Deutsches
"- , Forschungszentrum DOC ume nt
: fiir Kiinstliche D-94-11

Intelligenz GmbH

Working Notes of the KI'94 Workshop:

KRDB'94
Reasoning about Structured Objects:
Knowledge Representation Meets Databases

Saarbriicken, September 20-22, 1994

F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)

Deutsches Forschungszentrum fir Kunstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-67608 Kaiserslautern, FRG D-66123 Saarbriicken, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
far
Kuanstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fir Kinstliche
intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

Uuuooo

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Dr. Dr. D. Rutand
Director

Working Notes of the KI'94 Workshop: KRDB'94 - Reasoning
about Structured Objects: Knowledge Representation Meets Databases

F. Baader, M. Buchheit, M. A, Jeusfeld, W. Nutt (Eds.)

DFKI-D-94-11

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-9201).

© Deutsches Forschungszentrum fiir Kiinstliche Intelligenz 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by permission of
Deutsches Forschungszentrum fir Kinstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright

notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fir Kiinstliche Intelligenz.

ISSN 0946-0098

Working Notes of the KI’94 Workshop:

KRDB-94
Reasoning about Structured Objects:
Knowledge Representation Meets Databases

Saarbrucken, Germany, September 20-22, 1994

Organized by

Franz Baader
Lehr- und Forschungsgebiet Theoretische Informatik
RWTH Aachen
Aachen, Germany
baader@informatik.rwth-aachen.de

Martin Buchheit
German Research Center for Artificial Intelligence

Saarbriicken, Germany
buchheit@dfki.uni-sb.de

Manfred A. Jeusfeld
Lehrstuhl Informatik V (Informationssysteme)
RWTH Aachen
Aachen, Germany
jeusfeld@informatik.rwth-aachen.de

Werner Nutt
German Research Center for Artificial Intelligence

Saarbriicken, Germany
nutt@dfki.uni-sb.de

This collection of papers forms the permanent record
of the KRDB’94 Workshop “Reasoning about Struc-
tured Objects: Knowledge Representation Meets
Databases”, that is held at the University of
Saarbriicken, Germany on September 20-22, 1994,
as part of the 18th German Annual Conference on
Artificial Intelligence. The workshop is set up to
be as informal as possible, so this collection cannot
hope to capture the discussions associated with the
workshop. However, we hope that it will serve to
remind participants of their discussion at the work-
shop, and provide non-participants with indications
of the topics that were discussed at the workshop.

Object-centered formalisms for domain modeling
play an important role both in knowledge represen-
tation (KR) and in the database (DB) area. Never-
theless, there has been little cross-fertilization be-
tween the two areas. Research in databases was
mostly concerned with handling large amounts of
data that are represented in a rather inexpressive
formalism, whereas KR concentrated on intensional
inferences in relatively small knowledge bases. How-
ever, many of today’s problems demand sophisti-
cated reasoning on complex and large-scale objects.
The workshop brings together researchers from both
areas to identify and discuss problems and applica-
tions where the combination of KR and DB tech-
niques may provide new solutions.

For the following (non-exclusive) list of questions,
such a combination seems to be most promising:

e KR formalisms as schema languages in DB: Is it
possible to specify realistic DBs this way? Can
the inference mechanisms from KR support the
schema design? '

e Distributed information sources: How can one
describe their interaction in a changing environ-
ment?

e Advanced query processing: How can schema
knowledge be utilized for query optimization?
How can it be used to generate intensional an-
swers?

Two invited talks introduce into the topic of the
workshop. Maurizio Lenzerini covers a broad range
of services offered by concept logic reasoning on
database schemata. Marc Scholl reports on the ap-
plication of this kind of reasoning within the CO-
COON project.

Two sessions are devoted to schema design of data
and knowledge bases. Gottfried Vossen presents core
aspects for object-oriented database models. Dif-
ferent approaches are taken by Martin Buchheit et
al. who find that concept languages subsume the
structural part of object-oriented database models.
Edith Buchholz and Antje Diisterhoft propose a nat-
ural language frontend resulting in a data dictionary

for the database schema. Finally, Wolfgang Benn
takes a data dictionary as input and puts a taxo-
nomic layer on top of it in order to produce integrate
database schemata and to reason on completeness.

Another area of interest is the relationship of
knowledge representation and query languages. Ul-
rich Hustadt argues against the standard closed-
world-assumption in database query languages and
votes for an epistemic operator that can stepwisely
convert a knowledge base into a database. Klaus
Schild augments this argument by his investigation
of null values (known from databases) as incomplete
knowledge in concept logics. Manfred Jeusfeld pro-
poses a language that defines interfaces between pro-
grams and databases by a restricted concept lan-
guage. D. Beneventano et al. argue that a con-
cept logic which explicitly distinguishes value types
from object classes gives an attractive framework
for schema design and query optimization in object-
oriented databases. Albrecht Schmiedel concludes
the area by presenting indexes for query processing
that are based on the concept logic system BACK.

In the session on techniques for modeling business
data, Harald Huber reports from empirical studies
about the shortages of widely used data modeling
languages. Ramzi Guietari et al. present a formal-
ism called OLSEN that answers to at least some of
the shortages by adding the dimensions of time, or-
ganisation, and measurement to the data modeling
layer.

The last session is devoted to database imple-
mentations of KR systems. M.C. Norrie et al.
map the KR language FRM to the COCOON data
model which itsself is defined on top of the relational
data model. Paolo Bresciani integrates a standard
database as assertional knowledge (DBox) into a KR
system based on concept logics.

Contents

Invited Talks

Description logics for schema level reasoning in databases
Maurizio Lenzerini, Universita di Roma “La Sapienza”

Database views on KR classification
Marc Scholl, Universitat Ulm

Session 1: Schema design for data and knowledge bases

Formalization of OODB models
Gottfried Vossen, Universitat Miinster

Terminological systems revisited: terminology = schema + views
Martin Buchheit, DFKI Saarbriicken; Francesco M. Donini, Universita di Roma “La Sapienza”;
Werner Nutt, DFKI Saarbriicken; Andrea Schaerf, Universita di Roma “La Sapienza”

Using natural language for database design L.
Edith Buchholz, Antje Diisterhdft, Universitat Rostock

What’s in a federation? Extending data dictionaries with knowledge representation tech-
DIQUES . . . o o o e e e e e e e e e e e e e
Wolfgang Benn, Technische Universitat Chemnitz-Zwickau

Session 2: Knowledge representation languages as query languages

Ullrich Hustadt, Max Planck-Institut fir Informatik Saarbriicken
Tractable reasoning in a universal description logic
Klaus Schild, DFKI Saarbriicken
Generating queries from complex type definitions
Manfred A. Jeusfeld RWTH Aachen
Terminological logics for schema design and query processing in OODBs
D. Beneventano, S. Bergamaschi, S. Lodi, C. Sartori, CIOC-CNR Bologna
Semantic indexing based on description logics
Albrecht Schmiedel, Technische Universitat Berlin

Session 3: Techniques for modeling business data

The problems of data modeling in software practice
Harald Huber, USU Softwarehaus Moglingen

OLSEN: an object-oriented formalism for information and decision system design
Ramzi Guetari, Frédéric Piard, Bettina Schweyer, LLP-CESALP Annecy

Session 4: Database implementations of KR systems

Frames, objects and relations: three semantic levels for knowledge base systems
M.C. Norrie, ETH Zirich; U. Reimer, P. Lippuner, Swiss Life Ziirich; M. Rys, H.-J. Schek, ETH
Zurich

Uniformly querying knowledge bases and data bases
Paolo Bresciani, IRST Povo

Description Logics for Schema Level Reasoning
in Databases

Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

Abstract

Several recent papers point out that the research on Description Logics and their
associated reasoning techniques can be profitably exploited in several ways in the
area of Databases. We argue that one of the most important aspects of Databases
where we can take advantage of Description Logics is the one related to schema
level reasoning, i.e., reasoning at the intensional level of a database. This is the
case in schema design, schema maintenance, schema integration, schema trans-
lation, integrity checking, query evaluation in cooperative information systems,
etc. Indeed, on the one hand Description Logics can be seen as very powerful
data models, and on the other hand, they can serve as unified formalisms that
capture object-oriented, semantic and conceptual data models proposed in the
literature. Most importantly, they can provide useful reasoning services in all
the above mentioned tasks.

This article was processed using the IATEX macro package with LLNCS style

Database Views on KR Classification
— Abstract —

Marc H. Scholl

University of Ulm, Faculty of Computer Science
D-89069 Ulm, Germany
scholl@informatik.uni-ulm.de

Abstract. The database models for Object Database Systems (ODBMSs)
include many modeling concepts that originate in semantic data mod-
els, that were formerly used for database design purposes, or in (object-
oriented) programming languages. To some extent, research on data mod-
els and query languages for such ODB models has already reached a con-
sensus, not on one particular model or language, but on the core of what
should be considered furtheron. Other aspects, such as view support for
example, are less common. We argue that the KL-ONE style termino-
logical logics can provide a very convenient basis for the integration of
a flexible view mechanism into object databases. KL-ONE defined con-
cepts correspond to database views (classes of objects that are derived
by a geury expression). Updates to such views can be propagated to
base classes if the view classes are inserted into the global class(ification)
hierarchy. Therefore, object databases need the inference services that
KL-ONE systems provide (classification, subsumption, ...). We report
on the experiences that we gained in the COCOON project, where this
approach was pursued over the last few years.

This article was processed using the JATgX macro package with LLNCS style

Formalization of OODB Models

Gottfried Vossen
Institut fur Wirtschaftsinformatik, Universitat Munster
Grevenerstrae 91, 48159 Munster

1 Introduction

Object-oriented data models represent a current end-
point in the evolution of data models [23]. Their for-
malization has been attempted in a variety of papers,
including [5; 6; 19]. This short paper indicates what
we consider the common intersection of these (and
other) approaches; we list the relevant features and
components, and give an idea of how to formalize
the notion of an object-oriented database schema.

An object-oriented data model has to capture a
-variety of requirements [8; 27], which differ consid-
erably from those that traditional data models have
to meet. However, many system developers seem
not to care about formal models as a solid foun-
dation of their system, but simply design a “data
definition language” in which the relevant features
can be coded. In our opinion, a formal model for
object-oriented databases basically has to capture
the same intuitions as models for other types of da-
tabases, which are the following:

1. It has to provide an adequate linguistic abstrac-
tion for certain database applications.

2. It should provide a precise semantics for a data
definition language.

3. It has to be composed of both a specification
and an operational part.

4. It represents a computational paradigm as a ba-
sis for formal investigations.

In this short note, we do not present a comprehensive
survey of formal models for object-oriented databa-
ses which have been proposed in the literature, but
instead try to point out the fundamentals of how
such models are obtained. The result can be con-
sidered as a framework in which the essentials of
the object-oriented paradigm can be expressed con-
cisely and further studied. Indeed, we give hints to
various such investigations that have recently been
undertaken.

2 Core Aspects of Formal OO
Models

In this section, we describe what we perceive as the
core aspects of various proposals for object mod-
els, and we do so by distinguishing structural from
behavioral aspects. Thus, we generally consider
schemas, the central notion of any conceptual data-
base description, to be pairs of the form S = (Sstruc,

Class
type messg
Type Methods gl essages
dom
inst
Values
val Ob ject
State oid Behavior

Figure 1: Core Aspects of an Object Model.

Sbehav); 1In what follows, we first consider each com-
ponent in isolation and then indicate how the two in-
teract. We mention, however, that while it is gener-
ally agreed that an object-oriented data model has to
capture both structure and behavior, the former can
be obtained by using the experience from the rela-
tional, nested relational and complex-object models,
but the latter represents a completely new challenge
to database researchers. Consequently, a consensus
seems achieved for structure, but not for behavior.

The core aspects of formal models for object-
oriented databases are summarized in Figure 1, in
which labels of arrows represent function names. In
brief, the only structuring mechanism is the class
which describes both structure and behavior for its
instances, the objects. Structure is captured as a
type for a class (in our notation, a function “type”
assoclates a type with each class; the other function
names shown above are to be interpreted similarly,
see below). A type is nothing but a description of
a domain, i.e., a set of values, and may or may not
be named (in the former case, type names distinct
from class names and attribute names must be pro-
vided). Values comprise the state of an object and
can be as complex as the type system allows (i.e.,
depending on the availability of base types and con-
structors like tuple, set, bag, list, etc.). Behavior is
manifested in a set of messages associated with each

class (its external interface), which are internally im-
plemented using methods that are executable on ob-
jects. Hence, objects have a state and a behavior; in
addition, they are uniquely identified. Messages are
specified by providing a signature, and by associating
several signatures with the same message name, the
latter gets overloaded. Not shown in Figure 1 is the
possibility to organize classes in an inheritance hier-
archy; also not shown is the fact that class attributes
are allowed to reference other classes, thereby form-
ing an aggregation lattice.

We next look at structural as well as behavioral
aspects in more detail. Regarding the modeling of
structure, more precisely highly-structured informa-
tion, complex data types are all that is basically
needed, since they serve as descriptions for domains
of complex values. One way to introduce such types,
i.e., to define a type system T, is the following:

(i) integer, string, float, boolean C T}

(ii) if A; are distinct attributes and t; € T, 1 <1 <
n, then
[Al Itl, vy An Itn]ET

(i) if t € T, then {t} € T (“set type”);
(iv) if t € T, then <t >€ T (“list type”).

In other words, a type system is made up of base
types, from which complex types may be derived us-
ing (eventually attributes and) constructors. Note
that this requires nothing additional but the avail-
ability of attribute names. Clearly, other base
types as well as additional or alternative construc-
tors could straightforwardly be included. Notice also
that here types are not named; for practical reasons,
the use of type names may be desirable (e.g., in order
to be able to reuse type definitions in various places
throughout a schema), and if it is, it can easily be
added to the above in the way indicated earlier.

The notion of a domain as a “reservoir” of possible
values can be defined as follows; it just has to obey
constructor applications:

(“tuple type”);

(a) dom(integer) is the set of all integers; dom
is analogously defined for string, float,
boolean;

Fvp, ., Ap v
dom(t;)};

(c) dom({t}):= S
{{v1, -, va} | (Vi,1 <1< n) vy €dom(t)};
(d) dom(<t >):=
{< Vly ~++y Un >
dom(t)}.

In a structurally object-oriented context, the first
thing that needs to be introduced beyond complex
types and domains as defined above 1s the possibil-
ity to share pieces of information between distinct
types, or to aggregate objects from simpler ones. At
the level of type declarations, an easy way to model
this is the introduction of another reservoir of names,
this time called class names, which are additionally
allowed as types. In other words, object types are
complex types as above with the following new con-
dition:

I(Vi,ISiSn)‘U,‘G

(v) € C T, where C is a finite set of class names.

This states nothing but the fact that class names
are allowed as types (below we will complement this
with the requirement that classes themselves have
types).

The intuition behind this new condition is that ob-
jects from the underlying application all are distin-
guished by their identity, get collected into classes,
and can reference other objects (share subobjects).
To provide for this at the level of domains, let us
first assume the availability of a finite set OID of
object identifiers which includes the special identi-
fier nil (to capture “empty” references); next, ob-
ject domains, 1.e., sets of possible values for objects
are complex values as above with the following ad-
ditional condition:

(e) dom(c) = OID for each c € C.

Thus, classes are assumed to be instantiated by ob-
jects (class-name types take object identifiers as val-
ues, in the same way as, say, the integer type takes
integer numbers as values). Clearly, this alone is not
enough, since class instances commonly have distinct
sets of object identifiers associated with them. We
will show below how that (and, for example, the fact
that sometimes inclusion dependencies need to hold
between sets of class instances) is captured at the
instance level.

The object-oriented paradigm has another dimen-
sion for organizing information besides aggregation,
which is inheritance, or the possibility to define a
class as a specialization of one or more other classes.
To this end, a subtyping relation is needed through
which it can be expressed that a subclass inherits
the structure of a superclass. Such a relation can be
defined in various ways; for example, it can be de-
fined semantically by requiring that the sets of values
or instances of types, where one is a subtype of the
other, are in a subset relationship. We prefer a sim-
pler, syntactical approach, which has, for example,
the advantage that checking subtype relationships
can be automated:

Let T be a set of object types. A subtyping rela-
tion < CT x T is defined as follows:

(1) t<tforeacht €T,
(1) [A1:t1, ..., An i ta] < [A] 20, ..

if

(a) (VA-/’-,IS]' <m)(FA,1<i<n) A=
Ay At <

(b) n>m,

(i) {t} <{e'}ift <t

(iv) <t> <<t >ift <t

L AL]

With these preparations, we arrive at the follow-
ing definition for objectbase schemas that can de-
scribe structure of arbitrary complexity: A struc-
tural schema is a named quadruple of the form
Sstrue = (C, T, type, isa) where

(1) C is a (finite) set of class names,

(i) T is a (finite) set of types which uses as class
names only elements from C,

(iii) type : C — T is a total function associating a
type with each class name,

(iv) isa C C x C is a partial order on C which is
consistent w.r.t. subtyping, i.e.,
cisa ¢’ = type(c) < type(c’) for all ¢, ¢’ € C.

This definition resembles what can be found in
a variety of models proposed in the literature, in-
cluding [17; 19; 20; 25] and others. Notice that it
still leaves several aspects open, like single vs. mul-
tiple inheritance; if the latter is desired, a condition
needs to be added stating how to conflicts should
be resolved. Also, implementations typically add
a number of additional features, like attributes as
functions [22; 29], a distinction of class attributes
from instance attributes (the latter are shared by
all objects associated with a class, while the for-
mer represent, for example, aggregate information
like an average salary only relevant to the class as a
whole) [7], a unique root of the class hierarchy from
which every class inherits [20], a distinction between
private and public attributes [12], a different set of
constructors (like one with an additional array con-
structor to describe matrices), an explicit inclusion
of distinct types of relationships between classes and
their objects (in particular various forms of composi-
tion, see [18)]), integrity constraints which represent
semantic information on the set of valid databases
instances (a proposal in that direction appears in {3;
4], where object constraints, class constraints, and
database constraints are distinguished). For another
example, the ODMG-93 proposal for a standardized
model [10] contains explicit keys, (binary) relation-
ships, and inverse attributes. None of these features
appear in our model, the reason being that these are
not specific to object-orientation.

The second important aspect of an object-oriented
database is that it is intended to capture behavior,
besides structure. To this end, the relevant intu-
ition is that classes have attached to them a set of
messages, which are specified in the schema via sig-
natures, and which are implemented as methods. In
addition, behavior can be inherited by subclasses,
and message names can be overloaded, i.e., re-used
in various contexts.

So a behavioral schema is a named five-tuple of
the form Sphenav = (C, M, P, messg, impl) where

(1) C'is a (finite) set of class names as above (again
needed here since references to it have to be
made),

(il) M is a (finite) set of message names, where each
m € M has associated with it a nonempty set

sign(m) = {s1,...s1}, ! > 1, of signatures; each
sh, 1 < h <1, hastheform s, :cxtyx...xt, =
tforceC,ty,...,t,t€T

(each signature has the receiver of the message
as its first component),

(i) P is a (finite) set of methods or programs,

(iv) messg : C — 2™ is a mapping s.t. for each
¢ € C and for each m € messg(c) there exists
a signature s € sign(m) satisfying s[1] = ¢,

(v) impl: {(m, ¢) | m € messg (c)} = Pisa
partial function.

In combining structural and behavioral schemas,
we finally obtain an objectbase schema of the form

S =(C,(T, type, isa,),(M, P, isa, messg, impl)).

S is called consistent if the following conditions are
satisfied:

(1) ¢ isa ¢’ implies messg(c’) C messg(c) for all
¢, €C,

(i1) if ¢ isa ¢’ and s,s’ € sign(m) for m € M such
that s : exty x...xt, = t,8 e/ xt]x...xt!, >
t’, then t; <t foreachi,1 <i<n,andt <,

(i1i) for each m € messg(c) there exists a ¢/ € C)
s.t. cisa ¢/ and impl(m, ¢') is defined.

Condition (i) just says that subclasses inherit the be-
havior of their superclasses. Condition (ii) says that
message-name overloading is done with compatible
signatures, and is called the covariance condition in
[20; 9). The covariance condition is a significant dif-
ference from what is used at a corresponding point in
programming languages, and which is known as the
contravariance condition; for a detailed explanation,
see [9]. Finally, Condition (iii) states that for each
message associated with a class, its implementation
must at least be available in some superclass.

It is interesting to note that various natural con-
ditions can be imposed on the programs that are
used as implementations of messages. We now sketch
one of them, which is based on the view that pro-
grams are functions on domains [20]. More formally,
ifme Mands:cxt; x...xt, >t € sign(m),
then impl(m,c), if defined, is a program p € P of
the form

p: dom(c) x dom(t;) x ... x dom(t,) = dom(t)

The condition in question informally states that if
message overloading appears in isa-related classes
(so that the corresponding signatures satisfy the co-
variance condition), then the associated programs
coincide (as functions) on the subclass. More for-
mally, we have: If [sign(m)| > 1 for some m € M,
then the following holds: If s, s’ € sign(m) such that
stexXty X...Xty, 2t 8 Xt x ... xth o,
cisac,t; <tiforeachi, 1 <i<n,t<t, and
impl(m, ¢) = p, impl(m, ¢’) = p’, then p and p’ agree
on dom(c) x dom(t;) x ... x dom(t,).

A variety of formal investigations for behavioral
schemata in the sense defined above can already
be found in the literature, which investigate ques-
tions including termination of method executions,
limited depth of method-call nestings (an issue re-
lated to precompilation of method executions), well-
definedness of method calls, i.e., consistency as well
as reachability considerations (issues related to type
inference and schema evolution), expressiveness of
method implementation languages (relative to some
notion of completeness), complexity of method exe-
cutions, or potential parallelism of method evalua-
tions. To investigate such issues, our general notion
of schema i1s made precise in various ways. For ex-
ample, [15] fixes a simple imperative language for
implementing methods as retrieval programs, con-
trasts them with update programs and shows un-
decidability results for the latter. [1; 2] as well as

[11] introduce distinct notions of a method schema
to study behavioral issues of OODBS; for example,
[2] investigates implications of the covariance condi-
tion using the formalism of program schemas, while
[11] looks at tractability guarantees corresponding
to those known for relational query languages. Also,
it is pretty straightforward to define an object alge-
bra for a model like the one sketched in the previous
section; see, for example, the papers in [13]. That
carries over to issues like query optimization, imple-
mentation of operations, and query processing. A
survey of other recent investigations that have simi-
lar bases or origins can be found in [28].

We emphasize again that the model just sketched
can be seen as description of the core of vastly any
object-oriented model; however, this is valid only rel-
ative to the fact that many specialities, which have
been proposed in the literature, or which are being
built into commercial systems, are neglected here.

We conclude this section with a brief indication of
how object databases, i.e., sets of class instances or
extensions, can be defined over a given schema: For
a given objectbase schema S, an objectbase over S is
a triple d(S) = (O, inst, val) s.t.

(i) O C OID is a finite set of object identifiers,

(ii) inst: C — 29 is a total function satisfying the
following conditions:

(a) if ¢,¢’ € C are not (direct or indirect) sub-
classes of each other,
then inst(c) N inst(c’) = 0,

(b) if c isa ¢/, then inst(c) C inst(c’),

(i) val: O — V is a function s.t.

(Ve € C) (Vo € inst(c)) val(o) € dom(type(c)).

Notice that this definition closes the problem left
open earlier, namely that class domains originally
were simply the set OID.

3 Open Issues

We next survey several modeling issues in object-
oriented databases which have not yet received
enough research attention:

1. Entities can have roles that vary over time. For
example, some person object may at one point
be a student, at another an employee, and at a
third a club member; while the person’s identity
never changes, its type changes several times.

2. Entities can have multiple types at the same
time. For example, a person may be a stu-
dent, an employee, and a club member simul-
taneously. So far the only way to represent this
in an object-oriented database is by multiple
inheritance, but this might not be appropriate
since it can result in a combinatorial explosion
of sparsely populated classes [21].

3. Objects can be in various stages of development.
For example, in a design environment it is usu-
ally necessary to maintain incomplete designs,
i.e., objects whose types get completed in the
course of time.

4. Classes may contain “too few” instances. For
example, consider a database in which all

persons living in a large country are repre-
sented. In this context, so many combi-
nations of meaningful properties have to be
distinguished that it might become necessary
to introduce artificial name constructions for
classes, like unmarried-nonstudent-autoQwner-
renter-tazpayer [26], and each such class has -
only very few instances. More generally, the
name space available for classes might not be
sufficient.

5. Objects and their classes might come into ez-
istence in reverse order. A database user in
a design environment like CAD creates objects -
in the first place, not type definitions or even
classes. The usage of databases thus differs con-
siderably from traditional applications where
schema design has to be completed prior to in-
stance creation.

We mention that one issue or the other from this
list is sometimes reflected already in existing mod-
els, but never as a basic design target. Alternative
approaches, which takes these issues into considera-
tion right from the start, appear, for example, in [21;
24; 16]. A possible general concept for the solution
of these problems seems the exploitation of proto-
type languages, which suggest to model applications
without a classification that partitions the world into
entity sets. A prototype represents default behavior
for some concept, and new objects can re-use part
of the knowledge stored in a prototype by saying
how they differ from it. Upon receiving a message
an object does not understand, it can forward (del-
egate) it to its prototype to invoke more general be-
havior. In the area of object-oriented programming
languages, many people believe that this approach
has advantages over the class-based one with inher-
itance, with respect to the representation of default
knowledge and incrementally and dynamically modi-
fying concepts. The investigation of classless models
in the context of object-oriented databases has only
recently been proposed in [26], and a concrete model
is reported in [14{

4 Conclusions

In this short paper we have tried to give a rough
personal account of recent work on formal models
for object-oriented databases. Although there is not
a single uniform such model, the foundations on
which such models have to be built seem understood,
and even standardization efforts have recently been
launched [10]. On the other hand, a number of in-
teresting research issues still deserve further investi-
gation. In particular, formal models as they are cur-
rently available seem hardly suited for the nonstan-
dard applications which initiated the consideration
of object-orientation in the context of databases. A
reason seems to be that many researchers have too
much of a relational background, and try to exploit
that as long as possible; this is more than confirmed
by the ODMG-93 proposal. As was done a number
of years ago, when database people discovered what
programming-language or knowledge-representation
people had been studying for years already, it seems

again necessary to take recent developments in these
areas into account, and to adopt them for solving the
problems database applications have.

References

[1] S. Abiteboul, P.C. Kanellakis: The Two Facets
of Object-Oriented Data Models; IEEE Data
Engineering Bulletin 14 (2) 1991, 3-7

[2] S. Abiteboul, P.C. Kanellakis, E. Waller:
Method Schemas; Proc. 9th ACM Symposium
on Principles of Database Systems 1990, 16-27

[3] P.M.G. Apers et al.: Inheritance in an Object-
Oriented Data Model; Memoranda Informatica
90-77, University of Twente 1990

[4] H. Balsters et al.: Sets and Constraints in an
Object-Oriented Data Model; Memoranda In-
formatica 90-75, University of Twente 1990

[5] F. Bancilhon, C. Delobel, P. Kanellakis (eds.):
Building an Object-Oriented Database System
— The Story of Oz. Morgan-Kaufmann 1992

[6] C. Beeri: A Formal Approach to Object-
Oriented Databases; Data & Knowledge Engi-
neering 5, 1990, 353-382

[7] E. Bertino et al.: An Object-Oriented Data
Model for Distributed Office Applications;
Proc. ACM Conference on Office Information
Systems 1990, 216-226

[8] E. Bertino, L. Martino: Object-oriented Data-
base Management Systems: Concepts and Is-
sues; IEEE Computer 24 (4) 1991, 33-47

[9] E. Bertino, L. Martino: Object-Oriented Data-
base Systems; Addison-Wesley 1993

[10] R.G.G. Cattell (ed.): The Object Database
Standard: ODMG-93. Morgan-Kaufmann 1994

[11] K. Denninghoff, V. Vianu: The Power of Meth-
ods with Parallel Semantics; UCSD Technical
Report No. C§91-184, University of California,
San Diego, February 1991; extended abstract in
Proc. 17th Int. Conference on Very Large Data
Bases 1991, 221-232

[12] O. Deux et al.: The Story of Oy; IEEE Trans-
actions on Knowledge and Data Engineering 2,

1990, 91-108

[13] J.C. Freytag, D. Maier, G. Vossen: Query
Processing for Advanced Database Systems;
Morgan-Kaufmann 1994

[14] M. GroB-Hardt, G. Vossen: Towards Class-
less Object Models for Engineering Design Ap-
plications; Proc. 4th International Conference
on Database and Expert Systems Applications
(DEXA) 1993, Prag, Springer LNCS 720, 36-47

[15] R. Hull, K. Tanaka, M. Yoshikawa: Behav-
ior Analysis of Object-Oriented Databases:
Method Structure, Execution Trees, and Reach-
ability; Proc. 3rd FODO Conference, Springer
LNCS 367, 1989, 372-388

[16] T. Imielinski et al.: Incomplete Objects — A
Data Model for Design and Planning Applica-

tions; Proc. ACM SIGMOD International Con-
ference on Management of Data 1991, 288-297

[17] A.Kemper et al.: GOM: A Strongly Typed Per-
sistent Object Model with Polymorphism; Proc.
German GI Conference on “Datenbanken fiir
Biiro, Technik und Wissenschaft” (BTW) 1991,
Springer Informatik-Fachbericht 270, 198-217

[18] W.Kim: Introduction to Object-Oriented Data-
bases; MIT Press 1990

[19] C. Lecluse et al.: O,, an Object-Oriented
Data Model; Proc. ACM SIGMOD Interna-
tional Conference on Management of Data 1988,
424-433

[20] C. Lecluse, P. Richard: Foundations of the O,
Database System; IEEE Data Engineering Bul-
letin 14 (2) 1991, 28-32

[21] J. Richardson, P. Schwarz: Aspects: Extend-
ing Objects to Support Multiple, Independent
Roles; Proc. ACM SIGMOD International Con-
ference on Management of Data 1991, 298-307

[22] M.H. Scholl, H.J. Schek: A Relational Object
Model; Proc. 3rd International Conference on
Database Theory 1990, Springer LNCS 470, 89—
105

[23] H.J. Schek, M.H. Scholl: Evolution of Data
Models; Proc. Database Systems of the 90s,
November 1990, Springer LNCS 466, 135-153

[24] E. Sciore: Object Specialization; ACM Transac-
tions on Information Systems 7, 1989, 103-122

[25] D.D. Straube, M.T. Ozsu: Queries and Query
Processing in Object-Oriented Database Sys-
tems; ACM Transactions on Information Sys-
tems 8, 1990, 387-430

[26] J.D. Ullman: A Comparison of Deductive and
Object-Oriented Database Systems; Proc. 2nd
DOOD Conference, Springer LNCS 566, 1991,
263-277

[27] G. Vossen: Datenmodelle, Datenbanksprachen
und Datenbankmanagement-Systeme; 2. Au-
flage, Addison-Wesley 1994

[28] G. Vossen: Database Theory: An Introduction;
Technical Report, University of Miinster, June
1994

[29] K. Wilkinson et al.: The Iris Architecture and
Implementation; IEEE Transactions on Knowl-
edge and Data Engineering 2, 1990, 63-75

Terminological Systems Revisited:
Terminology = Schema + Views*

M. Buchheit! and F. M. Donini? and W. Nutt! and A. Schaerf?
1. German Research Center for Artificial Intelligence (DFKI), Saarbriicken, Germany
{buchheit,nutt}@dfki.uni-sb.de
2. Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”, Italy
{donini,aschaerf}@assi.dis.uniromal.it

Abstract

Traditionally, the core of a Termino-
logical Knowledge Representation System
(TKRS) consists of a so-called TBox, where
concepts are introduced, and an ABox,
where facts about individuals are stated
in terms of these concepts. This design
has a drawback because in most applica-
tions the TBox has to meet two functions
at a time: on the one hand, similar to a
database schema, framelike structures with
typing information are introduced through
primitive concepts and primitive roles; on
the other hand, views on the objects in the
knowledge base are provided through de-
fined concepts.

We propose to account for this conceptual
separation by partitioning the TBox into
two components for primitive and defined
concepts, which we call the schema and the
view part. We envision the two parts to
differ with respect to the language for con-
cepts, the statements allowed, and the se-
mantics.

We argue that by this separation we
achieve more conceptual clarity about the
role of primitive and defined concepts
and the semantics of terminological cycles.
Moreover, three case studies show the com-
putational benefits to be gained from the
refined architecture.

1 Introduction

Research on terminological reasoning usually pre-
supposes the following abstract architecture, which
reflects quite well the structure of existing systems.
There is a logical representation language that allows
for two kinds of statements: in the TBox or termi-
nology, concept descriptions are introduced, and in
the ABox or world description, individuals are char-
acterized in terms of concept membership and role

*This work was partly supported by the Commis-
sion of the European Union under ESPRIT BRA 6810
(Compulog 2), by the German Ministry of Research and
Technology under grant ITW 92-01 (TACOS), and by
the CNR (Italian Research Council) under Progetto Fi-
nalizzato Sistemi Informatici e Calcolo Parallelo, LdR
“Ibridi.”

relationship. This abstract architecture has been the
basis for the design of systems, the development of
algorithms, and the investigation of the computa-
tional properties of inferences.

Given this setting, there are three parameters that
characterize a terminological system: (i) the lan-
guage for concept descriptions, (i7) the form of the
statements allowed, and (i77) the semantics given to
concepts and statements. Research tried to improve
systems by modifying these three parameters. But in
all existing systems and almost all theoretical studies
language and semantics have been kept uniform.!

The results of these studies were unsatisfactory in
at least two respects. First, it seems that tractable
inferences are only possible for languages with lit-
tle expressivity. Second, no consensus has been
reached about the semantics of terminological cycles,
although in applications the need to model cyclic
dependencies between classes of objects arises con-
stantly.

Based on an ongoing study of applications of ter-
minological systems, we suggest to refine the two-
layered architecture consisting of TBox and ABox.
Our goal is twofold: on the one hand we want to
achieve more conceptual clarity about the role of
primitive and defined concepts and the semantics of
terminological cycles; on the other hand, we want to
improve the tradeoff between expressivity and worst
case complexity. Since our changes are not primar-
ily motivated by mathematical considerations but by
the way systems are used, we expect to come up with
a more practical system design.

In the applications studied we found that the
TBox has to meet two functions at a time. One is to
declare frame-like structures by introducing primi-
tive concepts and roles together with typing infor-
mation like isa-relationships between concepts, or
range restrictions and number restrictions of roles.
E.g., suppose we want to model a company environ-
ment. Then we may introduce the concept Employee
as a specialization of Person, having exactly one
name of type Name and at least one affiliation of
type Department. This is similar to class declara-
tions in object-oriented systems. For this purpose, a
simple language is sufficient. Cycles occur naturally
in modeling tasks, e.g., the boss of an Employee is

'In [Lenzerini and Schaerf,1991] a combination of a
weak language for ABoxes and a strong language for
queries has been investigated.

also an Employee. Such declarations have no defini-
tional import, they just restrict the set of possible
interpretations.

The second function of a TBox is to define new
concepts in terms of primitive ones by specifying
necessary and sufficient conditions for concept mem-
bership. This can be seen as defining abstractions or
views on the objects in the knowledge base. Defined
concepts are important for querying the knowledge
base and as left-hand sides of trigger rules. For this
purpose we need more expressive languages. If cy-
cles occur in this part they must have definitional
import.

As a consequence of our analysis we propose to
split the TBox into two components: one for declar-
ing frame structures and one for defining views. By
analogy to the structure of databases we call the
first component the schema and the second the view
part. We envision the two parts to differ with re-
spect to the language, the form of statements, and
the semantics of cycles.

The schema counsists of a set of primitive concept
introductions, formulated in the schema language,
and the view part by a set of concept definitions, for-
mulated in the view language. In general, the schema
language will be less expressive than the view lan-

guage. Since the role of statements in the schema .

is to restrict the interpretations we want to admit,
first order semantics, which is also called descriptive
semantics in this context (see Nebel 1991), is ade-
quate for cycles occurring in the schema. For cycles
in the view part, we propose to choose a semantics
that defines concepts uniquely, e.g., least or greatest
fixpoint semantics.

The purpose of this work is not to present the
full-fledged design of a new system but to explore
the options that arise from the separation of TBoxes
into schema and views. Among the benefits to be
gained from this refinement are the following three.
First, the new architecture has more parameters for
improving systems, since language, form of state-
ments, and semantics can be specified differently for
schema and views. So we found a combination of
schema and view language with polynomial inference
procedures whereas merging the two languages into
one would have led to intractability. Second, we be-
lieve that one of the obstacles to a consensus about
the semantics of terminological cycles has been pre-
cisely the fact that no distinction has been made
between primitive and defined concepts. Moreover,
intractability results for cycles mostly refer to infer-
ences with defined concepts. We proved that rea-
soning with cycles is easier when only primitive con-
cepts are considered. Third, the refined architecture
allows for more differentiated complexity measures,
as shown later in the paper.

In the following section we outline our refined ar-
chitecture for a TKRS, which comprises three parts:
the schema, the view tazonomy, and the world de-
scription, which comprise primitive concepts, de-
fined concepts and assertions in traditional systems.
In the third section we show by three case studies
that adding a simple schema with cycles to existing
systems does not increase the complexity of reason-

ing.
2 The Refined Architecture

We start this section by a short reminder on concept
languages. Then we discuss the form of statements
and their semantics in the different components of
a TKRS. Finally, we specify the reasoning services
provided by each component and introduce different
complexity measures for analyzing them.

2.1 Concept Languages

In concept languages, complex concepts (ranged over
by C, D) and complex roles (ranged over by Q, R)
can be built up from simpler ones using concept and
role forming constructs (see Tables 1 and 2 a set
of common constructs). The basic syntactic sym-
bols are (i) concept names, which are divided into
schema names (ranged over by A) and view names
(ranged over by V), (ii) role names (ranged over by
P), and (74) individual names (ranged over by a, b).
An interpretation T = (AZ,-T) consists of the do-
main AT and the interpretation function -, which
maps every concept to a subset of AI, every role
to a subset of AT x AT, and every individual to an
element of AZ such that a # b7 for different indi-
viduals a, b (Unigue Name Assumption). Complex
concepts and roles are interpreted according to the
semantics given in Tables 1 and 2, respectively.

In our architecture, there are two different con-
cept languages in a TKRS, a schema language for
expressing schema statements and a view language
for formulating views and queries to the system.

2.2 The Three Components

We first focus our attention to the schema. The
schema introduces concept and role names and states
elementary type constraints. This can be achieved
by tnclusion azioms having one of the forms:

ACD, PCA xA,,

where A, A, A, are schema names, P is a role name,
and D is a concept of the schema language. Intu-
itively, the first axiom states that all instances of A
are also instances of D. The second axiom states
that the role P has domain A; and range A;. A
schema § consists of a finite set of schema axioms.

Inclusion axioms impose only necessary conditions
for being an instance of the schema name on the
left-hand side. For example, the axiom “Employee C
Person” declares that every employee is a person,
but does not give a sufficient condition for being an
employee.

A schema may contain cycles through inclusion
axioms (see Nebel 1991 for a formal definition).
So one may state that the bosses of an employee
are themselves employees, writing “Employee C
Vboss.Employee.” In general, existing systems do
not allow for terminological cycles, which is a seri-
ous restriction, since cycles are ubiquitous in domain
models.

There are two questions related to cycles: the first
is to fix the semantics and the second, based on
this, to come up with a proper inference procedure.
As to the semantics, we argue that axioms in the

[[Construct Name | Syntax | Semantics [

top T AT

singleton set {a} {a®}

intersection cnbD cTnDt

union cub ctTubD?

negation -C AN CF

universal quantification VR.C {d\ | Vd; : (d1,d;) € R* - d, € C*}

existential quantification 3R.C {d\ | 3d : (d1,d;) € RT Ad, € C?}

existential agreement 3Q = R | {d; | 3d,.(d1, d2) € QF A (dy,d2) € RT}

number restrictions = A {di [#{d2 | (d1,dz) € B*} 2 n}
(£nR) {d, [{{d2 [(d,d2) € R*} < n}

Table 1: Syntax and semantics of concept forming constructs.

I Syntax |

[[Construct Name Semantics |
inverse role P~ {(dy,d) | (d2,dy) € P*}
role restriction (R:C) {(d1,d2) | (d1,d2) € R* Ad; € C*}
role chain Q oR {(dl, d3) | 3d2.(d1, dz) € Qr/\ (dz, da) € RI}
self € {(dl)dl) | dl € Al}

Table 2: Syntax and semantics of role forming constructs.

schema have the role of narrowing down the mod-
els we consider possible. Therefore, they should be
interpreted under descriptive semantics, i.e., like in
first order logic: an interpretation I satisfies an ax-
iom A C D if AT C D?, and it satisfies P C A x A,
if PZ C A? x AZ. The interpretation Z is a model
of the schema § if it satisfies all axioms in §. The
problem of inferences will be dealt with in the next
section.

The view part contains view definitions of the form

V=C,

where V is a view name and C is a concept in the
view language. Views provide abstractions by defin-
ing new classes of objects in terms of the concept
and role names introduced in the schema. We refer
to “V = C” as the definition of V. The distinc-
tion between schema and view names is crucial for
our architecture. It ensures the separation between
schema and views.

A view tazonomy V is a finite set of view defini-
tions such that (i) for each view name there is at
most one definition, and (i) each view name oc-
curring on the right hand side of a definition has a
definition in V.

Differently from schema axioms, view definitions
give necessary and sufficient conditions. As an ex-
ample of a view, one can describe the bosses of
the employee Bill as the instances of “BillsBosses =
Jboss-of .{BILL}.”

Whether or not to allow cycles in view defini-
tions is a delicate design decision. Differently from
the schema, the role of cycles in the view part
is to state recursive definitions. For example, if
we want to describe the group of individuals that
are above Bill in the hierarchy of bosses we can
use the definition “BillsSuperBosses = BillsBosses U

10

Jboss-of.BillsSuperBosses.” But note that this does
not yield a definition if we assume descriptive se-
mantics because for a fixed interpretation of BILL
and of the role boss-of there may be several ways
to interpret BillsSuperBosses in such a way that the
above equality holds. In this example, we only ob-
tain the intended meaning if we assume least fixpoint
semantics. This observation holds more generally: if
cycles are intended to uniquely define concepts then
descriptive semantics is not suitable. However, least
or greatest fixpoint semantics or, more generally, a
semantics based on the p-calculus yield unique defi-
nitions (see Schild 1994). Unfortunately, algorithms
for subsumption of views under such semantics are
known only for fragments of the concept language
defined in Tables 1 and 2.

In this paper, we only deal with acyclic view tax-
onomies. In this case, the semantics of view defini-
tions is straightforward. An interpretation Z satisfies
the definition V = C if VZ = CT, and it is a model
for a view taxonomy V if Z satisfies all definitions in
V.

A state of affairs in the world is described by as-
sertions of the form

C(a), R(a,b),
where C' and R are concept and role descriptions in
the view language. Assertions of the form A(a) or
P(a,b), where A and P are names in the schema,
resemble basic facts in a database. Assertions in-
volving complex concepts are comparable to view
updates.

A world description W is a finite set of asser-
tions. The semantics is as usual: an interpretation
T satisfies C(a) if aZ € AT and it satisfies R(a, b) if
(a®,b%) € R%; it is a model of W if it satisfies every
assertion in W.

Summarizing, a knowledge base is a triple £ =
(§,V, W), where § is a schema, V a view taxonomy,
and W a world description. An interpretation Z is
a model of a knowledge base if it is a model of all
three components.

2.3 Reasoning Services

For each component, there 1s a prototypical reason-
ing service to which the other services can be re-
duced.

Schema Validation: Given a schema §, check
whether there exists a model of § that interprets
every schema name as a nonempty set.

View Subsumption: Given a schema §, a view tax-
onomy V, and view names Vi and V3, check
whether V¥ C V2I for every model Z of § and
V;

Instance Checking: Given a knowledge base ¥, an
individual a, and a view name V/, check whether
a% € VT holds in every model Z of .

Schema validation supports the knowledge engineer
by checking whether the skeleton of his domain
model is consistent. Instance checking is the basic
operation in querying a knowledge base. View sub-
sumption helps in organizing and optimizing queries
(see e.g. Buchheit et al. 1994). Note that the schema
§ has to be taken into account in all three services
and that the view taxonomy V is relevant not only
for view subsumption, but also for instance check-
ing. In systems that forbid cycles, one can get rid
of § and V by expanding definitions. This is not
possible when § and V are cyclic. ‘

2.4 Complexity Measures

The separation of the core of a TKRS into three
components allows us to introduce refined complex-
ity measures for analyzing the difficulty of inferences.

The complexity of a problem is generally measured
with respect to the size of the whole input. However,
with regard to our setting, three different pieces of
input are given, namely the schema, the view taxon-
omy, and the world description. For this reason, dif-
ferent kinds of complexity measures may be defined,
similarly to what has been suggested in [Vardi,1982]
for queries over relational databases. We consider
the following measures (where |X| denotes the size

of X):

Schema Complezity: the complexity as a function
of [§];

View Complezity: the complexity as a function of
VI;

World Description Complexity: the complexity as a
function of |W|;

Combined Complezity: the complexity as a function
of |§|+ |[V|+ [W|.

Combined complexity takes into account the
whole input. The other three instead consider only a
part of the input, so they are meaningful only when
it is reasonable to suppose that the size of the other
parts is negligible. For instance, it is sensible to an-
alyze the schema complexity of view subsumption

11

because usually the schema is much bigger than the
two views which are compared. Similarly, one might
be interested in the world description complexity of
instance checking whenever one can expect W to be
much larger than the schema and the view part.

It is worth noticing that for every problem com-
bined complexity, taking into account the whole in-
put, is at least as high as the other three. For exam-
ple, if the complexity of a problem is O([§|-|V|-|W]),
its combined complexity is cubic, whereas the other
ones are linear. Similarly, if the complexity of a given
problem is O(|§|!V!), both its combined complexity
and its view complexity are exponential, its schema
complexity is polynomial, and its world description
complexity is constant.

In this paper, we use combined complexity to com-
pare the complexity of reasoning in our architec-
ture with the traditional one. Moreover, we use
schema complexity to show how the presence of a
large schema affects the complexity of the reason-
ing services previously defined. View and world de-
scription complexity have been investigated (under
different names) in [Nebel,1990; Baader,1990] and
[Schaerf,1993; Donini et al.,1994], respectively.

3 The Case Studies

We studied some illustrative examples that show the
advantages of the architecture we propose. We ex-
tended three systems by a simple cyclic schema lan-
guage and analyzed their computational properties.

As argued before, a schema language should at
least be expressive enough for declaring subconcept
relationships, restricting the range of roles, and spec-
ifying roles to be necessary (at least one value) or sin-
gle valued (at most one value). These requirements
are met by the language S, which was introduced
in [Buchheit et al.,1994] and that is defined by the
following syntax rule:

C,D— A|VP.A|(>1P)|(<1P).

Obviously, it is impossible to express in S£ that a
concept is empty. Therefore, schema validation in
SL is trivial. Also, subsumption of concept names
is polynomially decidable.

We proved that inferences become harder for ex-
tensions of SL. If we add inverse roles, schema val-
idation remains trivial, but subsumption of schema
names becomes NP-hard. If we add any construct by
which one can express the empty concept—like dis-
jointness axioms—schema validation becomes NP-
hard. However, in our opinion this does not mean
that extensions of SL are not feasible. For some ex-
tensions, there are natural restrictions on the form
of schemas that decrease the complexity. Also, it
is not clear whether realistic schemas will contain
structures that require complex computations.

In all the three cases studied, the schema lan-
guage is SL. For the view language, we pro-
pose three different languages derived from three
actual systems described in the literature, namely
the deductive object-oriented database system CoN-
CEPTBASE [Jarke,1992], and the terminological sys-
tems KRIS [Baader and Hollunder,1991] and CLAs-
sic [Borgida et al.,1989). We investigated the com-
putational properties of the reasoning services with

respect to SL-schemas. We aimed at showing two
results: (Z) reasoning w.r.t. schema complexity is al-
ways tractable, (if) combined complexity is not in-
creased by the presence of terminological cycles in
the schema.

In all three cases, we assume that view names
are allowed in membership assertions and that the
view taxonomy is acyclic. In this setting, every view
name can be substituted with its definition. For this
reason, from this point on, we suppose that view
concepts are completely expanded. Therefore, when
evaluating the complexity, we replace the size of the
view part by the size of the concept representing the
view.

We have found the following results for the three
systems in which SC is the schema language and the
concept language the abstraction of the query lan-
guage of CONCEPTBASE introduced in [Buchheit et
al.,1994], or the language offered by KRISs or CLASSIC,
respectively.

CONCEPTBASE: instance checking is in PTIME
w.r.t. combined complexity (view subsumption
has been proved in PTIME in [Buchheit et
al.,1994]).

KRIS: view subsumption and instance checking are
PSPACE-complete problems w.r.t. combined
complexity and PTIME problems w.r.t. schema
complexity.

CLASSIC: view subsumption and instance checking
are problems in PTIME w.r.t. combined com-
plexity.

We conclude that adding (possibly cyclic) schema
information does not change the complexity of rea-
soning within the systems taken into account.

4 Conclusion

We have proposed to replace the traditional TBox
in a terminological system by two components: a
schema, where primitive concepts describing frame-
like structures are introduced, and a view part that
contains defined concepts. We feel that this architec-
ture reflects adequately the way terminological sys-
tems are used in most applications.

We also think that this distinction can clarify the
discussion about the semantics of cycles. Given the
different functionalities of the schema and view part,
we propose that cycles in the schema are interpreted
with descriptive semantics while for cycles in the
view part a definitional semantics should be adopted.

In three case studies we have shown that the re-
vised architecture yields a better tradeoff between
expressivity and the complexity of reasoning.

The schema language we have introduced might
be sufficient in many cases. Sometimes, however,
one might want to impose more integrity constraints
on primitive concepts than those which can be ex-
pressed in it. We see two solutions to this problem:
either enrich the language and have to pay by a more
costly reasoning process, or treat such constraints in
a passive way by only verifying them for the objects
in the knowledge base. The second alternative can
be given a logical semantics in terms of epistemic
operators (see Donini et al. 1992).

12

References

[Baader and Hollunder, 1991] Franz Baader and
Bernhard Hollunder. A terminological knowledge
representation system with complete inference al-
gorithm. In Proc. PDK-91, LNAI, pages 67-86,
1991.

[Baader, 1990] Franz Baa;éer. Terminological cycles
in KL-ONE-based knowledge representation lan-
guages. In Proc. AAAI-90, pages 621-626, 1990.

[Borgida et al., 1989] Alexander Borgida, Ronald J.
Brachman, Deborah L. McGuinness, and Lori
Alperin Resnick. CLASSIC: A structural data
model for objects. In Proc. ACM SIGMOD, pages
59-67, 1989.

[Buchheit et al., 1994] Martin
Buchheit, Manfred A. Jeusfeld, Werner Nutt, and
Martin Staudt. Subsumption between queries to
object-oriented databases. Information Systems,

©19(1):33-54, 1994.

[Donini et al., 1992] Francesco M. Donini, Maurizio
Lenzerini, Daniele Nardi, Werner Nutt, and An-
drea Schaerf. Adding epistemic operators to con-

cept languages. In Proc. KR-92, pages 342-353,
1992.

[Donini et al., 1994] Francesco M. Donini, Maurizio
Lenzerini, Daniele Nardi, and Andrea Schaerf. De-
duction in concept languages: From subsumption
to instance checking. Journal of Logic and Com-
putation, 4(92-93):1-30, 1994.

[Jarke, 1992] M. Jarke. ConceptBase V3.1 User
Manual. Aachener Informatik-Berichte 92-17,
RWTH Aachen, 1992.

[Lenzerini and Schaerf, 1991]
Maurizio Lenzerini and Andrea Schaerf. Concept
languages as query languages. In Proc. AAAI-91,
pages 471476, 1991.

[Nebel, 1990] Bernhard Nebel. Terminological rea-
soning is inherently intractable. Artificial Intelli-
gence, 43:235-249, 1990.

[Nebel, 1991] Bernhard Nebel. Terminological cy-
cles: Semantics and computational properties. In
John F. Sowa, editor, Principles of Semantic Net-
works, pages 331-361. Morgan Kaufmann, Los Al-
tos, 1991.

[Schaerf, 1993] Andrea Schaerf. On the complexity
of the instance checking problem in concept lan-
guages with existential quantification. Journal of
Intelligent Information Systems, 2:265-278, 1993.

[Schild, 1994] Klaus Schild. Terminological cycles
and the propositional g-calculus. In Proc. KR-94,
1994.

[Vardi, 1982] M. Vardi. The complexity of relational
query languages. In Proc. STOC-82, pages 137-
146, 1982.

Using Natural Language for Database Design

Edith Buchholz * and Antje Diisterhoft

Department of Computer Science
University of Rostock, A.-Einstein-Str.21
18059 Rostock, Germany
Email: {buch,duest} @informatik.uni-rostock.de

Abstract.

This paper deals with a natural language dialogue tool
Sor supporting the database design process. We want to
tllustrate how natural language (German) can be used
Jor obtaining a skeleton design and for supporting the
acquisition of semantics of the prospective database. The
approach is based on the assumption that verbs form a
central part in defining the meaning of sentences and imply
semantic roles in the sentences which have to be filled by
objects. We are using a moderated dialogue for drawing
the designer's attention to these objects in order to extract
comprehensive information about the domain.

1 Introduction

The quality of database design is a decisive factor for the
efficiency of a database application. A database designer
has to use a high level of abstraction for mapping his real-
world application onto an entity relationship model. The
designer has to learn the model and the constraints to use
it.

Natural language can be exploited in order to overcome
this bottleneck. From our point of view a user-friendly
design system has to have two supporting tools: firstly, a
tool which makes available an interface for obtaining a
natural language description of an application and
secondly, a tool for paraphrasing database schemes in a
natural language way (see also [FloPR85]).

[ColGS83], [TseCY92], [TjoB93] are presenting various
methods dealing with natural language as input for
database design systems. These systems are based on
natural language texts for the requirement specification in
the data base design process. This paper illustrates how
natural language in a dialogue tool can be used for
gathering the knowledge of the designer and how it can
be transfered into an extended entity-relationship model.
The dialogue together with the knowledge base will be
used for drawing to the designer's attention special facts
resulting from the syntactic, the semantic and the pragmatic
analyses. The tool makes suggestions for completing the
design applying the knowledge base.

* This work is supported by DFG project TH 456/2-2.

In the database design project RAD ([ThaA94]) we have
implemented a rule-based dialogue design tool for getting
a skeleton design on the basis of the extended entity-
relationship model HERM [Tha91]. The designer
describes the structure of an application in German. The
specification and formalisation of semantic constraints is
one of the most complex problems for the designer. Within
natural language sentences the designer uses semantic
constraints intuitively. For that reason, within the natural
language design process we focus on extracting
comprehensive semantic information about the domain
from natural language utterances. The results of the
dialogue are available in the internal DataDictionary for
the other tools (grahical interface, integrity checker,
strategy adviser,...) of the system. Within the RAD system
the designer can use these results for various forms of
representation, €.g. a graphical representation. The
skeleton design with the semantic constraints is also the
basis for further semantic checks, e.g. of key candidates,
and will restrict the search areas in the checking process.

For the theoretical and pragmatic analyses of the language
used within the design dialogue it was necessary to do
this with a practical example. So we decided to choose
the field of library - its tasks and processes. As a method
of obtaining the linguistic corpus we carried out a number
of interviews with librariens and library users. The
extracted corpus was analysed statistically to obtain the
frequency of word forms and the occurence of synonyms
and homonyms. Starting from this domain we developed
relations to other domains (see [BucD94]).

The dialogue tool will be implemented in PROLOG.

2 The structure of the dialogue tool

For the acquisition of designer knowledge we decided to
choose a moderated dialogue tool. A moderated dialogue
can be seen as a question-answer-tool. The tool asks for
input or additional questions considering the acquisition
of database design information. These questions are frames
which will be updated in the dialogue process. The
designer can formulate the answer in natural language

13

;];mzzl e alyses of inter- domain-
guag syntactic analy . mediate pragmatic dependent
) analysis semantic inter- >

. y roles formalism . HERM

input pretation description
domain HERM
model model

Fig. 1. Two-stage Dialogue interpretation tool
sentences. Each sentence will be analysed syntacticallyas 2.2 Semantic analysis

well as semantically and then transformed into HERM
stuctures.

Within the dialogue the results of the syntactic, semantic
and pragmatic analyses will be used for controlling the
dialogue. That means, if an incomplete designer input is
received a question will be initiated. Inputs are incomplete
if either semantic roles are not complete or the newly
generated design model is incomplete. Semantic roles are
filled within the semantic analysis. The pragmatics realizes
the transformation of the natural language sentences into
HERM structures.

2.1 Syntactic analysis

The syntactic analysis of the natural language input of the
designer is based on a GPSG parser (Generalized Phrase
Structure Grammar) [Gaz85]. GPSG belongs to the family
of Unification Grammars. A basic feature is the
introduction of ID/LP Rules (Immediate Dominance/ Li-
near Precedence). Immediate Dominance determines the
immediate dominance of a root over its followers, Linear
Precedence determines the order in which the follower,
e.g. syntactic categories are to be processed.

The parser implemented in our tool uses the Earley
algorithm [Ear70].

Interpreting the semantics of the designer input we are
using the model of Bierwisch [Bie88] which inserts a
semantic level between the syntax level and the conceptual
level (HERM data model).

We assume that verbs form a central part in defining the
meaning of sentences and the relationships between parts
of sentences. Basically they describe actions, processes
and states. We have tried to find a classification of verb
semantics that can be applied to all verbs in the German
language. Our aim was to keep the number of classes small
and fairly general but large enough to identify their function
in a sentence correctly. This classification (see also
[BucD94]) is, at this stage, independent of the domain to
be analysed (cf.Fig.2).

To identify the meaning of sentences we have used the
model of semantic roles. Verbs of a special class imply
the occurence of semantic roles. The units in a sentence
or an utterance are seen to fulfil certain roles. Our role
concept is mainly based on the hypothesis by Jackendoff
[Jac83] and consists of the following roles which refer to
the objects partaking in the action: Cause, Theme, Result/
Goal, Source, Locative, Temporal, Mode, Voice/Aspect.
The following example illustrates the role concept.

verbs

static dynamic
verbs copulative stative epistemic catalysts
of verbs verbs verbs verbs
osition
p) transport verbs of event
(locative) .

/I\wlon verbs

change verbs perception verbs

of of utterance verbs

ownership movement (communication)

Fig.2. Verb classification

14

Example. "The user borrows a book with a
borrowing-slip'

results of the semantic analysis:

verb type: change of ownership
subject: the user

object: a book

locative: r

temporal: e

mode: with a borrowing-slip

(* an additional question will be initiated)

2.3 Pragmatic interpretation
2.3.1 Obtaining a skeleton design

The transformation of the structure of natural language
sentences into EER model structures is a process which is
based on beuristic assumptions, €.g., we assume that all
nouns are entities. [TjoB93] illustrate a large number of
such heuristics in an informal way. If we accept these
heuristics then we can formalize them using contextfree
and contextsensitive rules.

Example.
/* all nouns are transferred into entities */
N(X) — entity(NAME,X).

/* sentences with the main verb ‘have’ are transferred into
an entity (the subject) and the according attribute (the
object of the sentence) */

N(X),subject (X),V(haben) ,N(Y),6 ocbject (Y)
—>entity(X),attre(X,Y).

Considering the results of the syntactic analysis of a natural
language sentence we can describe these results using a
tuple structure.

Example. The tuple structure of the sentence ‘the user
borrows a book with a borrowing-slip’ is:

S(NP(DET(the) ,N(user)),
VP (VP (V(borrows),NP(DET(a),N(book)),
PP(PRAEP(with),
NP(DET(a),
N(borrowing-
slip)))))

The tuple can be seen as a language which can be described
by a grammar, e.g. terminals are N, DET or VP. The
HERM model can also be seen as a language if predicates
are used to describe the elements of the model. Now we
can handle the transformation as a compiler process using
an attribute grammar. The heuristics are integrated into

grammar rules as well as into semantic rules. A compiler
for this purpose has been developed. The following
example illustrates how the transformation is realized.

Example. Transforming the utterance ‘at the library’ into
an entity named ‘library’ using a contextfree grammar
formalism. (The small letters identify nonterminals, and
the capital letters are terminals. ‘$x’ is a variable.
‘assert(X)’ asserts ‘X’ to the model description.)

tuple structure:
S(PP(PRAEP(at),NP(DET(a),N(library))))

grammar rules:
start — S(phrase)

phrase — PP(pp_phrase)

pp_phrase — PRAEP($x),NP(np_phrase)
np_phrase — NP(det_phrase,n_phrase)
det_phrase — DET($x)

n_phrase — N($x) {assert(entity($x))}

The advantage of this approach is that we can define
actions at the word category level as well as at the sentence
phrase level. So, it is possible to define database design
actions, e.g. when considering the occurence of a genitive
nominal phrase connected with another nominal phrase
in the sentence. The heuristics underlying is that a genitive
nominal phrase has an attribute function conceming the
corresponding nominal phrase.

We are using a dialogue in which the designer can
formulate a description of an application in several
sentences. For that reason we have to deal with the problem
of inserting a new part of a design into an existing design.
We have implemented a two-step approach. Firstly, a
seperate design will be generated from the sentence of the
user. Secondly, the design description will be updated
inserting the new design part. Common heuristics are the
basis of the updating process (cf. [Diis94]).

2.3.2 Extracting information on behaviour

In most cases a database will be used for complex
processes. In order to be able to maintain the database we
have to define transactions. (For the reasons of using
transactions see [Tha94:114].) The behaviour of the
database can help to make the system more efficient and
faster and thus to save time and money.

Behaviour can best be gained from a knowledge base.
One form of presenting the domain is by classification of
the processes involved as a conceptual graph. The
knowledge base will be used for gathering relevant
processes of the application and is based on the results of
the semantic analysis. Each application can be classified.
Lending processes are identified by verbs of the class

15

work flow

W

material flow immaterial flow

N

reversible irreversible
hiring lending renting ... selling passing on

Fig. 3. Part of the process classification

‘change of ownership'. The library processes or the ‘rent
a car’ processes (cf. Fig. 3) belong to this group.

The lending process as a complex process can be further
classified into a number of pre and post processes (cf.
Fig. 4). These processes are included in the knowledge
base. If a user input contains one of these processes a
possible classification will be defined and an action within
the dialogue will be initiated.The pre and post processes
in Fig. 4 can be further subdivided into processes which
are summarized in the above classification. Lending thus
requires the processes of obtaining a user card, updating
the user card if need be checking whether the book is held
and available, filling in a borrowing-slip and signing it.

Example. The sentence ‘the user borrows a book with

borrowing-slip’ implies the following general questions

(borrowing has the synonym lending):

preprocesses:

1) Is the process ‘obtaining’ situated before
‘lending’ ?

2) Is the process ’‘registration’
before ‘lending’ ?

main processes:

3) Is the process ‘document exists’ situated
before ‘lending’ ?

4) Is the process ’‘document valid’ situated
before ‘lending’ ?

situated

postprocesses:

‘5) Is the process ‘returning’ situated after
‘lending’ ?

The designer has to give correct answers.

3 Conclusions/ Future Topics

We have presented a dialogue tool consisting of a syntax
analyser, a semantic role definer and a pragmatics
interpreter. The dialogue tool gathers information on
structure, semantics and behaviour of the prospective
database. By means of transformation rules this
information is mapped onto the HERM model.

The advantage of the dialogue tool is that the designer
can describe the requirements of the database system in a
natural language (German) and thus can specify the
knowledge of a domain in a natural way. This knowledge
is then employed for gathering database constructs such
as entities, attributes, cardinalities, constraints, etc.

The efficiency of the database greatly depends on the exact
interpretation and transformation of the natural language
input analysis. The accuracy, on the other hand, depends
on the size and complexity of the grammar used and the
scope of the lexicon.

Work in future has to concentrate on extending the
grammar to comprise all types of sentences and other
hitherto excluded parts of grammar and on ways of
steadily increasing the lexicon. For reasons of integrity
we cannot leave updating of the lexicon to the chance
designer who may have no linguistic training. Much work
will have to go into completing and maintaining the
linguistic background before it can finally be used for
any type of systems design.

A second future topic is the application of the linguistic
knowledge for acquiring further semantic information of
the prospective database, e.g. acquiring key attributes or
functional dependencies.

Acknowledgements

We are grateful to Bernhard Thalheim for his guidance
and support of our work and for his helpful criticism and
suggestons.

obtaining registration lending returning
document [| document | | object — object contract object
exists valid exists available completed transferred

Fig. 4. Part of the knowledge base: pre, main and post processes of the act/borrowing/ lending

16

References

[Bie88] Bierwisch, M., Motsch, W., Zimmermann, I. :
Syntax, Semantik und Lexikon. Berlin,Akademie
Verlag, 1988
[BucD94] Buchholz, E., Diisterhoft, A.:
The linguistic backbone of a natural language
interface for database design. In: LLC 7/94,
Oxford University Press
[ColGS83] Colombetti, M.; Guida, G.; Somalvico, M..:
NLDA: A Natural Langiiage Reasoning System
for the Analysis of Data Base Requirements. In:
Ceri, S. (ed.): Methodology and Tools for Data
Base Design. North-Holland, 1983
[Diis94] Diisterhoft, A.:
Zur Vorgehensweise bei der pragmatischen Inter
pretation natiirlichsprachiger AuBerungen
Im Datenbankentwurf, Preprint 4/94,
Fachbereich Informatik, Universitit Rostock
[Ear70] Earley, J..
An efficient context-free parsing algorithm.
Comm. ACM13:2, §.94-102
{Eic84] Eick, Ch.F.
From Natural Language Requirements to Good
Data Base Definitions - A Data Base Design
Methodology. In: Proc. of the Intemational
Conference on Data Engineering, pp.324-331,
Los Angeles, USA, 24.-27.4.1984
(FloPR85] Flores, B.; Proix, C.; Rolland, C.:
An Intelligent Tool for Information Design.
Proc. of the Fourth Scandinavian Research
Seminar of Information Modeling and Data Base
Management. Ellivuori, Finnland, 1985
[Gaz85] Gazdar, G.; Klein, E.; Pullum, G.; Sag, I.:
Generalized Phrase Structure Grammar.
Havard University Press Cambridge, Mass. 1985
[GolS91] Goldstein, R.C.; Storey, V.C.:
Commonsense Reasoning in Database Design.
Proc. of the 10th Intemational Conference on
Entity-Relationship Approach, San Mateo,
California, USA, 23.-25.0ctober 1991, pp.77-92
[Jac83] Jackendoff, R.:
Semantics and cognition. MIT Press,
Cambridge Mass., 1983
[Tha91] Thalheim, B.:
Intelligent Database Design Using an Extended
Entity-Relationship Model.
Berichte des Fachbereiches Informatik 02-1991,
Universitit Rostock.
[Tha94] Thalheim B.:
Fundamentals of Entity-Relationship Modeling.
Springer Verlag 1994, Forthcoming
[ThaA94] Thalbeim, B., Albrecht, M., Alts, M.,
Buchholz, E., Diisterh6ft, A., Schewe, K.-D.:
Die Intelligente Tool Box zum Datenbank

entwurf RAD. Workshop
"Benutzerschnitstellen,17.-19. Mirz1994,
Kassel

[TjoB93] Tjoa, A.M,, Berger, L.:
Transformation of Requirements Specifications
Expressed in Natural Language into an EER
Model. Proceeding of the 12thInternational
Conference on ER-Approach, Airlington, Texas
USA,Dec. 15-17th, 1993

17

What’s in a Federation?
Extending Data Dictionaries with Knowledge Representation Techniques

Wolfgang Benn
Chemnitz University of Technology * Management of Data
P.O. Box 964 * D-09009 Chemnitz
benn @informatik.tu-chemnitz.de

1. Introduction

Databases and knowledge represéntau'on languages
have a rather different view upon data: knowledge rep-
resentation languages describe a universe of discourse
in a taxonomy and allow a user to ask epistemic ques-
tions against the relationships between concepts and
roles. However, no data structures, data locations, nor
any information about the existence or availability of
data can be found in a taxonomy -- even not if it in-
cludes an assertion that describes a particular data
item.

Relational databases provide users with schemata.
Schemata describe in detail the data structures of sets
of persistent data items. Data dictionaries, included in
these systems, tell about data existence and its avail-
ability. Anyway, these tools do not provide the entity
view, relationships between entities are merely
implicit, and no question about the universe of dis-
course that is behind a schema will get an answer.

Object-oriented databases provide users with class hi-
erarchies as schemata. They support the entity view --
is-a as well as part-of relationships are explicit. Never-
theless, an information about the universe of discourse
is not given as well.

In a federation of systems -- databases and
applications, for instance -- the situation gets worse.
Databases may be heterogeneous in their modeling
technique: some will follow the object-oriented the
majority certainly follows the relational paradigm.
How does a user get to know what data is available in
a federation, if he wants to build a new application?
How does that user get to know how he may access a
particular data item? How does he kmow that the
selected data item is semantically correct concerning
the context of his application?

If he can access a federated data dictionary, it will pro-
vide him with the technical information about the data
in a common data model -- similar to the global con-
ceptual schema of a distributed database. If such a tool
does not exist, the user must read all available
schemata from all available federation components
(i.e., he must know about all languages, data models,
and dialects that the local components of the feder-
ation individually use).

In the remainder of this paper we will briefly introduce
a module that coordinates a federation of systems and
that hosts a central data dictionary. It is the module,
which we will extend to provide users with an entity
view upon the information available in a federation.
We introduce the logical architecture of a prototypical
implementation of this module in section 2 and de-
scribe some extensions that we made in section 3. In
section 4 we specify some ideas of the mentioned ex-
tension, conclude in section 5 and give some literature
in section 6.

2. The Federal System Manager

The Federal System Manager (FSM) is a module that
coordinates a federation of autonomous Systems.
These systems can be applications or services like
databases, which may link to the FSM to form a
federation for some particular tasks. Afterwards they
can leave the federation and run again as autonomous
systems. This idea is rather similar to the concept of
multi-agent systems.

The FSM performs a minimum of three tasks: The first
one is to run a protocol that enables the linkage
process and guarantees a negotiation of autonomy as-
pects to the components, if these want to join or leave
the federation. Second, the FSM must provide a uni-
form view upon all information that is available to ap-
plications of the federation through a so-called Com-
mon Data Model (CDM). Third, it must support an ex-
change of information, i.e., data types and data itself,
between members of the federation. We will detail
these tasks and concentrate on the second one.

Comparing an FSM with the Common Object Request
Broker Architecture (CORBA) [1] the FSM is an
object broker that looks at databases as service pro-
viding objects and applications as clients that request
these services. Commonly known services from data-
base components are storage, retrieval, update, etc.

Moreover, the FSM is an object itself! It provides ser-

vices like data and type exchange. It contains a Fed-
eral Data Dictionary (FDD) that allows a user to re-

18

irieve the information contents of the actual federation
under several aspects. It is our aim to extend this
Federal Data Dictionary with knowledge
representation techniques to better support users in
their retrieval than before.

2.1. The FSM Prototype

The currently implemented FSM prototype has its
roots in an ESPRIT project, finished in 1991
[2,3,4,5,6]. The prototype mainly follows the reference
architecture for interoperable systems given in [7] and
includes a repository according to the Information
Resource Dictionary Standard IRDS [8].

This standard defines a four-layer architecture with

(top down)

* a meta-meta layer that describes the model of the
meta layer descriptions -- which is in our case the
Common Data Model of the FSM, a frame work that
basis on the Abstract Data Type (ADT) idea --,

* a meta layer where we find the description of sche-
mata -- which is in our case a description of the fed-
eration components data models --,

*» a schema layer where the data descriptions are lo-

cated -- which is in our case the data types that are

defined in schemata of databases or in type declara-
tions of applications --, and

an application data layer where we finally find the

application data itself.

The Meta-Meta Layer

To enable the description of schema descriptions we
implemented a common data model.

In the literature we found many different approaches
to implement a CDM -- the approach most often used,
however, was the object-oriented. Thus, we asked our-
selves, what is the kemel idea of the object-oriented
paradigm that makes it suitable for a CDM. We found
out that it probably is the idea of Abstract Data Types.

Thus, we implemented a frame work, which is actually
not a real data model but a tool box [2]. It allows a
user to describe the structure and semantics of those
elements, which he uses to describe a schema, similar
to the ADT concept (see next paragraph).

The CDM that we implemented is very similar to the
Interface Description Language (IDL) of the CORBA
specification [1] -- because its purposes are rather
similar. IDL is a language, which describes object ser-
vices in an intermediate way and the CDM describes
entities (application objects) in an intermediate way.

An IDL description is mapped into a real
programming language and the object services are

available for all programs written in this programming
language. Application objects described in our CDM
are (under certain conditions) transformable into all
data models that are represented in the FSM,

The Meta Layer

An extension of the IRD standard was made for the
meta layer. If the FSM supports an exchange of data
between components, it must be able to transform data
between the different individual data descriptions.
These descriptions follow type or schema declarations,
which use data model elements. Thus, our meta layer
has to include a suitable sub-set of the component data
model for each involved component. Moreover, it
must include some rules that guide the transformation
of entities between these data model sub-sets.

However, the description of a data model sub-set is
somewhat more complex than the description of a
schema. While a schema merely consists of data struc-
tures, a data model usually includes data types and
data type semantics. The meta layer of our FSM in-
cludes both (the assignment of a set of operations to a
data type that makes up the type’s semantics in the
data model of a component is currently under
implementation).

To enable the exchange of data and schema
information between components the system
administrator of each federation component defines
the relevant structural part of his component data
model types with the CDM types and assigns some
procedures that make up the semantics of these data
types. He inserts the necessary data model knowledge
into the meta layer using the meta-meta layer ele-
ments.

For instance, from an object oriented data model the
administrator defines the structural parts of the
concept CLASS and assigns at least one particular
routine that performs inheritance similar to his
individual data model.

This information is provided through an interface,
which is the so-called Data-Model-Profile. It is an
ASCII file with a particular syntax that is parsed. Then
the information is kept in a knowledge base -- the
FSM Meta Knowledge Base.

The Schema Layer
Databases, as components of a federation, use
database schemata. Applications use data type

definitions to declare their application types.

The FSM reads these schemata and declarations and
interprets the used data types through the information

19

of the meta layer. Application entities are transformed
into entities of the CDM and then -- for storage
purposes -- transformed into entities of a database data
model.

The entity information in CDM-format is stored in the
Federal Data Dictionary (FDD) for retrieval purposes.

The Application Layer

Finally the data that comes from applications is stored
in databases that have joined the federation, that are
represented through meta-information in the Meta
Knowledge Base, and that are willing to perform the
storage process after a negotiation of their autonomy
rights.

Of course, the data is not stored as CDM-typed data
but is typed according to the data model of the
involved database system. The interpretation of binary
data runs the same way as the transformation of type
information: It goes from the data model of the
application towards the CDM and from the CDM to
the database data model, and vv.

3. Extensions of the FSM Prototype

Since 1991 the FSM prototype has been completed by
some student’s work.

The Federal Data Dictionary of the prototype
contained information about data type declarations,
the types of application entities, and the structure of
these entities -- as well, access rights were included. It
did not include any technical information about the
availability of entities or schemata.

We extended the FDD and it now contains technical
information about the federation components. The
meta layer includes information about the technical
system that hosts the application or the database
system. The schema layer includes information about
the technical availability of entities [9].

The lack of a docking mechanism and a protocol to
negotiate autonomy was another problem of the
original FSM prototype. It was a static system with
two applications, a database system and the FSM with
hard wired mechanisms to read data type declarations
-- database schemata could not be read, nor was it
possible to link another database system with the FSM.

Now we have implemented a link mechanism that
generalizes the old one [10]. We now use a FSM-Bind
module that binds a component -- either a database
system or an application -- if it includes our FSM-
Bind-Agent.

The FSM-Bind-Agent acts as a client to the FSM-Bind
module, which is the server, and performs the link pro-
cess between FSM and component. It runs an imple-
mented protocol for start-up and shut-down situations
and uses the Remote Procedure Call (RPC) technique.

After linkage the FSM-Bind-Agent passes control to a
so-called FSM-Agent, which performs the information
exchange and the retrieval of schema information via
the Remote Data Access (RDA) protocol.

What is still missing, is a user friendly retrieval
facility that completes the Federal Data Dictionary.
We will describe our ideas in the next section.

3.1. Extensions of the FDD

Data dictionaries offer technical information to users -
- and exactly this can be expected from our Federal
Data Dictionary as it is currently implemented. If a
user wants to build a new application he looks into the
FDD and looks up some data structures that he wants
to re-use. Then he includes the chosen data structures
into his new schema (the FSM provides some
commands to do so) and runs his application.

This user is unable to check whether his new schema
violates the semantic integrity of the universe of dis-
course of the actual federation because he can not ask
the FDD to present him semantic relations between
entities.

We wish to provide such a user with an extended Fed-
eral Data Dictionary, which shows the contents of a
federation from various levels of abstraction. If this
extended data dictionary has a graphic interface the
user will use a mouse to easily request the change of
levels. Which are these levels?

Taxonomy Level

The highest level presented, should be a taxonomy
upon the universe of discourse. It could be the union
of all schemata (and may be data type declarations of
applications) of local database components, which we
previously transformed into the abstraction level of a
concept language. This level would represent the data
of a particular federation without any technical details.
Here the user could look-up the real-world context of
an entity and might ask questions about the relation-
ships between entities. It is the level that KL-ONE like
languages usually offer to users with their T-Box.

Concept Languages separate between the terminologi-
cal (T-Box) and assertion knowledge (A-Box). The
task, which we have to perform is to abstract the tech-
nical information from schemata and data type

20

larations to concepts of concept languages. In [11]
e find a theoretical basis that allows us to express
jatabase schemata with concept languages.

Moreover, the authors show that classification is then
ilable for entities of schemata -- and we found out
t the implementation of a classificator is
risingly supported through an algorithm, which we
within the FSM to detect data type intersections
types from different data models. This algorithm
ollows perfectly the above mentioned steps for a
sification of concepts.

Anyway, if we make the is-a and part-of relations of
ptities from schemata explicit and suppress the
ical information, then we can ask questions
against a schema similar to the questions against a

The implementation of this level may use intermediate
Janguage representations that follow the idea of at-
tributed trees. This model allows us to determine the
degree of entity detail information, which we want to
present, by cutting the tree at a certain level. The in-
formation above the cut is presented as concept. The
fest is hidden until requests from other levels of our re-
frieval interface force it to become visible.

Apparently, we address some open questions if we
want to extend a data dictionary with knowledge
epresentation features:

ow do we find a way to reconstruct the entity view
from relational schemata with normalized relations?
Any automatic evaluation of foreign keys -- which is
ihe only data model construct that can be used to ex-
press sub-part relationships, set-inclusions, and entity-
inclusions within the relational data model -- finally
depends on the support of a human. A machine may
solely hypothesize is-a relations between entities.
Thus, our entity re-constructor can not be a completely
automatic component. It has to include a dialogue
tomponent to keep in touch with a human expert, but
itmay be a component that is able to learn.

Ecllema Level

a second level, the schema level, in a detailed
ew, the user should bhave access to the more techni-
al details of entities and should see what attributes an

lity make up, where the information resides within
he federation, whether and when it is accessible for

is level is comparable with an extended Entity-
lationship level where we added attributes about
fa distribution and data availability to the usual

ntation of entities, attributes, and relationships.

We realize this view by an FDD retrieval, because our
directory includes the structure information of entities
in a neutral representation and the information about
the availability of these entities.

Syntax Level

Finally, the user may get what he always got from
databases: the pure schema information. If he asks for
this, he will get an excerpt of a schema of one or more
particular local components of the federation -- and he
should decide himself whether he would like to
receive this information in the format of a common
data model or in the individual format of the involved

" local federation components.

4. First Steps toward the Taxonomy Level

Concerning the integration of abstract schema rep-
resentations into one taxonomy we did some work in
advance and evaluated an idea, published in [12]. It
proposed the assignment of fuzzy values to
relationships to determine the is-a of an entity.

We took this idea and tried to use probability values
for the integration of different schemata into one -- to
simulate the situation that comes up if we have to
integrate abstracted schemata from components into
one taxonomy. It was a first guess to cope with
modeling heterogeneity.

The basic assumption behind our tests was, that the in-
sert of knowledge into a taxonomy is an evolutionary
process and that we ask "is B a A or a C” and not
"how probably is Ba A and a C”.

We defined a value Cy (E;, E;) for the correctness of a
is-a relationship between two entities E; and E; in a ta-
xonomy for the federation. Such a value is assumed to
be assigned to each is-a relationship within that taxo-
nomy. Similar to Cr we defined a Cs (E;, E;) as a value
for the correcmess of a is-a relationship in a local
schema.

Next we said that St (E,) and Sg (E,) are the sets of all
super-concepts of a concept in the taxonomy and an
entity in a local schema.

Finally, we defined two functions, which were neces-
sary to calculate the probability values during the inte-
gration process.

The first function was called INIT and initialized an

initial taxonomy with the value 1 for all is-a relation-
ships: Cr (E;, Ey) := 1.

21

The second function included a case statement and
was called CALC. It calculated the initialized values
according to the new schema. The first case, C,, was
used if a relationship was found in a schema -- it
corresponds with the INIT function for the taxonomy -
- and set Cg (E;, E)) := 1. We assume that the designer
of the schema did a good and correct work.

The second case, C,, was used, if we find a
relationship within the schema but not within the
taxonomy. We insert the relationship into the
taxonomy and give it the value Cr (E,E) = Cs (EE)
+ card (St (Ep = Ss (E)).

This approach seems to be correct because we can not
guarantee that the taxonomy was correctly initialized
with relationships. Moreover, an insertion of a new re-
lationship affects the probability value of another one
because there must be a reason why a particular appli-
cation domain needs this new relationship. It may be,
that the already existing relationships do not have the
importance, which we have expected.

Finally there is the case C;. In this case we see a rela-
tionship within the taxonomy but miss it in a schema.
We interpret that relationship as possible but
unnecessary” within this application domain and
“insert” it into the schema with Cs (E,E) := Cr (E,E)
+ card (St (E)).

Then we made three assumptions:

a) The increase of probability of one particular rela-
tionship is given by its existence in schemata and
causes a decrease of probability for those
relationships, which are often missed.

b) The results of calculations about the overall proba-
bility for a particular relationship is included into the
taxonomy.

c) Results are calculated through the geometrical
mean of the two probability values from the taxonomy
and from a schema.

With these assumptions and formulas we tested the in-
tegration of six schemata into a taxonomy, which was
initialized with one relationship "B is-a A”. Four of
these schemata included the relationship "B is-a A”
(we call them the A-type schemata). Two included "B
is-a C" and not "B is-a A” (we call these the C-type
schemata).

In a first test, we inserted a C-type schema first and af-
terwards both relationships had the same value (0.71)
in the taxonomy. A four-times insert of the A-type
schemata brought the value of the B is-a A” relation-
ship up to 0.98 and the value of "B is-a C” fell down
to 0.18 -- similar to the predicate "insignificant” or
"incorrect”. A final insert of a C-type schema,

UUWEVCL, BAVE d NEW Ddlance 10 poln vaiues, which
was (.69 for the "B is-a A” and 0.42 for the "B is-a C”
relationship. '

A second test gave surprising results: We inserted the
two C-type schemata and then four times the A-type
schemata. This gave a high value to the "B is-a C”
relationship first -- the balance was (.5 for "B is-a A”
and 0.84 for "B is-a C” -- and a final value of 0.96 for
"B is-a A” and 0.37 for "B is-a C".

While the first test showed that the late insert of an ap-
parently insignificant relationship makes the value sys-
tem unstable, the second test showed that an early
insert of the two C-type schemata prevents the al-
ternative relationship to fall down to an "insignificant”
valuation.

Anyway, both value calculations were highly sequence
dependent, and we suspected the second assumption as
the reason for it. Thus we tried again without this as-
sumption. We inserted into C; a variable: V (E))
counts the number of schemata without a particular
relationship and the calculation C; changed to
Cs(EE):=1+ (V(E)+1).

This does not change much and we were stuck to the
question: Is the insert of knowledge really an evolu-
tionary process or is it correct to calculate probability
values from the arithmetic mean of all values from
schemata?

5. Conclusion

The proposed extended data dictionary gives a twofold
benefit. At first, a user who wants to build a new
schema for an application in a system federation can
check which entities already exist, which of them he
can re-use within his application, and which one he
has to add or modify.

Second, an administrator can test the correctness of an

" existing schema against the universe of discourse. He

can check the completeness of relations between enti-
ties by looking-up the taxonomy, where he would find
the collection of all relationships between entities --
and eventually a probability value of the necessity or
reliability of an individual relationship.

6. Literature

[1] The Common Object Request Broker: Architecture
and Specification, OMG Document Number 91.12.1,
Revision 1.1, Draft

[2] W. Benn, G. Junkermnann, H. Kalweit, Ch. Kor-
tenbreer, G. Schlageter, X. Wu: The Conceptual Ob-

22

Jject Manager Document, University of Hagen, Com-
puter Science Report N° 99, 1990

[31 W. Benn, Ch. Kortenbreer, X. Wu: Towards Inter-
operability: Vertical Integration of Languages with a
KBMS, GI-Fachtagung “Datenbanksysteme in Biiro,
Technik und Wissenschaft” (BTW 91), Springer-Ver-
lag, 1991

[4] W. Benn: KBMS Support for Multiple Paradigm
Applications, in [16]

[5] W. Benn: KBMS Support for Conceptual
Modeling in Al, 3rd International Conference on Tools
for Artificial Intelligence, 1991

[6] W. Benn, Ch. Kortenbreer, G. Schlageter, X. Wu:
On Interoperability for KBMS Applications - The Ho-
rizontal Integration Task -, 8 th Intl. Conference on
Data Engineering, Phoenix, AZ, 1992

[71 A.P. Sheth, J.A. Larson: Federated Database Sys-
tems for Managing Distributed, Heterogeneous, and
Autonomous Databases, ACM Computing Surveys
(1990) 3

[8] DIN 66 313, Rahmenangaben fiir Systeme zur Ver-
waltung von Informationsrecourcenverzeichnissen,
DIN Deutsches Institut fiir Normung e.V., Berlin,
1992 (same as ISO/IEC 10 027)

[9] J. Hunstock: Erweiterung einer Wissensbasis zur
Realisierung von universellem Polymorphismus in fo-
derativen Systemen um technische Informationen auto-
nomer Systemkomponenten (Extending the Meta-
Knowledge Base of the FSM by technical information),
thesis for diploma, Chemnitz University of
Technology, 1993

[10] M. Schone, S. Herold: Konzeption und Imple-
mentierung eines Protokolls und zugehdriger System-
komponenten zur Integration von Datenbanksystemen
in einer Foderation (Design and implementation of a
protocol for the integration of database components
into a federation), thesis for diploma, Chemnitz Uni-
versity of Technology, 1994

[11] S. Bergamaschi, C. Sartori: On taxonomic re-
asoning in conceptual design, ACM TODS (1992) 3

[12] P. Fankhauser, M. Kracker, E. Neuhold: Semantic
vs. Structural Resemblance of Classes, ACM SIG-
MOD Record 20 (1991) 4

23

Do we need the closed-world assumption in knowledge
representation?

Ullrich Hustadt*
Max-Planck-Institut fiir Informatik
Im Stadtwald, D-66123 Saarbriicken

e-mail hustadt@mpi-sb.mpg.de

1 Introduction

Database systems and knowledge representation sys-
tems represent and reason about some aspect of the
real world. In both it is common to separate the
two functions of representation, i.e. describing the
conceptual scheme and the actual data, and compu-
tation, i.e. answering of queries and manipulation of
data.

The database management system of a database
system provides a data definition language to de-
scribe the conceptual scheme. The data definition
language is used to describe the database in terms
of a data model. Operations on the database re-
quire a specialized language, called a data manipu-
lation language or query language. One of the most
important data models is the relational model which
describes the world in terms of atomic values and re-
lations on the set of all atomic values. Data manip-
ulation languages of the relational model comprise
the relational algebra, and the domain and tuple re-
lational calculi. The object-oriented model supports
a more elaborated description of the world by allow-
ing complex objects, i.e. objects constructed using
record formation and set formation, classes, i.e. ab-
stract data types describing methods, which are op-
erations to be performed on the objects, and class
hierarchies.

The data manipulation languages of these data
models are based on the following assumptions.

The closed-world assumption
which says that all information that is not true
in the database is considered as false.

The unique-name assumption
which says that two distinct constants (either
atomic values or objects) necessarily designate
two different objects in the universe.

The domain-closure assumption
which says that there are no other objects in the
universe than those designated by constants of
the database.

These assumptions are important to understand the

way computations are performed in databases.
Knowledge representation formalisms are aimed

to represent general conceptual information and are

*Acknowledgments: This work has been supported
by the German Ministry for Research and Technology
(BMFT) under grant ITS 9102 (Project Logo). Respon-
sibility for the contents lies with the author.

typically used in the construction of the knowledge
base of a reasoning agent. A knowledge base can
be thought of as representing the beliefs of such
an agent. One of the most prominent knowledge
representation formalisms is KL-ONE [Brachman and
Schmolze,1985] which has been used in the construc-
tion of natural language processing systems.

The knowledge representation language of KL-ONE
and all it’s derivates can be considered as a subset
of first-order logic with equality. With respect to
describing structural properties of objects and con-
ceptual schemes they are more expressive than the
data definition languages corresponding to the rela-
tional or object-oriented model.

In the late eighties inference in KL-ONE was shown
to be undecidable [Schmidt-Schauss,1989]. Since
then the emphasis in research has been on devel-
oping and investigating systems that are computa-
tionally well behaved, 1.e. are tractable or at least
decidable [Brachman et al.,1991; Donini et al.,1991;
Buchheit et al.,1993]. As a result many commonly
used knowledge representation languages have re-
stricted expressiveness and are in their current form
no longer suitable for natural language applications.
They are still more expressive than data definition
languages, but the question can be risen whether
there is an application needing this additional ex-
pressive power.

Nevertheless, data manipulation languages and
query languages of knowledge representation for-
malisms differ considerably in their underlying as-
sumptions.

The open-world assumption
which says that there can be true facts that are
not contained in the knowledge base.

The unique-name assumption
which says that two distinct constants (either
atomic values or objects) necessarily designate
two different objects in the universe.

The open-domain assumption
which says that there can be more objects in the
universe than those designated by constants in
the knowledge base unless a constraint in the
knowledge base prevents this.
That means, that even if the data definition language
and the data manipulation language of a database
management system and a knowledge base manage-
ment system would coincide, the results of data ma-
nipulations would differ.

24

In the next section I will give some examples that
show the usefulness of closed-world inferences in nat-
ural language processing. Thus knowledge represen-
tation languages sticking to the open-world assump-
tion seem to be insufficient for natural language pro-
cessing.

2 Query answering in Natural
Language Processing

In cooperation with the PRACMA Project! (De-
partment of Computer Science, University of Saar-
briicken) we have been developing a suitably ex-
tended knowledge representation system, called Mo-
TEL [Hustadt and Nonnengart,1993], which is in-
tended to be a module of the PRACMA system. The
PRACMA Project [Jameson et al.,1994] is concerned
with the modeling of noncooperative information-
providing dialogues. An example from PRACMA’s
domain is the dialogue between a person S trying to
sell her used car to a potential buyer B. Naturally,
the goals of S conflict in part with those of B.

In the final implementation, the natural language
analysis module of the PRACMA system will use
the semantic representation language NLL [Laub-
sch and Nerbonne,1991] to represent the German-
language input strings. The resulting NCL expres-
sions will be stored in the pragmatic dialogue mem-
ory. Various modules will process the content of the
dialogue memory, the most important one for us is
the comment and question handler. The result of
this module is transfered to the natural language
generator which is responsible for verbalizing NLL
expressions.

NLL contains a first-order logic core with anadic
predicates, generalized quantifiers, plural reference
expressions, and A-abstraction. To fit the pur-
poses of PRACMA the language has been extended
by modal operators.

Suppose the knowledge base of the car seller S
contains declarations defining that vehicles are either
cars or trucks, veh1 is a truck, and veh2 is a vehicle.
This can be represented in NLL in the following
way.

(forall ?x vehicle(inst: ?x) iff

(car(inst: ?x) or

truck(inst: ?x)) (1)
truck(inst: vehi) (2)
vehicle(inst: veh2) (3)

Here veh1l and veh2 are constants, vehicle, car,
and truck are predicate symbols. In NLL argu-
ments of predicates are identified via keywords, e.g.
inst, rather than positions in argument vectors.
Any identifier preceded by a question mark, e.g.
7x, is a variable. In addition we have used the
boolean operators iff (equivalence) and or (disjunc-
tion), and the universal quantifier forall in decla-
ration (1).

Now a question of the buyer concerning which ob-
jects are either cars or trucks is represented in the

'"PRACMA is short for ‘PRocessing Arguments be-
tween Controversially Minded Agents.’

following way.
(7lambda ?x car(inst: ?x) or
truck(inst: ?x)) (4)

An expression of the (?lambda ?x P) denotes the
set of all 7x satisfying P. The answer we have to
infer from the knowledge base is that veh1 and veh2"
both belong to this set.

Obviously, this answer cannot be computed by the
comment and question handler without taking dec-
laration (1) into account. For instance, it is not pos-
sible to find the correct answer to (4) by computing
the answer sets for (7?lambda 7x car(inst: ?x)) -
and (?lambda ?x truck(inst: ?x)) and to return
the union of the resulting sets as an answer.

A question of the buyer concerning which objects
do not belong to the set of trucks is translated into
the following NLL expression.

(?lambda ?x not car(inst: ?x)) (5)

Whereas the closed-world assumption would allow
us to infer that veh1 belongs to this set, the open-
world assumption underlying NLL doesn’t support
this conclusion.

The question whether all cars are vehicles can also

be formulated in NLL. To answer this question we
can try to infer

(forall 7?x vehicle(inst: ?x) if
car(inst: 7x)) (6)
from the knowledge base. The answer to this ques-
tion has to be independent of the constants currently

occurring in our knowledge base. On the basis of
declaration (1), the answer has to be positive.

Now let us assume that the left front seat of veh2
is red. Choosing 1fseat to designate the left front
seat, this can be represented in the following way.

hasPart(inst: veh2, theme: lfseat) (7)
seat(inst: 1lfseat) (8)
hasColour(inst: 1fseat, theme: red) (9)

To answer the question whether all seats of veh2
are red we have to try to infer the following NLL
expression.

(forall 7x

hasColour(inst: ?x, theme: red)

if hasPart(inst: veh2, theme: 7x)
(10)
Because of the open-domain and open-world as-
sumption, the answer to the question cannot be pos-
itive. Although the only seat the car seller knows to

be part of veh2 is actually red, there may be other
seats of veh2 and these seats may not be red.

and seat(inst: ?x))

Intuitively, a positive answer is much more plau-
sible. We would assume that the car seller knows all
the seats of veh2 and knows the colour of every seat
of veh2. It is possible to extend the knowledge base
using number restrictions in such a way that we can
infer a positive answer, e.g.

((= 1) ?x hasPart(inst: veh2, theme: ?x)

(11)

and seat(inst: ?x))

25

declares that veh2 has exactly one seat. decla-
rations (7),(8),(9), and (11} taken together allow
us to answer query (10) positively. However, it
seems to be more natural to extend the language
by an epistemic modal operator in the style of Lif-
schitz [Lifschitz,1991] to solve the problem. For a
description of an extension of the knowledge repre-
sentation language .ALC by an epistemic operator
refer to Donini et al. [Donini et al.,1992].

Suppose our language contains such an epistemic
operator K. Then we have two possibilities to get a
positive answer to the question. The first possibility
is to reformulate the question slightly in the follow-
ing way.

(forall 7x
hasColour(inst: ?x, theme: red) if
K(hasPart(inst: veh2, theme: ?7x)

and seat(inst: 7x))) (12)

Now the question is whether all known seats of veh2
are red and the answer has to be positive. This
approach causes the problem how the natural lan-
guage analysis module should determine the epis-
temic character of question (12) opposed to the non-
epistemic character of question (6).

The second possibility is to add a declaration of
the following form to the knowledge base

not (hasPart(inst: veh2, theme: ?7x)
.and seat(inst: ?x)) if
not K(hasPart(inst: veh2, theme: 7x)
and seat(inst: ?7x))

(13)
This declaration allows to conclude that an object
is either not part of veh2 or not a seat if it is not
known to be part of veh2 and a seat.

Obviously, we are now able to turn our knowledge
base system into a database system either by suit-
ably adding epistemic operators to all the queries or

by adding enough epistemic rules to the knowledge

base. Therefore, the extension of knowledge repre-
sentation languages with an epistemic operator is a
first step to unify the database world and the knowl-
edge base world.

3 Future Work

It is well-known that theorem proving in a first-
order language containing an epistemic operator is
not even semi-decidable. Although the answers to
the example questions presented in the previous sec-
tion seem to be derived easily, there is no hope to find
a correct and complete inference mechanism which
is able to deduce them.

If we need a correct inference mechanism, the only
possibility we have is to restrict the knowledge rep-
resentation language, i.e. we have to identify a de-
cidable fragment of NLL to which we can add an
epistemic operator without loosing decidability.

References

[Brachman and Schmolze, 1985] Ron J. Brachman
and J. G. Schmolze. An Overview of the KL-ONE
knowledge representation system. Cognitive Sci-
ence, 9(2):171-216, 1985.

26

[Brachman et al., 1991] Ron J. Brachman, Debo-
rah L. McGuinness, Peter F. Patel-Schneider, and
A. Borgida. Living with cLAssIC: When and how
to use a KL-ONE-like language. In J. F. Sowa,
editor, Principles in Semantic Networks: Ezplo-
rations in the Representation of Knowledge, pages
401-456. Morgan Kaufmann, San Mateo, Califor-
nia, 1991.

[Buchheit et al., 1993] M. Buchheit, F. M. Donini,
and A. Schaerf. Decidable reasoning in terminolo-
gical knowledge representation systems. Research
Report RR-93-10, Deutsches Forschungszentrum
fiir Kiinstliche Intelligenz, Saarbriicken, Germany,
1993.

[Donini et al., 1991] F. M. Donini, M. Lenzerini,
D. Nardi, and W. Nutt. The complexity of concept
languages. In J. Allen, R. Fikes, and E. Sandewall,
editors, Proceedings of the Second International
Conference on Principles of Knowledge Represen-

" tation and Reasoning, pages 151-162, Cambridge,
USA, April 22-25 1991. Morgan Kaufmann.

[Donini et al., 1992] F. M. Donini, M. Lenzerini,
D. Nardi, A. Schaerf, and W. Nutt. Adding
Epistemic Operators to Concept Languages. In
B. Nebel, C. Rich, and W. Swartout, editors, Pro-
ceedings of the Third International Conference on
Principles of Knowledge Representation and Rea-
soning, pages 342-353, Cambridge, USA, 1992.
Morgan Kaufmann.

[Hustadt and Nonnengart, 1993] U. Hustadt and A.
Nonnengart. Modalities in knowledge representa-
tion. In Chris Rowles, Huan Liu, and Norman Foo,
editors, Proceedings of the 6th Australian Joint
Conference on Artificial Intelligence, pages 249~
254, Melbourne, Australia, 16-19 November 1993.
World Scientific.

[Jameson et al., 1994] Anthony Jameson, B. Kip-
per, A. Ndiaye, R. Schafer, J. Simons, T. Weis,
and D. Zimmermann. Cooperating to be noncoop-
erative: The dialog system pracma. To appear in
the Proceedings of the 18th Annual German Con-
ference on Artificial Intelligence, 1994. Springer.

[Laubsch and Nerbonne, 1991] J. Laubsch and J.
Nerbonne. An Overview of ALL. Technical re-
port, Hewlett Packard Laboratories, May 1991.

[Lifschitz, 1991] Vladimir Lifschitz. Nonmonotonic
databases and epistemic queries. In Proceedings
of the Twelfth International Conference on Arti-
ficial Intelligence, pages 381-386, Sydney, Aus-
tralia, August 24-30 1991. Morgan Kaufmann.

[Schmidt-Schauss, 1989] M. Schmidt-Schauss. Sub-
sumption in KL-ONE is Undecidable. In R. J.
Brachman and H. J. Levesque, and R. Reiter, edi-
tors, Proceedings of the First International Confer-
ence on Principles of Knowledge Representation
and Reasoning, pages 421-431, Toronto, Canada,
May 15-19 1989. Morgan Kaufmann.

Tractable Reasoning in a Universal Description Logic:
Extended Abstract*

Klaus Schild
German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, FRG
e-mail: schild@dfki.uni-sb.de

1 Introduction

Description logics (also called terminological logics
or concept languages) have been designed for the
logical reconstruction and specification of knowledge
representation systems descending from KL-ONE
such as BAck, CLaAssIc, KRZS, and LooM.! These
systems are used to make the terminology of an ap-
plication domain explicit and then to classify these
definitions automatically into a taxonomy according
to semantic relations like subsumption and equiva-
lence. More precisely, automatic classification refers
to the ability to insert a new concept into the tax-
onomy in such a way that it is directly linked to the
most specific concept it is subsumed by and to the
most general concept it in turn subsumes. Termi-
nological knowledge representation systems thereby
support the task to formalize an application in at
least two respects. On the one hand, they urge the
user to isolate the intrinsic concepts of the appli-
cation; on the other hand they may detect hidden
subsumption and equivalence relations between def-
initions or may even detect that a definition is inco-
herent.

A model of the application is then given by associ-
ating special objects of the domain with the concepts
of the terminology. The systems mentioned above
in turn automatically classify these objects with re-
spect to the given terminology and to those member-
ship relations which have been asserted explicitly. In
this case, however, automatic classification refers to
the ability to find the most specific concept the ob-
ject 1s a member of. :

Terminologies comprise two different kinds of
terms, viz. so-called concepts and roles. The for-
mer are intended to represent classes of objects of a
given domain, while the latter represent binary rela-
tions over this domain. Concepts can either be sim-
ple concept names, representing not further specified
classes of objects, or structured by means of a fixed
set of concept structuring primitives. Common con-
cept structuring primitives are concept conjunction
M and universal quantification VR:C over a role R.
Concept conjunction is to be interpreted as set in-
tersection, while the concept VR:C denotes all those

*This work was supported by a grant from the
Deutsche Forschungsgemeinschaft (DFG).

'For a good overview of the so-called KL-ONE family
the reader is referred to [Woods and Schmolze, 1992]; for
KL-ONE itself ¢f. [Brachman and Schmolze, 1985].

27

objects d of the domain for which each object re-
lated to d by the role R is a member of the con-
cept C. Although there exist many other concept
structuring primitives, it is commonly accepted that
these two should be part of each concept language.
In contrast to concepts, roles are often taken to be
atomic, i.e., there are no roles other than role names.
The standard concept language ALC, for instance,
does not comprise any role structuring primitives.
However, in addition to those mentioned above, this
language comprises concept disjunction U, concept
negation — as well as existential quantification 3R:C
over a role R as concept structuring primitives. For
details the reader is referred to [Schmidt-Schauf and
Smolka, 1991].

Definitions are given by associating a concept or
role T' with a concept name (resp., role name) TN.
Such a definition is represented by the expression
TN = T and is called concept and role introduction
respectively. Terminologies are just finite sets of con-
cept and role introductions such that each concept
and role name is defined at most once, i.e., for ev-
ery concept and role name TN there exists at most
one concept or role introduction the left-hand side
of which is TN.

As already mentioned, a model of application do-
main is described in terms of the given terminology.
More precisely, specific objects of the domain and
pairs of objects can be associated with concepts and
roles of the terminology, where these objects are syn-
tactically represented by so-called individual names.
It can either be asserted that an individual name a
is an instance of a concept C or that it is related to
another individual name, say, b, by a role R. Such
assertions are called assertional azioms and are rep-
resented by the expressions a:C and (a, b):R respec-
tively. A finite set of assertional axioms forms a
knowledge base.

From a theoretical point of view, the computa-
tional service provided by terminological knowledge
representation systems can be reduced to answer
queries of the following form with respect to a knowl-
edge base KB and to a terminology 7: a query can
be an assertional axiom or an inclusion ariom of the
form T} C T3, where T} and T are either two con-
cepts or two roles. The meaning of such a query Q
posed with respect to KB and 7 is usually given in
terms of so-called interpretations and models. An
interpretation T consists of a domain AT and a val-

uation V over AZ along with an interpretation func-
tion .Z. The valuation V over AT maps each concept
name to a subset of AT and each role name to a bi-
nary relation over AZ. Individual names, however,
are mapped to singleton sets containing exactly one
element of AZ. The interpretation function ., on
the other hand, just extends V to deal with arbitrary
concepts and roles in such a way that all concept and
role structuring primitives are interpreted properly.
The concept structuring primitives M, L, -, for in-
stance, are to be interpreted as the corresponding
set operations on AZ, while the interpretation of the
concept VR:C is defined inductively as follows: if C*
and RZ have already been defined, then (VR:C)I is
{d € AT :Ve((d,e) € RT),e € C*}.

An interpretation Z is then said to be a model
of the inclusion axiom 77 C T3 just in case that
T C T¥ and, if @ and b are individual names such
that a% is {a} and % is {b}, then Z is a model of
the assertional axiom a:C (resp., of (a,b):R) just in
case that @ € CT (resp., (a,b) € R*). Not very
surprising, an interpretation is a model of KB and T
if it is a model of each of the elements of XB and T .
Now, @ is said to be entailed by KB and 7T, written
KB =7 Q, if and only if every interpretation which
is a model of KB and 7 is a model of Q as well.
Moreover, we say that T, subsumes T} with respect
to 7 if and only if it holds that @ 7 T} C To.

2 Terminological Reasoning is
Inherently Intractable

Unfortunately, answering such queries is in most
cases provably intractable, at least in terms of com-
putational worst case complexity. This applies, for
instance, to the basic inference of KL-ONE, although
originally claimed to be computationally tractable.
In fact, Schmidt-SchauB [1989] proved that there ex-
ists no algorithm at all which decides whether one
concept of KL-ONE subsumes another one or not,
even with respect to empty terminologies.

Moreover, in [Schild, 1993, 94a], , it is proved that
in case of the standard concept language ALC, every
algorithm capable of deciding whether one concept
subsumes another one or not uses more than poly-
nomial time in the worst case if at least one (pos-
sibly recursive) concept introduction is taken into
account. Notably, this result holds no matter which
of the usual kinds of semantics for recursive concept
introductions is presupposed, viz. either descriptive
semantics or least or greatest fixzed point semantics,
as Nebel [1991] called them.

It is also known that even in case of the minimal
concept language (comprising no concept and role
structuring primitives other than concept conjunc-
tion and universal quantification over role names),
there exists no polynomial time algorithm which de-
cides with respect to acyclic terminologies whether
one concepts subsumes another one or not, unless

P = NP [Nebel, 1990].

a
b
| table |

Is b a top block?

Figure 1: A sample blocks world.

Vz.block(z) & z=aVz=0b,
a #b,a # table,b # table,
VzVy.on(z,y) & (r=aAy=0b)

V (z=bAy= table)

E block(b) A ~3z.block(z) A on(z,b)

28

Figure 2: Representing the sample blocks world by
first-order formulae.

3 Model Checking Versus Theorem
Proving

In the previous section, we have seen that, as
Woods and Schmolze [1992] put it, “the surfeit of in-
tractability results seems to have reached its logical
end with the conclusion that practically everything
of any use is intractable &in the worst case).” Re-
cently, Halpern and Vardi [1991] proposed a possible
solution to this very problem of knowledge represen-
tation. As a starting point, they re-examined the
traditional approach to knowledge representation,
going back to McCarthy [1968]. According to this
approach the world to be modeled should be repre-
sented by a finite set of formulae of some given logic,
preferably first-order logic. If a question to be an-
swered is then formulated within the same logic, the
answer depends on whether this formula is a logical
consequence of the collection of formulae represent-
ing the world or not. In other words, it is checked
whether every semantic structure which i1s a model
of each of the formulae representing the world is also
a model of formula corresponding to the question.
We shall illustrate this traditional approach to
knowledge representation by means of an example,
drawn from the famous blocks world. Suppose, for
instance, we would like to represent a blocks world
involving two blocks, say, a and b, where a lies on &
and the latter in turn lies on a table. Suppose, fur-
thermore, we would like to know whether b is a top
block or not. Figure 1 depicts exactly this situation,
while Figure 2 gives its representation in terms of
first-order logic in the traditional way just described.

McCarthy’s approach, however, gives rise to the
problem that the need to represent all facts about
the world in terms of some logic necessitates the
use of very expressive logics such as full first-order
logic. This, in fact, gives rise to difficulties because
it is known that there exists no algorithm at all
which generally decides logical consequence in full
first-order logic [Church, 1936], and this remains
true even when only finite interpretation domains
are taken into consideration [Trahtenbrot, 1963].

At this very point Halpern and Vardi stressed that

Dom {a, b, table}
[dlock] {a, b}
[on] {(a,b), (b, table)}

= block(b) A —=3z.block(z) A on(z, b)

Figure 3: Representing the sample blocks world by
a semantic structure.

in many cases the natural representation of a world
to be modeled i1s a semantic structure rather than
a collection of formulae. If, as in the traditional
approach, queries are represented by formulae of a
given logic, a query can be answered in this case
depending on whether the formula representing the
query is true in the given semantic structure or not.
That is to say, it is checked whether the semantic
structure is a model of the formula corresponding
to the query. The fact that a (closed) formula « is
true in a semantic structure M is usually indicated
by M = a. Resorting to this convention, Figure 3
gives such an alternative representation of the blocks
world considered above.

In many cases this model checking approach has
tremendous benefits, at least in terms of computa-
tional complexity. For instance, checking the truth
of an arbitrary closed first-order formula®? « in a
finite semantic structure fixing the interpretation
of all predicates and constants occurring in « is
known to be decidable using at most polynomial
space [Chandra and Merlin, 1977]. Recall that in
contrast to this, there exists no algorithm at all
which is able to decide whether an arbitrary formula
of this kind is a logical consequence of a finite set of
first-order formulae, even with only finite interpreta-
tion domains taken into account. However, it is also
known that first-order model checking is still at least
as hard as any other problem solvable using at most
polynomial space, hence this problem is still very
hard [Chandra and Merlin, 1977]. Anyway, Halpern
and Vardi’s intention was to forge a new approach
to knowledge representation rather than to give con-
crete instances which allow for tractable inferences.

4 The Model Checking Approach to
Terminological Reasoning

It should be clear that terminological knowledge rep-
resentation, as described in the introduction, is com-
mitted to the traditional approach to knowledge rep-
resentation rather than to the model checking ap-
proach. In [Schild, 1994b] we investigated the con-
sequences of adapting Halpern and Vardi’s model
checking approach to terminological reasoning. It
turned out that even in case of the most powerful de-
scription logic considered in the literature, answering
queries become tractable just by replacing the usual
kind of knowledge bases with single finite seman-
tic structures fixing the interpretation of all primi-
tive concepts and roles (i.e., those concept and role

2This formula should involve no function symbols
other than constants.

a:Block, b:Block, table:— Block,

(a,b):0n, (b, table):on,

a:(—Jon~*:Block), table:(—~3on:Block)
T = {TopBlock = Block M —3on~*:Block}

I=-7- b: TopBlock

Figure 4: Representing the sample blocks world by
an ACC~-KB.

Dom =
[Block] = {a,b}
[on] = {(a,b), (b, table)}

T = {TopBlock = Block M —~3on~}:Block}

I:} b: TopBlock

{a,b,table}

Figure 5: Representing the sample blocks world by
a physical ALC~1-KB.

names which are mentioned somewhere in the termi-
nology or in the query, but which are not defined).

But before engaging into details, have a look at
Figure 4, which shows how to represent the already
familiar blocks world in terms of ALC together with
the inverse of roles ~!, as it would be done tradi-
tionally. Observe, however, that this representation
is incomplete in that it solely states that block a lies
on block b, while the latter in turn lies on the table,
but it is left open whether there is any other block
lying on b or on the table. As a matter of fact, there
is no way at all to give an accurate representation of
our blocks world in terms of ALC, even when aug-
mented by the inverse of roles. This means, in this
case the so-called open world assumption? tradition-
ally made for terminological reasoning, is a nuisance
rather than an advantage.

Figure 5 modifies the just considered representa-
tion in the spirit of the model checking approach. A
finite semantic structure is shown there which fixes
the interpretation of each primitive concept and role
of T, that is, it fixes the interpretation of Block and
on. Such a semantic structure is obviously nothing
but a valuation along with a domain. When taken
together with a domain, the syntactic representation
of such a valuation is called physical knowledge base,
emphasizing the fact that they are intended to re-
place customary knowledge bases. Now, suppose V
is such a physical knowledge base with domain Dom,
T is an arbitrary terminology, and @ is a query.
Then V =7 Q is intended to mean that every in-
terpretation extending V which is a model of 7 is a
model of @ as well, where an interpretation Z is said
to extend a physical knowledge base V with domain
Dom just in case that A7 = Dom and, moreover, .
interprets all those concept and role names handled

®In contrast to the closed world assumption, usually
made for databases, the open world assumption does not
assume that all those facts that are not explicitly men-
tioned (or that cannot be inferred) are taken to be false.

29

by V in exactly the same way as V does.

In [Schild, 1994b] we investigated the computa-
tional complexity of answering such queries with re-
spect to physical knowledge bases in the description
logic U, introduced by Patel-Schneider [1987] as a
universal description logic. This concept language is
universal in the sense that it encompasses all others
considered in the literature, except for those which
comprise nonstandard facilities like defaults, for in-
stance. In addition to those of ALC, this language
comprises number restrictions of the form 32"R:C
and 3™ R:C as well as role value maps of the form
R < S as concept structuring primitives. Number
restrictions restrict the number of role fillers (i.e.,
those objects which are related to an object by a
role), while role value maps impose restrictions on
the fillers of two roles. The concept R < S states
that all fillers of the role R are also fillers of the role
S. In addition, & admits of individual names to oc-
curring in concepts. The role structuring primitives
of U are the identity role ¢, Boolean operations M, U,
— on roles, the inverse R~! of a role, the composition
RoS of two roles, as well as the transitive closure Rt
and the reflerive-transitive closure R* of a role. For
details cf. [Schild, 1994b] or [Patel-Schneider, 1987].
Notably, it is known that there cannot exist any al-
gorithm which is capable of deciding subsumption
between two concepts (or two roles) of U, even with
respect to empty terminologies [Schild, 1988).

The main result of [Schild, 1994b] is that even in
this language V =7 Q can be decided in polynomial
time provided that each of the following conditions
is satisfied:

(a) V has a finite domain and specifies all concept
and role names occurring in 7 and @ except for
those which are defined in T;

(b) Roles are not defined recursively;

(c) Concepts can be defined recursively, but then
they must occur in their definition? positively,
1.e., they must occur in the scope of an even
number of negations, where 3™ R: counts also
as a negation. Moreover, each recursive defini-
tion must be given either least or greatest fixed
point semantics, not necessarily in a uniform
way.
Of course, each of these conditions calls for some
comment. Condition (b) is commonly presupposed
for terminological reasoning, while condition (c) con-
stitutes the most liberal restriction on recursive con-
cept definitions considered in the literature. The
most important condition, however, is the first one
in that it ensures all primitive concepts and roles
to be specified extensionally. This restriction does
make sense as these concepts and roles are exactly
those which are not further specified according to the
semantics. It can easily be verified that the sample
query of Figure 5 obeys each of the three conditions
above.
The employed algorithm capable of deciding V |1
Q@ in polynomial time just mimics the semantics of

“In this context, a definitionis meant to be the sub-
terminology of 7 which contains exactly those concept
introductions which are involved in the recursion.

the concept and role structuring primitives of U,
storing already evaluated ones. To deal with re-
cursive concept definitions, however, we exploited
a technique for computing least and greatest fixed
points due to Emerson and Lei [1986].

It turned out that even when relaxing condition
(a) in such a way that V is solely required to have a
finite domain, V |1 Q is still decidable in the uni-
versal description logic &/. In fact, we proved that in
this case the computational complexity is essentially
the same as the one of deciding ordinary subsump-
tion between two concepts with respect to acyclic
terminologies in the minimal concept language.®

We also investigated the consequences of incorpo-
rating some limited kind of incomplete knowledge
by means of Reiter’s null values [Reiter, 1984]. It
turned out that, when presupposing P # NP, ad-
mitting of null values causes intractability, even in
case of ALC. Thus our results suggest that the main
source of computational complexity of terminologi-
cal reasoning seems to be the ability to express in-
complete knowledge.

5 Description Logics as Tractable
Query Languages for Databases

Another interpretation of our results is that, when
taken together with the least and greatest fixed point
semantics, the universal concept language U can
serve as a powerful but tractable query language for
relational databases comprising solely unary and bi-
nary relations.® From this point of view terminolo-
gies are to be thought of as defining so-called views,
possibly defined recursively.

At this very point, it is important to note that the
universal description logic U is so strong in expres-
sive power that it is even capable of accurately defin-
ing concepts such as directed acyclic graphs (DAG's),
trees, or binary trees. The powerful role forming
primitives of i actually admit of plausible and non-
recursive definitions of these concepts. As every fi-
nite graph can uniquely be represented by a physi-
cal knowledge base in a completely straightforward
manner, these concepts provide views which can be
used to extract from a huge collection of (connected)
directed graphs exactly those which are acyclic or
those which are trees or binary trees. If we addi-
tionally have recursive concept introductions along
with least fixed point semantics at our disposal, we
may even extract from a finite and-or-graph G (or a
collection of such) exactly the solvable vertices, i.e.,
those vertices which are a root of an acyclic sub-
graph G, of G such that every and-vertex of G, has
exactly those edges it has in G and, moreover, ev-
ery or-vertex has at least one of those edges it has
in G. Figure 6 gives the terminology of U defin-
ing all the concepts mentioned in this section, where
the recursive concept introduction of Solvable should
be given least fixed point semantics. This is just
to demonstrate that even though the model check-

STechnically speaking, in this case deciding V =7 Q
in U is co-NP-complete.

SNote that unary and binary relations do suffice as
far as only object-oriented databases are concerned.

30

DirectedGraph Vconnected: Vertex
connected (edge U edge™")*
Acyclic = VYconnected:(edge™ < —e)
DAG = DirectedGraph N Acyclic
Tree = DAG
N Vedge®:35'edge™': Verter
BinaryTree = Tree
N Vedge*:35%edge: Verter
AndOrGraph = DirectedGraph
M VYconnected: AndOrVertex
AndOrVertexr = AndVertex M —-OrVertex
U OrVertex M -AndVertex
Solvable = -—3Jedge: Vertex
U AndVertex NVedge:Solvable
U OrVertex M 3dedge:Solvable

Figure 6: A terminology of U.

ing approach to terminological knowledge represen-
tation does make it possible to answer queries in
polynomial time, there are actually nontrivial infer-
ences to perform.

Acknowledgements

I would like to thank Martin Buchheit for valuable
comments on earlier drafts of the abstract.

References

[Brachman and Schmolze, 1985] Ronald J. Brach-
man and James G. Schmolze. An overview of the
KL-ONE knowledge representation system. Cog-
nitive Science, 9(2):171-216, 1985.

[Chandra and Merlin, 1977] Ashok K. Chandra and
P. M. Merlin. Optimal implementation of con-
junctive queries in relational databases. In Pro-
ceedings of the 9th ACM Symposium on Theory of
Computing, pages 77-90, 1977.

[Church, 1936] Alonzo Church. An unsolvable prob-
lem of elementary number theory. American Jour-
nal of Mathematics, 58:345-363, 1936.

[Emerson and Lei, 1986] E. Allen Emerson and
Chin-Laung Lei. Efficient model checking in frag-
ments of the propositional mu-calculus {(extended
abstract). In Proceedings of the 1st IEEE Sympo-
stum on Logic in Computer Science, pages 267—
278, Boston, Mass., 1986.

[Halpern and Vardi, 1991] Joseph Y. Halpern and
Moshe Y. Vardi. Model checking vs. theorem prov-
ing: A manifesto. In Proceedings of the 2nd In-
ternational Conference on Principles of Knowl-

edge Representation and Reasoning, pages 325-
334, Cambridge, Mass., 1991.

[McCarthy, 1968] John McCarthy. Programs with
common sense. In M. Minsky, editor, Semantic In-
formation Processing, pages 403-418. MIT Press,
Cambridge, Mass., 1968.

31

[Nebel, 1990] Bernhard Nebel. Terminological Rea-
soning is Inherently Intractable. Artificial Intelli-
gence, 43:235-249, 1990.

[Nebel, 1991] Bernhard Nebel. Terminological cy-
cles: Semantics and computational properties. In
J. Sowa, editor, Formal Aspects of Semantic Net-
works, pages 331-361. Morgan Kaufmann, San
Mateo, Cal., 1991.

[Patel-Schneider, 1987] Peter F. Patel-Schneider.
Decidable, Logic-Based Knowledge Representa-
tion. PhD thesis, University of Toronto, Toronto,
Ont., 1987. Computer Science Department, Tech-
nical Report 201/87.

[Reiter, 1984] Raymond Reiter. Towards a logical
reconstruction of relational database theory. In
M. L. Brodie, J. Mylopoulos, and J. W. Schmidt,
editors, On Conceptual Modeling, pages 191-233.
Springer-Verlag, Berlin, FRG, 1984.

[Schild, 1988] Klaus Schild. Undecidability of sub-
sumption in &. KIT Report 67, Department of
Computer Science, Technische Universitat Berlin,
Berlin, FRG, 1988.

[Schild, 1993] Klaus Schild. Terminological cycles
and the propositional g-calculus. DFKI Research
Report RR-93-18, German Research Center for
Artificial Intelligence (DFKI), Saarbriicken, FRG,
April 1993.

[Schild, 1994a] Klaus Schild. Terminological cycles
and the propositional y-calculus. In Proceedings of
the 4th International Conference on Principles of

Knowledge Representation and Reasoning, pages
509-520, Bonn, FRG, 1994.

[Schild, 1994b] Klaus Schild. Tractable reasoning in
a universal description logic. DFKI Research Re-
port, German Research Center for Artificial Intel-
ligence (DFKI), Saarbriicken, FRG, 1994. Forth-
coming,.

[Schmidt-SchauB and Smolka, 1991]

Manfred Schmidt-Schaufl and Gert Smolka. At-
tributive concept descriptions with complements.
Artificial Intelligence, 48(1):1-26, 1991.

[Schmidt-SchauB, 1989] Manfred Schmidt-Schau8.
Subsumption in KL-ONE is undecidable. In Pro-
ceedings of the st International Conference on
Principles of Knowledge Representation and Rea-
soning, pages 421-431, Toronto, Ont., 1989.

[Trahtenbrot, 1963) B. A. Trahtenbrot. Impossibil-
ity of an algorithm for the decision problem in
finite classes. American Mathematical Society
Translation Series, 23(2):1-5, 1963.

[Woods and Schmolze, 1992] William A. Woods
and James G. Schmolze. The KL-ONE family.
In F.W. Lehmann, editor, Semantic Networks in
Artificial Intelligence, pages 133-178. Pergamon
Press, 1992.

Generating queries from complex type definitions*

Manfred A. Jeusfeld
Informatik V, RWTH Aachen, D-52056 Aachen
jeusfeld@informatik.rwth-aachen.de

Abstract

Many information systems are imple-
mented as application programs connected