
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Document
0-96-06

Working Notes of the KI '96 Workshop on
Agent-Oriented Programming and Distributed

Systems

Klaus Fischer (Ed.)

August 1996

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organiza­
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and
Siemens-Nixdor1. Research projects conducted at the DFKI are funded by the German Ministry
of Education, Science, Research and Technology, by the shareholder companies, or by other
industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

D Intelligent Engineering Systems
D Intelligent User Interfaces
D Computer Linguistics
D Programming Systems
D Deduction and Multiagent Systems
D Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an at1ractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Dr. Dr. D. Ruland
Director

Working Notes of the KI'96 Workshop on Agent-Oriented Prograrn­
ming and Distributed Systems

Klaus Fischer (Ed.)

DFKI-D-96-06

This work has been supported by a grant from The Federal Ministry of Educa­
tion, Science, Research, and Technology (FKZ ITW-95 004).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1996
Thls work may not be copied or reproduced In whole of part for any commercial PUrpOS8. Permission to
copy in whole or part without payment of fee is granted for nonprofit educatlonal and research purposes
provided that all such whole or partial copies include the followlng: a notlce that such copylng is by per­
mission of the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republlc
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of thls copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a Iicence wlth payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.
ISSN 0946-0098

Working Notes of the KI'96 Workshop on Agent-Oriented
Programming and Distributed Systems

Klaus Fischer (Ed.)

August 27, 1996

1

Preface

Distributed A! (DA!) and Multiagent Systems (MAS) are nowadays not only inte­
grated into the programme of any national and international AI conference but in
many application domains the developed techniques are already applied in practi­
cal applications. Intelligent agents raise requirements to interaction abilities that
go far beyond the pure functional interoperability. When pursuing local or global
goals, agents must be able to coordinate their activities, exchange knowledge, and
resolve confticts.

Recently new technologies were developed which are likely to inftuence DA!
and MAS research. This is especially true with industrial standards like ODP,
OMG, and CORBA with respect to distributed object-oriented systems from which
at least some of the MAS development tools have emerged. New programming
languages for 'mobile agents' (e.g., Java, Telescript etc.) stimulate current re­
search. The goal is now to develop agent architectures which meet the require­
ments of these standards and innovations with respect to openness, tractability,
and security aspects.

We require tools for agent-oriented software development and it is necessary
to develop methodologies to validate MAS.

The papers in these working notes present subjects like:

• usefulness of object-oriented analysis and design methodologies for MAS

• coordination of active agents in open systems

• communication concepts for MAS

• agent-oriented perspectives to ODB, OMG, and CORBA

• usefulness of Java to describe and implement agents in a MAS

The overall goal of the workshop is to stimulate the discussion on how the new
developments can be effectively integrated into the current research work.

Klaus Fischer

3

Content

Verwendbarkeit objekt-orientierter Analyse- und Designmethoden
für Multiagenten-Systeme, Birgit Burmeister 7 - 17

Communication Concepts for Multiagent Systems, Klaus Fischer '" 18 - 26

J

Realisierungsrahmen für innovative Netz-Anwendungen,
Afsaneh Haddadi ... 27 - 33

Koordination aktiver Agenten in offenen Systemen, Thilo Kielmann: 34 - 44

Java und Agenten-orientierte Programmierung, Ralf Kühnel 45 - 48

ALP: Eine Programmiersprache für situativ intelligente Agenten,
Thomas Weiser 49 - 54

IPDL - Interaction Protocols for Distributed Objects, Boris Bokowski 55 - 63

5

Models and Methodology for
Agent-Oriented Analysis and Design

Birgit Burmeister
Daimler-Benz AG, Research Systems Technology, Alt-Moabit 96a, 10559 Berlin, Germany

bur@DBresearch-berlin.de

Abstract

Agent-oriented techniques are likely to be the next significant breakthrough in
software development process. They provide a uniform approach throughout the
analysis, design and implementation phases in the development life cyc1e.

Agent-oriented techniques are a natural extension to object-oriented techniques,
but while there is a whole pIethora of analysis and design methods in the object­
oriented paradigm, very little work has been reported on design and analysis methods
in the agent-oriented community.

After surveying and examining a number of well-known object-oriented design
and analysis methods, we argue that none of these methods, provide the adequate
model for the design and analysis of multi-agent systems. Therefore, we pro pose a
new agent-specific methodology that is based on and builds upon object-oriented
methods. We identify three major models that need to be build during the develop­
ment of multi-agent applications and describe the process of building these models.

1 Introduction

Agent-oriented programming or in more general terms agent-oriented techniques (AOT) pro­
vide a new approach that aims at supporting the whole software development process. Analysis,
design, and implementation are done in a simple and natural way, at a level of abstraction more
adequate to the problem to be solved. The goal of AOT is to handle all phases with a single, uni­
form concept, namely that of agents.

During the analysis phase the acting entities of the problem domain are identified and mod­
elled as agents. Agents and their actions (or behavior) are refined and specified in the design
phase. Finally, at the implementation phase, agents are programmed witb the aid of an agent-ori­
ented programming language or using a multi-agent development environment.

AOT are a natural extension to object-oriented techniques (OOT), tbat are also aimed to sup­
port all phases of software development in a general and uniform way. Agents can be seen as ac­
tive objects. The differences between objects and agents, as stated by [Sh090], are (i) tbe structur­
ing of the internal state of an agent by mental notions like beliefs, goals, intentions, and the like,
and (ü) characterization of messages by message types and the structuring of me$sages into proto­
cols. As a result of these conceptual differences, agent-oriented systems need to be analyzed,
designed and implemented differently.

While there is a plethora of analysis and design methods in the area of OOT, very little ha5
been done for analysis and design in the agent-oriented community. This paper is aimed as a con·

7

tribution to this area. By looking at some well-known object-oriented analysis and design meth­
ods we highlight the inadequateness of these methods for modelling multi-agent systems. Never­
theless inspired by OOT we introduce a set of models and outline the process of building these
models for the development of multi-agent systems (MAS).

In section 2 we give a short survey of the general concepts in 00 analysis and investigate
whether these concepts can be carried over to AO analysis. Based on this in section 3 we will
present our models and a methodology that builds upon and uses some notations used in 00
methods. Finally, we give an overview of the related work in section 4 and conclude with a sum­
mary and an outlook in section 5.

2 Object-Oriented Analysis

There are quite a number of approaches to object-oriented analysis (and design)1 such as the
Object Modelling Technique [RBP+91], Responsibility Driven Design [WWW90], Object­
Oriented Software Engineering (Objectory) [JCJ+92], Object-Oriented Design [B0091], and the
Fusion Method [CAB+94]. Abstracting away from their finer grained differences, conunon to
most of these approaches one could identify the following step-wise procedure:

1. The first step in the majority of methods is identifying the objects and classes in the system.

2. After the objects/classes are identified, the static relationships among them are specified.
These relationships are inheritance, aggregation or more general association relationships.

3. Then the dynamic relationships, (i.e. events and messages) are specified. As for the dynamics,
two aspects have to be considered: (i) 'dynamics in the large', that is, the messages exchanged
between objects that build up the system behavior, and (ii) 'dynamics in the small', that is, the
internal flow of states and events/messages within one object (sometimes called object life
cycle).

4. Finally the internal structure of the objects is described, i.e. the attributes are defined and the
operations (methods) of the object are described.

The result of these steps can be seen as three sub-models of a complete model of the system
to be built. These models are named basic, static and dynamic models in [Bal94].

• The basic model contains the objects/classes and their attributes and operations.

• The static model contains the structure of the system as described by the relationships
among objects/classes as inheritance, aggregation or more general associations and group­
ing into subsystems.

• The dynamic model contains messages and interaction diagrarns as weH as objects' life
cycles and the specification of object operations.

1. Since there is a fluent borderline between analysis and design in OOT, we will use the tenn "00 analy­
sis" instead of "00 analysis and design" throughout this paper.

8

After a thorough investigation of 00 analysis and design techniques we found that they are
not directly applicable to the development of multi-agent systems. This is basically due to their
conceptual differences between objects and agents.

1. Agents have a more complex behavior and structure than objects, and in this respect they are
more comparable to subsystems in some 00 methodologies, (e.g., [WWW90]). Their internal
structure differs from objects in that agents have a more complex underlying functional archi­
tecture such as the belief-desire-intention (BDI) architecture [RG92].1n this respect they are
on a higher level of abstraction than objects.

2. Unlike objects whose intern al states are defined in tenns of some arbitrary attributes, the inter­
nal states of agents are defined in terms of some mental notions, like beliefs, plans and goals,
which distinctly characterize the agent.

3. In contrast to objects that are rather passive entities, agents are active. Objects immediately
become active through messages and in this respect they are benevolent, whereas agents act
on their own behalf by following their goals, and can decide whether they act and respond to
events and the messages received from other agents.

4. Agents' behaviors are described as scripts or plans by some graphical means that resemble
state transition diagrams used to describe object life cycles in some 00 techniques, (e.g.,
[RBP+9I]). Agents' plans can be directly impleIilented using an agent programming language
or an appropriate tool or environment such as DASEDIS [Bur93] or dMARS [Kin93]. Specifi­
cally using such tooIs, implementing an agent is mainly specifying its plans.

5. The communication of objects only looks at single messages. In AO not only messages are
characterised by message types, agents dialogues with respect to specific contexts are pre­
structured into cooperation protocols like the ones proposed in our earlier work [BHS93].

The Responsibility Driven Design (ROD) method [WWW90] for the design of object.,.
oriented systems comes dosest to the concepts in AOT. In this method identifying and specifying
responsibilities are the dominant starting point. A class inheritance hierarchy is build up using
the responsibilities identified. Collaborations among objects are defined by contracts and proto­
cols (i.e., the formal specification of method calls). Finally the system is structured by subsystems
consisting of closely collaborating objects. But as was stated earlier, due to the conceptual differ­
ences between agents and object, 00 methods are not immediately applicable to the design and
analysis of agent-oriented systems.

This result has led us into studying and proposing a more adequate approach for agent­
)riented analysis and design. The approach draws upon 00 methods and uses some of the nota­
:ions commonly used in many 00 techniques. The next section describes this approach.

9

3 Agent-Oriented Analysis: Models & Methodology

Similar to the three models to be specified and built during 00 analysis (i.e., basic model,
static model and dynamic model), we divide the results of an agent-oriented analysis into three
submodels: the agent model, the organizational model and the cooperation model.

• The agent model contains agents and their internal structure, described in tenns of mental
notions such as goals, plans and beliefs or whatever structure deerns to be appropriate to
an agent architecture. This model resembles the basic model of 00 methods.

• The organizational model specifies the relationships among agents and agent types. These
are on one hand inheritance relations (among agents and agent types, and agent types and
sub- or supertypes), and on the other hand relationships among agents based on their roles
in organizations. These organizations can be means for structuring a complex system into
subsystems (as done in some 00 techniques) or can be used to model real organizations.
This model is in some respect similar to the static model, but since roles can change over
time it is not genuinely static model.

• The cooperation model describes the interaction or more specifically the cooperation
among agents. This model only contains the 'dynamics in the large' part of the 00 dynamic
model. The 'dynamics in the small' part, (i.e. the description of agent behavior), is part of
the agent model.

Although these models are not strictly disjoined they can be developed separately. In the re­
maining part of this section we describe each of these models and outline how they may be devel­
oped. In contrast to most 00 techniques however, we do not prescribe which model has to be
developed first. In our experience in building MAS for real world applications the appropriate
choice is ruled by the nature of the application being developed.

As a general guideline, it seems useful to start with an informal description of the scenario to
be modelled before actually developing the models. This is also the first step in some of the 00
techniques or is even apre-requisite to applying the method. After this very first description one
of the three models is developed, starting with the model most appropriate in the application con­
sidered.

To illustrate the methodology and how one may develop these models we will sketch an exam­
pIe from one of the applications we are currently developing. As part of a project investigating
the possible implications of data highways and high performance computing on road trafiic, we
are developing a simulation system for widely decentralized and self-organized allocation of
parking places. This system should allow for the simulation of different scenarios to experiment
with different strategies and organizational forms and will be implemented as a multi-agent sys­
tem.

The scenario to be simulated is briefly described as follows: The scenario consists of a road
network, where cars move from their start node to an end node. At their end node, it is always
preferred to park as c10se to the destination as possible. Parking places must be allocated dynami-

10

cally by cars negotiating among themselves (for all the parking places in the vicinity of the end
node), or by consulting anode manager. In this example we will only consider the latter. Anode
manager is in charge of the parking places at a specified node.

3.1 Agent Model

The agent model contains the agents and their internal structure. It is built following the steps
described below:

1. Identify agents and their environment.
In many cases identifying agents and their environment is rather intuitive. Agents are the live
and "active entities" in the system in that they can change their own states and their action can
affect their environment, whereas the environment consists of passive elements whose state
only changes by agents actions. It is quite usual for the collection of agents to grow during the
analysis process. For instance, at later stages one may inc1ude agents that realize the system
internal purposes. As with the ROD method, it is a good practice to create a CRC-card2 for
each agent. In the RDD method, CRC-cards are used to document c1asses. To document agents
the CRC-card is enhanced by predefined 'attributes' like beliefs, motivations and plans identi­
fied in the remaining steps below. Other 'attributes' such as those related to the cooperation
partners, must be analyzed during building the other models and added to the CRC-card after­
wards.

2. For each agent define its motivations.
Motivations (e.g., interests, preferences, responsibilities, long-term goals and so on) play an
important role in the way an agent makes its decisions, and in this respect, they characterize
the agent. Their role is especially important when an agent has more than one way of acting
in a given situation. For instance, long-term goals lead to the selection of more concrete goals,
subgoals and plans. And motivations are used to control the decision making at branching
points within plans. These issues are also added to each agent's CRC-card.

3. Define the behavior of each agent.
The behavior of agents is defined in some scheme called plans. Plans describe the sequence
of actions an agent may carry out to fulfil certain motivations or react to the occurrence of
certain events. Therefore plans must be related to the specific motivation or events that make
them applicable and added to the CRC-cards.
Plans can be specified in a graphical notation similar to state transition diagrams. These speci­
fications are refined successively during the process of analysis and design towards a complete
specification. As mentioned earlier, the complete specification can then be implemented di­
rectly when using an appropriate tool.

4. Define knowledge and belief.
Finally the knowledge and belief an agent uses to execute its plans is defined and added to the
CRC-card.

2. CRC stands for 'classes-responsibilities~ollaborations·.

11

At the end of these steps there is a collection of agents with the specification of their motiva­
tions and plans in some sort of operation al scheme, and the type of knowledge and belief they
require to execute the plans.

In the example sketched out earlier, cars and node managers are the active entities and there­
fore can be modelled as agents. We introduce two types of agents, namely car-agent and manag­
er-agent. The road network itself is not active and therefore not modelled as an agent, but is simu­
lated as the environment of the agents.
The long-term goal of a car-agent is to drive from its start to its end node. The car-agents' prefer­
ence is to park as near to its destination as possible. Node managers administer parking places
at their node. Their task is to optimally satisfy the parking wishes of car-agents and cooperate
with other manager-agents.
The major behaviors (plans) that can be associated to a car-agent are driving on the road network,
announcing a desired parking location, and negotiating about a parking place. To be able to carry
out these plans, a car-agent must have knowledge about its start and end nodes and the route to
take. In case of the fully decentralized scenario, a car-agent must also have information about the
availability of parking places at its destination. The manager-agents handle the parking wishes
that were announced by car-agents, and administer the parking places that they are in charge of.
Therefore, they need knowledge about the capacity and allocation of their parking places. Due
to space limitations the successive refinement of these plans down to the operational schemes is
not presented here.

3.2 Organizational Model

In this model, (roles of) agents are classified and related to each other.

1. Identify roles in the scenario
The roles and responsibilities in the scenario are identified. If areal organization is to be mod­
elled in the multi-agent system the roles appearing in that organization should be stated. Roles
are then mapped to agents and agent types, where they may influence the motivations and
therefore behavior of the agents.

2. Build an inheritance hierarchy
Different roles or agents can be classified according to their knowledge and belief, motivations
and behavior. Agents having the same beliefs, the same goals and the same behavior are
instances of an agent type. As in 00 techniques the common 'attributes' can be defined in the
agent type and inherited by the agents. Abstract super-types can be introduced that do not have
instances. The inheritance hierarchy can be represented in a notation used by 00 methods,
(e.g .• the object diagrams of the Object Modelling technique (OMT».

3. Structure roles into organizations
Organizations can be used to structure a complex system into sm aller subsystems. Subsystems
are then parts where roles that are interacting more closely are put together. (This is also the
way subsystems. clusters etc. are used in some 00 techniques.)
Another way of using organizations within the system is to model real organizations, where

12

roles have certain relationships to each other. The organization can also be represented by
notations from 00 methods, (e.g., the object model in OMT).

The organizational model gives an overview of the connections among agents and agent types,

the roles and organization of agents.

The organizationaI model for the example scenario is quite simple. There are only two rolesl
agent types, namely cars and node managers. The cars are driving and have wishes to park, these
wishes can be handled by node managers. No inheritance relationships are present.

3.3 Cooperation Model

The cooperation model describes the interaction among the agents. It is buHt using the follow­
ing steps.

1. Identify cooperations and cooperation partners
In this step, it is stated which goal of an agent must be fulfilled by cooperation with ather
agents. This can be necessary to share resources, to synchronize actions or to coordinate be­
havior. The cooperation partners of an agent and the reason for cooperation must be entered
into the agent's CRC-card.

2. Identify message types
To carry out a cooperation we assurne that agents must be able to communicate. For a meaning­
ful communication we consider using message types. A set of predefined standard message
types should be specified as proposed by KQML [FWW+94] or in our previous work
[BHS93].

The result of steps I and 2 can be noted in a sort of collaboration or interaction graph, as used
in 00 techniques.

3. Define cooperation protocols
From the interaction graphs (and sometimes from an intuitive semantics of message types)
cooperations protocols can be derived. A cooperation protocol defines the possible flow of
messages among cooperating agents. Where it is convenient, cooperation protocols can be
buHt from a few basic protocols. In earlier work [BHS93], [Had96] we have identified some
basic protocols for Infonning, Querying, Proposing etc. Application specific protocols should
be noted. As with behaviors (Le., scripts or plans), protocols can also be represented in a graph­
ical notation that is operational.

Therefore, the cooperation model states the kinds of interactionlcooperation going on among
the agents and the contents exchanged by messages.

There are two types of cooperations in the parking management scenario: a~ cooperation be­
tween car-agents and node managers who respectively announce and handle parking wishes, and
b) cooperation between neighboring node managers who negotiate about parking places when
one of the managers runs short of parking places in the area of its control. For cooperation of type
(a) the corresponding message types are: announce a parking wish (car-agerU), confinn the

13

alloeation of a parking place (manager), and propose a different parking place (manager). For
cooperation of type (b) the corresponding message types are: inform about allocation of parldng
places, request for a parking place, offer a parking place, and reject a request. We have designed
a set of generic protocols that can handle some of these cooperation forms. Examples of these .
protocols can be found in [BHS93].

The three models described above together constitute the complete model of the system to be
realised. This model can now be implemented directly with an appropriate tool: agent types are
defined by their knowledge and beliefs, their motivations (e.g., goals) and behaviors in the fonn
of scriptslplans, and their cooperation protocols.

4 Related Work

So far very little work has been reported in the area on the systematic and methodological anal­
ysis and design approaches for building multi-agent systems. Some of these works are briefly
discussed here.

• An approach that was inspired by the KADS-model is mainly concerned with knowledge
acquisition aspects [0G92]. No hints are given on how to come to an agent-oriented model
of the domain.

• Some general criteria for a modular system design from 00 techniques as defined in
[Mey88] were transferred to multi-agent system design by [OW92].

• The project CONSENSUS [CON92] proposed a very high-level two step approach. The
fIrst step being a 'normal' requirements analysis as done for any software system. The se­
cond step is the design of a multi-agent system. However, again no instructions were given
as how this may be done.

• The approach described in [Dor93] discusses the decisions that have to be made when de­
veloping a multi-agent system, and in this respect is closer to our approach. The decisions
concern the definition of the agents, the description of their beliefs and capabilities and
fmally the specification of generic interactions and communication contents. However, no
guidelines are provided as how appropriate structures and models may be deve10ped to
facilitate making "good" decisions.

• Recent work of Kinny and his colleagues [KGR96] is very similar to the work presented
in this paper. Starting from a specific 00 technique, namely OMT, they propose a method­
ology and modelling approach for multi-agent systems. They distinguish between an exter­
nal and an internal model. The external model consists of an agent model (our organiza­
tional model) and an interaction model (our cooperation model), and is independent of a
chosen agent architecture. The internal model (our agent model) is specific to the BDI agent
architecture and describes the agents by a plan model, a goal model and a belief model. The
intern al model is a specialization of our agent model and is quite elabornted. On the other
hand their interaction model is not as worked out as our cooperation model.

• In the work of Rosenschein et al., [RZ94], the main focus is on the cooperation and interac­
tion aspects of multi-agent systems. They describe the definition of a negotiation process
(as a special fonn of cooperation), as a three step task. Namely defining the space of

14

possible deals, the negotiation process (as seen from the outside) and the negotiation strat­
egy (for each agent). These instructions can be seen as a special form of building the coop­
eration model.

5 Summary and Outlook

We have presented an approach for a systematic development of multi-agent systems. We have
introduced three distinct models and some model building instructions.

The motivation for oUf work was the need for a systematic approach for developing multi­
agent systems for real world applications and the fact that very little effort has been made in the
AO community on this subject.

Since AOT are a specialization of OOT and there exist many 00 analysis and design tech­
niques, we examined whether they could be used for the analysis and design of multi-agent sys­
tems. We found that none of the methods considered can be used immediately, without further
modifications, mainly because there are important conceptual differences between objects and
agents and consequently the resulting system models. However, 00 techniques provided a good
starting point for our work, especially the RDD method, which is conceptually closest to AO
modelling.

Our approach consists of three distinct models that are buHt during the process of analysis and
design: The agent model, consisting of the agents and their internal structure defined in terms of
knowledge and belief, motivations and behavior, the organizational model, describing the struc­
ture of the system and modelling organizations (real or artificial) agents are working in; and the
cooperation model, containing the interactions among the agents, i.e., describing who interacts
with whom, for what purpose, using which message types and protocols.

For each model we gave some instructions as to how the model may be built. These three mod­
els together describe the multi-agent system to be realised.

Most of the reported work on this topic is related to the agent model, so this is the most detailed
model. For BDI agents in particular, we found the methodology given in [KGR96] to be a recom­
mended alternative.

Our previous work on cooperation protocols influenced the cooperation model. Defining ap­
propriate cooperation protocols and the way scripts or plans are used to program the agent's be­
havior is an important issue in the development of multi-agent systems and needs to be elaborated
further.

The least elaborated model is the organizational model. The impact of a role an agent takes
within an organization on its behavior has not been investigated thoroughly. Furthermore so far
there is no way of directly implementing organizations by corresponding language constructs.
One way would be to look at organizations as special agents, that contain spe~ial joint plans the
member of the organization can use (or inherit) as Shoham proposed in his first discussion of
agent-oriented programming [Sh090].

15

Our approach is currently being tested in a number of real world applications. This will give
us more insights into the development process for multi-agent systems and thus will help to refme
and improve the models and methodology.

Acknowledgement

I would like to thank the members of the 'agents' team at Daimler-Benz Research for their
input and fruitful discussions. Special thanks to Msaneh Haddadi for helping to make this a read­
able paper.

References

[Bal94] H. Balzert: Methoden der objekt-orientierten Systemanalyse, Angewandte Infor­
matik 14, BI-Wissenschaftsverlag, Mannheim, 1994. (in german)

[Boo91] G. Booch: Object-Oriented Design withApplications, BenjaminlCummings, Red­
wood City, CA, etc.,1991.

[Bur93] B. Bunneister: "DASEDIS - Eine Entwicklungsumgebung zum Agenten-Orien­
tierten Programmieren" in: H.J. MUller (ed.): Verteilte Künstliche Intelligenz, BI­
Wissenschaftsverlag, Mannheim, 1993. (in german)

[BHS93] B. Burmeister, A. Haddadi, K. Sundermeyer,: "Generic Configurable Cooperation
Protocols for Multi-Agent Systems" in: C. Castelfranchi, J.-P. Müller (eds.): From
Reaction to Cognition. Proc. MAAMAW'93, LNAI 957, Springer, Berlin, etc., pub­
lished 1995.

[CON92] "Methodology Report (D 13)", British Aerospace, Durham University, Cambridge
Consultants, 1992.

[CAB+ 94] D. Coleman, P. Amold, S. Bodoff, C. DoHin, H. Gilchrist, F. Hayes, P. Jeremaes:

[Dor93]

Object-Oriented Development. The Fusion Method, Prentice Hall, Englewood
Cliffs, 1994.

J. Doran: "Using DAI Software Testbeds" in: Proceedings CKBS'93, DAKE Cen­
tre, Keele, 1993.

[FWW+94] T. Finin, 1. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay, J.
MeGuire, R. Pelavin, S. Shapiro, C. Beck: "Specification of the KQML Agent­
Communieation Language" (Draft), The DARPA Knowledge Sharing Initiative,
Extemal Interfaces Working Group, 1994.

[Had96] A. Haddadi: Communication and Cooperation in Agent Systems: A Pragmatic
Theory, LNAI 1056, Springer, Berlin, ete., 1996.

[JCJ+92] I. Jaeobson, M. Christerson, P. Jonsson, G. Övergaard: Object-Oriented Software
Engineering. A Use Case Driven Approach, ACM PressiAddison-Wesley, 1992.

16

[Kin93] D. Kinny: ''The Distribl!ted Multi-Agent Reasoning System Architecture and Lan­
guage Specification", Australian Artificial Intelligence Institute, Melboume, 1993.

[KGR96] D. Kinny, M. Georgeff, A. Rao: "A Methodology and Modelling Technique for Sy­
stems of BDI-Agents" in: W. van der Velde, 1. Perrarn (eds.): Agents Breaking Away.
Proc. MAAMA W'96, LNAI 1038, Springer, Berlin, etc., 1996.

[Mey88] B. Meyer: Object-oriented Software Construction, Prentice Hall, Englewood Cliffs,
1988.

[OG92] A. Ovalle, C. Garbay: "Towards a Methodology for Multi-Agent System Design"
in: Proceedings Expert Systems 92, Carnbridge, 1992.

[OW92] G.M.P. O'Hare, M.J.Woo1dridge: "A Software Engineering Perspective on Multi­
Agent System Design: Experience in the Development of MADE" in: N. Avouris,
L. Gasser (eds.): Distributed Artificial Intelligence - Theory and Praxis, Kluwer
Acadernic, Dordrecht, etc., 1992.

[RBP+91] J. Rumbaugh, M. B1aha, W. Premerlani, F. Eddy, W. Lorenson: Object-Oriented
Modelling and Design, Prentice Hall, Englewood Cliffs, 1991.

[RG92] A. S. Rao, M. P. Georgeff: "An Abstract Architecture for Rational Agents" in B.
Nebel, C. Rich, W. Swartout (eds.): Proc. International Conference on Principles
of Knowledge Representation and Reasoning (KR-92), Morgan Kaufmann, San
Mateo, 1992.

[RZ94] 1. S. Rosenschein, G. Zlotkin: Rules of Encounter. Designing Conventionsfor Auto­
mated Negotioation among Computers, MIT Press, Carnbridge MA, London, 1994.

[Sh090] Y. Shoharn: "Agent Oriented Prograrnrning", Stanford University Technical Report
STAN-CS-90-1335, Stanford, 1990.

[WWW90] R. Wirfs-Brock, B. Wilkerson, L. Wiener: Designing Object-Oriented Software,
Prentice-Hall, Englewood Cliffs, 1990.

17

Communication Concepts in Multiagent Systems
Klaus Fischerl

DFKI GmbH, Stuhlsatzenhausweg 3, 66123 Saarbrücken
kuf@dfki.uni-sb.de

Abstract

Basic communication concepts are overall important for the deign of agents in a mul­
tiagent context. Although some researchers investigate in how far agents are able to solve
a given problem in a multiagent world without the explicit use of communication, in most
cases researchers assume that the agents have the ability to communicate as a basic req­
uisite. In this paper I compare the basic communication concepts of MAGSY and MAI2L

with those of JAVA. Main goal of the paper is to extract the common core of these three
approaches for the implementation of basic communication techniques and starting from
this core shed so me light on which path should be selected to further extend the concepts.

1 Introduction

Up to now is the fonnula DA! = M AS + DPS - where DAI: Distributed AI, MAS: Multia­
gent Systems, and DPS: Distributed Problem Solving - the bestcharacterization ofthe research
area DAI. When we investigate DAI research topics, we do this in most cases by looking at a
MAS which is designed to solve a problem in a specific application domain. Although some
researchers investigate in how far agents are able to solve such a problem without the explicit
use of communication, in most cases the researchers assume that the agents have the ability to
communicate as a basic requisite.

Basic concepts to describe communication among agents in a MAS are therefore a crucial
part of the agent description. However, there is no common agree.ment on how a standard
to describe the basic communication concepts should look like. In this paper we compare
the basic communication concepts of MAGSY and MAI2 L - selected as representatives for
MAS development environments - with those of JAVA. JAVA was selected because it attracted
significant attention in the context of distributed programrning in the INTERNET and has been
also suggested to be adequate to describe agents in a MAS context.

2 MAGSY

Originally MAGSY [FW92, Fis93] was designed to allow the implementation of a MAS which
is organised as a distributed blackboard system in an easy manner. In MAGSY each agent is a
knowledge-based system, which uses a forward-chaining rule interpreter as basic inference ma­
chine. These concepts have been extended in the projects AKA-MOD and CoMMA-MAPS
at DFKI GmbH in Saarbrcken and resulted in the agent architecture INTERRAP.

IThis work has been supported by a grant frorn The Federal Ministry of Education, Science, Research, and
Technology (FKZ ITW-95 004)

18

ASprot

Figure 1: Static specification ASprot ofthe solution for a problem and dynamic execution ASt

In MAGSY an agent is defined by a tripie (F, 'R, n, where

F is a set of facts which represent the local knowledge of the agent.

'R is a set of rules which define the strategies for the general behaviour of the agent.

T is a set of services which are provided by the agent.

For a given agent A, AF , An and AT denote the respective sets. Agent A may receive mes­
sages which change the set of facts or activate a service of the agent. The basic communicatior
layer of MAGSY provides therefore the basic speech acts inform and request, where the seman­
tics of the message is fixed by the know ledge representation in the receiving agent. Each service
of an agent consists of a set of rules which become active when the specific service has been
activated by an incoming message. The execution of a service by an agent A may change the
set of facts AF and the set of rules An. Therefore, the agents are learning when they execute
their services, which can also mean that rules and facts can be forgotten, i.e. are removed. It is
also possible that the execution of a service by agent A creates a number of new agents. The
requests for services which are received by an agent are treated according to a specific strategy.
Only one service can be active at a time. The other requests are queued and activated when the
current service is finished. A priority is assigned to each service. A service s may be interrupted
by a service i if a message arrives which activates i and i has a higher priority than s. If i is
finished, s is reactivated. This process may happen recursively. At any point in time the service
with highest priority is active. If more than one request for this priority class is present, the
request belonging to the oldest message (that is the earliest one received) will be executed.

The knowledge of the agents is represented in an object-oriented knowledge representation
scheme. Objects are the basic elements which build a knowledge base. Objepts which have the
same structure are grouped together and make up classes. The description of a class is a pro­
totype object which specifies how the elements (we call these elements instances or facts) look
like. The properties of these instances are described by attributes. The classes are structured in

19

a hierarchy in which attributes are inherited from the upper, more general, c1asses to the lower,
more specific ones.

To describe the solution of a given problem, a set of cooperating agents is specified. The
static description of the solution of the problem is given by the prototypical agent system

ASprot := (Aprot, K Binit) ,

where

Aprot is the set of prototypical agents, the agents which may arise dynamically in the system.
These agents are the potentially available problem solvers. Several instances of a
specific prototypical agent can be created.

K B init is a prototypical agent with a fixed set of services. It is designed to provide an active,
global knowledge base and provides agent directory services.

The process of problem solving starts with the initial agent system

ASinit = ((All"'" Anl), KBinit) ,

where AI!," . ,Anl E Aprot. The computation goes on while the agents perform requested
services and call on services of other agents. ln doing so the agents are cooperating by sending
messages to each other. Newagents may be created and killed again later on. A message
may contain the identification of an agent, thus any desired structure of comrnunication can be
created dynamically. The contents of the global knowledge base can be accessed by all agents.
Thus, the global knowledge base may be changed by the agents in any desired manner. For
example, an agent can make its own identification known to all of the other agents by writing it
into the global knowledge base.

ln the example of figure 1 the system started with ASinit = ((Alp Asl), KBinit). All
creates AZl and AS2 and ASl creates A3l . At time t, All told AS2 the identification of A2l and
AS2 told AZl its own identification. The identification of A3l came known to AS2 because A3l
stored its identification in the global knowledge base and AS2 extracted this information from
the global knowledge base. ln this example there is no other way for AS2 to get the identification
of A3l .

3 MAI2L

MAI2L [Kol95] is an agent-oriented programming language and has been developed in the DFKI
projects KIK-TEAMWARE and CoMMA-PLAT. One of the basic requirements for MAI2L was
that it should provide a platform for the development of MAS in an industrial context where
efficiency in execution and in use of resources is of overall importance.

Agents in MAI2L are objects and agent live as threads in a multi-threaded virtual machine.
Conununication among agents is possible within a virtual machine as well as among agents
in different virtual machines distributed on serveral computers. The agents knowledge base
is organized by association and contexts. Roughly spoken the knowledge base of an agent is
a collection of dictionaries which map identifiers to values. Contexts (i.e. dictionaries) have
to be opened to become active and values for identifiers defined in a dictionary which was
newly opended overwrite values for these identifiers which were defined in dictionaries opend
beforehand.

20

There are a few predefined agent classes - agent directory service (ADS) and monitor -
which are needed for debugging and the maintainance of multiagent systems. Agents in MAI2

can be multi-threaded in itself. However, there are no further concepts which suggest a structure
for multi-threaded agents.

Activities MAI2L agents have to reason about can be specified by plans. As the agents them­
selves the plans are defined by an object. On the one hand, these objects contain the procedure
which specify the activities to be executed for the plan. On the other hand, they provide in­
formation which allow the agent to reason about the plan. However, there is currently no basic
planning mechanism included in the MAI2L system. Therefore, a planning mechanism has to be
buHt on top of MAI2L. The representation of plans in MAI2L allows to specify multiagent plans
by labeling the activities with the characters which have to execute the activity. The following
plan provides a multiagent plan for a car and a car park to synchronize their activities to allow
the car to drive into the car park.

proc enter () {

}

car: drive_to_entrance()
car: request_entrance()
car-park: open_barrier()
car: drive_to_space()

The car and the car park have to open the appropriate context - providing the information
which car and which car park are actually involved in the cooperation - to be able to execute
the plan.

Communication among agents is done via a set of cooperation primitives. A cooperation
primitive consists of a type, which specifies the intention behind the communication and a
cooperation object. When an agent communicates the first time with another agent, its com­
municator asks its ADS about information on the network address and process number of the
recepient. The communicator creates a new instance of the class acquaintanace which stores
this information.

In the acquaintanance object all cooperation primitives are defined as methods. It represents
the send-target on the sender side and does the neccessary network communication to the actual
recepient. The actual message contains additional information that is added automatically by
the communicator of the sender:

• a unique id to identify the ongoing cooperation and its context

• the character name and the agent name of the sender and the recepient

• the name of the cooperation method, if the method is sent within a fixed protocol

• the type of the primitive indicating the intention behind the message.

This information must be available in the cooperative context ofthe initiator of a cooperation
method, the one that sends the first message, before the cooperation is starte~L

21

Agent Context

Figure 2: The architecture of an agent in the Java Agent Template (JAn.

4 JAVA

JAVA [AG96, K"u96] has recently attracted attention in the context of INTERNET applications.
It has been introduced as an INTERNET language and has been widely used in browsers for the
world wide web (WWW). More recent developments aime at the use of JAVA as a language to
describe agents in a MAS context. Rob Frost' s JAVA agent template (JAT) for example is an
implementation of a set of JAVA classes which provide means to describe autonomous agents.
In this section we give abrief outline of JAT so that we are able to compare it to the MAGSY
and MAI2L approach.

An agent in JAT is implemented as a set of basic objects as it is shown in Figure 2.

Agent Context: The agent context provides an executable container for the agent and its as­
sociated communication interface. The agent context is represented by the AgentContext
interface which specifies a set of abstract methods which must be implemented by any
object which servers as an agent context. In the present distribution, the AgentContext
interface is implemented by the classes AgentFrame and ANSFrame which provide agent
contexts with GVIs. Each of these classes can be executed as stand alone applications or
as applets, via the classes AgentApplet and ANSApplet.

Agent: The agent object represents the primary functional element in the architecture. An
agent basically represents a black box which asynchronously accepts and outputs KQML
messages via a communication interface. An agent' s knowledge and its body functions
(i.e., the functions which are designed to solve specific problems in an application do-

22

main) are represented by resouce objects. Standard resources inc1ude addresses, lan­
guages, ontologies and c1asses. An Agent communicates with the agent context via a
MessageOutput object.

Communication Interface: The communication interface object provides the low level mech­
anism for reliable transmission of KQML messages. In the present distribution, commu­
nication is done using a socket-based interface (c1ass SocketInterface) which allows to
receive and to transmit messages in a multi-threaded messsage.

Message Output: Communication between the agent object and its context is done using a
message output object. This object allows the agent object to output both system and
KQML messages to the user interface and execute certain context methods.

JAT provides a set of java c1asses as a basic toolbox to implement JAVA-based autonomous
agents. Basic c1asses are:

Agent.cIass: Provides the basic agent controlloop. In this controlloop the agent is able to send
and receive KQML messages. Furthermore, the agent is able to access knowledge and
functions provided by the resource c1asses.

ANS.cIass: Is a sub-c1ass of Agent.c1ass. It provides methods to store and retrieve addresses
of agents. This c1ass is used to implement agent directory services which give agents the
ability to contact other agents they originally did not know.

CommInterface.class: Is an extension of the JAVA SocketInterface.c1ass which implements
the port socket communication. It provides an interface for the agent to the mechanisms
which physically transmit the message across the network. JAVA threads are created on
receiving and on sending messages.

MessageOutput.cIass: Provides the interface between the agent and the user interface. It
passes on system as well as KQML messages.

NetworkClassLoader: Is an extension of ClassLoader.class and provides mechanisms to load
classes dynarnically across the network. It needs the URL of the class as a parameter. In
JAT it is used to dynarnically load the knowledge and the functions of the agent.

There are two classes AgentApplet.class and ANSApplet.class to create an ordinary or an
ANS agent, respectively. When an AgentAppleLclass (ANSAppleLc1ass) object is created, it
automatically creates an object of AgentFrame.c1ass (ANSFrame.c1ass). These two c1asses open
a window which provides the user interface to the agent (ANS). Furthermore, a Communica­
tioninterface object is created. Panels are seperate set of c1asses which allow the design of the
user interface (e.g. ComposeMessagePanel.c1ass, LoadResourcePanel.c1ass etc.).

Additionally, there is a set of classes called resource classes which describe the objects an
agent manipulates in its problem solving process. There are five resource classes:

Addresses: Describes adresses of agents specified by hostname and port number.

Classes: Describes the knowledge and the domain procedures and functions for the agents. It
is imported by the AgenLclass (or sub-classes, respectively).

23

Languages: Defines the syntax of the strings that can be sent in a message. A language object
parses a string and returns a message object. An example for such a language is KQML.

Ontologies: Defines the semantics of message contents. An example is AgentOntology.class
which supplies resources by an ANS, which defines ask-resouree: a request for a resouree
of which only the name is known and tell-resouree: an announeement of a resouree by an
agent. The method interpret-message takes a language object as input and interprets it. Up
to now this results in immediate calls of methods which provide the domain procedures
and functions of the agent.

KQMLmessages: Describes the structure of KQML messages, e.g., the performative tell:

:sender address-of-sender-agent
:receiver address-of-receiver-agent
:language KQML
:ontology AgentOntology
:content (tell ...)

The design of an agent is done by describing the domain functions, procedures, and the
knowledge, and structure them into classes. To describe the messages an agent is ahle to process,
a set of KQML performatives is selected and the semantics for the message contents is fixed.
Furthennore, the system engineer has to provide methods which actually produce the message
strings. The basic agent controlloop is always inherited form Agent.class. The system engineer
extends the basic controlloop by introducing test for different message types and by linking the
incoming messages to methods representing the domain functions and procdures. Finally, the
system engineer has to define a set of panels to describe the user interface of the agent.

5 Comparison of the Cooperation and the Communication
Concepts of MAGSY, MAI2L, and JAVA

From the three systems described above the JAT seems to be the most basic system. It purely
concentrates on the communication aspects of the agents. Though JAT agents communicate in
terms of KQML messages, internally the agents do not have a sophisticated knowledge repre­
sentation and reasoning mechanism. However, these mechanisms can of course be implemented
on top of the basic JAT coneepts. The basic ideas for the design of the communication interface
are therefore the most interesting parts in JAT.

On a first glance MAI2L seems to be a quite low-levellanguage, too. However, it reveals
its expressiveness when communication protocols are descibed. The ability to alow to write
procedures which can be executed by several agents representing different characters makes it
possible to describe communication and cooperation protocols in a compact manner. The bad
thing about this choiee is that these coneepts can be used only in an agent which is actually able
to interprete the MAI2L language. There is no strict classification of communication primitives
into performatives with a predefined semantics. Conceptually MAI2L incörporates highlevel
reasoning concepts like planning based on the event calculus. However, in [KoI95] there is no
description of how this could be done in an efficient manner.

24

The basic communication concepts of MAGSY provide the perfonnatives in/arm and re­
quest. Each agent has an inference procedure built into its kernel. In the original MAGSY
system this reasoning procdure was purely in a forward reasoning style. Whereas this paradigm
is especially adequate to describe reactive behaviour, it does not give to much support for the
implementation of rational agents which have to do deliberative planning to find out which ac­
tion they should actually take next to reach their goals. To co me around these problems, we
developed in the AKA-MOD and CoMMA-MAPS project the INTERRAP agent architec­
ture. The INTERRAP agent model integrates reactive, deliberative, and cooperative behaviour
in a three-Iayered architecture [Mül96]. However, the languages and MAS development plat­
fonns presented in this paper are designed for the implementation of highlevel agent models
like INTERRAP . The real question to ask here is, how much of the functionality of the agent
model should be integrated into the implementation language and how much should be im­
plemented on top of the implementation language. What we actually would need is a modular
implementation platfonn, where the basic functionality any meaningful agent in a MAS needs is
directly integrated into the implementation language, and functionality needed only for specific
application domains can be loaded on demand.

As a common core of communication concepts of the three systems presented in this paper,
we can see that an ADS is an important concept in a MAS development environment. It would
be highly desireable to have a standardisized interface to ADSs. When we compare MAS devel­
opment to distributed object-oriented programming ADS servers play the same role as ORBs.
However, there is nothing around like the CORBA standard for ADSs. CORBA itself is not
an adequate technology for MAS implmentation because it lacks the support of asynchronous
communication.

All of the MAS development tools presented in this paper support asynchronous communi­
cation. However, all of these systems have their own basic communication concepts. What we
need is a basic communication language which is independent from any specific implementation
language. A key requirement is therefore the definition of a small set of agent communication
languages and protocols (ACLPs). These languages should offer abstractions which are at the
appropriate level and should not be tied to a particular transport mechanism or set of lower level
architecture assumption. KQML [] is a step into the right directsion. However, the problem
with KQML is that there is no content language which is widely accepted, and without content
language KQML is only of limited use.

6 Conclusion

This paper presented three development platforms MAGSY, MAI2 L, and JAT which were espe­
cially designed to support an easy implementation of multiagent systems. When we compare
the basic communication concepts used in these systems we realize that agent directory services
(ADSs) and the ability to communicate asynchronously are crucial for agents in a multi agent
context. However, there is no standard around like the CORBA technology is in the distributed
object-oriented system community to implement this basic functionality.

Furthermore, we can see that there is agreement that communication should be based on
speech acts. What we need here is the definition of a small set of agent cemmunication lan­
guages and protocols (ACLPs). These languages should offer abstractions which are at the
appropriate level and should not be tied to a particular transport mechanism or set of lower level

25

architecture assumption. KQML [] is a step into the right directsion. However, the problem
with KQML is that there is no conte nt language which is widely accepted, and without content
language KQML is only of limited use.

References

[AG96] Ken Amold and James Gosling. The Java Programming Language. Addison-Wesley,
1996.

[Fis93] K. Fischer. The Rule-based Multi-Agent System MAGSY. In Proceedings of the
CKBS'92 Workshop. Keele University, 1993.

[FW92] K. Fischer and H. M. Windisch. MAGSY- Ein regelbasiertes Multi-Agentensystem.
In H. J. Müller, editor, KII/92, Themenheft Verteilte KI. FBO-Verlag, 1992.

[KoI95] M. Kolb. A cooperation language. In Proceedings of the First International Confer­
ence on Multi-Agent Systems (ICMAS-95), pages 233-238, San Francisco, CA, June
1995.

[K"u96] Ralf K"uhnel. Die Java-Fibel. Addison-Wesley, 1996.

[MüI96] J. P. Müller. An Architecture for Dynamically Interacting Agents. PhD thesis, Univer­
sität des Saar1andes, Saarbrücken, 1996.

26

Requirements for Enabling Intelligent Network
Applications

Afsaneh Haddadi
Daimler-Benz AG, Forschung und Technik,

Alt-Moabit 96a, 10589 Berlin
afsaneh@DBresearch-berlin.de

Abstract

Since the advent of world wide web, internet has been growing in popularity not only in
academia and research, but also commerce and industry. A vast array of network services
is growing around internet, at the same time, telecommunications industry is rapidly ad­
vancing, wire-less/mobile communication is reaching world-wide, and 'telematic' devices
are improving and becoming more accessible. Providing these services on a network, and
enabling ready access to them, demand advanced but intuitive tools that not only support
establishing connections and communication, but also aid in monitoring, controlling and
coordinating interactions, and managing, securing and safeguarding information. This pa­
per discusses so me of the requirements for developing intelligent network applications of
the furture.

1 Introduction

Since the advent of world wide web, internet has been growing in popularity not only in
academia and research, but also commerce and industry. A vast array of network services is
growing around internet, at the same time, telecommunications industry is rapidly advancing,
wire-IessJmobile communication is reaching world-wide, and 'telematic' devices are improving
and becoming more accessible. All these have contributed to give distributed computing a new
meanmg.

Providing these services on a network, and enabling ready access to them, demand advanced
but intuitive tools that not only support establishing connections and communication, but also
aid in monitoring, controlling and coordinating interactions, and managing, securing and safe­
guarding information. In many cases the information sources are digitally available as pure
(or marked-up) text, or can be accessed via databased, knowledge-based or any other applica­
tion prograrn, for example, digitallibraries, yellow pages, road maps, daily city entertainment
programmes, real-time trafiic information and so on.

This paper prornotes the development of a range of tools and a unified framework to enable
"agentification" of application pro grams (of both server and dient programs). Agentification
of a program means equipping the program with a set of capabilities such that it can provide
or access services autonomously, intelligibly and flexibly. The resulting program is then called
an agent system. The tools that enable agentification of programs must provide intuitive and
convenient means to:

• specify and establish addressing, connection and communication,

• enable import and export of executable program code from one node to another,

• design and implement methods of interactions and possible dialogues in -those methods,

27

• integrate a meta level reasoning layer that would enable the agent to autonomously rea­
son about and coordinate its interactions with other agents, and manage issues related to
authentication, authorisation and in general safeguarding of information.

Some of the issues stated above are no longer research topics, and for some of the above
issues various solutions have been suggested. For example there are communication protocols
(the OSI reference model, and Internet Protocols) for connecting, monitoring and controlling
communication; programming languages such as Java [7], [5] and Telescript [13] in support
of mobilelremote program execution; various coordination protocols [?] (e.g., negotiation, con­
tracting, bargaining and coHaborative tasks) for establishing dialogues and coordinating interac­
tions; and practical models of agent cognition component (such as the 'belief, desire, intention'
(BDI) architecture)[8] for meta-level, real-time reasoning in dynamic environments.

Apart from the fact that much improvement to these tools and techniques is yet to be ex­
pected, there are no unified frameworks that allow such diverse capabilities to be integrated into
a program systematically. With the aim of arriving at a unified and integrated framework for
developing true agent systems, this paper will discuss the above requirements in some detail,
and cite some of the more advanced activities in this direction.

This article will not address any of the issues related to addressing, 'lower level' communi­
cation and communciation protocols, inter-object communication standards (such as CORBA)
and object-oriented languages based on these standards, authentication, authorisation, and fi­
nally security issues related to client and server programs. These topics are extensively dis­
cussed in the other articles in this book (workshop). Instead, the paper will concentrate on
the two major issues specific to "agents", namely, (i) issues concenrning mobility and naviga­
tion, and (ii) issues conceming 'high-level' communication, inter-agent dialogues, cooperation,
and in general agent interactions. These topics will be respectively discussed in section 2 and
section 3. The paper will conclude with a summary and an outlook.

2 Mobile Agent Languages and Development Tool Kits

Mobile agent technology draws upon and integrates many areas in computing and telecom­
munications, to enable realisation of applications over computer networks, that could not be
perceived as possible, or in the best case immensely complicated. One could trace back the
evolution of this technology to the data communication between computers, and the notion
of remote procedure calls (RPC) [12]- the organising principle in computer communication
networks. Then came the remote programming [6] concept by which one could not only call
procedures in another machine, but also supply the procedures that receiving computer must ex­
ecute. The central concept behind mobile agent technology is in fact the remote programming
paradigm, with the aim of enabling navigation of pro gram code (procedures or objects) through
a network of inter-connected computers such as internet or intranet.

With the advances in telecommunications in mobile/wireless communication and wider
availability of ever more versatile 'telematic devices', in the recent years the idea of mobile
computation has been attracting larger interest. Obviously to realise sophisticated applications
for this purpose, mobile agent technology plays a very important role.

General Magic's Telescript technology [13] was the first commercial product that has fuHy
realised the concept of mobile agent technology. In Telescript the basic concept of remote pro­
gramming is advanced to enable transporting of executing procedures [3], that is, an object or

28

a procedure can be launched at any time after it has already started execution. Such objects are
called agents based on Telescript's view of conceptualising whole network infrastructure and
networkinging interactions by drawing paralieis to human society and the interactions among
human. In such a metaphor, agents are representatives of users who undertake tasks and inter­
act with other representatives (or agents) in order to achieve their tasks. But since these agents
are armed with specific capabilities allowing them to travel around the network, being knowl­
edgeable of the rules, communication infrastructure and tasks related to navigating and using
resources on a network, they are referred to as mobile agents.

To enable agents travel and run on remote machines, the nodes on an agent's travelling route
must have a Telescript engine running on them. Telescript introduces the concept of dozu! which
is a network of Telescript engines through which agents can navigate and access information.
A Telescript engine is an environment that enables sending, receiving and executing agents. In
Telescript it is possible to develop agents that communicate locally on one machine, or agents
that reside on different machines and communicate with one another in distance. Agents must
meet in a place (a designated address) and interact with each other in that place. Agents can
also travel through several nodes and return back with the data they gathered on their trip.

Telescript provides an object-oriented language (High Telescript) to program and develop
agents. This language must be compiled by a Telescript compiler into a script-like language
(Low Telescript) which can then be interpreted by Telescript Engine. Before transmission, an
agent code is converted to wireline encoding (bag of bits) which upon arrival is translated back
into Low Telescript by the Telescript engine on the receiving side.

Telescript has beed uniquely designed to enable mobile agent technology and it is especially
targeted for some variety of mobile computing applications. Applications can be developed in
C or C++ and only the mobile agent part need to be developed in Telescript.

Currently many activities have been reported on the efforts incorporating mobile agent tech­
nology in other languages- Java language [7] being favoured by most. Java is a full-fledged lan­
guage for software development. Like Telescript, Java is also object-oriented, but although it
provides a library of classes for networking and developing applets1, Java itself does not directly
support the concept of mobile agents. However, as was mentioned earlier there are many activ­
ities that in one way or another are aimed at providing for mobile agent technology (or some
subset of it). Among these are CyberAgent (already a commercial product) [14], Java Agent
Template [16], Kona Agent [20], Mole [15], Agent Builder{18], Aglets [19], and Java-To-Go
[17].

Most of these languages are still in their research phase and as a result, at this stage, it
is hard to evaluate their strength in terms of how well they incorporate the concept of mobile
agent technology. For example, some do not support the mobility of agents (e.g., Java Agent
Template), some do not support agents on different sites to directly communicate with one
another (e.g., Cyber Agent), some fail to undertake the necessary measures to maintain the
platform independent nature of Java (e.g., Mole), and so on.

Up to this date, the concepts behind Telescript are by far the most advanced, incorporating
the concept of mobile agent technology in a clean and clear fashion. Many, especially those
favouring Java, object to Telescript based on the following argument: (1) Telescript is platfonn
specific, (2) classes have to be defined and known both on the client and server platfonns, and

1 Applets are prograrns (objects) that can be loaded by clients from a server and run on the client machine.
Applets may also be developed to run on the c\ient machine when loaded, and provide a user interface to some
application program running on the server.

29

(3) Telescript is not as readily available as Java (i.e., it is not a shareware). The first two ob­
jections stern from the initial stages of Telescript, where Magic Cap platform provided the only
dient platform that used Telescript. With General Magic 's new product, Tabriz Agentware [21],
this is no longer an issue since Tabriz enables dient agents (being developed in Java, Tele­
script or any other language) to connect and communicate with Telescript agents (services). Of
course, the objection here would be the fact that one should in addition instali Tabriz on the
dient platform, which is also not a shareware. The second problem arises from the fact that
Magic Cap is incapable of sending dasses out to servers, and consequently an agent's dass and
all its superdasses must be defined both on the server and the dient platform. This may still be
the case, which is an important drawback for Magic Cap users, but it is not a shortcoming of
Telescript. The third objection that unlike Java Development Toolkit[7] Telescript is not freely
available, is a valid argument against Telescript as a full-fledged programming language. It is
hard to predict how the market will develop, but as it stands now, Java is not a mobile agent
development language, and it is questionable if any Java-based agent product would also afford
to be free of charge in the future. Cyber Agent [14] for instance is a good example.

These arguments aside, one of the most important criteria Telescript must be credited for,
is that it considers not only the programming and execution requirements of mobile agents, but
also the whole infrastructure needed to govern and support the realisation of real world applica­
tions through this technology. This includes measures ranging from issues concerning active­
ness, persistence, and permission for access, duration and use of resources, to issues concerning
the whole organisation of the network services (considered at various levels of abstraction) and
directories that aid reaching and accessing those services. The only other approach that has also
considered the issues concerning the organisation of services on the network is reported in [10],
and is still at its research phase.

This section predominantly discussed the mobility aspect of agents, while the next section
will concentrate on agents as they have been traditional studied in AI and multi-agent systems,
and discuss in what way the result of these studies are useful for intelligent networking appli­
cations.

3 High-Level Agent Communication and Interactions

With the growing success in mobile agent technology, once more real challenges will be con­
verging on problems requiring more efficient and more intelligent agents. Agents will be ex­
pected to undertake more sophisticated tasks, for which they may need to collaborate and nego­
tiate with other agents. To do this they may need to communicate more intelligibly and exhibit
sufficient flexibility to build up their dialogues dynamically and interactively. This has been one
of the criticallines of research in the field of Multi-Agent Systems (MAS). Typically agents in
MAS are computational programs inhabiting dynamic and unpredictable environments, as is
the case with agents navigating on the net. They are equipped with sensoric and effectoric ca­
pabilities, and some internal processing component that relate the sensoric events to appropriate
actions effecting the environment. Agents have sufficient degree of decision .. making autonomy
and can interact with other agents by explicit communication.

The ability to perform "meaningful" dialogues is particularly crucial when we have an open
system where (heterogeneous) agents "enter and leave" the system with litde ?r no information
about each other's capabilities, such as how to communicate with one another, which resources

30

to share, how to coordinate their activities, whether and how to cooperate with one another and
so on.

By high-level communication we refer to the applications layer (the seventh layer) in the
OSI reference model for communication. This layer itself can be viewed as consisting of various
components. For instance standards for object to object communication (e.g., CORBA [11]),
standards for message format/syntax in agent to agent communication (e.g., KQML [4], and
standards or protocols for agent to agent dialogues and interactions (e.g., co ordination proto­
cols [2]). CORBA for instance specifies standards for object to object communication for a
virtual object-oriented language. KQML on the other hand defines a message format standard
to aid interpretation of messages in a more cognitive level (as opposed to the physicallayer such
as message encription for efficient and secure message delivery). Messages are characterised
by peifonnatives which denote communicative actions like some networking operations (such
as pipe and recruit) or (some virtual) database operations (such as delete, and insert a fact). In
KQML, the structure of dialogues are implicit, in other words, the choices of response of the
receiver of a message must be implicitly encoded by the application developer. For heteroge­
neous agents which are likely to be designed, and developed by different authorities, this could
prove problematic. This is because there is no representation or specification that explicitly
stated what a permitted response to a message with a specific performativeis.

In our earlier works [2], [9], we suggested that since agents of a dialogue may be hetero­
geneous, and developed and owned by different authorities, in design of protocols as general
interaction means, we should be able to fulfill the following requirements:

• A representation that is intuitive in terms of sketching various states of dialogue, and
independent of application domains and their requirements.

• Protocols must be at a level of abstraction separate from the internal components of in­
dividual agents and their reasoning mechanisms. But their representation must explicitly
specify the interface to the internal components of the agents.

• Ideally, it must be possible to design and develop protocols obeying modular design con­
ventions, enabling rapid prototyping for analysis and experimentation.

The ideas presented in these publications are now more thoroughly worked out and will be
reported in our forth-coming publication. The essential ingredient of this work is that protocols
should not only explicitly represent the temporal relationship between messages and the type of
messages that may be communicated at various stages in the dialogue for a specific context (e.g.,
negotiation, bargaining, task delegation, contract net etc.), but also specify the constraints that
must be imposed and applied at various stages of a dialogue. Retuming to the simple querying
protocol, the protocol must specify the constraints imposed on the type of replies the receiver
is permitted to make as a response to a particular type of query. Furthermore, we see is it as
necessary to develop a standard library of problem-specific protocols (e.g., for task distribution,
resource allocation, bargaining, etc.), ifheterogeneous agents are to undertake any sophisticated
interactions with one another.

Finally, real intelligence in agents may be achieved if agents could autonomously reason
about what and with whom to communicate under given circumstances. This requires the agents
to be able to reason about communicative actions the way they reason about other actions.
A model of such a reasoning mechanism may be realistically incorporated when an agent's

31

-

behaviour is described in terms of the inter-relationship of some intentional notions such as
the agent's beliefs, goals, actions, intentions, plans, and preferences. A well-known model for
practical reasoning, that is reasoning about actions and goals in a dynamic environment, is the
belief, desire, intention (BDI) architecture [8]. How agents may reason about communication
and their interactions with other agents, in such a model, is described in [9], which also gives
the conceptual and theoretical foundations of practical reasoning and Coordination protocols.

4 Summary

Mobile agent technology will be a powerful mean to realise innovative network products. The
field is still maturing and is still far from a wide spread acceptance. As with many other new
technologies, many applications have to be developed and tried until the technology gradually
matures and accepted. Until then, there are still many measures to be taken and this paper was
an attempt to project some of these requirements and cite some of the current activities in this
area.

Furthermore, this paper argued that for a real intelligent applications the mobile agent tech­
nology should evolve and look back at the findings and developments in multi-agent systems
and in general AI where the agent has been long studied from philosophical, psychological, so­
ciological, anthropological and computational points of view to avoid "re-defining the wheel".
Among these works, this article made references to agent architectures, in particular the BDI ar­
chitectures. Furthermore, we argued that for agents to be able to interact efficiently and coordi­
nate their knowledge and activities, they must be able to undertake meaningful communication
and set up meaningful dialogues. For this purpose we cited our current activities coordination
protocols.

References

[1] T. üates, M. Nagendra Prasad, V. Lesser, and K. Decker. A Distributed Prob-
lem Solving Approach to Cooperative Information Gathering. AAAI Spring Sympo­
sium on Information Gathering from Distributed, Heterogeneous Environmants, 1995.
http://www.isi.edu/sims/knoblock/sss95/proceedings.html

[2] B. Burmeister, A. Haddadi, and K. Sundermeyer. Configurable Cooperation Protocols
for Multi-Agent Systems. In C. Castelfranchi and J. -Po Müller, editor, From Reaction to
Cognition. LNAl957, Springer, 1993.

[3] D. M. Chess, C. G. Harrison, and A. Kerschenbaum. Mobile Agents: Are they a good
ideal. mM research report no. RC 19887, 1994.

[4] T. Finin and 1. Weber and G. Wiederholt and M. Genesereth and R. Fitz­
son and J. McGuire and S. Shapiro and C. Beck. DRAFT Specijication of the KQML
Agent-Communication Language, 1993.
http://www.cs.umbc.edu/kqml/kqmlspec/spec.html

[5] David Flanagan. Java in a Nutshell. Q'Reilly & Associates, 1996.

32

[6] D. K. Gifford, and J. W. Stamos. Remote evaluation. ACM Transactions on Programming
Languages and Systems, vol2, no. 4, 1990.

[7] J. Gosling and H. MeGilton. The Java Language Environment: A White Paper. Sun
Mierosystems Computer Comapany. October 1995.

[8] A. Haddadi and K. Sundenneyer. Belief, Desire, Intention Agent Architectures. In N. Jen­
nings and G. O'Hare, editors, Foundations of Distributed Artificial Intelligence. Wiley
Inter-Scienee, 1996.

[9] A. Haddadi. Communication and Cooperation in Agent Systems: A Pragmatic T heory.
Springer, LNAI series, No. 1056, 1996.

[10] D. Kotz, R. Gray, and D. Rus. Transportable Agents Support Worldwide Applications. In
Proceedings of SIGOPS-96, 1996.

[11] Jon Siegel. CORBA Fundamentals and Programming. Wiley, 1996.
http://www.acl.lanl.gov/CORBA/#BOOKS.

[12] J. E. White. A high-Ievelframeworkfor network-based resource sharing. In Proceedings
of AFIPS eonferenee, 1076.

[13] James White. Telescript Technology: Mobile Agents. In Bradshaw and Jeffrey (ed.)
Software Agents. Menlo Park, California: AAAI Press/The MIT Press, 1996.

[14] CyberAgent, Ftp Software Ine., 1996.
http://www.ftp.com/cyberagents/cyberftp.html

[15] Mole, University of Stuttgart, Gennany, 1996.
http://www.informatik.uni-stuttgart.de
/ipvr/vs/projekte/mole.html

[16] Java Agent Template, Stanford University, CA, 1996.
http://cdr.stanford.edu/ABE/JavaAgent.html

[17] Java-To-Go, Berkeley Univerity, CA, 1996.
http://ptolemy.eecs.berkeley.edu/wli/group/java2go
/java-to-go.html

[18] Agent Builder, ffiM, U.S.A., 1996.
http://www.raleigh.ibm.com/iag/iagsoft.htm

[19] Aglets, ffiM, Japan, 1996.
http://www.ibm.co.jp/trl/projects/aglets/

[20] Kona, SAIC, U.S.A., 1996.
http://riz.saic.com/AIT//agentref.html

[21] Tabriz, General Magie, U.S.A., 1996.
http://www.genmagic.com/Tabriz/

33

Coordinating Active_Agents in Open Systems

Thilo Kielmann
University of Siegen,

Dept. of Electrical Engineering and Computer Science
Hölderlinstr. 3, D-57068 Siegen, Gennany

kielmann @infonnatik.uni-siegen.de

Abstract

The field of agent oriented prograrnming (AOP) recently emerged from its object­
oriented roots. Whereas the benefits of object--orientation nowadays are widely used in
AOP, modeling of communication in multi-agent systems (MAS) still lacks adequate ab­
stractions. Currently considered approaches like RM-ODP, CORBA, or languages like Java
introduce object--orientation to inter-agent communication while unfortunately providing
only rather low-Ievel communication abstractions.

This work introduces Objective Linda, a coordination model especially designed for the
needs of communication between active agents in open systems. We present how Objective
Linda can be uSed as a suitable platform for MAS and illustrate this on an exarnple of a
trafik scenario.

1 Introduction

The notion of Agent Oriented Programming (AOP) [Sh093] has been coined as a specializing
evolvement of actor systems which today manifest the de-facto model for systems of commu­
nicating active objects [Agh86]. In AOP, objects are specialized to agents while object state
is treated as the agent' s mental state and where communication between agents is typically
considered in tenns of speech act theory [Sea69] like information, request, offer etc.

In [Bur95], AOP has been shown to be especially beneficial for use in open systems. In
that work, open systems are characterized by the following requirements on agents: continu­
ous availability (persisting individual operations), extensibility (coping with dynamic config­
urations), decentral control, asynchrony, inconsistent information (lack of globally consistent
states), and arms-length relationships (coping with only local and hence incomplete system
knowledge).

In this work, we will outline our notion of open systems which comes dose to the above­
mentioned definitions. We then argue that mere object-orientation is not sufficient for ade­
quately modeling the interoperation of active agents. Instead, so-called coordination models
should be used to express and constrain object interactions. Then we present our coordina­
tion model Objective Linda and illustrate its usefulness for the implementation of multi-agent
systems (MAS). Hence, our contribution is a co ordination platfonn on top of which intelligent
agents in the sense of AOP can be implemented.

The paper is structured as follows: In Sect. 2, we will darify our notions of coordination
and of open systems and we will briefly evaluate commonly used approaches. In Sect. 3, we
present our coordination model Objective Linda. Its usefulness for implementing active agents
will be shown by an example in Sect. 4.

34

2 Communication Platforms for Open Systems

Open systems are systems in which new active entities ("objects", "agents", or "actors") may
dynamically join and leave, Le. evolving, self-organizing systems of interacting agents [Agh86,
Cia90]. It is widely accepted that open systems are composed of software components which
are encapsulated and reactive [Weg93]. Components are called encapsulated if they have an
interface that hides their implementation from clients; they are called reactive if their lifetime
is longer than the processing of their atomic interactions (e.g. messages). This definition of
components directly leads to object-based design because objects are by their very nature en­
capsulated and reactive entities.

A fundamental property of open systems is their ability to cope with incremental adaptabil­
ity. In this perspective, encapsulation captures spatial incrementality by controlled propagation
of local state changes and reactiveness enables temporal evolution by incrementally executing
interactions. Another fundamental property of open systems is their inherent heterogeneity.
The openness for new components implies openness for so-far unknown kinds of components
yielding systems which are composed of various kinds of hard- and software.

Programming open systems is primarily concerned with the coordination of concurrently
operating active entities. Coordination involves the management ofthe communication between
these entities. Coordination models based on generative communication are considered the
most prospective approaches to this research domain. Generative communication, as initially
introduced in [GeI8S], is based on a shared data space, sometimes also called a blackboard, in
which data items can be stored ("generated") and retrieved later on.

This kind of communication inherently uncouples communicating agents: a potential reader
of some data item does not have to take care about it (e.g. as with rendezvous mechanisms) un­
til it actually needs it. The reader does not even have to exist at the time of storing. The latter
point leads to the other major advantage of generative communication: agents (the active enti­
ties) are able to communicate although they are anonymous to each other. This uncoupled and
anonymous communication style directly contributes to the design of coordination models for
open systems: uncoupled communication enables to cope with dynamically changing configu­
rations in which agents move or temporarily disappear. Anonymous communication allows to
communicate with unknown agents. Hence it allows communication with incomplete knowl­
edge about the system configuration which is a crucial demand of open systems. Due to this
fact, coordination models based on generative communication are superior to message passing
or trader-based schemes because these both rely on knowledge about a receiver's or server's
identification.

A related important notion is the one of open distributedsystems. It is defined in the upcom­
ing ISO reference model of open distributed processing (RM-ODP) [IS095]. In the RM-ODP
definition, distributed systems have to cope with remoteness of components, with concurrency,
the lack of aglobai state, and asynchrony of state changes. In addition, open distributed sys­
tems are characterized by heterogeneity in all parts of the involved systems, autonomy of various
management or control authorities and organizational entities, evolution of the system configu­
ration, and mobility of programs and data.

The RM-ODP model which conceptually provides the basis for commercially available
systems uses object-based modeling too; also because of the principal object properties of
encapsulation and reactiveness. RM-ODP focuses on interaction between objects based on the
dient/server architecture: "They (objects) embody ideas of services offered by an object to

35

its el}vironments, that is, to other objects." [IS095] In RM-ODP, coordination between objects
takes place via centralized instances, so called traders [IS094] , which are repositories of service
type definitions, used to identify offered and requested services.

Presumably the most prominent commercial system for open, object-based systems is the
Common Object Request Broker Architecture (CORBA) [Obj93]. Its central component, the
Object Request Broker (ORB) acts as a trader in the sense of RM-ODP. Like other traders, the
ORB provides references to server objects which in case of dynamically changing configura­
tions may quickly turn into void ("dangling") references causing problems in open configura­
tions. Today, client/server architectures are seen as the current intennediate step on the way
from mainframe-oriented to collaborative (peer-to-peer) computing [Lew95]. Nevertheless,
service-oriented communication is an important paradigm for open distributed systems [Adl95]
and must hence be captured by coordination models. But because client/server communication
is restricted to the exchange of request/reply pairs, other communication fonns like e.g. for
group communication can not be modeled adequately. Hence, coordination models for open
systems need to be more general in their applicability.

As an alternative approach to object interoperability by trader-based schemes, the program­
ming language Java [AG96] recently attracted broad attention. Java is a fully-featured object­
oriented progranuning language with concurrency abstractions based on a thread concept. It' s
major benefit is a tight coupling to the World Wide Web (WWW) for which a mechanism for
dynamic software loading across physically distributed and potentially heterogeneous systems
has been developed. This mechanism, together with Java' s interpreted code execution, enables
the development of mobile code which is a crucial feature for the vision of autonomous software
agents roaming around the Internet.

Unfortunately, the communication abstractions provided by the Java runtime system are
rather low-Ievel, like datagrams, sockets, and a wrapper to access documents in the Web. There
are no suitable abstractions for expressing behaviour and interactions of active agents. This is
where generative coordination models come into play, as we already outlined above.

3 Objective Linda

We will now introduce the coordination model Objective Linda which we use as the basis of
this work. A complete description can be found in [Kie96a]. Objective Linda is based on the
foundations of Linda and has been designed in order to meet the requirements of open systems.
We start with its language-independent object model, then outline how multiple object spaces
can be handled cleanly in open systems, and complete by presenting the set of operations on
object spaces.

3.1 Objective Linda' s Object Model

Since the goal is to model open systems, a language-independent object model is necessary.
In Objective Linda, objects to be stored in object spaces are self-contained entities; their inter­
face operations only affect their encapsulated object state. The objects are iQstances of abstract
data types which are described in a language-independent notation, called Object Interchange
Language (OIL). Actual prograrns may hence be written in conventional object-oriented lan­
guages to which a binding of the OIL types (e.g. to language-Ievel classes) can be declared. In

36

OlL, alt types fonn a type hierarchy having a common ancestor called OILnbject which de­
fines the basic operations needed by all tipes. OlL allows subtyping according to the "principle
of substitutability" [WZ88] such that an object of type S which is a subtype of T can be used
whenever an object of type T is expected.

3.1.1 Object Matching in Objective Linda.

Objective Linda' s object model treats objects as encapsulated entities which can only be ac­
cessed via their interface routines defined by the corresponding type. Consequently, object
rnatching (the process of identifying objects to be retrieved frorn object spaces) in Objective
Linda is based on object types and the predicates defined by type interfaces. A potential reader
has to specify the type of object it wishes to obtain from an object space and additionally a
predicate from the type interface which selects the objects of a given type matching a specific
request. Because OlL' s subtype relations provide types which can be used as replacements for
their supertypes, object matching will also consider objects of subtypes of the requested type.

Denoting the type of objects areader tries to obtain can be achieved by passing an object as
a parameter to the operation. The type of this object can be easily deduced. Passing a predicate
is a little bit more difficult. In Objective Linda, the matching predicates are directly integrated
into the types on which they operate. Therefore, the type OIL_object provides a predicate match
which takes an object of the same type as parameter and returns a boolean value deciding
whether a given object matches certain requirements. Several variants of matching a type can
be selected by presetting the encapsulated state of the object provided to a matching operation,
which we call a template object in the foIlowing.

3.1.2 Evaluating Active Objects.

According to Linda' s eval operation, we will call the activity of an agent the evaluation of
an active object. In favour of a homogeneous model, passive as weIl as active objects are
characterized by their OlL type. The mechanism used to specify this activity is similar to
object matching: the type OIL...object provides an operation called evaluate whose behaviour is
redefined by every type of objects that will become active. Similar to the match operation, the
behaviour of this operation may depend on the object' s state before its evaluation.

In Linda, active tuples are treated as functions and are converted into passive tuples after
tennination, yielding their results. In contrast with this functional view, Objective Linda treats
active objects as encapsulated and reactive agents. Hence, the eval operation activates objects
which simply disappear after tennination. Analogous to Linda, active objects are invisible to
operations in charge of retrieving passive objects from object spaces. Hence, the behaviour of
agents can only be observed by monitoring the passive objects they produce and consume.

3.2 Multiple Object Spaces in Objective Linda

Configurations in Objective Linda consist of two kinds of objects: (active as weIl as passive)
OlL objects, and object spaces. Active objects have, from the moment of their activation on,
access to two object spaces: (1) their context which is the object space on whlch the correspond­
ing eval operation has been perfonned, and (2) a newly created object space called self which is

37

directly associated to the object. With this basic mechanism, hierarchies of nested object spaces
can be built providing hierarchical abstractions for sukonfigurations.

The restriction to exactly the context and self object spaces is not powerful enough in order
to generally express coordination problems. Therefore, we need a mechanism allowing agents
to attach to other, already existing object spaces. This mechanism should reftect that object
spaces are not part of agents but are accessed by references. This is necessary because object
spaces must by their very nature be shared between agents.

In order to avoid problems with direct (low level) references as weB as with global nam­
ing schemes, it is necessary to introduce a construct (based on the generative communication
mechanism) which allows agents to attach to existing object spaces. Objective Linda therefore
introduces a special subtype of OIL_object which is called object space logical. Logicals com­
bine a reference to an object space with a logical identification such that an object space can be
found by matching properties of logical objects. These properties can of course be customized
to application needs by subtyping.

Agents willing to let others attach to object spaces they are already attached to simply create
a logical object including the reference to the object space to be made available which also
contains a convenient logical identification for that object space. This logical is then out' ed to
an object space. An agent a willing to attach to object space n must call a special operation
called attach on the object space 0 in which the corresponding logical object for n is stored.
This operation has two effects: (1) 0 verifies that n can be attached to (is reachable, allows
attachment, etc.), and (2) returns a reference to n which is locally useful to a.

3.3 Operations on Object Spaces

Besides the adaptation of the Linda model to object-orientation, Objective Linda also provides
an improved set of operations on object spaces. Improvements concern on one hand the block­
ing semantics of operations which can be customized by a timeout parameter. On the other
hand, operations take multisets of objects instead of single tuples as in Linda.

3.3.1 Operation Blocking.

The operations in the original Linda model have been designed without consideration of open­
ness. As a consequence, the blocking operations for putting an object into an object space (out),
for consuming an object (in), and reading an object (rd) assume unrestricted access to the data
space and may hence block infinitely in case of open systems where access to an object space
may fail due to transient problems.

Furthermore, semantics ofthe non-blocking versions of in and rd (inp and rdp) imply access
to a data space as a whole: these operations are defined to immediately return, indicating a
failure when there is no object matching a given request. Their semantics must be slightly
modified for open systems: operation failure of inp and rdp should indicate "no such object
could be found (in the moment)", reftecting the fact that synchronization based on the absence
of a certain object is impossible in open systems.

In order to allow customization of agent behaviour between immediately failing and in­
finitely blocking, Objective Linda introduces a timeout parameter to all of 'its operations that
determines how long an operation should block before a failure will be reported. It can vary
between zero and a value indicating an infinite delay.

38

3.3.2 Multisets of Objects.

Linda' s ability to retrieve only one object at a time from an object space is simple and ele­
gant, but unfortunately too restrictive. It is e.g. impossible to non-destructively iterate over
all objects of a certain kind [BWA94]. Additionally, synchronization problems can be dealt
with more adequately when multiple objects may be consumed atomically from object spaces.
These observations lead to the introduction of multisets of objects as parameters and results of
operations on object spaces. in and rd specify multisets of objects to be retrieved by two param­
eters, namely min and max. min gives the minimal number of objects to be found in order to
successfully complete the operation whereas max denotes an upper bound allowing to retrieve
(smali) portions of all objects of a kind. An infinite value for max allows to retrieve all currently
available objects of a kind.

While multi sets of objects are necessary for in and rd, they have no substantial benefits
for out or eval. But for consistency and simplicity reasons, we use multisets of objects for all
operations on object spaces.

3.3.3 Operation Specification.

We can now specify Objective Linda' s operations on object spaces. We use a binding to the
C++ language as n·otation.

bool out (MULTISET *m , double timeout)
Tries to move the objects contained in m into the object space. Returns true if the opera­
tion completed successfully; returns false if the operation could not be completed within
timeout seconds.

MULTISET *in (OIL_OBJECT *0, int min, int max, double timeout)
Tries to remove multiple objects o~ ... o~ matching the template object 0 from the object
space and returns a multiset containing them if at least min matching objects could be
found within timeout seconds. In this case, the multiset contains at most max objects,
even if the object space contained more. If min matching objects could not be found
within timeout seconds, the result has a NUß value.

MULTISET ud (OIL_OBJECT *0, int min, int max, double timeout)
Tries to return clones of multiple objects o~ ... o~ matching the template object 0 and
returns a multi set containing them if at least min matching objects could be found within
timeout seconds. In this case, the multi set contains at most max objects, even if the
object space contained more. If min matching objects could not be found within timeout
seconds, the result has a NUß value.

bool eval (MULTISET *m, double timeout)
Tries to move the objects contained in m into the object space and starts their activi­
ties. Returns true if the operation could be completed successfully; returns false if the
operation could not be completed within timeout seconds.

OBJECT ...sPACE *attach (OS.LOGICAL 0, double timeout)
Tries to get attached to an object space for which an OSLOGICAL matching 0 can be
found in the current object space. Returns a valid reference to the newly attached object

39

~
~
I

Figure 1: Two cars with intersecting paths.

space if a matching object space logical could be found within timeout seconds; otherwise
the result has a NULL value.

int infinite-"1atches
Returns a constant value which will be interpreted as infinite number of matching objects
when provided as min or max parameter to in and rd.

double infinite_time
Returns a constant value which will be interpreted as infinite delay when provided as
timeout parameter to out, in, rd, and eval.

4 An Example: Collision Avoidance

We will now illustrate the suitability of Objective Linda as a platform for implementing multi­
agent systems by an example. The scenario described below models the problem of collision
avoidance in the traffic domain and has been inspired by the work in [vM92]. Our example is
of course overly simplified because our intention is to present Objective Linda as a platform for
MAS, rather than intelligent behaviour of the agents themselves.

In our example, agents are concerned with steering cars. Cars drive in a (cyc1ic) grid which
is shown in Fig. 1. Because Cars may drive in the four directions up, down, left, and right, the
driveways occasionally intersect. It is the agents' task to avoid collisions in such cases.

We propose a solution in which the agents communicate via an object space. Every agent
puts an object of type Position into the object space which carries the agent' s identification
as well as its position on the grid. When changing its position, an agent consumes (using in)
the Position object with its own identification and replaces it by a new one with the updated
position.

Whenever an agent wants to make the next step in its desired direction, it has to check first
whether it can do so safely. For this purpose, our agents follow the "right-goes-first" priority
rule as it is well-known from street traffic. For this purpose, an agent first checks whether it
can rd a Position object for the grid position directly in front of it, in Fig. 1 shown in light­
grey colour. lf there is such an object, the agent' s car will not move but wait. lf there is no

40

class position : public OIL_OBJECT{
private: bool rnatch-positioni // switching the matching mode
public: int X,Yi // the grid position

int cari // the car's id
bool match(OIL_OBJECT* obj){

if (rnatch-position)
return ((((Position*)obj)->x == x) &&

(((Position*)obj)->y Y))i

else
return ((Position*)obj)->car == cari

} i

set~tch-position()

set_match_car ()
rnatch-position truei
rnatch-position falsei

} i

Figure 2: Source code of a C++ class Position

such object, there is still the possibility of a collision in case a second car will approach on an
intersecting path, as it is shown in Fig. 1. For this case, the agent checks for a Position object
for the grid position in its right-front, in the figure shown in dark-grey colour. Again, if there is
such an object, the car stops. Otherwise it moves on. This behaviour is shown as a C++ class
Car in Fig. 3.

We claim this solution to be adequate for modeling active agents in open systems, because
there is no centralized control instance and because agents operate autonomously and asyn­
chronously, and without global knowledge about the number or kinds of cars running in the
system. Consequently, agents may join or leave the system at any point of time completely on
their own behalf.

Figure 2 sketches the source code of a C++ class Position and demonstrates how Objective
Linda provides communication abstractions on an adequate level. The focal point of an Ob­
jective Linda type for passive objects is its match routine. Position objects are matched in two
different ways: By car id (for updating) and by grid position (for collision avoidance). One can
easily see how this can be performed: An agent creates a template Position object and sets (as
desired) corresponding values either for the car id, or for the position. Finally, it either calls
set..match.position or set..match...car in order to preselect the matching mechanism. Then, the
template object can be used as a parameter for in or rd operations.

Whereas the scenario outlined so far shows the simplest of the possible cases, one can think
of several extensions that can be easily supported by Objective Linda:

• A first improvement might be to enlarge the agents' range of vision. In order to control
an area instead of single grid points, one might easily extend Position' s match routine
to match positions in given intervals. Hence, an agent might retrieve information on all
other cars in a certain area within one multiset retumed by the rd operation .

• One might also consider scenarios with multiple (grid) areas, each represented by a sepa­
rate object space. These areas might be connected by gates, represented by object-space
logicals. Hence, car agents might dynamically change their context object space by using
Objective Linda' sattach operation.

41

class Car public OIL_OBJECT{
private: int X,Yi

int cari
// the grid position
// the car's id

direction diri
void wait(){}i // wait for
void evaluate() {

// the direction to move
an arbitrary (random) interval

} i

) i

MULTI SET m = new MULTISETi
position *Pi int nx,ny,pX,PYi
while (true)

}

m->put(new Position(id,x,y» i

(void)context->out(m,context->infinite_time) i

wait () i

// store next position to move to in nx and ny
nx = ... i ny = ... i

P = new Position(id,nx,ny) i p->set_match-position() i

m = context->rd(p,l,l,O) i

if (m) { // there is a car in front of us
delete mi delete Pi

}

else

}

p
m =
p =

delete Pi
// store position with priority in px and py
px = ... i py = ... i

P = new Position(id,px,py) i p->set_match-position() i

m = context->rd(p,l,l,O) i
if (m) { // there is a car with priority

delete mi delete Pi

else { / / move!
x = nxi Y nYi
delete Pi

new positioni p->car = idi p->set_match_car() i

context->in(p,1, l,context->infinite->time) i

m->get()i delete Pi

Figure 3: Source code of a C++ dass Car

• Finally, one might think of systems with different kinds of vehides that could be repre­
sented by objects of different subtypes of Position. For purposes of collision avoidance,
car agents would still try to rd objects of type Position. Because Objective Linda' s match­
ing considers subtyping, agents could get objects of several subtypes of Position in one
multiset for a given range.

For different purposes, agents might look directly for a subtype e.g. in order to answer
the question "is there a truck available?"

42

5 Conclusion

Multi-agent systems need more than the simple (low-Ievel) communication abstractions as
they are provided by RM-ODP, CORBA, or languages like Java. Coordination models, esp.
Objective Linda which has been designed to meet the requirements of active agents on open
systems, provide such abstractions on a higher and hence better-suited level. With the example
of collision avoidance given in the previous section, we have illustrated the benefits of our
approach.

We are currently experimenting with a prototype implementation of Objective Linda for
the C++ programming language based on PVM [GBD+94] as communication platform. First
results are encouraging and we have also shown that interoperability between heterogeneous
platforms is generally feasible for languages like C++ when communication is based on Ob­
jective Linda [Kie96b]. In order to improve interoperability between heterogeneous platforms,
we plan to provide the Objective Linda model to Java prograrns as our next step.

References

[Adl95] Richard M. Adler. Distributed Coordination Models for ClientJServer Computing.
IEEE Computer, 28(4):14-22, 1995.

[AG96] K. Amold and J. Gosling. The Java Programming Language. Addison Wesley,
1996.

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
M. I. T. Press, Cambridge, Massachusetts, 1986.

[Bur95] Hans-Dieter Burkhard. Agent-Oriented Programming for Open Systems. In M. J.
Wooldridge and N. R. Jennings, editors, Intelligent Agents, ECAI-94 Workshop on
Agent Theories, Architectures, and Languages, number 890 in Lecture Notes in Ar­
tificial Intelligence, pages 291-306, Amsterdam, The Netherlands, 1995. Springer.

[BWA94] Paul Butcher, Alan Wood, and Martin Atkins. Global Synchronisation in Linda.

[Cia90]

Concurrency: Practice and Experience, 6(6):505-516, 1994.

Paolo Ciancarini. Coordination Languages for Open System Design. In Proc. of
IEEE Intern. Conference on Computer Languages, New Orleans, 1990.

[GBD+94] G. A. Geist, A. L. Beguelin, J. J. Dongarra, W. Jiang, R. J. Manchek, and V. S. Sun­
deram. PVM: Parallel Virtual Machine - A Users Guide and Tutorial for Network
Parallel Computing. MIT Press, 1994.

[Gel85] David Gelernter. Generative Communication in Linda. ACM Transactions on Pro­
gramming Languages and Systems, 7(1):80-112, 1985.

[IS094] ISOIIEC JTClISC21IWG7. Information Technology - Open Distributed Process­
ing - ODP Trading Function. Draft ISOIIEC Standard 13235, Draft ITU-T Rec­
ommendation X.9tr, July 1994.

43

[IS095] ISOIIEC JTClISC21/WG7. Reference Model of Open Distributed Processing.
Draft International Standard ISOIIEC 10746-1 to 10746-4, Draft ITU-T Recom­
mendation X.901 to X.904, May 1995.

[Kie96a] Thil0 Kielmann. Designing a Coordination Model for Open Systems. In P. Ciancar­
ini and C. Hankin, editors, Coordination Languages and Models, number 1061 in
Lecture Notes in Computer Science, pages 267 - 284, Cesena, Italy, 1996. Springer.
Proc. COORDINATION' 96.

[Kie96b] Thilo Kielmann. Programming Heterogeneous Workstation Clusters based on Co­
ordination. In Proc. ICCI'96, 8th International Con/erence 0/ Computing and In­
formation, Waterloo, Ontario, Canada, June 1996. Published as special issue of the
CD-ROM Journal of Computing and Infonnation (JCI).

[Lew95] Ted G. Lewis. Where is ClientJServer Software Headed? IEEE Computer,
28(4):49-55, 1995.

[Obj93] Object Management Group. The Common Object Request Broker: Architecture
and Specification. OMG Document Number 93.12.43,1993.

[Sea69] J. R. Searle. Speech Acts: An Essay in the Philosophy 0/ Language. Cambridge
University Press, Cambridge, England, 1969.

[Sh093] Yoav Shoham. Agent-oriented programming. ArtificialIntelligence, 60:51-92,
1993.

[vM92] F. von Martial. Coordinating Plans 0/ Autonomous Agents. Number 610 in Lecture
Notes in Artificial Intelligence. Springer, 1992.

[Weg93] Peter Wegner. Tradeoffs between Reasoning and Modeling. In Gul Agha, Pe­
ter Wegner, and Akinori Yonezawa, editors, Research Directions in Concurrent
Object-Oriented Programming, pages 22-41. MIT Press, Cambridge, Mass., 1993.

[WZ88] Peter Wegner and Stanley B. Zdonik. Inheritance as an Incremental Modification
Mechanism or What Like Is and Isn' t Like. In S. Gjessing and K. Nygaard, editors,
Proc. ECOOP' 88, number 322 in Lecture Notes in Computer Science, pages 55-
77, Oslo, Norway, 1988. Springer.

44

Java and Agent Oriented Programming
Ralf Kühnel

Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin
kuehnel@informatik.hu-berlin.de

Abstract

In this paper I will discuss the suitability of the new programming language Java for Agent
Oriented Programming. If one roughly defines agents as a combination of distribution,
communication, pro-activeness, knowledge representation and problem solving, then Java
fits well for the first three points but lacks means for the last two.

1 Introduction

Java is a new programming language ([5]), developed at Sun Microsystems, currently in wide
use for applications in the World Wide Web, obviously an open distributed system.

Agent Oriented Programming is a progranuning technique based on agents as conceptual
entities. Agent Oriented Progranuning can be used for solving problems in programming open
distributed systems, such as communication, coordination, by means of Artificial Intelligence,
such as knowledge representation, inference and reasoning mechanisms; for connecting expert
systems in distributed problem solving scenarios, that means introducing a concept of distribu­
tion into AI techniques.

In this paper I will discuss, where Java is appropriate for Agent Oriented Programming and
what is missing.

2 Agent Oriented Programming

Agent Oriented Programming as discussed in [8, 7, 2] reHes on the assumption, that a complex
distributed software system can be programmed as a set of communicating, interacting, knowl­
edge based software entities, called (software) agents. An agent consists of components for
perceiving its environment (sensors); for keeping an internal state (e.g. knowledge base); for
communicating and interacting with other agents (need for a common language); for establish­
ing and performing actions, based on the current internal state and the environment to achive
some goal (e.g. planning, reactive behavior), or by taking the inititiative.

Looking at these four basic properties one can characterize different agent architectures.
First the agents internal state can be based on mentalistic notions, such as knowledge, belief,
intention. The agent then uses these notions to generate the next action to perform. This is not
reflexive but deliberative behavior. The agents (planning) inference procedure computes a set
of actions, appropriate to achive some goal, the preferred of which the agent actually performs
([3,6]).

Alternatively the intern al state can be described as a set of (environmental) condition to
action rules, or a fixed coupling of sensors to actors (e.g. via artificial neuralllets). Selecting an
action then means to match the current environment against the rule conditions, or is even not
necessary ([1]).

45

Independent from the specific architecture in most systems the different agent components
run in parallel or are intended to run in parallel. So the agent can perfonn actions while per­
ceiving the environment or receiving messages from other agents.

l.From all the above points one can derive requirements to a programming language, suitable
for Agent Oriented Programming. This language has to provide means to express parallelism,
to implement communication between processes on different computers, to access sensor data,
to represent knowledge, to infer implicite knowledge and to plan actions in order to achieve
some goal.

3 Java

If we look at the Java programming language then some of the above requirements are already
fullfilled.

But let us first review the language. The most important properties of Java are:

object orientation: Java programms consist of class descriptions, defining the state and the
behavior of the class itself and its objects.

independence from operating system, portability: This is achieved by compiling Java source
code to Java Byte Code and interpreting it on a Java Virtual Machine, implemented for
the most available operating systems.

parallelism: Threads provide a means to express parallel flows of execution using the same
address space. Processes are available too.

intemetworking: A Java application is able to communicate to another application somewhere
on the Internet using the Socket facility. Sockets implement the TCPIIP communication
protocoll. Despite of this very simple communication mechanism a Java application is
able to communicate to a WWW entity using the http protocoll implemented within the
URLclass.

The most abstract communication mechanism, currently available, allows for addressing
remote objects and remotely invoking their methods. This can be done with the RMI (re­
mote method invocation) package, provided by Sun, or with one of the different CORBA
implementations.

database access: The RDBC package provides access to relation al databases.

Let us discuss one point in more detail: parallelism. Originally an object oriented program­
ming language provides the concept of passive objects. An Object just reacts on invocation of
its methods, no other object will be executed at this time. There is one flow of execution. By
implementing threads Java introduces the concept of active objects. A thread is a single flow of
contro!, running in parallel to other threads using the same address space. So we can have more
than one active object at the time during runtime.

On single processor machines one needs, of course, a mechanism for simnlating parallelism:
a scheduler. The Java runtime system contains a scheduler based on thread priorities in contrast
to time slicing. This is sometimes annoying because the programmer itself has to take care,

46

wether all threads get executed some time. In part!cular he has to programm friendly threads
releasing control within an appropriate time by one of four methods to get in a blocked state.

The common address space allows for an easy way of inter-thread-communication: the use
of shared data. A synchronization mechanism is, of course, needed in this case. The Java
runtime system therefore provides the means of monitors, guaranteering that only one thread at
a time is allowed to access some code block.

4 Discussion

Let us match the requirements for Agent Oriented Programming against the properties of Java
and discuss some other proposed languages.

Obviously Java fits weIl the distribution, parallelism and communication requirements. The
different agent parts can be implemented as threads. The main thread will be the reasoning and
planning thread. The intern al state should be accessible from all threads.

In case of communication probably a new layer is required implementing a protocoll for
interaction between agentsi This layer has to ensure that agents use the same representation
language and the same context ontology. If this layer will be built using the Java socket classes,
then a naming service is required too. In fact there already exists a collection of classes im­
plementing an agent template based on sockets supporting KQML (Java Agent Template by
H.R. Frost, Stanford University). If it instead will be implemented upon a CORBA implemen­
tation the naming service is for free.

So Java supports the distribution and parallelism part of agents. But Java does not give
us direct support for knowledge representation, reasoning and planning. There are no classes
included in the JDK for this purpose. Java is missing the AI part of agents. But there is no
reason, why this could not be implemented.

In Shohams Agent-O ([7]) just this part is most important. He takes a weIl established
AI language such as Lisp and Prolog as a basis and simulates communication, parallelism and
distribution. So this language lacks at least this agent part. Of course, it is possible to implement
this part using a more suitable language and then import it into the AI language. Obviosly these
means lie beyond the original intention of those languagesand work within side effects.

Just the other extrem we will get using java, and we can see it already in some systems,
for instance the TUB-MAGIC system implemented in Smalltalk. Distribution and parallelism
are simulated, however. But it shows another interesting aspect of agents: persistency. The
internal agent state can be saved and recovered on restarting the system. This feature of object
persistency will be available in future JDK releases too.

So it is possible to improve a language suitable for parallelism, distribution and communica­
tion by AI techniques instead of improving an AI language by means of parallelism, distribution
and communication. Ifwe take for instance the communication mechanisms required by Agent­
o or Cuncurrent METATEM, then their implementation is very easy in Java.

In order to access sensor data one probably has to implement drivers in a lower level lan­
guage, like C. Fortunately Java provides a way to include foreign code.

There are some additional aspects of Java, usefull for Agent Oriented Programming. First
it is (at least should be) independent from the underlying operating system. The Java network
classes provide means to implement service and information agents. Applets provide a stan­
dard interface (WWW browser) for accessing agents (personal assistent). Methods for object

47

migration support the implementation of mobile agents.

5 Conclusion

From the above statements it is dear, what is missing and what have to be done. The above
mentioned agent template can only be a first step. At least it implements a communication
layer for KQML being more suitable for agent interaction. But this layer should be buHt upon
CORBA or RMI and not upon sockets. What is complete1y missing in this template and as
already said in Java is the agents AI part.

So different representation and reasoning mechanisms should be implemented by means of
object orientation. An Agent Oriented Programmer can then choose the most appropriate one
for his actual problem. The agents should use a standard agent communication language, like
KQML. Such message layer should use techniques from distributed object oriented program­
ming, such as CORBA or ODP, and not reinvent the wheel.

However, AI techniques could improve broker or trader architectures for instance by content
based search for finding appropriate services.

References

[1] R.A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139-159,
1991.

[2] H.D. Burkhard. Agent oriented programming for open systems. in Proceedings of
ECAI' 94 Workshop on Agent Theories, Architectures and Languages. Lecture Notes in
AI 890, Springer Verlag, 1995.

[3] P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial Intelli­
gence, 42:213-261, 1990.

[4] M. Fisher. A survey of Concurrent METATEM - the language and its applications. in
Temporal Logic - Proceedings of the First International Conference. D.M. Gabbay and
HJ. Ohlbach eds. Lecture Notes in AI 827, Springer Verlag, 1994.

[5] R. Kühnel. Die Java-Fibel. Addison-Wesley, 1996.

[6] A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-architecture. in Pro­
ceedings of Knowledge Representation and Reasoning, 473-484. R. Fikes and E. Sande­
wall eds. Morgan Kaufman Publishers, 1991.

[7] Y. Shoham. Agent-oriented programming. Artificial Intelligence 60. 1993.

[8] M. Wooldridge and N.R. Jennings. Agent Theories, Architectures, and Languages: A Sur­
vey. Proceedings ofECAI' 94 Workshop on Agent Theories, Architectures and Languages.
in Lecture Notes in AI 890, Springer Verlag, 1995.

48

ALP: A programming language for
reactive inteHigent agents

Thomas Weiser
Fakultät für Infonnatik, TU München, 80290 München

weiser@infonnatik.tu-muenchen.de

Abstract

ALP is a logic-based language for modelling intelligent behaviour in a dynamic envi­
ronment. Originated in the tradition of production systems both the recognition and action
phases are substantially improved. An incremental bottoIQ-up reasoning mechanism en­
ables the recognition of complex situations in achanging world. Situations are described
in a purely declarative manner by means of aHorn clause program. This logic-based com­
ponent is embedded in a concurrent procedural language, which serves to describe the
corresponding reactions of the agent.

1 Introduction

Production systems are widely used as tools to build expert systems, where they act as a decision
making system, mostly in a static domain. In the last few years they gained increasing attention
in distributed artificial intelligence as a basic cognitive model for intelligent agents [5]. Again
the rules are the basic building blocks for the decision making process: how should the agent
react in a certain situation.

An example for the use of a production system is the multi agent test-bed Magsy [2]. Each
agent is an OPS5 [3] interpreter extended with the capahility of asynchronous message passing.
Every agent has its own autonomous control and local knowledge and communicates through
sending facts to one another. This system has been used for building a distributed planner for
flexible manufacturing plants, in which the each machine is modelled as an agent. (Another
application of Magsy can be found in [7].)

This is an example that shows the suitability of production systems for modelling reactive
behaviour. An agent is part of a dynamic environment. It continuously analysis its situation,
activates its own goals and acts according to them. Since the further development of the envi­
ronment is unpredictable in principle, the agent must be prepared for a variety of possible events
and has to be ahle to react with adequate behaviour patterns. The recognize-act cycle of pro­
duction systems make them well suited for event-driven programming, which is an important
basis for building reactive agents.

But production systems suffer from two substantial drawbacks, which restrict their useful­
ness for the mentioned applications:

1. The rule selection process utilizes a very simple pattern matching concept with little ex­
pressive power. The condition parts of the rules are composed solely of fact patterns as
primitives. There is no concept to abstract condition expressions under a new name. So
one cannot compose complex expressions out of other expressions. 'Consequently one
cannot use recursive fonnulas to select a rule.

49

2. The action parts of the roles are simple sequences of actions without any control struc
tures. Complex procedural operations have to be scattered to several roles, whel"e_by th
user is forced to manage the execution context by her own.

In this view OPS5 is a completely unstructured language, regarding both the description of
conditions and the formulation of procedural actions. Therefore any larger program gets very
hard to manage, since it consists of one large fiat role set with no obvious inner structure. (The
early visions for production systems, that each role is an independent source of knowledge,
that their interplay emerges without additional effort and that complex problems can be solved
without describing procedures, soon turned out to be not very realistic.)

The simple condition language has another disadvantage. The situations to be recognized by
the agent are in general too complex to be expressed in the condition part of a single role. Thus
there is need for firing roles just to do the situation recognition. As a result complex situations
cannot be described declaratively. Since OPS5 has no built-in construct to undo the effects of
a role firing, the user has to provide additional roles to monitor and maintain the recognized
situations. (Think about maintaining the transitive c10sure of achanging relation.)

With ALP (Agent Logic Programming) we propose a new architecture. It preserves the ad­
vantages of production systems (reactive, symbolic, event-driven computation) and introduces
new concepts to overcome the drawbacks mentioned.

An ALP process consists of two conceptual components (see figure 1). The first part handles
knowledge abstraction and situation recognition. They are described by means of aHorn c1ause
logic program. This program is evaluated by a bottom-up inference engine according to a purely
declarative semantics. This logic-oriented component of ALP (which we refer to as the ALP
knowledge base) infers continuously the set of deducible facts from a varying set of asserted
facts.

The second part is the procedural control component. It executes a concurrent impera­
tive program and describes the actions to take in the individual situations. These actions are
triggered by the recognition of corresponding situations and in turn modify the facts in the
knowledge base.

To be linked with the outside world the agent needs capabilities to perceive and to act. Per­
ceived information is stored as messages in the knowledge base. External actions are effected
through special primitives in the procedural part.

2 ALP Knowledge Base

The ALP knowledge base applies Horn c1ause logic with negation as failure and function sym­
bols in order to handle knowledge representation and abstraction, situation recognition and
decision making. It consists of a logic program, a fact base and a forward-chaining inference
machine.

The basic expressions of the logic language are predicates, which come in three fiavors:
Extensional predicates are containers for those facts that may be asserted or retracted through
actions or perception. Intensional (or derived) predicates are defined by the c1auses of the logic
program and are interpreted by the deduced facts. Built-in predicates provide for some basic
functions, e.g. arithmetic operations. Accordingly the fact base contains two sets of facts,
asserted and deduced ones.

50

,- - - - - - - - - - - --,
knowledge base I procedural control

deduced facts

Horn
clause

program

--.

intensional

fact

base

extensional

fact

base

...... --- -----4-
perception

monitoring
requests

I

monitored
facts

updates:
assert I retract

imperative

concurrent

procedures

external actions

Figure 1: Architecture of an ALP process

-
I
I
I
I
I
I
I
I
I
I
I
I
I

,/

The inference machine continuously maintain the set of deduced facts in dependence of the
current set of asserted facts and in correspondence to the logic prograrn. This is an incremental
and active reasoning process. All changes in the extensional part of the fact base will cause
corresponding changes in the intensional predicates. This active bottom-up processing is an
essential property for obtaining reactive, event-driven agent behaviour. In contrary to produc­
tion mIes, the clauses (or mIes) of the knowledge base have a logical meaning. They have
conclusions instead of actions and the conclusions are only valid as long as their premises are.

To bring things in relation to OPS5, the logic program corresponds to the set of all condition
parts of the production mIes, the extensional fact base corresponds to the working memory and
the intensional fact base can be compared with the conftict set of OPS5.

The main difference to OPS5 is that derived predicates now have names and can be used in
the definition of other predicates. This has two effects: Firstly, predicates can be written in a
more structured fashion in the sense, that you can express complex situations in tenns of sim­
pler situations instead of being forced to express everything in terms of extensional predicates.
Secondly and even more important, this opens the ability to define recursive predicates, which
greatly improves the expressive power.

In the following example, it is assumed that human and par are extensional predicates.
The two clauses define the same-generation relation based on the parent relation.

sgc (X, X) ~ human (X) .
sgc(X/Y} ~ par(X/Xl} I sgc(Xl/Yl} I par(Y/Yl}.

51

The knowledge base supports two types of queries: snapshot queries return the actual fact
set of a predicate; monitor queries are requests to inform the client about every change oi the
monitored predicate. The latter type enables reactive behaviour in the corresponding situations,
as the emergence of a fact of a monitored predicate may trigger suitable actions to perform in
the recognized situation.

3 The Inference Process

Bottom-up evaluation is a current research topic in deductive databases [8]. One difference is
that the ALP knowledge base operates in main memory instead of secondary storage. More­
over, the ALP inference process employs an active incremental algorithm whereas deductive
databases usually process queries on request, one after another and without saving intermediate
results. In spite of those differences we can make use of some results of the research in deduc­
tive databases: we adopt the welljounded semanties and we employ magie set transformations
to speed up the evaluation.

To define the meaning of aHorn clause logic program, several model-theoretic semantics
have been studied. The minimal Herbrand model is the most basic one. It applies only to
programs without negation. More general, if a program uses negation only outside of recursive
paths, the program is called stratifiable. In this case the perfect model semantics supplies the
program with a natural meaning.

These restrictions are overcome by the well-founded models semantics [4]. It allows arbi­
trary combinations of negation and recursion. In this sense it is the most universal one, though
this generality has its price. Some programs only have a partial model, meaning that some facts
may have an undefined truth value (e.g. in the program { p (a) f- ..., p (a) . } the fact p (a)

is regarded neither true nor false). We believe that this is no real restriction in practice, so we
choose this semantics for the ALP knowledge base evaluation process.

The evaluation process is realized basically as an extension ofthe well-known RETE algo­
rithm [3]. In a first step the logic program is translated into an equation system of relational
algebra. Then this system is mapped onto a directed graph, where the nodes are either algebraic
operations or places to store the corresponding relations. The graph can be seen as a directed
constraint network. As soon as one relation is modified, these changes are propagated through
the network until it is stable again, meaning that all equations are satisfied. This method realizes
the required activeness and incrementallity of the deduction process.

In the presence of recursive defined relations the algorithm has to be extended in two ways.
In the case of recursion without negation a mechanism has to ensure, that there do not re­
main facts supported solely by themselves without a valid derivation (this is a typical reason
maintenance problem). Whereas recursion with negation needs to be handled according to the
definition of the well-founded semantics. We have developed a extended version of the RETE
algorithm that handles both cases. As this goes beyond the scope of this paper, we omit the
details here.

Another technique we adopt from deductive databases is the magic set transformation [1] -
with the following background. Compared to top-down evaluation the bottom-up approach has
one basic drawback mainly effecting its efficiency: it is not goal directed. 'A naive bottom-up
evaluation generates the complete model of the logic program with respect to a given extensional
fact base, regardless whether the generated facts are relevant for the current queries or not.

52

Nevertheless, bottom-up evaluation can be extended to behave in a goal directed manner. The
key idea is to distinguish between input and output arguments of a predicate. The intention is,
to generate only that part of the corresponding relation that matches a given set of input values.
These input values may be known from the query; or they may be obtained while evaluating the
body of a clause: after generating the answer sets for some subgoals this information is passed
sideways to constrain the input arguments of the remaining subgoals. This reduce the number
of generated facts dramatically without effecting the query result. Moreover, this enables us to
handle infinite relations, as long as they are finite for given input values. Lastly, predicates can
now be thought of and used as procedures or functions that map their input values to a set of
output values.

Evaluation of a predicate should take advantage of bound input arguments. For this the
constraints on the input arguments have to be pushed backward through the clauses as far as
possible in order to inhibit the generation of unnecessary facts. This idea can-be realized by
program transformations during compile time. They are known as the family of magic set
transformations. There has been much research effort to develop transformations which work
even in the presence of recursion and negation [6]. We believe that the application of these
techniques will have a great impact on the efftciency and usability of our system.

4 Procedural Control

So far the ALP knowledge base serves as a powerful tool to recognize complex situations. It has
to be complemented with procedural concepts to describe the actions to take in those situations.

One possibility is to use the knowledge base as a library in a conventional imperative pro­
gramming language, e.g. C++. In general such languages are not very weH suited for symbolic,
event-driven programming.

Alternatively one can follow the traditionally production system approach by linking se­
quential action scripts to some of the intensional predicates. As mentioned before, this archi­
tecture lacks the concept of an execution context. So the user must manage this context by her
own to link the pieces of a complex procedural structure together.

According to this we propose to introduce a special procedurallanguage into ALP. Until
now we have not defined this language in detail, so we list only some of the intended features
here.

The primitive actions available are modifications of the knowledge base, Le. assertions
and retractions of extensional facts. Furthermore, extern al actions like sen ding a message or
effecting the physical world have to be included.

Control structures on the other hand make the further progress of the procedure dependent
on the result of knowledge base queries. In addition, the results of the queries can be bound to
variables, which in turn can be used in subsequent actions or control structures.

Control structures can have an immediate or a waiting semantics, depending on whether they
employ a snapshot query or a monitor query. The former correspond to constructs in sequential
programming languages, like if-then-else, the latter are closer to the rule concept of production
systems.

Additionally, the language should provide for concurrency constructs, like thread genera­
tion, tennination and prioritized scheduling.

Procedures containing these constructs can be translated into equivalent sets of production

53

mIes. So these language constructs can be treated as abbreviations or macros that automatically
manage execution context and thread scheduling.

5 Conclusion

The ALP architecture combines a deductive knowledge base with a concurrent procedural con­
trol component. This structure reftects a basic model for intelligent agents. On the one side an
agent has to represent its current beliefs about the world and itself. This knowledge has to be
represented on different abstraction levels. Higher levels model the agent' s view of its situation
and current goals. The ALP knowledge base is a tool to describe such abstraction processes by
Horn clause logic in a purely declarative manner. On the other side an agent has to change the
world as weIl as its own beliefs and intentions. Procedures are a natural way to describe these
active aspects. We think that the presented combination of declarative and procedural concepts
results in a weIl suited programming model for reactive, intelligent agents.

References

[1] C. Beeri and R. Ramakrishnan. On the Power of Magie. In Proceedings of the Sixth ACM
PODS Symposium on Principles of Database Systems. 1987.

[2] K. Fischer. The Rule-based Multi-Agent System MAGSY. In Proceedings of the CKBS' 92
Workshop. DAKE Centre, Keele University, 1993.

[3] C. L. Forgy. RETE: A Fast Algorithrn for the Many Pattern / Many Object Pattern Match
Problem. ArtificialIntelligence 19. 1982.

[4] A. Van Gelder, K. A. Ross and J. S. Schlipf. The Well-Founded Semantics for General
Logic Programs. Journal ofthe ACM 38(3). 1991.

[5] T. Ishida. Parallel, Distributed and Multi-Agent Production Systems. In Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95). San Francisco,
CA,1995.

[6] D. B. Kemp, D. Srivastava and P. J. Stuckey. Bottom-Up Evaluation and Query Optimiza­
tion of Well-Founded Models. Theoretical Computer Science 146(1&2). 1995.

[7] J. P. Müller and M. Pischel. The Agent Architecture InteRRaP: Concept and Application.
Technical Report RR-93-26, DFKI Saarbrücken, 1993.

[8] R. Ramakrishnan and J. D. Ullman. A survey of deductive database systems. Journalof
Logic Programming 23(2). 1995.

54

IPDL - Interaction Protocols for Distributed Objects
Bons Bokowski

FU Berlin, Institut für Infonnatik, Takustraße 9, D-14195 Berlin
bokowski@inf.fu-berlin.de

Abstract

In object-oriented frameworlcs, the interactions between objects are often complex and
difficult to understand. In this paper, "interaction protocols" are introduced as a means to
describe object interactions. The interface definition language "lPOL", an extension of
OMG's IDL, is introduced for specifying object interactions. Besides making object­
oriented system descriptions more readable by explicitly representing inter-object
behaviour, interaction protocols can be used to detect programming errors: it is decidable
at compile-time whether an object interacts correctly according to an interaction protocol.
Moreover, interaction protocols apply to several levels of abstraction, because complex
interaction protocols may be composed hierarchically out of simpler ones.

1 Introduction

Modem object-oriented software development focuses more and more on object composition
instead of inheritance as the main means to build complex software systems. Frameworks
[Joh93] and Design Patterns [G+95] are the two most prominent areas where object
composition and the interaction between composed objects play a crucial role. Language
support for expressing interactions that are more than one-time operation invocations, though,
is lacking.

For example, consider the interface of a Manager object for resource management with two
public operations lock and unlock. Typically, interactions between a Manager and its clients
are such that for each invocation of lock, the following invocation at Manager' s interface has
to be that of unlock. Currently, longer-tenn interactions that span more than one invocation
need to be represented using sequences of invocations, with no means to group such sequences
at the interface level. Moreover, interfaces of objects take a one-sided perspective: they only
describe the operations that are to be perfonned by a server. There is no support for describing
interactions that involve actions of a client, for example a ca1lback of Manager, during
execution of lock, to its client's operation getlD, in one interface together with lock and
unlock. Rather, a separate interface for appropriate clients has to be introduced, with no
apparent connection between lock and unlock on one hand and getlD on the other band.
Consequently, other forms of interaction than clientlserver, as e.g. producer/consumer,
modeVview/control1er, or exporter/trader/importer, are not expressible either.

In this paper, an extension to the CORBA-IDL [OM95], ca1led "!PDL" for Interaction
Protocol Definition Language, is proposed for describing generalized interfaces for long-term,
high-level, composite, and multi-role interactions.

1. An interaction protocol describes the interaction interface between two ·or more objects
from an external perspective, so that interfaces are independent from single classes, and an
involved roles in an interaction are described explicitly.

55

2. For each object that participates in an interaction, the interaction protocol defines Ihe ob­
ject' s allowed and expected behaviour in tenns of causal connections between interactions.

3. Complex interaction protocols can be built by specifying allowed sequences of simpler
interaction protocols, which caters for the description of interactions at different levels of
abstraction.

2 Interfaces and IDL
In this section, we give a short overview about the CORBA IDL and how it is used in the
context of distributed systems.

The interface description language CORBA-IDL is used to describe client/server interfaces.
For each interface, a number of operations and attributes are specified which have to be
supported by servers implementing that interface. For example, an interface of a Manager
object that manages the locking of a shared resource would be specified as follows in IDL (see
Fig. 1)

interface Manager (
void lock(in MClient c);
void unlock();

};

Fig. 1: Manager interface describedin IDL

Note that in the IDL itself (i.e., without using conunents) there is no way to specify that each
invocation of lock must be followed by an invocation of unlock.

If, for detecting deadlocks, the Manager object needed to call a getID operation for processing
lock, the corresponding method signature needs to be included in a separate interface for
MClient (see Fig. 2), making getID accessible for any object that has a reference to a MClient
object, at any time. It is not possible to express that the ID of a MClient may only be requested
by a Manager during its execution of the lock operation. Moreover, the interaction between a
Manager and a MClient object, which was designed by considering both sides at once, has to
be described in two separate parts.

interface MClient (
short getID();

};

Fig. 2: MClient interface described in IDL

The CORBA-IDL describes interfaces of objects that are possibly distributed over several
processing nodes. To allow transparent access to distributed objects, IDL files are used for
generating stub classes for both the client and the server side. The client-side stub implements a
proxy object that from the client object's perspective is indistinguishable from the actual server
object. The proxy object forwards all operation requests to a corresponding server-side stub,
which implements a driver object that calls the server object, so that from the server object's

56

perspective, this call is indistinguishable from a local client's call. After the operation is
completed by the server object, the operation's return value is forwarded from the driver object
to the proxy object, which returns the value to the dient object.

For our example of Manager and MClient, fOUf helper dasses would be generated by a
CORBA stub generator: one proxy dass and one driver dass for each of the two interfaces. As
we will see in the next section, it is possible to generate only two helper dasses, if the allowed
interaction between Manager and MClient was described as one interaction as opposed to two
interfaces.

3 Protocols and IPDL

In this section, the Interaction Protocol Definition Language (IPDL) , an extension to the
CORBA-IDL, is described. To distinguish between a CORBA-IDL interface definition and a
IPDL interaction protocol definition, IPDL definitions start with the keyword "interaction"
rather than "interface". However, "interface" definitions using the old style are still valid in
IPDL, and they implicitly define two roles "Client" and "Server".

There are two main differences between an interface definition and an interaction protocol
definition. One is that it is no longer true that for each interface, there is always one client role
which issues requests, and one server role which services requests. Rather, multiple roles may
be defined, and actions such as issuing or servicing a particular request may be assigned to
each of those roles. Other actions such as sending or receiving a message, or forwarding a
message or arequest, may be defined as weil. The other difference is that a protocol may be
given that constrains the order in which actions may happen.

We can convert the example of section 1 into IPDL in two steps: in the first step, the two
interfaces are combined into one interaction definition with two roles Manager and MClient.
In the second step, the protocol to be obeyed by the two roles is added.

interaction Mutex (

};

roles MClient, Manager;
Oneway(MClient, Manager) void lock();
Invocation(Manager, MClient) short getID();
Oneway(Manager, MClient) void lock....granted();
Invocation(MClient, Manager) void unlock();

Fig. 3: Mutex interaction described in IPDL, version I

ln Fig. 3, the two roles Manager and MClient are described in one interaction definition. The
combined interaction is called Mutex. The actions (which were "operations" in CORBA-IDL
terms) have been annotated by either lnvocation or Oneway, primitive actions for operation
invocation and message passing, respectively. For each such action declaration, the
participating roles are given in parentheses, for specifying which role is the sender or the
receiver of a Oneway, and which role is the caller or the callee of an lnvocation. The reason for
splitting the lock operation into two parts, lock and lock....granted, will be explained shortly.

57

Note that the order in which the action declarations are given does not imply that the actions
may only happen in this particular sequence.

To defme such a sequence, or more genera1ly, to constrain the possible orderings of actions, a
protocol may be defmed at the end of an interaction protocol definition. In Fig. 4, the protocol
for the proper interaction between Manager and MClient is given. The language for defming
such protocols allows to express them at the level of regular expressions, with constructs for
sequences, alternatives, and repetition, in order to make the problem of comparing protocol
definitions statically decidable. In this example, sequencing of actions (using ";") and repetition
(using "loop (... }") is used. To allow the callback getlD while the Manager processes the lock
request, the former operation lock had to be split into two Oneway messages lock and
lock.-$ranted.

interaction Mutex {
... definition 0/ roles and action declarations ...
protocol:
loop {

lock;
getlD;
lock.-$ ranted;
unlock;

};
};

Fig. 4: Mutex interaction described in IPDL, version 2

To remedy this, IPDL allows parameterization of interaction protocol definitions. In particular,
Invocation, although being a primitive action, is a parameterized interaction protocol which
may be defmed as seen in Fig. 5. If no action is given as parameter, the non-action "nop" is
used as adefault for inner. It might be surprising that the actions which are used to define an
interaction protocol are themselves defmed as interaction protocols. This allows interactions to
be defmed at severa1levels of abstraction. In fact, even the Mutex interaction protocol may be
used to build more complex protocols. In the fmal version of Mutex (Fig. 6), to make it more
reusable, an "inner" parameter is introduced for Mutex as weH.

interaction lnvocation<inner=nop> (

}

Oneway(Caller, Callee) void arguments(... argument types ...);
Oneway(Callee, Caller) ... return type ... result();
protocol:
arguments;
inner;
result;

Fig. 5: Interaction protocol Call

58

interaction Mutex<inner=nop> (
roles MClient, Manager;
Invocation(MClient, Manager) void lock();
Invocation(MClient. Manager) void unlock();
Invocation(Manager. MClient) short getID();
protocol:
loop {

};
};

lock<
getlD;

>;
inner;
unlock;

Fig. 6: Mutex interaction described in IPDL, version 3

Using only sequences, loops, and alternatives may seem too restricted to describe all kinds of
protocols. However, more complex protocols may be approximated by our restricted protocol
defInition language, which was designed to enable static checking of protocol obeyance. To
show that non-trivial protocols indeed can be described in IPDL, a second example is given in
Fig. 7. DatabaseAccess describes a low-Ievel (Le. non-transparent) interface to an object­
oriented database. A Client, after registering with a beginTransaction message, may issue read
or write requests as long as the Server responds with accept and not with reject (which
indicates that the transaction conflicts with another transaction), and until an endTransaction
message is sent by the Client. In this example, the notation for alternatives is used ("select
(I <branchl> I ... I <branchn> }"), and the modifier "[exitsJ" is used to denote actions that
cause the enclosing loop to be ended.

Because all partners of an interaction are known, in contrast to the CORBA-IDL, only one
stub class for each role in that interaction has to be generated. If it is required by the protocol,
each stub class for a specifIc role may act both as a proxy and a driver for the object which
plays that role. For instance, for DatabaseAccess, two stub dasses DatabaseAccessClient and
DatabaseAccessServer, shown in Fig. 8, are generated (currently, Java [AG96] is used as the
target language). Note that so far, the stub generator generates explicit communication
operations; the generator will be extended so that it may generate code for implicit
communication operations as weIl (such as only one blocking operation for read instead of
sending and receiving two messages for each read). The dass DatabaseAccessClient will
interact with the object playing the Server role, while DatabaseAccessServer will be the stub
dass that interacts with the Client. The actual code for the generated operations is not shown.
It checks whether the specifIed protocol is obeyed, and provides for the communication with
the corresponding other stub.

As mentioned earlier, obeyance of a protocol may be checked at compile-time. The runtime
checks which are included in the generated stub classes are needed only when. using an existing
object-oriented language for the implementation of objects. In the next section, we will discuss
how an object-oriented language like Java may be extended to allow for compile-time checking
of protocol obeyance.

59

interaction DatabaseAccess {
roles Client, Server;
Oneway (Client, Server) void beginTransaction();
Oneway (Client, Server) void write(in DBObject 0, in DBAttribute a, in DBValue v);
Oneway (Client, Server) void endTransaction();
Invocation(Client, Server) DBValue read(in DBObject 0, in DBAttribute a);
Oneway(Server, Client) void accept();
Oneway(Server, Client) void reject();
{

loop {
beginTransaction;
loop {

select {
I accept;
I reject{ exits};

}
select {

I read;
I write;
I endTransaction;

select {
I accept{ exits};
I reject{ exits};

} } } }} }

Fig. 7: Interaction Protocol Definition for DatabaseAccess

dass DatabaseAccessClient extends DatabaseAccessProtocol (
void receive_beginTransaction() { ... }

}

Message receive_read_write_endTransaction() { ... }
void send_read_result(DBValue result) { ... }
void send_accept() { ... }
void send_reject() { ... }

dass DatabaseAccessServer extends DatabaseAccessProtocol (
void send_beginTransaction() { ... }

}

Message receive_accepcreject() { ... }
void send_read_request(DBObject 0, DBAttribute a) { ... }
Message receive_read_result() { ... }
void send_write_request(DBObject 0, DBAttribute a, DBValue v) { ... }
void send_endTransaction() { ... }

Fig. 8: generated stub classes for DatabaseAccess

60

4 Implementing Objects

While interaction protocols specify sequential interaction behaviour, objects are allowed to
play several roles concurrently (or interleaved), so that they can engage in more than one
interaction at the same time. Every possible interaction that an object can perfonn with other
objects has to be associated with a role that the object plays in that interaction. This implies
that all actions of an object that are visible to other objects must be described in some
interaction protocol that specifies corresponding actions in those other objects.

The set of roles that an object plays constitute its interface. Because the different roles of an
object are considered to be of equal importance, there is no special treatment for the "callee"
role(s) of an object. Thus, the common view of an object as a provider of a set of services,
each service represented by a public method of the object, would restrict the roles that an
object can play. To overcome this restriction, in the proposed object implementation language,
a class specifies the possible sequences of (inter-)actions that its objects are able to perforrn.
Subsequences of interactions can be given a name, to allow reuse of method-Ievel entities
where appropriate.

Conformance of an object to a specific role of an interaction protocol can be defined informa1ly
as the fulfillment of the other roles' expectations in that interaction. To fulfill these
expectations, an object has to obey the following two rules:

1. Whenever, at a given state of the interaction, the object is active (it is the object's choice
what subinteraction to perform and when), only one of the subinteractions allowed to occur
from that state may be chosen.

2. Whenever, at a given state of the interaction, the object is passive (another object is active),
it must be able to handle any subinteraction allowed to occur from that state.

To allow full computability power for objects, an object's implementation must include parts
that cannot be taken into account when checking role conformance, such that - as expected -
not all protocol errors (deadlock) can be detected statically. However, the behaviour
information encoded in the interaction protocols is a good approximation to behaviour for
which conformance still is decidable.

In order to check at compile-time whether an object conforrns to a role, the descriptions of
object behaviour with respect to that role must be reducible to regular expression-like process
specifications. Thus object implementations should build upon constructs similar to the
building blocks of IPDL protocols: sequence, active and passive selection, and active and
passive repetition constructs. Currently, an extension to the object-oriented language Java that
contains these constructs is under development. The two main problems that remain to be
solved are how to integrate the "normal" implicit acceptance of operation requests by the
methods of an object with a more process-oriented view in which the control flow can be
extracted easily, and how to handle inheritance.

Note that the proposed model allows subtyping: the ability to assign objects of different types,
each of which conforrns to a more general type, to a variable having this general type. The
proposed language should explicitly support subtyping in that object references always are
references to objects in a specific role, and not to the objects themselves, and a behaviour­
sensitive subtype relation on roles can be defined.

61

However, inheritance as a means to generäte new c1asses out of existing ones only by defining
the incremental changes that have to be applied to the code of the original c1ass, is not very
easily supported. One might think of possibilities to allow to specify incremental changes to
classes in the proposed model, but. in general, subclassing does not necessarily imply
subtyping. In particular, for concurrent object-oriented programming, the proposed model
does not solve the inheritance anomaly.

5 Related Work

This work is in the tradition of the work on Contracts [H+90, HoI92], in that it allows forthe
specification of interaction behaviour of objects, such that each object' s expectations can be
made explicit. Unlike Contracts, the specification of interaction behaviour is designed such that
it can be used for static checks whether a given object composition conforms to the behaviour
specifications.

At the same time, the work is in the tradition of Oscar Nierstrasz' work on "Regular Types for
Active Objects" [Nie93]. in that it describes the interaction behaviour in terms of process
specifications that can be checked for equivalence at compile-time. This paper takes a new
approach to the interfaces of objects, however, in that not only the servers' roles are specified,
such that servers can make assumptions about how they are used by clients; additionally, the
clients' roles are taken into account as weil, and that in general the collective behaviour of
groups of objects can be specified, specifying what interaction behaviour each object in the
interaction can expect from the other objects.

Additionally, this work is related to research of Allen and Garlan on Wright [AG94a, AG94b],
where a software architecture language is defrned that captures the protocol between
connected software architecture components. Unlike in Wright, interaction protocols are
hierarchical in that protocols can be hierarchically nested, which paralleis the use of methods in
object-oriented programming.

References

[AG94a] Robert Allen and David Garlan. Fonnalizing Architectural Connection. In
Proceedings of the International Conference on Software Engineering (ICSE-16).
IEEE Computer Society Press, 1994.

[AG94b] Robert Allen and David Garlan. Fonnal Connectors. Technical Report CMU-CS-94-
115. Carnegie Mellon University, 1994.

[AG96] Ken Arnold and lames Gosling. The Java Programming Language. Addison-Wesley,
1996.

(G+95] Erich Gamma and Richard Helm and Ralph lohnson and lohn Vlissides. Design
Patterns - Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995

(H+90] Richard Helm and lan M. Holland and Dipayan Gangopadhyay. Contracts -
Specifying Behavioural Compositions in Object-Oriented Systems. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA'90). ACM Press, 1990

62

[Ho192] lan M. Holland. Specifying Reusable Components Using Contfacts. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP'92).
Springer Verlag, 1992

[Joh93] Ralph E. Johnson. How to Design Frameworks. Tutorial Notes, Conference on
Object-Oriented Programming Systems, Languages andApplications (OOPSLA'93).

[Nie93] Oscar Nierstrasz. Regular Types for Active Objects. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA'93). ACM Press, 1993

[OM95] Object Management Group, Inc. The Common Object Request Broker: Architecture
and Specijication. Revision 2.0, July 1995 (available electronically at
http://www.omg.orgldocs/ptc/96-03-04.ps)

63

\ . ',L.'
," "I! . .

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Veröffentlichungen des DFKI

-Bibliothek, Information

und Dokumentation (BID)-

PF 2080

67608 Kaiserslautern

FRG

Telefon (0631) 205-3506
Telefax (0631) 205-3210

e-mail
dfkibib@dfki .uni-kl.de

WWW
http://www.dfki.uni­
sb.de/dfkibib

Die folgenden DFKI Veröffentlichungen sowie die aktuelle Liste von allen bisher erschienenen Publikatio­
nen können von der oben angegebenen Adresse oder (so sie als per ftp erhaeltlich angemerkt sind) per
anonymous ftp von ftp.dfki.uni-kl.de (131.246.241.100) im Verzeichnis pubjPublications bezogen werden.
Die Berichte werden, wenn nicht anders gekennzeichnet, kostenlos abgegeben.

DFKI Publications

The /ollowing DFKI publications or the list 0/ all published papers so /ar are obtainable from the above ad­
dress or {if they are marked as obtainable by ftp} by anonymous ftp from ftp·dfki .uni-kl.de {131.246.241.100}
in the directory pub/Publications.
The reports are distributed free 0/ charge except where otherwise noted.

DFKI Research Reports

1996
RR-96-05
Stephan Busemann
Best-First Surface Realization
11 pages

RR-96-03
Günter Neumann
Interleaving
Natural Language Parsing and Generation
Through Uniform Processing
51 pages

RR-96-02
E.Andre, J. Müller, TRist:
PPP-Persona: Ein objektorientierter Multimedia-Prä­
selltationsagent
14 Seiten

1995
RR-95-20
Han!r Ulrich Krieger
Typed Feature Structures, Definite Equivalences,
Greatest Model Semantics, and Nonmonotonicity
27 pages

RR-95-19
Abdel Kader Diagne, Walter Kasper, Hans-Ulrich Krie­
ger
Distributed Parsing With HPSG Grammar
20 pages

RR-9S-18
Hans-Ulrich Krieger, UJrich Schäfer
Efficient Parameterizable Type Expansion for Typed
Feature Formalisms
19 pages

RR-9S-11
Hans-Ulrich Krieger
Classification and Representation of Types in TDL
17 pages

RR-9S-16
Martin Müller, Tobias Van Roy
Title not set
o pages

Note: The author(s) were unable to deliver this docu­
ment for printing before the end of the year. It
will be printed next year.

RR-95-15
Joachim Niehren, Tobias Van Roy
Title not set
o pages

Note: The author(s) were unable to deliver this docu­
ment for printing be fore the end of the year . It
will be printed next year.

RR-95-14
Joachim Niehren
Functional Computation as Concurrent Computation
50 pages

RR-95-13
Werner Stephan, Susanne Biundo
Deduction-based Refinement Planning
14 pages

RR-95-12
Walter Hower, Winfried H. Graf
Research in Constraint-Based Layout, Visualization,
CAD, and Related Topics: A Bibliographical Survey
33 pages

RR-95-11
Anne Kilger, Wolgang Finkler
Incremental Generation for Real-Time Applications
47 pages

RR-95-10
Gert Smolka
The Oz Programming Model
23 pages

RR-95-09
M. Buchheit, F. M. Donini, W. Nutt, A. Schaerf
A Refined Architecture for Terminological Systems:
Terminology = Schema + Views
71 pages

RR-95-08
Michael Mehl, Ralf Scheidhauer, Christian Schulte
An Abstract Machine for Oz
23 pages

RR-95-01
Francesco M. Donini, Maurizio Lenzerini, Daniele Nar­
di, Werner Nutt
The Complexity of Concept Languages
57 pages

RR-95-06
Bernd Kiefer, Thomas Fettig
FEGRAMED
An interactive Graphics Editor for Feature Structures
37 pages

RR-95-05
Rolf Backofen, James Rogers, K. Vijay-Shanker
A First-Order Axiomatization of the Theory of Finite
Trees
35 pages

RR-95-04
M. Buchheit, H.-J. Bürckert, B. Hollunder, A. Laux, W.
Nutt,
M. W6jcik
Task Acquisition with a Description Logic Reasoner
17 pages

RR-95-03
Stephan Baumann, Michael Malburg, Hans-Guenther
Hein, Rainer Hoch,
Thomas Kieninger, Norbert Kuhn
Document Analysis at DFKI
Part 2: Information Extraction
40 pages

RR-95-02
Majdi Ben Hadj Ali, Frank Fein, Frank Hoenes, Thor­
sten Jaeger,
Achim Weigel
Document Analysis at DFKI
Part 1: Image Analysis and Text Recognition
69 pages

RR-95-01
Klaus Fischer, Jörg P. Müller, Markus Pischel
Cooperative Transportation Scheduling
an application Domain for DAI
31 pages

1994

RR-94-39
Hans-Ulrich Krieger
Typed Feature Formalisms as a Common Basis for Lin­
guistic Specification.
21 pages

RR-94-38
Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Ab­
deI Kader Diagne,
Elizabeth A. Hin kelman , Walter Kasper, Bernd Kiefer,
Hans- Ulrich Krieger,
Klaus Netter, Günter Neumann, Stephan Oepen, Ste­
phen P. Spackman.
DISCO-An HPSG-based NLP System and its Applica­
tion for Appointment Scheduling.
13 pages

RR-94-31
Hans-Ulrich Krieger, Ulrich Schäfer
TDL - A Type Description Language for HPSG, Part
1: Overview.
54 pages

RR-94-36
Manfred Meyer
Issues in Concurrent Knowledge Engineering. Knowl­
edge Base and Knowledge Share Evolution.
17 pages

RR-94-35
Rolf Backofen
A Complete Axiomatization of a Theory with Feature
and Arity Constraints
49 pages

RR-94-34
Stephan Busemann, Stephan Oepen, Elizabeth A . Hin­
keim an ,
Günter Neumann, Hans Uszkoreit
COSMA - Multi-Participant NL Interaction for Ap­
pointrnent Scheduling
80 pages

RR-94-33
Franz Baader, Armin Laux
Terminological Logics with Modal Operators
29 pages

RR-94-31
Otto Kübn, Volker Becker, Georg Lobse, Pbilipp Neu­
mann
Integrated Knowledge Utilization and Evolution for the
Conservation of Corporate Know-How
17 pages

RR-94-23
Gert Smolka
The Definition of Kernel Oz
53 pages

RR-94-20
Christian Schulte, Gert Smolka, Jörg Würtz
Encapsulated Search and Constraint Programming in
Oz
21 pages

RR-94-19
Rainer Hoch
Using IR Techniques for Text Classification in Docu­
ment Analysis
16 pages

RR-94-18
Rolf Backofen, Ralf Treinen
How to Win aGame with Features
18 pages

RR-94-17
Georg Struth
Philosophical Logics-A Survey and a Bibliography
58 pages

RR-94-16
Gert Smolka
A Foundation for Higher-order Concurrent Constraint
Programming
26 pages

RR-94-15
Winfried H. Graf, Stefan Neurohr
Using Graphical Style and Visibility Constraints for a
Meaningful Layout in Visual Programming Interfaces
20 pages

RR-94-14
Harold Boley, Ulrich Buhrmann, Christof Kremer
Towards a Sharable Knowledge Base on Recyclable
Plastics
14 pages

RR-94-13
Jana Koehler
Planning from Second Principles-A Logic-based Ap­
proach
49 pages

RR-94-12
Hubert Comon, Ralf Treinen
Ordering Constraints on Trees
34 pages

RR-94-11
Knut Hinkelmann
A Consequence Finding Approach for Feature Recogni­
tion in CAPP
18 pages

RR-94-10
Knut Hinkelmann, Helge Hintze
Computing Cost Estimates for Proof Strategies
22 pages

RR-94-08
Otto Kühn, Bjöm Höfling
Conserving Corporate Knowledge for Crankshaft De­
sign
17 pages

RR-94-07
Harold Boley
Finite Domains and Exclusions as First-Class Citizens
25 pages

RR-94-06
Dietmar DengIer
An Adaptive Deductive Planning System
17 pages

RR-94-05
Franz SchmaJhofer, J. Stuart Aitken, Lyle E. Boume jr.
Beyond the Knowledge Level: Descriptions of Rational
Behavior for Sharing and Reuse
81 pages

RR-94-03
Gert Smolka
A Calculus for Higher-Order Concurrent Constraint
Programming with Deep Guards
34 pages

RR-94-02
EJisabeth Andre, Thomas Rist
Von Textgeneratoren zu Intellitnedia-Präsentationssy­
sternen
22 Seiten

RR-94-01
Elisabeth Andre, Thomas Rist
Multimedia Presentations: The Support of Passive and
Active Viewing
15 pages

DFKI Technical Memos

1996
TM-96-01
Gerd Kamp, Holger Wacbe
CTL - a description Logic with expressive concrete do­
mains
19 pages

1995
TM-95-04
Klaus Scbmid
Creative Problem Solving
and
Automated Discovery
- An Analysis of Psychological and AI Research -
152 pages

TM-95-03
Andreas Abecker, Harold Boley, Knut Hinkelmann, Hol­
ger Wache,
Franz Scbmalbofer
An Environment for Exploring and Validating Declara­
tive Knowledge
11 pages

TM-95-02
Micbael Sintek
FLIP: Functional-plus-Logic Programming
on an Integrated Platform
106 pages

DFKI Documents

1996

D-96-05
Martin Scbaaf
Ein Framework zur Erstellung verteilter Anwendungen
94 pages

D-96-03
Winfried Tautges
Der DESIGN-ANALYZER - Decision Support im Desi­
gnprozess
75 Seiten

1995

D-95-12
F. Baader, M. Bucbheit, M. A . Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'95 Workshop:
KRDB-95 - Reasoning about Structured Objects:
Knowledge Representation Meets Databases
61 pages

TM-95-01
Martin Bucbbeit, Rüruger Klein, Werner Nutt
Constructive Problem Solving: A Model Construction
Approach towards Configuration
34 pages

1994

TM-94-04
Cornelia Fischer
PAntUDE - An Anti-Unification Algorithm for Ex­
pressing Refined Generalizations
22 pages

TM-94-03
Victoria Hall
Uncertainty-Valued Horn Clauses
31 pages

TM-94-02
Rainer Bleisinger, Bertbold Kröll
Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations
11 pages

TM-94-01
Rainer Bleisinger, Klaus-Peter Gores
Text Skimming as a Part in Paper Document Under­
standing
14 pages

D-95-11
Stepban Busemann, Iris Merget
Eine Untersuchung kommerzieller Terminverwaltungs­
software im Hinblick auf die Kopplung mit natÜIlich­
sprachlichen Systemen
32 Seiten

D-95-10
Volker Ebresmann
Integration ressourcen-orientierter Techniken in das wis­
sensbasierte Konfigurierungssystem TOOCON
108 Seiten

D-95-09
Antonio Krüger
PROXIMA: Ein System zur Generierung graphischer
Abstraktionen
120 Seiten

D-95-08
Tecbnical Staff
DFKI Jahresbericht 1994
63 Seiten

Note: This document is no Ion ger available in printed
form.

0-95-07
Ottmar Lutzy
Morphic - Plus
Ein morphologisches Analyseprogramm für die deutsche'
Flexionsmorphologie und Komposita-Analyse
74 pages

0-95-06
Markus Steffens, Ansgar Bernardi
Integriertes Produktmodell für Behälter aus Faserver­
bundwerkstoffen
48 Seiten

0-95-05
Georg Schneider
Eine Werkbank zur Erzeugung von 3D-Illustrationen
157 Seiten

0-95-04
Victoria Hall
Integration von Sorten als ausgezeichnete taxonomische
Prädikate in eine relational-funktionale Sprache
56 Seiten

0-95-03
Christoph Endres, Lars Klein, Markus Meyer
Implementierung und Erweiterung der Sprache .A..ccp
110 Seiten

0-95-02
Andreas Butz
BETTY
Ein System zur Planung und Generierung informativer
Animationssequenzen
95 Seiten

0-95-01
Susanne Biundo, Wolfgang Tank (Hrsg.)
PuK-95, Beiträge zum 9. Workshop "Planen und Kon­
figurieren", Februar 1995
169 Seiten

Note: This document is available for a nominal charge
of25 DM (or 15 US-$).

1994

0-94-15
Stephan Oepen
German Nominal Syntax in HPSG

- On Syntactic Categories and Syntagmatic Relations

80 pages

0-94-14
Hans- Ulrich Krieger, Ulrich Schäfer
TDL - A Type Description Language for HPSG, Part
2: User Guide.
72 pages

0-94-12
Arthur Sehn, Serge Autexier (Hrsg.)
Proceedings des Studentenprogramms der 18. Deut­
schen Jahrestagung für Künstliche Intelligenz KI-94
69 Seiten

0-94-11
F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'94 Workshop: KRDB'94 - Rea­
soning about Structured Objects: Knowledge Represen­
tation Meets Databases
65 pages

Note: This document is no longer available in printed
form.

0-94-10
F . Baader, M. Lenzerini, W. Nutt, P. F. Patel-Schneider
(Eds.)
Working Notes of the 1994 International Workshop on
Description Logics
118 pages

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

0-94-09
Technical Staff
DFKI Wissenschaftlich-Technischer Jahresbericht
1993
145 Seiten

0-94-08
Harald Feibel
IGLOO 1.0 - Eine grafikunterstützte Beweisentwick­
lungsumgebung
58 Seiten

0-94-07
Claudia Wenzel, Rainer Hoch
Eine Übersicht über Information Retrieval (IR) und
NLP-Verfahren zur Klassifikation von Texten
25 Seiten

0-94-06
Ulrich Buhrmann
Erstellung einer deklarativen Wissensbasis über recy­
c\ingrelevante Materialien
117 Seiten

0-94-04
FTanz Schmalhofer, Ludger van EIst
Entwicklung von Expertensystemen: Prototypen, Tie­
fenmodellierung und kooperative Wissensevolution
22 Seiten

0-94-03
FTanz Schmalhofer
Maschinelles Lernen: Eine kognitionswissenschaftliche
Betrachtung
54 Seiten

Note: This document is no Ion ger available in printed
form.

D-94-02
Markus StefIeIlS
Wissenserhebung und Analyse zum Entwicklungsprozeß
eines Druckbehälters aus Faserverbundstoff
90 pages

D-94-01
Josua BoOIl (Ed.)
DFKl-Publications: The First Four Years
1990 - 1993
75 pages

<Oe
0<1> • E
<OB
0')0
.0

C

t/)

E
Cl) -t/)

>­
Cf)

'0
Cl) -::J
Jl
'i: -t/)

C
'0
C
ns
C)
c
'E
E
ns ...
C)
o ...
a.
'0
Cl) -c
Cl)
'i:
o

I -C
Cl)
C)

oe:(

c
o
c.
o
J:
t/)
~ ...
~
co
cn
~
Cl)
J: --o
t/)
Cl) -o z
C)
c
:2 ...
~

"':'
'0
W -....
eI)

s:.
CJ
CI)

ü:
CI)

:J
RI

52

	D-96-06-0001
	D-96-06-0002
	D-96-06-0003
	D-96-06-0004
	D-96-06-0005
	D-96-06-0006
	D-96-06-0007
	D-96-06-0009
	D-96-06-0010
	D-96-06-0011
	D-96-06-0012
	D-96-06-0013
	D-96-06-0014
	D-96-06-0015
	D-96-06-0016
	D-96-06-0017
	D-96-06-0018
	D-96-06-0019
	D-96-06-0020
	D-96-06-0021
	D-96-06-0022
	D-96-06-0023
	D-96-06-0024
	D-96-06-0025
	D-96-06-0026
	D-96-06-0027
	D-96-06-0028
	D-96-06-0029
	D-96-06-0030
	D-96-06-0031
	D-96-06-0032
	D-96-06-0033
	D-96-06-0034
	D-96-06-0035
	D-96-06-0036
	D-96-06-0037
	D-96-06-0039
	D-96-06-0040
	D-96-06-0041
	D-96-06-0042
	D-96-06-0043
	D-96-06-0044
	D-96-06-0045
	D-96-06-0046
	D-96-06-0047
	D-96-06-0048
	D-96-06-0049
	D-96-06-0050
	D-96-06-0051
	D-96-06-0052
	D-96-06-0053
	D-96-06-0054
	D-96-06-0055
	D-96-06-0056
	D-96-06-0057
	D-96-06-0058
	D-96-06-0059
	D-96-06-0060
	D-96-06-0061
	D-96-06-0062
	D-96-06-0063
	D-96-06-0064
	D-96-06-0065
	D-96-06-0066
	D-96-06-0067
	D-96-06-0068
	D-96-06-0069
	D-96-06-0070
	D-96-06-0071
	D-96-06-0072
	D-96-06-0073

