
Deutsches
Forschungszentrum
tür Künstliche
Intelligenz GmbH

Document
D-94-11

Working Notes of the KI'94 Workshop:

KRDB'94
Reasoning about Structured Objects:

Knowledge Representation Meets Databases

Saarbrücken, September 20-22, 1994

F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
D-67608 Kaiserslautern, FRG
Tel.: (+49631)205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhauswcg 3
D-66123 Saarbrücken, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the share holder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interiaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientilic community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for share holders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase .

Dr. Dr. D. Ruland
Director

Working Notes of the KI'94 Workshop: KRDB'94 - Reasoning
about Structured Objects: Knowledge Representation Meets Databases

F. Baader, M. Buchheit, M. A. Jeusfeld, W.-Nutt (Eds.)

DFKI -D-94-11

This work has been supported by a grant fram The Federal Ministry for Research
and Technology (FKZ ITW-9201).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by permission of
Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum für Künstliche Intelligenz.

ISSN 0946-0098

Working Notes of the KI'94 Workshop:

KRDB-94
Reasoning about Structured Objects:

Knowledge Representation Meets Databases

Saarbrücken, Germany, September 20-22, 1994

Organized by

Franz Baader
Lehr- und Forschungsgebiet Theoretische Informatik

RWTH Aachen
Aachen, Germany

baader@informatik.rwth-aachen.de

Martin Buchheit
German Research Center for Artificial Intelligence

Saarbrücken, Germany
buchheit@dfki.uni-sb.de

Manfred A. Jeusfeld
Lehrstuhl Informatik V (Informationssysteme)

RWTH Aachen
Aachen, Germany

jeusfeld@informatik.rwth-aachen.de

Werner Nutt
German Research Center for Artificial Intelligence

Saarbrücken, Germany
nutt@dfki.uni-sb .de

This collection ofpapers forms the permanent record
of the KRDB'94 Workshop "Reasoning about Struc­
tured Objects: Knowledge Representation Meets
Databases", that is held at the University of
Saarbrücken, Germany on September 20-22, 1994,
as part of the 18th German Annual Conference on
Artificial Intelligence. The workshop is set up to
be as informal as possible, so this collection cannot
hope to capture the discussions associated with the
workshop. However, we hope that it will serve to
remind participants of their discussion at the work­
shop, and provide non-participants with indications
of the topics that were discussed at the workshop.

Object-centered formalisms for domain modeling
play an important role both in knowledge represen­
tation (KR) and in the database (DB) area. Never­
theless, there has been little cross-fertilization be­
tween the two areas . Research in databases was
mostly concerned with handling large amounts of
data that are represented in a rather inexpressive
formalism, whereas KR concentrated on intensional
inferences in relatively small knowledge bases. How­
ever, many of today's problems demand sophisti­
cated reasoning on complex and large-scale objects.
The workshop brings together researchers from both
areas to identify and discuss problems and applica­
tions where the combination of KR and DB tech­
niques may provide new solutions.

For the following (non-exclusive) list of questions,
such a combination seems to be most promising:

• KR formalisms as schema languages in DB: Is it
possible to specify realistic DBs this way? Can
the inference mechanisms from KR support the
schema design?

• Distributed information sourees: How can one
describe their interaction in achanging environ­
ment?

• Advanced query processing : How can schema
knowledge be utilized for query optimization?
How can it be used to generate intensional an­
swers?

Two invited talks introduce into the topic of the
workshop. Maurizio Lenzerini covers a broad range
of services offered by concept logic reasoning on
database schemata. Mare Scholl reports on the ap­
plication of this kind of reasoning within the CO­
COON project.

Two sessions are devoted to schema design of data
and knowledge bases. Gottfried Vossen presents core
aspects for object-oriented database models . Dif­
ferent approaches are taken by Martin Buchheit et
al. who find that concept languages subsurne the
structural part of object-oriented database models.
Edith Buchholz and Antje Düsterhöft propose a nat­
urallanguage frontend resulting in a data dictionary

for the database schema. Finally, Wolfgang Benn
takes a data dictionary as input and puts a taxo­
nomie layer on top of it in order to produce integrate
database schemata and to reason on completeness.

Another area of interest is the relationsbip of
knowledge representation and query languages. Ul­
rich Hustadt argues against the standard closed­
world-assumption in database query languages and
votes for an epistemic operator that can stepwisely
convert a knowledge base into a database. Klaus
Schild augments this argument by his investigation
of null values (known from databases) as incomplete
knowledge in concept logics. Manfred Jeusfeld pro­
poses a language that defines interfaces between pro­
grams and databases by arestricted concept lan­
guage. D. Beneventano et al. argue that a con­
cept logic which explicitly distinguishes value types
from object classes gives an attractive framework
for schema design and query optimization in object­
oriented databases. Albrecht Schmiedel concludes
the area by presenting indexes for query processing
that are based on the concept logic system BACK.

In tbe session on techniques for modeling business
data, Harald Huber reports from empirical studies
about the shortages of widely used data modeling
languages. Ramzi Guietari et al. present a formal­
ism called OLSEN that answers to at least some of
the shortages by adding the dimensions of time, or­
ganisation, and measurement to the data modeling
layer .

The last session is devoted to database imple­
mentations of KR systems. M.C. Norrie et al.
map the KR language FRM to the COCOON data
model which itsself is defined on top of the relational
data model. Paolo Bresciani integrates a standard
database as assertion al knowledge (DBox) into a KR
system based on concept logics.

Contents

Invited Talks

Description logics for schema level reasoning in databases
Maurizio Lenzerini, Universita di Roma "La Sapienza"

Database views on KR classification
Mare Scholl, Universität Ulm

Session 1: Schema design for data and knowledge bases

1

2

Formalization of OODB models . 3
Gottfried Vossen, Universität Münster

Terminological systems revisited: terminology = schema + views 8
Martin Buchheit, DFKI Saarbrücken; Fmncesco M. Donini, Universita di Roma "La Sapienza";
Werner Nutt, DFKI Saarbrücken; Andrea Schaerf, Universita di Roma "La Sapienza"

Using naturallanguage for database design. .. 13
Edith Buchholz, Antje Düsterhöft, Universität Rostock

What's in a federation? Extending data dictionaries with knowIedge representation tech-
niques
Wolfgang Benn, Technische Universität Chemnitz-Zwickau

Session 2: Knowledge representation languages as query languages

Do we need the closed world assumption in knowledge representation?
Ullrich Hustadt, Max Planck-Institut für Informatik Saarbrücken

Tractable reasoning in a universal description logic .
Klaus Schild, DFKI Saarbrücken

Generating queries from complex type definitions .
Manfred A. leusfeld, RWTH Aachen

Terminologicallogics for schema design and query processing in OODBs .
D. Beneventano, S. Bergamaschi, S. Lodi, C. Sartori, CIOC-CNR Bologna

Semantic indexing based on description logics
Albrecht Schmiedel, Technische Universität Berlin

Session 3: Techniques for modeling business data

The problems of data modeling in software practice .
Hamld Huber, USU Softwarehaus Möglingen

OLSEN: an object-oriented formalism for information and decision system design.
Ramzi Guetari, Frederic Piard, Bettina Schweyer, LLP-CESALP Annecy

Session 4: Database implementations of KR systems

18

24

27

32

37

41

45

48

Frames, objects and relations: three semantic levels for knowledge base systems 53
M.C. Norrie , ETH Zürich; U. Reimer, P . Lippuner, Swiss Life Zürich; M. Rys, H.-l. Schek, ETH
Zürich

Uniformly querying knowledge bases and data bases. 58
Paolo Bresciani, IRST Povo

11

Description Logics for Schema Level Reasoning
in Databases

Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Universita di Roma "La Sapienza"
Via Salaria 113, 00198 Roma, Italy

Abstract

Several recent papers point out that the research on Description Logics and their
associated reasoning techniques can be profitably exploited in several ways in the
area of Databases. We argue that one of the most important aspects of Databases
where we can take advantage of Description Logics is the one related to schema
level reasoning, i.e ., reasoning at the intensional level of a database. This is the
case in schema design, schema maintenance, schema integration, schema trans­
lation, integrity checking, query evaluation in cooperative information systems,
etc. Indeed, on the one hand Description Logics can be seen as very powerful
data models, and on the other hand, they can serve as unified formalisms that
capture object-oriented, semantic and conceptual data models proposed in the
literature. Most importantly, they can provide useful reasoning services in all
the above mentioned tasks.

This article was processed using the ~TEX macro package with LLNCS style

1

Database Views on KR Classification
- Abstract-

Marc H . Scholl

University of Ulm, Faculty of Computer Science
D-89069 Ulm, Germany

scholl@informatik.uni-ulm.de

Abstract. The database models for Object Database Systems (ODBMSs)
include many modeling concepts that originate in semantic data mod­
els, that were formerly used for database design purposes, or in (object­
oriented) programming languages. To some extent, research on data mod­
els and query languages for such ODB models has already reached a con­
sensus, not on one particular model or language, but on the core of what
should be considered furtheron . Other aspects, such as view support for
example, are less common. We argue that the KL-ONE style termino­
logical logics can provide a very convenient basis for the integration of
a flexible view mechanism into object databases. KL-ONE defined con­
cepts correspond to database views (classes of objects that are derived
by a qeury expression) . Updates to such views can be propagated to
base classes if the view classes are inserted into the global class(ification)
hierarchy. Therefore, object databases need the inference services that
KL-ONE systems provide (classification, subsurnption, ...) . We report
on the experiences that we gained in the COCOON project, where this
approach was pursued over the last few years .

This article was processed using the ~TEX macro package with LLNCS style

2

Formalization of OODB Models

Gottfried Vossen
Institut für Wirtschaftsinformatik, Universität Münster

Grevenerstraße 91, 48159 Münster

1 Introduction
Object-oriented data models represent a current end­
point in the evolution of data models [23] . Their for­
malization has been attempted in a variety of papers,
induding [5; 6; 19]. This short paper indicates what
we consider the common intersection of these (and
other) approaches; we list the relevant features and
components, and give an idea of how to formalize
the notion of an object-oriented database schema.

An object-oriented data model has to capture a
variety of requirements [8; 27], which differ consid­
erably from those that traditional data models have
to meet . However, many system developers seem
not to care about formal models as asolid foun­
dation of their system, but simply design a "data
definition language" in which the relevant features
can be coded. In our opinion, a formal model for
object-oriented databases basically has to capture
the same intuitions as models for other types of da­
tabases, which are the following:

1. It has to provide an adequate linguistic abstrac­
tion for certain database applications.

2. It should provide a precise semantics for a data
definition language.

3. It has to be composed of both a specification
and an operational part .

4. It represents a computational paradigm as a ba-
sis for formal investigations.

In this short note, we do not present a comprehensive
survey of formal models for object-oriented databa­
ses which have been proposed in the literature, but
instead try to point out the fundamentals of how
such models are obtained. The result can be con­
sidered as a framework in which the essentials of
the object-oriented paradigm can be expressed con­
cisely and further studied. Indeed, we give hints to
various such investigations that have recently been
undertaken.

2 Core Aspects of Formal 00
Models

In this section, we describe what we perceive as the
core aspects of various proposals for object mod­
els, and we do so by distinguishing structural from
behavioral aspects. Thus, we generally consider
schemas, the central notion of any conceptual data­
base description, to be pairs of the form S = (Sstruc,

3

Class

t7 ~
Type Methods • , ..

impl
essages

jdom
inst

Values

.-
val Object

/!~
State oid Behavior

Figure 1: Core Aspects of an Object Model.

Sbehav); in what folIows, we first consider each com­
ponent in isolation and then indicate how the two in­
teract. We mention, however, that while it is gener­
ally agreed that an object-oriented data model has to
capture both structure and behavior, the former can
be obtained by using the experience from the rela­
tional, nested relation al and complex-object models,
but the latter represents a completely new challenge
to database researchers. Consequently, a consensus
seems achieved for structure, but not for behavior.

The core aspects of formal models for object­
oriented databases are summarized in Figure 1, in
which labels of arrows represent function names . In
brief, the only structuring mechanism is the dass
which describes both structure and behavior for its
instances, the objects. Structure is captured as a
type for a dass (in our notation, a function "type"
associates a type with each dass; the other function
names shown above are to be interpreted similarly,
see below). A type is nothing but a description of
a domain, i.e., a set of values, and may or may not
be named (in the former case, type names distinct
from dass names and attribute names must be pro­
vided) . Values comprise the state of an object and
can be as complex as the type system allows (i.e .,
depending on the availability of base types and con­
structors like tu pie, set, bag, list, etc.) . Behavior is
manifested in a set of messages associated with each

dass (its extern al interface), which are internally im­
plemented using methods that are executable on ob­
jects. Hence, objects have astate and a behavior; in
addition, they are uniquely identified. Messages are
specified by providing a signature, and by associating
several signatures with the same message name, the
latter gets overZoaded. Not shown in Figure I is the
possibility to organize dasses in an inheritance hier­
archy; also not shown is the fact that dass attributes
are allowed to reference other dasses, thereby form­
ing an aggregation Zattice.

We next look at structural as weil as behavioral
aspects in more detail. Regarding the modeling of
structure, more precisely highly-structured informa­
tion, complex data types are all that is basically
needed, since they serve as descriptions for domains
of complex values. One way to introduce such types,
i.e ., to define a type system T, is the following:

(i) integer, string, float, boolean ~ T;

(ii) if Ai are distinct attributes and ti E T, I ~ i ~
n, then
[Al: t l , ... , An : tn] E T ("tupie type");

(iii) if tE T, then {tl E T ("set type");

(iv) if tE T, then < t >E T ("list type").

In other words, a type system is made up of base
types, from which complex types may be derived us­
ing (eventually attributes and) constructors. Note
that this requires nothing additional but the avail­
ability of attribute names. Clearly, other base
types as weil as additional or alternative construc­
tors could straightforwardly be induded. Notice also
that here types are not named; for practical reasons,
the use of type names may be desirable (e .g., in order
to be able to reuse type definitions in various places
throughout ascherna), and if it is, it can easily be
added to the above in the way indicated earlier.

The notion of a domain as a "reservoir" of possible
values can be defined as folIows; it just has to obey
constructor applications:

(a) dom(integer) is the set of all integers; dom
is analogously defined for string, float,
boolean;

(b) dom([A l : t l , .. . , An : tn]) :=
{[Al : Vi,"" An : Vn] I (V i, I < < n) Vi E
dom(ti)};

(c) dom({t}) :=
{{Vi, . '" Vn} I (Vi,1 ~ i ~ n) Vi E dom(t)};

(d) dom« t »:=
{< Vi, "., Vn > I (V i, I ~ i ~ n) Vi E
dom(t)}.

In a structurally object-oriented context, the first
thing that needs to be introduced beyond complex
types and domains as defined above is the possibil­
ity to share pieces of information between distinct
types, or to aggregate objects from simpler ones. At
the level of type dedarations, an easy way to model
this is the introduction of another reservoir of names,
this time called dass names, which are additionally
allowed as types. In other words, object types are
complex types as above with the following new con­
dition:

(v) C ~ T, where Cis a finite set of dass names.

This states nothing but the fact that dass names
are allowed as types (below we will complement this
with the requirement that dasses themselves have
types).

The intuition behind this new condition is that ob­
jects from the underlying application all are distin­
guished by their identity, get collected into dasses,
and can reference other objects (share subobjects).
To provide for this at the level of domains, let us
first assurne the availability of a finite set 01 D of
object identifiers which indudes the special identi­
fier nil (to capture "empty" references); next, ob­
ject domains, i.e., sets of possible values for objects
are complex values as above with the following ad­
ditional condition:

(e) dom(c) = OID for each cE C.

Thus, dasses are assumed to be instantiated by ob­
jects (dass-name types take object identifiers as val­
ues, in the same way as, say, the integer type takes
integer numbers as values). Clearly, this alone is not
enough, since dass instances commonly have distinct
sets of object identifiers associated with them. We
will show below how that (and, for example, the fact
that sometimes indusion dependencies need to hold
between sets of dass instances) is captured at the
instance level.

4

The object-oriented paradigm has another dimen­
sion for organizing information besides aggregation,
which is inheritance, or the possibility to define a
dass as a specialization of one or more other dasses.
To this end, a subtyping relation is needed through
which it can be expressed that a subdass inherits
the structure of a superdass. Such a relation can be
defined in various ways; for example, it can be de­
fined semantically by requiring that the sets of values
or instances of types, where one is a subtype of the
other, are in a subset relationship. We prefer a sim­
pler, syntactical approach, which has, for example,
the advantage that checking subtype relationships
can be automated :

Let T be a set of object . types. A subtyping rela­
tion ~ ~ T x T is defined as folIows:

(i) t ~ t for each t E T,

(ii) [Al: tl, ... , An : tn] ~ [A'l
if

. t ' A' · t '] . l' .. 'I m' m

(a) (V Aj,l ~ j ~ m)(3 Ai,l ~ i ~ n) Ai =
Aj 1\ ti ~ tj,

(b) n ~ m,

(iii) {t} ~ {t'} if t ~ t' ,

(iv) < t > ~ < t' > if t ~ t' .

With these preparations, we arrive at the follow­
ing definition for objectbase schemas that can de­
scribe structure of arbitrary complexity : A struc­
tu rat schema is a named quadrupie of the form
Sstruc = (C, T, type, isa) where

(i) C is a (finite) set of dass names,

(ii) T is a (finite) set of types which uses as dass
names only elements from C,

[11] introduce distinct notions of a method schema
to study behavioral issues of OODBS; for example,
[2] investigates implications of the covariance condi­
tion using the formalism of program schemas, while
[11] looks at tractability guarantees corresponding
to those known for relation al query languages. Also,
it is pretty straightforward to define an object alge­
bra for a modellike the one sketched in the previous
section; see, for example, the papers in [13]. That
carries over to issues like query optimization, imple­
mentation of operations, and query processing. A
survey of other recent investigations that have simi­
lar bases or origins can be found in [28].

We emphasize again that the model just sketched
can be seen as description of the co re of vastly any
object-oriented model; however, this is valid only rel­
ative to the fact that many specialities, which have
been proposed in the literature, or which are being
built into commercial systems, are neglected here .

We conclude this section with abrief indication of
how object databases, i.e., sets of class instances or
extensions, can be defined over a given schema: For
a given objectbase schema S, an objectbase over S is
a tri pIe deS) = (0, inst, val) S.t.

(i) 0 ~ 01 D is a finite set of object identifiers,

(ii) inst: C -t 2° is a total function satisfying the
following conditions:

(a) if c, c' E C are not (direct or indirect) sub­
classes of each other,
then inst(c) n inst(c') = 0,

(b) if c isa c' , then inst(c) ~ inst(c'),
(iii) val: 0 -t V is a function s. t.

(V c E C) (V 0 E inst(c)) val(o) E dom(type(c)).

Notice that this definition closes the problem left
open earlier, namely that class domains originally
were simply the set OID.

3 Open Issues
We next survey several modeling issues in object­
oriented databases which have not yet received
enough research attention:

1. Entities can have roles that vary over time. For
example, some person object may at one point
be a student, at another an employee, and at a
third a club member; while the person's identity
never changes, its type changes several times .

2. Entities can have multiple types at the same
time. For example, a person may be a stu­
dent, an employee, and a club member simul­
taneously. So far the only way to represent this
in an object-oriented database is by multiple
inheritance, but this might not be appropi'iate
since it can result in a combinatorial explosion
of sparsely populated classes [21].

3. Objects can be in various stages of development.
For example, in a design environment it is usu­
ally necessary to maintain incomplete designs,
i.e., objects whose types get completed in the
course of time .

4. Classes may contain "too few" instances. For
example, consider a database in which all

6

persons living in a large country are repre­
sented . In this context, so many combi­
nations of meaningful properties have to be
distinguished that it might become necessary
to introduce artificial name constructions for
classes, like unmarried-nonstudent-autoOwner­
renter-taxpayer [26], and each such class has -
only very few instances . More generally, the
name space available for classes might not be
sufficient.

5. Objects and their classes might come into ex­
istence in reverse order. A database user in
a design environment like CAD creates objects -
in the first place, not type definitions or even
classes. The usage of databases thus differs con­
siderably from traditional applications where
schema design has to be completed prior to in­
stance creation.

We mention that one issue or the other from this
list is sometimes refl.ected already in existing mod­
els, but never as a basic design target. Alternative
approaches, which takes these issues into considera­
tion rifht from the start, appear, for example, in [21;
24; 16 . A possible general concept for the solution
of these problems seems the exploitation of proto­
type languages, which suggest to model applications
without a classification that partitions the world into
entity sets. A prototype represents default behavior
for some concept, and new objects can re-use part
of the knowledge stored in a prototype by saying
how they differ from it. Upon receiving a message
an object does not understand, it can forward (del­
egate) it to its prototype to invoke more general be­
havior. In the area of object-oriented programming
languages, many people believe that this approach
has advantages over the class-based one with inher­
itance, with respect to the representation of default
knowledge and incrementally and dynamically modi­
fying concepts. The investigation ofclassless models
in the context of object-oriented databases has only
recently been prorosed in [26], and a concrete model
is reported in [14 .

4 Conclusions

In this short paper we have tried to give a rough
personal account of recent work on formal models
for object-oriented databases. Although there is not
a single uniform such model, the foundations on
which such models have to be built see m understood,
and even standardization efforts have recently been
launched [10] . On the other hand, a number of in­
teresting research issues still deserve further investi­
gation. In particular, formal models as they are cur­
rently available seem hardly suited for the nonstan­
dard applications which initiated the consideration
of object-orientation in the context of databases. A
reason seems to be that many researchers have too
much of a relational background, and try to exploit
that as long as possible; this is more than confirmed
by the ODMG-93 proposal. As was done a number
of years ago, when database people discovered what
programming-Ianguage or knowledge-representation
people had been studying for years already, it seems

again necessary to take recent developments in these
areas into account, and to adopt them for solving the
problems database applications have.

References
[1] S. Abiteboul, P .C. Kanellakis: The Two Facets

of Object-Oriented Data Models; IEEE Data
Engineering Bulletin 14 (2) 1991, 3-7

[2] S. Abiteboul, P.C. Kanellakis, E. Waller:
Method Schemas; Proc. 9th ACM Symposium
on Principles of Database Systems 1990, 16-27

[3] P.M.G. Apers et al.: Inheritance in an Object­
Oriented Data Model; Memoranda Informatica
90-77, University ofTwente 1990

[4] H. Balsters et al.: Sets and Constraints in an
Object-Oriented Data Model; Memoranda In­
formatica 90-75, University of Twente 1990

[5] F. Bancilhon, C. Delobel, P. Kanellakis (eds.):
Building an Object-Oriented Database System
- The Story of O2 . Morgan-Kaufmann 1992

[6] C. Beeri: A Formal Approach to Object­
Oriented Databases; Data & Knowledge Engi­
neering 5, 1990, 353-382

[7] E. Bertino et al.: An Object-Oriented Data
Model for Distributed Office Applications;
Proc. ACM Conference on Office Information
Systems 1990, 216-226

[8] E. Bertino, 1. Martino: Object-oriented Data­
base Management Systems: Concepts and Is­
sues; IEEE Computer 24 (4) 1991, 33-47

[9] E. Bertino, L. Martino: Object-Oriented Data­
base Systems; Addison-Wesley 1993

[10] R.G.G. Cattell (ed.): The Object Database
Standard: ODMG-93. Morgan-Kaufmann 1994

[11] K. Denninghoff, V. Vianu: The Power of Meth­
ods with Parallel Semantics; UCSD Technical
Report No. CS91-184, University of California,
San Diego, February 1991; extended abstract in
Proc. 17th Int. Conference on Very Large Data
Bases 1991,221-232

[12] O. Deux et al.: The Story of O2 ; IEEE Trans­
actions on Knowledge and Data Engineering 2,
1990,91-108

[13] J.C. Freytag, D. Maier, G . Vossen: Query
Processing for Advanced Database Systems;
Morgan-Kaufmann 1994

[14] M. Groß-Hardt, G . Vossen: Towards Class­
less Object Models for Engineering Design Ap­
plications; Proc. 4th International Conference
on Database and Expert Systems Applications
(DEXA) 1993, Prag, Springer LNCS 720, 36-47

[15] R. Hull, K. Tanaka, M. Yoshikawa: Behav­
ior Analysis of Object-Oriented Databases:
Method Structure, Execution Trees, and Reach­
ability; Proc. 3rd FODO Conference, Springer
LNCS 367, 1989,372-388

[16] T. Imielinski et al.: Incomplete Objects - A
Data Model for Design and Planning Applica­
tions; Proc. ACM SIGMOD International Con­
ference on Management of Data 1991, 288-297

7

[17] A. Kemper et al.: GOM: A Strongly Typed Per­
sistent Object Model with Polymorphism; Proc .
German GI Conference on "Datenbanken für
Büro, Technik und Wissenschaft" (BTW) 1991,
Springer Informatik-Fachbericht 270, 198-217

[18] W. Kim: Introduclion to Objecl-Oriented Data­
bases; MIT Press 1990

[19] C. Lecluse et al.: O2 , an Object-Oriented
Data Model; Proc. ACM SIGMOD Interna­
tional Conference on Management of Data 1988,
424-433

[20] C. Lecluse, P. Richard: Foundations of the O2
Database System; IEEE Data Engineering Bul­
letin 14 (2) 1991,28-32

[21] J. Richardson, P. Schwarz: Aspects: Extend­
ing Objects to Support Multiple, Independent
Roles; Proc. ACM SIGMOD International Con­
ference on Management of Data 1991,298-307

[22] M.H. Scholl, H.J. Schek: A Relational Object
Model; Proc. 3rd International Conference on
Database Theory 1990, Springer LNCS 470, 89-
105

[23] H.J. Schek, M.H . Scholl: Evolution of Data
Models; Proc. Database Systems of the 90s,
November 1990, Springer LNCS 466, 135-153

[24] E. Sciore: Object Specialization; ACM Transac­
tions on Information Systems 7, 1989, 103-122

[25] D.D. Straube, M.T. Özsu: Queries and Query
Processing in Object-Oriented Database Sys­
tems; ACM Transactions on Information Sys­
tems 8, 1990, 387-430

[26] J.D. Ullman: A Comparison of Deductive and
Object-Oriented Database Systems; Proc. 2nd
DOOD Conference, Springer LNCS 566, 1991,
263-277

[27] G. Vossen: Datenmodelle, Datenbanksprachen
und Datenbankmanagement-Systeme; 2. Au­
flage, Addison-Wesley 1994

[28] G. Vossen: Database Theory: An Introduction;
Technical Report, University of Münster, June
1994

[29] K. Wilkinson et al.: The Iris Architecture and
Implementation; IEEE Transactions on Knowl­
edge and Data Engineering 2, 1990, 63-75

Terminological Systems Revisited:
Terminology = Schema + Views*

M. Buchheit1 and F. M. DoninF and W. Nutt1 and A. Schaerfl
1. German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

{buchheit,nutt }@dfki.uni-sb.de
2. Dipartimento di Informatica e Sistemistica, Universita di Roma "La Sapienza", Italy

{ donini,aschaerf}@assi.dis.uniroma1.it

Abstract

Traditionally, the core of a Termino­
logical Knowledge Representation System
(TKRS) consists of a so-called TBox, where
concepts are introduced, and an ABox,
where facts about individuals are stated
in terms of these concepts. This design
has a drawback because in most applica­
tions the TBox has to meet two functions
at a time: on the one hand, similar to a
database schema, framelike structures with
typing information are introduced through
primitive concepts and primitive roles; on
the other hand, views on the objects in the
knowledge base are provided through de­
fined concepts.
We propose to account for this conceptual
separation by partitioning the TBox into
two components for primitive and defined
concepts, wh ich we call the schema and the
view part. We envision the two parts to
differ with respect to the language for con­
cepts, the statements allowed, and the se­
mantics.
We argue that by this separation we
achieve more conceptual clarity about the
role of primitive and defined concepts
and the semantics of terminological cycles .
Moreover, three case studies show the co m­
putational benefits to be gained from the
refined architecture.

1 Introduction
Research on terminological reasoning usually pre­
supposes the following abstract architecture, wh ich
reflects quite weil the structure of existing systems.
There is a logical representation language that allows
for two kinds of statements: in the TBox or tcrmi­
nology, concept descriptions are introduced, and in
the ABox or world description, individuals are char­
acterized in terms of concept membership and role

°This work was partly supported by the Commis­
sion of the Emopean Union under ESPRIT BRA 6810
(Compulog 2), by the German Ministry of Research and
Technology under grant ITW 92-01 (TACOS), and by
the CNR (ltalian Research CounciI) under Progetto Fi­
nalizzato Sistemi lnformatici e Calcolo Parallelo, LdR
"Ibridi."

8

relationship. This abstract architecture has been the
basis for the design of systems, the development of
algorithms, and the investigation of the computa­
tional properties of inferences.

Given this setting, there are three parameters that
characterize a terminological system: (i) the lan­
guage for concept descriptions, (ii) the form of the
statements allowed, and (iii) the semantics given to
concepts and statements. Research tried to improve
systems by modifying these three parameters. But in
all existing systems and almost an theoretical studies
language and semantics have been kept uniform. l

The results of these studies were unsatisfactory in
at least two respects. First, it seems that tractable
inferences are only possible for languages with lit­
tle expressivity. Second, no consensus has been
reached about the semantics of terminological cycles,
although in applications the need to model cyclic
dependencies between classes of objects arises con­
stantly.

Based on an ongoing study of applications of ter­
minological systems, we suggest to refine the two­
layered architecture consisting of TBox and ABox.
Our goal is twofold: on the one hand we want to
achieve more conceptual clarity about the role of
primitive and defined concepts and the semantics of
terminological cycles; on the other hand, we want to
improve the tradeoff between expressivity and worst
case complexity. Since our changes are not primar­
ily motivated by mathematical considerations but by
the way systems are used, we expect to come up with
a more practical system design .

In the applications studied we found that the
TBox has to meet two functions at a time. One is to
declare frame-Iike structures by introducing primi­
tive concepts and roles together with typing infor­
mation like isa-relationships between concepts, or
range restrictions and number restrictions of roles .
E.g., suppose we want to model a company environ­
ment. Then we may introduce the concept Employee
as a specialization of Person, having exactly one
name of type Name and at least one affiliation of
type Department. This is similar to class declara­
tions in object-oriented systems. For this purpose, a
simple language is sufficient. Cycles occur naturally
in modeling tasks, e.g., the boss of an Employee is

I In [Lenzerini and Schaerf,1991] a combination of a
weak language for ABoxes and a strong Ianguage for
queries has been investigated.

n Construct Name Syntax Semantics n -- -- -

top T 6.~
I

singleton set {al {a.L } I

intersection CnD C.L n DL
union CUD CLuD~

negation oC 6.~ \ C~
universal quantification VR.C {d1 I Vd2 : (d1,d2) E R~ -+ d2 E C~}
existential quantification 3R.C {d l I3d2 : (d1,d2) E R~ Ad2 E C~}
existential agreement 3Q= R {d1 13ddd1,d2) E Q.L A (d1,d2) E R.L}

number restrictions
(2: n R) {d l I Hd2 1 (d1,d2) E W} 2: n}

(s nR) {d1 I Hd2 I (d1, d2) E W} sn}

Table 1: Syntax and semantics of concept forming constructs.

U Construct Name I Syntax I Semantics n
inverse role P ·1 {(d1,d2) I (d2 ,dr) E P~}
role restriction (R:C) {(d1,d2) I (d1,d2) E R.L Ad2 E C.L}
role chain QoR {(d1, d3) 13d2 .(d1, d2) E Q.L A (d2 , d3) E R~}
self { {(d1,dr) I d1 E 6.:L}

Table 2: Syntax and semantics of role forming constructs.

schema have the role of narrowing down the mod­
els we consider possible. Therefore, they should be
interpreted under descriptive semantics, i. e., like in
first order logic : an interpretation I satisfies an ax­
iom A ~ D if AI ~ DI , and it satisfies P ~ Al X A 2

if pI ~ Ai x A{. The interpretation I is a model
of the schema § if it satisfies aB axioms in §. The
problem of inferences will be dealt with in the next
section .

The view part contains view definitions of the form

V=C,

where V is a view name and C is a concept in the
view language. Views provide abstractions by defin­
ing new classes of objects in terms of the concept
and role names introduced in the schema. We refer
to "V = C" as the definition of V . The distinc­
tion between schema and view names is crucial for
our architecture. It ensures the separation between
schema and views.

A view taxonomy V is a finite set of view defini­
tions such that (i) for each view name there is at
most one definition, and (ii) each view name oc­
curring on the right hand side of adefinition has a
definition in V.

Differently from schema axioms, view definitions
give necessary and sufficient conditions. As an ex­
ample of a view, one can describe the bosses of
the employee Bill as the instances of "Bills Bosses =
3boss-of.{BILL} ."

Whether or not to aBow cYcles in view defini­
tions is a delicate design decision. Differently from
the schema, the role of cycles in the view part
is to state recursive definitions : For example, if
we want to describe the group of individuals that
are above Bill in the hierarchy of bosses we can
use the definition "BilIsSuperBosses = BilIsBosses U

10

3boss-of.BilisSuperBosses." But note that this does
not yield adefinition if we ass urne descriptive se­
mantics because for a fixed interpretation of BILL
and of the role boss-of there may be several ways
to interpret BilIsSuperBosses in such a way that the
above equality holds. In this example, we only ob­
tain the intended meaning if we assurne least fixpoint
semantics. This observation holds more generally : if
cycles are intended to uniquely define concepts then
descriptive semantics is not suitable. However, least
or greatest fixpoint semantics or, more generally, a
semantics based on the Jl-calculus yield unique defi­
nitions (see Schild 1994). Unfortunately, algorithms
for subsumption of views under such semantics are
known only for fragments of the concept language
defined in Tables 1 and 2.

In this paper, we only deal with acyclic view tax­
onomies . In this case, the semantics of view defini­
tions is straightforward . An interpretation I satisfies
the definition V = C if VI = CI, and it is a model
for a view taxonomy V if I satisfies all definitions in
V.

Astate of affairs in the world is described by as­
sertions of the form

C(a) , R(a, b),

where C and Rare concept and role descriptions in
the view language. Assertions of the form A(a) or
P(a,b), where A and P are names in the schema,
resemble basic facts in a database. Assertions in­
volving complex concepts are comparable to view
updates .

A world description W is a finite set of asser­
tions . The semantics is as usual: an interpretation
I satisfies Cla) if aI E AI and it satisfies R(a, b) if
(aI, bI) ER; it is a model of W if it satisfies every
assertion in W .

Summarizing, a knowledge base is a tri pie E =
(§, V, W), where § is a schema, V a view taxonomy,
and W a world description. An interpretation I is
a model of a knowledge base if it is a model of all
three components.

2.3 Reasoning Services

For each component , there is a prototypical reason­
ing service to which the other services can be re­
duced.

Schema Validation: Given a schema §, check
whether there exists a model of § that interprets
every schema name as a nonempty set.

View Subsumption: Given a schema §, a view tax­
onomy V, and view names VI and V2 , check
whether VII ~ vl for every model I of § and
V;

Instance Checking: Given a knowledge base E, an
individual a, and a view name V, check whether
aI E VI holds in every model I of E.

Schema validation supports the knowledge engineer
by checking w hether the skeleton of his domain
model is consistent. Instance checking is the basic
operation in querying a knowledge base . View sub­
sumption helps in organizing and optimizing queries
(see e.g. Buchheit et al. 1994). Note that the schema
§ has to be taken into account in all three services
and that the view taxonomy V is relevant not only
for view subsumption, but also for instance check­
ing. In systems that forbid cycles, one can get rid
of § and V by expanding definitions. This is not
possible when § and V are cyclic.

2.4 Complexity Measures
The separation of the core of a TKRS into three
components allows us to introduce refined complex­
ity measures for analyzing the difficulty ofinferences.

The complexity of a problem is generally measured
with respect to the size ofthe whole input . However,
with regard to our setting, three different pieces of
input are given, namely the schema, the view taxon­
omy, and the world description. For this reason, dif­
ferent kinds of complexity measures may be defined,
similarly to what has been suggested in [Vardi,1982]
for queries over relational databases . We consider
the following measures (where lXI denotes the size
of X) :

Schema Complexity : the complexity as a function
of I§I;

View Complexity : the complexity as a function of
lVI;

World Description Complexity: the complexity as a
function of IWI;

Combined Complexity: the complexity as a function
of I§I + lVI + IWI·

Combined complexity takes into account the
whole input. The other three instead consider only a
part of the input, so they are meaningful only when
it is reasonable to suppose that the size of the other
parts is negligible. For instance, it is sensible to an­
alyze the schema complexity of view subsumption

because usually the schema is much bigger than the
two views which are compared. Similarly, one might
be interested in the world description complexity of
instance checking whenever one can expect W to be
much larger than the schema and the view part.

It is worth noticing that for every problem com­
bined complexity, taking into account the whole in­
put, is at least as high as the other three. For exam­
pie, if the complexity of a problem is Oml·IVI·IWI),
its combined complexity is cubic, whereas the other
ones are linear. Similarly, if the complexity of a given
problem is O(I§IIVI), both its combined complexity
and its view complexity are exponentiaJ, its schema
complexity is polynomial, and its world description
complexity is constant.

In this paper, we use combined complexity to com­
pare the complexity of reasoning in our architec­
ture with the traditional one. Moreover, we use
schema complexity to show how the presence of a
l.arge schema affects the complexity of the reason­
ing services previously defined. View and world de­
scription complexity have been investigated (under
different names) in [NebeI,1990' Baader,1990] and
[Schaerf,1993; Donini et al.,1994l, respectively.

3 The Case Studies
We studied some illustrative examples that show the
advantages of the architecture we propose. We ex­
tended three systems by a simple cyclic schema lan­
guage and analyzed their computational properties.

As argued before, a schema language should at
least be expressive enough for declaring subconcept
relationships, restricting the range of roles, and spec­
ifying roles to be necessary (at least one value) or sin­
gle valued (at most one val ue). These requirements
are met by the language S.c, which was introduced
in [Buchheit et al.,1994] and that is defined by the
following syntax rule :

11

C, D --t A I VP.A I (~ 1 P) I (:s 1 P).
Obviously, it is impossible to express in S.c that a
concept is empty. Therefore, schema validation in
S.c is trivial. Also, subsumption of concept names
is polynomially decidable.

We proved that inferences become harder for ex­
tensions of S.c . If we add inverse roles, schema val­
idation remains trivial, but subsumption of schema
names becomes NP-hard . If we add any construct by
which one can express the empty concept-like dis­
jointness axioms-schema validation becomes NP­
hard. However, in our opinion this does not mean
that extensions of S.c are not feasible. For some ex­
tensions, there are natural restrictions on the form
of schemas that decrease the complexity. Also, it
is not clear whether realistic schemas will contain
structures that require complex computations.

In all the three cases studied, the schema lan­
guage is s.c . For the view language, we pro­
pose three different languages derived from three
actual systems described in the literature, namely
the deductive object-oriented database system CON­

CEPTBASE [Jarke,1992], and the terminological sys­
tems KRIS [Baader and Hollunder,1991] and CLAS­
SIC [Borgida et al. , 1989]. We investigated the co m­
putational properties of the reasoning services with

respect to SC-schemas. We aimed at showing two
results: (i) reasoning w.r.t. schema complexity is al­
ways tractable, (ii) combined complexity is not in­
creased by the presence of terminological cycles in
the schema.

In all three cases, we assurne that view names
are allowed in membership assertions and that the
view taxonomy is acyclic. In this setting, every view
name can be substituted with its definition. For this
reason, from this point on, we suppose that view
concepts are completely expanded. Therefore, when
evaluating the complexity, we replace the size of the
view part by the size of the concept representing the
Vlew .

We have found the following results for the three
systems in which SC is the schema language and the
concept language the abstraction of the query lan­
guage of CONCEPTBASE introduced in [Buchheit et
ai.,1 994], or the language offered by KRIS or CLASSIC,
respecti vely.

CONCEPTBASE: instance checking is in PTIME
w.r.t . combined complexity (view subsumption
has been proved in PTIME in [Buchheit et
al., 1994]).

KRIS: view subsumption and instance checking are
PSPACE-complete problems w.r.t. combined
complexity and PTIME problems w.r.t. schema
complexity.

CLASSIC: view subsumption and instance checking
are problems in PTIME w.r .t. combined com­
plexity.

We conclude that adding (possibly cyclic) schema
information does not change the complexity of rea­
soning within the systems taken into account.

4 Conclusion
We have proposed to replace the traditional TBox
in a terminological system by two components: a
schema, where primitive concepts describing frame­
like structures are introduced, and a view part that
contains defined concepts. We feel that this architec­
ture reftects adequately the way terminological sys­
tems are used in most applications.

We also think that this distinction can clarify the
discussion about the semantics of cycles. Given the
different functionalities of the schema and view part,
we propose that cycles in the schema are interpreted
with descriptive semantics while for cycles in the
view part a definitional semantics should be adopted.

In three case studies we have shown that the re­
vised architecture yields a better tradeoff between
expressivity and the complexity of reasoning.

The schema language we have introduced might
be sufficient in many cases. Sometimes, however,
one might want to im pose more integrity constraints
on primitive concepts than those wh ich can be ex­
pressed in it. We see two solutions to this problem:
either enrich the language and have to pay by a more
costly reasoning process, or treat such constraints in
a passive way by only verifying them for the objects
in the knowledge base. The second alternative can
be given a logical semantics in terms of epistemic
operators (see Donini et al. 1992).

References
[Baader and Hollunder, 1991] Franz Baader and

Bernhard Hollunder. A terminological knowledge
representation system with complete inference al­
gorithm. In Prac. PDK-91, LNAI, pages 67-86,
1991.

[Baader, 1990] Franz Baader. Terminological cycles
in KL-ONE-based knowledge representation lan­
guages. In Proc. AAAI-90, pages 621-626,1990.

[Borgida et ai., 1989] Alexander Borgida, Ronald J.
Brachman, Deborah L. McGuinness, and Lori
Alperin Resnick. CLASSIC: A structural data
model for objects. In Proc. ACM SIGMOD, pages
59-67, 1989.

[Buchheit et al., 1994] Martin
Buchheit, Manfred A. Jeusfeld, Werner Nutt, and
Martin Staudt. Subsumption between queries to
object-oriented databases. Information Systems,
19(1):33-54, 1994.

[Donini et ai. , 1992] Francesco M. Donini, Maurizio
Lenzerini, Daniele Nardi, Werner Nutt, and An­
drea Schaerf. Adding epistemic operators to con­
cept languages. In Proc. KR-92, pages 342-353,
1992.

[Donini et al. , 1994] Francesco M. Donini, Maurizio
Lenzerini, Daniele Nardi, and Andrea Schaerf. De­
duction in concept languages: From subsumption
to instance checking. Journal of Logic and Com­
putation, 4(92-93): 1-30, 1994.

[Jarke, 1992] M. Jarke. ConceptBase V3 .1 User
Manual. Aachener Informatik-Berichte 92-17,
RWTH Aachen, 1992.

[Lenzerini and Schaerf, 1991]
Maurizio Lenzerini and Andrea Schaerf. Concept
languages as query languages. In Prac. AAAI-91,
pages 471--476, 1991.

[Nebel, 1990] Bernhard Nebel. Terminological rea­
soning is inherently intractable. A rtificial Intelli­
gence, 43:235-249, 1990.

[Nebel, 1991] Bernhard Nebel. Terminological cy­
cles: Semantics and computational properties. In
John F. Sowa, editor, Principles of Semantic Net­
works, pages 331-361. Morgan Kaufmann, Los AI­
tos, 1991.

12

[Schaerf, 1993] Andrea Schaerf. On the complexity
of the instance checking problem in concept lan­
guages with existential quantification. Journal of
Intelligent Information Systems, 2:265-278, 1993.

[Schild, 1994] Klaus Schild. Terminological cycles
and the proposition al Jl-calculus. In Prac. I<R-94,
1994.

[Vardi, 1982] M. Vardi. The complexity of relational
query languages. In Prac. STOC-82, pages 137-
146, 1982.

work flow

~
material flow inunaterial flow

~
reversible irreversible

~~
hiring lending renting ... selling passing on

Fig. 3. Part of tbe process c1asslfication

'change of ownership'. The library processes oe the 'rent
a car' processes (cf. Hg. 3) belong to this group.

The lending process as a complex process can be further
classified into a number of pre and post processes (cf.
Fig. 4). These processes are inclu<Jed in the knowledge
base. If a user input contains one of these processes a
possible classification will be defined and an action within
the dialogue will be initiated.The pre and post processes
in Fig. 4 can be further subdivided into processes which
are summarized in the above classification. Lending thus
requires the processes of obtaining a user card, updating
the user card ifneed be checking whether the book is held
and available, filling in a borrowing-slip and signing it.

Example. The sentence 'the user borrows a book with
borrowing-slip' implies the following general questions
(borrowing has the synonym lending):
preprocesses:
1) Is the process 'obtaining' situated be fore

'lending' ?

2) Is the process 'registration' situated
before 'lending' ?

main processes:
3) Is the process 'document exists' situated

before 'lending' ?

4) Is the process 'document valid' situated
before 'lending' ?

postprocesses:
5) Is the process 'returning' situated after

'lending' ?

The designer has to give correct answers.

3 Conclusionsl Future Topics

We have presented a dialogue tool consisting of a syntax
analyser, a semantic role definer and a pragmatics
interpreter. The dialogue tool gathers information on
structure, semantics and behaviour of the prospective
database. By means of transformation rules this
information is mapped onto the HERM model.

The advantage of the dialogue tool is that the designer
can describe the requirements of the database system in a
natural language (German) and thus can specify the
knowledge of a domain in a natural way. This know ledge
is then employed for gathering database constructs such
as entities, attributes, cardinalities, constraints, etc.

The efficiency of the database greatly depends on the exact
interpretation and transformation of the naturallanguage
input analysis. The accuracy, on the other hand, depends
on the size and complexity of the grammar used and the
scope of the lexicon.

Work in future has to concentrate on extending the
granunar to compeise all types of sentences and other
hitherto excluded parts of grammar and on ways of
steadily increasing the lexicon. For reasons of integeity
we cannot leave updating of the lexicon to the chance
designer who may have no linguistic training. Much work
will have to go into completing and maintaining the
linguistic background before it can finally be used for
any type of systems design.

A second future topic is the application of the linguistic
knowledge for acquiring further semantic information of
the prospective database, e.g. acquiring key attributes or
functional dependencies.

Acknowledgements

We are grateful to Bemhard Thalheim for his guidance
and support of our work and for his helpful criticism and
suggestions.

obtaining registration lending returning

document
exists

document
valid

object
exists

object
available

contract
completed

object
transferred

Fig. 4. Part of the knowledge base: pre, maln and post processes of the actlborrowlngllendlng

16

What.s in a Federation?
Extending Data Dictionaries with Knowledge Representation Techniques

Wolfgang Benn
Cbemnitz University of Tecbnology • Management of Data

P.O. Box 964· D-09OO9 Cbemnitz
benn@informatik.tu-cbemnitz.de

1. Introduction

Databases and knowledge representation languages
have a rather different view upon data: knowledge rep­
resentation languages describe a universe of discourse
in a taxonomy and allow a user to ask epistemic ques­
tions against the relationships between concepts and
mIes. However, no data structures, data locations, nor
any information about the existence or availability of
data can be found in a taxonomy -- even not if it in­
cludes an assertion that describes a particular data
item.

Relational databases provide users with schemata.
Schemata describe in detail the data structures of sets
of persistent data items. Data dictionaries, included in
these systems, tell about data existence and its avail­
ability. Anyway, these tools do not provide the entity
view, relationships between entities are merely
implicit, and no question about the universe of dis­
course that is behind a schema will get an answer.

Object-oriented databases provide users with class hi­
erarchies as schemata. They support the entity view -­
is-a as weIl as part-of relationships are explicit. Never­
theless, an information about the uni verse of discourse
is not given as weIl.

In a federation of systems -- databases and
applications, for instance -- the situation gets worse.
Databases may be heterogeneous in their modeling
technique: some will follow the object-oriented the
majority certainly follows the relational paradigm.
How does a user get to know what data is available in
a federation, if he wants to build a new application?
How does that user get to know how he may access a
particular data item? How does he know that the
selected data item is semantically correct conceming
the context of his application?

If he can access a federated data dictionary, it will pro­
vide him with the technical information about the data
in a common data model -- similar to the global con­
ceptual schema of a distributed database. If such a tool
does not ex ist, the user must read all available
schemata from all available federation components
(i.e., he must know about all languages, data models,
and dialects that the local components of the feder­
ation individually use).

In the remainder of this paper we will briefly introduce
a module that coordinates a federation of systems and
that hosts a central data dictionary. It is the module,
which we will extend to provide users with an entity
view upon the information available in a federation.
We· introduce the logical architecture of a prototypical
implementation of this module in section 2 and de­
scribe some extensions that we made in section 3. In
section 4 we specify some ideas of the mentioned ex­
tension, conclude in section 5 and give some literature
in section 6.

2. The Federal System Manager

The Federal System Manager (FSM) is a module that
coordinates a federation of autonomous systems.
These systems can be applications or services like
databases, wh ich may link to the FSM to form a
federation for some particular tasks. Afterwards they
can leave the federation and ron again as autonomous
systems. This idea is rather similar to the concept of
multi-agent systems.

The FSM performs a minimum of three tasks: The ftrst
one is to ron a protocol that enables the linkage
process and guarantees a negotiation of autonomy as­
pects to the components, if these want to join or leave
the federation. Second, the FSM must provide a uni­
form view upon all information that is available to ap­
plications of the federation through a so-called Com­
mon Data Model (CDM). Third, it must support an ex­
change of information, i.e., data types and data itself,
between members of the federation. We will detail
these tasks and concentrate on the second one.

Comparing an FSM with the Common Object Request
Broker Architecture (CORBA) [1] the FSM is an
object broker that looks at databases as service pro­
viding objects and applications as clients that request
these services. Commonly known services from data­
base components are storage, retrieval, update, etc.

Moreover. the FSM is an object itself! It provides ser­
vices like data and type exchange. It contains a Fed­
eral Data Dictionary (FDD) thal allows a user to re-

18

trieve the information contents of the actual federation
under several aspects. It is our aim to extend this
Federal Da ta Dictionary with knowledge
representation techniques to beller support users in
tbeir retrieval than before.

~.l. The FSM Prototype

iI'he currently implemented FSM prototype has its
roots in an ESPRIT projecl, finished in 1991
[2,3,4,5,6]. The prototype mainly follows the reference
'architecture for interoperable systems given in [7] and
includes a repository according to the Information
Resource Dictionary Standard IRDS [8].

rrhis standard defines a four-layer architecture with
(top down)
• a meta-meta layer that describes the model of the

meta layer descriptions -- which is in our case the
Common Data Model of the FSM, a frame work that
basis on the Abstract Data Type (ADD idea --,

• a meta layer where we find the description of sche­
mata -- which is in our case adescription of the fed­
eration components data models --,

• a schema layer where the data descriptions are 10-
cated -- which is in our case the data types that are
defined in schemata of databases or in type declara­
tions of applications --, and

• an application data layer where we finally find the
application data itself.

The Meta-Meta Layer

To enable the description of schema descriptions we
implemented a common data model.

In the literature we found many different approaches
to implement a CDM -- the approach most often used,
however, was the object-oriented. Thus, we asked our­
selves, what is the kernel idea of the object-oriented
paradigm that makes it suitable for a CDM. We found
out that it probably is the idea of Abstract Data Types.

Thus, we implemented a frame work, wbich is actually
not areal data model but a tool box [2]. It allows a
user to describe the structure and semantics of those
elements, wh ich he uses to describe a schema, similar
to the ADT concept (see next paragraph).

The CDM that we implemented is very similar to the
Interface Description Language (IDL) of the CORBA
specification [1] -- because its purposes are rather
similar. IDL is a language, which describes object ser­
vices in an intermediate way and the CDM describes
entities (application objects) in an intermediate way.

An IDL description is mapped into a real
programming language and the object services are

available for all programs wrillen in this programming
language. Application objects described in our CDM
are (under certain conditions) transformable into all
data models that are represented in the FSM.

The Meta Layer

An extension of the IRD standard was made for the
meta layer. If the FSM supports an exchange of data
between components, it must be able to transform data
between the different individual data descriptions.
These descriptions follow type or schema declarations,
which use data model elements. Thus, our meta layer
has to include a suitable sub-set of the component data
model for eacb involved componenl. Moreover, it
must include some mies that guide the transformation
of entities between these data model sub-sets.

However, the description of a data model sub-set is
somewhat more complex than the description of a
schema. While a schema merely consists of data struc­
tures, a data model usually includes data types and
data type semantics. The meta layer of our FSM in­
c1udes both (the assignment of a set of operations to a
data type that makes up the type's semantics in the
data model of a component is currently under
implementation).

To enable the exchange of data and schema
information between components the system
administrator of each federation component defines
the relevant structural part of his component data
model types with the CDM types and assigns some
procedures that make up the semantics of these data
types. He inserts the necessary data model knowledge
into the meta layer using the meta-meta layer ele­
ments.

For instance, from an object oriented data model the
administrator defines the structural parts of the
concept CLASS and assigns at least one particular
routine that performs inheritance similar to his
individual data model.

This information is provided through an interface,
which is the so-called Data-Model-Profile. It is an
ASCII file with a particular syntax that is parsed. Then
the information is kept in a knowledge base -- the
FSM Meta Knowledge Base.

The Schema Layer

Databases, as components of a federation, use
database schemata. Applications use data type
definitions to declare their application types.

The FSM reads these schemata and declarations and
interprets the used data types through the information

19

of the meta layer. Application entities are transformed
into entities of the CDM and then -- for storage
purposes -- transformed into entities of a database data
model.

The entity information in CDM-format is stored in the
Federal Data Dictionary (FDD) for retrieval purposes.

The Applicatlon Layer

Finally the data that comes from applications is stored
in databases that have joined the federation, that are
represented througb meta-information in the Meta
Knowledge Base, and that are willing to perform the
storage process after a negotiation of their autonomy
righ~. .

Of course, the data is not stored as CDM-typed data
but is typed according to the data model of the
involved database system. The interpretation of binary
data runs the same way as the transformation of type
information: It goes from the data model of the
application towards the CDM and from the CDM to
the database data model; and vv.

3. Extensions of the FSM Prototype

Since 1991 the FSM prototype has been completed by
some student' s work.

The Federal Data Dictionary of the prototype
contained information about data type declarations,
the types of application entities, and the structure of
these entities -- as weIl, access righ~ were included. It
did not include any technical information about the
availability of entities or schemata.

We extended the FDD and it now contains technical
information about the federation componen~. The
meta layer includes information about the technical
system that hos~ the application or the database
system. The schema layer includes information about
the technical availability of entities [9].

The lack of a docking mechanism and a protocol to
negotiate autonomy was another problem of the
original FSM prototype. It was a static system with
two applications, a database system and the FSM with
hard wired mechanisms to read data type declarations
-- database schemata could not be read, nor was it
possible to link another database system with the FSM.

Now we have implemented a link mechanism that
generalizes the old one [10]. We now use a FSM-Bind
module that binds a component -- either a database
system or an application -- if it includes our FSM­
Bind-Agent

The FSM-Bind-Agent ac~ as a client to the FSM-Bind
module, which is the server, and performs the link pro­
cess between FSM and component. It runs an imple­
mented protocol for start-up and shut-down situations
and uses the Remote Procedure Call (RPC) technique.

After linkage the FSM-Bind-Agent passes control to a
so-called FSM-Agent, which performs the information
exchange and the retrieval of schema information via
the Remote Data Access (RDA) protocol.

What is still missmg, is a user friendly retrieval
facility that completes the Federal Data Dictionary.
We will describe our ideas in the next section.

3.1. Extensions of the FDD

Data dictionaries off er technical information to users -
- and exactly this can be expected from our Federal
Data Dictionary as it is currently implemented. If a
user wan~ to build a new application he looks into the
FDD and looks up some data structures that he wan~
to re-use. Then he includes the chosen data structures
into his new schema (the FSM provides some
commands to do so) and runs his application.

This user is unable to check whether his new schema
violates the semantic integrity of the uni verse of dis­
course of the actual federation because he can not ask
the FDD to present hirn semantic relations between
entities.

We wish to provide such a user with an extended Fed­
eral Data Dictionary, which shows the conten~ of a
federation from various levels of abstraction. If this
extended data dictionary has a graphic interface the
user will use a mouse to easily request the change of
levels. Wh ich are these levels?

Taxonomy Level

The highest level presented, should be a taxonomy
upon the uni verse of discourse. It could be the union
of all schemata (and may be data type declarations of
applications) of local database componen~, which we
previously transformed into the abstraction level of a
concept language. This level would represent the data
of a particular federation without any technical details.
Here the user could look-up the real-world context of
an entity and might ask questions about the relation­
ships between entities. It is the level that KL-ONE like
languages usually offer to users with their T-Box.

Concept Languages separate between the terminologi­
cal (T-Box) and assertion knowledge (A-Box). The
task, wh ich we have to perform is to abstract the tech­
nical information from schemata and data type

20

declarations to concepts of concept languages. In [11]
we find a theoretical basis that allows us to express

tabase schemata with concept languages.

Moreover, the authors show that classification is then
available for entities of schemata -- and we found out
lhal the implementation of a classificator is

risingly supported through an algorithm, which we
within the FSM to detecl data type intersections

IX lypes from different data models. Tbis algorithm
oUows perfectly the above mentioned steps for a

siflcation of concepts.

Anyway, if we make the is-a and part-of relations of
eolities from schemata explicit and suppress the
lecbnical information, then we can ask questions
against a schema similar to the questions against a
lIXonomy.

1be implementation of this level may use intermediate
Ianguage representations that follow the idea of at­
lribuled trees. Tbis model allows us to determine the
degree of entity detail information, which we want to

nt, by cutting the tree at a certain level. The in­
ormation above the cut is presented as concept. The

l is hidden until requests from other levels of our re­
meval interface force it to become visible.

Apparently, we address some open questions if we
wanl to extend a data dictionary with knowledge
representation features:

do we find a way to reconslruct the entily view
m relational schemata with normalized relations?
y automatie evaluation of foreign keys -- which is
only data model conslruct that can be used to ex­

sub-part relationships, set-inclusions, and entily­
inclusions within the relation al data model -- finally
depends on the support of a human. A machine may
JOlely hypothesize is-a relations between entities.
Thus, our entity re-constructor can not be a completely

lomalic component. It has to include a dialogue
ponent to keep in touch with a human expert, bUl

lmay be a component that is able to leam.

hemaLevel

on a second level, the schema level, in a detailed
view, the user should have access to the more techni­

details of entities and should see what altributes an
lily make up, where the information resides within

federation, whether and when it is accessible for

·s level is comparable with an extended Entity­
lationship level where we added attributes about
ta distribution and data availability to the usual

ntation of entities, attributes, and relationships.

We realize this view by an FDD retrieval, because our
directory includes the slructure information of entities
in a neutral representation and the information about
the availability of these entities.

Syntax Level

Finally, the user may get whal he always got from
databases: the pure schema information. If he asks for
this, he will get an excerpt of a schema of one or more
particular local components of the federation -- and he
should decide hirnself whether he would like to
receive this information in the format of a common
data model or in the individual format of the involved

. local federation components.

4. First Steps toward the Taxonomy Level

Conceming the integration of abstract schema rep­
resentations into one taxonomy we did some work in
advance and evaluated an idea, published in [12]. It
proposed the assignment of fuzzy values lO
relationships to determine the is-a of an entity.

We took this idea and tried to use probability values
for the integration of different schemata into one -- to
simulate the situation that comes up if we have to
integrate abstracted schemata from components into
one taxonomy. It was a first guess to cope with
modeling heterogeneity.

Tbe basic assumption behind our tests was, that the in­
sert of knowledge into a taxonomy is an evolutionary
process and that we ask "is B a A or a C" and not
"how probably is B a A and ~ C".

We defined a value CT (Ei> E) for the correctness of a
is-a relationship between two entities Ei and Ej in a ta­
xonomy for the federation. Such a value is assumed to
be assigned to each is-a relationship within that taxo­
nomy. Similar to CT we defined a Cs (Ei' Ej) as a value
for the correctness of a is-a relationship in a local
schema.

Next we said that ST (Eu) and Ss (En) are the sets of an
super-concepts of a concept in the taxonomy and an
entily in a local schema.

Finally, we defined two functions, which were ne ces­
sary to calculate the probability values during the inte­
gration process.

The flrst function was called INIT and initialized an
initial taxonomy with the value 1 for all is-a relation­
ships: CT (Ei, ~) := 1.

21

Tbe second function included a case statement and
was called CALC. It calculated tbe initialized values
according to tbe new scbema. Tbe nrst case, Cl' was
used if a relationsbip was found in a schema -- it
corresponds witb tbe INIT function for tbe taxonomy -
- and set Cs (Ei' Ej) := 1. We assume that tbe designer
of tbe scbema did a good and correct work.

Tbe second case, C2, was used, if we nnd a
relationsbip within tbe scbema but not within tbe
taxonomy. We insert the relationsbip into tbe
taxonomy and give it tbe value CT (Ei,E) := Cs (EiEj)
+ card (ST (EI) ... Ss (E;».

This approacb seems to be correct because we can not
guarantee that tbe taxonomy was correctly initialized
witb relationsbips. Moreover, an insertion of a new re­
lationsbip affects tbe probability value of anotber one
because tbere must be a reason wby a particular appli­
cation domain needs tbis new relationship. It may be,
tbat tbe already existing relationsbips do not bave the
importance, whicb we bave expected.

Finally tbere is tbe case C3• In tbis case we see a rela­
tionsbip witbin tbe taxonomy but miss it in ascherna.
We interpret tbat relationship as "possible but
unnecessary" witbin tbis application domain and
"insert" it into tbe scbema with Cs (Ei,Ej) := CT (Ei,Ej)
+ card (ST (Ei».

Then we made tbree assumptions:
a) Tbe increase of probability of one particular rela­
tionsbip is given by its existence in scbemata and
causes a decrease of probability for tbose
relationsbips, wbich are often missed.
b) Tbe results of calculations about the overall proba­
bility for a particular relationship is included into the
taxonomy.
c) Results are calculated througb tbe geometrical
mean of tbe two probability values from the taxonomy
and from a scbema.

Witb these assumptions and formulas we tested tbe in­
tegration of six schemata into a taxonomy, wb ich was
initialized with one relationship "B is-a A". Four of
tbese scbemata included tbe relationsbip "B is-a A"
(we call tbem tbe A-type scbemata). Two included "B
is-a C" and not "B is-a A" (we call these tbe C-type
schemata).

In a nrst test, we inserted aC-type scbema nrst and af­
terwards botb relationsbips had tbe same value (0.71)
in tbe taxonomy. A four-times insert of tbe A-type
schemata brougbt tbe value of tbe "B is-a A" relation­
sbip up to 0.98 and tbe value of "B is-a C" fell down
to 0.18 -- similar to tbe predicate "insignincant" or
"incorrect". A nnal insert of aC-type scbema,

UVWCVC1, ~ave a new OalaIlCe [Q oorn valUes, Whlch
was 0.69 for tbe "B is-a A" and 0.42 for the "B is-a C"
relationship.

A second test gave surprising results: We inserted the
two C-type scbemata and then four times the A-type
scbemata. This gave a bigb value to tbe "B is-a C"
reiationsbip nrst -- tbe balance was 0.5 for "B is-a A"
and 0.84 far "B is-a C" -- and a nnal value of 0.96 for
"B is-a A" and 0.37 for "B is-a C".

Wbile the nrst test sbowed that the late insert of an ap­
parently insigniflcant relationsbip makes tbe value sys­
tem unstable, tbe second test showed tbat an early
insert of the two C-type scbemata prevents tbe al­
ternative relationsbip to fall down to an "insigniflcant"
valuation.

Anyway, botb value calculations were highly sequence
dependent, and we suspected the second asswnption as
tbe reason for it. Tbus we tried again without tbis as­
sumption. We inserted into C3 a variable: V (Ei)
counts tbe number of scbemata without a particular
relationsbip and tbe calculation C3 cbanged to

Cs (Ei,Ej) := 1 + (V (Ei) + 1).

Tbis does not change mucb and we were stuck to tbe
question: Is tbe insert of knowledge really an evolu­
tionary process or is it correct to calculate probability
values from tbe arithmetic mean of all values from
scbemata?

5. Conclusion

The proposed extended data dictionary gives a twofold
benent. At nrst, a user wbo wants to build a new
schema far an application in a system federation can
cbeck whicb entities already exist, which of tbem he
can re-use within his application, and whicb one he
bas to add or modify.
Second, an administrator can test tbe correctness of an

. existing scbema against tbe universe of discourse. He
can cbeck tbe completeness of relations between enti­
ties by looking-up the taxonomy, wbere he would nnd
tbe collection of all relationships between entities -­
and eventually a probability value of the necessity or
reliability of an individual relationsbip.

6. Literature

[1] The Common Object Request Broker: Architecture
and Specijication, OMG Docwnent Number 91.12.1,
Revision 1.1, Draft

[2] W. Benn, G. Junkennann, H. Kalweit, Cb. Kor­
tenbreer, G. Schlageter, X. Wu: The Conceptual Ob-

22

ject Manager Document, University of Hagen, Com­
puter Science Report N° 99, 1990

[3] W. Benn, Ch. Kortenbreer, X. Wu: Towards Inter­
operability: Vertical Integration of Languages with a
KBMS, GI-Fachtagung "Datenbanksysteme in Büro,
Technik und Wissenschaft" (B1W 91), Springer-Ver­
lag, 1991

[4] W. Benn: KBMS Support for Multiple Paradigm
Applications, in [16]

(5] W. Benn: KBMS Support for Conceptual
Modeling in Al, 3rd International Conference on Tools
für Artificial Intelligence, 1991

(6] W. Benn, Ch. Kortenbreer, G. Schlageter, X. Wu:
On Interoperability for KBMS Applications - The Ho­
rizontal Integration Task ., 8 th Intl. Conference on
Data Engineering, Phoenix, AZ, 1992

[7] A.P. Sheth, 1.A. Larson: Federated Database Sys­
tems for Managing Distributed, Heterogeneous, anti
AulOnomous Databases, ACM Computing Surveys
(1990) 3

[8] DIN 66 313, Rahmenangabenjar Systeme zur Ver­
waltung von Informationsrecourcenverzeichnissen,
DIN Deutsches Institut für Normung e.V., Berlin,
1992 (same as ISOIIEC 10027)

[9] 1. Hunstock: Erweiterung einer Wissensbasis zur
Realisierung von universellem Polymorphismus in fö­
derativen Systemen um technische Informationen auto­
nomer Systemkomponenten (Extending the Meta­
Knowledge Base of the FSM by technical information),
thesis for diploma, Chemnitz University of
Technology, 1993

(10] M. Schöne, S. Herold: Konzeption und Imple­
mentierung eines Protokolls und zugehöriger System­
komponenten zur Integration von Datenbanksystemen
in einer Föderation (Design and impleme11lation of a
protocol for the integration of database components
into a federation), thesis for diploma, Chemnitz Uni­
versity of Technology, 1994

[11] S. Bergamaschi, C. Sartori: On taxonomic re-
asoning in conceptual design, ACM TODS (1992) 3

[12] P. Fankhauser, M. Kracker, E. Neuhold: Semantic
vs. Structural Resemblance of Classes, ACM SIG­
MOD Record 20 (1991) 4

23

Do we need the closed-world assumption in knowledge
representation?

Ullrich Hustadt*
Max-Planck-Institut für Informatik
Im Stadtwald, D-66123 Saarbrücken

e-mail hustadt«lmpi-sb.mpg.de

1 Introduction
Database systems and knowledge representation sys­
tems represent and reason about some aspect of the
real world. In both it is common to separate the
two functions of representation, i.e. describing the
conceptual scheme and the actual data, and compu­
tation, i.e. answering of queries and manipulation of
data.

The database management system of a database
system provides a data definition language to de­
scribe the conceptual scheme. The data definition
language is used to describe the database in terms
of a data model. Operations on the database re­
quire a specialized language, called a data manipu­
lation language or query language. One of the most
important data models is the relational model which
describes the world in terms of atomic values and re­
lations on the set of all atomic values. Data manip­
ulation languages of the relational model comprise
the relation al algebra, and the domain and tuple re­
lational calculi. The object-oriented model supports
a more elaborated description of the world by allow­
ing complex objects, i.e. objects c~nstructed using
record formation and set formation, dasses, i.e. ab­
stract data types describing methods, which are op­
erations to be performed on the objects, and dass
hierarchies.

The data manipulation languages of these data
models are based on the following assumptions.

The closed-world assumption
which says that all information that is not true
in the database is considered as false .

The unique-nrune assumption
wh ich says that two distinct constants (either
atomic values or objects) necessarily designate
two different objects in the uni verse.

The domain-closure assumption
which says that there are no other objects in the
universe than those designated by constants of
the database.

These assumptions are important to understand the
way computations are performed in databases.

Knowledge representation formalisms are aimed
to represent general conceptual information and are

• Acknowledgments: This work has been supported
by the German Ministry for Research and Teclmology
(BMFT) under grant ITS 9102 (Project Logo) . Respon­
sibility for the contents lies with the author.

typically used in the construction of the knowledge
base of a reasoning agent. A knowledge base can
be thought of as representing the beliefs of such
an agent. One of the most prominent knowledge
representation formalisms is KL-ONE [Brachman and
Schmolze,19S5] which has been used in the construc­
ti on of natural language processing systems.

The knowledge representation language of KL-ONE

and all it's derivates can be considered as a subset
of first-order logic with equality. With respect to
describing structural properties of objects and con­
ceptual schemes they are more expressive than the
data definition languages corresponding to the rela­
tional or object-oriented model.

In the late eighties inference in KL-ONE was shown
to be undecidable [Schmidt-Schauss,19S9]. Since
then the emphasis in research has been on devel­
oping and investigating systems that are computa­
tionally weil behaved, i.e. are tractable or at least
decidable [Brachman et al.,1991; Donini et al.,1991;
Buchheit et al.,1993]. As a result many commonly
used knowledge representation languages have re­
stricted expressiveness and are in their current form
no Ion ger suitable for naturallanguage applications.
They are still more expressive than data definition
languages, but the question can be risen whether
there is an application needing this additional ex­
pressive power.

Nevertheless, data manipulation languages and
query languages of knowledge representation for­
malisms differ considerably in their underlying as­
sumptions.
The open-world assumption

wh ich says that there can be true facts that are
not contained in the knowledge base.

The unique-nrune assumption
which says that two distinct constants (either
atomic values or objects) necessarily designate
two different objects in the universe.

The open-domain assumption
which says that there can be more objects in the
uni verse than those designated by constants in
the knowledge base unless a constraint in the
knowledge base prevents this.

That means, that even ifthe datadefinition language
and the data manipulation language of a database
management system and a knowledge base manage­
ment system would coincide , the results of data ma­
nipulations would differ.

24

In the next section I will give some examples that
show the usefulness of c1osed-worId inferences in nat­
ural language processing. Thus knowledge represen­
tation languages sticking to the open-worId assump­
tion see m to be insufficient for naturallanguage pro­
cessing.

2 Query answering in Natural
Language Processing

In cooperation with the PRACMA Project1 (De­
partment of Computer Science, University of Saar­
brücken) we have been developing a suitably ex­
tended knowledge representation system, called MO­

TEL [Hustadt and Nonnengart,1993], which is in­
tended to be a module of the PRACMA system. The
PRACMA Project [Jameson et al.,1994] is concerned
with the modeling of noncooperative information­
providing dialogues. An example from PRACMA'S

domain is the dialogue between a person S trying to
seil her used car to a potential buyer B. Naturally,
the goals of S conßict in part with those of B.

In the final implementation, the natural language
analysis module of the PRACMA system will use
the semantic representation language NCC [Laub­
sch and Nerbonne,1991] to represent the German­
language input strings. The resulting NCC expres­
sions will be stored in the pragmatic dialogue mem­
ory. Various modules will process the content of the
dialogue memory, the most important one for us is
the comment and question handler. The result of
this module is transfered to the natural language
generator which is responsible for verbalizing NCC
expressions.

NCC contains a first-order logic core with anadic
predicates, generalized quantifiers, plural reference
expressions, and A-abstraction. To fit the pur­
poses of PRACMA the language has been extended
by modal operators.

Suppose the knowledge base of the car seiler S
contains declarations defining that vehicles are either
cars or trucks, veh1 is a truck, and veh2 is a vehicle.
This can be represented in N CC in the following
way.

(forall ?x vehicle(inst: ?x) iff

(car(inst: ?x) or

truck(inst: ?x))

truck(inst: veh1)

vehicle(inst: veh2)

(1)
(2)
(3)

Here veh1 and veh2 are constants, vehicle, car,
and truck are predicate symbols. In NCC argu­
ments of predicates are identified via keywords, e.g.
inst, rather than positions in argument vectors .
Any identifier preceded by a question mark, e.g.
?x, is a variable. In addition we have used the
boolean operators iff (equivalence) and or (disjunc­
tion), and the universal quantifier forall in decla­
ration (1).

Now a question of the buyer concerning which ob­
jects are either cars or trucks is represented in the

IpRACMA is short for 'PRocessing Arguments be­
tween Controversially Minded Agents.'

following way.

(?lambda ?x car(inst: ?x) or

truck(inst: ?x)) (4)
An expression of the (?lambda ?x P) denotes the
set of all ?x satisfying P. The answer we have to
infer from the knowledge base is that veh1 and veh2 .
both belong to this set.

Obviously, this answer cannot be computed by the
comment and question handler without taking dec­
laration (1) into account. For instance, it is not pos­
sible to find the correct answer to (4) by computing
the answer sets for (?lambda ?x car(inst: ?x))­
and (?lambda ?x truck(inst: ?x)) and to return
the union of the resulting sets as an answer .

A question of the buyer concerning which objects
do not belong to the set of trucks is translated into
the following NCC expression.

. (?lambda ?x not car(inst: ?x)) (5)
Whereas the c1osed-world assumption would allow
us to infer that veh1 belongs to this set, the open­
world assumption underlying NCL doesn't support
this conclusion.

The question whether all cars are vehicles can also
be formulated in NCL. To answer this quest ion we
can try to infer

(forall ?x vehicle(inst: ?x) if

car(inst: ?x)) (6)
from the knowledge base. The answer to this ques­
tion has to be independent of the constants currently
occurring in our knowledge base. On the basis of
declaration (1), the answer has to be positive.

Now let us assurne that the left front se at of veh2
is red. Choosing lfseat to designate the left front
seat, this can be represented in the following way.

hasPart(inst: veh2, theme: lfseat)

seat(inst: lfseat)
(7)
(8)

hasColour(inst: lfseat, theme: red) (9)

To answer the question whether all seats of veh2
are red we have to try to infer the following N CL
expressIOn.

(forall ?x

hasColour(inst: ?x, theme: red)

if hasPart(inst: veh2, theme: ?x)

and seat(inst: ?x)) (10)

Because of the open-domain and open-worId as­
sumption, the answer to the question cannot be pos­
itive. Although the only seat the car seiler knows to
be part of veh2 is actually red, there may be other
seats of veh2 and these seats may not be red.

Intuitively, a positive answer is much more plau­
sible. We would assurne that the car seiler knows all
the seats of veh2 and knows the colour of every se at
of veh2. It is possible to extend the knowledge base
using number restrictions in such a way that we can
infer a positive answer, e.g.

«= 1) ?x hasPart(inst: veh2, theme: ?x)

and seat(inst: ?x)) (11)

25

declares that veh2 has exactly one se at. decla­
rations (7),(8),(9), and (11) taken together allow
us to answer query (lO) positively. However, it
seems to be more natural to extend the language
by an epistemic modal operator in the style of Lif­
schitz [Lifschitz,1991] to solve the problem. For a
description of an extension of the knowledge repre­
sentation language A.ce by an epistemic operator
refer to Donini et al. [Donini et al. ,1992].

Suppose our language contains such an epistemic
operator K. Then we have two possibilities to get a
positive answer to the question. The first possibility
is to reformulate the question slightly in the follow­
lOg way.

(forall ?x

hasColour(inst: ?x, theme: red) if

K(hasPart(inst: veh2, theme: ?x)

and seat(inst: ?x») (12)

Now the quest ion is wh ether all known seats of veh2
are red and the answer has to be positive. This
approach causes the problem how the natural lan­
guage analysis module should determine the epis­
temic character of quest ion (12) opposed to the non­
epistemic character of question (6) .

The second possibility is to add a declaration of
the following form to the knowledge base

not (hasPart(inst: veh2, theme : ?x)

and seat(inst: ?x» if

not K(hasPart(inst: veh2, theme: ?x)

and seat(inst: ?x» (13)

This declaration allows to conclude that an object
is either not part of veh2 or not a seat if it is not
known to be part of veh2 and aseat.

Obviously, we are now able to turn our knowledge
base system into a database system either by suit­
ably adding epistemic operators to all the queries or
by adding enough epistemic rules to the knowledge
base. Therefore, the extension of knowledge repre­
sentation languages with an epistemic operator is a
first step to unify the database world and the knowl­
edge base world .

3 FUture Work
It is well-known that theorem proving in a first­
order language containing an epistemic operator is
not even semi-decidable . Although the answers to
the example quest ions presented in the previous sec­
tion seem to be derived easily, there is no hope to find
a correct and complete inference mechanism which
is able to deduce them.

If we need a correct inference mechanism, the only
possibility we have is to restrict the knowledge rep­
resentation language, i.e . we have to identify a de­
cidable fragment of N.c.c to which we can add an
epistemic operator without loosing decidability.

References
[Brachman and Schmolze, 1985] Ron J . Brachman

and J. G. Schmolze. An Overview of the KL-ONE
knowledge representation system. Cognitive Sci­
ence, 9(2):171-216, 1985 .

26

[Brach man et al., 1991] Ron J . Brachman, Deb(}­
rah L. McGuinness, Pet er F . Patel-Schneider, and
A. Borgida. Living with CLASSIC: When and how
to use a KL-oNE-like language. In J. F . Sowa,
editor, Principles in Semantic Networks: Explo­
rations in the Representation of Knowledge, pages
401-456. Morgan Kaufmann, San Mateo, Califor­
nia, 1991.

[Buchheit et al., 1993] M. Buchheit, F . M. Donini,
and A. Schaerf. Decidable reasoning in terminol(}­
gical knowledge representation systems. Research
Report RR-93-10, Deutsches Forschungszentrum
für Künstliche Intelligenz, Saarbtücken, Germany,
1993.

[Donini et al., 1991] F . M. Donini, M. Lenzerini,
D. Nardi, and W. Nutt . The complexity of concept
languages. In J. Allen, R. Fikes, and E. Sandewall,
editors, Proceedings of the Second International
Conference on Principles of Knowledge Represen­
tation and Reasoning, pages 151-162, Cambridge,
USA, April 22-25 1991. Morgan Kaufmann .

[Donini et al., 1992] F . M. Donini, M. Lenzerini,
D. Nardi, A. Schaerf, and W. Nutt. Adding
Epistemic Operators to Concept Languages. In
B . Nebel, C. Rich, and W. Swartout, editors, Pro­
ceedings of the Third International Conference on
Principles of K nowledge Representation and Rea­
soning, pages 342-353, Cambridge, USA, 1992.
Morgan Kaufmann.

[Hustadt and Nonnengart, 1993] U. Hustadt and A.
Nonnengart. Modalities in knowledge representa­
tion. In Chris Rowles, Huan Liu, and Norman Foo,
editors, Proceedings of the 6th Australian Joint
Conference on Artificial Intelligence, pages 249-
254, Melbourne, Australia, 16-19 November 1993.
World Scientific.

[Jameson et al., 1994] Anthony Jameson, B. Kip­
per, A. Ndiaye, R. Schäfer, J. Simons, T . Weis,
and D. Zimmermann. Cooperating to be noncoop­
erative: The dialog system pracma. To appear in
the Proceedings of the 18th Annual German Con­
ference on Artificial Intelligence, 1994. Springer.

[Laubsch and Nerbonne, 1991] J . Laubsch and J.
Nerbonne. An Overview of N.ce Technical re­
port, Hewlett Packard Laboratories, May 1991.

[Lifschitz, 1991] Vladimir Lifschitz. Nonmonotonic
databases and epistemic queries. In Proceedings
of the Twelfth International Conference on Arti­
ficial Intelligence, pages 381-386, Sydney, Aus­
tralia, August 24-30 1991. Morgan Kaufmann .

[Schmidt-Schauss , 1989] M. Schmidt-Schauss . SuD­
sumption in KL-ONE is Undecidable. In R. J.
Brachman and H. J. Levesque, and R. Reiter, edi­
tors,Proceedings of the First International Confer­
ence on Principles of Knowledge Representation
and Reasoning, pages 421-431, Toronto, Canada,
May 15-19 1989. Morgan Kaufmann.

Tractable Reasoning in a Universal Description Logic:
Extended Abstract*

Klaus Schild

German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, FRG
e-mail: schild@dfki.uni-sb.de

1 Introduction
Description logics (also called terminological logics
or concept languages) have been designed for the
logical reconstruction and specification of knowledge
representation systems descending from KL-ONE
such as BACK, CLASSIC, ICRIS, and LOOM. 1 These
systems are used to make the terminology of an a{r
plication domain explicit and then to classify these
definitions automatically into a taxonomy according
to semantic relations like subsumption and equiva­
lence. More precisely, automatic classification refers
to the ability to insert a new concept into the tax­
onomy in such a way that it is directly linked to the
most specific concept it is subsumed by and to the
most general concept it in turn subsumes. Termi­
nological knowledge representation systems thereby
support the task to formalize an application in at
least two respects. On the one hand, they urge the
user to isolate the intrinsic concepts of the appli­
cation; on the other hand they may detect hidden
subsumption and equivalence relations between def­
initions or may even detect that adefinition is inco­
herent .

A model of the application is then given by associ­
ating special objects ofthe domain with the concepts
of the terminology. The systems mentioned above
in turn automatically classify these objects with re­
spect to the given terminology and to those member­
ship relations which have been asserted explicitly. In
this case, however, automatic classification refers to
the ability to find the most specific concept the ob­
ject is a member of.

Terminologies comprise two different kinds of
terms, viz. so-called concepts and roles. The for­
mer are intended to represent classes of objects of a
given domain, while the latter represent binary rela­
tions over this domain. Concepts can either be sim­
ple concept names, representing not further specified
classes of objects, or structured by means of a fixed
set of concept structuring primitives. Common con­
cept structuring primitives are concept conjunction
n and universal quantification V R:C over a role R.
Concept conjunction is to be interpreted as set in­
tersection, while the concept V R :C denotes all those

"This work was supported by agrant from the
Deutsche Forschungsgemeinschaft (DFG).

1 For a good overview of the so-called KL-üNE family
the reader is referred to [Woods and Schmolze, 1992]; for
KL-üNE itself cf. [Brachman and Schmolze, 1985] .

objects d of the domain for which each object re­
lated to d by the role R is a member of the con­
cept C. Although there exist many other concept
structuring primitives, it is commonly accepted that
these two should be part of each concept language.
In contrast to concepts, roles are often taken to be
atomic, i.e., there are no roles other than role names.
The standard concept language ACe, for instance,
does not comprise any role structuring primitives.
However, in addition to those mentioned above, this
language comprises concept disjunction U, concept
negation..., as weIl as existential quaI!tification 3R:C
over a role R as concept structüring primitives. For
details the reader is referred to [Schmidt-Schauß and
Smolka, 1991].

27

Definitions are given by associating a concept or
role T with a concept name (resp., role name) TN .
Such adefinition is represented by the expression
TN == T and is called concept and role introduction
respectively. Terminologies are just finite sets of con­
cept and role introductions such that each concept
and role name is defined at most once, i.e., for ev­
ery concept and role name TN there exists at most
one concept or role introduction the left-hand side
of which is TN .

As already mentioned, a model of application do­
main is described in terms of the given terminology.
More precisely, specific objects of the domain and
pairs of objects can be associated with concepts and
roles of the terminology, where these objects are syn­
tactically represented by so-called individual names.
It can either be asserted that an individual name a
is an instance of a concept C or that it is related to
another individual name, say, b, by a role R. Such
assertions are called assertional axioms and are re{r
resented by the expressions a:C and (a, b):R respec­
tively. A finite set of assertion al axioms forms a
knowledge base.

From a theoretical point of view, the computa­
tional service provided by terminological knowledge
representation systems can be reduced to ans wer
queries of the following form with respect to a knowl­
edge base ICB and to a terminology T: a query can
be an assertional axiom or an inclusion axiom of the
form Tl C T2 , where Tl and T2 are either two con­
cepts or two roles. The meaning of such a query Q
posed with respect to ICB and T is usually given in
terms of so-called interpretations and models. An
interpretation T. consists of a domain /:),.I and a val-

uation V over ßI along with an interpretation func­
tion .I. The valuation V over ßI maps each concept
name to a subset of ßI and each role name to a bi­
nary relation over ß I. Individual names, however,
are mapped to singleton sets containing exactly one
element of ßI . The interpretation function .I, on
the other hand, just extends V to deal with arbitrary
concepts and roles in such a way that an concept and
role structuring primitives are interpreted properly.
The concept structuring primitives n, U, ..." for in­
stance, are to be interpreted as the corresponding
set operations on ß I, while the interpretation of the
concept 'V R:C is defined inductively as folIows: if CI
and R I have already been defined, then ('VR:C)I is
{d E ßI : 'Ve«(d, e) E R I), e E CI}.

An interpretation I is then said to be a model
of the inclusion axiom Tl ~ T 2 just in case that Tr ~ Tl and, if a and b are individual names such
that aI is {Q} and bI is {Q}, then I is a model of
the assertion al axiom a:C (resp., of (a,b):R) just in
case that Q E CI (resp., (Q, Q) E R I). Not very
surprising, an interpretation is a model of KB and T
if it is a model of each of the elements of KB and T.
Now, Q is said to be entailed by KB and T, written
KB FT Q, if and only if every interpretation which
is a model of KB and T is a model of Q as weil.
Moreover, we say that T 2 subsumes Tl with respect
to T if and only if it holds that 0 FT Tl ~ T2·

2 Terminological Reasoning is
Inherently Intractable

Unfortunately, answering such queries is in most
cases provably intractable, at least in terms of com­
putational worst case complexity. This applies, for
instance, to the basic inference of KL-ONE, although
originally claimed to be comI?utationally tractable.
In fact, Schmidt-Schauß [1989J proved that there ex­
ists no algorithm at an which decides whether one
concept of KL-ONE subsurnes another one or not,
even with respect to empty terminologies.

Moreover, in [Schild, 1993, 94al, , it is proved that
in case of the standard concept language ACe, every
algorithm capable of deciding whether one concept
subsurnes another one or not uses more than poly­
nomial time in the worst case if at least one (pos­
sibly recursive) concept introduction is taken into
account . Notably, this result holds no matter which
of the usual kinds of semantics for recursive concept
introductions is presupposed, viz. either descriptive
semantics or least or greatest fixed point semanties,
as Nebel [1991] called them .

It is also known that even in case of the minimal
concept language (comprising no concept and role
structuring primitives other than concept conjunc­
tion and universal quantification over role names),
there exists no polynomial time algorithm which de­
cides with respect to acyclic terminologies whether
one concepts subsurnes another one or not, unless
P = NP [Nebel, 1990].

m Is b a top block?
table

Figure 1: A sampie blocks world.

{

'Vx.block(x) <=> x = a V x = b, }
a:f:. b, a :f:. table, b:f:. table,

'Vx'Vy.on(x, y) <=> (x = a 1\ y = b)

V (x = b 1\ Y = table)
?
F block(b) 1\ ...,3x.block(x) 1\ on(x, b)

Figure 2: Representing the sampie blocks world by
first-order formulae.

3 Model Checking Versus Theorem
Proving

In the previous section, we have seen that, as
Woods and Schmolze [1992] put it, "the surfeit of in­
tractability results seems to have reached its logical
end with the conclusion that practically everything
of any use is intractable (in the worst case)." Re­
cently, Halpern and Vardi [1991] proposed a possible
solution to this very problem of knowledge represen­
tation. As a starting point, they re-examined the
traditional approach to knowledge representation,
going back to McCarthy [1968]. According to this
approach the world to be modeled should be repre­
sented by a finite set of formulae of some given logic,
preferably first-order logic. Ir a quest ion to be an­
swered is then formulated within the same logic, the
answer depends on whether this formula is a logical
consequence of the collection of formulae represent­
ing the world or not. In other words, it is checked
whether every semantic structure which is a model
of each of the formulae representing the world is also
a model of formula corresponding to the question.

We shall illustrate this traditional approach to
knowledge representation by means of an example,
drawn from the famous blocks world. Suppose, for
instance, we would like to represent a blocks world
involving two blocks, say, a and b, where a lies on b
and the latter in turn lies on a table . Suppose, fur­
thermore, we would like to know whether b is a top
block or not . Figure 1 depicts exactly this situation,
while Figure 2 gives its representation in terms of
first-order logic in the traditional way just described .

28

McCarthy's approach, however, gives rise to the
problem that the need to represent all facts about
the world in terms of some logic necessitates the
use of very expressive logics such as full first-order
logic . This, in fact, gives rise to difficulties because
it is known that there exists no algorithm at an
which generally decides logical consequence in fun
first-order logic [Church, 1936], and this remains
true even when only finite interpretation domains
are taken into consideration [Trahtenbrot, 1963].

At this very point Halpern and Vardi stressed that

?

Vom

[block]

[on]

{a, b, table}

= {a, b}
= {(a, b), (b, table)}

~ block(b) /\ --,3x.block(x) /\ on(x, b)

Figure 3: Representing the sam pie blocks world by
a semantic structure.

in many cases the natural representation of a world
to be modeled is a semantic structure rather than
a collection of formulae. If, as in the traditional
approach, queries are represented by formulae of a
given logic, a query can be answered in this case
depending on whether the formula representing the
query is true in the given semantic structure or not.
That is to say, it is checked whether the semantic
structure is a model of the formula corresponding
to the query. The fact that a (closed) formula a is
true in a semantic structure M is usual!y indicated
by M 1= a. Resorting to this convention, Figure 3
gives such an alternative representation of the blocks
world considered above.

In many cases this model checking approach has
tremendous benefits, at least in terms of computa­
tional complexity. For instance, checking the truth
of an arbitrary closed first-order formula2 a in a
finite semantic structure fixing the interpretation
of all predicates and constants occurring in a is
known to be decidable using at most polynomial
space [Chandra and Merlin, 1977]. Recal! that in
contrast to this, there exists no algorithm at all
wh ich is able to decide whether an arbitrary formula
of this kind is a logical consequence of a finite set of
first-order formulae, even with only finite interpreta­
tion domains taken into account. However, it is also
known that first-order model checking is still at least
as hard as any other problem solvable using at most
polynomial space, hence this problem is still very
hard [Chandra and Merlin, 1977]. Anyway, Halpern
and Vardi's intention was to forge a new approach
to knowledge representation rather than to give con­
crete instances which allow for tractable inferences.

4 The Model Checking Approach to
Terminological Reasoning

It should be clear that terminological knowledge rep­
resentation, as described in the introduction, is com­
mitted to the traditional approach to knowledge rep­
resentation rather than to the model checking ap­
proach. In [Schild, 1994b] we investigated the con­
sequences of adapting Halpern and Vardi's model
checking approach to terminological reasoning . It
turned out that even in case ofthe most powerful de­
scription logic considered in the literature, answering
queries become tractable just by replacing the usual
kind of knowledge bases with single finite sem an­
tic structures fixing the interpretation of all primi­
tive concepts and roles (i.e., those concept and role

2This formula should involve no function symbols
other than constants.

{

a:Block, b:Block, table:--,Block, }
(a, b):on, (b, table):on,
a:(--,30n- 1 : Block), table:(--,3 on : Block)

T = {TopBlock == Block n --,30n- 1 : Block }
?

I=T b: TopBlock

Figure 4: Representing the sam pie blocks world by
an ACe-1-KB.

Vom

[Block]

{a, b, table}

{a, b}
[on] {(a,b),(b,table)}

T = {TopBlock == Block n --,30n- 1:Block}
?

I=T b: TopBlock

Figure 5: Representing the sampie blocks world by
a physical ACe-1-KB.

names which are mentioned somewhere in the term i­
nology or in the query, but which are not defined) .

But before engaging into details, have a look at
Figure 4, which shows how to represent the al ready
familiar blocks world in terms of ACe together with
the inverse of roles -1, as i t would be done tradi­
tionally. Observe, however, that this representation
is incomplete in that it solely states that block a lies
on block b, while the latter in turn lies on the table,
but it is left open whether there is any other block
Iying on b or on the table. As a matter of fact, there
is no way at all to give an accumte representation of
our blocks world in terms of ACe, even when aug­
mented by the inverse of roles. This means, in this
case the so-called open world assumption,3 tradition­
ally made for terminological reasoning, is a nuisance
rather than an advantage.

Figure 5 modifies the just considered representa­
tion in the spirit of the model checking approach . A
finite semantic structure is shown there which fixes
the interpretation of each primitive concept and role
of T, that is, it fixes the interpretation of Block and
on. Such a semantic structure is obviously nothing
but a valuation along with a domain. When taken
together with a domain, the syntactic representation
of such a valuation is called physical knowledge base,
emphasizing the fact that they are intended to re­
pi ace customary knowledge bases. Now, suppose V
is such a physical knowledge base with domain Vom,
T is an arbitrary terminology, and Q is a query.
Then V I=T Q is intended to mean that every in­
terpretation extending V which is a model of T is a
model of Q as weil, where an interpretation I is said
to extend a physical knowledge base V with domain
Vom just in case that ßI = Vom and, moreover, .I

interprets all those concept and role names handled

3In contrast to the closed world ossumption, usually
made for databases, the open world assumption does not
assume that all those facts that are not expIicitly men­
tioned (or that cannot be inferred) are taken to be false .

29

by V in exactly the same way as V does.
In [Schild, 1994b] we investigated the computa­

tional complexity of answering such queries with re­
spect to physical knowledge bases in the description
logic U, introduced by Patel-Schneider [1987] as a
universal description logic. This concept language is
universal in the sense that it encompasses all others
considered in the literature, except for those which
comprise nonstandard facilities like defaults, for in­
stance. In addition to those of ACC, this language
comprises number restrietions of the form 3~n R:C
and 3$m R :C as weIl as role value maps of the form
R :$ S as .concept structuring primitives. Number
restrictions restrict the number of role fillers (i.e.,
those objects which are related to an object by a
role) , while role value maps im pose restrictions on
the fillers of two roles . The concept R :$ S states
that all fillers of the role R are also fillers of the role
S. In addition, U admits of individual names to oc­
curring in concepts. The role structuring primitives
of U are the identity role f, Boolean operations n, U,
-. on roles, the inverse R- 1 of a role, the composition
RoS of two roles, as weIl as the transitive closure R+
and the reflexive-transitive closure RO of a role . For
details cf. [Schild, 1994b] or [Patel-Schneider, 1987].
Notably, it is known that there cannot exist any al­
gorithm which is capable of deciding subsumption
between two concepts (or two roles) of U, even with
respect to empty terminologies [Schild, 1988].

The main result of [Schild, 1994b] is that even in
this language V FT Q can be decided in polynomial
time provided that each of the following conditions
is satisfied:

(a) V has a finite domain and specifies all concept
and role names occurring in 7 and Q except for
those which are defined in 7;

(b) Roles are not defined recursively;

(c) Concepts can be defined recursively, but then
they must occur in their definition4 positively,
i.e., they must occur in the scope of an even
number of negations, where 3$m R: counts also
as a negation. Moreover, each recursive defini­
tion must be given either least or greatest fixed
point semantics, not necessarily in a uniform
way.

Of course, each of these conditions calls for some
comment . Condition (b) is commonly presupposed
for terminological reasoning, while condition (c) con­
stitutes the most liberal restriction on recursive con­
cept definitions considered in the literature. The
most important condition, however, is the first one
in that it ensures all primitive concepts and roles
to be specified extensionally. This restriction does
make sense as these concepts and roles are exactly
those which are not further specified according to the
semantics. It can easily be verified that the sam pie
query of Figure 5 obeys each of the three conditions
above.

The employed algorithm capable of deciding V FT
Q in polynomial time just mimics the semantics of

41n trus context, adefinition is meant to be the sub­
terminology of T wruch contains exactly those concept
introductions wruch are involved in the recursion.

the concept and role structuring primitives of U,
storing al ready evaluated ones. To deal with re­
cursive concept definitions, however, we exploited
a technique for computing least and greatest fixed
points due to Emerson and Lei [1986].

It turned out that even when relaxing condition
(a) in such a way that V is solely required to have a
finite domain, V FT Q is still decidable in the uni­
versal description logic U. In fact, we proved that in
this case the computational complexity is essentially
the same as the one of deciding ordinary subsump­
tion between two concepts with respect to acyclic
terminologies in the minimal concept language.5

We also investigated the consequences of incorpo­
rating some limited kind of incomplete knowledge
by means of Reiter's null values [Reiter, 1984]. It
turned out that, when presupposing P f. NP, ad­
mitting of null values causes intractability, even in
case of ACC. Thus our results suggest that the main
source of computational complexity of terminologi­
cal reasoning seems to be the ability to express In­

complete knowledge.

5 Description Logics as Tractable
Query Languages for Databases

Another interpretation of our results is that, when
taken together with the least and greatest fixed point
semantics, the universal concept language U can
serve as a powerful but tractable query language for
relational databases comprising solely unary and bi­
nary relations. 6 From this point of view terminolo­
gies are to be thought of as defining so-called views,
possibly defined recursively.

30

At this very point, it is important to note that the
universal description logic U is so strong in expres­
sive power thatit is even capable of accurately defin­
ing concepts such as directed acYclic graphs (DAGs),
trees, or binary trees. The powerful role forming
primitives of U actually admit of plausible and non­
recursive definitions of these concepts. As every fi­
nite graph can uniquely be represented by a physi­
cal knowledge base in a completely straightforward
manner, these concepts provide views which can be
used to extract from a huge collection of (connected)
directed graphs exactly those which are acyclic or
those which are trees or binary trees . If we addi­
tionally have recursive concept introductions along
with least fixed point semantics at our disposal, we
mayeven extract from a finite and-or-graph G (or a
collection of such) exactly the solvable vertices, i.e.,
those vertices wh ich are a root of an acyclic sub­
graph G. of G such that every and-vertex of G. has
exactly those edges it has in G and, moreover, ev­
ery or-vertex has at least one of those edges it has
in G. Figure 6 gives the terminology of U defin­
ing all the concepts mentioned in this section, where
the recursive concept introduction of Solvable should
be given least fixed point semantics. This is just
to demonstrate that even though the model check-

5Technically speaking, in trus case deciding V FT Q
in U is co-NP-complete .

6Note that unary and binary relations do suffice as
far as only object-oriented databases are concemed.

API-MODULE Eaps;
FROM CoapanyDb IMPORT Eaployee. Project.

Departaent. String;
TYPE

PORT

EapType/Employee • [name: String;
project: {Project};
dept: DeptType];

DeptType/Department = [deptName: String;
head: .EmpType];

e: {EapTypel dept.deptName-$N};
END.

Figure 1: API module for the company example

data structures on top of the imported concepts.
EmpType is arecord type which represents the name
of an employee, his projects, and the department.
The latter is given by the name and the reference
(pointer) to that employee who is the head of the de­
partment . The purpose of the pointer is to encode
recursive type definitions. The PORT dedaration
defines which information of the database should be
teransfered to the application program. Here, all
employees who have a department named by $N are
of interest. The token $N denotes a placeholder for
astring whose value is inserted by the application
program at run time.

3 Query Generation

From the database point of view, an API module is
a collection of simple view definitions whose exten­
sions are represented by terms conforming the type
definitions. These views are encoded as a logic pro­
gram defining a predicate hasType(T. V).1t formally
defines the set of values V having type T, i.e., the se­
mantics of the type T. The database system is mod­
elled by two predicates for accessing information:

• In(X.C) denotes that the database object xis
an instance of the con­
cept C, e.g ., In(e2341.Employee), In("Peter
Wolfe". String) .

• A(C .a.X. y) states that the object X is related to
the object Y by an attribute a which is defined in
dass C, e.g., A(Employee.name.e2341."Peter
Wolfe").

The logic program can automatically be gener­
ated from the type definitions by a simple top down
traversing algorithm on the syntax tree of a type
definition 1 :

For each concept C imported in the API module
we indude a dause which delivers all values of type
C.

hasType(C.C(_X»
InCX.C).

A tuple type has the general form T/C =
[a1: T1 •...• alt: Tk]. The decoration C is called the
"dass" of T. It is mapped to the dause pattern

I We adopt tbe syntax of Prolog to denote the clauses.
Variables start with an underscore. The meta predicate
SETJJF(x.c.s) evaluates s as the set of all elements x
satisfying the condition c

hasType(T,T(_X,_Yl, ... ,_YK) .­
InCX.C).
<map(a1:T1».

<map(alt:Tk».

The parts <map(ai :Ti» have to be mapped as
folIows:

• If Ti is a set type {S} where S is a type
name for a tuple-valued type with arity m then
<map(ai :Ti» is replaced by

SET_OF(S(_Z._Z1 •...• _Zm).
(A(C.ai._X._Z).

hasType(S.S(_Z._Z1 •...• _Zm»).
3i)

• If Ti is a set type {.S} where S is a type name
of a tuple type with dass D then <map(ai :Ti»
is replaced by

SET_OF(REF(S._Z).
(A(C.ai._X._Z).

InCZ.D».
_Yi)

• If Ti is a tuple type with arity m then the macro
is replaced by

_Yi = Ti(_Y._Z1 •...• _Zm).
A(C.ai._X._Y).
hasType(Ti._Yi)

• Finally, pointer types .Ti where Ti is arecord
type with dass D are mapped to the condition

(_Yi = REF(Ti._Y).
A(C.ai._X._Y).
InCY .D);
_Y = null_value)

The operator ';' stands for a logical disjunction .
There will be no backtracking on this disjunction.
Thus, _y will either be bound to a term REF(.•.)
orto the special value nulLvalue .

33

The PORT dauses specify those subsets of types
which are of interest to the application program . A
port definition

PORT v: {TI a1.a2 ... an=$P}

is compile to the dause

askPort(_S.v._P) :-
SET_OFCX.

(hasType(T._X).
path(_X.[a1.a2 •...• an]._P).

_S) .

The predefined predicate path evaluates the path ex­
pression a1. a2 ... an starting from ..1:. Note that the
parameter $p becomes an argument of the askPort
predicate. It is instantiated by the application pro­
gram when calling the goal askPort . The result is
returned in the first argument.

The restriction in the port definition can easily be
extended to contain several conditions. Moreover,
one can allow a constant or a second path expression
instead of the parameter on the right-hand side of
the equality.

hasType(String.String(_S» :­
In(_S.String).

hasType(Project,Project(_P» :­
In(_P.Project).

hasType(DeptType.DeptType(_D._DH._M»
In(_D.Department),
_DH - String(_Zl),
A(Departaent._D,deptHame._Zl),
hasType(String._DH).
_M - REF(EapType,_Z2) •
A(Departaent._D.head._Z2).
In(_Z2.Eaployee).

hasType(EapType,EapType(_E,_H,_PS._DT»
InLE.Eaployee) ,

_H-StringLZO.
A(Eaployee._E.name._Zl).
hasType(String._H).
SET_OF(Project(_Z2) •

(A(Eaployee,_E,project._Z2).
hasType(Project,Project(_Z2»).
_PS).

_DT - DeptType(_D._DH._M).
A(Eaployee._E.dept._D),
hasType(DeptType,_DT).

askPort(_S,e,_H) :-
SELOFLX,

(hasType(EapType,_X).
path(_X.[dept.deptHaae]._H).
_S).

Figure 2: Logic program for the example

3.1 Mapping of the Example

The definition of hasType for the running example
is presented in Figure 2.

The values of the imported concepts are rep­
resented as unary terms, e.g. String("Peter
Wolfe") . Values of complex terms have more com­
ponents according to the type definition. For exam­
pie,

EmpType(e2341,String("Peter Wolfe"),
[Project(pl),Project(p2)] ,
DeptType(d41,String("Marketing"),

REF(EmpType,e3331»)

is the term representing a value of EmpType. Val­
ues of set types like {Pro j ect} are sequences of val­
ues of the member type endosed by brackets. The
component for the dept attribute is avalue of type
DeptType. This shows the representation of point­
ers as terms REF(T ,X) where X is the identifier of
the value (of type T pointed to. The identifier is al­
ways the first component of a term T(X, ...). All
identifiers are constants from the database.

4 Properties of Interfaces

Termination of the logic program is guaranteed, and
the types defined in API modules can be compared
with the database schema and with each other.

4.1 Termination

On first sight, the generated logic program is recur­
sive in the hasType dause and it contains complex

terms as arguments. Thus, one has to ensure termi­
nation when evaluation it by the SLD strategy for
logic programs.

Fortunately, if one makes sure that the types in the
API module are defined non-recursively, then there
is a partial order on the type names. If a type defini­
tion for Tl uses a type T2 on the right-hand aide, then
Tl > T2 holds. The definition of the logic program
generator propagates this property to all dauses of
the hasType predicate: if hasType (T , .) occurs in
the condition of a dause hasType(R, .) then T must
be smaller than R. Consequently, the logic program
terminates on each goal hasType(T ,X)2.

A corrolar of this proposition is the finiteness of
the sets interpreting the types in the API module.

4.2 Reasoning Services

The constructs in the API module were deliberately
choses to be conformant with the concept language
dialect ofBuchheit et al. 1994. A couple ofreasoning
services are possible, each determing a different set
ofaxioms to be reasoned about. We iHustrate only
one service, type checking against the database.

The type definitions in an API module make
assumptions about the structure of the imported
database concepts. In the ex am pie of Figure 1,
the concepts Employee must at least have three at­
tribute categories name, project, and dept . For
the Department concept, two attributes categories
deptName and head are required. Moreover, at­
tribute cardinalities for the answer objects are
stated:

34

• a set-valued attribute like pro j ect does not in­
duce any cardinality constraint;

• a pointer-valued attribute like head restricts the
the number of attribute fillers to be less or equal
l ' ,

• the remaining attributes like dept must have
exactly one filler.

Please note that these properties apply to the de­
fined concepts like EmpType (ET) and not to the
imported concepts like Employee (E). The concept
language expression is:

ET = E n (= 1 name.S) n (= 1 dept.DT)
DT= D n (= 1 deptName.S) n (::; 1 head.E)

As prescribed by the logic program, the pointer­
valued attribute head of DeptType is not refer­
ing to EmpType directly but to its associated dass
Employee. Thereby, circular concept definitions are
prevented.

These equalities for the type definitions are true
provided the database schema has a schema consis­
tent to it. At least it has to fulfill the following
"well-typedness" axioms3 :

20ne has to assume that the underlying database
is finite. Thls is however a standard assumption with
databases.

3The symbol T stands for the most general concept.

E [; Vname .T n Vproject.T n Vdept.T
D [; VdeptName.T nVhead.T

One can check this by adding it to the database
schema and checking its consistency. The service
would just make sure tbat all referenced attributes
are defined in the database schema.

With a stricter regime, one can demand that the
database schema must have the same or sharper car­
dinality constraints and that the weIl-typedness is
refined to the concepts appearing as attribute types
in the API module:

E [; ET n Vname.S n Vproject.P n Vdept.DT
D!; DT n VdeptN ame.S n Vhead.ET

Here, the database schema has to fulfill the struc­
ture of the types in tbe API module. Consequently,
all instances of the database concepts will apply to
the type definitions. The type definitions would only
project on the attributes of interest. Even if one
regards this as a too narrow coupling, the test on
consistency of the above axioms with the database
schema returns useful information to the designer of
an API module.

5 Programming Language
Embedding

From the API modules, programming language data
types can be derived. Currently, a prototype for
the C++ language is implemented. The tuple types
are mapped to C++ structures, the sets to linked
lists, and the pointers to C++ pointers. While the
concept language view makes no difference between
pointer-valued attributes (Iike *EmpType and their
associated dass Employee, the representation within
the application program is very different:

• A value Employee(X) is stored in a variable with
C++ type char* because xis just anstring rep­
resenting a database constant.

• A value REF (EmpType ,X) is represented as a
main memory address pointing to the location
where the value EmpType(X, ...) is stored.
This allows the application pro gram to follow
attribute chains by fast main memory adress­
ing.

Communication between an applications program
and the database is routed through the ports. The
term representations of port p returns in argu­
ment s of the query askPort (s ,p, xl, ... ,xn) are
read by the application program. The arguments
xl •... ,xn contain the constants for the selection
conditions4 . The "read" procedure, basically a sim­
ple term parser, stores the values in the C++ data
structures. Both the parser and the data structures

4 Like for types the properties of port definitions can
be investigated within the framework of concept lan­
guages. Ir the parameters xl •... xn are known, then
the selection conditions are path agreements. Moreover
one may allow path expressions of the form al.a2 ... ar =
b1 .~ ... b. without compromising on the theoretical com­
plexity of the reasoning.

are generated from the API module by a compiler.
Since the askPort predicate can only return syn­
tactically correct terms, an exception handling for
malformed answers is superfluous.

6 Related Work
Lee and Wiederhold 1994 present a mapping from
relational database schemas to complex objects. It
is more general in the sense that arbitrary arities of
the relations are allowed . In this paper, we assurne a
totally normalized schema of the database consisting
of unary relations for dass membership and binary
relations for attributes. The advantage of our ap­
proach is that the algorithm for the generation of
the logic programm can be kept free of reasoning on
foreign key dependencies.

Plateau et al. 1992 present the view system of
O 2 as complex type definitions coupled with the
database types and with prescriptions for graphical
display. The type system contained in the 02 data
model. Reasoning on type correctness is done by the
compiler.

The Interface Description Language IDL by
Nestor et al. 1992 has four type constructors for
records, lists, sets, and dasses (unions of different
record types). The base types represents boolean,
integers, rationals, and strings. The values are trans­
fe red between two programs by using a term repre­
sentation similar to ours. The difference is the miss­
ing formal relationship between type definitions and
(database) concepts.

A recent proposal by Papakonstantinou et al. 1994
encodes all type information with the term repre­
sentation of a value. An application program has
to provide generic data structures capable of storing
arbitrary values (though restricted to a fixed set of
base types). The advantage is the flexibility of the
approach. A disadvantage is missing compile time
type checking .

Persistent object systems, esp. Tycoon by Matthes
1993, "lift" the type systems of information sources
and application programs into a single type system.
Because of the heterogenous information sources, the
approach is more general than in O2 . Reasoning is
again restricted to type checking.

7 Conclusion
We defined API modules as mediators between ap­
plication programs and databases. Both program­
ming language data types and database queries are
generated from the module description. The lan­
guage is simple enough to guarantee termination of
the query and efficient reasoning on the type def­
initions. Pointer types are introduced to simulate
recursive datatypes and find a natural counterpart
in the database query.

In future, we plan to eliminate the distinction
between application program and database in the
API modules. Application programs can serve as a
"database" provided they offer the ability the inter­
pret queries on their information . Then, information
flow design between a collection of programs can be
supported by reasoning on the relationsbip between
the type definitions.

35

Acknowledgement. Many thanks to Claudia
WeIter and Martin Staudt for attacking weak points
in earlier versions of this paper.

References
[Buchheit et al., 1994] M. Buchheit, M.A. Jeusfeld,

W. Nutt, and M. Staudt . Subsumption between
queries to object-oriented databases. Information
Systems, 19(1):33-54,1994.

[Lee and Wiederhold, 1994] B .S.
Lee and G. Wiederhold. Outer joins and filters
for instantiating objects from relational databases
trough views. IEEE Trans. Knowledge and Data
Engineering, 6(1):108-119, 1994.

[Matthes, 1993] F. Matthes. Persistente Objektsys­
terne. Springer-Verlag, 1993.

[Papakonstantinou et al. , 1994] Y. Papakonstanti­
nou, H. Garcia-Molina, and J. Widom. Object ex­
change across heterogeneous information sources.
Submitted paper, 1994.

[Plateau et al., 1992] D. Plateau , P. Borras, D. Lev­
eque, J. Mamou, and D. Tallot. Building user in­
terfaces with Looks. In F . Bancilhon, C. Delobel,
P. Kannelakis (eds.) :Building an Object-Oriented
Database System - The Story of 02, Morgan­
Kaufmann, 256-277, 1992.

[Nestor et al., 1992] J. R. Nestor, J. M. Newcomer,
P. Giannini, and D. L. Stone . IDL - The language
and its implementation. Prentice Hall, 1990.

36

rate any possible restriction which is not present in the
'ginal type but is logically implied by the type and by
e schema. EXP(S) is based on the iteration of this sim­
le transformation: if a type implies the antecedent of an
C rule then the consequent of that rule can be added.

gical implications between these types (the type to
expanded and the antecedent of a rule) are evalu­

by means of the subsumption computation [Brach-
an and Schmolze,1985; Ber~amaschi and Sartori,1992;
rgamaschi and Nebel,1993J.l
~t run time, we add to the compiled schema the
ery Q and activate the process again for Q, obtaining
p(Q), with possible new isa relationships is obtained .
new isa relationships are found, it is possible to move
e query down in the schema hierarchy. The main points
our optimization strategy are:

1. The most specialized query among the equivalent
queries EXP(Q) is computed . During the trans­
formation, we compute also, and substitute in the
query at each step, the most specialized c/asses sat­
isfying the query.

. A filtering activity (constraint removal) is per­
formed by detecting the eliminable factors of a
query, that is, the factors logically implied by the
query.

Examples
us extend the schema of the previous section with
dass dangerous-shipment, which has the same struc-

e of shipment. The following integrity constraint can
specified on it: for all shipments it must hold that if
risk of the material is greater than 3 then its urgency
t be greater than 10 and it must belong to the dass
gerous-shipment. The constraint can be embedded

the dass description, obtaining the following type de­
'ption for Shipment:

(Shipment) = ~[urgency: Int, item: Material]

n(...,(~item. ~ risk > 3)) U

(DShipment n ~urgency > 10))

Let us give two simple query optimization examples
ated to our schema.
: "Select all shipments involving a material with risk
ater than 8"

Q = Shipment n (~item. ~ risk > 8)

rtOm the rule on Shipment, we derive:

EXP(Q) DShipment n

(~item. ~ risk > 8) n

(~urgency > 10)

I'he query is optimized by obtaining the most specialized
Reralization of the classes involved in the query itself.

IThe subsumption is similar to the refinement or sub­
ing adopted in OODBs [Cardelli,1984; Lecluse and

. hcu:d,1989].

Furthermore, the factor (~urgency > 10) can be added
if some advantageous access structure is available for it.

Another rewriting rule proposed in [Shenoy and Oz­
soyoglu,1989; Siegel et al.,1992] is the constraint removal,
i.e., removal of implied factors. We formalize constraint
removal by subsumption . As an example, consider the
query:
Q : "Select all the shipments involving a material with
risk greater than 8 and urgency grater than 5":

Q = Shipment n (~item . ~ risk > 8) n .. ,
v
S

(~urgency > 5) , , ..
s'

In the schema with rules S is subsumed by S' , as
explo(S) is subsumed by S' in the schema without rules.
Thus, S' can be eliminated from Q.

References
[Abiteboul and Kanellakis, 1989] S. Abiteboul and

P. Kanellakis. Object identity as a query language
primitive. In SIGMOD, pages 159-173. ACM Press,
1989.

[Beneventano et al., 1993] D. Beneventano, S. Bergam­
aschi, S. Lodi , and C. Sartori . Using subsumption in
semantic query optimization. In A. Napoli, editor, /J­
CAI Workshop on Object-Based Representation Sys­
tems - Chambery, France, August 1993.

[Beneventano et al., 1994] D. Beneventano, S. Bergam­
aschi, S. Lodi, and C. Sartori . Reasoning with con­
straints in database models. In S. Bergamaschi,
C. Sartori, and P. Tiberio, editors, Convegno su Sis­
temi Evoluti per Basi di Dati, June 1994.

[Bergamaschi and Nebel , 1992]
S. Bergamaschi and B. Nebel. Theoretical founda­
tions of complex object data models. Technical Report
5/91, CNR, Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo, Roma, January 1992.

[Bergamaschi and Nebel, 1993]
S. Bergamaschi and B. Nebel. Acquisition and valida­
tion of complex object database schemata supporting
multiple inheritance. Applied Intelligence: The In­
ternational Journal 0/ Artificial Intelligence, Neural
Networks and Complex Problem Solving Technologies,
1993 . to appear.

[Bergamaschi and Sartori, 1992] S. Bergamaschi and
C . Sartori . On taxonomic reasoning in conceptual
design. ACM Transactions on Database Systems,
17(3):385-422, September 1992.

[Brach man and Schmolze, 1985] R .J. Brachman and
J.G . Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Seien ce,
9(2):171-216,1985.

[Buchheit et al., 1994] M. Buchheit, M. A. Jeusfeld,
W. Nutt, and M. Staudt . Subsumption between

39

Semantic Indexing Based on Description Logics

Albrecht Schmiedel
Technische Universität Berlin

atms@cs.tu-berlin.de

Abstract

A method for constructing and maintaining a
'semantic index' using a system based on de­
scription logics is described. A persistent index
into a large number of objects is built by classi­
fying the objects with respect to a set of index­
ing concepts and storing the resulting relation
between object-ids and most specific indexing
concepts on a file. These files can be incre­
mentally updated. The index can be used for
efficiently accessing the set of objects matching
a query concept. The query is classified, and,
based on subsumption and disjointness reason­
ing with respect to indexing concepts, instances
are immediately categorized as hits, misses or
candidates with respect to the query. Based on
the index only, delayless feedback concerning
the cardinality of the query (upper and lower
bounds) can be provided during query editing.

1 Introduction

Indexing generally involves an association between some
kind of key and the actual target. The key is used to
jump directly to a desired piece of information, thereby
avoiding an exhaustive search through large sets of can­
didates. In the context of databases, keys are usually
based on the set of values of a particular attribute of
the objects to be indexed: if we know the value, we can
move directly to the corresponding object(s) .

In the following, a description logic (DL) based ap­
proach to indexing is sketched which broadens the no­
tion of a key: instead of using attribute values, indexing
elements can be arbitrary structured concepts as pro­
vided by a terminological language such as BACK (cf.
[Hoppe et al.,1993l) . Firstly, I will show how the con­
struction of such an index falls out quite naturally from
the normal workings of a terminological reasoner, and
secondly I will discuss how such an index can be used.
This approach, and an experimental implementation, is
described in more detail in [Schmiedel,1993l

41

Basic entities:
patient
examination

observation

Basic relations:
hasExam

hasltem

hasValue

Other Primitives:
hce

:< anything.
:< anything and

not(patient).
:< anything and

not(patient) and
not(examination).

:< domain(patient) and
range(examination).

:< domain(examination) and
range(observation) .

:< domain(observation) and
range(number).

:< examination.

bloodPressure :< observation .
bloodPressureSystolic :< bloodPressure.
bloodPressureDiastolic:< bloodPressure and

normal
abnormal

not(blood Pressu reSystolic).

:< observation .
:< observation and

not(normal).

Table 1: Primitive concepts and roles

2 Index Construction
In a description logic such as BACK a data base is viewed
as a set of distinct objects (also instances or individuals)
typically representing domain entities, each of which is
associated with a description.

Descriptions are terms built with

• term-forming operators such as and, a11, some,
etc., the logical constants provided by the language,

• primitive concepts and roles introduced by the user,
and

• named defined concepts and roles.

Table 1 shows so me top level primitive concepts
roles for building a data base containing descriptiom
of patients, examinations, and observations made in

examinations1
. Patients are related to examinations via

hasExam, and examinations to observations via hasltem.

exa mSomeBpSysAbnorm
examination and 8ome(hasltem,

bloodPressureSystolic and
abnormal) .

patSomeBpAbnorm
patient and 8ome(hasExam, examSomeBpAbormal).

Table 2: Defined concepts

Table 2 gives two examples for named descriptions (de­
fined concepts) using the primitives. examSomeBpSys­
Abnorm is an examination which has an item which is
an abnormal systolic blood pressure, and patSomeBpAb­
norm is a patient which has an examination which has an
abnormal blood pressure. Defined concepts are syntactic
sugar for abbreviating possibly complex descriptions.

bloodPressureSystolic and all(hasValue, gt(140»
=> abnormal.

bloodPressureSystolic and all(hasValue, 110 .. 140)
=> normal.

bloodPressureSystolic and all(hasValue, lt(110»
=> abnormal.

Table 3: Rules

Descriptions are also used to define rules, which are ex­
pressed as implications between two descriptions. The
left hand sides of the rules shown in Table 3 are descrip­
tions of certain sets of observations which are asserted
to be in the set of normal or abnormal ones by the de­
scription on the right hand side.

Table 4 shows how data is actuaBy entered into the
system. The '::' operator is used for asserting that the
description on the right hand side is true for the object
referenced on the left hand side. Here, there is an object
patientJ, an instance of patient, with two examinations,
hce1 and hce2, both instantiating the concept hce. The
keyword closed indicates that aB fiBers of the hasExam
role are known , i .e. there are only two examinations.
The examinations each have exactly two observations,
each of which has exactly one numeric value.

Based on this type of input, the system computes

• for concepts the subsumption and disjointness re­
lation, i.e., for each pair of concepts whether one
subsurnes the other or whether they are disjoint,

• for each individual the set of concepts it is (and is
not) an instance of.

For our example containing three kinds of entities, pa­
tients, examinations, and observations, the result of this is
iBustrated in Fig. 1. Concepts (primitives marked with

1 For a more detailed description of the BACK language
see [Hoppe et al.,1993].

patientl ••

hcel
hce2 ..
bpsysl
bpdial ..
bpsys2 ..
bpdia2 ..

patient and hasExam:closed(hce1 and hcd).

hce and hasltem :closed(bpsy.f1 and bpdial).
hce and hasltem:closed(bpsys.2 and bpdia!).

bloodPressureSystolic and hasValue:130.
bloodPressureDiastolic and hasValue:90 .
bloodPressureSystolic and hasValue:150 .
bloodPressureDiastolic and hasValue:95 .

Table 4: Object descriptions

an asterisk) are related by subsumption links; disjoint..
ness has been left out for the sake of simplicity. The
individuals at the bottom of the graph, a patient with
two examinations, each of which with two observations,
are linked to the most specific concepts they instantiate.
For example, bpsys2 is classified under the conjunction oll
bPSystolic, which was explicitly told, and abnormal, due

- to an abnormality rule as in the example above. This
leads to the classification of hce2 under examSomeBi>"
SysAbnorm ('an examination with an abnormal systolic
blood pressure') which in turn triggers the classification
of patientl as an instance of patSomeBpSysAbnorm ('a
patient with an examination containing an abnormal sys­
tolic blood pressure'). Note that hce2 (patient!) was ex­
plicitly told to be only an examination (patient); the more
specific concepts were derived by the system as a conse­
quence of the role fiBer relations, the definitions and the
rules.

42

In the foBowing, two properties of description logic
based systems not present in mainstream database sy
tems playa crucial role :

• the ability to handle any degree of partial informa-;
tion in conjunction with an open world assumption,
and

• the ability to describe individuals with complex con­
cepts and to use these descriptions for query answer-­
mg .

These two properties make it possible, for example,
remove aB the information concerning observations (the
shaded part in Fig. 1), but to keep aB the informatio
that was derived from observations concerning other en"
tities. Thus, hce2 will still be known to be an instance 0 '

examSomeBpSysAbnorm, but the observations and their,
values from which this was derived wiB become unknown

We can now define a set of individuals to be indexed
(for example the set of patients), choose a set of index­
ing concepts (e.g., the concepts specializing patient), and
store the relation which associates each indexing concep~
with the individuals it instantiates. This relation can ef~
ficiently be stored in two hashtables: one maps individ­
ual names to the set of most specific concepts describing
them, and the other maps concept names to the set 0

individuals they directly instantiate, i.e . those which are
not instances of any subconcept. It is also useful to store'
the associated cardinalities .

, , , , ,

, , , ,

, ,

, , , ,

ha<>Exam

subsumed by

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- - - - - -.. instantiates• filled by

Figure 1: Example KB

3 Using the Index

Based on this stored relation and the original concept
definitions, a new knowledge base can be built which
contains only the elassification of the individuals with
respect to the indexing concepts, but lacks the full indi­
vidual descriptions (see Table 5). It may thus be much
smaller than the original KB. Due to the semantic prop­
erties mentioned above, it will be ignorant w.r.t to some
information contained in the original KB, but it will
never produce contradictory answers. This makes it use­
ful as an index.

patientl

hcel
hce2

patSomeBpSysAbnorm and
patAIIBpDiaNorm.

hce and examAIIBpNorm.
hce and examSomeBpSysAbnorm and
examAIIBpDiaNorm .

Table 5: Abstracted object descriptions

43

Queries using the index are processed in three distincl
phases, each one providing progessively more informa·
tion at additional costs . The first phase is designed tc
provide cheap and immediate feedback on the expected
cardinality of the result of a query. For this only th~
cardinalities associated with indexing concepts need tc
be loaded. The query is elassified, and cardinality con·
straints for it are computed based on the known cardinal·
ities of indexing concepts, and their logical interrelations.
Thus, the example query shown in Fig. 2 must have al
least 40 instances, since there are two indexing subcon·
cepts the cardinalities of wh ich are added because they
can be proved disjoint by the system. Similarly, there if
an upper bound of 80 instances for the query, because the
indexin.g superconcept with the least cardinality (100)
has an mdexing subconcept (20) disjoint from the query.
Depending on this cardinality information, the user can
either refine his query, specializing or generalizing it a::
desired, or proceed to the second phase.

The quality of the cardinality feedback depends very
much on how elose the query is related to already exist·

Ec~

-"'J"'~, --- " . male

" -~-, ~

E~~.-.~ '"
'-.f/ Dlajolnt Concopb

Figure 2: Approximating the cardinaJity of a query

ing indexing concepts, If we ask for a concept which is
equivalent to an indexing one, we get the exact cardinal­
ity. If we ask for a concept which is totally unrelated to
existing indexing concepts, i.e. there are no subsuming,
no subsumed, and no disjoint ones, we will get a lower
bound of 0 and an upper bound equal to the number
of indexed instances. This means no information at all
from the index. Typically, one should get something in
between, some partial information.

The second phase additionally utilizes the actual ex­
tensions of indexing concepts also stored in the index.
This generally results in much better cardinality esti­
mates at the cost of having to load the instances, com­
puting intersections and unions, etc In case the query is
a combination of indexing concepts, its exact extension
(and cardinality) can be computed.

Otherwise there is a remaining set of candidates, the
individuals for which the query is not known to be ei­
ther true or false . In this case the index alone does not
contain enough information to determine the extension
of the query, and the third phase must be entered . For
each candidate instance the original description must be
accessed and explicitly tested against the query. After
this has been done, the user can choose to declare the
query as a new indexing concept, making the index more
dense at that particular point in the semantic space.

4 Concluding Remarks

This semantic indexing mechanism is crucially depen­
dent on reasoning with descriptions as provided by ter­
minological systems. The indexing elements are poten­
tially complex descriptions logically related by subsump­
tion and disjointness. Note that incomplete algorithms
for computing subsumption are not disastrous for index­
ing: they will simply result in a less informed, subopti­
mal index.

44

Compared with standard value-based indexes, this re­
sults in the folJowing characteristics:
(1) A semantic index is inherently multidimensional
since any combination of properties cast into a DL conJ
cept (i.e. an arbitrary query) can serve as an indexin
element .
(2) As a structured concept the indexing elements are
not just attribute values, but can be based on compl
descriptions of related individuak
(3) A semantic index as a whole is highly adaptable
patterns of usage. Indexing concepts can be added 0

removed at will, making it very dense and precise w.r.11
to interesting sets of individuals, or very sparse in other,
less interesting areas.
(4) Since the index is actually a set of partial descrip­
tions for the indexed instances, lots of information (such
as cardinality estimates) can be drawn from the index
alone without accessing (possibly remote) individual de­
scriptions at all .

These properties may turn out useful for building loca!
information servers which cache information at vario
levels of completeness, depending on usage patterns.

References
[Hoppe et al. , 1993] Hoppe, Th., Kindermann , C.,

Quantz, J.J., Schmiedei, A., and Fischer, M., BACK
V5 Tutorial and Manual. KIT Report 100, Depart­
ment of Computer Science, Technische Universität
Berlin, Berlin, Germany, March 1993.

[SchmiedeI, 1993] SchmiedeI, A., Persistent Mainte­
nance of Object Descriptions using BACK. KIT Re­
port 112, Department of Computer Science, Technis­
che Universität Berlin, Berlin, Germany, November
1993.

The Problems of Data Modeling in Software Practice

Harald Huber
USU Softwarehaus, Spitalhof, D-71696 Möglingen

Abstract

This paper presents, from the author's per­
spective, the problems that occur in prac­
tice during data modelling. The author's
experiences are a result of a considerable
number of projects which he carried out
in the framework of his consultancy role
at USU Softwarehaus in Möglingen (Ger­
many) .
These projects concerned the following
themes:

• Corporate Datamodelling
• Comparing Datamodels
• Project (Application)- related Data

modelling.

In all cases, E/R-notation was the chosen
representation-form. From these experi­
ences, the author formed an impression of
the problems that occur in practice when
defining a data model. These problems
have, however, also led to the author's in­
creased interest in knowledge representa­
tion, in turn leading to his usage of KR­
methods in practice. This has shown itself
to be quite effective.
Sections 2 and 3 brießy illustrate the rec­
ommendations and the experiences arising
from their usage in projects.

1 Datamodelling in Practice - the
Problems

Datamodelling was still up until recently the buz­
zword with which one believed to be able to solve
the software crisis. CASE products concentrated
on this area, meta-databases were created using a
data-modelling process (E/R), and large companies
invested millions in order to acquire a corporate
data model. Although this trend has subsided a lit­
tle, the theme in general is still of current interest.
What Chen already recognised as an important ben­
efit when presenting the E/R-Model, is today still
seen as a key effect of a data model: the representa­
tion provides a standard communications basis with
which understanding between DP and users is more
easily accomplished.

This however, unfortunately seems to hold just
for small data models. For larger areas of attention,

45

the methodology starts to become ineffective, and no
Ion ger provides the overview required. Apparently,
there are just a few 'gurus' who are able to create
a complete complex data model. Often this data
model quickly decreases in value, as soon as that
person leaves the company. Director's offices exist
in which the corporate data model is hanging up
behind glass - however, this is regrettably the only
place in wh ich the data model is noticed or paid heed
to.

The following problems, among others, have been
recognised:

1.1 Low Expressivness of a Data Model
in E/R-Form

During the analysis phase, many of the organisa­
tion's interdependencies and processes are identified.
These are subsequently, to use the relativly inade­
quate language of the E/R-Model, abstracted and
generalised. This often requires a change in termi­
nology; in other words a unified, formallanguage is
compulsory. What many authors (e.g. Vetter) see as
an advantage of data modelling (exactly this coming­
into-being of a corporate, unified terminology) often
turns out to be a disadvantage: the terms used in
the data model are not understood by the user de­
partments. To make matters worse, these terms are
mostly held in commentary form (if at all). Also the
cross-reference of the new, unified terminology to the
terms used in the departments is, in most cases, not
documented at all . This makes understanding the
data Model afterwards very difficult (see 1.6).

1.2 The Development of the Data
Model is not Documented

A model undergoes many changes du ring the mod­
elling phase. Requirements, ideas and practical ex­
amples from the user department contribute to the
permanent extension and improvement of the model.
Consequently, variations in the Business Processes
are represented by generalisations, and classes (e.g.
Subtypes) are created in order to denote similar
'things' in the model. The problem is that in nearly
every case the documentation of this development
is missing, i.e. reasons and reflections on which the
model's structures and elements are founded will be
lost after a short time . This results in difficulties if
the model is changed due to further development or
new requirements.

1.3 The Ideal Model is Developed
Although the user departments are consulted during
the analysis phase, in practice one is often left with
the impression that the DP-staff's ideal model is de­
veloped. This trend is strengthened by the fact that
the creation of the data model requires a change in
terminology and a certain generalisation (see 1.1).
The user department staff usually see themselves
therefore as incapable of effectively contradicting the
'high-ftying' ideas of their DP-colleagues. The result
is mostly a model which gives the impression of ab­
solute perfection, but which neither makes the day­
to=day business its priority, nor is so understandable
that the user-departments can work with it.

1.4 Weak Methodology of the
Developer

The possibilities of graphical development tools and
the resulting excellent representation often disguises
the weakness in the developer's understanding of the
methodology. In this way, entities such as 'Total
Turnover' and 'Turnover per Customer' can actu­
ally be modelIed. Most developers tend to model
concepts as entities, instead of taking the expressive
character of entities in general into account. (This
behaviour is also to be seen in a completely different
form, where the developers come from a very tech­
nical background and mean tables or files instead
of entities. Let's leave this point for the moment
- it will be touched upon again in point 1.8). An­
other weakness is the missing experience in interview
technique. Very often, the interviewer's question is
formulated like" And how can I show that in EjR?"
instead of "Which process stati occur in practice -
let's leave EjR out of it for the moment?".

1.5 Exceptional Cases Become the
Core of Model

Since the daily business of a company is in most
cases comparatively simple to represent, Data Mod­
elling projects often rush headlong into attempting
to build every case imaginable into the model, as if
the knowledge for treating each of these cases really
had to be documented. The effect of this is that the
models quickly become too detailed and difficult to
understand - so much so that the user-departments,
who really should judge the model's 'correctness' -
more or less make this judgement on the basis of
'gut-feeling'. Ifthey see well-known terms and recog­
nise relationships between them that are held to be
necessary, then the model seems to them to be co m­
pie te and correct, even though in many cases they
cannot follow it through to the lowest detail.

1.6 Assumption of Understanding
The relatively low expressiveness of an EjR-model
all-too-seldom leads to recognition of this 'inade­
quacy in meaning'. Often this inadequacy is com­
pensated for by an overkill of interpretation, wh ich
means that the model, which rea11y should be the
basis for a common understanding, often becomes a
problem of understanding. The real world is then
no longer the topic of discussion (in which the ques­
tion of understanding certainly arises) - rather, one

discusses entities and relationships, whose meanings
are comparatively trivial and thereby are a matter
of interpretation and alteration when trying to un­
derstand the 'fact-content' behind them.

1.7 Missionary character of DP
DP tends to over-estimate itself in many organisa­
tions. This inaccurate estimation doesn't particu­
larIy affect the importance of DP for the organ isa­
tion's success so much (This could certainly be the
subject of heated discussion both in theory and in
an organisation's leadership). This obviously false
judgement of one's own situation affects the im­
plementation of standards and norms much more.
The standardisation of terminology (mentioned un­
der point 1.1) which the DP-Department carries out
du ring data modelling is here an excellent exarriple.
It implies however, that 0.5 - 2 % of the company can
dictate the terminology of the remaining employees .
This over-estimation, together with the problem out­
lined in 1.3, means that DP doesn't model according
to requirements, rather use their own ideas as basis
for the 'ideal model' .

1.8 Too much Technical Thinking
Since most modellers come from a technical back­
ground (e.g. Application Development), they find
it extremely difficult to ignore this technical knowl­
edge when modelling. In the past, many cases oc­
cured where performance considerations were incor­
porated into the EjR-Diagram. The problem, how­
ever, goes much deeper than that. Most mode11ers
cannot imagine any way to represent the character­
istics of entities other than with attributes. Two
entities with the same attributes are hastily made
one, without considering that they express a classi­
fication on a logical level.

2 Suggestion for a Solution

46

The approach this solution takes is basically to use
to best effect the developer's (and the user depart­
ment's) tendency to express hirnself in concepts.
This means that in the initial Data modelling phase,
one creates a model of these concepts in the form of
a semantic network. It's quite possible that other,
more modern, representations are more suitable for
this task. However, since the author has his roots in
the Data modelling world, moving towards seman­
tic networks was the easier way for hirn to come to
terms with knowledge representation methodology.

The author makes the following suggestion for the
development of a Data Model (relation al or EjR):

• Creation of various semantic networks for
parts of total area of attention. These
semantic networks contain a11 statements-of­
fact and requirements issued by the user­
department, in order not to let any information
fall by the wayside. Representative questions
from the user-departments can also be noted
here.

• Consolidation of the various networks.
The aforementioned networks are consolidated .
Synonyms and homonyms are not 'cleaned up' .

This means that there is no unification of lan­
guage necessary. Rather , the individual terms
are cross-referenced to one another.

• Generation of an E/R-model. The user de­
partment requirements can be generated using
all of the semantic networks. The E/R-Model
can be worked on using this basis and can be
tested using the requirements represented in the
networks. This model is then the basis for the
creation of the relational model.

To make the consolidation of several semantic net­
works developed by several developers possible, a
standardized, unified representation of the networks
is suggested . This me ans that only two types of aB­

sociations are allowed, represented by lines; all other
relevant concepts and associations appear as nodes.
This restriction forces the unified representation nec­
essary for the consolidation. The following two types
of associations are allowed to be represented by lines:

• Type 1, which describes just the extension of a
concept

• Type 2, which defines the intention.

Note that these associations are not defined by
their symbolic meaning, rather by a relatively for­
mal context. This has the advantage that the se­
mantics of these associations are not interpretation­
dependent.

3 Experiences from Projects
The suggested methodology solves the aformen­
tioned problems. The interviewers interview­
technique is positively affected, because his anno­
tation is not subject to the restrictions of the E/R­
model. The developement of the model is also doc­
urnented, whereby the supplementary information
discovered during the analysis phase, is held in the
model.

• The tendency to strong generalisation and 'ar­
tificial terms' is restricted - the terminology can
still be understood by the user department.

• The selection process (what's an entity?) can
be re-created and checked in reviews. The user­
department staff can concentrate more on the
model's content, thereby avoiding 'ideal struc­
tures' .

• The cabability to consolidate the various parts
means that the model in the user-department
stays relatively smalI .

• There are, however, also disadvantages.

If one uses a strictly formal representation, as sug­
gested above, the model becomes difficult to grasp
in its entirety. Furthermore, during the interviews,
the interviewer requires considerable concentration
in order to express the facts in the required manner.
In practice, however, du ring the interview a some­
what less formal representation is chosen, which is
subsequently translated into a formal model.

Note that the principle elements of the model are
concepts, and not other elements such as entities,
even if a less formal notation is used.

47

OLSEN: An Object-Oriented Formalism for
Information and Decision System Design

Ramzi Guetari, Frederic Piard 1, Bettina Schweyer2

LLP/CESALP 41 Avenue de 1a Plaine
BP. 806 - 74016 Annecy Cedex - FRANCE

Tel: (+33) 50.66.60.80 - Fax: (+33) 50.66.60.20
email: guetarilpiardlschweyer@esia.univ-savoieJr

1 CIFRE contract with ANRT and Pöle Productique Rhöne-Alpes
2CIFRE coutract with ANRT and ARM Conseil

l.DIntroduction
The Object oriented model has spread widely within
programming languages during the last years. Tbe
principles of this model bave bad a great influenee on
analysis and design techniques. However no existing
method is able to manage the whole analysis­
specification-design-implementation cycle. preserving
the homogeneity of the model used in different stages
and the coherenee by passing from one stage to the
following.
We think that the global management of the life cycle
cannot be solved. with the existing state of knowledge.
by one unique miraculous method. which could adapt
to every kind of application. We think on the contrary
that the problem should be treated by a panel of
methods dedicated to a particular domain.
For this reason we have developed the OLYMPlOS
model at the LLP-CESALP laboratory. This model
covers the life cycle of every application in the field of
Information and Oecision Systems for Manufacturing
Firms. OLYMPIOS uses algebraic techniques.
transformation rules and a predefined entity
organisation to propose an original approach for object
oriented design of information and decision system.

2.DOL YMPIOS Model Concepts.
The information processed in an enterprise. which we
call industrial information. is a complex datum. An
information and decision system (lOS) must take this
complexity into account. We propose to represent
industrial information through four main facets :

data. describing the different entities handled by the
lOS and the actions that they can perform or can be
subjected to ;
temporal properties of the different kinds of
processes (including traceability of information) ;
organisation. considered through information flows;
economic faeet. which describes the means of
performanee evaluation in relation to enterprise
environment and objectives.

The OLYMPlOS model [Beaucbene093] [BHP093]
[BHS093] covers the different stages of such a system
life cycle and proposes original solutions for its
analysis. specification. design and realisation.
OLYMPlOS describes activities. taking into account
the assigned objectives and the resourees availability.
Tbe basic modelling elements areD:

an industrial information database. where products.
resourees. machines are described.
Consumer-Supplier Information Systems (CSIS). A
CSIS stands for an "atom" of organisation. It is a
generalisation of the customer-supplier exchange
relationship to every couple of ac tors in the
enterprise (men. machines. software). Every CSIS
is associated to an objective. transforms resourees
and emits a satisfaction level.
an Objective Management System (OMS). whose
role is to create a graph from expressed objectives.
where every node is an objective associated to a
CSIS.
a Resouree Management System (RMS). in charge
of the product and resouree management and
sharing.
an activation system (AS). producing actions plans
to organise processes. taking into account the
application. temporal constraints. and
communications/synchronisation between CSIS.

3.DThe IDS Lire Cycle
Tbe OLYMPlOS model covers the different stages of
the lOS life-cycle (Fig.D1). We use an algebraic
approach for the four faeets of industrial information so
as to obtain a coherent (i.e. sufficiently complete and
consistent) specification. Tbe design stage enables us to
design the information system from specification and
by analysing the "existing" system of the enterprise and
its objectives. Tbe result of this stage is a representation
of the lOS using structured entities. Tbe OLYMPIOS
model introduees the uniformity of the model used
from specification up to design. It uses tools proving
the coherenee of the system in the specification step
and maintaining this coherenee by automating the
translation from one stage to another.

3.1.DAnalysis Stage
In the analysis stage. the relevant information for the
data. the temporal. the organisational and the economic
faeets is collected.
Tbe result of the da ta faeet analysis consists in the
description of the data handled (resourees etc.) in the
system to design and. for each datum. the set of
operations that can be realised (data dictionary) . This
static description can be translated into a fini te state
automaton in which every node represents astate of the
datum in question and every edge an operation which
produees a new state.

48

The analysis of the organisational aspects of the
manufacturing firm results in a set of interactions
between the different agents of the enterprise in the
form of exchange relationships. By interviewing each
of these agents we enumerate, on the one hand, the
exchange relationships in which he is consumer, i.e.
follows a eertain objective by asking for satisfaction of
the respective needs, and on the other hand, we identify
the re1ationships in which he is supplier and performs a
eertain function. For each of these functions (which we
would like to call basic operation) he enumerates the
resourees necessary for realising this operation and the
algorithm he follows to obtain the wanted resouree.
Thus, this interview gives us information about

objectives and their decomposition,
identification of the possible suppliers for the
realisation of a given objective,
the basic operations that can be performed and
knowledge about how to execute the operations and
which resources are needed.

Starting from this information, we can establish a
knowledge hase of the different ways to decompose
objectives and a knowledge base for the needed
resourees for each basic operation. These knowledge
hases will help us, in addition to the predefined
structure of such an exchange relationship, to defme the
enterprise organisation.

The analysis of the temporal facet provides adynamie
description of the system. It enables us to describe the
temporal behaviour of different agents and resourees of
the system and their interactions. For this part of the
analysis, a method elose to natural language is being
developed which will allow a user-friendly way of
describing temporal rules.
From this analysis we also obtain adescription which
we call realization programs. These programs contain
the description of the eSls functionning and of the
operations which are not formally describable.

As far as the economic facet is concemed, we are
actually working on an interview structure ineluding
fuzzy logic in order to acquire the information
necessary for evaluating the system's performanee.

3.2.DSpecification Stage

3.2.1.DData Specification
The data faeet corresponds to the lOS functional and
structural aspects, and aims at representing the
technical and technological data. We use Algebraic
Specifications of Abstract data Types (ASAT)
[GuttagD78] [JacquenetD86] [Liskov087] so as to have
efficient and simple proof techniques at our disposaI.
An ASAT enables us to express an entity behaviour in a
high level formalism. For a given entity, an ASAT is a
tripie <Q,l:.A>, where Q is a set of domains containing
the domain of the entity values, I is a set of operations
on the entity, and A is a set of equations (axioms and
preconditions) on these operations, which determines
the entities behaviour and the relationships between
them. ASAT are automatically constructed from the
entities automata, which are the result of the analysis

stage. This automatie construction is realised by the
algorithms [Nkong<iJ90] developed in our laboratory.

3.2.2.DOrganization Specification
It starts from the analysis of the "existing system",
which results (inter alia) in the identification of ac tors
and their functions and objectives. Specifying
organisation consists in formally expressing identified
objectives (in the "tripie" form), and in constructing
their associated eSls from standard parametrized
ASAT of organisation [Beauchene093]. Simultaneously,
one must elaborate the different graphs of objectives.

3.2.3.DTemporaI Specification
The specification of the industrial information temporal
faeet uses a synchronous process algebra, directly
derived from the sees calculus of R. Milner
[Piard093]. We specify four kinds of processes with this
language:
l~ chronological and event-based elocks, essential to

specify synchronisation and to measure temporal
intervals;

2- behaviours of data faeet entities, which are not
completely determined by ASAT axioms;

3- behaviours of CSIS;
4- activation plans, elaborated by the activation system

from graphs of objectives and resourees to schedule
the eSls.

Fig. 1. The Analysis - Specification - Design Cycle in the
OLYMPlOS Model

49

3.2.4.DEconomic Specification
This facet cannot be specified independently of data
and organisation. Indeed it is shared between them. and
the most important part is included in the organisation
facet. WorIes are still going on to sharpen the economic
view of OLYMPlOS on the information system (with
the help of performance indicators. fuzzy logic and
project-based management approach).

3.3.oDesign Stage
The OLYMPlOS model. in its design stage. is based on
the dass model. This model was extended in order to
aHow to take all industrial information features into
account. in particular real time ones. The result of the
design stage is an organisation of entities independent
of possible target programming languagesD: OLSEN
(OLympios Structured ENtity).
An OLSEN [GuetariD94] is composed of a "dass" part
and another part called "scenario" which indicates the
interactions with its environment. The difference
between an OLSEN and a classical object is the
scenario which describes the temporal behaviour
generally missing in the standard dass model. The
OLSEN model is a "design object".
In this paper. we present only the specification and
design of Activation System (AS part) and Resource
Management System (RMS). The Objective
Management System is the subject of a publication to
come.

4.DThe Transition (rom the Analysis to the
Specification Stage
This stage consists in describing data types using finite
state automata. We must first insist on the fact that
every entity cannot be described by an automaton. Only
if it bas successive states and if it is concerned by
actions passing from one state to another can it be
described by an automaton. We do not use the automata
as a specification tool but as a tool allowing tis to sbape
the evolution of some kind of data type over a set of
states . In this kind of automata. each transition
represents an operation changing the entity's state and
each node represents one state of the entity. The
automata may have many transitions corresponding to
the same operation, however. each state is unique. A
particular state called "starting state" must always exist
It corresponds to the extremity of the transition which
stands for the operation creating the type of
intereslD(TI).
The entities described by automata are distinguishable
by the successive states that they can have. The order in
which different states are occupied is weil defined. The
graph of state changing is oriented and has a starting
state from which we can observe the evolution of the
entity. This graph allows us to distinguish the
constructor operations using a single method. The
transitions corresponding to these operations have
extremity nodes which can be reached from the starting
state by only one path of the graph. The construction of
axioms is done in two stepsO: the construction of left
parts ofaxioms and the construction of right parts of
axioms. as it is shown belowO:

The construction o/lejt parts 0/ axioms:
The construction ofaxioms left parts consists of
building the foUowing sets :

Cf = {c(y*). c € C}
OT = {o(x. y*). 0 € O. x € Cf}
ST = {s(x. y*). s € S. x € Cf}

OT and ST contain the left parts of specification
axioms. Axioms which define the semantic of the
abstract data type have their left parts in the OT set and
axioms which shows the simplification of tenns of
T(O.I) bave their left parts in the ST set.

The construction 0/ right parts 0/ axioms :
The graph of states. whose every node is astate of

entities of TI type. and whose every transition is an
operation. providesO:

1- 0 = {TI. STATES}. STATES = {El,E2.E3 •... }
2- I = {state. al. 02, 03 •. .. • on} = Ü+C+S. T = S + C

= {al. 02. 03 •...• on} is the set of operations which
create or transform the values of TI (represented in
the automata by transitions). O={state} contains a
single observer.

3- Left parts ofaxioms by the building of AC.AOA T
from O.C et T.

4- Right parts (y) ofaxioms in the form staJe(c(x*)) =
y. where c€ C. and y is the expression of the name
of the node extremity of the path represented by
c(x*) from the starting state. If there are many of
these paths then the y term will be expressed in the
form if ... then ... else ...

S- Right parts (y) ofaxioms in the form s(c(x*)) = y.
where s € S is a convertible operation and y
corresponds to the canonical form of the state
extremity of the path c(x*). i.e. the expression of
the shortest path between the starting state and the

. state extremity of the path represented by the
expression c(x*). In other terms. these axioms are
represented in the automata by simple circular
paths. If there are many of these paths then the y
term will be expressed in the form if. .. then ... else ...

6- Preconditions related to the state of arguments
(membership of TI) of each operation. which are
expressed by the restrictions on the domain of this
operation before its execution. These restrictions
are issued from the state origin of the arc
representing the operation.

5.DThe Transition (rom the Specification to
the Design Stage
The transition from the specification stage (ASAT and
SCCS) to the design stage is done automatically in two
steps. The first step consists in taking the ASAT one by
one and translating each one into a standard class. The
second step is aglobal one and permits the organization
of the communication between the obtained classes.
The benefit of this automation is the preservation of the
cohereD<:e obtained in the specification stage.

5.1.DThe Standard Class Generation
The class attributes and methods are generated from the
ASAT operations . This is done using the following
rules. We note an operation: 0: 01'" 02. 01 is the

50

set of domains and 02 is the set of codomains. "TI" is
the data type that we specify. We distinguish three
kinds of operations :

Case 1 : C1 : 01 -+ 02/ TI i! 01 and 02 = {TI}.
This kind of operation corresponds to a particular
constructor. For each constructor, we genera te a
method "New" with parameters oftype 01.
Case 2: C1: 01 -+ 02/01 = {TI} and 02 = {Cl) ..
TI}. This kind of operation corresponds to
observers. The class structure is obtained from these
observers. For each observer we generate an
attribute of type 02 and a method to access it
ease 3 : C1 : 01 -+ 02 / TI € 01 and TI € 02. This
ca se corresponds to a general one. For each
operation of this kind we generate a method with in
parameters of type Cl) € 0 I/Cl) .. TI and out of
parameters of type Cl) € 02/ Cl) .. TI.

The scenario of an OLSEN is issued from sees
formulae. An sees formula contains several
deterministic parts. Each part provides one script in the
OLSEN scenario. The scenario generation is done in
three steps : the first two provide the declarative part of
a scenario, the third one provides the dynamic part For
each OLSEN, we determine the determinist parts of the
corresponding BEHA VIOUR (separated by a "sum"
operator). For each part, we execute the following three
stepsO:

• Event Detection. This step pennits the detection
and declaration of the different kinds of events. The
type of each event is deduced from the sees
syntax. A communicational event appears in at least
two BEHA VIOURs, once preceded by the delay
operator ö, and once without this operator. An
environmental event is identified by the existence
of a dock emitting this event. An event is
conditionaI if its complementary event appears at
least once in a BEHA VIOUR. When all events are
declared, we proceed to the unification of the
communicational events. This unification is based
on the observational equivalence [Austry084] and
consists of giving the same name to two
synchronously successive events in a sees
formula.

• Identification of the Set of Suppliers. For each
communicational event, we define its receiving
OLSENs whose BEHA VIOURs contain this event,
preceded by the delay operator ö. Any OLSEN
responding to this event by applying one of its
methods must be added to the suppliers list of the
treated OLSEN.

• Script Generation. A script is generated for each
determinist part. Each event described in the
formula is replaced by one or several simultaneous
dispatches of messages. The receivers of these
messages are the suppliers defined in step 2.

6.DThe Transition from the Design to the
Realization Stage
This transition is based on the realization programs
which we have obtained in the analysis stage.

The OLSEN formalism helps us to generate data bases
on the rea1ization stage. The application programs are
obtained through the OLSEN, the realization programs
and the CSIS organization.
If we target object-oriented data bases in the realization
stage, we have to use the OLSEN and the rea1ization
programs. In this case, each dass part of an OLSEN is
directly translated into a data base object and the
scenario part is used for the data access in the
application programs. The rea1ization programs allow
us to implement the methods of the data base objects.
If the data bases are not object-oriented, only the
structure of the OLSEN interferes for the realization of­
these data bases. In a relational data base, for example,
the OLSEN structure is used for the table creation. The
inheritance relationship is eliminated in these data
bases and replaced by the result of merging the
structures of a super-class and the sub-classes.

In the rea1ization stage we can obtain three different
types of eSIS translations: automatic eSIS where the
actors perform totally automated processes, semi­
automatic eSIS where one of the two actors performs
an automated task or the manual eSIS where both
actors perform manual tasks.

The first type of eSIS with the rea1ization programs
and the scenarii allow us to obtain the application
programs. These programs will act upon the data bases
with the dassica1 operations like add, modify and
delete. These interactions with the data base are
performed through message sending between the data
base objects in the case of an object-oriented data base
or through primitives which are the result of the
OLSEN behaviour in the case of non object-oriented
data bases.
The semi-automatic eSIS form the interactions
between a user and a process. These CSIS lead towards
the implementation of user interfaces and external
views which restrict the data base access according to
the user's rights.
The manual eSIS finally, allow us to rea1ize the manual
procedure for which the automation would be too
expensive.

7.DConclusion
The OLYMPIOS model provides the means to analyse
and specify coherently an industrial information and
decision system. It allows then to design the specified
IDS by preserving the coherence obtained in the
specification stage by using algebraic techniques. The
continuity and uniformity daimed by the Olympios
model is the result of two factorsO:

the use of algebraic too)s to specify all the compo­
nents of an IDS like the data facet, the organization
facet or the temporal facet,
the use of ASAT to specify data and Objects to
design them.

This care of continuity and unifonnity has lead us to
develop algorithms (and parts of a future eASE-Tool)
to automatically generate a coherent OLSEN

51

organisation from the analysis . Our objective is to
generale a maximum of code for applications.

References
[AustryD84] AUSTRY D., BOUDOL G., Algebres de
processus et synchronisation, TCS 30(1) 1984

[Beauchene 93] D. Beauchene. L'information
industrielle: definition et specification. PhD thesis,
University of Savoie. December 1993.

[BHP 93] D.Beauchene, A.Haurat, F.Piard. Une
methode de specification de l'information industrielle
par types abstraits algebriques. Proceedings of ICO'93 ,
4-7 May 1993, Montreal Canada.

[BHS 93] D .Beauchcne, A.Haurat, B.Schweyer.
Designing an information system for a manufacturing
enterprise under the aspect of a CIM approach : the
model OLYMPlOS. Proceedings of APMS'93, 28-30
September. 1993, Athens Greece.

[Guetari 94] R. Guetari . and F. Piard. From the
Specification to the Design of an Industrial Information
System: the Olympios Model. Accepted in the 1994
IEEE Conference on Systems Man and Cybemetics.
San Antonio - Texas October 2 - 51994.

[Guttag 78] J.V. Guttag and J.J . Horning. The algebraic
specification of Abstract Data Type. Acta Informatica.
1978 Vol 10. P 27-52.

[Jacquenet 86] J.P. Jacquenet, P.Lescanne. La
reecriture. Techniques et Sciences Informatiques 1986.
Vol 5 N° 6. p. 433-452.

[Liskov 87] B. Liskov. Data Abstraction and hierarchy.
OOPSLA '87 Addendum to the proceedings. 1987.

[Nkongo 90] T. Nkongo. Specification algebrique de
types abstraits pour le modele Olympios. DEA report
Ingenierie Informatique of INSA Lyon. September
1990.

[piard 93] F. Piard, C. Braesch - Application du calcul
SCCS de Milner a la specification de processus
informationnels par types abstraits algebriques dans
une entreprise manufacturiere. Real Time Systems
Conference, Paris 1993.

52

Frames. Objects and Relations:
Three Semantic Levels for Knowledge Base Systems*

M. C. Norrie\ U. Reimer2
, P. Lippuner2

, M. Rys\ H.-J. Schek1

1 Dept. of Computer Science, Swiss Federal Institute of Technology (ETH),
CH-8092 Zürich, Switzerland

{norrie, rys, schek}@inf.ethz.ch
2Swiss Life, Informatik-Forschungsgruppe, CH-8022 Zürich, Switzerland

{reimer, lippuner}@swssai.uu.ch

Abstract

We propose an architecture for large-scale
knowledge base systems based on database
technologies and the three levels of sem an­
tic construct - frames, objects and rela­
tions. The intermediate object level retains
the structural semantics of the frame level
and is therefore beneficial in bridging the
semantic gap between the frame and re­
lational levels and enabling the use of se­
mantic information in query optimisation.
Specifically, we outline how this approach
has been adopted in the hybrid knowledge
base system, HYWIBAS.

1 Introduction
For knowledge base systems to be effective for large­
scale applications, it is essential that they support
efficient retrieval and update operations on large,
shared knowledge bases. Database system research
has focussed on issues of performance and concur­
rent access to large data sets and we wish to exploit
the resulting technologies for the storage and man­
agement of knowledge bases.

Past research in this area has tended to use rela­
tional systems for the persistent storage of knowl­
edge bases. While this strategy does meet the re­
quirements of controlled data sharing, the large se­
mantic gap between the knowledge representation
structures and the relational structures makes it
more difficult to utilise data semantics in query opti­
misation. We therefore adopt a two-Ievel mapping.
The first level maps a frame-based knowledge rep­
resentation model, FRM [Rei 89; RL 94], to an ob­
ject data model, COCOON [SLR+92], which retains
much of the data semantics. 1'he second level then
maps COCOON to a relational system which is used
as a simple storage system with query and update
strategies controlled primarily at the object system
level.

Here, we present an overview of how this approach
is utilised in the (hybrid) knowledge base system
HYWIBAS [RRS+93] (the hybrid aspects are not

* The work presented here was supported by the
Swiss Priority Programme in Computer Sci~nce under
Grant No. 5003-34347.

53

elaborated here). Section 2 introduces the three level
architecture and discusses its merits. The mappings
from FRM to COCOON and from COCOON to a
relation al system are discussed in Sections 3 and 4
respectively. Some remarks on the current status oe
HYWIBAS and future research plans are given In
Section 5.

2 Three Level Architecture
Knowledge base systems research has tended to con­
centrate on issues of semantic expressiveness and in­
ference mechanisms. For knowledge base systems to
be used for large-scale applications, issues of efficient
update and retrieval operations on large, shared
knowledge bases must be addressed . Database sys­
tems research has focussed on these very issues in
dealing with efficient, concurrent access to large data
sets. The question then becomes one of how best to
exploit database technologies in knowledge base sys­
tems.

Relational database technologies now have estab­
lish~d and well-understood mechanisms to support
efficJent access to large sets ofvalue tuples with tech­
niques for concurrency control and recovery. The
proble,? of mapping a knowledge model directly to
a relatlOnal storage structure is the large semantic
gap due to the lack of semantic expressiveness of
th~ relati.onal data model. As described in [RS 89],
thJS can In part be overcome by mapping a knowl­
edge model to a nested relational model which can
represent complex structures directly. However, the
nested relational model does not support notions of
type inheritance and concept hierarchies which are
fundamental to knowledge models such as FRM .

Object data models have been developed to sup­
port not ions of semantic data modelling and thereby
Increase the semantic expressiveness of the data
model. They have constructs to represent both com­
plex structures and relationships between structures
- including those that arise in classification struc­
tures, often known as isa hierarchies. In addition a
number of object data models have been propos~d
that specify operations over collections of objects in
terms of an object algebra. By mapping the frame
knowledge model to an object data model rather
~han to a relational data model, the semantic gap
JS reduced. However, object-oriented database man­
agement systems are not yet as weIl established as

relational database management systems in terms of
efficient processing of set-oriented retrieval and up­
date operations and supported transaction mecha­
nisms. For this reason, we choose to map our object
data model to a relation al storage system. This map­
ping is specifically tailored to support the retrieval
and update patterns initiated by the frame model.
As a result, we have a three level architecture as
indicated in Figure 1.

relations

Knowledge Base
System

Object Data
Management
System

Relaticnal
Database
System

Figure 1: Three Level Architecture

The knowledge model FRM is mapped to the ob­
ject data model COCOON which in turn is mapped
to a relation al system. At present, we use the rela­
tional data base management system INGRES, but
the mapping can easily be altered for other relational
systems.

3 From Frames to Objects

A discussion of the differences between the knowl­
edge representation and semantic data modelling ap­
proaches is given in [Bor 91]. One of the main dif­
ferences often quoted is that database models tend
to be prescriptive rather than descriptive. Thus the
underlying assumption is that the database provides
a complete, current and consistent description of
the application domain; any attempt to input data
which is not consistent with the database model will
be rejected. Knowledge models tend to be descrip­
tive and it is quite acceptable that the model may
have to be revised according to new information re­
ceived into the system. This is most dearly visible
in a knowledge-based system with some learning ca­
pabilities (see e.g. [Mor 91]) .

A further general distinction between data models
and knowledge representation languages is the fact
that data models have a much dearer separation be­
tween intensional and extension al information . In­
tensional information is given by a database schema
which is relatively stable and thus plays a predom­
inant role in determining efficient storage, retrieval

54

and update strategies for operations on extension al
data.

Ideally, for the support of knowledge base sys­
tems, we wish to have the latter property of data­
base models (i.e . efficiency) but not necessarily the
former (i.e. being prescriptive). In this respect the
COCOON object data model is a good candidate for
the support of the frame model FRM.

In this paper we consider only a subset of FRM
which corresponds to the common frame constructs:
slots, slot entries, and cardinality restrictions. For
example,

Skilled-Person ..:.
(and Person

(all has-skills SkilI)
(exist has-skills Rare-Skill)
(atIeast has-skills 3))

-defines a frame dass Skilled-Person as a subdass
of Person with the slot has-skills that represents
the relationship has-skills to the dass Skill. The
slot requires at least 3 values at an associated dass
instance; one of those entries must be an instance of
the dass Rare-Skill.

COCOON has a strong infiuence from both se­
mantic data models and knowledge representation
languages (especially KL-ONE [BS 85]) in terms of
semantic expressiveness. It supports not only com­
plex object structures but also rich dassification
structures and high-level operations over collections
of objects. As a result, the semantic expressiveness
of COCOO N is at a similar level to that of FRM wi th
the main difference between the two models stem­
ming from the fact that FRM supports more spe­
cialised inference mechanisms. In some sense CO­
COON may be considered as lying somewhere be­
tween the prescriptive and descriptive paradigms. A
COCOON dass represents a semantic grouping of
objects and may have an associated predicate con­
dition. For example

define dass Youngsters: person some Persons
where age < 30;

defines a dass Youngsters which contains objects of
type person and is a sub dass of Persons; further
there is an associated predicate condition that spec­
ifies that its members should be less than 30 years
old . The object type person dedares what functions
are applicable to an object of that type and may look
like the following

define type person = age : integer,
name: string, has-skills : set-of skills;

A formal mapping from frame structures to ob­
ject structures and from query operations on frame
knowledge bases to object bases has been defined
and implemented. While concept dass descriptions
in FRM are based on a single representation struc­
ture - the frame, COCOON has two basic represen­
tation structures - the type and the dass. Types
describe what properties and relationships to other
objects an object can have whereas, as stated above,
dasses deal with semantic groupings of objects.
Only a small number of the frame constructs for con­
cept dass descriptions can be mapped to COCOON

FRM concept dass description:
Comp_De/ivery - (and (all supplier Company)

(exist supplier Computer _Company)
(all recipient Company Person)
(atmost recipient -1)
(all ispart Workstation)
(all price [0,100])
(atmost price 1))

Corresponding COCOON type definition:
define type compJielivery = supplier: set-of object,

recipient : object,
ispart : set-of object,
price : integer;

Corresponding COCOON dass definition:
comp_delivery define dass CompJJelivery

where supplier ~ Company and
0=1- (supplier n Computer _Company) and
recipient ~ (Company U Person) and
ispart ~ Workstation and
0= select [(i< 0) or (i > 100)] (i : price);

Figure 2: Example of Mapping an FRM Concept Class Description to COCOON Types and Classes

type definitions but all of them to COCOON dass
definitions. As a consequence, frarnes of FRM are
mapped to some combination of types and dasses in
COCOON. To increase the possibilities for compile­
time optimisation, we designed the mapping such
that as much information as possible is provided on
the type level.

Figure 2 shows an example of mapping an FRM
concept dass description to COCOON types and
dasses. In a first step the object type comp_delivery
is derived from the FRM dass CompJJelivery such
that for every all construct (i.e. for every slot) we
have a function with the same name. In case of a
slot with a maximal cardinality of 1 the function
is single-valued, otherwise set-valued . In a second
step the COCOON dass Comp_Delivery of type
comp_delivery is generated from the frame dass
Comp_Delivery. With the type reference we en­
sure that the dass will contain only objects with
the right functions being applicable. With the as­
sociated dass predicate we cover the remaining fea­
tures of the FRM concept dass description. As are­
sult, the COCOON dass defines the same necessary
and sufficient conditions on dass membership as the
frame dass does . Note that the three object-valued
functions in the type definition comp_delivery are
all of type object. This is because providing
more specialised function ranges (e.g. supplier :
set-of Company) would not lead to a simpler dass
predicate. As this would not reduce the amount of
dynamic type checking necessary we decided to keep
the mapping to the type level simple and to map al­
ways to object-valued functions of type object. For
details see [LNR+94].

The establishment of the mapping from frames to
types and dasses has also proved useful in providing
an insight into the similarities and differences in the
fundamental concepts of terminological models such
as FRM and object data models.

In knowledge base syste~s a query for objects
with certain properties is usually established as a
dass description . The result of the query is all the
objects subsumed by that dass so that in this case
query evaluation amounts to inferencing. To sup­
port such queries on our COCOON-based FRM we
have specified a second mapping that transforms a
frame dass description to be interpreted as a query
into an equivalent expression of the COCOON ob­
ject algebra (cf. example in Figure 3). This algebra
expression is then evaluated on the COCOON object
base derived from the original frame knowledge base.
At that point query optimisation techniques, which
are highly developed in the database area, can be
employed. We hope that this will lead us to a query
processing that is much more efficient than evalu­
ating a query frame by the inference mechanism of
FRM .

55

4 From Objects to Relations

In mapping an object data model onto a relation al
system, there are many choices to make concerning
both the representation of objects and also of dasses.
For example, all the properties of an object may be
stored together in a single relation or split over sev­
eral relations. In the former case, there are problems
of how to represent multi-valued properties. In the
latter case, several join operations may be required
to reconstruct an object .

With the representation of dasses, the choices
arise because an object may belong to many dasses
and the prime decision is whether to store an object
only with its most specific dass - or to store it in
all dasses - or to have some form of compromise be­
tween the two extremes. Further, some COCOON
dasses have associated predicates which specify nec­
essary and sufficient conditions for membership of
that dass . In such a case, there is no need to store

Query Frame:
(and (all supplier Company)

(all reeipient Company)
(exist reeipient I nsuranee_Company)
(all product

(and Workstation
(all has-epu Spare) (atleast has-epu 2))))

Corresponding Algebra Expression:

select[supplier(od ~ Company](ol : Objects)n
select{reeipient(ol) ~ Company](ol : Objects)n
select[reeipient(ol) n Insuranee_Company #; 0](01 : Objects)n
select[product(ol) ~

select[has-epu(02) ~ Spare] n select[#(has-epu(02)) 2:: 2](02 : Workstation)](ol : Objects)

Figure 3: Example of Mapping a Query Frame to an Object Algebra Expression (still to be Optimised)*

the dass explicitly as it can be derived at access time.
The trade-off here is between fast access to explicitly
stored dasses versus high update overheads if data
is replicated unnecessarily.

In our mapping of COCOON onto a relational
storage system, we employ extensive replication to
minimise retrieval costs. For example, all dasses
are represented explicitly even those which could
be specified in terms of a query expression (view)
over other dasses. Since an object may belong to
many dasses, an object representation may be repli- .
cated in several relations. The penalty associated
with such an approach of massive replication is the
cost of update operations; a single update operation
on a specific object may require updates on a large
number of relations involved in the representation of
that object.

The problem then becomes one of how to speed
up the time for updates. This is achieved by imple­
menting the update operation as a number of simpler
update operations which can be executed in paral­
lel. The exploitation of intra-transaction parallelism
together with multi-level transactions is a key tech­
nique towards such improved performance [WS 92].

We are currently evaluating the above approach to
see under what conditions the overheads of paralleli­
sation are compensated by the corresponding speed­
up of the operations. In the future, we shall inves­
tigate dynamic methods of mapping the object data
model COCOON to relation al systems such that
good performance is attained under various retrieval
and update patterns (which finally stern from spe­
cific retrieval and update operations on the knowl­
edge base system).

5 Conclusions
In the HYWIBAS project, we are using database
technologies to support large, shared knowledge
bases. We employ a three level architecture corre­
sponding to three semantic levels of frames, objects

* For reasons of readability we have slightly simpli­
fied the algebra expression: The select statements should
apply to dasses of objects for which the functions re­
fened to are really defined, rather than operating on the
most general dass Objects. This requires an additional
meta-schema query, which we have omitted.

56

and relations. The introduction of the object level
is beneficial in reducing the semantic gap between
the frame level and the relation al level and enabling
the utilisation of structural semantic information for
query and update processing. The mapping from the
object level to the relational level allows the use of
well-established, efficient mechanisms for data stor­
age, data access, data sharing. and recovery under
failure.

At present, we have implemented mappings for
structural information from the frame model, FRM,
to the object model, COCOON and from COCOON
to the multiprocessor relational database system,
INGRES. We also have a mapping from frame query
dasses to COCOON algebra. Moreover, there are
some early results on the parallelisation of update
operations over a COCOON database represented
in INGRES [Rys 94]. Currently, we are working on
the mapping of the remaining operational compo­
nents and on the mapping of frame dass instances
to objects.

References
{Bor 91] A. Borgida, "Knowledge Representa­

tion, Semantic Modeling: Similarities
and Differences" 1 In Entity-Relationship
Approach: The Gore of Gonceptual
Modelling, ed . H. Kangassalo, North­
Holland, 1991, pp. 1-24.

{BS 85] R. J. Brachman and J. G . Schmolze,
"An overview of the KL-ONE knowl­
edge representation system", Gognitive
Seience, Vol. 9, No. 2,1985, pp. 171-216.

{LNR+94] P. Lippuner, M. Norrie, U, Reimer and
M. Rys, "Mapping a Frame Model,
FRM, to an Object Data Model, CO­
COON", HYWIBAS Working Paper,
1994. (in preparation)

{Mor 91] K. Morik, "Underlying Assumptions
of Knowledge Acquisition and Machine
Learning", Knowledge Acquisition, Vol.
3, 1991, pp. 137-156.

[Rei 89] U. Reimer, "FRM: Ein Frame-Repräsen­
tationsmodell und seine formale Seman­
tik. Zur Integration von Datenbank- und

Wissenrepräsentationsansätzen" ,
Springer, 1989.

[RL 94] U. Reimer, P. Lippuner, "Syntax und
Semantik von FRM", Working Paper,
1994, Informatik-Forschungsgruppe,
Swiss Life, CH-8022 Zurich) .

[RRS+93] U. Reimer, M. Rys, H.-J. Schek and
R. Marti, "Datenbankbasierung eines
Frame-Modells: Abbildung auf ein Ob­
jektmodell und effiziente Unterstützung
komplexer Operationen", Beitrag zum
Workshop "Verwaltung und Verar­
beitung von strukturierten Objekten"
während der KI 93, (also available
as Technical Report 5/93, Informatik­
Forschungsgruppe, Swiss Life, CH-8022
Zurich) .

[RB 89] U. Reimer and H.-J. Schek, "A Frame­
Based Knowledge Representation Model
and its Mapping to Nested Relations",
Data and Knowledge Engineering, Vol.
4, No. 4, 1989, pp. 321-352.

[Rys 94] M. Rys, "Parallelising Generic Update
Operations in COCOON Using Multi­
level Transactions". (in preparation)

[SLR+92] M. H. Scholl, C. Laasch, C. Rich, H.-J .
Schek and M. Tresch, "The COCOON
Object Model", Technical Report 211,
Dept of Computer Seince, ETH Zurich,
CH-8092 Zurich, Switzerland.

[WS 92] G. Weikum, H.-J . Schek, "Concepts
and Applications of Multilevel Transac­
tions and Open Nested Transactions",
In Database Transaction Models for Ad­
vanced Applications, ed. A.K. Elma­
garmid, Morgan Kaufmann, 1992.

57

U niformly Querying Knowledge Bases and Data Bases

Paolo Bresciani
lRST, 1-38050 Trento Povo, TN, Italy

bresciani~irst.it

Abstract

Present KL-ONE-like knowledge base man­
agement systems (KBMS), whilst offer­
ing highly structured description languages
aside efficient concepts classification, have
limited capability to manage large amounts
of individuals. Data base management sys­
tems (DBMS) can, instead, manage large
amounts of data efficiently, but give scarce
formalism to organize them in a structured
way, and to reason with them.
This paper shows how assertional knowl­
edge of KBMS and data of DBMS can be
uniformly accessed. The query answering
capability of an arbitrary KBMS is aug­
mented with the possibility of accessing ex­
ternal databases (DB) as a supplemental
source of extensional knowledge.
The techniques presented in this paper can
be easily adapted to several sources of in­
formation. From a 'knowledge acquisition
perspective, we believe that they can be
usefully applied in all those applications
where several sources of informations are
available independently from the knowl­
edge bases,

1 Introduction
The two basic components of a KBMS of the KL­
ONE family are the terminological box (TBox) and
the assertional box (ABox). One of the tradeoff of
these KBMS is between the expressiveness of the
description languages characterizing their TBox and
the inefficiency in managing large amounts of data
in the ABox, even when they have a quite schematic
form and their classification is completely apriori
given. DBMS, instead, are suited to manage data
efficiently, with little concern about their dimension,
but their formalism for organizing them in a struc­
tured way is quite absent, as it is the capability to
infer new information from the existing ones .

Here we propose to cope with both KBMS and
DBMS together, using them in an integrated way to
manage with several kinds of information. Of course
a uniform way to retrieve information from a mixed
KBMS/DBMS is needed.

In the present paper it is shown how assertion al
knowledge of KBMS and data of DBMS can be

58

uniformly accessed. A technique to tightly couple
KBMS with DBMS [Borgida and Brachman,1993]
is described. As in [Devanbu,1993; Borgida and
Brachman,1993] we let primitive concepts and rela­
tions in a KB correspond respectively to unary and
binary tables/views in a DB. Unlike lDevanbu,1993;
Borgida and Brachman,1993] we provide a tight cou­
pling between KBMS and DBMS, i.e., a on demand
access to the DB, instead of a lGOse coupling, that re­
quires a pre-Ioading of the data from the DB into the
KB. In this way we obtain the following advantages:

• more complex queries than simply asking for the
instances of concepts can be done; just as an ex­
ample, in our system queries like C(x)t\R(x, y)t\
D(y) can be made.

• no memory space is wasted in the KBMS to keep
descriptions of DBMS instances.

• answers are given on the basis of the current
state of the KB and the DB.

• no periodical updating of the KB with new or
modified data from the DB is needed.

Basically, in our system the query answering ca­
pability of an arbitrary KBMS1 is augmented with
the possibility of accessing external information as
a supplemental source of extensional knowledge. In
particular a database is seen as an extension of the
KBMS -ABox.

2 DBox as Extension of the ABox
The ABox is the component of a DBMS where as­
sertions about single individuals are stated. In the
present paper we describe how the ABox can be ex­
tended with an extern al source of extension al data.
We calJ this extension a 'DBox'. In the following,
we adopt the notation of [Nebel ,19901 and call a set
of term descriptions (concepts and roles) a termi­
nology 7 2 , and a set of individual assertions a world

1 Even if we implemented the ideas presented here as
an extension of LOOM [MacGregor,1991], they can be
easily applied to any KL-ONE-like KBMS system with a
first-order-Iogic query-Ianguage.

2 An important task of a KBMS is to organize the
terms in a taxonomy accordingly with a specialization
relation, i.e., to classify them; in the following, we often
use r to denote just the set of atomic terms appearing
in r, and consider them correct!y classified in the tax­
onomy on the basis of their definitions.

4.1 Translating Queries into SQL

When each predicate in a query q = >..x.PII\. ... 1\. Pn
can be made correspond to a set of tables in the
DB, where the answers have to be found, it can be
translated into an equivalent SQL query. Of course,
the sets of tables can be easily found via the mark­
ing furiction M. At this point we have just to cope
with the union set of tables {TI, ... , Th } and their
bindings via the variables in x. For simplicity, let
us suppose that the tables returned by Mare com­
posed by one column in the case of a concept (let
it be called left), and two in the case of a rela­
tion (let them be called left and right). The SQL
translation is of the kind:

SELECT DISTINCT select-body
FRON from-body
WHERE where-body

where the select-body is a list of column names of the
kind M(P"j).left or M(P.,;).right, one for each
variable Xi in x, according to the fact that the vari­
able Xi appears for the first time in the predicate
P.,; in the first place7 or in the second place, respec­
tively. The from-body is the list of all the tables in­
volved - i.e., all the M(Pi). The where-body is a list
ofSQL where-conditions ofthe kind field2=fieldl
or field2=constant, where the first form has to be
used for each variable that is used more than once,
each time it is reused, and the second form occurs for
each use of constants. In both the forms field2 is a
selector similar to those in select-body, correspond­
ing to positions in the query where the variable is
further used or where the constant appears, respec­
tively; fieldl corresponds to the first occurence of
the variable.

4.2 The General Case

In general answering, a query is more complex and
requires the merging of results from the DBMS and
the KBMS. Answering a query in /CB means finding
aset {xl, .. . , x m } oftuples ofinstances s~t., for each
tuple xi, >..x.(PII\. .. . 1\. Pn)[x i] holds in /CB. We call
such tuples answers of the query and the set of all
of them its answer set.

Due to the definition of answer of a query, it is ob­
vious that, in order to avoid the generation of huge
answer sets, free variables should not be used, i.e.,
each variable appearing in x must appear also in
the query body (i.e., the part at the right of the
dot). Indeed, we adopt a stronger restriction, be­
cause the former one still allows for some undesired
situations. Let us consider, for example, the query :
>..(x, y, z).A(x) I\. R(x, y) I\. C(z). All the variables
appear in the body, but, nevertheless, the answer
set of the query can be unreasonably large, due
to the fact that all the answers of the sub-query
>..(x, y).A(x) I\. R(x, y) have to be combined with all
the answers ofthe sub-query >"(z).C(z). Wesay that
such a query is unconnected. More in general, we say
that a query is unconnected when it can be split into
two or more sub-queries s.t. all the variables appear­
ing in each ofthem does not appear in any other. We
call these sub-queries clusters. It is obvious that the

70r the only one in the case of concept.

relevant result of answering an unconnected query is
equivalent to the union of the single results of sep­
arately answering the clusters, in the sense that all
the information is included in it. But, if we consider
the formal definition of answer, we must consider
the fact that the overall result must contain tuples
Ion ger than those resulting by submitting the sin­
gle clusters; to obtain all the tuples satisfying the
definition of answer the single answers have to be
combined by a sort of Cartesian product. More ex­
actly, if, after having reordered the variables, un un­
conected query is written as >"X.r,ol(Xt} 1\. . .. I\. r,on (xn)
- where x is the concatenation of the other vec­
tors (x = XI·····Xn), and r,ol(XI), ... ,r,on(xn) cor­
res ponds to the single clusters - and given that
the asnwers sets of a generic cluster >"Xi .r,o;(x;} is

Si = {I:, ... , 1;;}, the answer set of the whole query
. S {rJI ·• -li" I-li. S rJI·~ S} IS = I··· · ·n IE 1'···'nE n·

The case of a connected (i.e., non unconnected)
query >..x.r,o(y) with unbound variables can be re­
duced to the case of an unconnected query >..x.r,o(y) I\.
T(z), where z = (Zl, . .. , Zk) contains all the vari­
ables appearing in x but not in y, and T(z) =
top(zt} I\. ... 1\. top(Zk), where top correspond to the
most generic concept in T.

It is now clear that unconnected queries and
queries with unbound variables may have unreason­
ably large answer sets, without giving any further ca­
pability to the system. Therefore, we consider only
connected queries with only bound variables.

To afford the answering of a query we need to split
it into sub-queries that can be answered by the two
specialized query answering functions of the KBMS
and the DBMS. To this extent we need, as a first
step, to mark all the possible atomic predicates, cor­
responding to the terms in T, and say that a term
Pis:

60

- DB-marked iff for each t E subs(p)nPT P M(t)
is defined .

- KB-marked iff for each t E subs(P) n PT,
P M(t) is undefined .

- Mixed-marked otherwise.
These three markings reftect the fact that the in­
stances (pairs) of P are all in W, all in V, or part
in Wand part in V, respectively. The strategy for
answering to a query is based on this information.
Let us, first, observe Hiat it is easy to answer to an
atomic query where the predicate is a KB-marked or
a DB-marked term. In the first case it is enough to
submit it to the KBMS. In the second it is enough
to translate the query in a SQL equivalent, as shown
above, and submit it to the associated DB. More­
over, if the query is not atomic, but made up by
atomic sub expression all with the same marking, the
same strategy is applied. More difficult is the case
of queries with Mixed-marked predicates. Even the
atomic case is quite difficult; it is necessary to trans­
form the atomic query into the (possibly non atomic)
one whose predicates correspond to all the leaf terms
that specialize the only term in the original atomic
query, proceed as before, and collect all the results.

Let us now consider a generic non atomic query:
\- pKB nKB pDB pDB pM" nM
AX. I 1\. ... I\.AIKB I\. I 1\. ... 1\. IDBI\. I 1\. . .. I\.AIM

where the PiK B eorresponds to the KB-marked
terms, the ppB to the DB-marked terms, and the
PiM to the Mixed-marked terms. The query ean be
split in the sub-queries: qKB = Xx.pfB A .. . AP,Ifc:,

DB _ \- pDB A ApDB d M _ \- pM A A q - AX. I /\ ... /\ 'DB' an q - AX. I /\ ... /\

P,~.

4.3 The Algorithms
AB we said, the sub-quedes qK B, qD B, qM ean be
easily proeessed. The only diffieulty is that some of
the variables in x eould be unbound in a sub-query.
In this ease, as shown before, the answer sets have to
be eompleted, that is, the unbound variables should
be made eorrespond to each instanee in /CB, for all
the found answers, by all the possible eombinations.
But, in this way, huge ans wer sets are generated, as
in the following sketch of the query-answering algo­
rithm:

1 split the query as sketehed above into qKB, qDB
and qM.

2 submit qKB to KBMS, qDB to SQL (after trans­
lation) and transform each of the atomie sub­
queries qr of qM into a set of atomie queries
eorresponding to the leaf terms in T that spe­
eialize qr; submit them to the specifie retriev­
ers.

3 eollect all the answers respectively in the answer
sets As::B

B , ASf: ' and ~s:rM' and complete
them Wlt~ the whofe domam m the pi ace of un­
bound variables, as mentioned above, generat­
ing AS:B, ASfB, and ASr.

4 the overall answer set is just AS:B () AS~B ()
ASr·

Of course this first algorithm is widely space wast­
ing. Moreover, in step 3 it is not eIearly stated how
to eollect the answers of the sub-queries qr. We try
here to shortly deseribe this operation and to show
how the eompletions of AS:B , ASfB ,and ASr
. 3 d h' l' 11 . K l;J DtJ. "I m step , an t elr 10 owmg mtersectlOn In step 4,
ean be obtained more effieiently. To solve these prob­
lems, from stw3 ahead a eompact representation for
AS:B, ASf , and Asr is needed. Let a generie
partial answer set be written as ASy , where the vari­
ables of the original eomplete variable tuple x miss­
ing in y are, X P1 , •.• , X Pk . Its eompletion ean be rep-
resented in a eompact way with AS:;; = UTEAS-{T*},

1/

where T* are equivalent to T exeept that are length­
ened by filling the k missing positions PI , ... , Pk with
any marker, e.g., a star '*'. The star stands for all
the individuals in /CB. Using this representation for
the eompletion in step 3, it is now easy to rephrase
step 4 of the algorithm as a merging operation. In
fact answer sets AS: B, AS~ B, and As1 ean be
merged into a single answer set as follow:

41 let result-list={ASJ5B AS!2B AS!!!} • ~ J ~ , ~

4.2 ehoose two answer sets, ASI and AS2 , in
resul t-l ist, where answers have at least one
eommon position filled by individuals, i.e., not
*.8

8Such two sets do always exist, otherwise the query
would be uneormected, while we assumed to deal only

61

4.3 merge ASI and AS2 by eollecting only those an­
swers in ASI where each non-* filled position is
filled by the same individual or by * in some
answers in AS2 , and replace in the eolleeted an­
swers each * with the individuals in the eorre­
sponding position in all the matching answers
of AS2

4.4 replace ASI and AS2 in resul t-list with their
merging eomputed in step 4.3

4.5 REPEAT from step 4.2 UNTIL only one item
is left in resul t-list.

4.6 RETURN the only item left in resul t-list.

Now it is easy to explain how to eollect the answers
of the sub-queries qr of step 2. It is enough, for each
qr E {qr ... q~}, to eollect all the answers of all its
descendant queries, and eomplete these ans wer sets
generating ASrl' ... , ASrh' as described above; it
is now eIear th';t, in the above algorithm for step 4,
step 4.1 has to be so rephrased:
4.1-bis

let
result-list={AS:B, ASfB, ASf,I"'" ASf,h}'

The resulting algorithm, eomposed by steps 1,2,3
(modified as shown), 4.1-bis, and 4.2 to 4.6 has been
implemented. In our system the KBMS eurrently in
use is LOOM [MacGregor,1991l, and the database
query language is SQL, but, as mentioned, also other
systems eould be easily used.

5 Conclusion and Future
Developments

We have shown how a third eomponent, a DBox -
allowing for the extension al data to be distributed
among the ABox and the DBox - ean be added to
the tradition al TBox/ ABox arehitecture of KBMS.
By means of the DBox is possible to eouple the
KBMS with, for example, a DBMS, and use both
the systems to uniformly answering queries to knowl­
edge bases realized by this extended paradigm. The
presented query language has some restrictions, and
so me eonstraints have been imposed to the form of
the knowledge bases. To overeome these limitations,
some extensions of the present work ean be proposed.

5.1 Constraints on the Form of KB
In section 3 we assumed that some eonstraints
should be imposed on the form of /CB. Indeed they
ean be in part released, even if this more general ap­
proach would require a deeper diseussion and a re­
formulation of the algorithms. Here we try to give a
very short account on possible developments in this
direction. First, eonsider the homogeneous ex­
tension eondition. It is important beeause it allows
to make the seareh of the answers simpler, giving
the basis for a neat separation between KB-marked,
DB-marked, and Mixed-marked predieates9

. But it

with cormected queries.
9 and giving also the way to decompose the Mixed­

marked predieates in sets of KB-marked and DB-marked
ones.

is even more important when considered in conjunc­
tion with the db isolation condition. In fact we
can easily cope with leaf terms having instances from
both Wand V by submitting the corresponding sub­
queries to both the specialized retrieving functions,
and then proceeding with the merging as usual. But,
allowing this ambiguity would ·make more complex
the formulation of the db isolation condition, that
could become:

- db isolation: all the leaf terms of 7 whose in­
stances are even only in part in V are primitive
and are not used in any other term definition in
T -

Indeed we can, at least in part, give up also with
this condition. In fact, while keeping the fact that
such term must be primitive - this is pragmatically
coherent with the fact that the raw information com­
ing from the DB cannot be inferred - we can allow
such term to be used inside new, eventually even non
primitive, definition. To this extent we need a much
more complex schema for translating queries on DB­
marked term into SQL. For example, if the query is
of the kind A(X}.C(x) where C == some(R, D), its
SQL translation could be:

SELECT M(R).left
FROH M(R)
WHERE M(R).right IN M(D)

Similarly, a translation for the all operator could
be given, as in [Borgida and Brachman,1993], but in
this case some extra considerations about the ade­
quacy of the standard extension al semantics of this
operator, when used in a database context, would
arise. In fact, the empty satisfiability of an all dause
would be hardly suited for a DB .IO

In the example above D is supposed to be a
primitive atomic DB-marked concept. Another ex­
tension to be explored is about releasing this con­
straint. Again, some concerns about semantics ade­
quacy should probably be adressed.

Also the non intermediate db extension con­
dition has, after the considerations above, to be re­
vised. In fact, even if we must still consider the
informaton ofV, as they are given, as being apriori
fully realized in the leaves of the taxonomy, because
the tables in the DB, where the instances of V are
described, are not structured in a hierarchy, it could
happen that non primitive concepts specialize the
DB-marked ones,as in the previous example on the
some operator.

5.2 The Query Language
Another iussue to be explored regards the query lan­
guage. Currently our system support existentially
quantified conjuntions of atomic formulae.

We plan to expand its capability with the possi­
bility of answering any first-order-Iogic query. We
foresee that, to this extent, much attention has to
be paid on the optimization of the queries. 11

10 As we argued even for standard knowledge bases
[Bresciani,1991] the every operator [Franconi,1992]
would be more adequate in this case.

11 Because in our system queries to KB and to DB are

5.3 Aknowledgments

Our thanks must be addressed to Enrico Franconi,
for his careful reading of several preliminary copies
of the present paper and the useful suggestions he
made about it. We also thank Fabio Rinaldi, for his
implementation of the SQL interface.

References

[Borgida and Brachman, 1993] Alex Borgida and
Ronald J. Brachman. Loading data into descrip­
tion reasoners. In Proceeding of ACM SIGMOD
'99, 1993.

[Bresciani, 1991] Paolo Bresciani. Logical account
of a terminological tool. In Proc. of the IX Con­
ference on Applications of Artificial Intelligence,
Orlando, FL, 1991.

[Bresciani, 1992] Paolo Bresciani. Representation of
the domain for a natural language dialogue sys­

. tem. Technical Report 9203-01, IRST, Povo TN,
1992.

[Buchheit et al., 1994] Martin
Buchheit, Manfred A. Jeusfeld, Werner Nutt, and
Martin Staudt. Subsumption between queries to
object-oriented databases. Information Systems,
19(1):33-54,1994.

62

[Devanbu, 1993] Premkumar T . Devanbu. Trans­
lating description logics to information server
queries. In Proceedings of Second Conference on
Information and Knowledge Management (CIKM
'99), 1993.

[Franconi, 1992] E. Franconi. Extending hybridity
within the YAK Imowledge representation system.
AI*IA notizie, the !talian Association for Artifi­
cialIntelligence Journal, 5(2):55-58, June 1992.

[MacGregor, 1991] R. MacGregor. Inside the
LOOM description dassifier. SIGART Bulletin,
2(3):88-92,1991.

[Nebel, 1990] B. Nebel. Reasoning and Revision in
Hybrid Representation Systems, volume 422 of
Lecture Notes in A rtificial Intelligence. Springer­
Verlag, Berlin, Heidelberg, New York, 1990.

managed in a uniform way, the approach of [Buchheit et
01.,1994] can be usefully applied.

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen Publi­
kationen können von der oben angegebenen Adresse
oder per anonymem ftp von ftp.dfki.uni-kl.de
(131.246.241.100) unter pub/Publications bezogen
werden.
Die Berichte werden, wenn nicht anders gekenn­
zeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-93-11
Bernhard Nebel, Hans-JÜTgen BÜTckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of AlIen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader, 'Karl SchlechJa:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach .
25 pages

RR-93-14
Joachim Niehren, Andreas Podelski, Ralf Treinen:
Equational and Membership Constraints for Infmite
Trees
33 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof Klöckner,
Volker Schölles, Markus A. Thies, Wolf gang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka, Martin Henz, Jörg Würtz: Object­
Oriented Concurrent Constraint Programming in Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

DFKI
-Bibliothek­
PF 2080
67608 Kaiserslautern
FRO

DFKI Publications

The fo11owing DFKI publications or the list of
a11 published papers so far are obtainable from
the above address or via anonymous ftp
from ftp.dfki.uni-kl.de (131.246.241.100) under
pub/Publications.
The reports are distributed free of charge except if
otherwise indicated.

RR-93-18
Klaus Schild: Terminological Cycles and the
Propositional J.l.-Calculus
32 pages

RR-93-20
Franz Baader, Bernhard Holluntier:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22
Marifred Meyer, Jörg Müller:
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel, OUmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting-
Message Classification in Printed Business Lellers
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DAI Approach to
Modeling the Transportation Domain
93 pages

RR-93-26
Jörg P. Müller, Markus Pischel: The Agent
Architecture InteRRaP: Concept and Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

W
o

rk
in

g

N
o

te
s

o

f
th

e

K
I'

9
4

W

o
rk

s
h

o
p

:
K

R
D

B
'9

4

-
R

e
a

s
o

n
in

g

a
b

o
u

t
S

tr
u

c
tu

re
d

O

b
je

c
ts

:
0

-9
4

-1
1

K

n
o

w
le

d
g

e

R
e

p
re

s
e

n
ta

ti
o

n

M
e

e
ts

D

a
ta

b
a

s
e

s

D
o

cu
m

e
n

t
F.

B

a
a

d
e

r,

M
.

B
u

c
h

h
e

it
,

M
.

A
.

J
e

u
s
fe

ld
,

W
.

N
u

tt

(E
d

s
.)

	D-94-11-0001
	D-94-11-0002
	D-94-11-0003
	D-94-11-0004
	D-94-11-0005
	D-94-11-0006
	D-94-11-0007
	D-94-11-0008
	D-94-11-0009
	D-94-11-0010
	D-94-11-0011
	D-94-11-0012
	D-94-11-0013
	D-94-11-0014
	D-94-11-0015
	D-94-11-0016
	D-94-11-0017
	D-94-11-0018
	D-94-11-0019
	D-94-11-0020
	D-94-11-0021
	D-94-11-0022
	D-94-11-0023
	D-94-11-0024
	D-94-11-0025
	D-94-11-0026
	D-94-11-0027
	D-94-11-0028
	D-94-11-0029
	D-94-11-0030
	D-94-11-0031
	D-94-11-0032
	D-94-11-0033
	D-94-11-0034
	D-94-11-0035
	D-94-11-0036
	D-94-11-0037
	D-94-11-0038
	D-94-11-0039
	D-94-11-0040
	D-94-11-0041
	D-94-11-0042
	D-94-11-0043
	D-94-11-0044
	D-94-11-0045
	D-94-11-0046
	D-94-11-0047
	D-94-11-0048
	D-94-11-0049
	D-94-11-0050
	D-94-11-0051
	D-94-11-0052
	D-94-11-0053
	D-94-11-0054
	D-94-11-0055
	D-94-11-0056
	D-94-11-0057
	D-94-11-0058
	D-94-11-0059
	D-94-11-0060
	D-94-11-0061
	D-94-11-0062
	D-94-11-0063
	D-94-11-0064
	D-94-11-0065
	D-94-11-0066
	D-94-11-0067
	D-94-11-0068
	D-94-11-0069
	D-94-11-0070
	D-94-11-0071
	D-94-11-0073

