fur Kinstliche
Intelligenz GmbH D-94-14

3 Deutsch
’ !- r I Fg:lszl‘:uﬁZszentrum Document
£

TDL
A Type Description Language for HPSG
Part 2: User Guide

Hans-Ulrich Krieger, Ulrich Schafer

December 1994

Deutsches Forschungszentrum fur Kinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
67608 Kaiserslautern, FRG 66123 Saarbriicken, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-534]

Deutsches Forschungszentrum
fur
Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur Kinstliche Intel-
ligenz, DFKI) with sites in Kaiserslautern and Saarbricken is a non-profit organization which was founded
in 1988. The shareholder companies are Atias Elektronik, Daimier-Benz, Fraunhofer Gesellschaft, GMD,
IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-Nixdorf. Research projects
conducted at the DFKI are funded by the German Ministry for Research and Technology, by the share-
holder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical knowledge
and common sense which - by using Al methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

ooooaao

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about the
current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of
the building-up phase.

Dr. Dr. D. Ruland
Director

TDL
A Type Description Language for HPSG
Part 2: User Guide

Hans-Ulrich Krieger, Ulrich Schifer

DFKI-D-94-14

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITWM-9002 0).

© Deutsches Forschungszentrum fir Kianstliche Intelligenz 1994

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying Is by permission of
the Deutsche Forschungszentrum far Kanstliche Intelligenz, Kaiserslautern, Federal Republic of Germany;
an acknowledgement of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence with
payment of fee to Deutsches Forschungszentrum fir Kanstliche Intelligenz.

ISSN 0946-0098

TDL
A Type Description Language for HPSG
Part 2: User Guide

Hans-Ulrich Krieger, Ulrich Schéfer
_ {krieger, schaefer} @dfki.uni-sb.de
German Research Center for Artificial Intelligence (DFKI)
- Stuhlsatzenhausweg 3
D-66123 Saarbriicken, Germany

Abstract

This documentation serves as a user’s guide to the type description language 7DL which is employed
in natural language projects at the DFKI. It is intended as a guide for grammar writers rather than as
a comprehensive internal documentation. Some familiarity with grammar formalisms/theories such as
Head-Driven Phrase Structure Grammar (HPSG) is assumed. The manual describes the syntax of the
TDL formalism, the user-accessible control functions and variables, and the various tools such as type
grapher, feature editor, TDC2IATEX, Emacs 7DL mode, and print interface’.

1We would like to thank Elizabeth Hinkelman for reading a draft version of this manual.

e BES EES EE E e R I I |

2 CONTENTS
Contents
1 Introduction 4
2 The 7DL System 4
3 Starting 7DC 4
4 Syntax of 7DC
4.1 TDLBNF . . o e e e e e e e e e e e
4.1.1 7TDC Main Constructors e 5w B R 8 MW MW E S EEE § 53 EEE s
4.1.2 TypeDefinitions oL e
4.13 Instance Definitions v v v vt i e e
4.1.4 Template Definitions e e e e
4.1.5 Declarationso e e e e e e e e e e e e
4.1.6 Statements e e e e e e e e e e e e
4.2 Creating and ChangingDomains« . . oo v et e 9
4.3 The Structure of TDL Grammars v« v v v v vt e e e e e e 11
4.4 Domain EnVIronmentt e e e e e e e e e e e 13
4.5 Declare Environmentand Declarations 13
4.6 Type Environmentand Type Definitions 14
4.6.1 Feature Structure Definitions L 15
4.6.2 AWOMS . .« v e i e e e e e e 15
463 Pathsi : ¢ : s s msma 5 s 88 54 55 8% N @ ES L 5 85 1% b@ HHE S8 16
4.6.4 Logical Operators v v vttt e 16
4.6.5 Type Specification and Inheritance L. 16
4.6.6 Multiple Inheritance L e 17
4.6.7 Coreferences v i e e e e e e e e e e e e 17
4.6.8 Negated Coreferences o o 18
4.6.9 SimpleDisjunctionso e 18
4.6.10 Distributed Disjunctions o oo 19
4601 LiStS < o oo s m 5 5 & 5 ¢ 5§ @ 8 @6 W 8B 4 6 £ 5 v 5 P F R b G mE S w e s 20
4.6.12 DifferenceLists e e e e 21
4.6.13 Negationt v v vt e e e e e e e e e e e e 22
4.6.14 External Coreference Constraints 22
4.6.15 Functional Constraints v« v v v i e e e e 22
4.6.16 Template Calls o o 23
4.6.17 Nonmonotonicity and Value Restrictions 23
4.6.18 Rules. e e e e 24
4.7 Optional Keywords in Definitions, 25
4.8 Template Environment and Template Definitions 25
4.9 Instance Environment and Instance Definitions 26
4.10 Control Environmentt e e e e e e e e e e e 27
4.11 Lisp Environmentt e e e e 27
412 CommMENES . . v v v vt e e e e e e e e e e e e e e e e e e 27
5 Useful Functions, Switches, and Variables 28
5.1 Global Switchesand Variables 28
5.2 Setting Switches and Global Variables 31
53 Including GrammarFiles L. ... e L. 31
5.4 Expanding Types and Instances e 32
5.4.1 Defining control information: defcontrol 32
5.4.2 Expanding Types and Instances: expand-type and expand-instance 32

5.4.3 The Syntax of expand-control, 32

CONTENTS 3

5.4.4 Printing Control Information 35

54.5 HowtoStopRecursion 35

5.5 Checking Welltypedness/Appropriateness v« v v v v v v e 37

5.6 Deleting Types and Instance Definitions, 38

5.7 Resetting Prototypes of Typesand Instances 38

5.8 Accessing Internal Information (Infons) L. 38

5.9 Collecting and Printing Statistical Information 39
500 Memoization & & s s & 4 s sov w w5 6 & § 5 8 5 ¢ @ F 3 EE € 58§ 8 s m A EE § o2 s 40
5.11 Tuning up Unification: Training Sessions v 5w s momm e e e 41
5.12 Defining Reader Macros e e e 42
5.13 Printing Messages e 42
SJA HEp v a5 565 555 +5 04 Swoww v w5 s s M w B W EE St s § 8 B E @ i § 44§ 42
SIS WAL wwwmw i 5 6 5 v ssmmw Fa s 5§ 55 R E G A S & ¥ EE R EE § oe ks e 42
SA6 Exit TDL . . v o o o e e e e T e e e e e e e e 42
5.17 Getting Information about Defined Templates 42
5.18 Printing Feature Structures v v v v i e e e e 43
5.18.1 Printing to the Interactive Screen or to Streams (ASCII) 43

5182 FEGRAMED . & ¢ ¢ v v v i s v 6 o o s s i o wm v s 5 8 o s s o o w6 i o o o s o 44

G183 TDLABIER. v o o wm s & s 5 ¢ 5 5 5.9 B s v 4 ¢ § 8 8 M EABE S 53 8 5 o 04 46

6 TDL Grapher 54
7 Print/Read Syntax for 7DL Type Entries 56
Tl PrintMOAES . & covomswm o 2 5 8 5 ¢ 8 m@ @ mm § & & 5§ ¢ B RAEEE § 5 5 6 EEH4 56
72 Global Variables 57

73 BNF . . e e e e e e e 58

8 Emacs 7DL Mode 59
81 Installation . . . « s v s 4 ¢ o ww v s am s s § 5 v F ¥ B e E S e i b e W e . 59
82 KeyBindings. L. e e e 59

9 Top Level Abbreviations (ALLEGRO COMMON LISP Only) 60

10 Sample Session 61

4 3 STARTING TDC

1 Introduction

This is the second part of TDL — A type description language for HPSG. This documentation serves as a
user guide to 7DL. It is intended as a guide for grammar writers rather than as a comprehensive internal
documentation. Some familiarity with grammar formalisms theories such as Head-Driven Phrase Structure
Grammar [Pollard & Sag 87; Pollard & Sag 94] is assumed. The manual describes the syntax of the TDLC
formalism, the user accessible control functions and variables, and the various tools such as type grapher,
feature editor, TDL2IATEX, Emacs 7DL mode, and print interface.

For motivation, architecture, properties of the type hierarchy, implementational issues and comparison
to related systems, refer to [Krieger & Schifer 93a], [Krieger & Schifer 94a), [Krieger & Schifer 94b],
[Krieger 95], and [Schifer 95].

The TDC system is integrated into various natural language systems such as DISCO [Uszkoreit et al. 94],
and PRACMA [Jameson et al. 94].

Corrections and other information can be ftp’d from ftp://cl-ftp.dfki.uni-sb.de:/pub/tdl.
World Wide Web: (publications, software, etc.): http://cl-www.dfki.uni-sb.de/
Email: td1@dfki.uni-sb.de

2 The 7DL System

The TDL distribution includes COMMON LISP source files in the following directories, which correspond to
the modules of the system definition.

Directory Module Package
tdl/compile/ compile TDL-COMPILE
tdl/control/ control TDL
tdl/elisp/ Emacs lisp files =

tdl/encode/ hierarchy TDL-HIERARCHY
tdl/expand/ expand TDL
tdl/grapher/ TDC Grapher system | CLIM-USER
tdl/packages/ package definitions CL-USER
tdl/parse/ parse TDL-PARSE
tdl/recycler/ TDC Recycler system | TDL-RECYCLER
tdl/simplify/ simplify TDL-SIMPLIFY
tdl/statistics/ | statistics TDL-STATISTICS

The TDL system depends on the systems ZEBU (LALR(1) parser), UDiNe (unifier) and FEGRAMED (feature
editor). The TDL Recycler is a tool which translates grammar files from 7DLExtraLight [Krieger & Schifer
93b] into the new TDL syntax. TDL2IATEX and TDL Grapher are part of the 7DL system.

The system is implemented in portable COMMON LISP [Steele 90] and has been tested with Franz Allegro
Common Lisp, Macintosh Common Lisp, Lucid Common Lisp, and CLISPZ.

3 Starting 7DC

To start TDC, .
1. Start COMMON LIisPp.

2. (load-system "td1")? loads necessary parts of 7DL such as the unifier UDiNe, type definition
reader, feature editor (FEGRAMED), type hierarchy management and the TDC2IATgX interface. Alter-
natively, (load-system "tdl-grapher") can be used to start system tdl and the type grapher.
The portable system definition facility DEFSYSTEM is described in [Kantrowitz 91].

2Thanks to Stephan Oepen and Bernd Kiefer for checking and improving portability.
3The availability of this function presupposes that the DISCO loadup environment (file loadup.lisp) has been successfully loaded
into the COMMON LISP system. Refer to the DISCO installation and operation guide for details.

3. After loading the LISP code, the following prompt appears on the screen:

Welcome to the Type Description Language TDL.

USER(2): _

4. The TDL reader is invoked by simply typing (td1). You can either work interactively (e.g., create a
domain, define types, etc.) or load 7DC grammar files by using the include command. If an error
has occurred, e.g., a syntax error, (tdl) restarts the 7DC reader.

5. 14t exits the 7DL reader and returns to COMMON Lisp. The COMMON LIisP function (EXIT) quits
the interpreter. If you are in an Emacs environment, C-x C-c kills the Emacs process.

It is also possible to define one’s own portable system definitions in the [Kantrowitz 91] paradigm which
could then automatically start 7DL and include grammar definitions, etc.

4 Syntax of TDL

The TDC syntax provides type definitions, instance definitions (for rules and lexicon entries), templates
(parameterized macros), specification of declarative control information, as well as statements (calls to
built-in functions) that are especially useful for the interactive development of NL grammars.
There is no difference between the syntax of 7DL grammar files and the syntax for the interactive mode.
All syntactic constructs can be used in either mode.
Note that the arguments of statements need to be quoted if they are symbols or lists containing symbols.
This is necessary if the statement is defined as a COMMON LISP function, but not if the statement is defined
as a COMMON LISP macro. Almost all statements are defined as functions. The only macros defined by
the 7DL system are defcontrol, leval, alias, print-control, print-switch, set-switch, and
with-print-mode. Examples:

pegp ’agr-type :label-hide-list ’(x y z).
—but:

defcontrol agr-type ((:delay (u *) (v x.y))).
It is important not to forget the dot delimiter at the end of TDL expressions since the TDL reader will wait
forit. Itis possible to mix LISP code and 7DL definitions in a file. Some examples are shown in Section 4.3.
Newline characters, spaces or comments (Section 4.12) can be inserted anywhere between tokens (symbols,
braces, parentheses, etc.).

4.1 TDL BNF

The TDL syntax is given in extended BNF (Backus-Naur Form). Terminal symbols (characters to be typed
in) are printed in typewriter style. Nonterminal symbols are printed in italic style. The grammar starts
with the start production. The following table explains the meanings of the metasymbols used in extended
BNFE.)

metasymbols meaning
N - alternative expressions
[ss | one optional expression
“[...]..-]...] | oneor none of the expressions
{...]...]... } | exactly one of the expressions
{... n successive expressions, wheren € {0,1,...}
{...}* n successive expressions, where n € {1,2,...}

6 4 SYNTAX OF TDLC

4.1.1 7TDL Main Constructors

start = {block | statement}*

block = begin :control. { type-def | instance-def | start }* end :control.|
begin :declare. { declare| start }* end :declare. |
begin :domain domain. {start}* end :domaindomain. |
begin :instance. { instance-def | start }* end :instance. |
begin :lisp. {Common-Lisp-Expression}* end :lisp. |
begin :template. { template-def | start }* end :template. |
begin :type. { type-def | start }* end :type.

4.1.2 Type Definitions

type-def — type { avm-def | subtype-def } .
type — identifier
avm-def — :=body {, option}* |
I= nonmonotonic [where (constraint {, constraint}*) | {, option}*
body — disjunction | -->list]| [where (constraint {, constraint}*) |
disjunction — conjunction { {| | "} conjunction }*
conjunction — term { & term }*
- term — type | atom | feature-term | diff-list | list | coreference |
distributed-disj | templ-par | templ-call | ~term | (disjunction)
atom — string | integer | ’ identifier
feature-term — [[attr-val {, attr-val}*]]
attr-val — attribute [: restriction] {. attribute [: restriction) | disjunction]}*
attribute — identifier | templ-par
restriction = conj-restriction { {| | *} conj-restriction }*
conj-restriction — basic-restriction { & basic-restriction }*
basic-restriction — type | ~basic-restriction | templ-par | (restriction)
diff-list = <! [disjunction {, disjunction}*] 1> [: type]
list = <> | < nonempty-list > | list-restriction |
nonempty-list = [disjunction {, disjunction}* ,] ... |
' disjunction {, disjunction}* | . disjunction]
list-restriction — : (restriction) | : type [: (integer, integer) | : integer |
coreference — #coref-name | “#(coref-name {, coref-name}*)
coref-name — identifier | integer
distributed-disj — Ydisj-name (disjunction {, disjunction}*)
disj-name — identifier | integer
templ-call — Qtempl-name ([templ-par {, templ-par}*])
templ-name — identifier
templ-par — $templ-var | = disjunction
templ-var — identifier | integer '
constraint — #coref-name = { function-call | disjunction }
function-call = function-name (disjunction {, disjunction}*)
function-name — identifier i
nonmonotonic — type & [overwrite-path {, overwrite-path}*]
overwrite-path — identifier { . identifier }* disjunction
subtype-def — { :< type }* {, option}*
option — status: identifier | author: string | date: string | doc: string |
expand-control: expand-control

4.1 TDL BNF

(:expand { ({type | (type [index [pred])} {path}¥) }*) |
(:expand-only { ({trype| (type [index [pred]]) } {path}t) }*)]|
[C:aelay { ({type| (type [pred]} {path}™) }*)]|
[(:maxdepth integer) ||
[(:ask-disj-preference {t |nil})]|
[(:attribute-preference {identifier}*) | |
[(:use-conj-heuristics {t|nil})]|
[(:use-disj-heuristics {t |nil})]|
[(:expand-function {depth | types} -first-expand)]|
[(:resolved-predicate {resolved-p| always-false|...})]|
[(:ignore-global-control {t | nil})])
path — {identifier | pattern} {.{identifier | pattern}}* -
pattern — 7 | x| + | ?[identifier|[?|*|+]
pred — eq | subsumes | extends | ...

4.1.3 Instance Definitions

instance-def — instance avm-def .
instance — identifier

4.1.4 Template Definitions
template-def — templ-name ([templ-par {, templ-par}*]) := body {, option}* .

4.1.5 Declarations

declaration — partition | incompatible | sort-def | built-in-def |
hide-attributes | hide-values | export-symbols
partition — type = type { {| | "} type }* .
incompatible — nil = type {& type}™ .
sort-def — sort[s] : type {, type}* .
built-in-def — built-in(s] : type {, type}* .
hide-attributes — hide-attribute[s] : identifier {, identifier}* .
hide-values — hide-value[s] : identifier {, identifier}* .
export-symbols — export-symbol|s] : identifier {, identifier}* .

8 4 SYNTAX OF TDL

4.1.6 Statements

statement — check-welltypedness [{type | instance | :all} [{:instances| :avms}
[:domain domain] [: indexindex] [:verbose {t | nil}]]] . |
clear-simplify-memo-tables [:domain domain| [:threshold integer] . |
compute-approp [:domain domain] [:warn-if-not-unique {t |nil}]. |
defcontrol { :global | type | instance } expand-control | : index index] . |
defdomain domain {defdomain-option}*. |
deldomain domain. |
defreadermacro identifier {string | nil} [string].|
- delete-all-instances [domain] . |
delete-instance [instance [:domain domain] [: index integer]] . |
delete-type [type [:domain domain]] . |
describe-template templ-name [domain]. |
do-all-infons {infon-keys}* . |
do-infon {infon-keys}* . |
expand-all-instances {expand-option}* . |
expand-all-types {expand-option}* . |
expand-instance [instance [: index integer] {expand-option}* | . |
expand~type [type [: index index] {expand-option}*] . |
fegramed. |
{ fgi | £11 } [instance {fegramed-option}*] . |
{ tgp | £1p } [type {fegramed-option}*] . |
get-switch identifier. |
grapher. |
help [identifier] . |
include filename . |
1dt. |
leval Common-Lisp-Expression. |
{ 1gi | 111 } [instance {latex-option}*] . |
{ 1gp | 11p } [ype {latex-option}*] - |
message string { Common-Lisp-Expression}*. |
load-simplify-memo-table [:domain domain] [:filename filename). |
{ pgi | p1i } [instance {print-option}*] . |
{ pep | p1p } [tpe {print-option}*] - |
print-all-names {infon-keys}* . |
print-all-statistics[:domain domain] [: stream stream] . |
print-approp [:domain domain]. |
print-control { type | instance | :global } . |
print-domain-statistics [:domain domain] [: stream stream] . |
print-expand-statistics [:domain domain] [:stream stream] . |
print-global-statistics [:streamstream] . |
print-recursive-sccs [:domain domain] . |
print-simplify-memo-tables [:domain domain] [: stream stream]
[:threshold integer] . |
print-simplify-statistics [:domain domain| [:stream stream] . |
print-switch identifier. |
print-unified-types [:filename string] [: domain domain] . |
recompute. |)
reset-all-instances [domain] . |
reset-all-protos [domain] . |
reset-all-statistics[:domain domain] . |
reset-domain-statistics [:domain domain] . |

4.2 Creating and Changing Domains 9

reset-expand-statistics[:domain domain] . |
reset-global-statistics. |
reset-instance [instance [:domain domain] [: index integer]] . |
reset-print-mode. |
reset-proto [type [:domain domain] [: index index]] . |
reset-simplify-statistics[:domain domain] . |
restore-print-mode. |
save-print-mode. |
set-print-mode [print-mode] . |
set-switch identifier Common-Lisp-Expression. |
start-collect-unified-types [: domain domain] . |
tune-types [:domain domain] [: threshold integer] [...] . | -
wait. |
with-print-mode print-mode Common-Lisp-Expression. -
infon-keys — see Section 5.8
print-option — :domain domain | : index index | :stream {t | nil | stream} |
:label-sort-list ({identifier}*) | :1abel-hide-1list ({identifier}*) |
:remove-tops {t | nil} | :init~pos integer
latex-option — :domain domain | : index index | :hide-types {t | nil} |
:filename filename | ... (see Section 5.18.3)
fegramed-option — :domain domain | : index index |
:filename filename | :wait {t |nil} | :file-only {t | nil}
defdomain-option — :hide-attributes ({identifier}*) |
:hide-values ({identifier}*) |
:export-symbols ({identifier}*) |
:documentation string |
:top type |
:bottom type |
:load-built-ins-p {t |nil}|
rerrorp {t | nil}
expand-option — :domain domain |
:expand-control expand-control
domain — ’ identifier | :identifier | "identifier"
print-mode — :debug | :default | :exhaustive | :fs-nll| :hide-all |
:hide-types | :read-in| :td12asl | :x2morf
Sfilename — string
index — integer for instances
integer | identifier string for avm types
integer — {0|1|2|3|4|5|6|7|8]9}
identifier — {a~z|A-Z|0-9||+|-|*|7}*
string — "{any character}*"

4.2 Creating and Changing Domains

Domains are sets of type, instance and template definitions. It is possible to define and use several domains
at the same time and to have definitions with the same names in different domains. Domains roughly
correspond to packages in COMMON LISP (in fact, they are implemented using the package system).

An arbitrary keyword symbol or string may be chosen for domain except those which are names of existing
COMMON Lisp packages, e.g. TDL, COMMON-LISP or COMMON-LISP-USER. All domain names will be
normalized into strings containing only uppercase characters.

The name TDL is reserved for internal functions and variables. It is possible to specify the domain of the
current definition by using the begin :domain domain and end :domain domain block delimiters (see
Sections 4.3 and 4.4).

10 4 SYNTAX OFTDC

e function defdomain domain [:hide-attributes artribute-list]
[:hide-values values-list]
[:export-symbols symbol-list]
[:documentation doc-string)

[: top top-symbol)

[:bottom bottom-symbol)
[:load-built-ins-p {t | nil}]
[:errorp {t |nil}]

creates a new domain domain (a symbol or a string). Options:
values-list is a list of attributes whose values will be hidden at definition time. attribute-list is a list
of attributes that will be hidden (including their values) at definition time. symbol-list is a list of _
symbols to be exported from the domain package. These three symbol lists can also be declared in
the :declare part (cf. Section 4.5). If :load-built-ins-p t is specified, the standard file of
TDL built-in types will be included, otherwise, nothing will be loaded. The default is t.
:top and :bottom define the name of the top and bottom symbol; the default is the value of the
global variables *TOP-SYMBOL* and *BOTTOM~-SYMBOL*. A domain can be given documentation
using the :documentation keyword; its value must be a string. If :errorp t is specified, it will
cause error to redefine a domain. If the value of :errorp is nil (default), only a warning will be
given. Example:

<TDL> defdomain :MY-DOMAIN :load-built-ins-p nil.

#<DOMAIN MY-DOMAIN>

<TDL>

e function deldomain domain [:errorp {t | nil}] [:delete-package-p {t | nil}]

deletes domain domain (symbol or string), which includes all type, instance, and template definition
as well as the corresponding package with package name domain, including all symbols defined
in this package. If :errorp t is specified, using an undefined domain name will cause an error.
If :errorp nil is specified (default), a warning will be given and the current domain will not
be changed. If :delete-package-p t is specified, the corresponding package will be deleted.
Otherwise (default), only all domain-specific information (type definitions, global hashtables etc.)
will be deleted. Example:

<TDL> deldomain :MY-DOMAIN.

<TDL>

Definitions from the standard td1-built-ins.td1l file are shown below. They will be included automat-
ically if :load-built-ins—p t (which is also the default) is specified in defdomain.

begin :declare.
built-in: fixnum, bignum, integer. ;;; only COMMON LISP types can be
built-in: atom, string, symbol. ;3 declared as built-ins
sort: *knullx*. ;33 is the type of the empty list <>
sort: *built-inx. ;33 the top built-in type
sort: *ksortx*. ;33 the top sort type
sort: *undefx*. ;;; make *undef* a sort in order to

;;; exclude features defined on it
end :declare.

begin :type. -
xavmx := []. ;3; the top avm type
atom < *built-inx*. ;33 now specify the subtype
integer :< atom. ;33 relation for the built-ins
fixnum :< integer.
bignum :< integer.
symbol < atom.

4.3 The Structure of TDC Grammars 11

string :< atom.

null :< xbuilt-inx. ;35 although *null* is not a real
xcons* := *avm* & [FIRST, REST]. ;33 built-in, make it a subtype of
¥1ist* ;= *null* | *cons*. ;3 *built-in*

xdiff-list := *avm* & [LIST, LAST].

dl-append := *avm* & [ARG1 [LIST #first, ;;; difference list
LAST #between], ;;; version of APPEND
ARG2 [LIST #between,
LAST #last],
RES [LIST #first,
LAST #last]].

rule := ;73 the most general rule type
[l --> < ...>, ;3; use [] instead of *top*, because *top*
status: RULE. ;33 1s only the default top symbol which

unary-rule := ;3; can be overwritten through DEFDOMAIN
*¥rulex --> < [] >. ;33 itop <top>

binary-rule := ;;; moreover, use the ‘status’ keyword to
*rulex --> < [], [] >. ;;; let Bernie’s parser know about the

ternary-rule := ;35 the special role of *rulex*
xrulex --> <[], [], []>.

end :type.

4.3 The Structure of 7DL Grammars

A TDL grammar may consist of type definitions, sort declarations, template definitions, instance specifica-
tions and control information. In addition, it is possible to mix different domains and LISP code.
The structuring feature in 7DL grammars is the begin and end statement, which is comparable to BE-
GIN/END blocks in PASCAL, or the I&TEX environments.
Environments determine syntactic as well as semantic contexts for different purposes.
Some environments provide the necessary preconditions for enclosed definitions, e.g., the domain environ-
ment supports definitions of entire type lattices, the necessary context for type definitions. Others such as
the control environment are completely optional.
Another constraint is that template definitions precede the type or instance definitions that contain template
calls (cf. macros in programming languages).
Environments can be nested freely (the so-called environment stack keeps track of this) and distributed over
different grammar files. The loading of files may also be nested (cf. the include documentation).
The 7DC prompt indicates the current domain and the current environment. Its general output format is
<domain : environment>, e.g.,

<MY-DOMAIN:TEMPLATE> _
If no domain is active, the prompt is <TDL>.
Typically, a 7DC grammar starts with the definition of a domain (defdomain), changes to this domain
(begin :domain), declares sorts (begin/end :declare), defines templates (begin/end :template),
feature types (begin/end :type), and, finally, instances (begin/end :instance).

Example:

;35 The structure of tdl grammars. An example.

defdomain :grammar. ;; this includes a default initial type hierarchy
defdomain :junk-domain :load-built-ins-p NIL.

set-switch *verbose-p* nil. ;; set verbosity

12 4 SYNTAX OFTDL

TERNARY-RULE

BINARY-RULE

RULE UNARY-RULE

*AVM®

“SORT*

BUILT-IN
STRING

ATO! SYMBOL

BIGNUM
INTEGER
FIXNUM

Figure 1: The initial type hierarchy (with :load-built-ins-p t)

begin :domain :grammar.

;; we start with semantics
begin :declare.
include "grammar/semantic-sorts".
sorts : organism, moveable,nonmoveable,physical,selfmoving,
nonselfmoving,animated,non-animated,vehicle.
sign = word "~ phrase.
end :declare.

begin :template. ;; load template definitions
include “"grammar/semantic-templates".
end :template.

begin :type. ;5 type definitions
selfmoving :< moveable :< physical.
nonmoveable :< physical.
nonselfmoving :< moveable.
animated :< moveable.
non-animated :< moveable.
organism := selfmoving & animated.
vehicle := selfmoving & non-animated.

4.4

Domain Environment

include "grammar/semantic-avms".
end :type.

begin :instance.
;; instance definitions
end :instance.

;3 now we continue with phonology
begin :declare.
include "grammar/phonology-declarations
end :declare.

begin :type.
include "grammar/phonology-avms".
end :type.

;; now a big syntax package...
include "grammar/syntax/load-syntax".

;; we finish with bottom declarations
begin :declare. ;; bottom declarations
nil = *undef* & *avm*.
nil = *undef* & *built-inxk.
end :declare.

;; now let’s expand all instances
expand-all-instances.

message "grammar loading done.".

end :domain :grammar.

4.4 Domain Environment

A domain environment starts with

begin :domain domain.

and ends with

end :domaindomain.

13

domain must be the name of a previously defined domain, i.e., a quoted symbol, a string or a keyword
symbol. begin :domain pushes domain to the global stack *DOMAIN*, while end :domain pops it.

Arbitrary TDL statements or other environments may be enclosed by the domain environment.

All symbols (sort, type, template, instance names) occurring between begin :domain domain and end
:domain domain are defined or looked up in domain.
All otherenvironments except the : 1isp environment must be enclosed by at least one domain environment.
See Section 4.2 for more details.

4.5

Declare Environment and Declarations

A declare environment starts with

begin :declare.

and ends with

end :declare.

14 4 SYNTAX OFTDC

It may appear anywhere within a domain environment, and may contain arbitrary declarations, other
environments and 7DL statements.
Declare environments declare

e built-in sort symbols: built-in[s] : nype {, type}~ .
built-indeclares a COMMON LISP type to be a sort in 7DL, e.g., integer, string, etc. Abuilt-
in sort can be unified only with its subsorts or with an atom that has the corresponding COMMON
Lisptype. An example is shown in section 4.6.2. Note that the standard 7DC type ¥built-inx itself
is an ordinary sort but is not declared to be a built-in type. Its only purpose is to be the super-sort of
all predefined sorts in 7DL such as *nullx and the atomic sorts, e.g., atom, string, etc.

e sort symbols: sort(s] : type {, type}* .
sort declares types to be sorts (singleton sorts in Smolka’s terminology). Sorts always live in a
closed world, i.e., their unification fails unless they subsume each other or have a greatest lower
bound. This declaration is optional. It is equivalent to the definition fype : < *sortx*. in the : type
environment which may be faster at definition time in the current implementation.

e incompatible types: nil = type { & type} T .
declares the types to be incompatible. This declaration is useful for avm types in an open world (i.e.,
if *AND-OPEN-WORLD-REASONING-P* has value t).

e exhaustive partitions: supertype = type { | type }* .
declares an exhaustive partition (cf. [Krieger & Schifer 94al).

e disjoint exhaustive partitions: supertype = type { " type }* .
declares an exhaustive disjoint partition (cf. [Krieger & Schifer 94al).

All other relations between types (conjunctions, disjunctions) must be defined in the :type environment.
The type hierarchy for avin types will be inferred from the avm type definitions.
In addition, the following domain specific symbol lists can also be declared in this environment (cf.

Section 4.2).
e hide-value[s] : identifier {, identifier}* .
specifies the attributes whose values are to be hidden at definition time,
e hide-attribute[s] : identifier {, identifier}* .
specifies the attributes (including their values) to be hidden at definition time,

e export-symbol[s] : identifier {, identifier}* .
specifies the symbols to be exported from the domain package.

All declarations must be specified directly in a declare environment, and nowhere else.

4.6 Type Environment and Type Definitions

A type environment starts with
" begin :type.
and ends with
end :type.

It may appear anywhere within a domain environment, and may contain arbitrary type definitions, other
environments and 7DL statements. The syntax for subsort and subtype definitions is

type { :<type }* {, option}*.
Subsort or subtype definitions define the order of sorts or types without feature constraints. Théy are not

necessary if feature constraints are specified for a subtype. Example:
*avmk < ktopx.

4.6 Type Environment and Type Definitions 15

but
xconsx := xavm¥x & [first, rest J].
In both cases, the left hand side is a subtype of the right hand side type.
The general syntax of type definitions* is
type :=body {, option}* .
type is a symbol, the name of the type to be defined. The complex BNF syntax of body is glven in
Section 4.1.2. Some examples are presented on the following pages.

4.6.1 Feature Structure Definifions

The TDC syntax for a feature structure type person-number-type with attributes PERSON and NUMBER is
person-number-type := [PERSON, NUMBER].
The definition results in the structure

person-number-type
PERSON []
NUMBER []

If no value is specified for an attribute, the empty feature structure with the top type of the type hierarchy
will be assumed. Attribute values can be atoms, feature structures, disjunctions, distributed disjunctions,
coreferences, lists, functional constraints, template calls, or negated values.

4.6.2 Atoms

In 7DL, an atom can be a number, a string or a symbol. Symbols must be quoted with a single quote ’
(otherwise they will be interpreted as sorts or avm types). Atoms can be used as values of attributes or as
disjunction elements.

Example: The TDL type definition

pl-3-phon := [NUMBER ’plural,

PHON "-en",
PERSON 3].
results in the structure
pl-3-phon
NUMBER plural
PHON "-en"
PERSON 3

An example of atoms as disjunctive elements is shown in Section 4.6.9.

Atoms are not ordered hierarchically (as is the case for sorts). An atom only unifies with itself, the top type
of the type hierarchy or, if defined, with a built-in sort of an appropriate data type, i.e., integer atoms unify
with the built-in sorts integer and number, the string atoms unify with the built-in sort string, symbolic
atoms unify with the built-in sort symbol. These three sorts are defined in the standard built-in file td1-
built~ins.tdl. Built-in sorts may also be user-defined. One need only define an appropriate COMMON
LISP type, e.g.

begin :lisp.

(DEFTYPE Even-Integer () ’(AND INTEGER (SATISFIES EVENP)))
end :1lisp.
begin :declare.

built-in : Even-Integer.
end :declare.

These lines define a COMMON LISP type Even-Integer and declare it as a built-in sortin 7DL. This sort
unifies only with even integer atoms.

4 For nonmonotonic definitions see section 4.6.17.

16 4 SYNTAX OFTDC

4.6.3 Paths

Paths may be abbreviated using dots between attribute names, e.g.
P1 := [DTRS.HEAD-DTR.CAT.SYN.LOCAL.SUBCAT ’hi].

yields structure

o [nsoms [[oo [sonenrn]]]

4.6.4 Logical Operators

In TDL, values (atoms, types, feature structures) may be combined by the logical operators & (conjunction,
unification, inheritance), | (disjunction), “ (exclusive or), and ~ (negation).

These operators may be freely nested, where ~ has highest priority, and & binds stronger than | and "
Parentheses may be used to break this binding or to group operands. Example:

1:=[ax& (b |_5:& r 11D].

Important note for Emacs users: If you type in the | symbol in the emacs lisp mode, you must quote it
with a backslash, i.e., \ |. Otherwise, the Emacs lisp mode will wait for another ‘closing’ |. When you are
writing grammar file (preferably in 7DL mode, of course), you can omit the backslash.

4.6.5 Type Specification and Inheritance

All conjunctive feature structures can be given a type specification. Type specification at the top level
(empty feature path) of a type definition means inheritance from a supertype. The feature definition of the
specified type will be unified with the feature term to which it is attached when type expansion takes place.
The inheritance relation represents the definitional dependencies of types. Together with multiple inheri-
tance (described in the following section), the inheritance relation can be seen as a directed acyclic graph
(DAQG).

An example of type specification inside a feature structure definition follows:

agr-plural-type := [AGR person-number-type & [NUMBER ’plural]].
Expanding this definition results in the structure
agr-plural-type
person-number-type

AGR | PERSON []
NUMBER plural

Now an example of type inheritance at the top level:
pl-type := person-number-type & [NUMBER ’plural].

Expanding this definition results in the structure

pl-type
PERSON []
NUMBER plural

This feature structure is called the global prototype of pl-type: an expanded feature structure of a defined
type which has (possibly) inherited information from its supertype(s) is called a global prototype. A feature

4.6 Type Environment and Type Definitions 17

structure consisting only of the local information given by the type definition is called a local prototype or
skeleton. So the local prototype of pl-type is

person-number-type
NUMBER plural

Section 5.18 explains how the different prototypes of a defined type can be displayed.
As mentioned above, type specification is optional. If no type is specified, the structure being defined will
be assumed to have the top type of the hierarchy.

4.6.6 Multiple Inheritance -

Multiple inheritance is possible at any level. A glb (greatest lower bound) type is not required to exist if
the global variable *AND-OPEN-WORLD-REASONING-Px* has value t.
Suppose number-type, person-type and gender-type are defined as follows:

number-type := [NUMBER].
person-type := [PERSON].
gender-type := [GENDER].

Then the TDL type definition

mas-2-type := number-type & person-type & gender-type & [GENDER ’mas,
PERSON 2].

would result in the following structure (after type expansion):

mas-2-type
GENDER mas
PERSON 2
NUMBER []

4.6.7 Coreferences

Coreferences indicate information sharing between feature structures. In 7DL, coreference symbols may
occur anywhere in the value of an attribute. If values are specified, they are attached to the coreference tag
by the & connector. The order of the elements of such a conjunction does not matter.

A coreference symbol consists of the hash sign #, followed by either a number (positive integer) or
a symbol. However, in the internal representation and in the printed output of feature structures, the
coreference symbols will be normalized to an integer number. Example:

share-pn := [SYN #pn & person-number-type,
SEM #pn].

results in the following structure (after type expansion):

share-pn
person-number-type
SYN[1] | PERSON []
NUMBER []
SEM 1

18 4 SYNTAXOFTDC

4.6.8 Negated Coreferences

Negated coreferences specify that two attributes must not share the same value, i.e., they may have the
same value, but these values must not be linked to each other by coreferences (they may be type identical
but must not be token identical).

The syntax of negated coreferences is

“#(a1, az,... @n)

where ay, ay, . . . a,, are coreference symbols, i.e., numbers or symbols, without the hash sign. If n = 1,
the parentheses can be omitted.
Example: The TDL definition

give := [RELN give, GIVER ~#(1,2), GIVEN #1, GIVEE #2].

would result in the following structure:

give

RELN give
GIVER —([, 2)[]
GIVEN (1]

GIVEE 2]

4.6.9 Simple Disjunctions

Disjunction elements are separated by | (or \ | inthe Emacs interaction mode,cf. Section 4.6.4). Disjunction
elements can be atoms, conjunctive feature descriptions, simple disjunctions, distributed disjunctions, lists,
template calls or negated values. In simple disjunctions, the alternatives must not contain coreferences to
values outside the alternative itself (see [Backofen & Weyers 95] for the reasons).

Distributed disjunctions provide a restricted way to use coreferences to outside disjunction alternatives
(Section 4.6.10).
An example of disjunctions in a type definition:

person-1-or-2 := [SYN person-number—type & [PERSON 1] |
person-number-type & [PERSON 2] 1].

The resulting feature structure is

person-1-or-2
[person-number—type]
PERSON 1
SYN
person-number-type
[PERSON 2]

Another more local specification of the same disjunction would be
person-1-or-2 := [SYN person-ilumber—_type & [PERSON 1 | 2] 1.
The resulting feature structure is

person-1-or-2
person-number-type
- : SYN { 1 }
PERSON 2

Disjunctions at the top level of a type definition introduce disjunctive tybes (depicted as bold edges in the
TDL grapher). Arbitrary combinations of sorts, atoms, and feature structure types are allowed. Example:

4.6 Type Environment and Type Definitions 19

1list := *null* | *cons*. ;; where *null* is a sort, *cons* an avm
The resulting feature structure (after type expansion) is:

cons

FIRST []

REST []
null

The only case where no disjunctive edges are introduced in the type hierarchy is a disjunction of pure atoms,-
e.g.

num := 1 | 2 | 3.

" instead of | means exclusive-or. Disjoint type partitions can be declared in the declare environment
(Section 4.5).

4.6.10 Distributed Disjunctions

A very useful feature of 7DL, implemented in the underlying unification system UDiNe, is distributed (or
named) disjunction [Eisele & Dérre 90). This kind of disjunction has a specification restricted to a local
domain, although it may affect more than one attribute. The main advantage of distributed disjunction is a
more succinct representation. Consider the following example:

[season-trigger

" springﬂ
"summer"
1) fall "
"winter"

1

SEASON %1

NUMBER %1

w N

v

This structure has been generated by the following 7DL expression:

season-trigger := [SEASON %1("spring", "summer", "fall", “"winter"),
NUMBER %1(1 > 2 , 3 ., 4)].

When a structure of type season-trigger is unified with the structure [SEASON "summer" | "fall"],the
value of attribute NUMBER become 2 | 3, i.e., the value of attribute SEASON triggers the value of attribute
NUMBER, and vice versa. '

The syntax of the alternative list in distributed disjunctions is

hilag,...,ai,) _

where 7 is an integer number or a symbol, the disjunction index for each group of distributed disjunctions
(%1 in the example). More than two alternative lists per index are allowed. All alternative lists with the
same index must have the same number (n) of alternatives. The disjunction index is local in every type
definition and is normalized to a unique index when unification of feature structures takes place.

20 4 SYNTAX OFTDC

In general, if alternative ai; (1 <j5<n) does not fail, it selects the corresponding alternative bi,., Cijr s s
in all other alternative lists with the same disjunction index z.

As in the case of simple disjunctions, disjunction alternatives must not contain coreferences refering
to values outside the alternative itself. But for distributed disjunctions, there is an exception to this
restriction: disjunction alternatives may contain coreferences to values in another distributed disjunction
if both disjunctions have the same disjunction index and the alternative containing the coreference has the
same position in the disjunction alternative list.

An example of such a distributed disjunctions with coreferences is:

dis2 :=[a Y%name([] , #1 , #2),
b Yname([c +], x&[d #1 g&[m =11, x&[d #2 g&lm +11) J.

[dis2 W _
(1]
g
A%nameJ o [M -]
4
I

[[]
B %name ; L
T

|

4.6.11 Lists

In TDL, lists are represented as first-rest structures with distinguished attributes FIRST and REST, where
the sort *null* at the last REST attribute indicates the end of a list (and, of course, the empty list). The input
of lists can be abbreviated by using the <> syntax which is only syntactic sugar.

list-it := [MYLIST < first-element, #second, [] >,
SECOND #second,
EMPTY <>].

The resulting feature structure is

[list-it i
[list i
FIRST first-element
list
MYLIST FIRST [1)
REST list
REST | FIRST []
i ' REST *null*
SECOND 1]
| EMPTY *null* |

Dotted pair lists can be defined a la LIsP, e.g.

dot-list := [DOTLIST < first-element, second . #rest >,
DOTREST #rest].

4.6 Type Environment and Type Definitions 21

The resulting feature structure is

[dot-list]
list
FIRST first-element
DOTLIST list
: REST | FIRST second
REST [I]
| DOTREST [J '

Lists with open end can be defined by using ... as the last element. The value of theast REST attribute
will be [] (top).
In addition, the <. . .> notation can be combined with type and length restrictions. The general syntax is

<...>[: Crestriction) | : type [: (minlength, maxlength) | : length]]

The following definition produces a list with element type x of length 0, 1 or 2 at the top level attribute a.

list012-of-x :=[a <...>:x:(0,2)].

T ([*cons* 3 1
FIRST x
cons
REST | FIRST x
A < L REST *null* L
[*cons*
FIRST x
LREST *null*
L *null*)

4.6.12 Difference Lists

Difference lists are first-rest structures with distinguished attributes FIRST and REST, and a special LAST
attribute at the top level, which shares the value with the last REST attribute.

Difference lists permit appending of list structures without requiring an append type or an append relation.
In TDL, the elements of difference lists may be enclosed in <! !> as an abbreviation. Example:

difflist3 := <! (1,0,[] t>.

[difflist3 1
[*cons*
FIRST []
cons
LIST FIRST []
REST ¥cons*
REST | FIRST[]
L REST(D)
L LAST[1]

22 4 SYNTAXOFTDC

4.6.13 Negation

The ~ sign indicates negation. Example:
not-mas-type := [GENDER ~’mas].

The resulting feature structure is

not-mas-type
GENDER —mas |

Negation of types will be pushed down to atoms according the schema of [Smolka 88; Smolka 89].
If ¥1istx list is defined as in the td1-built-ins.tdl file (page 4.2), the definition

notlist := ~ *listx*.
will result in the following (expanded) structure:

[*cons*A— *null¥|
= *nyll*
[FIRST *undef *]
— *null*
[REST *undef *]
Here *undef * indicates undefined attributes. It is an atom that unifies with nothing else.

4.6.14 External Coreference Constraints

Instead of specifying the values of coreferences within a feature structure, it is also possible to add a list of
such constraints at the end of a feature type definition. The syntax is

...where (constraint {, constraint}*).
where constraint — #coref-name = {function-call | disjunction}
Here, ‘...’ mean the body of a type, instance or template definition. External coreference constraints are
pure syntactic sugar, but may be useful, e.g. for expressing the identity of coreferences in very complex
definitions, or as variables, e.g. where (#8 = #9, #undef = *undef*) . function-call is explained in
the following section.

4.6.15 Functional Constraints

Functional constraints define the value of an attribute on the basis of a function which has to be defined and
computed outside the 7DC system.
The syntax of functional constraints is similar to that of external coreference constraints, i.e., functional
constraints must be specified outside a feature structure, but are connected with it through a coreference
tag, cf. last section.

Jfunction-call — function-name (disjunction {, disjunction}*)
String concatenation is a nice example of the use of functional constraints:

add-prefix := [WORD #word,
PREFIX #prefix, _
WHOLE #whole]
where (#whole = String-Append (#prefix, #word)).

The definition of the LISP function String-Append is shown in the example in Section 4.11. The usual
representation for functional constraints is:

add-prefix
WORD [
PREFIX [2]
WHOLE [3]

4.6 Type Environment and Type Definitions 23

Functional Constraints:
= String-Append([2], (1)

The evaluation of functional constraints will be postponed until all parameters are instantiated (residuation;
cf. [Ait-Kaci & Nasr 86; Smolka 91] for theoretical backgrounds). The evaluation can be enforced by
using the function EVAL-CONSTRAINTS of the UNIFY package. Further details are described in [Backofen
& Weyers 95].

4.6.16 Template Calls

Templates are pure textual macros which allow specification of (parts of) type or instance definitions by
means of some shorthand. The definition of templates will be explained in Section 4.8. A template call
simply means the syntactic replacement of a template name by its definition and possibly given parameters.
Thus we restrict templates to be non-recursive.

The syntax of template calls is

etempl-name ([templ-par {, templ-par}*])
where a templ-par is a pair consisting of a parameter name (starting with the $ character), followed by =,

and a value. All occurrences of the parameter name will be replaced by the value given in the template call
or by the default value given in the template definition. See Section 4.8 for further details and examples.

4.6.17 Nonmonotonicity and Value Restrictions

TDL supports nonmonotonic definitions for avm types and instances, called single link overwriting (SLO).
A type can be overwritten by a set of paths with associated overwrite values. The general syntax for
nonmonotonic definitions is

identifier = nonmonotonic | where (constraint {, constraint}*) | {, option}* .

where

nonmonotonic — type & [overwrite-path {, overwrite-path}*]
and

overwrite-path — identifier { . identifier }* disjunction
This feature of 7DL can be used to model defaults. A special extension of typed unification will handle
nonmonotonic unification in a future version of T7DL [Krieger 93]. Currently, one has to be careful when
using this feature. A suitable application would be lexical types that normally will not be unified with a
nonmonotonically defined lexicon entry.
Note that the [. . .] syntax denotes a set of overwrite paths with associated overwrite values. This is different
from the [...] notation known from avm type or instance definitions, because everything following a path
specification identifier { . identifier }* is the overwrite value and will replace all inherited information at
this path.

begin :type.

a := [person_x : integer, person_y : integer].

b:=aé& [person.x 1 | 2, person_y 1 | 2 1].

c !'=b & [person_x 3 1].

d !'=b & [person_x "three"]. ;;; error: restriction violated
end :type.

The expanded prototype of ¢ is
c
PERSON_X 3

1
PERSON_Y
{2

24 4 SYNTAX OFTDC

If TDL has been compiled with the #+TDL-Restriction compiler option, the :restriction type specifi-
cation at attributes will be checked before paths are overwitten. If an overwrite value is not equal to or
more specialized than the type specified in the definition of the structure to be overwritten, an error will be
signaled:

Error: Restriction INTEGER is inconsistent with overwrite value
(:ATOM “"three") under path PERSON_X in D

Restart actions (select using :continue):

0: Continue; overwrite restriction anyway.

4.6.18 Rules

Different parsers use different representations for rules. The --> syntax allows abstraction from the
internal representation of rules as feature structures. A user-definable function is responsible for translating

the abstract representation into the desired format. Rules can be defined as types and as instances. A

sophisticated representation of rules, e.g., as used in the DISCO system, even allows inheritance from rule

types. Rule definition syntax is

identifier : = disjunction =~>list [where (constraint {, constraint}*)] .

where disjunction represents the left hand side of the rule and list contains the right hand side in the TDLC
list syntax. Examples:

*rulex := ;55 the most general rule type
L1 --> < ...»>.
binary-rule := ;;; some silly examples to show
xrulex --> < [], [] >. ;3 what is possible
np :=
binary-rule =--> <Det, Noun>. ;33 rule inheritance
Xp :=
yp & zp --> < Catl, Cat2, ... >.
ap :=
(bp & cp) | "dp --> < #1 & Catl,
Cat2,
#1 >,
tp := sp & [attr #a & fool --> < fee,
fum & [rtta #a & #b],
fuu & #b >.

We show two kinds of representation of the rules here, taking the np type from above.

[binary-rule]
cons
FIRST det
ARGS *cons*
REST | FIRST noun
REST *null* i

np = internal representation of the DISCO parser

[*cons*

FIRST binary-rule
cons

np = FIRST det internal representation of another parser

REST - *cons*
REST | FIRST noun

L REST *null*

4.7 Optional Keywords in Definitions 25

The name of the function that generates features structures from the rule syntax can be set in the global
variable *WHICH-PARSERx, its default value is the symbol TDL-PARSE: : CONSTRUCT-BERNIE for the
DISCO parser.

4.7 Optional Keywords in Definitions

For external use, 7DL provides a number of optional specifications which are basically irrelevant to the
grammar (except for controlled expansion). If the optional keywords are not specified, default values will
be assumed by the 7DL control system. Optional keywords are author:, doc:, date:, status:, and
expand-control:. If a keyword is given, it must be followed by a value. ‘
The values of author:, doc: and date: must be strings. The default value of author: is defined
in the global variable *DEFAULT-AUTHOR*. The default value of doc: is defined in the global variable
DEFAULT-DOCUMENTATION (see Section 5). The value of date: is a string containing the current time
and date. If not specified, this string will be automatically generated by the system.

The status: information is necessary if the grammar is to be processed by the DISCO parser. It
distinguishes between different categories of types and type instances, e.g., lexical entries, rules or root
nodes. If the status: keyword is given, the status value of the type will become the specified one. If no
status option is given, the status will be inherited from the supertype, or be :unknown, if the supertype is
the top type of the type hierarchy.

The expand-control: keyword can be used to specify control information for type expansion. It has the
same effects as the defcontrol statement for fype with index nil, see Section 4.10.

4.8 Template Environment and Template Definitions

A template environment starts with
begin :template.

and ends with
end :template.

It may appear anywhere within a domain environment, and may contain arbitrary template definitions,
environments and 7DL statements.

Templates in 7DL are what parametrized macros in programming languages are: syntactic replacement
of a template name by its definition and (possibly) replacement of given parameters in the definition. In
addition, the specification of default values for template parameters is possible in the template definition.
Templates are very useful in writing grammars that are modular; they can also keep definitions independent
(as far as possible) from specific grammar theories.

Note that template definitions must not be recursive. Recursive definitions are only allowed for avin types.

The general syntax of a 7DL template definition is
templ-name ([templ-par {, templ-par}*]) :=body {, option}* .

where templ-par is a pair consisting of a parameter name (starting with the $ character), followed by =, and
adefault value. All occurrences of the parameter name will be replaced by the value given in the template
call or by the default value given in the template definition. body can be a complex description as in type
definitions. A

Example: The template definition

a-template ($inherit = *avm*, $attrib = PHON, $value) :=
$inherit & [$attrib #1 & $value,
COPY #1 1.

makes it possible to generate the following types using template calls:

top-level-call := Qa-template Q0.

26 4 SYNTAXOFTDC

is a top-leve] template call which will result in the feature structure:

top-level-call

PHON [
cory [1
while
inside-call := [top-attrib Qa-template ($value = "hello",

$attrib = MY-PHON)].

is a template call inside a feature type definition which will result in the feature structure:

inside-call
aym
TOP-ATTRIB | MY-PHON “hello"
COPY "hello"

Disjunction and coreference names in template definitions are local to each template expansion. In this
sense, templates are similar to COMMON LISP macros.

{options}* in template definitions are the optional keywords author:,date: and doc:. If used, akeyword
must be followed by a string. The default value for the author: string is defined in the global variable
DEFAULT-AUTHOR. The default value for the doc: string is defined in the global variable *DEFAULT-
DOCUMENTATION* (see Section 5). The default value for date: is a string containing the current time and
date.

Section 5.17 describes the function describe-template which prints information about template defini-
tions.

4.9 Instance Environment and Instance Definitions

A type environment starts with
begin :instance.

and ends with
end :instance.

It may appear anywhere within a domain environment, and may contain arbitrary instance definitions,
environments and 7DL statements.
An instance definition is similar to a type definition, but instances are not part of the type hierarchy although
they can inherit from types. For instance, each lexical entry will typically be an instance of a more general
type, e.g., intransitive-verb-type with additional specific graphemic and semantic information. The idea is
to keep the type lattice as small as possible. The distinction between types and instances is similar to that
of classes and instances in object oriented programming languages, e.g., CLOS.
Instances are not inserted into the 7DL type hierarchy. In general, instances are objects (feature structures)
which can be used by the parser. It is possible to create several instances of the same type with different or
the same instance-specific information.)
The general syntax of a 7DL instance definition® is

instance-name := body {, option}* .
body can be a complex description as in type definitions. options in instance definitions are the optional
keywords author:, doc:, date:, and status:.
If the same name is given more than once for an instance of the same type, the old instances will not be

destroyed and the parser is responsible for the access to all instances. This behavior can be controlled by
the global variable * ACCUMULATE-INSTANCE-DEFINITIONS*.

5For nonmonotonic definitions see section 4.6.17.

4.10 Control Environment 27

If the status: keyword is given, the status value of the instance will become the specified one. If no status
option is given, the status will be inherited from the top level types.

The values of author:, doc: and date: must be strings. The default value of author: is defined
in the global variable *DEFAULT-AUTHOR*. The default value of doc: is defined in the global variable
DEFAULT-DOCUMENTATION (see Section 5). The default of date: is the current time and date.

4.10 Control Environment

A control environment starts with -
begin :control.

and ends with

end :control.

It may appear anywhere within a domain environment, and must be enclosed directly by either an instance
or atype environment. It may contain arbitrary control definitions, other environments and 7DL statements.
The control environment is supported only for the sake of clarity in order to structure a 7DL grammar.
The environment itself is completely syntactic sugar. Control information can be given either in a type
or instance definition by the optional : expand-control keyword, or through the defcontrol statement
in a type or instance environment. The control environment additionally allows specification of control
information separately from the type or instance definitions, e.g., in a separate file.

Note that the control environment needs to be enclosed by a domain environment and either a type or an
instance environment, depending on what kind of definitions are to be expanded

The macro

defcontrol { type | instance | :global } expand-control [: index number] .

defines control information for the expansion of a type or an instance. For further details see section 5.4.

411 Lisp Environment

A LISP environment starts with
begin :lisp.

and ends with
end :lisp.

The Lisp environment allows insertion arbitrary LISP code into 7DL grammars. Example:

begin :lisp.
(DEFUN String-Append (&rest args)
(APPLY #’CONCATENATE ’STRING args))
end :lisp.

This DEFUN defines the function String-Append used in the example of Section 4.6.15.
There is also a short notation for evaluating LISP expressions from 7DL: The macro

leval Common Lisp Expression.
evaluates Common Lisp Expression in any environment. For the sake of clarity, we recommend using this

statement only in the interactive mode. Example:
leval (LOAD-SYSTEM "my-parser").

4.12 Comments

; after an arbitrary token or at the beginning of a line inserts a comment which will be ignored by the 7DL
reader until end of line. A comment associated with a specific type, template or instance definition should
be given in the doc: string at the end of the definition. -

#11 and | | # can be used to comment regions (as in COMMON LISP).

28

5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

5 Useful Functions, Switches, and Variables

The following functions and global variables are defined in the package TDL and are made public to all user-
defined domains (implemented by COMMON LISP packages) via use-package. This is done automatically
in the function defdomain.

5.1

Global Switches and Variables

The following global LISP variables can be set by the user. Switches are set to t for ON ornil for OFF.

Global variable *AND-OPEN-WORLD-REASONING-P* default value: t
possible values: t ornil .)

This variable controls whether avm types live in an open or in closed world. Cf. [Krieger & Schifer
94a).

Global variable *SIGNAL-BOTTOM~Px* default value: t
possible values: t ornil
If t, an error is signaled if the conjunction of two types is bottom.

Global variable * IGNORE-BOTTOM~-Px* default value: nil
possible values: t ornil

If t, typed unification skips over bottom. The result of an inconsistent type conjunction will be the
bottom type, and feature unification will be continued as if the conjunction would be consistent. This
is useful to debug a grammar.

Global variable *WARN-IF-TYPE-DOES-NOT-EXIST* default value: t
possible values: t ornil

This variable controls whether a warning will be given if a type definition contains the name of an
undefined type in its body.

Global variable *WARN-IF-REDEFINE-TYPE* default value: t
possible values: t ornil

This variable controls whether a warning will be signaled if a type already exists and is about to be
redefined.

Global variable * ACCUMULATE-INSTANCE-DEFINITIONS* defaultvalue: nil
possible values: t ornil

If t, redefining an instance will push the new definition onto a stack. Otherwise, new definitions will
replace older ones.

Global variable *DEFAULT-AUTHOR* default value: ""
possible values: string

This variable should contain the name of the grammar author or lexicon writer. It will be used as
default value for the optional keyword author: in type, template and instance definitions.

Global variable *xDEFAULT-DOCUMENTATIONx* default value: ""
possible values: string .

This parameter specifies the default documentation string for type, template and instance definitions.
It will be used as default value for the optional keyword doc: in type, template and instance
definitions.

Global variable *VERBOSE-P* default value: nil
possible values: t ornil

This parameter specifies the verbosity behavior during processing of type definitions. If the value is
t, a verbose output will be generated. If the value is nil, only the name of the (successfully) defined
type will be printed in brackets, e.g., #Avm<VERB-TYPE>.

5.1

Global Switches and Variables 29

Global variable *VERBOSE~-READER-Px* default value: nil
possible values: t or nil

This parameter specifies the verbosity behavior of the 7DL reader. If the value is nil, the 7DL reader
does not print values that are returned from function calls and type, instance, template definitions.
Otherwise, the first return value will be printed.

Global variable *VERBOSE-EXPANSION-Px default value: nil
possible values: t or nil

This parameter specifies the verbosity behavior when type expansion takes place. If the value isnil,
TDC type expansion will only print messages when types are not deﬁncd or inconsistent. Otherise,
a verbose trace of the expansion will be printed.

Global variable *TRACE-P*) default value: nil
possible values: t ornil B

If t, verbose trace information is printed by the TDL parser, the definition functions, and the expansion
algorithm.

Global variable *LAST-TYPEx* default value: undefined
possible values: a type-symbol

This variable contains the name of the last type defined. It is used by the print functions pgp, plp,
lgp, 11p, fgp, £1p, and by expand-type, delete-type, and reset-proto when no type name is
specified. The value of this variable can be changed by the user.

Global variable *LAST-INSTANCEx* default value: undefined
possible values: an instance-symbol

This variable contains the name of the last instance defined. It is used by the print functions pgi,
pli, 1gi, 111, fgi, £11i, and by expand-instance, delete-instance, and reset-instance
when no instance name is specified. The value of this variable can be changed by the user.

Global variable *USE-MEMOIZATION-Px* default value: t
possible values: t ornil

If nil, no memoization of simplified type expression will take place. Otherwise, the domain-specific
hash tables will be used.

Global variable *EXPAND-TYPE-Px default value: nil
possible values: t ornil
Ifnil, feature structures, i.e., avin types and instances, will not be expanded at definition time. This
saves time and space at definition time. If t, expansion will run on the prototypes with the control
information known so far.

Global variable *SIMPLIFY-FS-Px* default value: t
possible values: t ornil

If not nil, feature structure simplification will be performed at the end of type or instance expansion.
Feature structure simplification may remove unnecessary fails in disjunctions, and hence may speed
up subsequent unifications.

Global variable *BUILD-INTERMEDIATE~TYPES-Px default value: nil
possible values: t or nil i

This global variable controls whether 7DC introduces intermediate types for certain complex formulae
recognized during the parsing of type definitions which, however, are not specified by the user, i.e.,
these types will not occur on the left side of a type definition. If the value is t, intermediate types
will always be created (at any level of a feature structure). If nil, intermediate types are not created,
except for the top level of a type definition in order to classify the new type correctly.

Global variable *USE-INTERMEDIATE-TYPES-Px* default value: t
possible values: t ornil
This global variable controls whether intermediate types gcneratcd at definition or at run time will be

30

5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

used as abbreviations during typing, If ni1, intermediate type will not be used. This variable will be
used in type definitions as well as in instance definitions.

Global variable *CREATE-LEXICAL-TYPES-P* default value: t
possible values: t or nil

If t, TDL will be forced to introduce an intermediate type at the top level of an instance definition
(if necessary). At all other levels of an instance definition, the variables *BUILD-INTERMEDIATE~
TYPES-P* and *USE-INTERMEDIATE-TYPES-P* control the behavior of intermediate type genera-
tion.

Global variable *WARN-UNIFICATION-P* default value: nil
possible values: t ornil
Normally, no unification takes place at definition time. But there are some infrequent cases, e.g., if
the grammar writer specifies a conjunction of two feature structures ([a [b x]1]1 & [b y]), which
“‘make unification necessary. If *WARN-UNIFICATION-P* is nil, no warning will be given when
unification is performed.

Global variable *SOURCE-GRAMMAR* default value: user’s home directory pathname
possible values: a pathname

This variable contains the default prefix for grammar files, if no absolute pathname is specified for
filename in the include statement.

Global variable *LOAD-BUILT-INS-P* default value: t
possible values: t ornil

This variable contains the default value for the :load-built-ins-p keyword in the include
statement.

Global variable *WARN-NORMAL-FORM-Px* default value: nil
possible values: t ornil

This variable determines whether a warning is given if a 7DL expression is not in normal form (only
at definition time). If nil, no such warning will be given.

Global variable *UPDATE-GRAPHER-OUTPUT-P* default value: nil
possible values: t or nil

This variable controls whether an automatic redraw is performed on the grapher when a type is
(re)defined. If nil, no automatic redraw will be done.

Global variable *NORMALFORM-0PERATOR-SYMBOL* default value: :and
possible values: :and or :or

This variable contains the operator for the normal form of type expressions. Either disjunctive or
conjunctive normal form is possible.

Global variable *TOP-SYMBOL* default value: *TOPx*
possible values: a symbol

This variable contains the name for the top type of type hierarchies. This is the default for the :top
keyword in the defdomain function.

Global variable *BOTTOM~SYMBOLx* default value: *BOTTOM*
possible values: a symbol

This variable contains the name for the bottom type of type hierarchies. This is the default for the
:top keyword in the defdomain function. It is also used for the generation of symbol names for
bottom types.

Global variable *TOP-SORT* default value: *SORT*
possible values: a symbol -

This variable contains the name for the top sort of type hierarchies. This is the default for the
declaration of sorts if no super-sort is specified.

5.2 Setting Switches and Global Variables 31

o Global variable *LIST-TYPE-SYMBOL* default value: *LISTx*
possible values: a symbol
This variable contains the name for the first/rest list type.

e Global variable *CONS-TYPE-SYMBOL* default value: *CONS*
possible values: a symbol
This variable contains the name for the first/rest cons type.

o Global variable *DIFF-LIST-TYPE-SYMBOLx* default value: *DIFF-LIST*
possible values: a symbol '
This variable contains the name for the difference list type.

o Global variable *END-OF-LIST* -) default value: *NULLx*
possible values: a symbol
This variable contains the name for the end-of-list type (sort).

o Global variable *FIRST-IN-LIST* default value: FIRST
possible values: a symbol
This variable contains the name for the FIRST attribute in first/rest lists,

e Global variable *xREST-IN-LIST* default value: REST
possible values: a symbol
This variable contains the name for the REST attribute in first/rest lists.

o Global variable *LAST-IN-LIST* default value. LAST
possible values: a symbol
This variable contains the name for the LAST attribute in difference lists.

o Global variable *LIST-IN~LIST* default value: LIST
possible values: a symbol
This variable contains the name for the LIST attribute in difference lists.

5.2 Setting Switches and Global Variables

e macro set-switch identifier Common-Lisp-Expression.
This macro sets the value of a global value with name identifier (cf. Section 5.1). Example:
<MY-DOMAIN:TYPE> set-switch *WARN-IF-TYPE-DOES-NOT-EXISTx* NIL.

o function print-switch identifier.
This function prints the value of a global variable. Example:
<MY-DOMAIN:TYPE> print-switch *AUTHOR*.

nn

5.3 Including Grammar Files

The function
include filename.

includes 7DL grammar files. If no begin :domain is specified at the beginning of the file, the definitions
are loaded in the current domain. include files may be arbitrarily nested.
filename should be a string containing a filename or a path. If no absolute filename path is specified, the
default path of variable *SOURCE-GRAMMARX is taken.
TDC filenames must have the .tdl extension. If no such extension is specified, it will be appended
automatically.
Example:

<MY-DOMAIN:DECLARE> include "my-declarations".
is equivalent to . _

<MY-DOMAIN:DECLARE> include "my-declarations.tdl".

32 5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

5.4 Expanding Types and Instances

Type expansion means replacing the type names in typed feature structures by their definitions. Partial
expansion can be done according to the control information given by the defcontrol statements or the
expand-control keywords. Default is full expansion of all types.

All expand functions store the expanded structures in the global prototype slot of the type or instance infon
(cf. Section 5.8). The local prototype (skeleton) always remains unchanged.

5.4.1 Defining control information: defcontrol

The control information for the expansion algorithm may be specified globally and/or locally, either in a
separate file or mixed with the type and instance definitions.

The begin :control. ... end :control. environment can be used to indicate control information,
but this is not necessary.

The syntax of macro defcontrolis:

defcontrol { type | instance | :global } expand-control [: index index].

The first parameter in the defcontrol statement is a symbol, either the name of a type or the name of
an instance (this depends on the surrounding environment), or :global which indicates global control
information. A defcontrol can be anywhere in a grammar file, even before the corresponding type
definitions. A newer def control declaration (with the same type and index) will replace an older one (this
is also true for global control).

5.4.2 Expanding Types and Instances: expand-type and expand-instance

The syntax is given by:

expand-type fype [:index index] [: expand-control expand-control] .
expand-instance instance [: index index] [: expand-control expand-control] .
expand-all-types [: index index| [:expand-control expand-control] .
expand-all-instances [:index index] [: expand-control expand-control | .

Additional internal functions such as expand-£s exist in order to destructively expand anonymous feature
structure or parts of it, e.g., from within a parser, etc.

The index parameter may be used to define different prototypes of the same type that are (possibly) only
partially expanded. Each prototype needs its own defcontrol.

The indexed prototypes of a type can be ‘spliced’ into a feature structure through type expansion using the
:expand-only or : expand slot of the control information.

Instance indices (only integers are allowed) can be used to define different levels of expanded lexicon
entries, etc.

The default index is nil which is the standard prototype. If no special control information is given (locally
or globally), the nil index specifies a fully expanded prototype.

The :skeleton index may be useful at the :expand-only or :expand slot. It denotes the unexpanded
definition of a type (its skeleton). :skeleton cannot be used as an argument for the defcontrol keyword
:index, because a skeleton is always unexpanded and expansion is permitted.

expand-type will generate a new prototype with index index from a copy of the : skeleton of type type
if this index does not exist. If it exists, and is not already fully expanded, it will be expanded again.

5.4.3 The Syntax of expand-control

If expand-control is specified for expand-instance or expand-type, the values of slots that are omitted
will be inherited from global control. Control information which has been defined for the type or instance
with the same index will be ignored.

If some slots in defcontrol :global are omitted, they will be taken from global variables with
corresponding names: *MAXDEPTH*, *ATTRIBUTE-PREFERENCE*, *xEXPAND-FUNCTION*, *RESOLVED-
PREDICATE*, *IGNORE-GLOBAL-CONTROL*, *ASK-DISJ-PREFERENCE*, *USE-DISJ-HEURISTICSx, or

5.4 Expanding Types and Instances 33

type name index feature structure
: definition
default prototype -

uvw

definition
of uvw

fully expanded

default prototype prototype of uvw

partially expanded
user-defined prototype prototype of uvw

Figure 2: Types, skeletons, prototypes and indices: Type xyz’s prototype is either unexpanded or contains
no avm types. Thus, its prototypical feature structure is.identical with its definition (skeleton). Type uvw
has a (fully) expanded prototype and a user-defined prototype which are both (possibly partially) expanded
copies of uvw’s skeleton feature structure.

USE-CONJ-HEURISTICS. Their value can be set with set-switch. The global switch *VERBOSE-
EXPANSION-P* can be set to t for verbose trace of type expansion. Default value is nil (quiet).

If some slots in local expand-control are omitted, they will be inferred from global expand-control.

The syntax of expand-control is as follows.

expand-control - ([(:expand { ({type | (type [index [pred]]) } {path}*) }*) |
(:expand-only { ({type | (type [index [pred]])} {path}*) }*)]|
[C:delay { ({nype| (type [pred]} {path}*) }*) ||
[(:maxdepth integer)]|
[(:ask-disj-preference {t |nil})]|
[(:attribute-preference {identifier}*)] |
[(:use~conj-heuristics {t |nil})]|
[(:use-disj-heuristics {t |nil})]|
[(:expand-function {depth | types} -first-expand)] |
[(:resolved-predicate {resolved-p| alvays-false|...})]|
[(:ignore-global-control {t |nil})]
)
path — {identifier | pattern} { . {identifier | pattern}}*
pattern — ? | * | + | ?[identifier][?|*|+]
pred — eq | subsumes | extends | ...
index — integer for instances
integer | identifier | string for avm types

34 5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

Now we describe the expand-control slots.

e :expand-function

This slot specifies the basic expansion algorithm. The default expansion algorithm is depth-first-
expand with prototype memoization and a special treatment of recursive types (a combination of
breadth first for recursive and depth first for non-recursive types).

The alternative is a combined ‘types-first’ algorithm for non-recursive types and breadth first for
recursive types. This ‘types-first’ algorithm is advantageous only if feature structures with many
delayed types are to be fully expanded (e.g.,-at run time). The behavior for recursive types is the same
as with the proper depth first algorithm. (:expand-functiontypes-first-expand) selects the
‘types-first’ algorithm.

e :delay -

The delay slot specifies a list of types whose expansion is deferred. For each type, a comparison
predicate pred (eq, subsumes, extends, or user-defined, default is eq) and a list of paths or path
patterns can be defined.

Path patterns can facilitate path specifications. * denotes zero or more features, + one or more
features, 7 exactly one feature. In each case, the prefix ?identifier can be used to define variables for
features or path segments. The variables are local to each path pattern. 7identifier without a *, +, or
7 suffix is the same as ?identifier?, i.e., one feature variable. Example:

defcontrol mytype ((:delay (vtype syn.loc.* sem.?x.head.?x)
((ntype subsumes) *)))
:index 42.

Here, expansion of the type vtype will be delayed under all paths which start with syn.loc and
all paths which start with sem, then an arbitrary feature (bound to variable x), then head, then the
second feature again (constraint by variable x). Expansion of the type ntype and all its subtypes will
be delayed under all paths.

e :expand-onlyand :expand

There are two mutually exclusive type expansion modes. If the : expand-only list is specified, only
types in this list will be expanded, all others will be delayed. If the : expand list is specified, all types
will be expanded. Types not mentioned in the list will be expanded using the default prototype index
nil, i.e., fully, if not specified otherwise.

In both cases, the types in the : delay list will be delayed anyway.
index specifies the index of the prototype to be spliced in. pred is as described in the paragraph before
(:delay).

e :maxdepth

If (:maxdepth integer) is specified, all types at paths longer than integer will be delayed anyway.
This feature may be used as a brute force method to stop infinite expansion.

e :attribute-preference

This slot defines a partial order on attributes. The sub-feature structures at the leftmost attributes
will be expanded first. This may speed up expansion if no numerical preference data is available.
Example:

defcontrol :global ((:attribute-preference first rest last head-dtr
comp-dtrs front back)).
e :ask-disj-preference

If this flag is set to t, the expansion algorithm interactively asks for the order in which disjunction
alternatives should be expanded. Example:

5.4 Expanding Types and Instances 35

Ask-Disj-Preference in G under path X
The following disjunctions are unexpanded:
Alternative 1:
(:Type A :Expanded NIL) []
Alternative 2:
(:Type B :Expanded NIL) []

Which alternative in G under path X should be expanded next (1, 2, or 0 to
leave them unexpanded, or :all to expand all alternatives in this order,
or :quiet to continue without asking again in G) 7 _

e :use-conj-heuristicsand :use-disj-heuristics -

[Uszkoreit 91] suggested that exploitation of numerical preference information for features and
disjunctions would speed up unification. These slots control the use of this information in conjunctive
and disjunctive structures respectively.

e :resolved-predicate

This slot specifies a user definable predicate that may be used to stop recursion. The description of
such predicates is be rather complex and is omitted here. The default predicate is always-false
which will make the expansion algorithm complete (if no delay or maxdepth restriction is given, of
course).

e :ignore-global-control

If this flag has value t, the values of the three globally specified lists : expand-only, :expand,
:delay will be ignored. If nil, locally and globally specified lists will be taken into account.

5.4.4 Printing Control Information

The TDL statement (macro)
print-control { type | instance | :global } .

prints the control information in an internal format with path patterns replaced by a special syntax.

function print-recursive-sccs [:domain domain] .

prints the stronlgy connected components of the recursive dependency graph computed so far. It contains
recursive types recognized so far (by type expansion). Example:

print-recursive-sccs.

((*CONS* *LIST*) (APPEND APPEND1))

54.5 How to Stop Recursion

Type expansion with recursive type definition is undecidable in general, i.e., there is no complete algorithm
that halts on arbitrary input (type definitions) and decides whether a description is satisfiable or not.
However, there are several ways to stop infinite expansion.

e The first method is part of the expansion algorithm. If a recursive type occurs in a typed feature
structure that is to be expanded, and this type has been expanded under a subpath, and no features or
other types are specified at this node, then this type will be delayed, since it would expand forever
(this is called lazy expansion). An example of a recursion that stops like this is the recursive version
of the 1ist type (see below). A counter example, i.e., a type that will not stop without a finite input
(using the default resolved predicate always-false and no delay pattern), is Ait-Kaci’s append
type [Ait-Kaci 86]. That's life. -

Expanding append with finite input will stop, of course; an example of this is the last type definition
in the code below.

5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

defdomain :append :load-built-ins-p NIL.
begin :domain :append.
begin :declare.

sort: *null*. ;;; the empty list

end :declare.

begin :type.
xavmx := []. ;;; the top avm type
1list := *null* | *cons*.

cons := *avmx & [FIRST,REST *listx].

;33 Ait-Kaci’s version of APPEND

xavm* & [FRONT < >,
BACK #1 & *listx,
WHOLE #1].
appendl := *avm* & [FRONT <#first . #restl>,
BACK i#back & *listx,
WHOLE <#first . #rest2>,
PATCH append & [FRONT #resti,
BACK #back,
WHOLE #rest2]].

append0O :

append := append0 | appendl.

r:=append & [FRONT <’a,’b>,
BACK <’c,’'d>].

expand-type ’r.

Full expansion of r results in the following structure.

- # T
WHOLE (2la.BI(Eb. [(c. (d.()))))
[appendl]
append(
paTcH | RONT)
BACK [6]
PATCH
WHOLE [6]
FRONT [(3. [3())
BACK [d]
| WHOLE [J
FRONT (2].[)
| BACK [6] _

The second way is brute force: use the :maxdepth slot to cut expansion at a suitable path depth.
The third method is to define : delay patterns or to select the : expand-only mode.

The fourth method may work in some cases (Prolog hackers may like it): Use the :attribute-
preference list to define the ‘right’ order for expansion.

'i'he last method is to define a suitable :resolved-predicate for a class of recursive types. For
further details, see [Schifer 95].

5.5 Checking Welltypedness/Appropriateness 37

5.5 Checking Welltypedness/Appropriateness

TDL supports optional welltypedness checks at run time as well as at definition time. The appropriateness
specification for a feature is inferred by the type definition of the most general type that introduces this
feature. This is done by the function

compute-approp [:domain domain] [:warn-if-not-unique {t | nil}].
Its optional keyword :warn-if-not-unique determines whether a warning is given if there is more than
one most general type that introduces a feature®. The function is called by the two functions described
below if necessary.

The function

print-approp [:domain domain].
prints the current appropriateness table of a domain. This table is comparable to the Approp function in
[Carpenter 93, Chapter 6]. But there, it is defined Approp : F x T — T, i.e., for all features and types,
while 7DL stores Approp : F — T x T only once for each feature and infers the admissable value types
by a (cheap) lookup at the prototypical feature structure of the (sub)type of the type which introduces the
feature.

A feature structure is welltyped if each feature has an appropriate type and if the type of its value is equal
to or more specific than the value type of its appropriateness specification.
The welltypedness check can be done

1. at definition time. The global variable xCHECK-WELLTYPEDNESS-P* (values: t or nil) controls
whether this check is done (t) or not (nil). This check enforces expansion at definition time.

2. at run time. The global variable *CRECK-UNIFICATION-WELLTYPEDNESS~Px* (values: t or nil)
controls whether this check is done (t) or not (nil). The global variable *RETURN-FAIL-IF-NOT-
WELLTYPED-Px* (values: t or nil) controls whether a unification failure is triggered if the unified
nodes are not welltyped (t).

3. for a specific type or instance. The function
check-welltypedness [type | instance | :all[:instances | :avms
[:domain domain| [: index index] [:verbose {t | nil}]]].
provides such a check for a single type or instance as well as for all types or instances with the
specified index.

The global variable *VERBOSE-WELLTYPEDNESS-CHECK-P* controls whether a warning is given if a
welltypedness check is negative (t).
Below we show a brief example output of print-approp.

Feature ((Intro~Type . Value-Type)*)
QUE ((NON-LOCAL-TYPE . *TOPx))
SLADJ ((NON-LOCAL-TYPE . *TOPx))
SLASH ((NON-LOCAL-TYPE . *TOPx))
HOUR ((TIME-VALUE . *TOP%))
NON-LOC ((NON-LOCAL . NON-LOCAL-TYPE))
SUBJ-SC ((SUBJ-SUBCAT-TYPE . *TOPx))
LIST ((*DIFF-LIST* . *TOPx*))
SEM-MOOD ((QUESTION-SEMANTICS . SYMBOL))
SUBCAT ((SUBCAT-TYPE . *TOPx*))
FILLER-DTR ((FILLER-DTR-TYPE . MAX-SIGN-TYPE))

8(Carpenter 93, Chapter 6] calls such an appropriateness condition-unacceptable and stipulates that there exists exactly one most
general type which introduces a feature. 7DL is not so restrictive, but the warnings can be employed to write grammars that do not
mike use of such ‘unacceptable’ appropriateness conditions. Our treatment is comparable to polyfeatures in CUF [Dérre & Dorna
93].

38 5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

PFORM ((PFORM-TYPE . *TOPx*))
FEM ((GENDER-VAL . *TOPx*))
MAS ((GENDER-VAL . *TOPx))
RES ((DL-APPEND . *TOPx*))

ARG2 ((DL-APPEND . *TOPx))
ARG1 ((DL-APPEND . *TOPx%))

5.6 Deleting Types and Instance Definitions

e function delete-type [type [:domain domain]] .
deletes a type (avm or sort). It removes ¢ype from the avm/sort hashtable in domain domain and from
the type hierarchy. Example:
<MY-DOMAIN:INSTANCE> delete-type ’my-type.

e function delete-instance [instance [: domain domain] [: index number]] .
removes instance with index number (default: 0) from the instance hashtable in domain domain.
Example:
<MY-DOMAIN:INSTANCE> delete-instance ’'root-node :index 0.

e function delete-all-instances [domain] .
removes all instances from the instance hashtable in domain domain (default: current domain).
Example:
<MY-DOMAIN:INSTANCE> delete—all-instances.

5.7 Resetting Prototypes of Types and Instances

A global prototype is a (possibly partially) expanded feature structure of an avm type or of an instance. If
a type or an instance is not expanded at all, or if its definition is already fully expanded, then the global
prototype is the same as its local one (its definition or skeleton), i.e., they are identical.

e function reset-proto [type [:domain domain] [: index index]] .
resets the prototype of an avm type to its skeleton.

e function reset-all-protos [domain] .
resets all prototypes of all avm types in domain.

o function reset-instance [instance [: domain domain] [: index number] | .
resets the prototype of an instance to its skeleton.

e function reset-all-instances [domain].
resets the prototypes of all instances in domain.

5.8 Accessing Internal Information (Infons)

The following functions apply a functional argument function, a COMMON LISP function, e.g., a print
function, collector, etc., to the slots of the internal representation (infon structures) of avms, sorts, instances
and templates.

domain specifies the domain (default: current domain).

name must be the name of a sort, avi, template or instance.

table may be one of :avms (the default) :sorts, :templates, :instances.

accessor may be one of the following slot accessor functions: name (the default), surface, domain,
intermediate, comment, author, date, value-types, restriction-types, atomic~symbols, at-
tributes, expand-control, skeleton, prototype, creation-index, monotonic, overwrite-
values, overwrite-paths.

There is an additional accessor function parameters which can be applied only to template infons.

The additional accessors class-info and mixed? can only be applied to type infons.

5.9 Collecting and Printing Statistical Information 39

e function do-infon [:name name]| [:table table] [:accessor #’accessor]
(:function function] [: domain domain) .
applies a function to infon of name in table and domain. Example:

<MY-DOMAIN:TYPE> do~infon :name ’my-instance
:table :instances
:accessor #’author.

- function do-all-infons [:table table] [: accessor #’accessor] [: function function]
. [:domain domain] . :
applies a function to all infons in one table (sorts, avms, templates, instances) in one domain.
Example: ’
<MY-DOMAIN:TYPE> do-all-infons :table :avms :accessor #’surface.

e print-all-names [table [domain]| .
prints all names in one table in one domain, it is just a special case of do~all-infons. Example:
<MY-DOMAIN:TEMPLATE> print-all-names :templates.

5.9 Collecting and Printing Statistical Information

The TDL system can be compiled with or without the statistics module. If the system is compiled with
statistics, the following functions are defined:

o function print-all-statistics [:domain domain| [: stream stream] .
prints all statistical information that is available. If domain is not specified, this will be done for all
domains.

e function print-domain-statistics|:domain domain] [:stream stream] .
prints all statistical information that are domain specific. If domain is not specified, the current
domain is assumed.

e function print-expand-statistics[:domain domain] [: stream stream] .
prints expansion statistics. If domain is not specified, the current domain is assumed.

o function print-global-statistics[:stream stream| .
prints all statistical information that is domain independent.

o function print-simplify-statistics [:domain domain] [:stream stream] .
prints type simplification statistics. If domain is not specified, the current domain is assumed.

e function reset-all-statistics [:domain domain] .
resets all statistical information. If domain is not specified, this will be done for all domains.

e function reset-domain-statistics[:domain domain].
resets all statistical information that is domain specific. If domain is not specified, the current domain
is assumed.

o function reset-expand-statistics[:domain domain].
reset expansion statistics. If domain is not specified, the current domain is assumed.

¢ function reset-global-statistics.
resets all statistical information that is domain independent.

e function reset-simplify-statistics[:domain domain] .
resets type simplification statistics.

40 5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

e function count-nodes {type | instance | :all}

[:table {:avms | :instances}]

[:expand~p {t | nil}]

[:verbose {t |nil}]

[: domain domain)

[:index index]

[: stream stream]

[:filename {nil | filename}].
counts the number of nodes in an avm type or instance with the specified index (default is nil for
types and O for instances). Instead of a name, the :all keyword can be specified to count all nodes
in all instances or types with index. In this case, :verbose t will output the number of nodes for
each type or instance. Otherwise, only the total will be printed. :

The :filename or : stream argument can be used to redirect the output to a file or a stream (default:
standard output). :expand-p t will expand structures before counting if necessary (default is nil).
When called from LISP, the function returns 9 values (integers) in the order as below. Here is an
example output:

Total number of nodes in all instances:

of conj avm nodes: 13868
of atomic nodes: 5564
of sortal nodes: 3697
of attributes: 24717
of disj nodes: 644

of disj elements: 1606

of fail nodes: 0

of undef nodes: 0

of shared nodes: 2763

total # of nodes: 23773

If domain is not specified, the current domain is assumed.

5.10 Memoization

At definition time as well as at run time, type expressions are simplified (syntactically and semantically)
and stored in memoization hashtables. In each domain, there are four memo tables: for conjunctive and
disjunctive normal form and with and without exploiting information from the type hierarchy.

e function clear-simplify-memo-tables [:domain domain)] [:threshold integer] .
clears the simplification memo tables. If the : threshold number is specified, only entries that have
been used less than or equal to integer times will be removed from the memo tables. If integerisnil,
all entries will be removed (default). The :threshold keyword is only supplied with the statistics
module.

e function print-simplify-memo-tables [:domain domain] [:threshold integer] .
prints the contents of the simplification memo tables. If the :threshold number is specified, only
entries that have been used more than integer times will be printed. If integer is nil, all entries will
be printed (default). The : threshold keyword is only supplied with the statistics module.

e function save-simplify-memo-table [:domain domain] [:filename string]
[:threshold integer] .
saves type simplification memoization table to a file. The :threshold keyword is only supplied
with the statistics module. All entries occurring less than integer times will not be saved.

e function load-simplify-memo-table [:domain domain] [:filename string] .
loads type simplification memoization table from a file (written with tune-types or save-simplify-
memo~table). This may speed up subsequent unifications.

5.11 Tuning up Unification: Training Sessions 41

5.11 Tuning up Unification: Training Sessions

In this section, some tools will be described that may be used to speed up unification at run time. A training
session is necessary

1. to extract type definitions for GLB types if the result of the unification of their expanded definitions
is consistent, ’

2. to generate a table of sets of types that are inconsistent (or consistent) with other types (as a result of
their feature constraints).
Such ‘a training session consists of the following steps
1. load (and expand) a gramfnar
2. call Start-Collect—Unified—Typ-es.
3. do train parses
4, call tune-types.
To work with the tuned types later on, simply type
1. include "glb-types". ;;; load the additional GLB type definitions (optional)

2. load-simplify-memo-table :filename "cnf-memo-table".
before run-time. Of course, the user is responsible for updates of the files if the type hierarchy as changed.

e function start-collect-unified-types [:domain domain] .
This function enables a training session, resets some variables, and clears some tables.

o function load-simplify-memo-table [:domain domain] [:filename string] .
loads type simplification memoization table from a file (written with tune-types orsave-simplify-
memo-table).

e function print-unified-types [:filename string| [:domain domain] .
prints contents of the global hashtable :unified-types to screen (or to file if filename string is given).

e function tune-types [:domain domain]
[:threshold integer]
[:unify-input-file {nil | string}]
[:create-glbs {nil | t}]
[:hashtable hashtable]
[:assume-consistency {nil | t}]
[:memo-output-file string|
[:glb-output-file string] .
Main function. Either takes the current unify table (default) or loads one from file :unify-input-
file that has been written with print-unified-types.

Tune-Types creates a :memo-output-file (default name "cnf-memo-table")as well as a : glb-
output-file (default name "glb~types.tdl"). The first file can be loaded at run time with
load-simplify-memoc-table, the second one with include.

If :create-glbs nil is specified, no glb types will be introduced (default: t) and no glb output
file will be created.

:threshold integer specifies a threshold for the entries in the table of unified types to be considered.
Only entries that have occurred at least integer times will be considered (default: 0=all entries).

:assume-consistency t is a sensible default because it assumes that all type expressions that
occur as an argument of an entry in the unify table are consistent. Otherwise it would unify (expand)
all arguments.

:hashtableis one of : simplify-cnf-hierarchy (default), :simplify-cnf, :simplify-dnf-
hierarchy,or : simplify-dnf and specifies the corresponding type memoization hashtable.

42 5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

5.12 Defining Reader Macros
The alias facility allows extension of the TDL syntax by adding new macros that may abbreviate 7DC
syntax or integrate other modules like parsers or other user shells.

macro alias identifier {definition-string | nil} [help-string].

defines a user macro with name name (string or symbol) and definition definition-string. definition-string
must start with a COMMON LISP function or macro name (without surrounding parentheses), followed by
arbitrary arguments. _
Arguments specified with a 7DL reader macro call will be passed to the COMMON LISP function or macro
by simply appending them at the end of the definition-string. If definition-string is nil, then name will be
defined to call a function or macro with the same name. In this case, the corresponding symbol must be
exported from the TDL or COMMON-LISP package. -
help-string should contain a string with a brief description of the reader macro. It will be printed with the
help command (see below). Example: The message command described in the following paragraph is
defined as a reader macro as follows.

alias "MESSAGE" "FORMAT T" "print a message (Lisp’s FORMAT syntax)".

5.13 Printing Messages

During parsing the grammar files, the function
message string { Common Lisp Expression}*.

can be used to print messages. The args may be variable names or LISP function calls as in the COMMON
LISP FORMAT function. Example:

message '"Default author is “A" *DEFAULT-AUTHOR*.

5.14 Help

help [statement | :all].

help :all (default) prints a list of all statements (readermacros) that are defined. If a statement name is
specified, a brief description associated with the readermacro will be printed. Example:

<DISCO:TYPE> help begin.
Help for begin: begin a TDL definition block.

S.15 Wait

wait.

waits until the return key is pressed on COMMON LiSP’s *TERMINAL-IO0x* (useful for demos etc.).

516 Exit TDC
ldt.

quits the 7DL syntax reader and returns to COMMON LISP,

5.17 Getting Information about Defined Templates

function describe-template template-name.

prints a short information text about a template definition. Example:

5.18 Printing Feature Structures 43

<MY-DOMAIN:TEMPLATE> describe-template ’a-template.
The template A-TEMPLATE has the following definition:

a-template ($inherit = *TOP*, $attrib = PHON, $value) :=

$inherit & [$attrib #1 & $value,
COPY #1].

The template A-TEMPLATE has been defined on 03/15/1994 at 17:12:23.
The author is: tdl-info.
The following documentation is associated with A-TEMPLATE:

5.18 Printing Feature Structures

For debugging and documentation purposes, it is possible to print prototypes of the defined feature types
and instances. This can be done by using the following functions. For all kinds of representation (ASCII,
FEGRAMED or I&TEX), the print modes described in section 7 will be considered.

5.18.1 Printing to the Interactive Screen or to Streams (ASCII)

The following four functions call the print function PRINT-FS of the UDiNe system which is defined in
package UNIFY. It prints feature structures either to the standard output (default) or to streams, e.g., text
files. For internal details we refer to the /DiNe documentation. The output format of the TDL type entries
is described in this manual in section 7.

o function plp [type {print-option}*] .
plp prints the local prototype of the feature structure with name fype. If no type name is specified,
plp prints the prototype of the last type defined before evaluating plp. The local prototype (or
skeleton) contains only the local information given in the definition of fype. Example:
<MY-DOMAIN:TYPE> plp ’mas-sg-agr :init-pos 12 :hide-types T.
[GENDER : [FEM : -
MAS : +]
NUM : SGJ]

o function pgp [type {print-option}* | .
pgp prints the global prototype of the feature structure with name rype. If no type name is specified,
pgp prints the prototype of the last type defined before evaluating pgp. The global prototype contains
all information that has been inferred for type type by type expansion so far. Example:
<MY-DOMAIN:TYPE> pgp ’mas-sg-agr.
(:TYPE MAS-SG-AGR) [GENDER : GENDER-VAL [FEM : -
MAS : +]
CASE : 0
NUM : SGJ

function pli [instance {print-option}*] .

pli prints the local prototype of the instance with name instance. If no instance name is specified,
pli prints the prototype of the last instance defined before evaluating pli. The local prototype (or
skeleton) contains only the local information given in the definition of instance.

function pgi [instance {print-option}*] .

pgi prints the global prototype of the instance with name instance. If no instance name is specified,
pgi prints the prototype of the last instance defined before evaluating pgi. The global prototype
contains all information that has been inferred for instance by expansion so far.

print-options are the following optional keywords:

o :remove-tops flag default value: nil
possible values: {t|nil}
Ifflag is t, attributes with empty values (i.e., values that unify with everything, i.e., the top type of the

44 5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

hierarchy [1) will not be printed. If flag is nil, all attributes (except those in label-hide-1list)
will be printed.

e :label-hide-list ({identifier}*) default value: ()
possible values: a list of symbols (attribute names)
Attributes in the list and their values will not be printed.

e :label-sort-list ({identifier}*) default value: the value of *LABEL-SORT-LIST*
possible values: a list of symbols (attribute names)
the list defines an order for attributes to be printed. Attributes of the feature structure w111 be printed
first-to-last according to their left-to-right position in the list. All remaining attributes which are not
member of the list will be printed at the end.

e :streamstream default value: t
possible values: {t | nil | a COMMON LISP stream}
If stream is t, the feature structure will be printed to standard output or to the interactive screen. If
stream is nil, the feature structure will be printed to a string. In all other cases the feature structure
will be printed to the LISP stream stream.

e :init-pos number default value: 0
possible values: a positive integer number
number defines the left margin offset (space characters) for the feature structure to be printed.

e :read-in-mode flag default value: nil
possible values: {t|nil}
If t, the feature structure is printed in a way such that the output could be used by UDiNe’s input
function build-fs. Otherwise a pretty print is done. To be read in, feature structures have to be
printed with print mode : read-in (see section 7). Otherwise, type information may be incomplete.

5.18.2 FEGRAMED

FEGRAMED is a feature structure editor [Kiefer & Fettig 94]. It can be started from 7DC through the function
fegramed.

Feature structures from 7DL can be passed to FEGRAMED using the following commands.

o function f1p [type {fegramed-option}*] .
f1p starts FEGRAMED with the local prototype of the feature structure with name type. If no type
name is specified, £1p takes the prototype of the last type defined before evaluating f1p. The
local prototype (or skeleton) contains only the local information given in the definition of type type.
Example:
<MY-DOMAIN:TYPE> flp ’mytype.

e function fgp [type {fegramed-option}*] .
fgp starts FEGRAMED with the global prototype of the feature structure with name type. If no type
name is specified, £gp takes the prototype of the last type defined before evaluating £gp. The global
prototype contains all information that has been inferred for type type by type expansion so far.
Example:
<MY-DOMAIN:TYPE> fgp ’'mas-sg-agr :wait t :hide-types t.

o function £1i [instance {fegramed-option}*] .
f1i starts FEGRAMED with the local prototype of instance instance. If no instance name is specified,
£1i takes the prototype of the last instance defined before evaluating £1i. The local prototype (or
skeleton) contains only the local information given in the definition of instance. Example:
<MY-DOMAIN:INSTANCE> f1i ’agr-en-type.

5.18 Printing Feature Structures

o function £gi [instance {fegramed-option}*] .
fg1i starts FEGRAMED with the global prototype of instance instance. If no instance name is specified,
fgi takes the prototype of the last instance defined before evaluating fgi. The global prototype
contains all information that has been inferred for instance instance by expansion so far.

45

(] Mmome/cl-home/schacferAmpiverh -agr-type-gp.fed EEEINEINIENIENEINIRENIINSEEINEEES £

Structures Edit Find

Options

(¢} by DFKI

" VERB—AGR-TYPE
SYN:[SYNTAX-TYPE
LOCAL [LOCAL-TYPE

MA):

MIN: *TaP~
MOD: *ToP~
SUBJ: [DP-NOM-TYPE

HEAD: [VHEAD-TYPE

VCAT-TYPE W
FIN-MAJOR-VAL
FIN: [FIN-VAL

AGR:[[VAGR-VAL
NUM; D"TOP"
PERS: B"'TOP"

MOOD: *TaP*
TENSE:*TOP~
INF: *NIL
Ni—
Vi+

SYN:[[SYNTAX-TYPE
LOCAL [NON—~LPE-T YPE

Ni+
| vi-

LPE: —
SUBCAT: *NULL™
SUBJ-SC: *NIL

L
L i Lsuscn: “ToP~

L L

| Y=SUBCAT: *NiL

MOD: *ToP*
|_sus):*ToP~

HEAD![DNEAD-TYPE

INFL: [T S-GRADE
[!NFL—IML:I

AGR: ["NOM

CASE![NOM-VAL
GOoV: -
OBL: -

GENDER: ror~

NUM: D"TOP"

GRADE: ST
LPERS'.B"'TOI"""

MA):[NCa T—TYPE]

MIN: [FeomPL-T YPE
FCOMPL: +

fd

fegramed-options are the following optional keywords:

Figure 3: A feature structure type in FEGRAMED

o :filename filename
default value: "type-gpi.fed", "type-1p.fed", "instance-1ii.fed", or “instance-gii.fed"
possible values: a string or a LISP path name
Unless filename is specified, a filename will be ‘computed’ from the type or instance name and the
index 7 of the instance or the global prototype. The file will be created by the TDC-FEGRAMED -

interface in order to communicate the feature structure information.

46 5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

e :wait flag default value: nil
possible values: {t|nil}
If flag is t, FEGRAMED will wait until the user chooses the return options. If flag is nil, FEGRAMED
will not wait.

o :file-onlyflag default value: nil
possible values: {t|nil}

If flag is t, the FEGRAMED interface function will only generate an output file, but not execute the
FEGRAMED program on it. If flag is nil, the file will be generated and FEGRAMED will be called.

Further details are described in [Kiefer & Fettig 94]. An example screen dump of a feature structure in
FEGRAMED is shown in Figure 3.

5.18.3 TDL2BTEX

TDL2IATEX is a tool which generates IATEX compatible high-quality output of 7DL feature structure types
[Lamport 86; Goossens et al. 94].

TDC Interface Functions to 7DL2IATEX

e function 11p [type {latex-option}*].
11p starts TDL2IATEX with the local prototype (skeleton) of the feature structure with name rype.
If no type name is specified, 11p takes the prototype of the last type used before evaluating 11p.
The local prototype (LP) contains only the local information given in the definition of type rype.
Example:

<MY-DOMAIN:TYPE> 1lp ’agr-en-type :fontsize "small"
:doc-header "\\documentstyle[a4,times]}{article}".

o function 1gp [type {latex-option}*].
1gp starts TDL2IATEX with the global prototype of the feature structure with name type. If no type
name is specified, 1gp takes the prototype of the last type used before evaluating 1gp. The global
prototype (GP) contains all information that has been inferred for type type by type expansion so far.
Example:

<MY-DOMAIN:TYPE> 1lgp ’agr-en-type :mathmode "equation".

o function 11i [instance {latex-option}*].
function 1gi [instance {latex-option}*].
11i and 1gi start TDL2IATEX with the feature structure of instance instance. The local instances
(LY) contain only the local information given in the definition of instance (skeleton). The global
instances (GI) contain all information that has been inferred for instance instance by expansion so
far. Example:

<MY-DOMAIN:INSTANCE> 11i ’head-initial-rule :index O.
<MY-DOMAIN:INSTANCE> 1lgi ’head-initial-rule :index O.

The optional keywords latex-options are described in section 5.18.3.

There is also a function 1atex-fs which operates on feature structures analogously to U/DiNe’s print~£s.
It roughly takes the same arguments as 1gp etc.

An example of a complex feature structure generated by TDL2IATEX is shown in figure 4.

<MY-DOMAIN:TYPE> 1gp ’count-noun-sem-type :label-sort-list ’(first rest)
:align-attributes-p nil
:coreftable *((1 . "Sem")).

5.18 Printing Feature Structures 47

Optional Keyword Arguments

latex-options are the following optional keywords:

e :filename filename
default value: "type-gpi", "type-1p", "instance-gii", or "instance-1iz"
possible values: string
Unless filename is specified, a filename will be ‘computed’ from the type or instance name and the
index ¢ of the instance or global prototype. The filename will be used to generate the I&IEX output
file.

e :filepath pathname default value: value of variable * FILEPATHx*
possible values: a string or a COMMON LISP path name
pathname sets the directory in which the IATEX output file will be created and the shell command
command will be executed. The default for pathname is the tmp directory in the user’s home directory.

e :hide-types flag default value: value of variable *HIDE-TYPES* = nil
possible values: {t|nil}
If flag is nil, types will be printed at the top of feature structures (the top type will not be printed).
If flag is t, types will not be printed. The print mode options are described in section 7.

e :remove-tops flag default value: value of *REMOVE-TOPS* =nil
possible values: {t|nil}
If flag is t, attributes with empty values (i.e., values that unify with any value) will not be printed. If
flag is nil, all attributes (except those in 1abel-hide-1list) will be printed.

e :label-hide-list ({identifier}*) default value: value of *LABEL-HIDE-LIST* = ()
possible values: alist of symbols (attribute names)
Attributes in the list will not be printed.

o :label-sort-list ({identifier}*) default value: value of variable *LABEL-SORT-LIST* = ()
possible values: alist of symbols (attribute names)
The list defines an order for attributes to be printed. Attributes of the feature structure will be printed
first-to-last according to their left-to-right position in the list. All remaining attributes which are not
member of the list will be printed at the end.

e :shell-command command default value: value of *SHELL-COMMAND* = "td1l2latex"
possible values: {nil|string}
If command it nil, only the I&TEX file will be created and TDC2IATEX will return. If command is
a string, TDL2IATEX will start a shell process and execute command with parameter filename. An
example for command is the following shell script with name td12ps which starts I&TX with the
output file of TDL2IATEX and generates a PostScript™ file using [Rokicki 93]’s DVIPS.

#!/bin/sh

#tdl2ps generates PostScript file
latex $1

dvips $1 -o $1.ps

The following script td12epsf generates an encapsulated PostScript™ file (EPSF). When generated
with a PostScript™ font (such as option times in the document header), the EPSF file can be
used to scale a feature structure in order to fit into an arbitrary box (e.g., in TgX documents using
\epsfbox, see [Rokicki 93]). To achieve this, the output file of TDL2IATEX must consist of
exactly one page. Large feature structure may lead to 2 or 3 pages of output. In this case, add
\textheight80cm\textwidth4Ocmor so to the file header generated by TDL2IATEX. Then IATEX
should generate one-page output that can be scaled arbitrarily. If TEX stack size is too small to process
large feature structures, recompilation of TgX with increased stack size will help.

48

5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

#!/bin/sh

#tdl2epsf generates encapsulated PostScript file (EPSF)
latex $1

dvips $1 -E -o $1.epsf

td12x, generates a dvi file and runs xdvi on it.

#!/bin/sh
#td12x generates a dvi file and starts xdvi
latex $1
xdvi $1
:wait flag default value: value of variable *WAIT* =nil

possible values: {t|nil} -
If flag is nil and command is not nil, the shell command command will be started as a background
process. Otherwise, TDL2IATEX will wait for command to be terminated.

:latex-header-pflag default value: value of *xLATEX-HEADER-P* =t
possible values: {t|nil}

If flag is t, a complete I&TEX file with \documentstyle, etc. will be generated. If flag is
nil, only the IAIEX code of the feature structure enclosed in \begin{featurestruct} and
\end{featurestruct} will be written to the output file. This is useful for inserting IAIEX feature
structures into IATgX documents for papers, books, etc.

:align-attributes-p flag default value: value of *ALIGN-ATTRIBUTES-P* =nil
possible values: {t|nil}

If flag is t, attribute names and values will be aligned. If flag is nil, no alignment will take place.

:fontsize size default value: value of * FONTSIZE* = "normalsize"
possible values: a string

This parameter sets the size of the I&TgX feature structures. It must be a string consisting of a valid
IATEX font size name, e.g., "tiny", "scriptsize", "footnotesize", "small", "normalsize",
"large", "Large", "LARGE", "huge" or "Huge".

:corefsize size default value: value of variable *COREFSIZE* = nil
possible values: {nil|string}

This parameter sets the font size for coreference symbols. If size is nil, the size for the coreference
symbol font will be computed from the value of the : fontsize keyword. A font one magnification
step smaller than given in : fontsize will be taken. If size is a string, it must contain a valid I&TgX
font size as in : fontsize.

:coreffont string default value: value of variable *COREFFONT* = "rm"
This parameter sets the I&IEX font name for printing coreference symbols. string must contain a
valid I&TEX or user defined font name, e.g., tt, bf, it, etc.

:coreftable a-list default value: value of variable *COREFTABLE* = ()
This parameter defines a translation table for coreferences and corresponding full names (strings or
numbers),e.g., ((1 . "subcat") (2 . "phon") (3 . 1) (4 . 2)). Allcoreference numbers
at the left side of each element in a-list will be replaced by the right side. All other coreferences will
be left unchanged.

rarraystretchnumber ~ default value: value of variable *ARRAYSTRETCH* = 1.1
This parameter sets the vertical distance between attribute names or disjunction alternatives. number
is a factor which will be multiplied with the standard character height.

:arraycolsep string default value: value of xARRAYCOLSEP* = "0.3ex"
This parameter sets the left and right space between braces or brackets and attribute names or values,
string must contain a I&IX length expression.

5.18 Printing Feature Structures 49

o :doc-header string default value: value of *xDOC-HEADERx
This parameter sets the IXTEX \documentstyle or \documentclass header if :1atex-header-p
is t. Default value is "\\documentstyle{articlel}". It could be replaced by a document style
with additional options such as "a4", "times", etc., or, for new I&TzX [Goossens et al. 94], by
"\\documentclass{article}

\\usepackage{times}"

e :mathmode string default value: value of *MATHMODE* = "displaymath"
This parameter sets the I&TX display mode for feature structures. It must be a string consisting of
the name of a I&TgX or user defined math mode environment name, e.g., "math", "displaymath"
or "equation". ' ’

e :typestyle style ’ default value: value of variable *TYPESTYLE* = :infix
possible values: { :infix | :prefix }
If style has value :infix, complex type entries will be printed in infix notation (e.g., a A b A ¢).
If style has value :prefix, complex type entries will be printed in prefix (LISP like) notation (e.g.,
(:AND a b ©)).

e :print-title-pflag default value: value of variable *PRINT-TITLE-P* = nil
possible values: {t|nil}
If flag is t, a title with fype or instance will be printed at the bottom of the feature structure. If flag
isnil, no title will be printed.

e :domain domain default value: value of variable *xDOMAIN*
possible values: name of a valid domain, only in 7DC.

e :poster flag default value: value of variable ¥POSTER* = nil
If t, [van Zandt 93]’s poster macros are used to print large feature structures on as many sheets as are
needed. This variable only inserts \input poster and \begin{Poster} ...\end{Poster} and
forces "math" math mode.

e :pprint-lists flag default value: value of variable ¥PPRINT-LISTS* =t
possible values: {t|nil}

If flag is t, lists will we printed using the () notation. If nil, the internal FIRST /REST encoding will
be used.

o :titleitle default value: ""
possible values: { nil | string }
prints a title at the bottom of a feature-structure.

e :index number default value: 0
This keyword is valid only for 7DL statements 11p and 1gp. Its purpose is to select the index of a
TDCL instance.

Example: Modifying the Output Style
The following settings can be used for an output style as it is used in [Carpenter 93].

<MY-DOMAIN:TYPE> set-switch *ATOM-COMMAND* "\\newcommand{\\atom}[1]
{\\mbox{[{\\bf #1}]1}}".
<MY-DOMAIN:TYPE> set-switch *ATTRIB-COMMAND* "\\newcommand{\\attrib}[1]
{\\mbox{\\sc\\lowercase{#1}:\\ }}".

<MY-DOMAIN:TYPE> set-switch *TYPE-COMMAND* "\\newcommand{\\typel}[1]

{\\mbox{\\bf #1\\/}}".

Example: Printing Huge Structures

A simple way to get huge feature structures on one page is to use a small font and to hide unimportant
attributes e.g.

50 5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

_count-noun-sem-type 1
[semantics-type T
[subwff-inst-share-var |
VAR: [3][term-type]
[conj-wif-type]
atomic-wff-type
INST: [3]
CONTENT: COND: SUB-WFFS: < TEPE: faw] y (]
SEM: PRED: []
TYPE: [ew] -
| CONN: [semantics-and] i
| TYPE: [rp] -]
diff-list
QUANT: | LIST: ([].12]])
I LAST: i
—syntax-type 1
[local-type 1
SUBCAT:]
PHRASAL: []
TOPIC: []
LPE: []
Mhead-val i
SYN: | LOCAL: MIN: []
' cat-type
MORPH: []
HEAD:
SUBJ: | SYN: []
PRAG: []
SEM:
i [MAJ: [] i
i | NON-LOC: [] |]

Figure 4: A feature structure generated by TDL2IATEX

lgp ’ethn :fontsize "footnotesize" :remove-tops t :label-hide-list ’(SYN).
Example: Printing Structures Hugely
For slides, posters, etc. one may choose big fonts:

set-switch *doc-header* "\\documentstyle[ad4wide,times]{article}
\\textwidth30cm\\textheigth60cm" .
lgp ’speaker-sem :fontsize "LARGE".

Global Variables for TDL2IATX

Most of the following global variables serve as default for the keywords in the TDL2IATEX print functions.
Others are definitions for IATEX macros for printing attribute names, types, etc. They may be changed for
user purposes. -

o Global variable *FILEPATH* default value: ~/tmp/
possible values: a pathname or pathname string
specifies the path where . tex, .dvi and other files go.

5.18 Printing Feature Structures 51

¢ Global variable *SHELL-COMMAND* default value: "tdl2latex"
possible values: nil or a string containing a shell command name
specifies a shell command to run on output file, e.g., ‘latex’. If nil, no shell process will be started.

e Global variable *xLATEX-HEADER-Px* default value: t
possible values: t or nil
ifnil, no IATEX header (documentstyle.. ., etc.) will be written to output file.

e Global variable *POSTER* default value: nil
possible values: t ornil '
If t, [van Zandt 931’s poster macros are used to print feature structures on as many sheets as are
needed. This variable only inserts \ input poster and \begin{Poster}...\end{Poster} and
forces "math" math mode. =

e Global variable *xPPRINT-LISTS* - default value: t
possible values: t ornil
If t, lists will we printed using the () notation. If nil, the internal FIRST: /REST: encoding will be
used.

¢ Global variable *PRINT-TITLE-P* default value: nil
possible values: t ornil
if nil, no title (default: type or instance) will be printed.

e Global variable *ALIGN-ATTRIBUTES-P* default value: nil
possible values: t ornil
if nil, attributes and values will not be aligned.

e Global variable *FONTSIZEx* default value: "normalsize"
possible values: font size string
IATEX size for feature structures, i.e., one of tiny, scriptsize, footnotesize, normalsize,
large, Large, LARGE, huge, Huge.

o Global variable *COREFSIZEx default value: nil
possible values: nil or a string
ifnil, the size for the coreference symbol font will be computed from *FONTSIZE* or the : fontsize
keyword. Ifitis a string, it must be a valid LaTeX fontsize, e.g., tiny, scriptsize, footnotesize,
normalsize,large, Large, LARGE, huge, Huge.

¢ Global variable *COREFFONT* default value: "rm"
possible values: string
ISTEX font name for printing coreferences.

¢ Global variable *COREFTABLE* default value: ()
possible values: assoc list
Translation table for coreference numbers and corresponding full names (strings/numbers), e.g.
((1 . "subcat") (2 . "phon") (3 . 1) (4 . 2)).

e Global variable xDOC-HEADER* default value: "
documentstylearticle”
possible values: string
IATX document style header.

e Global variable *MATHMODE* default value: “displaymath"
possible values: string
IATEX math mode for feature structures, one of math, displaymath, equation.

e Global variable *TYPESTYLE* ’ : default value: :infix
possible values: :infixor :prefix
style for complex types, infix or Lisp-like prefix.

52

5 USEFUL FUNCTIONS, SWITCHES, AND VARIABLES

Global variable *REMOVE-TOPS* default value: nil
possible values: t ornil

If t, attributes with empty values and top type will be removed. If nil, top type attributes will not
be removed.

Global variable *TITLE* default value: nil
possible values: nil or string
If string: title of feature structure. If nil, no title will be printed.

Global variable *WAIT* default value: nil
possible values: t ornil
If t, TDL2IATEX will wait for shell-command to be terminated, if nil, TDC2IATEX will not wait.

Global variable *LABEL-HIDE-LIST* default value: ()
possible values: list of symbols
List of attribute symbols to be hidden.

Global variable *HIDE-TYPES* default value: nil
possible values: t ornil
If nil, types will be printed, if t, types will be hidden.

Global variable *ARRAYCOLSEP* default value: "0 .3ex"
possible values: string
Distance (a IATX length value) between braces resp. brackets and attribute names and their values.

Global variable * ARRAYSTRETCH* default value: 1.1
possible values: number
factor for distance between attributes in conjunctions or values in disjunctions.

Global variable * ATOM-COMMAND *

default value: "\\newcommand{\\atom} [1]{\\mbox{\\tt #1}}"
possible values: string

IATEX command for printing atoms.

Global variable * ATTRIB-COMMAND

default value: "\\newcommand{\\attrib} [1]1{\\mbox{\\tt #1\\ }}"
possible values: string
IATgX command for printing attribute names.

Global variable *TYPE~COMMAND

default value: "\\newcommand{\\type} [11{\\mbox{\\it #1\\/}}"
possible values: string

IATEX command for printing types.

Global variable *COREF-COMMANDx*

default value: "\\newcommand{\\coref}[11{{\\setlength{\\fboxsep}{0.1ex}/
\\fbox{\\corefsize\\coreffont #1}}}"

possible values: string

IATEX command for printing coreferences.

Global variable *EMPTYNODE-COMMAND*

default value: "\\newcommand{\\emptynode} [0] {\\mbox{$[\\,]1$}}"
possible values: string

IATeX command for printing an empty feature structure [],

Global variable *TITLE-COMMANDx*
default value:

"\\newcommand{\\featuretitle} [1] {\\centerline{\\it #1\\/}\\smallskip}"

5.18 Printing Feature Structures

possible values: string
IATX command for printing title.

e Global variable *LATEX-SIZE-TRANSLATIONx*

default value:
> (("tiny" . 0.5) ("scriptsize"
("footnotesize" . 0.8) ("small"
("normalsize" . 1.0) ("large"
("Large" . 1.44) ("LARGE"
("huge" . 2.074) ("Huge"

An assoc list for magnification factors fontsize — magstep.

53

. 0.7)

. 0.9)

. 1.2)

. 1.728)
. 2.488))

54 6 TDC GRAPHER

6 TDL Grapher

It is possible to display the 7DC type hierarchy using the 7DL grapher. The 7DL grapher has been
implemented first in CLIM 1.2 and is now ported to CLIM 2.0 [McKay et al. 92].

Start: either type (lLoad-system "“tdl-grapher") instead of (load-system "tdl") at the beginning
or with the function

grapher.

from the TDL reader. _
An example screen dump of a TDL grapher session is shown in Figure 5. The grapher layout consists

of three screen areas: the menu bar with the buttons described below, the grapher display, and a output
window with command history.

[8] Grapher Application
[Domain| [Choose| [Exit|[Fegramed|[Latex| [Expand| [Inspect Type|[Top Node|[Backup|[Reset|[Print Graph]

[Recompute] [options] [Info| [other Links| IToggle Rutoredraw][External|[Encoding|

TERNARY-RULE E

BINARRY-RULE

RULE UNARY-RULE

LIST *CONS*

TOP

AVM DL-APPEND

SORT *DIFF-LIST*
UNDEF

BUILT~-IN STRING

ATOM SYMBOL

BIGNUM
INTEGER <
FIXNOM

Figure 5: TDC grapher

Buttons:

e Domain: Select a domain out of a list of domain names.

e Choose: Choose a new node (type) out of a list of alphabetically sorted types. This is the same
a clicking the second mouse button at a highlighted type in the graph display. The chosen node is
called ‘current node’ in the following lines.

e Exit: Exit the Grapher process.
e Fegramed: Call FEGRAMED with the global prototype of the current node.

e Latex: Call TDC2IATXwith the global prototype of the current node.

55

Expand: Call expand-type on the global prototype of the current node.
Inspect Type: Call the Inspector with the type info structure of the current node.

Top Node: Redraw the graph with the current node as the new top node. This is the same as pressing
the Shift key and clicking the second mouse button.

Backup: Redraw the graph with one of the super types of the current node as the new top node.
Reset: Redraw the graph with the top node of the type hierarchy as the new top node.
Print Graph: Print the graph to a PostScript™ file td1-graph.ps.

Recompute: Recompute and redraw the graph, e.g. after definition of new types. This can also be
done while processing a grammar file by simply inserting the recompute. statement into the file.

Options: Menu for setting the output style, e.g., horizontal and vertical space between nodes,
maximal depth, etc.

Info: Print information about the current node.
Other Links: Toggle between showing/hiding dependency arcs in the type hierarchy.

Toggle Autoredraw: Toggle the autoredraw mode. If this mode is on, the graph will be redrawn
automatically when a type is (re)defined. If autoredraw mode is off (which is the default), the user
must press the recompute bottom for an update of the graph. This button toggles the value of the
global variable *UPDATE-GRAPHER-OUTPUT-Px* (see documentation on page 30).

External: Print information about lubs and glbs of the current node.
Encoding: Print information about the encoding of the current node.

Tdl: Set useful 7DL switches.

56 7 PRINT/READ SYNTAX FOR TDL TYPE ENTRIES

7 Print/Read Syntax for 7DL Type Entries

The output style of the print functions for 7DL’s typed feature structures as described in section 5.18 can
be controlled in a way such that different flags are printed, feature are hidden, or types are omitted.

In this section, we describe the syntax of type entries (mainly for the ascii printing) and how the output
behavior can be changed.

7.1 Print Modes

The type entry printer/reader is'conﬁgurable and supports diffefent modes (‘print modes’) for dumping/trans-
forming typed feature structures to files or other modules of a NL system.

The easiest way to change the print mode is to use the following functions/macros.

e Macro with-print-mode mode lisp-body .
Temporarily sets print mode to mode and executes lisp-body.

e Function save-print-mode.
Saves print mode to stack *PRINT~VAR-STACKx*,

o Function restore-print-mode.
Restores print mode from stack *PRINT-VAR~STACK*.

¢ Function set-print-mode [mode] .
Sets print mode mode. Default for mode is :default.

The default global print mode is :default, it may be changed by the user for debugging purposes etc.
Possible modes are :debug, :default, :exhaustive, : fs-nll, thide-all, :hide-types, :read-in,
:tdl2asl, :x2morf.

Additional user modes can be defined by extending the global variable *PRINT-PROFILE-LISTx*.
Examples:

Save-Print-Mode.
Set-Print-Mode :debug.
<debugging>
Restore-Print-Mode.

;3 saves print mode
;3 changes print mode

;3 restores print mode

With-Print-Mode :X2MORF ...(print-fs-calls)...
;; can be used in the X2MORF grammar dumping function

With-Print-Mode :FS-NLL ... (print-fs-calls)...
;33 for FS-to-NLL translations.

The print mode functions/macro change the following four global variables:

e *PRINT-SLOT-LIST*
e *PRINT-CATEGORY-LISTx* -
e *PRINT-SORTS-AS-ATOMS*, t in the table below (column 4) B

o *PRINT-ONLY-NON-DEFAULTS*, in the table below (column 5)

7.2 Global Variables 57

print mode | *PRINT-SLOT-LISTx* *PRINT-CATEGORY-LIST* | *
:debug (:sort-p :expanded :delta) (:avms :sorts :atoms) nil | t
:default (:expanded) (:avms :sorts :atoms) t t
:exhaustive | (:sort-p :delta :restriction :expanded) ((:avms :sorts :atoms) nil | nil
:td12asl 0O (:avms :sorts :atoms) nil |t
:fs-nll 0 (:avms :sorts :atoms) St t
-hide-all 0O 0 nil |t
-hide-types | () (:atoms) nil | t
:read-in (:sort-p :delta :restriction :expanded) | (:avms :sorts :atoms) nil | t
:x2morf (:expanded :sort-p) (:sorts :atoms) nil |t
7.2 - Global Variables

The following global variables are defined in package TDL:

PRINT-SLOT-LIST default value: (:sort-p :expanded)
possible values: list of : complete, :delta, :expanded, :restriction, :sort-p

used in: ascii printing, 7DL2IATEX, FEGRAMED

type slots to be printed. The :type slot is always printed.

PRINT-CATEGORY-LIST default-value: (:atoms :avms :soxrts)
possible values: list of : atoms, :avms, :sorts

used in: ascii printing, FEGRAMED

List of tdl type categories to be printed.

*PRINT-ONLY-NON-DEFAULTS * default value: t
possible values: t, nil

used in: ascii printing, TDL2IATEX, FEGRAMED

If nil, all slots in *PRINT-SLOT-LIST* are printed. If not nil, only slots with non-default values
that are member of *PRINT-SLOT-LIST* are printed. The default values are:

:complete t, :delta nil, :expanded t, :restriction *TOPx%, :sort-p nil

If xPRINT-ONLY-NON-DEFAULTS* is t and these 4 slots have default value and :type value is the
top type of the current domain, then no type entry is printed at all. In all other cases, the value of the
:type slot will be printed anyway.

HIDE-TYPES default value: nil
possible values: t, nil

used in: ascii printing, TDL2IATEX, FEGRAMED

If not nil, only true UDWNe atoms (like *fail* and *undef*) will be printed. 7DL atoms, sorts
and types will not be printed.

PRINT-SORTS-AS-ATOMS default value: nil
possible values: t, nil

used in: ascii printing, TDL2IATEX, FEGRAMED

If not nil, sort symbols will be printed the same way atoms are printed. If nil, sort symbols will be
printed like type symbols (:type sort). Conjunctions or Disjunctions of Sorts are always printed
with (:type (:and/:or ...)).

PRINT-SLOT-LENGTH default value: 16
possible values: nil or a number

used in: ascii printing only

If a slot is longer than 16 characters, a newline character will be printed (nil = no limit).

PRINT-NEWLINEx default value: nil
possible values: t, nil -

~used in: ascii printing only

Prints a newline after each type entry (except before empty label lists).

58 7 PRINT/READ SYNTAX FOR TDL TYPE ENTRIES

7.3 BNF

The BNF for typed feature structures (input and output for ascii) is:

node — atom |
(type-info] [{(identifier node) }*1 |
[type-info] { node {"node}* } |

type-info — (:type type-expr
[:complete {t |nil}]
[:delta {nil | ({type-expr}*)}]
[:expanded {t | nil}]
[:restriction type-expr] =
[:sort-p {t |nil}])
type-expr — identifier |
(:and {type-expr}t) |
Gior {type-expr}t) |
(:not type-expr) |
(:atomatom)
atom — identifier | integer | string

59

8 Emacs 7DL Mode

TDL mode for Emacs supports comfortable editing facilities for 7DL grammar files. It indicates matching
parentheses (() [1{}<>, as in Emacs LISP or TgX mode), performs indentation of label lists, and, important
for grammar development and debugging, establishes a connection to the 7DL system and COMMON LISP.
Currently, the TDL mode is implemented for ALLEGRO COMMON LISP.

8.1 Installation

The following instailation steps let Emacs know about 7DL mode.
1. copy the file tdl-mode .‘el from the 7DL system distribution into your Emacs load path.
2. if it doesn’t already exist, create a directory for auto-include ﬁlt;s, e.g. ”/.autoinclude

3. copy the file header. tdl from the 7DL system distribution into this directory. You can modify this
file, but the first line should be ; ;; -*- Mode: TDL —-%~-,

4. add the following lines to your Emacs init file (*/ . emacs by default)

(load "tdl-mode" nil t)

(push ’("\\.td1$" . tdl-mode) auto-mode-alist)

(load "autoinclude" nil t)

(push ’ ("\\.tdl$" . "header.tdl") auto-include-alist)
(setq auto-include-directory "~/.autoinclude")

After this, the header file will be included when a new file with extension .td1l is created in Emacs and
TDL mode will be switched on when a file’s first line is ; ; ; -*- Mode: TDL =-%-,

8.2 Key Bindings
The following key bindings are defined for the 7DL mode:

o key TAB is bound to function tdl1-indent-command
indents one line

o key ESC C-\ is bound to function tdl-indent-region
indents a whole marked region, e.g. one or more type definitions at once, or the whole buffer

e key ESC C-x is bound to function eval-tdl-expression
evaluates the whole definition where the cursor is in (up to a terminating dot at the end of a line)

e key C-c C-s is bound to function eval-current-tdl-expression
is currently the same as ESC C-x

e key C-c C-r is bound to function eval-tdl-region
evaluates the whole marked region, e.g. one or more type definitions at once, or the whole buffer

o keyC-c r is bound to function eval-tdl-region-and-go
evaluates the marked region and switches to the inferior COMMON LiSP buffer

e key C-c C-b is bound to function eval-tdl-file
performs a 7DL include of the whole file associated with the current buffer

e key C-c C-e is bound to function goto-end-of-tdl-expression
moves the cursor to the end of a TDL definition or statement

e key C-c C-a is bound to function goto-begin-of-tdl-expression
“moves the cursor to the beginning of 7DL definition or statement

TDL mode can also be switched on ‘by hand’ with M-x tdl-mode.

60 9 TOP LEVEL ABBREVIATIONS (ALLEGRO COMMON LISP ONLY)

9 Top Level Abbreviations (ALLEGRO COMMON LISP Only)

In the ALLEGRO COMMON LISP [Fra 92] version of TDL, some often used commands are also available as
top level abbreviations. The top level command :alias prints a list of available abbreviations:

Alias D