspects of the terms to
be replaced.

e (Contracting a conceptual description by replacing subexpressions according to termi-
nological definitions, which express explicitly how a subexpression to be replaced is
subsumed by a particular term.

These operations can be applied to Concepts and to Roles. Hence, there are four termi-
nological transformation procedures: ezpanding a Concept definition, contracting a Concept
definition, ezpanding a Role definition, and contracting a Role definition. Unlike for Con-
cepts, terminological transformations are essentially a new task when being applied to Roles,
especially in the direction of contraction.

Expanding Concept definitions is done by replacing selected Concept predications in a
conceptual description by other Concept predications that constitute generalizations of the
Concepts appearing in the original description. In order to maintain terminological equiva-
lence, the more specific meaning attributed to the Concepts to be replaced must be reexpressed
explicitly by adding appropriate descriptions to the newly introduced Concept predications.
These descriptions comprise Role definitions attached to the specialized Concepts, but not to
those Concepts replacing them, and more specific Role fillers which express value or cardinality
restrictions that contribute only to the meaning of the Concepts to be replaced. Contracting
Concept definitions reverses this operation. By applying these operations, the conceptual
expression 'a female student’ can be transformed into a terminologically equivalent expres-
sion ’a woman who goes to the university’ which expresses the same information content in a
structurally different way.

As for Concepts, it is also possible to replace the appearances of certain Roles in logical
formulas. This is the case for Roles which are associated with a complex meaning and can be
defined more explicitly in terms of possibly rather complex conceptual structures consisting of
Concepts and Roles associated with less complex meanings. The terminological equivalence
is expressed by transformation rules, which have the same expressive power as Structural
Descriptions except to the fact, that they are not interpreted as mere restrictions, but
as equivalencies. In KL-ONE, a Structural Description allows one to express how Roles
of a Concept interrelate in terms of other Concepts. Structural Descriptions are usually
applied to express the meaning attributed to a specialized Concept with respect to (one of)
its generalizations. Our application deviates from this usage insofar as we consider only
cases where the meaning of the specialization manifests itself merely in an additional Role
or in a Role restriction. Consequently, the meaning associated with this Role (or with the
restriction) can alternatively be expressed by the Structural Description, which is exactly
what we want. By means of appropriate definitions, the Role 'liquidity’ attributed to an asset
can be terminologically expanded into ’the possibility of the owner of the asset to concert it
into money during its term’.

30

When applying terminological transformations in generation, the choice of which alterna-
tive has to be preferred in a concrete discourse situation is guided by pursuing two partially
conflicting Gricean maxims:

e The resulting utterance should be as concise as possible, but still contain the necessary
information (including, in particular, co-operative overanswering).

e All parts of the utterance should be comprehensible for the other conversant. Dialog
strategies are needed to guide the appropriate selection among the alternatives available.

3 Exploiting the inferential capabilities of the addressee in
text planning

In order to produce natural, high quality textual presentations in technical domains, these
presentations must not only be adapted to the knowledge attributed to the intended audience,
but they must also take into account the inferential capabilities of the addressees. In texts
whose aim is to illustrate aspects of problem-solving rather than to present a mere set of
facts such as in database descriptions, the elements of the underlying information content
are interrelated to a considerable degree. Because of that, humans can infer the intended
message conveniently from suitably selected portions of that information content and they
usually prefer to do so. However, the majority of generation system do not take inferential
relations among presentation ingredients into account. In order to overcome these deficits, a
system must exhibit several capabilities to select its presentation content:

e Avoiding the presentation of redundant information, unless doing this would serve an-
other communicative purpose, such as putting emphasis on a particular issue.

e Maintaining coherence in the discourse it produces, as well as in cases where the system
wants the user to believe some pieces of information that are implied, but not uttered
explicitly.

e Adapting its choices of expressing pieces of information explicitly or leaving them to
be uncovered by the addressee’s inferential capability, according to evidence about the
addressee’s domain knowledge and discourse preferences.

We have developed a model that exhibits these capabilities to a certain degree [Horacek, 1997]
. It attempts to anticipate contextually-motivated inferences addressees are likely to draw.
The model is applicable to explicit representations of reasoning chains which consist of reg-
ularities, such as ’group leaders must be assigned to single rooms’, and facts that contribute
to the underlying reasoning process, such as 'A is a group leader’, ’1 is a single room’. Fur-
thermore, relations indicate how these facts depend on each other, which regularities are
relevant in a given context, and to which entities they apply in a concrete instance, such as
the propositions ’group leaders must be assigned to single rooms’, and '1 is a single room’,
which contribute evidence for the assignment of group leader A to room 1. Inferences in
understanding utterances embodying these ingredients comprise purely logical conclusions,
such as substitution, e.g., A must be assigned to a single room’, and deduction, e.g., ’Group
leader A is in room 1’ implies 'room 1 is a single room’. In addition, inferences comprise
plausible abductive reasoning, such as 'room 1 is a single room’, given the fact 'A is assigned

31

to room 1’ and relevance of the regularity 'group leaders must be assigned to single rooms’,
as well as contextually motivated assumptions and expectations.

In the course of text planning, rules anticipating these kinds of user inferences are invoked
to determine contextually justified derivability of information. For those pieces that are infer-
able, annotations are introduced in the text structure tree that indicate on which propositions
and on which pieces of domain knowledge these inferences rely. Based on that, text variants
can be composed from a text plan entailing these annotations about the inferability of pieces
of information.

Our model is used to motivate choices in presenting or omitting individual pieces of infor-
mation; it takes into account the addressees’ domain expertise and expectations about logi-
cal consequences of purposefully presented information. Moreover, pragmatically-motivated
preference criteria can be used to choose among several plausible variants. Several kinds of
empirical evidence are incorporated into this text planning process that aims at exploiting
conversational implicature, so that a most suitable portion of the plan can be selected for
being uttered explicitly. The model is formulated in a reasonably domain-independent way,
so that the rules expressing aspects of conversational implicature can be incorporated into
typical RST-based text planners. This way, our method adds to discourse planners based on
Rhetorical Structure Theory (RST) the ability to omit easily inferable information, so that it
overcomes one of the main shortcomings of RST. To summarize our method to incorporate
inferential capabilites into text planning, we ground our approach on the following hypotheses:

¢ Logical reasoning is a good way to model a user’s understanding of an explanation.

e The logic must be interpreted in context: assumptions and expectations must be taken
into account.

e We have evidence that certain regular interpretation patterns expressible by rules are
used by the addressee, which accounts for aspects of conversational implicature.

4 A lexicalization method realized by elementary and compo-
sitional mapping schemata

In order to derive a variety of natural language expressions from a common underlying rep-
resentation, we apply the method of pattern-based mapping schemata described in detail
in [Horacek, 1996a]. From the point of view of lexicalization, the conceptual representation
serves the purpose of a language-neutral representation covering, for the phenomena of inter-
est, the discrepancies occurring across the natural languages treated.

By means of schemata that express correspondences between elements of conceptual
and lexical representation levels, predicates appearing in conceptual representations can be
mapped onto predicates appearing on the lexical representation level (that is, lexemes, gram-
matical functions, and features) in a variety of structure-preserving or structure-changing
ways. These schemata refer to individual or small sets of predicates, and they are applicable
compositionally and bi-directionally.

The mapping schemata express correspondences between language-neutral representations
and lexical elements in a target language, that is, individual lexical items, functions, and fea-
tures. In the sense of the underlying model, these schemata express the conceptual coverage
of lexical items. The schemata. consist of pure correspondence specifications and contextual

32

conditions, referring to adjacent conceptual or lexical items. These schemata only express
local correspondences across representation levels. Consistency and composition methods are
specified on the respective representation levels, independently from each other. In partic-
ular, a subset of the mapping schemata express which conceptual objects can eventually be
left implicit in surface expressions, other restrictions permitting. Moreover, the schemata
express how such an object is linked to some other explicitly expressed object, that is, which
conceptual element or chain of elements corresponds to the relation left implicit. Some of
these constructs fall under the category of metonymic relations. Another typical example of
this type of mapping is the reference to a person by his/her proper name without expressing
the category ’human’ or ’person’ explicitly. The mapping schemata are supported by a lexi-
con which entails detailed information about the semantics of lexemes, including data about
perspectives and knowledge to derive possible meanings of metonymic relations in the sense
of Pustejovsky.

We have identified some (typical) classes of schemata, namely ZOOM schemata and SUB-
STITUTION schemata, where one lexeme, one grammastical function, one feature, one feature
value, or the semantics associated with a special operator expresses the meaning associated
with a chain of nodes and links in the conceptual representation:

e ZOOM schemata serve the purpose of bridging differences in granularity, by relating
a lexical predicate to a chunk of conceptual elements; alternative correspondences can
be established by implementing results from lexical semantics and insights originating
from lexicography, in the degree of accuracy needed for the application at hand. The
lexical structures are rebuilt from the language-neutral ontology in a form which is ei-
ther contracted or expanded compared to a structure which would have been obtained
by applying the standard schema. The content bearing parts, however, can immedi-
ately be identified in the resulting structure. By applying different compositions of
ZOOM schemata, textual variations, such as 'John owns a house’, *John is the owner
of a house’, and ’John’s house’ can be generated from the same underlying conceptual
representation.

e SUBSTITUTION schemata serve the purpose of bridging differences in degrees of ex-
plicitness, thereby relating pieces of information expressed implicitly on the lexical rep-
resentation level to their corresponding images in conceptual representations. Thus, in-
formation that is expressed explicitly on the language-neutral representation level may
be left implicit if this results in coherent expressions on the syntactic functional level.
This class of schema is usually applicable, when one phrase on the natural language
side bears the role of another one, which does not appear on the surface for reasons of
avoiding redundancy on the language level thus providing some sort of paraphrasing
capabilities. These capabilities comprise simple cases such as references to a person by
his/her name, or references to objects by some prominent property, such as to an asset
by means of its associated value in terms of money. Moreover, phenomena also such as
metonymy can be treated by these kinds of schemata, to produce expressions in which
a metonymic relation is left implicit. Combinations of ZOOM and SUBSTITUTION
schemata contribute to produce structurally divergent expressions such as 'Mary has
finished the beer’ and "Mary hat das Beer ausgetrunken’ (in German) from the same
conceptual representation.

The composition of individual schema application is achieved by unifying the structures

33

resulting from applications of individual mapping schemata. Controling this process is diffi-
cult, although the associated search problem can be drastically reduced by a priori calculating
and propagating local incompatibilities, which unfortunately is a rather complicated proce-
dure, too. In a concrete application, however, motivated simplifications and special search
heuristics can probably be applied with benefit.

5 Concluding remarks

In this paper, we have presented three methods that enable bridging structural as well as
ontological differences between representations underlying formal storage and reasoning sys-
tems and natural language presentations. These methods pursue widely complementary goals
to bridge differences in degrees of explicitness, detail, and perspective, and they apply dis-
tinct mechanisms, including inference rules, terminological logic, and pattern-based mapping
schemata that constitute lexical equivalence definitions. The methods proposed can be applied
to address a variety of phenomena that bear relevance in producing adequate presentations:

e terminological knowledge expressed in terms of logical equivalence definitions by which
largely varying alternative descriptions of specific terms can be produced,

e inferences motivated by causality or by contextually-justified expectations through rules
that encapsulate the underlying reasoning, and

e lexically-motivated phenomena such as nominalizations, metonymy, and some sorts of
paraphrases that can be described in terms of compositional patterns to enable their
proper contextual integration.

Typically, the methods described are applied in sequence, terminological transformations
followed by inference rules, and then pattern-based schemata. Since there are apparent inter-
dependencies, especially between terminological equivalencies and inferences, this admittedly
simple architecture is not very satisfactory yet. However, this conclusion is not surprising,
since all methods encapsulate very detailed reasoning. Nevertheless, the full power of our
methods is certainly needed in some parts only for a concrete application, so that this ar-
chitectural deficit becomes less severe. Consequently, we see these methods as a repertoire
of tools, so that a suitable selection and combination of these methods that is oriented on
the demands of a specific application should enable one to build a system with improved
presentation capabilities.

References

[Horacek, 1996a] H. Horacek. Lexical choice in expressing metonymic relations in multiple
language. Machine Translation, 11:109-158, 1996.

[Horacek, 1996b] H. Horacek. On bridging the gap between lexical and conceptual represen-
tations. Habilitationsschrift, University of Bielefeld, 1996.

[Horacek, 1997] H. Horacek. A model for adapting explanations to the user’s likely inferences.
To appear in User Modeling and User-Adapted Interaction, 1997.

34

PROVERB: Verbalizing Proofs

Xiaorong Huang
Techne Knowledge Systems Inc.
Toronto, Ontario M5S 3G4
Canada
xiaorong@cs.toronto.edu

Abstract

This paper describes the linguistic part of a fully
implemented system called PROVERB, which
transforms, abstracts, and verbalizes machine-
found proofs into formated texts. PROVERB
employs a pipe line architecture consisting of
three components. Its macroplanner linearizes a
proof and plans mediating communicative acts
by employing a combination of hierarchical plan-
ning and focus-guided navigation. The mi-
croplanner then maps communicative acts and
domain concepts into linguistic resources, para-
phrases and aggregates such resources to pro-
duce the final Text Structure. A Text Structure
contains all necessary syntactic information, and
can be executed by our realizer into grammatical
sentences.

1 Introduction

PROVERB is a text planner that verbal-
izes natural deduction (ND) style proofs
[Gentzen, 1935, Huang, 1994b]. Like most
application-oriented systems, it employs a pipe
line architecture consisting of three parts. The
architecture of PROVERB is illustrated in Fig-
ure 1.

The macroplanner of PROVERB accepts as
input a natural deduction style proof, and pro-
duces proof communicative acts which are struc-
tured into hierarchical discourse units. To do so,
it uses a strategy which combines hierarchical
planning and focus-guided navigation.

More detailed linguistic decisions are made by
the microplanner. It makes reference choices,
chooses between linguistic resources for domain
concepts, combines and reorganizes such re-
sources into paragraphs and sentences. As the
representation which supports all these opera-
tions, the microplanner of PROVERB adopts a

Armin Fiedler
Fachbereich Informatik
Universitat des Saarlandes
Postfach 15 11 50
D-66041 Saarbriicken, Germany
afiedler@cs.uni-sb.de

Natural Deduction Proof

v

Macroplanner

\V PCAs

Microplanner

w Text Structure

Realizer

v

Natural Language Proof

Figure 1: Architecture of PROVERB

variation of Meteer’s Text Structure, which is
also its output.

Our realizer, TAG-GEN, is a syntactic gen-
erator based on the grammar formalism TAG
[Kilger and Finkler, 1995].

Section 2 and Section 3 are devoted to the
macroplanner and the microplanner, respec-
tively. Section 4 contains a complete example.
Finally, we shall conclude this paper with a dis-
cussion in Section 5.

2 Macroplanning:
Hierarchical Planning and
Focus-Guided Navigation

PROVERB’s macroplanner combines hierar-
chical planning and local navigation within
a uniform planning framework [Huang, 1994a,
Huang and Fiedler, 1997]. The hierarchical
planning splits the task of presenting a par-
ticular proof into subtasks of presenting sub-
proofs. Local navigation operators simulate the
unplanned aspect, where the next conclusion to
be presented is chosen under the guidance of a
local focus mechanism.

35

This planning mechanism produces a sequence
of proof communicative acts that serves as a text
plan for an ND-style proof.

2.1 Proof Communicative Acts

Proof communicative acts (PCAs) are the prim-
itive actions planned by the macroplanner of
PROVERB. Like speech acts, they can be de-
fined in terms of the communicative goals they
fulfill as well as their possible verbalizations. An
example of a simplistic one conveying the deriva-
tion of a new intermediate conclusion is the PCA

(Derive Reasons: (a€F, F CG)
Method: def-subset
Conclusion: a €QG)

Depending on the reference choices, the follow-
ing is a possible verbalization:

“Since a is an element of F and F'is a subset
of G, a is an element of G by the definition
of subset.”

There are also PCAs that convey a partial plan
for further presentation and thereby update the
global attentional structure. For instance, the
PCA

(Begin-Cases Goal: Formula
Assumptions: (A B))

creates two attentional units with A and B as
the assumptions, and Formula as the goal by
producing the verbalization:

“To prove Formula, let us consider the two
cases by assuming A and B.”

PCA of the latter sort are also called meta-
comments [Zukerman, 1991].

2.2 Hierarchical Planning

Hierarchical planning operators represent com-
municative norms concerning how a proof to be
presented can be split into subproofs, and how
the subproofs can be mapped onto some linear
order. Let us look at one such operator, which
handles proofs containing case analyses. The
corresponding schema of such a proof tree is

a G

"Ly : F VG .;I:2-Z Q .;]:3-2 Q CASE
L AFQ

where the subproof rooted by ?7L4 leads to FVG,
while subproofs rooted by 7Ly and ?L3 are the
two cases proving) by assuming F or G, re-
spectively. The applicability encodes the two
scenarios of case analysis, where we do not go
into details. In both circumstances this operator
first presents the part leading to F'VG, and then
proceeds with the two cases. It also inserts cer-
tain PCAs to mediate between parts of proofs.
This procedure is captured by the planning op-
erator below (note that the verbalizations given
are only one possible paraphrase):

Case-Implicit

¢ Applicability Condition: ((task ?L;) V
(local-focus 7L4)) A (not-conveyed (?Ly ?7L3))

o Acts:

1.if 7L4 has not been conveyed, then present

?L4 (subgoal 1)

.a PCA with a verbalization: “First, let us
consider the first case by assuming F.”

.present 7L, (subgoal 2)

.a PCA with a verbalization: “Next, we con-
sider the second case by assuming G.”

5.

6. mark 7L, as conveyed

present ?L3 (subgoal 3)

o features:
implicit)

(hierarchical-planning compulsory

2.3 Local Navigation

The local navigation operators simulate the un-
planned part of proof presentation. Instead of
splitting presentation goals into subgoals, they
follow the local derivation relation to find a proof
step to be presented next.

The Local Focus

The node to be presented next is suggested by
the mechanism of locel focus. In PROVERB,
our local focus is the last derived step, while fo-
cal centers are semantic objects mentioned in the
local focus. Although logically any proof node
which uses the local focus as a premise could be
chosen for the next step, usually the one with the
greatest semantic overlap with the focal centers
is preferred. In other words, if one has proved a
property about some semantic objects, one will
tend to continue to talk about these particular
objects, before turning to new objects. Let us
examine the situation when the proof below is
awaiting presentation.

36

: Pla,b) [1]: P(a,b), [3]: S(¢)
: Qa,b)’ [4]: R(b,¢)
[5]: Qla,b) A R(b,c)

Assume that node [1] is the local focus, {a,b}
is the set of focal centers, [3] is a previously pre-
sented node and node [5] is the current task.
[2] is chosen as the next node to be presented,
since it does not (re)introduce any new seman-
tic objects and its overlap with the focal centers
({a, b}) is larger than the overlap of [4] with the
focal centers ({b}).

The macroplanner produces as output a se-
quence of PCAs that is passed on to the mi-
croplanner.

D] =t

3 Microplanning: Choosing
and Organizing Linguistic
Resources

The task of microplanning comprises, among
others, making reference choices; choosing be-
tween linguistic resources for functions, pred-
icates and various types of derivations; and
combining and reorganizing such resources into
paragraphs and sentences. In this paper, we
only describe the paraphrasing mechanism. For
a more detailed discussion of the microplanner
cf. [Huang and Fiedler, 1996]. As the central
representation, our microplanner uses Meteer’s
Tezt Structure.

3.1 Text Structure in PROVERB

Text Structure is first proposed by Meteer
[Meteer, 1991, Meteer, 1992] in order to bridge
the generation gap between the representation
in the application program and the linguistic
resources provided by the language. By ab-
stracting over concrete linguistic resources, Text
Structure should supply the planner with ba-
sic vocabularies, with which it chooses linguis-
tic resources. Meteer’s Text Structure is or-
ganized as a tree, in which each node repre-
sents a constituent of the text. In this form
it contains three types of linguistic informa-
tion: constituency, structural relations among
constituents, and in particular, the semantic cat-
egories the constituents express.

The main role of the semantic categories is
to provide vocabularies which specify type re-
strictions for nodes. They define how separate
Text Structures can be combined, and ensure
that the planner only builds expressible Text
Structures. For instance if tree A should be
expanded at node n by tree B, the resulting

type of B must be compatible to the type re-
striction attached to n. Panaget [Panaget, 1994]
argues, however, that Meteer’s semantic cate-
gories mix the ideational and the textual dimen-
sion as argued in the systemic linguistic theory
[Halliday, 1994]. Here is one of his examples:

“The ship sank”

is an ideational event, and it is textually pre-
sented from an EVENT-PERSPECTIVE.

“The sinking of the ship”

is still an ideational event, but now presented
from an OBJECT-PERSPECTIVE.

On account of this, Panaget split the type re-
strictions into two orthogonal dimensions: the
ideational dimension in terms of the Upper
Model [Bateman et al., 1990], and the hierarchy
of textual semantic categories based on an anal-
ysis of French and of English. In our work, we
basically follow the approach of Panaget.

Technically speaking, the Text Structure in
PROVERB is a tree recursively composed of
kernel subtrees or composite subtrees:

An atomic kernel subtree has a head at the
root and arguments as children, representing ba-
sically a predicate/argument structure.

Composite subtrees can be divided into two
subtypes: the first has a special matriz child
and zero or more adjunct children and represents
linguistic hypotaxis, the second has two or more
coordinated children and stands for parataxis.

3.2 Type Restrictions

Each node is typed both in terms of the Up-
per Model and the hierarchy of textual seman-
tic categories. The Upper Model is a domain-
independent property inheritance network of
concepts that are hierarchically organized ac-
cording to how they can be linguistically ex-
pressed. Figure 2 shows a fragment of the Upper
Model in PROVERB. For every domain of appli-

r modified-concept

) conscious-being
- object —[X .
non-concious-thing

arbitrary-place-relation
concept — .
relational-processes
- process ‘[

mental-processes discrete-place-relation

modal-quali
“ quality —[i

material-word-quality

Figure 2:
PROVERB

A Fragment of Upper Model in

37

cation, domain-specific concepts must be identi-
fied and placed as an extension of the Upper
Model.

The hierarchy of textual semantic categories
is also a domain-independent property in-
heritance network. The concepts are or-
ganized in a hierarchy based on their tex-
tual realization. For example, the concept
clause-modifier-rankingl* is realized as an ad-
verb, clause-modifier-rankingll as a prepositional
phrase, and clause-modifier-embedded as an ad-
verbial clause. Figure 3 shows a fragment of the
hierarchy of textual semantic categories.

text
sentence

clause clause-modifier-ranking!

category
P clause-modifier clause-modifier-rankingtl

np ! clause-modifier-embedded
dif vp-modifier
modiner np-modifier
intensifier

Figure 3: A Fragment of the Hierarchy of Tex-
tual Semantic Categories in PROVERB

3.3 Mapping APOs to UMOs

The mapping from the content to the linguis-
tic resources now happens in a two-staged way.
While Meteer associates the application pro-
gram objects (APOs) directly with so-called re-
sources trees, we map APOs into Upper Model
objects, which in turn are expanded to the Text
Structures. It is worth noting that there is a
practical advantage of this two-staged process.
Instead of having to construct resource trees for
APOs, the user of our system only needs to de-
fine a mapping from the APOs to Upper Model
objects (UMOs).

When mapping APOs to UMOs, the mi-
croplanner must choose among available alter-
natives. For example, the application program
object para that stands for the logical predi-
cate denoting the parallelism relation between
lines may map in five different Upper Model
concepts. In the O-place case, para can be
mapped into object leading to the noun “par-
allelism,” or quality, leading to the adjective
“parallel.” In the binary case, the choices are
property-ascription that may be verbalized as
“x and y are parallel,” quality-relation that al-
lows for the verbalization as “z is parallel to y”,
or process-relation, that is the formula “z || y.”

The mapping of Upper Model objects into the

1Concepts of the hierarchy of textual semantic cate-
gories are noted in sans-serif text.

Text Structure is defined by so-called resource
trees, i.e. reified instances of Text Structure sub-
trees. The resource trees of an Upper Model
concept are assembled in its realization class.

3.4 Paraphrasing in PROVERB

With the help of a concrete example we illustrate
in this section how the Text Structure generator
chooses among paraphrases and avoids building
inexpressible Text Structures via type checking.

Example We examine a simple logic formula
derive(para(C1,C2),B). Note that B stands for
a conclusion which will not be examined here.
We will also not follow the procedure in detail.

In the current implementation, the rhetor-
ical relation derive is only connected to one
Upper Model concept derive, a subconcept of
cause-relation. The realization class associated
to the concept, however, contains several alter-
native resource trees leading to different pat-
terns of verbalization. We only list five varia-
tions below:

e B, since A.

e Since A, therefore B.
e A leads to B.

e Because A, B.

¢ Because of A, B.

The resource tree of the first alternative is
given in Figure 4.

The logic predicate para(Cil, C2) can be
mapped to one of the following Upper Model

concepts, where we always include one possible
verbalization:

o quality-relation(para, C1,C2)

(line C1 is parallel to C?2)

e process-relation(para, C1,C2)

(C1||C2)

e property-ascription(para, C1 A C2)

(lines C1 and C2 are parallel)

Textually, the property-ascription version can be
realized in two forms, represented by the two
resource trees in Figure 5.

Type checking during the construction of the
Text Structure must ensure, that the realization
be compatible along both the ideational and the
textual dimension. In this example, the combi-
nation of the tree in Figure 4 and the first tree

in Figure 5 is compatible and will lead to the
verbalization:

“B, since C1 and C?2 are parallel.”

38

realizationclass derive reason R conclusion C

resourcetree compositetree content nil

tsc sentence clause
matrix leaf content C

tsc clause

adjunct compositetree content since

(further resource trees ...)

tsc clause
matrix leaf content R
tsc clause

Figure 4: The Realization Class for derive

<lex be> nil
vp np
head composite
argument argument matrix adjunct
conj(C;, C) Para Para conj(C,, G)
np np np modifier

As a verb phrase As a nominal phrase
Figure 5: Textual Variations in form of Resource
Trees

The second tree in Figure 5, however, can only
be combined with another realization of derive,
resulting in:

“Because of the parallelism of line C'1 and
line C2, B.”

In our current system we concentrate on the
mechanism and are therefore still experimenting
with heuristics which control the choice of para-
phrases. One interesting rule is to distinguish
between general rhetorical relations and domain
specific mathematical concepts. While the for-
mer should be paraphrased to increase the flex-
ibility, continuity of the latter helps the user to
identify technical concepts.

4 A Complete Example

In this section, we shall present a short example
of PROVERDB’s output. The input is a machine-
found proof at the assertion level of a theorem
taken from a mathematical textbook (Figure 6).

A user may choose the style of the output text
by tuning two parameters: implicit vs. explicit,
abstract vs. detailed. Given abstract and ex-
plicit as options, the macroplanner generates the
following sequence of PCAs:

THEOREM Reasons group(F,x),
subgroup(U, F, *),
unit(F, 1, %),
unit(U, 1y, *)

Conclusion ly =1

PROOF

ATTENTIONBEGIN

ASSUME Conclusion

ASSUME Conclusion

ASSUME Conclusion

ASSUME Conclusion

ATTENTIONBEGIN

ATTENTIONBEGIN

DERIVE Reasons unit(U, 1y, *)

Conclusion 1y €U

DERIVE Conclusion Jz.x €U

ATTENTIONEND

BEGINASSUMECHOICE Conclusion wu; €U
Parameters wu;,z

group(F, ¥)
subgroup(U, F, x)
unit(F, 1, %)
unit(U, 1y, *)

ATTENTIONBEGIN

DERIVE Reasons group(F,*)
Conclusion semigroup(F,*)

DERIVE Conclusion 1y =1

ATTENTIONEND

ENDASSUMECHOICE Conclusion 1y =1
Parameters u)

ATTENTIONEND

ATTENTIONEND

QED

Note that the PCAs are segmented into a hi-
erarchy of attentional spaces, which is used to
make reference decisions [Huang, 1997]. The mi-
croplanner maps this sequence of PCAs via Up-
per Model objects into a Text Structure used as
linguistic specification of the text. It aggregates
Upper Model objects and paraphrases the con-
cepts by combining various resource trees. Fi-
nally, the realization component TAG-GEN pro-
duces the following text:

Theorem:

Let F' be a group, let U be a subgroup of F', and
let 1 and 1y be unit elements of F and U. Then 1y
equals 1.

Proof:

Let F' be a group, let U be a subgroup of F, and
let 1 and 1y be unit elements of F and U.

Because 1y is an unit element of U, 1y € U.
Therefore, there is = such that z € U.

39

NNo S;D Formula Reason

7 7 F group(F,*) A subgroup(U, F, ¥) A unit(F, 1, x) Aunit(U, 1y, x) (Hyp)

8. 7 F UCF (Def-subgroup 7)

9. 7 F 1y eUu (Def-unit 7)

0. 75 F 3J.zeU 39)

11. ;11 FouwelU (Hyp)

12. 1l b ouxly =uwu (Def-unit 7 11)

13. 7;11 F uwu€eF (Def-subset 8 11)

14. 7511 F 1y €F (Def-subset 8 9)

15. 7;11 + semigroup(F,*) (Def-group 7)

16. 7;11 + solution(u,u, ly, F,*) (Def-solution 12 13 14 1!
17. 7,11 F uxl=u (Def-unit 7 13)

18. Tl F 1€F (Def-unit 7)

19. 7;11 F solution(u,u, 1, F, %) (Def-solution 13 17 18 1
20. 711 1=1y (Th-solution 17 16 19)
21: 7; Fo1=1y (Choice 10 20)

22. ; + group(F,x) A subgroup(U, F,*) A unit(F,1,x) A (Ded 7 21)

unit(U, 1y,*) => 1 =1y

Figure 6: Abstracted Proof about Unit Element of Subgroups

Let u; be such an z. Since u; € U and 1y is
an unit element of U, u; x 1y = u;. Since F is a
group, F' is a semigroup. Since U is a subgroup of
F,U CF. Because U C F and 1y € U, 1y € F.
Similarly, because w3 € U and U C F, v; € F.
Then, 1y is a solution of u; * £ = u;.

Because u; € F and 1 is an unit element of F',
%1 * 1 = u;. Since 1 is an unit element of F', 1 € F.
Then, 1 is a solution of u; * z = ;.

Therefore, 1y equals 1. This conclusion is inde-

pendent of the choice of u;. .

Please note the variation in the text, as well
as in the structure of the sentences, and in us-
ing mathematical symbols or words. Moreover
aggregation techniques reduced redundancies as
in “let 1 and 1y be unit elements of F and U”,
where to clauses were grouped into a single one.

5 Conclusion

This paper describes the linguistic part of a fully
implemented system called PROVERB, which
transforms, abstracts, and verbalizes machine-
found proofs into formated texts. PROVERB
employs a pipe line architecture consisting of
three components. Its macroplanner linearizes a
proof and plans mediating communicative acts
by employing a combination of hierarchical plan-
ning and focus-guided navigation. The mi-
croplanner then maps communicative acts and
domain concepts into linguistic resources, para-
phrases and aggregates such resources to pro-
duce the final Text Structure. The Text Struc-
ture is finally executed by our realizer TAG-
GEN into grammatical sentences.

PROVERB works particularly well with text-
book size examples and runs fully automatically
for every new example. The output texts are

close to detailed proofs in textbooks and are ba-
sically accepted by the community of automated
reasoning. To benefit from the microplanning
techniques which significantly improve the flu-
ency of text, however, linguistic resources must
be introduced with each new domain of applica-
tion. We are working on an interface to simplify
this process.

References

[Bateman et al., 1990] John A. Bateman, Robert T.
Kasper, Johanna D. Moore, and Richard A. Whit-
ney. A general organization of knowledge for natu-
ral language processing: the Penman upper model.
technical report, 1990. ISI Penman Note.

[Gentzen, 1935] Gerhard Gentzen. Untersuchungen
iber das logische Schlieflen I. Mathematische Zeit-
schrift, 39:176-210, 1935.

[Halliday, 1994] M. A. K. Halliday. An Introduction
to Functional Grammar. Edward Arnold, 2. edi-
tion, 1994.

[Huang and Fiedler, 1996] Xiaorong Huang and
Armin Fiedler. Paraphrasing and aggregating ar-
gumentative texts using text structure. In Pro-
ceedings of the 8th International Natural Language
Generation Workshop, pages 21-30, Herstmonceux
Castle, Sussex, UK, 1996.

[Huang and Fiedler, 1997] Xiaorong Huang and
Armin Fiedler. Proof presentation as an applica-
tion of NLG. In Proceedings of the 15th Interna-
tional Joint Conference on Artificial Intelligence
(IJCAI), Nagoya, Japan, 1997.

[Huang, 1994a] Xiaorong Huang. Planning argu-
mentative texts. In Proceedings of 15th Interna-
tional Conference on Computational Linguistics,
pages 329-333, Kyoto, Japan, 1994.

[Huang, 1994b] Xiaorong Huang. Reconstructing
proofs at the assertion level. In Alan Bundy, ed-

40

itor, Proceedings of the 12th Conference on Auto-
mated Deduction, number814 in LNAI, pages 738-
752, Nancy, France, 1994. Springer Verlag.

‘Huang, 1997] Xiaorong Huang. Planning reference
choices for argumentative texts. 1997.

Kilger and Finkler, 1995] Anne Kilger and Wolf-
gang Finkler. Incremental generation for real-time
applications. Research Report RR-95-11, DFKI,
Saarbriicken, Germany, July 1995.

‘Meteer, 1991] Marie W. Meteer. Bridging the gen-
eration gap between text planning linguistic real-
ization. Computational Intelligence, 7(4), 1991.

‘Meteer, 1992] Marie W. Meteer. Ezpressibility and
the Problem of Efficient Text Planning. Pinter
Publishes, London, 1992.

Panaget, 1994] Franck Panaget. The micro-plan-
ning component of a generation system. technical
report, IRST, 1994.

‘Zukerman, 1991] Ingrid Zukerman. Using meta-
comments to generate fluent text in a technical do-
main. Computational Intelligence, 7:276-295, 1991.

41

The Project ACNLG: Applying Natural
Language Generation in China,

Xiaorong Huang
German Research Center for Artificial Intelligence
Stuhtsatzenhaus Weg 3
D—66123 Saarbriicken, Germany
Email: huang@cs.uni-sb.de
Tianfang Yao Huanye Sheng
Shanghai Jiaotong University
Shanghai 200030
VR China
Email: yao-tf@cs.sjtu.edu.cn hysheng@sjtu.edu.cn

1 Overview of ACNLG

ACNLG is organized as a cooperation between the German Research Center for
Artificial Intelligence (DFKI) and Shanghai Jiaotong University. Financially, the
project is supported by the VW-Stiftung, the Shanghai Jiaotong University, the
Chinese National Science Foundation and the Shanghai Commission for Science
and Technology for a time period of three years.

The primary goals of the project can be summarized as following [10]:

e to develop an architecture for applied multilingual generation, which han-
dles topologically different languages such as Chinese, English and German,

e to build a computational grammar for Chinese NLG,

e to test our approach towards multilingual NLG in one or two real-world
applications.

As the first two applications we are currently investigating:

e amultilingual weather forecast assistant (MLWFA), together with the Shang-
hai Meteorological Center,

e Generation of multilingual statistical reports, together with the Bank of
China.

42

2 The architecture of ACNLG
2.1 Applied NLG

Over the past two decades a multitude of techniques has been developed to pro-
duce coherent text from internal representations ([18], see also [1] for an online
review). Our architecture is designed based on two criteria: the linguistic flexibil-
ity our applications need and software manageability of the techniques in concern.

Although quite different architectures have been proposed for NLG systems,
most application oriented systems employ a pipeline architecture consisting of
three parts:

e A macroplanner or content planner that chooses and orders information to
be included in the text.

e A microplanner or sentence planner that chooses appropriate linguistic re-
sources for the pieces of information chosen, and arranges them into para-
graphs and sentences.

e A surface generator that handles syntactic operations and produces gram-
matical natural language utterances.

Following this structure, our architecture of the kernel generation system of
ACNLG is illustrated in Fig.1.

! Macroplanning i

: F Choose a Schema] é

'E [Fill the Schema } E
(Sentence Planning]

[Surface Generation j

Figure 1: Kernel Generator of ACNLG

Below we briefly discuss these components and the techniques we adopt for
ACNLG: '

43

e Content planning: For our applications, we employ the schema-based ap-
proach [13, 15| approach. To handle recursive data, we might also use
schemata as plan operators for hierarchical planning.

e Sentence Planning: Flexible sentence planning is necessary [4]. In ACNLG
we are investigating various sentence planning techniques such as para-
phrasing and aggregation [3, 8, 9]. As the representation we will explore a
different version of the Text Structure proposed by Meteer {14].

e The system should keep track of both local and global focus of attention,
to enable reasonable reference choices [19] and cue-words generation [17].

o We tested our first Chinese grammar [20] with the syntactic generator TAG-
GEN, which is developed at DFKI [11]. However, our applications need a
leaner and more efficient generator, which we developmed in C++, the
standard TAG as underlying formalism. The TAG-GEN Chinese grammar
is also modified into standard TAG.

For more details, readers are referred to [10].

3 A Practical Approach towards Multilingual
NLG

At least the following three approaches towards multilingual generation can be
observed [6]:

e identifying and integrating of certain interlingua at different levels of pro-
cessing [12],

e using some integrated network with language-dependent and language-independent
parts as representation. One example is the system KPML [2], as well as
planners using PENMAN/KPML (16],

e using universal machineries with language-specific declarative knowledge
(schemata, microplanning rules, grammar). This is the architecture the
first author used in the system PROVERB, which verbalizes machine-found
mathematical proofs [5, 8, 7]. We will investigate it further for our new
application. The primary advantage of our architecture is that this makes
a large scale software system easier to maintain. A potential drawback is
a massive redundancy that may lead to software maintenance problems as
well.

44

4

Current Status and Future Plan

ACNLG just finished its first year. We implemented a first prototype consisting
of a schema-based macroplanner and a TAG-Based syntactic generator. We also
developed a Chinese grammar in TAG-GEN, which is updated into the current
grammar used by the new generator. We are planning to put this prototype into
test use, and at the same time develop a microplanner to produce more flexible
text. After the first application, we will start with the second application.

References

1.

10.

Survey of the state of the art in human language technology.
http://www.cse.ogi.edu/CSLU/HLTsurvey /HLTsurvey.html, 1995.

John Bateman. Basic technology for multilingual theory and practise: the kpml de-
velopment environment. In Richard Kittredge, Sergei Nirenburg, Dietmar Rosner,
and Donia Scott, editors, Proc. IJCAI-95 Workshop on MULTILINGUAL TEXT
GENERATION, pages 1-12, 1995.

Hercules Dalianis and Eduard Hovy. Aggregation in natural language generation.
In Michael Zock, Giovanni Adorni, and Giacomo Ferrari, editors, Proc. 4th Euro-
pean Workshop on Natural Language Generation, pages 67-78, 1993.

. Eduard H. Hovy. Unresolved issues in paragraph planning. In Robert Dale, editor,

Current Issues in Natural Language Generation, pages 17-45. Academic Press,
1990.

Xiaorong Huang. Planning argumentative texts. In Proc. of 15th International
Conference on Computational Linguistics, pages 329-333, Kyoto, Japan, 1994.

. Xiaorong Huang. Choosing among architectures for applied multilingual nlg. In

Dominique Estival and Robert Dale, editors, Proc. PRICAI-96 Workshop on Future

Issues for Multi-lingual Tezt Processing, pages 25-31. Griffith University, Canada,
1996.

Xiaorong Huang. Planning reference choices for argumentative texts. In
Proc. ACL’97/EACLY7 Joint Conference, 1997.

Xiaorong Huang and Armin Fiedler. Paraphrasing and aggregating argumenta-
tive text using text structure. In Proc. of 8th International Workshop on Natural
Language Generation, pages 21-30, Herstmonceux, Sussex, UK, 1996.

Xiaorong Huang and Armin Fiedler. Proof verbalization as an application of nlg.
In Proc. Joint Conference on Artificial Intelligence97, 1997.

Xiaorong Huang, Tianfang Yao, and Guodong Gao. Generating chinese weather
forecast with stylistic variations. In 17th International Conference on Computer
Processing of Oriental Language. Oriental Languages Computer Society, Inc., 1997.

45

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Anne Kilger and Wolfgang Finkler. Incremental generation for real-time applica-
tions. Research Report RR-95-11, DFKI, Saarbriicken, Germany, 1995.

Richard Kittredge. Efficiency vs. generality in interlingual design: Some lin-
guistic considerations. In Richard Kittredge, Sergei Nirenburg, Dietmar Rosner,
and Donia Scott, editors, Proc. IJCAI-95 Workshop on MULTILINGUAL TEXT
GENERATION, pages 64-74, 1995.

Kathleen R. McKeown. Texzt Generation. Cambridge University Press, Cambridge,
UK., 1985.

Marie W. Meteer. Ezpressibility and the Problem of Efficient Text Planning. Pinter
Publishes, London, 1992.

Johanna Doris Moore and Cécile L. Paris. Planning text for advisory dialogues.
In Proc. 27th Annual Meeting of the Association for Computational Linguistics,
pages 203-211, Vancouver, British Columbia, 1989.

Cécile Paris, Keith Vander Linden, Markus Fischer, Anthony Hartley, Lyn Pem-
berton, Richard Power, and Donia Scott. A support tool for writing multilingual
instructions. In Chris S. Mellish, editor, Proc. of IJCAI-95, volume 2, pages 1398—
1304, Montreal, Canada, 1995. Morgan Kaufmann.

Rachel Reichman. Getting Computers to Talk Like You and Me. Discourse Con-
text, Focus, and Semantics. MIT Press, 1985.

Ehud Reiter. Has a consensus nl generation architecture appeared, and is it psy-
cholinguistically plausible. In Proc. of 7th International Workshop on Natural
Language Generation, pages 163-170, Kennebunkport, Maine, USA, 1994.

Ehud Reiter and Robert Dale. A fast algorithm for the generation of referring
expressions. In Proc. of COLING-92, volume 1, pages 232-238, 1992.

Yu-Fang Wang. A tree adjoining grammar for chinese weatherforecasts. Master’s
thesis, Universitit des Saarlandes, Saarbriicken, Germany, 1997.

46

Microplanning in Verbmobil as a Constraint—Satisfaction Problem

Anne Kilger
June 20, 1997

Abstract

Microplanning in the dialog translation system Verbmobil bridges the gap between the
output of the transfer component and the input to the syntactic generator. It solves parts of
the tasks of lexical selection and choice of syntactic features using techniques from the area
of constraint-satisfaction problems.

1 Characterization of Microplanning

There is a Generation Gap between Text Planning and Text Realization, which has been
named and discussed in detail by [Met90]. Generation systems have to make sure that all that
is constructed by the planner is also expressible with syntactic means of the target language.
Meteer proposes the insertion of a Text Structure Level between Text Planning and Text Re-
alization, where expressible combinations of concrete linguistic resources are grouped, preventing
the Text Planner from choosing sets of features that cannot be verbalized.

Following [Hov96], the stage of generation that has been introduced over the past years to
bridge the Generation Gap is often named as Microplanning or Sentence Planning. It
consists of “several distinct, rather different subtasks. Each subtask addresses some aspect
of the information selected to be said by the text planner, and performs some operation on
it, often adding additional information that eventually results in higher quality surface form.”
These tasks include clause conjunction and subordination into longer sentences, clause-internal
ordering of constituents, aggregation (elision) to remove redundancies, theme control, focus
control, reference (anaphora) specification, and lexical selection.

Current systems mostly contain solutions for only some of these tasks, sometimes treated as
separate modules. There is need of an approach that comprises the efficient computation of
distinct tasks while regarding their multiple interdependencies.

2 The Microplanning Task in Verbmobil

For generation within a dialog translation system like Verbmobil (see [Wah93, BWW97]), macro-
planning is not needed since the information to be generated is selected and organized by the
speaker of the source language utterance. Furthermore, Verbmobil realizes a semantic—based
transfer (see [DE96]), i.e. part of the generation (microplanning) task is already dealt with by
the transfer component and part of the language-specific knowledge relevant for generation is
encoded within the transfer rules.

The input interface language chosen for the Verbmobil generator (VIT, Verbmobil Interface
Term) comprises the encoding of language—specific semantic information following the Discourse
Representation Theory (DRT, see [KR93]). Each individual indicated by some input utterance

47

is formally represented by a discourse referent. Information about the individual is encoded
within a DRS—condition, combining a predicate with the chosen discourse referent. Rela-
tions between descriptions of different discourse referents lead to a global hierarchical semantic
structure. So—called “holes” are used to define underspecified relations plus constraints for their
filling. Each VIT additionally contains semantic, pragmatic and syntactic information usable
for generating an adequate output.

The output of the Verbmobil microplanner is a sentence plan that serves as input for the syn-
tactic realization component. It describes a dependency tree over lexical items annotated with
syntactic, semantic and pragmatic information which is relevant to produce an acceptable ut-
terance and guide the speech synthesis component.

3 The System VM-IMP

The Verbmobil microplanner VM-IMP! solves several of the tasks described in Section 1 in an
integrated way by making use of an constraint—satisfaction approach. The conceptual basis and
some details of its realization are explained in the next two sections.

3.1 Conceptualization

The subtasks of microplanning are subject to multidirectional dependencies, e.g. between lexical
selection and choice of syntactic specifications. Regarding the input DRS—elements as variables,
the microplanning task can be described as mapping each variable to a syntactic specification
such that a globally consistent solution can be derived. The domains of the variables correspond
to possible syntactic realizations of the semantic elements (the right sides of microplanning rules,
see Section 3.2), including specifications of lexical items and syntactic features. Those variables
can be used as basis for the description of a constraint—satisfaction problem (CSP, see e.g.
[Kum92]). The predicates relating the variables have to define some sort of matching mechanism
such that a global variable instantiation can be guaranteed to be a valid input for the sentence
realization component.

The advantages of a constraint system do not only lie in the declarativity of the knowledge
sources. Having defined a suitable representation of the problem to be solved, a constraint—based
approach also establishes a testbed for examining the pros and cons of different evaluation meth-
ods, including backtracking, constraint propagation, heuristics for the order of the instantiation
of variable values etc.

The second important design principle used not only for microplanning but also for syntactic
generation in Verbmobil is off-line preprocessing. By anticipating relevant parts of the
generation task and doing some work in advance — thereby changing the knowledge sources —
on-line processing can be speeded up. Additionally, knowledge descriptions can be modularized
for easing the task of defining rules, at the same time allowing their combination by off-line
preprocessing in the course of which contradictory combinations can be filtered out.

3.2 Realization

The knowledge sources and features of processing of the microplanning component are described
on the basis of an example input VIT as visualized in Figure 1. The figure only shows some slots
of a VIT which are necessary to explain the main features of microplanning. The arguments of
conditions given in the semantics slot (the DRS) are specified by symbols starting with L, H or I

'VerbMobil Incremental MicroPlanner, incrementality is currently not fully realized.

48

vit(segment_description(...,wir einigen uns auf einen neuen termin),
[dec1(119,h5), % Semantics
agree_on(118,i5),
arg2(118,15,i6),
pron(123,i7),
appointment (120,i6),
arg1(118,1i5,i7),
new(124,i6),
indef(122,i6,115,ht4)],

119, % Main Label
[leq(116,h5), ccom_plug(h5,116)], % Scope
[sem_group(116,(118]), sem_group(115,[120])]) % Groupings

Figure 1: An Example VIT as input to VM-GECO

for labels (unique identifiers), holes (underspecified scope) and instances (discourse referents). In
the main label slot, the “hook” for the DRS is defined, the scope slot contains some constraints
about the filling of holes, the groupings slot allows for defining group-labels as sets of labels.
VM-IMP doesn’t traverse the input DRS in a top—down fashion but makes use of its non-
recursive representation by triggering activities by the single conditions. Thereby it is prepared
for incremental processing which hopefully will be realized in a later stage of Verbmobil. The
microplanner is driven by (bundles of) conditions, discourse referents, and holes found in the
input DRS. Each of these features is reflected by a distinct set of microplanning rules that are
applied conjointly during the process of microplanning (see Section 3.3).

The microplanning rules are represented as pattern-action pairs (or pattern—condition—action
triples). A pattern is to be matched with part of the input, the action describes a bundle of
syntactic features realizing the message part in an adequate way.

3.2.1 Microplanning Content Rules

Microplanning Content Rules define the mapping from (bundles of) semantic predicates to syn-
tactic features. Thereby relations to semantic complements given in the input are translated
into semantic/syntactic relations that form a part of the dependency tree in the microplanner
output.

Two (simplified) microplanning content rules for the semantic condition AGREE_ON are shown
in Figure 2. Each entry consists of at least three elements. The first is an expression that is

;; normal finite form

((AGREE_ON (L I)) ;ipattern
(($not ($sem-match NOM (L 1)))) ;icondition
($IDENT$ L AGREE_ON) ; sbody

(AGREE_ON (CAT V) (HEAD AGREE_ON_V1) (MOOD $get-mood-info I)
(VOICE $get-voice-info I) (FORM ordinary)
(TENSE $get-tense-info I) (ARG1-TYPE normal)
(ARG1-FUNC ARG1) (ARG2-TYPE prep) (ARG2-FUNC ARG2)
(ARG2-PREP ON)))

;; nominalized form

((AGREE_ON (L I)) ; ;pattern
NIL ;;condition
($IDENT$ L AGREE_ON) ; ;body

(AGREE_ON (CAT N) (HEAD AGREEMENT_N3) (NUM $get-num-info AGREE_ON)
(ARG1-TYPE normal prep) (ARG1-FUNC ARG1) (ARG1-PREP OF)
(ARG2-TYPE prep) (ARG2-FUNC ARG2) (ARG2-PREP ON)))

Figure 2: Example Microplanning Content Rules

to be matched with the semantics slot of the input VIT and represents the part of the VIT

49

that is mapped to a syntactic specification. The second describes additional requirements to be
fulfilled by the input. Here, contextual tests on the global VIT may be stated, e.g. conditions
that have to appear in the semantics slot to form a valid context for the rule or some specific
features from other slots. The third and further elements of a microplanning rule contain
syntactic specifications, i.e. the action. Each action element introduces a “syntactic” identifier
for the syntactic specification that either reflects a unique input element or uses a new name for
additionally introduced elements on the output side. Pairs of the form (feature value) describe
relevant features used for computing the global syntactic specification that is handed over to the
syntactic generator. There also may be identifications of label names with syntactic identifiers
which are relevant for mapping the DRS-relations to syntactic relations. They are introduced
via the keyword $IDENTS.

The rules in Figure 2 describe possible mappings of the condition AGREE_ON to the verb
AGREE_ON_V1 or the noun AGREEMENT_N3. In the condition part of the verbal mapping,
the existance of a NOM-condition within the semantics slot is tested (which would forbid the
verbal form by demanding a NOMinalized form). The body describes the result of lexical
selection plus generic functions for computing relevant syntactic features like tense and mood.
Via the feature names ARGI-TYPE and ARGi-FUNC, constraints for the mapping of semantic
arguments to syntactic realizations are defined, e.g. the semantic relation ARG2 must be filled
by a prepositional phrase with the preposition ON (“We agree on a new appointment.”).

The microplanning content rules are not directly entered by a rule writer but are compiled off—
line from distinct knowledge sources for word choice rules, rules for syntactic decisions and rules
for mapping semantic roles to syntactic relations. The first rule in Figure 2 is a compilation result
from the three rules sketched in Figure 3. Keeping word choice rules and syntactic choice rules

;1 Syntactic choice rules

((AGREE_ON (L 1))

(($not ($sem-match NOM (L I))))

(AGREE_ON (CAT V) (MOOD $get-mood-info I)

(VOICE $get-voice-info I) (FORM ordinary)
(TENSE $get-tense-info I)))

((AGREE_ON (L I))

NIL

(AGREE_ON (CAT N)))

;3 Word choice rules

((AGREE_ON (L 1))

NIL

($IDENT$ L AGREE_ON)

(AGREE_ON (CAT V) (HEAD AGREE_ON_V1)))
((AGREE_ON (L I))

NIL

($IDENT$ L AGREE_ON)

(AGREE_ON (CAT N) (HEAD AGREEMENT_N3) (NUM $get-num-info AGREE_ON)))
; Complement specification

((AGREE_ON

(AGREE_ON_V1 argl NIL (argl ARGl normal) (arg2 ARG2 (prep ON)))
(AGREEMENT_N3 NIL NIL (argl ARG1 normal (prep OF)) (arg2 ARG2 (prep ON)))))

Figure 3: Sources for Microplanning Content Rules
seperated helps avoiding redundancy. The set of complement specifications describes mappings

of semantic relations as defined for the DRS—conditions onto relation names used within the
syntactic grammar and can be compiled off-line from the grammar.

50

3.2.2 Microplanning Relation Rules

The microplanning relation rules map bundles of semantic conditions to a set of semantic rela-
tions between head and modifiers. Conditions describing the same discourse referent form those
bundles which have to be reflected at the syntactic level. The relation rules define all allowed
dependency relations between pairs of conditions with the same discourse referent. In this way
the basis is built for computing all possible dependency structures for a bundle. The relation
rules are currently encoded by hand but will soon be automatically compiled from the grammar
of the syntactic generator.

The example entry in Figure 4 shows a characterization of the relation between noun and
adjective. Each relation rule consists of three parts, the first describing the possible head, the

;; Noun and Adjective

(((SEM-CLASS CN))

((SEM-CLASS ADJ))

((2 (GOVERNED-BY N) (REGENT 1) (REGENT-FUNC adjunct))))

Figure 4: Microplanning Relation Rules

second describing the dependent element, the third defining the relation (1 refers to the head,
2 to the modifier) and (optionally) some contextual constraints for the relation to hold. For
characterizing matching predicates, so—called semantic classes (SEM-CLASS) can be used to
refer to groups of predicates. The entry of Figure 4 refers to a “common noun” as the head and
an adjective as the modifier of the noun, describing the relation by specifying the REGENT-
feature of modifier.

Applying the relation rules to all semantic elements from our example VIT which describe
discourse referent 16 leads to the following syntactic specification:

(($IDENT$ 16 APPOINTMENT)
(NEW (REGENT APPOINTMENT) (REGENT-FUNC adjunct)))

It defines discourse referent 16 to be syntactically represented by element APPOINTMENT.
NEW is the modifier of this element. The complement INDEF is inserted via a content rule.

3.2.3 Microplanning Hole Rules

Microplanning Hole Rules define the mapping of holes as well as groups of labels used within
semantic descriptions to one syntactic element. In the scope-slot of the VIT each hole is asso-
ciated with one or several labels referring to its possible fillers. In the groupings slot labels are
redefined as groups of labels.

In our first approach to finding a representative for the set of labels, we chose to look for the
head of the syntactic subtree built up by the syntactic elements that result from the mapping
of single labels. For hole k5 in the VIT in Figure 1, the leq-statement leq(l16,h5) maps it to
label 116 which is identified via the statement sem_group(l16,[l18]) with a (one—element) set of
labels. In the example given the hole refers to a unique element [18 which is identified with
AGREE_ON by a content rule. If there were a set of possible fillers for 16 (e.g. 118 plus 14711),

the microplanner would produce mapping alternatives constrained by the actual dependency
relations between the elements:

(($IDENT$ L16 L18)
(L4711 (REGENT L18)))
(($IDENT$ L16 L4711)
(L18 (REGENT L4711)))

51

3.3 Performing Microplanning

During microplanning each element of the semantic structure is mapped onto a set of possible
syntactic realizations?, each bundle of conditions with the same discourse referent is mapped
onto a set of possible head—-modifier relations, and each hole or group is mapped onto a set of
possible identifiers of syntactic elements. For the input VIT shown in Figure 1 this leads to the
variable set (DECL AGREE_ON ARG2 PRON APPOINTMENT ARG1 NEW INDEF H5 L16
L15).

Unfortunately, it is not enough to define binary matching constraints between each pair of
variables that purely test the compatibility of the described syntactic features. Some syntactic
specifications may contain identifications of e.g. discourse referents and syntactic identifiers
(via the feature SIDENT$). When choosing one of the alternative results of the microplanning
relation rules, this should influence the result of the compatibility test between a pair of variables
refering to the identifiers related in the $IDENT$-rule. That is why the constraint net is
not easily subdivided into subnets that can be efficiently evaluated. The immense amount of
combinations of alternative values has to be handled by the known means for CSP:

e All variables with 1-value domains are united, applying the matching mechanism to their
values. A fail immediately leads to a global fail of microplanning.

e 2—consistency is partially computed by matching value pairs and filtering out inconsistent
ones. Thereby, matching results and knowledge about binary incompatibility are stored
and reused during further processing (global matching).

e By comparing the domains of the variables, the microplanning task can be subdivided
into recursive subtasks in an intelligent way, reducing the risk of repeatedly computing
and using wrong partial solutions in larger contexts.

e Intelligent backtracking can be guided by identifying variables that are possible candidates
for sources of errors.

Although some naive approaches towards constraint—satisfaction systems suffer from inefficiency,
the current system has acceptable runtime and we expect that the accurate examination of the
task will lead to the use or development of a special algorithm with even better performance.
The (partial) result of the constraint-satisfaction process for the input shown in Figure 1 is
graphically presented in Figure 5. The dependency hierarchy is visualized by nodes representing
syntactic elements and (parts of) the features chosen for their realization. They are linked by
roles compatible with the grammar.

4 Future Work

Currently, we are testing several constraint propagation and backtracking mechanisms for their
suitability with respect to the microplanning task. Although we have not yet completed the
design of the microplanner, we have gained valuable experience with

e different representations of the problem and their advantages and disadvantages for the
processes of mapping and constraint-satisfaction,

e possible influences of the weighing of alternatives on the instantiation of variables,

2There are also n:m mappings.

52

L19-DECL

clause

L18-AGREE.ON
(HEAD AGREE_ON_V1)

arg rg2
L23-PRON L20-APPOINTMENT
(PERS 2) HEAD APPOINTMENT N1)
(NUM pl)

Figure 5: Microplanning Result as Dependency Tree

e the usage of constraint hierarchies for the sake of robustness, e.g. by allowing for “minor
semantic and/or syntactic contradictions” in the output. In that way variable levels of
both “correctness” and “acceptability” can be encoded. Furthermore, we examined

e the suitability of incremental constraint—satisfaction techniques for the microplanning task,

which will fasten our progress in developing constraint—based microplanning.

References

[BWW97] Th. Bub, W. Wahlster, and A. Waibel. Verbmobil: The combination of deep and

[DE96]

[Hov96]

[KR93]

[Kum92]

[Met90]

[Wah93]

shallow processing for spontaneous speech translation. In Proceedings of ICASSP
’97, 1997. (forthcoming).

M. Dorna and M. Emele. Semantic-based transfer. In Proceedings of the 16th Inter-
national Conference on Computational Linguistics (COLING ’96), 1996.

E. Hovy. An overview of automated natural language generation. In X. Huang,
editor, Proceedings of the International Symposium on Natural Language Generation
and the Processing of the Chinese Language, INP(C)-96, pages 15-31, Shanghai,
China, 1996.

H. Kamp and U. Reyle. From Discourse to Logic, voluine 42 of Studies in Linguistics
and Philosophy. Kluwer Academic Publishers, Dordrecht, 1993.

V. Kumar. Algorithms for constraint—satisfaction problems: A survey. AI Magazine,
13(1):32-44, 1992.

M. W. Meteer. The "Generation Gap”: the Problem of Exzpressibility in Text Plan-
ning. PhD thesis, Department of Computer and Information Science, University of
Massachusetts, Amherst, MA, 1990. BBN Report No. 7347.

W. Wabhlster. Verbmobil: Translation of face-to—face dialogs. Research Re-
port RR-93-34, German Research Center for Artificial Intelligence (DFKI GmbH),
Saarbriicken, Germany, 1993. :

53

AGILE: Automatic drafting of technical
documents in Czech, Russian and
Bulgarian

PROJECT NOTE

Elke Teich, Erich Steiner,
Renate Henschel and John Bateman!

Universitat des Saarlandes
Institut fir Angewandte Sprachwissenschaft sowie Ubersetzen und
Dolmetschen
66041 Saarbriicken

The AGILE (Automatic Generation of Instructions in Languages of Eastern
Europe) project is an INCO (COPERNICUS) project to be started in the fall of
1997. It involves four partners from Eastern Europe—Charles University, Prague,
the Russian Research Institute for AI, Moscow, the Bulgarian Academy of Sci-
ences, Sofia and the Bulgarian software company DATECS Ltd—and two partners
from Western Europe—the Information Technology Research Institute (ITRI) of
the University of Brighton and the Institut fiir Angewandte Sprachwissenschaft
sowie Ubersetzen und Dolmetschen, Universitit des Saarlandes, Saarbriicken.

The goal of the project is to develop a suite of software tools to assist tech-
nical writers in producing software documentation for CAD-CAM in Czech,
Russian and Bulgarian. This involves building up the linguistic resources nec-
essary for automatically generating text in these three languages and local-
izing and further developing the technical writing software of the DRAFTER
project [Paris et al., 1995, Paris and Vander Linden, 1996 for these three lan-
guages. The contributions of the project thus lie in the areas of computational
linguistics, more precisely natural language generation, and authoring tools.

Natural Language Generation. The implementation of generation re-
sources will be based on corpus analyses of CAD-CAM manuals in Czech, Russian
and Bulgarian. The corpus analyses will follow attested methods of register anal-
ysis, such as e.g., [Biber, 1995], and functionally oriented discourse analysis, no-
tably as developed in Systemic Functional Linguistics [Halliday and Hasan, 1976,
Martin, 1992] and in the Prague School [Sgall et al., 1986]. Since we attempt re-
source sharing across languages, it will be essential to conduct these analyses
contrastively, i.e., relate the results of the monolingual analysis of one language
to those of the other languages. Proceeding this way is supported by the KPML
development environment for multilingual generation resources (see below).

In spite of the focus on the CAD-CAM domain, we intend to develop gen-

1Elke Teich is currently supported by the Australian-European Awards Program; current ad-
dress: Macquarie University, Department of English, Linguistics and Media, North Ryde NSW
2109, Australia.—John Bateman is currently employed at the University of Stirling, Department
of English Studies, Stirling FK9 4LA, UK.

94

eration resources that are as generic as possible in order to achieve reusability
across application contexts. Also, as already mentioned, we attempt resource
sharing across languages, following the transfer comparison method set out in
[Halliday et al., 1964]. According to this method, the linguistic categories and
descriptions of one language serve as a basis for describing additional languages.
This is a well tested method for building up generation resources first suggested
by [Bateman et al., 1991] and implemented in the KPML (Komet-Penman Mul-
tilingual) development environment [Bateman, 1997], when a rapid initial pro-
totyping with languages newly to be covered is needed. KPML’s linguistic re-
sources have partly been built up by the transfer comparison method taking
the NIGEL grammar of English as a basis [Matthiessen, 1995] and the system
now covers covers substantial fragments of German [Teich, 1992, Grote, 1994a],
Dutch [Degand, 1993], and French [Paris and Scott, 1996] and smaller (sublan-
guage) grammars of Japanese and Greek.

The concept of resource sharing across languages rests on the assumption that
languages will always show commonalities and differences at the same time. For
two grammars of two different languages to share a description then means that
that description will have parts that are valid for both languages, but is also
allowed to contain language-specific information that only applies to one of the
languages but not the other. For instance, two languages that are typologically
rather distant, such as English and Russian, can be described as sharing the
same potential of engaging in symbolic interaction, encoded in the grammar in
the system of mood, with the features declarative, interrogative, and imperative.
We speak of the mood system being shared among English and Russian. At the
syntagmatic, surface-syntactic level, these mood features are of course realized
in different ways in English and Russian. For instance, polar interrogatives are
realized in English with the help of the auxiliary ’do’ and inversion of the Subject
and the auxiliary. In Russian, in contrast, polar interrogatives are realized by
intonation only - there is no difference in syntactic structure to declarative clauses.
Both systemic commonalities and the realizational differences such as the one just
exemplified can be accommodated in the systemic-functional-style descriptions of
the KPML system.? It is in this sense that we speak of resource sharing among
languages and it will be very interesting to see to what extent this kind of resource
sharing will work among Germanic and Slavonic languages, and also what kinds
of new contrastive-linguistic insights such a functional perspective of comparing
languages might bring.

More generally, in terms of linguistic descriptive methods we follow functional
linguistic theories of language, notably Systemic Functional Linguistics (SFL) and
the Prague School. Of particular interest here will be attempting to accommodate
Praguean-School-style descriptions, for instance of topic-focus articulation, into
the systemically based KPML tactical generator kernel.

Apart from developing tactical generation resources for Czech, Russian and
Bulgarian, a simple text planning mechanism for the text type at hand will be
designed and implemented. To this end, the corpus analyses will have to put
special focus on the relation between the correlation of grammatical selection
and local (cohesion) and global (coherence) discourse phenomena. Including the
level of text and taking a contrastive-linguistic perspective at the same time
thus promises to shed more light on the question of interlingua in the domain of

2The system is freely available and can be downloaded from
http://www.darmstadt.gmd.de/publish/komet/kpml.html.

35

discourse relations and text structuring.

Authoring tools. Hitherto the common practice in producing equivalent
software documentation in more than one language typically involved the trans-
lation of a source text to a target language text. Recently, a change of this
practice to producing equivalent text in multiple languages from the start can
be observed. This calls for tools that support authoring in multiple languages,
including style and grammar checking, spell checking, electronic dictionaries and
thesauri etc. The existing tools, however, mainly offer assistence at clause and
word level and are predominantly designed to be applied after the composition
of a text. The functionalities of the tool set to be developed in AGILE go fur-
ther in that the actual drafting of a document is supported (cf. the DRAFTER
system [Paris et al., 1995]). This comprises one set of tools that support the
technical writer in building up a (language-independent) domain model, using,
for instance, graphical interaction facilities as described in [Paris et al., 1995], and
a second type of tool that assists the technical writer in transforming the output
of the first set of tools into draft documents in Czech, Russian and Bulgarian.
This second type of tool is actually the multilingual generator, which produces
parallel text directly from the user interface/domain model. The automatically
produced text can be changed again by the user and the changes can be fed back
to the system so that they can be carried out consistently throughout the text
and across the different languages.

The system to be developed in AGILE will extensively build upon the ideas un-
derlying DRAFTER and the results achieved in DRAFTER. The basic desiderata for
a suppport drafting tool, such as support for knowledge re-use, support for alter-
native formulations, early drafts, propagation of changes throughout documents
and languages are rather general desiderata that motivate the basic function-
alities of the system and are language-independent. Thus, the basic DRAFTER
system architecture is initially adopted for AGILE (cf. [Paris et al., 1995] for a
description of the components of the DRAFTER system).

To summarize, the results targetted in AGILE are both of a theoretical nature
and have a practical value. On the theoretical side, new contrastive linguistic
insights for the three Slavonic languages involved, not only on the grammatical
level, but also on the level of discourse, are to be expected. These can then
be related to accounts of the features of instructional text of other languages—
for example, of English and German, for both of which extensive descriptions
of the register of instructions exist (e.g., [Grote, 1994b, Rdsner and Stede, 1994,
Delin et al., 1993, Delin et al., 1994]. Furthermore, on the theoretical side, it
will be interesting to see how the two functional theories of language we take as
a linguistic-methodological basis—SFL and the Prague School-—can complement
each other. On the practical side, the three Eastern academic partners will have
a linguistic resource for NL generation that is resuable for other applications and
projects, and the commercial partner will be equipped with a piece of state-of-
the-art writing software that can be experimented with also in other domains and
applications.

56

References

[Bateman et al., 1991] John A. Bateman, Christian M.I.LM. Matthiessen, Keizo
Nanri, and Licheng Zeng. The re-use of linguistic resources across languages in
multilingual generation components. In Proceedings of the 1991 International
Joint Conference on Artificial Intelligence, Sydney, Australia, volume 2, pages
966 — 971. Morgan Kaufmann Publishers, 1991.

[Bateman, 1997] John A. Bateman. KPML Development Environment: multilin-
gual linguistic resource development and sentence generation. German National
Center for Information Technology (GMD), Institute for Integrated Publication
and Information Systems (IPSI), Darmstadt, Germany, March 1997. (Release
1.0).

[Biber, 1995] Douglas Biber. Dimensions of register variation: a cross-linguistic
comparison. Cambridge University Press, 1995.

[Degand, 1993] Liesbeth Degand. Dutch grammar documentation. Technical
report, GMD/Institut fiir Integrierte Publikations- und Informationssysteme,
Darmstadt, Germany, 1993.

[Delin et al., 1993] Judy Delin, Donia Scott, and Tony Hartley. Knowledge, in-
tention, rhetoric: levels of variation in multilingual instructions. In Owen
Rambow, editor, Intentionality and structure in discourse relations, pages 7 —
10. Association for Computational Linguistics, 1993. (Proceedings of a Work-
shop sponsored by the Special Interest Group on Generation, 21 June, 1993,
Columbus, Ohio).

[Delin et al., 1994] Judy Delin, Anthony Hartley, Cécile L. Paris, Donia Scott,
and Keith Vander Linden. Expressing Procedural Relationships in Multilingual
Instructions. In Proceedings of the Seventh International Workshop on Natural
Language Generation, Kennebunkport, Maine, USA, June 21-24, 1994, pages
61 — 70, Kennebunkport, Maine, USA, 1994.

[Grote, 1994a] Brigitte Grote. Grammatial revision of the German preposi-
tional phrase in KOMET. Technical report, GMD/Institut fiir Integrierte
Publikations- und Informationssysteme, Darmstadt, Germany, May 1994.

[Grote, 1994b] Brigitte Grote. Linguistic properties of the text type ‘instruction’.
Technical report, Institut fiir Integrierte Publikations- und Informationssys-
teme (IPSI), GMD and ITRI, University of Brighton, Darmstadt, Germany
and Brighton, UK, September 1994. technical report.

[Halliday and Hasan, 1976] Michael A.K. Halliday and Ruqaiya Hasan. Cohesion
in English. Longman, London, 1976.

[Halliday et al., 1964] Michael A.K. Halliday, A. McIntosh, and Peter Strevens.
The linguistic sciences and language teaching. Longman, London, 1964.

[Martin, 1992] James R. Martin. English text: systems and structure. Benjamins,
Amsterdam, 1992.

[Matthiessen, 1995] Christian M.I.M. Matthiessen. Lezicogrammatical cartog-
raphy: English systems. International Language Science Publishers, Tokyo,
" Taipei and Dallas, 1995.

o7

[Paris and Scott, 1996] Cécile L. Paris and Donia Scott. Stylistic variation in
multilingual instructions. In Proceedings of the Seventh International Workshop
on Natural Language Generation, Kennebunkport, Maine, USA, June 21-24,
1994.

[Paris and Vander Linden, 1996] Cécile L. Paris and Keith Vander Linden.
DRAFTER: an interactive support tool for writing multilingual instructions.
IEEE Computer, 1996.

[Paris et al., 1995] Cécile Paris, Keith Vander Linden, Markus Fischer, Anthony
Hartley, Lyn Pemberton, Richard Power, and Donia Scott. A Support Tool
for Writing Multilingual Instructions. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI) 1995, pages 1398 — 1404,
Montréal, Canada, 1995.

[Rosner and Stede, 1994] Dietmar Rosner and Manfred Stede. Generating mul-
tilingual documents from a knowledge base: the TECHDOC project. In Pro-
ceedings of the 15th. International Conference on Computational Linguistics
(CoLING 94), volume I, pages 339 — 346, Kyoto, Japan, 1994.

[Sgall et al., 1986] Petr Sgall, Eva Hajicovd, and J. Panevovd. The Meaning of the

Sentence in Its Semantic and Pragmatic Aspects. Reidel Publishing Company,
Dordrecht, 1986.

[Teich, 1992] Elke Teich. KOMET: Grammar Documentation. Technical report,

GMD/Institut fiir Integrierte Publikations- und Informationssysteme, Darm-
stadt, Germany, 1992.

o8

EFFENDI

EFizientes FormulierEN von
DIalogbeitragen

Project Overview

Peter Poller
DFKI GmbH
German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3
D-66123 Saarbriicken
Germany
E-Mail: poller@dfki.uni-sb.de

June 20, 1997

Abstract

This article gives a short overview of the particular modules that

have been developed in the EFFENDI-project. The goal of the project
was the development and implementation of an efficient, multilingual,
incremental syntactic generation component for the system responses
of a speech dialogue system for train inquiries based on the incremental

syntactic generator TAG-GEN.

1 The EFFENDI-Project

The EFFENDI-project was a cooperation between the DFKI Saarbriicken
and Daimler-Benz research Ulm. The project goal was the development of
a syntactic generation component that is especially adapted to the specific
needs of a speech dialogue system on syntactic generation. This includes

59

general requirements on the efficiency of the generation itself as well as
specific generator features that are necessary to allow for a natural behaviour
of the overall dialogue system.

The EFFENDI generator is based on the incremental syntactic genera-
tor TAG-GEN ([Harbusch et al. 1991]) that has been developed inside the
WIP-project ([Wahlster et al. 1992], [Wahlster et al. 1993]) at DFKI. The
following sections give short summaries of the particular features that have
been developed and implemented to form the “dialogue-system-—specific”
EFFENDI-generator based on TAG-GEN. Detailed descriptions of the par-
ticular features can be found in the respective citations. Details about the
core generator TAG-GEN itself can be found in, e.g., [Harbusch et al. 1991],
[Kilger & Finkler 1992] or [Kilger 1994].

2 Templates

One of the main requirements on the generation component of a dialogue
system is efficiency to allow for dialogues in real time. First, incremental
syntactic generation itself increases the reaction time of the overall system
because the output can already start before the generator input is completely
processed. Additionally, there are specific formulations or utterances that
occur repeatedly in system answers which can be reused for speeding up
computation. Therefore EFFENDI contains a template processing module
which allows for the reuse of syntactic structures instead of their repeated

generation ([Poller & Heisterkamp 1995]). The most important features of
this module are:

e There are syntactic structures that may be reused for the generation
of system answers (templates).

e Templates can either be predefined or be dynamically extracted from
system answers in an ongoing dialogue.

e Templates can be uniquely identified by the generator and the dialogue
management component.

e Template-based generation and “free” generation can be mixed within
the same utterance.

e There are three different kinds of templates: complete utterances, sen-
tence parts (e.g. a prepositional phrase) and patterns (i.e. sentence
schemas with variables).

60

In the average case, generation with templates is between 15 % and 60 %
faster than “free” generation of the same utterance depending on the ratio
between template structures and freely generated structures.

3 Tools

The first EFFENDI demonstrator was designed for the application in a di-
alogue system for train inquiries. Nevertheless, EFFENDI is a generation
module that is independent from the application system. In order to adapt
the generator to a new application, only its knowledge bases (grammar, lex-
icon, input interface) have to be extended by domain-specific knowledge.
In order to support the developer to access the knowledge bases of the EF-
FENDI system there are elementary, appropriate tools for each knowledge
base ([Poller & Heisterkamp 1996]) which allow for easier extensions or mod-
ifications on it.

Furthermore, there is a graphic user interface for displaying detailed
information about the individual structures produced by the generator and
the input and output times of the individual generator input elements.

4 Interruptability

There are some special features of the dialogue system necessary to allow
for natural dialogues. Most of these features have to be realized in the
generation component because its output is the interface of the whole system
to the user.

In natural dialogues the dialogue partners sometimes interrupt each
other, e.g., in cases of obvious misunderstandings. Accordingly, one of
the special features of the EFFENDI generator is its interruptability which
means that the user can interrupt a running generation process before its ter-
mination ([Poller & Heisterkamp 1996]). After having been interrupted the
generator expects instructions on how to continue. There are two possibili-
ties namely the continuation of the interrupted utterance or the generation
of a completely new utterance.

5 Reformulation

Another important feature contributing to the naturalness of the dialogue
system is a special routine for reformulations of system utterances which

61

the user did not understand. In EFFENDI there are two ways of reformu-
lation realized ([Poller & Heisterkamp 1996]). The first is “grammatical”
reformulation which means that the generator is able to generate another
word order than before for the same message. The second is “lexical” re-
formulation. This means that the input interface of the generator tries to
make another word choice than before for the same semantic input concepts
based on synonyms.

6 Ellipses, Anaphors, Focus

In natural dialogues all dialogue partners use the context in order to pro-
duce short but appropriate utterances which include references to previously
mentionend concepts (anaphors) or in which some elements are omitted (el-
lipses). In both cases a unique mapping to the omitted or referred concepts
is possible which ensures the understandability. Furthermore there may be
concepts especially marked as focus to guide the user’s attention.

For all these cases the semantic generator input will contain accordingly
marked semantic input concepts which are interpreted as generator instruc-
tions ([Poller & Heisterkamp 1996]). EFFENDI then generates appropriate
formulations which will differ from the “normal” verbalization of the con-
cepts. Focussed elements are topicalized but if that is impossible because of
linearization constrains they are especially marked as focussed elements in
the interface protocol to the synthesis component (cf. the following section).

7 Synthesis Interface

The speech output of the dialogue system is the only “visible” part for the
user. Therefore the quality of the speech output is very important for the
user acceptance of the system. In order to produce natural sounding speech,
the synthesizer requires not only knowledge about what words to say in what
order, but also information about how these words are structurally related
to each other. The latter information is expressed acoustically in the form
of prosody, i.e. how the voice raises and falls during an utterance, the
rhythm, the setting/placing of pauses, etc. Prosody is also influenced by
the properties associated with given words in the context of an utterance,
e.g. the focus of a sentence or certain emphatic elements.

In cooperation with the speech synthesis group at Daimler-Benz we de-
veloped a special input representation (so called interface protocol) for the

62

synthesis component that allows for conveying this information to the syn-
thesis component ([Poller et al. 1996], [Poller & Heisterkamp 1996]). The
protocol contains the following information which can be found in the ex-
ample below:

e the type of each sentence to be uttered ($..),

e a specification of each atomic group (**..) along with its associated
group category (#..) including a list of all words in the order to
be uttered along with their associated categories in parentheses and
special attributes in square brackets (e.g. focus, contrast, ...) if any,
and

e a description of logical (syntactically motivated) connections between
atomic groups expressed by relative pointers from a group to following
(<+.) or preceding (<-.) groups.

The interface protocol for the sentence “Sie mochten wissen, wann der
nachste Zug nach Ulm fahrt” (literally: You would like to know, when the
next train to Ulm goes.) where “Ulm” marks the focus looks like this:

$AS

*x Sie(PRON) #SP >+1

xx mochten(H) wissen(VU) #VP >-1 >+1
** wann(KONJ) der(DET-S) ndchste(ADJ) Zug(N) #KP >-1 >+2
** nach(PRAEP) Ulm(N) [focus] #PP >+1

** fihrt (V) #/P >-2 >-1

8 Self—Repair by elliptical resumption

The incrementality of the generator output sometimes requires intrasenten-
tial corrections. In case of written output incorrect phrases can sometimes
be overwritten, while spoken output cannot be made undone. Instead, cor-
rected phrases have to be attached appropriately to the already spoken in-
correct output. In this case some parts of the output have to be repeated
several times in order to ensure that the whole output remains understand-
able and still has a correct word order. Observations show that most of
the corrections become necessary because of the delay in incremental input
consumption and the fact that generation and output production may be-
gin before all input elements have been consumed. So, it is possible that a

63

previously unknown input element has to be placed before already uttered
elements which requires an appropriate correction of the already produced
output.

To reduce the number of overt corrections including partial repetitions
to a limited extend we developed a special routine that avoids corrections
for some specific cases ([Poller & Heisterkamp 1996]) as soon as it becomes
obvious during generation that a repair of the output produced so far will be-
come necessary. Instead the generator is stopped immediately and restarted
with the same input elements but in this resumption all already uttered input
elements are marked explicitely as elliptic so that previously uttered parts
will not be produced again. In this way invalid word orders become possible
for the complete output because output elements of resumpted generator
calls are always attached to the output elements produced so far. Neverthe-
less, the complete output remains understandable, so we decided to accept
such invalid word orders in favor of avoiding intrasentential corrections. The
following example shows the possible effects of such a behaviour for the in-
cremental generation of the german sentence “Sie mochten um 1 Uhr nach
Ulm fahren.” (“You want to leave to Ulm at 1 o’clock”):

Sie moechten fahren
REPAIR DETECTED --> DOING ELLIPTICAL RESUMPTION INSTEAD !!

um 1 Uhr nach Ulm.

In this case the complete verb phrase has been uttered before the two PP’s
are known. Instead of generating an especially corrected output in which
the PP’s are placed before the infinitive “fahren” the elliptical resumption
only utters the two PP’s because the already uttered parts become ellipses
and therefore are not uttered again.

References

[Harbusch et al. 1991] K. Harbusch, W. Finkler, A. Schauder: Incre-
mental Syntax Generation with Tree Adjoining Grammars, in: Brauer,
W. Hernéndez, D. (eds.): 4** International GI Congress on Knowledge—
Based Systems, 1991, 363-374; also as: DFKI Research Report RR-91-
25, DFKI, Saarbriicken, 1991.

64

[Kilger 1994] A. Kilger: Using UTAGs for Incremental and Parallel Gen-
eration, in: Computational Intelligence, 10 (1994) 4, 591-603.

[Kilger & Finkler 1992] A. Kilger, W. Finkler: Effects of Incremental
Output on Incremental Natural Language Generation, in: B. Neumann

(ed.): 10** European Conference on Artifical Intelligence, August 3-7,
1992, Vienna, Austria, 505-507.

[Poller & Heisterkamp 1995] P. Poller, P. Heisterkamp: EFFENDI -
Effizientes Formulieren von Dialogbeitragen — Zwischenbericht, Tech-
nischer Bericht Nr. F3-95-014, Daimler-Benz Forschung und Technik,
Ulm, 1995.

[Poller & Heisterkamp 1996] P. Poller, P. Heisterkamp: EFFENDI -
Effizientes Formulieren von Dialogbeitragen — Bericht zum Projektende
- Handbuch zur SIL-Schnittstelle, Technischer Bericht Nr. F3-96-014,
Daimler-Benz Forschung und Technik, Ulm, 1996.

[Poller et al. 1996] P. Poller, P. Heisterkamp, D. Stall: An Interface
Protocol from the Speech Generator to the Speech Synthesis Module of
a Dialogue System, in: John A. Bateman (ed.): Speech Generation in
Multimodal Information Systems and its Practical Applications, Pro-
ceedings of the 2"¢ 'SPEAK! Workshop, GMD-Studien Nr. 302, IPSI,
GMD, Darmstadt, 1996.

[Wahlster et al. 1992] W. Wahlster, E. André, S. Bandyopadhyay,
W. Graf, T. Rist: WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation, in: A. Ortony, J. Slack,
O. Stock (eds.), Communication from an Artifical Intelligence Perspec-
tive: Theoretical and Applied Issues, pp. 121-144, Heidelberg, Springer,
1992; also as: DFKI Research Report RR-91-08, DFKI, Saarbriicken,
1991.

[Wahlster et al. 1993] W. Wabhlster, E. André, W. Finkler, H. J.
Profitlich, T. Rist: Plan-based Integration of Natural Language and
Graphics Generation, Artifical Intelligence, 63: pp. 387427, 1993; also
as: DFKI Reserach Report RR-93-02, DFKI, Saarbriicken, 1993.

65

Deutsches -Bibliothek, Information ~ Leiefon (0631) 205-3506

Telefax (0631) 205-3210
E()rrs}((ﬁﬁgtglfgﬁgtmm und Dokumentation (BID)-

e-mail

Intelligenz GmbH PF 2080 dfkibib@dfki.uni-kl.de
_ WwWw
67608 Kaiserslautern P —
FRG sb.de/dfkibib

Verdoffentlichungen des DFKI

Die folgenden DFKI Verdffentlichungen sowie die aktuelle Liste von allen bisher erschienenen Publikatio-
nen kénnen von der oben angegebenen Adresse oder (so sie als per ftp erhaeltlich angemerkt sind) per
anonymous ftp von ftp.dfki.uni-kl.de (131.246.241.100) im Verzeichnis pub/Publications bezogen werden.
Die Berichte werden, wenn nicht anders gekennzeichnet, kostenlos abgegeben.

DFKI Publications

The following DFKI publications or the list of all published papers so far are obtainable from the above ad-

dress or (if they are marked as obtainable by ftp) by anonymous ftp from ftp.dfki.uni-kl.de (131.246.241.100)
in the directory pub/Publications.

The reports are distributed free of charge except where otherwise noted.

DFKI Research Reports RR-97-02
Stephan Busemann, Thierry Declerck, Abdel Kader
1 Diagne, Luca Dini,
997 Judith Klein, Sven Schmeier
RR-97-08 Natural Language Dialogue Service for Appointment
Stefan Miiller Scheduling Agents
Complement Extraction Lexical Rules and Argument 19 Pages
Attraction
14 pages RR-97-01

Erica Melis, Claus Sengler
Analogy in Verification of State-Based Specifications:

RR-97-07 First Results
Stefan Miiller 12 pages
Yet Another Paper about Partial Verb Phrase Fronting
in German
26 pages
1996
RR-96-06
RR-97-06

Claus Sengler

Stefan Miiller Case Studies of Non-Freely Generated Data Types

Scrambling in German — Extraction into the Mittelfeld

24 pages 200 pages
RR-96-05
RR-97-04 Stepba.n Busemann o
Serge Autexier, Dieter Hutter Best-First Surface Realization
Parameterized Abstractions used for Proof-Planning 11 pages
13 pages
RR-96-04
Christoph G. Jung, Klaus Fischer, Alastair Burt
RR-97-03 Multi-Agent Planning
Dieter Hutter _ Using an Abductive

Using Rippling to Prove the Termination of Algorithms EVENT CALCULUS
15 pages 114 pages

RR-96-03

Giinter Neumann

Interleaving

Natural Language Parsing and Generation
Through Uniform Processing

51 pages

RR-96-02

E.André, J. Miiller , T.Rist:

PPP-Persona: Ein objektorientierter Multimedia-Pra-
sentationsagent

14 Seiten

RR-96-01

Claus Sengler

Induction on Non-Freely Generated Data Types
188 pages

1995

RR-95-20

Hans-Ulrich Krieger

Typed Feature Structures, Definite Equivalences,
Greatest Model Semantics, and Nonmonotonicity

27 pages

RR-95-19

Abdel Kader Diagne, Walter Kasper, Hans-Ulrich Krie-
ger

Distributed Parsing With HPSG Grammar

20 pages

RR-95-18

Hans-Ulrich Krieger, Ulrich Schifer

Efficient Parameterizable Type Expansion for Typed
Feature Formalisms

19 pages

RR-95-17

Hans-Ulrich Krieger

Classification and Representation of Types in TDL
17 pages

RR-95-16

Martin Miiller, Tobias Van Roy
Title not set

0 pages

Note: The author(s) were unable to deliver this docu-
ment for printing before the end of the year. It
will be printed next year.

RR-95-15

Joachim Niehren, Tobias Van Roy
Title not set

0 pages

Note: The author(s) were unable to deliver this docu-
ment for printing before the end of the year. It
will be printed next year.

RR-95-14
Joachim Niehren

Functional Computation as Concurrent Computation
50 pages

RR-95-13

Werner Stephan, Susanne Biundo
Deduction-based Refinement Planning
14 pages

RR-95-12

Walter Hower, Winfried H. Graf

Research in Constraint-Based Layout, Visualization,
CAD, and Related Topics: A Bibliographical Survey
33 pages

RR-95-11

Anne Kilger, Wolgang Finkler

Incremental Generation for Real-Time Applications
47 pages

RR-95-10

Gert Smolka

The Oz Programming Model
23 pages

RR-95-09

M. Buchheit, F. M. Donini, W. Nutt, A. Schaerf
A Refined Architecture for Terminological Systems:
Terminology = Schema + Views

71 pages

RR-95-08

Michael Mehl, Ralf Scheidhauer, Christian Schulte
An Abstract Machine for Oz

23 pages

RR-95-07

Francesco M. Dounini, Maurizio Lenzerini, Daniele Nar-
di, Werner Nutt

The Complexity of Concept Languages

57 pages

RR-95-06

Bernd Kiefer, Thomas Fettig

FEGRAMED

An interactive Graphics Editor for Feature Structures
37 pages

RR-95-05

Rolf Backofen, James Rogers, K. Vijay-Shanker

A First-Order Axiomatization of the Theory of Finite
Trees

35 pages

RR-95-04

M. Buchheit, H.-J. Biirckert, B. Hollunder, A. Laux, W.
Nutt,

M. Wqjcik

Task Acquisition with a Description Logic Reasoner
17 pages

RR-95-03

Stephan Baumann, Michael Malburg, Hans-Guenther
Hein, Rainer Hoch,

Thomas Kieninger, Norbert Kuhn

Document Analysis at DFKI

Part 2: Information Extraction

40 pages

RR-95-02

Majdi Ben Hadj Ali, Frank Fein, Frank Hoenes, Thor-
sten Jaeger,

Achim Weigel

Document Analysis at DFKI

Part 1: Image Analysis and Text Recognition

69 pages

RR-95-01

Klaus Fischer, Jorg P. Miiller, Markus Pischel
Cooperative Transportation Scheduling

an application Domain for DAI

31 pages

1994

RR-94-39

Hans-Ulrich Krieger

Typed Feature Formalisms as a Common Basis for Lin-
guistic Specification.

21 pages

RR-94-38

Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Ab-
del Kader Diagne,

Elizabeth A. Hinkelman, Walter Kasper, Bernd Kiefer,
Hans-Ulrich Krieger,

Klaus Netter, Giinter Neumann, Stephan Oepen, Ste-
phen P. Spackman.

DISCO-An HPSG-based NLP System and its Applica-
tion for Appointment Scheduling.

13 pages

RR-94-37

Hans-Ulrich Krieger, Ulrich Schéfer

TDL - A Type Description Language for HPSG, Part
1: Overview.

54 pages

RR-94-36

Manfred Meyer

Issues in Concurrent Knowledge Engineering. Knowl-
edge Base and Knowledge Share Evolution.

17 pages

RR-94-35

Rolf Backofen

A Complete Axiomatization of a Theory with Feature
and Arity Constraints

49 pages

RR-94-34

Stephan Busemann, Stephan Oepen, Elizabeth A. Hin-
kelman,

Giinter Neumann, Hans Uszkoreit

COSMA - Multi-Participant NL Interaction for Ap-
pointment Scheduling

80 pages

RR-94-33

Franz Baader, Armin Laux

Terminological Logics with Modal Operators
29 pages

RR-94-31

Otto Kiihn, Volker Becker, Georg Lohse, Philipp Neu-
mann

Integrated Knowledge Utilization and Evolution for the
Conservation of Corporate Know-How

17 pages

RR-94-23

Gert Smolka

The Definition of Kernel Oz
53 pages

RR-94-20
Christian Schulte, Gert Smolka, Jorg Wiirtz
Encapsulated Search and Constraint Programming in

Oz
21 pages

RR-94-19

Rainer Hoch

Using IR Techniques for Text Classification in Docu-
ment Analysis

16 pages

RR-94-18

Rolf Backofen, Ralf Treinen

How to Win a Game with Features
18 pages

RR-94-17

Georg Struth

Philosophical Logics—A Survey and a Bibliography
58 pages

RR-94-16

Gert Smolka

A Foundation for Higher-order Concurrent Constraint
Programming

26 pages

RR-94-15

Winfried H. Graf, Stefan Neurohr

Using Graphical Style and Visibility Constraints for a
Meaningful Layout in Visual Programming Interfaces
20 pages

RR-94-14

Harold Boley, Ulrich Buhrmann, Christof Kremer
Towards a Sharable Knowledge Base on Recyclable
Plastics

14 pages

RR-94-13

Jana Koehler

Planning from Second Principles—A Logic-based Ap-
proach

49 pages

RR-94-12

Hubert Comon, Ralf Treinen
Ordering Constraints on Trees
34 pages

RR-94-11

Knut Hinkelmann

A Consequence Finding Approach for Feature Recogni-
tion in CAPP

18 pages

RR-94-10

Knut Hinkelmann, Helge Hintze

Computing Cost Estimates for Proof Strategies
22 pages

RR-94-08

Otto Kiihn, Bjérn Hofling

Conserving Corporate Knowledge for Crankshaft De-
sign

17 pages

RR-94-07

Harold Boley
Finite Domains and Exclusions as First-Class Citizens

RR-94-06

Dietmar Dengler

An Adaptive Deductive Planning System
17 pages

RR-94-05

Franz Schmalhofer, J. Stuart Aitken, Lyle E. Bourne jr.
Beyond the Knowledge Level: Descriptions of Rational
Behavior for Sharing and Reuse

81 pages

RR-94-03

Gert Smolka

A Calculus for Higher-Order Concurrent Constraint
Programming with Deep Guards

34 pages

RR-94-02
Elisabeth André, Thomas Rist

Von Textgeneratoren zu Intellimedia-Prisentationssy-
stemen
22 Seiten

RR-94-01

Elisabeth André, Thomas Rist

Multimedia Presentations: The Support of Passive and
Active Viewing

25 pages 15 pages
DFKI Technical Memos 1995
TM-95-04
1997 Klaus Schmid
Creative Problem Solving
TM-97-01

Markus Perling

GeneTS: A Relational-Functional Genetic Algorithm
for the Traveling Salesman Problem

26 pages

1996

TM-96-02

Harold Boley

Knowledge Bases in the World Wide Web:
A Challenge for Logic Programming

8 pages

TM-96-01

Gerd Kamp, Holger Wache

CTL — a description Logic with expressive concrete do-
mains

19 pages

and
Automated Discovery

— An Analysis of Psychological and Al Research - -
152 pages

TM-95-03

Andreas Abecker, Harold Boley, Knut Hinkelmann, Hol-
ger Wache,

Franz Schmalhofer

An Environment for Exploring and Validating Declara-
tive Knowledge

11 pages

TM-95-02

Michael Sintek

FLIP: Functional-plus-Logic Programming
on an Integrated Platform

106 pages

TM-95-01

Martin Buchheit, Ridiger Klein, Werner Nutt
Constructive Problem Solving: A Model Construction
Approach towards Configuration

34 pages

1994

TM-94-05

Klaus Fischer, Jorg P. Miiller, Markus Pischel
Unifying Control in a Layered Agent Architecture
27 pages

TM-94-04

Cornelia Fischer

PAntUDE - An Anti-Unification Algorithm for Ex-
pressing Refined Generalizations

22 pages

TM-94-03

Victoria Hall

Uncertainty-Valued Horn Clauses
31 pages

TM-94-02

Rainer Bleisinger, Berthold Kroll

Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations

11 pages

TM-94-01

Rainer Bleisinger, Klaus-Peter Gores

Text Skimming as a Part in Paper Document Under-
standing

14 pages

DFKI Documents

1997

D-97-06

Tilman Becker, Stephan Busemann, Wolfgang Finkler
DFKI Workshop on Natural Language Generation

67 pages

D-97-04

Claudia Wenzel, Markus Junker

Entwurf einer Patternbeschreibungssprache
fiir die Informationsextraktion

in der Dokumentanalyse
24 Seiten

D-97-03

Andreas Abecker, Stefan Decker, Knut Hinkelmann, Ul-
rich Reimer

Proceedings of the Workshop ,Knowledge-Based Sys-
tems for Knowledge Management in Enterprises“ 97
167 pages

D-97-02

Tilman Becker, Hans-Ulrich Krieger

Proceedings of the Fifth Meeting on Mathematics of
Language (MOLS)

168 pages

D-97-01

Thomas Malik

NetGLTool Benutzeranleitung
40 Seiten

1996

D-96-07

Technical Staff

DFKI Jahresbericht 1995
55 Seiten

Note: This document is no longer available in printed
form.

D-96-06

Klaus Fischer (Ed.)

Working Notes of the KI'96 Workshop on Agent-
Oriented Programming and Distributed Systems

63 pages

D-96-05

Martin Schaaf

Ein Framework zur Erstellung verteilter Anwendungen
94 pages

D-96-04

Franz Baader, Hans-Jiirgen Biirckert, Andreas Giinter,
Werner Nutt (Hrsg.)

Proceedings of the Workshop on Knowledge Represen-
tation and Configuration WRKP’96

83 pages

D-96-03

Winfried Tautges

Der DESIGN-ANALYZER - Decision Support im Desi-
guprozess

75 Seiten

D-96-01

Klaus Fischer, Darius Schier

Ein Multiagentenansatz zum Losen
Scheduling-Problemen

72 Seiten

von Fleet-

1995

D-95-12

F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'95 Workshop:

KRDB-95 - Reasoning about Structured Objects:
Knowledge Representation Meets Databases

61 pages

D-95-11

Stephan Busemann, Iris Merget

Eine Untersuchung kommerzieller Terminverwaltungs-
software im Hinblick auf die Kopplung mit natiirlich-
sprachlichen Systemen

32 Seiten

D-95-10

Volker Ehresmann

Integration ressourcen-orientierter Techniken in das wis-
sensbasierte Konfigurierungssystem TOOCON

108 Seiten

D-95-09

Antonio Kriiger

PROXIMA: Ein System zur Generierung graphischer
Abstraktionen

120 Seiten

D-95-08

Technical Staff

DFKI Jahresbericht 1994
63 Seiten

Note: This document is no longer available in printed
form.

D-95-07

Ottmar Lutzy

Morphic - Plus

Ein morphologisches Analyseprogramm fiir die deutsche
Flexionsmorphologie und Komposita-Analyse

74 Seiten

D-95-06

Markus Steffens, Ansgar Bernardi

Integriertes Produktmodell fiir Behélter aus Faserver-
bundwerkstoffen

48 Seiten

D-95-05
Georg Schneider

Eine Werkbank zur Erzeugung von 3D-Illustrationen
157 Seiten

D-95-04
Victoria Hall
Integration von Sorten als ausgezeichnete taxonomische

Pridikate in eine relational-funktionale Sprache
56 Seiten

D-95-03
Christoph Endres, Lars Klein, Markus Meyer

Implementierung und Erweiterung der Sprache ALCP
110 Seiten

D-95-02

Andreas Butz

BETTY

Ein System zur Planung und Generierung informativer

Animationssequenzen
95 Seiten

D-95-01

Susanne Biundo, Wolfgang Tank (Hrsg.)

PuK-95, Beitrage zum 9. Workshop ,,Planen und Kon-
figurieren“, Februar 1995

169 Seiten

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

1994

D-94-15

Stephan Oepen

German Nominal Syntax in HPSG

— On Syntactic Categories and Syntagmatic Relations

80 pages

D-94-14

Hans-Ulrich Krieger, Ulrich Schifer

TDL - A Type Description Language for HPSG, Part
2: User Guide.

72 pages

D-94-12

Arthur Sehn, Serge Autexier (Hrsg.)

Proceedings des Studentenprogramms der 18. Deut-
schen Jahrestagung fiir Kiinstliche Intelligenz KI-94

69 Seiten

D-94-11

F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'94 Workshop: KRDB’94 - Rea-
soning about Structured Objects: Knowledge Represen-
tation Meets Databases

65 pages

Note: This document is no longer available in printed
form.

D-94-10

F. Baader, M. Lenzerini, W. Nutt, P. F. Patel-Schneider
(Eds.)

Working Notes of the 1994 International Workshop on
Description Logics

118 pages

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

D-94-09

Technical Staff

DFKI Wissenschaftlich-Technischer Jahresbericht
1993

145 Seiten

D-94-08

Harald Feibel

IGLOO 1.0 - Eine grafikunterstiitzte Beweisentwick-
lungsumgebung

58 Seiten

D-94-07

Claudia Wenzel, Rainer Hoch

Eine Ubersicht iiber Information Retrieval (IR) und
NLP-Verfahren zur Klassifikation von Texten

25 Seiten

Note: This document is no longer available in printed
form.

D-94-06

Ulrich Buhrmann

Erstellung einer deklarativen Wissensbasis iiber recy-
clingrelevante Materialien

117 Seiten

D-94-04

Franz Schmalhofer, Ludger van Elst

Entwicklung von Expertensystemen: Prototypen, Tie-
fenmodellierung und kooperative Wissensevolution

22 Seiten

D-94-03

Franz Schmalhofer

Maschinelles Lernen: Eine kognitionswissenschaftliche
Betrachtung

54 Seiten

Note: This document is no longer available in printed
form.

D-94-02

Markus Steffens

Wissenserhebung und Analyse zum Entwicklungsprozef§
eines Druckbehilters aus Faserverbundstoff

90 pages

D-94-01

Josua Boon (Ed.)

DFKI-Publications: The First Four Years
1990 - 1993

75 pages

("spa) 1apjui4 Buebjjop ‘uuerwasng ueydals “axyoag uew|il

uoljesauar) abenbue] jeanjeN
uo

Juswindo g .
doysx)iom Pi4da

90-46-d

	D-97-06-0001
	D-97-06-0002
	D-97-06-0003
	D-97-06-0004
	D-97-06-0005
	D-97-06-0006
	D-97-06-0007
	D-97-06-0008
	D-97-06-0009
	D-97-06-0010
	D-97-06-0011
	D-97-06-0012
	D-97-06-0013
	D-97-06-0014
	D-97-06-0015
	D-97-06-0016
	D-97-06-0017
	D-97-06-0018
	D-97-06-0019
	D-97-06-0020
	D-97-06-0021
	D-97-06-0022
	D-97-06-0023
	D-97-06-0024
	D-97-06-0025
	D-97-06-0026
	D-97-06-0027
	D-97-06-0028
	D-97-06-0029
	D-97-06-0030
	D-97-06-0031
	D-97-06-0032
	D-97-06-0033
	D-97-06-0034
	D-97-06-0035
	D-97-06-0036
	D-97-06-0037
	D-97-06-0038
	D-97-06-0039
	D-97-06-0040
	D-97-06-0041
	D-97-06-0042
	D-97-06-0043
	D-97-06-0044
	D-97-06-0045
	D-97-06-0046
	D-97-06-0047
	D-97-06-0048
	D-97-06-0049
	D-97-06-0050
	D-97-06-0051
	D-97-06-0052
	D-97-06-0053
	D-97-06-0054
	D-97-06-0055
	D-97-06-0056
	D-97-06-0057
	D-97-06-0058
	D-97-06-0059
	D-97-06-0060
	D-97-06-0061
	D-97-06-0062
	D-97-06-0063
	D-97-06-0064
	D-97-06-0065
	D-97-06-0067
	D-97-06-0068
	D-97-06-0069
	D-97-06-0070
	D-97-06-0071
	D-97-06-0072
	D-97-06-0073
	D-97-06-0074
	D-97-06-0075
	D-97-06-0076
	D-97-06-0077
	D-97-06-0078
	D-97-06-0079
	D-97-06-0080
	D-97-06-0081
	D-97-06-0082
	D-97-06-0083
	D-97-06-0084
	D-97-06-0085
	D-97-06-0086

