
Deutsches
Forschungszentrum
tür Künstliche
Intelligenz GmbH

Document
0-95-12

Working Notes of the KI'95 Workshop:

KRDB-95
Reasoning about Structured Objects:

Knowledge Representation Meets
Databases

Bielefeld, Germany, Sept. 11-12, 1995

F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)

September 1995

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax : +49 (631)205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificiallntelligence (Deutsches Forschungszentrum für Künstliche Intel­
ligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was founded
in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD,
IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-Nixdorf. Research projects
conducted at the DFKI are funded by the German Ministry for Research and Technology, by the share­
holder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical knowledge
and common sense which - by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about the
current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of
the building-up phase.

Dr. Dr. D. Ruland

Director

Working Notes of the KI'95 Workshop:
KRDB-95 - Reasoning about Structured Objects:
Knowledge Representation Meets Databases

F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)

DFKl-D-95-12

This work has been supported by a grant trom The Federal Ministry
of Education, Science, Research and Technology (FKZ ITWM-
9201).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1995
This work may not be copied or reproduced in whole 01 part lor any commercial purpose.
Permission to copy in whole or part without payment 01 lee is granted lor nonprolit edu­
cational and research purposes provided that all such whole or partial copies include the
lollowing: a notice that such copying is by permission 01 the Deutsche Forschungszen­
trum für Künstliche Intelligenz, Kaiserslautern, Federal Republic 01 Germany; an ac­
knowledgement 01 the authors and individual contributors to the work; all applicable
portions 01 this copyright notice. Copying, reproducing, or republishing lor any other
purpose shall require a licence with payment 01 lee to Deutsches Forschungszentrum -
lür Künstliche Intelligenz.
ISSN 0946-0098

Working N otes of the KI'95 Workshop:

KRDB-95
Reasoning about Structured Objects:

Knowledge Representation Meets Databases

Bielefeld, Germany, September 11-12, 1995

Organized by

Franz Baader
Lehr- und Forschungsgebiet Theoretische Informatik

RWTH Aachen
Aachen, Germany

baader@informatik.rwth-aachen.de

Martin Buchheit
German Research Center for Artificial Intelligence

Saarbrücken, Germany
buchheit@dfki.uni-sb .de

Manfred A. Jeusfeld
University of Science and Technology

Dept. Information and Systems Management
Clear Water Bay, Kowloon, Hong Kong

jeusfeld @usthk. ust. hk

Werner Nutt ,
German Research Center for Artificial Intelligence

Saarbrücken, Germany
nutt@dfki.uni-sb.de

This collection of papers forms the permanent record
of the KRDB-94 Workshop "Reasoning about Struc­
tured Objects: Knowledge Representation Meets
Databases" , that is held at the University of Biele­
feld, Germany on September 11-12, 1995, as part
of the 19th German Annual Conference on Artifi­
cial Intelligence. The workshop is set up to be as
informal as possible, so this collection cannot hope
to capture the discussions associated with the work­
shop. However, we hope that it will serve to remind
participants of their discussion at the workshop, and
provide non-participants with indications of the top­
ics that were discussed at the workshop.

Object-centered formalisms for domain modeling
play an important role both in knowledge represen­
tation (KR) and in the database (DB) area. Never­
theless, there has been little cross-fertilization be­
tween the two areas. Research in databases was
mostly concerned with handling large amounts of
data that are represented in a rat her inexpressive
formalism, whereas KR concentrated on intensional
inferences in relatively small knowledge bases. How­
ever, many of today's problems demand sophisti­
cated reasoning on complex and large-scale objects .
The workshop is intended to bring together re­
searchers from both areas to continue the discussion
about the problems and applications of a combina­
tion of KR and DB techniques, which was initiated
at the predecessor workshop KRDB-94, and to iden­
tify new such questions and solutions.

For the following (non-exelusive) list of questions,
such a combination seems to be most" promising:

• KR formalisms as schema languages in DB: Is it
possible to specify realistic DBs this way? Can
the inference mechanisms from KR support the
schema design?

• Distributed information sources : How can one
describe their interaction in achanging environ­
ment?

• Advanced query processing: How can schema
knowledge be utilized for query optimization?
How can it be used to generate intensional an­
swers?

The first session is devoted to extensions 0/ knowl­
edge representation by database techniques . Bres­
ciani describes an architecture that combines a KR
system based on description logic and a relational
DBMS by .so-called e10se coupling. The amalga­
mated system presents itself like a KR system. Some
parts of the e1ass taxonomy reside in a database,
however. In order to comply with the semantics
of the KR system, only a fragment of the pos si­
ble queries are allowed for retrieving objects from
the database part. James, Gatward, and Shipley
present an extension of the very expressive KR lan­
guage CPL '(conceptual prototyping language) by a
language for describing object-oriented schemas in
order to combine the management and processing
of routine data with the reflection and utilization of
knowledge. Lebastard proposes to define an object­
oriented DBMS on top of a relation al DBMS. Thus

the user can choose the object model to be han­
dled and has access to arbitrary relational databases.
Reimer, Lippuner, Norrie, and Rys describe a formal
mapping of DL inferences to queries of the OODB
system COCOON. This extends the mapping of con­
cept descriptions to dass descriptions presented at
KRDB-94.

The topic of the second session is the extension
0/ databases by knowledge representation techniques.
Kessel, Rousselot, Schlick, and Stern intend to com­
bine a description logic system and a DBMS, mo­
tivated by their applications in the areas CAD and
document retrieval, in which the ability to manage
huge amounts of data is crucial. Simonet and Si­
monet present the P-type data model and show that
it is e10sely related to description logics. The goal
of their work is to transfer reasoning techniques de­
veloped for description logics, like subsumption al­
gorithms, to P-types. Calvanese, De Giacomo, and
Lenzerini introduce a new and very expressive data
model for describing e1asses, views and links. Rea­
soning in this model is based on techniques, de­
veloped by the authors, for reasoning in expressive
description logics allowing for, e.g., number restric­
tions, inverse roles, and recursive definitions . Nissen
and Zemanek describe the successful usage of the KR
system ConceptBase for modeling business processes
and for requirements engineering. The cooperation
that resulted in this work was initiated at KRDB-94 .

The third session is concerned with Queries.
Bergamaschi, Sartori, and Vincini propose the use
of reasoning techniques from KR (subsumption com­
putation) for computing intensional answers to DB
queries by taking integrity constraints and the DB
schema into account. Savnik, Tari, and Mohoric pro­
poses a language that allows to manipulate and rea­
son about the schema of a: database, and to express
deelarative queries. Schild investigates the use of
expressive description logics as database query lan­
guages . He presents a language that allows one to
formulate queries that are beyond the expressivity
of relation al query languages, but can still be ef­
ficiently evaluated. He achieves tractability for his
expressive language by exchanging the "open world"
assumption usually employed in description logics by
the "dosed world" assumption customary in the DB
area.

The three papers of the last session investigate
the KR and DB issues from the viewpoint of inter­
operable systems~ Boudjlida observes that complex
objects playa significant role in the engineering of
interoperable systems. KR-based reasoning as weil
as reflexivity are proposed to aid development. Ed­
mond, Papazoglou, RusselI, and Tari package con­
ventional database systems via complex objects to
provide a more flexible access. Here, reflection is
used to represent information about the databases
to application systems. Kusch and Saake investigate
methods for partitioning complex objects in a dis­
tributed information system environment, with the
goal of preserving local autonomy. Partitioning is ex­
pressed in terms of a formal specification language.

Contents

Session 1: Extending KR by DB Techniques

Querying Databases from Description Logics. .. 1
P. Bresciani, IRST Povo

Using a Knowledge Representation Language to Capture both Knowledge and Routine
Data . 5
A. E. James, R. A. Gatward, S . Shipley, Coventry University

An Object Layer on a Relational Database more Attractive than an Object Database? 7
F. Lebastard, CERMICS/INRIA, Sophia-Antipolis

Terminological Reasoning by Query Evaluation: A Formal Mapping of a Terminological
Logic to an Object Data Model. .. 11
U. Reimer, P. Lippuner, Swiss Life Zürich; M. C. Norrie, M. Rys, ETH Zürich

Session 2: Extending DBs by KR Techniques

Use of DL within the Pramework of DBMS
T. Kessel, F. Rousselot, M. Schlick, O. Stern, LIlA ERIC ENSAIS Strasbourg

The P-type Model: Prom Databases to Knowledge Bases
A. Simonet, M. Simonet, Universite Joseph Fourier, LA TRONCHE CEDEX

Increasing the Power of Structured Objects
D. Calvanese, G. De Giacomo, M. Lenzerini, Universita di Roma "La Sapienza"

Knowledge Representation Concepts Supporting Business Process Analysis .
H. W. Nissen, RWTH Aachen; G. V. Zemanek, USU Softwarehaus Möglingen

Session 3: Queries

16

22

27

32

DL Techniques for Intensional Query Answering in OODBs 37
S. Bergamaschi, C. Sartori, M. Vincini, CIOC-CNR Bologna

Using Schema Information for Querying Databases 40
1. Savnik, Jozef Stefan Institute, Ljubljana; Z. Tari, Queensland University of Technology; T.
Mohoric, University of Ljubljana

The Use of Description Logics as Database Query Languages 45
K. Schild, Daimler-Benz AG, Berlin

Session 4: Interoperability

Knowledge in Interoperable and Evolutionary Systems
N. Boudjlida, CRIN LORIA, Vandoeuvre

Packaging Knowledge into Metaobjects ,
D. Edmond, M. Papazoglou, N. Russell, Z. Tari, Queensland University of Technology

Supporting Autonomy for Information Systems in aChanging Environment
J. Kusch, G. Saake, Otto-von-Guericke-Universität Magdeburg

iii

47

49

51

Querying Databases from Description Logics

Paolo Bresciani
1RST, 1-38050 Trento Povo, TN, Italy

bresciani@irst.itc . it

Abstract

Two different aspects of data management
are addressed by description logics (DL)
and databases (DB): the semantic orga­
nization of data and powerful reasoning
services (by DL) and their efficient man­
agement and access (by DB). It is re­
cently emerging that experiences from both
DL and DB should profitably cross-fertilize
each other, and a great interest is rising
about this topic.
In the present paper our technique, that
allows uniform access - by means of a
DL-based query language - to informa­
tion distributed over knowledge bases and
databases, is briefty reviewed. Our ex­
tended paradigm integrates the separately
existing retrieving functions of description
logics management systems (DLMS) and
of database management systems (DBMS)
in order to allow, via a query language
grounded on a DL-based schema knowl­
edge, uniformly formulating and ans wer­
ing queries, so that uniform retrieval from
mixed knowledge/data bases is possible.
In particular, some new developments ex­
tending those presented in [Bresciani, 1994]
are introduced. By means of them the
mapping between DL concepts and DB
views is not more limited to primitive con­
cepts, but also to some non-primitively de­
fined ones.

1 Introduction
The main difference between knowledge representa­
tion (KR) and database (DB) systems is that the
latter are oriented to the efficient management of
large amount of data while the former seek to give a
more structured representation of the uni verse of dis­
course in which data are placed. More precisely, in
a KR system the universe of discourse is described
by means of a collection of terms - or concepts -
that are placed into a taxonomy. The capability of
classifying concepts to form taxonomies is given by
an appropriate calculus, whose first goal is to pro­
vide a sv.bsv.mption algorithm. Concept Languages
together with appropriate subsumption calculi are
called Description Logics (DL). Databases, instead,

1

are suited to manage data efficiently, with little con­
cern about their dimension, but their formalism for
organizing them in a structured way is quite absent ,
as weil as the capability to infer new information
from the existing ones. Thus, two different aspects of
data management are addressed by description log­
ics management systems (DLMS) and by database
management systems (DBMS): the semantic organ i­
zation of data (by DLMS), and their efficient man­
agement and access (by DBMS).

The importance of KR has been regarded as fun­
damental for the construction of good Intelligent In­
formation Systems for more than ten years (see, e.g. ,
[Tou et al., 1982]), but only recently the theoretical
foundations of a DL approach to DB have been es­
tablished [Buchheit et al., 1994].

From another point of view, KR-based applica­
tions and, more generally, AI-based applications can
be widely enhanced by AI/DB interfaces [Pastor et
al., 1992; McKay et al., 1990] .

In particular, for the task of implementing D L­
based applications, several reasons can be argued in
favor of the use of external DB :

• because, in realistic applications, knowledge
bases (KB) not only can be complex, but can
also involve a large number of individuals, that
are difficult - when not impossible - to manage
with the existing DLMS ABoxes, due to their
lack of efficiency in dealing with large amounts
data, often it is better to manage large portions
of data by means of a DBMS;

• as [Borgida and Brachman, 1993] mentions, KB
based on DL are often used in applications
where they need access to large amounts of data
stored in already existing databases;

• as observed in [Bresciani, 1994; Bresciani, 1992],
the task of aequiring knowledge for areal knowl­
edge based application often includes a great
amount of raw data collecting; for this subtask
instead of using an ABox often it is better to
use databases.

In particular we faced these problems when we
were developing a large naturallanguage system pro­
totype [Bresciani, 1992], whose domain and linguis­
tic model were represented using LOOM [MacGre­
gor, 1991]. A first implementation of the ideas here
presented is currently used in an enhanced version
of this prototype, capable of dealing with thousands
of individuals .

In such applications it is very important that the
database can be queried from the DLMS in a way
completely transparent to the user. This call for a
semantically weil founded linking between the DL
knowledge base and the database. This can be ob­
tained by coupling DLMS and DBMS [Borgida and
Brachman, 19931: primitive concepts and relations
in a KB are made to correspond respectively to
unary and binary tables in a DB . In [Borgida and
Brachman, 1993] two possible way to couple DLMS
and DBMS are proposed:

• loose coupling, that requires a pre-Ioading of the
data from the DB into the KB;

• tight coupling, that implements a on demand
access to the D B;

but in the system there presented only the loose
coupling paradigm is implemented [Devanbu, 1993;
Borgida and Brachman, 1993].

Instead, Our system is based on tight coupling,
allowing the following advantages:

• complex compound conjunctive queries involv­
ing unary and binary predicates can be done;

• no memory space is was ted in the DLMS in or­
der to keep descriptions of DBMS data;

• answers are given on the basis of the current
state of the KB and the DB, without needing
periodical updating of the KB with new or mod­
ified data from the DB.

Our technique [Bresciani, 1994] will be in the fol­
lowing briefiy reviewed. This approach is here ex­
tended with the possibility of mapping a wider set
of DL concepts into DB views: in this way less re­
strictions about the form of the KB are necessary.

2 TBox, ABox and DBox
The basic idea of our approach is to extend the
traditional DL ABox with a DBox,l by which the
standard TBox/ ABox architecture is coupled with
one or more, possibly heterogeneous and distributed,
databases, so that the user can make queries to this
extended system without any concern on which DB
or the KB has to be accessed.

A mapping - called PM (see section 3) - be­
tween the TBox and the DBox is needed. Therefore,
a knowledge base KB = (T, W, V, PM) [Bresciani,
1994] is formed by a terminology T and a world de­
scription W as usual [Nebel, 19901, plus a data base
V and the mapping function PM . A uniform query
answering function to Kß, based on the two dis­
tinct complete query answering functions (one for
the ABox and one for the DBox), can be imple­
mented. For the sake of simplicity, it will be assumed
here that V is represented by means of a relational
database, and queries to the DBox can be done in
SQL.

3 Coupling
Coupling the terminology T with the data base V
corresponds to associating so me terms (concepts and

1 D for data.

2

roles) of T with tables or views in the DB . The cou­
pling of T with V is performed in two steps. First,
a partial mapping PM between primitively defined
terms and the tables in the DB must be given. Giv­
ing a mapping of a primitively defined term into a
DB-table corresponds to giving its extension in the
DB . Let the terms for which PM is defined be called
V-terms . Then, using PM, also non-primitively de­
fined concepts can be recursively mapped into views
of the DB. H the (expanded) definition of a non­
primitively defined concept contains both V-terms
and non-V-terms, the view in which the concept is
mapped does not contain all the instances of the con­
cept. Therefore, non-primitively defined concepts
with (expanded) definition containing both V-terms
and non-V-terms cannot be completely managed in
our system. Thus, the following constraints must be
imposed on Kß:

1. Every table in V must correspond to one
primitively defined term in T, called V-term;
V-terms cannot be used in the (expanded) def­
inition of any primitively defined term in T

2. The (expanded) definitions of non-primitively
defined concepts of T must contain only
V-terms or no V-term at all.

The aim of the constraint 1 is to avoid any need
of consistency checking in case of confiicts between
defining and defined concepts. H, to ensure the
avoidance of such confiiCts, an exhaustive checking
- that could involve also the extensional analysis of
DBox-tables - were provided, this constraint could
be released.

As mentioned, all the information needed to cor­
rectly drive the query mechanism is the association
of V-terms with the corresponding tables in the DB.
Thus, defined the partial mapping:

PM: PT ~ DBtable

where PT is the set of primitive terms in T, and
DBtable is the set of tables in the DB, the views
corresponding to non-primitive concepts can be built
via a recursive partial mapping:

RM : T ~ DBtable U DBview

where D Bview is the (virtual) set of views in the
DB. RM maps DL-expressions into corresponding
SQL-expressions.

In the following, to simplify the description, it is
assumed that concepts are mapped into unary ta­
bles with one column called 1ft, and roles into bi­
nary tables with two columns called 1ft and rgt .
As an example, assurne that non-primitively defined
concepts that contain V-terms in their (expanded)
definition are constrained to use the sub-Ianguage
with the only AND and SOME operators; in this case
RM can be defined as follows: 2

2Note that R stands for a role name, i.e., for an atomic
role in T, while C and D stand for concept names or
expressions. In general, the TYPEWRITER font will be used
for atomic terms .

RM(AND CD)) =
SELECT DISTINCT
FROH
WHERE

1ft
RM(C), RM(D)
RM(C).lft =RM(D).lft

if both RM(C) and RM(D) are defined;

RM((SOHE R D)) =
SELECT DISTINCT 1ft
FROH RM(R)
WHERE RM(R).rgt IN RM(D)

if both RM(R) and RM(D) are defined;

RM(T) = PM(T)
if PM (T) is defined;

and

RM(T) = SELECT DISTINCT *
FROH Tl
UNION

SELECT DISTINCT *
FROH Tn

if M(T) = {Tl" .. ,Tn }, and n > O.

Note that the last part of the above definition (see
below for the definition of M) allows to take into
account also all the tables and views corresponding
to terms subsumed by T, whatever T iso

Of course RM could be extended to more general
concepts, but in some cases the mapping would have
to be carefully handled, due to the different sem an­
tics of DL and DB (see, e.g., the ALL and the NOT
operators) .

Note that, due to limitations of SQL in using sub­
queries, the SELECT used in the definition of RM
are non exactly legal, due to the recursive applica­
tion of RM. This problem can be easily overcome
if a CREATE VIEW corresponds to each application of
RM, and the names of the corresponding views are
placed in lieu of the recursive applications of RM. 3

The function:
M : T -+ 2DBtableuDBview

used in the definition of RM returns the (possibly
empty) set of tables/views necessary to retrieve all
the instances (pairs) of a given concept (role) from
the DB, that is:

M(T) = {RM(x) I x E subs(T) /\ RM(x) is defined}

where subs(T) is the set of the terms classified under
T in T. Observe that RM and Mare built starting
from PM; this justifies the use of the only PM in
the definition of KB given in section 2.

4 Query Answering
A query to KB is an expression:

..\x,(PI /\ ... /\ Pn)

30f course, this requires a pre-compilation step of the
DB with respect to the KB, hut this is not areal overload
of the presented query mechanism .

3

w here P l , ... , P n are predicates of the form C (x) or
R(x, y) , where C and Rare concepts and roles in T,
respectively, and each of x and y appears in the tu~
pie of variables x :::: (Xl, ... , x m) or is an individual
constant in WuV. Answering a query in KB means
finding a set {x 1 , . . . , X m} of tuples of instances such
that, for each tuple Xi, ..\x,(PI /\ ... /\ Pn)[x i] holds
- either explicitly or implicitly - in KB. Let such
tuples be called answers to the query and the set of
all of them the answer set.

From the definition of answer to a query, it is obvi­
ous that, to avoid the generation of huge ans wer sets,
free variables must not be used, that is, each vari­
able appearing in x must appear also in the query
body. Indeed, even stronger restrictions are adopted
(see [Bresciani, 1994]).

To be answered, a query must be split into sub­
queries that can be answered by the two special­
ized query answering functions of the DLMS and
the DBMS. To this end, a marking of all the possi­
ble atomic predicates, corresponding to the terms in
T, is needed; a term P is said to be:

- KB-marked iff RM(P) is undefined;

- Mixed-marked otherwise.

These two markings reflect the fact that the in­
stances (pairs) of P are all in W, or part in Wand
part in V, respectively. The case of queries in which
the predicates are all KB-marked terms is trivial (it
is enough to submit it to the DLMS answering func­
tion) . The case of queries with also Mixed-marked
predicates is more difficult.

Let a generic query be written as:

..\x.(p{B /\ . .. /\ p!,B /\ P l
M /\ . . . /\ P:)

where the p{ B correspond to the KB-marked terms,
and the pr to the Mixed-marked terms. The query
can be split in the two sub-queries:

qKB :::: XXKB.(p{B /\ ... /\ p!,B),

qM = XXM.(PIM /\ ... /\ P:).

Because each predicate in qM corresponds to a
view in the DB - where the answers have to be
searched in addition to those in the ABox - a trans­
lation of them into equivalent SQL queries can be
provided. Of course, the views can easily be found
via the recursive mapping RM. For each of the Pi

M

in qM the translation into an equivalent view is sim­
ply given by RM(Pi

M). Thus, the SQL query corre­
sponding to qf1 = ..\'fJ.Pi

M - where 'fJ is the sub-tuple
of x containing tbe only one or two variables used in
Pi

M - is:
SELECT DISTINCT
FROH
WHERE

select-body
RM(pr)
where-body

where the select-body contains RM(PiM).lft,
RM(piM).rgt, or both, according to the fact that
Pi

M is of the kind C(x) or R(x, a), R(a, y), or R(x, y),
respectively - with x and y variables, and a con­
stant. The WHERE clause is present only in the case
of pr :::: R(x, a) or Pi

M = R(a, y); in this case the
where-body is RM(R).lft :::: a or RM(R).rgt = a,
respecti vely.

In this way n partial answer sets (one for each
Pi

M) are obtained. Of course, the queries have to be
submitted also to the DLMS, in case there are also
W-individuals satisfying them.

Now, it is, ideally, enough to get the intersection of
alJ the partial ans wer sets obtained by processing the
sub-queries of qM and qK B, but, due to the scope of
the variables of the queries, this cannot be performed
in a direct way: a merging of the results is needed.
In fact, in each sub-query some of the variables in
x may be unbound - that is, the proper tu pie of
variables y of the sub-query may be a sub-tu pie of
x. Therefore, the corresponding answer set has to
be completed, that is, each unbound variable in x
must be made to correspond to each instance in Kß,
for all the found answers, considering all the possible
combinations. However, in this way huge answer sets
would be generated.

To solve this problem a compact representation
for the answer sets is needed. If ASi! is a generic
partial answer set of a sub-query, and the variables
of the original complete variable tuple x missing in y
are xPI , ... ,xpk , the completion of ASi! can be rep­
resented in a compact way as AS:;; = {T* I T E ASi!} ,
where each T* is equal to T except that it is length­
ened by filling the k missing positions PI , . .. ,Pk with
any marker, e.g., a star '*', that stands for any indi­
vidual in Kß. Using this representation it is possible
to formulate an algorithm to efficiently cope with the
merging of answers sets, as described in [Bresciani,
1994].

5 Conclusions
Our approach to deal with the task of integrating
DLMS and DBMS, so that KB and DB can be uni­
formly queried from a DLMS, has been presented.
With our technique, a third component - a DBox, al­
lowing spreading extensional data among the ABox
and databases - can be added to the tradition al
TBox/ ABox architecture of DLMS. By means of the
DBox it is possible to couple the DLMS with sev­
eral, possibly distributed and heterogeneous, DBMS,
and to use all the systems for uniformly answering
queries to knowledge bases realized with this ex­
tended paradigm.

In our first implementation of the system4 the
DLMS is LOOM [MacGregor, 1991], and the
database query language is SQL, but also other sys­
tems could be easily used.

At present our tool is used in a natural language
dialogue system prototype [Bresciani, 1992], whose
domain and linguistic knowledge is represented in a
LOOM KB and, for some large amount of raw data,
in an INGRES DB. Currently, our system support
a more expressive query language than the one pre­
viously presented: existentially quantified conjunc­
tions of atomic formulre can also be used. The study .

4lndeed, the answering algorithm has been imple­
mented in a' more sophisticated way than the one pre­
sented in section 4, inc1uding also optimizations for re­
ducing the number of accesses to the DB (see (Bresciani,
1994]), The pre-compilation part of the method shown
in section 3 - that allows dealing with non primitive con­
cepts - is presently not yet fully implemented.

4

of the use of even more complex query-Ianguages is
part of our future plans ,

References
[Borgida and Brachman, 1993] Alex Borgida and

Ronald J . Brachman. Loading data into descrip­
ti on reasoners. In Proceeding of ACM SIGMOD
'93, 1993.

[Bresciani, 1992] Paolo Bresciani. Use of 100m for
domain representation in a natural language di­
alogue system. Technical Report 9203-01, IRST,
Povo TN, March 1992. presented at LOOM Users
Workshop, Los Angeles, March 23-24, 1992.

[Bresciani, 1994] Paolo Bresciani. Uniformly query­
ing knowledgebases and data bases. In F. Baader,
M. Buchheit, M. A. Jeusfeld, and W. Nutt, ed­
itors, Working Notes of the Kl'94 Workshop:
KRDB'94, number D-94-11 in DFKI Documents,
pages 58-62, Saarbrücken, Germany, September
1994.

[Buchheit et al., 1994] Martin
Buchheit, Manfred A. Jeusfeld, Werner Nutt, and
Martin Staudt. Subsumption between queries to
object-oriented databases. Information Systems ,
19(1):33-54, 1994.

[Devanbu, 1993J Premkumar T. Devanbu . Trans­
lating description logics to information server
queries. In Praceedings of Second Conference on
Information and Knowledge Management (CIKM
'93), 1993.

[MacGregor, 1991J R. MacGregor. Inside the
LOOM description classifier. SIGART Bulletin,
2(3):88-92, 1991.

[McKay et al., 1990] Don P. McKay, Tim W. Finin,
and Anthony 0 'Hare. The intelligent database
interface. In Prac. of AAAI-90, pages 677-684,
Boston, MA, 1990.

[Nebel, 1990] B. Nebel. Reasoning and Revision in
Hybrid Representation Systems , volume 422 of
Lecture Notes in Artificial Intelligence. Springer­
Verlag, Berlin, Heidelberg, New York, 1990.

[Pastor et al., 1992] Jon A. Pastor, Donald P.
McKay, and Timothy W. Finin . View-concepts :
Knowledge-based access to databases. In Pro­
ceedings of Second Conference on Information and
Knowledge Management (CIKM '93), Baltimore,
1992.

[Tou et al., 1982] F. Tou, M. Williams, R. Fikes,
A. Henderson" and T. Malone. Rabbit: An in­
telligent database assistant. In Prac. AAAI'82,
1982.

Using a Knowledge Representation Language to capture both
Knowledge and Routine Data

Anne E. James and Richard A. Gatward and Steve Shipley
School of Mathematical and Information Sciences

Coventry University, Priory Street, Coventry
Tel. 0203 838991, Fax: 0203 221608

E-mail: csx118@uk.ac.coventry

Database systems typically have a simple struc­
ture designed to facilitate the management of large
amounts of abstracted, structured data with a high
degree of uniformity. Knowledge representation lan­
guages on the other hand typically embody much
greater richness with the aim of refiecting informa­
tion that is not quite as abstracted or structured
and which has a far lesser degree of uniformity. We
contend that although the simplicity of structure of
current database systems is useful for coping with
many routine tasks, systems of the future should
be able to combine the management and processing
of routine data with the refiection and utilisation
of knowledge. This should result in more sophist i­
cated systems that are more user-supportive and less
prone to human error. We are currently involved
in a project which aims to combine knowledge and
databasetechniques for modelling engineering appli­
cations.

The approach we are taking involves the use of a
knowledge representation langua&e, CPL (Concep­
tual prototyping Language, see [ID to capture both
knowledge and routine data. CPL is based on lin­
guistic theory (Functional Grammar, FG, see [3])
and uses the semantic basis of predicate calculus.
The motivation behind the development of CPL was
to produce a knowledge-based modelling language
that had the power to express any kind of knowledge
that one might want to incorporate into a system.
In particular CPL includes the implementations of
logics to allow for the specification of vague knowl­
edge, knowledge about events and obligations and
knowledge about temporal aspects [2].

One of the key ideas of FG used in the develop­
ment of CPL is that of the semantic function. This
. s used in the context of CPL to specify roles defined
)y the use of certain verbs (calIed relations in CPL)
n the application domain. Capel and Wistra [1]
~ive a list of semantic functions used in their inter­
)retation of the language. 'I:hese include both those
iefined in the theoretical specification of Functional
}rammar, along with those that they have added for
;he purpose of the modelling language. The kind of
;emantic function that can be applied to a particular
;Iot in the predicate depends upon the nature of the
;Iot. Predicates that have been extended with satel­
ites [3] can have a different set of semantic functions
Lpplied to the satellite position from those that can
>e applied to a basic predicate. In the theory of

5

functional grammar the parts of the expression rep­
resented by satellites roughly corresponds to preposi­
tional clauses and similar appendages that are added
to the basic utterance to give additional information
about a stae of affairs to that which is required as a
minimum by the use of the main verb in the expres­
sion. CPL has some special relations such as 'is-a'
and 'has' where the semantic functions are prede­
fined. In other cases the user will select appropriate
semantic functions for a relation.

CPL is very rich and mirrors natural language
structure. Since we can express most information
in natural language it follows that CPL, as a for­
malised version thereof, can be used to express most
knowledge. There is a problem however, in that
operational information that typically needs to be
recorded is more conveniently recorded using sim­
pler frameworks . Therefore we propose to use CPL
as defined for knowledge representation and an ex­
tension thereof for handling routine , uniform data
sets.

The proposed extension to CPL introduces an ex­
plicit meta-level for defining routine data according
to the object-oriented paradigm. A new statement
type METAFACTU AL will allow for the definition of
uniform data sets. This statement type will be used
to define object classes, their operations and object
cJass sub-type and containment hierarchies. Spe­
cial relations with predefined semantics such as 'is­
ob ject-class', 'is-operation' , 'has-operations', 'has­
objects', 'is-sub-type' and 'is-instance' will be in­
troduced for this purpose. An implementation of
extended CPL would then need to include the op­
erational semantics of the object-oriented approach
as weil as that of functional grammar and predicate
calculus .

The above gi~es an overview of the type of
approach we are taking to integrating knowledge
and database techniques. We feel the approach is
novel in that most other work we have seen adds
knowledge constructs to database model formalisms
wheras we have taking the opposite approach of
extending a knowledge representation formalism to
capture data model concepts. The work is at an
early stage and planned future work will involve fur­
ther prototyping of the ideas, defining the necessary
CPL extensions more rigourously, examing the un­
derlying semantics of a combined formalism and de­
veloping suitable user interfaces.

References
[1] Capel C. and Wistra D. LIKE, MSc Thesis, V U

Amsterdam, 1987.

[2) Dignum F. and Van de Riet R. P. Knowl­
edge Base Modelling Based on Linguistics and
founded in Logic. Data and Knowledge Engi­
neering, 7, pp 1-34, 1991.

[3] Dik s. C. Functional Grammar, North Holland,
1980.

6

Is an object layer on a relational database
more attractive than an object database ?

Franck Lebastard
CERMICSjINRIA - BP 93

F-06902 Sophia-Antipolis Cedex, France
Voice +33 93 65 77 42

E-mail: Franck.Lebastard@sophia.inria.fr

1 Introduction

As researchers in Artificial Intelligence, our first aim
was to allow our expert system shell SMECI [Sme90]
the access to relational databases during reasoning.
We also needed to save in a database complex ob­
jects that seemed interesting for further utilization,
in particular the knowledge bases and the results of
reasoning.

To this end, we have defined generic correspon­
den ces [Leb93) between relational concepts and some
of the object concepts that are common to most ob­
ject models . These correspondences allow to trans­
late relational data into complex objects and con­
versely. They generalize the mapping proposals
that we found in the literature [Lee90j WBL+91j
KJA93].

An implementation of these definitions has been
realized. This is the DRIVER system [Leb92] whose
specificity is to define an object oriented DBMS
(OODBMS) on a relational DBMS (RDBMS).

In DRIVER, a correspondence scheme must de­
scribe how to use a particular relational database
that is, the object representation and the relational
representation to bring together and the concrete
mapping between them. It can be given by the user
or automatically generated . The database is then
available as an object oriented database.

DRIVER can be used with many object models.
The system performs all operations on the objects
through a functional interface that must be instan­
ciated for the chosen model. In particular, it creates
objects in memory and reads and writes their slots
through this interface. This way to handle objects
ensures that persistency is a property effectively or­
thogonal to the model. Of course, only selected
object concepts can become persistent. The other
properties are simply ignored.

DRIVER is operational and is used by several in­
dustrial partners.

2 Gur generic correspondences

Let us see now the generic correspondences we have
defined. They make possible to manage relational
data in the form of complex objects and to express
objects as relational data.

7

2.1 Classes and relational tables

We have associated the concept of relational table
with the concept of dass. More precisely, we have
associated tables with dass hierarchies because we
enforce all subdasses of a dass to be mapped on the
same table. The most general dass mapped to a
table is called a main dass. Its associated table is
its main table.

We also allow to associate more than one table to
a dass. The extra tables are called the secondary ta­
bles of the dass. The main table and the secondary
tables are the elementary tables of the dass. They
must imperatively be linked all together with joins
which are also called elementary, that means in our
definition that each one binds one tuple of a table
with one tuple of another. The elementary tables
of a dass are utilized to map its fields. In a hier­
archy, any dass may use one or several additional
elementary tables to store specific data.

The figure 1 shows a possible mapping for the
Employee dass. emp is its main table and person
is a secondary table, both are its elementary tables .

, mp er$on
cmpno enOlJllC (name 111 r dcrtJ1 lonamc rname ssnum t:ä(

7566 junClC crk 7N3 20 jnncs crk B7C I23 Ins
nRX ~U~ ril 7566 20 :c ... 'ltl pil A43SC 11J2K

~, ~L:/~ I'--
-::::,...

Figure 1: The elementary tables of the Employee
dass

We can notice that there is always a path, a join
chain linking any elementary table to the main table.

2.2 Objects and tuples

As we have brought together both notions of rela­
tional table and dass we also associate the concept
of relational tu pie with the concept of object. Both
are data, occurrences of their own structures. In
DRIVER, the correspondence of an object is a set of
tupies, one for each elementary table of the dass the
object is instance of. We have chosen to compose
its unique reference, its "oid" using the name of its
dass main table and its tuple key in this table. This
way, every tu pie in the main table is candidate to
be the correspondence of an object of the associated

main dass.

The object candidate is an object when :

• all the elementary tables of the main dass con­
tain a tuple for it. These tuples are found by
joining the main table.

• its value is compatible with the constraints that
any instance of this dass must check.

These constraints can be set on the atomic fields of
the dass or on the attributes of the associated ele­
mentary tables. They define a kind of filter that tells
which tuples correspond to objects. Those which are
not selected are simply ignored and everything works
at the object level as if they don't exist . The poten­
tial objects that corresponds to the selected tuples
are calJes the relational objects.

In figure 1, both tuples "jones" and "scott" of
the emp table are object candidates for the dass
Employee . Since the attribute emp. empno is the
key of the table emp, their "oids" are for example
emp/7566 and emp/7788. Let us assurne that a con­
straint "ernp. empno > 7000" is enforced to any tu­
pie of emp to be considered as a relational object of
the dass Employee. Since our both tuples comply
this constraint and since it exists for each of them in
the table person a tu pie found back by the elemen­
tary join, they are considered as Employee relational
objects, liable to be filtered by an object request in­
volving Employees.

When an elementary table set is associated with a
dass hierarchy and when a main table tu pie has been
selected as an object of the associated main dass,
one infers the precise dass it is instance of from its
implementation in the elementary tables and from
the constraints defined for each dass it complies or
not . Indeed, a dass is different from its superclass,
over and above its possible own fields that complete
those it inherits from the superdass :

• by the possible use of new elementary tables
in its correspondence. H the object is at least
instance of this dass, there must be a tuple for
it in each of the elementary tables of the dass.

• by stronger constraints enforced on its in­
stances. These constraints must also define an
object set that is disjoint from the sets defined
by the other subclasses of the same superdass.
Since the constraint sets are organized in a tree,
to be instance of a dass depends on their satis­
faction along the considered hierarchy.

While a filtering in the database, DRIVER auto­
matically classifies the chosen relational objects and
gives them the most precise class depending on their
values and implementation in the base.

Before ending the description of our correspon­
den ces at the class and object level, let us point out
that the term "table" we have used up to here actu­
ally represents more a logical table than the "table
as a structure in the database". In other words, in
DRIVER, for our correspondences, we can define as

8

many logical tables as we need on a same user table
of the base. These logical tables allow us for example
to map an object in different tuples of the same user
table. They also alJow to map independent dass hi­
erarchies on logically different main tables that actu­
ally represent the same user table in the base. There
are indeed applications where one wants to supply
independent dasses with persistency in a unique ta­
ble.

fiie -

tnUfl QfunuB-t f!lU~ 11 .fy~i 1; .fval~
824 7566 ' employee
825 7566 I I i jones
826 7566 2 ; , eric
827 7566 3 i 78391
828 7566 4 i 20 1

I ; ... i ...
841 7788 I

842 7788 1 I
843 7788 2 i
844 7788 3 1 75661
844 7788 4 20'

employee 1
scott
pit

-,

Figure 2: The file table

For example, let us consider the table file pre­
sented figure 2. In DRIVER, we can associate our

·dass Employee with this table file as easily as we
did with emp et person. To have access to the dif­
ferent tuples that make up the relational object, one
only has to define elementary joins between for ex­
ample mainfile (file), the main table of Employee,
and filel(file), file2(file), etc, defined as sec­
ondary tables . Here is an example of an elementary
join that allows to have access to the names of the
Employees :

mainfile.objnum=filel.objnum
and filel. fnum=l

We must also set a constraint that precises which
tuples of mainf ile correspond to objects . In our
example, this constraint can be :

mainfile . fnum is null
and mainfile.fva12='employee'

With this correspondence of the dass Employee,
the "oids" of our two relational objects j ones
and scott are this time mainfile/824 and
mainfile/841.

This way to st«re all the objects in a unique table
is not so odd since it is effectively used, for example
in the OODBMS MATISSE [Int92] .

2.3 Relational correspondences of the
field types

Correspondence of the atomic types
We have associated atomic type fields with at­
tributes. This way, any attribute of a class elemen­
tary table can be used as the correspondence of any
of the atomic fields of this class and vice versa.

H we consider our association Employee - (emp.
person) again, and if the dass has an atomic

field social-securi ty-number, its mapping can be
person. ssnum.

Correspondence of the object type
An object field represents an oriented link from an
object to another. We associate this link between
classes with a relational link, more precisely with a
join between one of the elementary tables of the first
class and the main table of the second dass . This
join that we call an object join must be an equi­
join that compares elementary attributes of the first
-attributes called referential attributes- and the
attributes composing the key of the second .

This restriction allows to know the value of an
object field just by knowing the values of the cor­
responding referential attributes. An object field is
empty if any of the referential attributes is contain­
ing a NULL.

emp aept
empno ename Iname mgr depln ... dePlnU dname loc
75M jone.'i elie 7839 2f) ... 2f) re.~rch Boston
7788 seotl pi! 7566 20 ... V) sales hicagc

7521 ward peter 7698 30 ... ,

Figure 3: The mapping of the field dpt

Let us consider an object field dpt of the dass
Employee. It makes each Employee referring the
Department it belongs to. This field can be mapped
on the join shown figure 3 that links emp to the main
table of the dass Department. Then the referential
attribute associated with the field is emp. deptn.

We can point out that this object field correspon­
dence offers a way to modelize more or less strong
links between objects : if any referential attribute is
constrained by a dause unique, not null or both, the
possible values for the corresponding object field are
restricted. The stronger link is set when the refer­
ential attributes are also the key of their table. In
that case :

• they must be valued : the associated object field
cannot be empty.

• once the containing object or the contained ob­
ject is persistent, its key value is fixed. As the
key value of the other is settled at the same
time (because of the join), and both objects are
linked together for their life (!).

Correspondence of the set type
The correspondence of this field type is a set join. A
set join is an equijoin between one of the elementary
tables of the dass the field belongs to and a set table.
For a given object, the set table contains as many
tuples as there are members in its set field value.

When the set is an atom set, the set join is com­
pie ted with an attribute (ofthe set table) which con­
tains the set members in the base .

When the set is an object set, the set join is gener­
ally completed with another join, this time between

9

the set table and the main table of the referenced
objects dass . This second join must be an an equi­
join that compares referential attributes and the key
attributes of the joined main table.

'fable emproJ Table proJect
proJno empno proJno pname budget

101 7566 101 alpha 25UOOO.
103 7566 102 beta 175000.
101 7788 103 gamma 95000.

.

Figure 4: Tables emproj and project

For example, let us consider the table empro j
shown figure 4. It is the representation in the
base of the participation of every Employees to
some Projects. If our dass Employee owns
a field projects (object set type), its map­
ping can be the join sequence (J[emp, emproj]
J[emproj, proj ect]) where the join expressions
are respectively emp. empno=emproj . empno and
emproj .projno=project.projno. In this example,
the set table is of course the table emproj.

We also make possible to define the correspon­
dence of an object set field in the form of a unique
join between an elementary table of the dass it owns
to and the main table of the referenced objects dass.
In that case, the set table and the joined main table
may be the same table. It happens when the join
represents a N:l relation. Then adding or removing
members (objects) in a set finds expression in the
database in updating the corresponding main tuples
whereas it usually causes insertions or deletions of
tuples in the set table.

An example of such a correspondence can be
proposed for the field employees of the dass
Department . Indeed we can associate it with the
join shown figure 3. Then, the new assignment
of an Employee to a Department causes an up­
date of the object tuple in the table emp : in this
database, an Employee cannot wor!< for more than
one Department.

Correspondence of the list type
The correspondence of this type is quite similar to
the one of the set type. It is made up by one or
several attributes of the set table which values allow
to arrange the list members and to differenciate the
tuples corresponding to doubles. The first attribute
defines the primary order, the second the secondary
order, etc. For each of them, the sorting out can be
in an ascending order or in a descending order.

We show an example of list correspondence with
the empro j 2 table of figure 5. Here the arrange­
ment of members is determined by theattribute
empro j 2. order.

In the case of the object list, doubles are allowed
only if the set table is not the main table of the
referred objects and if the order attributes are not
chosen in their elementary tables.

Table emproj2
proJno empno order

101 7566 237
103 7566 121
101 7788 310

'" .. , ., .

Figure 5: The emproj2 table

3 Benefits of the DRIVER approach
Let us now present the benefits of the DRIVER ap­
proach.

Firstly, the user chooses the object model to be
handled . Thus, the accessed databases are directly
viewed in his own object model, even if it is really a
very own ad hoc model. More, he can easily supply
volatile objects with persistency, at his convenience.
Here, the OODBMS (i.e. DRIVER) doesn't impose
which object model the application must work with.
Thereby the OODBMS is not the main piece of the
system any more. The DBMS is just a partner that
simply offers a service to the application. Indeed
that should be the only role of a persistency service
for many applications.

Secondly, DRIVER gives an object access to very
big amounts of data since the relational model is
by now the most used DBMS standard. All rela­
tional databases are immediately available as ob­
ject databases and conversely, all object databases
built with DRIVER are of course immediately avail­
able and accessible to the numerous RDBMS users.

Industry has invested a lot in relation al databases
owing to the maturity of this technology. A lot of
people aspire now to pass on to the object technol­
ogy without giving up existing applications soon.
To propose an OODBMS on top of a RDBMS lives
up to this expectation. This solution does not up­
set the usual RDBMS users and allows the new users
who need the object technology to access the same
databases in the suitable form. Generally speak­
ing, the DRIVER philosophy is a good solution to
share data with many users. Data are expressed
in a relational form -the simplest- in the database
but they are used by everyone in another model, his
own model with his own representation, an optimal
choice of c1asses, relevant to his application.

Lastly, we believe that it is necessary to com­
pletely separate the object level, i.e. the knowl­
edge representation level, from the physical level,
i.e. the file manager level, to be able to make easily
evolve the persistent object model. This separation
is not complete in "c1assical" OODBMS. DRIVER uses
RDBMS as intelligent file managers and proposes ob­
ject models on top of them. Here the level separa­
tion is actual and the models should easily evolve
with time . .

References
[KJA93] A.M. Keller, R. Jensen, and S. Agar-

wal. Persistence software: Bridg-

10

ing object-oriented programming and rela­
tional databases. In Proceedings 0/ Interna­
tional Con/erence on Management 0/ Data.
ACM SIGACT-SIGMOD, May 1993.

[Leb92] F. Lebastard. DRIVER v1.34, Reference
manual. Technical Report 92-7 (in french),
CERMICS-INRIA, Sophia-Antipolis
(France), October 1992. 119 pages.

[Leb93] F. Lebastard. DRIVER: A persis-
tent virtual object layer /or reasoning
on relational databases. Ph.D.Thesis
(in french), CERMICS-INRIA Sophia­
Antipolis (France), March 1993. 380 pages.

[Lee90] B.S. Lee. Ejficiency in Instanciating Ob­
jects /rom Relational Databases through
views. PhD thesis, Stanford University,
Stanford (California), 1990. STAN-CS-90-
1346.

[Int92] Intellitic International. MATISSE: Open
semantic database product
overview. Technical report, Saint-Quentin­
en-Yvelines (France), 1992. 16 pages.

[Sme90] Bog, Gentilly (France). SMECI Ver-
sion 1.65, Re/erence manual, May 1990.
470 pages.

[WBL+91] G. Wiederhold, T . Barsalou, B.S. Lee,
N. Siambela, and W. Sujansky. Use of re­
lational storage and a semantic model to
generate objects : the PENGUIN project.
In Database'91 : Merging policy, standards
and technology. The armed forces communi­
cations and electronics association, Fairfax
(VA), June 1991.

Terminological Reasoning by Query Evaluation:
A Formal Mapping of a Terminological Logic

to an Object Data Model*

U. Reimer and P. Lippuner M. Norrie and M. Rys
Swiss Life Swiss Federal Institute of Technology (ETH)

Information Systems Research Group Dept. of Computer Science
CH-8022 Zürich Switzerland CH-8092 Zürich, Switzerland

(name)@swssai.uu.ch (name)@inf.ethz.ch

Abstract

The paper starts by giving concise intro­
ductions into the terminologicallogic FRM
and the object data model COCOON. It
then briefly outlines a semantic-preserving
mappirig from FRM dass descriptions to
COCOON types and dasses and shows how
the terminological inference of dassifica­
tion is mapped to a set of equivalent CO­
COON queries. Since these queries can
(mostly) be submitted as a whole to the un­
derlying database system we can take fuH
advantage of aB the results on query op­
timisation, on providing efficient physical
access structures, as weB as on parallel isa­
tion that are available in the database area
to make terminological inferences more ef­
ficient. This will play a crucial role in re­
alising knowledge base systems capable of
dealing with very large knowledge bases.

1 Introduction
The fields of knowledge representation
and databases are converging: The former is more
and more concerned with efficiency for supporting
large knowledge bases, while the latter is increas­
ingly interested in providing higher representation
constructs that better serve the construction of a do­
main model. Consequently, it seems to be a fruitful
endeavour to combine the approaches of both areas.
Our approach to combining the strengths of knowl­
edge representation and database approaches takes
advantage of the conceptual similarity of termino­
logical logits and object data models. We realise a
knowledge base system by mapping a terminological
logic to an object data model which has an efficient
implementation on top of a relation al storage system
[NRL+94]. To ensure that the potential for optimi­
sation provided by the database system will really be
available for the terminological system, the mapping
from terminological structures to object structures
preserves as much of the semantics of the termino­
logical logic as possible.

·The work reported he re was supported by the Swiss
Priority Programme for Computer Science (Schwerpunk­
tprogramm Informatik) under grant No. 5003-034347.

11

There are a few former approaches to mapping
terminologicallogics (or frame models) to data mod­
els. In the mappings to the relational data model
described in [HMM87] and [SB89], one frame struc­
ture corresponds to several database structures. As
a consequence, there is little correspondence between
the representation structures the database system
manages and the original frame structures. There­
fore, the database system is deprived of most of its
optimisation capabilities.

Another former approach to mappin~ a frame
model to a data model is described in lRS89] . It
preserves the frame structure as a complex object
structure in the nested relational model to which
it is mapped. The major drawback with that ap­
proach results from the lack of type polymorphism
in the nested relational model because this makes it
difficult to host the concept hierarchy of the frame
model.

Some of the existing data models that support
complex objects provide constructs that are similar
to constructs of a terminological logic (e.g. [KL89;
BGL+91]). Their main difference is that they do not
provide terminological reasoning services (besides in­
heritance), although offering deductive question an­
swering.

Sections 2 and 3 introduce the basic concepts of
the terminological logic FRM and the object data
model COCOON used in our approach. Section 4
describes the mapping of the terminological infer­
ence of dassification to COCOON queries and illus­
trates the mapping of dass descriptions of FRM to
type and dass constructs of COCOON. Section 5
condudes the paper.

2 Basic Constructs of the
Terminological Logic FRM

The syntactic constructs and the model-theoretic se­
mantics of FRM [RL95j Rei85] are given in Figure l.
We distinguish two kinds of relations, namely prop­
erties and semantic relationships. A property de­
notes a relation between individuals and string or
integer values (see the constructs all-p and exist-v).
A semantic relationship denotes a relation between
individuals (see the constructs all-r, exist-c and
exist-i) .

Unlike other terminological logics, FRM only al-

Syrltactic form
a==t
a:=;t

€[aJ = €[t
e[a] ~ e[t]

n n e[Ci]
;=1

(and CI . .. Cn)

(all-p pop 1'1 ... r n) {x E D I 3y : (x, y) E e[prOp] 1\

(all-r rel CI .. . Cn)

Vy: ((x,y) E e[prop] =::} y E (eh] u ... U e[rn]))}

{x E D 13y: (x,y) E e[rel] 1\

(exist-v pop v)
(exist-c rel c)
(exist-i rel i)
(at-least rp n)
(at-most rp n)
thing

Vy : ((x,y) E e[rel] =::} y E (e[cd U ... Ue[cn]))}

{x E D 1 (x, v) E e[prOp]}
{x E D I 3y E e[C] : (x, y) E c[rel]}
{x E D 1 (x,c[iJ) E c[rel]}
{x E D 111{y E D: (x,y) E e[rp]} 11 ~ n}
{x E D 111{y E D : (x, y) E e[rp]}11 :=; n}
D

Figure 1: Syntax and Semantics of FRM

lows dass descriptions that refer to other dasses
by their name and not by induding their structure.
This restriction does not have any effect on the ex­
pressiveness. It only requires that every concept
dass being used must independently be introduced
and assigned a name. However, FRM provides an
extended syntax for dass descriptions that may oc­
cur as queries to a knowledge base (see [RLN+95)).

Terminological logics have evolved from frames
and semantic networks. One difference is that termi­
nological logics offer a greater fiexibility for formu­
lating dass descriptions. This syntactic fiexibility
makes it difficult to define a mapping of a termi­
nological logic to any data model because there is
no fixed concept structure. However, any dass de­
scription formulated in FRM can be interpreted as
a frame structure, i.e., as consisting of slots and slot
entries. Thus, the FRM constructs all-p and all-r
correspond to slots. We call all-p property slots and
all-r relationship slots. The construct exist-c spec­
ifies a concept dass as a slot entry and exist-i an
individual as a slot entry. exist-v sets a value as a
slot entry in a property slol.

Since the syntax of FRM as introduced above al­
lows to introduce a slot entry without (explicitly)
defining a corresponding slot, we must consider the
implications shown in Figure 2 to properly inter­
pret an FRM dass descriptions as a frame with slots
and entries. For example, the first implication given
there states that the introduction of a slot entry (by
the exist-c construct) implicitly introduces a slot
(as expressed by the all-r const;ruct). Thus, the fol­
lowing two dass definitions would be semantically
equivalent:

9 == (exist-c manufactured-by big-company)

h == (and (all-r manufactured-by thing)
(exist-c manufactured-by big-company))

In Section 4 we assurne the existence of a normali­
sation function norm that augments a dass descrip­
ti on with all implied features. For example, with
respect to the dass descriptions 9 and h above we
get the equivalence e[norm(g)] = e[norm(h)] . The
normalisation function covers many further implica­
tions not shown in Figure 2.

12

3 Basic Constructs of the Object
Model COCOON

The constructs of the terminological logic FRM are
mapped to the object data model COCOON and its
associated language COOL [SLR+94] . COCOON
resembles a functional data model in that object
properties are modelIed as single- and multi-valued
functions. However, it also supports the dynamic
grouping of objects into a dass hierarchy based on
predicates over object properties (cf. Fig.3).

The COOL query and update language is based on
an algebra of operations over dasses and can be con­
sidered as an extension of the nested relational alge­
bra [ScS91]. The basic operations are seleet, projeet,
extend (provides object type extension) and the set­
based operations of union, interseetion and differ­
enee (cf. Fig.6). The language also supports type
guards for dynamic type checking.

Update operations may change the properties,
dass memberships and even the structure of
database objects during their lifetime. Since CO­
COON allows objects to be grouped into dasses
based on their properties, objects are automatically
redassified within the dass hierarchy after updates.

4 Mapping The Classification
Inference

Figure 3 gives an example of our mapping of FRM
concept descriptions to COCOON types and dasses.
Due to the limited space, the mapping is not
described in this paper but we provide remarks
where appropria"te (for a detailed des cription see
[RLN+95)). In the following, we give abrief de­
scription of how the dassification inference of FRM
is mapped to appropriate COCOON queries.

Let ~ denote the subsumption relation and let
<J be its transitive reduction. The concept hierar­
chy can then be conceived of as an undirected graph
where the nodes represent all introduced concepts
(C) and the edges represent the relation <J. Thus,
dassifying a concept C means to determine the fol­
Jowing two sets:

L e = {I E C 1I <J c} Ue = {u E C 1 c<J u}

(exist-c r c)
(exist-i r i)

(exist-v p v)
(at-least rp n)
(at-most rp n)

implies
implies
implies
implies
implies

(all-r r thing)
(all-r r thing)
(all-p p *)
(all-r rp thing) if rp is a relation, (all-p rp *) else
(all-r rp thing) if rp is a relation, (all-p rp *) else

Figure 2: Some of the Implications being Considered by a Normalisation Function for Class Descriptions

Sun-Del <: (and (all-p costs [0,100000])
(at-most costs 1)

define type sun-del =
costs : integer,

(all-r receives Company Person)
(at-most receives 1)

receives : objects,
goods : set of objects,
delivers : set of objects; (all-r goods Workstation)

(all-r delivers Company)
(exist-i delivers Sun)) define dass Sun-Del : sun-del where

costs ~ 0 and costs ~ 100000 and
receives ~ (Person n Company) and
deli vers ~ Company and
Sun E deli vers and
goods ~ Workstation;

Figure 3: A Concept Class Introduction (Ieft) and its corresponding type and dass definitions (right)

The elements of L c are called the most general
subconcepts of c, and the elements of Uc the most
specijic superconcepts of c. As the computation of
the two sets L c and Uc is symmetrie we only discuss
the ca se of Lc . It can be computed by traversing
the concept hierarchy bottom-up and determing all
subconcepts of C that have no superconcept which
is a subconcept of c. This traversal can be done
by different variations of the common lt depth-first
search algorithm [BHN+921. Apart from such mod­
ifications, the main algorithm used in existing sys­
tems is always the same: Classification is done by
traversing the concept hierarchy while testing sub­
sumption relations.

In our approach, we compute the set L c com­
pletely differently. Instead of searching the concept
hierarchy for the appropriate position we obtain L c

as the result of two COCOON queries:

1. The first query Ql yields all subconcepts of c:
Lt = {I E C 1I ~ c}

2. The second query Q2 yields the most general
concepts from Lt: Lc = {I E Lt Il <l c}

To formulate Ql we first have a doser look at
the subsumption relation of FRM. There is a well­
defined set of update operations that, when applied
to a concept c, lead to a more specific concept c,
i.e. c ~ c:

I: Concept Level (applicable to any concept):

* Add a new slot to the concept.

II : Slot Level (applicable to any slot of a given con­
cept):

o In 'case of a property slot: Restrict the set
of permitted entries to a subset. In case of a
relationship slot (all-r r Cl ... Cn) : Remov
e one or more of the range dasses Cl, ... , Cn

and/or specialise a range dass.
o Add further slot entries.

13

o In case of a relationship slot and a dass
occurring as an entry (exist-c construct),
specialise this dass, or substitute it by an
instance of it, thus substituting the exist-c
construct with an exist-i construct.

o Restrict the cardinality to a sm aller inter­
val.

We are now able to define the subsumption re­
lation syntactically by referring to the concept de­
scriptions (instead of the usual model-theoretic def­
inition). To this end, we require for Cl ~ C2 to hold
that Cl can be obtained from C2 by applying one
or more of the above operations. The corresponding
definition (in a dedarative fashion) is given in Figure
4. It makes use of the notation introduced in Table
1 and of the predicate inst(i, c) which is true if i is
an instance of the dass c. The completeness of this
subsumption definition very much depends on the
normalisation function discussed in Section 2. iffi­
cult to be handled. Since we are still working on the
normalisation function, our subsumption algorithm
is currently not complete.

Based on the syntactic definition of the subsump­
tion relation it is now straightforward to formulate
the COCOON query Ql that determines Lt for a
given concept description c. It consists of an in­
tersection of mutually independent subqueries that
can be computed concurrently. Each subquery deals
with one of the slots of the concept to be dassined.
The resulting query schema for a slot Si is shown in
Figure 51. As the whole condition (ISA) is mapped

lThe query is formulated using functions defined for
objects in the meta-schema, each object being a descrip­
tion of one objeet dass in the COCOON database. We
do not go into the details of the meta-schema here and
use the function names of Table 1 with a subscript "ms"
so that the correspondence to definition (ISA) can be
seen. The functions supe and sube yield alI superdasses,

CI :::5 C2 <=> 'v'S E slots(c2) : (s E slots(cd 1\ prange(cI,s) <;:; prange(C2,S) 1\ (ISA)
'v'rl E rrange(Cl, S) : 3r2 E rrange((;2, S) : rl :::5 r2 1\

'v'e2 E entrieS-C(C2,S): (3el E entries-c(cI'S): el :::5 e2 V

3el E entries-i(cI, S) : inst(el, e2)) 1\

entries-i (CI, S) "2 entries-i (C2, S) 1\

entries-v(CI, S) "2 entries-v(C2, S) 1\

minCard(cI, S) ~ minCard(C2, S) 1\

maxCard(cI, S) ::; maxCard(C2, S))

Figure 4: Syntactic Definition of the Subsumption Relationship

slots(c)
rrange(c,s)
prange(c,s)
entries-c(c, s)
entries-i (c, s)
entries-v(c, s)
minCard(c, s)
maxCard(c, s)

= {rp I ci; (and ... (all-r rp CI . .. Cn) ...) or ci; (and ... (all-p rp range) . . .)}
= {CI, ... ,Cn I ci; (and ... (all-r s Cl ... Cn) . . .)}

= r , where c i; (and ... (all-p s r) . . .)
= {ce I ci; (and ... (exist-c s ce) ...)}
= {i I ci; (and .,. (exist-i s i) . ..)}
= {v I ci; (and .. , (exist-vsv) .. .)}
= n , where c i; (and .,. (at-least s n) . ..)
= n , where c i; (and .. , (at-most s n) ...)

Table 1: F\mctions for Accessing Parts of a (Normalised) Concept Definition (analogolisly for ==)

to a single query we can take fuH advantage of the
query optimiser in the underlying database system.

Since classification is an inference on the structure
of concept descriptions, this query schema accesses
the meta-schema. As discussed in Section 4, most of
the information about an FRM concept is encoded
in the class predicate of the corresponding object
class. However, the class predicate is just a string­
valued attribute in the meta-schema and can only be
queried as a whole. This means that certain struc­
tures of a concept description cannot be queried di­
rectly. Therefore, we extended the COCOON meta­
schema by an application-specific part where we
store the information about the concept classes in
a well-structured way (in a certain sense, we model
FRM in COCOON) . While the meta-schema exten­
sion has to be administered by the mapping algo­
rithm the "standard" part of the meta-schema is up­
dated automatically by the COCOON system.

Figure 6 shows part of the COCOON query that
returns the set of all subconcepts of 'Sun-Del' (see
Figure 3) in the current knowledge base. This part
completely deals with the slot 'delivers' .

As introduced above, query Q2 of our classification
inference is concerned with extracting the most gen­
eral subconcepts L c from the set of all subconcepts
L:. Assuming that the variable L holds the result
from QI (i.e ., the set L:), query Q2 can be formu­
lated in COCOON as: select[0 = supc(l)nL](1 : L).

5 Conclusions

We proposed to map terminological inferences to
queries of ,an object data model: The resulting,
complex queries can be split into several subqueries
and evaluated independently. Thus, besides making

or subclasses, resp. The function objects(c) returns alI
objects in the dass c.

14

use of more standard database optimisation tech­
niques, like query optimisation and specialised ac­
cess structures, we can also exploit parallelisation.
We expect this implementation of subsumption to be
much more efficient for large knowledge bases than
a standard implementation, while for small knowl­
edge bases the overhead introduced nd the database
system will be greater than the efficiency gained by
the optimisations.

We are currently implementing the mappings de­
scribed in this paper. To provide efficient retrieval
and update services the object model COCOON is
mapped to a relational storage system which makes
use of massive data replication (to minimise retrieval
costs) and paraHelisation of update operations (to
minimise update costs). In a subsequent step, we
will set up experiments to evaluate the efficiency gain
and to pinpoint further possible improvements.

References
[BGL+91] S. Benzschawel, E. Gehlen,

M. Ley, T. Ludwig, A. Maier, B. Wal­
ter: LILOG-DB: Database Support for
Knowledge Based Systems. In: O. Her­
zog, C.-R. Rollinger (eds): Text Under­
standing In LILOG. Berlin: Springer­
Verlag, 1991, pp.501-594.

[BHN+92] F. Baader, B. Hollunder, B. Nebel,
H.-J. Profitiich, E. Franconi: An Em­
pirical Analysis of Optimization Tech­
niques for Termninological Representa­
tion Systems. In: B. Nebel, C. Rich,
W. Swartout (eds): Principles of Knowl­
edge Representation and Reasoning.
Proc. of the Third Int. Conf., 1992,
pp.270-281.

[HMM87] Th. Härder, N. Mattos, B. Mitschang:
Abbildung von Frames auf neuere

select [0 i- select[name(s) = name(s;) and
prangems(s) ~ prangems(sd] (s : slotS(Csub))] (Csub:Concepts) n

select [0 i- select[name(s) = name(s;) and
rrangems(s) = select[0 i- (supc(r) Ur) n rrangems(sd](r : rrangems(s))]

(s : slotS(CSub))](Csub:Concepts) n
select[0 i- select[name(s) = name(s;) and

entries-cms(Si) =
select [0 i- (subc(e) U objects(e) U e) n entries-cms(s)](e : entries-cms(Si))]

(s : slotS(Csub))] (Csub:Concepts) n
select[0 i- select[name(s) = name(s;) and

entries-ims(s) 2 entries-ims(s;)] (s : slotS(Csub))] (csub:Concepts) n
select[0 i- select[name(s) = name(si) and

entries-vms(s) 2 entries-vms(s;)] (s : slotS(Csub))] (Csub:Concepts) n
select[0 i- select[name(s) = name(s;) and

minCardms(s) ~ minCardms(si)] (s : slotS(Csub))] (csub:Concepts) n
select[0 i- select[name(s) = name(si) and

maxCardms(s) :S maxCardms(s;)] (s : slotS(Csub))] (Csub:Concepts)

Figure 5: Query Schema for a Slot Si of a Concept Description C (Used to Determine all Subconcepts of c)

select [0 i- select[name(s) = 'delivers' and
allrms(s) = select[0 i- (supc(r) Ur) n {'Company' }](r: allrms(s))]

(s: slotS(csub))] (Csub:Concepts) n
select [0 i- select[name(s) = 'delivers' and

exists-ims(s) 2 {'Sun'}] (s : slotS(Csub))] (Csub:Concepts) n
select[0 i- select[name(s) = 'delivers' and

maxCardms(s) :S 1] (s : slotS(Csub))](Csub:Concepts) n
select [0 i- select[name(s) = 'receives' and ...

Figure 6: Part of the COCOON Query that Yields all Subconcepts of Concept 'Sun-Del' in Figure 3

Datenmodelle. In: K. Morik (Ed):
GWAI-87. 11th German Workshop on
Artificial Inteliigence. Berlin: Springer,
1987, pp. 396-405.

[KL89] M. Kifer, G. Lausen: F-Logic: A Higher­
Order Language for Reasoning about
Objects, Inheritance, and Scheme. In:
Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, 1989, pp.134-
146.

[NRL+94] M. C. Norrie, U. Reimer, P. Lippuner,
M. Rys, H.-J. Schek: Frames, Objects
and Relations: Three Semantic Lev­
les for Knowledge Base Systems. In:
Proc. Workshop on Reasoning about
Structured Objects: Knowledge Repre­
sentation meets Databases (KRDB-94),
Saarbrücken, Germany, 1994, pp.53-57.

[Rei85] U. Reimer: A Representation Construct
for Roles. In: Data & Knowledge Engi­
neering, Vol.l, No.3, 1985, pp.233-251.

[RL95] U. Reimer, P. Lippuner: Syntax und Se­
mantik von FRM. Working Paper, 1995,
-Information Systems Research Group,
Swiss Life, CH-8022 Zurich.

[RLN+95] U. Reimer, P. Lippuner, M. Norrie,
M. Rys: Terminological Reasoning by
Query Evaluation: A Formal Mapping
of a Terminological Logic to an Object

15

Data Model. Extended Version. Techni­
cal Report, 1995, Information Systems
Research Group, Swiss Life, CH-80n
Zurich.

[RS89] U. Reimer, H.J. Schek: A Frame-Based
Knowledge Representation Model and
its Mapping to Nested Relations. In:
Data & Knowledge Engineering, Vo1.4,
No.4, 1989, pp.321-352 .

[SB89] R. Studer, S. Börner: An Approach
to Manage Large Inheritance Networks
within a DBS Supporting Nested Rela­
tions. In: S. Abiteboul, P.C. Fischer, H.­
J. Schek (Eds): Nested Relations and
Complex Objects in Databases. Berlin:
Springer, 1989, pp. 229-239.

[ScS91] M.H. Scholl, H.-J. Schek: From Rela­
tions' and Nested Relations to Object
Models. In: M.S. Jackson, A.E. Robin­
son (eds): Aspects ofDatabase Systems.
Butterworth-Heinemann, 1991, pp.202-
225 .

[SLR+94] M.H. Scholl, C. Laasch, C. Rich,
H.-J. Schek, M. Tresch: The COCOON
Object Model, Technical Report 211 (re­
vised version), Dept. of Computer Sci­
ence, ETH Zurich, CH-8092 Zurich.

Accessing Configuration-Databases by me ans of
Description Logics

T. Kessel and M. Schlick and O. Stern
ERle - ENSAlS, Strasbourg, France

email: (kessel.schlick.stern)@steinway.u-strasbg.fr

1 Introduction
Description Logics (DL) has become one of the most
interestin~ formalisms in the Knowledge Representa­
tion field lWoods and Schmolze, 1992J. There exists
now a wide range of implemented systems (for exam­
pie C3L, CLASSIC, KRIS, LOOM, BACK), a well
studied theory with respect to expressive power (for
instance the representation of time or uncertainty),
inferential services and enhancements based on other
paradigms (rules, constraints) .

Until now, less attention has been paid to an inte­
gration of Knowledge Representation and Data Base
Management Systems (DBMS) technology. The re­
search in the first area was focused on the interpreta­
tion of the semantic links between data which trans­
form them into knowledge, whereas the latter was
in charge of handling large amount of data. In our
point of view, both fields can be considered as com­
plementary.

The interfacing between DBMS and Knowledge
Representation systems may cover two topics:

1. The interface is exclusively focused on the ex­
change and transformation of data. For in­
stance, information about a mechanical piece
is retrieved from a CAD data base system and
converted into the internal format of the DL
system.

2. The DL system constitues a kind of applica­
ti on layer that is built on top of a DBMS. This
top layer provides a maximum of inferential ser­
vices and expressive power. Furthermore it al­
lows the conception, optimisation or distribu­
tion of queries that are mapped to the underly­
ing DBMS.

We propose to elaborate the second scenario be­
cause it combines the best of both worlds. Thanks
to the embedded DL system, the application layer
may use domain knowledge to optimise queries or to
send it to one of the distributed DBMS, whereas the
DBMS itself handles the storage, retrieval and recov­
ery of data. For instance, our major application will
be the configuration of modular bus systems from
various, available modules for the electronic bus sys­
tem of a vehicle, as described in [Keith et al., 1995J.
This research project requires a semantic integra­
tion of heterogeneous knowledge sources. They de­
note for instance, constraints which specify possible

16

combinations of bus modules, rules which guide the
configuration process by means of heuristics, con­
cepts which describe the functional composition of
electromechanical components within a motor and
individuals that represent variants of the bus mod­
ules. The DL system we would like to employ in this
context is the C3L system [Kessel et al., 1995] wh ich
is implemented within a frame-based structure and
smoothly integrated in an object-oriented program­
ming and development environment.

At the moment we have no experience in the spe­
cific research field of combining DL and DBMS yet ,
although it seems to be very promising with respect
to the above mentioned research project. The in­
ferential services of a DL system, in particular the
classification of concepts and the realization of indi­
viduals, are indispensable to structure such a large
model as the description of a modular bus system
in a ,·ehicle. Open world reasoning seems appropri­
ate to us, because we have to deal with incomplete
knowledge which may evolve continually during the
configuration process. Furthermore, an important
feature of DL is the deduction of implicit information
by means of propagation of recently added knowl­
edge in the ABox. The implementation of a multi­
layered typology of user-programmed inferences, at­
tached to concepts . which reason about individuals,
like in classical knowledge-based system shells , for
instance KAPPA or Nexpert Object, would be help­
ful to include procedural knowledge. A substantial
contribution of DL comes from the power of its in­
telligent retrieval queries that allow, first to normal­
ize completely different retrieval descriptions (which
need not necessairly make use of the inheritance in­
formation), and second the generation of abstract
concepts which are deduced from role resp. attribute
values.

Wh at may be the impact of such a project on our
research about DL systems? We suggest to focus on
the study of retrieval functionalities provided by DL
systems. This issue concerns essentially all kinds of
ABox services, for instance the retrieval or realiza­
ti on of instances. Within this framework it is worth
to examine the ABox's performance with respect to
its architecture in order to reduce the average re­
trieval costs. What are the possible drawbacks of
our approach? The coupling between the DL sys­
tem and the DBMS mayinduce so me performance

losses, due to the intensive communication exchange
between two different systems. Another aspect con­
cerns the mapping of the complex concept or indi­
vidual structures to a relational or object-oriented
database scheme which has been undertaken yet.

The rest of the paper is structured as folIows. A
brief C3L system description is presented in the sec­
ond section. The following chapter tackles the in­
tegration of procedural knowledge in a DL system,
notably C3L. How to integrate an object-oriented
DBMS within such a system, exemplified at C3L, is
discussed in the fourth section. Afterwards the sig­
nificance of the retrieval inference and related topics
are studied. Applying a DL system for configuration
purposes constitutes the principal issue of the sixth
chapter. Last, but not least, we conclude our work.

2 C3L - a system description
At the moment, two different C3L versions exist: one
academic research prototype, built in Common Lisp,
and another version including an object-oriented
data base management system and written in C++,
but which is at the current state limited to the TBox.
The later system is called C3L++ (for obvious rea­
sons) and will serve as the implementation base for
future development and enhancements. The port­
ing of C3L from Common Lisp to C++ is motivated
by the idea to scale small knowledge bases up to
large ones, which require more sophisticated means
for handling huge amounts of knowledge.

The C3L system may be characterized in some
terms as folIows:

• it is a descendant of the description logics (or
KL-ONE) family

• it provides reasonable expressive power (e.g.
conjunction, all, one-of, fills, at-least, at-most)

• it incorporates useful inferential services (e.g.
subsumption, classification, recognition)

• it is implemented in a frame-based based system

• it contains declarative as weil as procedural
knowledge

• it is concieved in the perspective to serve as a
knowledgerepresentation module for a hybrid
development environment (the term IKME, in­
telligent knowledge management environment,
describes it best)

Special features of C3L which distinguish it from
other description logics systems are:

• a reflexive object-oriented, frame-based archi­
tecture

• the integration of methods

The initial design philosophy of C3L was to com­
bine ideas coming from the communities of frame
languages and description logics [Cam~ et aZ., 1995] .
Having (partially) achieved this goal, we realized
that it seems necessary to include the database co m­
munity as weil, in order to be able to handle large
quantities of data without significant performance
losses and keeping powerful reasoning mechanisms.
Anyway, the description logics system C3L can be

considered as a kind of application layer which hides
the underlying database system and allows a com­
pletely transparent management of data for the user.

Two inhouse research projects constitute the test­
bed for the C3L system. The first is the domain
modeling of a configuration system for a modular
electronic bus system in vehicles, whereas the second
addresses the representation of features in CAD and
their links to technological information which are
needed e.g. for production purposes . Both projects
are rat her small-scale research projects and still in
progress, but they already provided us with very
helpful feedback.

After having tested our system in the above
mentioned two application scenarios, we identified
two major requirements for the improved successor
C3L++ of the academic research prototype C3L:

• high performance: the currently used data
structures are not optimized for high perfor­
mance, because it is an exploratory implemen­
tation

• large scale knowledge bases: due to memory re­
strictions the number of defined concepts, roles
and individuals has been quite restricted so far

17

C3L enabled us to acquire a lot of valuable ex­
perience about description logics system design and
building such architectures for information systems.
A complete redesign of the C3L system is now in
progress, a port of the TBox to C++ is the very first
result of this effort. We think of testing it by means
of a huge random knowledge base which will be auto­
matically generated. Such an approach might allow
to obtain reliable, empirical data of the systems per­
formance and behaviour. Apre-version of C3L++
has showed a considerable increase of performance
which will be studied in more detail in the near fu­
ture.

3 Integrating procedural knowledge

Motivated by the requirements of studied applica­
tions and the need for an efficient manipulation of
knowledge, we are actually working on the integra­
tion of C3L in an object-oriented programming envi­
ronment. Obviously it is not satisfactory to provide
simply methods, but to offer a formalism which en­
ables the experienced user on the one hand to fulfill
his particular needs and on the other hand to control
the side effects of the methods. The objective is to
support a multi-layered typology of methods whose
consequences cart be easily supervised and tested .

Suggestions for formalizing the notion of meth­
ods come from the area of specification languages for
the development of knowledge-based systems in the
field of knowledge engineering [Fensel and Harmelen,
1994] . The SCARP system [Willamowski, 1994], set
on top of SHIRKA, influences as weil our decision
to include methods in form of tasks. Anyway the
employed approach cannot deny the impact of clas­
sical ideas coming from the field of hierarchical and
sceletal planning.

Tasks are on the one hand sufficiently complex,
declarative means to abstract from simple methods

and on the other hand they are close to the im­
plementation level by incorporating source code of
the underlying programming language or by calling
other subtasks. A task is defined by numerous prop­
erties or attributes which allow better validation and
coherence tests of the task.

At the moment, three complementary categories
of procedural attachments which are Iisted below are
in work:

• methods: they represent general purpose at­
tachments and are linked to concepts

• demons: they are triggered by value changes
of roles, for instance if-added, if-deleted, if­
changed, if-needed, are classical demons

• events: they survey the concepts instances and
are launched if one instance fulfills the events
conditional part

One major problem of procedural attachments are
the consequences on the recognition and retraction
inferences provided by the ABox. One possible so­
lution is to execute demons first, list the concerned
objects and pass them to the recognition service af­
terwards, in order to avoid costly recomputation of
the individuals status du ring the chained manipu­
lation of data. A more interactive approach may
suppose that the user has to demand explicitly the
(re-)recognition of an individual which was modified
in the past.

Summarizing the benefits of embedding the under­
lying programming language in a description logics
system may result in the. following advantages:

• increased fiexibility and maintenance of the
complete system

• high performance for complex (mathematical)
computations

• use of the programming languages high expres­
sive power and performance

Offering an almost exhaustive library of primitive
tasks (or methods) is the consequent next step of the
evolution of our development environment. In most
cases the user may only select the appropriate exist­
ing task or use pre-defined tasks which have to be
instantiated. The programming effort would be re­
duced to calling tasks or profiting of the hierarchical
task structure. Basic tasks are elementary retrieval
or manipulation methods which constitute the prin­
cipal task layer and which can be completed step by
step.

One important feature we are working on is the
automatic classification of tasks with respect to cer­
tain properties, for instance parameters or agents.
The principal underlying idea is to map a task
scheme to a normalized concept and to call the usual
dassification service. Afterwards you may reason
about tasks like about normal individuals. This may
be particular useful to support programmers who
look für special properties of an incompletely speci­
fied task.

4 Integrating an object-oriented
DBMS

The current C3L++ system which is ported to C++
is particulary optimized for performance issues and
synthesizes the design experience we obtained in
building the former Common Lisp version . One ma­
jor system requirement is to get an almost platform
independent description logics system.

After having evaluated the possibility to concieve
a special DBMS interface for C3L++ within the sys­
tems architecture, which provides its own storage
and caching strategies, we opted for a more com­
mercial solution by building C3L++ on top of the
POET [POE, 1995] database. POET is in fact a
pre-compiler which generates (documented) C++
code and it takes the complete memory handling in
charge. Therefore the system programmer can con­
cieve the system as whether he had a large, but finite
(virtual) memory space, persistent objects only have
to be marked in their class definitions.

The chosen solution implies several benefits:

• the object-oriented DBMS system does what it
can the best, e.g. memory caching strategies,
even if they are not optimized for a description
logics system and its specific inferences and data
structures

• using such a DBMS simplifies the design, main­
tenance and documentation of source code with
respect for data storage, enabling the system
designer to focus on the essential system prop­
erties

18

• the solution is easy to implement and fast
thanks to the employment of available dasses
and methods; we hope also to obtain areal gain
of programming efficiency

The principal disadvantage of the solution is that
there does not exist anymore a dear distinction be­
tween source code of the POET DBMS and of the
description logics system. Both parts become very
closely intertwined and inseparable.

Nevertheless we are convinced that the above
mentioned solution lets us enough space for improv­
ing and adapting the C3L++ system for specific ap­
plications. Another aspect that was not discussed so
far is the mapping from queries of the retrieval lan­
guage to the underlying DBMS. All topics concern­
ing this issue are studied in the appropriate retrieval
section.

5 Significance of retrieval
In industrial applications databases are more often
queried than updated . To fulfill this condition, effi­
cient retrieval mechanisms have to be provided. In
this context SQL-like query languages are often too
difficult to learn for the average employee. As is
known from different investigations, three out of four
query attempts are non-successful, resulting in an
immense loss of time and money. A possible solu­
tion to this problem is the usage of DL as a front-end
to the database system. Here the user can commu­
nicate with the knowledge base by means of simple

operators and intuitively understandable object de­
scriptions. The DL system can then optimize the
queries and transform them into terms of the un­
derlying database language. This step is completely
transparent for the employee, resulting in an increas­
ing acceptance of database applications.

To meet all requirements of database users, we
have to provide two different dasses of query opera­
tors . First, it must be possible to access the descrip­
tions of database objects, for example to receive in­
formation on a specific mechanical component. Sec­
ond, we need dedicated retrieval facilities to find ob­
jects by means of arbitrary descriptions. For ex­
ample an engineer could be interested in finding all
bus components transferring high data rates on a
specific bus segment. In these cases an intuitive de­
scription of such a component is easily constructed,
in comparison to the joining of several relations in a
relation al database system employing SQL.

In C3L the first dass is represented by the opera­
tors showall, show and ask. Each of them occurs
in three different contexts: for roles, concepts and
individuals. A showall-operation returns a list of
the elements of the specified type which are known
in the database. The show-operator provides the
most important properties of the object in question,
for example the dependencies from other objects or
the values of all its attributes. The ask-operator fi­
nally allows to specify the properties and attributes
of interest for an object, for example if we are curious
to know the data transfer rates of a special bus com­
ponent. All these operations can be easily mapped
to database queries without the need for dedicated
reasoning mechanisms. In contrast, the operator for
the second dass, search, uses the inferential capa­
bilities of the DL system. It is tightly connected to
the retrieval inferences for roles, concepts and indi­
viduals. This operator takes an arbitrary object de­
scription and returns all database elements matching
it.

The retrieval algorithms for roles and concepts
can be constructed from the basic TBox inferences
for subsumption and dassification. The retrieval of
ABox individuals is far more complex. In the follow­
ing we will therefore concentrate on this mechanism.
The processing of a query involves five steps [Stern,
1995]:

1. Analysis of the query.

2. Optimization of the query.

3. Choice of the app·ropriate resolution strategy.

4. Execution of a number of retrieval primitives
following the chosen strategy.

5. Verification of the results.

Step four involves real database access, for exam­
pie by means of SQL. But this is absolutely trans­
parent for the user, the DL system is in charge of
the whole t~ansformation process.

The optimization phase first detects inconsisten­
cies in the query. It then tries to simplify the de­
scription to accelerate the further processing: Nu­
merical intervals, for example, are normalized and
subsuming roles are eliminated .

19

The choice of the resolution strategy depends on
a rather large number of properties of the query. If
we are confronted with distributed databases, for ex­
ample, we have to decide which on es are relevant for
the query and when and how to access these knowl­
edge sources . The strategy is also different for var­
ious formats of the query. Short ones are processed
in another way then queries with lots of roles and
attributes, and the treatment is distinct for queries
comprising a conceptual description or lacking this .
Furthermore, various types of conceptual parts are
processed differently. By means of such distinctions
we are able to reuse a maximum of already derived
facts (recognition inference) to guarantee high per­
formance of the retrieval inference.

To gain a maximum of speed there exists a huge
number of retrieval primitives, implemented as in­
dependent methods. They can be freely combined
or used as single mini-inferences . We have also pro­
vided primitives for the most frequent combinations
of these basic methods. There are methods to ac­
cess the different precomputed facts of the ABox
and TBox, for example by evaluating the semantic
indexing structure or the information inside the role
hierarchy. We can dassify the conceptual parts of a
query or even generate appropriate concept descrip­
tions from role lists if the given description seems not
dear enough. And, what is self-evident, there are
primitives to access the database interface of C3L
which performs the transformation of basic queries
into the database language.

As a result of step four we receive a set of individu­
als that possibly match the query. Due to limitations
in the op"timization and calculation steps, mainly to
minimize the number of real database accesses, this
set may contain elements that do not exactly match
all roie restrictions of the query. This makes a fi­
nal verification step necessary. There we match the
candidate instances with the possibly offended role
restrictions by means of a dedicated subsumption
algorithm for individuals. The verified objects are
finally returned to the user.

The entire retrieval algorithm is correct and nearly
complete. It is even more complete than the recog­
nition inference of C3L. This could be achieved by
deducing further implicit facts during step four of
the algorithm. In all test cases so far, the retrieval
inference was capabie of calculating all the instances
matching a query. Hopefully, there will be only very
few cases where some implicit dependencies can not
be detected .

The coupling between C3L and the database sys­
tem can be described by employing a meta-model.
This model comprises all the different aspects of the
integration of a DL system with a database, like the
construction of queries in terms of the database lan­
guage, the distribution of queries in distributed en­
vironments, and the access methods of the database
interface of C3L. By means of this model the in­
terface to the database management system can be
easily adopted to any commercial product. We can
entirely avoid changements to the inference mecha­
nisms. Only the mapping of basic queries of C3L to
the database language has to be modified . In the

future we will also try to make use of al ready ex­
isting databases. To perform this difficult task, it
will be necessary to extract generic concept descrip­
tions and individual definitions from the database
contents to use them for the queries. An automatic
transformation seems, at the current state of our re­
search, rather difficult if not impossible. But even
an extraction by hand could be worth the trouble,
compared to the benefits of using DL as a query
component.

When we have a closer look on the meta-model,
we can distinguish the different tasks of the DL sys­
tem and the DBMS in our application scenario. The
database system is only concerned with the storage
of large amounts of data, whereas C3L is in charge
of all problems involving some reasoning:

• Construction and verification of queries.

• Detection of inconsistencies.

• Optimization and distribution of queries.

• Generalization of queries .

The last point in this list is worth some more ex­
planations. In the analysis step of the retrieval infer­
ence we can detect sub-queries that occur very often.
A considerable speed-up for such queries can now be
achieved be generalizing the sub-query, resolving it
and caching the results. In subsequent queries these
parts have not to be processed, it is sufficient to use
the stored answers.

Concerned with industrial applications, for exam­
pie in the domain of the configuration of bus systems
for vehicles, we have learned that it is not sufficient
to provide only system defined retrieval capabilities.
Most applications show a need for dedicated facili­
ti es specially adopted to the domain in question. To
meet this requirement, C3L can be extended by pro­
cedural knowledge. Within a syntactically and se­
mantically regulated framework, the user can add re­
trieval inferences implemented in the host language.
For this purpose, most of the retrieval primitives and
optimization methods are accessible through a pro­
grammers interface. They can now be used to imple­
ment domain-specific retrieval functions and strate­
gies. A little drawback of this approach is that these
user programmed methods can lead to inconsisten­
cies in the user defined query answering process. But
the necessity of a careful implementation style seems
to be a little inconvenience compared to the possibil­
ity to adopt the system to the special requirements of
areal world application. Furthermore, this is a fea­
ture heavily missing in database-only" systems that
use, for example, SQL.

As already mentioned, the actual coupling of C3L
with a database system is performed by means of a
dedicated interface. The only purpose of this mod­
ule is to perform the transformation between basic
DL queries and queries in terms of the database lan­
guage. We could identify a small number of such ba­
sic queries that are sufficient to provide C3L with all
necessary information from the underlying database.
A realization of this interface exists for relational
databases that use SQL as their query language.
Actual work is in progress for the integration of
the object oriented database system POET. This

OODBMS will function as the back-end data store
in the C++ version of C3L. In our experience so far,
the presented approach is weil suited for relational
DBMS as weil as OODBMS.

6 Configuration as an application
Configuration can be defined as the design of a tech­
nical system, according to a specification, by choos­
ing and assembling different modules taken from a
module catalogue. If this is done by hand, especially
for more complex problems, it often results in errors
like inconsistency or missing parts. Therefore the
aim is to develop a system to support the configu­
ration process or to do configuration automatically.
We propose a system based on Description Logics.

The problem of solving the configuration task by
means of DL was already studied by the AT&T re­
search group in the framework of the PROSE project
[Wright et al., 1993]. We want to focus on the advan­
tages that Description Logics offers for the treatment
of large amounts of data needed for the configuration
process.

Databases are necessary to store the large module
catalogues. It is important for the economic suc­
cess of a configuration system that module descrip­
tions of newly developed modules can be integrated
in the DBMS as fast as possible. Using anormal
DBMS, a domain specialist and a DBMS specialist
are only together capable to formalize the informa­
tion about a module and to add the resulting de­
scription to the DBMS. This results in a loss of time
and money. Furthermore, consistency checking be­
tween the module descriptions is indispensable for
the configuration process. Ordinary databases are
not capable of performing this task.

20

The use of a Description Logics system as an ap­
plication layer that is built on top of the DBMS
can solve these problems. Domain and knowledge
engineering experts have to work together to build
the terminological part of the knowledge. In this
part, the domain vocabulary and principles are de­
scribed. Once done, this part only has to be changed
if the description is no longer sufficient. In contrast
to rare updates of the terminological knowledge the
assertional knowledge has to be modified rather fre­
quently, because all descriptions of the new modules
are integrated as individuals. Because of the eas­
ier access methods of DL and the possibility to use
the domain vocabulary, we expect that this could
be done directly by the domain expert. This would
make it possible to integrate the updating of the DB
in the module development process. Additionally,
the DL system automatically guarantees a maximum
of consistency of the knowledge base.

A DL system does not only improve the manage­
ment of a knowledge base. As described above, the
use of retrieval and classification offers possibilities
to accelerate the access to the different facts. For
example a common problem during the configura­
tion process is, to find a module which combines the
properties of two or more other different modules.
We could for example be interested in finding an in­
tegrated automobile motor management unit which
integrates the ignition and injection management.

The problem is to retrieve a module description that
fits to a list of various properties. With anormal
DBMS such a search would be very expensive. With
a DL system, the query strategy can be individually
optimized which results in a higher performance and
a better acceptance of the configuration system.

The use of a DL system also poses one problem: Is
it possible to change between an open and a closed
world assumption? The open world is convenient for
the knowledge acquisition step, to enable the user to
integrate new facts easily into the knowledge base.
During the configuration process, a closed world as­
sumption seems to be more adequate. If, for exam­
pie, the configuration system excludes the first of two
possible modules it can choose the second. An open
world assumption would not allow this conclusion.

We have star ted to model the communication flow
among different components linked to the electron­
ical bus system of a vehicle. Modeling the domain
using an object-oriented approach, like Description
Logics, is more appropriate than conceptual model­
ing for DBMS. Domain experts have less problems
to intuitively understand the resulting models.

7 Conclusion
In this paper we tried to motivate the benefits of
coupling a DBMS system with a knowledge repre­
sentation 'system, in particular the description logics
system C3L++. The most important requirements
for such a synergetic combination are:

• the need for large scale knoledge bases

• the potential performance gains

The implementation of C3L++ which incorpo­
rate such features is still in progress. Starting with
abrief presentation of the academic research pro­
totype C3L, we familiarize the reader with its id­
iosyncrasies, for instance the integration of pro­
cedural knowledge by means of methods, demons
and events. Some decision criteria, for choosing an
object-oriented DBMS (in our case: POET) and the
reasons for setting C3L++ on top of it, are studied
in the following section by emphasizing the system
development aspect . Discussing the impact of re­
trieval for our configuration application and its con­
sequences for the DBMS coupling form the major
topics of the successive part. Finally, some problems
posed by applying description logics to the configu­
ration of electronic bus systems are elaborated.

8 Acknowledgments
We would like to thank the anonymous referees for
their valuable hints on earlier versions of this paper,
and our colleagues for very fruitful discussions on the
subject. In particular we owe a lot to the Robert
Bosch company, Germany, with who we cooperate
in the research project on configuration of modular
bus systems for vehicles.

References
[Carn~ et al., 1995] B. Carn~, R. Ducournau, et al.

Classification et objets: programmation ou repre­
sentation. In PRC-GDR Intelligence Artificielle.
TEKNEA, 1995. In French.

21

[Fensel and Harmelen, 19941
D. Fensel and F. Harmelen. A comparison of lan­
guages which operationalize and formalize KADS
models of expertise. The K nowledge Engineering
Review, 9(2):105-146, 1994.

[Keith et al., 1995] B. Keith, T. Kessel, M. Schlick,
and O. Stern. A description logics based approach
to the configuration of diagnostic systems. In Pro­
ceedings 0/ the IAR con/erence on Automatie Con­
trol and Signal Processing, 1995. Forthcoming.

[Kessel et al ., 1995] T. Kessel, F. Rousselot, and
O. Stern. From frames to concept: Building a
concept language within a frame-based system. In
Proceedings 0/ the International Description Log­
ics Workshop at Rome, 1995 .

[POE, 1995] POET Software Corporation, San Ma­
teo. POET Release 3.0, 1995.

[Stern, 1995) O. Stern. Entwicklung der assertio­
nalen Komponente ERICA für das terminologi­
sche Wissensrepräsentationssystem C3L. Master's
thesis, Universität Karlsruhe (TH), 1995. In Ger­
man.

[Willamowski, 1994] J. Willamowski. Modelisation
de taches pour la resolution de problemes en
cooperation systeme-utilisateur. PhD thesis, uni­
versite Joseph Fourier - Grenoble 1, 1994. In
French.

[Woods and Schmolze, 1992] W . Woods
and J. Schmolze. The kl-one family. In Semantic
Networks in Artificial Intelligence, pages 133-177.
Pergamon Press , 1992.

[Wright et al., 1993] J. Wright, E. Weixelbaum,
et al. A knowledge-based configurator that sup­
ports sales, engineering and manufacturing at
AT&T Network Systems. In Proceedings 0/ the
Innovative Applications 0/ Artificial Intelligence
Con/erence, 1993.

The P-type Model from Databases to Knowledge Bases

Ana Simonet and Michel Simonet
Laboratoire TIMC-IMA G,

38706 La Tronche cedex - FRANCE
e-mail: (Ana.Michel).Simonet@imag.fr

1 The P-type Model

The p-type data model was conceived in the early
eighties as an answer to database needs [12] . It was
expressed within the Algebraic Data Types (ADT)
paradigm [71 [8] and its main concern was the shar­
ing of objects by several kinds of users seeing them
through one or several views. A p-type is orga­
nized in a hierarchy of classes, where classes model
database views. An object belongs to one and only
one p-type, and to several views. Multiple special­
isation is not necessary to express that an object
belongs to several subclasses (views of a p-type). It
is used only to specify a: subset of the views intersec­
tion .

To specify a p-type one first gives its minimal view
then its other views by simple or multiple strict spe­
cialisation, adding attributes and/or assertions. The
root of the hierarchy of views is called the minimal
view in that all the objects of the p-type must satisfy
its properties. The ADT of a p-type is derived from
its views declaration. This type contains all the at­
tributes and methods which appear in the views of
the p-type, including the minimal view. An object
belongs to a view iff it satisfies its assertions. Ob­
jects which are instances of a p-type may belong to
several views, among which only the minimal view
is mandatory.

A p-type is defined as an algebraic data type
< S, F, E > where S is a set of sorts {SI, ... , sn}, the
carrier of the type, Faset of functions Si x Sj x
••. X Sk -t sl and E a set of equations [121. One sort,
T, called the set of interest of the type, is central,
in that the aim of the type definition is to establish
the elements of the type and define their behaviour.
In general, the type is given the name of its set of
interest : T. Among all possible functions, we call
attributes those of the form T -t S,S E S. Other
functions are called methods.

The algebraic type of the p-type is derived from
the views declarations (including the minimal view).
The type PERSON contains all the attributes and
methods which appear in its views. The domain of
an attribute in type PERSON is the union of its
domains in the views where it is declared.

Let tmin : < S, Fmin, Emin >,
t j : < S,Fj,Ej >, t2 : < S,F2,E2 >, .. . be the
views of a p-type T. T is defined as < S, F, E >

22

where S is the support set of T, F = Ui Fi and
E = Emin·

As a simple example, consider a p-type PERSON
whose minimal view has the attributes Name, Age,
and Sex, and its different views are ADULT: PER­
SON (Age~ 18), SENIOR: PERSON (Age>65),
and STUDENT, characterized by specific attributes.
In the graph presented in figure 1, a student aged
between 18 and 65 belongs to the views PERSON
(the minimal view is mandatory), STUDENT, and
ADULT, provided it satisfies the properties of these
views.

Figure 1: Graph of p-type PERSON
The set of interest (domain) of the minimal view

person is identical to that of the p-type PERSON.
The domain of another view is a subset of the do­
main of the view it specializes, or of the intersection
of the domains of the views it specializes in case of
multiple specialization.

Figure 2: Inclusion seL of p-type PERSON
In the general case, any view may be a strict spe­

cialisation of one or more views, and have its own
attributes and/or assertions. Assertions are Horn
clauses with literals of the form \Ix Attribute(x) in
Domain, called Domain predicate. An example of
such an assertion is Age(x» 18 -t MilitaryService(x)
in {done, deferred, exempt}. Assertions reduced to

a single Domain predicate, such as Age(x) in [18,
65J may stand for an attribute domain definition in
a view.

Unlike most OODBMS such as the 02 proposal
[9), attributes whose values are calculated by a
method (or a procedure) are true attributes, and
therefore are not themselves considered as methods.
Any attribute may be stored or not, and may be cal­
culated or not. A calc-stored attribute is calculated
from the values of other attributes (e.g., Age from
BirthDate and CurrentDate) and automatically up­
dated whenever necessary.

2 An Example
A base schema is made up of several p-type defini­
tions . In general, these p-types are not independent.
In OSIRIS the interrelationships between different
p-types of a schema are expressed by attribute defi­
nitions and by Inter-Object Dependencies (IODs).

We present the main features of the p-type de­
scription language and of the Inter-Object Depen­
dencies through a very simple OSIRIS example. The
universe modelIed is that of persons and vehicles.
Persons may be and/or students, teachers, trainee­
teachers, professors, sportsmen. They are also ei­
ther adults or minors according to their age. A
given person is a model of the minimal view and
may belong to none, any or several other views.
The view TRAINEE, which inherits STUDENT and
TEACHER, is not necessary to express that a per­
son can be a student and a teacher at the same time.
It has been created to designate a subset of their
intersection, characterized by some more assertions,
which restrict its domain.

class PERSON - Minimal view of p-type PERSON
attr

Name: P ..NAME; - P ..NAME is declared elsewhere
Children : setof PERSONj
Sex: CHAR:
Age: INT;
MilitaryService : STRINGj
IncomeTax : REAL calcj - procedural attachment
CarsOwned : setof CAR;

- CAR is a view of a p-type VEHICLE
key Name - External key
methods - other functions specification
assertions
- Domain Assertions

Sex in { "f', "m" };
o ::; Age ::; 120
MilitaryService in

{ "yes", "no", "deferred", "exempt" };
- Inter-Attribute Dependencies

Age< 18 => MilitaryService = "no";
Age ~ 18 => MilitaryService in

{ "yes',', "deferred", "exempt" };
Sex = 'f' => MilitaryService = "no";

end;

The minimal view automatically contains a private
attribute OID : toid.

23

view STUDENT: PERSON .. .
view TEACHER: PERSON .. .

view PROFESSOR: TEACHER ...

view TRAINEE: STUDENT, TEACHER
- specializes STUDENT and TEACHER

assertions
Status = "trainee";
Studies = "graduate";
Diplomas contain "degree";

end;

view ADULT: PERSON
assertions

Age ~ 18;
end;
view SENIOR: ADULT
assertions

Age > 65;
end;

implementation PERSON

- stored attributes
- body of methods

end;
The attributes of the type PERSON are those

of the minimal view, PERSON, plus those defined
in other views : Studies, Year, Status, Diplomas.
Within a given view, the user may only access the
attributes inherited from its super-views and the at­
tributes proper to the view, if any.

Objects which are instances of the p-type PER­
SON may satisfy one or several views, among which
only the minimal view is mandatory.

Apart of the description of the p-type VEHICLE
migh be :
dass VEHICLE
attr

Type: STRING;
Year: DATE;

assertions
Type in { "car", "truck", "bus", "tractor"};

end;

view CAR : VEHICLE
attr

Owner: PERSON;

assertions
Type = "car";

end;
Within the scope of the definition of p-type PER­

SON and view CAR of p-type VEHICLE, the inter­
relationships between cars and persons are expressed
through the attributes CarOwner and Owner of the
p-types PERSON and VEHICLE respectively. To
express that these two attributes are reciprocal, one
writes an Inter Object Dependency :

PERSON.CarsOwned reverse CAR.Owner
CarsOwned in p-type PERSON being declared as

the reverse function of Owner in p-type VEHICLE,

the OSIRIS system ensures integrity maintenance.
In particular, every car whose owner is a person X
must belong to the set of cars of X. For example,
suppressing a car Y with owner X implies that Y no
longer belongs to the set of cars owned by X. Sim­
ilarly, adding a car Y with Owner X would trigger
the checking that Y belongs to the set of cars owned
by X, and adding it if necessary. Thus referential
integrity is checked and automatically maintained.
This deductive aspect (deducing a new CarsOwned
value from the insertion of a new car) is also present
in Inter Attribute Dependencies (e.g. value "no"
for MilitaryService can be deduced from an Age less
than 18) .

When modelling the universe of persons, i.e., char­
acterizing its subclasses, the modeller has to make
choices. For example, the SENIOR view can be de­
fined as an ADULT whose Age is > 65, or as a PER­
SON with the same constraint on the age. Both
views would be considered equivalent by the Osiris
system. However, different consequences might re­
sult from either choice. If the view ADULT is modi­
fied, e.g., enriched with some new property, the view
SENIOR will inherit this propertyonly if it has been
explicitly defined from the view ADULT or any sub­
view of it.

3 The Classification Space
The key to implementation is definition of the par­
titioning of the object space based on the Domain
Predicates of the p-type. Each Domain Predicate
defines a partitioning of the attribute it covers. The
product of partition of an attribute by all the predi­
cates of the p-type [131[14]; determines a partition­
ing of the domain of that attribute into Stable-Sub­
Domains (SSD) . An instance whose attribute values
change within the same SSD satisfies the same Do­
main Predicates, hence the same assertions. This
is the stability property on which the whole system
relies.

In the example given above, the partitioning of
the attribute domains is :

Domain (Age) = d11 U dl2 U d13

Domain (MilitaryService) = d21 U d22

Domain (Sex) = d31 U d32

where
dll = [0, 18[, dl2 = [18, 65), dl3 =]65, 120]
d21 = {"no"},
d22 = {"yes", udeferred", "exempt"}
d31 = {Um" }, d32 = {"r'}

By definition, each subdomain dij has the follow­
ing property: when the value of attribute Attri
changes within the subdomain dij , all domain pred­
icates maintain their truth value and consequently
the assertions do likewise. Divisions dij are therefore
stability zones for the assertions, hence their name:
Stable Subdomains (SSDs). Domain Predicates are
transformed into elementary predicates of the form
Attr; E dij , where the dij are the SSDs of Attri. In­
troducing a new assertion with predicate Age > 40
would cause the splitting of dl2 into [18, 40] and]40,
65), and the corresponding internal rewriting of the
concerned assertions.

24

The partitioning of each attribute domain is ex­
tended to the object space. This partitioning, whose
elements are named Eq-classes, is called the Classi­
fication Space. It is the quotient space of the object
space with respect to the equivalence relation 'satisfy
the same subset of Domain Predicates'. The classi­
fication space of a p-type is the cartesian product
of the sets of Stable Subdomains of its classifying
attributes. Elements of the classification space are
called Eq-classes. For a p-type with n classifying at­
tributes I, Eq-classes are n-tuples (d1i , d2j , ... dnl).

The classification space can be illustrated in a 3-
dimensional space by the figure shown figure 3, ob­
tained by considering only attributes Age, Military­
Service and Sex, and the domain constraints above,
leading to a partitioning into 3x2x2 = 12 Eq-classes.

d32

d31

;: d11
Military-
Service

d12 d13

Figure 3: Space partitioning
It is possible to determine at compile time the set

of views to which each Eq-class belongs. Classify­
ing an instance, i.e., determining the set of views to
which it belongs, is no longer performed by following
the hierarchy of views. Classification is performed
by a boolean (propositional) solver, based on the
structure of the Classification Space, in time linear
to the number of views and of SSD, and polynomial
to the number of attributes and p-type assertions
[2J. When the object is not completely known, its
known attribute values determine several Eq-classes
instead of a single one. These Eq-c\asses determine
which views are valid, invalid, or potential, i.e., views
whose validity still depends on missing attribute val­
ues.

Eq-classes are never represented explicitly in their
totality. They up hold and direct the compilation
process, and at execution time, they index the actual
objects of the da'tabase. Ther number of actual Eq­
c1asses is therefore limited by the objects which are
really entered in the base [14].

Primary indexing through Eq-classes also enables
semantic query optimization. The query (PERSON
lAge< 30) would automaticallyselect individuals
from Eq-classes having SSD dll as a component, and
reject those corresponding to d13 . Only the elements
of those indexed by dl2 (18~Age~65) have to be
checked for the condition Age < 30.

1 Classifying attributes are attributes whose domain is
partitioned in at least two SSDs.

4 Databases vs Knowledge Bases

Besides security and the ability to efficiently man­
age large quantities of data, concurrency and data
sharing are important features of databases. In typ­
ical database applications, an object is assigned one
dass and the database has to deal with further evo­
lution of its attribute values . In a knowledge base,
objects are often not completely known, and object
evolution mainly consists in the determination of un­
known attribute values, but rarely in value changes.
The objective is to obtain the most refined informa­
tion about the object, including its valid and poten­
tial classes, deduced attribute values or value ranges,
and explanations about all inferred information.

Another important feature of p-types is that an
object can belong to several views and change views
(not its p-type) in its lifetime, whereas is .OODBMS
instanciation is made in one dass and IS final, as
in programming languages. Belonging to a view is
a property which is defined as satisfying the asser­
tions of the view, i.e., both its proper and inherited
assertions. A mandatory assignation to a view, as
is usuaBy the case in a database situation (create p
as V) will cause the assertions of V to be verified,
considering them as integrity constraints. The way
view determination has been designed of p-types [14]
consists in determining aB the valid views of a given
object, extending this determination to that of those
possible when the object is not completely known.
This process is the very process of instance classifi­
cation in knowledge bases.

Dealing with incomplete information is an impor­
tant aspect of knowledge bases. In Osiris, it may
happen that incomplete information leads to an ab­
solutely certain condusion, without having to make
hypotheses about unknown values of attributes. In
some way, aB possible hypotheses have been "com­
piled" through the Eq-classes. When probabilistic
information is available about the distribution of the
values of the attributes in its SSDs, the classifying
process is able to evaluate the probability assigned
to each view when some attributes have unknown
values [2] . Classifying a completely known instance
is then a particular case of the probabilistic classi­
fication: the SSD of a known attribute value has
a probability value 1 and the others O. As a re­
sult of classification, views known to be certain have
a probability 1, and those impossible a probabil­
ity O. When the actual probability of SSDs is not
known, assigning to them an arbitrary probability
value (e.g., equi-probability), will lead to 0, 1, and
non-zero-one values, still characterizing impossible,
certain, and potential views. However, in this case,
the probability value is not significant and only indi­
cates that the view is potential (i.e., neither certain
nor impossible).

The consistency of the base is ensured by the in­
tegrity constraints expressed by the assertions. In­
tegrity constraints verification is a by-product of the
dassification process. In effect, classifying an object
in a given view means that the object is a valid in­
terpretation of its assertions. When the user assigns
an object to a given view, which is the usual situa­
tion in databases, checking the integrity constraints

of that view is performed by checking that this view
belongs to the objects views.

Other consistency aspects may be considered in a
knowledge base context : dass validity and assertion
contradiction. We also define Domain-inconsistency
which is weaker than logical inconsistency and in­
dicates a probable distortion between several asser­
tions (possibly written by several users).

Within a p-type a view may be defined with asser­
tions which make it inconsistent , i.e. no object in­
stance of the p-type can be a model of its assertions
(inherited and proper assertions). This is detected
by an empty set of valid Eq-classes for the view.

Assertions can be checked for logical inconsistency,
which is possible in spite of their first order general
form, because the static process enables their trans­
formation into an equivalent set of propositional for­
mulas. Assertions :

a1: Age< 18 => MilitaryService = "no"
a2: Age ~ 18 => MilitaryService E

{"yes", "deferred" I "exempt"}
a3: Sex = uf' => MilitaryService = "no"
may be transformed into a propositional system

where attributes are implicitly universally quanti­
fied, and where Pij is the proposition expressing that
attribute AttTi is in SSD dij

al' : Pll => P21

a2': P12 V Pl3 => P22

a3' : P32 => P21

along with propositions of the form

Pij => not Pik for all k =I j

25

expressing the mutual exdusion of stable subdo­
mains for the same attribute :

(Vi)dij n dik = 0 for aB k =I j.
Domain inconsistency is weaker than logical in­

consistency. An assertion is said to be domain­
inconsistent when its antecedent is always invali­
dated bv other assertions of the type. In the context
of the a"bove example, the assertion 'Sex = "f' and
Age> 30 => some conclusion' is always valid, what­
ever its conclusion, because its antecedent is always
false, being contradictory to assertions a1-a3, which
impose that there cannot be any female aged over ~8
in the base 2. Assertion a2 should have been wnt­
ten : Age ~ 18 and Sex = "m' =>

'l ' S . E {" ""de! ..1>1" empt"} Mt ttary ervtce yes , erreu , ex .
One can assume that such Domain-inconsistent as­
sertions are not written deliberately and their de­
tection is essential to the designer. Once they have
been detected , it is up to the user to decide whether
to maintain them or not. Domain-inconsistencies
may be intended by the programmer; they may be
harmless, but they may have unwanted hidden con­
sequences, hence the interest of their detection.

P-types were designed in a database perspec­
tive and the Osiris implementation fulfiBs the usual
database requirements. Persistency, transactions,
concurrency, etc., are provided through the use of
a set of persistent C++ classes (calIed the Osiris

2This is due to assertion a2: Age ~ 18 =>
MilitaryService E {"yes", "deferred", "exempt"}

kernei) which will be implemented in two ways :
by an object manager [1) and a relational database
(10)[11). The relational version of the kernel will
implement data sharing 3 and a nested transaction
mechanism similar to that described in [4]. The
main objective for a relational implementation was
to inherit the qualities of the second generation rela­
tional DBMS. Among these, efficient storage of large
data volumes, concurrency control, and confidential­
ity management.

5 Conclusion
To conclude, we add that the p-type data model
resembles more nearly Terminological Logics which
can classify an instance into several concepts, than
the data model of most OODBMS in which an in­
stance must be created in exactly one class and can­
not change its class in its lifetime [4). Work remains
to extend OSIRIS to view subsumption, which may
be expressed as the inclusion of sets of Eq-classes
in the Classification Space. The complexity of view
subsumption with respect to the class of assertions
taken into account, i.e., Horn clauses with Domain
Predicates as literals, is still to be evaluated.

Although no commercial OODBMS has until now
incorporated a view mechanism, the idea that views
need to be included is becoming widely accepted. In
1992, E. Bertino acknowledged that "several ques­
tions about a suitable view model for OODBMS still
need to be addressed in current research" (3).

Views are a primary concept in p-types, and are
not superimposed to a given object model. A p-type
is a semantic unit for the grouping of subclasses,
namely views. Areal world entity is instanciated
in one and only one p-type, and may belong to sev­
eral views : those of which it satisfies the proper­
ties. Grouping subclasses as views of a p-type is
the corollary of considering the unity of the object,
which is indeed the bil$is of object modelling. A
person is unique, whether considered as a student,
asportsman, an adult, etc. In P /FDM, a prolog­
based implementation of a functional data model,
a given object mayaiso be instanciated in several
subclasses, with the same om [6] . P. Gray remarks
that this approach is equivalent to views, which we
acknowledge.

We would also like to mention Date's opinion that
"the process of inserting a row can be regarded as
a process of inserting that row into the database
(rather than into some specific table)" [5]. In an
object-oriented perspective, this argues weil for au­
tomatic classification of objects in views.

References
[1] . E. Abecassis, YOODA user's guide, APIC sys­

teme Arcueil, France, 1994.

[2] C. G. Bassolet, ReSea1LX de Neurones de Classe­
ment dans le modele des p-types, Rapport de
Recherche IMAG, Grenoble, to appear.

3The P of p-types stand for the french partage, which
means shared. P-types were conceived to be shared by
several users, while groups of users might have their own
views of the set of objects represented by the p-type

26

(3) E. Bertino, M. Negri, G . Pelagatti, L. Sbattella,
Object-Oriented Query Languages : The No­
tion and the Issues, IEEE Trans. on Knowledge
and Data Engineering, Vol. 4, No 3, June 1992.

[4) R. G. G. Cattell, The Object Database Stan­
dard: ODMG-93, Morgann Kaufmann Publish­
ers, 1994.

[5] C. J . Date and David McGoveran, A New
Database Design Principle, In Database Pro­
gramming and Design, July 1994.

[6] P. Gray, G. Kemp, Object-Oriented Systems
and Data Independence, 001S'94, London, Dec.
1994.

[7] J. Guttag, J. Horning, The Algebraic Specifica­
tion 01 Abstract Data Types, Acta Informatica,
1978.

[8) B. Liskov, B. Zilles, Programming with Abstract
Data Types, Proc. of a Symp. on Very High
Level Language, Sigplan Notices 9, 4, April 74.

[9] O. Deux et al., The 02 System, CACM, Octo­
ber 1991, Vol 34, No. 10, pp 34-48.

[10] M. Quast,Osiris et le modele relationnel, Mem­
oire d'ingenieur CNAM, to appear, TIMC­
IMAG, 1995.

[11] M. Quast, A. Simonet, M. Simonet A Relational
implementation 01 a View-based Object System,
001S'95, Dublin, Dec. 1995 (accepted).

(12) A. Sales-Simonet, Types abstraits et bases de
donnees : lormalisation du concept de partage
et analyse statique de contraintes d 'integrite,
These de Docteur-Ingenieur, USMG, Grenoble,
1984.

(13) A. Simonet, M. Simonet, Objects with Views
and Constraints : Irom Databases to K nowl­
edgebases, 00IS'94, London, Springer Verlag,
1994.

[14] A. Simonet, M. Simonet, Osiris : an 00 sys­
tem unilying databases and knowledge bases,
KBKS'95 (Building and Sharing of Very Large­
Scale Knowledge Bases), p217-227, lOS Press,
1995.

Increasing the Power of Structured Objects

Diego Calvanese and Giuseppe De Giacomo and Maurizio Lenzerini
Dipartimenta di 1nfarmatica e Sistemistica

Universita di Rama "La Sapienza"
Via Salaria 113, 1-00198 Rama, Italy

{calvanese,degiacomo,lenzerini}@dis.uniromal.it

1 Introduction
We have recently proposed a new object-oriented
data model, called CV L (for gl ass es , Yiews, and
Links), that extends the express i ve power of known
formalisms in several directions by offering the fol­
lowing possibilities:
• To specify both necessary and sufficient conditions
for an object to belong to a dass; necessary con­
ditions are generally used when defining the dasses
that constitute the schema, whereas the specification
of views requires to state conditions that are both
necessary and sufficient [1]. With this feature, sup­
ported in CVL through dass and view definitions,
views are part of the schema and can be reasoned
upon exactly like any dass.
• To specify complex relations that exist between
classes, such as disjointness of their instances or the
fact that one dass equals the union of other dasses.
• To refer to navigations of the schema while defining
dasses and views; in particular, both forward and
backward navigations along relations and attributes
are allowed, with the additional possibility of impos­
ing complex conditions on the objects encountered
in the navigations.
• To specify relations that exist between the objects
reached following different links; in particular, to
specify that the set of objects reached through an
attribute A is induded in the set of objects reached
through another attribute B, thus imposing that A
is a subset of B.
• To use (n-ary) relations with complex properties
and to dedare keys on them.
• To impose cardinality ratio constraints on at­
tributes.
• To model complex, recursive structures, simultane­
ously imposing several kinds of constraints on them.
This feature allows the designer to define inductive
structures such as lists, sequences, trees, DAGs, etc ..

One of the most important aspects of the model
we propose is that it supports several forms of rea­
soning at the schema level. Indeed, the question
of enhan.cing the expressive power of object-oriented
schemas is not addressed in CV L by simply adding
more and more constructs to a basic object-oriented
model, but by equipping the model with reasoning
procedures which are able to make inference on the
new constructs. Notably, we have shown that the
main reasoning task in CVL, namely checking if a

27

schema is consistent, is decidable, by providing a
sound and complete algorithm that works in worst­
case deterministic exponential time in the size of the
schema. Such worst-case complexity is inherent to
the problem, proving that consistency checking in
CV L is EXPTIME-complete.

2 The CV.c data model
In this section we formally define the object-oriented
model CVL, by specifying its syntax and its seman­
tics.

2.1 Syntax
A CV L schema is a collection of dass and view def­
initions over an alphabet ß, where ß is partitioned
into a set C of dass symbols, a set A of attribute
symbols, a set U of role symbols, arid a set M of
method symbols. We ass urne that C contains the
distinguished elements Any and Emptyl. In the fol­
lowing C, A, U and M range over elements of C, A,
U and M respectively.

As we mentioned before, for defining dasses and
views we refer to complex links which are built start­
ing from attributes and roles. An atomic link, for
wh ich we use the symbol l, is either an attribute, a
role, or the special symbol ~ (used in the context
of set structures) . A basic link b is constructed ac­
cording to the following syntax rule, starting from
atomic links:

b ::= l I bl U b2 I bl () b2 I bl \ h

Two objects are connected by bl Ub2 if they are linked
through bl or b2 , whereas two objects are connected
by bl () b2 (bi \ b2) if they are linked through bl and
(but not) by b2 . Finally, a generic complex link L is
obtained from basic links according to:

L ::=: b I LI U L 2 I LI 0 L2 I L* I L- I identity(C).

Here, L l oL2 means the concatenation oflink LI with
link L 2 , L* the concatenation of link L an arbitrary
finite number of times, and L - corresponds to link
L taken in reverse direction. The use of identity(C)

1 We mayaIso assume that C contains some additional
symbols such as Integer, String, etc., that are inter­
preted as usual, with the constraint that no definition of
such symbols appears in the schema.

is to verify if along a certain path we have reached
an object that is an instance of dass C.

Usually, in object-oriented models to every dass
there is an associated type which specifies the struc­
ture of the value associated to each instance of the
dass. In CV L, objects are not required to be of only
one specified type. Instead, we allow for polymor­
phic entities, which can be viewed as having differ­
ent structures corresponding to the different roles
they can play in the modeled reality. Therefore we
admit rather rich expressions for defining structural
properties . A structure expression, denoted with the
symbol T, is constructed as folIows, starting from
dass symbols:

T ::= C I -,T I Tl /\ T2 I Tl V T2 I
[Al:Tl, .. . ,An: Tn11 {T}.

The structure [Al: Tl, . . . , An: Tn1 represents all tu­
pies which have at least components Al, ... , An hav­
ing structure Tl, ... , Tn, respectively, while {T} rep­
resents sets of elements having structure T. Addi­
tionally, by means of /\, V, and -', we are allowed not
only to indude intersection and union in structure
expressions (as in [2]), but also to refer to all enti­
ties that do not have a certain structure. Note that,
since we allow for entities having multiple structure,
intersection cannot be eliminated from the definition
of structure expressions (contrast this property with
the model presented in [2]).

Class and view definitions are built out of struc­
ture expressions by asserting constraints on the al­
lowed links and by specifying the methods that can
be invoked on the instances of the dass. A dass
definition expresses necessary conditions for an en­
tity to be an instance of the defined dass, whereas a
view definition characterizes exactly (through neces­
sary and sufficient conditions) the entities belonging
to the defined view . Our concept of view bears sim­
ilarity to the concept of query class of [141.

Class and view definitions have the following
forms (C is the name of the dass or of the view):

dass C view C
structure-declaration structure-declaration
link-declarations link-declarations
method-declarations method-declarations

enddass endview

We now explain the different parts of a dass (view)
definition.

(i) A structure-declaration has the form

is a kind of T

and can actually be regarded as both a type deda­
ration in the usual sense, and an extended ISA dec­
laration introducing (possibly multiple) inheritance.

(ii) link-declarations stands for a possibly empty
set of link-declarations, which can further be distin­
guished as folIows :
- Universal- and existential-link-declarations have
the form

all L in T and exists L in T.

The first dedaration states that each entity reached
through link L from an instance of C has structure T

28

and the second one states that for each instance of C
there is at least one entity of structure T reachable
through link L. Therefore such link-dedarations rep­
resent a generalization of existence and typing dec­
larations for attributes (and roles).
- A well-foundedness-declaration has the form:

weil founded L.

It states that by repeatedly following link L starting
from any instance of C, after a finite number of steps
one always reaches an entity from which L cannot
be followed anymore. Such a condition allows for
example to avoid such pathological cases as a set
that has itself as a member. This aspect will be
discussed in more detail in section 4.
- A cardinality-declaration has the form:

exists (u, v) b in T or exists (u, v) b- in T,

where u is a nonnegative integer and v is a nonneg­
ative integer or the special value 00. Such a dedara­
tion states for each instance of C the existence of at
least u and most v different entities of structure T
reachable through the basic link b (b-)2. Existence
and functional dependencies can be seen as special
cases of this type of constraint.
- A meeting-declaration has the form:

each bl ~ b2 or each bi ~ b2" .

It states that each entity reachable through a link bl
(bi) from an instance 0 of Cis also reachable from 0

through a different link b2 (b2"). Such a dedaration
allows for representing indusions between attributes,
and is a restricted form of role-value map, a type of
constraint commonly used in knowledge representa­
tion formalisms [15].3
- A key-declamtion has the form:

key Al ," " Am, A~-, ... , A~"
-- Ul , .. . ,Un , U;-, . .. ,U~-;.

It is allowed only in dass definitions and states that
each entity 0 in C is linked to at least one other
entity through each link that appears in the deda­
ration, and moreover the entities reached through
these links uniquely determine 0, in the sense that
C contains no other entity 0' linked to exactly the
same entities as 0 (for all links in the dedaration).

(iii) method-declarations stands for a possibly
empty set of method-declarations, each having the
form:

method M (Cl,' .. , Cm) returns (C;, ... , C~). ,
It states that for each instance of C, method M can
be invoked, where the type of the input parameters
(besides the invoking object) that are passed to, out­
put parameters that are ieturned from the method
are as specified in the dedaration.

2Note that requiring the link to be basic (and not
generic) is essential for preserving the decidability of in­
ference on the schema.

3Note that the restricted form of role-value map
adopted here does not lead to undecidability of infer­
ence, which results if this construct is used in its most
general form .

2.2 Semantics

We specify the formal semantics of a CV L schema
through the notion of interpretation I = (OI, .I),
where OI is a nonempty set constituting the uni­
verse of the interpretation and .I is the interpreta­
tion function over the universe. Note that an in­
terpretation corresponds to the usual notion of da­
tabase state. Differently from traditional object­
oriented models, we do not distinguish between ob­
jects (characterized through their object identifier)
and values associated to objects. Instead, we re­
gard OI as being a set of polymorphie entities, which
means that every element of OI can be seen as hav­
ing one or both of the following structures (entities
having none of these structures are called pure ob­
jeets) :

(1) The structure of tuple: when an entity 0 has
this structure, it can be considered as a property
aggregation, which is formally defined as a partial
function from A to OI with the proviso that 0

is uniquely determined by the set of attributes on
wh ich it is defined and by their values. In the se­
quel the term tuple is used to denote an element of
OI that has the structure of tuple, and we write
[AI: 01, . .. , An: On] to denote any tuple t such that,
for each i E {l, . .. , n}, t(Ad is defined and equal
to 0i (which is called the Ai-component of t) . Note
that the tu pie t may have other components as weil,
besides the Ai-components .

(2) The structure of set: when an entity 0 has this
structure, it can be considered as an instance aggre­
gation, which is formally defined as a finite collection
of entities in OI, with the following provisos: (i) the
view of 0 as a set is unique (except for the empty
set {}), in the sense that there is at most one finite
collection of entities of which 0 can be considered
an aggregation, and (ii) no other entity 0' is the ag­
gregation of the same collection. In the sequel the
term set is used to denote an element of OI that
has the structure of set, and we write {IOI, .. . , On I}
to denote the collection whose members are exactly
01 , · · · ,On·

The interpretation function .I is defined over
dasses, structure expressions and links, and assigns
them an extension as folIows:
• It assigns to 3 a su bset of OI x OI such
that for each {I ... , 0, ... I} E OI, we have that
({I .. . ,o, ... I},o) E3I .

• It assigns to every role U a subset of OI x OI.
• It assigns to every attribute A a subset of OI x

I . I o such that, for each tuple [... , A: 0, ...] E 0 ,
([... , A: 0, ...], 0) E AI, and there is no 0' E OI
different from 0 such that ([... , A: 0, .. .], 0') E AI.
Note that this implies that every attribute in a tuple
is functional for the tuple.
• It assigns to every link a subset of OI x OI such
that the following conditions are satisfied:

(bi () b2f
(bi \ b2)I

(LI U L 2)I
(LI 0 L2f

(L*)I

bf () b~
bf \ b~
LfuL~
Li 0 L~
(LI)*

29

(L -)I
(identity(C) f

{(O, O') I (0',0) E LI}
{(o,o) E OI X OI 10 E CI}.

• It assigns to every class and to every structure
expression a subset of OI such that the following
conditions are satisfied:

AnyI
EmptyI

CI C

(..,Tf
(TI 1\ T 2)I
(TI V T 2)I

[AI:T1 , ••. , An:Tnf

OI

o
OI
OI \ TI
TI () TI

I 2
TfUTf
{[AI:OI, ... ,An :on] E OI I

01 E Tf, ... , On E TJ"}
{{IOI, .. . ,onl} E OI I
01, . . . ,On E TI}.

The elements of CI are called instanees of C.
In order to characterize which interpretations are

legal according to a specified schema we first define
what it me ans if in an interpretation I an entity
o E OI satisfies a declaration which is part of a
class or view definition:
• 0 satisfies a type-declaration "is a kind of T" if
oE TI;
• 0 satisfies a universal-link-declaration "all L in T"
if for all 0' E OI, (0,0') E LI implies 0' ErI ;-
• 0 satisfies an existential-link-declaration
"exists L in T" if there is 0' E OZ such that
(0,0') E LI-;;'nd 0' E TI;
• 0 satisfies a well-foundedness-declaration
"weil founded L" if there is nO infinite chain
(01,02, . . .) of entities 01,02, .. . E OI such that
0=01 and (Oi,Oi+I) E LI, for i E {l, 2, . . . }.
• 0 satisfies a cardinality-declaration
"exists (u, v) b in T" if there are at least u and at
most v entities 0' E OI such that (0,0') E bI and
0' E TI; a similar definition holds for a cardinality­
declaration involving b-;
• 0 satisfies a meeting-declaration "each bl !§ b2 " if

{o' I (0,0') E bf} ~ {o' I (0,0') E bI};

a similar definition holds for a meeting-declaration
involving b1 and b:;.

Finally, a class C satisfies a key-declaration
"key LI, ... , L m", if for every instance 0 of C in
i"there are entities 01, . . . , Om E OI such that
(O,Oi) ELf, for i E {l, .. . ,m}, and there is no other
entity 0' I- 0 in CI for which these conditions hold.

Note that the method-declarations do not partic­
ipate in the set-theoretic semantics of classes and
views. For an e~ample on the use of method dec­
larations in the definition of a schema we refer to
Section 4.

An interpretation I satisfies a dass definition 8,
say for class C, if every instance of C in I satis­
fies all declarations in 8, and if C satisfies all key­
declarations in 8. I satisfies a view definition 8, say
for view C, if the set of entities that satisfy all dec­
larations in 8 is exactly the set of instances of C. In
other words, there are no other entities in OI besides
those in CI that satisfy all declarations in 8.

If I satisfies all dass and view definitions in a
schema S it is called a model of S. A schema is

said to be consistent if it admits a model. A dass
(view) C is said to be consistent in S, if there is a
model T of S such that CI is nonempty. The notion
of consistency is then extended in a natural way to
structure expressions.

3 Reasoning in CV.c
One of the main features of CV L is that it sup­
ports several forms of reasoning at the schema level.
The basic reasoning task we consider is consistency
checking: given a schema Sand a structure expres­
sion T, verify if T is consistent in S. This reason­
ing task is indeed the basis for the typical kinds
of schema level deductions supported by object­
oriented systems, such as checking schema consis­
tency and dass subsumption, and computing the
dass lattice of the schema. All these inferences can
be profitably exploited in both schema design and
analysis (for example in schema integration) and also
provide the basis for type checking and type infer­
ence.

In general, schema level reasoning in object­
oriented data models can be performed by means of
relatively simple algorithms (see for example [13]).
The richness of CV L makes reasoning much more
difficult with respect to usual data models. Indeed
the question arises if consistency checking in CV L is
decidable at all. One of our main results is asound,
complete, and terminating reasoning procedure to
perform consistency checking. The reasoning pro ce­
dure works in worst-case deterministic exponential
time in the size of the schema. Notably, we have
shown that such worst-case complexity is inherent
to the problem, proving that consistency checking
in CVL is EXPTIME-complete.

Space limitations prevent us from exposing our in­
ference method, which is based on previous work re­
lating formalisms used in knowledge representation
and databases to modal logics developed for mod­
eling properties of programs [5; 9; 10]. For more
details we refer to [4].

4 Expressivity of CV.c
In this section we discuss by means of examples the
main distinguished features of CV L with the goal of
illustrating its expressivity.

4.1 Object polymorphism
In CV L, entities can be seen as having different struc­
tures simultaneously. In this way we make a step
further with respect to traditional object models,
where the usual distinction between objects (without
structure) and their unique value may constitute a
limitation in modeling complex application domains.
As an example, Condominium in the schema of Fig­
ure 1 is regarded as a set of apartments, as arecord
structure collecting all its relevant attributes and as
an object that can be referred to by other objects
through roles (in our example manages).

4.2 WeIl founded structures
In CV L, the designer can define a large variety of fi­
nite recursive structures, such as lists, binary trees,

30

class Condominium
----;s a kind of {Apartment}1\

(Ioc: Address, budget: Integer]
key loc
exists (1,1) manages- 0. Manager

endclass

dass CondominiumManager
----;s a kind of (ssn : Sning, loc: Address]

key ssn
exists manages irr Condominium

enddass

Figure 1: Schema of a condominium

trees, directed acyclic graphs, arrays, depending on
the application need. The schema in Figure 2 shows
an example of definitions of several variants of lists.
Observe the importance of the well-foundedness­
dedaration in the definition of List.

Notably, recursively defined dasses are taken into
account like any other dass definition when reason­
ing about the schema. We argue that the ability
to define finite recursive structures in our model
is an important enhancement with respect to tra­
ditional object-oriented models, where such struc­
tures, if present at all, are ad hoc additions requiring
a special treatment by the reasoning procedures [6;
3].

Well-foundedness-dedarations also allow us to
represent well-founded binary relations. An inter­
esting example of such possibility is the definition of
the part-ol relation, which has a special importance
in modeling complex applications [8]. This relation
is characterized by being finite, antisymmetric, ir­
reflexive, and transitive. The first three properties
are captured by imposing well-foundedness, while
transitivity is handled by a careful use of the * op­
erator. More precisely, in order to model the part-of
relation in CV L, we can introduce a basicparLof
role, assert its well-foundedness for the dass Any,
and then use the link basic_parLof 0 basicparLof*
as part-of. Notice that by the virtue of meeting­
dedarations, we can also distinguish between differ­
ent specializations of the part-of relation.

4.3 Classification

We show an example of computation of the dass
lattice in which the reasoning procedure needs to
exploit its ability to deal with recursive definitions.
Figure 3 shows the definitions of dasses and views
concerning various kinds of (directed) graphs. Our

view List
~ kind of Nil v

(first: Any, rest : List]
exists (0,1) rest- 0. Any
weil founded first V rest

endview

dass ListOfPersons
is a kind of List
all rest· 0 first in Person

enddass -

dass Nil
iia kind of Any

all first V rest in Empty
enddass -

class ListOIThreePersons
is a kind of ListOfPersons
exists rest 0 rest 0. Any
all rest 0 rest 0 rest 0. Empty

enddass

Figure 2: Schema defining lists

c1ass Graph
~ kind of [label: StringJ

all edge !.n. Graph
endclass

view FiniteDAG
~ kind of Graph

weil founded edge
endview

view FiniteTree
~ kind of Graph

all edge !.n. FiniteTree
weil founded edge
exists (0,1) edge- !.n. Any

endview

view BinGraph
~ kind of Graph

aB edge !.n. BinGraph
exists (0,2) edge !.n. Any

endview

view FiniteBinTree
~ kind of Graph

aB edge !.n. FiniteBinTree
weB founded edge
exists (0,1) edge- !.n. Any
exists (0,1) left !.n. Any
exists (0,1) right !.n. Any
each left U right ~ edge
each edge ~ left u right
each left ~ edge \ right

endview

Figure 3: Schema defining graphs

reasoning method can be used to compute the cor­
responding dass lattice shown in Figure 4. Observe
that several deductions involved in the computation
of the lattice are not trivial at all. For example, in
computing subsumption between FiniteBinTree and
BinGraph, a sophisticated reasoning must be carried
out in order to infer that every instance of FiniteBin­
Tree satisfies exists (0,2) edge in Any.

4.4 Methods
Consider a schema S in which the definition
of a dass C contains the method dedaration
"method M (D l , D 2) returns (D3)". Suppose now
that in specifying manipulations of the correspond­
ing database we use three objects x in dass C, Yl
in dass D~ arid Y2 in dass D~, respectively. Let us
analyze the behavior of the type checker in process­
ing the expression X.M(Yl,Y2). If the type checker
follows a strong type checking policy, then the ex­
pression would be considered weil typed if and only
if D~ is subsumed by D l arid D~ is subsumed by D 2

in S . On the other hand, if a weaker type checking
policy is adopted, in order to guarantee weil typed­
ness, it is sufficient that both D l /\ D~ and D 2 /\ D~
are consistent in S. Moreover, in both cases it can
be easily inferred that the type of the expression is
in D3 . All these inferences can be carried out by re­
lying on the basic reasoning task introduced in the
previous section.

5 Concluding remarks
The combination of constructs of the CV C data
model makes it powerful enough to capture most
common object-oriented and semantic data models
presented in the literature [12; 11], such as O2 [3],
ODMG [6], and the entity-relationship model [7]. In

Graph ---- ~ FiniteDAG

+ FiniteTree

~
FiniteBinTree

Figure 4: A lattice of graphs

fact, by adding suitable definitions to a schema we
can impose conditions that reflect the assumptions
made in the various models, forcing such a schema
to be interpreted exactly in the way required by each
model.

References
[1] S. Abiteboul and A. Bonner. Objects and views.

In J . Clifford and R. King, editors, Proc. 0/ ACM
SIGMOD, pages 238-247, New York (NY, USA),
1991.

[2] S. Abiteboul and P. Kanellakis. Object identity as
a query language primitive. In Proc. 0/ A CM SIG­
MOD, pages 159-173, 1989.

[3] F. Bancilhon, C. Oelobel, and P. Kanellakis. Build­
ing an Object-Oriented Database System - The story
0/ O2 . Morgan Kaufmann, Los Altos, 1992.

[4] O. Calvanese, G. Oe Giacomo, and M. Lenzerini.
Structured objects: Modeling and reasoning, 1995.
To appear in Proc. of 0000-95.

[5] O. Calvanese, M. Lenzerini, and O. Nardi. A uni­
fied framework for dass based representation for­
malisms. In J. Ooyle, E. Sandewall, and P. Torasso,
editors, Proc. 0/ KR-94, pages 109-120, Bonn, 1994.
Morgan Kaufmann, Los Altos.

[6] R. G. G. Cattell, editor. The Object Database Stan­
dard: ODMG-93. Morgan Kaufmann, Los Altos,
1994. Release 1.1.

[7] P . P. Chen. The Entity-Relationship model: Toward
a unified view of data. ACM Trans. on Database
Systems, 1(1):9-36, Mar. 1976.

31

[8] V. Christophides, S. Abiteboul, S. Cluet, and
M. Scholl. F'rom structured documents to novel
query facilities. In R. T. Snodgrass and M. Winslett,
editors, Proc. 0/ ACM SIGMOD, pages 313-324,
Minneapolis (Minnesota, USA), 1994.

[9] G. Oe Giacomo and M. Lenzerini. Boosting the cor­
respondence between description logics and pro po­
sitional dynamic logics. In Proc. 0/ AAAI-94, pages
205-212. AAAI Press/The MIT Press, 1994.

[10] G. Oe Giacomo and M. Lenzerini. What's in an
aggregate: Foundations for description logics with
tuples and sets. In Proc. 0/ IJCAI-95, 1995. To
appeaL

[11] R. RuH. A survey of theoretical research on typed
complex database objects. In J. Paredaens, editor,
Databases, pages 193-256. Academic Press, 1988.

[12] R. B. RuH and R . King. Semantic database
modelling: Survey, applications and research is­
sues. ACM Computin9 Surveys, 19(3):201-260,
Sept. 1987.

[13] C. Leduse and P. Richard. Modeling complex struc­
tures in object-oriented databases. In Proc . 0/
PODS-S9, pages 362-369, 1989.

[14] M. Staudt, M. Nissen, and M. Jeusfeld. Query by
dass, rule and concept . J. 0/ Applied Intelligence,
4(2):133-157, 1994.

[15] W. A. Woods and J. G. Schmolze. The KL-
ONE family. In F. W . Lehmann, editor, Semantic
Networks in Artificial Intelligence, pages 133-178.
Pergamon Press, 1992. Published as a special is­
sue of Computers fj Mathematics with Applications,
Volume 23, Number 2-9.

Knowledge Representation Concepts Supporting Business
Process Analysis

Hans W . Nissen
Informatik V

RWTH Aachen
Ahornstraße 55
52056 Aachen

Germany

Abstract

Modeling and analysing business processes
is a frequent job in professional consulting
projects, but adequate commercial tools or
even formal methods supporting this task
hardly exist. This paper reports about
the successful application of the knowledge
representation system ConceptBase to this
task. Based on generic modeling facilities
on the one hand and powerful query mech­
anism on the other ConceptBase is able not
only to represent and analyse the final com­
plex model but also to support and record
intermediate states together with transi­
tions between them. Our experience has
shown that a logic based knowledge repre­
sentation language is not inconvenient for
practical modeling tasks but even urgently
needed to handle large and complex models
in an adequate way.

1 Introduction

During the first KRDB workshop in 1994 a first con­
tact between the information systems group of Infor­
matik V at the RWTH Aachen and the consulting
firm USU was established. Now, at the second work­
shop in this series, we can report on a successful co­
operation project. Within this project the deductive
Dbject base manager ConceptBase [4] developed in
the group of Matthias Jarke was used to model and
reason about business processes.

Early phases of consulting projects concerning the
introduction of sophisticated information systems in­
clude the analysis of existing business processes to­
gether with the derivation of requirements as the
fundamental goal. For this task only rudimentary
tool support or fragments of formal methods exist.
Almost all existing tools contain a fixed view of the
world, an extension of the supported concepts is not
possible. As a consequence, the tools prescribe the
analysis pr0cedure and not vice versa.

The aim of this project was to develop concepts
and a prototype for a comprehensive support of the
current USU-PFR method used to capture informa­
tion about the domain of interest. The result should
be easy to use and to understand , such that also cus-

Georg V. Zemanek
USU Softwarehaus

Unternehmensberatung GmbH
Spitalhof

71693Möglingen
Germany

tomers are able to use it, and on the other hand be
powerful enough for a convincing analysis.

The next section describes the USU method to
business process modeling together with some of the
arising problems in tool support. The knowledge
representation formalism Telos is introduced in sec­
tion 3. Section 4 presents the application of Telos
and ConceptBase to this task while the last section
summarizes our experiences.

2 The USU Method to Business
Process Modeling

32

Requirements are captured from multiple, so me­
times unforeseen perspectives: content and structure
analysis of existing documents, interviews with indi­
viduals describing their current situation and wishes,
informal textual or visual conceptual models devel­
oped in planned or unplanned meetings of stake­
holder groups, reverse analysis of existing systems,
or goal analysis from a business or individual per­
spective. The study of each of these sources may lead
to new questions, to be answered from new sources
until a somewhat coherent picture of requirements
emerges.

A typical USU consulting project follows the so
called PFR method (Analysis of Presence and fu­
ture Requirements) [1] The aim of this method is to
generate a shared and agreed understanding of the
current business processes, the problems, and a first
vision of the target system. The main part consists
of two phases.

In a cooperative fashion a set of involved persons
generate in a first phase a rough overview of the ex­
isting processes (mostiy in terms of information ex­
change among o'rganisational units). Based on the
result of the first phase people working within the
identified units describe in a second step in detail the
sequence of their activities together with relation­
ships to other persons in the organisation. This step
has the goal of testing the initial vision against the
existing and expected organizational context, and to
elaborate it, both in terms of deepened understand­
ing and in terms of more formal representations (e.g.
in the form of activity sequences, data flow models,
entity relationship diagrams or object models). This
step also includes an analysis of exchanged media in
order to capture hints for further process optimiza-

tion.
From a representational viewpoint, the PFR

methodology comprises a set of source perspectives
as captured in the first two steps, and a set of result
perspectives which represent the delivered require­
ments (with the intent of presenting them to users
or to use them in subsequent design tasks). The
details of these perspectives may change with the
individual customers and projects

The source perspectives are:

• The information exchange between organisa­
tional units. This perspective aims to produce
a visual overview of the current or future situ­
ation inc1uding the identification of weak spots
of the process under investigation. It is repre­
sented in an informal collage style employing a
fixed set of graphical symbols and pictograms.
Although its semantics is a bit vague, it provides
a valuable overview of the current situation and
its limitations. This representation is not only
used to produce a picture of the current situa­
tion, but also to visualize a first version of the
target conception.

• The individual activity sequence of stakehold­
ers. This perspective is captured for each stake­
holder by individual interviews and describes in
form of a detailed fiow chart the sequence of ac­
tivities, the required and produced information,
and inter-relationships with other stakeholders.
In the same way information from already ex­
isting workfiow documents, as, e.g., the quality
management handbook, is represented.

• The structure of exchanged media. This per­
spective identifies the pieces of information that
reside on forms, documents and other kinds of
media that are exchanged between stakeholders
resp. organisation al units. This breakdown of
a medium into the pieces of information it car­
ries is necessary for a detailed analysis of the
activities performed by stakeholders.

Cross-perspective analysis applies these source
perspectives and mainly consists of a comparison of
the perspectives to detect discrepancies, modeling
errors, gaps, and properties of the business process.
The results of this comparison activity guide further
interviews to c1arify the inconsistencies and to com­
plete the models. During these changes in individual
perspectives, the corresponding derived knowledge
about the confiiGts has to be maintained, as old con­
fiicts may disappear and new problems may surface.
USU's experience in applying this method to a large
number of projects has shown that an analysis by
hand is a time-consuming and error-prone task . A
supporting tool should therefore

• represent the information from all perspec­
tives in a natural way (which may be different
from customer to customer or from project to
project) such that they can be easily communi­
cated to stakeholders,

• enable the comparison of diagrams ·represented
according to different (semi-) formal notations to
detect discreparencies, modeling errors, gaps,

33

etc., and maintain the detected relationships
over time,

• be able to automatically generate function­
oriented and data-oriented perspectives on the
provided information to be used as a starting
point in subsequent analysis and design steps.

Use of existing CASE tools proved unsatisfactory
for these tasks, as they were too rigid in their hard­
coded consistency analyses which were developed for
other purposes.

Frequently, the set of perspectives has to be cus­
tomized by aspects which are specific to a particular
project but do not occur sufficiently often to inc1ude
them in the standard methodology. Or a customer
organization uses an existing methodology in subtly
different ways than others .

What is needed, is a simple formalism which is
extensible to the needs of specific methodologies or
even application projects but still provides the for­
mal background for integrating all the perspectives
used. This combination of simplicity of basic formal­
ism, extensibility, and formal integratability proved
crucial to the success of ConceptBase.

3 The Knowledge Representation
Language Telos

In this cooperation we used the deductive object
manager ConceptBase . . ConceptBase is a prototype
system that is based on the knowledge representa­
tion language Telos [71. Telos is especially designed
to offer modelers the fiexibility to define and use
their particular understanding of the world, and to
relate this understanding to that by others. Telos of­
fers a simple generic data model that is extensible to
specific application needs and provides mechanisms
for perspective integration.

The kernel model of Telos consists of just two con­
cepts: nodes and links. To allow any kind of formal­
ization, we need a third concept, that of an asser­
tion . Finally, to talk about different notations, we
need at least one abstraction mechanism - c1assifi­
cation - which enables us to talk about c1asses and
their instances. The kernel of the Telos language is
just that. All other language facilities can be boot­
strapped from this kernel of Dodes and arcs, asser­
tions, and c1assification.

Tailoring Telos to specific application data models
is done by first embedding the structural regulations
of the language (i.e. its syntax) into Telos, second
giving the new I11.0deling constructs a formal seman­
tics by defining appropriate rules and constraints,
and third introducing the diagrammatic presenta­
tion of the language by assigning graphical type de­
scriptions to the modeling constructs. In this sec­
tion we concentrate on the structural and semantic
extensibility.

Structural Extension. The infinite levels of
c1assification available in Telos enable the creation
of (meta) models. Such a meta model extends the
admissible set of modeling constructs to the mod­
els considered on an abstraction level lower than the
meta model. This technique can be used to inte­
grate the structural part of other modeling languages

with

~
needs

Agent
generates

I Medium I

performed_~y give contains

input ~
__________ ~~~: Data

output

u
Figure 1: The Telos meta model for the PFR analy­
sis method

and to make the modeling concepts of that language
available. The meta model acts then as a conceptual
model of the structural part (syntax) of the modeling
technique.

Semantic Extension. Most implemented ap­
proaches to meta modeling cover the structural part
well [6; 9] but offer semantic extension only within
a predefined set of constraint types (e.g. cardinality
constraints). Telos assertion objects make it possi­
ble to specify the semantics of language extensions as
part of the corresponding meta model. The formal
behavior, defined in the form of integrity constraints
and deductive rules, can be directly attached to the
corresponding class definition. In ConceptBase, se­
mantic extensibility is assisted by so-called meta for­
mulas [5]. We allow formulas to make statements
across several instantiation level. Thus, they are able
to specify the behavior of objects which reside two
or more instantiation levels below the objects of the
meta model.

4 Extension of Telos Towards the
PFR Method

The meta model shown in figure 1 was derived from a
cumulative analysis of the perspectives typically dis­
cussed in USU's RE projects. By emphasizing the
relevant objects in the meta model, we show in the
following how the different perspectives described in
section 2 are captured in this meta model. Based on
this description, we also present a number of query
classes for analyzing confiicts among these perspec­
tives. For each of these query classes, a set of possi­
ble explanations and related courses of action have
been developed in order to help USU analysts in con­
fiict resolution.

The meta model covers all PFR source perspec­
tives. Figure 2 presents the individual perspectives
and also visualizes the overlaps of them. Part (a)
highlights the part of the meta model used to rep­
resent the information exchange between organisa-

with s~
I Agent I I Mediuml

(a)

I Agent I I Medium

performed_by]'"";"
~ctiVit~ input B B I Data

output

Us (C) (b)

Figure 2: The PFR perspectives within the meta
model

tional units, as captured in the "collage" of the ini­
tial workshop We model an organisational unit as an
abstract Agent who supplies another agent wi th a
Medium. The earliest version of the meta model had
this simply as a data fiow but, observing the partic­
ipants of the first pilot project, we recognized that
agents do not really exchange information, but the
medium that act as the data or information carrier.
A medium can be something persistent, like a piece
of paper, a form or a disk, or a transient thing like
the voice that carries words.

The model in part (b) therefore represents the
structure of exchanged mediaby explicitly distin­
guishing the Medium and the Data it contains. This
distinction is essential to talk about phenomena such
as empty and completed forms, reading from and
writing to a medium, replicating the same piece of
data on multiple media manually or automatically,
and agents that get a medium but perform no ac­
tivity that needs or produces any data located on
that media. For example, one project revealed that
the same data was captured and re-captured several
times in a workfiow, with very good and expensive
quality controls, except in the last step! Here, the
meta model helped to explain why there was bad
quality despite high quality control costs.

The conceptual model of the individual activity
sequence of stakeholders is shown in part (c) . An
Activity is performed..by an Agent . A partial
order on activities (workfiow) is expressed by the
follows relation. An activity is an atomic action
that takes some information or Data as input and
generates new Data as output . Our semantics of the
output relation is very rigorous: The activity must

. create this data for the first time, i.e. no other ac­
tivity can also create this data. Every piece of data
is created exactly once. The motivation behind this
is that the data once created gets never lost.

34

As indicated in the description above, the perspec­
ti ves are strongly interrelated by overlaps and re­
dundant information . The USU application projects
identified more than 70 constraints describing the
consistency of the captured information. This in-

dudes consistency of knowledge within an individ­
ual perspective as weil as the consistency between
different perspectives.

In Telos, we can formally indude consistency
checks by attaching integrity constraints to the ap­
propriate objects of the meta model. As a conse­
quence, the system will reject every update that vio­
lates one of these constraints. This rigid consistency
enforcement strategy is not weil suited for RE work­
ers: The distributed knowledge acquisition process
and the overlapping perspectives lead to numerous
conflicts, which then always have be solved before
inserting new information into the knowledge base.
This delay harn pers the analyst and the whole acqui­
sition and analysis process. It also forces perspective
reconciliation to take place outside the system, and
without traceability.

In contrast, Telos query dasses offer a more flex­
ible way to analysis and enforcement. Queries are
represented as dasses (i.e they are first dass objects
in a Telos model) and the answers become the virtual
instances of that dass. Applied to our problem, the
answers to the query are interpreted as consistency
violations .

USU did not only formulate queries to detect er­
rors within and between perspectives, but also to
analyse the properties of the finaBy reconciled busi­
ness process model. This indudes questions like
"What is the trace of form X305 ?", to detect the
reason for the long handling time of the form X305.
All together USU produced over 80 query dasses. To
further support the analyst, we developed guidelines
for applying the queries. For each query dass, they
indude a set of possible answer interpretations in
the light of business processes as the application do­
main together with appropriate repair suggestions.
In addition, we established a sequence of the queries
that proved to be reasonable within our experiment
projects.

4.1 Some Analysis Examples
In this subsection we present some concrete exam­
pies of query classes and answer interpretations. We
first give abrief to the syntax of query dasses: A
query dass is formulated in the Telos frame syntax,
and has the following form:

QueryClass <name> isA <superclasses> with
attribute

<ans wer attributes>
constraint

<condition>
end

We can distinguish four important parts:

1. The name of the query class is given by <name>.

2. The <superclasses> part specifies the super­
dasses of the query dass. The set of possible
answer objects of the query are then restricted
to the common instances of the superdasses. ·If
this part is omitted, Obj ect be comes the super­
class which enables aB objects of the knowledge
base to join the answer set.

3. The <answer attributes> part defines the at­
tributes of the answers to the query. The at-

35

tributes either already exist in the knowledge
base, or are deduced du ring query evaluation.

4. The <condi tion> part contains the query con­
dition which can be an arbitrary dosed formu­
lar. The symbol this used within the condi­
tion refers to potential answer objects, i.e., the
instances of the superdasses.

Analysis of a single perspective
Consider the activity sequence perspective. The
query dass below realizes the constraint that data
can only be used by an activity (indicated by the
input relation) after it was created (via the output
relation). The query deduces data that are used as
input before they are produced.

QueryClass Data_UsedBeforeProduced isA Data
with attribute

early_user : Activity
constraint

end

c : $ (early_user input this) and
(producer output this) and

(producer trans_follows this) $

The query dass uses the transjollows relation,
which denotes the transitive dosure of the follows
relation and is deduced by a Telos recursive rule.
The answer can be interpreted as

1. an error, if the interviewed agent indicated a
wrong sequence.

2. an error, where the interviewer misinterpreted
a statement and modeled an input relation to
Data instead of a gives relation to Medium.

3. nothing else, since this model represents areal
existing and running process where data cannot
be used before it is produced.

Analysis of interrelationship among multi­
ple perspectives
In the consulting projects we often detected contra­
dictions between the high-level information exchange
perspective acquired mainly from managers and the
detailed activity sequence perspective captured from
the real working agents. An often violated interrela­
tionship states that the medium flow among agents
must correspond to the data demand of agent's ac­
tivities, i.e. the supplied media must contain some
data that is required by an activity and, conversely,
all required data must be contained on some deliv­
ered medium. The following query dass implements
the first part and deduces all media that is supplied
to an agent who performs no activity that needs any
data carried by that medium.

QueryClass NotUsedMedium isA Medium with
attribute

not_user : Agent
constraint

c : $ (supply in Agent!supplies)
and (supply to not_user)
and (supply with this)
and not exists (

(action performed_by not_user)
and (this contains info)
and «action input info)

or (action output info))) $
end

The answers are the media together with the agent
who gets the media but does not use it. They can
be interpreted as follows:

1. There exists amismatch between the captured
perspectives: the management and the concrete
employees view the process in different ways.
Further clarification interviews are necessary to
reconcile the contradicting views.

2. The model is correct and the agent actually gets
and sends the medium without any interest on
the data. In this case the business process can
be further improved by optimizing the media
flow .

3. The model is correct and the business pro­
cess is ok, but the activity that works on the
medium does not require any information from
the medium.

In practice, we often observed the problem de­
scribed in 2. As an example of interpretation 4, a
secretary collected the monthly reports of the em­
ployees of a department to give them as one piece to
the manager of that department.

5 Conc1usions
The applicability of ConceptBase and Telos to the
task of business process modeling and analysis has
been successfully proved within this project. We de­
veloped a specialized knowledge representation tool
containing an adequate meta model, over 80 analysis
queries together with predefined ans wer interpreta­
tions and guidelines how to use this system within
further projects. The world model (i.e., the meta
model) can easily be tailored to specific applica­
tion needs, and the modeler can individually decide
when to use which predefined queries far checking
and analysing purposes. It exactly fits the methods
used in the company, without precluding future evo­
lution of these methods or customization to individ­
ual projects. The information exchange, document
structure, and activity sequence can be represented
within one meta model; a number of useful obser­
vations about the practicality of modeling features
(e.g. distinguishing media and data, granularity of
modeling required) were made.

An extensible formal language like Telos is able
to provide a valuable complementary support for in­
formal, teamwork-oriented methods . Since we can
tailor the language to the specific application needs,
we must also be able to formulate specific analysis
queries - a fixed set of predefined queries as pro­
vided by most CASE environments will not fulfill
this. This requires a powerful declarative assertion
and query language based on a well-defined formal
semantics.

The experiences confirm the usefulness of require­
ments freedoms and explicit tolerance of inconsisten­
cies within and across multiple viewpoints, as pos­
tulated by researchers such as Balzer [2], Feather
and Fickas [3], Finkelstein and colleagues [8] . This
may seem in contrast to the old paradigm of consis­
tently refining an initially consistent specification -

the only known way to create provably correct soft­
ware. However, recall that we are concerned with
an early phase of analysis; its end result should still
be consistent so that the consistent refinement ap­
proach may still be used in conjunction with our
approach.

Conflicts during analysis force discussions and in­
crease the understanding of the domain under in­
vestigation. Exactly for that reason we developed a
meta model that potentially includes a lot of con­
flicts. A systematic way of developing such meta
models in general is a subject of further research.

References
[1] P. Abel, "Description of USU-PFR analysis

method", Technical Report USU, 1995 .

[2] R. Balzer. Tolerating inconsistency. In Proc.
of the 13th IGSE, 1991.

[3] M.S. Feather and S. Fickas. Coping with re­
quirements freedom. In Proc. Intl. Workshop
Development 0/ Intelligent Information Sys­
tems, 1990.

[4] M. Jarke, R . Gallersdoerfer, M. Jeusfeld, M.
Staudt, S. Eherer" ConceptBase - A Deductive
Object Manager for Meta Databases" Journal
of Intelligent Information Systems 4(2), 1995.

[5] M.A. Jeusfeld. Update Gontrol in Deductive
Object Bases. PhD thesis, University of Passau
(in German), 1992.

36

[6] K . Lyytinen, P . Kerola, J. Kaipala, S. Kelly,
J. Lehto, H. Liu, P. Marttiin, H. Oinas­
Kukkonen, J . Pirhonen, M. Rossi, K. Smolan­
der, V.-P. Tahvanainen, and J .-P. Tolvanen.
MetaPHOR: Metamodeling, principles, hyper­
text, objects and repositories. Technical Re­
port TR-7, University of Jyväskylä, December
1994.

[7] J. Mylopoulos, A. Borgida,M. Jarke, and M.
Koubarakis, " Telos: a language for represent­
ing knowledge about information systems" , in
A GM Trans. Information Systems 8(4), pp.
325-362, 1990.

[8] B. Nuseibeh, J. Kramer, and A. Finkelstein.
Expressing the relationships between multiple
views in requirements specification. In Proc.
of IGSE 93, 1993.

[9] M. Saeki, K. Iguchi, K. Wen-yin, and M. Shi­
nohara. A meta-model for representing soft­
ware speG,ification & design methods. In
N. Prakash, C. Rolland, and B. Pernici, edi­
tors, Proc. 0/ the IFIP WGS.1 Working Gon­
/erence on Information System Development
Process, Corno, Italy, 1-3 September 1993.

[10] G.V. Zemanek, "Project USU-ConceptBase:
The results" Techni~al Report USU, 1995.

DL Techniques for Intensional Query Answering in OODBs

Sonia Bergamaschi* and Claudio Sartori° and Maurizio Vincini*
CIOC - CNR

* Dipartimento di Scienze dell'ingegneria, Universita di Modena
Via G. Campi 213/B, 1-41100 Modena, Italy

oDipartimento di Elettronica, Informatica e Sistemistica, Universita di Bologna
Viale Risorgimento 2, 1-40136 Bologna, Italy

e-ITlail: { sbergamaschi, csartori}@deis.unibo.it

1 Introduction
It is weil known that in general, a query issued on a
database can be rewritten in many ways maintain­
ing, as a result, the same set of items (say, records or
objects, depending on the data model) . Such rewrit­
ing has been devised with the main purpose of query
optimization, i.e. to minimize the execution costs.
Traditionally, database theory focused on algebraic
rewriting, which depends only on formal proper­
ties of the data model and manipulation language.
Some works introduced also the idea of sem an­
tic query optimization[Shenoy and Ozsoyoglu, 1987;
Beneventano et aI., 1993; Beneventano et al. , 1994;
Ballerini et al. , 1995], which rewrites queries also
on the basis of semantic problem-specific knowledge,
such as integrity constraints.

In this paper we exploit the idea of rewriting a
query not only for the semantic optimization task, as
proposed by the authors in [Beneventano et al., 1993;
Beneventano et al., 1994), but also for another query­
related task: intensional query answering. In partic­
ular, we focus on Object Oriented Databases and
give a general definition of semantic transformation
and of semantic expansion of a query. Then we will
show how this concepts can be exploited in inten­
sional query answering.

2 Semantic transformation and
expansion of a query

Actual database schemata are, in fact, given in terms
of base dasses (i.e. primitive concepts) while further
knowledge is expressed with Integrity Constraints
(IC) rules, that is if then rules on the attributes of a
database schema (i.e., roughly a Tbox of a Termino­
logical Knowledge Representation System) to guar­
antee data consistency. In general, integrity con­
straints go beyond data model expressiveness and
are expressed in various fashions, depending on the
database data model: e.g. subsets of first order logic,
inclusion dependencies and predicates on row values,
procedural methods in 00 environments. In this
context, we can say that a query Q' is a semantic
transformation of the query Q if it gives the same
result of Q for any database instance which satisfy
the given IC rules.

In [Beneventano et al., 1993; Beneventano et al.,
1994] the authors proposed a method for semantic

query optimization, applicable to the dass of con­
junctive queries, based on two fundamental ingre­
dients . The first one is the ODL description logics
proposed as a common formalism to express: dass
descriptions, a relevant set of IC rules and queries
as ODL types. The second one is the subsumption
inference technique exploited to evaluate the logical
implications expressed by IC rules and, thus, to pro­
duce the semantic expansion of a given query. The
semantic expansion of a query is a semantic trans­
formation of a query which incorporates any possible
restriction which is not present in the original query
but is logically implied by the query and by the over­
all schema (classes + IC rules).

ODL (Object Description Logics) was proposed
in [Bergamaschi and Nebel, 1994) and extends the
expressiveness of implemented description logics lan­
guages in order to represent the semantics of com­
plex object data models (CODMs), recently pro­
posed in the areas of deductive databases [Abite­
boul and Kanellakis, 1989) and object oriented
databases [Leduse and Richard, 1989). In partic­
ular, class types and complex value-types are dif­
ferentiated. They are based on base types: integers.
strings, reals, and are constructed with the recursiVE
use of the set and record constructors. The present
version of ODL allows the declarative formulation 01
a relevant set of database integrity constraints . In
particular, ODL includes quantified path types and
IC rules. The former extension has been introduced
to deal easily and powerfully with nested structures.
Paths, which are essentially sequences of attributes.
represent the central ingredient of OODB query lan­
guages to navigate through the aggregation hierar­
chies of classes and types of a schema. In particu­
lar, we provide quantified paths to navigate through
multi-valued attributes. The allowed quantificatiom
are existential and universal and they can appeal
more than once in the same path.

Viewing a database schema as a set of ODL inclu·
sion statements allows the declarative formulatior.
of another relevant set of integrity constraints, ex­
pressing if then rules whose antecedent and conse·
quent are ODL virtual types (i.e. defined concepts)
For example, it is possible to express correlatiom
between structural properties of the same dass 01

sufficient conditions for populating subdasses of c
given dass . A generalized database schema can bE

thus defined as a set of inclusion statements between
general ODL types.

A relevant set of queries, corresponding to the so
called single-operand queries [Kim, 1989], can be ex­
pressed as virtual ODL types. Subsumption co m­
putation, incoherence detection and canonical form
generation proposed in [Bergamaschi and Nebel,
1994] can be used to produce the semantic expan­
sion EXP(Q) of a query Q. Following the approach
of [Shenoy and Ozsoyoglu, 1987], we perform the se­
mantic expansion of the types included at each nest­
ing level in the query description. Type expansion is
based on the iteration of this simple transformation:
if a type implies the antecedent of an IC rule then
the consequent of that rule can be added. Logical
implications between these types (the type to be ex­
panded and the antecedent of a rule) are evaluated
by means of subsumption computation [Bergamaschi
and Nebel, 1994].

Semantic expansion is an iterative process which
produces, at any step, a query which is semantically
equivalent to the original one. During the transfor­
mation, we compute and substitute in the query, at
each step, the maximal subsumed classes, among the
classes of the schema, satisfying the query. There­
fore, each of the inter mediate results of semantic
expansion is a valid semantic transformation of the
query and is a candidate for the intensional answer .
The result of semantic expansion of a query coin­
cides with the lowest query in the taxonomy among
all the semantically equivalent ones [Beneventano et
al., 1993].

In general, semantic expansion can also lead to
introduce redundant terms, i.e. terms wh ich are
logically implied by other terms. In the literature,
this problem is generally addressed as constraint re­
moval, that is the removal of the constraints which
are logically implied by the query. We can then de­
tect in the expanded query, again by subsumption,
all the eliminable factors and, eventually, eliminate
them [Ballerini et al., 1995].

3 DL techniques for intensional
query answering

An overview of the various intensional query an­
swering techniques is given in [Motro, 1994]. On
the basis of that classification, intensional query
answering can be evaluated according to three
main features: intensional-only (pure) versus inten­
sional/ extensional (mixed); independence from the
database instance versus dependence; completeness
of the characterization of the extensional answer.

In general, a query is expressed as a class of the
schema (target class) restricted with additional se­
lection predicates, which include conditions on ob­
jects of the aggregation rooted at the target class.
The manY queries obtained by semantic expansion
will differ from the original one either for the target
class or for'the predicates. Each transformed query
is a possible intensional answer, which is pure, since
it does not contain reference to any extensional el­
ement, and also independent, since it is computed
-according to general IC rules which hold in any da­
tabase state. Thus it is also intension-equivalent*.

For example, in a database with an integrity con­
straint stating that all employees who lead a de­
partment are managers, a query on the employ­
ees who lead a department and earn more than $
50000 is equivalent to a query on the managers who
earn more than $ 50000. Conversely, in a database
with an integrity constraint stating that all engineers
earns over $ 40000, a query on the engineers who
earn over $ 30000 is equivalent to a query on all the
engineers.

When several different intensional answers are
available, a main issue is to determine which ans wer
is the "best". We give the following criteria for the
best answer:

1. the target class is the most specialized among
the classes of the schema that can be substituted
for the original one in the query, therefore it
gives a concise description of the answer which
is more informative than the original query;

2. the classes included in the query predicates are
the most specialized satisfying the query, giving
a more significant, though semantically equiva­
lent, predicate;

3. redundant predicates are removed as a contri-
bution to conciseness.

38

The three above cri teria are satisfied by the applica­
tion of semantic expansion and constraint removal.
In particular, according to the criterion 1 a query
like which are the X such that PI and ... and Pn
gets the answer all the X' such that PI and ... and
Pm, where X' is subsumed by X and m :::; n. If we
consider the first example above, we substitute the
target class "employees", which can contain many
thousands of items, with the class "managers" which
can contain few hundreds of items and the answer,
though purely intensional characterizes the result in
terms of a more restricted class than the original
query.

As far as completeness of intensional characteri­
zation is concerned, our rewriting method is exact,
therefore each rewrited answer is a complete charac­
terization of the original query.

With reference to the completeness of our method,
which is based on subsumption, it is weil known
that it is greatly influenced by the complexity of
the knowledge representation model or, in our case,
of the data and integrity constraint definition lan­
guage. If the language does not allow completeness
of subsumption, the intensional answer we get is not
necessarily the most concise.

Given a quer)" Q, subsumption can also be used
to compute its Greatest Lower Bound (GLB) and
Least Upper Bound (LUB) among the classes of the
schema. For simplicity, let us suppose in the follow­
ing that the two bounds are unique. In this case
LU BQ ;;;) Q ;;;) G LBQ and each bound can be seen
as a partial intensional answer to the query.

A different approach could be the generation of an
intensional answer which is equivalent to the origi­
nal one only for the present database instance. For
example, let us suppose that, for a given database
state, a query on the employees who earn between
$30000 and $50000 return only employees who are

engineers. In this case, the answer "all the engi­
neers" is pure and dependent, i.e. it is extension­
equivalent to the original one. Unlike the previ­
ous case, this method does not avoid data access,
but can be driven by schema knowledge. For ex­
ample, given the query Q and its bounds LU Band
G LB, the query Q is extensionally-equivalent to B
if LU BQ - GLBQ = 0. This result can be obtained
without accessing the extension if the database sys­
tem provides an efficient way to deal with classes
cardinali ties.

Hybrid reasoning can be used to obtain mixed in­
tensional answers . In this case, the aswer contains
intensional concepts and lists of positive and nega­
tive extensional items. Given an algorithm for the
instance problem, which can decide if an object be­
logns to a given class, the answer to a query Q can
one of the following:

LUBA {i},i 2 , .. . ,in }

where i j E {LUBQ - GLBQ} /\ ij rt. Q
u

where ij E {LU BQ - GLBQ} /\ i j E Q
For instance, the query "who earns more than

$30000" could get the ans wer "all the engineers ex­
te pt John Smith" .

The usability of this technique is obviously related
to the efficiency of the algorithm for the instance
problem, since it has to be computed many times.

As a final remark, we mentioned in the beginning
that the rewriting activity is based on a schema in­
cluding integrity rules. Of course, if more integrity
rules are available more rewritings are possible. For
the sake of intensional answers, one could apply data
mining techniques to discover new rules [Cercone
and Tsuchiya, 1993]. The rewritings made possi­
ble by these rules give answers which are dependent
from the present database state.

References
[Abiteboul and Kanellakis, 1989] S. Abiteboul and

P. Kanellakis . Object identity as a query lan­
guage primitive . In SIGMOD, pages 159-173.
ACM Press, 1989.

[Ballerini et al., 1995] J.P. Ballerini, D. Beneven­
tano, S. Bergamaschi, C. Sartori, and M. Vincini.
A semantics driven query optimizer for oodbs. In
A. Borgida, M. Lenzerini, D. Nardi, and B. Nebel,
editors, DL95 - Intern. Workshop on Description
Logics, pages 59-62, Roma, June 1995.

[Beneventano et al., 1993] D. Ben-
eventano, S. Bergamaschi, S. Lodi, and C. Sar­
tori. Using subsumption in semantic query opti·
mization. In A. Napoli, editor, IJGAI Workshop
on Object-Based Representation Sys{ems - Gham­
bery, France, 1993.

[Beneventano et al., 1994] D. Ben-
eventano', S. Bergamaschi, S. Lodi, and C. Sar­
tori . Terminological logics for schema design and
query processing in oodbs. In KRDB'94 - Rea­
soning about Structured Objects, Knowledge Rep- -
resentation Meets Databases, Saarbruecken, Sept.,
1994.

39

[Bergamaschi and Nebel, 1994] S. Bergamaschi and
B. Nebel. Acquisition and validation of com­
plex object database schemata supporting multi­
ple inheritance. Applied Intelligence: The Inter­
national Journal 0/ Artificial Intelligence, Neural
Networks and Gomplex Problem Solving Technolo­
gies, 4:185- 203, 1994 .

[Cercone and Tsuchiya, 1993) Nick Cercone
and Mas Tsuchiya, editors. IEEE Transactions
on Knowledge and Data Engineering, Vol.5, N.6.
IEEE, 1993. Special issue on Learning and Dis­
covery in Knowledge-Based Databases.

[Kim, 1989) W. Kim . A model of queries for object­
oriented database systems. In Int. Gonf. on Very
Large Databases, Amsterdam, Holland, August
1989.

[Lecluse and Richard, 1989]
C. Lecluse and P. Richard. Modelling complex
structures in object-oriented databases. In Symp.
on Principles 0/ Database Systems, pages 362-
369, Philadelphia, PA, 1989.

[Motro, 1994J A. Motro. Intensional answers to da­
tabase queries. IEEE Trans . on Knowledge and
Data Engineering, 6(3):444-454, 1994.

[Shenoyand Ozsoyoglu, 1987] S. Shenoy and
M. Ozsoyoglu. A system for semantic query op­
timization. AGM-SIGMOD, pages 181-195, May
1987.

Using schema information for querying databases

Iztok Savnika
, Zahir Tarib , Tomaz MohoricC

aComputer Systems Department, Jozef Stefan Institute, Slovenia
bSchool of Information Systems, Queensland University of Technology, Australia

CFaculty of Electrical Eng. and Computer Science, University of Ljubljana, Slovenia

Abstract

We propose the set of operations for query­
ing the conceptual schema of an object­
oriented database. The operations form
the basis of an algebra for objects called
OVAL. They are defined using the con­
structs introduced for our formalization of
the object-oriented database model. The
operations allow a user to query: (i) asso­
ciations among individual objects, (ii) re­
lationships between individual objects and
dass objects, and (iii) relationships among
dass objects themselves.

1 Introd uction

Object-oriented database model provides a rich set
of modeling constructs that make the conceptual
schema of an object-oriented database more expres­
sive than relational schemas. We observe that, com­
paring a relation al database to an object-oriented
one, some information about the modeling environ­
ment has been moved from the data part to the
schema part of the database. Hence, some aspects of
the modeling environment can be, using an object­
oriented database model, represented and stored in
a database by means of a database schema. Conse­
quently, the schema part of an object-oriented da­
tabase should be treated in a similar manner as the
data part of the database: it is, like ordinary data,
the subject of the user's inquiry and modification.

In general, there are two types of queries which
relate to the conceptual schema. Firstly, the user
should be able to query the relationships between
the instances and the conceptual schema of a da­
tabase. Secondly, due to the frequently very com­
plex conceptual schema, a user should be able to
query it in order to obtain a precise mental image of
the structure and the behavior of stored information
[10].

In this paper we present the operations of the al­
gebra for oojects called OVA L, which are used for
querying conceptual schema. The following section
briefly overviews the work related to OVAL. Next,
the basic constructs used for the formalization of the
OVAL's data model are defined in Section 3. The ba­
sic operations of the algebra OVAL are presented in

40

Section 4. Finally, the conduding remarks are given
in Section 5.

2 Related work
The constructs that recent query languages provide
for querying database schema are briefly presented
in this section. To our knowledge, recently proposed
database algebras (e.g., Query algebra [13], Excess
[14] or Complex Object Algebra [1]) do not indude
such facilities.

Firstly, most recent query languages (e.g., query
languages of ORION [9] or O2 DBMS [4]) provide
the constructs for using the dass extensions [5] in
queries. In [5] Bertino proposes the use of operator
CLASS_OF, which returns the dass of an object at
run-time. The resulting dass can be further used
in a query. Next, ORlON [9] provides a ~et of op­
erations for modifying database schema at different
levels: modification of inheritance, dass properties,
methods and inheritance hierarchy of dasses.

In [8] Kifer and Lausen propose a dedarative lan­
guage based on logic, called F-Logic, which indudes
the capabilities for querying database schema. The
relationships between instances and dasses, which
are based on the isa hierarchy of database objects,
can be in F-Logic queried using the predefined pred­
icates for testing dass membership and sub dass re­
lationship. Further, F-Logic provides the capabili­
ti es to explore the properties of individual and dass
objects by treating attributes and methods as ob­
jects that can be manipulated in a similar manner
to other database objects. In this way, some types
of non-trivial relationships among objects such as
_the analogy and the similarity relationships can be
expressed in F-Logic.

Next, the quer'y language XSQL [7] indudes a set
of constructs for querying database schema. XSQL
queries can indude variables that range over dass
objects. Therefore, dasses can be queried on the
basis of their properties and the properties of their
instances . The XSQL operation subclassO f can be
in this context used to inquire about the relation­
ships among dass es which are based on the inher­
itance hierarchy of dasses . In a similar manner to
F-Logic, XSQL also treats attributes and methods
as objects that can be _queriedj hence, a user can
inquire about the properties of individual and dass
objects.

Finally, in [10] Papazoglou suggests a set oE high­
level operations Eor expressing intensional queries
which aid a user to understarid the meaning oE stored
data. The proposed operations can express the Eol­
lowing types oE queries: relate individual objects to
dasses, browse the isa hierarchy oE dasses, inquire
about the dass properties described using attributes,
compute associations among dasses which are not
related by isa relationship, locate objects on the sim­
ilarity basis and inquire about the dynamic evolution
oE objects represented by roles.

3 Data Model of OVAL
The algebra Eor objects OVAL is tightly related to its
data model which provides, in addition to the basic
constructs oE the object-oriented database model [3],
an uniEorm view oE the database by treating dasses
as abstract objects.

This section overviews the basic Eeatures oE our
Eormalization oE the object-oriented database model
which serve as the platform Eor the development oE
the algebra OVAL. More details about the Eormal­
ization can be Eound in [11].

3.1 Objects and Classes
An object is defined as a couple < i, v >, where i is
the object identifier and v its corresponding value.
An object identifier (oid) is a reEerence to an object,
and an object value represents the-state oE the object,
called an o-value [2]. The o-value is either: (i) a con­
stant, (ii) an oid, (iii) a set oE objects {Ol, " . , on},
where Oi-S represent o-values, or (iv) a tuple object
defined as [Al: 01, ... , An : OnL where 0i-S represent
o-values and Ai-s are attribute names.

The data model supports two types oE objects:
class objects and individual objects. The dass object
represents an abstract concept and acts as a rep­
resentation oE a set oE objects which share similar
static structure and behavior. The interpretation oE
a dass object is the set of objects that are called the
members oE a given dass object. The interpretation
oE dass c is denoted by 1(c). Furthermore, the in­
rerpretations oE two dasses are non-overlapping sets
oE object identifiers. ThereEore, an individual object
has exactly one parent dass object.

The set oE dasses Erom a given database is or­
ganized according to the partial ordering relation­
ship is_a_subclass, which we denote ~i' The par­
tially ordered set oE dasses is extended to indude
individual objects. The member oE a given c1ass is
related to this dass by the relationship ~i' Formally,
oE 1(c) ~ 0 ~i c, where 0 represents an individual
object and c is a dass objeCt.

The inherited interpretation [2; 14] oE dass c, de­
no ted by 1*(c), indudes all instances oE dass c, i.e.
the members oE dass c and the members oE its sub­
dasses. Formally, /*(C) = UCr:$,CACjEV

C
1(Cj),

where Vc denotes the set oE all dasses Erom a given .
database. '

3.2 0-Values and Types
A type is a pair in the form of (S; P), where S rep­
resents the structure of a set oE objects and P de­
seribes their behavior. This sub-seetion includes the

41

description of the structural part oE a type, which we
call static type. The behavioral part of a type is not
presented in this paper; its description can be Eound
in [11]. The static type can be: (i) a primitive type,
(ii) a reEerence type, (iii) a set-structured type and
(iv) a tuple-structured type.

The primitive types are: int, real and string. A
reEerence type is specified by a dass object. The
object identifier of the dass person, for instance,
denotes a reEerence type whose instances are reEer­
ences, i.e. object identifiers that are the elements
of the dass person interpretation. A set-struetured
type is defined as S = {S d, w here SI is again a
statie type. A tuple-structured type is in the form
oE S = [al : SI, .. . , an : Sn], where Ui-S represent
attribute names and Si-S are again static types.

The interpretation oE a static type is the set oE 0-

values, the strueture of whieh is defined by a given
type. The interpretation of the primitive type is
the set of constants oE that type. The interpreta­
tion of a reference type is defined using the in her­
ited dass interpretation. The interpretation of a tu­
pie struetured type is 1([al : Tl,,' " U : n : TnD =
{[al: OI, ... ,Un : On];Oi E 1(Ti),i E [Ln]}. Fi­
nally, the interpretation oE a set-structured type is
1({S}) = {s;s ~ 1(S)}.

In addition to the partial ordering relationship ~i,
a partial ordering relationship among o-values, de­
noted by ~o, is defined. We call it the relationship
more_specific. First, the partial ordering of statie
types is introduced . The partial ordering relation­
ship defined among types is usually called a subtype
relationship [14]. Intuitively, if type S is the sub­
type oE type T, then the type S is more speeifie than
(or refines) the type T. The referenee type TI is the
subtype of Tz whenever there exists the subclass rela­
tionship between TI and T2, i.e. Tl ~i T2. Next, the
type {St} is the subtype of {Sz}, iE SI is the subtype
of S2. Finally, [Al: Tl ... , A k : T k] is the sub type of
[Al: SI ... , An : Sn], iE k ~ n and Ti is the subtype
oE Si, where i E [Ln]. Again, as with the partially
ordered set of oids, the partially ordered set of types
is extended to indude the instances oE types. For­
mally, v E 1(T) ~ v ~o T, where T is a static type
and v is an o-value. The obtained partially ordered
set indudes all o-values from a given database.

In a similar way to the inherited interpretation
of classes, we define the inherited interpretation of
types. Given the type T, the inherited interpretation
oE the type T inc1udes the union oE interpretations oE
the type T and all its subtypes. Forma;lly, /* (T) =
UTj::$oTATjEVT 1(Tj), where VT denotes the set oE all
types Erom a given database.

Finally, the extended interpretation of structural
types is defined. The extended interpretation oE the
type T, denoted by 10(T), indudes all o-values that
are more specific than T. Formally, 1° (T) = {o; 0 ~o
T}. The extended interpretation is used to define the
semantics of OVAL variables.

4 Algebra for Objects
The algebra OVAL indudes two types oE operations:
model-based and declarative operations. The for­
mer are used for the manipulation of object prop-

of objects. Resulting objects indude the properties
which relate to all objects from the argument set.

The use of operation lub-set is presented in the fol­
lowing example. The presented expression first de­
termines the nearest common more general objects
of objects referenced by object identifiers: peter,
studenLassistant and jim. The members of the
resulted dasses are selected by the query. Note that
peter and jim are individual objects, while the oid
studenLassistant refers to the dass object.

{o; e E {peter, student...assistant, jim} .lub-set 1\ (6)
oE e.ext}

Equality
The algebra OVAL provides two types of equality
operations which reftect the features of the underly­
ing data model. The first operation is the identity
equality [13] denoted by the symbol" ==". Two in­
stances are identical if they have equal object iden­
tifiers. The second equality operation is the value
equality. It compares objects on the basis of their
values. We distinguish between two types of value
equality: camplete equalityand laeal equality.

The complete equality compares two instances by
eomparing the values of all operand components.
The operator is denoted by the symbol "=". The
loeal equality allows the eomparison of instanees on
the basis of the properties that pertain to the partie­
ular dass. This operation is denoted by "= / dass" .
To be able to eompare two instanees on the basis
of the properties of the dass, say C, these instanees
should inherit from the dass C. This, of course, does
not imply that they have the same parent dasses.
Let us present the use of local value equality by an
example.

Assume that we want to eompare two instanees
(il, [name:tone, age:40, works...at:ijs, salary:10000])
and (i2, [name:vanja, age:24, works...at:ijs, salary:
lOOOO,cour:{cl,c2}]). The first instanee is derived
from the dass employee, whereas the seeond one is
the member of the dass studenLassistant which is
a subciass of student and employee. These two in­
stanees are not value equal if all properties are eon­
sidered. However, they are value equal if the loeal
properties of the dass employee are eonsidered, i.e.
works_at and salary.

4.2 Declarative operations
The algebra OVAL indudes a set of declarative op­
erations whieh are intended for querying a database.
This set includes operations for: applying a query to
the set of objects, set filtering, object restructuring,
applying a query to the arbitrary nested component
of object and eompu.ting transitive dos ure of a set
of objects. The operations can be combined using
the composition operator and the higher-order oper­
ations to form more complex queries.

In the following sub-sections we present some of
the basic dedarative operations of OVAL. The ex­
amples of using these operations for querying data­
base schema are given.

The types of variables in queries are defined simi­
larly to C++ variable definitions. For instance, the
expression "T v;" defines the variable v of type T.

The semanties of variables is defined using the ex­
tended interpretation of types [0.

Apply
The operation apply(j) is used to evaluate a param­
eter function f on the elements of the argument set.
The parameter function f can be an attribute, an
operation or a query.

43

Let us present an example of using the operation
apply. The query deseribed below maps a set of
students into a set of student names. The identity
function id is used to identify the elements of the set
studs which is an argument of the operation apply.

{student} studs;
{string} str;

str = studs.apply(id->narne);

Selection

(7)

The operation select(p) is used for filtering an ar­
gument set of o-values using a parameter predicate.
The parameter predicate p specifies the properties of
selected o-values. It can be composed of o-values and
variables related by arithmetic operations, previ­
ously presented model-based operations and boolean
operations. Let us illusti-ate the use of operation
select for querying database schema using some ex­
amples.

The queries (3) and (4) are restated in the follow­
ing two examples to illustrate the use of poset com­
parison operations in the eontext of OVAL dedara­
tive operations.

{person} ps; (8)

ps = person.exts.
select(id < lecturer and

student_assistant =< id.class_of);

{person.val} pvs;

pvs = person.exts.
apply(id->val).
select(id < [manager:lecturer,

friends: {student} ,
lives_at:"Brisbane"]);

(9)

The following query illustrates the use of the Op­
eration lub-set. The set of instances of the dass
employee is filtered by seleeting the employees who
work for the Computer Systems Department and are
younger than 25. The operation lub-set than com­
putes the dosest common more general dasses of the
selected set of objects.

{employee} s;

s = employee.exts.
select(id->vorks_at = csd and

id->age < 25).
lub-set;

(10)

The use of local equality is illustrated by the query
(11) which selects student assistants that have the
properties that relate to their role of being employees
equal to the properties of an employee referenced by
the variable peter.

{student_assistant} s;
employee peter;

s = student_assistant.exts.
select(id.val =/employee peter.val);

Thple

(11)

The operation tuple(al : h, ... , an : / n) is a gen­
eralization of the relational projection. Given a set
of objects as an argument of the operation, a tuple
is generated for each object from the argument set.
Each component of the newly created tuple is spec­
ified by the corresponding tuple parameter which
indudes the attribute name ai and the parameter
query J;.

The query in the following example constructs the
tuple for every subdass of the dass person. Each
tuple is composed of the dass object identifier and
the value of the dass object.

{[pclass: person;
ptype: person. val]} ptypes;

ptypes person.subcl.
tuple(pclass: id.

ptype: id.val);

(12)

The tuple constructed for the dass student, for in­
stance, is (pclass:student, ptype:[name:string, age:
int,attends:{course}]]. Note that the role of opera­
tor subcl in the above query is similar to the role of
extension operator.

Group
The operation graup(a: j,b: g) is used for grouping
of o-values resulted from the query 9 evaluation with
respect to the result of the "key" query j. Therefore,
the result of evaluating the operation graup(a : j, b :
g) on a set of o-values is a two column table, where
the first column, labeled a, stores the distinct values
of the query / evaluation, and the second column,
labeled b, indudes the corresponding values of the
query 9 evaluation.

In the following example the operation graup is
used for grouping the instances of the dass employee
with respect to their parent dasses .

{[class: employee.
emps: { employee }]} EmpGroups;

EmpGroups employee.exts.
group(class:id->class_of.

emps:id);

5 Concluding remarks

(13)

The operations of the algebra for objects called
OVAL, which are intended for querying database
conceptual schema, are presented in this paper.
These operations are called model-based operations
since they are based on the concepts introduced
for our formalization of the object-oriented database
model. As the consequence, a tight correlation be­
tween the database model and the algebra for objects
is established. Such correlation allows the algebra
to support all aspects of the underlying database
model.

References
[1] S.Abiteboul, C.Beeri, On the Power 0/ the Lan­

guages For the Manipulation 0/ Complex Ob­
jects, Verso Report No.4, INRIA, 1993

[2] S. Abiteboul, P.C. Kanellakis, Object ldentity
as Query Language Primitive, AC:-'l SIGMOD
1989

[3] M. Atkinson et al. The Object-Oriented Data­
base Systems Manifesto, Proc. First Int'l Conf
Deductive and Object-Oriented Databases, El­
sevier Science Publisher B. V., Amsterdam,
1989, pp. 40-57.

[4] F.Banchilion, S.Cluet, C.Deobel, A Query Lan­
guage /or the O2 Object-Oriented Database Sys­
tem, Proc. 2nd Workshop on Database Pro­
gramming Languages, 1989

[5] E.Bertino et al, Object-Oriented Query Lan­
guages: The Notion and Issues, IEEE TKDE,
vol.4, No.3, June 1992

[6] P.Buneman, R .E.Frankel, FQL- A Functional
Query Language, ACM SIGMOD, 1979

[7] M.Kifer et al, Querying Object-Oriented
Databases, ACM SIGMOD 1992

44

[8] M.Kifer, G.Lausen, J.Wu, Logical Founda­
tions 0/ Object-Oriented and Frame-Based Lan­
guages, Technical Report 93/06, Dept. of Com­
puter Science, SUNY at Stony Brook

[9] W.Kim, et al, Features 0/ the ORlON Object­
Oriented Database System, 11th Chapter in
Object-Oriented Concepts, Databases and Ap­
plications, editor W.Kim

[10] M.P. Papazoglou, Unraveling the Semantics 0/
Conceptual Schemas, to appear in Comm. of
ACM

[11] I.Savnik, A Query Language /or Complex Da­
tabase Objects, Ph.D. thesis, IJS-DP Technical
Report, Ljubljana 1995

[12] I.Savnik, Z.Tari, T.Mohoric, A Database Alge­
bra /or Objects, Submitted for publication, 1995

[13] G.M.Shaw, S.B.Zdonik , A Query Algebra /or
Object-Oriented Databases, Proc. of Data Eng.,
IEEE, 1990

[14] S.L.Vandenberg, Algebras /or Object-Oriented
Query Languages, Ph.D. thesis, Technical Re­
port No. 1161, University of Wisconsin, 1993

The Use of Description Logics as
Database Query Languages

Klaus Schild
Oaimler-Benz AG

Research and Technology
Knowledge Based Systems

Alt-Moabit 96a, 0-10559 Berlin, Germany
e-mail: schild@OBresearch-berlin.de

Description Logics are knowledge representation
languages set up by the development of the KL-ONE
system [1]. They are used to capture the taxonomy
of an application domain and to describe the ap­
plication domain itself in terms of this taxonomy.
These specific logics employ user-friendly variable­
free notations. One of their major characteristics is
their clear semantics . Without such a formal seman­
tics, it would be impossible to state what exactly
is represented by a particular representation. In
other words, without formal semantics, representa­
tions would have no meaning outside the particular
system in which they reside-preventing the knowl­
edge fixed in the representation from being re-used .

The line of research set up by the KL-ONE project
can be called successful in the long run. An indi­
cation for its success certainly is that the most re­
cent successor of KL-ONE, AT&T's CLASSIC system,
eventually reached the realm of a large-scale indus­
trial application [6]. This success, however, should
not obscure the fact that there is a fundamental
dilemma from which all description logics suffer. In
fact, despite their limited expressive power , basic in­
ferential services such as classifying new terms into
a taxonomy cannot be implemented efficiently. In
particular, it is known that even in the very small­
est description logic 's setting , basic inferences are
co-NP-hard [2] .

In [4] we have shown that this fundamental
dilemma can in principle be circumvented. In par­
ticular, we were able to demonstrate that tractabil­
ity can gene rally be obtained just by eliminating any
incompleteness from a knowledge base while the tax­
onomy is left unchanged. This remains true even for
the most powerful description logic ever considered .
The description logic we have paid attention to can
be called with full right universal in that it encom­
passes all language repositories known from tradi­
tional description logics. This enables the universal
description logic to define many standard data struc­
tures such as trees or directed acyclic graphs in an el­
egant way. In addition to traditional constructs, the
universal description logic includes a general means
of recursion . As is not unusual in computer sci­
ence, we handled recursion with the help of least and
greatest fixed-point operators. The technique em­
ployed is actually a generalization of the technique
presented in [3]. These fixed-point operators turned

45

out to be indispensable as soon as more involved
concepts such as balanced trees are to be modeled.
As it stands, this tractability result is of great im­
portance. Actually, it is the very first tractability
result established for a description logic which takes
taxonomies into account .

On the other hand, our result can be viewed as
building a bridge between traditional knowledge rep­
resentation and databases. As a matter of fact, our
tractability result heavily depends on the presuppo­
sition that any incomplete knowledge can be elimi­
nated from a knowledge base. The ability to express
incomplete knowledge is, of course, the very char­
acteristic separating knowledge representation from
databases. A knowledge base which is complete in
this sense is, in fact, nothing but a relational data­
base. Consequently, when viewed from the database
point of view, our tractability result demonstrates
that a universal description logic can be used as a
powerful but tractable query language for relational
databases. In this connection, it is important to note
that our tractabiJity result is to be understood in
the sense of [5] in terms of the combined complexity
rather than the far weaker not ion of data complexity.
Of course, this database point of view on description
logics gives rise to several questions hardly investi­
gated up till now. These include quest ions of the
following kind .

1. We have shown that a universal description
logic can serve as a tractable query language
for databases. This means that queries to
databases phrased in this description logic can
be evaluated in polynomial time. But is it also
the case that the universal description logic cov­
ers alt polynomial queries? ,

2. How does the query power of the universal de­
scription logic relate to other more traditional
database query languages?

3. Is it possible to extend our tractability result to
deal with essential additional features common
in relation al databases stich as null values?

We discussed all these quest ions at the workshop. A
thorough investigation can be found in [4].

References
[1] R. J. Brachman and J. G. Schmolze. An over­

view of the KL-ONE knowledge representation

system. Cognitive Science, 9(2):171-216,1985.

[2J B. Nebel. Terminological Reasoning is Inherently
Intractable. Artificial Intelligence, 43:235-249,
1990.

[3] K. Schild. Terminological cycles and the propo­
sitional J.l-ca\culus. In Proceedings 0/ the 4th In­
ternational Con/erence on Principles 0/ Knowl­
edge Representation and Reasoning, pages 509-
520, Bonn, FRG, 1994 .

[4J K. Schild . A Tractable Query Language /or
Knowledge and Data Bases Based on a Univer­
sal Description Logic and Logics 0/ Progmms.
PhD thesis, German Research Center for Ar­
tificial Intelligence-DFKI GmbH, Saarbrücken,
FRG, 1995. Forthcoming.

[5] M. Y. Vardi . The complexity of relational query
languages. In Proceedings 0/ the 14th ACM Sym­
posium on Theory 0/ Computing, pages 137-146,
San Francisco, CA, 1982.

[6J J. R. Wright, E . S. Weixelbaum, G. T. Veson­
der, K. Brown, S. R. Palmer, J. 1. Berman, and
H. H. Moore. A knowledge-based configurator
that supports sales, engineering, and manufac­
turing at AT&T network systems. AI-Magazine,
14(3) :69-80,1993 .

46

Knowledge in Interoperable and Evolutionary Systems

N acer Boudjlida
CRIN - Bat. LORIA - Universite Henri Poincare Nancy 1, B.P. 239

54506 - Vandceuvre Les Nancy Cedex (France)
E-mail: nacer@loria.fr

Databases, Logic Programming and Artificial In­
telligence fields successfully cooperated in the area
of deductive databases. Substantial results were
gained in querying, albeit results on updates and re­
vision are less impressive, especially from a compu­
tational perspective. Cross-fertilisation among the
fields seems also very promising in the domain of dy­
namic and reactive systems that behavelike systems
that supervise on-going activities: they must exe­
cu te actions, reason about these, gather information
about ongoing activities, predict possible illfunc­
tioning, control and coordinate the activities, etc.
New database application domains i like databases
for CAD /CAM or software engineering, require this
kind of functionalities. In particular ,Software Engi­
neering Environments (SEE) that support Software
Process Models (SPM) falls in this category of sys­
tems: these are also called Process Centred SEE
(PCSEE). SEEs usually concentrate on the support
for software products development. PCSEEs pro­
vide additional supports for the activities and the
agents that are implicated in to the development
and the management of software projects. In this
framework, SPMs is an abstract specification of how
the software related activities should be carried out.
The specification at least encompasses descriptions
of the object types that are produced by the ac­
tivities together with descriptions of the activities
themselves and policies to be obeyed to. A PCSEE
includes a knowledge base that contains SPMs, an
object base that contains SPMs instances and soft­
ware products. The PCSEE's Software Process En­
gine interprets (enacts) a SPM to drive the devel­
opment of a software project in conformance with
an instantiated SP M. The Process Engine is a set of
mechanisms that controls the ongoing activities and
provides a set of assistance facilities like predicting
future states of the objects, explaining how a given
state has been reached or can be reached, and so on.
The mechanisms that constitute the Process Engine
share and inter-operate on the knowledge base that
contains the specifications of the SPMs and the ob­
ject base that contains the products being developed
and the gathered information about the activities
that have been performed.

The environment is viewed as a collection of tools
that cooperate in the support of the activities, that
communicate and exchange objects, messages and

47

events, and inter-operate on the ob jects in the en­
vironment's bases. Considering the variety of tools
in a PCSEE, their ability to inter-operate on a same
set of objects is crucial for the evolution of the envi­
ronment. Inter-operability may be achieved through
a common representation of the knowledge and the
ob ject bases or through specific mechanisms that
restructure objects, i.e that adapt their representa­
tion to the in ter-operable tools. Syntactic-based ap­
proaches to object interchange for inter-operability,
like those based on an Interface Definition Language,
must be extended by knowledge on the objects con­
tents. We experimented a knowledge-based imple­
mentation of object restructuring and we are cur­
rently investigating the potential mutual contribu­
tions of the works on data interchange (like Com­
mon Data Interchange Format) and knowledge in­
terchange (like KIF and KQML)to incorporate more
knowledge in to object descriptions and to exploit it
in the object restructuring process (this process can
be viewed as a dynamic knowledge-based mechanism
to achieve ad hoc polymorphism with coercion).

Objects in PCSEEs are no more "classical" da­
tabase objects as are "Rat" relations in relational
databases. Objects, like design documents or source
code, are complex objects with possible nesting (is_p
art-of relationship) and specialized/ generalized ob­
jects (is_a relationship). Moreover, the associated
Data Base Management System, called Object Man­
agement System, must be extendible with new ob­
ject types. It must also support cooperative work,
active rules, long- term activities and object version­
ing. Indeed, experimental activities like software en­
gineering often require going back to previous steps
or previous states of objects: versioning is then "a
must" as it is to' enable various evolutions in PC­
SEEs. Evolution can take place at different lev­
els: the environment's hosting platform, the SPM
level, as weil as the SPMs' instances and the object
base levels. Existing knowledge and objects must
be adapted to the changes, i.e. multiple versions of
the knowledge and the object bases may be main­
tained, every version corresponding to aversion of
the knowledge base and the object base specifica­
tion, or alternatively, the existing knowledge base
and object base may migrate to meet their respec­
tive new specifications. This appeals for mechanisms
to manage knowledge and object schema evolution

and versioning, mechanisms to re-use existing SPMs
and objects, and means to analyse the impacts 0/
a change, etc. Change impact-analysis and change
side-effects propagation meet the frame and the ram­
ification problems in knowledge bases revision.

In this position paper, we argue that management
and reasoning on structurally complex objecrs in the
framework of dynamic systems, like PCSEEs, re­
quire knowledge concerning the knowledge itself, the
objects and the actions that may be performed on
the objects. It also requires a kind of "refiexivity"
to enact (i .e. execute) the knowledge provided by
the Process Models and to manipulate it, notably
to ensure its evolution. Refiexivity is the fact that
Software Process Models are considered as objects:
so they can be updated and revised as any other
object. At any level it occurs, evolution requires im­
pact analysis similar to the resolution of the frame
and ramification problems. Further, similarly to
multi-agents systems like blackboard systems, inter­
operability of the tools must be ensured not only to
enable them cooperate in carrying out the activities,
but also to adapt existing knowledge and objects to
possible evolutions . This feature favours knowledge
and object re-use and must be founded on objects'
structure and content.

48

Packaging Knowledge into Metaobjects

David Edmond, Mike Papazoglou, Nick Russell and Zahir Tari
School of Information Systems, Queensland University of Technology

GPO Box 2434 Brisbane Queensland 4001 Australia
email: {davee.mikep.nickr.zahirt}@icis .qut.edu.au

Abstract
The use of reflection [Mae87; HY88; Pae90] is partic­
ularly applicable to multi-database systems and to
cooperating systems in general. We view such sys­
tems as (1) being distributed over a common com­
munication network, and (2) working towards some
common goal. Coopera tion is achieved by coordinat­
ing and exchanging information and expertise. Con­
ventional database systems are not cooperative: the
knowledge they contain is inaccessibly buried within
application code.

In [EPT95], we discuss the R-OK Model and sug­
gest that this problem may be overcome by sur­
rounding each local database system with a layer of
special reflective metaobj ects . The term metaobject
is used only to indicate the relation of such an ob­
ject to the object. it describes. A metaobject is
just another object, with structure and behaviour.
These objects are used to capture domain and oper­
ational knowledge, and to describe, at least in part,
remote systems and to monitor task-oriented activ­
ities. In this way, we can turn interconnected con­
ventional database systems into a set of cooperating
knowledge-based systems. In the R-OK model , every
object has access to four metaobjects:

1. Astate metaobject knows the structure of any
associ a ted object , naming each attribute and spec­
ifying its type . For example, if the application do­
main was a simple savings bank, then a savings ob­
ject might be described by astate metaobject as
having an account Id, a balance and a minimum­
balance-this-month attributes. By its nature, such a
metaobject provides only a static picture of an ob­
ject.

2. A can metaobject knows about the behaviour of
any associated object - it knows what an object can
do. This object mayaiso be associated with a num­
ber of domain objects, all of'which share the same
(outward) behaviour. In this metaobject, activities
are described in terms of pre- and post-conditions.
In the bank example, the post-condition of the With­
dmw methods might require that if the new balance
is less than the previous minimum, then the mini­
mum is reset. Such a metaobject allows a system to
consider possible behaviour and its consequences to
the object(s) concerned . It also allows a system to
investigate alternative ways of achieving some goal.

49

Should it be necessary, for example , to increase the
balance of an account , it may be that there are two
ways of accomplishing this - either through a con­
ventional deposit or by applying interest to the ac­
count .
3. A loc metaobject knO\\'s how to locate attributes
and execute the methods of an object. This metaob­
ject contains:

• A Lookup table which indicates how each at­
tribute of the associated domain object is ma­
terialised . This reification is accomplished by
surrogate objects. These metalevel objects have
specific knowledge of the location of da ta.

• A Do table which contains, for each method,
procedural descriptions of how that method is
effected. Should an interpreter be used to exe­
cute such code , it will use the Lookup table to
resolve symbols that it does not recognise.

4. An act metaobject kno\\'s about the activity in
which some group of objects is involved. It is a task­
oriented object that monitors the activities of the
collection of objects that constitute its domain.
Reflection, by means of th ese four metaobjects , not
only allows descriptions of the capabilities of exist­
ing information s~'stems and t heir inter-rela t ionships
but al so facilitates the specification and implementa­
tion of a new system by l1l t'cll lS of composi (ion, that
is, by drawing upon the functionality of existing sys­
tems.

Because a metaobject is just another object, with
structure and behaviour, \\'e may ask whether it too
has access to descriptions of itself. In [EPT94], we
use these constructs to penetrate aspects of informa­
tion systems that are usu ally closed to us ; on par­
ticular, we look at two examples of how knowledge
of behind-the-scene actions may be used to enable
cooperation.

In this presentation , we will discuss how the model
may be used to provide translations from an object­
oriented model into a relatiollal database.

References
[EPT94] Edmond D., Papzoglou M. and Tari Z.

(1994) "Using ReAection as a Means
of Achieving Cooperation", Procs of
FGCS '94 Workshop on Heterogeneous
Cooperative Kno\\'ledge-Bases, Tokyo.

[EPT95] Edmond D., Papzoglou M. and Tari Z.
(1995) "R-OK: A Reflective Model for
Distributed Object Management", Procs
of RIDE'95 (Research Issues in Data En­
gineering), Tai wan.

[HY88] Y. Honda and A. Yonezawa, "Debug­
ging Concurrent Systems Based on Ob­
ject Groups" , Procs of ECOOP'88: Euro­
pean Conference on Object-oriented Pro­
gramming, Oslo, Norway.

[Mae87] Maes P. (1987). "Concepts and Ex­
periments in Computationa\ Reflection",
00PSLA'87.

[Pae90] Paepcke A. (1990) . "PCLOS: Stress Test­
ing CLOS", 00PSLA'90.

50

Supporting Autonomy for Information Systems
in aChanging Environment

J. Kusch and G. Saake
Institut für Technische Informationssysteme, Abteilung Datenbanken ,

Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg, Germany,
E-Mail: {kusehlsaake}@iti.es.uni-magdeburg.de

Abstract

Availability and scalability are important
features of information systems. To gain
this kind of requirements, we propose a
distributed schema catalog in conjunction
with appropriate development phases . The
distributed schema catalog has to sup­
port distribution transparency including
partitioning and replication to be flexible
for changes within organization structures.
Additionally, phases of autonomy design
have to appoint the adequate usage of dis­
tribution transparency aspects to enable
execution autonomy by a minimum of repli­
cation.
This paper only gives abrief overview con­
cerning the development of distributed in­
formation systems based on object-oriented
structures.

1 Motivation

In the development of information systems, object­
oriented specification (e.g. TROLL [Jungclaus et al.,
1995]) is useful for conceptually modeling of the uni­
verse of discourse. Viewing an information system
as a collection of communicating objects is elose to
the intuitive perception of such systems on a con­
ceptual level. A uniform lifecyele model of objects
(or agents) covers the description of structural and
behavioral aspects . Nowadays complex information
systems (e.g. knowledge bases) are an integral part
of organizations [Fasnacht, 1993J. In order to be
conducive for interconnecting departments, informa­
tion systems have to be flexible to accommodate for
changes in organization structures. Mandatory fea­
tures are distribution for decentralization support
and scalability for modular system increase [Simon,
1995]. Furtheron processing in parallel enables an
important speedup [Gray, 1995]. Thus, the task is to
map the global CO!1ceptual model to computational
reality as a distributed infrastructure. However the
advantages of distribution are only usable by an ad­
equate support of software.

Object-oriented specification consists of aglobai
abstract description as conceptual model without
non-functional requirements (e.g. distribution, per-

51

sistence, exception handling) . A distributed infras­
tructure consists of a set of inter-connected loosely
coupled nodes with own processors and disk-spaces.
On which 'level J distribution has to be combined
with the conceptual model? A complex informa­
tion system structure, which is described as concep­
tual entirety, is transparently distributed over sev­
eral nodes. Important is a partial use of the infor­
mation system, although not all nodes are available
or reachable due to a site failure. How to achieve
a maximum of node autonomy for a distributed sys­
tem (C. J. Dates first (of 12) rule for distributed
database systems (Date, 1990/) supported by the dis­
tributed schema cata/og ?

Developing highly available information systems,
we propose a distributed schema cata/og in conjunc­
tion with autonomy design phases :

Distributed schema catalog. In general, dis­
tributed database systems have to deal with a
lot of tradeoffs [Rahm, 1994; Bell and Grimson,
1992; Özsu and Valduriez , 1991], e.g. data repli­
cation versus data transfer, reuse versus auton­
omy, transparency versus efficiency. Our goals
in gaining distributioll for an object-oriented
data model are:

• Distribution transparency : For scalability
support transparency of location and mi­
gration enables objects to be used without
knowledge of their location and movement
of objects within a system without affect­
ing the operations [Herbert, 1989]. In con­
junction with horizontal and vertical elass
partitioning, the system could be expanded
in scale, without changing the specification
or the references.

• Execution autonomy: For decentralization
support, neither federation does interfere
with lcical (or subsystem) operations nor
any knowledge of the federation is needed
for performing local (or subsystem) opera­
tions [Kalathil and Belford, 1994; Veijalei­
nen and Popescu-Zeletin, 1988] .

Existing approaches in the area of database
systems mostly do not pay enough attention
to the opportunities of autonomy and scala­
bility, which are getting increasingly important

by a new generation of parallel hardware clus­
ters [Gray, 1995].
Additionally design phases are mandatory to
control the transparency aspects of distribution
with the view to execution autonomy.

Autonomy design phases. Multiple allocation of
data within a distribllted environment promises
an increase of performance and availability and
a decrease of communication. Contrary to this
disadvantages are memory consllmption and
consistency maintenance in case of a site failure.
Thus we aspire execution autonomy enabled by
a minimum of replication, which has to be guar­
anteed by an extended development process:

• In former development phases autonomy
modules have to be modeled conceptually,
which are based on informal autonomy re­
quirements .

• In later development phases the initial dis­
tribution structure has to be appointed,
which is based on the modeled autonomy
modules . Altogether this effects the trans­
parency aspects of distribution, e.g. object
class location and partitioning and object
location and replication.

Evolution requirements of the distribution
structure are mostly not equal to those of the
conceptual model. Thus the additional auton­
omy design phases has to be performed indepen­
dently from the remaining development phases.

To focus our approach within the area of object­
oriented specification and distributed databases, this
work is based on a homogeneous integrated schema
and covers only structural aspects including integrity
constraints.

2 Object-Oriented Structures

Conceptual modeling of information systems re­
quires the description of the application domain, the
so-called universe of discours e, on a high abstrac­
tion level. Looking at an information system and
its environment as a collectiol1 of interacting objects
seems to be a very natural way for conceptualizing
information structures and processes. Objects have
a local state, show a specific behavior, communicate
with other objects and may be themselves composed
from smaller objects. This observation is confirmed
by the current success of object-oriented analysis and
design frameworks, e.g. [Rumbaugh et al., 1991].

This paper emphasizes only the structural aspects
of the object model as base of data maintenance.
Thus, execution autonomy refers to data model op­
erations, e.g. creation, deletion, migration of ob­
jects and object classes. Behavioral features , e.g.
processes, synchronization and transactions , are not
regarded. MandatOl·y structural features of object­
oriented database systems and information systems
as pointed out in i.e. [Jungclaus et al., 1995; Cattel,
1994; Ahmed et al ., 1991; Rumbaugh et al., 1991;
Atkinson et al., 1990] are

• class types,

• objects with aglobai , immutable and system
wide unique object identity ,

• object classes,

• specialized classes sllpporting semantic inheri­
tance [Saake, 1993],

• component relations to model complex objects
and

• object preserving views.

These abstractions of the conceptual model are
grouped into an object base. Thus, each object base
contains a set of classes, which consist of a class type
and a set of objects .

With the view to a later implementation, the cho­
sen abstractions gain a "small is beautiful" object
model.

3 Distributed Schema Catalog
Supporting autonomy for information systems in a
changing environment, a schema catalog is intro­
duced which enables distribution transparency, and
in conjunction with internal structures an increase of
availability. To characterize the distributed schema
catalog, the aspects da ta definition interface, data­
logical architecture and meta schema are briefty rep­
resented.

Data definition interface. Trends about infor­
mation systems and knowledge bases point out the
everlasting complexity increase for data process­
ing [Hwang and Briggs, 1989]. Representing complex
data in an adequate way, a variety of abstractions are
needed . To take some of the load off the development
phases, the data definition language of a distributed
schema catalog has to support the abstractions of
the conceptual model , i.e. object classes, specialized
classes, component relations, and views.

This has an effect on the development phases,
which are discussed in section 4 in detail. The
development process gets simplified, since there is
no transformation necessary between the conceptual
model and the phase of implementation. Furtheron
the phase of distribution design is superftuous in
early stages of development. Considering changing
environments, aspects of distribution, i.e. location,
partitioning and replication, are not statically decid­
able in advance. Due to distribution transparency,
the phase of distribution design could be displaced
as a later distribution tuning phase, dependent of the
data access profile. This strategy seems to be more
adequate for the. design of distributed information
systems.

52

Data-logical architecture. Base of the dis­
tributed schema catalog is a distributed infrastruc­
ture, consisting of a graph of nodes and inter-node­
connections. Each node contains a set of instance­
buffers for persistently maintaining data. The inter­
node-connections are established via broadcast chan­
nels to neglect network partitioning problems .

Due to the increase of hardware performance and
complexity, the schema catalog has to perform the
mapping from the conceptual specification structure

Conceptual
model

Distributed
schema catalog

Views

Object
classes .
specia­
lizations.
component
relations

Replicated:
Name, Id and
horizontal pa~titioning
information 0: eac h
object class . specialized
class and vie· ... '

.--"..-----, Class type 0: each
local objec t c lass ,
spezializati o~ and
view (incl co~ponent
relations)

Objects

Figure 1: Data-Iogical Architecture of the Distributed Schema Catalog

to the distributed infrastructure. To support ex­
ecution autonomy and scalability within a chang­
ing environment, location and partitioning of object
dasses and location and replication of objects have
to be archived in an transparent way. Object dasses
should be located to a set of nodes (horizontal par­
titioning). Objects of specialized dasses should be
located to a set of instance-buffers of different nodes
(vertical partitioning) . The consideration of object
encapsulation leads to the fact, that specialization is
the only way of vertically partitioning objects. An
object should be located to several nodes within a
horizontally partitioned object dass (replication).

As architecture of the distributed schema catalog
(figure 1) our approach proposes a replieated global
loeation schema (RGLS) with distributed local con­
ceptual schemas (LCS's) and appropriate local in­
ternal schemas (11S's) . This depicts a specializa­
tion of the ANSI-4-level-architecture. The RGLS,
which is replicated to each node, contains the name
identification and horizontal partitioning informa~
tion of each objecl dass. As a virtual global schema,
the RGLS offers with respect to autonomy minimal
global kllowledge for the access of remote informa­
tion. The LCS's contain dass type information of
each object dass, which is replicated to those sites,
where parts of their extension are located. Thus,
objects are co-Iocated with their types. At least the
11S's contain objects, which are maintained via a set
of instance-buffers.

Further internal details, which are mandatory for
scalability and execution autonomy are briefly de­
picted:

• Object identifiers are built as eompound objee t
identifier of a dass Id and a dass internalid.
Class internal Id's are maintained via areas of
free Id's.

• Relations between and within object dasses are
maintained through object identifier references,
which implicitly contain location information
(via dass information).

• Replication of key attributes has to be main­
tained implicitly.

• If a failed node gets online, several complex data

53

updating operations have to be performed on
the whole object base.

This allows to perform consistency preserving oper­
ations even if nodes in the context of this operations
are offline.

Access to object properties is always directed to

the RGLS, which determines a path over a hierarchi­
cal structure of LCS's and LIS's. In conjunction with
compound object identifiers loeation transpareney is
enabled.

Meta schema. The cOllceptual model has to be
free of non-functional requirements. For orthog­
onally influencing distribution, a meta schema is
introduced, which is modeled as a reflexive sys­
tem [Maes, 1988J exdusi\'ely with the selected ab­
stractions of the object model. To maintain trans­
parency aspects, the meta schema is modeled as a
set 0/ vertieally partitioned classes for each node
of the distributed infrastructure, specialized from
a totally horizontally partitioned dass with repli­
cated objects . Replic3red objects contain repli ­
cated schema informatioll of horizontally partitioned
dasses, whereas the speci alized parts are managing
node related dass information (i .e . only local objects
of an object dass and related instance-buffers). This
meta schema architecture enables asound mainte­
nance of horizontally partitioned dasses and repli­
cated objects. Distributed administration is per­
formed by the events of the meta schema.

4 Autonomy Design
l'\owadays information systems are based on dis­
tributed infrastructures t~ manage the requirements
of the users. To take advantage of a decentraliz­
able platform several existing disadvantages [Rahm ,
1994; Bell and Grimsoll , 1992; Özsu andValduriez,
1991J of distributed database systems have to be re­
garded, Due to the possibility of node failures (e.g.
power failure, hardware- or software failure, instal­
lation or maintenance tasks or user control failure)
autonomy considerations have to be taken into ac­
count. This should save failure costs of the whole
information system.

1. Requirements aCqUisition~

t 2.
3. conc eptlrl modeling

5. Implementation (incl . any
initial distribution s tructure)

t
7. Distri bution tuning
(within the autonomy modules)

t

Auto nomy ,.eqUi rrments acqu i sition

4. Autcc.:>my 1 CdularizatioCl

6. Ac:: :c.:>my -:: : stri but i on

Figure 2: Phases of Autonomy Design

Developing highly available information systems,
the development process has to be extended. Base of
the development process is the presented distributed
schema catalog which supports location, partition­
ing and replication transparency. Additional design
phases for information systems are mandatory to
control the transparency aspects of distribution, and
thus serve the availability requirements by a mini­
mum of data replication. Results of these additional
design phases are the initiallocation including parti­
tioning of object classes and the initial location and
replication of objects.

We propose the following phases of design (fig­
ure 2) to develop highly available information sys­
tems:

1. Requirements acquisition: Informal description
of the universe of discourse.

2. A utonomy requirements acquisition (based on
requirements acquisition): Informal description
of availability requirements within the organ i­
zation structure.

3. Conceptual modeling (based on requirements
acquisition): Formal specification of aglobaI ob­
ject model.

4. A utonomy modularization (based on autonomy
requirements acquisition and conceptual model­
ing): Formal specification of a set of autonomy
modules which represem autonomously main­
tainable areas of organization structures. Each
autonomy module consists of a set of object
classes, and a set of related nodes, on which
this classes have to be at least Jocated.

5. Implementation (based on conceptual model­
ing): Due to the abstraction level of the data
definition int.erface, the conceptual model could
be directly implemented. The replicated global
location schema (RGLS) of the distributed sche­
ma catalog offers a "virtual global schema" to
each node, independentl~' from the initial loca­
tion of the implementation.

6. A utonomy distribution (based on conceptual
modeling and autonom)" modularization) : Au­
tonomy conflicts arise through autonomy mo­
dule overlapping relations between abstractions
of the object model, i.e. specified by integrity
constraints, component and specialization rela­
tions . Thus, an algorithm, which cannot be pre-

54

sen ted here in detail, automatically generates a
set of locations for each object class (as horizon­
tal partitioning), which is the base of manda­
tory object replication. Additiona.Jly a set of
birth events for objects classes is generated to
control location and replication of created ob­
jects. Altogether , a distribution structure is
generated, which achie\"es execution autonomy
by a minimum of object replication.

7. Distribution tuning (based on implementation
and autonom)' distribution) : Dependent on
later data access , the distribution structure
within the autonomy modules could be opti­
mized.

Phases 1, 3.5 and 7 (figure 2) enable an evolutionary
development strategy, likewise the phases 2, 4 and
6. Due to the different evolution requirements of
the conceptual model and the distribution structure,
the phases of autonomy design could be performed
independently.

5 Outlook
The presented specijication language independent
work depicts fundamentals for the development of
higllly available and scalabl e information s~·stems.

Object-oriented specificatioJl integrates structural
and beha,·ioral aspects of modeling. Thus one im­
portant enhancement of our approach is the consid­
eration of object behavior with the view of autonomy
and parallelism. Here, transactions and commit pro­
tocols within distributed systems have to be taken
into account. To support implicit parallelism, we
propose asynchronous communication with implicit
synchronization. This could be performed by data­
flow driven data e,·aluation [Lee and Hurson, 1994]
via pipelining.

The disadvantages of optimization within our ap­
proach, which are evoked by transparent distribu­
tion, could be improved by d)"namic query optimiza­
tion. Query objects [Kusch, 1994; Jungclaus et al.,
1991] with internal knowledge of the state of the in­
frastructure are a first approach for this problem·.

References
[Ahmed et al ., 1991] S. Ahmed, A. Wong, D. Sri­

ram, and R. Logcher. A Comparison of Object­
Oriented Database Management Systems for En-

gineering Applications. Technical report, Mas­
sachusets Institute of Technology, Department of
Civil Engineering, 1991.

[Atkinson et al., 1990] M. Atkinson, F. Bancilhon,
D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik.
The Object-Oriented Database System Manifesto.
In W. Kim, J.-M. Nicolas, and S. Nishio, editors,
Deductive and Object- Oriented Databases, pages
223-240. North Holland, 1990.

[Bell and Grimson, 1992] D. Bell and J. Grimson.
Distributed Database Systems. Addison-Wesley,
1992.

[Cattel, 1994] R. G. G. Catte!. The Object Database
Standard: ODMG-93. Morgan Kaufmann, 1994.

[Date, 1990] C. J. Date. An Introduction to Data­
base Systems, 5th Editio"n. Addison-Wesley, 1990.

[Fasnacht, 1993] D. Fasnacht. Koordination verteil­
ter und heterogener Datenbanksysteme. Verlag
Josef Eul, 1993.

[Gray, 1995] J. Gray. Super-Servers: Commodity
Computer Clusters Pose a Software Challenge.
In G. Lausen, editor, Datenbanksysteme in Büro,
Technik und Wissenschaft, pages 30-47. Springer­
Verlag, 1995.

[Herbert, 1989] A. Herbert. The ANSA reference
manual. Cambridge, U.K.: Architecture Projects
Management Limited, 1989.

[Hwang and Briggs, 1989] K. Hwang and F. A.
Briggs. Computer Architecture and Parallel Pro­
cessing. McGraw-Hill, 1989.

[Jungclaus et al., 1991] R. Jungclaus, G. Saake, and
C. Sernadas. Using Active Objects for Query
Processing. In R. Meersman, W. Kent, and S.
Khosla, editors, Object-Oriented Databases: Anal­
ysis, Design and Construction (Proe. of the 4th
IFIP WG 2.6 Working Conf. DS-4, Windermere
(UK), 1990), pages 285-304. North-Holland, Am­
sterdam, 1991.

[Jungclaus et al., 1995] R. Jungclaus, G. Saake, T.
HartmanlI, and C. Sernadas. TROLL - A Lan­
guage for Object-Oriented Specification of Infor­
mation Systems. ACM Transactions on Informa­
tion Systems, 1995. To appear.

[Kalathil and Belford, 1994] B. J. Kalathil and G.
G. Belford. Supporting Local Autonomy in
a Distributed Object-Oriented Database. In
T. Özsu, U. Dayal, and P. Valduriez, editors, Dis­
tributed Object Management, pages 347-352. Mor­
gan Kaufmann Publishers, 1994.

[Kusch, 1994] J. Kusch.
Ein Ansatz zur Operationalisierung deskriptiver
Anfragen durch Anfrageobjekte. In S. Conrad,
P. Löhr, and G. Saake, editors, "Grundlagen von
Datenbanken", pages 92-96. Otto-von-Guericke­
Universität Magdeburg, Institut für Technische
Informationssysteme, Bericht 94-01, 1994.

[Lee and Hurson, 1994] B. Lee and A. R. Hur­
son. Dataftow Architectures and Multithreading.
IEEE Computer, 27(8):27-39,8 1994.

[Maes, 1988] P. Maes. Meta-Level Architectures and
Refiection. Elsevier Science Publishers B. V.,
1988.

[Özsu and Valduriez, 1991] M. T. Özsu and P. Val­
duriez. Principles of Distributed Database Sy­
stems. Prentice Hall, 1991.

[Rahm, 1994] E. Rahm. Mehrrechner-Datenbanksy­
steme. Addison-Wesley. 1994.

[Rumbaugh et al., 1991] J. Rumbaugh. M. Blaha,
W. Premerlani, F. Eddy, and W. Lorensen. Ob­
ject-oriented modeling and design. Prentice-Hall,
1991.

[Saake, 1993] G. Saake. Objektorientierte Spezifika­
tion von Informationssystemen. Teubner, Stutt­
gart/Leipzig, 1993.

55

[Simon, 1995] A. R. Simon. Strategie Database
Technology: Management for the year 2000. Mor­
gan Kaufmann Publishers, Inc., 1995.

[Veijaleinen and Popescu-Zeletin, 1988] J. Veijalei­
nen and R. Popescu-Zeletin. Multidatabase sys­
tems in ISO/OSI environments. In N. Malagardis
and T. Williams, editors, Standards in Informa­
tion Technology and Industrial Control, pages 83-
97. North-Holland, 1988.

I '
L . I
~' . '"

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Veröffentlichungen des DFKI

-Bibliothek, Information

und Dokumentation (BID)-

PF 2080

67608 Kaiserslautern

FRG

Telefon (0631) 205-3506

Telefax (0631) 205-3210

e-mail
dfkibib@dfki.uni- kl.de

WW\\"
http://www .dfki .uni­

sb.deJdfkibib

Die folgenden DFKI Veröffentlichungen sowie die aktuelle Liste von allen bisher erschienenen Publikatio­
nen können von der oben angegebenen Adresse oder (so sie als per ftp erhaeltlich angemerkt sind) per
anonymous ftp von ftp.dfki.uni-kl.de (131.246 .241.100) im Verzeichnis pub/Publications bezogen werden.
Die Berichte werden, wenn nicht anders gekennzeichnet, kostenlos abgegeben.

DFKI Publications

The following DFK! publications or the list of all published papers so far are obtainable fram the above ad­
dress or (ifthey are marked as obtainable by ftp) by anonymous ftPfromftp.dfki .uni-kl.de(1S1.246.241 .100}
in the directory pub/Publications.
The reports are distributed free of charge except where otherwise noted.

D FKI Research Reports

1995

RR-95-11
Anne Kilger, Wolgang Finkler
lncremental Generation for Real-Time Applications
47 pages

RR-95-09
M. Buchheit, F. M. Donini, W . Nutt , A. Schaerf
A Refined Architecture for Terminological Systems:
Terminology = Schema + Views
71 pages

RR-95-07
Francesco M. Domm, Maurizio Lenzerini, Daniele Nar­
di, Werner Nutt
The Complexity of Concept Languages
57 pages

RR-95-04
M. Buchh€it, H.-J. Bürckert, B. Hollunder, A. Laux, W.
Nutt,
M. W6jcik
Task Acquisition with a Description Logic Reasoner
17 pages

RR-95-03
Stephan Baumann, Michael Malburg, Hans-Guenther
Hein, Raiper Hoch,
Thomas Kieninger, Norbert Kuhn
Document Analysis at DFKI
Part 2: Information Extraction
40 pages

RR-95-02
Majdi Ben Hadj Ali, Frank Fein, Frank Hoenes , Thor­
sten Jaeger,
Achim Weigel
Document Analysis at DFKI
Part 1: Image Analysis and Text Recognition
69 pages

1994

RR-94-39
Hans-Ulrich Krieger
Typed Feature Formalisms as a Common Basis for Lin­
guistic Specification .
21 pages

RR-94-38
Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Ab­
del Kader Diagne,
Elizabeth A. Hinkelman, Walter Kasper, Bemd Kiefer,
Hans- Ulrich Krieger,
Klaus Netter, Günter Neumann, Stephan Oepen, Ste­
phen P. Spackman.
DISCO-An HPSG-based NLP System and its Applica­
tion for Appointment Scheduling.
13 pages

RR-94-37
Hans-Ulrich Krieger, Ulrich Schäfer
TDL - A Type Description Language for HPSG, Part
1: Overview.
54 pages

RR-94-36
Manfred Meyer
Issues in Concurrent Knowledge Engineering. Knowl­
edge Base and Knowledge Share Evolution.
17 pages

RR-94-35
Rolf Backofen
A Complete Ax.iomatization of a Theory with Feature
and Arity Constraints
49 pages

RR-94-34
Stephan Busemann, Stephan Oepen, Elizabeth A . Hin­
keIm an,
Günter Neumann, Hans Uszkoreit
COSMA - Multi-Participant NL Interaction for Ap­
pointment Scheduling
80 pages

RR-94-33
Franz Baader, Armin Laux
Terminological Logics with Modal Operators
29 pages

RR-94-31
Otto Kühn, Volker Becker, Georg Lohse, Philipp Neu­
mann
Integrated Knowledge Utilization and Evolution for the
Conservation of Corporate Know-How
17 pages

RR-94-23
Gert Smolka
The Definition of Kernel Oz
53 pages

RR-94-20
Ghristian Schulte, Gert Smolka, Jörg Würtz
Encapsulated Search and Constraint Programming In

Oz
21 pages

RR-94-18
Rolf Backofen, Ralf Treinen
How to Win aGame with Features
18 pages

RR-94-17
Georg Struth
Philosophical Logics-A Survey and a Bibliography
58 pages

RR-94-16
Gert Smolka
A Foundation for Higher-order Concurrent Constraint
Programming
26 pages

RR-94-15
Winfried H. Graf, Stefan Neurohr
Using Graphical Style and Visibility Constraints for a
Meaningful Layout in Visual Programming Interfaces
20 pages

RR-94-14
Harold Boley, Ulrich Buhrmann, Ghristof Kremer
Towards a Sharable Knowledge Base on Recyclable Pla­
stics
14 pages

RR-94-13
Jana Koehler
Planning from Second Principles-A Logic-based Ap­
proach
49 pages

RR-94-12
Hubert Gomon, Ralf Treinen
Ordering Constraints on Trees
34 pages

RR-94-11
Knut Hinkelmann
A Consequence Finding Approach for Feature Recogni­
tion in CAPP
18 pages

RR-94-10
[(nut Hinkelmann, Helge Hintze
Computing Cost Estimates for Proof Strategies
22 pages

RR-94-08
Otto Kühn, Björn Höfling
Conserving Corporate Knowledge for Crankshaft De­
sign
17 pages

RR- 94-07
Harold Boley
Finite Domains and Exclusions as First-Class Citizens
25 pages

RR-94-06
Dietmar DengIer
An Adaptive Deductive Planning System

- 17 pages

RR-94-05
Franz Schmalhofer, J. Stuart Aitken, Lyle E. Bourne jr.
Beyond the Knowledge Level: Descriptions of Rational
Behavior for Sharing and Reuse
81 pages

RR-94-03
Gert Smolka
A Calculus for Higher-Order Concurrent Constraint
Programming wi th Deep . Guards
34 pages

RR-94-02
Elisabeth Andre, Thomas Rist
Von Textgeneratoren zu Intellimedia-Präsentationssy­
sternen
22 Seiten

RR-94-01
Elisabeth Andre, Thomas Rist
Multimedia Presentations: The Support of Passive and
Active Viewing
15 pages

1993

RR-93-48
Franz Baader, Martin Bucbheit, Bernhard Holltmder
Carclinality Restrictions on Concepts
20 pages

RR-93-46
Philipp Hanschke
A Declarative Integration of Terminological, Con­
straint-based, Data-driven, and Goal-clirected Reaso­
rung
81 pages

RR-93-45
Rainer Hoch
On Virtual Partitioning of Large Dictionaries for Con­
textual Post-Processing to Improve Character Recogni­
ti on
21 pages

RR-93-44
Martin Buchheit, Manfred A. Jeusfeld, Werner Nutt,
Martin Staudt
Subsumption between Queries to Object-Oriented Da­
tabases
36 pages

RR-93-43
M. Bauer, G. Paul
Logic-based Plan Recognition for Intelligent Help Sy­
stems
15 pages

RR-93-42
Hubert Gomon, Ralf Treinen
The First-Order Theory of Lexicographic Path Orde­
rings is Undecidable
9 pages

RR-93-41
Winfried H. Graf
LA YLAB: A Constraint-Based Layout Manager for
Multimedia Presentations
9 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini, Daniele Nar­
di, Werner Nutt,
Andrea Schaerf
Queries, Rules and Definitions as Epistemic Statements
in Concept Languages
23 pages

RR-93-38
Stephan Baumann
Document Recognition of Printed Scores and Transfor­
mation into MIDI
24 pages

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar Bernar­
di, Ghristoph Klauck,
Ralf Legleitner, Gabriele Schmidt
Von !DA bis lMCOD: Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-35
Harold Boley, Fran~ois Bry, Ulrich Geske (Eds.)
Neuere Entwicklungen der deklarativen KI-Program­
mierung - Proceedings
150 Seiten

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

RR-93-34
Wolfgang Wahlster
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-33
Bernhard Nebel, Jana Koehler
Plan Reuse versus Plan Generation: A Theoretical and
Empirical Analysis
33 pages

RR-93-32
David R. Traum, Elizabeth A. Hinkelman
Conversation Acts in Task-Oriented Spoken Dialogue
28 pages

RR-93-31
Elizabeth A . Hinkelman, Stephen P. Spackman
Abductive Speech Act Recognition, Corporate Agents
and the COSMA System
34 pages

RR-93-30
Stephen P. Spackman, Elizabeth A. Hinkelman
Corporate Agents
14 pages

RR-93-29
Armin Laux
Representing Belief in Multi-Agent Worlds via Termi­
nological Logics
35 pages

D-93-08
Thomas Kieninger, Rainer Hoch
Ein Generator mit Anfragesystem für strukturierte
Wörterbücher zur Unterstützung von Texterkennung
und Textanalyse
125 Seiten

D-93-07
Klaus-Peter Gores, Rainer Bleisinger
Ein erwartungsgesteuerter Koordinator zur partiellen
Textanalyse
53 Seiten

D-93-06
Jürgen Müller (Hrsg.)
Beiträge zum Gründungsworkshop der Fachgruppe Ver-
teilte Künstliche Intelligenz, Saarbrücken, 29. - 30. April

D-93-04
Technical Staff
DFKI Wissenschaftlich-Technischer Jahresbericht
1992
194 Seiten

D-93-03
Stephan Busemann, Karin Harbusch (Eds.)
DFKI Workshop on Natural Language Systems: Reu­
sability and Modularity - Proceedings
74 pages

1993 D-93-02
235 Seiten Gabriele Schmidt, Frank. Peters, Gernod Laufkötter

User Manual of COKAM+
Note: This document is available for a nominal charge 23 pages

of 25 DM (or 15 US-$) .

D-93-05
Elisabeth Andre, Winfried Graf, Jochen Heinsohn,
Bernhard Nebel,
Hans-JÜTgen Profitlich , Thomas Rist, Wolfgang Wahl-
ster
PPP: Personalized Plan-Based Presenter
70 pages

D-93-01
Philipp Hanschke, Thom Frühwirth
Terminological Reasoning with Constraint Handling
Rules
12 pages

D-94-03
Franz Schmalhofer
Maschinelles Lernen: Eine kognitionswissenschaftliche
Betrachtung
54 Seiten

Note: This document is no longer available in print.ed
form.

D-94-02
Markus Stelfens
Wissenserhebung und Analyse zum Entwicklungsprozeß
eines Druckbehälters aus Faserverbundstoff
90 pages

D-94-01
Josua Boon (Ed.)
DFKI-Publications : The First Four Years
1990 - 1993
75 pages

1993

D-93-27
Rolf Backofen, Hans- Ulrich Krieger, Stephen P. Spack-
man,
Hans Uszkoreit (Eds.)
Report of the EAGLES Workshop on Implemented For­
malisms at DFKI, Saarbrücken
110 pages

D-93-26
Frank Peters
Unterstützung des Experten bei der Formalisierung von
Textwissen INFOCOM - Eine interaktive Formalisie­
rungskomponente
58 Seiten

D-93-25
Hans-Jürgen Bürckert, Werner Nutt (Eds.)
Modeling Epistemic Propositions
118 pages

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

D-93-24
Brigitte Krenn, Martin Volk
DiTo-Datenbank: Datendokumentation zu Funktions­
verbgefügen und Relativsätzen
66 Seiten

D-93-22
Andreas Abecker
Implementierung graphischer Benutzungsoberflächen
mit Tcl/Tk und Common Lisp
44 Seiten

Note: This document is no Ion ger available in printed
form.

D-93-21
Dennis Drollinger
Intelligentes Backtracking in Inferenzsystemen am Bei­
spiel Terminologischer Logiken
53 Seiten

D-93-20
Bernhard Herbig
Eine homogene Implementierungsebene für einen hybri­
den Wissensrepräsentationsformalismus
97 Seiten

D-93-16
Bernd Bachmann, Ansgar Bernardi, Christoph Klauck,
Gabrie1e Schmidt
Design & KI
74 Seiten

D-93-15
Robert Laux
Untersuchung maschineller Lernverfahren und heuristi­
scher Methoden im Hinblick auf deren Kombination zur
Unterstützung eines Chart-Parsers
86 Seiten

D-93-14
Manfred Meyer (Ed.)
Constraint Processing - Proceedings of the Internatio­
nal Workshop at CSAM'93, St.Petersburg, July 20-21,
1993
264 pages

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

D-93-12
Harold Boley, Klaus Elsbernd, Michael Herfert, Michael
Sintek,
Werner Stein
RELFUN Guide: Programming with Relations and
Functions },lade Easy
86 pages

D-93-11
Knut Hinkelmann, Armin Laux (Eds.)
DFKI Workshop on Knowledge Representation Techni­
ques - Proceedings
88 pages

Note: This document is no Ion ger available in printed
form.

D-93-10
Elizabeth Hinke1man , Markus Von erden , Christoph
Jung
Natural Language Software Registry (Second Edition)
174 pages

D-93-09
Hans-Ulrich Krieger, Ulrich Schäfer
TDCExtraLight User's Guide
35 pages

DFKI Documents

1995

D-95-09
Antonio Krüger
PROXIMA: Ein System zur Generierung graphischer
Abstraktionen
120 Seiten

D-95-07
Ottmar Lutzy
Morphic - Plus
Ein morphologisches Analyseprogramm für die deutsche
Flexionsmorphologie und Komposita-Analyse
74 pages

D-95-06
Markus Steffens, Ansgar Bernardi
Integriertes Produktmodell für Behälter aus Faserver­
bundwerkstoffen
48 Seiten

D-95-05
Georg Schneider
Eine Werkbank zur Erzeugung von 3D-Illustrationen
157 Seiten

D-95-03
Christoph Endres, Lars Kleiri, Markus Meyer
Implementierung und Erweiterung der Sprache ACCP
110 Seiten

D-95-02
Andreas Butz
BETTY
Ein System zur Planung und Generierung informativer
Animationssequenzen
95 Seiten

D-95-01
Susanne Biundo, Wolfgang Tank (Hrsg.)
Beiträge zum Workshop "Planen und Konfigurieren",
Februar 1995
169 Seiten

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

1994

D-94-15
Stephan Oepen
German Nominal Syntax in HPSG
- On Syntactic Categories and Syntagmatic Relations

80 pages .

D-94-14
Hans- Ulrich Krieger, Ulrich Schäfer
TDL - A Type Description Language for HPSG, Part
2: User Guide.
72 pages

D-94-12
Arthur Sehn, Serge Autexier (Hrsg.)
Proceedings des Studentenprogramms der 18. Deut­
schen Jahrestagung für Künstliche Intelligenz KI-94
69 Seiten

D-94-11
F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'94 Workshop: KRDB'94 - Re­
asoning about Structured Objects: Knowledge Repre­
sen tat ion Meets Databases
65 pages

Note: This document is no longer available in printed
form.

D-94-10
F. Baader, M. Lenzerini, W. Nutt, P. F. Patel-Schneider
(Eds.)
Working Notes of the 1994 International Workshop on
Description Logics
118 pages

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$) .

D-94-09
Technical Staff
DFKI Wissenschaftlich-Technischer Jahresbericht
1993
145 Seiten

D-94-08
Harald Feibel
IGLOO 1.0 - Eine grafikunterstützte Beweisentwick­
lungsumgebung
58 Seiten

D-94-07
Claudia Wenzel, Rainer Hoch
Eine Übersicht über Information Retrieval (IR) und
NLP- Verfahren zur Klassifikation von Texten
25 Seiten

D-94-06
Ulrich Buhrmann
Erstellung einer deklarativen Wissens basis über recy­
clingrelevante Materialien
117 Seiten

D-94-04
Franz Schmalhofer, Ludger van EIst
Entwicklung von Expertensystemen: Prototypen, Tie­
fenmodellierung und kooperative Wissensevolution
22 Seiten

RR-93-05
Franz Baader, Klaus Schulz
Combination Techniques and Decision Problems for Di­
sunification
29 pages

RR-93-04
Christoph Klauck, Johannes Schwagereit
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-03
Franz Baader, Bernhard Hollunder, Bernhard Nebel,
Hans-JÜIgen Profitlich, Enrico Franconi
An Empirical Analysis of Optimization Techniques for
Terminological Representation Systems
28 pages

DFKI Technical Memos

1995

TM-95-02
Michael Sintek
FLIP: FUnctional-plus-Logic Programming
on an Integrated Platform
106 pages

TM-95-01
Martin Buchheit, Rüdiger Klein, Werner Nutt
Constructive Problem Solving: A Model Construction
Approach towards Configuration
34 pages

1994

TM-94-04
Cornelia Fischer
PAntUDE - An Anti-Unification Algorithm for Expres­
sing Refined Generalizations
22 pages

TM-94-03
Victoria Hall
Uncertainty-Valued Horn Clauses
31 pages

TM-94-02
Rainer Bleisinger, Berthold Kröll
Representation of Non-Convex Time Intervals and Pro­
pagation of Non-Convex Relations
11 pages

TM-94-01
Rainer Bleisinger, Klaus-Peter Gores
Text Skimming as a Part in Paper Document Under­
standing
14 pages

RR-93-02
Wolfgang Wahlster, Elisabeth Andre, Wolfgang Finkler,
Hans-JÜIgen Profitlich, Thomas Rist
Plan-based Integration of Natural Language and Gra­
phics Generation
50 pages

RR-93-01
Bernhard Hollunder
An Alternative Proof Method for Possibilistic Logic and
its Application to Terminological Logics
25 pages

1993

TM-93-05
Michael Sintek
Indexing PROLOG Procedures into DAGs by Heuristic
Classification
64 pages

TM-93-04
Hans-<;;ünther Hein
Propagation Techniques in WAM-based Architectures
- The FIDO-III Approach
105 pages

TM-93-03
Harold Boley, Ulrich Buhrmann, Christof Kremer
Konzeption einer deklarativen Wissensbasis über recy­
clingrelevante Materialien
11 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta
Conftict Resolving Negotiation for COoperative Sche­
dule Management ,Agents (COSMA)
21 pages

TM-93-01
Otto Kühn, Andreas Birk
Reconstructive Integrated Explanation of Lathe Pro­
ducti.on Plans
20 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonn e, Hannes Pirker
Feature-Based Allomorphy
8 pages

RR-93-27
Hans-Ulrich Krieger
Derivation Without Lexkai Rules
33 pages

RR-93-26
Jörg P. Müller, Markus Pischel
The Agent Architecture !nteRRaP: Concept and App­
lkation
99 pages

RR-93-25
Klaus Fischer, Norbert Kuhn
A DA! Approach to Modeling the Transportation Do­
mam
93 pages

RR-93-24
Rainer Hoch, Andreas Dengel
Document Highlighting - Message Classification m
Printed Business Letters
17 pages

RR-93-23
Andreas Dengel, Ottmar Lutzy
Comparative Study of Connectionist Simulators
20 pages

RR-93-22
Manfred Meyer, Jörg Müller
Weak Looking-Ahead and its Application in Computer­
Aided Process Planning
17 pages

RR-93-20
Franz Baader, Bernhard Hollunder
Embedding Defaults into Terminological I<nowledge
Representation Formalisms
34 pages

RR-93-18
Klaus Schild
Terminological Cycles and the Propositional p-Calculus
32 pages

RR-93-17
Rolf Backofen
Regular Path Expressions in Feature Logic
37 pages

RR-93-16
Gert Smolka, Martin Henz, Jörg Würtz
Object-Oriented Concurrent Constraint Programming
in Oz
17 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof Klöckner, Volker
Schölles,
Markus A. Thies, Wolf gang Wahlster
PLUS - Plan-based User Support Final Project Report
33 pages

RR-93-14
Joacmm Niehren, Andreas Podelski, Ralf Treinen
Equational and Membership Constraints for Infinite
Trees
33 pages

RR-93-13
Franz Baader, Karl Schiech ta
A Semantics for Open Normal Defaults via a Modified
Preferential Approach
25 pages

RR-93-12
Pierre Sablayrolles
A Two-Level Semantics for French Expressions of Mo­
tion
51 pages

RR-93-11
Bernhard Nebel, Hans-Jürgen Bürckert
Reasoning about Temporal Relations: A Maximal Trac­
table Subclass of Allen's Interval Algebra
28 pages

RR-93-10
Martin Buchheit, Francesco M. Donini, Andrea Schaerf
Decidable Reasoning in Terminological Knowledge Re­
presentation Systems
35 pages

RR-93-09
Philipp Hanschke, Jörg Würtz
Satisfiability of the Smallest Binary Program
8 pages

RR-93-08
Harold Boley, Philipp Hanschke, Knut Hinkelmann,
Manfred Meyer
Co LAB: A Hybrid Knowledge Representation and
Compilation Laboratory
64 pages

RR-93-07
Hans-Jürgen Bürckert, Bernhard Hollunder, Armin
Laux
Concept Logics with Function Symbols
36 pages

RR-93-06
Hans-Jürgen Bürckert, Bernhard Hollunder, Armin
Laux
On Skolemization in Constrained Logics
40 pages

W
o

rk
in

g
 N

o
te

s
o

f t
h

e
 K

I'9
5

 W
o

rk
sh

o
p

:
K

R
D

B
-9

5
 R

e
a

so
n

in
g

 a
b

o
u

t
S

tr
u

ct
u

re
d

 O
b

je
ct

s:

K
n

o
w

le
d

g
e

 R
e

p
re

se
n

ta
ti

o
n

 M
e

e
ts

 D
a

ta
b

a
se

s
0

-9
5

-1
2

D

o
cu

m
e

n
t

F.
 B

aa
de

r,
 M

.
B

u
ch

h
e

it
,

M
.

A
.

Je
u

sf
e

ld
,

W
.

N
u

tt
 (

E
d

s.
)

	D-95-12-0001
	D-95-12-0002
	D-95-12-0003
	D-95-12-0004
	D-95-12-0005
	D-95-12-0006
	D-95-12-0007
	D-95-12-0008
	D-95-12-0009
	D-95-12-0010
	D-95-12-0011
	D-95-12-0012
	D-95-12-0013
	D-95-12-0014
	D-95-12-0015
	D-95-12-0016
	D-95-12-0017
	D-95-12-0018
	D-95-12-0019
	D-95-12-0020
	D-95-12-0021
	D-95-12-0022
	D-95-12-0023
	D-95-12-0024
	D-95-12-0025
	D-95-12-0026
	D-95-12-0027
	D-95-12-0028
	D-95-12-0029
	D-95-12-0030
	D-95-12-0031
	D-95-12-0032
	D-95-12-0033
	D-95-12-0034
	D-95-12-0035
	D-95-12-0036
	D-95-12-0037
	D-95-12-0038
	D-95-12-0039
	D-95-12-0040
	D-95-12-0041
	D-95-12-0042
	D-95-12-0043
	D-95-12-0044
	D-95-12-0045
	D-95-12-0046
	D-95-12-0047
	D-95-12-0048
	D-95-12-0049
	D-95-12-0050
	D-95-12-0051
	D-95-12-0052
	D-95-12-0053
	D-95-12-0054
	D-95-12-0055
	D-95-12-0056
	D-95-12-0057
	D-95-12-0058
	D-95-12-0059
	D-95-12-0060
	D-95-12-0061
	D-95-12-0062
	D-95-12-0063
	D-95-12-0064
	D-95-12-0065
	D-95-12-0066
	D-95-12-0067
	D-95-12-0068
	D-95-12-0069
	D-95-12-0070
	D-95-12-0071

