
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

FEGRAMED

Research
Report

RR-95-06

An Interactive Graphics Editor
for Featu re Structu res

Bernd Kiefer, Thomas Fettig

Decem ber 1995

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificiallntelligence (Deutsches Forschungszentrum für Künstliche Intel­
ligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was founded
in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD,
IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-Nixdorf. Research projects
conducted at the DFKI are funded by the German Ministry for Research and Technology, by the share­
holder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical knowledge
and common sense which - by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about the
current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of
the building-up phase.

Dr. Dr. D. Ruland

Director

FEGRAMED
An Interactive Graphics Editor
for Feature Structures

Bernd Kiefer, Thomas Fettig

DFKI-RR-95-06

This work has been supported by a grant from The Federal Ministry of
Education, Science, Research and Technology (FKZ ITWM-9002 0 and
FKZ ITWM-9403).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1995
This work may not be copied or reproduced in whole of part for any commercial purpose. Per­
mission to copy in whole or part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice
that such copying is by permission of the Deutsche Forschungszentrum für Künstliche Intelligenz,
Kaiserslautern , Federal Republic of Germany; an acknowledgement of the authors and individual
contributors to the work; all applicable portions of this copyright notice. Copying, reproducing ,
or republishing for any other purpose shall require a licence with payment of fee to Deutsches
Forschungszentrum für Künstl iche Intelligenz.
ISSN 0946-008X

FEGRAMED
An Interactive Graphics Editor

for Feature Structures

Bernd Kiefer, Thomas Fettig

December 11, 1995

1

Contents

1 Terminology

2 How to use Fegramed
2. 1 Viewing Feature Structures

2.1.1 Scrolling.
2.1. 2 Zooming....
2. 1.3 Imploding ...
2.1.4 Tag Expansion
2. 1.5 Sorting Edges .
2. 1.6 Hiding Edges .
2.1.7 Obscured Edges .
2.1.8 Setting Depth and Other Preferences
2.1.9 Searching for Atoms, Tags or Edges

2.2 Editing
2.2.1 Selection of Items
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

3 Menus

Inserting Feature- Value (Edge- Vertex) Pairs.
Creating Complex Vertices
Copy and Paste
Deleting Vertices (CLEAR, REMovE and CUT) .
Other Editing Features
Building and Removing Coreferences

3.1 The STRUCTURES Menu
3.1.1 NEW

3.1.2 OPEN, SAVE and SAVE As .
3.1.3 CLOSE and CLOSE ALL ..
3.1.4 SAVE & RETURN and RETURN
3.1. 5 PRINT and PAGE SETUP (Mac only)
3.1.6 Q UIT

3.2 The EDIT Menu
3.2.1 COPY and PASTE
3.2 .2 REMOVE, CLEAR and CUT

2

5

8
8
8
8
9

10
11
12
13
13
13
15
15
16
16
16
17
18
18

20
20
20
20
21
21
21
21
21
22
22

CONTENTS

3.2.3 BUILD TAG . .
3.2.4 REMOVE TAG.
3.2.5 NEGATE
3.2.6 SET TEXT and SET SPECIAL ...
3.2.7 EXPORT TO SCRAP (Mac only)

9.3 The FIND Menu .
3.4 The VIEW Menu

3.4.1 IMPLODE
3.4.2 HIDE .. .
3.4.3 ZOOM IN , ZOOM OUT and SHOW ROOT .
3.4.4 HIDDEN FEATURES.
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10

FEATURE ORDER
DEPTH
SCROLLING (Mac only) .
SET DEFAULTS (Mac only)
SAVE DEFAULTS (Mac only)
REFRESH and REFRESH ALL

3.4.11 SHOW OBSCURED ..
3.5 The cFONTS menu (Mac only) ...

4 Building an Interface to Fegramed
4.1 Feature Structure Files
4.2 Communication . .
4.3 Sort and Hide Files

A Motif Particulars
A.1 Command Line Options
A.2 Resources
A.3 Menus and Keyboard Shortcuts

B Mac Particulars
B.1 File Types Used by Fegramed
B.2 Menus and Keyboard Shortcuts

3

22
22
23
23
23
23
24
24
24
24
24
25
25
26
26
26
26
27
27

28
28
29
31

33
33
33
35

36
36
37

Introduction

This paper describes a tool for supporting grammar development in those lin­
guistic frameworks which employ some constraint- based formalism , such as
LFG (Lexical Functional Grammar), HPSG (Head-Driven Phrase Structure
Grammar) , FUG (Functional Unification Grammar) and CUG (Categorial
Unification Grammar) . These approaches have in common that all or at least
a substantial part of the grammar (such as rules, lexical entries, node labels
etc.) is represented as sets of attribute- value pairs.

In LISP or Prolog the structures can be internally represented as lists,
but it is much more convenient and sometimes even indispensable to use
graphical representations when developing grammars. During grammar pro­
cessing, feature structures can become quite large (up to several thousand
nodes) , such that a customized view of the feature structure, which allows
to selectively focus on relevant parts , becomes essential.

Fegramed provides a fully interactive editor for developing, maintaining
and viewing feature structures. It is a tool that is built to cope with the
complexity of feature structures in grammar development and use.

4

Chapter 1

Terminology

In the following, we will first elarify somp teehnical terms we use in this
manual and deseribe how they are related to t.he t<>rms that. are normally
used in the linguisties literature.

Feature structures are dif<:cted graph::; . Fegramed is a graph viewPl" with
a speeifie graphieal representation rather than a program that, knows about.
the semantics of feature structures. We will therefore use graph terminology
in th is manual.

Vertices and Edges

What an~ normally called 'attributes' in linguistics are the (named) edges of
a graph; the ' values . (both atomic and complex) are the ver"ticcs. There are
diffprent kinds of complex vertices (values) in Fegramed: con)unctions, dlS­
)unctions, implications, lists and function applieations. There is no sem anti es

/
disjunetion

Gender : {Fern}
attribute Mas

Morphemes: 3

eonjunetion ~ Morph, [app7 (peter), (comes, today)) 1

funetion application" Jist7 ~s (ordinary and sperial)

Figure 1.1: Basic notions

C\ttaehed to these notions, they are simply vertiees that are displayed in a
particular manner and can have an outdegree (the number of edges leaving
a vertex) that is greater than or equal to zero . All other vertices hav(' an
outdegree of zero, i.p. no edges can leave them. Thes(' vrrtices are also cdlled
atoms or atomic ver·tiees. There are two types of atoms: ordinary and sprcial
atoms. A special atom will be displayed by Fegramed in a different font and

CHAPTER 1. TERMINOLOGY 6

also has a special attribute in the external representation. Othcrwise, there
is no difference between ordinary and special atoms.

Look at the figure 1.1 to see how eclges and complex and atomic vcrticrs
are displayed.

In our representation , as in many linguistic not.a tions, ('(Ige ll alllrS arr
separated from vertices by a ':'. COllju!1etions are drawll with squarr uraek­
ets, disjunctions with curly braces. Atomic vrrtices are .iust showll hy their
names. To ser what all those objects rE'ally look Iike Oll yom COlllPUt.N allel
t.o have a small sampIe to play with, thrrr should lw a filp everything . fs
in yom Fegral1lrcl c1istributiol1.

Coreferences

In feature structmc's two a t.tributes call share the sallle (iclrlltical) illforma­
tion. This l1lealJS that ilJ t.he graph represrntatioll of the fea ture st.ructurr,
several edges point to thc same vertex. This ver tex is only c\isplayrd oll er
and a boxed nUl1lbPr is attached to it. All other occurrencrs of t.his vert,rx
are only representec\ by this boxed numbcr , i .e. they are a ll marked by icl rl1-
t ical tags . In feature strurture tenns, these tags are calleel corefe'rences. An
rxample of coreferences ran be seen in fi gure 1. 2.

Spaceship: Captain : I

[
prename: Ford]
Name: Prefect

Name: Hear
Panic :ITJ

-of-Gold

Figure 1.2 : Coreferences are represented by numbers in boxes

The Hide Symbol

When drawing feature structures, it is often convenient to hide some part
of the structure. In the graphical representation this is realized by a special
'hide J symbol.

[deep : [deeper: [deepest: 0]]]
The hide Symbol /

Figure 1.3: An example of a nested structure

This 'hide ' symbol shows up in two different situations. If a restriction
is put on the depth of display of the feature structure , any complex vertex
that exceeds that depth is represented by the hide symbol. The user can also

CHAPTER 1. TERMINOLOGY 7

create a hide symbol manually by imploding a complex vertex . This means
that the ver tex will be shown as a hide symbol until it is explicitly exploded.
In contrast, hide symbols coming from depth restriction are dynamically
grnerated and removed while zooming into or out of the feature structure.

Obscured Edges

In many formalisms, the members of disjunctions arr not named . In thes<'
formalisms, the edges pointing to the different disjuncts do not matter.

{ : ~ }
Figure 1.4: Disjunctions are normally not labeled

In Fegramed, all complex vertices have edge labels, but they can always
be suppressed. Edges whose names are suppressed but whose values an'
visible are called obscured edges. The edge names can be made visible by
checking the SHOW ÜBSCURED item in the VlEW menu. If you do this , you
can see how obscured edges are specified:

{ :-D 1 ~ [a: 11}
%D2 . [b: 2

Figure 1.3: Obscured edges made visible

Obscured edges have names that start with the 'o/c;' character. If you
have a formalism where the order of the disjuncts matters (as in distribut<,d
disjunction formalisms), you can use numbered edge names as in figure 1.5 to
distinguish the disjuncts . But beware! The edges are sorted in lexicographic
order, so you may have to have leading zero es with the numbers to get the
right order.

Obscured edges can be used in any complex vertex, not just in disjunc­
tions . If you want to specify for example type information in a conjunetion,
you can do it with an obscured edge as shown in figure 1.6.

[

lex +- an edge named %Type
a: [a: 1] J points to this vertex

Figure 1.6: Reprrsentation of types using obscured edges

Chapter 2

How to use Fegramed

Some General Remarks

In this manual, we will reIJeatedly refer to certain actions like clickillg the
mouse or using keyboard shortcuts. As these actions differ on the different
platforms, we will now briefly explain some of them.

Keyboard shortcuts (or accelerators as they are called in the X/Unix
environment) exist for most of the act ions described below. Because most of
them differ in the implementations, only their cxistence is mentioned in the
following tf'xt. Whieh shortcut to use for which action is explained in tbe
apperidices A.3 and B.2.

The mouse click actions differ heeause there is only one mouse button
available on the Mac. Doublr clicking on the Mac is the same as middlr
clicking the mouse under X/Unix. Single ·clicking, on the otber hand, is the
same as left- clieking under X/Unix. The right mouse button under X/Unix
has a special meaning that will be described later on.

2.1 Viewing Feature Structures

2.1.1 Scrolling

Sr:rolling is performed by clicking the mouse in the appropriatC' regions in
tbe scroll bars. They are standard scro11 bars, so there sbould be no problem
using them.

2.1.2 Zooming

Feature structures are typically nested objects. If a feature structure is very
eomplex and you want to examine all edges (with potentially many vertic:p.s
attached to tbem), YOll wOllld normally have to seroll throllgh the whole

8

CHAPTER 2. HOW TO USE FEGRAMED 9

featurp. structure . But if you limit the depth to which the feature structure
is displayed, any parts of the feature structure that are deeply nested are
replaced by the hide symbols discussed earlier. This makes thp. fp.ature struc­
ture smaller on thc screen, but has thc shortcoming that not all information
is displayed at once.

To get more information about one specific vertex, you have to be able to
select and redisplay certain vertices of the feature strudure. This is achieved
by zooming into the structure. If you double-click on some displayed ver tex
(double- dick on the Mac, middle- click under X/Unix) other than the outer­
most vertex (which we call the root node), it will beeome the new root and
the feature strueturp. will he drawn up to the appropriate (deeper) level. SP.8
figurr 2.1 for an examplr of a zooming operation.

Double ehek Here

Dtrs:
Head-Dtr: [~~: ~ ~ll
Head-Only: True

Morph: Peter

-
Head-Dtr: Syn: [Head: [J 1

Local: [J

Sem: [Functor : [J 1
Arguments: [J

Head-Only: True

Figure 2.1: Zooming into the value of Dtrs

Another method to zoom in to a vertex is to select it with a single dick
(it will be displayed in reverse video) and select the ZOOM IN comruand from
thC' EDIT mcnu .

To get back to the p.mbedding structure, you can zoom out again. One
method is to dick outside of the whole strueture.! This has the effect of
zooming out one level. The same effeet can be achip.ved by ehousing tlw item
ZOOM Ol!T in the EDIT menu or its keyboard shortcut. 2

You can return immediately to the outermost vertex of the wholp. struc­
ture by choosing SHOW ROOT in t.hp. EDIT menu or using its keyboard short­
cu t.

2.1.3 Imploding

Another way to shrink large feature struetures to obtain a better overview is
to implode a (currently uninteresting) vertex. You can do this by ma.rking
the vertex (just single dick on the vertex, it will be n~displayed in revp.rse

l In the X/l' nix Version, this can be done by right -dicking the mOUS8 anywhere in thE'
display area of the window

2The shortcuts for thE' different vers ions of the feature editor are given in the appendices
A.3 and B.2. Most of the menu options can be reached by a shortcut.

CHAPTER 2. HO\tV TO G"SE FEGRAMED 10

video) and selecting IMPLODE from the EDIT menu . The whole vertex will
be replaced hy a hide symbol.

Mark this node and Implode

[

Dtrs: Head-Dtr: Head l]
Comp-Dtrs: Compl

Sem: Void
[
Dtrs: [J 1
Sem: Void

Figure 2.2: Imploding the vertex under Dtrs

Note that. corefered vertices which were displayed under t he imploded
vertpx will potentially be shown at another point. So you may have to
implodp several vertices to get the desired view.

To 'explode' the vertex again, simply double- dick (double- click on the
;Vlac; middle- click on X/Unix) the hidr symbol and it will be expanded to its
previous form. If you imploded a child ver tex of the now 'exploded ' vertex
it will remain implodpd. Only the clicked-on vertex will be expanded .

2.1.4 Tag Expansion

Two edges can share a single vertex. This is indicated by tags, a. illustrated
in figure 2.3. The little boxes with numbers are called tags (or coreferences) .

...------ A single node

Spaceshi p: [captain : 1 [prename : Fordl]
Name : Prefect

Name: eart-of-Gold

Panic:ITJ
Two occurrences

Figure 2.3: Panic and SpaceshiplCaptain share a single vertex

If two edges point to a single vertex , the number of the tag that appears
behind them is the same. You can also S0.e in t his figure that compkx vertices
are shown only once, even if they are used in several places in the feature
structurp. All the occurrences will he marked with the same tag, but the
whole vertex is only shown in one place. If you run into the situation that
you want to look at a certain part of the fraturr structure but some of the
vertices are only tags, you can doubl e· dick on a tag to make the expansion
of thp vertex appear at that edge.

It still holds that the vertex is only shown once; it has only disappeared
from where it was shown before.

CHAPTER 2. HOW TO USE FEGRAMED 11

Spaceship: [Captain: DJ]
Name: Heart-of-Gold

Panic: CD [prename: Ford]
/ Name: Prefect

Wf' doublf'-clicked here. Only the display changed.

Figure 2.4: Expansion of the tag behind Panic

2.1.5 Sorting Edges

If you are working with big feature structures, you may be more interested in
certain edges at every lrvel of embedding. Ordering these edges in a sperified
way allows you to display the most important features at the top of the
window while others, less important ones can be accessed by scrolling. The
order in which edges are shown can be changed interactively. If you rboose
the item FEATURE ORDER from the VIEW menu you will be presented with
a dialog box like the one in figure 2.5 .

(scrollable) list of
rurrently specified

edge narnes
-

DTRS li Add
CAT
SYN

,-- Remove

SEM
Load

_f+-MORPH
HEAD-DTR Save
COMP-DTR
----------------- 7 Ok

--'-

Cancel
'-
~

~ Text field to enter names

Figure 2.5: FEATURE ORDER dialog box

Thp list held shows you the edge labels that are specifie<.l ~o far. At the
rnd of the list appears a dashed li ne that means 'end of list'. If nothing
was specified yet, the dashed line will be the only entry in the list box. The
edges in the feat.ure strllcture are sorted in the order that is given by the list.
The edge names in the feature ~tructure have to match the entries in tbe list
exactly, including case. All edges with edge names that are not mentioned
in the list follow the specified ones in alphabetical order.

If the list of specified names is to long to fit into the list field, you may
have to u~e the scroll bars to inspect it fllily or to select a certain item.

To add a new edge name, first type it into the text field . Then mark the
list item in front of which the new edge name ShOllld be placed, and press the

CHAPTER 2. HOW 1'0 USE FEGRA.\1ED

ADD button. The new edge name will appear in the list immediatcly brfore
the marked name. To add names at the end of the lis t , you have to mark
the dashed linp. If you have selected an edge or an atom bpforp you invokprj
the FEATURE ORDER command, the name of that object will already be
E'nt.ered into t.he t.ext field. Thus, you can easily add new items to t.he list
while working with the structures.

To rpmove an item from the list, select it and press the REMOVE button.
The dashed line cannot be removed because it is not areal entry but it is
IH'CeSsary t.o make it possible to add entries to the end of t he list.

Pressing the OK button takes you back to the current ly active windO\N
accepting all changes tha t you made to the list. The new list reftects the order
that will be used to sort the current and all subsequently opened 'vvindows.
Pressing the CANCEL button will discard all changes you madr to the list
and leave the windows unchanged. If you want to re-order an already opened
window, bring it to the front and select REFRESH from the VIEW menu.
REFRESH ALL reorders all currently open windows.

The LOAD and SAVE buttons allow you to save these lists to disk for use
in another Fegramed spssion or as adefault order. Thus, you do not havc to
specify the samp lists again and again.

Pressing one of these buttons gives you a file selection dialog to specify
the fil e to load or to save to, respectively.3

On startup, Fegramed loads the defaul t sort order from a file. On the
Mac, name and location of this file belong to the saveable defaults (see sec­
tion 3.4.8) and is preset to thp namp 'FeditSort' and Fegramed 's application
directory. In the X/Unix version, either the file is specified by the contents
of t he Fegramed. sort resource (cf. appendix A, section A.2) or it tries to
load '-/.fedi t_sort'.

2.1.6 Hiding Edges

To hide an edge means that edges with this name will be hidden throughout
the feature structure. As a consequence, the vertices these edges are pointing
to will not show u p ei ther, except in the case that anothpr edge wi th a
different name is not hidden and points to the same vertex. (The coreferencp
tags will remain even if only one visible edge points to that vertex. This way
you know that it is shared at different places that may be invisible.)

To specify an edge namp as hidden, you ran use either of two methods.
Select an edge with the appropriate name and issue the HIOE command
from the EDIT menu. Altprnatively, use a dialog window by selecting 1110-
DEN FEATURES in the VIEW menu. The dialog windO\v is identical to the

3In the eurrent X/Cnix version, the file eannot be seleeted. The list is always in the
file ,,- / .fedit_sort" unless you sppeify another file using tl1P Fegramed. sort resouree.

CHAPTER 2. HOW TO USE FEGRAMED 13

FEATLRE ORDER dialog, but the order of the features in the list does not
matt~r.

To hide all edges with a certain name, type the name into the text field
and press the ADD button (the HIDE command is just an abbreviation for
this).

To reveal a hidden edge, you have to use the dialog window: select the
name in the list and press the REMOVE button

The LOAD and SAVE buttons work the same way as in the feature order
dialog, just the default files are different: On the Mac, it is the file with name
'FeditHide' in Fegramed's application directory, in the X/Unix version , it is ,­
j.fedit_hide' or the file specified by the Fegramed. hide resource (cE. appendix
A, seetion A.2).

2.1. 7 0 bscured Edges

Obseured edges were introdueed in Chapter 1 (see page 7). They are normally
not visible and are therefore used in situations where only values (vertices)
are expected, for example in disjunctions. You can toggle a switch that
affects the visibility of the obscured edges by ehoosing SHOW OBSCURED in
the VlEW menu.

2.1.8 Setting Depth and Other Preferences

The dejJth up tu which feature structures are shown can be limited (see
Chapter 1). This limit can be set interactively by choosing the menu item
DEPTH from the ",,'lEW menu. You will get a dialog box in whieh you ean
speeify the number of levels tbat should be shown.

In the Mae version of the feature editor, there is a similar dialog to set
the seroll speed for tbe stepping seraIl. You can reaeh it via the SCROLLING

menu item. You ean enter the number of pixels that will be serolIed for eaeh
press of one of the seroll bar arrows.

Most of the settings that affeet the appearanee of feature struetures only
affeet the eurrently aetive and subsequently opened windows, but not the
other open windows. To see the effeets of a sort or hide list ehange in every
window, you can use the REFRESH ALL menu entry in the VlEW "vindow.
Tu ohtain the effeet in the aetive windmv only, use REFRESH.

2.1.9 Searching for Atoms, Tags or Edges

The FIND funetion ean be usrd (as in most text editors) to loeatr a eertain
edge or atom in the strueture. If you rhoose FIND from the FIND menu, t he
dialog box shown in figure 2.6 appears.

CHAPTER 2. HOW TO USE FEGRAMED 14

Find

....-----+-- Text Editing Field

~ Feature ~ Text ~ SpecialO ~ Speciall
~ Spe,ial2 ~ Special3 ++-- Check Boxes

o Match Words ~ Ignore Case

IOkl lCancel1 Buttons

Figure 2.6: FI:-JD dialog box

In this dia log, the check boxe::; FEATURE, TEXT and SPECIALO ... SPE­
CIAL3 specify which items are exarnined during the seat-ch (edge labels, or­
dinary or sper.ial atoms). The FIND funr.tion exarnines the structure recur­
sively, compa ring the string given in the FIND text field with the names of
the specified items. If you have selected an edge or an atom before opening
the FIND dialog, tl10 narnr of this edge or atom will be entcred into the text
field.

The case of letters is ignored if the IGNORI:<; CASE box is cher.ked . If
WHOLE WORD is checkeo, the comparison of the find string and the narnes
only succeeds if t hey have the same length . You can determine the plar.e
from where tlw search is started as folIows:

• If a vertex is marked, the search starts at that vrrtex.

• If an edge is marked, thr search starts a t the vNtex the edge points to.

• If not hing is marked, srarch starts at th(~ current root node.

If the find act ion is successful, the item that is found will be rnarked l,y
highlighting and scrolled into sight if necessary. If nothing appropriate is
found, not hing happens.

There is another FIND function that works on the coreferencf's in the
structure: FIND TAG . It lets you type in the tag number you want to look
for. There are no options to choose, but the actual search procedure is the
same as for FIND in a ll other respects.

The FIND AGAIN function resumes the las t find action, be it a FIND or
a FIND TAG .

CHAPTER 2. HOW TO L'SE FEGRAMED 10

2.2 Editing

Fegramed is not only suitablC' to view structures but also allows you to c.reate
and edit them.

2.2.1 Selection of Items

First of all , if you want to edit something in a structure, you have to select
it. This is done by single clicking the object you want t.o edit. Items that.
are sC'lected a[(~ shown white on black.

If you have selected an edge or an atom, you can change it simply by
typing. There are certain special facilities for string editing:

1. If the whole string is selected and you start to type, the string will be
completely replaced by what you type in.

2. If the whole string is selected, you can delete it completely by tapping

I Backspace I·

3. YOll can move the cursor inside the string by:

• clicking where it should go; or

• using the left and right arrow keys (I f-I and l----t I) (as long as YOll

do not leave thC' string).

'1. I Backspace I deletes a character to the left (except when the whole string

is selected as in case 2), I Deli deletes a character to the right.

J. I Return I has no meaning in string editing.

If an item is selected, YOll can select other items by lIsing the arrow k('ys.
But beware: if you select an atom or an edge and press the right arrow key,
the cursor will appear. If you want to avoid this, YOll have tu press the
command key4 while tapping the arrow keys. JlISt playabit with the cursor
keys to see how they work.

So far we have seen how the information contained in a feature structure
can be seh~cted and how text can be changed. We now show how vertices
and edges can be added and ddeted.

4 With the Macintosh version press the [g] key, with the Motif version use I Meta I

CHAPTER 2. HOW TO USE FEGRAMED 16

2.2.2 Inserting Feature-Value (Edge-Vertex) Pairs

If you have selected a complex vertex, you can insert a new feature- value
pair (a vertex and an edge pointing to it) by pressing Return.

In disjunctions, lists and function lists the edge name is " o?" by default,
so you will not see it if you have not checked SHOW OBSCCRED. See also
figure 1.4 on page 7 and seetion 3.4.11 on page 27.

2.2.3 Creating Complex Vertices

Tu <:reate a com plex vertex, you have to select an atomic ver tex first ano
then choose the appropriate command item from the COMPLEX menu or use
its keyboard shortcut . The atom will then bf' repl aced by the chosen complex
vert.~x.

2.2.4 Copy and Paste

You can copy any selected vertex or edge to the internal scrap using the
COpy command either from thr EDIT menu or by its key shortcut.

The possible targets to PASTE the copied object to depend on the type
of the object: edges can only be pasted into eomplex vertiees, while vertiees
can be pasted to any vertex, cornplex or atomie. When a ver tex is pasted to
a eomplex vert('x, the effect of the oprration is as if a CLEAR oprration had
b(len done before the PASTE (described later in the section 2.2.5).

COpy this first

syn:[TI

args: lhead: [syn: ITJ [loe: 5]lj
sem: [fun: 1]

eomp:ITJ

dtrs: lhead: [syn:0 [loe: 5111
. sem :[TI [fun: 1

eomp:[I]
dtrs: head: [syn:[I] [loe : 51111

sem:[TI [fun:

eomp:[IJ

syn:[TI

args:[list: ?]
------and then PASTE hf're

Figure 2.7: COPY and PASTE of a complex vertex

If a complex vertex has been copied, all internat coreferences are pre­
served, while the externat ones, i.e. edges pointing into the copied subgraph
from the outside, will disappear (cf. figure 2.7; there is no coreference between
syn and args I head I sem). A method to move a complex vertex preserving
<tU eoreferenees will be described in section 2.2.7.

You can also copy and paste between feature structures displayed in dif­
ferent windows .

CHAPTER 2. HOW TO USE FEGRAMED 17

2.2.5 Deleting Vertices (CLEAR, REMOVE and CUT)

There are three different deletion operations, CLEAR, REMOVE and CUT.
CLEAR works only on complex vertices and has the effect of destroying

the internal structure of the selected vertex while all edges pointing to that
vertex stay intact. The selected vertex is replaced by an atomic ver tex with
the name "?".

Note that vertices remain in the graph if they are reachable not only
through the cleared vertex but also through other vertices. Look at figure
2.8 for an example of a CLEAR operation.

dtrs:[TI [t:a~~E[:::~[:::~ 51]1
sem: [TI [f un: 1

comp: [2] [

dtrs : [TI? rTh' r:;l It ' 1S was L2.J . s * syn: [fun: 1 now only here
args: [TI? syn:[TI

args :[TI

Figure 2.8:

/
This node is still shared, but now empty

CLEAR applied to the value of dtrs

A REMOVE action on a vertex deletes the vertex itself and all edges
pointing directly to it. All vertices and edges that lose connection to the
outermost vertex are also deleted. All vertices that are pointed to by edges
from outside will remain in the graph. Figure 2.9 shows an example of the
REMOVE operation.

/ REMOVE here

dtrs:[TI [he'd [:::~ [~: :1]1
comp:[2] * [syn: [fun: 1]]

syn:[TI t
args:ITJ Now only syn remains

"-. This shares [TI, so it will go away too

Figure 2.9: REMOVE applied to the value of dtrs

REMOVE also works on edges. In this case, the edge and the vertex to
which it points are deleted. All vertices pointed to from outside remain
in the graph. See also figure 2.10 and figure 2.11 as examples of REMOVE
operations on edges.

CUT works on all vertices as weIl as on edges. The selected object is first
copied to the internal cut buffer as by a COPY operation. A vertex is then
deleted with CLEAR, an edge with REMOVE.

CHAPTER 2. HOW TO USE FEGRAMED 18

~ REMOVE he re

syn: ITJ [fun: 1] dtrs:ITJ [head: [Syn:12] [loe:

sem:[IJ [fun:

eomp:12]

syn:[IJ
args:ITJ

: 1]]
=} args: [head: [syn:12] [loe : 5]]]

sem:ITJ

eomp:12]

Note that the tags renumbered themselves!

Figure 2.10: REMOVE applied to the edge dtrs

/ REMOVE here

dtrs : ITJ [head: [syn : [2] [loe: 51]]
sem:[I] [fun: 1

eomp:12]
=}

dtrs:ITJ [eomp : [loe: 5 J]
syn : [fun: 1]

syn:[IJ
args:ITJ

args:ITJ

Figure 2.11: REMOVE applied to the edge head

2.2.6 Other Editing Features

A vertex can be negated by choosing the NEGATE command from the EDIT
menu. Similarly, you can change a selected atom into a special atom (for
Fegramed, that just means it is displayed in the appropriate special font) by
using one of the SET SPECIAL commands. A special atom can be turned
into an ordinary one by choosing SET TEXT.

Special atoms may have special meanings in the system using Fegramed,
in Fegramed itself, the atom just gets another font and it gets a special
attribute in the external representation. There is no additional functionality
that applies to special atoms.

2.2.7 Building and Removing Coreferences

How do you make two or more edges point to the same vertex, creating a
coreference? Let's assurne you have an edge which you want to point to
an already existing vertex. Select the edge and select BUILD TAG from the
EDIT menu. (On the Macintosh a hand cursor will appear to indicate "Build
Tag" mode.) Now select the vertex you want the edge to point to. Matching
coreference boxes will appear at the selected vertex (if there was not one
already) and on the edge that was selected in the first place.

If you are in the "Build Tag" mode and change your mind,. you can leave
it by either reselecting BUILD TAG from the menu (on the Mac, the item

CHAPTER 2. HUW TO USE FEGRAMED !Cl

. / BUILD TAG here

ShlP: [capn: ?]
Name: H-o-G

Palllc: r ~~~_: Ford]
~: Prefect

then select this one

Ship: [capn: [TI [pre: Ford]1
Prop: Prefect

Name: H-o-G

Panic:[TI

Figure 2.12: Select Capn, BUILD TAG and then the ver tex under Panic

rhanged its name into CANCEL TAGGING) or dicking outside the structure
(in the X/Unix version, right dick anywh~re in the window).

If you want to remove a coreference (you think that an edge should not
point to some shared ver tex anymore) you can select it and either delete it
by using the REMOVE command or use REMOVE TAG, which will make the
edge point to a newly created ver tex named "?". With REMOVE TAG , you
can then proceed to create a new ~tructure under the old edge. Notice that
the vertex the edge pointed to will not be "hangen by this operation.

. ~ REMOVE TAG here

Shl p: [capn: ITJ]
Name : H-o-G

Ship: [capn : 7]

Name: H-o-G

Panic:ITJ [pre: Ford]
Prop: Prefect

Panic: [pre: Ford]
Prop: Prefect

Figure 2.13: Removing a tag.

A hint for advanced users: BUILD TAG and REMOVE TAG can be used
to move a structure from one point to another. Suppose you want to move
a structure from an edge a to an edge b. To do this, create tags between
them (using BUILD TAG) and then immediately remove the tag behind edge
a. The effect will be that thc tags are deleted and the structure is pasted in
at edge b.

This differs from doing a Cl:T behind a and a subsequent PASTE be­
hinn b. Cl.:T and PASTE will not preserve coreferences that point into the
substructurc behind a from the outside. lJsing the BUILD/REMOVE TAG

mechanism preserves all (internal and external) coreferences.

Chapter 3

Menus

SincE' most of the functionality of Fegramed was described in the previous
ehapter, we say little about it here and refer to the appropriate sections in
the previous chapter. This is just a short reference guide to every mrnu item.

3.1 The STRUCTURES Menu

Most of the items of the STRUCTURES menu are very similar to those of thr
FILE Illenll in text editors. These parts will only be described briefty.

3.1.1 NEW

This command allows you to create a completely new feature structure.
Choosing ='JEW gives you a new window with only one (atomic) vertex in
it , which has the name "?". You can now start editing your feature struc­
ture.

3.1.2 OPEN, SAVE and SAVE As

These items load a feature structure from or save it to a file. If you seleet
OPEN, a file dialog box pops up that lets you choose the file to load.

SAVE will save the feature structure of the current window (in X/Unix thc
window where you selected the SAVE item) into the file it was loaded from.
If you select SAVE in a window that was created by the NEW command and
does not know a filename, Fegramed will react differp.ntly in the different
implementations. On the Mac, it will behave as if you had selected SAVE As
(see below). Under X/Unix, it will just display an alert box that tells you to
use SAVE As to save this window.

SAVE As is used either if you want to save a feature structurE' in a file
other than the original, e.g. after having edited the structure, or if you c[(~ated

20

CHAPTER 3. MENUS 22

3.2.1 COPY and PASTE

You can easily eopy parts of your feature structurf' from one point to another:
Mark an objeet (an edgr or a vertex) by elieking on it with thC' mouse . Then
seleet Cüpy to copy it into the internal cut buffer. To paste it back in, seleet
the target strueture and seleet PASTE. If you eopied an edge, thp target has
to be a eomplex vertex, if it was a vertpx, it ean be any vertex. For a detailed
description, see seetion 2.2.4.

You can a lso copy and paste bebveen feature structures displayed in dif­
ferent windows.

3.2.2 REMOVE, CLEAR and CUT

REMOVE anc! CLEAR are slightly differpnt deletion operations. REMOVE
works on C'dges as weil as on vertices , CLEAR only on vertiees. CUT first
copies the seleeted objeet to the internal scrap, Jike COpy, and then del etes
the objeet, a ver tex with CLEAR, an edge with REMOVE. For a detailed
e1escription with examples, see seetion 2.2.,C).

3.2.3 BUILD TAG

This command is used to create eoreferenees , i.e. more than one edge pointing
to the same vertex. This is achieved by seleeting an edge anel speeifying an
existing vertex thf' edgp ShOllld point to.

First, seleet the pdge, then choose BUILD TAG anel seleet the vertex you
want the rdge to point to. Thr nC'w eorefcrener is shown by identieal tag
boxes behind the previously seleeted edge and the seleeted vertex.

To cancel a BULD TAG operation, reselect BUILD TAG or diek anywhere
outside the structure (in the X/Unix version, right-dick anywhere in the
winelow).

For a deta iled des,ription, see section 2.2.7.

3.2.4 REMOVE TAG

The item ealled REMOVE TAG gives you the possibility to diseard tags, i. e., to
make an edge that points to a shared vertex point to a fresh (atomic) vertex.
To remove a tag, seleet the eorresponding edge (not the tag itself!) and
choose REMOVE TAG. The ver tex the edge pointed to will not be affrcted ,
the edge will just point to a new atom named "?". This command will only
work on eclges pointing to a vertf'X Lhat is shared by more than one edge (see
a lso seetion 2.2.7).1

1 A hint for a.dvanced users: BI!lLD TAG a.nd REMOVE TAG can b<' used to movc a
structure from on0 point to another. Suppose you want to move a structur<, from an

CHAPTER 3. MENUS 23

3.2.5 NEGATE

NEGATE toggles the negation of a (complex or atomic) vertex. Negated
vertices are displayed with the negation symbol '-,' in front of them.

3.2.6 SET TEXT and SET SPECIAL .. .

Any ordinary atom in the structure can be turned into a special atom by using
one of the SET SPECIAL ... commands. There are currently four different
special attributes, each of which has its own font and is marked differently in
the external representation. Likewise, any special atom can be turned into
an ordinary one using SET TEXT.

3 .2.7 EXPORT TO SCRAP (Mac only)

This feature is only available in the Mac version of Fegramed. The menu
item EXPORT TO SCRAP allows you to copy structures to the clipboard and
use them later in other programs, e.g. in a text processor. 2 To do this, select
a structure with the mouse and choose EXPORT TO SCRAP. To use it in the
target application, simply use this application's PASTE command.

3.3 The FIND Menu

The menu items in the FIND menu let you search for edges, ordinary and
special atoms in large feature structures that you cannot easily overview.
There are three different commands, FIND, FIND TAG and FIND AGAIN ,
which will be described in this section.

After selecting FIND you will be given a dialog box in which you can enter
the following information (see also figure 2.6 on page 14):

• what to find

• what to search: edges, ordinary or special atoms - 01' all of these

• whether to search for matching words

• whether to make the search sensitive to case

Fegramed will display the first matching item of the feature structure
in reverse video to indicate success. If the search fails, the display is not
changed.

edge a to an edge b. To do so, create tags between them (using BUILD TAG) and then
immediately remove the tag behind edge a. The effect will be that the tags are deleted
and the edge b will point to that vertex.

2Note, that the displayed structure is transferred to the clipboard, not its intern al
representation .

CHAPTER 3. MENUS 24

FIND TAG worles similar to FIND, except that it searches for a tag number
that you specify in the dialog.

Fegramed only searches for the first occurrence of your search key. You
can use FIND AGAIN to continue the search. Fegramed will then go on to the
next occurrence of a matching item and display it.

See also seetion 2.1. 9 for a detailed descri ption .

3.4 The VIEW Menu

3.4.1 I MPLODE

The IMPLODE item is useful to hide temporarily unwanted details of your
feature structures. It reduces a (possibly very large) vertex to a special
symbol Cl and so shrinks the whole structure. Double- clicking this symbol
will bring back the original view.

3.4 .2 H rDE

HIDE is another method to make your feature structure more transparent.
After selecting an edge and the HIDE item all edges with this name (and
the vertices they point to) are no longer displayed. If you want to bring
them back to the screen, use the HIDDEN FEATURES command, described in
section 2.1.6 on page 12.

3.4 .3 Z OOM I N, Z OOM OUT and SHOW R OOT

You can zoom in to a structure by double- clicking it (middle- c1icking it
in X/Unix) or select it and choose the ZOOM IN command. To zoom out
again, either click anywhere outside the feature structure (in the X/Unix
version, you can also zoom out by Right- clicking the mouse anywhere in the
window) or choose ZOOM OUT. The difference between ZOOM OUT and
SHOW ROOT is the following: whereas ZOOM OUT zooms out to the next
enclosing structure (that means one level higher), SHOW ROOT zooms out
to the root of the whole structure (i .e. to the absolutely highest level).

3.4.4 HrDDEN F EATURES

This command gives you a dialog to interactively change the list of hidden
features. To hide a feature means that all edges with a certain name will not
be shown on the display (see also HIDE above).

CHAPTER 3. MENUS 25

To add a new item to the list, type its name into the text field (all edges
bearing exactly that name will not be displayed) and press the ADD button.3

To remove an item (the appropriate edges will show up again), select it in
the list box and press the REMOVE button.

The LOAD and SAVE buttons allow you to store the current list to disk
for use in later Fegramed sessions or as default list.

To return to editing, press OK to accept all changes you made to the list
or press CANCEL to discard them. For a detailed description of the dialog,
see sections 2.1.6 and 2.1.5.

3 .4.5 FEATURE ORDER

Choosing this menu item opens a dialog that lets you specify the order in
which edges are displayed by Fegramed. The edges having names that match
an entry in the list exactly (including case) will be sorted to the top in the
specified order at any level of the feature structure. All other edges will
follow in alphabetical order the ones mentioned in the list.

To add a new item, enter its name into the text field, select the item in
front of which you want it to appear and press ADD. If you want to add it at
the end of the list , select the dashed line. To remove an item, simply select
it in the list box and press REMOVE.

The LOAD and SAVE buttons allow you to store the list to disk for use
in later Fegramed sessions or as default order.

To return to editing, press OK to accept all changes you made to the list
(the current and all subsequently opened windows will be sorted according to
the new order) or press CANCEL to discard them. For a detailed description
of the dialog, see section 2.1.5.

3.4 .6 DEPTH

In the DEPTH dialog that is invoked by selecting DEPTH from the VIEW

menu, you can specify the maximum depth of structure that will be displayed ,
i.e. you can tell Fegramed when to display the hide symbol (0) instead of
more deeply embedded structure. The default value for this option is 10,
so Fegramed will not use the symbol unless you have a structure that has
more than 10 nested complex vertices (conjunctions, disjunctions, ...) on
the screen.

3In fact this has the same effect as HIDE in the EDIT menu. You can see HIDE as an
abbreviation for this operation.

CHAPTER 3. MENUS 26

3.4.7 SCROLLING (Mac only)

This item allows you to set the scrolling speed for the editor 's windows. Just
enter a value to change it. Small values cause slow scrolling , big values (very)
fast scrolling. This feature is available only on the Mac.

3.4.8 SET DEFAULTS (Mac only)

To make the settings for the current window permanent for the rest of your
work session with the editor , use SET DEFAULTS. The following values are
fixed by this command :

• size and position of the window

• all changeable fonts (References, Text, and SpecialO ... Special3)

• the depth limit for feature structure display

• the scroll speed

• name and location of the default sort and hide files

All subsequently opened windows will take these settings. Note that they
will be "forgotten" when leaving Fegramed (unless you save them). This
feature is available only on the Mac.

3.4.9 SAVE DEFAULTS (Mac only)

When choosing SAVE DEFAULTS, Fegramed will save the values that you
fixed with SET DEFAULTS as startup preferences to a file called "FeditPrefs"
in the Fegramed application directory. Next time you start Fegramed , th
values listed in the previous section will be set as you fixed them.

You can copy the Preferences file to another directory and start Fegramed
by double- clicking that file. Thus it is possible to have local vs. global pref­
erences or different preferences for different systems. This feature is available
only on the Mac.

3.4.10 REFRESH and REFRESH ALL

REFRESH redraws the topmost window using the actual settings. It was
created because windows that are already open when you change for example
the feature order are not refreshed automatically; you can also use it to refresh
t he window contents in case something weird happened to the display.

REFRESH ALL performs REFRESH on all currently open windows.

Chapter 4

Building an Interface to
Fegramed

This chapter is only relevant for people who want to use Fegramed as a. tool
inside another system that controls it. In thc followillg , we describe what
the interface looks likr. "Ordinary"' users of Fegramed do not hav(' to worry
<ibout these things, they are mostly for developers.

4.1 Feature Structure Files

Exchange of feature structures with Fegramed takes place via feature struc­
t,ure files. Tlwse are plain text fil es containing the description of a featurf'
structure. To interfacf' to Ff'gramed , you must convert both ways between
this format and your internal representation. The syntax of a feature struc­
ture fi le is described now. First the tokens :

Name see text
Tag #[0- 9]+
TagIs #[0- 9]+ =
Attribu te #[A·Z]
AttributeIs #[A·Z]=

Names C<in contain any charactef. If the first charac ter of a name is one
of ' [', T, 'C, '}', 'I', 'C, ')', '#' or '\', it must be preceded by a '\' (which is
removed w hen the token i::; read). If a namp, contains spaces, each bla.nk mu::;t
also be escaped with a '\'. The end of a name is marked by a non-escaped
blank, so the last character of 'one-of) , is ')'.

Only the attributes #S and #N are used at the moment, where #S= n
specifies a special atom of type n (where n has to be in O .. . 3) and #":'J. spec­
ifies that the vertex is ncgated. #S is not appropriate for complex vertices;
it will be ignored at complf'x vertices as weU as all other invalid attributes
glven.

2R

CHAPTER 4. BUILDING AN INTERFACE TO FEGRAMED 29

The input syntax for the feature editor in BNF notation is as follows:

lIode --+ complexnodE'
--+ atomicnode
--+ Tag ; a coreference
--+ TagIs node ; the definition

; of a coreference
--+ '(' path ')' ; a coreference specified

; by a feature path

complexnode --+ CumlJlexName attributes edgelist
ComplexName --+ '{' ; Disjunction

--+ 'I' ; Implication
--+ T ; Conjunction
--+ ']' ; Function application
--+ '} , ; List

atumicnode --+ Atoml\"amc attributes

attributes --+ Attribute attributes ; Only #"0.
--+ AttributeIs)lame attributes ; Only #S=Ü ... 3 (atoms)
--+ E

edgelist --+ ' (' EdgeNarne node ')' edgelist
--+ E

path --+ EdgeName path
--+ E

AtomName --+ Name

EdgeName --+ Name

4.2 Communication

Fegramed has a communication interface which allows it to work in a kind of
'client' mode. In this mode, it can also receive commands from a host appli­
ration via a communication channel. Possible commands include opening a
window containing a certain feature structure filp, closing üne or all windows
and quitting completely.

The implcmentation of the communication channel differs between the
Macintosh and the X/Unix versions of Fegramed.

On the Mac, the communication channel is implemented using commu­
nication files and Apple Events. To talk to Fcgramed , you have to write
your commands to a file, give it the appropriate file type (C FBLK») and file
r:reator (C FEDI») and send Fegramed an 'Open Document' (C odoc») Apple
Event for that file. Fegramed will determine that it is a communication file
hy looking at its type (in contrast to the communication filf's, the type of an
ordinary featurf' structure file has to be C TEXT') and then read and expcute

CHAPTER 4. B UILDING AN INTERFACE TO FEGRAMED 30

the commands it contains.
The communication channel of X/Unix Fegramed can only be activated

by the command line option "-poil". The feature editor then checks its
standard input regularly for incoming command sequences. Thus if you want
to interface Fegramed with your application, you must execute Fegramed as
a subcommand of the application with the "-poil" option enabled and write
the 'rclllot.e' commands to its standard input.

The following remote commands are supported by both implementations.
Note that each command must be followed by a newline:

• feature=pathname
The feature editor loads the file pathname and opens a new windovv
containing the feature structure. If the file cannot be found, an error
dialog box will be displayed.

The two subsequent commands affect only an immediately following
feature command.

• selected=edge-name*

• path=edge-name*
The selected command highlights the vertex at the end of the specified
feature path while the path command zooms into the feature path.

If a path can not be resolved completely, a warning will be displayed
and the longest prefix path that could be matched is used.

The path and selected commands have no effect except when given
immediately before a feature command is transmitted. They affect
only the view in the window that is opened by this feature command.
If other commands are given in between, thc path and selected com­
mands are ignored.

• close=pathname
This command closes the window that displays the file given by the
pathname. If more than one window displays this file, only one of
them is closed. The command is ignored if no such window exists.
This command has the same effect as closing the window interactively.
If the window contents have been changed, a dialog window will open
and ask whether to SAVE or DISCARD CHANGES, or to CANCEL the
close operation. If CANCEL is chosen, the window will not be closed
despite the external command.

• closeall
Tries to close all currently open windows, like CLOSE ALL from the
STRUCTURES menu. If the contents of a window were changed , a dialog

CHAPTER 4. BUILDING AN INTERFACE TO FEGRAMED 31

is initiated as with close (see above). If CANCEL is chosen, the whole
clo s eall operation is aborted.

• qu i t
Tries to elose all open windows in the same way as closeall and quits
Fegramed if it succeeded in elosing all windows.

The communication channel is bidirectional, i.e. it is not only used to
transmit commands to Fegramed but also to get a "return value" back. Fe­
gramed teIls you if RETURN or SAVE & RETURN from the STRUCTURES

menu were selected. Here is what it returns:

• return
RETURN was selected, that means that Fegramed returns to its host
application without a feature structure as result.

• f eatur e=pathname
SAVE & RETURN was selected; in this case, Fegramed returns the name
of the feature structure file that was displayed in the current window
when SAVE & RETURN was selected. The host program can then load
this feature structure as the result of calling Fegramed.

X/Unix Fegramed writes this information to its standard output if the
command line option "-poIl" was enabled.

Mac Fegramed will determine the sender process as weIl as the commu­
nication file by looking at the last Apple Event used for communication. It
will overwrite the contents of the file with the return commands and make
the sender process the current process. Note that only the last Apple Event
to open a communication file is relevant, others that were received between
the last return action of the user and this event will be lost.

To receive Fegramed's response, the host application could remember the
fi le change date and time of the communication file when switching to Fe­
gramed and check if it changed when it handles a 'Resume' operating system
event (which means it is the front process again). If the communication file
changed, the host application should read it and take the appropriate actions.

4.3 Sort and Hide Files

These files contain the lists of features mentioned in the FEATURE ORDER

respectively RIDDEN FEATURES dialogs. They are plain text fi les where each
feature contained in the list appears on aseparate line. You can also edit
these fi les with a text editor and load them into Fegramed.

CHAPTER 4. BUILDING AN INTERFACE TO FEGRAMED 32

In the X/Unix version, these files are always named ,,- /.fedit_sort" and
,,- j.fedit_hide" unless other names are specified in the Fegramed. sort and
Fegramed. hide resources , respectively (cf. appendix A, seetion A.2).

In the Mac version, the names of these files can be chosen by the us­
er. When you select the SAVE button in the FEATURE ORDER or HIDDEN

FEATURES dialog, a file selection dialog will appear that lets you specify the
directory and the name of the file to save the current list into. These path­
names are among the options that are remembered using the SET DEFAULTS

and SAVE DEFAULTS commands.

Appendix A

Motif Particulars

A.l Command Line Options

- file or -fs
- refFont
- textFont
- specOFont
- spec1Font
- spee2Font
- spee3Font
- featureDepth
- sort
- hide
- poll

featurr structure file to be loaded
font used for eoreference numbers
font used for ordinary atoms and edges
font used for special atoms of type 0
font used for special atoms of type 1
font used for special atoms of type 2
font used for special atoms of type 3
displayed depth
name of thc sort file
name of the hide file
use stdin/stdout for communieation

The geometry option affec:ts the Fegramed_Menu window. If you want
to specify a geometry für the Fegramed würk window , you have to u:::;e a
eommand line option in the following style :

- xrm "Fegramed.gf'ometry: 300x200+ 10+;:>"

A.2 Resources

Apart from the existing Xt-resources, you ean specify fonts, the displayed
fraturr depth and the names of the sort and hidf' files via applieation re­
sourees. The following example should suffiee as documentation. Further
informatioll abüut t.he resource mechanism ean be found in the X manu­
al page or your local X Toolkit ~vlanual An explicil command lin\' option
ov('[rides thc resouree specification.

33

APPENDIX A. MOTIF PARTICULARS 34

, Geometry of the menu window: size should not be given:
Fegramed_Menu.geometry: +1+80

'Ihe default geometry for the work windows can be given by:
Fegramed . geometry: 300x100-310+9

'fonts for the work windows Cany available font may be used):
Fegramed . refFont: 8x13
Fegramed . textFont: 7x14
Fegramed.specOFont:
Fegramed.spec1Font:

10x20
-adobe-helvetica-bold-r-*-*-10-*-*-*-*-*-*-*

Fegramed.spec2Font: -adobe-helvetica-medium-o-*-*-10-*-*-*-*-*-*-*
Fegramed.spec3Font: -*-courier-bold-r-*-*-16-*-*-*-*-*-*-*

'Ihe displayed depth of the feature structures
Fegramed.featureDepth: 40

'Ihe names of the
Fegramed . sort:
Fegramed .hide:

sort and hide files
"$HOME/fegramed/sortfile"
"$HOME/fegramed/hidefile"

For the speeifieation of resourees for other widgets, apart of the widgpt
hierarehy is given below. BE' eareful when setting these resourees , as not
E'very resoure(' is set to a safe value when the widgrts are ereated.

Menu bar of Frgramrd work window:
Fegramed work window:
Vertieal serollbar:
Horizontal serollbar:

Fegramed*.top_box.*
Fegramed.*.edit_window
Fegramed.*.scrolll
Fegramed.*.scrol12

Resourees one might want to change eould be the font or tlw fon~ground
and background eolour. These values will not affeet the funetionality of the
Feature Editor. Herp is an pxample that changes thp eolours of Fegramed.
Simply try it to see the results.

change the background colours of the menu window,
, the menu region and the scroll bars. Ihe edit region has to have

a white background.
Fegramed_Menu*background: green
Fegramed*background: green
Fegramed*borderColor: red
Fegramed*BottomShadowColor: pink
Fegramed*HighlightColor : pink
Fegramed*edit_window*background: white

APPENDIX A. MOTIF PARTICULARS 35

A.3 Menus and Keyboard Shortcuts

Structures Edit Complex
New ON Cut OX Conjunction 0 [
Open 00 Copy OC Disjunction 0 {
Save OS Paste OV Implication 0 >
Save As Remove OR List 0 <
Close 0W Clear OD Function List 0 +
Close All Build Tag OT
Save & Return Remove Tag
Return Negate <>
Quit OQ Set Text 00

Set SpecialO o 1
Set Speciall 02
Set Sp<'cial2 03
Set Special3 04

Find View
Find 0 F

f--=--
1mplode 01

Find Tag 0 # Hide OH
Find Again 0 A Zoom in

Zoom out OZ
Show root OY
Hidden Features
Feature Order
Depth
Reorder
Reorder All
Show Obscured

Appendix B

Mac Particulars

B.I File Types U sed by Fegramed

Feature Structure F iles have type 'TEXT' and ereator 'FEDI ' (optional) .
They eontain feature strueture deseriptions in the format deseribed in
seetion 4.1.

Communication Files have type ' FBLK' and ereator 'FEDI'. They eon­
tain remote eommands to talk to Fegramed as weIl as Fegrameds re­
sponses. If Fegramed gets an 'Open Doeument' (' odoc ') Apple Event ,
the file type teIls it to interpret the fi le eontents as eommands rather
than as feature strueture. The details are deseribed in seetion 4.2.

Preferen ces Files have type' PREF' and ereator 'FEDI' . They eontain the
default settings for the fo llowing values:

• size and position of a new window

• all ehangeable fonts (Referenees, Text, and SpeeialO .. . Speeial3)

• the depth limit for feature strueture display

• the seroll speed

• name and loeation of the default sort and hide files

Sor t an d Hide Files have type ' TEXT ' and ereator ' FEDI' (optional).
They eontain lists of feature names separated by newlines. They are
read and written at startup time (provided they are speeified as default
files, see above) and when using the LOAD and SAVE buttons in the
HIDDEN FEATURES and FEATURE ORDER dialog.

36

APPENDIX B. MAC PARTICT..:LARS

B.2 Menus and Keyboard Shortcuts

Structures
New d=b:\T
Open d=bO
Save d=b S
Save As
Close d=b W
Close All
Save & Rp.turn
Return
Page Setup
Print. d=b P
Quit d=bQ

Find
Find d=b F
Find Tag d=b #
Find Again d=b A

Edit
Cut d=b X
Copy d=bC
Paste d=b V

Remove ~R
Clear ~D
Build Tag ~T
Remove Tag
Negate ~.

Set Text ~O
Set SpecialO ~1
Set Spp.ciall ~2
Set Special2 ~3
Set Specia l3 ~4
Export to Scrap ~E

View
Implode ~I
Hide d=b H
Zoom in
Zoom out d=b Z
Show root d=b Y
Hidden Features
Feature Order
Depth
Scrolling
Set Defaults
Save Df'faults
Reorder
Reorder All
Show Obscured

Complex
Conjunction d=b [
Disjunction d=b {
Implication d=b >
List d=b <
Function List d=b +

Fonts
References
Text
SpecialO
Speciall
Specia l2
Specia l3

37

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Veröffentlichungen des DFKI

-Bibliothek , Information

und Dokumentation (BID)­

PF 2080

67608 Kaiserslaute rn

FRG

Telefon (0631) 205-3506

Telefax (0631) 205-3210

e-mail
dfkibib@dfki.uni-kl .de

WWW
http://www.dfki.uni-

sb.de/dfk ibib

Die folgenden DFKI Veröffentlichungen sowie die aktuelle Liste von allen bisher erschienenen Publikatio­
nen können von der oben angegebenen Adresse oder (so sie als per ftp erhaeltlich angemerkt sind) per
anonymous ftp von ftp.dfki .uni-kl.de (131.246.241.100) im Verzeichnis pub/Publications bezogen werden.
Die Berichte werden , wenn nicht anders gekennzeichnet, kostenlos abgegeben.

DFKI Publications

The follo'll'ing DFK! ptlblications 01' the list of all Jmblish ed pape1'S so far are obtaillable from th e above ad­
dress 01' (iJ they are mal'ked as obtain able by ftp) by anollymotls ftp fram ftp.dfki.llni-kl.de (131. 246.241.100)
in th e dzrEctory ptlb / Pllblicatzons.
Th e repoTls aI'e dzstrilmted free of charge except where otherwzse no ted.

DFKI Research Reports

1995

RR-95-11
AWJe I(iJger , WoJgang Finkler
I ncremental Generation for Real-Ti Ill e Applications
47 pages

RR-95-09
M. Buchhei t, F. M. Donini, W. N utt, A. Schaerf
A Refined Architecture for Terminological Systems:
Terminology = Schema + Views
71 pages

RR-95-07
Francesco M. Donini, Maw'izio Lenzerini, Daniele Nar­
di, Wern er N utt
The Complexity of Concept Languages
57 pages

RR-95-04
M. Buchheit, H.-J. Bürckert, B. Hollunder, A. Laux, W.
Nutt,
M. W6jcik
Task Acquisition with a Description Logic Reasoner
17 pages

RR-95-03
Stephan Baumann, Mic1JaeJ MaJburg, Hans-Gu enther
Hein , Rainer Hoch ,
Thomas Kieninger, Norbert I(uJ1lJ
Document Analysis at DFKI
Part 2: Information Extraction
40 pages

RR-95-02
Majdi Ben Hadj Ali, Frank Fein, Frank Ho en es, T hor­
sten Jaeger,
Achim Weigel
Document Analysis at DFKI
Part 1: Image Analysis and Text Recognition
69 pages

1994

RR-94-39
Hans- Ulrich Krieger
Typed Feature Formalisms as a Common Basis for Lin­
guistic Specification.
21 pages

RR-94-38
Hans Uszkoreit, Rolf Backofen, SteplJan Busemann, Ab­
dei Kader Diagne,
Elizabeth A. Hinkelman, Waltel' Kasper, Bemd Kiefer,
Hans- UlriclJ Krieger,
Klaus Netter, Günter Neumann, SteplJan Oepen, Ste­
phen P. Spackman.
DISCO- An HPSG-based NLP System and its Applica­
tion for Appointment Scheduling.
13 pages

RR-94-37
H ans- Ub-ich Krieger, UJrich Schäfer
TDL - A Type Description Language for HPSG, Part
1: Overview .
54 pages

RR-94-36
Manfred Meyer
Issues in Concurrent Knowledge Engineering. Knowl­
edge Base and Knowledge Share Evolution.
17 pages

RR-94-35
Rolf Backofen
A Complete Axiomatization of a Theory with Feature
and Arity Constraints
49 pages

RR- 94-34
Stephan B usemann, Stephan Oepen, Elizabeth A . Hin­
kelman,
Günter Ne um ann, Hans Uszkorei t
COSMA - Multi-Participant NL Interaction for Ap­
pointment Scheduling
80 pages

RR-94-33
Franz Baader, Armin Laux
Terminological Logics with Modal Operators
29 pages

RR-94-31
Otto Külm, Volker Becker, Georg Lohse, Pbilipp Neu­
mann
Integrated Knowledge Utilization and Evolution for the
Conservation of COI'porate Know-How
17 pages

RR-94-23
Gert Smolka
The Definition of Kernel Oz
53 pages

RR-94-20
Christian Schul te, Gert Smolka, Jörg Würtz
Encapsulated Search and Constraint Programming m

Oz
21 pages

RR-94-18
Rolf Backofen, Ralf Treinen
How to Win aGame with Features
18 pages

RR-94-17
Georg Struth
Philosophical Logics-A Survey and a Bibliography
58 pages

RR-94-16
Gert Smolka
A Foundation for Higher-order Concurrent Constraint
Programming
26 pages

RR-94-15
Winfried H. Graf, Stefan Neurohr
Using Graphical Style and Visibility Constraints for a
Meaningful Layout in Visual Programming Interfaces
20 pages

RR-94-14
Harold Boley, Ulrich BuhrmarUl, Christof Kremer
Towards a Sharable Knowledge Base on Recyclable Pla­
stics
14 pages

RR-94-13
Jana Koehler
Planning from Second Principles- A Logic-based Ap­
proach
49 pages

RR-94-12
Hubert Comon, Ralf Treinen
Ordering Constraints on Trees
34 pages

RR-94-11
Knut Hinkelmann
A Consequence Finding Approach for Feature Recogni­
tion in CAPP
18 pages

RR-94-10
Knut Hinkelmanll, Helge Hintze
Computing Cost Estimates for Proof Strategies
22 pages

RR-94-08
Otto Külm, Bjöm Höfling
Conserving Corporate Knowledge for Crankshaft De­
sign
17 pages

RR-94-07
Harold Boley
Finite Domains and Exclusions as First-Class Citizens
25 pages

RR-94-06
Dietmar Dengler
An Adaptive Deductive Planning System
17 pages

RR-94-05
Franz Schmalhofer, J. Stuart Aitken, Lyle E. Boume jr.
Beyond the Knowledge Level: Descriptions of Rational
Behavior for Sharing and Reuse
81 pages

RR-94-03
Gert Sm olka
A Calculus for Higher-Order Concurrent Constraint
Programming with Deep Guards
34 pages

RR-94-02
Elisabetll Andre, Thomas Rist
Von Textgeneratoren zu Intellimedia-Präsentationssy­
sternen
22 Seiten

RR-94-01
ElisabetlJ Andre, Thomas Rist
Multimedia Presentations: The Support of Passive and
Active Viewing
15 pages

1993

RR-93-48
F'ranz Baader, Martin Buchheit, Bernhard Hollunder
Cardinality Restrictions on Concept.s
20 pages

RR-93-46
Philipp Hanschke
A Declarative Integration of Tenninological, Con­
straint-based , Data-driven , and Goal-directed Reaso­
ning
81 pages

RR-93-45
Rainer Ho ch
On Virtual Partitioning of Large Dictionaries for Con­
textual Post-Processing to I mprove Character Recogni­
tion
21 pages

RR-93-44
Martin BuchlJeit, Mann"ed A. Jeusfeld, Werner Nutt,
Martlll Staudt
Subsumption b etween Queri es to Object-Oriented Da­
tabases
36 pages

RR-93-43
M. Bauer , G . Paul
Logic-basecl Plan Recogmtion for Intelligent Help Sy­
stems
15 pages

RR-93-42
Hubert Comon, Ralf Treinen
The First-Order Theory of Lexicographic Path Orde­
rings is U nclecidable
9 pages

RR-93-41
Winfried H. Graf
LAYLAB: A Constraint-Based Layout Manager for
Multimedia Presentations
9 pages

RR-93-40
Francesco M. Donim, Maurizio Lenzerini, Damele Nar­
di, Werner Nutt,
Andrea Scbaerf
Queries, Rules and Definitions as Epistemic Statements
in Concept Languages
23 pages

RR-93-38
Stephan BaumaJJn
Document Recogmtion of Printed Scores and Transfor­
mation into MIDI
24 pages

RR-93-36
Michael M. Ricbter, Bernd Bachmann, Ansgar BerJJar­
di , Christoph Klauck,
Ralf Legleitner, GabrieJe Schlllidt
Von IDA bis JM COD: Expertensysteme im C lM-Umfeld
13 Seiten

RR-93-35
Hamld Boley, F'ran<;ois Bry, UJrich Geske (Eds.)
Neuere Entwicklungen der deklarativen K l-Program­
mierung - P1'Oceedings
150 Seiten

Note: This clocument is available for a nominal charge
of 25 DM (01' 15 US-$).

RR-93-34
Wol[gaJJg Wahlster
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-33
Bemhard Nebel, Jana Koehler
Plan Reuse versus Plan Generation: A Theoretical and
Empirical Analysis
33 pages

RR-93-32
David R. Traum, ElizabetlJ A. Hmkelman
Conversation Acts in Task-Oriented Spoken Dialogue
28 pages

RR-93-31
Elizabeth A . Hinkelman, Stephen P. Spackman
Abductive Speech Act Recognition , Corporate Agents
and the COSMA System
34 pages

RR-93-30
Stephen P. Spackman, Elizabeth A. Hillkelman
Corporate Agents
14 pages

RR-93-29
Armin Laux
Representing Belief in Multi-Agent Worlds via Termi­
nological Logics
35 pages

RR-93-28
Hans- Ulrich [{riegel', John NerbonllP, Hannes Pirker
Feature-Based Allomorphy
8 pages

RR-93-27
Hans-Ulrich Krieger
Derivation Without Lexical Rules
33 pages

RR-93-26
Jörg p, Miiller, Markus Pischel
The Agent Architecture InteRRaP: Concept and App­
Jication
99 pages

RR-93-25
[i."laus Fischer, No rbert K ulw
A DAI Approach to Modeling thc Transportation 00-
mam
93 pages

RR-93-24
Rainer Hoch, AncJrl'as Dengel
Document Highlighting - Message Classification in
Printed Business Letters
17 pagrs

RR-93-23
Andreas Dengel, Ottmar Lutzy
Comparative Study of Connectionist Simulators
20 page~

RR-93-22
Manfred Meyer, Jörg Müller
Weak Looking-Ahead and its Application in Computcr­
Aided Proccss Planning
17 pages

RR-93-20
Franz Baadf'r, Bernhard Hollunder
Embedding Defaults into Terminological I{nowled~e

Representation Formalisms
34 pa~es

RR-93-18
[';'"la us Schild
'ferminological Cycles and thc Propositional /l-Calculus
32 pages

RR-93-17
Rolf Backofen
Regular Path Expressions in Feature Logic
:'\7 pages

RR-93-1G
Gert Smolka, Martin Henz, Jörg Würtz
Object-Oricnted Concurrent Cons traint Programming
in Oz
17 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof Klöckner, Volker
SchölJes,
Markus A. Thies, Wolfgang Il\fahlster
PLUS - Plan-based lOser Support Final Project Report.
33 pages

RR-93-14
Joachim Niehren, Andreas Podelski, Ralf Trein en
Equational and Membership Constraints for lnhnite
Trees
33 pages

RR-93-13
Franz Baader, Kar! Schlechta
A Semantic~ for Open Normal Defaults via a Modihed
Preferential Approach
25 pages

RR-93-12
Pierre Sablayrolles
A Two-Level Semantics for French Expre~sion~ of Mu­
tion
51 pag~s

RR-93-11
Bernhard Nebel, Hans-Jürgen Bürckel"t
Reasoning about Temporal Relations: A Maximal Trac­
table Subclass of Allen 's In te rval Algebra
2R pagcs

RR-93-10
Martin Buchheit, Franc'esco M, Donini, Andrea Schaerf
Decidable Reasoning in Terminological I{nowledge Re­
presentation Systems
35 pages

RR-93-09
Philipp Hanschke, Jörg Würt z
Satisfiability of the Smallest Binary Program
8 pages

RR-93-08
Haro/d Boley, Philipp Hanschke, [,,"nut Hinke/mann,
"'vfanfred Meyer
COLAB: A Hybrid KnowJrdgc Representation and
Compilation Laboratory
64 pages

RR-93-07
Hans-Jürgen Bürckert , Bemhard Hollunder, Armin
Laux
Concept Logics with Functioll Sy mbols
36 pages

RR-93-06
Hans-Jürgen Bürck ert, Bemhard Hollunder, Armin
Laux
On Skolemization in {;onstrained Logics
40 pages

RR-93-05
Franz Baader, Klaus Schulz
Combination Techniques and Decision Problems for Di­
sunification
29 pages

RR-93-04
Christoph [\]auck, J ohannes Sclnvagereit
GGD: Graph Gmmmar Developer for features in
CAD/C AM
13 pages

RR-93-03
Franz Baader, BemlJard Hollunder, Bernhard Nebel ,
[-[ans- Jürgen Profitiich , Emico Franconi
An E mpirical Analysis of Optimization Techniques for
Terminological R epresentation Systems
28 pages

DFKI Technical MelllOS

1995

TM-95-02
Michael Sintek
FLIP : F\mctional-plus-Logic Programming
on an lntegrated Platfarm
106 pages

TM-95-01
Martin Bllchhei t, Rüdiger l\lein, \llferner N utt
Constructive Problem Solving: A Model Construction
Approach towards Configura tion
34 pages

1994

TM-94-04
Cornelia Fischer
PAntUDE - An Anti-Unification Algorithm for Expres­
sing Refin ed Generalizations
22 pages

TM-94-03
Victoria Hall
Uncertainty-Valued Horn Clauses
31 pages

TM-94-02
Rainer Bleisinger, BertlJOld I\röll
R epresentation of Non-Convex Time Intervals and Pro­
pagation of Non-Convex R elat ions
11 pages

TM-94-01
Rainer Bleisinger, Klaus-Peter Gores
Text Skimming as a Part in Paper Document Under­
standing
14 pages

RR-93-02
Wolfgang Wahlster, Elisabeth Andre, Wolfgang Finkler,
Hans-Jürgen Profitiich, Thomas Rist
Plan-based Integration of Natural Language and Gra­
phics Generation
50 pages

RR-93-01
Bernhard Hollllnder
An Alternative Proof Method rar Possibilistic Logic and
its Application to Terminological Logics
25 pages

1993

TM-93-05
MiclJael SilJtek
lndexing PROLOG Procedures into DAGs by Heuristic
Classi fication
64 pages

TM-93-04
Hans-Günther Hein
Propagation Techniques in WAM-based Architectures
- The FIDO-lll Approach
105 pages

TM-93-03
Hamid Boley, Ulrich Buhrmann , Christof Kremer
Konzeption einer deklarativen Wissens basis über recy­
clingrelevante Materialien
11 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta
Conflict Resolving Negotiation for COoperative Sche­
dule Management Agents (COSMA)
21 pages

TM-93-01
Otto Kühn , Andreas Birk
Reconstructive lntegrated Explanation of Lathe Pro­
duction Plans
20 pages

DFKI Documents

1995

D-95-12
F. Baader, M. Buchheit, M . A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'95 Workshop:
KRDB-95 - Reasoning about Structured Objects:
Knowledge Representation Meets Databases
61 pages

D-95-09
Antonio I\riiger
PROXIMA: Ein System zur Generierung graphischer
Abstraktionen
120 Seiten

D-95-07
Ottmar Lutzy
Morphic - Plus
Ein morphologisches Analyseprogramm für die deutsche
Flexionsmorphologie und I<omposita-Analyse
74 pages

D -95-06
Markus Steffens, Ansgar Bernardi
Integriertes Produktmodell für Behälter aus Faservel'­
bund werkstoffen
48 Seiten

D-95-05
Georg Schneider
Eine Werkbank zur Erzeugung von 3D-Illustrationen
157 Seiten

D -95-03
Cl1l1Stopll Endres, Lars Klein, Markus Meyer
Implementierung und Erweiterung eler Sprache ALCP
110 Seiten

D-95-02
Andreas Butz
BETTY
Ein System zur Planung und Generierung informativer
Animationssequenzen
95 Seiten

D-95-01
Susanne Biundo, Wolf gang Tank (Hrsg.)
Beiträge zum Workshop "Planen und I<onfigurieren" ,
Februar 1995
169 Seiten

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

1994

D-94-15
Stephan Oepen
German Nominal Syntax in HPSG

- On Syntactic Categories anel Syntagmatic Relations

80 pages

D-94-14
Hans- Ulrich Krieger, Ulrich Schäfer
TDL - A Type Description Language for HPSG, Part
2: User Guide.
72 pages

D-94-12
Arthur Sehn, Serge Autexier (Hrsg.)
Proceedings des Studentenprogramms der 18. Deut­
schen Jahrestagung für Künstliche Intelligenz KI-94
69 Seiten

D-94-11
F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'94 Workshop: KRDB '94 - Re­
asoning about Structured Objects: Knowledge Repre­
sentation Meets Databases
65 pages

Note: This document is no longer available in printed
form .

D -94-10
F. Baader, M. Lenzerini, W. Nutt , P. F. Pa tel-Sehn eider
(Eds.)
Working Notes of the 1994 International Workshop on
Description Logics
118 pages

Note: This document is available for a nominal cha rge
of 25 DM (or 15 US-$).

D -94-09
Technical Staff
DFKI Wissenschaftlich-Technischer Jahresbericht
1993
145 Seiten

D-94-08
Harald Feibel
IGLOO 1.0 - Eine grafikunterstützte Beweisentwick­
lungsumgebwlg
58 Seiten

D-94-07
Claudia Wenzel, Rainer Hoch
Eine Übersicht über Information Retrieval (IR) und
NLP-Verfahren zur I<lassifikation von Texten
25 Seiten

D-94-06
Ulrich BlIiJrmann
l ':rstellung einer deklarativen Wissensbasis über ['ecy­
clingrelevante Materialien
117 Seiten

D-94-04
Pranz Schmallwfer , Ludger van Eist
Entwicklung von Expertensystemen: Prototypen, Tie­
ren modelIierung und kooperative vVissrnsevolution
23 Seiten

D-94-03
Franz S'chmalhufer
Maschinell es Lernen: E ine kognitioJJswi ssenschaftliche
Bet,rachtung
5..J Seiten

Note: This document is no Jonger avai lable in printccl
ronn.

D-94-02
Mal'kus SteffelJs
Wissenserhebu ng und Analyse zum Entwicklungsprozeß
eines DruckbehäJt.e rs aus Fascrverhundstoff
90 pages

D-94-01
)osua Boun (Ed.)
DFI(l-Publi cat ions: Thc Fi rs t. Foul' Ypars
1900 - 1093
75 pages

1993

D-93-27
Ro/f Backofen. Hans- Ulrich L'rieger. S tephen P. Spack­
man,
Hans Uszkorei t (Eds.)
Report or the EAGLES Workshop on [mplemented For­
malisms at. DFI<J , Saarbrücken
110 pages

D-93-26
Frank Peters
Unters tützung d es Experten bei der Pormalisierung von
T extwissen INFOCOM - Eine in(.('raktive Formalisi C'­
rungskomponente
S8 Seiten

D-93-25
Hans-Jürgen Bürckert , Wem er Nutt (Eds.)
Modeling Epistemic Propositions
118 pages

Note: T his document is available for a nominal charge
or 25 DM (01' 1.5 US-$) .

D-93-24
Brigitte l\'renl1 , ,Vfartin Volk
DiTo-Datenbank: Datendokumenta tion zu Funktions­
verbgeri.igen und R elativsätzen
66 Seiten

D-93-22
Andreas Abecker
I mpkmentierung graphischer Benutzungsoberflächen
mit TcI/Tk und C:ommon Lisp
44 Seiten

Note: This document is no longer available in printcd
form.

D-93-21
Dennis Drollinger
Intelligentes Backtracking in lnrerenzsystrmen am Bei­
spiel Terminologischer Logiken
53 Seiten

D-93-20
Bernhard Herbig
Eine homogene lmpiementierullgsebene für einen hybri­
den Wissensrepräsentationsformalismus
97 Seiten

D-93-16
Bemd Bach 111 alJlJ , An.~gar Bernardi, Christoph [Gauck,
Gabriele Schmidl;
Design & r(1
74 Seiten

D-93-15
Robert Laux
Untersuchung maschineller Lemverfahren und heuristi­
scher Methoden im Hinblick auf deren Kombination zur
Unterstützung eines Chart-Parsers
86 Seiten

D-93-14
,'v[anfred Meyel' (Ed.)
(:onst.raint Processing - Proceedings of the Internatio­
nal Workshop at C:SAM'93, Sl.Petersburg, July 20-21,
1993
264 pages

Note: This document is availabJr. for a nominal charge
of 25 DM (or 15 j 'S-$)

D-93-12
Hal'old Bolcy, ldaus Elsbemcl, ,'v[ichap} T-lerfert, Michael
Sintek,
Werner Stein
RELFUN Guide: Program minI'; with Relations and
Functions 'vrade Ea~y
86 pages

D-93-11
I<nut Hinkelmann, Armin Laux (Eds.)
DPI<l Workshop on Knowledge Representation Techni­
ques - Proceedings
88 pages

Note: This document is no longer available in printed
form.

D-93-10
Elizabeth Hinkelman, Markus VOllerdell , Christoph
Jung
Natural Language Software Registry (Second Edition)
174 pages

D-93-09
Hans- UlridJ Krieger, UlridJ Sdläfel'
TVCExt,'aLight User's Guide
35 pages

D-93-08
Thomas I':ienjnger, Rainel' Hoch
Ein Generator mit Anfragesystem für strukturierte
Wörterbücher zw' Unterstützung von Texterkenmmg
und Textanalyse
125 Seiten

D-93-07
Klaus-Peter Gores, Rainer Bleismger
Ein erwarttmgsgesteuerter Koorclinator zur partiellen
Textanalyse
53 Seiten

D-93-06
Jürgen Müller (Hl'sg.)
Beiträge zum GründWlgsworkshop der Fachgruppe Ver­
teil te KÜllStliche Intelligenz, Saarbrücken, 29, - 3D, April
1993
235 Seiten

Note: This document is avai lable for a nominal charge
of 25 DM (or 15 US-$) ,

D-93-05
Elisabeth Andre, Winfl'ied Graf, Jochen HemsohJl,
Bel'nhal'd Nebel,
Hans-JÜl'gen Profitlich, Thomas Rist, Wolfgallg Wahl­
ster
PPP: Personalized Plan-Based Presenter
70 pages

D-93-04
Technical Staff
DFK I Wissenschaftlich-Technischer Jahresbericht
1992
194 Seiten

D-93-03
Stephan Busemann, Karm Harbusw (Eds.)
DFK I Workshop on Natural Language Systems: Reu­
sability and Modularity - Proceeclings
74 pages

D-93-02
Gabriele Schmidt, Frank Peters, Gernod Laufkötter
User Manual of COKAM+
23 pages

D-93-01
Pllllipp Hansdlke, Thom Fl'ühwirth
Terminological Reasoning lVith Constraint Handling
Rules
12 pages

FEGRAMED
An Interactive Graphics Editor
for Feature Structures

Bernd Kiefer, Thomas Fettig

RR-95-06
Research Report

	D-94-09-0002
	D-95-06-0002
	D-95-06-0003
	D-95-06-0004
	D-95-06-0005
	D-95-06-0006
	D-95-06-0007
	D-95-06-0008
	D-95-06-0009
	D-95-06-0010
	D-95-06-0011
	D-95-06-0012
	D-95-06-0013
	D-95-06-0014
	D-95-06-0015
	D-95-06-0016
	D-95-06-0017
	D-95-06-0018
	D-95-06-0019
	D-95-06-0020
	D-95-06-0021
	D-95-06-0022
	D-95-06-0023
	D-95-06-0024
	D-95-06-0025
	D-95-06-0026
	D-95-06-0027
	D-95-06-0028
	D-95-06-0029
	D-95-06-0030
	D-95-06-0031
	D-95-06-0032
	D-95-06-0033
	D-95-06-0034
	D-95-06-0035
	D-95-06-0036
	D-95-06-0037
	D-95-06-0038
	D-95-06-0039
	D-95-06-0040
	D-95-06-0041
	D-95-06-0042
	D-95-06-0043
	D-95-06-0044
	D-95-06-0045
	D-95-06-0046
	D-95-06-0047
	D-95-06-0048
	D-95-06-0049
	D-95-06-0050
	D-95-06-0051
	D-95-06-0052
	D-95-06-0053

