German Research Center for Artificial Intelligence (DFKI)

Multi-agent Communication
for the Realization of
Business-Processes

Thesis for obtaining the title of
Doctor of Engineering

of the Faculties of Natural Sciences and Technology

of Saarland University

by: Esteban Leon Soto

Prof. Dr. Jorg H. Siekmann and

Supervisors: ¢ Dr. Jérg P. Miiller

Saarbriicken,
December 2012

Colloquium held on 20 September 2013

Dean of NTF I:

Examination Board:

Univ.-Prof. Dr. Mark Groves

Reporters:
Prof. Dr. Jorg H. Siekmann and
Prof. Dr. Jorg P. Miiller

Chairman:
Prof. Dr.-Ing. Philipp Slusallek

Research Assistant:
Dr. Klaus Fischer

Affidavit

I hereby swear in lieu of an oath that I have independently prepared this
thesis and without using other aids than those stated. The data and con-
cepts taken over from other sources or taken over indirectly are indicated
citing the source. The thesis was not submitted so far either in Germany or
in another country in the same or a similar form in a procedure for obtaining
an academic title.

Saarbriicken, 30.11.2012

ii

Aknowledgements

Bringing this thesis to successful conclusion has not been an easy task and
it would not have been possible without the help and support of so many
people to which I want to express my most sincere gratitude.

First of all, I want to thank my thesis supervisors for supporting me
during the complete process, specially to Prof. Siekmann for his inspiring
guidance and for dedicating so much effort to my work, in spite of the huge
horizon of subjects and groups he has to conduct. My special gratitude for
Prof. Miiller, for providing so much input and guidance in so many aspects
of this thesis, in spite of the distance, and for always dedicating his complete
and sincere attention in every of the few occasions we managed to talk about
my work. His feedback about the contents, but also about issues related to
the process of doing a PhD, always helped me to keep the north in this long
journey.

I want to give thanks to Saarstahl AG for providing such a vital support
to our research and making so many interesting projects possible and for
the cooperative spirit that has always been your characteristic.

I want to thank the Multi-agents group in DFKI for being so welcoming
from the beginning and for the great years I spent working with you. The
friendly atmosphere we, Cristidan, Sven, Ingo, Christian, Stefan, Klaus and
all the rest had, cannot be taken for granted. I want to specially thank
Klaus Fischer, for making the whole experience possible, for creating such a
friendly and sincere teamwork mood and also for always being there provid-
ing guidance and advice, even for the most intricate details of my work. For
Cristian Madrigal, my companion in this long adventure, my deepest grati-
tude for his genuine friendship and almost endless patience without which,
these whole years would not have had the great quality they had.

To all my friends in Germany: Adrian, Eduardo, Eric, Guillermo, Gus-
tavo, Hansraj, Jasmina, Jorge, Josiane, Levi, Ralitza, Raul, thank you so
much for all the great times we had, for your support and always encourag-
ing me to move on. My stay here would not have been so good without my
friends in UFC-Wacker, thank you for helping me stay balanced physically
and mentally.

To my loyal friends in Costa Rica: Alejandra, Andrés, Andrea, Carolina
A., Carolina M., Diana, Gabriel, Karoline, Mario, Oscar and Rdéger, thank

iv

you very much for waiting so long and never forgetting me. You always made
me feel as if I had never left every time I came back and also motivated me
to bring this phase to a happy ending.

My family has been my strongest support in this and any other goal I
set in my life. My parents, Noemy and Humberto, have always done only
their best to raise me and, in spite of the distance, never let me feel being
away. My sisters, Margot and Carolina, have always supported me in any
way imaginable, you have been great. Also my family by extension, Jiirgen
and Christine, thank you for taking such good care of me and treating me
like one of you, your support and advice have been invaluable.

All of this would not have even started if it was not for Dana, my beloved
wife. For your support, encouragement and fundamental motivation thank
you very much indeed.

And last not least, thank you Daniel and Javier, you taught me what is
worth in life. To you I dedicate this.

Abstract

As Internet and information technologies expand further into daily busi-
ness activities, new solutions and techniques are required to cope with the
growing complexity. Omne area that has gained attention is systems and
organizations interoperability and Service Oriented Architectures (SOA).
Web Services have grown as a preferred technology in this area. Although
these techniques have proved to solve problems of low level integration of
heterogeneous systems, there has been little advance at higher levels of in-
tegration like how to rule complex conversations between participants that
are autonomous and cannot depend on some ruling or orchestrating system.
Multi-agent technology has studied techniques for content-rich communica-
tion, negotiation, autonomous problem solving and conversation protocols.
These techniques have solved some of the problems that emerge when in-
tegrating autonomous systems to perform complex business processes. The
present research work intends to provide a solution for the realization of
complex Business Process between heterogeneous autonomous participants
using multi-agent technology. We developed an integration of Web Services
and agent-based technologies along with a model for creating conversation
protocols that respect the autonomy of participants. A modeling tool has
been developed to create conversation protocols in a modular and reusable
manner. BDI-Agents implementations that communicate over Web Services
are automatically generated out of these models.

Zusammenfassung

Internet und Informationstechnik finden immer mehr Verwendung in all-
taglichen Geschaftsaktivitdten und als Folge dessen, werden neue Losungen
und Verfahren gebraucht, um der steigenden Komplexitéat gerecht zu werden.
Insbesondere Bereiche wie System- und Organizations- Interoperabilitét,
wie auch dienst-orientierte Architekturen (SOA) haben demzufolge mehr
Aufmerksamkeit bekommen. Dabei sind Web Services zur bevorzugten
Technologie geworden. Tatsachlich haben diese Techniken Probleme in nie-
drigeren Ebenen geltst, die beim Integrieren von heterogenen Systemen
entstehen. Allerdings gab es bisher weniger Fortschritte in hoheren Ebe-
nen, wie der Regelung von komplexen Dialogen zwischen Teilnehmern, die
aufgrund ihrer Autonomie, sich nicht nach anderen kontrollierenden oder or-
chestrierenden Systemen richten lassen. Multiagenten-Systeme haben Bere-
iche wie inhaltreiche Kommunikation, Handel, autonome Problemlésung und
Interaktionsprotokolle im Detail geforscht. Diese Techniken haben Probleme
gelost, die beim Ausfithren von komplexen Geschéftsprozessen auftreten.
Die vorliegende Doktorarbeit beabsichtigt, mit Verwendung von Multiagen-
ten-Technologien, eine Losung fiir die Umsetzung von komplexen Geschafts-
prozessen zwischen heterogenen autonomen Teilnehmern bereitzustellen. Wir
haben eine Integrationslosung fiir Web Services und agenten-basierte Tech-
nologien zur Verfliigung gestellt, zusammen mit einem Model fiir die Er-
stellung von Interaktions-Protokollen, die die Autonomie der Teilnehmer
berticksichtigt. Ein Modellierungstool wurde entwickelt, um modulare und
wiederverwendbare Interaktionsprotokolle gestalten zu konnen. Aus diesen
Modellen kann man auch Implementierungen automatisch erzeugen lassen,
welche BDI-Agenten, die iiber Web Services kommunizieren, verwenden.

ii

Contents

Part I Introduction

1

Motivation
1.1 Trend of cross-enterprise integration
1.2 Business-process and automated
negotiation
1.2.1 Automated negotiation
1.3 Interaction protocols for integration
1.4 Contribution of multi-agent systems
1.5 Summary

Objectives
2.1 Summary

State of the art

3.1 Web Services Standards overview
3.1.1 Service description
3.1.2 Communication between services

3.2 FIPA platform and agent communication
3.2.1 FIPA Agent Architecture
3.2.2 FIPA Agent Communication
3.2.3 Work based on FIPA specifications

3.3 Comparison of Agents and Web Services
Specificationso

3.4 Integration of Web Services and multi-agent technology
3.4.1 Agentcities Recommendation
3.4.2 Integration Agent Gateway
3.4.3 FIPA TC Services
344 WS2Jade
3.4.5 AgentWeb Gateway
3.4.6 FIPA Agents and Web Services Integration (AWSI)

working group

3.5 Complex Interactions

3.5.1 RosettaNet,

iv

11
12

13
14

15
15
16
17
18
18
20
22

3.6

352 WS-CDL
3.5.3 Business Process Model Notation (BPMN)
3.5.4 WS-Business Process Execution Language
(WS-BPEL)
3.5.5 BPEL4Chor.
3.5.6 AgentUML,
3.5.7 UML2 enhancements and AMP proposal
3.5.8 Dialoguegames oL
359 OWL-P
3.5.10 AMOEBA
3.5.11 Goal-oriented definition of protocols
3.5.12 Service oriented architecture Modeling Language
(SoaML)
3.5.13 PIM4Agents,
Summaryo

Part II Solution

4 Integrated Messaging Architecture

4.1
4.2

4.3
4.4
4.5

Foundation for integration
FIPA Message Envelope using

WS-Addressing oo
FIPA-WS Messaging Stack
Architectural integration oL
Summary e e e

5 Protocol specification

5.1

5.2
5.3
5.4

5.5
5.6
5.7
5.8

Brief definition of a state-action space
5.1.1 State Descriptions
A model of Speech Acts L.
Cardinality constraints
Special kinds of propositions oo
5.4.1 Timeouts
5.4.2 Commitmentso
5.4.3 Conditional propositions
5.4.4 Cross-Conversational Constraints
Definition of a conversation protocol
Protocol composition,
Protocol example
Summary ..o ... e

53

55
56

58
61
61
62

6 Implementation 79
6.1 JadeWSMTS Implementation 79
6.1.1 Endpoint References (EPR) 83
6.1.2 Messaging 84
6.1.3 Publication and discovery 86
6.1.4 Message Example. 87
6.2 Declarative Protocols Implementation 88
6.2.1 Implementation of meta-model using EMF 88
6.2.2 Editor for Declarative Protocols 90
6.2.3 Mapping Declarative Protocols to Jadex BDI Agents . 101
6.2.4 Running the composed protocol 104
6.3 Summary 105
Part III Examples and Obtained Results 107
7 Examples 108
7.1 ContractNet Use Case 108
7.2 Industrial Use Case: Saarstahl 114
7.2.1 Research and industrial partner: Saarstahl AG 114

7.2.2 SHAPE: Semantically-enabled Heterogeneous Service
Architecture and Platforms Engineering 116
7.2.3 Description of industrial Use Case: Saarstahl 117
7.2.4 Use case modelled using Declarative Protocols 119
7.3 Summary e 131
8 Obtained Results 132
8.1 Web Services and FIPA-Agents integration 132
8.1.1 Message properties mapping 133
8.1.2 Compliance 133
8.1.3 Mutual Accessibility 133
8.1.4 Provided Implementation: JadeWSMTS 133
8.1.5 Codec: FIPA Message Envelope using WS-Addressing 133
8.1.6 Stateless-stateful communication 134
8.1.7 REST support 134
8.1.8 Transparent for agent Implementation 134
8.1.9 Possible Complex interaction protocols 135
8.1.10 FIPA Agents and Web Services Integration (AWSI) . 135
8.2 Declarative Protocols modeling 135
8.2.1 Development of a meta-model for Declarative Protocols137
8.2.2 A consolidating meta-model 137
8.2.3 Reduced ambiguity oL 137

8.2.4 Same meta-model for Speech Acts and Interaction Pro-
tocols 137

vi

8.2.5 Improved expressiveness 138

8.2.6 Cardinality management 138
8.2.7 MDA-tools and Visual editor 139
8.2.8 Automatized support for model development 139
8.2.9 Protocol composition.o 140
8.2.10 Automatic generation of executable code 140
8.2.11 BDI based turn taking pattern 140
8.3 Realization of business process using
agent communication Lo 141
8.4 Summary 141
9 Analysis and Evaluation 143
9.1 Messaging integration00 143
9.1.1 Web Services and FIPA-Agents integration 143
9.1.2 A framework capable of complex conversations 144
9.1.3 Web Services as grounding for FIPA specifications . . 145
9.1.4 A transparent integration 145
9.1.5 Coping with technical and conceptual differences . . . 146
9.1.6 Coping with parties with different reasoning power . . 146
9.1.7 Using existing Web Service Tools 147
9.1.8 FIPA Agents and Web Services Integration (AWSI)
Group 148
9.2 Declarative Protocol modelling approach 148
9.2.1 Reasons for a declarative approach 148
9.2.2 Modularity L 150
9.2.3 Difficulties of a declarative approach 151
9.2.4 Modeling editor and its usability 151
9.2.5 A unified meta-model 151
9.2.6 Disambiguation oo 152
9.2.7 New constructs for Interaction Protocols 152
9.2.8 Concrete and detailed meta-model implementation . . 153
9.2.9 Automatically generated code 154
9.2.10 Open questions about the fundamental concepts of the
meta-model L Lo 155
9.3 Findings gathered in the Use Cases 156
9.3.1 Reuseofmodels 156
9.3.2 Manageability and flexibility 157
9.3.3 Relationship between abstract and domain specific mod-
els . . . 157
9.3.4 Web services performing Business Processes 157
9.4 Overall evaluation 157
9.5 Comparison with other approaches 158
95.1 BPEL 158
9.5.2 BPMN and Jade Work-flows 159

vii

953 OWL-P 160

95.4 AMOEBA, 160
9.5.5 FIPA and Dialogue Games 160
9.5.6 Agentcities, WS2Jade, AgentWeb Gateway 161
9.5.7 Rosetta-Net 161
958 WS-CDL, 161
9.5.9 SOAML, UML2 enhancements and AMP proposal . . 162
9.5.10 PIM4Agents 162
9.6 Summary 163
10 Future Work 164
10.1 Agent communication grounded on Web Services 164
10.1.1 Standardization of contents description 164
10.1.2 Service description and discovery 164
10.1.3 Heterogeneous Web Service agents 165
10.1.4 Stateful Web Services 165
10.1.5 Identification of Services 166
10.2 Declarative meta-model of interaction protocols 166
10.2.1 Modeling constructs 166
10.2.2 Diagram constructs 167
10.2.3 Standardization of Speech Acts and protocols in a
library 167
10.2.4 Semantic matchmaking 168
10.2.5 Reasoning about interaction protocols and actions . . 168
10.3 Summary 168
11 Conclusions 170
11.1 Choreography 170
11.2 A declarative approach 171
11.2.1 Modularity and reuse 171
11.2.2 Consolidation of contributions 171
11.3 JadeWSMTS 171

11.4 Automatic generation of flexible and scalable implementations 172

viii

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Business Process implementation cycle in opposite to Service

composition in traditional SOA 10
The SOA Triangle 15
Structure of WSDL 2.0., 16
Structure of SOAP with WS-Addressing headers 17
FIPA Agent Management Reference Model 19
FIPA Communication Specifications Stack 20
FIPA Message Envelope and Agent ID (AID) 21
Web Services and FIPA Specifications comparison 24
Structure of Web Services Choreography Description Language 30
BPMN Example: Order Process 33
FIPA AgentUML protocol example 38
FIPA protocol with subset notation. 40
Key Concepts in PIM4Agents. 49
A WS-Addressing to FIPA Mapping 58
A FIPA to WS-Addressing Mapping 59
An Endpoint Reference to Agent ID Mapping 61
FIPA Communication Specifications Stack 62
FIPA and Web Services architectural integration 62

Protocol (boxes and white arrows) composed of 3 runs (thick
lines) and some conversations as instances of runs (dashed

thin lines) L 68
Architectural aspect of Axis2 and JadeWSMTS 80
Jade WSMTS Architectural stack 81
Synchronous and asynchronous communication in JadeWSMTS 82
FIPA AID-WS-Addressing Endpoint Reference 84
FIPA-WS-Addressing message envelope 85
Key Concepts of Declarative Protocols. 89
Simple Example of the Composition Layer 92
Declarative Protocol Diagram example: the “Order” Protocol 93
Declarative Protocols bound in the Project View. 100

ix

6.10 The BDI-Plans pattern for Declarative Protocols used by Par-
ticipants performing Conversation Protocols.
6.11 Jadex run diagrams of Order-CashPayment protocol.

7.1 Contract Net protocol modeled by FIPA.
7.2 Contract Net protocol modeled as a Declarative Protocol.
First Part
7.3 Contract Net protocol modeled as a Declarative Protocol.
Second part.
7.4 Saarstahl Supply Chain
7.5 Saarstahl System Landscape (Rabber 2009)
7.6 Saarstahl Use Case project diagram. First part.
7.7 Saarstahl use case project diagram. Second part.
7.8 Order protocol. First part.
7.9 Order protocol. Second part.
7.10 Querylf protocol oL
7.11 Interaction Diagram of the Saarstahl use case..

8.1 Example: Accept section of the Contract-Net Protocol

123
124

Part 1

Introduction

Web Services are a well accepted tool for interoperability and they have
been used for integration of heterogeneous distributed systems. So far,
they have been used primarily for Remote Process Call (RPC), a mature
technique nowadays. Recently, Web Services have started to move towards
agent—like models. Nick Jennings (Jennings 2001) claims that agents are one
of the preferred ways for implementing distributed systems with a higher
level of complexity, where communication and autonomy play an important
role. As a matter of fact, distributed systems based on communication and
autonomy are the objective for Web Services.

Hence, there is now increasing interest to integrate solutions for multi-
agent systems and Web Services for several reasons: to create Service Ori-
ented Architectures (SOAs) with goal oriented services that achieve them au-
tonomously and that allow for wider integration of different systems (Barry
2003), to take advantage of planning capabilities of agents in a Web Ser-
vices scenario, to provide advanced services, to use them as organizing tools
for searching Web Services using semantic web techniques or for composing
more complex services out of a set of existing elementary services.

The integration of Web Services and agent technologies has been difficult,
because of their RPC tendency. RPC communication, mostly synchronous
and dependent on the other participant, is in strong contrasts to the way
agents communicate, asynchronous and autonomous. Now, new specifica-
tions are available that allow a more agent-like communication, for instance
Web Service Addressing (W3C 2006a) (WS-Addressing) and Web Services
Choreography Description Language (W3C 2005) (WSCDL). The slow but
steady advance of these new paradigms are a concrete signal that the way
systems are being integrated today is changing to a more complex commu-
nication between participants.

Business process implemented in computer systems reflect the actual
processes of the organization and in most cases, production will be as agile
as its business process allows (Weerawarana, Curbera, Leymann, Storey &
f. Ferguson 2005), therefore they are of great value for organizations. For
business processes, simple message exchange patterns (MEP) like those in
RPC (request-response) quickly become very limited. Interactions involve
longer more intricate processes even for a single transaction. A good example
is the simple process of purchasing some good. Ignoring the phase of finding
and choosing providers for a good, an order has to be placed, confirmed,
delivered and payed for. This represents a process that indeed demands
more than a simple request and a response. More correlated messages are
exchanged and there are always different ways a message can be replied to,
depending on the intentions of the participant.

Agent techniques for Web Services provide solutions for many complex
problems related to SOAs: Semantic Web Services and agent-based reason-
ing provide better ways for discovering and ranking services from a mass of
services. Also, for planning and composing complex services out of existing

services, discovery tools can be combined with planning tools to produce
composed services or even orchestrations.

Business processes between autonomous organizations frequently mani-
fest a set of properties, like autonomy observance or unnecessary discovery,
because of pre-existent partnerships. There are many cases in which an or-
ganization wishes to work in partnership with another, normally well known,
organization (or organizations), to jointly perform a complex business pro-
cess. Even though partners wish to work together, they will want to stay
autonomous after integration. In order to keep participant organizations
autonomous, no central entity is acceptable, which is a common solution
offered by software vendors. Orchestrations are not admissible, since they
imply the dependence of organizations on the orchestrator entity, annulling
autonomy.

Such a scenario demands integration of existing well known participants
in such a way that each system can interact with the rest in order to achieve
a common goal. The main requirement of such a solution is to rule how
interaction is to be performed. It has to be as simple as possible, but at the
same time, enable flexibility. Multi-agent systems have been doing this for
a long time by using interaction protocols.

Interaction protocols define how participants are to behave. Similar to
the rules in a game, interaction protocols specify how a complex interaction
is to be performed and what the possible options are for a participant. Fol-
lowing the agreement represented by the protocol, each participant produces
its interface in order to participate. This way, participants can be assured
that, if all of them follow the rules as specified in the protocol, each of them
will be capable of achieving what they intend. Interaction protocols are an
important contribution for modeling and enactment of business processes.

In the present work, the issue of integrating Web Services and agent
technologies will be approached again, this time taking into account the
significant improvements in Web Services and integrating both technologies
at the messaging level.

The Foundation for Intelligent Physical agents (FIPA) (FIPA 2002)
is one of the preferred and more extensive agent specification techniques.
The majority of investigations about agent communication are implemented
using these specifications, some of them are relevant to the Service Oriented
community, especially those for dynamic planning of services (composition of
services), conversations patterns and protocols or autonomous negotiation.
Apart of that, FIPA Interaction Protocols Specification (FIPA 2002¢) is the
only formal definition of generic peer-to-peer agent protocols (Shehory 2003).

Based on contributions from the multi-agent community, old and new,
a consolidating model of interaction protocols will be proposed. Using this
model, a tool for modeling protocols will be implemented. Models produced
with this tool will be implemented by agents running on top of the Web
Services integration tool.

These models and tools have been tested in a real scenario: a selection
of business processes in the Saarstahl AG (Saarbiicken, Saarland, Germany
(Saarstahl AG n.d.)) will be modeled and realized using the tools and
knowledge gained in the present work. Saarstahl has been chosen as test
case, because of its complex production chain. Saarstahl is organized in dif-
ferent departments that, given their size, work autonomously. Each output
shares different phases of production with many other products making the
overview of the production chain a maze with frequent interposition of paths
of different goods.

Chapter 1

Motivation

Integration of heterogeneous systems for business processes has been on
top of the table for a long time. This work proposes a way for achieving
integration using a paradigm based on multi-agent systems. This chapter
explains the main concepts and motivates our goals.

1.1 Trend of cross-enterprise integration

Networks of computer systems enabled the connection of different parts
of organizations and made the implementation of distributed business pro-
cesses easier. Integration used well known techniques like file transfer,
shared databases, remote procedure call (RPC) or messaging (Hohpe &
Woolf 2003). This trend has worked well when it comes to integrate dif-
ferent parts of a single organization. Since these parts are governed by the
same organization and since they pursue the same goals, integration has
found less obstacles in its way. A more severe problem is the integration of
parts of different organizations, what is known as business to business (B2B)
integration. The architecture and implementation of a distributed system
is more difficult, since there are different specifications and requirements of
the organizations.

For this purpose, platform independent solutions and standards were
proposed. Initially CORBA was one of the most common platform inde-
pendent networking integration mechanism. Later Web Services appeared,
serving the same purpose, this time using better adopted XML standards.

Web Services are a standards-based, XML-centric technology for the
realization of SOAs (Weerawarana et al. 2005). Business processes are a re-
flection of the product a company produces, since they represent the course
of production. Therefore there is a correspondence between the speed and
capability to adapt and to create new business processes and the speed and
capability to adapt and to create new products. Flexibility is necessary to
prevail in dynamic markets and constantly changing environments which

often require ad-hoc solutions (Gibbins, Harris & Shadbolt 2003, van den
Heuvel & Maamar 2003). Being capable of establishing, adapting and chang-
ing partnerships is a significant part of the necessary abilities organizations
require. SOA and Web Services have emerged to suit the continuous evolu-
tion organizations are subject of (Barry 2003, Smith & Fingar 2002).

SOAs are a suitable way for an acceptable level of flexibility. Web Ser-
vices make use of widely accepted XML-based standards. Using standards
that are easy to adopt by different organizations is fundamental in order to
achieve integration and to find a common ground where the requirements of
different organizations can be conciliated.

One key driving force behind SOAs is the result of the constant evolu-
tion of business processes. Evolution means change and specifically, tasks,
actors performing them and tools used to perform them change producing
new scenarios that improve processes. It is in such a situation where new
participants appear and practices like outsourcing come into play. Business
processes are extended beyond single organizations and new wvirtual enter-
prises appear.

1.2 Business-process and automated
negotiation

Communication styles, other than simple request-response interactions as
usual in RPC, are necessary, in particular for business-processes. Very
frequently even asynchronous communication will be preferred, where re-
questers work in a send-and-forget manner, not having to deal with connec-
tion problems, since messaging in this case can be delegated. By chaining
many of these messages one after another, complex conversations can be
built.

In the context of Service Oriented Computing (SOC) business process
modeling and management is experiencing an increasing demand. Business
Process are: the process that is performed by participants in order to achieve
some business goal. A business process also used to be called a workflow
and it comprises a description of the sequence and alternatives participants
have in order to solve a given business problem, rules that apply to this pro-
cess and any other condition or constraint that applies to each participant.
Business processes provide a way to specify the logic of the SOA in terms
of a process declarative dynamic behaviour, the way it changes over time
as events occur (Havey 2005). In the transition from simple RPC to more
complex interactions, techniques for modeling and managing these processes
are necessary and especially in the area of B2B, Business Process modeling
and management prove to be useful.

1.2.1 Automated negotiation

With Web Services it is possible to introduce capabilities to make decisions
based on the information provided by partners and this way move beyond
the simple information passing purpose of a distributed computer system
(W3C n.d.). When such a capability is present on at least two participants
in a business process, the whole process can be called an automated nego-
tiation. Even though it is hard to imagine that a manager would be willing
to delegate his decisions to some software entity in business practice and
therefore one wouldn’t expect automated negotiations to be common, there
are still some situations where this is the case. An example are auctions:
situations in which an entity desires to look for some resource or service
and therefore convokes a set of participants to make offers. The initiator
then chooses a proposal and proceed to make use of it. There are also other
scenarios in business process where some decisions are actually to be autom-
atized. Independent of the issue of what a system owner is ready to delegate
to software representatives, a solution for implementing such a scenario is
required to provide enough flexibility to give participants room for action.

For an organization to be able to implement and participate in auto-
mated negotiations with other external participants, not only do software
entities need to be sophisticated enough, but also there must be a good inter-
action grounding for these participants to work on. A clear understanding
of how a negotiation is to be undertaken, and what will be allowed to be
done and what not has to be clearly represented. Such an agreement will
work as a set of rules of the game’ and is aimed at balancing flexibility and
predictability, to keep the represented business process as focused, simple
and manageable as possible.

1.3 Interaction protocols for integration

As mentioned in the previous section, for a set of participants to perform a
business-process, some kind of agreement has to be met, in order to be able
to coordinate and achieve the goals each participant is looking for. This is
where the concept of business-protocol appears as an option for specifying
an agreement and the set of rules that will guide the interaction.
Currently, the usual practice in order to create a business process among
autonomous participants, is that each participant implements an interface in
such a way that matches the interfaces of the other participants. (Weerawarana
et al. 2005) shows how business processes are traditionally developed in a
Web Service architecture. Development is done bottom up, in the sense that
each participant is first described and designed such it will correspond to
the others. Services are first described using WSDL and then, using some
other WS-specifications, they are combined. This means that each part of a
single business process is defined separately and from a different perspective.

Traditional SOA (Discovery and Com posit—

Participants Interfaces Process

P1 P2

alt

o000
POOT

_ Business Process Implementation

Figure 1.1: Business Process implementation cycle in opposite to Service
composition in traditional SOA

This is natural for Web Services architectures, since these are based on the
SOA concept discovering and invoking existing services. When a service is
desired, one would look for a matching service that fits well in one’s concept.

This approach does not go well with other situations in which the pro-
cess exists conceptually before the actual participants are created. Figure
1.1 illustrates this: discovery and composition work by first having some
services which define and publish their interfaces which are discovered and
put together as a process in form of a composition. The situation being
approached here is in principle in the opposite direction as it has been done
with Web Services up to now. The present work intends to define a process
first and then derive the the interfaces in form of Web Services and only
then produce service implementations (the participants).

It is better to specify first what is the intention and what is to be accom-
plished and based on this clear definition create the tools or services that
achieve this. It is very common to face situations where partners decide
to perform together a specific business process. In this case, a centralized
global view of the process is more desirable since issues about the coopera-
tion can be cleared at this stage. This global view can serve later both as
a contract between the participants on how the process is to be performed
and also as the input for other participant end points or services.

Interaction protocols are defined precisely at this stage and serve the
purpose of coordinating participants and specifying the cooperation from a

10

global point of view (Miller & Mcginnis 2008). Participants roles can be
either adapted to comply with the protocol or created in order to fit them.
Interaction protocols as a business model provide a good balance between
a global centralized conceptual process, and a distributed and autonomous
realization.

1.4 Contribution of multi-agent systems

The concept of complex interactions is very mature in the area of multi-agent
systems, whereas traditional algorithmic approaches prove to be inadequate
for one reason or another. Since processes are still specified as scripts, (for
instance BPEL or OWL-S) they are limited, in essence, to constructs of nor-
mal procedural programming such as sequence, iterate, fork, and join which
are not that different to job control languages (JCLs) of the mainframes of
the 1950s (Singh, Chopra, Desai & Mallya 2004). Imperative instruction
sequencing are more appropriate for implementing components (the small),
interaction protocols are more suitable for putting independent distributed
components together(the large) (DeRemer & Kron 1975). Procedural struc-
tures do not represent well the nature of complex interactions. FIPA (FIPA
2002) is an example of a proposed solution for modeling complex inter-
actions. It proposes a stack which on top of it has a library of ’standard’
interaction protocols which can be recombined and personalized to create
models for business process.
Interaction protocols are a favorable technique to implement distributed
business processes using Web Services, because they provide more freedom
of (Singh et al. 2004):

e design: support heterogeneity, many different services with different
supporting technology can be coordinated to work together.

e configuration: provide dynamism in order to support better adapta-
tion and accelerate the evolution of a distributed system.

e action: provide autonomy of action for each participant. When the
rules of the interaction are clear, each participant can decide au-
tonomously which possible option to take in each turn.

The use of multi-agent techniques for automated negotiations is even
more natural, as content rich communication is crucial. Participants must
have a level of adequacy that can take advantage of the information being
exchanged. Automated negotiation is a natural field of research in multi-
agent systems. Agent oriented systems (Shin & Lee 2004) are capable of
working with, producing and processing this content rich communication.

11

1.5 Summary

Distributed computing is experiencing a move towards more agile and flex-
ible integration of systems. They are changing from simply having to pass
data from one place to another, to represent or perform a Business Process.
These business processes are increasingly involving business partners that
are and intend to remain autonomous. Web Services and Service Oriented
Architectures are the preferred tools to implement business processes. They
are not used for service discovery and composition only, but also as a tech-
nology to implement processes that are established as a result of new part-
nerships. This is a development process that goes in the opposite direction
as service composition. Instead of creating participants, looking for match-
ing ones and producing as a result a distributed process, the whole process
is first defined. This process serves as contract between participants and
based on the information contained in it, the participating components are
created. Interaction protocols are a very suitable solution for this purpose.
Multi-agent systems technologies can contribute enormously in this area,
since complex interactions and automated negotiations have been studied
vastly in this area. But, in order to transfer techniques from multi-agents
research to Web Services and SOAs, a low level integration of both scenarios
has to be attained first.

12

Chapter 2

Objectives

Currently the most accepted technology for interoperability between hetero-
geneous systems are Web Services, but they have only been used to realize
simple processes between organizations. Some mechanisms for enabling com-
plex processes in the form of orchestration have been provided by industry,
one of them is the Business Process Execution Language (BPEL)(Andrews
& et. al. 2003). This work provides an approach for realizing complex in-
teractions in a different manner, such that there is no dependency between
participants, apart from the intrinsic dependency that the other participants
fulfill their roles. Our approach is based on the principle of respecting the
autonomy of participants, by not imposing an active ruling entity, an or-
chestrator that dictates the behaviour of the participants. Instead business
processes will be modeled as conversations in a multi-agent system.

Using multi-agent technology, a framework for producing Web Services
choreography will be proposed. Various aspects of the different stages in
the development of such a system will be taken into account, from design
problems to concrete implementation issues.

Our framework has a lower and a higher level. The lower level deals
with concrete communication problems and grounding: using tools for Web
Services, communication is implemented as for agents. The higher level
deals with conceptual problems, like the design of complex conversations.

More concretely we shall use FIPA protocol specifications, since these
are the most comprehensive and adopted communication mechanisms used
in the multi-agent community. Our communication framework provides a
basis such that agents (FIPA agents) and Web Services can transparently
communicate. Messaging of a FIPA platform with Web Services will be
proposed by grounding the FIPA abstract specifications using Web Services
standards. This is done focusing on messaging only, other relevant issues
like description and discovery are treated as a special type of contents to be
transported using the proposed messaging.

At the higher level more complex tasks have to be solved. Taking advan-

13

tage of the vast amount of contributions in the area of interaction protocols
and complex conversation between agents, we define a concrete model of pro-
tocol. This model includes all aspects necessary to produce business process
models, moreover, the proposed model also provides the possibility of using
engineering techniques like classification and modularization for coping with
the complexity.

It is also the intention to produce concrete implementations automati-
cally in the lower level following guidelines at the higher level. The possibility
of working directly with abstract concepts as used in the higher level in a
concrete lower level, like for instance, agents reasoning over protocol models
and performing them in run-time, is also of interest for the present research,
but not mandatory, since the objective is to produce a business process re-
alization and not a new enhanced agent capable of planing its interactions.
Even so, the proposed model is intended to suit this development area in
the multi-agent community also.

2.1 Summary
The objectives are:

e To study Web Service communication

e To study agent communication, mainly the FIPA (FIPA 2002) agent
platforms.

e To integrate the communication of FIPA agents and conventional Web
Services in such a way that complex conversations can be implemented
using Web Services.

e To produce a consolidating interaction protocol model that is com-
prehensive enough to describe the conversation completely. These de-
scriptions have to be modular and reusable.

e To produce a implementation based on interaction protocol models.
This implementation uses the integrating solution for agents and Web
Services.

14

Chapter 3

State of the art

A fundamental component of the present research work is the study of agent-
based communication mechanisms in a Service-Oriented Architecture. This
chapter will cover primarily contributions found in literature about this
topic. Contributions in different areas will be discussed to produce a de-
scription of the state of the art in Web Services and in multi-agent commu-
nication. Communication mechanisms in both areas will be characterized
to establish a comparison. Also contributions in the area of interaction pro-
tocol modelling will be reviewed. This overview will serve as foundation for
a modeling framework for business processes.

3.1 Web Services Standards overview

Distributed computer systems were already common in the early stages of
computer science. In the seventies and eighties computer networks started to
be frequent within organizations and in the nineties, the arrival of Internet
made electronic communication between organizations very feasible. Even
80, some other barriers were blocking integration, mostly differences between
the diverse software products and the lack of standards for data transfer
between systems. After a few years XML gained dominance and standards
based on it started to show advantages over other mechanisms for data
representation. It is in this period where Web Services were established.
Web Services are nowadays the preferred way for implementing Service-

Figure 3.1: The SOA Triangle

15

WSDL Description
types
xml schema

interface

operations...

input

| type ref ‘

output
| type ref ‘

binding...
‘ operation ref;, MEP... ‘

service
interface ref...

endpoint ...
| binding ref; ADDRESS... |

Figure 3.2: Structure of WSDL 2.0

Oriented Architectures. These consist of software entities, called services
that can be searched for in directories, where descriptions of these services
are published as shown in Figure 3.1(Weerawarana et al. 2005). Once discov-
ered, services can be invoked to make use of them. Web Services standards
consist of XML-based specifications for the structure of messages and the de-
scription of services. The World Wide Web Consortium (W3C) (W3C n.d.)
is the organization in charge of the specification of Web Services. The stan-
dards provided by W3C relevant for the topic in discussion will be presented
next.

3.1.1 Service description

Web Services Description Language (WSDL) (W3C 2002) is a specification
for the description of services in terms of the messages that they interchange
and their structure. WSDL descriptions are composed, as shown in Figure
3.2, of a specification of the types (data structures) to be used inside mes-
sages, the messages that contain them, the operations (concrete actions)
that will make use of messages, and port types or interfaces which are col-
lections of operations that are related to a specific task. Those components
are part of the structural part of the description. WSDL also provides a
mechanism for specifying a binding for interfaces, showing how interfaces
are grounded, for instance using SOAP (W3C 2003). Finally, it is possi-
ble to create collections of these bound interfaces as a concrete service and
associate a location for the service to be reached.

16

Envelope

Headers
‘ wsa:Source |

‘ wsa:To ‘

|wsa:Reference Property ...

| wsa:Reference Parameter ...

| wsa:MessagelD

| wsa FaultTo

|
|
|
| wsa:ReplyTo ‘
|
|

| wsa:Action

body
‘ content |

Figure 3.3: Structure of SOAP with WS-Addressing headers

3.1.2 Communication between services

Web Services also provide standards for messaging between systems. The
message representation mostly used in Web Services is SOAP. On top of
it, a new standard was provided for a more precise definition of messaging
called WS-Addressing, both specifications are explained next.

SOAP

Simple Object Access Protocol (SOAP)(W3C 2003) is a specification to send
messages using XML. It defines the structure of a message, organizes it in
two main parts as shown in Figure 3.3, the headers block and the message
body. The first one is used for annotating the message with information
relevant for messaging and processing. The body is used for containing the
information that is to be transferred by the message.

Addressing

Web Service Addressing (WS-Addressing) (W3C 2006a) is a specification
of concrete headers used for message addressing. SOAP provides messaging
using headers and WS-Addressing specifies fundamental headers and their
semantics:

e wsa:Source: the sender of the message
e wsa:To: the receiver of the message

e wsa:Reference Properties: values that help together with the End-
point Address to deliver the message.

17

e wsa:Reference Parameters: values that are not necessary to reach
the endpoint, but to to interact with it.

e wsa:MessageID: an identification for the message

e wsa:ReplyTo: endpoint where to reply to

e wsa:FaultTo: endpoint where to send fault messages to
e ywsa:Action: an identifier of the message’s intent

WS-Addressing defines Endpoint References(EPRs) in order to address
services. EPRs encapsulate the information necessary for reaching a ser-
vice endpoint at run-time and are used, for instance, as data structure
for some messaging headers like wsa:Source, wsa:To, etc (Weerawarana
et al. 2005). An EPR can be extended with application specific parameters
using wsa:Reference Properties and wsa:Reference Parameters.

3.2 FIPA platform and agent communication

This section will review how agent communication is modeled in typical
multi-agent systems. The most significant contribution in this area are the
specifications provided by FIPA(FIPA 2002). They have proposed one
of the most widely accepted standards for agent platforms. This platform
model will be taken as reference and representative standard of a multi-agent
system platform, since it has been used as a base for other more detailed
contributions that will be discussed later in this chapter.

3.2.1 FIPA Agent Architecture

The core of FIPA specifications is a model for agent platforms called Ab-
stract Agent Platform Architecture (FIPA 2002a). It specifies how the plat-
form is organized and how agents are identified. FIPA specified an abstract
architecture for Agent Platforms independent of realization tools and that
makes interoperability between concrete platforms possible while empow-
ering solution-specific features. Therefore FIPA is focused on end-to-end
support of a common agent communication language.

This architecture is a definition of how agents can locate and commu-
nicate with each other by exchanging messages. The architecture specifies
an agent communication language (ACL) and certain components of the
required infrastructure. These components are services available for agents
and are in principle the following:

e Agent Management Service (AMS): (also Agent Management
System) Is the service that manages agents in the platform and their
life cycle.

18

AgentPlatform

Angent Cirectory
Agent Management | [Facilitator
'y SYSEEm 'y

h h
| Message Transport Service |

| Message Transport Service |

Figure 3.4: FIPA Agent Management Reference Model

e Message Transport Service (MTS): services that provide mecha-
nisms for communication between agents in the same or remote agent
platforms.

e Agent Directory services: a repository service for publication and
discovery of agents. In opposite to AMS, this repository is properties
oriented and not identification oriented.

e Service directory services: service for publication and discovery of
services. Works similar to agent directories, but instead of agents, it
manages services.

These conceptual components are reified in the Agent Management Spec-
ification (FIPA 2004). Figure 3.4 shows the structural organization of these
components. Each agent platform complying to FIPA specifications will pro-
vide the 3 basic services: agent Management (AMS), Directory Facilitator
(DF) which serves as agent directory and services directory, and Message
Transport (MTS). Any agent entering an Agent Platform has to report to
the AMS. After that, the agent can use the directories available for discov-
ering other services and agents to interact with. These interactions are done
using the message transport service.

One important aspect of this management model is the separation of
the identification of an agent and the mechanism to reach it (its address).
An Agent Identification (AID), as defined by FIPA, can be used to identify
the agent in an absolute manner: the agent can change its location (its
address) but keep its identification, which makes it possible for other agents
to recognize it again later. There is in FIPA a strict separation between
transport mechanisms (address) and identification.

19

3.2.2 FIPA Agent Communication

FIPA provides a stack of specifications for communication between agents.
Figure 3.5 shows how communication specifications in FIPA are built one
on top of another.

Interaction protocols (FIPA 2002g)
Speech Acts (FIPA 2002¢)
FIPA ACL Message
Transport Message
Message Contents Representation (FIPA 2002c)
Message Envelope Representation

Figure 3.5: FIPA Communication Specifications Stack

Looking at it bottom up, the representation of the message envelope is
the base. It contains transport specific information required in every single
message, independent of their context, like: sender, receiver, how the mes-
sage is encoded, etc. A way of representing the contents is specified on top of
it. Envelope and contents can be realized on any appropriate representation
technique, like bit efficient, Strings following a specific syntax, XML, etc.
Message contents and envelope form together a Transport message which
is the realization of a FIPA ACL Message (FIPA 2002d). On top of it, a
set of ACL message types, called speech acts, define the different kinds of
messages that agents will use. A clear semantic definition in correspondence
to speech act theory (Sadek 1991) is provided for each speech act. There are
certain well known situations in which a specific sequence of speech acts are
expected. These sequences are called protocols and they are a pre-agreed
and fixed ways of how messages are exchanged to serve a specific purpose.

FIPA Message Envelope

The envelope is an information structure that contains some fields for mes-
sage addressing, correlation, semantic representation and context informa-
tion. The structure is shown in Figure 3.6 (FIPA 2002c¢). It is composed of
the following fields: sender, receiver and reply-to which are Agent IDs (AID)
fields representing basic addressing information. An AID is composed of 3
fields, the name of the agent which is the unique identifier of the agent, an
optional list of addresses where it can be contacted and an optional list of
locators or directories, where the agent can be found. Next, a field called
reply-by contains a time constraint for the response. After that, the en-
velope provides the message correlation fields: conversation-id, reply-with
and in-reply-to. Reply-with contains the information token to use in the
field in-reply-to of a response. Following that are the fields that describe
the basic semantic of the message: communicative-act which contains the

20

Sender (AID) Receiver (AID)
Reply-To (AID) Reply-By
Conversation-1D Reply-With AID:
In-Reply-To
Communicative-act Protocol name

- address
Encoding Language

locator

Ontology
User-Defined
Content

Figure 3.6: FIPA Message Envelope and Agent ID (AID)

identification of the type speech act (from the FIPA speech act library)
of the message and protocol which tells what protocol is being performed.
Following that are fields that inform about details of the message content:
encoding, language and ontology. The specification provides the option of
user-defined fields for extension. Finally there is the field where the actual
content of the message is placed.

Speech act

FIPA(FIPA 2002¢) has specified the structure and semantics of a basic set
of speech acts. Each speech act is an information structure associated to
a specific semantic, like query, assertion, request, etc. They are defined in
terms of preconditions and consequences that they have: Speech Acts are
defined in terms of preconditions that have to hold for the action to be
performed and the changes that the action produces, everything from the
perspective of the sender. For instance, the inform speech act, the action of
informing that a proposition p is true, is defined by the preconditions that
the sender must hold that a proposition p is true, is uncertain whether the
receiver knows the true value of p and intends that the receiver comes to
believe that the proposition p is true. The complete set of FIPA speech acts
can be found in (FIPA 2002e).

Interaction Protocols

In a multi-agents system, messages are expected to be exchanged between
agents within a context and as part of an interaction. For this reason, FIPA
provides a set of interaction protocols which are specifications of message
exchange sequences that serve a certain purpose.

Interaction protocols are a mechanism that describes the different op-
tions of message exchanges possible in each stage of a conversation between
agents. An interaction protocol allows different sequences of messages, the
sequence that the conversation takes can be different from one situation to

21

another. In spite of that, they all belong to the same protocol, since a pro-
tocol works like rules of a game, but how each game looks like will vary from
one case to another.

FIPA provides a set of protocol descriptions (FIPA 2002g) that describe
from simple conversations, like an agent requesting another agent to perform
an action, to complex interactions between several participants like auctions
or brokering.

Interaction protocols are described using a variation of UML (Unified
Modelling Language) sequence diagrams (Odell, van Dyke Parunak & Bauer
2000) which are graphical representations of the protocol. The semantics of
these diagrams is specified in Agent-UML (Bauer, Miiller & Odell 2000),
an extension of UML with enhancements for agent specific issues like multi-
threaded lifelines, roles and message semantics. This representation will be
explained in section 3.5.6.

3.2.3 Work based on FIPA specifications

FIPA specifications served as base for several implementations in multi-
agent systems. This section will describe two major developments that are
relevant to our research: Jade and Agentcities.

Java Agent Development Environment (JADE)

Jade (JADE 2001) is an implementation of FIPA specifications in the form
of a multi-agent system middle-ware which also serves as agent platform
and provides basic services like directories and messaging. Its framework
supports the implementation of ontologies for message contents and agent
knowledge. It also provides FIPA’s representation specifications like FIPA-
SL (FIPA 2002h) in the form of “String representation”, a syntax very sim-
ilar to LISP.

Jade is also one of the preferred platforms to implement complex con-
versations between autonomous agents, because it provides a library of be-
haviours for performing FIPA interaction protocols. New complex conver-
sations and their corresponding behaviours can be produced from scratch or
by combining preexisting behaviors. Therefore is Jade a very suitable tool
for implementing business processes using multi-agent systems.

Agentcities

Agentcities was the first world wide open network for agents(Agentcities
2002) that took advantage of the standardization that could be achieved with
FIPA Specifications. Agentcities’ network is composed of different platforms
implementations, all based on FIPA standards. The network hosted a wide
variety of projects.

22

One relevant achievements of this project was to serve as laboratory for
global integration of heterogeneous agents and also to show the potential of
such a big integrated community. It worked for various years and already
has many recommendations based on the gained experience. Concerning
integration of Agents to Web Services, Agentcities recommended a model
(Agentcities Web Services Working Group 2002) whose main contribution
are two components, called gateways, for mapping interactions from the
perspective of the AP to Web Services and vice versa. Requests initiated by
agents are translated to the Web Services representation and the response is
translated back to ACL. The same is done correspondingly for interactions
started by a Web Service consumer to a service provided by an agent in the
AP.

This approach follows a recommendation for integration of non-Web Ser-
vices or legacy platforms into Web Services: any system using technologies
other than Web Services is to be integrated to Web Services by using an
adapter (Barry 2003). Adapters are converters or translators between the
local technology and Web Services.

3.3 Comparison of Agents and Web Services
Specifications

The properties described in the previous sections enables us to make a com-
parison of both specifications. This comparison, shown in Figure 3.7, will
serve later as a basis for our proposed integrated architecture.

The first aspect to compare is low level groundings, present in both. The
goal of Web Services is to have a specification that allows communication
between systems using XML. Web Services are normally grounded using
SOAP for message structure and XML for contents. It has well established
functional description languages that allow detailed descriptions of services
and collaborations between them. FIPA provides a set of specifications
that go from the basic grounding to the abstract layers of communication
like semantics and complex interactions. It has grounding specifications in
different formats including one for XML, for the envelope as well as for
the contents. The architecture allows the addition of new groundings. FIPA
specifications go further up in the abstraction level and provide specifications
for semantic and structure of high level concepts left completely open by Web
Services, which focus on bare messaging.

Web Services are widely adopted among a vast amount of applications,
their main interest is interoperability in any application area. FIPA spec-
ifications on the other hand, focus on interoperability and specification of
agents and therefore have moderate to good adoption inside the multi-agents
community, but are practically nonexistent outside of it. The wide adoption
of Web Services is the most attractive reason for producing an integrating

23

’ Aspect ‘ Web Services FIPA

Syntax and Struc- | Detailed Detailed

tural definition

(Grounding)

Adoption Vast Little

Semantic defini- | Little, open room | Well established,

tion for application se- | open room for ap-
mantics plication semantics

Communication Explicit Simple and not al-

stability support ways explicit

Communication RPC only moving | Targeted at com-

complexity towards complex | plex dialogs
interactions

Complex Conver- | Immature Mature

sations support

Reasoning capa- | Reduced Complex

bility of the par-

ticipants

Identification Address Instance ID

Statefulness Stateless Stateful

Figure 3.7: Web Services and FIPA Specifications comparison

architecture.

FIPA specifications have given less importance to some key concepts for
low level communication, like acknowledgement of messages or detailed ex-
ception handling description. In FTPA sending a message and not receiving
an error is intrinsically perceived as a successful transfer of the message,
which is not always the case in conventional communication systems. In
Web Service specifications, exceptions for instance, are part of the basic vo-
cabulary for the description of choreographies (W3C 2005). Even though
FIPA provides speech-acts and protocols for handling exceptional situations,
these are left relatively lax and not targeted to be as explicit and detailed
as in Web Services.

Communication is very complex in multi-agent systems and one of the
main subjects studied in this area. Web Services, on the other hand, have
been traditionally simple, as far as conversation patterns is concerned. Most
of the times only simple request-response patterns are used. Even though
Web Services are suitable for more complex communication patterns, de-
ployment of complex communication systems is still not wide propagated in
this area. Usage of Web Services in complex interaction processes is still in
an immature stage compared to multi-agents systems. Only orchestration
tools like WS-BPEL(Andrews & et. al. 2003) have shown success. FIPA

24

specifications target autonomous agents expected to have enough reason-
ing power to manage complex conversations, in opposite to Web Services,
where the objective is to provide interoperability between heterogeneous
systems which not necessarily support complex reasoning capabilities con-
cerning communication.

Web Services, in current practice, are focused on simple RPC function-
ality. Participants are traditionally simple (to the outside) and messages
can carry complex information, but their interaction-related semantic stays
simple. FIPA is focused on complex interactions with messages having sim-
ple to complex contents and semantics and participants that can be simple
but also complex reasoning agents.

Finally, another aspect relevant to compare is the statefulness of the
agents participating in conversations. Agents are in essence stateful and
FIPA specifications treat them like that. Agent identification is part of the
lower communication layers. Web Services focus on addresses, the actual
agent providing the service is irrelevant. Web Services focus on messaging
only and treat services as stateless instances. This is clearly reflected in the
way Web Services and FIPA specifications identify participants, namely us-
ing Endpoint References (addresses) (W3C 2006b) and agent instance names
(FIPA 2004) respectively. Even so, Web Services are slowly starting to
support stateful participants and part of this effort is the specification of
WS-Addressing.

3.4 Integration of Web Services and multi-agent
technology

The multi-agent community was for years interested in integrating multi-
agent systems and Web Services. This section will provide a brief review
of the most relevant proposals and implementations provided during this
period. Their solution will be briefly explained along with some relevant
aspects and background. This section serves also as a survey of Web Services
and Agents integration solutions and will be used later to compare against
our solution.

3.4.1 Agentcities Recommendation

Agentcities provided experience in global scale agent integration using FIPA
standards and specifications. As already mentioned in Section 3.2.3, it rec-
ommended an approach for Agents and Web Services integration. This was
one of the first recommendations about this subject and was based mainly in
the general procedure used to integrate non-Web Services systems with Web
Services (Barry 2003). It consists of the addition of an adapter layer between
the system to be integrated and the Web Services platform (Agentcities Web

25

Services Working Group 2002). The purpose of this adapter is to map Web
Services concepts to Agent concepts and vice-versa. This recommendation
was followed by most of the implementations that will be reviewed next.
They all are based around the concept of a gateway, which works as an
adapter.

3.4.2 Integration Agent Gateway

Taking the recommendation proposed by Agentcities, Whitestein technolo-
gies (Greenwood & Calisti 2004) has proposed a Web Service Integration
Gateway Service (WSIGS). This gateway is present inside an agent plat-
form as an agent service published in a directory facilitator. The WSIGS
provides certain services like: publishing and maintaining Web Service de-
scriptions in the internal DF and executing request to the published services.
It is also a Web Service published in a UDDI for Web Service consumers
to discover and use services offered by agents inside the platform. Requests
coming from one end to the other are intercepted by the gateway and the
contents is converted to the format corresponding to the target.

This approach works on a dual descriptions storage, each description is
present as WSDL and service description (SD) in the UDDI and the Di-
rectory Facilitator(DF) of the Gateway respectively. A mapping between
them and translation modules use these dual descriptions to convert mes-
sages form one encoding to the other. For this purpose, the WSIGS needs
to keep track of all services offered by the agents, as well as all UDDI entries
of services that could be called by an agent.

The WSIGS is composed basically of three main components:

o Gateway Registry: this part of the WSIGS is in charge of providing the
directory related services. It contains an UDDI registry, an internal DF
and modules for translating messages and descriptions from ACL to
SOAP/WSDL and vice-versa. Requests for publication or discovery
are translated and attended by the corresponding service, for Web
Services requests the DF and for Agent requests the UDDI registry.

e Web Service invocation component: it intercepts ACL encoded re-
quests coming from agents and produces a corresponding service de-
scription (SD). This SD is then used to search in the internal DF for
the service required. Once found, the corresponding WSDL in the
internal UDDI is used to generate the SOAP request to the targeted
service.

e Agent invocation component: this component works in the opposite
direction of the Web Service invocation component. It is important
to remark that each agent service is represented as a stub inside the
WSIGS. Requests by Web Service clients are made to these stubs which

26

get the corresponding SD from the internal DF to generate then an
ACL message to be sent to the agent.

If the corpus of services to be used by agents is not too big, this approach
can be a practical solution for enabling access of agents to Web Services and
also offering their services as Web Services. As mentioned in (Greenwood &
Calisti 2004), this approach does not support more complex conversational
patterns. It only supports the standard Web Services request-response pat-
tern.

3.4.3 FIPA TC Services

The initiatives mentioned above motivated FIPA enough to take actions to
integrate FIPA agents and Web Services (Dale & Lyell 2003). The need
of such an integration was clear and therefore, some of the latest Techni-
cal Committees (TC) were approaching this issue. Among them, the most
relevant was the Services Technical Committee (TC Services)(2003). It fo-
cused on providing a service meta-model to ground common service models
currently used, like Web Services.

The unstructured notion of a services in FIPA Agent Management spec-
ification was one of the main problems. The specification does not approach
service composition. TC Services would work on a specification of an Ab-
stract Service Architecture that is more compatible with current standards.
More details about the architecture would be taken into account, such as
different description levels: semantic, functional, models, etc. This group
believed that FIPA technologies could contribute in the further development
of Web Services towards advanced services that implement complex dynamic
business processes. TC Services explored concepts like Service Orchestra-
tor and Composer Agents for extending the Abstract Service Architecture.
This group stopped when FIPA suspended its work around 2004. For that
reason no concrete specification or implementation of any of these concepts
was accomplished.

3.4.4 WS2Jade

WS2JADE (Nguyen & Kowalczyk 2005) is a tool that produces agent im-
personators of Web Services that serve as adapter for the service in a Jade
Platform. It has the advantage of being able to integrate such a services
at run-time. This makes discovery and invocation of Web Services during
run-time possible. This approach is also capable of implementing complex
conversations, since all services are represented inside the agent platform
by proxy-agents and these proxy-agents can participate in any conversation
as any other agent in the platform. This tool is not intended to provide
agent-services in the platform as Web Services to the outside. They even
remark the lack of theoretical work on the topic of agent to Web Services

27

integration, specially due to the stateful asynchronous communication of
agents against the stateless and dominantly synchronous communication of
Web Services.

This tool is also using replication of the Web Services world inside the
agent platform. It is therefore not suitable for situations in which there will
be interaction with a big amount of Web Services.

3.4.5 AgentWeb Gateway

This gateway(Shafig, Ali, Ahmad & Suguri 2005) is composed of 3 bi-
directional translators:

e Search query converter: converts registry queries to let agents look up
in UDDI registries and Web Services in DFs.

e Service Description converter: converts description publications for
agents to publish their services in UDDI registries and Web Services
in DFs.

e Communication protocol converter: converts service invocations in
both directions.

AgentWeb Gateway allows communication and usage of infrastructure in
both directions. Both of the environments are left untouched and keeps
duplicate functionalities, specially in the case of publication and discovery.

3.4.6 FIPA Agents and Web Services Integration (AWSI)
working group

In 2005 FIPA started again as a sub-organization of IEEE. As part of this
restart, a group called Agents and Web Services Integration (AWSI) was
created. This group presented its proposal(Greenwood, Lyell, Mallya &
Suguri 2007) which reviews the different contributions and provides a gen-
eral view of how to achieve integration better. Some of these are gateways
or adapters that have already been discussed in the present review. This
proposal includes our proposed architecture, presented in chapter 4. Further
details will be discussed as results in Chapter 8.1.10. AWSI also takes into
account solutions in the area of complex conversations. This part of their
contribution will be reviewed in the next section.

3.5 Complex Interactions

Complex conversations, widely studied in the multi-agent community, have
attracted the attention of the Web Services community. This section re-
views the state of the art of important contributions in the area of complex

28

conversations, business process modeling and interaction protocols. First,
some standards and techniques used to produce business processes will be
reviewed followed by contributions from the multi-agent community.

3.5.1 RosettalNet

RosettaNet (RossettaNet 2002) is a consortium committed to the creation
and implementation of XML-based, open standards for electronic business.
The intention is to form a common e-business language for supply chain
partners to coordinate. This language is used to define Partner Interface
Processes (PIP) in terms of a transaction, the vocabulary and the busi-
ness process. PIPs are either a notification or a request-response pattern
(Damodaran 2004). There is a set of predefined PIPs for common situations
like purchase management, manufacturing and inventory management, they
are distributed in seven segments (Jilovec 2004):

1. Partner and service profiling and review
2. Product information

3. Order management

4. Inventory management

5. Support and service

6. Design exchange, configuration and quality assurance

The objective of RosettaNet matches in some extent our work, because
it automates the public process between trading partners. Integration is
approached by establishing documents and exchange standards. In this
approach, participants are autonomous, not centralized entities performing
the processes.

The most important contribution of RosettaNet is the provision of stan-
dardized document descriptions to be used in XML-based messages. This
specification is an improvement over old and widely disseminated practices
like EDI (Kantor & Burrows 1993). These documents are very detailed,
which is suitable for automating processes. It also organizes interactions in
areas and in a way that makes it easier to combine them. PIPs are simple,
they can be rather limited for more complex processes and can also result in
rigid processes. PIP is a solution for aligning information systems belonging
to different organizations and not a tool that reflects a business process.

29

WS-CDL Package

info types | relationshipType... |

‘xmlschema ‘ [participantType. . |

|token...rtokenLocator... | |channeIType... |

| roleType... |

Choreography

|Name \ |Complete \ | Finalizer \

\ Root \ | Exception \ | Relationship\

Activity...
 Control-Flow | [WorkUnit ‘Basic
HSequence ‘ |Name ‘ Block Hlnteraction HNoAction ‘
[Choice | | Guard |[Activity || [Perform] [SilentAction|
| Parallel || [Repeat | ‘
Variables

‘State ‘ |Channe| ‘ |App|ication |

Figure 3.8: Structure of Web Services Choreography Description Language

3.5.2 WS-CDL

Web Services Choreography Description Language (WS-CDL) is an XML
language developed by W3C to describe from a global point of view peer-
to-peer collaborations (W3C 2005) between Web Services. It describes pro-
cesses that involve different participants, in terms of messages that are ex-
changed. It is based on WSDL descriptions to represent the endpoints and
XML types to represent messages. It provides also mechanisms for describ-
ing choreographies independently of the actual services that will participate,
replacing them with the concept of role. These roles are represented by
WSDL interface descriptions. Similarly, the concept of token is introduced
to make WS-CDL descriptions independent of actual types used in messages.
It provides convenient resources for making collaborations reliable, like pro-
cess blocks for exception handling, finalizing processes and synchronization
between participants.

A description of a choreography in WS-CDL is an XML document con-
taining a WS-CDL package whose structure is depicted in Figure 3.8 (Barros,
Dumas & Oaks 2005). First, it declares some types for:

e Information: these contain plain XML-Schema descriptions of infor-
mation types that can be used as content of messages exchanged in
the choreography.

e Tokens: aliases for pieces of data inside variables of messages that are
significant or are needed in the description of a choreography. Tokens
provide an intermediate layer to decouple the choreography description
from concrete XML types. They serve as an abstraction of a concept

30

relevant for the description that can be represented syntactically with
any XML type. Token-locators are XPath expressions used to link a
token in a WS-CDL description to a type in an XML document. By
changing solely the token-locators, the same choreography can be used
in different scenarios with different documents.

Roles: is an interface composed of a set of behaviors a participant can
exhibit. Behaviors are observable connection points of a role.

Relationships: associations established between 2 roles and the list of
behaviours that are to be provided by the roles.

Participants: participants are aggregations of roles that conform the
description of a participant in the choreography.

Channels: describes how and where information is exchanged between
participants. These can be understood as connection end points pro-
vided by a participant. Using the information in a channel type, in-
formation can be provided to the participant. ChannelTypes descrip-
tions specify how a channel can be used: for a single, for distinct or
for shared interactions.

The main part of a WS-CDL document is called a choreography. It
defines rules for the exchange of messages. In every packages there will be
always a maximum of one top-level choreography. A choreography has some
attributes that serve to describe its nature:

Name: identification of the choreography
Root: to mark the top-level choreography

Complete: to explicitly complete a choreography. It describes how
to evaluate if the choreography has been completed using a boolean
XPath expression.

Exception: a Workunit to handle cases of exception
Finalizers: to specify finalizing Activities of the choreography

Relationship: the relationships the choreography participates in

Work-units are used to describe constraints required to be fulfilled in
order to advance in the choreography. They annotate activities with a guard
which is a condition for the activity to be performed. If the guard evaluates
to false, the activity cannot be performed. The attribute block defines if
the work-unit has to block in case variables in the guard condition are not
available or the guard condition is disabled. Repeat tells if a Workunit can
be repeated after the guard has been evaluated to true.

A Work-unit has an activity which can be either a control-flow activity
like a sequence, choice or a parallel, or it can be a basic activity like:

31

e Interaction: represents an information exchange between two partici-
pants over a channel.

e Perform: mechanism to embed a choreography inside another. This
activity specifies when and how another choreography is performed.

e Assign: variable assignation. Creates or changes values in a Role.
e NoAction: marks where explicitly no action will be performed.

e SilentAction: used to mark when a participant performs non-visible
activities

Finally a WS-CDL package has the definition of variables to be used in
expressions inside the choreography. These variables can be state variables
capturing information about changes at a RoleType, or channel variables or
application variables containing information being exchanged.

WS-CDL has been the most comprehensive effort in W3C to define a
specification for peer-to-peer complex interactions. Even so, after some
years, its success has been very limited. This has many reasons (Barros
et al. 2005), like poor linking with other WS-* standards, but there are
mainly two big flows that stand out:

It lacks features to include cardinality of participant-types in a descrip-
tion. There are no means to describe situations like auctions, where a first
part of the interaction is performed with multiple participants, all of the
same type, a fundamental concept for choreographies. It is therefore not
possible to define constraints based on participants or interactions cardinal-
ity. For instance, when an activity is to be performed by a participant only
after it has received a certain amount of replies.

Another inconvenience is the nature of WS-CDL as a tool for description.
The nature of a design task is very different than a programming or execution
task. As one can see, WS-CDL inherits many characteristics of low level
imperative programming, but does not provide a good solution for design,
like a visual representation. WS-CDL , in opposite to tools like BPEL,
is mainly intended for abstract, high-level design and not for execution.
Therefore, just an XML language is not enough. This has been one of the
main reasons why WS-CDL has not gained importance against other design
tools like UML.

3.5.3 Business Process Model Notation (BPMN)

Business Process Model Notation (BPMN)(OMG 2009) is a diagrammatic

notation for modeling business processes. Its objective is to provide portable

and visual process descriptions that can be used in diverse tools and envi-

ronments. It is intended for a diverse audience beyond just IT developers.
Processes in BPM can be of three kinds:

32

e Processes (Orchestrations)

— Private non-executable: specific or internal of a participating or-
ganization intended for documentation mainly.

— Private executable: specific or internal of a participating organi-
zation intended to be executed

— Public: interactions between participants

e Choreographies: a definition of a contract that describes the expected
behaviour of interacting participants. They are modeled similar to
private processes and are composed of activities which involve 2 par-
ticipants and that are not controlled by any centralized observer.

e Collaborations: can be processes or choreographies

BPMN provides a comprehensive set of graphical elements with specific
semantic definition for diagrams that represent business process models.
This is an alternative to other tools used for modeling processes like UML.
It provides a more intuitive appearance suitable for a more inter disciplinary
development. It fits well in a model driven architecture (MDA) as a com-
putation independent model (CIM) that can be used as input to develop
distributed systems. Its view covers from internal to observable aspects of
the model.

A representative subset of the diagram constructs used in BPMN will be
explained based on the example in Figure 3.9:

Collect all
replies

Select
ffer

Receive
Delivery

Quotation
Received

Send

Request for

Quotation
O

Receive
Response for
Quotation

Requester

Rejection
Received

Send
Quotation

p| Receive i
(e O

Receive
Request for
Quotation

Provider

Figure 3.9: BPMN Example: Order Process

e Pool: represents a participant in a conversation. Used to contain the
process belonging to a participant in a distributed business process.
In the example diagram, there are two pools, one called Requester and
one called Provider.

33

e Activity: represent specific tasks done in a process. Chains of activities
make processes and it is also possible to use an activity to represent
a sub-process. They are represented using rectangles with rounded
corners, for instance: “Send Request for Quotation” or “Deliver”.

e Events: events that start, interrupt or end a process. These events can
be of several kinds: Message, Timer, Rule, Multiple, Error, Compen-
sation or Terminate loop. Events are circles and their special types are
represented by the different icons they may contain. In the example
there are starting events at the beginning of the process for each pool,
two message events representing the two kind of messages that can
happen for the Requester. There are also ending events for the nor-
mal branch of the processes and termination events for the cancelation
branches. Termination events have a black circle inside them.

e Gateways: used to control how processes diverge and converge. They
are represented using diamonds and also have different kinds, rep-
resented by different icons inside the diamond. Gateways can be
data-based exclusive, event-based exclusive, both representing unique
choices, inclusive that represent multiple choices, complex for advanced
decisions and parallel where multiple parallel paths are defined. In our
example there is one data-based exclusive gateway marked with a “X”
in it, in the Provider pool. It represents the choice of sending a quo-
tation or rejecting the collaboration. In the Requester side we have
an event-based gateway with a pentagon in it that represent the two
branches where the process split depending on the message event that
happened. To define each of the options for the choice in the event
driven gateway, message events follow each of the two options, defin-
ing one for the case when a Rejection is received and one for when a
Quotation is received.

e Connectors: used to connect the different elements in a diagram. They
can be sequence flows represented by solid arrows used to define the
sequence of activities in a process. Message flows are dashed arrows
with a circle where they start. These represent message exchanges be-
tween pools. These two connectors are used along the whole diagram.
There is a third kind of connector, an association that is not present
in th the example. Associations are used to connect data, information
and artifact objects to flow objects.

e Data Objects: used to represent relevant data objects to elements in
the process.

e Artifacts: these are extensions for defining other diagram objects.

34

3.5.4 'WS-Business Process Execution Language
(WS-BPEL)

Web Services Business Process Execution Language (WS-BPEL or sim-
ply BPEL) (Andrews & et. al. 2003) is an extensible XML workflow-
based language for defining Web Services compositions that can perform
(Weerawarana et al. 2005):

e Flexible integrations

e Recursive compositions

Separation and compossibility of concerns

Stateful conversations and life cycle management

Recoverability

A BPEL process is a composition of activities of two kinds:

e Basic: in- or outbound Web Services interactions, specific data ma-
nipulation actions or actions like empty, wait, terminate, throw and
compensate.

e Structured: contain other activities defining their logical relation. They
can be sequence, switch, flow, which is a structure of parallel ac-
tions, and while

Abstract and executable processes are constructed using activities to de-
scribe the business process. Abstract processes are message exchange pro-
tocols that describe the externally visible interaction between participants
without the internal processes running inside partners. Executable processes
are the logic that is actually performed inside each partner. Singh (Desai,
Mallya, Chopra & Singh 2005b) claims that BPEL is a mixture of these two
layers, interaction and internal business logic. Even though it is a very well
accepted tool for composing services, it does not solve our objectives, it is a
language for hierarchical orchestration intended to be executed by a BPEL
engine which plays the role of the orchestrator. Following the BPEL process,
the engine invokes the services being composed and performs data manip-
ulation. It has a very algorithmic structure for programming distributed
processes the same way as program modules are done.

3.5.5 BPEL4Chor

An extension of BPEL for modeling choreographies has been proposed, tak-

ing advantage of the acceptance a standard like BPEL enjoys (Decker, Kopp,

Leymann & Weske 2007). It is a layer used on top of existing BPEL concepts

making it a language suitable also for representing choreographies.
BPEL4Chor consists of the the following three concepts:

35

e Participant Behavior Descriptions (PBDs): it comprises the communi-
cation activities and the control and data flow dependencies between
them. It is a description of the sequence of actions a participant must
perform in order to fit in the choreography. This description remains
in an abstract level. For this purpose, statements in BPEL are used
with the exception of some used to ground concepts to the concrete
implementation, like partnerLink, portType and operation. PBDs
in BPEL4Chor are not that different than any abstract partner de-
scription in BPEL. They are behaviour descriptions in a form very
similar to structural programming.

e Participant Topology: this is where a choreography is mainly repre-
sented. At first the actual participants are declared using PBDs to
define them. In the case where an unknown amount of participants
of a same type is required, the concept of participantSet is intro-
duced. The cardinality of these participants is explicitly defined with
an attribute called forEach that associates the participant with the
action that starts the conversation with it. Communicative actions be-
tween participants are represented using messageLink statements. It
is composed of a sender reference, its sending action (sendActivity),
a receiver reference, its receiving action (receiveActivity) and a
messageName attribute representing the type of message. Using messa-
ge-Links the participant’s behaviors are interconnected to create the
choreography. The sequence of actions in the conversations is therefore
ruled by the PBDs.

e Participant Grounding: introduces the grounding details and map-
pings to Web Service specific configurations that were taken out in
PBDs. The purpose of having this aspect separated, is to make mod-
els described with this language reusable.

One fundamental advantage over other choreography languages like WS-
CDL is that it already supports parallel interaction with several partners
which is a fundamental feature a language must have in order to model
communication patterns in a SOA. Another advantage of this tool is that it
can model combinations of BPEL orchestrations and choreographies in one
single model.

They say, the PBD could be done after the topology, depending on the
approach being bottom-up or top-down or that it could even be avoided
if it is not of interest, but as far the specification in the publication goes,
this is not possible, since PBDs define the sequencing and therefore the
core of the conversation structure. The way rigid behaviors of participants
are connected by simply establishing relationships between actions of dif-
ferent participants makes the approach to have poor modularity properties.
They produced a browser-based visual representation based on an extension

36

of BPMN (Decker, Kopp, Leymann, Pfitzner & Weske 2008) along with a
mapping from this model to BPEL4Chor. Having a visual tool significantly
improves the ease of use for this tool for designing choreographies. Verifica-
tion of certain properties like absence of deadlocks are done by producing a
model of the choreography using Petri-Nets. Only diagrams that use block-
structured constructs only or control links can be produced with this tool,
patterns like multi merge of arbitrary cycles are not supported since they
do match the process driven coding model of BPEL. It also inherits a ma-
jor characteristic of BPEL and BPMN: mixing internal process models of
the participants with the visible part of the choreography. As a matter of
fact, the choreography structure is dictated by the internal process of the
participants.

3.5.6 AgentUML

One of the most important techniques for modeling interaction protocols are
swim lane UML sequence diagrams. This kind of diagram is very helpful,
because it focuses on modeling directly the desired behaviour that emerges
from the behaviour of the participants, without specifying a centralized ex-
ecution control.

But, in principle, UML sequence diagrams have some difficulties when
used for modelling interaction protocols. Sequence diagrams were originally
created to describe interaction sequences between instances of a system, in
other words, they represent concrete conversations in run-time. Instead,
interaction protocols are intended to model how conversations can be per-
formed and not how a specific one was performed. For that reason, a new
model was created to cope with some of these aspects (Bauer et al. 2000).

AgentUML is a model that takes UML sequence diagrams and enhances
them to represent protocols. It introduces some concepts like alternative
behaviour and participants cardinality constraints. This way some of the
basic problems are solved, like turn taking and valid message sequences
modeling.

Figure 3.10 shows an example of the ContractNet protocol modeled using
AgentUML. The ContractNet initiator sends a call for proposal to m par-
ticipants. From these participants, n reply within a deadline, ¢ do it with a
refuse and the rest (j) reply with a propose. From these j, k are rejected
and [are accepted. Those accepted can reply with a failure, inform—done
or inform —result. Each lane is enriched with rectangles that extend along
them. These rectangles represent the periods where the participant is active
in the conversation. A participant can only perform sequences of actions
that are connected by a single rectangle. For instance, when an initiator
receives a propose it can reply with a reject— or an accept — proposal and
then wait for replies from those accepted. On the contrary, when an initia-
tor receives a refuse, there are no more actions to be performed and that

37

FIPA-Contracthet-Protocol)

initiator:Initiator prParticipant

cfp m

POEM refuse

j=rei
3 propose

ksi |

reject-proposal i
I=hk [
accept-proposal i
failure
ez
informrdone
pess <
informeresult

==

Figure 3.10: FIPA AgentUML protocol example

conversation is ended.

AgentUML has been the preferred tool for describing interaction pro-
tocols, since they provide intuitive diagrams capable of describing many
aspects at the same time. Many contributions use them to illustrate pro-
tocols in their solutions, to describe new protocols or even to build on top
of them new tools. Ehrler and Cranfield (Ehrler & Cranefield 2004) have
developed an EMF model of AgentUML and implemented an automatic in-
terpreter capable of performing the protocols, using a platform called PAUL
(Profile for AUML Linking). It looks for incoming and outgoing message
events and executes the code as specified by the diagram and some extra
annotations that define how decisions are to be taken. In order to interpret
the protocol, it is decomposed in descriptions for each role, based on events
and code associated to it. An interface is produced for each role and its
implementation is called for each event as specified by the protocol.

38

3.5.7 UML2 enhancements and AMP proposal

UML is a very suitable and widely accepted diagram specification that is
very useful for describing interactions between objects. There are propo-
sitions on using UML2 for modelling collaboration between Web Services
(Kramler, Kapsammer, Retschitzegger & Kappel 2006). Using several kinds
of UML diagrams they model different aspects that go from basic informa-
tion aspects, to interactions, services up to business and market models. But
there are still conformance problems in the way UML sequence diagrams are
used in agents and interaction protocols as proposed by AgentUML.

As part of an initiative to produce an UML modeling profile for agents
(AMP) Haugen (Haugen & Runde 2009) proposes some necessary enhance-
ments for protocol meta-models in order to be able to model them using
UML 2. This enhancement is based on previous proposals like those in
AgentUML of Section 3.5.6 which are not valid UML 2 diagrams. It recog-
nizes that those proposals fail beyond the informal level, since they do not
define important aspects in the conversation like which participants take
part in which lifeline of an interaction protocol. They propose to model this
by introducing a Subset notation on messages in an UML Sequence diagram
as the one in Figure 3.11.

Sequence diagrams were used for describing interactions in a specific
execution situation. Therefore their lifelines represented specific instances
and not a type representing role, as intended by AgentUML diagrams. In a
conversation between agents, as the one in the example, which is between
an Initiator and many participants, conventional sequence diagram are not
suitable, since it is desired to describe how a conversation is to be done
with several participants. What is clear is that participants, in this ex-
ample, will have only 3 possible ways of exchanging messages: they either
propose or refuse the call. Those proposing will receive an acceptance or
a rejection from the initiator. These possible paths in a conversation are
used to define subsets of participants, in this example refused, rejected and
accepted, for those who refuse to participate, are rejected or accepted by
the initiator respectively. The advantage is that it now allows to represent
the specific possible ways a conversation can take, by describing the conver-
sation between the initiator and the subset of participants that take each
specific way. These diagrams do not describe an interaction between specific
instances, but between sets of them that share the same lifeline of conver-
sation. Each of these sets conform a partition of the set of participants and
multiplicity constraints can now be associated to them.

Instead of making a lifeline for each of the subsets, a special notation is
added in the diagram. The all keyword followed by a part name is used to
annotate messages to tell that a message is multi-casted to the set specified
by the part name. For instance the message cfp is multi-casted to the
complete set p of participants, because it is annotated with the statement

39

sd FIPA-ContractMet J

initiator:Initiator p:Participant

cfp {all p}

alt{all p}]

refuse

-

plsender] in refuse}

refuse

-

plsender] in proposed}

alt{all propoked subset py

reject-pr |
reject-proposal .

accept-proposal -

alt

failure

-

informdone

-

informresuit
-

Figure 3.11: FIPA protocol with subset notation

{all p}. This notation is also used to define iterations of blocks. This
means that such a block exist for each participant in the subset and that all
blocks in the iteration are combined in an enclosing parallel construct. An
example is the first alt block that is annotated with {all p}, meaning that
for each participant in the set p, an alternative option is possible (for each
participant in parallel), between replying with a refuse or a propose. Also
the alt{all proposed subsets p} means that all participants in the subset
proposed can receive alternatively either an accept or a reject.
The all construct is defined as follows:

{all s subsets p} a par d[p’/p] (3.1)
p'Es
where d[p’/p] is the diagram d with the lifeline p substituted by the lifeline p’
which is the lifeline of an element of the subset s, an instance of a participant
member of the subset s.
On top of this, some other peculiarities of FIPA protocols are modelled
using this technique. In FIPA protocols, all participants are allowed to send

40

a not_understood message at any point in a protocol to announce that a
message was not understood. This is modeled with a simple protocol that
is composed of a not_understood message within an opt (optional) block.
This block runs in parallel (par) to any protocol. Similarly there is another
peculiarity dealing with the possibility of the initiator to cancel a specific
conversation any time. This can be modeled similarly as the not_understood
case, but this time opt block surrounding the cancel protocol is annotated
with {all p} meaning that this option is performed in parallel to all par-
ticipants. As a result, the cancel protocol can be performed for each con-
versation without affecting any other conversation with other participants
started in the same ContractNet.

A final component to the enhancements is the specification of time con-
straints. For instance, to enforce that reject— or accept — proposal are sent
after a certain period d and that only proposals collected within that period
are taken into account, some annotations are added. The time when the
cfp is sent is annotated with @¢ meaning that the message is sent at time
t. Then the replies refuse and propose are annotated with the constraint
{t..t+d} meaning that they must happen in the period between t and ¢ + d.
This same kind of constraint can be added to the messages reject— and
accept — proposal to force them to be sent after all proposals are collected,
using the following annotation: {t + d..co}.

One more detail to cover is that UML2 diagrams base their constructs
on operations of the form alt, seq, loop and par which correspond to
alternative, sequence, loop and parallel respectively. Using these constructs
produces models that tend to be more algorithmic oriented.

3.5.8 Dialogue games

Dialogue games are a logic based formalism for modeling interactions be-
tween autonomous agents (McBurney & Parsons 2002), where the action
of sending a message is modeled as a game move. Dialogue games have
originally been used to study, describe and explain why participants in a
dialogue perform specific speech acts or to define the rational process neces-
sary to decide what action to take in a dialogue. This is an approach used
in areas like linguistics and philosophy and has been introduced to the area
of multi-agent systems to model interaction protocols (Amgoud, Maudet &
Parsons 2000).

Dialogues are classified based on their purpose in persuasion, information
seeking, negotiations and deliberations. They are defined by a set of rules
organized in the following components:

1. Commencement Rules: definition of the conditions under which a di-
alogue starts.

2. Locutions: which speech acts are permitted.

41

3. Combination Rules: define which locutions are permitted in a specific
context.

4. Commitments: when a participant establishes a commitment to a
proposition based on the moves it makes.

5. Termination rules: conditions under which the dialogue ends.

Dialogue games that base their definition on pre- and post-conditions
of each game move are called axiomatic. There are private and public ax-
iomatic dialogue games, and their semantics is based on internal and ob-
servable propositions respectively (McBurney & Parsons 2003).

Dialogue games have been used mainly in linguistics, therefore their rules
are based on beliefs and intentions of the agent that performs the speech act
in order to explain how decisions are made, characteristically they have been
private axiomatic dialogue games. This differs from our objective, since our
interest is on modeling protocols from a global perspective and not from
the perspective of any of the participants. Our objective is to define game
rules and verify conformance to them based only on the visible part of the
dialogue. In a scenario that involves autonomous agents, it is not an option
to verify if an action follows the internal rational state of an agent.

3.5.9 OWL-P

Based on theories developed by Singh and his group about Commitments
(Mallya & Huhns 2003, Desai & Singh 2007), a model for protocols is pro-
posed from the engineering point of view (Desai et al. 2005b). The objective
is to support:

e Openness of the system in order to make it flexible.

e Autonomy of the participants, so that the course of actions can be
produced by them

e Exceptional situations, even though the main focus is on the most
important and common actions.

These objectives are approached by introducing refinement in protocols:
protocols are specified in such a way that they model the main desired course
of actions, later some parts of it can be replaced by other protocols that serve
as refinement, adding more details of how the process is concretely done.

Semantics are given to protocols in terms of Commitments. These are
coded by using an ontology for protocols written in OWL (Web Ontology
Language). Composition of protocols is done by making use of composi-
tions axioms. Composition axioms state how protocols are to be connected
together, they can be:

42

e Role Definition Axioms: connects roles between protocols to a single
role in the composed protocol, in the sense that they will be played by
the same agent.

e Data Flow Axioms: connects data slots together, by saying which slots
in the first and the second protocols are the same and will be seen as
one in the resulting composed protocol.

e Implication Axioms: tells what assertions in one protocol imply in the
second protocol.

e Event Order Axiom: specifies ordering among messages of the proto-
cols.

They introduce the concepts of closed and open protocols. If all slots are
defined and all Commitments are fulfilled the protocol is closed, otherwise
the protocol is open.

Role skeletons are produced out of the protocols modeled with OWL-P.
These are the definition of the view of each role, a summary of the expected
visible behaviour of each role. Agents playing those roles will augment them
with their policies to provide the necessary business logic.

Protocols are described based on propositions used to define states. The
descriptive nature of this approach provides some advantages, for instance,
these propositions can be used to define constraints that represent preferred
paths in a protocol (Mallya & Singh 2006a), by telling what “events” must
have happened (or what propositions must hold) at the end of the protocol
enactment. These constraints represent groups of runs that fulfill that con-
straint. These groups of runs can be organized in hierarchies to represent
the order of preference among possible runs.

Even though OWL-P has a declarative approach, it still has hard se-
quencing of messages (Desai & Singh 2007), restricting the places where a
protocol can be extended. Sequencing is done by connecting messages di-
rectly and not by means of an abstraction that provides mechanisms for
protocol modification or composition.

3.5.10 AMOEBA

Further development of OWL-P and Commitment algebra lead to AMOEBA
(Desai, Chopra & Singh 2009), a Methodology for Modeling and Evolution of
Cross-Organizational Business Processes. It treats interaction at the level of
business semantics and not just at messaging level. UML diagrams extended
to use Commitments are used to represent protocols based on the semantics
in OWL-P. Using Commitments expresses the business semantics of the
protocols better in comparison to common approaches. AMOEBA makes
enactment and requirement adaptation of protocols flexible.

43

AMOEBA highlights the importance of the work done at business se-
mantic level and focused on the publicly visible part of the interaction: the
internal business logic of each participant is not reusable, since it reflects the
internal interests of the participant and will hardly match those of another
one. Interaction patterns, on the contrary, have as one of their main reasons
to exist, to be reusable.

The amoeba methodology consists of the following steps:

1. Identify Roles and Protocols: identify all participants in a process and
abstract roles out of them. Also, group all logically related interactions
and associate each group to a protocol.

2. Identify Contractual relationships: represent these relations in terms
of Commitments. They can be those existing before the interaction
is started or those that started during interaction enactment. Specify
how these Commitments are created (for the second ones), manipu-
lated and discharged.

3. Specify message meanings: messages are to be defined in terms of their
effects on conditions and Commitments using non-monotonic causal
logic.

4. Specify constraints among messages: add message ordering based on
data flow or temporal constraints.

5. Compose protocols to make the business process: compose the pro-
tocols together to represent the business process again. This requires
roles in each protocol to be associated to those in other protocols that
are to be performed by the same participant. Connect data flows and
constraint events in order to define the sequencing of the protocols.
For this purpose, role, data flow and event axioms are created.

Special interest has been dedicated to support adaptation and evolution
using this methodology. Processes in amoeba can be adapted by taking
advantage of protocol composition. If a change is required, only those pro-
tocols affected are modified using a procedure similar to the steps described
here for creating business processes, keeping the effects of changes to the
necessary minimum.

Amoeba is based on the work in OWL-P and therefore shares the same
properties related to our objectives. It shows the advantages that a declara-
tive approach provides in terms of flexibility to modeling business processes.
Still there are many details that are left for the designer to define instead of
representing them in the model, like message sequencing. This constrains
the possibilities of AMOEBA to provide helping features at the time of com-
posing protocols. Our objectives are very similar, but aim also at represent-
ing explicitly how protocols can be composed and support the composition
phase.

44

3.5.11 Goal-oriented definition of protocols

Goals are concepts that represent the objective of some effort. In the area
of multi-agent systems, goals are used to declare the purpose an agent is
pursuing or to guide the implementation or execution of plans and actions
in agents. Braubach and Pokahr (Braubach & Pokahr 2007) have defined
goal-oriented interaction protocols. They have augmented AUML interac-
tion representation, used as domain-independent layer, with domain layers
associated to each role in the diagram. The domain-independent layer is the
globally visible actions in the form of a protocol and the domain-dependent
layer is the set of behaviours carried out inside agents. They specify goals
for the domain layer that arise and initiate agent actions that make them
behave corresponding to the protocol.

In agent implementation tools, goals are very important. For instance,
they are fundamental for BDI agents like JACK (Winikoff 2005) or JADEX
(Pokahr, Braubach & Lamersdorf 2005a). Goals are used to define or even
implement agents, therefore they are normally specified from the perspective
of the agent. This is the case in dialogue games and FIPA speech act library:
internal goals are what motivates agents to perform actions or they are at
least used to define preconditions of actions.

The use of goals as usual in multi-agent systems is not helpful for the
specification of interaction protocols, which are required to be defined from
a global perspective. Even so, the concept of goals would bring some benefit,
if they are defined in the same terms of the protocol. Goals can be used
to characterize protocols in order to classify them and provide support in
tasks like choosing and comparing protocols, in a similar manner as agents
use them to reason about actions or plans to take. This is an advantage
of declarative definition of goals (van Riemsdijk, Dastani, Meyer & de Boer
2006).

3.5.12 Service oriented architecture Modeling Language
(SoaML)

Service Oriented Architecture (SOA) is a way of organizing and understand-
ing organizations, communities and systems to maximize agility, scale and
interoperability. Services in this architecture are capabilities offered through
well-defined interfaces to the community. SoaML is intended to architect and
model SOA solutions by extending UML. The approach in SOA separates
the concern of what needs to be done from the how, where and who. It
can be used for basic stateless services, but also to enable organizations to
cooperate in a community using inter-related sets of services. It can be used
to specify the participants of a community and the services contracts that
tell how interaction is to be done to achieve some specific purpose.

SoaML takes advantage of Model Driven Architectures (MDA) to ab-

45

stract the logical design of a SOA architecture from any possible concrete
realization, a key requirement to support the wide variety of technology used
to realize these architectures. It introduces a series of concepts:

SoaML Concepts

In order to model SOAs, a set of concepts are defined. These, together
with the relationships between them, compose the meta-model for SOAs
proposed by this modelling language. These concepts are:

Service: A concrete capability offered by some entity or entities which is
described precisely enough, for it to be used by other requesting entities.
These entities, providers and requesters of services are called Participants.

Participant: entities taking part in a community described by a SOA is
called a Participant. Participants provide services using a service port.

Service Port: service ports are the interaction points provided by service
participants to let others use the service. Service ports are typed using
Service Interfaces.

Service Interface: type definitions used to describe how to use a service
port. It is the contract that specifies how to interact with the service. It is
defined from the perspective of the service provider and it contains:

e The provided and required Interfaces: specify the messages that will
be received and sent and the provided capabilities.

e The enclosed parts: the roles involved in the service. Roles typed by
the realized interface is played by the provider and the role typed by
the used interface is played by the consumer.

e The Behaviour: rules which interactions are valid, plays the role of a
communication protocol.

Capability: is an Interface realized by a Service Interface. It is an ab-
straction of the services of some system regardless of the participants that
are using it.

Service Capability: a cohesive set or functions or capabilities that a
service might offer.

Protocol: is the order in which internal interfaces of a Service Interface
are organized. It is an owned behaviour of the Service Interface.

46

Role: definition of the basic functions a participant must have in order to
perform in a specific context.

Collaboration: the modelling of a services architecture of a specific com-
munity of participants. This architecture is defined in terms of Roles which
will be played by the participants.

Service Contract: definition of terms, conditions and choreography that
participants, providers and consumers, must agree to. Participating Roles
and their requirements are defined by Service Interfaces.

Choreography: is a specification of what and when is transmitted be-
tween participants, the obligations that go between parties to enact a ser-
vice exchange. The definition of a choreography is always limited to what
happens between participants avoiding their internal processes.

SOA-ML is a recent contribution that shows how a model of a business
process can be used in practice. It also shows the adequacy of using MDA in
a scenario where some concept is developed in an abstract level and is to be
transferred automatically to concrete an implementation. UML sequence
diagrams are used for representing the actions in an interaction, having
SoaML, for our work, a similar value as other contributions that use this
kind of diagrams.

3.5.13 PIM4Agents

Using MDA approaches for designing and implementing business processes
has shown the be important (Hahn, Zinnikus, Warwas & Fischer 2009). This
also applies to multi-agent systems (MAS), specially those used to imple-
ment business processes. For that purpose a platform-independent domain-
specific modeling language called DsMLAMAS (Hahn, Madrigal Mora &
Fischer 2009) has been developed. Like any language, DSMLAMAS consists
of an abstract syntax, formal semantics (Hahn & Fischer 2008) and concrete
syntax (Warwas & Hahn 2009).

The abstract syntax of DsML4AMAS is defined by a platform independent
meta-model for MAS, called PIM4AGENTS, defining the concepts and their
relationships. The core of the PIM4AGENTS is structured into different
viewpoints briefly discussed in the remainder of this section.

e Multi-agent view contains the core building blocks for describing MAS.
In particular, the agents situated in the MAS, the roles they play
within collaborations, the kinds of behaviors for acting in a reactive
and proactive manner, and the sorts of interactions needed for coordi-
nating with other agents.

47

e Agent view defines how to model single autonomous entities, the ca-
pabilities they have to solve tasks and the roles they play within the
MAS. Moreover, the agent view defines which resources are accessible
for the agent and which kind of behaviors it can use to solve tasks.

e Organization view defines how single autonomous agents are arranged
to more complex organizations. Organizations in DSML4AMAS can be
either an autonomous acting entity like an agent, or simple groups
that are formed to take advantage of the synergies of its members,
resulting in an entity that enables products and processes that are not
possible for any single individual.

e Role view covers the abstract representations of functional positions
of autonomous entities within an organization. In general, a role in
DsML4AMAS can be considered as set of features defined over a col-
lection of entities participating in a particular context. The features
of a role can include (but are not be limited to) activities, permis-
sions, responsibilities, and protocols. A role is a part that is played
by an entity and can as such be specified in interactive contexts like
collaborations.

e Interaction view focuses on the exchange of messages between au-
tonomous entities. Thereby, two opportunities are offered: (i) the
exchange of messages is described from the internal perspective of
each entity, or (ii) from a global perspective in terms of agent inter-
action protocols focusing on the global exchange of messages between
entities.

e Behavior view describes the vocabulary available to describe the inter-
nal behavior of intelligent entities. The vocabulary can be defined in
terms of combining simple actions to more complex control structures
or plans that are used for achieving predefined objectives or goals.

e Environment view contains any kind of Resource (i.e. Object, On-
tology, Service etc.) that is situated in the environment and can be
accessed and used by Agents, Roles or Organizations to meet their
objectives.

e Deployment view describes the run-time agent instances involved in
the system and how these are assigned to the organization’s roles.

To lay the foundation for further discussions on how to use DSML4MAS
for modeling interactions, we focus on the interaction viewpoint in the re-
mainder of this section. Key PIM4Agents concepts for the present work are
illustrated in Fig. 3.12.

48

+roleFillers + performedRaole
Agent Domai > = Rote

] <
T UM f‘\mealnmng T
1
1 + interaction + getor
H organizati = jon |@—————> K Actor
1 1 * 1 1.
+ orgtinization *acr
*
+ orgapizationlse -
1.* + bindin - 1
= Collaboration |«—> é DomainRoleBi dil E actorBinding

1 - + hinding
? + actorEmdlngT
"

Figure 3.12: Key Concepts in PIM4Agents.

The interaction aspect of DSMLAMAS defines in which manner agents,
organizations or roles interact. A Protocol is considered as a special form
of an Interaction. In the deployment view, furthermore, the system de-
signer can specify how Protocols are used within Organizations. This is
done through the concept of a Collaboration that defines which organiza-
tional members (which are of the type AgentInstance) are bound to which
kind of Actor as part of an ActorBinding. Beside a static binding, the de-
signer may want to bind the AgentInstances at run-time.

An interaction protocol as a pattern for conversation within a group of
agents can be more easily described using generic placeholders like ‘Initiator’
or ‘Participant’ instead of describing the interaction between the particular
agent instances taking part in the conversation. In DSMLAMAS, this kind
of interaction roles are called Actors that bind Agentinstances at design
time or even at run-time. Furthermore, Actors require and provide certain
Capabilities and Resources defined in the role view of PIM4Agents.

Messages are an essential mean for the communication between agents
in MAS. In PIM4Agents, there are two sorts of messages, i.e. Message and
ACLMessage which further includes the idea of Performatives. Messages
have a content and may refer to an Ontology that can be used by the par-
ticipating Actors to interpret the Message and its content.

PIM4Agents has grown to be a very comprehensive MDA tool for devel-
oping multi-agent systems. Several mappings have been implemented to dif-
ferent concrete multi-agent systems tools like Jack, Jadex or Jade (Warwas,
Hahn & Fischer 2009).

This MDA approach has proved to contribute significantly to the multi-
agent community in the area of business process modeling and implemen-
tation. Its modeling of interaction protocols inherits many concepts from
AUML and similar models (Sections 3.5.6 and 3.5.7). It has many enhance-
ments to couple interaction protocol models to participant behaviour models
and also to enclose these protocols in the context of an organization. Our

49

contribution seeks to enhance these protocol models in order to provide tools
that aid their development and at the same time to provide a platform that
allows to run processes developed with this tool using Web Services.

3.6 Summary

Work related to our topic has been reviewed at two levels: first, Web Services
and FIPA-agents integration and second, complex interaction models for
implementing business processes in the areas of Web Services and agents.

The review compares and shows that Web Services communication and
FIPA specifications are complementary and very suitable for integration.
FIPA communication is focused on the complex levels, like interactions and
Web Services provide a very concrete structural basis. FIPA specifications
stack provides freedom of grounding. Web Services is the preferred system
integration technology and the FIPA stack can be grounded on them.

The multi-agent community has provided several tools to integrate FIPA
agents and Web Services, most of them are based on Gateway approaches
that do not support complex conversations and don’t take advantage of
the messaging architecture of the agent platform. The FIPA Agents and
Web Services Integration working group has proposed our communication
framework as a suitable way to integrate Web Services and FIPA.

A comprehensive set of models and tools for creating and implement-
ing business processes and interaction protocols has been reviewed also,
from very basic but widely deployed frameworks like RosettaNet to very
new MDA multi-agent system tools like PIM4Agents. Web Services ap-
proaches have failed in that they miss fundamental features necessary for
modeling, like multi-casting and management of cardinality of participants.
Some approaches are just not oriented to the solution we are looking for,
like WS-BPEL, which is intended to orchestrate Web Services and execute
these orchestration descriptions as if it was a computer program. Others
like, WS-CDA try to cover a modeling problem with techniques suitable for
implementation. UML has provided tools for modeling interactions which
have shown to be somewhat suitable. Some of their disadvantages have
been covered by modeling tools for agents like AgentUML. Still, this way
of modeling has some inconveniencies related to modularity and recombi-
nation. OWL-P and the AMOEBA methodology shows that a declarative
approach provides improvements in flexibility and maintainability, funda-
mental for business processes, still their declarative approach does not cover
all concepts of the model, making their models half declarative half imper-
ative. In the area of multi-agent systems, other approaches for declarative
definition of dialogues have been developed, like goal-oriented protocols or
dialogue games. These approaches also prove the advantage of a declarative
model, but base their definitions on the perspective of the participants. It is

50

fundamental for our work to use a global perspective that defines interaction
protocols independently of the perspective of the participants.

Our group has developed in the last years MDA tools for multi-agent
systems called PIM4Agents. These tools provide a comprehensive set of
features that can be used to model business processes and already are ca-
pable of generating executable code based on the models. PIM4Agents will
serve as a hosting framework for our proposed meta-model for interaction
protocols.

o1

Part 11

Solution

93

We have seen that the problem to integrate systems via communication
is twofold: first, a low level integration of FIPA agents and Web Services
is pursued and then, an improved model for interaction protocols is to be
proposed. In the next two chapters, our solution for these two main problem
areas will be presented.

First, in the next chapter, a message representation that can work well
with the semantics of both specifications: W3C Web Services and FIPA
agents will be produced. The proposed specification is compliant in both
scenarios.

In the chapter afterwards, a protocol specification model will be pre-
sented in a formal manner, in order to explain in detail how different contri-
butions of multi-agent systems are going to be put together. The main goal
of this specification is to have a protocol model that supports modularity,
similarly as proposed by (Desai, Mallya, Chopra & Singh 2005a), in which
a deeper semantic definition of actions allows to produce explicit definitions
of protocols.

54

Chapter 4

Integrated Messaging
Architecture

Taking into account Web Services and FIPA specifications, their properties,
features and goals as discussed in chapter 3, an integration will be proposed
which consists in a different grounding for FIPA specifications. A messag-
ing stack is proposed for allowing FIPA messaging over Web Services that
connects both specifications at the message envelope level (Leén Soto 2006).
Doing this, FIPA agent platforms would be capable of communicating over
Web Services standards and integration will be possible.

The main objective is to produce a Web Services based Message Trans-
port Service (MTS) that enables agents to interact through the Web with
other Web Services and agents. FIPA communication framework must re-
main the same, with the only difference that the grounding of the messages
must use Web Services standards. Agents that can communicate using the
infrastructure provided by Jade without using the add-on, will be able to
communicate using the add-on on Jade, it will not require significant changes
in their implementation.

Other objectives are:

e Accessibility: agents must be capable of connecting to Web Ser-
vices using the same mechanisms for communicating with other agents.
Agents must also be accessible by conventional Web Services. Acces-
sibility must be possible not only with WS-Addressing compliant Web
Services, but also with simple or REST services.

e Web Services compliance: Jade should, with this add-on, use
conventional Web Services standards, particularly SOAP and WS-
Addressing. This is important to ensure that any contribution achieved
with this tool works appropriately in any Web Services scenario.

e Enable complex interaction patterns for Web Services: Web
Services are used dominantly in interaction patterns similar to RPC.

95

An increasing interest exists on supporting more complex interaction
patterns, specially in areas like Business Process or work-flows en-
actment. This tool should enable the implementation of such con-
versations: using Jade to implement FIPA interaction patterns but
grounding them using Web Services standards.

e Integration of Jade into a Web Services infrastructure: Jade
should not be used for development only, but also for performing as
any other system in a Web Services environment. Therefore it must
be integrated as any other conventional java Web application.

e XML Content Description: Jade provides mechanisms for creating
ontologies, that can be used in the contents of agents’ knowledge and
also for the contents of messages. Jade will be extended with a XML
grammar for the SL language in form of an XML schema.

4.1 Foundation for integration

The architecture chosen as a solution in this chapter is based on some prop-
erties of the areas to be integrated. Section 3.3 gives a comparison of Agents
and Web Services in terms of some aspects relevant for the present work. In
that section, the comparison is used to show why Web Services and Agents
integration is important (See Table 3.7). In this section the same comparison
will be as a foundation of the proposed architecture.

First of all, it is important to remark that FIPA specifications stack
has done an important amount of work specifying semantics in form of ab-
stract specifications. This is explicitly done so in order to leave room for
different ways for grounding. FIPA messaging stack (Figure 3.5) shows how
a FIPA ACL message (abstract) specification is placed on top of an en-
velope(abstract) representation which can be implemented (concretely) as
desired. Some groundings for these specifications are provided by FIPA,
but these are limited to follow the outline of FIPA’s abstract specification
and use a LISP-similar syntax that has little use in other areas. Web Ser-
vices on the other hand are more about the grounding. Specifications are
mainly focused on how to represent things “on the wire”. This situation
is the main advantage used by the proposed architecture to integrate both
areas. Making use of the crucial separation of concept and representation
in FIPA and its intention to support and have multiple ways of representing
the specification’s concepts, a new way of representing them will be defined,
this time using widely adopted Web Services Standards. At the same time
Web Services do not impose semantic constraints and structures in their
specifications. Even though both areas can be seen as being very different,
as a matter of fact, as shown here, they complement each other in a very
suitable way.

o6

Even so, there are some details that need to be cleared in order to define
how FIPA messages will be represented using Web Services. In this case
one can see that Web Services specifications, specifically SOAP and WS-
Addressing, are almost a subset of FIPA’s message envelope specification.
The main difference in the fields that both have in common is cardinality.
For instance, receivers in FIPA can be an arbitrary amount (to support
broadcasts), but in Web Services there is always one specific receiver of the
message. In cases where more than one receiver is set, what tools that sup-
port this do in the background (for instance Jade) is to produce one message
for each of the receivers in the list. Fields that exceed what is specified in
WS-Addressing make use of the extensibility provided by this standard to
add extra (application specific) fields. In this case, this information is spe-
cific to agent applications. This way, the rest of receivers that was mentioned
in the FIPA message are added in an extended field in the message. A Web
Services infrastructure does not use them anyway, but doing so makes sure
that a FIPA compliant receivers can have this information available, as it
would have, if it had not used Web Services based communication.

As it has already been mentioned, this integration is based on commu-
nication only. Some of the other approaches done so far turn up to be more
complex because they include description and discovery of services in the
mapping. In this approach, descriptions will be regarded as one more kind
of content of messages and service-directories, like UDDI, as one more kind
of Web Service. Doing so separates these aspects from the problem of com-
munication which is the core problem in interoperability. Hence, a mapping
of descriptions (WSDL and FIPA service descriptions) is not part of the
present work for the following reasons:

e Service publication and discovery, even though they are so fundamen-
tal in a SOA are after all just a specific application of Web Services
invocation. Registries are a specific kind of Web Service and pub-
lication and discovery are simply the action of communicating with
them. Therefore solving communication will provide improvement in
this area.

e Description mapping between the two areas does not enjoy the syn-
ergy found in communication level. Therefore a mapping would have
to make many compromises. An approach in which agents use Web
Services based discovery mechanisms directly is preferred. These could
be simple WSDL-UDDI up to more complex Semantic Web Services
approaches.

e Publication and discovery are not part of the present approach for
realizing business processes. Section 1.3 explains why.

e There have been several other contributions in this area. Chapter 3

o7

includes a review of many projects that have done this kind of map-
pings.

4.2 FIPA Message Envelope using
WS-Addressing

The most important detail about the FIPA-WS Stack is the representation
of a FIPA Message Envelope using WS-Addressing and SOAP. Figure 4.1
shows a mapping from Web Services to FIPA messaging and Figure 4.2
shows the inverse mapping. They have two columns listing field names
on each side. On the right side are the FIPA Envelope Fields and on the
left side the fields of a WS-Addressing envelope. WS-Addressing allows to
extend the properties set with reference parameters. The left side makes use
of that and adds some fields to hold information present in the FIPA Message
Envelope Specification. Fields belonging to WS-Addressing are marked with
a continuous frame around them and have the prefix wsa. Extensions to hold
data belonging to the ACL specification are underlined and those belonging
to FIPA Envelope specification are framed with a dotted line.

SOAP Headers FIPA ACL Message Fields

Soap action Acl Performative (1)

(1wsa:From Acl Sender (1)
Ifno fipaEnv:From

FipaEnv.From (1)

(1hwsaTo FipaEnv.to (N)
(N)leaEnvIntendedRecewers =| Ifno fE/IR then use wsaTo |—> FipaEnv.IntendedReceivers (N)
(N) finaACL Receivers #* |Jnion + Acl Receivers (N)

Union

L3

Acl. ReplyTo (N)
,,,,,, ¥ AclinReplyTo(1)

£
(M) wsa:relationships b User property: relatedTo<relType=

wsa:messageld Acl.ReplyWith

fipaACL: Conversationl D * Acl.Conversationld
finaACL: Encoding Acl.Encoding
finaACL:Language Acl.Language
firaACL: Ontology Acl.Cntology

L]

Acl.Protocol

FipaEnv Date

FipaEnv ACLRepresentation
FipaEnv pavlioadLength
FipaEnv pavlioadEncoding
User properties

Other headers E

L3

SOAP Body Content

Figure 4.1: A WS-Addressing to FIPA Mapping

o8

SOAP Headers FIPA ACL Message Fields

(1) Soap action Acl.Performative (1)

(1) wsa:From |« Acl Sender (1)

FipaEnv.From (1)

first addressMatchingReceivers)‘Y FipaEnv to (M)
\ FipaEnv IntendedReceivers (M)

Acl. Recelvers (M)

(1)wsa:ReplyTo [+ first Acl. ReplyTo(M)
(N)fipaAC! ReplyTo
wsa.messageld Acl.ReplyWith
wsarelationships aclinReplyTo Acl.inReplTo
finaACL: ConversationlD \ Acl.Conversationld
fipaACL:Encoding \ Acl.Encoding
finaACL L anguage ll Acl Language

finaACL. Ontology ‘I Acl.Ontology
Acl.Protocol

FipaEnv Date
FipaEnv ACLRepresentation

FipaEnv payloadLength
FipaEnv payloadEncoding

User property: relatedTo<relType=
(1) Other headers User properties

SOAP Body Content

Figure 4.2: A FIPA to WS-Addressing Mapping

In the middle there are associating arrows that represent a mapping
between the fields in each specification. Most of them are straightforward,
but some reflect the adaptations that were necessary to produce a bijective
mapping between the two specifications. wsa:from populates FipaEnv:From
in case no such a field is present in the Web Services message, this is mapped
backwards by populating wsa:from with FipaEnv:From in case no value in
Acl:Sender is present.

FIPA messaging has, in contratst to WS-Addressing, a very complicated
management of targeted participants for a message. Three fields are used to
manage this information, each with cardinality N. Therefore the correspond-
ing message properties were added in order to keep this information in the
message. The value in wsa:To is used in FipaEnv.IntendedReceivers in
case no such a field was present in the Web Services message. Acl.Receivers
simply collects a union of its corresponding field in the Web Services mes-
sage plus wsa:To. The reverse is done a bit different, each field populates
its corresponding field in the Web Services message and from all of them,
one is selected following some criteria to populate wsa:To. This criteria
is defined based on the way the mapping is invoked for the ACL message.
This invocation requires a target address, and the first recipient matching

99

this address is used as receiver of the message. This mapping of receivers
already takes into account some constraints set by FIPA to establish the
relation between the 3 fields: FipaEnv:to, FipaEnv:IntendedReceivers
and ACL:Receivers. It is in conjunctions with these constraints that this
mapping behaves bijective regarding receivers as well.

WS-Addressing, as stated in its name, is targeted to support messaging
based on the address of the Endpoint. It does not take into account for any
purpose, the identity of the agent behind the endpoint. It is therefore not
possible to ensure using WS-Addressing only, that the same agent instance
will be targeted at all times using the same Endpoint-Reference. On the
other hand, FIPA messaging mandates to specify the ID of the targeted
agent in the envelope. Therefore the context of the multi-agents application
and the conditions in which the communications will be performed will be
relevant for the definition of such a mapping for an agent platform. This
issue will be discussed further in section 9.1.

The fields to specify where to reply to have a modification to adapt the
difference in cardinality: wsa:ReplyTo has cardinality 1 and ACL.ReplyTo
has cardinality N. This is adapted by adding an extra messaging property
to hold the exceeding values in ACL.ReplyTo.

FIPA takes only into account a direct relationship between a message and
its reply using the field ACL.InReplyTo. Web Services addressing foresees
for this and any other relationship between a message (it does not have to be
always a reply relationship) the field called wsa:relationships. In case a
relationship expresses that the message is a reply to another message, this is
set in ACL.InReplyTo. Otherwise any other relationship is added as a user
property which is the only extension that was necessary in the specification
of FIPA envelopes. FIPA uses another field called ACL.ConversationID for
a similar purpose. It, as the rest of the fields, is mapped as an extension to
WS-Addressing.

In order to populate endpoint fields like wsa:To an Endpoint Reference
(EPR) is necessary. This is mapped to a Fipa AgentID as shown in Figure
4.3. Again, the extensibility of WS-Addressing is used to produce an AID
representation based on the specification for an EPR. Reference parameters
are added to include additional addresses, the agent name and any resolver
defined in the Agent ID.

This mapping tries to match as precise as possible both specifications.
It makes clear where the differences are and solves them by making use
of the extensibility of WS-Addressing. WS-Addressing is intended to be
used this way, as a common base for messaging in the Web, leaving free
room for applications to extend it as they require. This mapping does so by
making proper use of the few requirements that WS-Addressing does, letting
agents make use Web Services compliant messaging infrastructure, since the
messaging information provided by them is appropriately represented using
WS-Addressing specifications. On the other side, any party interested in

60

EPR FIPA AgentiD

wsaTo first

— Address

wsa:ReferenceParameters

fipa:additional-addresses-list

| fipa address I: |restl

| fipa:agent-name |« . Name
fiparesolver-list
fiparresolver » Resolver

Figure 4.3: An Endpoint Reference to Agent ID Mapping

contacting an agent can do so by following the description this agent can
publish. This description will include the additional fields an agent platform
will demand, so that the party can add them as expected. This is the
same way any other Web Services application would proceed concerning its
extensions.

4.3 FIPA-WS Messaging Stack

The proposed messaging stack is shown in Figure 4.4. At the very bottom
is the basic transportation layer. This layer is composed of the different
network transportation protocols already used in both architectures. On top
of that, the XML-based Web Services messaging is implemented using SOAP
(W3C 2003) which is a service oriented messaging specification very similar
to messaging in multi-agents systems. WS-Addressing (W3C 2006¢) is used
as the Web Service standard envelope specification. Based on it and on
the FIPA Message Envelope specification an envelope structure is proposed
as an union of both specifications. The remainder of FIPA communication
stack rests on top of this new messaging specification: content specification
and Interaction Protocols.

4.4 Architectural integration

Finally, having a successful stack implementation and a suitable WS-Addres-
sing mapping, it is possible to provide an agent platform that communicates

61

‘ FIPA Interaction Protocols ‘

|Collaboration Description (WS-CDL)| Contents

FIPA- Speech act library (XML+Sem.desc.)

Service Description

‘Semantic Description (OWL-S, etc)‘ ‘ FIPA- Message Envelope Specificaiton

WS- Envelope (WS-Addressing)

‘ Interface Description (WSDL) ‘

| Messaging (SOAP)

‘ Communication (HTTP, SMTP, FTP,...)

Figure 4.4: FIPA Communication Specifications Stack

using Web Services. It allows to address agents on remote platforms and
perform complex dialogs with them in the same way as done currently using
the existing FIPA groundings.

Agent Platform Agent Platform FIPA-ACL
communication
Web | | eb
; Service
Service Client Web Services
communication
FIPA-WS MTS FIPA-WS MTS —
ry ry
L 1 i f

Figure 4.5: FIPA and Web Services architectural integration

This WS-grounding allows seamless communication with other Web Ser-
vices (clients or providers). Agents can offer a specific service providing a de-
scription of the messages to be expected and the possible responses in form
of WSDL descriptions. Figure 4.5 shows this conceptual architecture. It
shows two agent platforms that have been enhanced with a FIPA-WS MTS.
This extension provides the connection (shown as thin black arrows) to other
remote platforms and conventional Web Services clients and providers. The
original communication provided by the agent platform remains available
(wide gray arrows). In this figure, it is clear that to communicate with re-
mote agents, the traditional way as well as the way based on Web Services
are available and both achieve the same results.

4.5 Summary

This section describes how both messaging architectures are integrated.
FIPA provides the possibility of extending its specification with new ground-
ings. Our integration is implemented therefore as a new grounding of FIPA
specifications using Web Services: FIPA ACLMessages are represented us-
ing WS-Addressing Envelopes. Message properties of both specifications are

62

kept in our solution. A detailed bijective mapping between WS-Addressing
Envelopes and FIPA ACL-Message and Envelopes is provided. Gaps be-
tween specifications are fixed using the extensibility facilities provided in
both specifications.

A difference with other Agents-Web Services integrations is that it ap-
proaches the communication integration only, mapping of descriptions and
discovery mechanisms, approached by other solutions, are left out in ours.
Instead, our solution is the only one that allows to perform complex conver-
sation patterns.

Our messaging stack lets FIPA agent platforms to communicate over
Web Services enabling transparent interaction between Agents and Web
Services. FIPA communication mechanisms are kept unchanged and, at the
same time, communicating with WS-Addressing and conventional REST
services is made possible. Our solution results in an architecture that seam-
lessly enables communication between parties of both specifications.

63

Chapter 5

Protocol specification

The model of a business process specifies the order in which the activities are
to be performed. (Weerawarana et al. 2005) calls this prescription the control
flow. This control flow has direct influence on very important properties
of a business process like its cost and duration. In this section a model
for specifying control flows will be presented in the form of an interaction
protocol.

A clear contract between participants of a collaboration is a crucial el-
ement in order to achieve true integration. As shown in section 3.2, the
multi-agent community has developed different approaches for creating an
interaction protocol model, but has not been successful in the sense that
there still does not exist a comprehensive, formal and concrete model that
supports development of interaction protocols in a modular and reusable
manner. Section 3.5 shows that as a matter of fact, even AgentUML, an
enhanced model for FIPA interaction protocols and the preferred modelling
language used for interaction protocols, lacks a semantic connection between
the Speech Acts and the protocol that contains them. There is no explicit
explanation of why a protocol is composed of a certain sequence of actions
which at the same time leaves no way for justification of why a protocol can
be composed with another one or why a sub-protocol can be inserted into
a specific section of another protocol. Both situations are handled solely
by the rationality of the observer and his understanding of the meaning of
actions.

This chapter proposes a model that serves three purposes:

e To provide an explicit modularity model by connecting the definition
of a Speech Act and that of a protocol.

e To consolidate the various aspects that have been contributed by the
multi-agent community in a single model.

e To disambiguate concepts that have been used differently among con-
tributions reviewed in Chapter 3 and to establish a concrete and de-

64

tailed definition of these concepts and how they relate to each other.

Therefore, a model of interaction protocols in the form of a contract be-
tween several participants will be specified as the description of interactions
from a global perspective. It is a description of the possible actions the dif-
ferent participants can perform given a state of the conversation and how
these actions affect the global state of the conversation.

The model is based on planning models for agents, but from a different
perspective. Conventionally, planning systems use action descriptions, based
on propositions, to produce plans and achieve a goal. The central concept
in the model being proposed here is to have prefabricated plans (interaction
protocols) and use the action description to explain the structure of protocols
in the same way that actions define plans in conventional planning. Using
the same planning metaphor, interaction protocols can be composed having
explicit semantics of why and how one protocol can follow or replace another
(sub)protocol.

In the present approach, a protocol is seen as a transition system (Mallya
& Singh 2004) very similar to a finite state machine (FSM): conversations
are modeled as a set of states connected by actions. States are defined by
a set of propositions with assigned truth values. Actions change the truth
value of some specific propositions to reflect the effects in the conversation
moving it from one state to another. In the context of business processes,
these conversations can involve a considerable amount of actions and states,
if the protocol is designed to be flexible, complexity increases to allow more
alternative paths and states. In consequence, a FSM that represents complex
flexible interaction processes are susceptible to becoming large and hard
to manage. It is mandatory to reduce complexity in every possible way.
One of the preferred ways to cope with complexity in software engineering,
and paradoxically also in multi-agent technology also, is modularization.
Therefore, the main objective of the present model is modularity.

In the following sections the different components of the protocol model
will be formally defined. First the state-space and state-descriptions are
defined, the second one being a simpler way to refer to many specific states
that have some properties in common. Afterwards actions are defined as
operations that change conversations from one sate to another. Having
this basic state-action model, the different aspects required specifically by
interaction protocols and that differentiate them from simple agent plans,
are defined: roles, time management constraints (Timeouts), commitments
and other special kinds of propositions. The last component necessary for
this model is cardinality constraints on different aspects of an interaction
protocol.

These fundamental concepts are used firstly to define what an interaction
protocol is and secondly to allow the discussion of some properties and
usual patterns. Finally composition of protocols that follow this model are

65

explained, showing why this model supports modularity. A brief example
shows how these concepts work.

5.1 Brief definition of a state-action space

The foundation of a model based on actions as transitions between states
is the state-action space. As with FSM and classical planning, we need a
way of describing situations and how to go from one to another. Similar to
classical planning, we will work with states defined by truth values associated
to propositions. For the model that will be defined, the state-action space
is composed of State Descriptions and Speech Acts. A thorough definition
and discussion about this model can be found in (Leén Soto 2009). A
summarized definition is as follows:

5.1.1 State Descriptions

As a method of abstracting to what is only relevant for the definition of a
protocol, the concept of a State Description is defined. A State Description,
as its name says, describes what propositions are necessary to be known
about a concrete state.

Having a set P of all the proposition names used in the system to describe
states and using the syntax “p” and “—p” to say p € P is a valid or invalid
proposition respectively, State Descriptions are defined as a set of concrete

states that match certain constraints on some of their propositions:

Definition 1. A State Description s is the set of all states that match all
the constraints of the state description. These constraints are represented
as some propositions [|p;, p; € P L

s([lpay -5 [7lpp) ={c € X | [7]pa € 0,...,["]pa € 0} (5.1)
where:
> set of all concrete states in the system
[—]Pas - - -, [7|pp: propositions on some arbitrary proposition names subset
of P.

The set of all state descriptions is called S.

5.2 A model of Speech Acts

The other component necessary to complete our state-action model are
Speech Acts which represent the action of an agent sending a message to
another one. A conversation involves always at least two participants; these
participants are represented as roles (r) which are members of a set called

![=]p means either p or —p.

66

R. Every action is always performed by a role and is targeted at another
role.

Actions change the state of the conversation, and this change is specified
as a set of operations on proposition names. There can be two operations:
either 4+ or — and mean, respectively, to bring about or to negate the asso-
ciated proposition. For instance +p turns the truth value of the proposition
with the proposition name p (regardless of its previous truth value) to true
(and correspondingly —p to false):

+p=p
and

—p= P

Operations allow one to calculate what State Description the Speech Act
leads to, based on an enabling State Description that fits the preconditions
of the Speech Act.

Definition 2. A Speech Act a is a labeled association of two roles, pre-
conditions in the form of propositions and a set of operations. Speech Acts
belong the the set A.

a:(L,ry,ri, {["pa,- -5 Do}, {0cs - -, 0a}) (5.2)

where
l: is a label.
ri € R, ;€ R

[=]Pas - - -, [7|pp: propositions on some arbitrary proposition names subset
of P.
Oc, .. .,0q: operations on some arbitrary propositions.

For instance, the Speech Act aq:

a; = (“respond”, seller, customer, {quotation_requested},
{+quotation_provided})

represents the action labeled as “respond” that can be sent by role seller
when quotation_requested is true to the role customer and defined as bring-
ing about the fact quotation_provided. This is an action that can be per-
formed by seller every time quotation_requested is true and always leads to
a State Description where quotation_provided is true.

67

Figure 5.1: Protocol (boxes and white arrows) composed of 3 runs (thick
lines) and some conversations as instances of runs (dashed thin lines)

5.3 Cardinality constraints

Protocols, in general, represent specific possible paths over the whole state-
action space. Each different path a protocol can take is known as a run. In
the concrete case of an agent performing a protocol with more than one other
participant, this agent will manage one instance of the protocol for each
participant. These instances are called conversations. Each conversation
will follow its own run, some of them might enact the same run. In synthesis,
a protocol is a specification of a set of runs, each of which represent, at the
same time, a set of conversations. Figure 5.1 illustrates the relation between
these 3 concepts.

The cardinality of runs is limited by the amount of Speech Acts that are
enabled for the same State Description. The cardinality of conversations, on
the other hand, is ruled by an amount that is associated with each action,
called a Cardinality Constraint:

Definition 3. Cardinality Constraints are two numerical values associated
to each Speech Act or State Description. These values represent the minimal
and mazimal cardinality of conversations associated to each Speech Act a €
A or State Description s € S respectively:

1a (5.3)

where
p € N: minimal constraint
q € N: mazximal constraint

p<q

68

v (5.4)

where
v € N: minimal constraint
w € N: maximal constraint
v < W

For brevity and agility, in cases where the cardinality of actions is free:
minimum is 0 and maximum is not bound, represented with IV, the cardi-
nality constraints can be omitted:

Na=a Na=,a la=1aq (5.5)

For instance, the following cardinality constraint means that the action

called “inform” can be sent from the role r; to the role ro a maximal of 7
times and a minimum of once from State Descriptions that have —p.

T(“inform”, 71,72, {-p}, {+p})

5.4 Special kinds of propositions

Some particular kinds of propositions are frequently needed when modeling
interaction protocols. In the present model, three of them will be defined:
Timeouts, Commitments and Cross-Conversational Constraints.

5.4.1 Timeouts

Protocols are mechanisms to rule actions over time. Sequencing and turn
taking are problems that are solved with the present model, but there are
certain cases, where concrete time-windows are to be specified. This is the
purpose of defining Timeouts.

Definition 4. A Timeout T'(t,,a), where a € A, is a proposition name that,
when brought about (by Speech Act called ag), states that the Speech Act a
will be performed after a certain time period t,, that starts to count after ag
s performed.

It is very important to remark, that:

e Speech Act a in a Timeout is not necessarily performed by the sending
role mentioned in a, but instead, it can be an assumption the receiver
of a can make.

e Speech Act a will always have implicitly the operation —T'(¢,,a) de-
clared: Timeouts are removed automatically after a is performed.

69

For instance, the action a says, that after performing call for proposals
(cfp), the role B will send to role M the message “propose” after a period
of size tg, after which proposition requested (p_r) will no longer hold:

a = <M7 B) “Cfp”7 {_'p*’r}7
{—HDJ“, +T(td7 M7 “PIOPose”a {pj"}, {—pJ"}>)>

5.4.2 Commitments

Singh (Singh 1999) and his group have proposed an algebra for Commit-
ments (Yolum & Singh 2002) which allows better modularity in the design
of processes (Mallya & Singh 2004), (Mallya & Singh 2005). These concepts
about Commitments will be integrated into our protocol model by defining
them using the syntax defined in this chapter .

Definition 5. Commitment C(ag,ac,p,c,t) € P is defined as a proposition
name that represents the Commitment of the debtor agent aq to the creditor
agent a. to bring about the proposition p € P under the condition that the
proposition ¢ € P becomes true. After the condition ¢ becomes true, agent
aq s expected by agent a. to perform some action that produces p to be
true. This action is to be performed before Timeout t, that represents the
time limit, runs out of time. This Timeout starts to count as soon as the
condition p is brought about.

Furthermore, a particular kind of Commitment, an Unconditional Com-
mitment C(ac,aq,p,t), is an abbreviation the following notation:

C(ag,aq,p,true,t) = C(ac,aq,p,t) (5.6)

It simply means that agent a. expects ag to bring about the proposition p
within the time period specified in t and that t is already running since the
Commitment was brought about.

For practical purposes, the semantics of Commitments in interaction
protocols have a preponderant role. It gives meaning to intentions declared
by participants. For instance, previous work about contracts between agents
to solve transportation schedules (Fischer, Kuhn, Miiller & Miiller 1995),
discusses the different aspects that can arise when a bid is placed by a
candidate. Such bids are claims and they are more or less favorable for the
outcome of the whole system, depending on when they have to hold: at the
time of the claim?, for a longer period?, what to do when the winning bid
does not hold anymore at the time of executing the offer? etc. In our work,
such aspects can be expressed by the objective of the Commitments. Also,
the intention to include Timeouts in the definition of Commitments is to
provide the semantics of what the creditor will assume, if the Commitment
is abandoned by the debtor.

70

It is important to note, that the Commitments are part of the set of
proposition named P, they can be used to specify State Descriptions and
Speech Acts. The operators + and - can also act upon them and detailed
semantics of these two operations will be discussed next:

Definition 6. Commitment creation: +C(ac,aq,p,c,t). An action speci-
fying this operation states that after the action is performed, the specified
Commitment starts to exist.

Definition 7. Commitment cancellation: —C(ac,aq,p,c,t). If the Com-
mitment exists, performing the operation “-” on it cancels the Commitment,
makes it a false proposition. After that, it does not exist anymore: agq is no
longer expected by a. to bring about p and its Timeout is dissolved as well.

Definition 8. Commitment enablement: bringing about the condition ¢ en-
ables the Commitment. If the condition c is true, the Commitment is trans-
formed to an unconditional Commitment: the conditional Commitment is
canceled and the unconditional Commitment is created enabling the Timeout
countdown. The following transformation rule defines the process:

c A\ C(ag,aq,p,c,t)
c A\ C(ac, aq,p,t) A ~C(aq,aq,p,c,t)

(5.7)

Any state where a conditioned Commitment and its condition are true at
the same time are automatically transformed to a state where the condi-
tion still exists, but the Commitment has been replaced by the corresponding
unconditional Commitment.

Definition 9. Commitment discharge: bringing about the commitment ob-
jective p before the Timeout t runs out of time automatically cancels the cre-
ated commitments that have p as objective, including their Timeouts. The
following transformation rule defines the process:

pA C(Gd, a4, P, C, t)
p A —=Clag,aq,p,c,t)

(5.8)

Any state where there is a Commitment to bring about a proposition p, and
at the same time p is true are automatically transformed to a state where
the condition p still exists, but the Commitment has been canceled and does
not exist any more.

In Singh’s proposal (Singh 1999), there are two more operations on Com-
mitments that were included. In our model they were integrated as action
as part of our model. These are delegation and assignment of Commit-
ments. These will not be defined extra, but instead two examples of how to
represent these operations in the model are presented:

71

e Delegation: the action d, labeled delegates, changes the debtor of a
Commitment C from agent ag; to ags:
d = (s(C(ac,aq1,p,c,t)),“delegates”, {—C(ac, ag1,p, ¢, t),
+C(ac, age,p,c,t)})

e Assignment: the action a, labeled assigns, changes the creditor of a
Commitment C from agent a.; to aco:
a =
<S(C(acla Qd, P, C))7 “assigns”, {_C(a017 ad, p, ¢, t)u +C(a627 ad, P, C, t)})

5.4.3 Conditional propositions

In order to represent situations with two optional outcomes, depending on
a proposition in the conversation, a special kind of proposition name is
provided, called conditional proposition. It has a proposition as argument
(the condition) and two sets of operations. Depending on the truth value of
the condition, one of two sets of operations are applied.

These kind of proposition names are intended to be used only in op-
erations, and allow the Speech Acts having these operations to have two
possible State Descriptions as outcome.

It is important to remark, that in each case, the corresponding propo-
sition (true or false) of the condition, is introduced to the resulting State
Description.

5.4.4 Cross-Conversational Constraints

Conversations are performed in parallel, as independent instances (See Fig-
ure 5.1). Still, there are cases where a protocol specifies a constraint that
refers to other conversations that are being performed as part of a same
protocol instance. For example, in the contract-net protocol, the accept
message should be delivered after all proposals in each conversation are re-
ceived. This is a constraint for the accept Speech Act: that it can only be
performed if all other conversations have reached the status specified.

For this purpose, a Cross-Conversational Constraint is defined. It speci-
fies that a proposition should be valid in all conversations in order to perform
some action. It is used as precondition for Speech Acts and specifies what
proposition should be valid. This kind of constraint sets a break in the
parallel execution of conversations and is used to join them in a State De-
scription where some decision can be made by one of the roles, taking into
account the information of all the conversations, hence the name “Cross-
Conversational”.

Definition 10. A Cross-Conversational constraint W ([—]p,n), is a propo-
sition that states that the proposition [—]p must have the specified truth value
in all conversations for W to be valid. The argument n is the fraction of all

72

the current conversations that must have p with value t. If omitted, n has
the amount of current conversations, meaning that all conversations must
have that value in order to proceed.

The effect such a constraint has on a participant is that it stops it from
proceeding until all conversations with partners have reached a certain State
Description. The participant will be obliged to wait (therefore the name W)
for the conversations to reach that state.

5.5 Definition of a conversation protocol

The following section will provide the mechanisms to compose actions in
such a way that they describe how complex conversations are performed.

Protocols will be specified similarly as in (Eijk, Boer, Hoek & Meyer
2003), in terms of the propositions required to start it, called preconditions
and propositions describing the effects it has in the context of the conversa-
tion, called post-conditions.

Definition 11. A protocol 7 is a labeled construct composed of starting State
Descriptions, ending State Descriptions and a set of Speech Acts. Starting
and ending State Descriptions have associated to cardinality constraints:

7 (label, {4 Sas - - sy Sb}s L €er - - et €d s {30 SGes - - ,g’; sar}) (5.9)
where
0 Sas - -+l Sb are the starting State Descriptions with their correspond-
ing cardinality constraints.
be€ey i eq} are the ending State Descriptions with their correspond-

g cardinality constraints.

s, . .. ,g{r say are the Speech Acts that compose the protocol with their
corresponding cardinality constraints.

All Speech Acts qu; say in a protocol sharing a starting State State Descrip-
tion 3t s, as precondition must satisfy the cardinality constraints associated

to the State Description s;: p, and q :
sg — enables — say = py < vy A qy > Wy (5.10)

All Speech Acts ?,Z say in a protocol that result in a State Description that
matches an ending State Description >e, of the protocol, must satisfy the
cardinality constraints associated to the end State Description ey: p, and

qx-

s; — enabledBy — say = py > vy A gy < Wy (5.11)

73

The graph representation of the protocol can always be calculated from
the Speech Acts by finding all possible sequences of chaining them. The
result is a directed graph with State Descriptions as nodes and Speech Acts
as arcs with possibly many starting and ending nodes. It is important
to remark, that protocols that have the same starting and ending State
Descriptions are not necessarily the same, but are expected to fit into the
same place in a protocol composition.

Actions of a protocol are also called rules as used in dialogue games
(McBurney & Parsons 2003), where these serve as rules on how each partic-
ipant can move next.

The more relaxed approach used in our work, facilitates various compo-
sition mechanisms for protocols and reflects the multi-directional nature of
conversations better.

The complex nature of conversations makes the task of modeling and
structuring them very hard. It is the intention of this work to provide mecha-
nisms to organize and modularize complex conversations without restricting
them unnecessarily or in such a manner that ends up being unnatural for
practical purposes. Therefore a technique for composing protocols using
rigid structures that do not always fit the nature of conversations will not
be pursued here. Such structures found commonly in similar approaches are
probably inherited from programming structures, like if. .. then...else...,
while loops and specially strict joining associated with a previous split in
the transition system. Our approach allows such structures, but it is by far
not restricted to them.

5.6 Protocol composition

Protocol composition is the creation of new conversation protocols by con-
necting other protocols together.

Definition 12. Two protocols w1 and mo can be composed to form a new pro-
tocol, if there is at least one ending state description sy in w1 that is a subset
of a starting state so in m and at the same time, cardinality constraints in
s1 are equal or more restrictive than in ss.

Propositions and roles have to be bound together to establish the seman-
tic connection between the two protocols w1 and we, by specifying which roles
and proposition names in the first protocol will take the roles and replace the
proposition names in the second protocols respectively:

™ = <//7T/1,, Sl, El,A1>
el € By
Ty = ("m3, 52, B, As)
cpesy € So

74

pi1 and my can be bound by connecting ¢pie1 and s so if:

cp1 = cp2
cq1 < cqo

a specific binding of roles in the form of a mapping br(r) is specified:
br(r)y =1

where
r: a role in m

r': a role in my

a specific binding of proposition names in the form of a mapping bp(p)
is specified:

bp(p) = p'

where
p: a proposition name in Ty
p': a proposition name in o

and

bp(e1) C s2

where applying bp(x) to a State Description x applies the mapping to
each proposition name inside the State Description.

It is part of the nature of conversations, that subjects as well as partici-
pants come and go. Not all proposition names and roles of the first protocol
have to be bound to the second one, only those necessary for the connection
(the connected starting and ending State Descriptions). The connected pro-
tocols may have proposition names and roles not bound to the other one. In
the case of the first protocol, these unbound concepts are irrelevant for the
continuing conversation. In the case of the second protocol, these concepts
are new roles and proposition names that are introduced to the conversation.

5.7 Protocol example

A simple protocol definition and composition example is now provided to
show the presented model at work. Subsequent sections in this document will
elaborate on this meta-model in depth, thereafter, more complex examples
will follow.

In this case, we will look at a simple order protocol and a cash payment
protocol that will be bound together.

The order protocol consists of a requester that orders (order) some-
thing from a provider. The provider can reply either with a deliver or a

75

cancelOrder. In a second protocol: the payment for the delivery, will be per-
formed by a customer towards a seller which will be bound to requester and
provider of the first protocol. The protocols will be bound through an ending
State Description of the order protocol, where the item has been delivered.
Therefore the delivered property name will be bound to the paymenPending
in the second protocol.

The objective of this chapter is to establish an unambiguous theoretical
foundation. Implementation and practical usage scenarios are presented in
the next chapters. This same example is used in the first examples in further
sections (see Fig. 6.8), where diagrams are shown. Also, due to the intricate
syntax and complexity of more in depth examples, further discussion and
description of details are presented in further chapters, where automatically
generated diagrams are provided.

™ =
“order”,

{{ ~—C(delivered, provider, requester,
T(t1, “cancel Order”)), —orderPosted }},

{{ delivered,—C(delivered, provider, requester,
T(t1, “cancel Order”)),orderPosted,
=T (t1, “cancel Order”)) 1
{ ~delivered,—C/(delivered, provider, requester,
T(t1, “cancel Order”)),orderPosted,
—T'(t1, “cancel Order”)) 3

{(“order”,requester, provider,
{ —C(delivered, provider, requester,

T(t1, “cancel Order”)), —orderPosted 1
{ —delivered, +C(delivered, provider, requester,

T(t1, “cancel Order”)),+orderPosted,

+T(t1, “cancel Order”) b,

(“deliver”,provider,requester,
{ ~delivered, C(delivered, provider, requester,
T(t1, “cancel Order”)),orderPosted,
T(t1, “cancel Order”)) 1
{ +delivered b,

76

(“cancelOrder”, provider,requester,
{ ~delivered, C(delivered, provider, requester,

T(ty, “cancel Order”)),orderPosted,

T(t1, “cancel Order”)) s
{ —C(delivered, provider, requester,

T(ty, “cancel Order”)),—T'(t;, “cancel Order”) }>}>
T =

< “payment”,
{{ paymentPending }},
{{ —paymentPending }},

(“pay”,customer, seller,
{ paymentPending 1,

{ —paymentPending }>}>

Protocols are bound as follows:
T — T2

with the following role binding;:
br(r) =r"
r — r
provider — seller
requester — customer

/

and the following proposition name binding:
bp(p) = p':
p = 7

delivered — paymentPending

5.8 Summary

Our model of interaction protocols is presented in this chapter, which solves
the lack of a comprehensive, formal and consolidating model for interaction
protocols and connects the definition of Speech Act and Interaction Protocol,
in opposition to FIPA’s specifications. It consolidates various aspects con-
tributed by the multi-agent systems community and disambiguates concepts.
Protocols play the role of a contract between the participants, specifying the
rules to follow to perform a dialog.

Our model is based on classical planning, but seen from a global perspec-
tive and not from that of an agent, as in planning. It is a transition system

77

between State Descriptions composed of propositions and their truth val-
ues. Transitions between State Descriptions are achieved using Speech Acts
which are defined by a set of preconditions and operations on propositions
that define how the State Descriptions are to be modified, if the action is
performed.

Our model defines various constructs that are inherent to interaction
protocols and that differentiate our model from plain planning: Roles, Com-
mitments, Timeouts, etc. The model is enhanced with Cross-Conversational
Constraints, a key concept in interaction protocols: it is used to manage the
way a set of parallel conversations that enact a protocol are synchronized. It
denotes what proposition has to be valid, for any conversation to continue:
the difference with a normal precondition is, that this proposition has to be
valid in all parallel conversations, before any conversation can go on.

Protocols are the result of an aggregation of Speech Acts, Roles that
perform these actions, and State Descriptions. State Descriptions can be
of three kinds: starting, intermediate or ending State Descriptions. Proto-
cols, from an external perspective, can encapsulate their contents and show
only their starting and ending State Descriptions. This way, they can be
compared and interconnected by matching starting and ending State De-
scriptions, making our model modular.

78

Chapter 6

Implementation

This chapter will provide more insight into how the proposed solutions of
Chapters 4 and 5 are implemented. Integration of FIPA and Web Services
was proposed as a messaging framework mapping in Section 4.2. Here,
implementation details of a tool that uses this mapping will be explained
along with details about how some peculiarities are solved, like matching
synchronous and asynchronous communication or stateless and stateful en-
tities.

After that, a tool for editing interaction protocols following the proposed
model in Chapter 5 will be presented. Details of how the model is pro-
grammed, a visual editor and how it supports the designer are presented.
At the end a mapping to Jadex agents is explained and a small example
shows how the model was used.

6.1 JadeWSMTS Implementation

This section explains the implementation of a tool called JadeWSMTS (Le6n
Soto 2007) for integration of FIPA agents in Jade and Web Services. The
Web Services interface will be implemented with a tool called Axis2 (AXIS2
2006), as it is one of the most up-to-date implementations of Web Services
standards, particularly WS-Addressing. Using Axis2, consistent mainte-
nance of Web Services standards is delegated, isolating the implementation
of JadeWSMTS from changes in Web Services specifications.

Axis2 consists of a set of software components which processes incoming
and outgoing messages. Its internal structure is depicted in Figure 6.1a.
Fach component, called handler, does a specific job in processing messages.
Each handler is in charge of a specific functionality normally associated to a
WS-* standard or a messaging infrastructure function, for instance, finding
the Message Receiver belonging to the requested service. When an incoming
message is processed, XML information in the message is parsed into data
structures in Axis2, this data is then provided to an Axis2 Message Receiver

79

Message
Handlers

Content
Java Server

Object Implementation

Target
Address

+ .
Content: Client)
Java Implementation
Object

(a) Axis2 Internal structure

Jade

MTP:
JadeWSMTS
Message

Handlers
i Aaen? 1
N ‘ M A&en? 2
| L] .
Sender -
‘ [] Aéjen?N

(b) JadeWSMTS implementation in conjunction with Axis2

Figure 6.1: Architectural aspect of Axis2 and JadeWSMTS

in order to invoke the corresponding Java server code. When using Axis2 to
implement traditional Web Services, a Message Receiver is created for each
service. Using Axis2 for invoking a service in the Web involves instantiating
a Service Client which processes the outgoing message by producing an
Axis2 data structure for it. This message information is forwarded to the
Axis2 infrastructure (the handlers) for processing, converting it to XML,
following WS-* standards and dispatching. Handlers can be added and
removed in order to add, remove or customize support for specific Web
Services standards or any special functionality.

Architecturally, JadeWSMTS is implemented as an Axis2 Message Re-
ceiver and Service Client pair, see Figure 6.1b. Jade provides an extension
point that allows registration of different implementations of Message Trans-

80

port Protocols (MTP) in the form of Message Transport Services (MTS).
Making use of this feature, JadeWSMTS is registered in Jade as any other
MTP and can be used to deliver in the agent platform messages received
through Web Services and to dispatch messages sent by agents in the plat-
form to the outside as Web Services messages. Figure 6.1b shows how this
implementation makes use of Axis2 handlers taking advantage of all the Web
Services related functionality they provide.

Jade WS MTS Web App.

Jade-Platform
| Ams|| Agentt | Agent2] .|

k. k. k.

k.

Axis2 Message Receiver

‘ Axis2 (Web Services Engine)

MessageTransport
{http, smtp, etc.)

Internet

Figure 6.2: Jade WSMTS Architectural stack

An Axis2 Web Application (a service) was created to host a Jade agent
platform. Figure 6.2 shows how Jade is integrated into a Web Services en-
vironment the same way as any other Axis2 Web Services application. The
stack shows how this implementation is based on an Axis2 Web Services En-
gine and hence, it can run on top of varied transport mechanisms like http,
smtp, etc. An Axis2 Web Services applications (JadeWSMTS Web App)
contains a message receiver and a Jade agent platform (Jade-Platform).
The Message receiver is registered as an MTP inside the agent platform,
this is represented as the extension of the message receiver (Axis2 Message
Receiver) on its top right that extends into the MTS of the agent platform.
This Figure illustrates a reciprocal containment relation that exists between
JadeWSMTS and the agent platform: JadeWSMTS contains the agent plat-
form where it delivers incoming messages and at the same time the agent
platform contains JadeWSMTS as part of its MTS to deliver messages to
the outside.

Agents in agent platforms communicate in an asynchronous way. They
send messages using the MTS of the platform, which works similarly to a

81

postal service. Therefore, agents normally do not stop their execution while
waiting for a reply. The most commonly used Web Services, those over
http, communicate synchronously. This is evident in the kind of network
connection they use: synchronous Web Services over http expect the reply
through the same http connection. A client invoking a services connects
to it, sends the request and stays on hold with the connection active to
receive through it the reply. This difference raises a problem in low level
communication.

-
nc 3

2 n
eﬁsage espons nchronets 2 hrono
R sage esponse
.
Messge | A
Sender T
i Metsa \ Synch. Reply
9e Waiting Queue
Receiver g
= = JadeWSMTS
JadeWSMTS: |
1 4 1 nchrongus
ne Synch- Sponse
Message espons
/,"
(a) Synchronous service request (b) Synchronous incoming request

handling

Figure 6.3: Synchronous and asynchronous communication in JadeWSMTS

Normal processing of messages in JadeWSMTS consists of sending mes-
sages through the message sender and receiving them through the receiver,
in essence it works asynchronously. Even so, JadeWSMTS is capable of mak-
ing communication of synchronous Web Services and asynchronous agents
compatible. This problem arises in two situations: when agents commu-
nicate to services that are synchronous and when agents offer services to
clients that can only connect synchronously. Figure 6.3a shows how the first
situation is handled. Following the numbers surrounded by circles, this fig-
ure illustrates an agent sending an asynchronous message (1). Messages can
be annotated by the sending agent with the instruction to use synchronous
http dispatching (2). This makes the message sender hold the connection
and wait for a reply. The reply is received by the message sender (3) and
immediately forwarded to the receiver, which handles the incoming message
as any other asynchronous message by delivering it to the agent (4). Figure
6.3b illustrates the other case. Here a synchronous message (1) is received by
JadeWSMTS and stored in a synchronous reply waiting queue. The mes-

82

sage is also forwarded to the agent (2), which replies asynchronously (3).
JadeWSMTS is capable of detecting that the message is the asynchronous
response to the message waiting in the queue and sends it through the syn-
chronous connection (4) that was “on hold”. The only inconvenience in this
case is that the agent attending to this kind of messages should reply fast
enough to avoid any connection Timeout problems.

The synchronous-asynchronous feature of JadeWSMTS makes it possi-
ble for agents to offer REST services, since they can attend synchronous
requests. JadeWSMTS offers, apart from that, another very important fea-
ture in order to offer REST services: agents can register addresses specific
for them. Normally in JadeWSMTS the address used for connecting is that
of the agent platform, the specific agent is reached by means of the recipi-
ent information (Agent ID) part of the SOAP envelope which states which
agent the message is sent to. In REST services, messaging works in a differ-
ent manner as SOAP messaging. One fundamental difference is that each
participant in an interaction should be reachable directly by an address spe-
cific for it. Therefore JadeWSMTS offers the possibility to register in the
web application another address which will allow the message to reach the
agent without the need of extra SOAP envelope headers, in other words: for
an address to reach the agent directly. All messages sent to the address of
the agent will arrive at this specific agent without the need for any envelope
or messaging headers.

6.1.1 Endpoint References (EPR)

The first information type defined in this implementation is the merge of
an Endpoint Reference (EPR) (W3C 2006a) and a Agent ID (AID) (FIPA
2002b).

EPRs, as the name states, are intended to refer to endpoints, which
make them an object in which a fundamental difference between agents and
Web Services becomes evident: Web Services only demand to be referenced
while agents are to be identified. Agents have a stateful nature: when they
interact, other participants expect them to take into account what has been
done previously in the conversation, in other words to maintain the state of a
particular conversation. It cannot be expected from an arbitrary agent that
it replaces another agent in the middle of a conversation without updating
it with what has happened up to that moment. On the other hand, Web
Services are by nature stateless: which specific software entity performs the
offered service is irrelevant as long as it fulfills what the published description
offers. Therefore, an identity of a service is not necessary, only a reference to
it. It must be possible to replace software entities behind a service without
service consumers noticing it.

To get around this difference, the extensibility feature of EPRs will be
used to enrich it with the information items that compose an AID. Figure

83

wsa: To

wsa: ReferenceParameters:

fipa: agent-name
fipa: additional-Addresses (N)
fipa: resolvers (N)

wsa: MetaData
wsa: WS-Addressing
fipa: FIPA Management Specification (FIPA 2002b)

Figure 6.4: FIPA AID-WS-Addressing Endpoint Reference

6.4 shows how an AID has been implemented using a WS-Addressing EPR.
The destination address messaging property, which has matching semantics
in both specifications, stays as specified for EPRs (wsa:To) and will be used
as the first address of the agent. The rest of the properties will be added
as Reference Parameters: fipa:agent-name, the unique identification of
the agent, fipa:additional-Addresses to store any additional address the
agent has and a list of fipa:resolvers. Doing so makes, on one hand, FIPA
properties transparent for entities that cannot process them. Conventional
Web Service consumers, which need only to know how to reach the service
using wsa:to, will be able to reach agents this way. On the other hand,
EPRs from conventional Web Services (which will not have these extra fipa:
properties in the EPR, particularly agent-name) are treated as AIDs of
agents that prefer to stay anonymous. This implies that agents that will
work with conventional Web Services need to be prepared to interact with
anonymous entities, which is, in any case, a basic requirement (not only for
agents) for interacting with stateless Web Services.

The combination of synchronous and asynchronous communication, in-
teraction based on SOAP-Messaging or REST and the possibility to interact
with, or as an anonymous Web Services makes JadeWSMTS a very versatile
tool for very different scenarios involving Web Services and agents.

6.1.2 Messaging

The primary contribution of this implementation is the specification of a
message envelope for SOAP that merges both properties from FIPA and
WS-Addressing standards (Leén Soto 2006). The envelope follows a struc-
ture described in Figure 6.5. The structure of the envelope shows how the
envelope specification of WS-Addressing is augmented with FIPA specific
properties (FIPA 2002¢) to support FIPA standardized communication. The
four messaging properties written in slanted letters are containers for extra

84

Endpoint References, since the FIPA envelope specification gives these prop-
erties plural cardinality in opposition to WS-Addressing, which gives them
singular cardinality. The value in wsa:To will be used as default target ad-
dress for the message, the extra headers are expected to be processed only by
FIPA entities. Some properties belonging to WS-Addressing have taken the
roles of analogous properties in FIPA: action, messagelD, inReplyTo and
message body. Apart from these, other FIPA messaging properties were
added, related to the description of the message contents: encoding, lan-
guage, ontology, protocol, date and details about payload. Section 4.2 has
described in deeper detail how this mapping is designed.

In this tool, agents are free to decide which mechanism to use for a mes-
sage by making use of aclRepresentation envelope property. It can be left
empty and the default messaging in Jade will be used or the value identi-
fying SOAP representation can be set, in this case Jade will automatically
choose JadeWSMTS to deliver SOAP messages since it is regiestered as the
MTS for handling this kind of aclRepresentation.

’ wsa: Action (fipa performative)

wsa: To fipaEnv: IntendedReceivers
fipaACL: ExztraReceivers

wsa: From fipaEnv: From

wsa: ReplyTo fipaACL: ReplyTo

wsa: MessagelD (fipa ReplyWith)
fipaACL: ConversationID

wsa: Relationships (includes fipaACL:InReplyTo)

fipaACL: Encoding fipaACL: Language

fipaACL: Ontology fipaACL: Protocol

fipaEnv: Date fipaEnv: aclRepresentation
fipaEnv: payloadLength fipaEnv: payloadEncoding

soap: Body (Message content)
wsa: WS-Addressing
fipaEnv: FIPA Envelope
fipaACL: FIPA ACL specification

Figure 6.5: FIPA-WS-Addressing message envelope

Message Transport

For some applications a different networking transport might be preferred.
In the case of JadeWSMTS, message transportation is delegated to Axis2
whenever SOAP messages go outside the agent platform. Axis2 also allows

85

the use of other transport protocols, as Figure 6.2 shows, implementations
for http and smtp are already provided, and others can be implemented.
(Palanca, Escrivd, Aranda, Garcia-Fornes, Julian & Botti 2006) is an exam-
ple of an implementation on top of another transport, in this case XMPP
(IETF 2004), an instant messaging transport protocol. Such an implemen-
tation would be even better and profit better of JadeWSMTS and Jade if
an implementation for Axis2 is provided. Axis2, JadeWSMTS and Jade
would be able to run on top of it and a more standardized and reusable
tool would be achieved with less work and more impact, because standards
would be used in a wider and more transparent way. From this perspective,
JadeWSMTS is also a good tool for extending communication capabilities
for JADE.

Message Contents:

Web Services and FIPA standards leave the definition of a content meta-
model open. Even so, it is important to remark the dominance of XML for
content representation, a tendency well supported by Web Services and par-
tially adopted by FIPA standards. FIPA also provides a Semantic Language
(SL) (FIPA 2002h) for the representation of contents. This being the most
frequently used representation for messages that refer to FIPA ontologies.
It was also convenient to provide SL representation in XML. A serialization
codec, called FIPA-XML-SL, allows other participants that do not support
traditional FIPA String representation, to interact with agents that use SL
as a grounding for their contents. It produces contents based on the schema
specification provided in (DFKI 2007). This schema can be used for content
type definition in a WSDL description of an agent.

6.1.3 Publication and discovery

From the perspective of messaging, the concepts of publication and discovery
are a specific kind of content specification (Leén Soto 2006). Therefore, as
already stated in section 1.3, publication and discovery are not part of the
integration provided by JadeWSMTS.

Even so, it is important to remark that this tool can be used for publica-
tion and discovery using the already existing tools in FIPA or Web Services.
FIPA architectures provide two registry services (FIPA 2002b), the Agent
Management Service (AMS), and the Directory Facilitator (DF). Publica-
tion and discovery, are performed by interacting with these services using
FIPA SL language. It is possible to provide Web Services interaction with
these services using FIPA-XML-SL, presented in Section 6.1.2. This way
FIPA registries can also be used as Web Services repositories.

Agents in Jade are also capable of using Web-Services-based registries
outside the agent platform, for instance: Universal Description, Discovery

86

© 00~ U WN -

W W WA NDNDDNDDNDDNDNDRNDN = = = = =
NHEHOOWOWTDUR WNFE O OO U kR WwNn=O

and Integration (UDDI) (OASIS n.d.). An integration of the DF and UDDI
concepts will not be approached in this implementation since these are con-
sidered different solutions for similar problems as already stated in Section
1.3. Both possibilities are enabled as well as any other facility accessible
through Web Services like, for instance, semantic matchmakers.

6.1.4 Message Example

The example in Listing 6.1 shows a message sent using JadeWSMTS. This
message is sent by agent TestAgent1 of Jade-WebServices-Platforml (lines
4-13) to agent df (the directory facilitator) of Jade-WebServices-Platform2
(lines 14-19). Some message annotations are added (lines 20 - 30). Note the
value for the acl-representation (line 26), which identifies the codec used
by Jade for processing the envelope. The last header for the message is the
action identifying which speech act is being performed (lines 28-30). Then
comes the message contents, as mentioned in line 22, it is represented using
FIPA-XML-SL language presented in section 6.1.2. As stated in line 29, it is
a request described using FIPA-Agent-Management ontology (line 23) for
the actor (lines 34-45) to perform the action (lines 46-60) of registering
(line 46) the agent description of the agent sending the message (lines 47-58).

Listing 6.1: WS-FIPA message example

” »

xmlsl:wsa=" ...
xmlsl:acl="...7>

<soapenv:Envelope xmlsl:soapenv="...
xmlsl:fipaEnv="..."7 xmlsl:am="..."
<soapenv:Header>
<wsa:From>
<wsa:Address>
http://localhost:8085 /axis2/services /MTIS
</wsa:Address>
<wsa:ReferenceParameters>
<axis2ns4:agent —name>
TestAgentl@Jade—WebServices—Platform1
</axis2ns4:agent —name>
</wsa:ReferenceParameters>
</wsa:From>
<wsa:To>
http://localhost:8195/axis2/services /MTIS
</wsa:To>
<axis2ns3:agent —name wsa:IsReferenceParameter="true”>
df@Jade—WebServices—Platform?2
</axis2ns3:agent —name>
<wsa:MessageIlD>12356671570200906 —0</wsa:MessageID>
<acl:conversationID>11176570200906</acl:conversationID>
<acl:language>fipa—xml—sl</acl:language>
<acl:ontology>FIPA—Agent—Management</acl:ontology>
<acl:protocol>fipa—request</acl:protocol>
<fipaEnv:acl—representation>
fipa.acl.rep.soap.dfki.v.0.1
</fipaEnv:acl—representation>
<wsa:Action>
http://dfki.de/fipa/speechacts/request
</wsa:Action>
</soapenv:Header>
<soapenv:Body>

87

<sl:action —expression xmlsl:ins="...7">
<sl:actor functionSymbol="agent—identifier”>
<sl:parameter name="name”>
<sl:value> <sl:stringValue>
df@Jade—WebServices—Platform?2
</sl:stringValue> </sl:value>
</sl:parameter>
<sl:parameter name="addresses”>
<sl:value>. .
http://localhost:8085 /axis2/services /MIS
.</sl:value>
</sl:parameter>
</sl:actor>
<sl:action functionSymbol="register”>
<sl:operand functionSymbol="df—-agent—description”>
<sl:parameter name="name”>
<sl:value functionSymbol="agent—identifier”>

</sl:value>
</sl:parameter>
<sl:parameter name=" protocol”>
<sl:value> <sl:element>
<sl:stringValue>fipa—request</sl:stringValue>
</sl:element> </sl:value>
</sl:parameter>
</sl:operand>
</sl:action>
</sl:action —expression>
</soapenv:Body>
</soapenv:Envelope>

6.2 Declarative Protocols Implementation

The intention of having a meta-model like the one defined in Chapter 5 is
to produce tools that support the development of models and are capable
of producing executable code. The current section will describe how these
tools were implemented. First a meta-model implementation was created,
than a diagram editor was implemented to design models visually and finally
a mapping from our models to runnable Jadex agents code was programmed
(Leén Soto 2012).

The Eclipse Modeling Framework (EMF) is going to be used for the
implementation of these tools. It is the same framework used to implement
PIM4Agents (Section 3.5.13) and MDA tools related to this project.

6.2.1 Implementation of meta-model using EMF

The first step in creating an MDA-tool is to define the meta-model to be
used. A summary of the meta-model for Declarative Protocols is presented
in Figure 6.6, a detailed description of the meta-model has already been
semantically specified in depth in Chapter 5.

The core concept in Figure 6.6 is DeclarativeProtocol, which is defined
by ACLMessages (Speech Act). This is a relation that is inherited from the

88

1
\P outgoingStateDescription

* * StateD ipti
+ precondition = eDescription 1
— P il
be =lProposition |, proposition « + incomingStateDescription
+ praposfiioh * +prec on N
ostgdngition
+interr
. “ ! . + protocolBinding
= operation = Declarative = = ProtocolBinding
Protocol [——
* + incomingProtocal
+ operatfon *
+ ouf
T subprotocal
i 1
} + outgoingProtocal + profocoBinding

& | Interaction
+message

1
*
+ forwargledTo
1.* LtgoingActor

= actor 1 " = ActorRename

+ actorRename

+ incomiry

Figure 6.6: Key Concepts of Declarative Protocols.

concept of Interaction in PIM4Agents. At the same time, it contains Actors
(in the figure it is shown through ACLMessage) and State Descriptions.

State Descriptions are contained in protocols in three different ways,
either as starting State Description (precondition), intermediate State De-
scription or ending State Description (post-condition).

ACLMessages, apart from containing Actors as sender and receiver, are
defined by a set of Operations and a set of Propositions. These propositions
are their pre-conditions. The operations of an ACLMessage are also defined
based on proposition names. ACLMessages are connected to State Descrip-
tions that can be either State Descriptions the message is enabled By or the
message leadsTo.

On the right side of the figure are the concepts related to Protocol Bind-
ing. A Protocol Binding is the concept used to connect two protocols to
produce a composed protocol. It connects an ending State Description of
a protocol as incoming State Description to a starting State Description of
another as outgoing State Description. It also contains a mapping of Actors
called ActorRenames which establish for roles in the first sub-protocol what
role to take in the next sub-protocols.

Even though the concept of State Description is defined in this model at
the same level as ACLMessage and Proposition, it is not intended to be a
concept to be introduced by the user, nor its associations to ACLMessages
or Declarative Protocol. Those are concepts that will be automatically cal-
culated out of the ACLMessage definitions. Protocol designers only need
to define roles, propositions and ACLMessages and the State Description

89

structure will be completed for them by the implemented meta-model.

6.2.2 Editor for Declarative Protocols

One of the most relevant reasons why a declarative approach has not been
supported by the MAS community is that it is inevitably more complex
than current approaches. The amount of detail that such an approach
brings along tend to make models less intuitive for human readers(Miller
& McBurney 2007). This is specially the case for language-based modelling
tools, the most common approach for modeling in computer science.

We are interested in producing executable code from the specified mod-
els. The implementation of an MDA-based modeling tool aims to have these
two aspects:

e Cope with complexity: using graphical diagramming tools, complexity
of models can be controlled with ease. Editors can be enhanced with
supportive logic that makes management of information in the models
less effort demanding. Apart from that, diagrams are very helpful in
exposing models in a more intuitive manner.

e Code generation: MDA techniques target this aspect. Models can
be used as input for transformation tools that produce Platform Spe-
cific Models (PSM) which represent how a model is implemented in a
particular platform. From PSMs, executable code is produced. The
mapping of Declarative Protocols to executable code will be explained
in Section 6.2.3.

A visual editor for Declarative Protocols has been implemented using
MDA tools based on the eclipse modelling framework (EMF), like the Graph-
ical Modeling Framework (GMF).

The intention of the graphical editor is to allow users to add to a protocol
model concepts like roles, proposition names and use these to define Speech
Acts with preconditions and operations. The editor maintains, based on
these concepts, a directed graph that represents the possible paths a con-
versation can take following the protocol.

Visual Editor modeling layers

The editor provides two kind of views called:

e Composition layer: shows protocols in the form of labeled rect-
angles which have entry and exit points attached to their perimeter.
Figure 6.7 shows as an example, an excerpt of the model explained in
section 7.2.4. Entry and exit points represent starting or ending State
Descriptions of the protocol. Ending State Descriptions of a protocol

90

can be connected to starting State Descriptions of other protocols, to
establish a transition from one protocol to another. These transitions
are known as State Description-bindings and are represented by black
arrows.

In order to know how a conversation goes from one protocol to another
in a transition, Role-bindings and Proposition Name-bindings are de-
fined (not shown in figure). The first one defines which role in the first
protocol is “taken over” by which role in the other protocol. In other
words, the agent performing a role in a protocol will be performing the
role in the second protocol that is linked by the same Role-Binding.
Hence, Role-Bindings are sets of roles in different protocols that will
be performed by the same agent.

Proposition Name-Bindings, similarly, define which Proposition names
are translated to which Proposition names in the second protocol.
They can be seen as sets of synonyms. Based on the information pro-
vided by them, if a starting or ending State Description is selected, the
editor is capable of highlighting State Descriptions that are compatible
and can be connected.

Protocol layer: by selecting a protocol in the composition layer, its
contents are shown using a view in the protocol layer. Figure 6.8
illustrates such a view.

At the top, the declaration of concepts to be used in the definition
of the protocol are declared. They can be simple Proposition Names
or complex ones like Timeouts, Commitments and Conditional Propo-
sitions. Also the roles are defined, these will be used as sender or
receivers of messages in the protocol.

The protocol is developed by defining Speech Acts, shown as rectangles
with a white background, by specifying its roles (sender and receiver),
cardinality constraints, preconditions (in the middle subsection of the
rectangle) and last, but not least, its operations.

Right after defining Speech Acts or modifying them, State Descrip-
tions, shown as blue rectangles, are calculated or recalculated auto-
matically.

Example of a protocol diagram

The Declarative Protocol editor represents features of the model using graph-
ical elements. Figure 6.8 shows an example of a Declarative Protocol dia-
gram. On the top left, the proposition names used in the protocol are
declared. Speech Acts are rectangles with two compartments and State

91

4 Querylf_Steelwork

—ﬂ query nok AFFirmative 5 H_) —
done
H»

<+ Querylf_Mills

query nok AFFirmativeE[H_)
done
=

o

Legend
+ Querylf Protocol
StateDescription Binding

—+ Starting StateDescription
[+ Ending StateDescription
D Annotation

Figure 6.7: Simple Example of the Composition Layer

Descriptions are rectangles with rounded corners. Arrows show the flow
between actions and states.

This example is about a small protocol presented in Section 5.7, where
two actors, a requester and a provider interact to perform an order. It
consists of a Speech Act called order from the requester to the provider and
two possible responses: deliver and cancelOrder from the provider to the
requester.

Performing order creates a Commitment (seen as a gray rectangle on
the top) from the provider to the requester to deliver (make delivered true)
within 20 time units, otherwise cancelOrder will be performed, therefore
the corresponding Timeout is also enabled. To perform an order, there is
a precondition of not having a Commitment established already, to avoid
ordering the exact same thing, if it has already been ordered.

Having the Commitment and the Timeout established are preconditions
for the next two actions. The Speech Act deliver makes delivered true, which
automatically disables the Commitment (since it has been honored) and
the associated Timeout. This is reflected in the derived State Description:
delivered true and no pending Commitments or Timeouts with orderPosted
true. The Speech Act cancelOrder disables the Timeout (since the Speech

92

N delivered & C(delivered,Provider-=Requester,T(20 =..

M orderPosted 2l e
£ 20 cancelorder |
S1 [~C(delivered,Provider-=Requester, T(20 == cancelOrder))
[P -C(delivered,Provider-=Requester, T(20 => cancelOrder)) [~T(20 == cancelorder)
P -orderPosted P orderPasted
E-I |2 -delivered
2 delivered
[~C(delivered,Provider-=Requester, T{20 == cancelOrder))
2 orderPosted
2 ~T(20 == cancelOrder)
Clorder O deliver J cancelorder
CJRequester G Provider CJ Provider
OProvidar QREquester ORequester
Co Qo o
O N QN
P -Cidelivered,Provi... [~delivered D Cldelivered,Provider-...
[-orderPosted E C(jeliveredJ:ruvider-m |7 orderPosted Legend:
o orderPoste P -delivered
= -delivered [? T(20 => cancelOrder) [T(20 => cancelOrder) N Proposition Name
+ +c(delivered,Provide... E Timeout
+ derPosted) == -C(delivered,Provider...
H +orderPoste, + +delivered = -T(20 => cancelOrder) & commitment
+T(20 == cancelOrder)
. Actor

) speech Act

L > c(delivered,Provider->Requester,T(20 == cancelOrder)) © state Description
|2 orderPosted

[~delivered
2 T(20 => cancelorder)

Figure 6.8: Declarative Protocol Diagram example: the “Order” Protocol

Act is the consequence of it) and also disables the Commitment, leading to
a State Description where it is free of the Commitment and delivered is still
false.

Note that in this example, dishonoring the Commitment, by canceling
the order has no negative consequences for the Provider actor. If cancelOrder
does not disable the Commitment, a State Description will come as result,
where the Commitment is valid, the Timeout is over and the objective is still
not fulfilled, representing clearly a situation of a dishonored Commitment.

When the user inserts content elements into the model diagram, other
graphical details are added or updated automatically, in order to express
the semantics and effects of the added element. It uses an algorithm that
calculates the changes in a graph that represent the protocol as specified by
its actions. Every time the user edits a Speech Act in the protocol, the editor
changes the State Descriptions this Speech Act is related to and propagates
the changes throughout the graph.

The approach of updating the graph, starting from the area around
the modified Speech Act, is preferred to a complete recalculation of the
whole graph after each edition, not only because of the potential advantage
of performing less calculations, but it also avoids changing the graphical
information of unrelated areas, an important advantage for a visual editor
of this kind.

93

Graph updating algorithm

The algorithm for updating the diagram is intended to react to each user
edition by adding or updating graphical details that illustrate what has
been done. It uses a simple technique similar to forward planning, but
differentiating itself in two basic aspects:

e It does not produce single plans, but the graph that represent all
possible plans that can be done using the defined actions.

e It does not reflect any intention or particular perspective. Instead, it
combines actions that will be performed by different agents and that
are defined from a global perspective to calculate the possible states
(State Descriptions) and how actions move conversations from one
state to another.

For updating the diagram, the algorithm is designed to change only the
part of the model that is connected to the concept that has been edited.
This process is done recursively in case the change or its effects require
updating subsequent parts of the diagram. In other words, the algorithm is
not intended to produce a complete graph out of a set of actions, but instead
it updates an existing graph after every change that is done to the model.

The main idea behind the calculating algorithm is to disconnect the up-
dated Speech Act completely and then reconnect it correspondingly. First,
it is connected to State Descriptions already found in the protocol that meet
its preconditions. A new State Descriptions is created if the specific situation
that enables the action is not found. Once all possible causing situations
are linked, the corresponding effects are calculated.

In case a State Description matching the resulting effects is found, it is
connected to the Speech Act as enabled State Description, if not the missing
State Descriptions is created and added. In case a new State Description
is added, all other Speech Acts are checked against it, to establish possible
enabling associations, for which, a resulting State Description is calculated
and also checked against all Speech Acts. In case the result is not present
in the graph, the process is repeated with it in a recursive manner.

The operation will be explained using pseudo-code. The next code sec-
tion shows the entry point for the calculations. Every time a speech act
represented by sa is edited (added, changed or removed), it is first discon-
nected from its enabling State Descriptions (Line 2). The recursive calculat-
ing process is started by calling the connect Enabling procedure giving sa as
parameter (Line 3). Once the process is done, a model cleanup is performed,
removing all State Descriptions that are left disconnected:

The procedure connect Enabling is shown in the following code segment.
It first disconnects sa from its enabled State Descriptions and eliminates
those that are left without an enabling Speech Act (Lines 2-9). Then, all

94

Starting point of the algorithm when a Speech Act (sa) has been changed:
(1) begin
2) sa.enabled BySD = null;
(3) sp:= sa.getPreconditionsAsSD();
¢+) call connectEnabling(sa, sp);
(5) cleanup(protocol);
(6) end

State Descriptions already existing in the model that match the precondition
(represented by sp) are added as an enabling State Description to sa. A
State Description matches another one, if the states it represents are a subset
or equal to the second one (Line 13). Only State Descriptions on which sa
is effective (where performing sa produces a change) are considered (Line
14). The State Description is set as enabled by sa (Line 20), if it has been
caused by another action (Line 15) or it matches exactly the preconditions
of the action (Linel8). In case there is not an exact match, sp is added to
the diagram (Line 24-29).

Finally, for each enabling State Description in sa, its result, called sn,
is calculated (Lines 31-32). Results that are effective (Line 33) are con-
nected using the function connect Enabled (Line 34). The function returns
a boolean value telling if sn is a new State Description that has to be added
to the model. If this is true, then it is added to the list of State Descrip-
tions that are to be tested for connection (toConnect) against the complete
model(Line 35).

The next code section shows the function connect Enabled which handles
the connection of new enabled State Descriptions sa has.

The function is called; by passing it the Speech Act sa and the specific
resulting State Description sn, to be considered for connection (Line 1).
Each State Description (sd) in the protocol (Line 4) is compared to sn
(Line 5) and then if it is also effective on sa (Line 6) it will be connected to
sa as an enabled State Description (Line 8). In case no State Description
in the protocol matches sn (Line 12) it is added as enabled, added to the
protocol and the value true is returned (Lines 14-18).

Finally, the last code fragment shows the recursive function that connects
new State Descriptions to the rest of the graph.

Procedure connect receives the State Description s to be evaluated a-
gainst the whole graph (Line 1). It starts by checking which Speech Acts in
the protocol (Line 2) are enabled by and effective on s (Line 3-4). If that is
the case, then s is made an enabler of the Speech Act (Line 7). Its resultant
state sn (Line 7) is made a State Description enabled by sa (Line 8). In
case the State Description was not already part of the protocol (Line 12),
it is added and a new recursive call is done for sn (Line 13). The recursive
search stops when no more State Descriptions are created.

95

Procedure for connecting enabling SDs:
(1) proc connectEnabling(sa, sp) =

(2)

(3)

(%)

(6)

(8)

)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(38)

foreach (esd € sa.enabledSD)do disconnect from enabled SDs
if esd.enablingSA — sa # ()
then destroy(esd)
else esd.enabled BY — = sa

fi

od

foreach (sd € protocol)do connect all SDs that enable sa
samefound = samefound V sd = sp;
if sd C sp

sa.isEffectiveOn(sd)A
(sd.enabled By # OV

sd = sp)
then
sa.enabling+ = sd;
fi
od
if —samefound
then
sa.enablingS D+ = sp;
toConnect+ = sp; add to the list of SDs to be connected
protocol.state Descriptions+ = sp;
fi
foreach (esd € sa.enablingSD)do Get all new SDs that arise
sn := sa(esd);
if sn # esd
then if connectEnabled(sn, sa)
then toConnect+ = sn;
fi
fi
od

foreach (sd € toConnect)do call connect(sd); .

96

Procedure for connecting enabled SDs:
(1) funct connectEnabled(sa, sn) =

(2)
(3)
(4)
(5)
(6)
(7)
(8)
9)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

ret := false;
same found := false;
foreach (sd € protocol)do connect all SDs that are enabled by sa
samefound := samefound V sd = sn;
if sd = sn A sa.isEffectiveOn(sn)
then
sa.enabled+ = sd;

fi
od
if =samefound
then
sa.enabled+ = sn;
protocol.state Descriptions+ = sn;
ret = true;
fi
return(ret).

Procedure to connect state description ’s’ to any related Speech Act
(1) proc connect(s) =

(2)
(3)
(4)
(5)
(6)
(7)
(8)
)
(10)
(11)
(12)
(13)
(14)
(15)

foreach sa € protocol.speech Actsdo
sp := sa.getPreconditionsAsSD();
if s C sp A sa.isEffectiveOn(s)
then
sa.enablingS D+ = s;
sn = sa(s);
sa.enabledSD+ = sn;
if sn & protocol.stateDescriptions
then
protocol.state Descriptions+ = sn;
call connect(sn);
fi
fi
od.

97

Brief analysis of the algorithm

The algorithm is a routine that implements a complete plan search over a
state-action space using methods similar to forward planning.

For the purpose of our diagramming tool, a diagram has to show all and
only those State Descriptions reachable using the actions specified by the
protocol.

The criteria used to consider which State Descriptions should appear
is based on the subset relation 'C’ between State Descriptions. All State
Descriptions are sets of concrete states that fulfill the constraints specified by
the State Description on propositions (Leén Soto 2009). A subset of a given
State Description is the result of adding extra constrains on the given State
Description, therefore it has the same constraints plus some additional ones
in its definition. For instance, the statement sdj(a,—b) C sdaz(a) is valid,
since sd; has the same constraints as sdo, namely a and additionally —b. T'wo
Sate Descriptions are the same if they have exactly the same propositions.

New State Descriptions are only created in two circumstances: either by
the procedure

sa.getPreconditionsAsSD()

which produces a State Description that represents the preconditions in sa
or by the procedure

sa(sd)

which produces the results of performing the Speech Act sa on the State
Description sd.

Links between State Descriptions and Speech acts are only established
as follows:

e State Descriptions can only be linked to Speech Acts as enabling State
Descriptions, if they are a subset of or equal(C) to the State Descrip-
tion representing the preconditions of the Speech Act.

e State Descriptions can only be linked to Speech Acts as enabled State
Description, if they are equal (=) to the resulting State Description
obtained by performing the Speech Act on any of its enabling State
Descriptions.

The reason for the first one is that a subset of the preconditions of a
Speech Act fulfills the preconditions. In the opposite case, the reason for
the second one is that super sets of resulting State Descriptions cannot
be associated as result since they contain states that are not part of the
resulting State Description, and subsets of the resulting State Description
cannot be associated since these would leave out states that are part of the
resulting State Description.

98

Also, since some enabling State Descriptions are related to them by the
subset relation, it is probable that resulting State Descriptions will reflect
this same relation.

The algorithm is therefore not capable of introducing new State Descrip-
tions that do not have a direct Speech Act as an originator or require it as
a precondition. It also does not leave State Descriptions in the diagram if
an modification by the user demands them to be removed.

Before the process starts, all enabling State Descriptions are discon-
nected from the edited Speech Act (but still not removed from the model).
Also in the procedure connect Enabling in lines 2-9 it is also disconnected
from enabled State Descriptions, in this case it removes any State Descrip-
tion that is left without a Speech Act that produced it. The algorithm
checks again and reconnects only State Descriptions that match any of the
two previously explained cases.

The algorithm adds new State Descriptions if there was no State De-
scription found to exactly match the preconditions or result in the State
Description of the Speech Act. For this newly added State Description, a
recursive check is started. It checks for any connection possibility with any
Speech Act in the model. If it finds a Speech Act that can use this new State
Description as enabling and that again produces a new State Description as
a result of performing the Speech Act on it, a recursion is done using the
new resulting State Description as parameter.

At the end, a cleanup of the model is done, removing all disconnected
State Descriptions, leaving the model free of State Descriptions that could
not find a relation to any Speech Act in any state.

By observing these properties of the algorithm, it is clear that it always
produces the State Descriptions required by Speech Acts, that they are
linked to all Speech Acts that can be related to them in the model, and that
there are no State Descriptions left in the model without having a Speech
Act linked to them.

Combining Protocols as modules

The editor provides a view of all the protocol parts of a project in a simplified
way. It reduces protocols to boxes where only their name, starting and
ending State Descriptions can be seen. The purpose of this is to allow the
protocol designer to produce composed protocols by combining the available
protocols.

Protocols can be combined by linking the ending State Description of
one protocol with the starting State Description of another. By doing this, a
designer says that in the composed protocol, conversations that ended in the
ending State Description of the first protocol can continue a conversation
in the second protocol by starting it in the starting State Description the
link is pointing to. Figure 6.9 shows the project that contains the protocol

99

& Order E1 S2 4 CashPayment
S1 b — [Legend:
—5 sl:Starting sD
s ' Ending SD
E2 N Propasition Name
N provided # Actor Requester, Actor Payer N proposition Name

N delivered Binding

derPosted .) ¥ Role
ﬁ :;y;;r::;qu % Actor Provider, Actor InvoiceManager

£ Role Binding
+ protocol

fh | Protocel Binding

Figure 6.9: Declarative Protocols bound in the Project View.

called “Order” shown in Figure 6.8.

Labels, in the form of ovals have been added in order to help the reader
recognize the State Descriptions in the Declarative Protocol Diagram (Fig-
ure 6.8) and in the Project View (Figure 6.9): the “Order” protocol has one
starting State Description labeled S1 and two ending State Descriptions la-
beled E1 and E2. In this diagram, there is only one other protocol defined,
called “Cash Payment”. Its trivial content is not shown, but it consists of a
starting State Description, labeled S2, defined by the proposition payment-
Pending and provided. It has only one Speech Act from a role seller to a
role customer called pay which makes paymentPending false and provided
true.

Protocols are defined using their own Proposition Names and Actors
which form the ontology used to describe the protocol. Since it is not possible
to know which State Descriptions match between protocols defined with
different Proposition Name sets and Role Names, special binding objects
have been added to allow designers to declare which Proposition Names and
Roles are to be seen as the same.

These objects are called Proposition Name Binding and Role Binding
and collect concepts from different protocols that can be understood as syn-
onyms. In the example, there is one Proposition Name Bindings on the lower
left corner: one saying provided and paymentPending are synonyms. There
are two Role Bindings on the lower right: one saying requester and cus-
tomer which are roles played by the same agent. The other saying provider
and seller are also the same.

Taking these bindings into account, one can see the State Description
labeled E1 with the propositions:

E1l: (delivered,
- C(delivered,Provider—Requester,T(20 = cancelOrder)),
orderPosted, — T(20 = cancelOrder) (time: 20)))
is the subset of the State Description labeled S2:
S2: (provided, paymentPending)

100

= E1 CS2

Therefore, these State Descriptions can be linked and a composed pro-
tocol is produced consisting of a first phase where an item is ordered and a
second phase where the item is payed.

For simplicity, the example shows only two protocols that are being
bound. The objective of this view is to have several protocols available. For
instance, in this case more payment methods and not only cash payment. If
the Proposition Names and Roles are well bound, more payment protocols
can be added to the composed protocol, as modules, simply by linking their
starting State Description to E1. The result would be a composed protocol
with an ordering phase and several payment methods.

Moreover, this view has a feature implemented that highlights match-
ing State Descriptions of other protocols, when an ending or starting State
Description is selected. This helps the designer find possible candidates for
composition of protocols.

6.2.3 Mapping Declarative Protocols to Jadex BDI Agents

The model produced using the diagramming tool presented in the previ-
ous section can be used as input to create an implementation capable of
performing the protocol.

In our case, we are interested in creating Jadex-BDI agents (Pokahr,
Braubach & Lamersdorf 2005b6) that perform conversations as specified by
the interaction protocol. The Declarative Protocol models will be mapped
to Jadex models using a Query View Transformation (OMG 2008), a proce-
dural language for building EMF models, with information from of an EMF
source model.

For each role in the protocol, a Jadex capability will be produced, where
the parts of the protocol related to the role will be implemented in the
form of plans. Since each Speech Act in the protocol has a sender and a
receiver role, plans for sending and receiving the message will be created in
the corresponding capabilities.

Conversations are started by an agent, called the initiator of the con-
versation. This agent addresses a set of participants within the context of
a protocol. The initiator agent creates a conversation context for each con-
versation with a participant. Agents ready to participate in conversations,
called participants, also create a conversation context every time they are
invoked to start a new conversation.

Conversation contexts are data objects that aggregate details about the
specific conversation between the agent and its partner, in other words, they
represent the situation the conversation is in. In the Declarative Protocol
model, this situation is represented by the State Descriptions. The values of
the propositions as specified in the State Descriptions are used in the mapped

101

Initiator g Participant
|

[Conversation Starting Plan |

s

Message A
Sending Plan ‘ED D

- 15

[Tk

Context

1i

Conversation BT
M t tl 3
anagemen Context Updating = ﬂﬂ‘
g Plan for A Context
Management

al

Message A Attending Plan
a]
~_<] Message B Message C
["I Sending Plan Sending Plan

Message C
Receiving Plan

Conversation Context Conversation

Updating Plan for C Context Updating .
Plan for B : | Legend
@ I @ : 2 Conversation Context
: ‘ Goal

Figure 6.10: The BDI-Plans pattern for Declarative Protocols used by Par-
ticipants performing Conversation Protocols.

capability to update the conversation context as the dialogue is carried out.
Conversation contexts are the representation of State Descriptions inside the
beliefs of participating agents.

The process of receiving a message, reasoning about it and producing a
reply is called a turn. A pattern has been specified for implementing turns in
a capability and it consists of a set of plans that handle its different stages.

The pattern used for implementing turns is shown in Figure 6.10 and
how conversation contexts are created, managed and passed from plan to
plan. It shows the beginning of a conversation in a canonical way: pro-
tocol enactment between several parties can be decomposed into “dialogs”
between two parties, one is an initiator and another one is the participant.
The figure shows, looking from top to bottom, the sequence in which the
plans are performed.

The first detail to observe is where conversation contexts are created,
which is symbolized by a punched tape symbol (a sinuous rectangle) inside
a star. For the initiator, the context is created when it decides to create
the conversation with the partner. It will do the same for each partner it
interacts with. The Participant, since it plays the passive role in the con-
versation, creates a context every time it receives the first message specified
in a protocol. Not all message receiving plans create conversation contexts,

102

only those that receive the first message sent to a participant as specified
in the protocol. Therefore, during the mapping process, message receiving
plans are annotated with a information expressing whether they can create
new conversation contexts, like message receiving plan for message A. Those
that do not have the annotation will instead fetch the corresponding context
from the context management when a message is received. In the example,
this is the case for the receiving plans for messages B and C.

The dark rectangles enclose the basic BDI-Plan pattern used for imple-
menting turns in a dialog. For instance, the rectangle on the right shows
the first turn taken by the participant. Messages are received and the cor-
responding context is created or fetched. Then, a goal for updating the
conversation context based on the message that arrived is posted. The
corresponding “Conversation Context Updating Plan” updates proposition
values in the context, as it was expected, since the message was received. By
extending this plan, the agent designer can improve the updating process
and context checking by introducing analysis of details in the content of the
message.

After that, a goal for actually attending the message is posted which
triggers the corresponding “Message Attending Plan”. This is the plan in
which the reasoning and internal processing for that turn is programmed.
Depending on what message is intended to be sent as a reply, the agent
chooses what goal to post. A corresponding “Message Sending Plan” is
triggered and performs the message sending and the process starts again
on the side of the recipient agent. In our example, there are two possible
replies for message A: B and C. For each of these messaging events, there is
a pattern on the side of the recipient, in this case the initiator, ready to first
receive the message, then to fetch the corresponding conversation context
stored in the context management. From here on the pattern is repeated
throughout the conversation.

The conversation context is passed on from plan to plan as a goal param-
eter, until a message sending plan is performed ending the turn and leading
the course of the conversation to the agent the message is addressed to.
The example shows how each agent manages its own conversation contexts:
the initiator calls the context C1 and stores it in the context management,
where all its current contexts are kept (for instance also C2 and C3). The
participant calls the context of the conversation with the initiator “a” and
stores it the same way. Context names in the figure help to emphasize that
the same context instance is passed from plan to plan through the goals and
between turns using the context management.

As specified by a protocol, conversations can end for agents in two ways:
after sending or after receiving a message. In both cases, a goal for finishing
the protocol is posted. In the first case, it happens automatically, in the
second case, the goal can (in some cases it has to) be posted by the Message
Attending Plan. Plans that handle these kinds of goals will contain the

103

internal actions to take when a participant leaves a Conversation.

Protocol ending plans are also the place where Protocol Bindings are
implemented. The conversation context is tested to be a State Description
where a Protocol Binding has been established. If that is the case, proposi-
tions are translated as specified by proposition name bindings and goals for
starting the next protocol with the updated conversation are posted.

6.2.4 Running the composed protocol

As an example of the results one can obtain by using the tools explained in
the present work, the case of the protocols of Figure 6.9 will be used.

In the model, a composed protocol was created out of two protocols. The
code generating tool takes this composed protocol and produces a Jadex
agent implementation, in the form of a capability, for each of the roles
involved.

Even though this is a simple example, it shows how the resulting agents
behave as specified by the protocols. Figure 6.11 shows the two possible ways
the protocol can be run. The diagrams show, for each of the two participants
in the conversation, a vertical lane showing their execution time-line. Arrows
meaning message exchanges go from side to side and are annotated with the
Speech Act label of the message exchanged and in brackets, the contents of
the message.

Eer@F‘ll kergPll
Eer@F‘ll EergPll

order (Place Order 0}
1 €«—— |

. - order (Flace Order 0}
deliver {Delivering J
—

v (Here is my payment J cancelCrder (Canceling order. Sorry]
F'ay VP)i —y

(a) Provider delivers (b) Provider cancels

Figure 6.11: Jadex run diagrams of Order-CashPayment protocol.

In (a), one can see what happens when the provider agent “Provider@P1”
replies with a deliver message: the protocol comes to the State Description
marked as E1 in Figure 6.8 and as shown in Figure 6.9 this is where a
binding with the the cashPayment protocol is defined. The Actor Payer
(played by agent “’Requester@P1”’) performs then pay.

In (b), one can see what happens when “Provider@P1” replies with
cancelOrder: agent “Requester@P1” stops after receiving the canceling mes-
sage, since there is no further actions specified in the composed protocol for
this situation. It just knows, it is left in a case where a Commitment was
canceled as represented by State Description E2 in Figure 6.8

104

6.3 Summary

The present chapter shows how messaging integration between agents and
Web Services can be achieved and how protocols can be specified declara-
tively in order to produce Jadex agents capable of running as Web Services
using the messaging integration tools.

The most important advantage of the proposed messaging integration
is that it merges (as it can be seen in Figure 6.5 and in the example pro-
vided) information items from WS-Addressing as well as from FIPA En-
velope Specification. This, at the same time, enables both technologies to
connect transparently and their messages to be processed appropriately by
endpoints. The usage of message addressing properties make it possible to
perform complex conversations as proposed by FIPA. Agents not only take
advantage of the accessibility to Web Services, as it happens with other pro-
posals, but this implementation provides the possibility to perform complex
interaction patterns using SOAP between agents and other agents or Web
Services.

For achieving integration, some gaps had to be covered like the stateful
nature of agents vs. stateless nature of services or the possible difference
in reasoning power between participants. The first one manifests clearly in
the definition of the augmented EPR, service-implementing instances are
not required to be identifiable. In this implementation Web Services are
presented to agents as other agents which are, or desire to be, anonymous.
Agents should therefore be prepared to interact with anonymous agents and
to distinguish between them by means other than its name, normally its
address.

In the scope of a comprehensive agent platform modelling project called
PIM4Agents a declarative model for protocols has been proposed. In the
present work we have produced an Eclipse Modelling Framework meta-model
and a diagram editor to produce Declarative Protocol models (Leén Soto
2012).

The editor shows how the protocol grows as Speech Acts are defined.
After each modification by the designer, a directed graph shows what the
protocol would look like, in a similar form to finite state machines. This lets
the designer see how the protocol is taking shape.

Another diagram editor is also provided for producing composed proto-
cols out of the protocols designed using this tool. By declaring Proposition
Name bindings, the editor is enabled to help the user to find protocols that
share compatible connection points and which can be connected together.
Using Role Bindings the designer says what roles will agents of the first
protocol take in the second one.

From these models, Jadex BDI agents are created automatically. The
conversion takes advantage of the declarative aspect of the models, and pro-
duces a context based conversation control. BDI agents make the situation

105

oriented approach easier to implement than using traditional procedural
techniques. At the same time, the goal oriented pattern used to implement
the roles make the management of the implementation better in terms of
flexibility and scalability. The result is a set of agents, capable of performing
a complex conversation using Web Services.

106

Part 111

Examples and Obtained
Results

107

Chapter 7

Examples

This chapter presents examples that explain in detail how our tools work
and highlights the features that differentiate them from other contributions
from the area of multi-agent systems or business process modeling.

7.1 ContractNet Use Case

The first use case is a classical interaction pattern well known in the MAS
community. It is called Contract-Net (Smith 1979) and represents the com-
mon situation in which an agent has a pending task and looks for another
agent to perform it by broadcasting a request to a set of candidates, choosing
the best one and letting it perform the task.

This protocol is part of the library of interaction protocols defined by
FIPA (FIPA 2002f). It involves two kind of roles, the Initiator and the
Participant, the first one representing one agent with a task to be solved
and the second one, a set of agents that will participate in the contest for
the assignment of solving the pending task.

In Figure 7.1 The first action (represented by an arrow that goes from
one side to the other) is called ¢fp and stands for call for proposals. This
message containing a description of the pending task is sent to a set of
m Participants for them to analyse. Participants can answer either with
a refuse if they do not desire to participate in the selection process or by
proposing a way of how to serve the requirements of the Initiator.

At the end of each arrow there is an annotation specifying the amount
of agents taking part using that Speech Act. The Speech Act ¢fp is sent to
m agents, n of those that answer before the deadline, ¢ < n send a refuse,
the rest of them, j = n — 1 make a propose. The Initiator decides to send
a reject-proposal to k < j agents and to the rest of the agents | = j — k
an accept-proposal. All accepted agents can, at the end, send a failure,
an inform-done or an inform-result, depending on the case, providing the
Initiator with what it required.

108

FlPA-Ct:-mrac:tNet-F'.'mml)

l Initiator ‘ ‘ Participant
' i
i
clp Mg
1
!
Vo En refuse
LI n
i dead-
i { lirnes
i
]
ijEn-i
I propose
ksj

rgject-proposal

____.|:J______________

accepl-proposal 1=k

failure

inforrm-dana : inforrm

Intarm-rasull : inform

Figure 7.1: Contract Net protocol modeled by FIPA.

Contract-Net has some characteristics that make it interesting to show
important aspects to be modeled:

e Auction-like situation: auctions are conversations in which a set
of competitors make bids about some specific concept (in the case of
Contract Net, these are called proposals) and one (or more) are chosen
from them following a specific criteria. A protocol has to provide
information about the choice that will be done like, in this case, the
amount that can be chosen or when the choice is done.

e Combination of an N:1 and a 1:1 interaction: since the first part
is where the complete set of participants interact, making bids, and in
the second part, one (or a subset) of them is chosen to carry out the
action. A protocol model must be capable of showing when and how
this change in cardinality happens.

e Includes several choice situations: even though the interaction
specification is not too long, at every stage of the interaction, a decision
is taken, turning the protocol into one with many possible outcomes.

109

Using our meta-model and its modeling tools, we produced the Contract
Net model shown in Figures 7.2 and 7.3. The first part is where many
agents interact with the Initiator, the second is when a single one is accepted
and carries out the task. In this case, we model a situation where only
one Participant is chosen to exemplify in a more clear way the change in
cardinality of participants ruled by the protocol.

At the top of the model is the specification of Proposition Names to be
used in the protocol:

e cfpAttended: has the ¢fp been attended in any way?

e accepted: has the proposal been accepted

e prop-Successful: has the proposal been carried out successfully
e Wait(cfpAttended): wait for all ¢fp to be attended

e prop-Evaluated: has the proposal been evaluated (regardless of the
result of the evaluation)?

e accept-Attended: has the acceptance been attended in any way?

e Timeout(reject-proposal): Timeout by the end of which a reject-
proposal is carried out passively on behalf of the Initiator.

e Timeout(failure): Timeout by the end of which a failure is carried
out on behalf of the Participant.

¢ Commitment(prop-Successful<accepted,Participant — Initi-
ator, Timeout(failure)): a Commitment to bring about prop-suc-
cessful (before the Timeout) if the proposal is accepted from the Par-
ticipant to the Initiator. At the end, if the time runs out, a failure is
carried out as specified by the Timeout.

e Commitment(cfpAttended, Participant — Initiator): a Com-
mitment to bring about cfpAttended from the Participant to the Ini-
tiator with no Timeout specified.

e Commitment(prop-Evaluated, Initiator — Participant, Time-
out(reject-proposal)): a Commitment to bring about prop-Evalu-
ated from the Participant to the Initiator before the time runs out,
otherwise reject-proposal will be performed on behalf of the Initiator.

e Commitment(prop-Successful, Participant — Initiator, Time-
out (failure)): a Commitment to bring about prop-Successful from
the Participant to the Initiator before the Timeout, otherwise a failure
is performed on behalf of the Participant.

110

N cFpAttended P cfoAttendeds (8 205reject-pro... |
N accepted N prop-Evaluated (8 305Failure

N prop-Successful N accept-Attended

@ C(prop-Successful <= accepted,Participant->Intiator, T(30 => Failure))

P prop-Successful
<= accepted

% C(cFpAttended,Participant->Intiator,never)
P cfpAttended

C(prop-Successful, Participant->Intiator, never)

% C(prop-Evaluated Intiator->Participant, T(20 => reject-proposal))
P prop-Evaluated

C(prop-Successful, Participant->Intiator, T(30 => Failure))

e e

P -C(cFpAttended,Participant->Intiator, ..
P ~C(prop-Successful <= accepted Part...
O cfp

Cntiator

CJParticipant

o

N

P -C(cFpAttended,Participant->Intia...
P ~C(prop-Successful <= accepted,...

+ +C(cFpAttended,Participant ->Intiat...

P C(cFpAttended,Participant->Intiator...
P ~C(prop-Successful <= accepted,Pa...

Grefuse
QPart\c\pant
lntiator
Qo

N

P ClcFpAttended,Participant->Intiat...
P ~C(prop-Successful <= accepted,.,

— C(cfpAttended,Participant->Intia.
+ +cfpAttended

P ~C(cFpAttended,Participant->Intiator,...
P cfpAttended

P ~C(prop-Successful <= accepted,Part...

CJpropose
CParticipant
Cintiator
=
o Legend
(@]N] N Proposition—
name
P C(cfpAttended,Participant->Intiat... O SpeechAct
P -C(prop-Successful <= accepted,... P Proposition
£ Role
+ +cfpAttended ® Timeout
+ +Clprop-Successful <= accepted,Pa... & Commitment
4+ +Clprop-Evaluated,Intiator->Partici %5 Conditional
P cfpAttended Proposition...
P C(prop-Successful <= accepted,Partic... 3 Wait
P Clprop-Evaluated,intiator->Participan. .. [Tstate
= Description

Figure 7.2: Contract Net protocol modeled as a Declarative Protocol. First
Part

At the beginning, an Initiator starting from a situation where no Com-
mitment has been created, sends a ¢fp to N Participants. Sending this action
creates a Commitment from the Participant to the Initiator to attend the
call. This Commitment has been left without a Timeout for simplicity. If
the Participant responds with a refuse, it frees itself of the Commitment
created by the cfp by bringing about cfpAttended. If it makes a propose,
the cfp is attended (freeing the Participant of the corresponding Commit-
ment based on the specification defined in section 5.4.2) and creates new

111

Commitments: one where the Initiator makes a compromise to evaluate the
proposal and provide an answer and one for the Participant to make the
proposal successful, if the proposal is accepted. At the end of the first part
of the Contract Net protocol diagram, the State Description (blue rectan-
gle) on the bottom left shows the state of the conversation. This same state
appears in the next figure on the top left, to help the reader follow the link
between the two parts.

The second part, shown in Figure 7.3, shows that the Initiator can opt to
send a reject-proposal or an accept-proposal message. The first one making
it clear that the proposal is not accepted (-accepted) and also brings about
prop-Evaluated canceling the related Commitment. The second one, brings
about accept and prop-Evaluated, furthermore, it clarifies that the accept
has not been attended (-accept-Attended).

In this situation, the condition of the conditional Commitment brought
about by the action propose is made true, which automatically makes the
Commitment of the Participant to the Initiator to bring about prop-Successful
valid. Additionally, the associated Timeout is started, stating that after 30
time units, a failure will be performed on behalf of the Participant. The
action accept-Proposal has special cardinality constraints, different than the
default 0-N: it has a minimum of 1 and a maximum of 1. This means that
the Initiator can only use this action once, letting it choose only one and at
least one of the proposals.

The actions accept- and reject-proposal have one particular precondition
different than the trivial ones: Wait(cfpAttended). It restrains the sender
from going on, until all conversations it is managing bring about the propo-
sition cfpAttended, which is achieved by any reply-actions to ¢fp. This con-
struct makes the Initiator wait for all Participants to react in some way to
the ¢fp and allows it to proceed to accept and reject after all participant
have replied.

A wait condition like this one is a key feature introduced by our meta-
model, which was not present in previous proposals. It represents an in-
flection point in the protocol, where all conversations that in principle run
parallel and independently of each other are held and synchronized by the
Initiator. It is the statement in the protocol that guarantees that a decision
will not be announced before participants provide their proposal, if they do
it within the designated time. A protocol can only specify aspects related to
the conversation that are visible from the outside. Although it prohibits the
Initiator sending an accept before all propose and refuse have been received,
it cannot force the Initiator agent to internally decide ahead of time and
before all replies have been received. Such a ruling is considered to be out
reach of an interaction protocol model.

Once the Participant has been accepted and a prop-Successful is being
expected, it can perform an inform-result, honoring the Commitment (mak-
ing it false), since this action brings about accept-attended and more im-

112

P cfpAttended

P C(prop-Successful <= accepted Partic
P C(prop-Evaluated Intiator->Participan,
P ~C(cfpAttended,Participant->Intiator,

O reject-proposal
© Intiator

C Participant
Do

DN

P Wait(cfpAttended)

= -accepted

+ +prop-Evaluated

O accept-proposal

intiator
———>QParticipant

&1

1

= -C(prop-Evaluated,intiator->Partic.

P C(prop-Successful <= acceptedPa..

P ~C(cFpAttended Participant->Intia.
P C(prop-Evaluated, ntiator->Partici

P ~accepted

P ~C(prop-Evaluated,Intiator->Partici
P prop-Evaluated

P cfpAttended

P C(prop-Successful <= accepted,Par.
P ~C(cfpAttended,Participant->Intiat.

P C(prop-Successful <= accepted,Par.

P Wait(cFpAttended)

P +C(cfpAttended,Participant->Intiat:
P C(prop-Evaluated, intiator->Particip

= -accept-Attended
+ +prop-Evaluated
+ +accepted

Qinform-result
O Participant
Qintiator

Qo

ON

P accepted

P -accept-Attended
+ +prop-Successful
+ +accept-Attended

P prop-Successful
P accept-Attended
P prop-Evaluated
P accepted
P cfpAttended
P -C(prop-Evaluated,intiator->Participa,
P ~C(cfpAttended Participant->Intiator,
P +T(30 => Falure)
P_~C(prop-Successful Participant->Intia.
Ofailure
QO Participant
O intiator
Qo
ON

P accepted

P ~accept-Attended

P prop-Evaluated

P accepted

P cfpAttended

P ~C(prop-Evaluated,Intiator->Partici
P ~C(cfpAttended Participant->Intiat:
P T(30 => failure)

P C(prop-Successful,Participant->Intia.

P -accept-Attended

P ~prop-Successful
P accept-Attended

P prop-Evaluated

P accepted

P cfpAttended

P ~C(prop-Evaluated,Intiat or->Participa,
P ~C(cfpAttended,Participant->Intiator,
P T(30 => failure)

P C(prop-Successful Participant->Intiat.

= -prop-Successful
+ +accept-Attended

113

Legend

N Proposition-
name

© SpeechAct

P Proposition

£ Role

@ Timeout

£ Commitmant

2> Conditional
Proposition.

3 wait

[state

Description

Figure 7.3: Contract Net protocol modeled as a Declarative Protocol. Sec-

portantly prop-Successful. Performing failure would make accept-Attended
true and prop-Successful false. The second one, dishonoring the Commit-
ment accepted by the Participant, producing a State Description in which
the Commitment to bring about prop-Successful is valid, but its objective,
prop-Successful is invalid. A clear situation, in which the agent has broken
its promise. This is an ending State Description and therefore the protocol

does not define what is to be done with agents that end up in such a situa-
tion, but provides at least a concrete connection point where further actions
or protocols can be connected to specify how to proceed in those situations.

Other ending State Descriptions are those after the actions: inform-
result, reject-proposal and refuse. These State Descriptions along the start-
ing State Description located before the action c¢fp are the connection points
of this protocol to other protocols in a composition scenario.

The next example shows how protocol composition works, highlighting
some of its advantages.

7.2 Industrial Use Case: Saarstahl

The following is an industrial use case that defines a real-life business process
to show how our tools perform in a more concrete and realistic scenario. This
use case is part of a European research project called SHAPE (Benguria,
Berre, Elvesaeter, Hahn, Jacobi, Landre, Sadovykh & Stollberg 2009), where
agent oriented software development was used, among other approaches, to
model business processes.

This use case provides a real-life scenario, proposed by Saarstahl AG
(Saarstahl AG n.d.), a Steel producer in the region of Saarland, Germany
and partner in SHAPE. This use case has been created specially to evaluate
service-oriented modelling and implementation tools and is therefore very
suitable to test our proposal.

In the following sections, the company, the project, and the use case will
be presented. After that, the way this use case is modelled and implemented,
using the tools provided, as part of this thesis, will be shown.

7.2.1 Research and industrial partner: Saarstahl AG

Saarstahl AG(Saarstahl AG n.d.) is a steel producer based in the region of
Saarland and more precisely in the city of Volklingen, with other produc-
tion sites in the nearby cities of Neunkirchen, Burbach and Nauweiler. It
specializes in high quality steel long products like wire rod and steel bars.

The complete production process inside Saarstahl involves a big supply
chain which is depicted in Figure 7.4. Its Steelwork allows Saarstahl to
produce steel alloys out of pig-iron provided by an external supplier. Iron
is converted into various kinds of steel alloys and casted into cast blooms of
different formats. These can be processed in rolling mills to produce other
products like wires and steel bars. The products can also be subjected to
other supplementary treatments like arrangements, pickling, annealing and
cutting which modify them in form, precision, or surface properties.

The variety of products are supplied to customers in a wide range of
branches, which go from automotive suppliers, through energy producers to
aerospace industry.

114

Figure 7.4: Saarstahl Supply Chain

Saarstahl’s production chain is characterized as different from the main-
stream supply chains, because it has a very reduced amount of input sources
and a wide variety of results. In principle, there is only one source of material
for its products: pig iron (ignoring the various other products necessary to
produce steel alloys). As Figure 7.4 shows, from the same product a variety
of products can be produced by combining different parts of its production
sections. What is not possible to represent in this figure, is the path prod-
ucts have throughout their production. Different orders are put together to
form batches for a specific step in their production. Afterwards, they are
separated to take each order to its subsequent production step. Here they
are put together with other orders that share that same requirement. The
production paths of the different items form a labyrinth that is not straight-
forward to manage. For instance, pig iron is converted to steel alloys in
charges that weight around 170 tons. Many different items will be produced
from this charge of steel. Once it is casted, parts of this charge will move on
through different paths for further production. Some of these paths will, for
instance, join other steel products with different characteristics that need
the same treatment. These are then batched together in this stage of pro-
duction and separated again afterwards, for each to continue on in its own
path.

115

Looking at the production chain from a global point of view, Saarstahl,
being a raw material supplier, is at a position at the beginning of the produc-
tion chain and hence, is severely affected by the bullwhip effect (Forrester
1969), which happens when participants in a production chain have extra
stock to prevent problems with demand fluctuations. As a result, these
fluctuations increase as we move back in the supply chain, causing big de-
mand fluctuations for suppliers at the beginning of the chain. Saarstahl
sees, in new technologies, the chance to improve their supply chain man-
agement systems, in order to enhance their capabilities of coping with the
bullwhip effect by having more flexibility and reducing their need to add
precautionary stock.

These conditions result in a production scenario, not easy to model us-
ing conventional industrial engineering techniques and in some cases, new
solutions are required. In some of them, using multi-agents technology has
provided advantages.

Saarstahl enjoys of a high level of competence in the field of steel alloys,
because of its continuous commitment to the highest technology and knowl-
edge in the field. A symbol of its dedication to remain in the leading sector
of its branch is, other research projects carried out related to the research
in this thesis:

o AgentSteel (Jacobi, Leén Soto, Madrigal Mora & Fischer 2005): multi-
agent technologies in the steel production, preliminary research on
usage of MAS technology in the management of supply chains.

e DISPO (Jacobi, Leén Soto, Madrigal Mora & Fischer 2007): A multi-
agent system for planing and monitoring production in a steelwork.

Due to their interest in improving its production management, Saarstahl
participated in SHAPE (Benguria et al. 2009), a European research project
which will be presented next:

7.2.2 SHAPE: Semantically-enabled Heterogeneous Service
Architecture and Platforms Engineering

Shape (Benguria et al. 2009) is an European project (EC FP7) targeted
at providing an integrated development environment (IDE) for SOAs using
MDA techniques. The idea is to provide innovative service engineering meth-
ods characterized by being flexible and customizable like adaptive systems,
semantic technologies and agent technologies.

The motivation for this is that modern organizations in the industrial
sector are forced to improve their production process, in terms of efficiency,
in order to maintain their position in the market. Keeping a superior product
quality alone is, by far, not enough.

116

At the level of computer systems supporting these processes two clear
trends have been established: SOA and MDA. The first one helping inte-
gration between organizations and heterogeneous systems. The second one
is related to the way process are designed, with different aspects treated in
different layers, from abstract business process models to concrete imple-
mentation models. The two-fold structure of this thesis matches these two
trends.

Its modeling aspect is based in SoaML (Service oriented architecture
Modeling Language 2008), a standard meta-model for SOAs driven by OMG.

7.2.3 Description of industrial Use Case: Saarstahl

The tools and techniques provided in the scope of SHAPE have been tested
and evaluated in Saarstahl AG with the goal of improving the integration
of legacy systems, isolated solutions and new agent-based technologies and
other types of solutions that compose their process support systems.

Saarstahl’s internal production chain is very large. It exceeds the exten-
sion planed for project SHAPE and therefore a sub-part of it was selected
to be used as a use case: the interaction between steelwork and rolling mills.

Most of what the steelwork produces is to be processed at rolling mills.
The stocks placed between the two, steelwork and mills, are called semi-
finished product. Coordination between these two phases in production
represents a vast part of the coordination work done in Saarstahl. The
objective is to coordinate the semi-finished product in such a way that it is
always produced close to when it will be needed in the mills, but without
delaying its process beyond the contracted delivery date.

Saarstahl System Landscape

The landscape of systems involved in the use case is shown in Figure 7.5
(Raber 2009), where the three parts of the production chain are represented
by the following computer systems:

e Steelworks Planning System: it is composed of production data
management systems and planning systems which aim production plan-
ning at different levels of abstraction. From preliminary distribution
and sequencing of orders in charges to detailed low level scheduling of
the production in the steelwork (Jacobi et al. 2007).

e Semi-finished Product Management System: it is in charge of
managing the semi-finished product resulting from Steelwork, waiting
to be processed in the mills and managing the warehousing. Every
time an item is requested to be treated in the mills, matching semi-
finished products are looked for. In case there is no material in stock,
the request is forwarded to the steelwork.

117

Steelworks send melting data Seggg&i?Ed -
Rlanning po=-=n=m=msmsmsmsososneneneoenes > Management SFPDE

S R R T System
'
:

exchange ‘ 1
information; exchange information ' .
T e 1 | B 1
L vy =
1
oQbB - !
—_ Order '
Management .
OrderDB H

< System | release orders

e 1+ forrolling

MPDB Y Y :
~— i i i
. | exchange .
activate orders | ! information H
for production ! | !
: y !
1
1

- Rolling

Datah
' atabase access
RPDB Management (---------------o---- '

------ >
- System Interaction

Figure 7.5: Saarstahl System Landscape (Rabber 2009)

¢ Rolling Management System: it schedules orders in rolling cam-
paigns: products that share the same type of process are scheduled
together to form a campaign. Campaigns are performed in cycles that
minimize production-settings changes, which, in the case of rolling
mills, involve relevant costs.

The name of the databases they access is also included in the figure.
There is a forth system that takes part in the landscape of the use case: the
Order Management System: it is mainly required to manage deadlines
and product specifications that have been agreed upon with clients.

This scenario involves very heterogeneous systems, not only concerning
technology, but also age. Some java based cutting edge MAS-based planning
systems like MASDispo coexist with legacy systems, some of them being
very old, for instance: COBOL systems form part of the order manage-
ment system. Communication is also done using different, non-standardized
interfaces based on FTP, XML file exchanges and even bare TCP packages.

The objective of the use case in the project SHAPE is to prove the
ability of model driven SOA to integrate heterogeneous systems. Saarstahl
aims at implementing a modern integration of its systems that matches its
requirements.

118

Use case story line

The process to be modelled starts with order requests being posted by clients
to the sales department. These orders are normally composed of different
goods and have to be broken down into in its production components. The
same components of different orders are collected in sets big enough to com-
pletely exploit the production capacity of aggregates.

Collected sets of goods of the same kind that are to be produced to-
gether are called charges in the steelwork and campaigns in the rolling mills.
Charges are in fact 170 tons of melted steel contained in a ladle and are the
optimal working unit for the aggregates in the steelwork. In the steelwork,
the pig iron in the ladle is turned into the desired steel alloy and casted to
solid bars. Campaigns instead, are sets of solid goods that are treated in
row, one after the other, in order to take advantage of the settings of the
treating aggregate. Changing settings normally involves added costs, since
it means temperature adjustments. Minimizing these adjustments (to only
one or two every day) improves efficiency significantly. Some campaigns can
reach a span of a week more or less.

The sales department forwards the components to the production plan-
ning department to find out if the order can be delivered by the deadline
agreed with the client. This is done by checking coarsely if resources are
still available, which means, looking for either; available inventory of semi-
finished goods that match the requirements, or available space in the corre-
sponding working sets in the near future.

Once it has been determined that the request can be served and the
order is placed, concrete order planning is carried out by assigning the found
inventory to the order, or assigning concrete allocations for the goods.

First, melting jobs are scheduled in the Steelwork for all the material
needed to complete the order that could not be supplied with existing stock.
Once the material is produced, it has to be tested to meet the requirements.
If that is not the case, the charge is left in the semi-finished warehouses as
available stock for future orders and production of new material is scheduled
again.

Once the amount of material is completely available to start milling, the
order is schedule in the next possible campaign, which, for the terms of this
use case, concludes the story line.

7.2.4 Use case modelled using Declarative Protocols

The previous story line has been used to develop a protocol model for the
Saarstahl Use case. The approach has been divided in two parts:

e A pre-order phase (shown in Figure 7.8), in which a client asks whether
some kind of order is possible.

119

e If the first part comes to an agreement, an order phase is started by
the client (shown in Figure 7.8), in which it places the concrete order.

The protocol was implemented using two protocol models used as con-
struction bricks:

e Order: the order protocol is a non standard protocol created to model
the interactions between a client, sales, and planning departments in
Saarstahl.

e QuerylIf: is a FIPA standard protocol used to request some infor-
mation or task? In our case it has been used to model the queries
Planning does to the Semi-finished, Steelwork and Mills departments.
In the second part it is also used to instruct each department to pro-
duce their part of the order as agreed in the first part of the protocol

This model has been produced making use of the composition capabilities
of our meta-model. It is illustrated in the following set of figures.

Composition model of the first part

As shown in Figure 7.8, on the top left is a protocol called Order_preorder.
The meaning of the name is; it is an Order protocol used in the context of
a pre-order. In this layer, we are only interested in the connection possibil-
ities of the protocol. In the figure, the various possibilities are additionally
annotated to understand their meaning.

The Order_* protocol is a protocol specifically created for this use case
and it involves 3 roles: client, sales and planning. When it is started, a client
asks a sales agent if it is possible to produce a certain order. Sales requests
confirmation from the planning agent. At this point, represented by the
state with the label “Planning Consulted”, an ending State Description is
defined in order to be able to connect here: protocols that enable planning
to resolve the information request. It does so by performing a sequence
of queries to the different departments of the factory. Depending on the
answers it collects, it confirms or denies the possibility of producing the
order.

On the left, there are three entry points or starting State Descriptions.
At the very top, the actual entry point of the complete model. On the right
there are several exit points of the protocol. At the top right: a group of
four State Descriptions that represent failure situations caused by the sales
or planning agents. Bellow that, there are three other exit points. The first
of the three is the state in which the planning agent has been consulted
and it moves on to the sequence of queries it does to the components of the
factory.

Once the queries are finished, the conversation is lead to the two other
entry points on the left of Order_preorder. One starting State Description

120

4 Order_preorder
-1 Preorder I

Entry Preorder

4+ Querylf_SemiFinished

query nok AFfirmative 5 H_>
done
'+
s

ignored

Consul..

&N

0 | Mot Preorder
Tl 7| possible negative

I T IITY

4ﬂ PossibLeE‘[Planning AN

done

4 Querylf_Steelwork
query notj Affirmative E‘[H_> —
Freorder H_) _

‘ + Querylf_Mills

guery not Affirmative 5 H_>
done
>
Faled = [P

* Legend

+ Quenylf Protocol
StateDescription Binding

—4 Starting StateDescription
[+ Ending StateDescription
—D'[Annotation

Figure 7.6: Saarstahl Use Case project diagram. First part.

is for when the production of the order has been reported as possible and
the other one for when it is not possible. Analogously, there are two other
ending State Descriptions, one to represent the situation in which sales has
confirmed the preorder as possible and one for when it is not possible.

In case the order is positively confirmed, the protocol composition leads
the conversation to the next part, represented with a big asterisk as a con-
nection point.

On the right hand side, again, are the sequence of queries that planning
does to the three departments in the factory. Once planning is consulted in
the Order_preorder protocol the conversation is lead to the Querylf_SemiFinished
protocol. This is one of three identical Querylf protocols that are used to
interact with each factory department. Depending on the answer received

121

from SemiFinished, the conversation is lead to query the Steelwork, in case
there is not enough semi-finished product, or directly to Mills. After query-
ing the Steelwork and getting a positive answer, the conversation is lead to
the mills query. Otherwise, it is lead to the “not possible” entry point in
the Order_preorder protocol. After querying the Mills, the conversation is
taken to the “possible” and “not possible” entry points of the Order_preorder
protocol, depending on the answer of the Mills being affirmative or not.

This first part already shows the advantages of a protocol meta-model
that provides modularization possibilities. The queries section has been
implemented using the same protocol definition three times, once for each
factory department. Also, being able to modify the connections between the
protocols makes the model very flexible and scalable.

As it will be shown next, the second part takes even more advantage of
this approach, since it reuses the same models to represent its process.

Composition model of the second part

The second part, as can seen in Figure 7.7, is a repetition of the first part. In
this case, only the contexts are changed in order to differentiate them from
the first part, but the protocol “types” are the same: one Order protocol and
three Querylf protocols. In this case a semantic difference has to be clarified
concerning the Querylf protocols: they do not represent a typical query
situation as those that appeared in the first part, but actually represent
assignation of tasks to each of the factory departments. Since the possibility
of producing the order has been confirmed in the first part, there should not
be any impediment to produce it. Even so, the protocol has been modeled
using the Querylfs, to provide a mechanisms to communicate if something
goes wrong in the production of the order.

The connections and structure of the second part is identical to the first
part, it has been labeled differently to those in the first part to tell them
apart: in this case the order protocol is called “Order_order” since it actually
orders a product, the Querylfs are suffixed with a “2”, to mark them as the
ones used in the second part.

Following the connection represented by the asterisk on top of the fig-
ure, one can see that the second part starts also through the same State
Description. Here, the conversation takes the same course, as it does in the
first part. The ending State Description in the Order_order protocol labeled
“Order positive” is the actual ending State Description of the composed
protocol, where the whole conversation came to a positive end: the product
has been delivered.

122

)

4 Order_order 4 Querylf_SemiFinished2
Order Order guery nok Affirmative 5 H_)
Entry lgnored
—

done
B
ﬂ Possible Plannig
\—B[Consul...
+ Quenylf_SteelWork2

Hew
Mot Order H_)
_,_ﬂ possible possitive query not AFﬁrmatNeE{ H_)
done
MNegative
P - iR
155 ik i

T ITTY

+ Querylf_Mills2

querynotﬁ AFFirmativeE[

done H_)

"
Failed O B

Legend

4 Quenylf Protocol
L StateDescription Binding

—4 Starting StateDescription
[+ Ending StateDescription
—B[Annotation

Figure 7.7: Saarstahl use case project diagram. Second part.

Protocol view of the Order_order protocol

As already mentioned, the composed protocol is the result of recombining
two types of protocols, the Order protocol and the Querylf protocol. In this
section we will have a look at the details of the Order protocol by looking at
its protocol diagram. Due to reasons of space, the diagram has been divided
again in two figures: Figure 7.8 and 7.9.

In Figure 7.8 one can see at the top the concepts used to define the
protocol: a set of simple Proposition Names, Timeouts and Commitments
that will be explained next (the suffix _order will be omitted):

e orderPlaced: That the order has been placed.

e orderAttended That the order has been attended, either by accept-

123

N orderPlaced_orden
N orderAttended_order
N corfirmed_order

N orderlgnored_orden
N possible_orden

[(® 20 ignoreord.. |

N consulted order
N provide_order

% C(orderAttended_order,Sales_order->Client_order, T(20 = ignoreOrder_order)]

P ordertttended_order

s

P -orderPlaced order

CplaceOrder_order

Qcli r

=005
Qo
On

P -arderPlaced_order

= -orderignored_order
= -consulted_order

+ +C(orderAttended_or...
+ +orderPlaced_order

T

o

P -orderlgnored order
P aconsulted_order

P C(orderAttended_or...
P orderPlaced_order

P consulted_order
P aconfirmed_order
P -~orderlgnored_order

P C(orderAttended_or...

P orderPlaced_order

G consult

P -orderlgnored_order
P -consulted_order

P ClorderAttended_or...
P orderPlaced_order

= _confirmed_order

4 +consulted_order

P orderAttended_...

P provide_order

P confirmed_order

P -orderlgnered_o...
P ~C(orderAttende...
P orderPlaced_order
P possible_order

Csal der

Qo
N

Caccept_order

P confirmed_order

P —orderlgnored_order
P C(orderAttended_or...
P orderPlaced_order

P possible order

P -~orderlgnored_order

P C(orderAttended_or...

P orderPlaced_order
P possible_order
P ~confirmed_order

CJ confirm
D Plannine
Sale
Qo
N

P confirmed_arder

P -orderlgnored_order

P ClorderAttended_order..
P orderPlaced_order

P possible_order

+ +orderAttended_order
4 +provide_order
o

P -orderlgnored_order

P ClorderAttended_order,...
P orderPlaced_order

P possible_order

P —confirmed_order

+ +confirmed_order

Figure 7.8: Order protocol. First part.

ing or refusing it.

e confirmed: The order has been confirmed by the factory.

e orderlgnored: The order has been ignored.

e possible: Production was possible for the order.

Legend

N Proposition-
name

JSpeechAct

P Proposition

% Role

B Timeout

& Commitment

7% Conditional
Proposition...

3 Wait

[T state

Description

e consulted: Planning has been told about producing the order.

e provide: The order has been provided.

124

e Timeout(Ignored) Timeout for Sales to answer the order request of
the client.

¢ Commitment(orderAttended, Sales—Client): the Commitment
to attend the order request of the client.

The diagram has been enhanced with three vertical rectangles in the
background (light red) representing a common concept in modeling interac-
tions, called “swimming lanes”. They help to better understand which role
has the turn in a specific State Description, placing the State Description in
the swimming lane of the corresponding Role.

The protocol starts on the top left, with a situation in which the order
has not been placed (—orderPlaced). In this case, a Client can place an
order by making use of the action placeOrder, which makes +orderPlaced
true, also enables the Commitment to attend the order (orderAttended)
and establishes that it has not been ignored (—orderIgnored’) or consulted.
This leads to a State Description in which Sales can react and forward the
consult to Planning. In the case of “preorder” this is indeed a consultation,
but in case of the “order” (the case in the Figure), it is to be understood
more like the command to start producing the order.

This leads to a State Description that has a particularity: it was desig-
nated as an extra ending State Description. Even though there is an action
that starts from this State Description (something ending State Descriptions
normally do not have), this one has been specially marked as such, in order
to be capable of connecting other protocols at this point in the conversa-
tion. This State Description is the ending State Description annotated as
“Planning Consulted” in the composition view.

In this figure, there is on the right hand side another starting State
Description (Annotated as “Possible” in the composition view in Figure
7.6). It describes a situation in which the order has still not been ignored
(morderIgnored), the Commitment to attend the order is still valid, the
order has been placed and most importantly: the order has been designated
as possible (in the case of _preorder it means indeed that it is possible to
produce it, in the case of _order it means it was successfully produced), but
it has not been confirmed (—con firmed). The action confirm lets Planning
inform Sales about this fact, making con firmed true. At this State Descrip-
tion, Sales can accept the order (or in the particular case of _order to inform
the successful completion of the order), making provide true.

Exactly the opposite situation is described in the last part of the protocol
(Figure 7.9): another starting State Description (annotated as “Not possi-
ble” in the composition view, Figure 7.6) represents again a situation like
the one previously described, with the only difference that it is not possible
to attend the order (—possible). In this case Sales is only capable of replying
with a refuse message, making only orderAttended true, but not provide.

125

P orderAttended_or.. P corfirmed_order P -orderlgnored_order
P confirmed_order P ~orderlgnored_order P ClorderAttended_or...
P -orderignored_ord... P ClorderAttended_... P orderPlaced_order
P ~C(orderAttended... P orderPlaced_order P -possible_order
P orderPlaced_order P -possible order B -confirmed_order
P -possible order
Crefuse order Cdeny
r S Plans
4]
SN
P confirmed_arder P -orderlgnored_arder
P -orderlgnored_order P ClorderAttended_ord..
P Clorderattended_or... P orderPlaced_order
P orderPlaced_order P -possible_order
P apossible_order P -confirmed_arder
+ +orderAttended_order + +confirmed_order
ClignoreOrder_order Legend
e sales N Proposition-
e e = g nar‘%e
SR, R L c
5 hact
P orderlgnored_order -é—-oo Qspeec) ‘c
P confirmed_order P Proposition
P ClorderAttended_or... N ¥ Role
P orderFlaced_order P orderPlaced order 8 Timeout
P apossible_order P ClorderAttended ord... & Commitrment
P ~orderlgnored_order 7% Conditional
Proposition..,
+ +orderlgnored_order 3+ Wait
[T state
Description

Figure 7.9: Order protocol. Second part.

Bringing about order Attended makes the editor automatically disable the
associated Commitment. The result of this can be seen in the ending State
Description on the top left of the figure.

On the lower part of the figure, one can see the action associated with
the Timeout related to attending the order. If Sales takes longer than what
the Timeout specifies, then the order is regarded as ignored by the client.
This is modeled using the action ignoreOrder, which is enabled in almost any
situation where Sales is active and correspondingly produces many different
results, depending on the state the conversation was in. For the purpose of
the protocol model, the fact that the order has been ignored is the only thing
relevant if this happens. That is why all these ending State Descriptions are
collected in a Stack. These ending State Descriptions are also collectively
shown in the composition Diagram and annotated with the text “Order
ignored”.

Protocol view of the Querylf Steelwork protocol

The rest of the composed protocol is done using 6 different kinds of “QueryIf”
protocols: one for each factory department: Semi-finished, Steelwork and
Mills in the first part (pre-order) and the second part (order).

126

N affirmative_SteelWork FR_Sfail stee |
N Failed_Steelwork |J3 affirmative_Steelwork
N responded_Steelwork -

% C(responded_SteelWork,Requester_Steelwork->Informer_Steelwork, T(20 => Fail_Steelwork))
P responded_Steelwork

T -

P -responded_Steelwork P -failed_Steelwork
P -C(responded_steelwork... P C(responded_Steelwork,R...
P -responded_SteelWork

Q2 querylF_Steelwork

P -responded_Ste...
P ~C(responded_St...

= -failed_Steelwork
+ +C(responded_ste...

P responded_SteelWork
P affirmative_SteelWork
P -failed_SteelWork

P -C(responded Steelw...

P -Failed_Steelwork
P C(responded_Steel...
P -responded Steelw..

P responded_SteelWork
P -affirmative_SteelWork
P -Failed_SteelWork

P -C(responded Steelw..

+ +responded_Steelwork

+ +(aFFirm‘ative75teelW‘.‘ Legend
COFail_Steelwork N ﬁra%e‘gsitionf
Qlnformer_Steelwork G SpeechAct
QRequ ork P Propasition
Qo = ¥ Role
O ® Timeout
P Failed_SteelWork @ .
P C(responded_Ste... P -failed_Steelwork ommitment
P -responded Steel.. P Clresponded_Steelwork,... 7% Conditional
P -responded_SteelWork Proposition...
I Wait
+ +failed Steelwork [T state
I Description

Figure 7.10: Querylf protocol

All these protocols share the same internal structure. Figure 7.10 shows
the protocol diagram of the Querylf done to the Steelwork in the first part
of the composed protocol.

As usual, on the top are the declaration of Proposition Names used in
the protocol:

e affirmative: the answer to the query is affirmative.
e failed: the Informer failed to answer.

e responded: the query has been responded to, regardless if affirmative
or negative.

e Timeout(fail): Timeout to respond before a fail is assumed.

e Conditional(affirmative): a conditional proposition name, in this
case without consequences. It means that, based on this proposition,

127

two conditions are to be calculated: one for af firmative and one for
—af firmative.

¢ Commitment(responded, Informer —Requester): the Commit-
ment from the Informer to the Requester to make responded true, in
other words, to react within the expected time, before a “fail” is as-
sumed by the Requester.

The protocol starts in a State Description where nothing has been re-
sponded and there is no expectation of something being responded. By
making querylf, the Requester enables the Commitment to attend the query
and at the same time makes it clear that it still has not failed (—failed).
After that the Informer can reply with an informlf, which has two possi-
ble outcomes: one with and one without negation. The action fail can be
actively sent by the user or is assumed, if the Timeout runs out of time.

The starting State Description on the top left is the one annotated with
“query not done” in the composition view. The two results of informlif
are annotated with “Affirmative” and “Negative” and the last ending State
Description at the bottom left is represented by the one annotated with
“Failed” in the composition view.

Running the Saarstahl Use Case

The model represented by the diagrams presented here can be transformed
to executable code for Jadex. The resulting code has to be completed with
the details about the concrete scenario, like the deployment of actual agents
that take the roles (made to capabilities) and the actual content of the
messages, among other details.

Running the resulting code produces the diagram in Figure 7.11. This
is the particular case in which Semi-finished does not have enough stock
to supply the order and the Steelwork is requested to provide the necessary
steel. Once everything has been confirmed to be possible, the client proceeds
to place the actual order, which repeats the whole interaction again, this
time to produce, in fact, the order.

The diagram is organized again in a “swimming lane” pattern, where
each agent gets a column: the order of the agents cannot be customized and
therefore each name will be explained next. Note that each name ends with
a 1 to represent the idea that it is a concrete and particular instance of an
agent. The name of the platform is “SaarstahlUseCase”

e Client1@SaarstahlUseCase
o Mills1@SaarstahlUseCase

e Planningl@SaarstahlUseCase

128

GEe fen domm Sy EE S

1 pIaceOrliIer_preorder {Do you have 1 ton Ef Steel?)
.

consult {Can we deliver 1 ton of Steel?...]

2
5 querylf_SerriiFinished {1 ton of Steel in stock? }
—>
4 informlf_SemiFinished {No, we don't have enough Steel... }
5 querylf_SI.teeIWurk {Can you produce enuqh steel?)
.

6 informlf_StEeIWork {Yes, we can produce the Steel.... }
T,

querylf_Mills {Can you mill 1 ton of Steel? }
«— |

7
a informif_Mills {Yes we can mill 1 ton of Stee...}
o confirm {We can deliver 1 ton of Steel.... }
10 accept_prlearder {Yes, we can produce 1ton of 5...)
T,
1 pIaceOrl:IIer_nrl:Ier {Ok, give me that ton of Steel.... }
.
consult {Proceed with the order of Stee...)
12 — |
13 querylf_SemiFini?hed2 {Deliver your part of the order... }
—>
14 informif_SemiFinished2 {We delivered nulr part of the o...)
15 querylf_ISteeIWt]rk2 {Pour the rest for this order. }
.
16 infurmlf_SJteeIWnrkZ {We have produced thle Steel.)
T,
querylf_Mills2 {Mill this ton of Steel. }
17 — 1
informif_Mills2 {We milled the ton of Steel. }
18 I —
10 confirm {The order has been produced. }
-0 accept_tlrder {(We delivered the ordered Steel... }
)

Figure 7.11: Interaction Diagram of the Saarstahl use case.

e Salesl@SaarstahlUseCase
e SemiFinished1@SaarstahlUseCase
e Seelworkl@SaarstahlUseCase

In each line a message interchange between two agents is represented
by an arrow, which is annotated with the name of the Speech Act and its
contents.

A detailed explanation of what happens in each line follows:

1. placeOrder_preorder: Clientl asks Salesl: “Do you have 1 ton of
Steel?”

129

10.

11.

12.

13.

14.

15.

16.

17.

consult: Salesl consults Planningl: “Can we deliver 1 ton of Steel?”

QueryIf_SemiFinished: Planningl queries SemiFinished1:“(Do you
have) 1 ton of Steel in Stock?”. SemiFinishedl is now expected to
check its stock and answer, whether it can provide the steel for the
order or not.

InformlIf SemiFinished: SemiFinishedl informs Planningl: “No,
we don’t have enough Steel”.

Querylf_Steelwork therefore Planningl queries Steelworkl: “Can
you produce enough Steel?” so that there can be enough Steel to
serve the order.

InformlIf Steelwork: Steelworkl informs Planningl: “Yes we can
produce the steel”, letting Planningl know that it now just needs to
confirm with mills.

QuerylIf Mills: Planningl queries Millsl: “Can you mill 1 ton of
Steel?”

InformlIf Mills: Millsl informs Planningl: “Yes, we can mill 1 ton
of Steel.”

confirm: knowing that it can be produced as desired, Planningl pro-
ceeds to confirm Salesl: “We can deliver 1 ton of Steel”.

accept_preorder: this lets Salesl accept the order to Clientl: “Yes,
we can produce 1 ton of Steel.”.

placeOrder_order: Client]l places the order to Salesl: “Ok, give me
that ton of Steel.”

consult: Salesl consults Planningl: “Proceed with the order of Steel.”

QuerylIf SemiFinished2: Planningl queries SemiFinished1: “Deliver
your part of the order”.

InformlIf SemiFinished2: SemiFinishedl informs Planningl: “We
delivered our part of the order.”.

QuerylIf Steelwork2 Planningl queries Steelworkl: “Pour the rest
of the order.”

InformlIf Steelwork2: Steelworkl informs Planningl: “We have pro-
duced the Steel.”.

QuerylIf Mills2: Planningl queries Mills1: “Mill this ton of Steel.”

130

18. InformIf Mills2: Millsl informs Planningl: “The order has been
produced.”

19. confirm: knowing that it is complete, Planningl proceeds to confirm
Salesl: “The order has been produced”.

20. accept_order: this lets Salesl deliver the order to Clientl: “We de-
livered the ordered Steel.”).

The generated Jadex agents are standard BDI Jadex implementations
and hence can be run over the Web Services enabled platform produced
in section 6.1. Providing an implementation of the protocol model using
Web Services. The transparency of the Web Services tool lets us use the
produced code with very little changes: basically, agents have to specify to
use SOAP as message encoding, to use the Web Services communication and
that the deployment details were adjusted, to match the different scenario:
addressing has to be updated because the agents are in different platforms.

7.3 Summary

Due to the amount of details that show up in a normal situation using the
models and tools part of our work, it was necessary to dedicate a Chapter
specially for examples where the complete usage scenario could be presented.
We have provided two scenarios: a classical use case for agent interaction
protocols: the Contract Net and an industrial use case designed to test
modelling and SOA realization tools for business processes.

The Contract Net showed among other details, the necessity of hav-
ing the possibility to manage parallel conversations that have something in
common. Our model provides clear and concrete features to specify, where
a conversation can run freely in parallel to others, and where a participant is
expected to wait for others to respond in order to continue the conversations.

The industrial use case is provided by SHAPE, a European Research
Project this thesis is part of. It was specified by Saarstahl, our industrial
partner, to use SOA and MDA to integrate their very heterogeneous system
landscape. Our example shows that it is capable of modelling and realizing
the use case with more ease and reusing vasts amounts of concepts. The
examples prove our meta-model to be successful in providing modularity
and flexibility to the development of models and of being capable of pro-
ducing very suitable BDI-agent implementations for the modelled business
processes.

131

Chapter 8

Obtained Results

After having reviewed the state of the art in the area of agents and Web
Services integration and modelling of interaction protocols, we proposed
our solution for these problems and showed how these perform using some
examples from the multi-agents community and the industry.

The present section will explain in the detail the results achieved during
our work:

e Study of Web Services, FIPA agent platforms and a survey of contri-
butions around the idea of integrating these two.

e Study of Business process modelling and different approaches found in
literature.

e An integrating solution for FIPA Agents and Web Services was pro-
posed based on communication standards mapping.

e A consolidating, modular and reusable meta-model for interaction pro-
tocols was defined

e Executable implementations that make use of the Web Services and
FIPA-Agents integration, can be produced automatically out of mod-
els.

These results will be explained in detail in the following sections. They
have been organized in the two areas of work, Agents and Web Services
integration first, and modelling of Declarative Protocols second. Finally the
results achieved by combining these two will be described.

8.1 Web Services and FIPA-Agents integration

In the first part of our work we showed how the problem of integrating
(FIPA) agents and Web Services can be solved. In opposition to other pro-
posals, our integration is based on the messaging framework of FIPA agents.

132

We found out that there were not that many differences between both com-
munication architectures, since both are services oriented architectures. We
took advantage of this synergy and proposed an integrating architecture and
an implementation that tried, as far as possible, to stay transparent.

Next, the various aspects and results will be described in detail.

8.1.1 Message properties mapping

Integration was achieved based on the integration of both communication
standards: FIPA for agents and WS-Addressing for Web Services. Both of
these specifications define a structure for messages, their envelope.

A mapping of the properties that compose each of these envelopes was
proposed in Section 4.2. It has the property of being bijective, the map-
ping implementation produces semantically the same message envelope after
translating from one standard to the other and back.

8.1.2 Compliance

This mapping enables compliance of messages in both scenarios. The mes-
sages generated out of FIPA messages are compliant with WS-Addressing
standards and vice-versa. WS-Addressing based conventional messages (not
coming from an agent) are successfully handled by FIPA agent platforms.

8.1.3 Mutual Accessibility

Since the FIPA agent platform is capable of sending WS-Addressing com-
pliant messages and receiving Web Services messages and introducing them
to the internal message transport service, the resources, agents and Web
Services, are made accessible to each other.

Agents can reach and be reached by conventional Web Services and vice-
versa. It is possible as well, to let agents communicate with other agents
or Web Services with other Web Services using our proposed way of using
WS-Addressing.

8.1.4 Provided Implementation: JadeWSMTS

Based on our theoretical work, the proposed mapping was implemented us-
ing Jade as FIPA agent platform and Axis2 as a Web Services tool. The
implementation is called JadeWSMTS (Jade-Web Services Message Trans-
port System) and was described in Chapter 6.1

8.1.5 Codec: FIPA Message Envelope using WS-Addressing

As part of JadeWSMTS a codec was implemented. FIPA agent platforms
like Jade use modules called codecs to produce and parse messages. There

133

are codecs for message envelopes and codecs for message contents. In our
case, we provided a codec for the message envelope only. This codec is the
implementation of the mapping defined in Section 4.2. Some of the features
of our tool are implemented also in this codec, like

e mapping of stateless and stateful communication parties
e handling of REST services

e handling of synchronous and asynchronous messaging.

8.1.6 Stateless-stateful communication

Web Services, as most Web based technology, are conceptually stateless and
regarded as resources to be reached through an address. Agents, on the other
hand, are stateful and individually identified. Our tool provides as solution
the introduction of anonymous agents as representation of conventional Web
Services. In Section 4.2 Agent IDs (AID) is added to the WS-Addressing
End Point Reference (EPR) using the extension features provided by WS-
Addressing for this purpose.

As a consequence, it is possible to let agents and Web Services interact
with each other regardless of one being stateless and the other one stateful.
Also, as a result of this, agents intended to be used this way, need to be
adapted appropriately to harmonize with their stateless partners.

8.1.7 REST support

A common way, alternative to SOAP, for Web Services communication is
REST communication, see Section 6.1. JadeWSMTS provides a way for
agents to provide an agent specific address and through this same mechanism
get REST messages.

The syntactical structure of messages to be used in the REST format is
also provided, letting agents interact with other Web Resources using REST
communication.

8.1.8 Transparent for agent Implementation

JadeWSMTS, as already mentioned, was implemented as an Message Trans-
port Service (MTS) for Jade. It provides its own codec and fits very trans-
parently in the framework defined by FIPA and is implemented in JADE.

As a consequence, agent implementations need close to no modifications
in their implementation. Solely, the correct usage of addresses for new in-
teraction partners has to be modified to reach new partners over the Web
and an extra annotation in the FIPA-ACLMessage Envelope. Desiring to
use the Web Services codec is necessary in a message for it to be transported
using the Web Services infrastructure.

134

8.1.9 Possible Complex interaction protocols

The proposed mapping in our solution and its corresponding implementation
lets complex interaction protocols be performed using Web Services stan-
dards. The technology necessary to implement parties capable of performing
such conversations is provided by the multi-agent platform.

Our mapping and tools enable its use over Web Services and also the easy
porting of existing implementations to this new communication mechanism.
This way it is not only possible to implement complex conversations between
Web Services, but also, it is possible to run existing scenarios we have using
the new tools provided here. For instance, we could perform successfully
complex simulated trading implementations. The conversations carried out
by this use case reach scales in the magnitude of hundreds of thousands of
messages. These conversations can be performed successfully, using Web
Services, by using JadeWSMTS.

8.1.10 FIPA Agents and Web Services Integration (AWSI)

The FIPA Agents and Web Services Integration (AWSI) group, dedicated to
the creation of new specifications in this area, gathered different approaches
for integrating agents and Web Services (Greenwood et al. 2007). Our solu-
tion was proposed as a suitable communication framework.

8.2 Declarative Protocols modeling

A meta-model for declarative interaction protocols was defined and imple-
mented as part of this thesis. It was developed as part of an extensive set
of tools our department implemented in the scope of the project SHAPE
(Benguria et al. 2009). Our target was to provide automation in the devel-
opment of complex conversations, specially in the area of business processes.
The declarative meta-model proposed here is one alternative we propose for
the modeling of interaction protocols.

The results achieved will be described next and the examples of Chapter
7 will be used to illustrate the results. Particularly, one fragment of the
Contract-Net use case will be used to highlight some of them. Therefore,
this fragment will be described, more deeply and enhanced, in order to show
the concepts being described in a more clear way.

This is a section of the Contract-Net Protocol shown in Figure 7.3. The
particular part is where the Initiator makes the decision of accepting or re-
jecting the proposal. Its model representation is shown in Figure 8.1. It
shows on top, various proposition names used to describe the elements in
the protocol. On the left are the two roles involved: Initiator and Partic-
ipant. The darker, rounded rectangles, labeled with circled numbers, are
the State Descriptions we want to focus on in this example and the two big

135

N cFpAttended @ C(cFpAttended,Participant -=Intiator)

N sccepted [cFpAttended Legend:
N prop-successful % C(prop-Successful <= accepted,Participant-=Intiator) N PropositionName
3+ cFonttended D prop-5uccessful 2 speechAct
<& accepted i
N prop-Evaluat e P Proposition
o= - f Role
N accept-Attended & C(prop-5uccessful,Participant-=Intiator)
£ Timeout
B 20 reject-prop..])
% Commitmeant
g@ Clprop-Evaluated,Intiator->Participant,T(20 => reject-proposal)) 3I->Wait
3
[prop-Evaluated
@ Clprop-5uccessful,Participant->IntlatorT(30 == Failure))
> prop-successful
[Intiator |[5 cFpattended 1
LI - [? Clprop-5uccessful <= accepted,Participant->Intiatar,never)
[P €(prop-Evaluated,intiator->Participant, T(20 == reject-proposal))
[2 -CicFpAttended,Participant-=Intiator,never)
Q accepk-proposal Qreject-propusal
% intiator '§ Intiator
'$ Participant '§ Participant
1 0
1 ‘N
2 Clprop-SuccessFul <= accepted,Participant-=Intiata... 2 Clprop-SuccessFul <= accepted,Participant-=Intiator,never)
3*Wait(chAttEnded) §|-)Wait(chAttended)
[~C{cFpAttended,Participant-=Intiator,never) [2 ~C(cFpAttended,Participant-=Intiator,never)
2 Clprop-Evaluated,Intiator->Participant, T{20 == rejec... [P C(prop-Evaluated,Intiator->Participant,T(20 => reject-propos...
== -accepk-Attended == -zccepted
+ +prop-Evaluated == -C{prop-Evaluated,Intiator-=Participant,T(20 == reject-pro...
+ +accepted = +prop-Evaluated
[0 -accept-Attended ' 2 ' 2 ~accepted
[prop-Evaluated [P ~Clprop-Evaluated,intiator->Participant,T(20 == rejeck-proposal))
[@ accepted 2 prop-Evaluated
[> cFpAttended [2 cFpAttended
P ~Clprop-Evaluaked,Inkiator->Participant,T(20 => reject-proposal}) 2 clprop-Successful <= accepted,Participant->IntiaterT(30 == Failure))
[P ~ClcFpAttended,Participant-=Intiatornever) [2 ~CicFpAttended,Participant-=Intiatornever)
D T(30 => Failure)
2 Clprop-SuccessFul,Participant-=IntiatorT(30 == Fallure))

¥

Figure 8.1: Example: Accept section of the Contract-Net Protocol

white rectangles are the two possible Speech Acts with their corresponding
resulting State Descriptions bellow.

The representation using swim lanes of Figure 7.3 was changed to a
different layout that focuses more on the StateDescriptions and Speech Acts,
in order to highlight the concepts we want to observe better.

In the first State Description (1) one can see: that a call for propos-
als (cfp) has been attended (cfpAttended), that Participants are committed
to making their proposal successful (prop-successful) if they are accepted,
and that the Initiator is committed to evaluate the proposal of the Partic-
ipant (prop-Evaluated). Finally, the Participant has been freed from the
Commitment to attend the cfp, which is a consequence of bringing about
cfpAttended (not seen in the figure).

Next, our results concerning declarative Protocols and their meta-model
will be described.

136

8.2.1 Development of a meta-model for Declarative Proto-
cols

The first and main result was the definition of a meta-model for Declarative
Protocols. In it, the relations between roles, Speech Acts, and statements
about the state of the conversation, called propositions, were defined in
detail. Speech acts are defined as operations that change the truth value of
propositions. Protocols are defined as sets of Speech Acts that produce a
directed graph, similar to a finite state machine that represent the protocol
model. The graph is calculated automatically and its starting and ending
State Descriptions are used as connection points to establish transitions to
other protocols.

8.2.2 A consolidating meta-model

The meta-model is inspired fundamentally by OWL-P (Desai et al. 2005b)
and consolidates several concepts from different sources:

e Forward Planning
e Finite State Machines
e Speech Act theory and models

e Special proposition types specific to the subject of interaction protocols
from other contributors, like Commitments; concrete definitions of
widely known concepts, like Timeouts; and new contributions that
improve the expressiveness of the models, like conditional propositions
and Cross-Conversational Constraints.

e Interaction Protocols

8.2.3 Reduced ambiguity

In Chapter 5 the Declarative Protocols meta-model was defined formally.
It is a meta-model that consolidates many concepts and contributions from
others, most of them described only abstractly in their corresponding pub-
lications. The provided definitions concretely relate concepts to the rest
of the meta-model. Details about these relations were defined in a concise
manner, disambiguating the usage and meaning of the concepts.

8.2.4 Same meta-model for Speech Acts and Interaction Pro-
tocols

The meta-model unifies the mechanisms for defining Speech Acts and Inter-
action Protocols. A descriptive approach, based on propositions, is used to
define Speech Acts. The combination of the defined Speech Acts produce

137

a graph of possible sequences in which the conversation can be carried out:
the Interaction Protocol.

As a result, Interaction Protocols and Speech Acts are defined using the
same semantics and removes therefore any barrier that could exist, when
moving between the two levels.

8.2.5 Improved expressiveness

The fragment of a Contract-Net Interaction Protocol shown in Figure 8.1
shows how the state of the conversation is described in each State Descrip-
tion. This not only helps the reader get oriented, but more importantly:
automatic support mechanisms can take advantage of this machine readable
contents.

Declarative constructs make new conversation management techniques
possible. New constructs for modeling situations specific to Interaction Pro-
tocols can be introduced into the meta-model. These constructs enhance the
possibilities of expressing concepts relevant to the subject being modeled.

In our model, contributions that have proved to be relevant at the time
of defining Interaction Protocols have been introduced, like Commitments
and Timeouts.

Other concepts have been added, like conditional propositions and Cross-
Conversational-Constraints. In the Contract-Net fragment, an example of
the second one is used to force the Initiator to answer with an accept- or a
reject-proposal only after all proposals are received. In the previous part of
the Contract-Net protocol, all actions that respond to the c¢fp bring about
cfpAttended. This proposition is used in a Cross-Conversational-Constraint
(called Wait in the diagram, see Legend). Using this wait as precondition
for the two actions shown in the fragment means that the sender of the
action, Initiator, has to wait for the associated proposition (cfpAttended) to
be valid, in all conversation parts of the protocol, before it performs any of
them for the first time.

This illustrates that as a result of having a declarative meta-model, more
details can be expressed about that model. Other constructs that add to the
expressiveness of our meta-model will be mentioned in the further sections.

8.2.6 Cardinality management

Section 5.3 explained how cardinality constraints work. They are intended to
manage the amount of conversations, in the scope of an Interaction Protocol
enactment that can opt to perform certain constrained Speech Acts. In this
way, an Interaction Protocol model can constrain how many conversations
can take a certain path in the graph that represents the whole protocol.
How these constrains work can be seen in the example fragment: the
Initiator is forced and limited to accept only 1 proposal, since it can perform

138

at least and at most once accept-proposal. On the contrary, reject-proposal
is unconstrained in this aspect (0-N). These constraints allow the designer
to define how many proposals can be accepted within a protocol enactment.

8.2.7 MDA-tools and Visual editor

In the same way as with the rest of the contributed tools, our department
provided to SHAPE, this meta-mode was implemented using MDA tech-
niques. A meta-model implementation and visual editing tools were created
to aid the creation of models. These tools were implemented using the
Eclipse Modeling Framework (EMF) and its Graphical Modelling Frame-
work (GMF).

The editing tool was organized in two levels:

Interaction Protocol Editor

The first one lets the designer edit Speech Acts and visualizes the resulting
Interaction Protocol as a directed graph. In this editor level, proposition
names and roles can also be defined and used in the definition of Speech
Acts.

Examples of this editor are shown in Figures 7.2, 7.3, 7.8 and 7.9.

Interaction Protocol Composition Editor

The resulting Interaction Protocols can be used to compose more complex
ones using the second level editor. It visualizes the available Interaction
Protocols as black-boxes annotated with their starting and ending State
Descriptions. This level lets the designer decide which ending and which
starting State Description to bind in order to produce composed Proto-
cols. The editor includes a functionality to help the designer by highlighting
matching starting or ending State Descriptions for selected State Descrip-
tions.
Examples of this editor are shown in Figures 6.7, 7.6 and 7.7

8.2.8 Automatized support for model development

A visual editor that makes use of the logic defined in Chapter 5. Reduces
complexity by automatically calculating the FSM graph.

The meta-model has been designed in such a way that the graph repre-
senting the protocol can be calculated out of the defined Speech Acts. This
calculation has been included in the EMF implementation and supports the
development of models, by providing instant feedback about the changes
made to Speech Acts and their effect in the whole Interaction Protocol.

139

A significant amount of work, consequence of the inherent complexity of
a declarative approach like ours, is taken away by the provided automatized
functionality.

Apart from the automatic calculation and visualization of the graph, the
meta-model implementation includes automatic modifications to constructs
part of the model. This is the case of Commitments: they are modified,
according to what happens in the conversation. Honored Commitments
are withdrawn; Conditional Commitments are made active, as soon as the
condition is brought about; Timeouts are brought about as soon as the as-
sociated Commitment is made active, etc. The example fragment shows
how the Commitment of the Initiator to make prop-Evaluated true in State
Description (1) is removed as soon as it is brought about by accept-proposal
and by reject-proposal, since these actions fulfill the objective of the Commit-
ment. The conditional Commitment to make prop-Successful, if accepted
is made true, is converted into the corresponding active Commitment and
the associated Timeout is also brought into Sate Description (2).

8.2.9 Protocol composition

The model can be used to compose protocols out of existing Interaction
Protocols. As already explained in Section 8.2.7, protocols can be visualized
as boxes with entry and exit points, and matching ending and starting points
that can be connected to compose the protocols.

This is one of the main objectives proposed in Chapter 2 and the way
modularity is supported within the meta-model.

8.2.10 Automatic generation of executable code

Using MDA-Transformations we produced automatically BDI-Agents capa-
ble of performing the business process as specified. It proves that the com-
binations and connections, used during modelling, produce coherent models
that can be performed.

A mapping to Jadex BDI agents, a declarative architecture for MAS, has
been provided. The implementation is generated using a pattern that will
be explained next.

8.2.11 BDI based turn taking pattern

A plan pattern for BDI-agent implementation was presented in Section 6.2.3.
It takes advantage of the declarative aspect of the meta-model. Agents
evaluate protocol conformance based on the State Descriptions as specified
in the protocol.

Each turn is organized separately as a set of plans. The different tasks
inside each turn execution are separated into parts, each one related to a
different aspect: message receiving, context management, message attending

140

and replying. All plans are goal driven, therefore additional plans can be
added to the agent in order to improve specific tasks.

This mechanism can be used to enhance the agent implementation with
domain specific concepts. The way the context the of the conversation is
evaluated or the way the messages are attended can be improved, by adding
or replacing these plans with plans that include domain specific reasoning.

8.3 Realization of business process using
agent communication

In the example of Section 7.2 we have implemented a complex business
process defined by our industrial partner Saarstahl in the scope of the project
SHAPE. This same use case was used to evaluate other modeling solutions
that are part of projects like SOAML and PIM4Agents.

This shows how modeling business processes, taking advantage of mod-
ularity and reuse, can be done. The complete process was designed with an
Interaction Protocol model that is composed of two Interaction Protocols.

From the model an implementation was automatically generated. The
generated agents are capable of interacting using Web Services standards
making use of the tools provided as part of this thesis. The result is, an
Interaction Protocol model used to design a complex business process and a
generated implementation that performs it using agent communication over
Web Services. An example of one possible interaction is shown in Figure
7.11.

8.4 Summary

Our work can be organized into two parts:
e Integration of Web Services and FIPA-Agents
e Declarative Protocol modeling and code generation

This twofold organization matches the organization of the research pro-
jects (Benguria et al. 2009) (Benguria, Larrucea, Elvester, Neple, Beardsmore
& Friess 2007) in which our department participated: SOA and MDA.

Agents and Web Services integration was achieved by proposing and
implementing a Message Properties mapping that is used to serialize and
de-serialize FTPA ACL-Messages using Web Services standards. The imple-
mentation is called JadeWSMTS and provides an integration, it is; mutually
accessible, both Web Services and Agents have access to each other; it con-
forms with Web Services standards, mainly WS-Addressing; and solves many
other problems, like the stateful and asynchronous nature of agents against
the stateless and commonly synchronous nature of Web Services. The tool

141

lets agents also interact using REST communication and most importantly,
enables the enactment of complex conversations using Web Services.

A declarative meta-model for Interaction Protocols was defined concep-
tually, based on common concepts like forward planning and finite state
machines. This model disambiguates and consolidates many concepts and
contributions from the community in the area of interaction protocols in a
single model. Concepts that improve the expressiveness of an interaction
protocol model, like: Commitments, Timeouts, Cross-Conversational Con-
strains, Conversation Cardinality management, etc., were introduced in a
concrete and precise manner the meta-model. The result is a meta-model
that lets designers produce Interaction Protocols that can be composed by
connecting semantically matching concrete connection points of protocols.

Implementation of models designed with our tools can be automatically
generated. In the particular case of our protocol meta-model, a mapping to
Jadex BDI agents was provided. This implementation explicitly used the
declarative approach, by taking advantage of the declarative nature of BDI
agents. Jadex agents, using the Jade extension can use JadeWSMTS to
communicate using Web Services.

The end result is a set of tools that are used to model business processes
as modular and reusable Interaction Protocols. Out of these Interaction
Protocol models a Web Service implementation can be generated. This
way, agent communication, and more precisely FIPA standards, are used to
realize business processes.

The capabilities and results were shown using an industrial use case
provided in the scope of SHAPE (Benguria et al. 2009) by our industrial
partner, Saarstahl. This use case was modeled by composing the complex
scenario using two Interaction Protocols. An implementation was generated
and executed using JadeWSMTS as Web Services communication platform.

142

Chapter 9

Analysis and Evaluation

Tools that enable the communication of FIPA agents using Web Services
standards and also tools for modeling interaction protocols using a declara-
tive approach have been defined sofar. Based on the definitions and examples
provided, the results will be analysed and evaluated, by comparing them to
other tools and approaches.

The analysis will be done in two parts: first the Web Services integration
will be evaluated and after that, the declarative modeling tools. How these
are used together will be evaluated by referring to the examples and the
industrial use case. In the last section, a comparison with contributions,
described in State of the Art in Chapter 3, will be provided.

9.1 Messaging integration

9.1.1 Web Services and FIPA-Agents integration

At the beginning of our work, there was a big gap between common Web
Services and the communication standards used by multi-agent systems, rep-
resented mainly by FIPA standards. Several integration approaches between
the two have been described in Section 3.4.

In general, the approaches that conform to the recommendation of Agent-
cities have some properties in common, like:

e Not being able to perform complex conversations

e Not using Web Services standards, many of these were proposed at a
time when such standards had not been established

e Being rather limited concerning scalability

e Not taking advantage of features in the FIPA model and implemen-
tations designed for this purpose: where the agent platform is to be
enhanced with new communication capabilities.

143

Our approach is very advantageous in those areas. It is capable of per-
forming very complex and extended interactions. It is based on established
Web services standards like WS-Addressing. It is very scalable since it does
not perform any replication of resources, but instead just remains the com-
munication mechanism part of the agent platform. There are other aspects
where other integration approaches have advantages, like being capable of
translating services descriptions or being able to translate message contents.
An in depth comparison of each of the relevant contributions is provided in
Section 9.5.6.

9.1.2 A framework capable of complex conversations

The Web Services community tried several times to produce standards to
define how a set of agents should interact with each other to achieve a goal.
The most important proposal was Web Services Choreography Description
Language WS-CDL (W3C 2005) described in Section 3.5.2. These proposals
where unsuccessful, because of the increase in complexity in terms of message
semantics and new concepts that have to be taken into account, like social
commitments, turn taking, conversations management, etc. WS-CDL could
only model conversations between two individual agents.

Paradoxically, most of the integration solutions done by the multi-agents
community were restrained to the RPC nature of Web Services instead of
introducing useful concepts used in the FIPA architecture.

Later improvements in Web Services messaging for performing complex
conversations (WS-Addressing) allow a smoother Web Services compliance
for a FIPA grounding that goes beyond request-response situations. These
improvements in Web Services manifest movement towards a technology
more similar to multi-agent systems. This implies that problems in Web Ser-
vices will become more similar to the ones studied for agents. For instance,
FIPA specifications, can handle situations very well WS-CDL intended to
solve. Our solution not only incorporates the most recent standards for Web
Services, like WS-Addressing, but it also provides a model to describe all
these fundamental concepts necessary for a complete description of how a
complex conversation is to be performed.

Other solutions for integrating Agents and Web Services did not serve the
ultimate goal of performing complex conversations that go beyond request-
response. The majority of them, shown in Section 3.4, follow the Gateway
approach. This, in fact, is not a transparent integration, but instead, the
introduction of an adapter module that serves as a translator. The adapter
pattern in Web Services to integrate heterogeneous systems is primarily ad-
dressed to legacy systems (Barry 2003). Our approach, instead, makes use
of actual WS-Standards to realize FIPA messages. Agent Platforms are per
se SOAs and share similar mechanisms as a Web Services architecture. As
shown in Section 4.1, both architectures share too many similarities to jus-

144

tify an adapter and even less a translating module. Our approach is simpler,
more versatile, and effective. It is based on features that were introduced
already in FIPA standards for the purpose of being able to represent FIPA
messages using different serializations. These were used to introduce a new
way to represent messages using Web Services inside the FIPA agent plat-
form. The direct advantages are transparency for the agent implementa-
tions, freedom to perform complex conversations as already usual in agent
platforms and better Web Services compliance.

9.1.3 Web Services as grounding for FIPA specifications

Web Services are a good grounding for FIPA specifications; they provide a
widely adopted communication infrastructure and are focused on the repre-
sentation of information and its transport; leaving free room for application
semantics. FIPA is specified in a way that complements well, because it lets
semantics be grounded using different implementations.

Apart from that, messaging works very similarly in both cases. Our
integration approach takes advantage of the synergies, explained in Section
4.1, to integrate both scenarios in a transparent way.

Simplicity has been an advantage for the acceptance of Web Services,
which would be a very helpful feature for multi-agent systems. At the same
time, these can help in the further adoption of Web Services in more complex
scenarios.

A transparent integration, like our communication architecture, provides
a platform to transfer concepts like dialog games, social commitments, se-
curity, negotiation, FIPA models, etc. to Web Services. The multi-agents
community has studied these issues in detail and gained important experi-
ence. One of the most important projects that provided input was Agentc-
ities (Agentcities 2002), a project in which a worldwide network of agents
was created.

Nevertheless, the agent community has had trouble integrating with Web
Services. For instance: Jade, the most popular and widely used FIPA-
compliant agent platform, made some effort in this direction. It provides a
http Message Transport Protocol (MTP) and XML encoding specifications
for its messaging. Still, these means are not sufficient for true Web Services
interoperability: the http MTP and the XML schema for the codec do not
follow any standard, but that of FIPA. Web Services standards like Simple
Object Access Protocol (SOAP) and WS-Addressing have no chance to be
used in this context.

9.1.4 A transparent integration

Since JadeWSMTS is integrated into the agent platform as a Messaging
Transport Service, it can be used with the mechanisms for communication

145

already provided in the platform. This makes it very simple for agents to
use the provided Web Services communication capabilities. The same ACL-
Messages are used by agents to communicate using Web Services.

From the perspective of conventional Web Services, the messages issued
by agents follow common Web Services standards. Therefore, these messages
are treated by Web Services implementations and infrastructure as any other
Web Services message.

This transparency is also the result of avoiding a translation of message
content. The reason for this was that contents is domain specific and there-
fore left for a different layer in the communication stack to deal with it. The
way to handle communication in a FIPA and in a Web Services architecture
is by separating envelope and contents handling, leaving the second one to
application modules.

9.1.5 Coping with technical and conceptual differences

Our integrating architecture takes care of some technical issues that arise
when agents and conventional Web Services have to work together. The first
case is, how to handle the statefulness of agents which are identified uniquely
throughout their lifetime. In the mapping exposed in section 4.2, this was
solved by adding the agent ID as an extra parameter to the WS-Addressing
Endpoint Reference (EPR), a common practice in similar situations when
using WS-Addressing. The difference in the mechanism for message correla-
tion was also solved this way. Another way of solving the identity mechanism
of agents would be to assign them a unique address that will belong to them
during their complete existence. This would be a simpler solution for cases
where agents do not move causing the address to be invalid. It could be en-
hanced also with a mechanism for message forwarding so that the agent can
still be found under the same address even after moving away. All these pos-
sibilities remain open using our tool, even though the mechanism for using
agent IDs is preferred. Agents communicating with conventional Web Ser-
vices do have to be able to interact with parties that have no ID as used by
agents. Our tool introduces the agent name “ANONYMOUS” to represent
such agents. This way, at least, participants that prefer not to be uniquely
identified, but only be referred to by their address (like conventional Web
Services), are well represented.

9.1.6 Coping with parties with different reasoning power

In general, the strong variation in complexity manifested by participants in
such an integrated architecture requires the introduction of some assump-
tions. Very simple request-response supporting participants would have to
interact with complex agents that cope with a wide variety of message types
and that are not deterministic in their behaviour. The messaging mech-

146

anism has some requirements that will not always be supported by very
simple participants, for instance, the inclusion of the type of protocol the
messages are part of. Very simple third party services will not mention such
information. In this case, the assumption would be that when a protocol is
not mentioned, a simple request-response protocol is implied.

One approach for supporting complex conversations with partners that
possess little reasoning power was proposed in (Ardissono, Goy & Petrone
2003): an orchestrator service that performs the reasoning about the dialog
and guides the participants with the Speech Acts available to proceed in the
dialog, hindering the autonomy of agents. EPRs use their meta-model field
to describe the service interface of an Endpoint. This is a feature an agent
can use to provide a detailed description of how an answer is expected, an
alternative that lets agents interact with entities of less reasoning power, but
without compromising autonomy. Using REST communication could serve
the same purpose.

9.1.7 Using existing Web Service Tools

Our implementation, called JadeWSMTS, provides some advantages like
the delegation of message transport to Axis2 (AXIS2 2006) (a Web Services
tool). It allows JadeWSMTS to stay up-to-date with less effort and sim-
plifying Web Services compliance. In fact, JadeWSMTS provides, at the
moment, the most modern FIPA ACL message representation using Web
Services standards. This takes better advantage of Web Services messag-
ing infrastructure, something useful when implementing agents that should
work in a SOA. In contrast, (Sonntag 2006) proposed specific SOAP headers
to implement a service mediator in charge of forwarding requests to agents,
performing the actual task, JadeWSMTS would have simplified this signif-
icantly: WS-Addressing already provides the required headers which are
used accordingly, based on the information in the FIPA ACLMessages. Any
changes in WS-Addressing, or any other related WS-* specification, will be
taken care of by Axis2.

JadeWSMTS is implemented, as any other MTS, inside Jade, which is a
cleaner integration technique than using an agent or a gateway for providing
such a service. Having such a natural integration inside the platform allows
a very straightforward and less intrusive integration of agents not originally
implemented to make use Web Services. The transparent communication in-
tegration in this tool allows agents to use UDDI. At the same time, services
outside the platform can use the DF, which avoids the overhead of replica-
tions and extra translations used in some of the gateways like in (Nguyen
& Kowalcezyk 2005). Even though the DF can provide a Web Service in-
terface to the outside, this feature is not expected to be used frequently by
conventional Web Services.

147

9.1.8 FIPA Agents and Web Services Integration (AWSI)
Group

Our Web Services integration solution was included in the FIPA agent and
Web Services Integration (FIPA-AWSI) recommendation as a suitable com-
munication framework for Agents and Web Services. This recommendation
reflects the dominating opinion of the multi-agent community concerning
integration of agents and Web Services.

FIPA-AWSI went beyond the simple proposal of bridging communication
between agents and Web Services and included a proposal for Declarative
Protocols called OWL-P (Desai et al. 20056). This recommendation served
as a foundation for the Declarative Protocol model that we provide. Many
concepts and ideas proposed in OWL-P, like the importance of a declarative
model to achieve flexibility and modularization capabilities or the impor-
tance of including Commitments as a fundamental semantic construct, were
included in our approach.

9.2 Declarative Protocol modelling approach

In the scope of PIM4Agents (Hahn, Madrigal Mora & Fischer 2009), our
department has provided a comprehensive set of tools for modeling multi-
agent systems. Many aspects, from the definition of abstract interactions
between roles to the concrete deployment details, can be modeled. Out of
these models, executable code can be generated.

The set of tools includes modeling tools for interaction protocols which
follow the conventional structured way for modeling. The approach provided
in this thesis, offers a different way of modeling: declaratively. In this
section, the advantages and reasons in favor of such an approach will be
discussed, along with some of the trade-offs and disadvantages that come
along.

9.2.1 Reasons for a declarative approach

One of the main ideas pursued by the multi-agent systems community is to
have a library of general purpose protocols that can be used, by combining
them, to create solutions for concrete situations.

FIPA Interaction Protocols Library is the most relevant specification of
such a library. Still, this specification does not show how protocols can be
combined. As part of the proposition of the FIPA AWSI Group, an approach
using a declarative model was proposed: OWL-P. Based on this idea, our
declarative meta-model was designed and implemented.

In order to have a library of protocols that can be used, by combining
them, to produce complex interactions that serve specific purposes, a way of
managing protocols and representing their connection points is necessary. A

148

declarative model has explicit descriptions that help in, among other things,
the management of the library and support for creating valid combinations.
Some of the advantages achieved by our declarative meta-model will be
discussed next.

Concrete definition of constructs

A declarative approach provides a concrete representation of the meaning
of the structures defined in the protocol model. These contents support
different operations on protocols, like matching and composition.

Connection points, in our case, starting and ending State Descriptions,
can be compared, by looking at their contents, to choose which can be con-
nected. This information, represented inside the model, enables reasoning
about the concepts, to decide how to establish connections.

Our proposed meta-model provides the mechanisms, using proposition
names and operations, to define constructs used in interaction protocols
models by specifying;:

e The internal structure of the construct
e The relation to the other constructs

e How they work inside a protocol model

Deliberation about concepts and constructs

Even though the present work does not cover automated reasoning about
propositions and State Descriptions, it leaves open the possibility to analyse,
compare and make decisions based on them. This information is very useful
for other areas of multi-agent systems, like goal oriented design or dialogue
games.

Reasoning to make decisions based on the information provided by State
Descriptions and Speech Acts can be implemented using our meta-model.
This idea has been already proposed and discussed by Singh (Mallya &
Singh 2006b). Our objective is to improve the management and coherence of
protocols by using a declarative approach and therefore automated reasoning
is out of our scope.

Automation and support in design of models

After exceeding a certain amount of available interaction protocols, the task
of selection and combination becomes very hard. Management possibilities
in the existing modeling techniques are scarce.

A declarative approach lets the model represent, in a machine readable
manner, the meaning of constructs and protocols. We have taken advantage
of this and provided supporting tools for the designer during the process of

149

developing Interaction Protocols. A machine readable representation of the
concepts opens the possibility to implement supporting tools that automate
part of the work and help designers.

In our case, many of the details involved in the domain of interaction
protocols were formally defined in detail and were implemented subsequently
in a meta-model. Many tasks, like the generation of a graph representing the
Interaction Protocol or the comparison of connection points, were achieved
thanks to the use of a declarative approach.

Flexibility

Our composition approach is different in that it lets protocols have many
starting and ending State Descriptions for composition. For instance, the
industrial use case example in Figure 7.6 uses a protocol called “Order”
to model the interaction between clients, sales, and production planning.
This protocol has several connection points, one main entry point and one
pursued exit point, but several other entrance and exit points. These many
connection points allow, on one side; to plug in different ways of solving a
problem, similar to the goal of OWL-P, reducing dramatically coupling in the
model. In the example in Section 7.2.4, this is the case with the cascading
calls to Querylf protocols, they are used by planning to find out if the
production of the order can be confirmed. On the other side, the connection
points are used to handle all the possible outcomes of the protocol. These
two features translate into enhanced flexibility, not only can the protocol be
combined to produce big complex interaction protocols, but also, the way
agents solve situations together with other agents, can be modified with less
intervention to other parts of the model.

9.2.2 Modularity

Our tool improves modularity and makes mechanical support possible, be-
cause of the way protocols are represented: protocols can be compared by
looking at their entry and exit points to tell which of them can be combined
as modules of a bigger composed protocol. This combination process is sup-
ported by automatically comparing possible matches of State Descriptions.

Our meta-model represents interaction protocols as modules with con-
nection points that are annotated with their semantic. These annotations
enable a better management of modules and an explicit binding of concepts.
In opposite to current possibilities provided by other techniques, where com-
bination of protocols is left completely to the intuition and reasoning of the
human designer, our tool takes over part of this work.

150

9.2.3 Difficulties of a declarative approach
Complexity during model development

Declarative models can easily get too complex, especially in case, since the
complete model and the sequencing of actions has to be calculated out of
the definition of Speech Acts. Our modeling tools takes away some of the
burden by automatically calculating a graphical representation.

Controlling unpredictability

During the construction of Interaction Protocol models, the user realizes how
easily a model turns into an big maze of possible paths for conversations.
This can only be controlled using constraints as preconditions for Speech
Acts. It is an expected behavior of protocol models: the less constrained a
protocol is, the more unpredictable it gets.

Unpredictability in our models can be recognized by the relation between
the amount of paths and State Descriptions and Speech Acts. There are
some rules added to the meta-model that help moderate these explosions of
information, like the principle of effectiveness (Leén Soto 2009). It states
that no resulting State Description of a Speech Act is added to the graph, if
they are identical to the enabling State Description, in the sense that there
is no effect from performing the Speech Act.

More rules like this principle can be added to generate more sensible
diagrams, but it remains a decision of the designer to define the amount of
freedom desired for an interaction protocol.

9.2.4 Modeling editor and its usability

In our formal definition of a declarative meta-model for Interaction Proto-
cols, many constructs necessary for the definition of protocols were defined
in detail and many more can be added. Also, typical structures and usages
exist in the models created with our tools, like parallel conversations and
the synchronization of them, decision points, etc.

Our visual editor produces very modest graphical representations of the
model. Many of these concepts and constructs could be represented in a
more intuitive way and some recurrent tasks could also be automatized.
This issue is discussed further in Chapter 10: Future Work.

9.2.5 A unified meta-model

FIPA has provided the most well known set of protocol specifications for
autonomous agents in the form of a set of Agent UML models. The idea
behind these protocols was to the provide a set of basic protocols that can
be used in combination with model complex conversations.

151

The way these protocols can be combined is left to the intuition and
reasoning of the human designer. There is no link between the definition
of Speech Acts and interaction protocols in FIPA. Speech Acts are defined
in a very mentalistic manner, as it is done in dialogue games (McBurney
& Parsons 2002). Such an approach takes the view of the performer of the
Speech Act. Although this is useful for the agents to reason about it, it
is useless for the definition of interaction protocols, because these are seen
from a global perspective. In FIPA, the design of protocols relies on human
intuition and reasoning to interpret the protocol diagrams and more over,
to come up with plausible combinations.

Our meta-model breaks this barrier and uses the same semantics for the
definition of Speech Acts and Interaction Protocols bringing them together
in the same meta-model.

9.2.6 Disambiguation

Our meta-model was defined formally and consolidates many ideas neces-
sary for the definition of Interaction Protocols. It makes use of widely known
techniques like forward planning and finite state machines. Our formal def-
inition describes concretely, how all these ideas are put together. Many
of them were described in publications in a rather abstract manner, like
Commitments; or are understood differently by different members of the
community of multi-agent systems, like Timeouts. These ambiguities are
clarified by our model definition and this is a fundamental step towards an
implementation like the one provided here.

9.2.7 New constructs for Interaction Protocols

In our meta-model, constructs were defined to improve the representative
power of the models. For that purpose, some constructs were created, like
Conditional Propositions and Cross-Conversational Constraints, or defined
in more detail, like Timeouts or Commitments.

Conditional propositions

These are helpful to represent situations where a participant makes a deci-
sion, but manifests it using the same Speech Act. This proposition produces
two possible outcomes to show how the protocol goes on, depending on the
state of a condition. This proposition can be frequently used in situations
where the course of a conversation will be lead by a condition in the contents
of a message.

152

Cross-Conversational Constraints

This feature serves as a connection between conversations that run parallel
by synchronizing them and also specifying precisely what synchronisation
means. In the case of the Contract-Net example of Section 7.1 and visual-
ized in detail in Figure 8.1, the meaning of being synchronized is: to have
attended the ¢fp. This construct makes the meta-model capable of specify-
ing how each conversation is managed in complete parallelism and how they
are related to each other inside a protocol, an aspect that is normally not
clear in other modeling techniques.

Timeouts

In our meta-model, Timeouts are defined as a time countdown at the end
of which, involved participants assume that a certain Speech Act has been
performed. The relation between the Timeout and a Speech Act gives the
timeout a meaning. It specifies what will happen to the conversation by
using a Speech Act to represent the changes. This way, the participants
expecting a reaction from other participants can update the state of the
conversations after the time for the reaction ran out. At the same time,
participants know the consequences of letting a Timeout run out of time.

Commitments

Commitments, as explained in Section 5.4.2, were mainly defined and imple-
mented as proposed by Singh and his group. We have added the component
of a Timeout to give the Commitment a time limit for it to be honored. In
consequence, Commitments gain also a definition of the consequences when
they are not honored.

New constructs

Using Declarative Protocols, a more detailed description of what happens
throughout a protocol is achieved. More concepts, relevant in the context of
an interaction protocol, can be introduced in the model, taking the model
beyond a simple description of action sequence and turn taking.

9.2.8 Concrete and detailed meta-model implementation

Using MDA techniques in the area of multi-agent systems is relatively new
and therefore, there are no known implementations of this kind of meta-
models. PIM4Agents (Hahn, Madrigal Mora & Fischer 2009) provide such
meta-model implementations and code generation tools based on them.
Our protocol modeling tool is the first one implemented and capable of
producing concrete and usable declarative interaction protocol models. It is

153

also the only meta-model that aggregates different theoretical contributions
and concepts from the multi-agent systems community.

9.2.9 Automatically generated code

In the same way as it was done with meta-models in PIM4Agents, source
code can be automatically generated by tools part of the present work. In the
specific case of Declarative Protocol models, the generated code is intended
to be used by the messaging tools produced in the first part of our work.
Therefore Jadex BDI-Agent capabilities are generated, which can be used
by agents that perform the roles.

Declarative models help making better BDI-Implementations

In traditional automatically generated implementations of protocols, roles
are implemented in single blocks of code. This is the case in jade work-flows
and most of our transformations in PIM4Agents, SHAPE and ATHENA
projects. This does not reflect the flexible and multi-directional nature of
conversations.

In PIM4Agents, some BDI-based protocols implementations were gener-
ated from the conventional structured model. These implementations con-
densed the complete protocol inside a single plan-body, representing the
whole role implementation using a single sequence of code. This has as side-
effect the misuse of BDI’s advantages because it hinders BDI-scheduling.

The declarative models can be more easily transformed to better BDI
implementations. The preconditions of Speech Acts and the various State
Descriptions can be used by BDI-agents to manage the conversations. The
propositions can be managed inside the belief-set of the agents. Belief-
sets represent the state of the conversation similarly to State Descriptions.
Speech Acts are implemented as plans with conditions that match the pre-
conditions in the meta-model. As a result, instead of having the whole
interaction protocol inside a single plan, the implementation is distributed
over a series of plans, each of which represents a Speech Act. This enables
BDI-scheduling and reasoning about which action to take; every time the
agent has its turn in the conversation. This produces implementations that
are more flexible, reusable and scalable, and by giving the BDI-scheduling a
predominant role, it improves the implementations with its favorable prop-
erties.

Turn taking pattern

For the implementation of the BDI-Agents, a library of routines was imple-
mented. This library implements a pattern defined to handle each turn of
an agent participating in a conversation.

154

The routine implements this using a set of plans that handle the different
tasks involved: it starts by fetching and updating the context corresponding
to the conversation the message is part of. After that, by attending the
message and performing the domain specific work and finally, by deciding
how to reply and generate the response.

This pattern enables the BDI-scheduler to take part in each turn and,
more importantly, makes it easier to extend and improve the implementation
of the participant by adding other plans. This way, changes can be made to
the agent without having to modify existing code. This is done by providing
alternative plans and assigning them priority values. Adding plans helps to
improve the way agents solve each turn since having alternative plans for
the each task provides multiple ways of coping with more varied situations.
In cases where some plan may fail, other plans may work, making it a more
robust and versatile implementation.

9.2.10 Open questions about the fundamental concepts of
the meta-model

About propositions

Propositions are a fundamental piece of the whole concept of Declarative
Protocols. Based on these, the chance of performing a Speech Act is cal-
culated. Our models are seen from a global perspective and therefore each
State Description is clearly known.

One question that arises is: when the time comes that an agent performs
a role, how is it going to be capable of knowing the truth value of the various
propositions. In principle, and taking into account that we are discussing
a scenario where only communication plays a role, it can only be aware in
two ways:

e by performing Speech Acts that bring about or deny propositions
e by receiving Speech Acts that bring about or deny propositions

Seeing it this way, an agent can only be sure of propositions stated
directly by the Speech Acts it performs or receives. This restricts the model
of the role to perform Speech Acts with preconditions that are stated by
either of these two ways.

A proposition can be brought about by Speech Acts performed by a third
role that does not communicate directly with a role that uses the proposition
as precondition. One possibility to clarify this situation is to enable a role to
assume, in a transitive manner, a proposition that is necessary in interactions
that provoke Speech Acts targeted at it.

This has been the mechanism chosen in our implementation of roles. Ev-
ery time a message is received, its corresponding enabled State Description
is assumed.

155

Moreover, there could be other mechanisms on the look out for the truth
value of a proposition. Propositions will frequently represent visible prop-
erties of the environment, letting agents be aware of their truth value by
directly observing it or by observing the contents of the message.

These procedures are out of the scope of our work, since we limit our-
selves to the domain independent level. Nevertheless, the generated BDI
implementation and its pattern are structured in such a way that improve-
ments and precision enhancements can be introduced into the plans in charge
of updating the internal state of the conversation of the agent and in those
in charge of attending the messages and interpreting the contents.

Creating a general purpose library of protocols

Our declarative meta-model is targeted at providing tools and constructs
that help create a library of protocols that can be used, by combining them,
to model complex protocols that solve specific collective needs of a set of
participants. In our examples, we have shown that our meta-model can help
in this task.

At this point, a question that arises is: what does such a general purpose
library looks like? As mentioned already in Section 3.2.2, FIPA has already
provided a library of interaction protocols. Open questions still are: are
these the right protocols to have in such a library? are they all necessary?
can these protocols be organized or classified? However, looking at it from
the perspective of what we have achieved up to now, our first question would
be, what do such protocols,described using our meta-model, look like?

Taking into account the compromise between relaxing a protocol and
its predictability, a general purposed protocol will be usable as far as it
constraints let it be used in several situations. This forces protocols to be as
relaxed as possible, which is, as our modeling editors show, a hard task to
accomplish. Some steps that can be taken in this direction will be discussed
in future work in Chapter 10.

9.3 Findings gathered in the Use Cases

As part of our work, some use cases have been implemented. The insights
gained from this work will be presented and discussed next.

9.3.1 Reuse of models

By looking at the model in the industrial example of Section 7.2.4 one can see
that the complex business process was modeled using two types of protocols:
order and querylf. The models produced by us reuses sub-models more than
other models produced for this use cases, representing a significant reduction
in work and better consistency.

156

9.3.2 Manageability and flexibility

The multiple connection points and modules that compose the complete
model for the business process makes the model very manageable in the
sense of allowing easier change or replacement of parts. At the same time,
this leads to increased flexibility.

9.3.3 Relationship between abstract and domain specific mod-
els

The compromises that have to be taken to reuse models are palpable in the
way querylf is used in the industrial example of Section 7.2.4. The way
it is used does not match satisfactorily its name. In the first part of the
protocol, it is indeed used to query each phase in the production. But in the
second part, it is used to inform them to produce it, providing a mechanism
to inform of the sudden impossibility of producing it. In the second half,
the task is not being queried, but instructed. Still the querylf protocol was
suitable because of its matching structure to request the offered service.

Possibly, a better name for the protocol and some of the propositions
would make the model more intuitive and coherent. This is a subject that is
closely related to what was discussed in Section 9.2.10, concerning a general
purpose library of protocols.

9.3.4 Web services performing Business Processes

Using our model for the business process and implementing it by using
the generated code provided a suitable Web Services implementation of the
Business Process. A long-lasting and complex conversation could be enacted
by the participants using standard-compliant Web Services.

The use case showed that techniques used in multi-agent systems and
the specifications provided by FIPA can be used together and are suitable
for the implementation of business processes using Web Services.

9.4 Overall evaluation

Modeling and implementing the use cases was not a hard task compared to
other modeling techniques. In fact, having the possibility of automatically
generating runnable code, makes the task of creating and implementing a
complex conversation easier.

Trying to solve a problem using declarative frameworks will inevitably
bring along an increased complexity. The implementation of the meta-model
was correspondingly more difficult than other approaches, but the usage
of well known techniques, like forward planning and finite state machines,

157

helped produce visual editors that support and alleviate the development of
such intricate models.

The result is, a set of tools that reduce the overhead of a declarative ap-
proach, reducing their creation effort to a similar level as other mechanisms
and taking advantage of a declarative approach, in our case: modularity,
reuse, flexibility and better BDI implementations.

9.5 Comparison with other approaches

Our work is one of the first to approach the problem of modelling busi-
ness processes using a declarative meta-model. The multi-agent community
agrees in that a declarative approach brings along many difficulties that
make it a less attractive option. Due to its complexity, results tend to in-
clude many details. However, at the same time, these contents, once present
in a model, come in very handy, since it allows more automatized and so-
phisticated tools.

Next, keeping in mind our objective of realizing business processes be-
tween autonomous participants, we will compare our tools with the most
prominent options available, discussed in the Related Work.

9.5.1 BPEL

BPEL, as a language, is capable of describing business processes for Web
Services, but it is intended to produce models that will be executed by an
orchestrating machine. In this sense, a meta-model is closer to programming
languages than for describing interaction protocols between autonomous par-
ticipants. It does have the advantage of being used in a global perspective,
but it stays at this global perspective and it never leaves it, even during
execution.

We are more convinced that at the modeling level, a global perspective is
very advantageous for defining the business process to be left behind as the
development process evolves towards the implementation of the participants,
which is intended to be done independently of each other.

An interaction protocol, as in our case, is to be used as a contract between
the participants. Implementation is to be left free.

The most successful solution for implementing composed Web Services
was WS-BPEL(Andrews & et. al. 2003). It provides, among other compo-
nents, a modelling language to describe how different Web Services are to
be put together. This is done by orchestration, where a WS-BPEL engine
interprets the described model and performs the service calls as defined in
the model. This is very different than what is being pursued by us, namely
a choreography, as explained in Section 1.3.

158

9.5.2 BPMN and Jade Work-flows

We have collected the two in a single section, because they have certain
properties in common. BPMN is the most prominent modelling tool used
for business processes.

In this case there are two main differences that are important to high-
light:

e Modularity: even though BPMN and similar meta-models are very
suitable for describing processes, they are not that suitable when it
comes to reuse and modularity, specially, when a combination of dif-
ferent processes as part of a business process are to be taken into
account.

Having a declarative approach has the direct advantage of not only
being able to describe the modules with the same constructs used to
model them, but also to reason about them and aid in the model de-
velopment and management. Declarativeness brings unconditionally
complexity along, therefore supporting automatic reasoning is neces-
sary in order to be productive using these models, but at the same
time, it levers the possibilities for these automatic tools significantly
in comparison to structure based methods like in BPMN.

e Perspective: BPMN and Jade Work-flows provide constructs very suit-
able for defining the internal structure of the participants in a business
process. The communication between the participants has, in fact, a
slightly secondary role and the behaviour of the system as a whole is
to be understood from the perspective of internal behaviours of the
participants.

Their success and wide acceptance, specially in the case of BPMN,
could probably be a result of this. It provides a meta-model very
suitable for defining these internal processes, which, as a matter of
fact, is of much interest for the designers of a business process that
usually represent each of the roles that will be involved in the process.
For them, it is of great interest; what they will do and want to indicate
inside their process, and when and how they will communicate.

Our approach is very clear in starting from a global perspective: how
the collection of participants is to interact and work as a system. In-
ternal details are left completely out of scope and intended to be ap-
proached later by each participant. We call this process to project
the interaction protocol to the specific role. The advantage of this
approach is that; it is less prone to include tendencies resulting from
internal details of a participant, helping to keep the global model more
pure, and respects the autonomy of the participants. At the same

159

time, this projecting step, can be supported with automatic tools, in
the same way we produced executable agents.

9.5.3 OWL-P

Our meta-model was significantly inspired by OWL-P. They proposed a
declarative approach and included Commitments as a key concept in the
ontology and the overall logic, because it is very useful for composition.

We have taken these conceptual principles and enlarged them in a com-
prehensive meta-model. We added more concepts we think are also necessary
and even extended the Commitments by adding Timeouts to them, to have
a more pragmatic representation of the effects of not attending them.

Out of these ideas, a complete MDA-tool has been developed, capable
not only of modelling processes with an automatic supporting tool, but also
of generating executable code out of these models.

9.5.4 AMOEBA

Amoeba is a methodology that came from the same sources as OWL-P. Even
so, it has not taken advantage of the details a model can have when it is
done declaratively. In the methodology, some steps have been left somewhat
ambiguous, like sequencing of messages and why they form protocols in the
form they do. These aspects, instead of being concretely grounded in the
same model, are in fact organized solely by the human reasoning designer.

A fundamental conclusion of our work is instead that a declarative ap-
proach can only be of benefit if it provides tools that automatize parts of
the reasoning necessary to develop and manage models. Otherwise it will
not be useful once realistic scenarios come into play.

9.5.5 FIPA and Dialogue Games

FIPA provided a somewhat comprehensive library of interaction protocols.
These are defined using AgentUML, a diagramming technique with many
concepts relevant to the agent community. As the first example in Section
7.1 shows, our meta-model can be used to represent these protocols declara-
tively. This would add the benefit of being able to manage this library with
more automatic support provided by tools like those we have provided.
FIPA has also a declarative definition of Speech Acts which is done as in
Dialogue Games. These definitions are based on the internal concepts of the
agents, like their beliefs and intentions. Therefore, they are not helpful in
case one wants to define interaction protocols based on this same semantics.
Interaction protocols, like in FIPA, are declared from a global perspective.
The internal definitions of its participants must be transparent at this level.

160

9.5.6 Agentcities, WS2Jade, AgentWeb Gateway

In principle, the different strategies share the same idea of a wrapper or
adapter module. This is the recommended way to integrate heterogeneous
systems to a Web Services architecture (Barry 2003). Web Services used
to lack support for complex conversations and accordingly, integration with
agents was done using wrappers(Jennings 2001). The experience gained in
the Agentcities project (Agentcities 2002) proposed enabling interoperabil-
ity using a gateway (Agentcities Web Services Working Group 2002) for
the interaction of services and agents. Several solutions have adopted the
Gateway approach (Greenwood & Calisti 2004), (Curbera, Khalaf, Mukhi,
Tai & Weerawarana 2003), (Singh & Huns 2005). Most of them focused
on simple Web services request-responses conversations not enabling more
complex interactions. Even so, significant results were achieved in the map-
ping of description (Greenwood & Calisti 2004) and the complex semantics
(Nguyen & Kowalczyk 2005), (Greenwood, Nagy & Calisti 2005) which are
areas where approaches tend to be different to those proposed by FIPA.

The original integration approaches of the multi-agent community fol-
lowed the recommendations from agent Agentcities and the use of adapters.
At that time, that was the most suitable solution and was used by most
of the integration tools at the time. But soon after that new Web Ser-
vices standards, like WS-Addressing, appeared and a more transparent and
integrating solution like ours was possible.

Some of these solutions have the problem of replicating the complete Web
Services world inside the agent platform. This means that all external Web
Service resources that are to be used by agents inside the agent platform
will be replicated, which implies serious scalability issues.

On the other hand, we have never approached the integration of agent
descriptions and Web Services descriptions like some of the other solutions
did. We regarded the description and discovery issue, in our scope, as one
more communication phenomenon.

Significant work in the area of Agents and Web Services description and
discovery has been done by other collaborators of our laboratory .

9.5.7 Rosetta-Net

Rosetta-Net provided a big library of small interaction protocols. From the
modelling point of view there is not much to gain from this project since all
these protocols are request-response protocols. On the other hand, it proved
the advantages and usefulness of using interaction protocols libraries.

9.5.8 WS-CDL

Web Services Choreography Description Language was never adopted as a
community wide standard. Its main flaw is that it is not possible to model

161

and manage the different cardinalities of interaction partners. Concepts
like Cross-Conversational Constraints, something fundamental for interac-
tion protocols, is not possible using this standard.

It is also a very low level modelling approach that eventually would have
issues concerning manageability, modularization and reuse.

9.5.9 SOAML, UML2 enhancements and AMP proposal

Our work was also used in European Projects like, ATHENA, SHAPE and
COIN. Therefore many concepts, like roles and bindings, were adopted from
these modelling techniques. Similarly as with PIM4Agents, our approach
differentiates itself by being declarative. With our models we can manage
and combine interaction protocols in ways that are not possible with the
procedural or structured techniques of these other works.

9.5.10 PIM4Agents

Our modelling tools are part of PIM4Agents and represent an alternative
mechanism for the specification of interaction protocols. We can compare a
declarative approach and a structural approach very well, because both are
based on the same meta-models.

The main advantage of the structural approach is its manageability. The
interaction protocol in PIM4Agents is very well interlaced with the other
viewpoints. We can recognize the amount of complexity that differentiate
both situations. Without the support of the automatic diagram editors, a
declarative approach would have been almost impossible, which makes it
much more difficult to implement.

On the other hand, the declarative approach makes the meta-model more
flexible and less arbitrary. New concepts are easy to integrate by defin-
ing it using the clear semantics of our meta-model. Concepts like Cross-
Conversational Constraints and Commitments were are very well integrated
in the meta-model which, at the same time, is not that clear or possible
using the structured approach.

Also the explicit modularity that is achieved using a declarative approach
provides great advantages in comparison to the structured approach, which
is not as successful in concerning this.

Apart from that, as an extra bonus, the declarative approach is easier
to map to a BDI model, something very interesting for our department.
BDI-agents are also declarative; they have descriptions of the world and by
reasoning about them, they choose their next action. Goals and Propositions
are closely related and help to produce BDI execution models that follow the
Goal-Plan mechanisms better. With PIM4Agents it has been very difficult
to produce executable code that is not, in principle, a single portion of code

162

in a traditional programming language. These code fragments impede BDI
reasoning significantly.

9.6 Summary

The proposed solution for message integration in a Web Services scenario for
agent platforms is the only one capable of integrating agents and Web Ser-
vices transparently. This is achieved such that agents can interact in complex
conversations in the same way as in agent platforms. At the same time there
is also no visible difference, from the outside, between autonomous agents
and other implementations behind the Web Services interfaces. This opened
an opportunity for developing complex conversations using Web Services,
something that was only achieved in orchestration scenarios using BPEL.
Further work was done to provide a more flexible way of modelling complex
conversations. This was achieved by implementing a declarative meta-model
for interaction protocols inspired by OWL-P (Desai et al. 2005b). This
approach makes protocol models highly modular and reusable, but more
importantly, details like how to handle the change in the cardinality of the
participants, and when to synchronize the otherwise parallel running conver-
sations are now more easy to model. The model inherits much traditional
forward planning, but more importantly, using the declarative approach,
concepts are easier to relate. In our case, Commitments, Timeouts and
Speech Acts are very clearly harmonized to represent these fundamental
concepts of interaction protocols. New constructs are easier to add making
the meta-model very scalable. The modeling approach was used to model
an industrial use case with great success, since it enabled modelling of the
complete process combining only two basic interaction protocols. The result
was a model that performs as described in the use case. The model can be
used for other implementations, in our case, a transformation to Jadex was
used to produce BDI agents that can communicate using Web Services to
perform the business process.

163

Chapter 10

Future Work

Once the declarative meta-model for interaction protocols was implemented
and produced executable agents that perform these models using Web Ser-
vices, some open problems were recognized. The next two sections will list
some open issues and future work.

10.1 Agent communication grounded on Web Ser-
vices

10.1.1 Standardization of contents description

Our work was focused on standardizing the communication protocols for
agents to be compatible with Web Services. We deliberately decided to
avoid any work with respect to message contents, in contrast to some of the
Gateway approaches discussed in Section 9.5.

Concerning message contents compatibility, portability and mapping,
there are many techniques and standards being developed or used in practice.
Web Services and XML standards are mainly concerned with this. There are
approaches strongly oriented towards ontology, like RDF', and very technical
and structure-oriented specifications, like XML-Schema, and other similar
ones, for which mapping and transformation techniques are well developed.
Our work has left open; how these techniques are to be integrated into our
framework.

10.1.2 Service description and discovery

We only provide a solution for communication level integration and some
other aspects of SOA remain open, like service and content description and
service discovery. These two aspects are closely related to one another and
are the subject of study areas like Semantic Web Services description and
match-making (Klusch, Nesbigall & Zinnikus 2008).

164

Our work, as shown in Figure 1.1 in Section 1.3, is targeted at imple-
menting business processes. The experience gained in projects like ATHENA
(Benguria et al. 2007) and SHAPE (Benguria et al. 2009) show the strong
interest in implementing business processes following a life cycle that is con-
ceptually in the opposite direction to traditional SOA life-cycles. In SOA,
firstly, desirable participants are described and then searched, the discov-
ery phase. Secondly, matching participants are contacted, their interfaces
matched and a process is composed as a result. Business processes are first
modeled, out of these models interfaces are generated which, afterwards, are
implemented by the concrete participants that will perform the process. As
we can see, this is a development process where discovery of services plays
a minor role. Details that are important to mention in a description of par-
ticipants are information about their reasoning power or their capabilities.
One first approach, as proposed by FIPA, would be to mention the Speech
Acts, protocols and ontologies that the participant can process. This aspect
will be discussed next.

10.1.3 Heterogeneous Web Service agents

JadeWSMTS clears barriers at the levels of message transport and represen-
tation. Agents in a multi-agent system interact with the assumption that
other agents can understand their messages and are capable of reasoning
about them.

Interaction between parties with different reasoning capabilities tends to
reduce the overall communication capacity to levels that can be as low as
that of the least capable participant, as it happens with some gateways.

In the case of peer to peer (P2P) the notion of peer implies that all par-
ticipants share the same reasoning power. In contrast, in some multi-agent
systems composed of agents of heterogeneous complexity, the description of
agents and annotations in the ACLMessages, about protocols and ontologies
the agent can process, let participants know the communicative capabilities
of their counterpart.

As mentioned in the previous sub-section, the first step in coping with
this issue is to let the participants be aware of what other participants
can do. We propose to follow FIPA’s proposition of integrating this in the
description of agents.

10.1.4 Stateful Web Services

Other open issues are those related to the stateful nature of agents. The
concept of anonymity can be a challenge for agent implementations, because
agents require other mechanisms to differentiate anonymous parties in a
conversation. The traditional stateless nature of services can have stronger
repercussions at the time of performing complex conversations since it relies

165

some times on the concept of Commitments. This normally implies that
parties manage different states during the conversation. Some Web Services
support this, at least in certain sense, by using sessions or similar concepts.
It is relevant to study the relationship between stateful entities, Commit-
ments and complex conversations and also to compare messaging mecha-
nisms like REST and robust messaging like in FIPA or WS-Addressing.

10.1.5 Identification of Services

Finally, it is also important to consider the use of a unique identification for
services when the systems that will interact are unknown and could have
different identification assigning mechanisms. This issue is very common in
peer to peer networks of heterogeneous systems (Josephson, emin Giin Sirer
& Schneider 2004) (Fritz & Péris 2004) (Zhang & Zhang 2004). Relevant
work has been done in this area using FIPA agents and porting such a
solution to this integrated architecture would provide interesting insights
for Web Services based peer to peer networks.

10.2 Declarative meta-model of interaction proto-
cols

The present work succeeded in providing a model and tools to produce
descriptions of protocols in a declarative way, however, there are, among
others, two areas for future study: what other proposition names or con-
structs are necessary and how to make the graph diagram more intuitive,
expressive and usable.

10.2.1 Modeling constructs

Declarative approaches profit from expressiveness, given their descriptive
nature. In the present work some basic constructs have been defined to
describe situations and conditions in a conversation like: Timeouts, Com-
mitments, Conditional Propositions, Cross-Conversational Constraints, etc.

Some of these concepts have always been used in conjunction with in-
teraction protocols, like Timeouts. Some other came about afterwards and
have a generous amount of literature supporting them, like Commitments.
Some were defined concretely for the first time to clear existing ambiguities
in interaction protocol models and put to work along with other constructs
as part of this work, like Cross-Conversational Constraints.

It is still not clear what set of concepts are a minimum requirement in
order to describe conversation protocols appropriately. Further study will be
needed to evaluate the proposed constructs or to come up with a compelling
set of fundamental constructs to be used in a Declarative Protocol meta-
model.

166

10.2.2 Diagram constructs

Similarly to the previous section, where we proposed to evaluate and even
extend the set of constructs used to produce our Declarative Protocol meta-
model, the graphical elements used in the diagram editor need further study
and improvement. The current editor produces diagrams for protocols in
the form of directed graphs which, given their flexibility match, the nature
of a conversation better in opposition to procedural structures, which are
inadequate for this task. Even so, and as already mentioned in (Leén Soto
2009), there are some structural patterns typical to protocols and workflow
modelling that are not easy to recognize in the graph.

Our diagrams show only the flow of the conversations in a very basic
manner: in a conversation. There are, for instance, patterns that make the
conversation (with the same partner) more recognizable and structured. Sit-
uations, like parallel flows inside the same conversation, State Descriptions
where conversations split or are joined, are common phenomenons that can
be defined using our theoretical meta-model and correspondingly annotated
or displayed in a recognizable way in the diagram. Maybe, some ideas for vi-
sual representation could be introduced in our diagrams, for instance those
of BPMN (see Sections 3.5.3 and 9.5.2), since it was developed with the
objective of making intuitive and expressive diagrams.

More graphical elements and adding the logic to the editor to find such
situations and representing them accordingly would make the editor more
usable and understandable. A content rich model like the one used here
can only be of advantage if the user recognizes and has access to all this
information. Graphical elements can help dramatically and more research
and design should be invested in developing this aspect.

Also, after using the diagram editor, one recognizes tasks that are rather
repetitive and could be automatized. Our framework allows such improve-
ments and, at the same time, these improvements are necessary to make our
diagrams more usable.

10.2.3 Standardization of Speech Acts and protocols in a
library

One of the goals pursued in this thesis and inspired by the goals of the
multi-agents community is to count with a set of standardized elements, by
combining them, to solve most of the problems.

FIPA attempted that by proposing a Speech Acts and an interaction
protocols library. Our meta-model serves this same objective, therefore, the
proposal of a core library of Speech Acts and interaction protocols would
make much sense, specially since this would be one of the best ways to take
advantage of the reuse of code and modularity features of our meta-model.

For this purpose a set of Speech Acts is defined providing them with

167

enough semantic description in the form of our declarative model to use
them flexibly in several scenarios. Using these Speech Acts, fundamental
interaction protocols could be defined. As FIPA showed, this is a very hard
task and it involves the whole multi-agents community. Our meta-model
would help the community to develop these models.

10.2.4 Semantic matchmaking

Our models are well annotated with semantic information. Our tool makes
use of this in a trivial manner, by simply doing a lexical matching of propo-
sition names. However, in comparison to how it is done in Semantic Web
Services, more sophisticated matchmaking tools and algorithms could be
used, to improve the performance, accuracy and sophistication of our model
editors. How our framework would fit in such a scenario is left open for
further research.

10.2.5 Reasoning about interaction protocols and actions

Our meta-model provides information initially targeted at the improvement
of the design tools and the management of models. This kind of models
increase interest in the multi-agent systems community for implementing
agents that can reason about the annotations available in the models.

This would bring our models closer to dialog-games. Our models count
with key information, the semantics of actions and protocols. We used it
to support the design process, but at run-time, it would also be of benefit
for agents capable of reasoning about what protocols, actions or paths in
a conversation to take. The implementation of this kind of agents is a
comprehensive research area and we believe our meta-model would make a
relevant contribution to this area.

10.3 Summary

Our work brings forward new questions and areas where further work is
proposed. We left the area of message contents standardization or mapping
in our Web Services and agents integration open. Because of alignment
with our objectives the description and discovery of participants was ignored
since they do not play a role in the development of business process models
approached in this thesis. Also some further work would be useful concerning
the heterogeneous nature or participants in Web Services, their statefulness
and the effects and obstacle of identification mechanisms.

We proposed interaction protocols constructs that are formally related
to the whole meta-model. Some new concepts were provided, like Cross-
Conversational Constraints, but other constructs and how they are related
to the meta-model raises interest. The ultimate goal of having a canonical

168

library of speech acts and interaction protocols is still open. Our meta-model
is suitable for more intense use of its semantics: semantic match making of
protocols and the implementation of agents capable of reasoning about how
to interact, based on the descriptions present in the model, are proposed as
future steps to take.

169

Chapter 11

Conclusions

In this thesis, the goal of using multi-agent communication techniques for
the realization of Business-Processes has been achieved by approaching the
problem at two levels:

e At the lower level; integrating Web Services and multi-agent systems
communication specifications

e At the higher level; modeling of Business-Process using our declarative
meta-model for interaction protocols.

Using MDA-techniques, implementations that make use of our achieve-
ments in the lower levels are automatically generated using the models pro-
duced by the tools provided in the upper level as input.

As a result, we have a set of tools that aid in the design of Business-
Processes by using the interaction protocols based approach of multi-agents
systems and automatically generating implementations of these complex
conversations using Web Services standards.

The experience of the projects; (Benguria et al. 2007),(Benguria et al.
2009) and (Hahn, Madrigal Mora & Fischer 2009), guided us to also use
a design life-cycle different from the traditional SOA approach. Our im-
plementation is not the result of discovery of services, but instead we start
with a design of a desired process, we generate the interfaces for the partici-
pants and produce implementations of them in order to perform the modeled
process.

11.1 Choreography

The models and implementations always respect the independence of the
participants. Models are globally seen choreographies and do not include
any concept of a ruling or guiding entity. Implementations are created
based on the interaction models in such a way that they fit together at

170

run-time and perform as specified in the design. The only element keeping
the business-process working correctly is the model they are based on, giv-
ing our interaction protocol models the role of contract between participants
that defines how these participants agree to act together.

11.2 A declarative approach

Our intention was to have models that were modular, reusable and with fea-
tures that suit the nature of interactions between autonomous participants:
Commitments, Timeouts, Cross-Conversational Constraints (see 5.4.4), etc.

A declarative approach gives more freedom to express the flexibility of
a conversation instead of forcing it into programming constructs as usually
happens in traditional process modeling frameworks.

11.2.1 Modularity and reuse

Our modeling of Business Processes is inspired by the way the multi-agents
systems community, and more specifically FIPA, intended to solve this prob-
lem.. This was done by providing a set of Speech Acts and interaction proto-
cols that by combination can be used to solve most situations. We overcome
some of the difficulties of FIPA specifications by defining Speech Acts and
interaction protocols using the same semantics. We profit from coherence
throughout the meta-model, in opposition to FIPA, where a dialog-game
approach was used for defining Speech Acts and a global perspective for the
interaction protocols.

11.2.2 Consolidation of contributions

Before implementing the meta-model, we produced a comprehensive, for-
mal and detailed semantic definition of our concepts (Leén Soto 2009). The
set of definitions were necessary to consolidate contributions of the multi-
agents systems community. Many ideas common in the community are in-
cluded, like Timeouts and Commitments, and new definitions are included
like Cross-Conversational Constraints. Some of these concepts were still de-
fined ambiguously in literature and in our definition we disambiguated them
and established clear relations among them that define how all the concepts
work together. To achieve this, many techniques well known in artificial
intelligence, like forward planing, were used.

11.3 JadeWSMTS

We provide a tool called JadeWSMTS that integrates Agents and Web Ser-
vices. It does not change the nature of agents and Web Services, but provides
tools and techniques that let them work together. Thanks to a mapping of

171

Web Services and FIPA messaging properties, agent messages are repre-
sented using Web Services standards. In this way, agents and Web Services
can interact with each other transparently. Still agents might need to adapt
their internal operations in order to interact with Web Services. Our tool
helps in making stateless or synchronous Web Services, and stateful and
asynchronous agents compatible. However, it cannot overcome the differ-
ence in reasoning power that might arise between participants in a scenario
with conventional Web Services.

11.4 Automatic generation of flexible and scalable
implementations

Out of our models Jadex BDI agents are created automatically. The agents
can communicate using JadeWSMTS. The conversion takes advantage of the
declarative aspect of the models, and produces a context based conversation
control implementation. BDI agents make the situation oriented approach
easier to implement than using traditional procedural techniques. At the
same time, a goal oriented pattern of plans is used to implement the roles.
This makes the implementation of agents better in terms of flexibility and
scalability. The normal approach, even in PIM4Agents (Hahn, Madrigal
Mora & Fischer 2009), is to produce a single segment of code for the com-
plete behaviour of the role. Our code generation can produce goal oriented
implementations of the BDI agents, where each turn in the conversation is
implemented using a small set of plans, thanks to the declarative nature of
the meta-model. The implementation of a role in BDI agents is therefore
goal oriented and flexible instead of rigid sequences of code, like those used
in traditional transformations.

172

Bibliography

(2003).
Agentcities (2002), ‘Agentcities’, http://www.agentcities.org.

Agentcities Web Services Working Group (2002),
‘Integrating Web Services into Agentcities’.
http://www.agentcities.org/Activities/ WG /WebServices// .

Amgoud, L., Maudet, N. & Parsons, S. (2000), Modeling dialogues using
argumentation, in ‘Proceedings of the Fourth International Conference
on MultiAgent Systems’.

Andrews, T. & et. al., F. C. (2003), Business Process Execution Language
for Web Services, Technical report, IBM.
URL: ftp://wwwé.software.ibm.com/software/developer/library/ws-

bpel.pdf

Ardissono, L., Goy, A. & Petrone, G. (2003), Enabling conversations with
web services, in ‘AAMAS ’03: Proceedings of the second international

joint conference on Autonomous agents and multiagent systems’, ACM
Press, New York, NY, USA, pp. 819-826.

AXIS2 (2006), ‘Axis2 SOAP Stack implementation’,
http://ws.apache.org/axis2/.

Barros, A., Dumas, M. & Oaks, P. (2005), ‘A Critical Overview of the Web
Services Choreography Description Language’. www.btrends.com.

Barry, D. K. (2003), Web Services and Service-Oriented Architectures, Mor-
gan Kaufmann.

Bauer, B., Miiller, J. P. & Odell, J. (2000), Agent UML: A Formalism for
Specifying Multiagent Software Systems, in ‘ICSE 2000 Workshop on
Agent-Oriented Software’.

Benguria, G., Berre, A. J., Elvesaeter, B., Hahn, C., Jacobi, S., Landre, E.,
Sadovykh, A. & Stollberg, M. (2009), ‘SHAPE Project Whitepaper’.

173

Benguria, G., Larrucea, X., Elvester, B., Neple, T., Beardsmore, A. & Friess,
M. (2007), A platform independent model for service oriented archi-
tectures, in G. Doumeingts, J. Mller, G. Morel & B. Vallespir, eds,
‘Enterprise Interoperability’, Springer London, pp. 23-32.

Braubach, L. & Pokahr, A. (2007), Goal-oriented interaction protocols,
in ‘Fifth German conference on Multi-Agent System Technologies
(MATES-2007)’.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S. & Weerawarana, S. (2003), ‘The
next step in web services’, Communications of the ACM 46(10), 29-34.

Dale, J. & Lyell, M. (2003), Services work plan, Technical report, Foundation
for Intelligent Physical Agents (FIPA).

Damodaran, S. (2004), B2B integration over the Internet with XML: Roset-
taNet successes and challenges, in “WWW Alt. ’04: Proceedings of
the 13th international World Wide Web conference on Alternate track
papers & posters’, ACM, pp. 188-195.

Decker, G., Kopp, O., Leymann, F., Pfitzner, K. & Weske, M. (2008), Mod-
eling Service Choreographies using BPMN and BPEL4Chor, in ‘20th
International Conference on Advanced Information Systems Engineer-
ing (CAiSEO08)’, Springer, pp. 79-93.

Decker, G., Kopp, O., Leymann, F. & Weske, M. (2007), BPEL4Chor: Ex-
tending BPEL for Modeling Choreographies, in ‘ICWS 2007’, IEEE
Computer Society, pp. 296-303.

DeRemer, F. & Kron, H. (1975), Programming-in-the large versus
programming-in-the-small, in ‘Proceedings of the international confer-
ence on Reliable software’, ACM, pp. 114-121.

Desai, N., Chopra, A. K. & Singh, M. P. (2009), AMOEBA: A Methodol-
ogy for Modeling and Fvolution of Cross-Organizational Business Pro-
cesses, Vol. 19, ACM.

Desai, N., Mallya, A. U., Chopra, A. K. & Singh, M. P. (2005a), ‘Interaction
Protocols as Design Abstractions for Business Processes’, Transactions
on Software Engineering 31(12), 1015 — 1027.

Desai, N., Mallya, A. U., Chopra, A. K. & Singh, M. P. (2005b), OWL-
P: A Methodology for Business Process Modeling and Enactment, in
‘Workshop on Agent Oriented Information Systems’, pp. 50-57.

Desai, N. & Singh, M. P. (2007), A Modular Action Description Language
for Protocol Composition, in ‘AAAD’, pp. 962-967.

174

DFKI (2007), ‘FIPA SL representation in XML’ http://www.dfki.de/~es-
tebanl/JadeWSMTS /FIPA-XML-SL.xsd.

Ehrler, L. & Cranefield, S. (2004), Executing Agent UML Diagrams, in ‘AA-
MAS ’04: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems’, IEEE Computer Soci-
ety, pp. 906-913.

Eijk, R. M. V., Boer, F. S. D., Hoek, W. V. D. & Meyer, J.-J. C. (2003), ‘A
verification framework for agent communication’, Autonomous Agents
and Multi-Agent Systems 6(2), 185-219.

FIPA (2002), ‘Foundation for Intelligent Physical Agents’.
http://www.fipa.org.

FIPA (2002a), ‘FIPA Abstract Architecture Specification’.
FIPA (2002b), ‘FIPA Agent Management Specification’.

FIPA (2002c¢), FIPA Agent Message Transport Envelope Representation in
XML Specification, Technical report, Foundation For Intelligent Phys-
ical Agents (FIPA), http://www.fipa.org/specs/fipa00071/.

FIPA (2002d), FIPA Agent Message Transport Services Specification,
Technical report, (FIPA) Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00067.

FIPA (2002¢), ‘FIPA Communicative Act Library Specification’.
http://www.fipa.org/specs/fipa00037.

FIPA (2002f), FIPA Contract Net Interaction Protocol Specification, Tech-
nical Report SC00029H, FIPA.
URL: http://www.fipa.org/specs/fipa00029

FIPA (2002¢g), FIPA Interaction Protocols Specification, Techni-
cal report, Foundation For Intelligent Physical Agents (FIPA),
http://www.fipa.org/repository/ips.php3.

FIPA (2002h), ‘FIPA SL Content Language Specification’.

FIPA (2004), ‘FIPA Agent Management Specification’.
http://www.fipa.org/specs/fipa00023.

Fischer, K., Kuhn, N., Miiller, H.-J. & Miiller, J. P. (1995), ‘Modelling the
transportation domain’, Computational Economics 8, 81-93.

Forrester, J. (1969), Industrial Dynamics, 6. print edn, M.I.T. Press, Cam-
bridge, Mass.

175

Fritz, A. & Paris, J.-F. (2004), Maille Authentication, A Novel Protocol for
Distributed Authentication, in ‘Security and Protection in Information
Processing’.

Gibbins, N., Harris, S. & Shadbolt, N. (2003), Agent-based semantic web ser-
vices, in ‘Proceedings of the twelfth international conference on World
Wide Web’, ACM Press, pp. 710-717.

Greenwood, D. & Calisti, M. (2004), Engineering web service - agent in-
tegration, in ‘Systems, Cybernetics and Man Conference’, Whitestein,
IEEE.

Greenwood, D., Lyell, M., Mallya, A. & Suguri, H. (2007), The IEEE FIPA
Approach to Integrating Software Agents and Web Services, in ‘Sixth
International Conference on Autonomous Agents and Multiagent Sys-
tems, Industrial Track’.

Greenwood, D., Nagy, J. & Calisti, M. (2005), ‘Semantic Enhancement of
a Web Service Integration Gateway’, Workshop on Services-Oriented
Computing and Agent-Based Engineering at AAMAS 05 .

Hahn, C. & Fischer, K. (2008), The formal semantics of the domain specific
modeling language for multiagent systems, in ‘Agent-Oriented Software
Engineering IX, 9th International Workshop, AOSE’, Vol. 5386 of Lec-
ture Notes in Computer Science, pp. 145-158.

Hahn, C., Madrigal Mora, C. & Fischer, K. (2009), ‘A platform-independent
metamodel for multiagent systems’, Autonomous Agents and Multi-
Agent Systems 18(2), 239-266.

Hahn, C., Zinnikus, I., Warwas, S. & Fischer, K. (2009), From agent in-
teraction protocols to executable code: a model-driven approach, in
‘AAMAS (2)’, pp. 1199-1200.

Haugen, O. & Runde, R. K. (2009), Agent-Based Technologies and Applica-
tions for Enterprise Interoperability, Vol. 25 of LNBIP, Springer, chap-
ter Enhancing UML to Formalize the FIPA Agent Interaction Protocol,
pp. 154-173.

Havey, M. (2005), Essential Business Process Modeling, O’Reilly.

Hohpe, G. & Woolf, B. (2003), Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions, Addison-Wesley Profes-
sional.

IETF (2004), ‘Extensible Messaging and Presence Protocol (XMPP) RFC
3920’. http://xmpp.org/.

176

Jacobi, S., Leén Soto, E., Madrigal Mora, C. & Fischer, K. (2005),
AgentSteel: an agent-based online system for the planning and observa-
tion of steel production, in ‘AAMAS Industrial Applications’, Utrecht,
pp. 114-119.

Jacobi, S., Leén Soto, E., Madrigal Mora, C. & Fischer, K. (2007), Mas-
DISPO: a multiagent decision support system for steel production and
control, in ‘Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence’, AAAI, Vancouver, pp. 1707-1714.

JADE (2001), ‘Java Agent Development Framework’, On line.
http://jade.tilab.com.

Jennings, N. R. (2001), ‘An agent-based approach for building complex soft-
ware systems’, Commun. ACM 44(4), 35-41.

Jilovec, N. (2004), EDI, UCCnet and RFID: synchronizing the supply chain
, Penton Technology Media.

Josephson, W. K., emin Giin Sirer & Schneider, F. B. (2004), Peer-to-Peer
Authentication with a Distributed Single Sign-On Service, in ‘Peer-to-
Peer Systems III’, Vol. 2872 of LNAL

Kantor, M. & Burrows, J. H. (1993), Electronic data interchange (edi),
Technical report, National Institute of Standards and Technology.
http://www.itl.nist.gov/fipspubs/fip161-2.htm.

Klusch, M., Nesbigall, S. & Zinnikus, I. (2008), MDSM: Model-Driven Se-
mantic Web Service Matchmaking for Collaborative Business Processes.
P, in ‘Proceedings of IEEE/ACM International Conference on Web In-
telligence (WI)’, Vol. 1, pp. 612 — 618.

Kramler, G., Kapsammer, E., Retschitzegger, W. & Kappel, G. (2006), To-
wards Using UML 2 for Modelling Web Service Collaboration Protocols,
Springer London, chapter 21, pp. 227-238.

Leén Soto, E. (2006), FIPA Agents Messaging grounded on Web Services,
in ‘Grid Services Engineering and Management (GSEM)’, Vol. P-88 of
LNI.

Leén Soto, E. (2007), Agent Communication Using Web Services, a new
FIPA Message Transport Service for Jade, in P. Petta, J. P. Miiller,
M. Klusch & M. Georgeff, eds, ‘Multiagent System Technologies’, Vol.
4687 of LNAI Springer, pp. 73-84.

Leén Soto, E. (2009), Modelling Interaction Protocols as Modular and
Reusable 1st Class Objects, in K. Fischer, J. P. Miiller, J. J. Odell
& A. J. Berre, eds, ‘Agent-Based Technologies and Applications for

177

Enterprise Interoperability’, Vol. 25 of LNBIP, Springer, chapter 10,
pp- 174-219.

Leén Soto, E. (2012), A Model-Driven Approach for Executing Modular
Interaction Protocols Using BDI-Agents, in K. Fischer, J. P. Mller,
R. Levy, W. Aalst, J. Mylopoulos, M. Rosemann, M. J. Shaw &
C. Szyperski, eds, ‘Agent-Based Technologies and Applications for En-
terprise Interoperability’, Vol. 98 of Lecture Notes in Business Infor-
mation Processing, Springer, pp. 10-34.

Mallya, A. U. & Huhns, M. N. (2003), ‘Commitments Among Agents’, I[EEE
Internet Computing 7(4), 91-94.

Mallya, A. U. & Singh, M. P. (2004), A Semantic Approach for Design-
ing E-Business Protocols, in ‘Third International Conference on Web
Services’, IEEE Computer Society, pp. 742-745.

Mallya, A. U. & Singh, M. P. (2005), A Semantic Approach for Designing
Commitment Protocols, in R. V. Eijk, ed., ‘Developments in Agent
Communication’, Vol. 3396 of LNAI, Springer, pp. 37-51.

Mallya, A. U. & Singh, M. P. (2006a), Specifying and resolving preferences
among agent interaction patterns, in ‘AAMAS ’06: Proceedings of the
fifth international joint conference on Autonomous agents and multia-
gent systems’, ACM, pp. 1361-1368.

Mallya, A. U. & Singh, M. P. (2006b), Specifying and resolving preferences
among agent interaction patterns, in ‘In Proceedings of the fifth inter-
national joint conference on Autonomous agents and multiagent sys-
tems’, ACM Press, pp. 1361-1368.

McBurney, P. & Parsons, S. (2002), ‘Games that agents play: A formal
framework for dialogues between autonomous agents’, J. of Logic, Lang.
and Inf. 11(3), 315-334.

McBurney, P. & Parsons, S. (2003), ‘Dialogue game protocols’, Communi-
cations in Multiagent Systems 2650, 269-283.

Miller, T. & McBurney, P. (2007), Using constraints and process algebra for
specification of first-class agent interaction protocols, in ‘Engineering
Societies in the Agents World VII’, Vol. 4457 of LNAI p. 245264.

Miller, T. & Mcginnis, J. (2008), Amongst first-class protocols, in ‘Engineer-
ing Societies in the Agents World VIII: 8th International Workshop,
ESAW 2007, Athens, Greece, October 22-24, 2007, Revised Selected
Papers’, Springer-Verlag, pp. 208-223.

178

Nguyen, X. T. & Kowalczyk, R. (2005), ‘WS2JADE: Integrating Web Ser-
vices with Jade Agents’, Workshop on Services-Oriented Computing
and Agent-Based Engineering at AAMAS 05 .

OASIS (n.d.), ‘Universal Description, Discovery and Integration (UDDI)’.
http://uddi.xml.org/.

Odell, J., van Dyke Parunak, H. & Bauer, B. (2000), Representing Agent
Interaction Protocols in UML, in ‘International Workshop on Agent-
Oriented Software Engineering’.

OMG (2008), ‘Querry view transformation’,
http://www.omg.org/spec/QVT/1.0/PDF/.
URL: hittp://www.omg.org/spec/QVT/1.0/PDF/

OMG (2009), Business Process Modeling Notation (BPMN), Technical re-
port, Object Management Group. http://www.omg.org/spec/BPMN.

Palanca, J., Escriva, M., Aranda, G., Garcia-Fornes, A., Julian, V. & Botti,
V. (2006), Adding New Communication Services to the FIPA Message
Transport System, in ‘Multiagent System Technologies (MATES)’, Vol.
4196 of LNCS, Springer.

Pokahr, A., Braubach, L. & Lamersdorf, W. (2005a), Jadex: A bdi reason-
ing engine, in J. D. R. Bordini, M. Dastani & A. E. F. Seghrouchni, eds,
‘Multi-Agent Programming’, Springer Science4Business Media Inc.,
USA, pp. 149-174. Book chapter.

Pokahr, A., Braubach, L. & Lamersdorf, W. (2005b), Jadex: A BDI reason-
ing engine, in M. D. R. Bordini & A. E. F. Seghrouchni, eds, ‘Multi-
Agent Programming’, Springer Science+Business Media Inc., USA,
pp- 149-174. Book chapter.

Raber, D. (2009), A Model-Driven Approach for the Integration of Multia-
gent Systems and Service-Oriented Architectures in the Steel Industry,
Master’s thesis, University of Saarland.

RossettaNet (2002). http://www.rosettanet.org.
Saarstahl AG (n.d.), ‘Saarstahl AG’, On line. http://www.saarstahl.com.

Sadek, M. (1991), ‘Dialogue Acts are Rational Plans’, ESCA/ETRW Work-
shop on the Structure of Multimodal Dialogue .

Service oriented architecture Modeling Language (2008), Revised OMG sub-
mission.

179

Shafig, M. O., Ali, A., Ahmad, H. F. & Suguri, H. (2005), Agentweb gateway
- a middleware for dynamic integration of multi agent system and web
services framework, in ‘WETICE ’05: Proceedings of the 14th IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprise’, IEEE Computer Society, pp. 267-270.

Shehory, O. (2003), Robustness Challenges in Peer-to-Peer Agent Systems,
in ‘Agents and Peer-toPeer Computing’.

Shin, H.-J. & Lee, S.-G. (2004), Architecture environtments for e-business
agent based on security, in ‘Computatoinal Science and its Applica-
tions’, Springer.

Singh, M. P. (1999), ‘An Ontology for Commitments in Multiagent Systems’,
Artificial Intelligence and Law T(1), 97-113.

Singh, M. P., Chopra, A. K., Desai, N. V. & Mallya, A. U. (2004), Protocols
for Processes: Programming in the Large for Open Systems, in ‘OOP-
SLA Companion’, Vol. 39 of ACM SIGPLAN Notices, ACM, pp. 73-83.

Singh, M. P. & Huns, M. N. (2005), Service-Oriented Computing Semantics,
Processes and Agents, WILEY.

Smith, H. & Fingar, P. (2002), Business Process Management, the third
wave, Megan-Kiffer Press.

Smith, R. G. (1979), The Contract Net Protocol: High-Level Communi-
cation And Control In A Distributed Problem Solver, in ‘Proceedings
of the First International Conference On Distributed Computing Sys-
tems’, pp. 185-192.

Sonntag, M. (2006), ‘Agents as Web Service providers: Single agents or
MAS?’, Applied Artificial Intelligence 20, 203-227.

van den Heuvel, W.-J. & Maamar, Z. (2003), Moving toward a framework
to compose intelligent web services, Vol. 46, pp. 103-109.

van Riemsdijk, M. B., Dastani, M., Meyer, J.-J. C. & de Boer, F. S. (2006),
Goal-oriented modularity in agent programming, in ‘AAMAS ’06: Pro-
ceedings of the fifth international joint conference on Autonomous
agents and multiagent systems’, ACM, pp. 1271-1278.

W3C (2002), ‘Web Services Description Language’.
http://www.w3.org/2002/ws/desc/.

W3C (2003), ‘SOAP Simple Object Access Protocol’.
http://www.w3.org/TR /soap/.

180

W3C (2005), ‘Web Services Choreography Description Language’.
http://www.w3.org/TR/ws-cdl-10/.

W3C (2006a), ‘Web services addressing’,
http://www.w3.org/2002/ws/addr/.

W3C (20060), ‘Web Services Addressing 1.0-Core’,
http://www.w3.org/TR/ws-addr-core.

W3C (2006¢), ‘Web Services Addressing 1.0-SOAP Binding’,
http://www.w3.org/TR/ws-addr-soap.

W3C (n.d.), ‘World Wide Web Consortium’. http://www.w3.org.

Warwas, S. & Hahn, C. (2009), The dsml4dmas development environment, in
C. Sierra, C. Castelfranchi, K. S. Decker & J. S. Sichman, eds, ‘AAMAS
(2)’, IFAAMAS, pp. 1379-1380.

Warwas, S., Hahn, C. & Fischer, K. (2009), A visual development environ-
ment for jade, in ‘AAMAS (2)’, pp. 1349-1350.

Weerawarana, S., Curbera, F., Leymann, F., Storey, T. & f. Ferguson, D.
(2005), Web Services Platform Architecture, Prentice Hall.

Winikoff, M. (2005), Jack intelligent agents: An industrial strength plat-
form, in J. D. R. Bordini, M. Dastani & A. E. F. Seghrouchni, eds,

‘Multi-Agent Programming’, Springer Science+Business Media Inc.,
USA, pp. 175-196. Book chapter.

Yolum, P. & Singh, M. P. (2002), Commitment machines, in ‘ATAL '01: Re-
vised Papers from the 8th International Workshop on Intelligent Agents
VIID’, Springer-Verlag, pp. 235-247.

Zhang, Y. & Zhang, D. (2004), Authentication and Access Control in P2P
Network, in ‘Grid and Cooperative Computing’.

181

