
A Model-Driven Approach

for Organizations

in Multiagent Systems

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Cristián Madrigal Mora

Deutsches Forschungszentrum für Künstliche Intelligenz

Saarbrücken

2012

iii

Dekan der Naturwissenschaftlich-Technischen

Fakultät I

Prof. Dr. Mark Groves

Vorsitzender der Prüfungskommission Prof. Dr. Antonio Krüger

Berichterstatter Prof. Dr. Jörg Siekmann

Berichterstatter Prof. Dr. Philipp Slusallek

Berichterstatter Prof. Dr. Andreas Zeller

Tag des Promotionskolloquiums 20.09.2013

iv

Acknowledgements

First of all, I would like to thank the members of my PhD committee for

their guidance and support in the final stages of my PhD.

To Prof. Dr. Jörg Siekmann, thank you for giving me the opportunity

to work under your supervision. I will always treasure all the lessons—both

personal and professional—that I learned from you and other members of the

multiagent group during this part of my life.

To the members of the multiagents group at DFKI, especially Prof. Dr.

Philipp Slusallek and Dr. Klaus Fischer, thank you for all the fruitful dis-

cussions, the constructive criticism and for making the institute such a great

place to work in.

To my officemates, Esteban, Stefan and Sven, thanks for always being

there to bounce ideas around no matter how bad they were.

To all my friends, thanks giving me a small push when I felt stuck and

for celebrating with me every time I reached a milestone in this journey.

Dedication

To my family, for always pushing and allowing me to follow my dreams

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selb-

ständig und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-

fertigt habe. Die aus anderen Quellen oder indirekt übernommenen Daten

und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder

ähnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades

vorgelegt.

Saarbrücken, den 1.11.2012

(Unterschrift)

Kurzfassung

In dieser Arbeit wird ein neuer Modell-basierter Ansatz für die Agenten-

orientierte Softwaretechnik vorgestellt, bei dem Agenten-Organisationen

nicht nur eine entscheidende Rolle spielen, sondern auch auf allen Abstrakti-

onsebenen vertreten sind. In der dargestellten Methodik werden Multiagenten-

Systeme auf einer Plattform-unabhängigen Ebene modelliert und dann in ein

Plattform-spezifisches Modell umgewandelt, wobei die Organisationsstruk-

turen erhalten bleiben. Der Ansatz wurde über einige Jahre kontinuierlich

verfeinert und bereits in zwei Projekten der Europäischen Union implemen-

tiert.

i

Abstract

This thesis introduces a new model-driven approach to agent-oriented soft-

ware engineering in which agent organizations not only play a crucial role,

but are also represented in every abstraction level. In our methodology, mul-

tiagent systems are modeled at a platform-independent level and transformed

into a platform-specific level preserving the organizational structures. The

approach has been refined through several years and has been used in two

European Union projects.

iii

Zusammenfassung

In dieser Arbeit wird ein neuer Modell-basierter Ansatz für die Agenten-

orientierte Software-Technologie vorgestellt, bei dem Agenten-Organisationen

nicht nur eine entscheidende Rolle spielen, sondern auch auf allen Abstrakti-

onsebenen vertreten sind. In der dargestellten Methodik werden Multiagenten-

Systeme auf einer Plattform-unabhängigen Ebene modelliert und dann in ein

Plattform-spezifisches Modell umgewandelt, wobei die Organisationsstruk-

turen erhalten bleiben.

Um Systementwickler bei der effektiven Modellierung zu unterstützen,

wird hier eine Methodik beschrieben, die die Erstellung verschiedener Mo-

dellansichten anleitet, und zwar so, dass zugleich auch die Abhängigkeiten

zwischen diesen Ansichten berücksichtigt werden können. Abhängig von den

Systemvoraussetzungen oder Entwicklerpräferenzen hat der Systementwick-

ler die Möglichkeit, das System ziel- oder verhaltensorientiert zu modellie-

ren. Zielorientiert bedeutet hier: die Verantwortlichkeiten für jede Rolle in

der Organisation werden als Ziele modelliert. Diese Ziele umfassen der Or-

ganisation übergeordnete Ziele, Organisationsziele und Agentenziele. Beim

verhaltensorientierten Ansatz werden die Verantwortlichkeiten für die Rol-

len als Verhalten modelliert. Hierbei ist das Erreichen von Zielen bereits in

der erfolgreichen Durchführung des Verhaltens impliziert. Mit Ausnahme der

Phasen der Zieldefinition ist die Methodik für beide Ansätze die gleiche. De-

finiert werden müssen: ein Informationsmodell, Rollen gemäß ihrer Verant-

wortlichkeiten (Zielen oder Verhaltensweisen), Organisationsstrukturen und

ihre Beziehungen mittels Rollen, Kommunikationsprotokolle, detaillierte Ab-

läufe der Verhaltensweisen sowie die Konfiguration für die Bereitstellung des

MAS.

Die Plattform-unabhängigen Konzepte werden in einem Metamodell na-

mens PIM4Agents definiert. Die Modellierungstools für PIM4Agents unter-

stützen jede Phase der Methodik und liefern für jede Ansicht ein grafisches

v

Modell. Zudem wird bei Speicherung der Modelle eine Modell-Validierung

durchgeführt. Diese verhindert, dass das Modell inkonsistent wird, und ga-

rantiert, dass die nachfolgenden Transformationen problemlos funktionieren.

Ist eine Agentenplattform als Ziel gewählt, werden die Modelle in ein

Plattform-spezifisches Modell (PSM) für diese Plattform umgewandelt. In

dieser Arbeit wird das PSM JadeOrgs für die Jade Agentenplattform vorge-

stellt. JadeOrgs bietet die in der Agentenplattform verfügbaren Modellkon-

strukte und ergänzt diese durch weitere Konstrukte die für die Repräsentati-

on der Organisationsstrukturen, ihrer Rollen und ihrer Verantwortlichkeiten

benötigt werden. Darüber hinaus wurde mithilfe der Spezifikationssprache

Object-Z eine formale Definition dieser Strukturen erstellt. Da diese Kon-

strukte nicht in der Jade Agentenplattform implementiert sind, umfasst Ja-

deOrgs auch eine Programmierschnittstelle und eine Laufzeitkomponente, so

dass diese Strukturen auch während der Ausführung des modellierten MAS

verfügbar sind. Um die verschiedenen Abstraktionsebenen miteinander zu

vereinbaren, wird eine Reihe von Transformationen definiert. Diese bestehen

einerseits aus einer Reihe von Konzept-Mappings von einer Abstraktionsebe-

ne zur nächsten sowie andererseits aus einem Satz an Quelltextvorlagen für

die Serialisierung des PSMs zu Java-Quelltext.

Um die Realisierbarkeit solcher Modelle und Transformationen aufzuzei-

gen, werden zwei Anwendungsszenarien beschrieben. Im ersten wird eine

frühe Version von JadeOrgs für einen Proof-of-Concept im Kontext einer

Service-orientierten Architektur verwendet. Im zweiten werden PIM4Agents

und JadeOrgs für ein Szenario in der Stahlproduktion verwendet.

Summary

In this thesis, we introduce a new model-driven approach to agent-oriented

software engineering in which agent organizations not only play a crucial role,

but are also represented in every abstraction level. In our approach, multi-

agent systems are modeled at a platform-independent level and transformed

into a platform-specific level preserving the organizational structures.

In order to assist the system designer to model effectively, we describe

a methodology that guides the creation of various model views in a fashion

consequent with the dependencies between these views. Depending on the

system requirements or designer preference, the system designer has the op-

tion to model the system in a goal-driven or a behavior-driven fashion. In the

goal-driven fashion, the responsibilities for each role are modeled as goals.

These goals include system overall goals, organization goals and the goals

for each agent type. In the behavior-driven way, the achievement of goals is

implicit in the successful completion of the behaviors and the roles in the sys-

tem depend on their required behaviors. Aside for the goal definition stages,

the methodology is the same for both variations by defining: the information

model, the roles with respect to the responsibilities (goals or behaviors), the

organizational structures and their relationships through roles, the commu-

nication protocols, the detailed process entailed by each behavior, and the

deployment configuration of the MAS.

The platform independent concepts are defined in a metamodel called

PIM4Agents. The modeling tools for PIM4Agents support each of the

methodology stages and provide a graphical model for each of the views. In

addition to the graphical modeling support, model validation is performed on

the saved models. The validation avoids the introduction of inconsistencies

in the model and guarantees that the following transformations will work

successfully.

Once a target agent platform is chosen, the models are transformed into

vii

a Platform Specific Model (PSM) for the given platform. In this thesis, we

introduce a PSM for the Jade Agent Platform called JadeOrgs. JadeOrgs

provides the modeling constructs available in the agent platform and ex-

tends this set with the constructs necessary to represent the organizational

structures, their roles and their responsibilities. In addition, a definition for

these structures was formalized using the Object-Z specification language. As

these constructs are not implemented in the Jade Agent platform, JadeOrgs

also includes a programming API and a runtime component so that these

structures are also available during the execution of the modeled MAS. In

order to connect the different abstraction levels, a series of transformations

are defined. They consist in a series of maps of concepts from one abstraction

level to the next and in a set of code templates in the serialization stage of

the PSM to Java code.

In order to demonstrate the viability of such models and transformations,

we describe two application scenarios. In the first one, an early version of

JadeOrgs is applied to a proof-of-concept system in the context of service

oriented architectures. In the second one, PIM4Agents and JadeOrgs are

applied to a scenario in steel production.

Contents

I Introduction 1

1 Motivation 3

1.1 Objectives . 5

1.2 Contributions . 5

1.3 Structure . 7

2 Background 9

2.1 Foundations of Multiagent Systems 10

2.1.1 Basic concepts . 10

2.1.2 Types of agents . 11

2.1.3 Interaction . 16

2.1.4 Communication . 18

2.2 Model-Driven Software Development 22

2.2.1 Models and Metamodels 23

2.2.2 Model Transformations 24

2.2.3 The Abstraction Levels of the Model Driven Architecture 25

3 State of the Art in AOSE 28

3.1 Agents and the Unified Modeling Language 29

3.2 MAS Metamodels and Frameworks 30

3.3 Agent-Oriented Programming Languages 32

3.4 Model-Driven Development of MAS 33

II A Model-Driven Approach for Organizations in
Multiagent Systems 35

4 Modeling Agent Organizations 37

4.1 Modeling of the Abstract Goals 39

ix

4.2 Definition of the Information Model 40

4.3 Refinement of the Abstract Goals into Concrete Goals 40

4.4 Modeling of the Roles in the System 41

4.5 Modeling of Organizational Structures and Relations between

Roles . 42

4.6 Modeling of the Communication Patterns 43

4.7 Definition of the Detailed Behaviors of the Agents 43

4.8 Establishment of the Initial Deployment Configuration of the

System . 44

5 PIM4Agents 46

5.1 Multiagent System Viewpoint 48

5.2 Agent Viewpoint . 48

5.3 Organization Viewpoint . 50

5.4 Goal Viewpoint . 52

5.5 Role Viewpoint . 54

5.6 Behavior Viewpoint . 55

5.7 Interaction Viewpoint . 59

5.8 Information Model Viewpoint 61

5.9 Deployment Viewpoint . 63

5.10 Case Study: The Conference Management System 64

5.10.1 The CMS Goal Model 65

5.10.2 The CMS Information Model 68

5.10.3 The CMS Role Model 69

5.10.4 The CMS Organization Model 71

5.10.5 The CMS Agent Model 73

5.10.6 The CMS Interaction Model 75

5.10.7 The CMS Behavior Model 77

5.10.8 The CMS Deployment Model 78

5.11 Summary . 80

6 JadeOrgs 82

6.1 Formal Specification of Organizations in JADE 83

6.1.1 Basic types . 84

6.1.2 Condition . 85

6.1.3 Goal . 85

6.1.4 Variable . 86

6.1.5 Message . 86

6.1.6 Plan . 87

6.1.7 Role . 88

6.1.8 Agent . 90

6.1.9 Organization . 92

6.1.10 AgentPlatform . 95

6.2 The JadeOrgs metamodel . 96

6.2.1 The JadeOrgs Project View 97

6.2.2 The JadeOrgs Core View 97

6.2.3 The JadeOrgs Behavioral View 99

6.2.4 The JadeOrgs Process View 101

6.2.5 The JadeOrgs Ontology View 102

6.2.6 The JadeOrgs Deployment View 105

6.3 JadeOrgs protocols and interactions 106

6.3.1 Publishing to the Directory Facilitator 106

6.3.2 Establishment of the Organization 107

6.3.3 Task Request and Goal Achieve 109

6.4 Small Example: Product Sale with Loan 110

6.5 Related works . 114

6.5.1 Metamodel comparison 114

6.5.2 Other approaches to runtime organizations in JADE . 117

6.6 Summary . 119

7 Transforming PIM4Agents into JadeOrgs 120

7.1 The Mapping Rules . 121

7.2 Generated JadeOrgs models 125

7.3 Code Serialization . 127

7.4 Summary . 128

III Applications and Conclusions 129

8 Proof of Concept: Modeling e-Procurement with PIM4SOA

and JadeOrgs 132

8.1 Metamodel for Service-Oriented Architectures 135

8.1.1 Service Metamodel . 135

8.1.2 Process Metamodel . 138

8.1.3 Information Metamodel 140

8.2 Model to Model Transformations 140

8.3 From PIM4SOA to JadeMM 142

8.4 Use Case Scenario . 147

8.4.1 SOA Model in accordance to the PIM4SOA 147

8.4.2 Applying the transformation from PIM4SOA to JadeMM149

8.5 Summary . 153

9 Case Study: Applying Multiagent Systems to a Steel Pro-

duction Process 154

9.1 Scenario Description . 156

9.2 Methodology . 159

9.3 Modeling the PIM Layer with SoaML 161

9.4 Corresponding PIM4Agents Models 164

9.5 Scenario Evaluation . 170

9.5.1 SWOT Analysis . 172

9.6 Summary . 174

10 Conclusions and Future Work 176

10.1 Summary . 177

10.2 Future Work . 178

10.2.1 Role Deployment Dynamics 178

10.2.2 Norms and Electronic Institutions 179

10.2.3 Bottom-up Approach 180

10.2.4 Other Application Domains 180

List of Figures 184

References 184

Index 196

Part I

Introduction

1

Chapter 1

Motivation

3

4 CHAPTER 1. MOTIVATION

Agent-oriented software engineering (AOSE) is rapidly emerging in re-

sponse to needs in both software engineering and agent-based computing.

While these two disciplines co-existed without much interaction until some

years ago, today there is rich and fruitful interaction among them and various

approaches are available that bring together techniques, concepts and ideas

from both sides.

Model-Driven Development (MDD) and Model-Driven Architecture (MDA),

as its most prominent initiative, are a recent trend in the area of software

engineering [Obj03]. This thesis focuses on translating the basic ideas of

MDD into methodologies, techniques and tools for the design of agent- and

organization-based systems, and in doing so contributes to bridging the gap

between traditional software engineering approaches and agent-based system

design. Moreover, we not only need to integrate MDD into the methodologies

of agent-based system design but also demonstrate how such methodologies

can be utilized in practical development frameworks for agent-based system

design. In accordance with these goals, some basic issues arise:

• Agent-oriented methodologies often do not rely on existing agent-based

development tools, i.e. they do not provide a straightforward interface

for implementation.

• Even if existing methodologies have different advantages when applied

to particular problems, usually a unique methodology cannot be applied

to every problem without some (minor) level of customization and the

tools that support these methodologies usually are not open enough for

users to perform these customizations.

• Multiagent System (MAS) implementation requires deep knowledge re-

garding technical details of agent architectures, multiagent development

tools, and agent concepts.

The question how to fill the gap between agent methodologies and agent-

based development tools leads to the development of a framework that (i)

standardizes the design, (ii) simplifies the implementation of agent systems

and (iii) allows to integrate already existing agent frameworks into a single

tool box in order to increase the degree of utilization in practice. The de-

velopment of such a framework has been a team effort. Correspondingly, we

will provide an overview of the complete framework of metamodels, trans-

formations, runtime components and tools, but we will concentrate on the

1.1. OBJECTIVES 5

elements related to organizational concepts like organizations, roles, goals

and the runtime components developed to support the realization of these

concepts in running systems.

1.1 Objectives

The main objectives of this thesis are the following:

• Design a model-driven framework for modeling agent organizations,

focusing on issues like coordination, task distribution, and role man-

agement.

• Determine the necessary methodology steps and tool support for such

an agent organization developing process.

• Demonstrate the usability of such a framework by applying it in busi-

ness and service-oriented scenarios.

The framework that we present in this work aims at providing an open,

extensible, and generic way to model MAS and the organizational structures

in them. In order to do this, we have aimed at using open source tools, or

at least freely available if possible, as the building blocks for the framework.

Its tools, metamodels and transformations are also open for third parties

to extend, modify and improve. In the same spirit, it is our aim that the

methodology provides a guidance for designers new to MAS development, but

it should not restrict them in the customization of their own development

process, which could include methodology fragments from other tools and

methodologies.

1.2 Contributions

The contributions that have resulted from the work in this thesis are as

follows:

• Development of the tool support for the realization of the methodology

steps related to organization composition and responsibility distribu-

tion between roles.

6 CHAPTER 1. MOTIVATION

• Specification of the organizational concepts for the metamodels at the

Platform Independent and Platform Dependent levels of abstraction.

• Definition of transformations between the different metamodels and a

serialization that will produce the application source code.

• Development of a formal specification in Object-Z for the runtime or-

ganizational structures used in our framework.

• Development of a runtime component that deals with the runtime rep-

resentation and dynamics of agent organizations on a target agent plat-

form does not natively support them.

These results have been presented in various workshops, conferences and

journals and have resulted in the following publications (in chronological

order):

• Christian Hahn, Cristián Madrigal Mora, Klaus Fischer, Brian

Elvesæter, Arne-Jørgen Berre, and Ingo Zinnikus. Meta-models, Mo-

dels, and Model Transformations: Towards Interoperable Agents. In:

MATES. Multiagent System Technologies (MATES-2006), Erfurt, Ger-

many, Pages 123-134, Lecture Notes in Computer Science (LNCS), Vol.

4196, ISBN 3-540-45376-8, Springer, 2006.

• Christian Hahn, Cristián Madrigal Mora, and Klaus Fischer. In-

teroperability through a Platform-Independent Model for Agents. In:

Enterprise Interoperability II: New Challenges and Approaches. Pages

195-206, ISBN 978-1-84628-857-9, Springer London, 2007.

• Klaus Fischer, Christian Hahn, and Cristián Madrigal Mora. Agent-

oriented software engineering: a model-driven approach. In: Interna-

tional Journal of Agent-Oriented Software Engineering (IJAOSE), Vol.

1, No. 3/4, Pages 334-369, Inderscience, 2007.

• Cristián Madrigal Mora, Esteban León Soto, and Klaus Fischer.

Implementing Organisations in JADE. In: MATES. Conference on

Multi-Agent System Technologies (MATES-2008). Kaiserslautern,

Germany, Pages 135-146, Lecture Notes in Computer Science (LNCS),

Vol. 5244, ISBN 978-3-540-87804-9, Springer, 2008.

1.3. STRUCTURE 7

• Cristián Madrigal Mora and Klaus Fischer. Adding Organisations

and Roles to JADE with JadeOrgs. In: Agent-Based Technologies

and Applications for Enterprise Interoperability. Pages 98-117, Lec-

ture Notes in Business Information Processing (LNBIP), Vol. 25,

ISBN 1865-1348 (Print) 1865-1356 (Online), Springer Berlin Heidel-

berg, 2009.

• Christian Hahn, Cristián Madrigal Mora, and Klaus Fischer A

platform-independent metamodel for multiagent systems. In: Journal of

the International Foundation for Autonomous Agents and Multi-Agent

Systems, Vol. 18, No. 2, Pages 239-266, Springer Netherlands, 2009.

1.3 Structure

The remainder of this thesis is structured as follows:

Chapter 2 presents the foundations of multiagent systems to provide the

background to the presented work, as well as the basics of Model-Driven

Development.

Chapter 3 shows an overview of the state of the art in Agent-Oriented

Software Engineering in order to provide the context in which this

research was developed.

Chapter 4 describes the recommended methodology to model multiagent

systems and their organizational structures.

Chapter 5 presents the PIM4Agents, our metamodel for creating platform

independent models of multiagent systems, its views and concrete syn-

tax.

Chapter 6 introduces our platform specific metamodel, JadeOrgs. It presents

agent organizations in addition to the concepts supported natively by

the JADE agent platform.

Chapter 7 consists of the transformations between the metamodels and the

serialization of JadeOrgs in Java code.

Chapter 8 describes a proof concept transformation between PIM4SOA

and JadeOrgs.

8 CHAPTER 1. MOTIVATION

Chapter 9 presents the details of an industrial application scenario in the

context of steel production and evaluates the performance of our ap-

proach under this scenario.

Chapter 10 concludes this thesis and proposes areas for future research

based on the results presented here.

Chapter 2

Background

9

10 CHAPTER 2. BACKGROUND

We aim at a framework for the design and implementation of multiagent

systems in a model-driven approach. In the following we present some back-

ground on Multiagent Systems and Model Driven Development, which should

help to understand the foundations of these areas and the benefits that the

application of a model-driven approach can bring.

2.1 Foundations of Multiagent Systems

2.1.1 Basic concepts

According to Russell and Norvig [RN02], the goal of Artificial Intelligence

(AI) is “not just to understand but also to build intelligent entities” and

these intelligent entities are what is referred to as agents. However, in the

literature, there is no universal agreement on the exact definition of what

constitutes an agent. Therefore, we provide a couple of definitions that, in

our view, present the basic characteristics. First, a compact, but intuitive

definition:

Definition 2.1.1 An agent is anything that can be viewed as perceiving

its environment through sensors and acting upon that environment through

actuators [RN02].

The second definition is more detailed and proposed by Wooldridge and

Jennings [WJ95]. This definition is also known as the weak notion of agency :

Definition 2.1.2 Perhaps the most general way in which the term agent

is used is to denote a hardware or (more usually) software-based computer

system that enjoys the following properties:

autonomy: agents operate without the direct intervention of humans or oth-

ers, and have some kind of control over their actions and internal state;

social ability: agents interact with other agents (and possibly humans) via

some kind of agent-communication language;

reactivity: agents perceive their environment, and respond in a timely fash-

ion to changes that occur in it;

2.1. FOUNDATIONS OF MULTIAGENT SYSTEMS 11

pro-activeness: agents do not simply act in response to their environment,

they are able to exhibit goal-directed behavior by taking the initiative

[WJ95].

Thus, the idea of agenthood provides a paradigm for study, while focusing

on how to make them intelligent. Within the subarea of Distributed Artificial

Intelligence (DAI) the main focus is to make agents autonomous with less

emphasis on making them intelligent [Bog07]. Therefore in DAI, and in

accordance to the weak notion of agency previously presented, agents are

usually referred to just as “autonomous agents”.

Definition 2.1.3 Autonomous Agents are computational entities such

as software programs or robots that can be viewed as perceiving and acting

upon their environment and that are autonomous in that their behavior at

least partially depends on their experience within the environment [Wei00].

Hence, DAI concentrates on how agents—and groups of agents—perform

tasks together in order to reach their objectives. This leads us to the defi-

nition for Multiagent Systems and Distributed Artificial Intelligence, respec-

tively:

Definition 2.1.4 Multiagent Systems are systems in which several in-

teracting, autonomous agents pursue some set of goals or perform some set

of tasks [Wei00].

Definition 2.1.5 Distributed Artificial Intelligence is a study, con-

struction, and application of Multiagent Systems [Wei00].

2.1.2 Types of agents

Agents can be classified with respect to the way they choose and execute

their actions. In [Woo02] there are the following classes:

• Deductive Reasoning Agents,

• Practical Reasoning Agents,

• Reactive Agents, and

• Hybrid Agents.

12 CHAPTER 2. BACKGROUND

Deductive Reasoning Agents

Deductive Reasoning Agents are based on logical formulae to represent their

desired behavior and the environment. This representation is manipulated

through the use of logical deduction or theorem proving. The idea is that

the agent programmer needs to encode a set of deduction rules ρ and the

agent’s knowledge database ∆. Let α be an action, if a formula Do(α) can

be derived, given ρ and ∆, then α is the best action to perform. Let L be the

set of sentences of classical first-order logic, and let D = P(L) be the set of

all L databases. Thus, the agent’s knowledge database ∆ is then an element

of D and the agent’s action selection function can be defined as

action : D → Ac,

where Ac is the set of possible actions. Then through the function action,

the agent attempts to prove the formula Do(α) from its database using the

deduction rules ρ . If the agent succeeds proving Do(α), then α is chosen

as the action to be performed. If the agent fails to prove Do(α), then it

attempts to find an action that is consistent with the database and the rules,

namely one that is not forbidden. Therefore it looks for an action such that

¬Do(α) cannot be derived from ∆ given its deduction rules. If no consistent

action is found, then the agent performs a noop, in order words, it chooses

to perform no action.

Practical Reasoning Agents

Practical Reasoning Agents are also designed to reason about actions. Brat-

man [Bra90] defines this kind of reasoning in the following manner:

Definition 2.1.6 Practical reasoning is a matter of weighing conflicting

considerations for and against competing options, where the relevant consid-

erations are provided by what the agent desires/values/cares about and what

the agent believes [Bra90].

Practical reasoning is considered to be composed of two stages: delibera-

tion and means-ends reasoning. The former involves deciding what states of

affairs to achieve, while the latter deals with deciding how to achieve these

states of affairs. The state of affairs that an agent chooses and commits itself

to achieve is reffered to the agent’s intentions.

2.1. FOUNDATIONS OF MULTIAGENT SYSTEMS 13

Deliberation is defined as follows. Let B be the agent’s current beliefs;

Bel , the set of all such beliefs; D , the agent’s desires; Des , the set of all de-

sires; I , the agent’s intentions; and Int , the set of all intentions. Deliberation

is then modeled via two functions: an option generation function options and

a filtering function filter [Woo02]. These functions are defined as follows:

options : P(Bel)×P(Int)→P(Des),and

filter : P(Bel)×P(Des)×P(Int)→P(Int).

The options function produces a set of possible options or desires, based

on the agent’s current beliefs and intentions. In order to choose among

competing options, the agent applies the filter function, which selects the

’best’ option(s) for the agent to commit to. Additionally, the agent’s beliefs

are updated through the belief revision function brf :

brf : P(Bel)×Per →P(Bel)

Means-end reasoning is the process of deciding how to achieve an intention

(i.e. an end) with the actions that the agent can perform (i.e. the available

means). In the AI community, this kind of reasoning is known as classical

planning or, simply, planning. A planning algorithm takes three parameters:

1. The goal or intention, a state of affairs that the agent wants to achieve

or a state of affairs that the agent wants to maintain or avoid,

2. The current state of the environment, namely the agent’s beliefs, and

3. The actions available to the agent.

With these inputs, the planner generates a plan: a sequence of actions

that should allow the agent to reach the desired state of affairs. Therefore,

the agent’s means-end reasoning capability can be modeled as

plan : P(Bel)×P(Int)×P(Ac)→ Plan.

In [GL87], the Procedural Reasoning System (PRS) was proposed as one

of the first agent architecture to explicitly embody what we know today as the

belief-desire-intention paradigm (BDI) [RG95, GPP+98]. In PRS, the agent

does not perform planning from first principles, but it makes use of a library

of plans that have been manually constructed by the agent’s programmer.

These plans are constituted by:

14 CHAPTER 2. BACKGROUND

• A goal — the effect or postcondition of the plan;

• A context — the precondition of the plan; and

• A body — the actions to execute.

A PRS agent starts with a collection/library of plans and a set of beliefs

about the world. Additionally, the agent usually has a top level goal. This

goal is then pushed onto the agent’s intention stack. The stack contains all

goals that are yet to be achieved. The agent then searches the plan library for

plans that have this goal as effect. Only some of these plans will have their

preconditions satisfied in accordance to the agent’s current beliefs. The set of

plans that can (i) achieve the goal and (ii) have their preconditions satisfied

are the set of options for the agent. Selection among the available options

is the deliberation process previously described. In PRS, this deliberation

is also achieved with plans. Since these plans are “plans about plans”, they

are usually known as meta-level plans or meta-level reasoning respectively.

The meta-level plans change the focus of the agent’s practical reasoning by

changing its intention structures on-the-fly. That is, the meta-level plans

choose which plan to execute. While the chosen plan is being executed, it

may push additional goals onto the intention stack. In turn, raising a new

requirement to find corresponding plans to achieve the additional goals. The

process ends when the plans, required to achieve the goals in the intention

stack, are individual actions that can be directly executed/calculated without

posting additional subgoals. When a particular plan fails to achieve the goal,

the agent simply chooses the next plan from its set of candidate plans for

that goal.

Reactive Agents

As the naming suggests, reactive agents are agents that react directly to their

perceptions of the environment. Brooks [Bro91], who is the first proponent of

the theory of reactive agents, states that intelligent behavior can be generated

without explicit representations and without explicit abstract reasoning of

the kind that symbolic AI proposes. His claim is that intelligence is an

emergent property of certain complex systems. His Subsumption Architecture

[Bro90] builds on the assumption that an agent’s decision making process is

realized through task-accomplishing behaviors, by taking perceptual input

2.1. FOUNDATIONS OF MULTIAGENT SYSTEMS 15

from the environment and mapping it to an action to perform. This mapping

can be implemented as rules of the form situation→ action.

The decision function action is realized through a set of behaviors, along

with an inhibition relation holding between these behaviors. Let P be the

set of all percepts and A be the set of all actions. A behavior is then a pair

of the form (c,a), where c ⊆ P is a set of percepts called the condition and

a ∈ A is an action. The behavior (c,a) fires when the environment is in

state s ∈ S if and only if the agent’s perception function see(s) ∈ c. The set

of all such rules can be defined as Beh = {(c,a) | c ⊆ P and a ∈ A}. The

previously mentioned inhibition relation ≺ is associated with the agent’s set

of behavioral rules R ⊆ Beh as follows ≺⊆ R×R. This relation is a total

ordering on R. Meaning that if (b1,b2) ∈≺, b1 inhibits b2 and b1 therefore

has higher priority than b2.

The action selection process involves firstly computing the set of behaviors

(c,a) that are triggered because their condition is met. Secondly, all triggered

behaviors have to be checked to see which of them has the highest priority

according to ≺. Finally, the action a of the selected behavior is returned as

the action to perform. If no behavior is triggered, then a noop is returned

instead to indicate that no action is to be performed.

Hybrid Agents

The main goal for hybrid agent systems is the combination of proactive and

reactive behavior. These agent architectures are usually composed of at

least two layers, one that deals with the reactive behavior and another that

deals with the proactive behavior. Wooldridge [Woo02] characterizes such

architectures in terms of the information and control flows within the layers

as:

Horizontal layering all the software layers are connected to the sensory

input and action output. Each layer produces suggestions of what

action to perform.

Vertical layering sensory input and action output are each dealt with by

at most one layer.

Horizontal layering offers the advantage that each type of behavior that

the agent should have is just implemented in another layer and added to

the action output. However it may require the use of a mediator function,

16 CHAPTER 2. BACKGROUND

that decides which layer is in control at a given time, which ensures that the

overall behavior of the agent is consistent. Vertical layering can be further

subdivided into one- and two-pass architectures. In one-pass architectures,

the control flows sequentially through each layer and the last layer produces

the action output. In two-pass architectures, the control passes twice by

every layer, once as the control passes towards the inner layers and a second

time, as the flow returns towards the outermost layer. The action output is

modified by every layer as the control flows.

Vertical layering has the advantage that there are only n − 1 interfaces

between n layers and each layer can only suggest m actions. This means that

there are at most m2(n − 1) interactions to be considered between layers.

In contrast, when horizontal layering is used, then we can distinguish mn

such possible interactions. However, horizontal layering provides greater fault

tolerance than vertical layering, since the failure of any given layer would

have less impact on the agent’s performance. Examples of hybrid agent

architectures are the vertically layered two-pass architecture InterRRap by

[MP93] and TouringMachines represent the horizontally layered architecture

by [Fer92].

A natural question that arises is which type of agent is the best? The

answer is as usual: there is no single golden bullet. However, guidance on

how to choose a particular type of agent architecture for a given kind of task

is presented in [Mül98].

2.1.3 Interaction

All but the most trivial systems contain a number of subsystems that must in-

teract with one another in order to successfully carry out their tasks [Woo02].

Therefore in highly interactive systems like MAS, it is critical to understand

the interactions that take place in the system as result of the actions taken

by the agents.

The approach and methodology presented in this thesis adhere to the

benevolence assumption[Woo02]: “agents in a system implicitly share a com-

mon goals, and thus that there is no potential for conflict.” This assumption

is made since it greatly simplifies the system designer’s task. For the sake

of completeness, we will present agent interactions in the more general case,

2.1. FOUNDATIONS OF MULTIAGENT SYSTEMS 17

where each agent pursues its own benefit.

Let us look at the basic case of two agents i and j . Let each of them

be self-interested, namely each of them has its own preferences and desires

of how the world should be. Let Ω = {ω1,ω2, . . .} be all the states over

which agents have preferences over. These preferences can be represented

by a utility function. Each agent possesses his own utility function. For

every outcome, the function produces a real number as output, indicating

how ‘good’ or ‘desirable’ that outcome is for the particular agent. In other

words, the larger the output value of the utility function, the better that

outcome is from the agent’s point of view. Therefore, we can represent agent

i ’s utility function as:

ui : Ω→ R

Analagously, agent j ’s utility function is represented as:

uj : Ω→ R

The utility function leads to a preference ordering over the outcomes/states.

When there are two possible outcomes, e.g. ω1 and ω2, the function ui allows

agent i to rank these outcomes according to its preference.

In order to analyze the interactions that occur between i and j , we have

to define the way their environment is modeled. Let us assume that both

agents will simultaneously choose an action to perform. As a result of these

actions an outcome ω ∈ Ω is produced. This outcome depends directly on

the combination of actions that take place. Also, let us assume that they

have to perform an action, and they do not know what action the other

agent is performing. If the agents could perform only two actions, say “C”

for “cooperate” and “D” for “defect”, then the way the environment behaves

can be described by a function:

τ : Aci ×Acj →Ω

where Ac = {C ,D}, and Aci ,Acj ∈ Ac are the actions chosen by i and j

respectively. Now that we have defined the notation, let us look at an example

[Woo02]. Suppose we have the environment function:

τ (D ,D) = ω1, τ (D ,C) = ω2, τ (C ,D) = ω3, τ (C ,C) = ω4. (2.1)

18 CHAPTER 2. BACKGROUND

Suppose that the agents i and j have utility functions defined in the following

manner:

ui (ω1) = 1, ui (ω2) = 1, ui (ω3) = 4, ui (ω4) = 4,
uj (ω1) = 1, uj (ω2) = 4, uj (ω3) = 1, uj (ω4) = 4.

(2.2)

Based on the information from the utility function 2.2, we order the out-

comes from the environment function 2.1 for agent i as follows:

ui (ω4)≥ ui (ω3) > ui (ω2)≥ ui (ω1)

This ordering indicates that agent i prefers all the outcomes in which it co-

operates over all the outcomes in which it defects. Therefore agent i should

cooperate, regardless of what action agent j chooses.

Although the decision is simple and clear cut in this example, it does exem-

plify how the agent’s utility function assists the agent in choosing an action

at any given point in time, and how these interactions relate to each other

in a system. Most real world scenarios are more complicated and may re-

quire agents to engage in strategic thinking, i.e. considering the actions the

other agent(s) may take. The strategies to choose under different kinds of

circumstances are well studied in different areas like Game Theory, Economic

Theory and others, thus, we will not address them here in detail.

2.1.4 Communication

As discussed previously, agents pursue the actions that reflect their prefer-

ences or that increase their utility. In some situations, agents will try to

perform a certain action or achieve a goal for which they do not have access

to all the resources necessary to perform such an action or achieve such a

goal. For instance, an agent i needs to ‘ask’ agent j to perform a certain

action on its behalf. Agent i may not assume that agent j will necessarily

comply, as agent i is an autonomous agent. Therefore, the agents perform

communicative actions in order to express themselves. These communica-

tive actions that agents perform in order to try to influence other agents are

known as speech acts.

Speech acts

In speech act theory [Sea69], communication is treated as action. It is based

on the assumption that speech actions are performed by agents, just as any

2.1. FOUNDATIONS OF MULTIAGENT SYSTEMS 19

other physical action, in the pursuit of their intentions. Seminal work on

speech act theory includes the work by John Austin [Aus62]. He claims

that certain language utterances—the speech acts—have the characteristics

of actions, in the sense that they change the state of the world in a way

analogous to physical actions. This does not mean that the world may have

changed by the an utterance in an physically obvious fashion, but it still

may be changed in a tangeable way. Austin uses a declaration of war as an

example of such utterances. Austin also identifies a number of performative

verbs which correspond to different types of speech acts. Examples of such

verbs include request, inform and promise. Additionally, Austin distinguishes

three different aspects of speech acts:

The locutionary act: The act of making an utterance,

The illocutionary act: The action performed in saying something, and

The perlocution: The effect of the act.

Further work by John Searle [Sea69] identifies properties that must hold

for a speech act to be successful when performed between a hearer and a

speaker. Such conditions include:

1. Normal I/O conditions the basic conditions to transmit and receive

the speech act. For instance, that the hearer is able to hear the speech

act.

2. Preparatory conditions the conditions that must hold so that the

speaker can correctly choose the speech act.

3. Sincerity conditions the conditions that distinguish a sincere perfor-

mance of, for example, the requested action in the case of the request

speect act.

The further development of the speech act theory contributes and influ-

ences the development of various languages designed specifically for agent

communications. Examples of these Agent Communication Languages

(ACL) include the Knowledge Interchange Format (KIF) [Gen91, GF92], the

Knowledge Query and Manipulation Language (KQML) [FFMM94, MLF95]

and the Foundation for Intelligent Physical Agents’ (FIPA) Agent Communi-

cation Language (FIPA ACL) [Fou02b, Fou02a, Fou02e]. The FIPA ACL is

20 CHAPTER 2. BACKGROUND

closely related to KQML, but it attempts to address some of it shortcomings,

such as the lack of clearly defined semantics.

In this thesis, agent communication and agent messaging is modeled using

FIPA ACL. Therefore we briefly describe it below.

The FIPA Agent Communication Language

The Foundation for Intelligent Agents has defined standards for agent sys-

tems since 1995. One of the main targets of this initiative is the development

of an Agent Communication Language (ACL). The FIPA ACL is similar

to KQML [FFMM94, MLF95] as it defines a language for messages, defines

formally performatives that determine how the messages are to be inter-

preted. It does not require any specific message content language (despite

that FIPA later did specify a content language: the FIPA-SL Content Lan-

guage [Fou02e]). To illustrate how these messages are structured, we show

an example of a FIPA ACL message [Fou02e]:

(inform

:sender (agent-identifier :name A)

:receiver (set (agent-identifier :name B)

:content

" ((= (iota ?x (p ?x)) a)) "

:language fipa-sl

:in-reply-to query1)

This example could be read as follows: A informs B , in reply to query1
and described in fipa− sl that, the x such that p is true of x is equal to a.

A complete description of the FIPA ACL message parameters is presented in

Table 2.1.

One difference between KQML and FIPA ACL is the collection of per-

formatives that they provide. Another important difference between the

languages is that FIPA ACL has a comprehensive formal semantics. The se-

mantics of the FIPA ACL maps each ACL message to a formula of a language

called SL. This formula defines a constraint that the sender of the message

must satisfy in order to conform with the FIPA ACL standard. This con-

straint is referred to as the feasibility condition. The semantics also map each

message to an SL-formula that expresses the rational effect of the action, in

other words, the purpose of the message. As an example, we show the se-

2.1. FOUNDATIONS OF MULTIAGENT SYSTEMS 21

Parameter Description

performative Denotes the type of the communicative act of the ACL

message

sender Denotes the identity of the sender of the message, that

is, the name of the agent of the communicative act.

receiver Denotes the identity of the intended recipients of the mes-

sage.

reply-to Indicates that subsequent messages in this conversation

thread are to be directed to the agent named in the reply-

to parameter, instead of to the agent named in the sender

parameter.

content Denotes the content of the message; equivalently denotes

the object of the action. The meaning of the content of

any ACL message is intended to be interpreted by the

receiver of the message.

language Denotes the language in which the content parameter is

expressed.

encoding Denotes the specific encoding of the content language

expression.

ontology Denotes the ontology(s) used to give a meaning to the

symbols in the content expression.

protocol Denotes the interaction protocol that the sending agent

is employing with this ACL message.

conversation-

id

Introduces an expression (a conversation identifier) which

is used to identify the ongoing sequence of communicative

acts that together form a conversation.

reply-with Introduces an expression that will be used by the re-

sponding agent to identify this message

in-reply-to Denotes an expression that references an earlier action to

which this message is a reply.

reply-by Denotes a time and/or date expression which indicates

the latest time by which the sending agent would like to

receive a reply.

Table 2.1: FIPA ACL Message Parameters

22 CHAPTER 2. BACKGROUND

mantics of the inform speech act [Woo02]. For the complete specification

and semantics of all the FIPA speech acts, we direct the reader to [Fou02b].

〈i , inf orm (j ,ψ)〉
feasibility precondition: Biψ ∧¬Bi (Bifjψ ∨Uifjψ)

rational effect: Bjψ

where the Biψ means that agent i believes ψ ; Bifjψ means that agent j has

a definite opinion on whether ψ is true or not; and Uifiψ means that agent

i is uncertain about ψ .

Therefore, the feasibility precondition can be interpreted as:

1. Agent i believes ψ , and

2. It is not the case that agent i believes either

(a) that agent j believes whether ψ is true or false, or

(b) that agent j is uncertain about the truth of ψ .

If agent i ’s inform speech act succeeds, then agent j will believe ψ .

In addition to speech act, message structure and content language specifi-

cations, the FIPA agent communication specifications also include a library of

commonly known interaction protocols such as Request Interaction Protocol

[Fou02d] or the ContractNet Protocol [Fou02c].

2.2 Model-Driven Software Development

Model-Driven Development (MDD) is becoming more and more important

for developing modern enterprise applications and software systems. MDD

frameworks define a model-driven approach to software development in which

visual modeling languages are used to integrate the huge diversity of tech-

nologies used in the development of software systems. The MDD paradigm

provides us with a better way of addressing and solving interoperability issues

in comparison to earlier non-modeling approaches [D’S01]. The current state

of the art in MDD is highly influenced by the Object Management Group’s

ongoing standardization activities related to the Model Driven Architecture

(MDA) [Obj03]. The MDA approach and its supporting standards allow the

realization and integration of one model on multiple platform specific target

models.

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT 23

2.2.1 Models and Metamodels

Models consist of sets of elements that describe some physical or hypothet-

ical reality [MKUW04]. Models are a way of communicating ideas without

having to build the actual object or element in the real world. They allow us

to concentrate on the important features of the topic at hand by abstracting

away from the irrelevant elements and features. These different levels of ab-

straction provide the basis for MDA. In MDA, the models are transformed

from one level of abstraction to another one to allow the adaptation of models

to other levels of abstraction or other execution environments.

Figure 2.1: Relation among models, metamodels and platforms (based on

[MKUW04])

In order to express a model, we use a metamodel. A metamodel is a

model of a modeling language which defines the structure, semantics and

constraints for a family of models. The term meta means “transcending”

or “above”, emphasizing the fact that a metamodel describes a modeling

language at a higher level of abstraction compared to the model itself. A

metamodel can also describe the specification of a particular execution en-

vironment. In other words, it describes a platform in which compliant

models can be executed. Using UML class diagram notation, Mellor et al.

[MKUW04] summarize how models, metamodels and platforms are related.

This summary is shown in the top half of Figure 2.1. To better understand

the meaning of a metamodel, we discuss the difference between a metamodel

and a model. While a metamodel is also a model, a metamodel has two main

distinguishing characteristics:

24 CHAPTER 2. BACKGROUND

1. A metamodel must capture the essential features and properties of the

language that is being modeled, and

2. A metamodel must be part of a metamodel architecture.

In a metamodel architecture, all metamodels can be formulated via a

single metamodel, the so-called meta-metamodel, that defines the key to

metamodeling as it enables all modeling languages to be described in a uni-

fied way. System development is fundamentally based on the use of languages

to capture and relate different aspects of the problem domain. This means

that the languages can uniformly be managed and manipulated and thus

tackle the problem of language diversity. Another benefit is the ability to

define semantically rich languages that abstract from implementation spe-

cific technologies and instead focus on the problem domain at hand. Using

metamodels, many different abstractions can be defined and combined to

create new languages that are specifically tailored for a particular applica-

tion domain. The Meta Object Facility (MOF) [Obj04] is the common

foundation that provides the standard modeling and interchange constructs

for defining metamodels and therefore can be considered a meta-metamodel.

2.2.2 Model Transformations

Models may have relations to other models, for example representing the

same system at different levels of abstraction or its implementation on differ-

ent execution environments. These relationships can be expressed in a map-

ping which is an application of a mapping function composed of mapping

rules. Each rule describes how one or more elements in the source model

should be transformed to the target model. The mapping takes a series

of source models and produces target output models. Therefore, mappings

are also referred to as transformations, given that through the execution

of the mapping function source models are transformed into target models.

Mapping functions and its rules are applied to models, but they are defined

against the metamodels that capture these models. This entails that the

mapping function is not specific to a model in particular, but to the family

of models that comply to the corresponding metamodel. Model mappings

are intended to be executed automatically so that models can be always syn-

chronized. This is the focus of the MOF Query, Views and Transformations

(QVT) language specification. QVT provides a standard specification of a

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT 25

language suitable for querying and transforming models that are represented

according to a MOF(-based) metamodel. The QVT specification defines var-

ious implementation approaches, such as QVT-Operational, in which rules

are defined imperatively, or QVT-Relations, which allows the definition of

rules declaratively.

2.2.3 The Abstraction Levels of the Model Driven Ar-

chitecture

MDA defines three main abstraction levels of a system that support a

business-driven approach to software development:

• The Computation Independent Model (CIM),

• The Platform Independent Model (PIM), and

• The Platform Specific Model (PSM).

Model transformations are applied to translate models from one abstrac-

tion level to the next as depicted in Figure 2.2. The CIM represents the

desired system at a high level of abstraction. It is used to describe the con-

text and requirements of a software system where only business or application

domain concepts are used. For instance, a simplistic banking CIM, like the

one depicted in Figure 2.2, may describe only the processes linked with ac-

counts and loans and how these concepts relate to one another. When a PIM

is used, the domain concepts are expressed in computational terms, providing

details about the structure of the domain concepts. The latter is implemented

using computational notions such as classes, attributes, types and methods,

without adding information dependant on the deployment platform that is to

be used. The PSM describes the detailed realization of the software system

with respect to the chosen software technology platform(s).

The MDA initiative refers mainly to Object Oriented software develop-

ment and has proven to be effective in these application domains. In this

thesis, we propose a way to exploit the MDD ideas and techniques in Agent-

Oriented Software Engineering (AOSE). This application of MDD brings the

general benefit of improving (i) quality by allowing to reuse models and

mappings between models and (ii) software maintainability by favoring a

better consistency between models and code. In addition, our framework

26 CHAPTER 2. BACKGROUND

Figure 2.2: Example of a CIM, PIM and PSM

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT 27

(i) establishes interoperability among various agent systems and other in-

formation technologies, and (ii) identifies a core metamodel that unifies the

most common agent-oriented concepts to increase the efficiency in developing

agent-based software applications.

Chapter 3

State of the Art in

Agent-Oriented Software

Engineering

28

3.1. AGENTS AND THE UNIFIED MODELING LANGUAGE 29

This chapter is divided into four parts and we discuss approaches related

to the Unified Modeling Language, agent metamodels, agent-oriented pro-

gramming languages, and model-driven approaches in AOSE respectively.

3.1 Agents and the Unified Modeling Lan-

guage

The Unified Modeling Language (UML) is the de jure standard language in

industry for specifying and designing software systems. UML addresses the

modeling of architecture and design aspects of software systems. It provides

language constructs for describing software components, objects, data, in-

terfaces, interactions, activities etc. However, it has a few shortcomings for

modeling agent systems, in particular w.r.t. modeling agent communication.

Agent oriented extensions to UML have tried to address these shortcomings

and some features of these extensions have been merged into more recent

versions of the UML.

Agent UML (AUML) [BMO00, BMO01] provides agent-based extensions

to four UML representations: packages, templates, sequence diagrams and

class diagrams.

In particular in AUML we can specify agent interaction protocols by

mechanisms to define agent roles, agent lifelines, nested and interleaved pro-

tocols, and extended semantics for UML messages, such as the associated

communicative act and whether messages are synchronous or not. Some of

these features have been merged into the current UML 2.0. Furthermore,

Bauer[Bau02] proposed a way to extend UML class diagrams to agent class

diagrams.

Agent Modeling Language (AML) [TC05, CTCG04] is a semi-formal

visual modeling language for specifying, modeling and documenting systems

that incorporate features drawn from MAS theory. It is specified as an ex-

tension to UML 2.0 and its ultimate objective is to provide software engi-

neers with a ready-to-use, complete and highly expressive modeling language

suitable for the development of commercial software solutions based on mul-

tiagent technologies. Nevertheless, code generation facilities are not part of

AML, but relies on UML compatible CASE tools for the generation of code.

30 CHAPTER 3. STATE OF THE ART IN AOSE

3.2 MAS Metamodels and Frameworks

In the recent history of AOSE, a variety of approaches have emerged. Each

approach focuses on particular issues or areas of interest. In this section we

provide a short overview of the most relevant approaches, with particular

focus on how they represent agent groups, organizations or teams and how

the concept of a role, if present, is utilized.

Aalaadin [FG98] specifies one of the first developed metamodels for MAS.

Based on the three main concepts Agents, Groups and Roles, it takes an

organizational-driven (i.e. structural relationship between a set of agents)

approach to build MAS. Agents are defined by their role they take on inside

an organization and the capabilities they offer.

Tropos [BPG+04] is based on the idea of using the agent paradigm and

related notions during all phases of the development of software process focus-

ing on the concepts of actor and goal, and on early requirements. It proposes

the use of AgentUML for detailed design and JACK Intelligent Agent as im-

plementation platform. As already mentioned, the main concept in Tropos

is the Actor, who is capable of executing Plans that fulfill a Goal, i.e. a

SoftGoal or HardGoal, and uses Resources. The concept of an Agent inherits

from Actor and may play Roles. The Role again inherits from the Actor.

ADELFE [BGPP02] specifies a methodology to develop adaptive MAS

by concentrating on cooperative behavior. The main concept of ADELFE

is the Cooperative Agent which has Skills, Aptitudes, Characteristics, and

Communications. Furthermore, the agent observes Cooperation Rules.

Gaia [ZJW03, WJK00] has been designed to explicitly model the social

aspects of open agent systems, with particular attention to the social goals,

social tasks or organizational rules. The main concept of Gaia is the Agent-

Type which is part of an Organization, and which collaborates with other

AgentTypes, to provide Services. It plays several Roles like for instance ’Ini-

tiator’ and ’Participant’ that act in a Communication specifying a Protocol.

MOISE [HBSS00] proposes an organizational model based on three con-

cepts: the roles, the organizational links and the groups. Under this model,

3.2. MAS METAMODELS AND FRAMEWORKS 31

Roles constrain the individual behaviors of agents, Organizational Links reg-

ulate the social exchanges between the agents, and Groups constrain the

layout of agents involved in strong interactions. MOISE+ [HSB02] is an

extension to MOISE that attempts include the structural, functional and

deontic aspects into MAS organizations.

INGENIAS [PGS03] provides both, a methodology and a set of tools to

develop agent systems. INGENIAS distinguishes between five viewpoints: or-

ganization viewpoint, agent viewpoint, interaction viewpoint, tasks and goal

viewpoint and environment viewpoint. The main concept of INGENIAS is

the Organization that contains a Workflow and Group. A Workflow con-

tains Task that affects and consumes MetalEntity and produces Interaction.

A Group contains again a Group and belongs to Application, Resource, Agent

and Role.

PASSI The Process for Agent Societies Specification and Implementation

[Cos05a] is organized in three different domains. The solution domain covers

the concepts FIPA-Platform Agent, Service Description and FIPA-Platform

Task. The agency domain covers aspect like Agent that has a set of Roles that

provide a Service and solve Tasks that includes a set of Actions. Furthermore,

the Role is connected to Communication that works on Agent Interaction

Protocols with a set of Performatives. The problem domain contains concepts

like Resource, Non-Functional Aspects and Requirements that are connected

with the Agent.

RICA (Role/Interaction/Communicative Action) specifies a metamodel

[SO04] that integrates aspects of agent communication languages (ACL) and

organizational models on three different layers: On the first layer, generic

concepts of the system (e.g. agent, role and action types) are specified, the

second includes social aspects like norms and institutions. The last layer

specifies agent interactions via communication.

O-MaSE [DeL05, DGO10] is an organization-based extension to the Mul-

tiagent Systems Engineering (MaSE) [DeL91] framework. O-MaSE is com-

posed of seven stages which involve the capture of goals, application of use

cases, refinement of roles, creation of agent classes, construction of conver-

sations, assembly of agent classes (agent/system architecture) and system

32 CHAPTER 3. STATE OF THE ART IN AOSE

design (deployment). Once the system goals are defined, the organization

structures and agent types are determined in accordance to how the system

(sub-)goals are distributed. O-MaSE provides a Java-based development tool,

called agentTool, to help users analyze, design and implement MAS.

MASSIVE [Lin01] is a pragmatic development model for multiagent sys-

tems based on a combination of standard software engineering techniques. It

features a product model to describe the target system, a process model to

construct the product model and an institutional framework that supports

learning and reuse over project boundaries.

Unified MAS Metamodel Proposal A first attempt towards the devel-

opment of a unified metamodel was described in [BCG+04]. This metamodel

was developed by merging the metamodels of ADELFE, Gaia and PASSI and

thus combines the strengths of each metamodel. For instance, the unified

metamodel covers aspects like (i) cooperative behavior as described by the

ADELFE metamodel, (ii) organizational behavior as specified by the Gaia

metamodel, and (iii) FIPA-compliant communication structures as defined

by the PASSI metamodel.

A more recent approach with respect to a unified metamodel was dis-

cussed during an AOSE Technical Forum Group meeting in Ljubljana. The

attendees agreed on a smaller core compared to the first draft. In this meta-

model, the Agent participates in a Communication and plays a Role that

has the ability to solve particular Tasks. Organizations also refer to Roles.

The Cognitive Agent is a specialization of Agent as it is represented in an

Environment.

3.3 Agent-Oriented Programming Languages

Several agent-oriented programming languages already exist to implement

MAS. In the following listing, we mainly focus on JACK1 and JADE2 as in

our MDD approach they will be used for code generation purposes.

1http://www.agentsoftware.com.au/
2http://jade.tilab.com/

3.4. MODEL-DRIVEN DEVELOPMENT OF MAS 33

JACK Intelligent Agents [PH01] provides programming constructs and

concepts for developing complex agent-oriented applications. It is based on

the Beliefs, Desires and Intentions model, presented in Section 2.1.2 JACK

already provides agent organization structures called JACK Teams. When

designing systems in Team mode, there are no “single agents”, but just com-

plex and simple teams. The complex teams are those composed of other

teams that play a role in the complex team, and simple teams are the actual

agents that compose the leafs of the organizational hierarchy. One important

trait is that all teams can and do execute their own behaviors/plans, which

means that they orchestrate the actions of their sub-teams.

JADE (Java Agent DEvelopment Framework) [BPR99] provides program-

ming concepts that simplify the development of MAS as it complies to the

FIPA specification by providing the necessary communication infrastructure.

In contrast to JACK, it intentionally leaves open the internal agent archi-

tecture and necessary concepts. Instead, JADE focuses on communication

which is performed through message passing where each agent is equipped

with an incoming message box. In addition, standard interaction protocols

specified by FIPA such as FIPA-request or FIPA-query can be used as stan-

dard templates to build an agent conversation.

3.4 Model-Driven Development of MAS

Even if MDD is a relative young field, several efforts have been undertaken

to bring MDD practices into the MAS development. We present a short of

overview of some of this work as follows.

The Malaca Agent Model [AFV04] is an approach to agent-oriented de-

sign using MDA. The Malaca UML Profile provides the stereotypes and

constraints necessary to create Malaca models on UML modeling tools. In

this MDA approach, the transformation is realised from a TROPOS design

model—as PIM—to a Malaca Model—as PSM.

Guessoum [Gue05] proposes a MDA-based approach for MAS to fill the

gap between existing MAS tools and agent-oriented methodologies and meta-

models, respectively. This approach is mainly based on the separation of the

application logic (described in a PIM) from the underlying technology (de-

scribed in a PSM). Based on Meta-DIMA, a MDA-based MAS development

process defines the PIMs and PSMs by analysing the multiagent applications,

34 CHAPTER 3. STATE OF THE ART IN AOSE

defines a library of metamodels by identifying the concepts used and design-

ing the transformation rules to implement a metamodel from its description.

A first step has been done by defining a PSM for the multiagent tool DIMA

and PIMs from PASSI and Aalaadin/PASSI [BCG+04] metamodels.

An update to INGENIAS presented in [PGSF06] introduces the INGE-

NIAS Development Kit (IDK), as a way to provide MDD tools for MAS

development. It presents the IDK MAS Model Editor, a graphical tool for

MAS model creation, and a modular approach to adapt the editor and tools

to new metamodels or target platforms. It also proposes that the model gen-

eration and metamodel development should be performed in parallel with

periodic consistency checks to allow feedback from one activity to the other

during the development.

The Gaia2Jade Process [MS06] shows how systems designed following

the GAIA methodology, and its corresponding models, can be converted to

JADE for deployment. It proposes that the implementation phase should

be performed in four stages: communication protocol definition, activities

refinement, JADE behaviour creation, and agent classes construction.

All the mentioned contributions make valuable points for the specification

and modeling tasks in agent systems. However, interoperability between

agent systems and especially among other technologies and domain-specific

architectures is not addressed in these works. The generic MAS metamodel

[BGPLHS05] or the unified metamodel [BCG+04] do address interoperability

within agent systems, but with completely diverging approaches. On the one

hand, the generic metamodel proposes a basic, but complete metamodel with

respect to the concepts that define MAS, allowing the generation of systems in

different agent platforms. On the other hand, the unified metamodel improves

on ADELFE, Gaia and PASSI by combining their concepts, but also raises

issues like the complexity of the methodology process necessary to develop a

system and the construction of a tool chain for it. Even if both metamodels

define the most important building blocks of a MAS, it is not really clear

if executable code can be generated automatically as neither the internal

behavior of an agent nor its external behavior—i.e. the agent interaction—is

specified in an adequate manner.

Part II

A Model-Driven Approach for

Organizations in Multiagent

Systems

35

Chapter 4

Modeling Agent Organizations:

A Methodology

37

38 CHAPTER 4. MODELING AGENT ORGANIZATIONS

In order to model and implement MAS, it is necessary to have a clear

process that allows system architects to define the various components of the

MAS. This chapter presents the methodology that we recommend for the

creation of systems using PIM4Agents (Chapter 5) and JadeOrgs (Chapter

6). Both metamodels are defined using the the Eclipse Modeling Framework

(EMF) [BSM+03] in order to take advantage of the transformation tools

available for Eclipse and to fit our model-driven approach, depicted in Figure

4.1. The figure also displays how additional agent platforms, such as JADEX

[PBL05], could be supported under this approach. However, it is beyond the

scope of this thesis.

Figure 4.1: Overview of the model-driven approach with PIM4Agents

In this approach, a model defined with the PIM4Agents is transformed to

a model described with the JadeOrgs metamodel, and finally the JadeOrgs

model is serialized into Java source code. Transforming a PIM4Agents model

to a PSM level model in JadeOrgs allows, if necessary, the refinement of the

model with JADE/JadeOrgs concepts and avoids the need of introducing

platform specific concepts in the PIM4Agents. The model to model transfor-

mations are specified in the Atlas Transformation Language (ATL) [ATL06]

and the model to code serialization is implemented using MOFScript [SIN06].

From our point of view, the creation of a PIM4Agents model can be done

in two different ways depending on the preferences of the designer and the

characteristics of the system to be modeled. A PIM4Agents model can be

4.1. MODELING OF THE ABSTRACT GOALS 39

goal-driven or behavior-driven.

In a goal-driven model, the responsibilities of the different parties in the

system are represented by goals that contribute to the overall system goals.

On the behavior-driven model, the responsibilities and roles that the different

parties play are defined by the behaviors that they possess. The goal-driven

approach provides a higher abstraction level in the construction of the system

as there is a clear detachment from what the system should do and how

it is done. The behavior-driven approach encodes both the what and the

how in the behavior’s body, which might be more familiar for designers and

developers that have less experience with agents and agent theory, and that

have more experience with a more ‘procedural’ model for execution.

The methodology that we propose covers both ways to model a MAS with

PIM4Agents. The biggest difference would be that the stages that have to

do with goal modeling should be skipped for the creation of behavior-driven

models. The methodology can be described by the following 8 stages:

1. Modeling of the abstract goals and their respective decompositions

2. Definition of the information model to be used in the system

3. Refinement of the abstract goals into concrete goals including the data

dependencies between the goals

4. Modeling of the roles in the system with their corresponding responsi-

bilities

5. Modeling of organizational structures and relations between roles

6. Modeling of the communication patterns through the definition of pro-

tocols

7. Definition of the agent plans

8. Establishment of the initial deployment configuration of the system

4.1 Modeling of the Abstract Goals

As an early requirements stage, we propose that goals should be defined in

a very abstract fashion. At this point each goal is merely a label, in order to

identify the desired state to be reached.

40 CHAPTER 4. MODELING AGENT ORGANIZATIONS

The abstract goals are linked by decomposition links. These links are of

AND or OR kinds. An AND-decomposition link indicates that the supergoal

is achieved when all of the subgoals are reached, while an OR-decomposition

shows that the supergoal is achieved when any of the subgoals is achieved.

This implies that subgoal of an OR-decomposition are actually specialization

of the parent goal, in the sense that the OR-subgoal represents a state that

fulfills all the conditions described in the parent.

The rationale behind this stage is to concentrate in what the system is

supposed to do without dealing with other issues such as data dependencies

or responsibilities. The definition of the abstract goals help define a clear

picture of the issues the system should address and can be created in a

iterative fashion. Each iteration should refine the decompositions and add

’leaves’ to the decomposition tree.

4.2 Definition of the Information Model

The information model comprehends all the data types that are used in the

MAS. These objects represent the type for the information that the system

takes as input, the knowledge of the agents, the content of messages, the

types used by services, the variables of goal events and the internal variables

in plans.

The information model is usually created separately from the PIM4Agents

model and it is also an Ecore model. Therefore the model can be created

manually, by importing an XML schema or annotated Java code.

4.3 Refinement of the Abstract Goals into

Concrete Goals

Once the information model and the abstract goal hierarchy is clear, the

abstract goals must be refined into the concrete goal types:

Perform Goal indicates a procedural goal to execute a given action. Namely,

the goal is to perform an action A, once the fact done(A) is asserted,

the goal has been achieved.

Achieve Goal denotes a declarative goal in which a desired state of affairs

should be reached.

4.4. MODELING OF THE ROLES IN THE SYSTEM 41

Query Goal describes a declarative goal that pursues a desired state of

affairs in which a piece of information is available.

Maintenance Goal restricts the set of valid states of affairs. In other

words, if its maintenancecondition is broken, the Maintenance Goal

triggers a plan that should reestablish the broken condition.

By assigning a concrete goal types, the execution semantics for the goal

are being set. Depending on the concrete goal type one or several conditions

should be set to describe, for instance, the state that the goal represents or

the situation under which the goal is no longer achievable. The conditions

are expressed using variables which are bound when a goal event is created

or as its bound plan is executed. For instance, the objective of a Query Goal

is usually to find a binding for a given variable.

The decomposition tree for the concrete goals is usually analogous to the

abstract goal tree. The tree can be further refined towards the leaves if more

specific concrete goals are desired.

At this stage, the flow of information between the different goals should

also be specified. For instance, a variable bound as the result of a given

goal is passed as initial binding value for a variable in a goal that should be

executed after.

4.4 Modeling of the Roles in the System

In order to define the roles in the system, it is necessary to consider the

objectives of the system and how they related to one another with respect to

the entity that should take care of each objective.

For example, if the system represented a bakery and one of the system ob-

jectives includes activities such as bake cake, decorate cake, attend customers,

each of these activities are performed by roles such as baker, decorator and

clerk, respectively. It is important to note that the roles do not have nec-

essarily to match one-to-one with the agent or organization types that the

MAS will have. Agents and Organizations can play various roles depending

on the desired system configuration. For instance, if we were modeling a

bakery in a small town, it could be possible the an individual Person agent

would have all roles assigned to it, while if we were modeling a big bakery in

a shopping center, there could be several Person agents that only play one

of the aforementioned roles.

42 CHAPTER 4. MODELING AGENT ORGANIZATIONS

If a goal-driven model is created, the roles will group concrete goals as

responsibilities for each of the roles. In the case of a behavior-driven model,

at this stage empty plans should be created as placeholders to represent the

responsibilities and assigned to each role as a ‘required behavior’.

4.5 Modeling of Organizational Structures

and Relations between Roles

Once the roles have been determined, we can proceed to construct the orga-

nizational structures that the MAS will have. The organizations are deter-

mined by their required roles. The required roles specify the ‘slots’ that the

member agents should fill in order for the organization to function. Also, it

is important to assign the goals that will be considered as the organizational

goal(s) for each organization.

In the case of a goal-driven model, the goal decomposition tree and the

goals assigned to each role can provide a guide into determining the orga-

nization structure. For instance, if a given goal G is an organizational goal

and its subgoals are assigned to certain roles, this is an indicator that per-

haps these roles should be grouped together in an organization, given that

a collaboration among the agents that will play these roles will be necessary

to achieve G .

In addition to grouping the roles under the organization, it is necessary to

set the cardinalities for each of these roles. The cardinalities specify the mini-

mum and maximum amount of member agents necessary for the organization

to achieve its organizational goals.

The way the roles will interact with one another is specified in a col-

laboration. The collaboration represents how the required roles from the

application domain relate to the roles in the protocols, the actors. As will be

described in the following section, protocols specify the generic communica-

tion patterns followed by the agents in the MAS. The collaboration represents

how the protocols are applied in the social context of the given organization.

In the collaboration, it is necessary to indicate again the cardinalities for each

mapping, so that the actors are bound to the agents in a fashion that is in

accordance to the protocol specification. The concrete messages and content

type are also specified in the collaboration context. This is necessary because

the messages used in the protocols, ACLMessages [Fou01], are abstract and

4.6. MODELING OF THE COMMUNICATION PATTERNS 43

do not specify the content exchanged in them.

4.6 Modeling of the Communication Patterns

In order to specify the way agents and organizations interact with one an-

other, protocols are defined to model the valid sequences of messages that can

be exchanged. Each party that takes part in an interaction is known as an

actor. Messages are always exchanged between 2 actors, and can be grouped

into what is known as a scope. The scope specifies whether the group is, for

instance, a sequence of messages. Alternative paths in the interaction are

represented by subactors. A subactor represents the subset of agents bound

to the actor that follow this alternative path.

The protocols are written in a generic fashion, given that they do not

contain detailed information about the domain of application. As mentioned

previously, the messages in the protocol do not specify the content used in

the domain of application. This gives us the possibility to reuse protocols in

different models.

In the case of a goal driven model, one way to link the goal and protocol

execution, in an eventual plan, is to use a goal to represent the state of affairs

in a given point of the protocol. For instance, a goal can represent the desired

state before a given message is received. However, we think that in order

to preserve the reuse of protocols only abstract goals should be use for this

purpose. The reasoning behind this is that concrete goals and their conditions

introduce specific domain knowledge reducing the reusability of the protocol,

while the abstract goal is merely a label that represents the goal. Through the

implementation relation between the abstract and concrete goals, the domain

information can be ’reconnected’ when reusing a protocol with abstract goals

in another model.

4.7 Definition of the Detailed Behaviors of

the Agents

The agent behaviors bring together all the other elements in the model. They

represent how goals can be achieved, implement the projection of the pro-

tocols for each actor and use and specify how the information is used and

manipulated by the agents.

44 CHAPTER 4. MODELING AGENT ORGANIZATIONS

The number of plans necessary for a given MAS can vary greatly, mostly

depending on design preferences. One could have lots of small atomic plans

that are linked together by others, or one can have big monolithic plans that

do everything. We consider that the appropriate number lies somewhere in

the middle.

Regardless of what the exact number of plans is, it is important to ensure

that there is at least one plan that achieve every one of the agent/organizational

goals and that the projection of every actor in a protocol is also implemented

in a plan. As the body of the plans are designed these two tasks might be

intertwined. For example, a plan that achieves a certain goal might require

to perform the role of an actor of a protocol as part of the achievement.

Depending on the design style, this may mean designing everything in the

same plan or having the plan that achieves the goal invoke the plan that

implements the behavior of the protocol actor.

The body of the plan is specified as a graph whose nodes are constructs

such as sending a message or invoking a service, and whose edges indicate

the flow of control from one activity to the next. In order to store and

manipulate the information, variables can also be specified and are handled

using scopes in a similar fashion to many programming languages: variables

from container activities are available to their respective children activities.

Therefore, we recommend that common variables are declared in the outer-

most common scope, so that unnecessary copying of variables is avoided.

Once the plan is fully modeled, we should make sure that plans are linked

to the corresponding agent and organization types, so that the runtime in-

stances can have the behaviors available at runtime.

4.8 Establishment of the Initial Deployment

Configuration of the System

Once all the other stages of modeling have been completed, it becomes nec-

essary to specify what the initial state of the system will be. At this stage

we need to consider how many instances of each type of agent/organization

type will be available, how organizations are originally established and, cor-

respondingly, under which of the allowed roles will agents be bound to orga-

nizations.

Depending on the plans that were previously modeled and the applica-

4.8. ESTABLISHMENT OF THE INITIAL DEPLOYMENT
CONFIGURATION OF THE SYSTEM 45

tion domain of the MAS, the establishment of the organization could be

completely dynamic, however it is often convenient that a initial configura-

tion is provided. This initial configuration should respect the cardinalities

that are specified for the roles in the collaborations and that agents are only

bound under roles that they can fulfill.

Once the model is completed, the transformation steps should be able to

generate the corresponding PSM model and source code. After the source

code is generated, it should only be necessary to implement whatever inter-

faces where produced for specific platform dependent code.

The methodology presented in this chapter is only a recommendation on

how to produce a model in a structured fashion. Depending on the applica-

tion or development style, iterations and refinements on the different stages

may be applied. While using a methodology cannot guarantee the success

in the design or implementation of a MAS, this structured process will help

to show possible issues with respect to the system requirements at an early

stage. This issues can then be addressed in the models avoiding a full code

implementation based on false understanding of the requirements.

For illustration purposes, an example that follows the methodology steps

can be found in Section 5.10.

Chapter 5

The Platform Independent

Metamodel for Agents:

PIM4Agents

46

47

One challenge in defining a platform-independent metamodel is to decide

which concepts to include and which to abstract from the target execution

platforms that support the architectural style of agent-based systems. Chap-

ter 3 discusses several metamodels for MAS, however, the only concept most

metamodels have in common is the concept of an agent. Some of them also

focus on role and communication/interaction. From this discussion, it is

important to note that finding platform-independent concepts for MAS is a

complex and non-trivial task. From our point of view, the minimal definition

for an agent is an entity that is capable of acting in the environment. It acts

in an autonomous manner, i.e. the agent has control over its own behavior

and reacts in response to internal and external stimuli. Another property

is the ability to communicate with other agents. Additionally, the agent is

capable of perceiving its environment. In the following chapter, we present

an overview of the platform-independent concepts and attributes necessary

for designing agents in an adequate manner. To facilitate the presentation

of our platform-independent metamodel for MAS called PIM4Agents, it is

structured into several aspects. Each of them focuses on a specific viewpoint

of a MAS.

1. Multiagent System view contains the main building blocks of a MAS

and thus includes concepts like Agent, Capability, Interaction, Role, or

Environment.

2. Agent view describes single autonomous entities, the capabilities they

have to solve tasks and the roles they play within the MAS.

3. Organization view describes how single autonomous entities cooperate

within the MAS and how complex organizational structures can be

defined.

4. Goal view represents the agent’s and organization’s objectives in the

system and how they are related to one another.

5. Role view covers the abstract representations of functional positions of

autonomous entities within an organization or other social relationship.

6. Behavioral view describes how plans are composed by complex control

structures and simple atomic tasks like sending a message and how

information flows between those constructs.

48 CHAPTER 5. PIM4AGENTS

7. Interaction view describes how the communication in the form of in-

teraction protocols takes place between autonomous entities or organi-

zations.

8. Information Model view represents the ontology related to the domain

of application and contains any kind of resource that is dynamically

created, shared, or used by the agents or organizations, respectively.

9. Deployment view presents how the agent and organization instances

are initially configured in the system.

Grouping modeling concepts in this manner allows metamodel evolution by

(i) adding new modeling concepts in the existing aspects, (ii) extending ex-

isting modeling concepts in them, or (iii) defining new modeling concepts for

describing additional characteristics of agent systems. In the following sec-

tions, we explore the core aspects of the PIM4Agents in more detail. Each

aspect is defined by a submetamodel focusing on the related concepts that

altogether form the PIM4Agents metamodel.

5.1 Multiagent System Viewpoint

The Multiagent System Viewpoint is centered around the MultiagentSystem

concept. The metamodel for this viewpoint is presented in Figure 5.1. As

seen in the metamodel, MultiagentSystem is the general container of all the

elements that compose a MAS such as Agents, Goals, AgentInstances, Capa-

bilities, Interactions, Roles, Behaviors, and Information Models. The features

of the contained elements are described in detail in the following sections.

5.2 Agent Viewpoint

The Agent Viewpoint is centered on the concept of an Agent, the autonomous

entity capable of acting in the environment, and the basic building block of

the MAS. Figure 5.2 depicts the metamodel that corresponds to this view.

In order to be able to take action and achieve its goals, the Agent must

possess a series of Behaviors that are either assigned by the system designer or

acquired at runtime. For additional modularity, Behaviors that have certain

affinities or common purpose can be grouped into Capabilities.

5.2. AGENT VIEWPOINT 49

Figure 5.1: The Multiagent System View of the PIM4Agents.

Figure 5.2: The metamodel reflecting the agent aspect of the PIM4Agents.

50 CHAPTER 5. PIM4AGENTS

Through its Behaviors, the Agent utilizes a set of Resources from its

surrounding environment. These Resources may include information sources

to which the Agent has access and are represented using the EClassifier

class from Ecore, bootstrapping on the meta-metamodel used to define

PIM4Agents. The beliefs of the Agent are represented through a Knowl-

edge class. These beliefs are accessed and modefied as the Agent executes

its behaviors.

Furthermore, the Agent has a social aspect and can perform particular

DomainRoles that are aligned with its own internal Goals. The Domain-

Roles specify the responsibilities that the Agent commits to fulfill in a given

social context. The DomainRole can also provide the Agent with additional

Behaviors that would facilitate the performance of the given DomainRole.

Even if most of the agent modeling approaches presented in Section 3.1 do

not address the modeling of runtime instances, we consider that it is useful

to model the initial configuration of the instances in the MAS through the

AgentInstances concept. The AgentInstance is classified by the Agent class.

This allows the system designer to model particular instances that share

common features specified in the Agent type.

5.3 Organization Viewpoint

The Organization Viewpoint presents the concepts that represent the social

aspect of the MAS. It allows the system designer to model how agents and

organizations relate to one another and under what particular circumstances

these relationships occur. Figure 5.3 depicts the metamodel for this aspect.

It includes the concepts Organization, Goal, DomainRole, Collaboration, Do-

mainRoleBinding, Interaction, and ActorBinding.

The Organization defines a social structure for Agents and other Orga-

nizations. It is formed to regulate, support, and facilitate the interaction

among its members. Therefore, it provides a social context under which the

Agents interact. At the same time, the Organization is a specialization the

Agent type. This enables the Organization to execute its own Behaviors in

order to achieve organizational Goals (cf. Section 5.4). In most cases, the

responsibilities of the DomainRoles performed by the member agents will be

subgoals of the organizational Goals, which will be called upon by the Or-

ganization as it executes the behaviors that pursue the achievement of such

organizational Goals.

5.3. ORGANIZATION VIEWPOINT 51

Figure 5.3: The metamodel reflecting the organizational aspect of the

PIM4Agents.

A Collaboration is utilized to establish how the domain specific roles in

the Organization, the DomainRoles, relate to the domain independent roles

in an Interaction, the Actors (cf. Section 5.7). Through the use of the

DomainRoleBindings and ActorBindings in the Collaboration, the Interac-

tion specifies which DomainRoles interact with each other under the cho-

sen communication pattern. The Collaboration also refers to the Messages.

A Message is the domain specific counterpart to the domain independent

ACLMessage that is part of a Protocol (cf. Section 5.7). The Message de-

termines the content that will be transmitted when the Speechact specified

in the corresponding ACLMessage is performed in the context specified by

the Collaboration.

For example, given a domain of application with a Bank Organization

and a Customer DomainRole that requests the creation of a new account

to a Bank Clerk DomainRole, they would interact using the FIPA-Request

protocol [Fou02d]. The Customer would be linked through the bindings

to the Requester Actor, and the Bank Clerk, correspondingly, would be

linked to the Responder Actor. A Message AccountCreation would then

be linked to the ACLMessage that specifies the request performative and

indicate that the content would be of type AccountInfo.

52 CHAPTER 5. PIM4AGENTS

5.4 Goal Viewpoint

The goal viewpoint (cf. Figure 5.4) represents the goals that are assumed by

Agents and Organizations in the MAS. A Goal describes a state of affairs

that the agent has committed itself to bring about through its actions. When

an agent assumes a goal, a given Behavior or Plan is initialized or triggered

to take action towards the realization of this goal. Therefore a Goal is also a

specialization of an abstract Event type that represents events which Agents

must react to or handle. As an Event, it contains variables which are bound

through the process of achieving the Goal. In addition, Goals can be re-

lated to one another through conflictingGoals , in which two goals cannot be

achieved at the same time, or decomposition relations.

If an ANDDecompositionLink joins a subgoal with its parent, this implies

that the parent goal is only achieved once all the subgoals have been achieved.

This link prescribes a logical AND on the conditions specified in the subgoals

s1, . . . ,sn , which entails the achievement of the parent goal p , as in a Horn

clause [Hor51]: (s1 ∧ s2 ∧ . . . ∧ sn)⇒ p.

If subgoals are joined with an ORDecompositionLink, the parent goal is

achieved when any of the children goals are achieved. Correspondingly, this

link describes a logical OR performed on the subgoals to determine if the

parent goal is achieved. This usually entails that each subgoal is a special

case of the parent goal. For example, if the parent goal is ProcessPayment,

then subgoals ProcessCCPayment and ProcessCheckPayment would

be linked to its parent through an ORDecompositionLink. Since credit card

and checks are both acceptable methods of payment, the ProcessPayment

goal is achieved.

Furthermore, the Goals are classified as AbstractGoals and Concrete-

Goals. An AbstractGoal is meant to be used when the concrete conditions

under which the goal is achieved are not clear. Such goals would be particu-

larly used in the early requirements phase of the design of the MAS, since the

concrete details of the goals and the application domain may not be known

in detail.

The ConcreteGoals are used when the detailed information about the goal

Conditions is known, such as in the detailed design of the MAS. Based on the

Unified Goal Framework [vRDW08], the ConcreteGoal is further specialized

into 4 types:

PerformGoal indicates a procedural goal to execute a given action. Namely,

5.4. GOAL VIEWPOINT 53

Figure 5.4: The metamodel reflecting the goal aspect of the PIM4Agents.

the goal is to perform an action A, once the fact done(A) is asserted,

the goal has been achieved.

AchieveGoal denotes a declarative goal in which a desired state of affairs

should be reached.

QueryGoal describes a declarative goal that pursues a desired state of af-

fairs in which a piece of information is available.

MaintenanceGoal restricts the set of valid states of affairs. In other words,

if the maintenanceCondition is broken, the MaintenanceGoal triggers

a plan that should reestablish the broken condition.

In the case of the AchieveGoal and QueryGoal, the targetCondition de-

scribes the target state(s) of affairs, while the optional failureCondition de-

scribes the state(s) where the goal can no longer be achieved. As mentioned in

its definition, MaintenanceGoal is described through a maintenanceCondition

which describes the state(s) of affairs that should be preserved.

The goal types and the decomposition links which join them allow the

creation of a goal decomposition tree that is used to distribute the responsi-

54 CHAPTER 5. PIM4AGENTS

bilities among the members of the organization in order to achieve organiza-

tional goals.

5.5 Role Viewpoint

A Role is an abstraction of the social behavior of the Agent in a given social

context, usually an Organization. The Role specifies the responsibilities and

the functional position of the Agent in that social context. It defines what

the “role player” is expected to do. It refers to (i) a set of Goals that specify

the responsibilities to be fulfilled, (ii) a set of Capabilities that define the

Behaviors that the “role player” is required to have or will be provided with

when the Role is granted, and (iii) a set of resources which are required by

the Role or provided in order to play the Role.

Figure 5.5: The metamodel reflecting the role aspect of the PIM4Agents.

The Role aspect covers the Role, its specializations and how they can be

related to each other. The metamodel for this aspect is depicted in Figure 5.5.

It includes the concepts Role, Actor, and DomainRole, as well as Goal (form

the goal aspect), Capability (from the agent aspect), and Ecore’s EClassifier

to represent resources.

The main Role concept is abstract and its two main specializations Do-

mainRole and Actor describe the agent positions in the domain-specific Or-

ganizations and the domain-independent Interactions respectively. Roles can

5.6. BEHAVIOR VIEWPOINT 55

be defined in a hierarchy through the specializationOf relation. For instance.

the CEO Role is a specialization of the Manager Role.

Additionally, DomainRoles can be composed with the parts relation, ag-

gregating the features of all the parts into the partsOf DomainRole. An

example of this aggregation is an OfficeAssistant DomainRole that is com-

posed of Receptionist and Typist DomainRoles.

On the interaction side, Actors can be partitioned into subactors . The

idea behind this partitioning is to represent the different paths available dur-

ing the execution of an interaction or protocol and how the different instances

bound to each actor are grouped into different subgroups depending on the

trace of the execution of the interaction. The Actor concept is discussed in

more detail in Section 5.7.

Besides discussing the features and properties that define the role type,

we should address the assignment of “role players” to these roles. The roles

can be assigned endogenously through self-organization or exogenously by the

system designer [OPF03]. The approach taken in PIM4Agents leans towards

the latter approach, by defining the static assignment of roles at design time,

while JadeOrgs (cf. Chapter 6) supports both a static initial role assignment

as well as dynamic role assignment at run time. The language constructs

used to model the static role assignment will be presented in Section 5.9.

5.6 Behavior Viewpoint

The behavior aspect describes (i) how Plans are composed by complex con-

trol structures and simple atomic tasks like sending a message and (ii) how

information flows between those constructs. A partial metamodel of the be-

havior aspect is depicted in Figure 5.6 and includes the concepts Behavior,

Plan, Flow, ControlFlow, InformationFlow, Activity, StructuredActivity, and

Task.

A Behavior represents the super class connecting the agent aspect with

the behavior aspect, where a Plan can be considered a specialization of the

abstract Behavior to specify an agent’s internal processes. An Activity con-

tains a set of Flows and Activities. Activities are classified into StructuredAc-

tivities and Tasks. StructuredActivities are composed of other Activities and

present complex control structures, while Tasks are atomic activities that

perform simple actions. It is important to note that the Plan is also a spe-

cialization of StructuredActivity that possesses the preconditionObject and

56 CHAPTER 5. PIM4AGENTS

Figure 5.6: The partial metamodel reflecting the behavior aspect of the

PIM4Agents.

postconditionObject associations to represent the circumstances under which

the plan can execute and the effects of its execution, respectively. In addi-

tion, the Plan may be triggered by an Event, such as one of the Goals shown

in Section 5.4.

The Activities are linked to each other via Flows which are either of the

type InformationFlow or ControlFlow. InformationFlows are only necessary

when an activity requires access to a variable and this variable is not within

the scope of the activity, in other words it is not declared in any of the

StructuredActivities that contains the Activity in question. ControlFlows are

the links that express how the controls changes from one activity to the

next and may contain a guard, the conditionObject , that determines if the

following activity may be executed.

StructuredActivities and Tasks are specialized into various types, as de-

picted in Figures 5.7 and 5.8, respectively. We will briefly review what each

of these specializations represent.

The hierarchy of StructuredActivities include the following:

Sequence represents a set of Activities under a total order.

Loop indicates a set of Activities whose execution is repeated until a certain

condition is met.

Split represents a fork in the flow of control. The different paths can be

5.6. BEHAVIOR VIEWPOINT 57

Figure 5.7: The hierarchy of StructuredActivities.

Figure 5.8: The hierarchy of Tasks.

58 CHAPTER 5. PIM4AGENTS

synchronized in accordance to the SynchronizationMode enumeration:

after all paths terminate (AND), after one or more paths terminate

(OR), after exactly one path terminates (XOR) or after a determined

number of paths have terminated.

Decision is a specialization of Split that is restricted to only two Execution-

Modes : one or more paths may execute (OR) or exactly one path may

execute (XOR). The execution of each path depends on the evaluation

of the guard in the ControlFlow that links the Begin with the first

Activity of each execution path.

Parallel is a Split in which each execution path is executed in parallel to

the others.

ParallelLoop is a combination of Parallel and Loop. It represents the par-

allel execution of several instances of the process described by the Ac-

tivities contained. The number of parallel threads executed is only

known at run time. A common use case of this construct is to handle

communication with all the agent instances bound to a given Actor.

As previously mentioned, to represent atomic Activities we use the con-

cept of a Task. Tasks include actions such as sending and receiving messages

or assuming a goal. The Tasks presented in Figure 5.8 are described as

follows:

Begin represents the starting point of an Activity.

End represents the expected/successful end of an Activity.

Fail represents an exceptional end or the failure to execute the Activity.

AssignRole asserts the fact that a given agent is playing a certain Role. It

is used to keep track of the partitioning of Actors into subactors .

Wait causes the process to wait for a given period of time and may be linked

to a TimeOut specified in an Protocol.

AssumeGoal represents the addition of a given Goal to the set of currently

pursued Goals prior to continuing the execution.

5.7. INTERACTION VIEWPOINT 59

AssumeGoalAndWait is similar to AssumeGoal but causes the execution

to wait for the achievement or failure of the goal event before resuming

the execution. A timeout period may also specified to avoid waiting

indefinitely.

MessageTask is an abstract class that classifies all tasks that deal with

messages and, therefore, refers to the message to be sent or received.

Send is a specialization of MessageTask that represents the action of sending

a Message.

Receive is a specialization of MessageTask that represents the action of

receiving a Message.

Although the number of Activities indicates that specifying a Behavior is

a complex task, the example in Section 5.10 will show that with the appro-

priate tool support this complexity can be managed.

5.7 Interaction Viewpoint

Figure 5.9 depicts the partial interaction aspect of the PIM4Agents. The

ability to communicate is one of the core characteristics of agents and groups

of agents in MAS. In the PIM4Agents, a Protocol refers (i) to a set of Actors

(e.g. Buyer and Seller) that interact within the Protocol and (ii) to a set of

MessageFlows that specify how the exchange of messages occurs. The Actor

can again refer to a set of Actors as subactors , meaning that the set of agents

performing the superactor is partitioned into the subactor sets. In general,

the subactors are determined at design time, but filled with the particular

instances that perform this kind of Role at run time.

A good example for distinguishing between superactor and subactor is

the Contract Net Protocol (CNP) [DS83] . In the CNP, after the proposals

have been collected, the Initiator may send either an accept-proposal or

a reject-proposal to the Participant. The decision about which message

is sent depends on if a Participant is considered as the best bidder with

respect to some pre-defined criterion. If this is the case, this Participant

gets an accept-proposal, otherwise it receives a reject-proposal. This

implicit distinction between best bidder and remaining bidders can be made

explicitly in the PIM4Agents. The Participant (as a superactor) would have

60 CHAPTER 5. PIM4AGENTS

Figure 5.9: The partial metamodel reflecting the partial interaction aspect

of the PIM4Agents.

two subactors , i.e. BestBidder and RemainingBidders, that are filled at

run time.

The MessageFlows represent the states in the execution of the protocol

linked to a set of Actors that are active in the current state, i.e. those Roles

that send the specified ACLMessages. Through the messageflow relation,

a MessageFlow can refer to another MessageFlow to indicate the transition

from an superactor to a subactor .

Furthermore, the MessageFlow is associated with the MessageScope as

join or forkOperator . An incoming transition is a joinOperator , while an out-

going one is a forkOperator . Another way to trigger a transition is through

a TimeOut. The TimeOut is a time constraint for some section of the Pro-

tocol. In a way analogous to the relation with MessageScope, TimeOuts are

either fork or joinTimeouts depending on whether the transition is outgoing

5.8. INFORMATION MODEL VIEWPOINT 61

or incoming respectively.

As a state in the dialogue, the MessageFlow can also specify under what

conditions a transition to the state can take place and the effects of that

state. The preconditions are modeled with a Condition object, while the

postCondition is modeled with a Goal. Using a Goal as postcondition links

the interaction view with the behavior view. It permits the system designer

to model how a state in a Protocol can cause a certain Plan to be triggered

via the Goal.

A MessageScope defines the communication transitions between the states

of the Protocol, contains the ACLMessages, and determines the order in

which they are exchanged. The MessageScope can contain OrderedElements

in its messageSplit relation. The OrderedElements are specialized in Mes-

sageScopes or Breaks. The Break specifies if a given Trigger, such as a ex-

pired TimeOut, causes the message exchange to be transition to be cancelled.

Whether or not a MessageScope contains only one ACLMessage or a set of

OrderedElements is determined by the ExchangeModes as follows:

None indicates that only one ACLMessage is exchanged in this transition.

Sequence prescribes that the ACLMessages are exchanged in a sequence.

Parallel the ACLMessages in this transition may be exchanged in in paral-

lel. In other words, the order of the exchanged messages is not deter-

mined.

Loop the ACLMessages may be exchanged again and again until the trigger

of a Break holds or the following MessageFlow ’s precondition evaluates

to true.

Finally, Messages are the domain specific counterpart to ACLMessages.

The Message specifies the message content used for a particular ACLMessage

when the Protocol is used in a certain context, the Collaboration (cf. Section

5.3).

5.8 Information Model Viewpoint

In order to communicate with one another and to have a common domain

of discourse, it proves necessary to define what common concepts the Agents

will be discussing. The information model aspect represents the domain

62 CHAPTER 5. PIM4AGENTS

ontology for the MAS. It contains all concepts that classify objects created,

shared, or used by the Agents and Organizations.

Figure 5.10: The partial metamodel reflecting the information model view of

the PIM4Agents.

The Agent’s beliefs, the content of the messages exchanged and the local

variables and parameters inside the Activities are typed by the concepts

defined in this viewpoint. Depicted in Figure 5.10, the Knowledge concept is

applied to represent all these references to the ontology classes. When used

as a parameter for an Activity, the Knowledge’s parameterDirection indicates

the direction of the parameter. If it were an incoming parameter, the value

property indicates how the variable is initialized upon entering the Activity.

If it were an outgoing parameter, the outVariable relation could indicate to

where the value of the parameter would be stored at the end of the Activity.

5.9. DEPLOYMENT VIEWPOINT 63

For the definition of the ontology classes themselves, we make use of the

Ecore metamodel itself [BSM+03]. Using Ecore as the ontology representa-

tion allows us to take advantage of the ample tool support that the Eclipse

framework provides. Tools such as graphical editors, model repositories and

transformation tools for Ecore models are widely available in the Eclipse tool

ecosystem.

In particular, we make use of the abstract EClassifier class. EClassifier

represents the class that classifies all objects, be it objects classified by a

primitive type (EDataType) or a class (EClass). EClasses are composed of

EAttributes, EReferences and EOperations. EAttributes refer to properties

typed by primitive types, EReferences represent relations between the classes,

and EOperations specify operations or methods that EClasses possess, along

with their corresponding EParameters.

Figure 5.11: The Condition hierarchy.

In addition to the concepts that are part of the ontology, the information

model view includes the Condition concept, as shown in Figure 5.11. A

Condition is an expression that is evaluated in a given context to obtain

its truth value. Among its uses we find the description of target states in

Goals (cf. Section 5.4) and the guards in ControlFlows (cf. Section 5.6)

and MessageFlows (cf. Section 5.7). The abstract Condition concept is

specialized into JavaConditions, OCLConditions, and RDFConditions. Each

specialization indicates the language used to encode the condition expression.

5.9 Deployment Viewpoint

In order to model the initial configuration of the MAS when the system starts,

the deployment view is represented by the metamodel depicted in Figure

64 CHAPTER 5. PIM4AGENTS

5.12. This view is centered on the AgentInstance concept. The AgentInstance

represents an instance for any Agent type. Given that Organizations are also

Agents, AgentInstance also models instance of Organizations.

Figure 5.12: The metamodel for the Deployment View of PIM4Agents

The Initializers bound to each instance describe the initial state of the

instance. For example, they may initialize its belief base or the Goals it

assumes since the system start.

Instances of all Agent types may have a memberOf association with var-

ious Membership objects, while only instances of Organizations may have a

members relation with Membership objects. The Membership concept indi-

cates how an instance may be bound to another instance and under what Do-

mainRole, as indicated by the corresponding DomainRoleBinding. In other

words, the Membership concept models the initial establishment of the Or-

ganizations.

5.10 Case Study: The Conference Manage-

ment System

In order to illustrate how the PIM4Agents can be applied to model a MAS,

we have chosen a well studied example: The Conference Management System

(CMS). This scenario has been discussed by other authors [DeL02, ZJW01]

and has been modeled with other AOSE approaches such as O-MaSE [DeL07],

Tropos [MNP+07] and Prometheus [PTW07]. Therefore we can analyze the

5.10. CASE STUDY: THE CONFERENCE MANAGEMENT SYSTEM65

analyse how PIM4Agents models address modeling issues with respect to the

other approaches.

The CMS is a MAS that supports the management of conferences that

requires the coordination of individuals in order to perform the selection of

papers for publication at the conference. The process includes activities such

as paper submission, paper review, paper selection, author notification, final

paper collection and printing of the conference proceedings [PL07]. Authors

may submit a paper until a given deadline. Once the deadline passes, the

members of the Program Committee (PC) may forward the paper to referees

for review or review the papers themselves. Once all the reviews are collected,

a decision is made about whether to accept or reject each paper. Each author

is notified of the decisions and the authors of accepted papers are asked to

provide a camera-ready version of the paper. Once all camera-ready versions

of the paper are collected, they are sent to the printer for publication.

In this section, we will present how this scenario is modeled with PIM4Agents

using the concrete, graphical syntax of the language [WH08] and following

the software process described in Chapter 4.

5.10.1 The CMS Goal Model

We start by identifying the purposes or goals of the systems. In the early

requirement stages, we define a set of abstract goals. At this point, the only

important issue to address is how goals relate to one another in terms of

composition, i.e,. how complex goals decompose into simpler goals. Figure

5.13 presents the abstract goal tree for the ManagePaperSubmission goal.

Following the ordering labels that can be seen in the diagram, ManagePa-

perSubmission starts with the subgoal of GetPapers. This subgoal involves

retrieving the submissions from the data bank or file system where they are

stored. The following subgoal, AssignPaper involves matching reviewers and

the submission(s) they should review. ReviewPaper describes the process of

performing the actual review of the paper and producing a review report.

Once the papers have been reviewed, the SelectPapers goal describes the

process of choosing the papers that will be accepted for publication. The

selection process is correspondingly subdivided into the goals of collecting

the review reports (CollectReviews), and analyzing each review report, and

deciding if the paper is to be accepted (MakeDecision). Once the decision

has been reached for all submissions, the authors are notified of the result.

66 CHAPTER 5. PIM4AGENTS

Figure 5.13: The abstract goal decomposition for ManagePaperSubmission

For this purpose, InformAuthors is OR-decomposed into InformDeclined and

InformAccepted, which represent the transmission of the corresponding mes-

sages to each of the papers’ authors. Finally, the PrintProceedings goal rep-

resents the stage where the proceedings are put together by collecting the

camera-ready versions from the authors (CollectFinals) and sending these to

the printer (SendToPrinter).

Once the abstract goals and the data types in the information model

(see Section 5.10.2) have been defined, the abstract goals are refined into

a concrete goal tree as presented in Figure 5.14. This refinement involves

defining the concrete variables that are to be bound during the processing

of the goal events, specifying which of the four concrete goal types should

be used for each of the abstract goals, as well as describing the state to be

reached by each goal. This state is described with a condition expression.

For instance when we look at the goal AssignPapers in Figure 5.14, a variable

papers is specified as input. This means that the variable will be previously

bound by another goal, in this case, by the GetPapers goal. As an output

variable, the mapping paperAssignment is specified. This variable will be

bound as a result of the achievement of the goal. The goal will be achieved

when the target condition is met. Therefore, AssignPapers will be achieved

when all papers have been assigned to PCMembers in the paperAssignment

5.10. CASE STUDY: THE CONFERENCE MANAGEMENT SYSTEM67

Figure 5.14: The concrete goal decomposition for ManagePaperSubmission

68 CHAPTER 5. PIM4AGENTS

map.

As can be seen in the diagram, the target conditions of goals that are

decomposed is not explicitly provided. The reasoning behind this is that the

composed goals have their state description provided by the AND- or OR-

conjunction of their subgoals. Therefore, only the leaves of decomposition

tree have a explicit target condition.

Other AOSE approaches also start by modeling the system goals but with

slight differences in process and purpose. For example, in O-MaSE [DeL07]

goals are first defined roughly, and then they are refined by aggregating

the parameters and precedence links between the goals. Even though the

methodology steps are similar to the ones in PIM4Agents, one key difference

is that the ‘rough’ goals and the refined ones are the same goals, just with

a more information added to them in the refinement process step, while the

abstract goals and concrete goals in PIM4Agents are separate concepts with

a slight difference in abstraction. The abstract goals—as the protocols—are

generic, since they do not really contain any domain specific information,

but merely represent a concept that through its relations binds other domain

specific concepts. This is what allows us to link abstract goals as postcondi-

tions in the protocol states and eventually link the plans that implement the

protocol to the corresponding concrete goal. We consider that the precedence

links in the O-MaSE goal diagram provide a clear picture of the dependen-

cies between goals, but when a high number of goals is to be modeled the

diagram can become overloaded. Therefore, PIM4Agents models use the

ordering labels on the decomposition links to establish precedence and the

variable initialization fields to represent the data dependencies instead.

Tropos [MNP+07] introduces the concept of a soft goal : an abstract no-

tion that represents non-functional requirements, such as ‘conference quality’

in the CMS context. While we agree that they do make the specification

more complete, since they are hard to quantify/implement, we have decided

to leave such notions out of our model for the time being.

5.10.2 The CMS Information Model

The information model for this scenario consists of the basic set of classes

necessary to handle the submission of papers. Depicted in Figure 5.15, this

simple model introduces the classes: Paper, Person, ReviewRequest and Re-

view.

5.10. CASE STUDY: THE CONFERENCE MANAGEMENT SYSTEM69

Figure 5.15: The Information Model for the CMS

The ReviewRequest represents content of the request to a PCMember

to provide a review, therefore it refers to the paper to be reviewed. The

Paper represents the article entity with properties such as its title, abstract

and content. In addition an internal ID is assigned to it for management

purposes. The information about authors and reviewers is represented by

the class Person, containing mainly the contact information of the individual.

The result of the interaction is the Review containing the assessment of the

reviewer with respect to the article.

As previously mentioned, the information model is an Ecore model on its

own, therefore a variety of tools can be used to create and manipulate it, as

well as transform and generate code from it. This provides added flexibility

in comparison to other approaches without leaving the definition of data layer

partially or completely to the code level. For example, Prometheus simply

abstracts the information model into databases (PapersDB, ReviewerDB,

ReviewDB) and links the corresponding goals to the databases[PTW07].

5.10.3 The CMS Role Model

The Role Model is created by grouping goals that should be performed by an

agent or organization that plays each given role. In our scenario, this view

70 CHAPTER 5. PIM4AGENTS

Figure 5.16: The Role View for the CMS example

5.10. CASE STUDY: THE CONFERENCE MANAGEMENT SYSTEM71

is presented in Figure 5.16. Since we are concentrated in the goals internal

to the Conference Management System, the responsibilities Publisher and

Author roles are not presented.

The ProgramCommittee domain role is responsible for managing all of

the paper submissions, which is the root goal of the goal hierarchy presented

in Section 5.10.1. The subgoals of ManagePaperSubmissions are distributed

between two domain roles: PCMember and PCChair. The PCMember con-

tributes by reviewing papers, while the PCChair takes care of the other

responsibilities, such as assigning papers to reviewers, selecting the accepted

papers, and informing the authors about whether their paper was accepted

or rejected.

This assignment of responsibilities to roles does not restrict that an agent

that plays the PCChair may also review papers, but it does indicate that

if that is desired such an agent should be playing both the PCChair and

PCMember roles.

In contrast to other AOSE approaches, the PIM4Agents Role View is

quite simple, since it concentrates on linking the DomainRoles with their

goals–in the case of a goal-driven model, such as the CMS scenario—or their

required behaviors—in the case of a behavior-driven model. Prometheus

[PTW07] adds perceptions and actions to their role/actor diagrams while

Tropos [MNP+07] takes a similar approach to PIM4Agents and groups the

goals under Actors (Tropos equivalent of a DomainRole). The difference

with respect to the presentation of perceptions and actions in the role view is

merely a design decision, since these concerns can be addressed in other model

views, such as the behavior model. In contrast, the role model in O-MaSE

for this scenario [DeL07] distinguishes between Actors and Roles. Roles are

smaller and more abstract such as Assigner and DecisionMaker and they

are linked to Actors such as PCChair in a closer fashion to a DomainRole.

This distinction can bring some compartmentation, but we consider that the

aggregation of DomainRoles is functionally equivalent without requiring an

additional concept.

5.10.4 The CMS Organization Model

The Organizational Model presents how organizations are related to roles.

Roles can indicate the configuration of the organization (‘requires’ relation)

as well as which roles it can play (‘permitted to’ relation).

72 CHAPTER 5. PIM4AGENTS

Figure 5.17: The Organization View for the CMS example

5.10. CASE STUDY: THE CONFERENCE MANAGEMENT SYSTEM73

In our case study, three organizations are present: ConferenceManage-

mentOrganization, PC, and Publisher. The ConferenceManagementOrgani-

zation includes all the parties involved in the case study. It is composed by

the Author, ProgramCommittee and Publisher roles. The Publisher and PC

organizations play the Publisher and ProgramCommittee, respectively.

The PC organization is composed by the PCChair and PCMember roles

that have been previously presented. In addition, the RequestReview protocol

is used by the PC to coordinate the review process. The details of the

protocol will be presented in Section 5.10.6.

At this stage, it is still not specified exactly how many agents or organiza-

tions will fulfill each role, this information will be provided in the Deployment

Model (Section 5.10.8).

Representing the organization as an independent concept is a feature that

O-MaSE and PIM4Agents share, while Prometheus projects the organization

into the agents beliefs 1 and Tropos sees the CMS system itself as an actor

that decomposes into subactors. While all manage to represent the organi-

zational structures in a somewhat equivalent fashion, the organization-as-an-

agent approach possesses the advantage that it both agent and organizations

interact in exactly the same way as role players in organizations.

5.10.5 The CMS Agent Model

The responsibilities and activities assigned for each agent type are modeled

in the view presented in Figure 5.18. Our CMS scenario presents two Agent

types: Researcher and SeniorResearcher. A SeniorResearcher is considered

an experienced scientist that can evaluate work from his/her colleagues in

a given area of expertise, while a Researcher is, simply put in this context,

a scientist that is able to produce a scientific article. In reality, one could

conceive that the SeniorResearcher is actually a specialization of Researcher.

We have decided to leave out that association between the agent types for

the sake of simplicity in this example.

As mentioned, a Researcher performs one main activity in this scenario:

writing papers. Therefore it uses the corresponding WritePaper plan and it

is assigned the role of Author.

1 in [PTW07] an integration of the ISLANDER [EdlCS02] organisation design phase is

promised in the future work

74 CHAPTER 5. PIM4AGENTS

Figure 5.18: The Agent View for the CMS example

5.10. CASE STUDY: THE CONFERENCE MANAGEMENT SYSTEM75

Correspondingly, the SeniorResearcher can play the PCMember and PC-

Chair roles. In order to be able to play both roles, SeniorResearcher uses a

number of behaviors that allow him to achieve the goals prescribed by the

roles it has been assigned, such as ReviewPaper or ChooseBestPapers.

With respect to the agent view, the competing approaches and PIM4Agents

are very similar. They all intend to link the agent types with the goals

they should achieve in various ways: through the DomainRoles they play

(PIM4Agents), as derivation from Actors (Tropos) or by a direct link (o-

MaSE and Prometheus).

5.10.6 The CMS Interaction Model

Once the Organizations are structured with their corresponding Domain-

Roles, it is necessary to specify how these roles interact within the boundaries

of the organization. This specification is two-fold: a protocol specifies the

message exchange between Actors and a collaboration diagram specifies how

the DomainRoles are mapped to the protocol’s Actors.

Figure 5.19: The PaperReviewCollaboration for the PC organization

In the case of the PC organization, we have defined a collaboration known

as PaperReviewCollaboration. This collaboration is presented in Figure 5.19.

76 CHAPTER 5. PIM4AGENTS

As the diagram presents, the PCChair role is bound with the PCChairBind-

ing to the collaboration and this binding specifies a minimum cardinality

of 1 and a maximum cardinality of −1 (no upper bound). Furthermore,

the PCChairBinding is linked to the RequesterBinding, which specifies the

cardinalities, [1,1], to be used inside the RequestReview protocol for the

Requester actor. Likewise, the PCMember role is linked with the with the

ReviewerBinding through the PCMemberBinding, and the corresponding car-

dinalities at each stage are specified.

These bindings will allow that eventual runtime instances of this orga-

nizations may be assigned dynamically to the Actors in the protocol, while

still respecting the cardinalities specified.

Although it is not explicit in the graphical representation, the Collab-

oration also contains the Messages. Messages are the domain dependent

construct that corresponds to an ACLMessage, the domain independent con-

cepts used to models protocols. Since the Messages have a direct link to their

corresponding ACLMessage, the collection of messages in the Collaboration

provides the necessary information to instantiate the protocol specification

for the application domain.

Figure 5.20: The RequestReview protocol

As mentioned before, the exchange of messages is modeled as a protocol.

Figure 5.20 presents the protocol that models the RequestReview message ex-

change. In this example, the Requester sends a RequestReview ACL message

5.10. CASE STUDY: THE CONFERENCE MANAGEMENT SYSTEM77

to each Reviewer. The Reviewer must decide whether he is willing to provide

a review. Reviewers that accept to review the paper send the correspond-

ing AcceptToReview message and therefore are considered WillingReviewers.

Correspondingly, UnwillingReviewers represents the users that refuse to re-

view the paper and send the corresponding RefuseToReview ACL message.

After the acceptance to produce a review, the Requester will be expecting

a DeliverReview message from each reviewer before the deadline specified in

ReviewDeadline.

In this example, an explicit link between the protocol and goal models

is presented. In the state that represents the sending action of the Deliver-

Review message by the WillingReviewer, the abstract goal ReviewPapers is

used to represent the state’s postcondition. This direct connection will enable

to better integrate the behaviors that handle communication—generated in

accordance to the specified protocols—and other behaviors that handle the

goals specified in the goal model in the specification of the behavior model

that will follow.

The use of the abstract goals as postconditions also allows to keep the

protocol domain independent. It should be possible to reuse a protocol speci-

fication in various situations, where only the content of the messages specified

would be domain dependent. By using abstract goals, we preserve this prin-

ciple, while the goal model and its links between abstract and concrete goals

provide the domain information needed to execute the protocol.

Other approaches [PTW07, MNP+07, DeL07] use variations of UML and

AgentUML diagrams to represent message exchange and interactions for the

CMS scenario. While these are well known within the MAS community,

we consider that the PIM4Agents protocol and collaboration views provides

advantages over these for dealing with situations such as dealing with parti-

tioning the entities taking part in the interaction (subactors) or the explicit

mapping of DomainRoles to protocol’s Actors (Actor- and RoleBindings).

5.10.7 The CMS Behavior Model

The Behavior model in the CMS scenario is started by the ManagePaperSub-

missions plan executed by the PC organization playing the ProgramCommit-

tee role. This plan is triggered by a corresponding ManagePaperSubmissions

goal event, represented by a knowledge labeled trigger, depicted in Figure

5.21. We take this plan to exemplify he modeling the goal delegation behav-

78 CHAPTER 5. PIM4AGENTS

ior, additional behavior examples will be provided in Section 9.

Following the concrete goal decomposition presented in Figure 5.14, a

chain of goal delegations is performed following the sequence prescribed in

the decomposition. For every goal delegation, there is an internal task that

prepares the corresponding goal event (as a task output), before it is dele-

gated. This preparation step may also include retrieving required data (as

task input) from the previous goal delegation.

The first delegated goal is the GetPapers goal. After the goal is achieved,

its event contains the list of submitted papers. This list is then passed along

to the AssignPapers goal, which is delegated and, if achieved, provides a

mapping between the PCMembers and the papers to be reviewed.

This mapping is used in a Loop structured activity to iterate through the

PCMembers and delegate the corresponding ReviewPaper goal events. Once

all reviews are in or the achieve timeout expires, the list of reviews is passed

along to the SelectPapers goal. When the goal is achieved, the papers are

split into lists of accepted and reject papers, which are then delegated to

the InformAuthors goal. Once the authors have been informed, the accepted

papers are sent to the publishers for publication by the delegation of the

PrintProceedings goal.

As with the interactions, the most competing AOSE approaches use UML-

like diagrams to model the activities, which allows an easy comprehension

by new users, but can fall short in situations such as dealing with dynamic

number of execution traces (how many trace instances follow which execution

path) which is usually closely linked to the partitioning of interaction Actors

(subactors).

5.10.8 The CMS Deployment Model

The final view on the MAS system modeling process represents the system

initial configuration or deployment. Since a MAS is a dynamic system, this

merely represents how the system will be configured when it is started.

Following our scenario we have one instance of the ConferenceManage-

mentSystem organization named AAMAS. AAMAS has a series of agents or

organizations playing the required roles: Authors (Author1 to AuthorN), a

Publisher (Springer) and a ProgrammCommittee (PC). The PC organization

is correspondingly composed by a PCChair (Jörg) and several PCMembers

(Klaus, Stefan, Esteban, and Cristián).

5.10. CASE STUDY: THE CONFERENCE MANAGEMENT SYSTEM79

Figure 5.21: The ManagePaperSubmissions plan

80 CHAPTER 5. PIM4AGENTS

Figure 5.22: The CMS deployment view

The Membership links between the instances model the role under which

every agent/organization instance is bound to the organization of which it

is a member. Each Membership is linked to a DomainRoleBindings, such as

the ones from the Interaction View (see Figure 5.9).

None of the other approaches that modeled the CMS scenario present

a specific initialization view for the CMS scenario. Although this can be

specified with various degrees of difficulty—depending on the agent platform

used—at the code level, having a PIM-level view of the system initialization

provides a clear understanding of the complexity and size of the running

system.

5.11 Summary

In order to model a MAS, various dimensions of the scenario must be modeled

and brought together. In the PIM4Agents, we have addressed each of these

dimensions in a separate viewpoint.

Each viewpoint comprehends a subset of concepts from the PIM4Agents

5.11. SUMMARY 81

metamodel and a corresponding diagram to ease the creation of the models

and their presentation to colleagues for discussion as part of model develop-

ment.

In this chapter, we have presented the PIM layer of our model-driven

approach. The metamodel and its graphical concrete notation enable the

creation of valid models that will be used in later of the model-driven process.

The following chapters will present one of the PSMs we address along with

the transformation between PIM and PSM.

Chapter 6

Organizations and Roles in

JADE: JadeOrgs

82

6.1. FORMAL SPECIFICATION OF ORGANIZATIONS IN JADE 83

Since the overall computation in Multiagent Systems (MAS) is obtained

by the combination of the autonomous computation of every agent in the

system and the communication among them [SF03], the coordination and

communication among agents is essential. However a flat structure where

every agent communicates with every other agent is usually too expensive

and inefficient, designing agents to act within an organizational structure

can provide additional encapsulation, thus simplifying representation and

design. Modularization, code reuse and incremental deployment are further

advantages. However, these coordination or organizational structures are not

always explicitly supported by agent platforms, even when some agent meta-

models and methodologies do present them. We consider that organizations

and their corresponding role structure can reduce interoperability problems

since they help specify the scope of interactions within and outside the orga-

nization. Additionally, the evaluation of organization members against a set

of requirements, namely role descriptions, reduces the possibility that unfit

parties/agents can join and also potentially enables them to look for ways

to comply with these requirements in order to take part of the interactions

inside the organization.

This chapter presents JadeOrgs, an organization-oriented extension for

the JADE agent platform [BPR99]. First, we introduce a formal specification

of our approach to organizations in JADE. Second, we present the JadeOrgs

metamodel, along with the runtime library that provides the implementation

of the agent behaviors and classes introduced in the metamodel. Finally, we

compare JadeOrgs against other AOSE metamodels and against a competing

implementational approach of runtime organizations in JADE.

6.1 Formal Specification of Organizations in

JADE

Given the social capabilities and the finite resources that agents possess, it is

apparent that they need to organize themselves in order to coordinate their

actions and improve their utility. In the literature, we find different ways in

which agents organize themselves. These societies of agents are denominated

as groups, teams, coalitions, or, simply, organizations. At the same time,

agent societies must describe the roles, norms and goals of the society instead

of just individual agent states [DD01].

84 CHAPTER 6. JADEORGS

In this thesis, we propose a general model-driven framework in which

organizational concepts are represented at the different abstraction levels

from the PIM to the PSM to the running code. Most of the works presented

in Chapter 3 introduce organizational concepts, such as Organization or Role,

at the modeling level, but these are internalized in the agent implementation

and, therefore, ‘disappear’ in the running code. We argue that preserving

these concepts at runtime can allow the agent to reason about the roles it

can perform and communication can be simplified by having a single point

of contact when communication with an organization is desired.

In this section, we present the formal specification of the abstractions

that we will use to represent organizational concepts at the PSM and run-

time levels. The specification is presented at a high level of abstraction

and, consequently, additional details of some of the operations as well as

the specialization of some of the types presented will be introduced in their

corresponding representations in JadeOrgs. The specification is described in

Object-Z [Smi00, DR00], an extension of the Z language [Spi89] to facilitate

specification in an object-oriented style.

6.1.1 Basic types

We must first introduce some basic types used by the concepts that we will

use:

LITERAL is any expression that can be assigned to a variable or condition,

NAME is the identifier of a concept,

PLANBODY represents the description of the steps executed inside a plan,

PERFORMATIVE represents the speech act conveyed by a message,

TYPE represents the type of a field or variable such as primitive types and

classes, and

ONTOLOGY is the formal representation of the knowledge the agents pos-

sess. It consists of the set of objects and the relations between them

that are present in the application domain.

6.1. FORMAL SPECIFICATION OF ORGANIZATIONS IN JADE 85

Condition

expression : LITERAL

Evaluate

result! : B

Schema 1: Class schema for Condition

6.1.2 Condition

Now we introduce the Condition in Schema 1 .

Definition 6.1.1 A condition is defined as a singleton C = 〈expression〉
where expression represents the description of a state of affairs in a given

language.

Conditions can be evaluated in order to obtain their truth value, this

operation is represented by the operation Evaluate. The Condition provides

us with the foundation in order to describe Goals.

6.1.3 Goal

A goal is a mental attitude representing preferred progressions of a particular

multiagent system that the agent has chosen to bring about [vRDW08]. In

this specification, we only describe a simple, abstract type of goal, while in

JadeOrgs and PIM4Agents we refer to various concrete goal types (perform,

achieve, query, and maintain). Presented in Schema 2, the Goal also defines

an operation that indicates whether the state of affairs prescribed by the goal

has been reached by evaluating the condition that describes its target state.

Definition 6.1.2 A goal is a pair G = 〈name, targetStateDescription〉,
where name identifies the goal and targetStateDescription represents a desired

state of affairs to be reached or maintained.

86 CHAPTER 6. JADEORGS

Goal

name : NAME

targetStateDescription : Condition

isAchieved =̂ targetStateDescription.Evaluate

Schema 2: Class schema for Goal

6.1.4 Variable

In similar fashion to programming languages, in order to represent local data

we define Variables (cf. Schema 3).

Definition 6.1.3 A variable is given as a triple V = 〈name, type,value〉
where name identifies the variable, type indicates its type, and value describes

the variables initial value.

Variable

name : NAME

type : TYPE

value : LITERAL

Schema 3: Class schema for Variable

Variables also contain all the locally stored information that will be used

in the plans that represent the agent’s behavior and they are also used to

represent the agent’s knowledge.

6.1.5 Message

Messages represent the communication exchanges among the agents and they

are modeled as presented in Schema 4.

Definition 6.1.4 A message is given as a 4-tuple M = 〈sender ,receivers,

ontology ,content ,performative〉 where:

6.1. FORMAL SPECIFICATION OF ORGANIZATIONS IN JADE 87

Message

sender : NAME

receivers : PNAME

ontology : Ontology

content : LITERAL

performative : PERFORMATIVE

INIT

receivers = ∅

Schema 4: Class schema for Message

sender represents the identity of the agent that sends the message,

receivers lists the agents that should receive the message,

ontology indicates the ontology that contains the concept represented in the

content expression,

content represents the payload of the message, and

performative indicates the communicative action intended by the sender

agent.

There are no additional communication structures provided given that

in JADE, and respectively JadeOrgs, there is no representation of proto-

col structures as such. Instead they are only projected into behaviors that

implement such protocols.

6.1.6 Plan

Agent behavior is what enables the agent to take action and bring about the

changes in its environment in accordance to its intentions and purpose. One

way to model agent behavior is through the concept of a Plan. Plans provide

a way to react or take action in a given situation. We use this notion of plan

as an abstraction for the complex behavior hierarchy present in JADE (cf.

6.2.3). We model this abstract concept of Plan in Schema 5.

88 CHAPTER 6. JADEORGS

Plan

name : NAME

achieves : PGoal

precondition : Condition c©
localVariables : PVariable c©
planBody : PLANBODY

Schema 5: Class schema for Plan

Definition 6.1.5 A plan is given as a 5-tuple P = 〈name,achieves,

precondition, localVariables,planBody〉 where:

name identifies the plan,

achieves lists the goals that may be achieved by the plan or the goal events

to which the agent can react by executing this plan,

precondition indicates an expression that must evaluate to true in order

for the plan to be executed,

localVariables represent the local data used in the execution of the plan,

and

planBody represents the process that is executed in this plan.

The Plan is represented in JadeOrgs as an FSMBehaviour (cf. Section

6.2.3) whose states are derived from the process steps in planBody. Each

process activity is implemented in a behavior and the state transitions are

determined depending on the connections and dependencies between the dif-

ferent activities.

6.1.7 Role

Just as in the theater where an actor is assigned to play a part or role, in

a MAS, the actor is an agent. Roles specify the expectation/requirement of

behavior and other features for agents. They provide both major building

blocks for agent social systems and the requirements by which agents interact.

6.1. FORMAL SPECIFICATION OF ORGANIZATIONS IN JADE 89

Each agent is linked to other agents by the roles it plays by virtue of the

system’s functional requirements—which are based on the expectations that

the system has of the agent. To specify how this these requirements are

specified, we use the concept of a Role presented in Schema 6.

Role

name : NAME

responsibilities : PGoal

providedBehaviors : PPlan

conflictsWith : PRole

ontologies : POntology

additionalQualifications : PCondition

IsQualified

agent? : Agent

qualified ! : B

(agent?.goals ⊆ responsibilities)

(agent?.ontologies ⊆ ontologies)

∀r : ↓Role • r ∈ agent?.plays ∧ r 6∈ conflictsWith

∀c : Condition • c ∈ additionalQualifications ∧ c.Evaluate

qualified ! = true

Schema 6: Class schema for Role

Definition 6.1.6 A role is given as a 6-tuple M = 〈name,responsibilities,

providedBehaviors,conflictsWith,ontologies,additionalQualifications〉 where:

name identifies the role,

responsibilities represent the goals that the agent commits to achieve for

the organization when playing this role,

providedBehaviors lists the set of behaviors that the agent gains when

playing this role,

conflictsWith specifies the other roles that conflict with this role,

90 CHAPTER 6. JADEORGS

ontologies identifies the ontologies that agents that play this role must know,

and

additionalQualifications specify additional constraints that the role player

must fulfill in other to be allowed to play this role.

The Role Schema also specifies the IsQualified operation. This operation

returns the value“true”only if all responsibilities can be fulfilled by the agent,

all required ontologies are known by the agent, all roles the agent plays do not

conflict with the given role and that any additional qualifications specified

are fulfilled. These additional qualifications are encoded into the behaviors

that handle the Establishment protocol (cf. Section 6.3.2).

6.1.8 Agent

The Agent represents the core of the MAS. As reviewed in Section 2.1, it is

the autonomous entity that is able to react to conditions in its environment,

pursue its own goals and communicate with other agents in order to achieve

tasks. Therefore, we define the concept of an Agent and specify its properties

in the context of multiagent organizations in Schema 7.

Definition 6.1.7 An agent is given as a 9-tuple M = 〈name,plays,behaviors,

memberOf ,goals,knowledgemessageQueue,ontologies〉 where:

name identifies the agent,

canPlay specifies the roles that the agent type can take,

plays lists the set of role that the agent has committed to play,

memberOf represents the way the agent is associated with an organization

and under what role,

goals presents the goals that the agent pursues

knowledge provides the data that represents the agent’s beliefs,

messageQueue contains the messages that have been sent to this agent, and

ontologies specify the ontologies known by the agent.

6.1. FORMAL SPECIFICATION OF ORGANIZATIONS IN JADE 91

Agent

name : NAME

canPlay ,plays : PRole

behaviors : PPlan

memberOf : Organization↔ Role

goals : PGoal

knowledge : PVariable c©
messageQueue : seqMessage

ontologies : POntology

∀x ,y : ↓Agent • x .name = y .name⇒ x = y [i1]

plays = ranmemberOf [i2]

plays ⊆ canPlay [i3]

∀v : Variable • v ∈ knowledge ∧ [i4]

∃o : Ontology • o ∈ ontologies ∧ v .type ∈ o

INIT

canPlay = ∅
plays = ∅
behaviors = ∅
goals = ∅
messageQueue = 〈〉

StartPlayingRole

∆(memberOf ,behaviors,plays)

organization? : Organization

desiredRole? : Role

success! : B

memberOf ′ = memberOf ∪
{(organization?,desiredRole?)}

behaviors ′ = behaviors∪
desiredRole?.providedBehaviors

plays ′ = plays ∪desiredRole?
success = true

StopPlayingRole

∆(memberOf ,plays)

organization? : Organization

role? : Role

success! : B

memberOf ′ = memberOf \
{(organization?,role?)}

plays ′ = plays \ role?
success = true

ReceiveMessage

∆(messageQueue)

message? : Message

self .name ∈message?.receivers

messageQueue ′ = messageQueue
a〈message?〉

SendMessage

receivers? : PNAME

content? : LITERAL

message! : Message

message!.sender = self .name

message!.receivers = receivers?
message!.content = content?

Schema 7: Class schema for Agent

92 CHAPTER 6. JADEORGS

Also in Schema 7, a series of invariants are defined in order to preserve

the consistency of the agent properties:

i1 makes agent names unique,

i2 ensures that the agent can only play roles inside a given organization,

i3 guarantees that the agent can only play roles that are contained in the

canPlay relation, and

i4 ensures that the type of all knowledge variables is described in one of the

known ontologies.

In addition, a series of operations are defined for the agent. Two of these

operations specify the communication. ReceiveMessage presents how received

messages are included into the agent’s messageQueue, while SendMessage

produces a message to be delivered by the AgentPlatform.

The activation of the roles from the agent’s perspective is achieved with

the StartPlayingRole operation. It updates the memberOf relation, adds pro-

vided behaviors to agent’s behavior set and also activates the role by adding

it to the plays relation. In the case that an agent leaves the organization and

stops playing the role, the StopPlayingRole is executed. the memberOf and

plays relations are updated accordingly. The behaviors that may have been

added in StartPlayingRole cannot be taken away from the agent, since these

behaviors represent the process that the agent has learned from playing this

role. The counterpart operations of this organization joining/leaving process

will be presented in the next subsection.

6.1.9 Organization

As agents work together, they establish groupings that are more stable and

structured than just a random set of agents interacting. We represent these

structured groupings as Organizations. The Organization defines what agents

are necessary to achieve certain organizational goals and under what condi-

tions they may do it. In our approach, the Organization is also an Agent in

its own right. It has it own (organizational) goals and it may posses it own

behavior to coordinate with the organization members and/or orchestrate

organizational processes. Schema 8 presents the abstract specification for

the Organization concept and its definition is presented in Definition 6.1.8.

6.1. FORMAL SPECIFICATION OF ORGANIZATIONS IN JADE 93

Organization

Agent

requiredRoles : PRole

membership : ↓Agent ↔ Role

maxCardinality ,minCardinality : Role 7→ N

requiredRoles = ranmembership [i1]

requiredRoles = dommaxCardinality [i2]

requiredRoles = domminCardinality [i3]

∀r : Role • r ∈ requiredRoles ∧minCardinality(r)≤ [i4]

#{a : ↓Agent | (a,r) ∈membership • (a,r)} ≤
maxCardinality(r)

AddMembership

∆(membership)

agent? : ↓Agent

desiredRole? : Role

desiredRole?.IsQualified

membership ′ = membership ∪{(candidate?,desiredRole?)}

RemoveMembership

∆(membership)

member? : ↓Agent

role? : Role

membership ′ = membership \{(member?,role?)}

Schema 8: Class schema for Organization

94 CHAPTER 6. JADEORGS

Definition 6.1.8 An organization is given as a 14-tuple M = 〈name,plays,

behaviors,memberOf ,goals,knowledgemessageQueue,ontologies,requiredRoles,

membership,maxCardinality ,minCardinality〉 where:

name identifies the agent,

canPlay specifies the roles that the organization type can take,

plays lists the set of role that the organization has committed to play,

memberOf represents the way this organization is associated with another

organization and under what role,

goals presents the goals that the organization pursues

knowledge provides the data that represents the organization’s knowledge,

messageQueue contains the messages that have been sent to this organiza-

tion,

ontologies specify the ontologies known by the organization,

requiredRoles specifies with roles the organization needs to operate,

membership relates the members of the organizations with the roles that

they play within it,

maxCardinality specifies the maximum number of agents that can play a

given role,

minCardinality specifies the minimum number of agents that can play a

given role,

Just as with Agents, we define invariants for the additional properties of

an Organization:

i1 guarantees that the range of the membership relation is equal to the set

of requiredRoles ,

i2 ensures all roles in requiredRoles have a corresponding value in the max-

Cardinality relation,

6.1. FORMAL SPECIFICATION OF ORGANIZATIONS IN JADE 95

i3 ensures all roles in requiredRoles have a corresponding value in the min-

Cardinality relation, and

i4 verifies the number of agents that play a given role inside the orga-

nization is between the values specified in the maxCardinality and

minCaridinality functions.

The basic operations that the Organization must perform involve the ad-

dition and removal of members. AddMembership adds a new 〈Agent ,Role〉
pair to the membership relation only if the role’s isQualified operation eval-

uates to true. This implies that the agent fulfills the basic requirements

established in the role. Correspondingly, RemoveMembership removes the

specified 〈Agent ,Role〉 pair from the membership relation.

Even though it is not directly specified, there is an implied communica-

tion between the Organization and the member Agent which provokes the

invocation of the corresponding operations for membership and memberOf

respectively. These communication protocols will be further detailed in Sec-

tion 6.3.

6.1.10 AgentPlatform

In order to support the execution of a MAS, a series of basic services must

be provided for the agents. These services can include storage, execution

control, search facilities and, of course, message passing/delivery. Because

communication is such a critical aspect, we have decided to focus on the

message delivery aspect of the AgentPlatform and specify it as described in

Definition 6.1.9 and Schema 9.

AgentPlatform

agentsAndOrgs : P↓Agent c©

DeliverMessage =̂ [sender : agentsAndOrgs] •
(sender .SendMessage ‖
(∧receiver : agentsAndOrgs • receiver .ReceiveMessage))

Schema 9: Class schema for AgentPlatform

96 CHAPTER 6. JADEORGS

Definition 6.1.9 An AgentPlatform is defined as a singleton C = 〈agentsAndOrgs〉
where agentsAndOrgs represents the set of Agents and Organizations that

populate the platform at a given time.

The message delivery service of the AgentPlatform is specified in the

DeliverMessage operation. This operation combines the SendMessage oper-

ation of the sender Agent with the ReceiveMessage operation of every receiver

Agent respectively in the given communication.

With this formal view of the concepts involved in the execution of agent

organizations, we introduce the JadeOrgs metamodel in the next section.

The metamodel provides a further detailed representation of the abstract

concepts presented in this section.

6.2 The JadeOrgs metamodel

The JadeOrgs metamodel is organized in packages and each of the packages

represents a viewpoint of the MAS modeled. These viewpoints are:

1. Project view contains the main building blocks of a MAS and thus

includes concepts like Agent, Behavior, Role, or Environment.

2. Core view describes single autonomous entities, the roles they play

within the MAS and the organizations they build.

3. Behavioral view presents the variety of behaviours available to agents

and organizations.

4. Process view describes how plans are composed by complex control

structures and simple atomic tasks like sending a message and how

information flows between those constructs.

5. Ontology view is a formal representation of the knowledge the agents

possess. It consists of a set of concepts within a domain and the rela-

tionships between those concepts.

6. Deployment view shows how the agent and organization instances are

initially configured in the system.

6.2. THE JADEORGS METAMODEL 97

6.2.1 The JadeOrgs Project View

The Project View is the most general of the metamodel viewpoints. All the

components of the MAS, namely the ProjectElements, are contained by the

Project concept. As depicted in Figure 6.1, the basic component classes from

all the other viewpoints are specializations of ProjectElement.

Figure 6.1: View of the Project package of the JadeOrgs metamodel

6.2.2 The JadeOrgs Core View

The definition of Organization that we propose in JADE is the Agentified

Group from [ONL04]: a group of agents that, as a unit, has the same fea-

tures and interaction abilities as a single agent. For example, just as an

agent, it can send and receive messages directly and take on roles. For this

purpose, an Organization is a specialization of Agent. Therefore, the Jade-

Orgs metamodel is centered around three concepts/classes: JadeOrgsAgent,

Organization and Role (Figure 6.2).

The JadeOrgsAgent is a extension of JADE’s Agent class that provides the

data structures and methods necessary to manage the agent’s membership

information in whatever organizations it has joined, as well the list possible

98 CHAPTER 6. JADEORGS

Figure 6.2: The Core of the JadeOrgs metamodel

roles the JadeOrgsAgent can play. In the first implementation of JadeOrgs

[MMLSF08], we had intended to use the Agent class of JADE directly and

just provide some auxiliary classes to manage this membership data. The

intention being to allow existing system implementations to add this func-

tionality without changing their agent types hierarchy. However, it proved

most practical to just provide this functionality as a specialization of Agent.

The Organization class contains the information about its members, as

well as the Roles under which the membership relation is stated. The infor-

mation about the required roles is represented by the association class Role-

Info, which provides the cardinality information with respect to the amount

of role filler agents required. The Organization class extends the Agent class,

given that we want it to be able to perform tasks and communicate with its

members and other agents. As such, the Organization is itself an Agent and

possesses its own set of behaviors. Additionally, Organization also provides

the functionality of registration and deregistration of members as the Orga-

nization changes over time. These tasks are performed using communication

protocols and will be described in more detail further on.

6.2. THE JADEORGS METAMODEL 99

The Role class is implemented as an Ontology Concept, part of the Or-

ganizationOntology. Among the properties of the Role class, we find respon-

sibilities, required and provided behaviors, and required ontologies. Each

of these properties allow different requirements to be checked and depend-

ing on the evaluation strategy desired only some of them may be specified.

The responsibilities represent the goals that the agent should achieve when

performing the Role. In the case that goals are not used to model the respon-

sibilities, the list of required behaviors can be used to verify that the agent

is actually capable of performing the Role’s tasks. The provided behaviors

allow the Agent to acquire additional Behaviors required to fulfill the role

by adding them to its known behaviors. In a similar fashion, the required

ontologies allow an evaluation of the knowledge available to the agent.

6.2.3 The JadeOrgs Behavioral View

The Behaviour class1, previously shown in Figure 6.2, represents the root

element of the Behavior hierarchy. The behaviors are divided in two groups:

simple and complex behaviors. The simple ones perform smaller, atomic

tasks, while the complex behaviors allow the nesting of behaviors and per-

mit different ways of executing them. In Figure 6.3, a partial view of this

behavior hierarchy is presented. The behaviors marked with a darker color

are provided by JADE, while the lighter color ones are part of the JadeOrgs

library.

Under the group of complex behaviors, the FSMBehaviour and its spe-

cializations are very relevant for our purposes. The FSMBehaviour is an

implementation of a Finite State Machine (FSM). In this FSM, the states

and actions are represented by behaviors and the transition function between

the states is represented by a list of Transition objects, as illustrated in Fig-

ure 6.4. The triggering event for the transition is obtained represented by

an integer value and the transition is fired when the source behavior returns

the same value on its onEnd() method upon completion of the execution of

the action. The FSMBehaviour enables the modeling of complex behaviours

such as the implementation of protocols. JADE already takes advantage

of this implementing the Initiator-Responder pattern for FIPA interaction

protocols using FSMBehaviours. For example, the AchieveREInitiator and

1The names of the behavior concepts in the metamodel use the UK spelling of the word

behaviour, since that is the convention in JADE.

100 CHAPTER 6. JADEORGS

Figure 6.3: Partial view of the Behavior class hierarchy

6.2. THE JADEORGS METAMODEL 101

AchieveREResponder are provided to implement all the FIPA-Request-like

interaction protocols defined by FIPA [Fou02d] in which the initiator sends a

single message to a responder in order to verify if the rational effect (RE) of

the communicative act has been achieved or not. As shown in the Figure 6.4,

we have extended some of these behaviors for the organization establishment

and task delegation processes, presented in Section 6.3.

Figure 6.4: Representation of the FSMBehaviour

6.2.4 The JadeOrgs Process View

In order to model the processes that occur inside behaviors and methods,

a basic set of constructs was chosen for the Process package. The set of

constructs chosen is small given that it was not our intention at this time

to reproduce the structure of the complete target language, Java, but still

provide some process modeling capabilities.

Shown in Figure 6.5, the Process package is composed by a set of state-

ments and a CodeBlock concept. The CodeBlock is a sequence of statements

to be executed in the block. The statements available in this view are:

Decision: a basic if-then-else statement. When the condition evaluates to

true, the mandatory then CodeBlock is executed; otherwise the optional

else CodeBlock executes.

WhileLoop: a basic loop statement. While the condition holds, the code-

Block attribute is executed.

102 CHAPTER 6. JADEORGS

Figure 6.5: The JadeOrgs Process package

Wait: a statement that causes the process to wait for a fixed amount of

time.

AddBehavior: a statement which adds a given behavior to the agent’s

scheduler.

AddTransition: adds a transition object to a given FSMBehaviour.

UserCodeStatement: an auxilary construct that is serialized as a “to do”

comment in the target code to indicate that the programmer needs to

provide further implementation.

JavaCode: a block of Java code that is serialized “as is” when the model is

serialized in the target code.

6.2.5 The JadeOrgs Ontology View

The JadeOrgs Ontology View enables the specification of the language used

by the agents in the content of the ACLMessages and the representation of its

internal beliefs. In addition, primitive and class datatypes can be specified.

Figure 6.6 presents an overview of the concepts related to this viewpoint.

6.2. THE JADEORGS METAMODEL 103

Figure 6.6: The JadeOrgs Ontology

104 CHAPTER 6. JADEORGS

An Ontology in JadeOrgs is composed by Concepts and Predicates, and

it describes the knowledge that the agent can posses about a given domain.

Concepts are entities with complex structures that are defined in terms of

slots or attributes. Predicates are expressions that say something about the

status of the world and can have a true or false value. AgentActions are

concepts that represent activities that the agent may perform or that an

agent may request others to perform.

Concepts are also a specialization of the abstract concept ClassBase. The

ClassBase classifies entities that possess a set of methods and attributes with

their corresponding parameters and types. The ClassBase structure also

enables the introduction of external java classes into the agents knowledge

through the use of the JavaClass concept. Java Interfaces and the Factory

design pattern are also directly supported in the metamodel.

In order to support groups of items, the Collection concept is used. A

Collection is a list of items of a given contentType. In order to grant indexed

access to a Collection, we introduced the Map concept. It denotes a list of

content items indexed by keyType.

As previously mentioned, the items modeled in this view build up the

formal representation of the knowledge the agents possess. As such, they also

represent the content of the messages to be exchanged among the agents.

It is also important that the concepts used as message content follow the

semantics of ACL speech acts [Fou02b]. For instance, concepts that will be

used as content for a message using the request performative should be of

the AgentAction type.

Following the semantics of request , a Goal is introduced as a specializa-

tion of AgentAction. Goals are declared through the use of conditions that

describe the desired state of affairs that the goal represents. Following the

goal framework presented in [vRDW08], we specialize goals into four types

as depicted in Figure 6.7:

PerformGoal indicates a procedural goal to execute a given action,

AchieveGoal denotes a declarative goal in which a desired state of affairs

that should be reached,

QueryGoal describes a declarative goal that pursues a desired state of af-

fairs in which a piece of information is available,

6.2. THE JADEORGS METAMODEL 105

MaintenanceGoal restricts the set of valid states of affairs. In other words,

if the maintenance condition is broken, the MaintenanceGoal triggers

a behavior or behaviors that should reestablish the broken condition.

Figure 6.7: The JadeOrgs Goals

In [vRDW08], the authors argue that these type of goals are “individual

goals” and not organizational goals. Nevertheless, we take this goal hier-

archy and apply it also to organizational goals in order to have the same

execution semantics once the “achieve goal” request is received by a member

and, respecting its autonomy, it accepts to achieve this goal for the organiza-

tion. Since the goals that can be requested to be achieved by an organization

member are specified in the role’s responsibilities and they should match the

member’s own goals, it is assumed the member should be able to achieve the

requested goal.

It is not within the scope of this work to provide JADE with a full goal-

driven execution. Therefore we only implement Goals as means to represent

a desired action in a declarative way. Frameworks such as JADEX [PBL05]

already provide a way to integrate BDI goal execution with JADE.

6.2.6 The JadeOrgs Deployment View

In addition to the definition of the agents and organizational types, it is

necessary to represent how instances of these will be related to one another

when the MAS is initialized. We therefore introduced the Deployment View,

depicted in Figure 6.8, to allow the modeling of an organization composition

at design time.

The AID class represents JADE’s agent identifier. We extend the AID

class into 2 types: AgentInstance to represent regular JADE agent instances

106 CHAPTER 6. JADEORGS

Figure 6.8: The Deployment View in JadeOrgs

and JadeOrgsInstance to represent instances of JadeOrgsAgents and Organi-

zations. In this view, MembershipInfo is the association class that binds the

types together to express that a JadeOrgsInstance is member of an Organi-

zation under a given Role.

6.3 JadeOrgs protocols and interactions

As part of the JadeOrgs run time querying, a set of protocols to support the

organization’s activities have been implemented into JADE agent behaviors.

These protocols are described in the following.

6.3.1 Publishing to the Directory Facilitator

The structure of the Organization can be established at design time or at run

time. For those which are setup at design time, the initialization of the orga-

nizational structure is already set; however, for those that are not determined

until run time, a set of role fillers has to be selected. JADE already provides

a directory service called the Directory Facilitator (DF). Through the DF,

an agent/organization can search for other agents/organizations that possess

a given set of features, such as the protocols supported or the ontologies it

can access.

6.3. JADEORGS PROTOCOLS AND INTERACTIONS 107

Figure 6.9: Agent Description in JADE

In order to take advantage of the DF Service, we use the DFAgentDe-

scription class, an agent descriptor which is part of JADE’s FIPAAgent-

ManagementOntology. The structure of the DFAgentDescription is depicted

in Figure 6.9. In order to take advantage of the directory infrastructure

that JADE provides, we describe the roles as services using JADE’s Ser-

viceDescription. These “role services” are typed as either requiredRole and

playedRole. Additional role attributes that do not match directly with at-

tributes of the ServiceDescription, such as required behaviors, are mapped

to Property elements.

6.3.2 Establishment of the Organization

Once the description of an Organization and members is published to the DF,

the establishment of the organization can take place at run time. As a first

step, a search for suitable agents/organizations is performed by quering the

DF Service. When the list of prospective DFOrganizationMemberDescrip-

tions or DFOrganizationDescriptions is retrieved, the agent/organization

initiates the RoleFillerRequest protocol with the organization it wants to

join. The protocol is implemented by the RoleFillerRequestInitiator and

RoleFillerRequestResponder behaviors. As described in Figure 6.10, the or-

ganization takes the Responder role and a RoleRequest object is sent by the

Requester as content of the ACL request message. Once this request is re-

ceived by the Responder, an ACL refuse message is produced if the request

108 CHAPTER 6. JADEORGS

is denied, or an ACL inform message is produced if the request has been

accepted. As can be expected, the decision process for accepting/denying

these requests is left to other internal behaviors of the agent/organization.

An analogous protocol can be applied for the organization that wants to

recruit a new member.

Figure 6.10: The RoleFillerRequest protocol

Depending on the design policies, the decision process may include, for

example, a verification of the features of an agent with respect to the require-

ments specified in the Role. The Role description allows various evaluation

options that can be extended and customized:

Type compatibility: the canPlay association between JadeOrgsAgent and

Role permits a simple check through the type/class definition,

Responsibilities: the goals association between JadeOrgsAgent and Goal

allows to check if the agent’s interests fit the responsibilities in the role.

Required Behaviors: if goals are not used to represent responsibilities, the

set of required behaviors can be used to ensure that the agent “knows

how to perform a given task”, and

Additional Qualifications: additional conditions can be checked by sim-

ply extending the provided behavior classes.

6.3. JADEORGS PROTOCOLS AND INTERACTIONS 109

Figure 6.11: The TaskRequest protocol

6.3.3 Task Request and Goal Achieve

In order to give the members of the organization the right to manage their

own work load, the distribution of tasks is performed through the simple

protocol presented in Figure 6.11. This protocol is a simplified version of the

FIPA Request Protocol [Fou02d] which provides the RequestResponder with

the option of refusing in case it is already busy.

The protocol is implemented through the TaskRequestInitiator and TaskRe-

110 CHAPTER 6. JADEORGS

questResponder behaviors previously shown in Figure 6.3. As part of the

TaskRequestInitiator behavior, the behavior must implement a mechanism

for choosing the desired role fillers for the task out of the set of available

members under the role that should perform the task. For the coding of the

mechanism, an interface called RoleFillerChooser has been provided.

6.4 Small Example: Product Sale with Loan

As a concrete example on how Organizations can help to define the interac-

tion context, we present a Product Sale scenario. The basic interaction in

this scenario takes place between a Buyer and a Seller and it is depicted in

Figure 6.12. The interaction is initiated by the Buyer making a query about

a certain product. If the product is not in stock, the Seller sends an OutOf-

Stock message and the interaction terminates. If the product is in stock, the

Seller replies with the product price. The Buyer receives the price and con-

siders if it has enough money to pay for it. If it does not, the Buyer usually

cancels the transaction. If it does have the money, it sends the payment to

the Seller and, correspondingly, the Seller ships the product.

We can extend this behavior by saying that if the Buyer does not have

enough money, it has to find the means to get the necessary money. One

solution, would be to get a loan from a Bank. This situation could be mod-

eled in JadeOrgs with the organization, agent and roles types as depicted in

Figure 6.13. On the right hand side of the image, the Store organization is

the one that contains the ProductSale interaction previously described. It

has two roles StoreCustomer and Cashier, and they require the behaviors

that implement the Buyer and Seller described in the protocol respectively.

The Cashier role can be played by the StoreClerk agent type and the Store-

Customer role can be played by the MyAgent agent type.

On the left hand side of Figure 6.13, we find the Bank organization, with

its two roles: BankRepresentative and BankCustomer. The BankRepresen-

tative role can be played by agents of the BankClerk type and requires the

LoanApplicationLoaner behavior. Correspondingly, the BankCustomer role

requires the LoanApplicationCustomer behavior and can be played by the

MyAgent agent type. As can be deduced from the required behaviors, one of

the possible interactions inside the Bank organization is the LoanApplication

protocol (Figure 6.14). In this protocol, a Customer sends a loan applica-

tion to Loaner; the Loaner evaluates the application and determines if the

6.4. SMALL EXAMPLE: PRODUCT SALE WITH LOAN 111

Figure 6.12: The Product Sale Protocol

112 CHAPTER 6. JADEORGS

Figure 6.13: Organizational structures for the Product Sale scenario

6.4. SMALL EXAMPLE: PRODUCT SALE WITH LOAN 113

Customer qualifies for a loan. If he does not, the interaction is over with a

rejection message. But if he does, he receives a confirmation of the accep-

tance of his application and he must then sign the loan contract, after which

the Loaner deposits the loaned amount in the Customers account.

Figure 6.14: Loan Application protocol

Once the structures and interactions have been established, we have to

define the instances. In Figure 6.15, we can see the initial state of the sce-

nario. The agent instance John is member of the BargainElectronicStore

organization instance under the StoreCustomer role. The BargainElectron-

icStore also has the agent instance Marie as a member playing the Cashier

role. In this context, the previously described situation occurs: John wants

to buy a product but does not have enough money to pay Marie the required

amount.

At this point, let us assume that agent John was provided with a behavior

that specifies ways to obtain money and determines that if there is a Bank

organization in the environment, it could apply for a loan since its canPlay

114 CHAPTER 6. JADEORGS

property indicates that it can play the BankCustomer role. Therefore, John

queries the DF to find any Bank organizations in the system and retrieves

the description for Bank123, since Bank123’s DFOrganizationDescription in-

dicates that it requires the BankCustomer role. With Bank123’s identifier,

John initiates the RoleFillerRequest protocol and joins the organization since

it meets the requirements for role type and required behaviors.

As a BankCustomer of Bank123, it can initiate the LoanApplication pro-

tocol with a BankClerk. Bank123 assigns this task to BankClerk instance

Peter. Since John provides a good credit history in the application, Pe-

ter approves the loan. Once John has received the credited money, it ac-

tivates its StoreCustomer role again in BargainElectronicStore and initiates

the ProductSale protocol with Marie. This time John succeeds and obtains

the product.

6.5 Related works

In this section, we first compare JadeOrgs (and JADE) to the approaches of

some known agent-oriented methodologies.

6.5.1 Metamodel comparison

In order to evaluate the concepts and properties of the JadeOrgs metamodel,

we compare it using a subset of the features of the AOSE Methodology eval-

uation questionnaire from the Agentlink III AOSE TFG [Cos05b]. In this

questionnaire, a set of methodologies was evaluated with respect to con-

cepts/properties, notation, modeling and lifecycle coverage. At this stage,

we have chosen to evaluate only the coverage of the concepts and properties.

JadeOrgs only provides a metamodel with runtime library and not a com-

plete methodology, so most of the questions of the notation, modeling and

lifecycle sections did not apply to our approach. The evaluation results are

presented in Table 6.1, the two rightmost columns present our answers to

the questionnaire for JadeOrgs and JADE in order to provide a baseline and

show how JadeOrgs has extended JADE. We do not present the result of all

the methodologies presented in the AOSE TFG results presentation [Age05],

but only the ones that presented society structures and role concepts, namely

Gaia [WJK00], Ingenias [PGS03], PASSI [Cos05a] and TROPOS [BPG+04].

We are aware that a questionnaire provides very subjective results, as was

6.5. RELATED WORKS 115

Figure 6.15: Instance distribution of the scenario (initial state)

116 CHAPTER 6. JADEORGS

Concept/

Property

Gaia Ingenias PASSI TROPOS JADE JadeOrgs

Autonomy H H H L H H

Mental atti-

tudes

N H L M L L

Proactiveness L H H NN L M

Reactiveness L H H NN H H

Concurrency M H H L H H

Teamwork

and roles

H H M M L H

Cooperation

model

Team-

work

ALL Task

del.,

Team-

work

Nego-

tiation

NN Task

del.

Protocols

support

H H H NN NN

(pro-

jected

behav-

iors)

NN

Communica-

tion modes

Async Direct,

Indirect,

Synch.,

Asynch.

Direct Direct,

Synch.,

Asynch.

same

as

JADE

Communica-

tion lan-

guage

ACL

like

Speech

acts,

Signals

Speech

acts

ACL ACL

Situatedness H H H H L L

(Main)

Supported

agents

- BDI

(mainly)

Mainly:

State-

based,

rational,

reactive

BDI,

Ratio-

nal

Reactive,

Ratio-

nal*

same

as

JADE

Society

of agents

modeling

SA SA A/-/- A D SA

Society

structure

- Organiza-

tions,

Groups

p2p,

simple

hierar-

chies,

holons

Broker,

Medi-

ated,

Match-

maker

- Organiza-

tions

NN: None, M: Medium, L: Low, NA: Not Applicable

SD: Strongly Disagree, D: Disagree, N: Neutral, A: Agree, SA: Strongly Agree

Table 6.1: Concept/Property Comparison (based on [Age05])

6.5. RELATED WORKS 117

also noted in [Age05]. Nevertheless, this comparison can provide an intuition

where JadeOrgs stands with respect to other agent languages.

As apparent from the comparison table that JadeOrgs has inherited cer-

tain weaknesses from JADE with regard to situatedness and protocol sup-

port. These properties can, of course, be implemented in the agent code,

but they should definitely be considered as additional “first order citizens” in

JadeOrgs.

JadeOrgs improves on JADE with an explicit cooperation model (task/goal

delegation), proactiveness (through organizational goals) and a society struc-

ture. Our approach to organizations with roles is general enough to be able to

express the society structures that other approaches use: hierarchies, holons,

groups. For example, organizations in Ingenias are composed by groups

that perform certain tasks or achieve certain goals. The same structure can

be represented in JadeOrgs by creating a suborganization in place of the

Ingenias subgroup.

6.5.2 Other approaches to runtime organizations in

JADE

The only approach that directly addresses the issue of implementing orga-

nizations as entities in JADE is powerJade [BBG+08]. The powerJade ap-

proach has various similarities with JadeOrgs with the main difference in

the implementation of roles. On the one hand, powerJade Organizations are

implemented as an extension to the JADE agent class and possess all the

information with regard to the members of the organization, analogous to

JadeOrgs. On the other hand, roles in powerJade are implemented as agents

since they are the ones in charge of performing powers and requesting re-

quirements from the agents that play the roles: the players. Powers are the

actions that a given role can perform in the system, while requirements rep-

resent the information that a given power needs in order to be performed.

When a player fails to meet a requirement, its role is “deacted”. Therefore,

powerJade does not evaluate the role requirements when the players joins the

organization, but deacts the role if one of the requirements is not met during

the execution of a Power.

The potential drawback of having runtime organizations is the increase in

computational resources necessary for the overall MAS, since the number of

agents in the system will increase. This increase can depend directly on how

118 CHAPTER 6. JADEORGS

(a) JadeOrgs (b) powerJade

Figure 6.16: Example of organization structure instances: Two Organizations

bound to N Agents through 4 roles

the relation between organizations and role players are implemented. To il-

lustrate this, let us take the example depicted in Figure 6.16 to compare how

this relation is implemented in JadeOrgs and powerJade. As previously men-

tioned, roles in JadeOrgs are a piece of knowledge that the agent/organization

describing the requirements for the role players. In powerJade, the roles are

implemented as a role agent that executes the powers for the role player for

each role that the role player assumes. Therefore, the total number of agent

instances in the system A for JadeOrgs is AJadeOrgs = m + n where n is the

number of role player agent instances and m is the number of organization in-

stances. For powerJade, ApowerJade = m +n +∑
n
i=0 ri where ri is the number

of “role agent instances” linked to each role player. The powerJade imple-

mentation of roles can be advantageous in the sense that the role player has

less concerns about interacting with the organization, for instance it is not

required to know the organization’s ontology/language since the “role agent”

can serve as a proxy. In JadeOrgs, the coordination of the role players is

done by the organization directly and if such a proxy was necessary, it could

be implemented as an additional role or a suborganization could be created

to group the proxy with the represented agent.

6.6. SUMMARY 119

6.6 Summary

The explicit representation of an Organization as a first level entity is usu-

ally missing in multiagent system platforms. Most of the time it is left as a

result of the emergent behavior of interacting agents. This is also the case for

JADE, one of the most frequently used multiagent system platforms. But in

general this is unsatisfactory as some structuring is essential for conceptual

reasons but also for efficiency reasons. Therefore the concept of an organiza-

tion is proposed for this platform as a specific kind of agent. The fact that

it is represented by an agent and not left as a virtual manifestation result of

individual behaviors opens new options for modeling collaborations. Inter-

action protocols can be more easily modularized and, by scoping the aspects

in complex interactions, the predictability, reliability, and scalability of such

distributed systems are increased.

Having a concrete representation entity for an organization also facilitates

the definition of the policies, by making them explicit instead of implicit. Or-

ganizations provide not only advantage for design time, but also for enabling

dynamic establishment of organizations at run time. For this dynamic estab-

lishment, we have presented evaluation methods for candidate members as

well as the protocols that support the establishment process.

When compared to other systems, JadeOrgs reaches an adequate coverage

of the design and implementation spectrum. It allows to model organizational

structures in rich, detailed fashion, while also providing a run time extension

that is easy to use for developers working with JADE.

Chapter 7

Transforming PIM4Agents into

JadeOrgs

120

7.1. THE MAPPING RULES 121

This chapter introduces the mapping from the PIM4Agents concepts

(Chapter 5) to the JadeOrgs concepts presented in Chapter 6 through a series

of mapping rules. The list presented does not comprehend all the necessary

model mappings, but only the most relevant for a better understanding of

how they are applied in order to produce a JadeOrgs model. We will also

present briefly how the case study model presented in Section 5.10 is mapped

into a JadeOrgs model.

7.1 The Mapping Rules

Transformation 1:

Head: PIM 4Agents : Agent → JadeOrgs : Agent

Body: Every Agent in the PIM4Agents is mapped to a Jade-

Orgs:Agent.

The Mapping Rule 1 is fairly straight forward, given that the concepts cor-

respond to one another in the use of behaviours, to carry actions; Roles, to

represent responsibilities or compromises; and Organizations, to collaborate

with other Agents.

Transformation 2:

Head: PIM 4Agents : Organization→ JadeOrgs : Organization

Body: JadeOrgs:Organization, an extension to the JADE API,

allows to transform PIM4Agents:Organization in the straightfor-

ward fashion.

The concept of an Organization in the PIM4Agents is mapped directly to

JadeOrgs:Organization, since the concept in JadeOrgs is a custom made ex-

tension to the JADE API. Therefore, its properties are mainly mapped in a

one-to-one fashion.

122 CHAPTER 7. TRANSFORMING PIM4AGENTS INTO JADEORGS

Transformation 3:

Head: PIM 4Agents : Goal → JadeOrgs : Goal

Body: Each of the four types of PIM4Agents:ConcreteGoal can

be transformed into a JadeOrgs:Goal in the straightforward fash-

ion.

The four types of concrete goals in PIM4Agents have a direct one-to-one

correspondent in JadeOrgs. Therefore all the properties can be mapped

directly and the goal conditions are mapped as evaluation methods in order

to, for instance, determine if the goal has been achieved. In addition, when

goals are present the model, the Agents will possess the goal handling and

delegation behaviors that they require.

Transformation 4:

Head: PIM 4Agents : Protocol → JadeOrgs : FSMBehaviours

Body: The PIM4Agents:Protocol is decomposed into n FSM-

Behaviours types–one for each Actor in the Protocol—whose ex-

ecution order is determined by the PIM4Agents.MessageFlow for

the corresponding Role.

Transformation Rule 4 is a much more complex mapping than the ones pre-

sented so far. It basically does a collapse of the ‘MessageFlow graph’ and links

the PIM4Agents:MessageScopes that correspond to each PIM4Agents:MessageFlow

in the PIM4Agents into a set of JadeOrgs:FSMBehaviours in the JadeOrgs,

whose transitions depends on the graph’s links. The PIM4Agents:MessageScopes

should go into the each of the JadeOrgs:FSMBehaviours depends on the Ac-

tor in the PIM4Agents to which they belong.

Transformation 5:

Head: PIM 4Agents : Actor ,PIM 4Agents : DomainRole →
JadeOrgs : Role

Body: Actors and DomainRoles are mapped to JadeOrgs:Role.

7.1. THE MAPPING RULES 123

The Actor transformation (Mapping Rule 5) also performs a collapse of the

‘MessageFlow graph’, but in this case, it groups the incoming and outgoing

Messages found in the graph with respect to the Actor. Additionally, the

Actors are unified with the DomainRoles through the DomainRole.binding

property. Therefore, there is only one Role concept in JadeOrgs which models

the Actor and DomainRole concepts.

Transformation 6:

Head: PIM 4Agents : Activity → JadeOrgs : Behaviour

Body: PIM4Agents:Activity and JadeOrgs:Behaviour are ab-

stract, therefore the actual source and target for the transforma-

tion of the activities depends on their corresponding specializa-

tions.

Mapping Rule 6 represents the general rule for mapping behaviours and activ-

ities. In practice, there are several mapping rules for each particular special-

ization of PIM4Agents:Behaviour and PIM4Agents:Activity. Transformation

rules 8 and 9 show how the different specializations for Activity are mapped

into JadeOrgs:Behaviours.

Transformation 7:

Head: PIM 4Agents : Capability → JadeOrgs : Behaviour

Body: For every Behaviour referenced by a Capability in the

PIM4Agents, a Behaviour in JadeOrgs will be added to the avail-

able behaviours of the Agent.

Transformation 8:

Head: PIM 4Agents : StructuredActivity →
JadeOrgs : FSMBehaviour

124 CHAPTER 7. TRANSFORMING PIM4AGENTS INTO JADEORGS

Body: PIM4Agents.Behaviour:StructuredActivity is transformed

to a finite state machine (FSM). The structure of the FSM de-

pends on, for example, whether a Sequence, Split or Loop is

required.

In similar fashion to Mapping Rule 6, Mapping Rule 8 represents a series of

specific rules for transforming particular specialized types of StructuredAc-

tivities. For example a Sequence in the PIM4Agents is transformed in Se-

quentialBehaviour or ParallelBehaviour in JadeOrgs.

Transformation 9:

Head: PIM 4Agents : Task → JadeOrgs : OneShotBehaviour ,-

JadeOrgs :SimpleAchieveREInitiator ,-

JadeOrgs : SimpleAchieveREResponder

Body: Most subclasses of the Task concept are mapped into

OneShotBehaviours in JadeOrgs with different Java calls in their

body corresponding to the task required. In the concrete cases of

the tasks ReceiveMessage and SendMessage, they will be mapped

to a SimpleAchieveREResponder and a SimpleAchieveREInitia-

tor correspondingly.

Transformation 10:

Head: PIM 4Agents : Message→ JadeOrgs : ACLMessage

Body: PIM4Agents:Message is transformed to a ACLMessage

in JadeOrgs with an INFORM performative as default. Depend-

ing on specific message types, other performatives may be used.

Transformation 11:

Head: Ecore : EClass→ JadeOrgs : Concept ,JadeOrgs : JavaClass

7.2. GENERATED JADEORGS MODELS 125

Body: Each Ecore:EClass used in a message is transformed into

a Concept with the corresponding slots depending on the EClass

and the ones not used for communication are mapped as regular

Java classes.

Transformation 12:

Head: PIM 4Agents : AgentInstance → JadeOrgs :-
JadeOrgsInstance

Body: Each PIM4Agents:AgentInstance is mapped to a cor-

responding JadeOrgs:JadeOrgsInstance, namely a JadeOrgs:-

JadeOrgsAgentInstance when it is typed by an agent or a JadeOrgs:-

JadeOrgsOrganizationInstance when typed by an organization.

7.2 Generated JadeOrgs models

This section presents an overview of the model produced by the transforma-

tion to JadeOrgs. At this stage, we do not count with a graphical editor for

JadeOrgs to present the models in graphical form. Therefore, the models in

this section are presented using the Ecore Tree Editor.

A partial view of the target JadeOrgs model is provided in Figure 7.1(a).

It shows the concepts presented in Figures 5.18 and 5.17 after applying Trans-

formations Rules 1 and 2 was applied to the PIM4Agents:Agents Researcher

and SeniorResearcher and to the PIM4Agents:Organizations ConferenceM-

anagementOrganization, PC and Publisher correspondingly. It is also visible

that the instance information from Figure 5.22 has been transferred to the

JadeOrgs model after the execution of Transformation Rule 12.

In the same view, we find a series of JadeOrgs:FSMBehaviors derived from

the PIMAgents:Plans via Transformation Rule 8. Each of the states of the fi-

nite state machine in the JadeOrgs:FSMBehaviour is represented by another

JadeOrgs:Behaviour. The transitions between each of the states are also gen-

erated following the Flows from the PIM4Agents Plan or StructuredActivity.

126 CHAPTER 7. TRANSFORMING PIM4AGENTS INTO JADEORGS

(a) Agents, Organizations, Behaviours

and Instances

(b) Roles and Ontology

(c) The ManagePaperSubmissionPlan

FSM Behaviour

Figure 7.1: Partial views of the JadeOrgs CMS model

7.3. CODE SERIALIZATION 127

Figure 7.1(c) illustrates the output of transforming the ManagePaperSub-

mission Plan, previously presented in Section 5.10.7.

The transformation to our target JadeOrgs model also preserves the goal

and role information provided in the PIM4Agents model (cf. Figure 7.1(b)).

Transformation Rule 3 generates the corresponding goals in JadeOrgs and

adds them to the ProjectOntology. This ontology contains all the concepts

that the agents in the system use for communicating or representing their

beliefs. The roles generated via Transformation Rule 5 are also shown in

Figure 7.1(b) and they are linked to the organizations and agents through

the MembershipInfo objects visible under each organization in Figure 7.1(a).

7.3 Code Serialization

Once the model transformation between PIM4Agents and JadeOrgs has been

executed. It is necessary to generate the Java code that will make use of the

JADE agent platform and the JadeOrgs runtime library.

Figure 7.2: Extract from the Method2Java text transformation

In order to serialize our JadeOrgs models, we created a series of code gen-

128 CHAPTER 7. TRANSFORMING PIM4AGENTS INTO JADEORGS

eration templates using MOFScript [SIN06]. MOFScript enables to navigate

a MOF-based model and fill the values into our code template and therefore

generate the corresponding Java class code. As shown in Figure 7.2, the

text transformation rules allow the generation of the target code and even

manipulate format aspects such as the code tabulation.

7.4 Summary

The transformation of models while preserving the greatest amount of infor-

mation possible is crucial in a model-driven approach.

Besides the technical task of coding the transformation rules themselves,

issues such as model validation and information loss have also been addressed

in the implementation process. Sometimes it is not possible to preserve all

the information when performing such as a transformation. The key factor is

ensuring that whatever information is lost only because the target metamodel

does not provide a natural way to represent the concept or it is hard to pro-

vide an equivalent modeling structure that preserves the originally intended

semantics.

Finally, we presented briefly the technical issue of model serialization

which is addressed through the application of a text transformation.

Part III

Applications and Conclusions

129

131

The novel concepts presented in this work were developed in the con-

text of the European Research Projects ATHENA and SHAPE. As part of

these projects, we applied the new technologies developed to scenarios from

industrial partners. The following two chapters present the applications:

1. Chapter 8 presents an proof-of-concept application of JadeOrgs as PSM

with a non-agent-oriented PIM. The e-Procurement scenario presented

comes from the ATHENA project.

2. Chapter 9 describes the main application scenario in this thesis: the

model-driven specification of a steel production process. The scenario

in this chapter deals with the production chain of Saarstahl AG, one of

the industrial partners in the SHAPE project. In Saarstahl’s case, the

complete model-driven framework was applied and evaluated based on

the feedback provided by the development team at Saarstahl.

Chapter 8

Proof of Concept: Modeling

e-Procurement with PIM4SOA

and JadeOrgs

132

133

Systems interoperability is a growing interest area due to the continuously

growing need to integrate new, legacy and evolving systems, in particular in

the context of networked businesses and eGovernment [BEF+07]. This need

led to the inception of the ATHENA Integrated Project1 and its main result:

the ATHENA Interoperability Framework (AIF).

The main objective of the project was to conceive a multidisciplinary

approach to the interoperability of enterprise applications and software. The

approach combines the following three areas[BEF+07]: i) enterprise modeling

to define interoperability requirements and support solution implementation,

ii) architectures and platforms to provide the implementation frameworks,

and iii) ontologies to identify interoperability semantics in the enterprise.

The AIF is structured in three parts:

Conceptual integration which focuses on concepts, metamodels, lan-

guages and model relationships. It provides a modeling foundation

in order to analyze various aspects of interoperability.

Applicative integration focuses on methodologies, standards and domain

models. It provides guidelines, principles and patterns that can be used

to solve interoperability issues.

Technical integration which focuses on technical development and Infor-

mation and communication technologies (ICT) environments. It pro-

vides ICT tools and platforms to develop and run enterprise application

and software systems.

Our contribution to this project presented in this chapter is a compo-

nent of the Technical Integration. As Figure 8.1 illustrates, the Technical

Integration describes an architecture centered on a set of tools and infras-

tructure services to support the following: collaborative product design and

development, cross-organizational business process, service composition and

execution, and information interoperability.

In order to carry the cross-organizational process information into the ser-

vice layer, the ATHENA SOA Framework [VBE+10] is applied. The concepts

are represented at the PIM level using the PIM4SOA2 metamodel, and at

the PSM level metamodels for regular web services and MAS are used. The

MAS component defines extensions that allow the SOA to take advantage of

1http://www.modelbased.net/aif/index.html
2http://pim4soa.sourceforge.net/

134
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

Figure 8.1: Overview of the AIF technical framework [BEF+07]

the brokering, mediation and negotiation capabilities that agents offer. Two

MAS metamodels were offered as part of the framework: one based on the

BDI agent framework JACK [AOS06], and an earlier version of the JadeOrgs

called JadeMM3. We will concentrate on the application of JadeMM in this

context.

The complete AIF was evaluated successfully in four selected scenarios

covering Supply Chain Management (SCM), Collaborative Product Develop-

ment (CPD), Electronic Procurement (e-Procurement) and Product Portfolio

Management (PPM). We will present the application of the AIF to an elec-

tronic procurement scenario in this chapter: first, we give an overview of

the PIM4SOA metamodel, then present the transformation to the JadeMM

PSM, and finally describe the proof-of-concept scenario from ATHENA that

demonstrates the application of the transformation.

3The metamodel name and some of the concepts names have been preserved throughout

this chapter to keep it consistent with its publication [FHMM07]

8.1. METAMODEL FOR SERVICE-ORIENTED ARCHITECTURES 135

8.1 Metamodel for Service-Oriented Archi-

tectures

The platform-independent model for service-oriented architectures (PIM4SOA)

covers four important aspects. Information represents, in the context of

virtual enterprises, one of the most important elements that need to be de-

scribed. In fact, the other aspects manage or are based on the information

elements. Services are an abstraction and an encapsulation of the function-

ality provided by an autonomous entity. In general, SOAs are formed by

components provided by a system or a set of systems to achieve a shared

goal. Processes describe a set of interactions among services in terms of

messages exchange. Another suitable feature is the description and the mod-

eling of the Quality of Service aspect related with the described services. In

the following, we discuss the service, information and process aspects as we

relate to these aspect in the model transformations.

8.1.1 Service Metamodel

This subsection describes the elements of the service-oriented metamodel that

have the objective of describing service architectures. These architectures

represent the functionalities provided by a system or a set of systems to

achieve a shared goal. Functionalities could be represented as a service or

as a set of services. In this work we emphasise the concept of collaborations

to address the different levels of service description. In this subsection, we

sketch out the main components of the service oriented metamodel. The

service aspect of the PIM4SOA presents services modeled as collaborations

that specify a pattern of interaction between the participating roles. A subset

of the metamodel for this aspect is presented in Figure 8.2.

Collaboration represents a pattern of interaction between participating

roles. A binary collaboration specifies a service. A Collaboration defi-

nition contains a set of roles (provider, requester) and a set of collabo-

ration uses. Eventually it could be related with non-functional aspects.

A Collaboration is related with a registry where it is specified the end-

points. Basically the attributes are:

• Subcollaborations: represents the usage of other collaborations

136
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

Figure 8.2: The service metamodel of the PIM4SOA.

• Constraints: constrains a collaboration by the specification of a

process.

• Roles: involved within the collaboration

• Nfa: this element sets up a link to quality of service model defini-

tion

• Endpoint: is specified at design time

• RegistryItem: specifies the registry item associated with the col-

laboration

CollaborationUse represents the usage of a collaboration. In other words,

a CollaborationUse is the model element to represent a usage of a ser-

vice. The CollaborationUse contains a reference to the endpoint point-

ing out the address. Its attributes are:

• Provides: specifies the item provided

• Messages: specifies the messages related with this role

8.1. METAMODEL FOR SERVICE-ORIENTED ARCHITECTURES 137

• RoleType: specifies the type of the Role. Basically a Role can be

a requester or a provider. If it is not none of them we can specify

it as other and in the property Other we specify the name.

• Other: used for the special case where the role is neither a re-

quester nor a provider.

RoleBinding relates a role with a usage of a service. When we specify a

collaboration use we need to identify which are the roles involved. This

relationship is made between two Roles: one inside the collaborationUse

and other inside a collaboration definition. Its attributes are:

• Role: represents a link to specific role within the collaboration

definition of the current collaboration use

• BoundRole: represents a link to specific role within the current

collaboration

Behaviour is an abstract class for the specification of message sequences

within a service. This element represents a parent class connecting a

service aspect with process aspect.

ServiceProvider specify an entity describing and specifying in its turn ser-

vices, roles and constraints. ServiceProvider represents a service spec-

ification containing the specification of other services. Non functional

aspects could also be added to specify quality aspects. Its attributes

are:

• Behaviour: represents the process

• Participates: contains a set of the collaboration uses

• Roles: defines the roles involved at this level

• Nfa: establishes the link to the quality of service model

• QosCategory: defines the category in terms of quality of service

• Type: refers to the type of provider: Abstract or Executable

Message defines a unit of information sent from one role to other role in a

collaboration. A message is owned by a specific role. Its attributes are:

• Contains: defines a set of items related with the message

138
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

Figure 8.3: The process metamodel of the PIM4SOA.

• Type: defines the type of the items related with the message

• Mode: differentiates messages between regular (normal) or fault

(exceptions)

8.1.2 Process Metamodel

The process elements of the PIM4SOA metamodel are presented in Figures

8.3 and 8.4. The process aspect is closely linked to the service aspect, the

primary link being the abstract class Scope, which can be instantiated as a

Process belonging to a ServiceProvider from that aspect.

The process contains a set of Steps (generally Tasks), representing ac-

tions carried out by the Process. A Process consists of StructuredTasks

(sub-processes), Steps (atomic tasks and actions, at the PIM level), and In-

teractions/Flows linking the tasks together. These essentially fall into two

categories, interactions with other service providers, or specialised actions re-

quiring implementation beyond the scope of this model. For example, manual

tasks to be processed by humans, or extensive computation requiring plat-

form specific code.

The Process also contains a set of Flows between these actions, which

may be specialised (ItemFlow) to indicate the transfer of specific data. This

allows flexibility in that a business modeler may choose to start by showing

8.1. METAMODEL FOR SERVICE-ORIENTED ARCHITECTURES 139

Figure 8.4: Behaviour, Scope and the Steps inheritance hierarchy.

only control flow, and later refine the model to include information. This

links in to the Item/ItemType parts of the information aspect. Flows may

diverge or reconverge using Guard and Join specifications.

Scope is an abstract container for individual behavioural steps. This is

subclassed only by Process and StructuredTask (Process is the top

level behavioural object, StructuredTask may be used to group related

Steps in a subroutine like manner.)

Step is a single node in a process, such as making a decision or calling an

external service. The specialization of Step is Task.

Process implements a behaviour for a service provider, as a set of tasks and

decisions (Steps) linked by control flows (Flows), optionally including

detail on the exchanged messages / items.

Task represents the low level building blocks of a process—these might be

for example calls to another service (which can be transformed largely

automatically to an implementation platform, with reference to the

relevant collaborations) or might require manual intervention—either

in the form of hand coded functions, or human interaction with the

process.

• Collaboration Use Path: This is a path through the tree of Col-

laborationUses associated with this ServiceProvider. It must start

140
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

with a CollaborationUse, in which this ServiceProvider partici-

pates, and walk through any sub collaborations to the collabora-

tion being implemented by this Task.

Interaction defines an interface for input or output flows on a Step. Can be

viewed as a set of Pins, though it is not compulsory to refine the model

to this level (depending on aims of the model). If the step is viewed as

a service, this is similar to the declaration of a method/function in the

interface (specifying a set of parameters or a return value).

8.1.3 Information Metamodel

This section describes the concepts needed to model information at a platform-

independent level.

Item defines the set of elements that a role manages.

ItemType represents simple types: string, integer and boolean.

Association represents the association between two entities. It is used to

describe complex types. Container, contained and cardinality are the

attributes necessary to related elements.

Document represents an object with a specific structure and composed by

entities. Document is a stereotyped package containing the structure

of the document.

TypeLibrary defines a packaging structure containing some types of the ap-

plication TypeLibrary is a stereotyped package containing data types.

Entity represents a structure element of information. Entity is a stereotyped

class.

8.2 Model to Model Transformations

In this section, we bring together the concepts in one metamodel and relate

them to another one in a mapping. Although the metamodels are on different

abstraction levels , we show that a mapping is feasible as the platform-specific

8.2. MODEL TO MODEL TRANSFORMATIONS 141

Figure 8.5: The overall picture: From service-oriented architectures to agent

systems using MDA standards.

metamodel is more expressive than the PIM4SOA. Therefore the transfor-

mation shows that JADE can be used in a MDD scenario to deploy service

models.

The implementation of model to model transformations is done using the

Atlas Transformation Language (ATL) ([ATL06, JK05]). Figure 8.5 presents

how they all come together as a framework.

The definition of a model transformation requires deep knowledge of the

corresponding source and target metamodels with respect to their syntax,

which is clearly defined by the metamodels themselves, and semantics, which

are often not explicitly reflected in the metamodels. Our model to model

transformations—discussed in the two following sections—are mainly based

on the following observations. The interaction in the PIM4SOA is always

done by provider and requester roles only. This allows to use the PIM4SOA

142
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

model in a manner where the information on Collaborations and Collabora-

tionUses is mapped to an interaction that is performed by a service requester

and a set of roles this specific service requester makes use of. However the

concept of a Collaboration is not directly mapped. Due to the fact that

non-composed collaborations in the PIM4SOA are binary, it is always clear

who requests and who provides the corresponding service. Interactions other

than pure service requests-provisions do not exist.

8.3 From PIM4SOA to JadeMM

This section presents how the PIM4SOA metamodel and JadeMM meta-

model relate to each other and an overview of how the transformation rules

look like.

Transformation 1:

Head: PIM 4SOA.Service : ServiceProvider→JadeMM :−
Organization

Body: For each PIM4SOA.Service:ServiceProvider, a corre-

sponding JadeMM:Organization is created. For each service

provider’s process we generate an organisational Behaviour. The

details of the transformation are summarized by Table 8.1.

Transformation 2:

Head: PIM 4SOA.Service : Message→ JadeMM : ACLMessage

Body: Each PIM4SOA.Service:Message is transformed into a

JadeMM:ACLMessage in a straightforward fashion. The trans-

formation details are presented in Table 8.2.

8.3. FROM PIM4SOA TO JADEMM 143

PIM 4SOA.Service : ServiceProvider → JadeMM : Organization

Target Source TR

Organization.requires determined from PIM4SOA.-

Service.ServiceProvider.-

participates

4

Organization.behaviours behaviour(s) obtained

from PIM4SOA.Service.-

ServiceProvider.behaviour

3

Organization.membership determined from PIM4SOA.-

Service.ServiceProvider.-

participates.collaboration.roles.

4

Table 8.1: Transformation 1 in detail.

Transformation 3:

Head: PIM 4SOA.Processes : Process→JadeMM :−
SequentialBehaviour

Body: The Process from the ServiceProvider is mapped to a

sequential behavior in the Organization. The order of the sub-

behaviours is determined by following the PIM4SOA.Processes.-

Flows and PIM4SOA.Processes.ItemFlows that link the Tasks.

The details are presented in Table 8.3.

Transformation 4:

Head: PIM 4SOA.Service : Collaboration,PIM 4SOA.Service : Role→
JadeMM : Role,JadeMM : Agent

Body: All PIM4SOA.Service:Roles in the collaboration are

mapped to JadeMM:Roles, those that are not bound to the Ser-

viceProvider are also mapped to a corresponding implementing

JadeMM:Agent. The subcollaborations of the top level collabo-

ration are navigated to determine what messages from the lower

144
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

PIM 4SOA.Service : Message→ JadeMM : ACLMessage

Target Source TR

ACLMessage.content filled at runtime, but its type

is determined by PIM4SOA-

.Service.Message.Type

5

ACLMessage.sender filled at runtime, but its type

is obtained from the containing

Role, if PIM4SOA.Service.Role.-

RoleType has the value of Re-

quester

—

ACLMessage.receiver filled at runtime, but its type

is obtained from the contain-

ing Role, if PIM4SOA.Service.-

Role.RoleType has the value of

Provider.

—

Table 8.2: Transformation 2 in detail.

level roles correspond to each top level role. The implementing

Agents for each Role that provides requested information to the

ServiceProvider is enriched with a behaviour for invoking that

party’s web service. Please note that the Collaboration itself

is not mapped to any concept in JadeMM. The transformation

details are presented in Table 8.4.

Transformation 5:

Head: PIM 4SOA.Information : Entity →
JadeMM : ConceptSchema

Body: The information that is sent in Messages is described by

so-called Entities in the information metamodel. We map these

Entities to ConceptSchema of the Ontology that the JADE Agent

has available. The details are presented in Table 8.5.

8.3. FROM PIM4SOA TO JADEMM 145

PIM 4SOA.Processes : Process → JadeMM : SequentialBehaviour

Target Source TR

SequentialBehaviour.subbehavioursbehaviours obtained from trans-

forming PIM4SOA.Processes.-

Process.steps

7

Table 8.3: Transformation 3 in detail.

PIM 4SOA.Service : Collaboration,PIM 4SOA.Service : Role→
JadeMM : Role,JadeMM : Agent

Target Source TR

JadeMM:Role.sends obtained from PIM4SOA.-

Service:Role.message if

PIM4SOA.Service.Role.-

RoleType is Provider

2

JadeMM:Role.receives obtained from PIM4SOA.-

Service:Role.message if

PIM4SOA.Service.Role.-

RoleType is Requester

2

JadeMM:Agent.behaviours a generic web service invocation

behavior is added to the be-

haviour set.

—

Table 8.4: Transformation 4 in detail.

Transformation 6:

Head: PIM 4SOA.Information : Attribute→ JadeMM : Slot

Body: The attributes are mapped to the concept’s attribute in a

straight forward manner. The details are presented in Table 8.6.

146
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

PIM 4SOA.Information : Entity → JadeMM : ConceptSchema

Target Source TR

ConceptSchema.slots obtained from PIM4SOA.-

Information.Entity.attribute

6

Table 8.5: Transformation 5 in detail.

PIM 4SOA.Information : Attribute→ JadeMM : Slot

Target Source TR

Slot.type generated by applying Trans-

formation 5 on PIM4SOA.-

Information.Attribute.type if it

is a complex type, or a primi-

tive type if the attribute is of

primitive type.

5

Table 8.6: Transformation 6 in detail.

Transformation 7:

Head: PIM 4SOA.Processes : Task →
JadeMM : MessageReceiverBehaviour ,

JadeMM : MessageSenderBehaviour

Body: When the PIM4SOA.Processes:Task’s input interaction

contains a message it is mapped to a JadeMM:MessageReceiverBehaviour.

If the PIM4SOA.Processes:Task’s output interaction contains a

message it is mapped to a JadeMM:MessageSenderBehaviour. It

is never the case that both interactions contain a message, since

the interaction is unidirectional. The details are presented in

Table 8.7.

8.4. USE CASE SCENARIO 147

PIM 4SOA.Processes : Task → JadeMM : MessageReceiverBehaviour ,

JadeMM : MessageSenderBehaviour

Target Source TR

JadeMM:-

MessageReceiverBehaviour.-

receives

obtained from PIM4SOA.-

Processes.Task.input.message

2

JadeMM:-

MessageSenderBehaviour.sends

obtained from PIM4SOA.-

Processes.Task.output.message

2

Table 8.7: Transformation 7 in detail.

8.4 Use Case Scenario

The following section exemplarily explains our approach by discussing a use

case scenario that (i) is modeled in accordance to the PIM4SOA and (ii)

is transformed to the agent the JADE metamodel. The scenario could be

summarized as follows.

A service integrator software provides the service of listing the options

offered by different car manufacturers with respect to a dealer’s desires and

requirements (i.e. price, equipment, etc.). The service integrator software

evaluates the dealer’s request and selects those car manufacturers that offer

products that fulfill the dealer’s requirements, followed by sending an initial-

ize product request to the responsible services on the car manufacturers’ side.

The car manufacturer’s internal legacy system evaluates the service request

and replies by sending a list of options in a initialize product response. After

receiving the manufacturers’ list of options, the dealer software collects and

evaluates the responses and illustrates the set of options on its web site. The

consumer then may evaluate the options and may proceed by for instance fur-

ther restricting its requirements or selecting particular models to get further

information on these.

8.4.1 SOA Model in accordance to the PIM4SOA

Based on the use case description above, we model a SOA that consists of

three actors—the dealer software, the service integrator and the manufac-

turer. To simplify the given use case, we assume that only one car man-

ufacturer is involved. The only reason for this assumption is to keep the

148
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

SOA model small so that is fits on one page. We start by modeling the

ServiceProvider which is represented in the description above by the ser-

vice integrator software. The ServiceProvider participates in the Collabora-

tionsUses Dealer and Manufacturer (see Figure 8.6). The ServiceProvider’s

role ServiceIntegrator is bound to roles defined by the Collaborations Deal-

erCollaboration and ManufacturerCollaboration via the so-called RoleBind-

ings. For instance the RoleBinding SI to SI3 binds the ServiceProvider’s role

ServiveIntegrator to ServiceIntegrator3 defined in the Collaboration Dealer-

Collaboration. A Collaboration refers to a set of subcollaborations which are

again CollaborationsUses, i.e. the DealerCollaboration refers to a Collabo-

rationUse IntegratorInitRequest. This CollaborationUse refers again to the

Collaboration IntegratorInitRequestCollaboration; the roles of IntegratorIni-

tRequestCollaboration are bound to the DealerCollaboration’s roles via the

RoleBindings contained in the IntegratorInitRequest CollaborationUse. The

Collaboration IntegratorInitRequestCollaboration refers again to two Roles

Dealer1 and Integrator1, which receives a Message integratorInitRequest. The

Collaboration that defines the interaction between Manufacturer and Servi-

ceIntegratorProvider (ManufacturerCollaboration) is structured in a similar

fashion as described above for the interaction between Dealer and ServiceIn-

tegratorProvider.

In Figure 8.7, we find the process model that corresponds to the sce-

nario previously described. The ServiceIntegratorProvider has a behavior

that consists of three tasks: ReceiveInit, SendInitM1, and ReceiveInitM1.

Each of these tasks is linked to a CollaborationUse presented in the ser-

vice model. ReceiveInit possesses an input interaction, the reception of the

triggering message integratorInitRequest from the Dealer, and an output in-

teraction that links the control flow and data flow to the next task through

Flow1 and Flow3 correspondingly. The attribute data from integratorIni-

tRequest is taken from Pin1 to Pin2 by ItemFlow Flow3. The second task,

SendInitM1, consists in forwarding the request from the Dealer to the Man-

ufacturer. The input interaction, Interaction3, receives the control and data

flows from the previous task, and Interaction4 links the control flow and

data flow to the next task. ReceiveInitM1 consists in the reception of the

reply from the manufacturer, therefore it only has an input interaction. It is

apparent that further tasks and interactions are missing, such as informing

the dealer of the acceptance or rejection of the original request, or status of

the order, but these are left out to keep the model compact, since they would

8.4. USE CASE SCENARIO 149

not contribute to further understanding of the model itself.

8.4.2 Applying the transformation from PIM4SOA to

JadeMM

After the transformation is applied to the example, we obtain the model

presented in Figure 8.8. We can see that after applying Transformation 1,

the ServiceIntegratorProvider is now an Organization with two agent mem-

bers, two required roles, one implemented role, a behaviour and an ontology.

The ServiceIntegratorProviderProcess is a SequentialBehaviour derived from

Transformation 3, the order of the subbehaviours was determined following

the Flows and ItemFlows from the PIM4SOA model. The Tasks from the

PIM4SOA model were mapped to MessageReceiverBehaviours and Message-

SenderBehaviours according to the Tasks’ Interactions following Transforma-

tion 7. The application of Transformation 4 does away with the collabora-

tion/subcollaboration tree from the PIM4SOA model, and creates the three

roles and two member agents of the Organisation that implement the roles

not assigned to the service provider. When the lower level roles that refer to

messages are reached in Transformation 4, Transformation 2 is fired and the

messages are created. The type of the content of the messages is represented

by an Entity in the PIM4SOA model, so Transformation 5 is fired to create

the contents of the Ontology that the Organisation and the Agents will use.

150
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

Figure 8.6: The example illustrates the service model.

8.4. USE CASE SCENARIO 151

Figure 8.7: The example illustrates the process model.

152
CHAPTER 8. PROOF OF CONCEPT: MODELING

E-PROCUREMENT WITH PIM4SOA AND JADEORGS

Figure 8.8: The example after the transformation to JADE was applied.

8.5. SUMMARY 153

8.5 Summary

This chapter presented a proof-of-concept scenario for the AIF in the con-

text of e-Procurement. In this scenario, an agent-oriented application was

specified in a model-driven manner in order to build interoperable agent sys-

tems at the PSM level. By the application of MDD, we showed how service

models could be deployed in the agent platform JADE. Therefore, we de-

fined model transformations that transfer concepts of a metamodel for SOAs

(PIM4SOA) to the metamodel for JADE (JadeMM). Consequently, service

models that conform to the PIM4SOA can be executed as JADE MAS in a

generic manner.

The development of JadeMM and its relation to the SOA modeling lan-

guages led to the later development of the PIM4Agents (see Chapter 5) and

JadeOrgs. In addition, PIM4SOA had a strong influence on the development

of the OMG-supported SoaML language described in Chapter 9.

Chapter 9

Case Study: Applying

Multiagent Systems to a Steel

Production Process

154

155

Competitiveness is a key factor for companies in today’s globalized econ-

omy. Potential customers expect goods of highest quality at competitive

prices, while companies, especially those located in high wage countries, need

to find ways to be very efficient and flexible in the production of these goods.

Therefore, the production processes need to be correspondingly flexible and

cost effective, while still being able to meet production deadlines.

At the same time, there are two major trends developing in IT infrastruc-

tures today [BBC+10]:

First, SOA has emerged as a direct result of business and technology

developments of the last decade. The outsourcing of non-core business oper-

ations, the rise of process reengineering and the need of system integration

have led to business processes based on the integration of services provided

by different parties.

Second, modeling has gained a prominent position among software engi-

neering approaches. The use of various abstraction levels in order to model

business processes with various levels of detail, along with the application of

model transformations in Model Driven Engineering (MDE) approaches have

increased its popularity both in academic and industrial IT circles.

The previously described business conditions demand that the applica-

tions, which support these production processes, are also flexible and adapt-

able to changes with the same speed that the market demands. The con-

vergence of SOA and modeling provide the basis to build the integrated

development environment that such applications require.

The SHAPE (Semantically-enabled Heterogeneous Service Architecture

and Platforms Engineering) European Research Project [LTB+08, LTB+09,

CEG+09, EHJL10] was conceived to fulfill this demand. The project pro-

vides an integrated development environment that brings together MDE and

SOA paradigms. This environment is complemented with innovative service

techniques, such as support for flexible business modeling, customization and

personalization of services, integration of agent technology and adaptive sys-

tems, and support for the use of semantic technologies. The MDE techniques

revolve around SoaML, a metamodel for the description of service-oriented

landscapes and an OMG standard. It is complemented with other metamod-

els that describe particular technology platforms in which the systems can be

deployed. The project produced the necessary infrastructure for the applica-

tion of these technologies in real-world applications. Its integrated tool suite

delivers the modeling tools, transformations and a methodology framework

156
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

which explains how to apply these technologies to real-world scenarios.

The SHAPE approach was tested, demonstrated and evaluated by two

industrial use case partners: Saarstahl AG and StatoilHydro. In Saarstahl

AG’s case, SHAPE technologies were used to integrate legacy systems and

the agent-based production line planning system. At StatoilHydro, SHAPE

technologies also helped in the integration of legacy systems and are expected

to lead to greater efficiency in system development and maintenance in the

long run.

In this chapter, we will cover the Saarstahl AG scenario. This indus-

trial use case was modeled as a service-oriented architecture implemented by

agents. In this scenario, the SoaML model is transformed into a PIM4Agents

model, then into a corresponding JadeOrgs model and finally into Java code.

9.1 Scenario Description

Saarstahl AG1 is a worldwide known manufacturer of steel products based

in the state of Saarland, Germany. It is located in the cities of Völklingen,

Burbach and Neunkirchen and specializes in the production of wire rod, steel

bars, semi-finished products of various grades, as well as open die forgings.

These are important preliminary products for various industries such as au-

tomotive, construction, aerospace and general mechanical engineering.

The production chain at Saarstahl is constituted of a series of metallur-

gical manufacturing processes that depend on one another. Arguably, the

critical link in the production chain is the steelwork in Völklingen. This

is where the steel is produced following the customer’s specifications and

requirements. This steel is produced in units called heats, which are then

grouped into sequences. The sequences are cast into billets at the steelwork’s

continuous casting plants. The heats on each sequence are related because

of their similarity with respect to their quality grade and format. Once the

billets have been cast, they are forwarded to the rolling mills. At the mills,

the billets are warmed up again in order to manipulate the steel and produce

bars and wire rods of different sizes and formats. The formats are produced

in accordance to fixed, cyclic rolling campaigns. The cycles vary between

one and four weeks and depend on the capacity at the rolling mills, the billet

supply from the steelwork and the customer orders.

1http://www.saarstahl.com/

9.1. SCENARIO DESCRIPTION 157

Internal and external processes in this supply chain are modeled as ser-

vices to provide Saarstahl with a better information exchange and increased

transparency while keeping the processes loosely coupled. Originally there

were four use cases defined for this scenario [LTB+08], but in order to explore

a higher level of detail and complexity while still meeting the project’s time

constraints, the focus was shifted to one use case. Therefore, this scenario

revolves around the relation between the steelwork and the rolling mills, and

their processes within the supply chain.

Figure 9.1: Saarstahl departments involved in the Steelwork-Rolling Mills

Scenario [CEG+09]

The overview of the interaction between the parties in this scenario is pre-

sented in Figure 9.12. In [CEG+09] this use case for the scenario“Correlation

steelworks and rolling mills” is defined in detail as follows:

1. The customer uses a service “ordering” to communicate relevant data

such as demanded quality, shipping date, quantity, etc. These exist-

ing functionalities supported by legacy systems are wrapped behind

this new ordering service. The set of data communicated is called

“order specification”.

2The cited figures in this chapter are reproduced with authorization from the authors

158
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

2. Order specification is passed to sales department. This department

creates an order instance o and allocates a rolling capacity in a specified

slot for o.

3. From now on the actions are triggered by the order agent o. The

main idea concerning planning and scheduling along the supply chain

of Saarstahl is to model each single order position as a software agent.

Every single order agent calculates and observes its own schedule from

order entry until invoicing. Instead of handling a vast number of restric-

tions subject to the manufacturing step in general, only a few related

to a single order position are handled by the entity they are related

to—the order position. A decentralised management of manufacturing

control is received instead of a centralised, data driven approach.

First, a service “productionPossible” is used to determine whether

Saarstahl is in general in the position to meet the specific require-

ments. Normally, this is straightforward and answered automatically

in seconds, but in special cases concerning new requirements a feasi-

bility study by the research and quality department is necessary. The

answer of this service is passed to the sales department. A service “in-

formCustomer” is used for any customer relevant information exchange

during production, so the order confirmation.

4. After order confirmation a service called “rollingDispatched” is used by

o to check status of the allocated rolling. The status gives information

on the semi finished product demand of o.

5. Rolling campaigns are recalled about five weeks in front of rolling. The

following workflow is initiated by each o in the campaign:

(a) o registers to “VMM” (a legacy system managing semi finished

products) by use of a service called “requestManagement”.

(b) o demands semi finished material by use of service “retrieveSF-

Products”

(c) o calculates a proposal of a production plan including melting or

allocation of material available

(d) o submits proposal to planning department by use of service “re-

questCommit”and waits for this commitment, which is done man-

ually.

9.2. METHODOLOGY 159

(e) the planning department submits final plan by use of service “in-

form”

6. o realizes production plan:

(a) Case “melting required” (In this case no suitable material was

found inside the semi finished product inventory and hence mate-

rial has to be melted)

i. o demands, by use of “LMSTCalculation”, a LMST (LMST is

latest possible melting date in German abbreviation)

ii. o registers to SPL by use of “registerMelting” (SPL is a

database containing all order positions which still have to

be melted)

iii. steelwork offers a service “inform” which can be used by o to

get status information

iv. after melting o continues with 5b.

(b) Case“material available”(In this case no melting is necessary since

enough is available inside the inventories)

i. o allocates corresponding material by use of “bindMaterial”

and sets itself disposed for scheduling by use of “sched-

uleRolling”.

Each of the steps presented in this use case description are described in

additional detail in [CEG+09] using ARIS Event-driven Process Chain (EPC)

notation from the DFKI-IWI3 group.

9.2 Methodology

Because of the unpredictability of future orders as well as factory capacities, it

is critical for Saartahl AG to improve overall efficiency and maximize flexibil-

ity. Therefore, Saarstahl’s main goal in the context of SHAPE was to explore

the potential of service-oriented architectures to achieve this efficiency and

flexibility.

In correspondence to the changes in the business processes, the methodol-

ogy to produce such a system should also provide flexibility to the introduc-

tion of changes, such the addition of factory aggregates. The model-driven

3http://iwi.dfki.de/

160
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

Figure 9.2: Model transformations from business models to heterogeneous

executable platforms [CEG+09]

9.3. MODELING THE PIM LAYER WITH SOAML 161

methodology defined in the context of SHAPE provides such flexibility by

modeling production process as business models in the abstract CIM layer

which changes seldomly. This layer is modeled using a combination or ARIS

EPC notation and Business Process Model and Notation4 (BPMN).

The PIM modeling for the scenario uses and extended version of SoaML,

a service-oriented architecture standardization effort by OMG. The extended

SoaML, ShaML, is the transformed to a variety of heterogeneous executable

platforms. One of this platforms is a MAS implemented in JADE after

being transformed into the corresponding PIM4Agents and JadeOrgs models.

Figure 9.2 presents how these model transformations come together. In the

remainder of this chapter, we concentrate on the PIM layer of the scenario

and its transformation to PIM4Agents. Additional information about the

CIM layer modeling can be found in [CEG+09].

9.3 Modeling the PIM Layer with SoaML

As in most large companies, the internal organization structure of Saarstahl

AG is complex, but, for our presentation, we will consider a simpler structure

concentrating only on its organizational units relevant to the scenario5 The

organizational units in Saarstahl are grouped into functional departments

and factories. The functional departments include the sales, quality control,

planning (PPL) and shipping departments, while the named factories include

the Steelwork in Völklingen and the Rolling Mills in Burbach (BU), Nauweiler

(NW) and Neunkirchen (NK).

At the SoaML PIM level, the architecture of Saarstahl for the scenario was

modeled as depicted in Figure 9.3. In SoaML, every entity that provides or

consumes a service is known as a Participant. Therefore all the departments,

factories and the orders—agents—are modeled as Participants. Services are

modeled through interfaces typed as Service Capability and service instances

through classes typed as Service Interfaces. The complete architecture is

also a Participant Architecture, since it exposes an external Service Point for

customers to the purchase service from the Manufacturer Services interface.

The SaarstahlArchitecture is instantiated by the SaarstahlImpl and every

architecture component is also instantiated respectively.

4http://www.bpmn.org/
5The whole organizational structure of the company was presented to us in internal

documents, but the complete detailed information is confidential.

162
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

Figure 9.3: Saarstahl Architecture in SoaML [CEG+09]

9.3. MODELING THE PIM LAYER WITH SOAML 163

The architecture encapsulates the organizational structure. The compo-

nents of the architecture include:

orderPart the agent that tracks the status of each Order,

stwPart the steel melting factory,

pdPart the planning department,

sdPart the sales department,

rmPart the rolling mill(s),

inventoryPart the product inventory, and

tiPart the technical inspection (quality control).

Each of the architecture parts are also modeled in detail with their own

service interfaces. For illustration purposes, let us examine in detail the Order

agent. It manages the working plan for the order of which it is in charge. As

illustrated in Figure 9.4, it maintains the order information and it handles

the production events through inform service.

In Figure 9.3, we can also see the instantiation of the architecture in

SaarstahlImpl. For this scenario, each part of the architecture is instantiated

once.

Figure 9.4: Order agent specification [CEG+09]

164
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

The Order agent also has a group of behaviors that describe, for instance,

how the agent handles the incoming events or how it requests a melting

position from the steel work. The event handling behavior is presented in

detail in Figure 9.5. It consists of a loop that processes the events as they

enter the handling queue, the events are produced by the various factories

and departments as the order parts of the order change states in production.

In order to reduce the stock of semi finished product and avoid producing

unnecessary product, the stock is checked for availability of the qualities that

the order requests. When no stock of a required quality is readily available,

the Order agent requests melting the desired quality to the Steelwork as

described in Figure 9.6.

The behaviors in Figures 9.5 and 9.6 model how a Participant, the Order

agent, performs its tasks internally. In order to model the interaction among

different Actors (Participants, System Users, etc.), Service Contracts are

used. These contracts are specified via activity diagrams and help guarantee

a correct process flow.

Let us take the interaction between a customer Actor and a manufacturer

Actor in the context of a purchase in order to illustrate the Service Contracts.

Figure 9.7 depicts the corresponding activity diagram. Each “swimlane” in

the diagram contains the activities that each actor is committed to execute.

For each activity, the actor should provide the required interfaces and services

involved.

It is important to note that just as an agent organization can interact with

other agents as a single agent, the Saarstahl Architecture is also a Participant

and offers services to other Actors. Under the Purchasing Process Service

Contract, the Saarstahl Architecture plays the role of the manufacturer Actor.

9.4 Corresponding PIM4Agents Models

As mentioned in Section 9.2, the presented SoaML model is then transformed

into a PIM4Agents model. The technical details of this transformation can

be found in [Rab09]. This section presents a sample of diagrams from the

model that the transformation produces, concentrating on the organizational

structures derived from the SoaML Architectures and Participants.

The agent diagram produced is depicted in Figure 9.8 and presents the

basic agent types in the system. This corresponds to the general customer-

manufacturer scenario only (see Figure 9.7). There are two agent types de-

9.4. CORRESPONDING PIM4AGENTS MODELS 165

Figure 9.5: Event handling performed by the Order agent [CEG+09]

166
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

Figure 9.6: Melting request performed by the Order agent [CEG+09]

9.4. CORRESPONDING PIM4AGENTS MODELS 167

Figure 9.7: Activity diagram for “Purchasing Process” [CEG+09]

168
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

Figure 9.8: Agent diagram [CEG+09]

fined: Customer and Manufacturer. The Customer want to purchase some

goods that the Manufacturer produces. They play the CustomerRole and

ManufacturerRole respectively. The diagram also presents the plans that

the agents have available in order to perform their tasks. For instance, the

PurchaseOrder enables the Customer to purchase a product from a Manu-

facturer.

The CustomerRole and ManufacturerRole constitute the Customer Man-

ufacturer Network. The organization diagram for the network is presented in

Figure 9.9. The organization uses the Ordering Contract protocol and each

of its Domain Roles are bound to Actors in the protocol. The mapping of

the Domain Roles to the protocol Actors is depicted in Figure 9.10. The

ManufacturerServices Role and CustomerServices Role from the Saarstahl

scenario are bound to the generic Manufacturer and Costumer Actors in the

OrderingContract protocol.

From the this view of the Customer Manufacturer Network, we move on

to the general view of the complete Saarstahl Architecture. This overview

is presented in the organization diagram in Figure 9.11. While not all Par-

ticipants shown in Figure 9.3 are present, the correspondence between the

elements generated by the model transformation is clear. The transformed

Participants are bound to their responsibilities through their Domain Roles.

As previously mentioned, the Plans linked to the (sub-)organizations rep-

resenting the Participants implement how these responsibilities are to be

9.4. CORRESPONDING PIM4AGENTS MODELS 169

Figure 9.9: Organization diagram for the Costumer-Manufacturer Network

[CEG+09]

Figure 9.10: Ordering collaboration diagram [CEG+09]

170
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

fulfilled.

Figure 9.11: Organization diagram for the Saarstahl Architecture [CEG+09]

9.5 Scenario Evaluation

The evaluation of the scenario involves considering how well the technology

developed meets the requirements at each of the abstraction level of the

system. As mentioned in [EHJL10], performing a complete evaluation of

every aspect could be a separate project its own. Nevertheless, this section

presents a general evaluation as defined by the SHAPE Consortium.

The evaluation is performed in conjunction with the system stakeholders

from the industrial partner Saarstahl and it is therefore performed in two

stages (see Figure 9.12):

1. the system architect evaluates if the solution works and if it helps the

current IT infrastructure,

2. if the previous stage has a positive result, the administration can eval-

uate the investment in terms of return on investment (ROI).

9.5. SCENARIO EVALUATION 171

Figure 9.12: Evaluation framework [EHJL10]

With respect to stage 1, we can analyze each level of the levels presented

in Figure 9.2 from the point of view of a user:

CIM level CIMFlex allows users without an IT/technical background to

model the business processes in an abstract fashion

CIM to PIM This transformation creates a SoaML skeleton model that

requires refinement.

PIM level 1. SoaML provides an abstract view of the system as a service

oriented architecture.

2. The SoaML to PIM4Agents transformation generates a full PIM4Agents

model in which the SoaML participants are mapped into PIM4Agents

Organizations and Agents.

3. PIM4Agents allows further refinement of the system model using

multiagent system concepts.

PIM to PSM The model transformation generates a JadeOrgs model that

can be executed in JADE. Small refinements/editions are needed to get

a fully executable model.

The SHAPE technologies enabled Saarstahl to model their processes and

generate code that reflects these modeled processes. In particular, they were

172
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

able to model the process from order entry to order acceptance after per-

forming an order feasibility check. This shows that the SHAPE technologies

work in this scenario.

Saarstahl also successfully managed to integrate an existing legacy system

into the Saarstahl architecture in SoaML. This was achieved by wrapping the

legacy system behind a Web Service and obtaining a successful communica-

tion with the software components generated with the SHAPE toolkit. This

demonstrates that the SHAPE technologies helps the integration of current

IT infrastructure.

The analysis of stage 2 should consider the impact of the use of the

SHAPE technologies in the costs of the software development process by

addressing improvement in areas such as:

1. overall project duration, effort (man-hours)

2. number of coordination/analysis meetings per feature/issue

3. system performance (SOA vs. existing environment)

The analysis of this stage is mainly to be performed by Saarstahl and

may take a considerable amount of time and effort which we did not have

available within the resources of the SHAPE project. Therefore this stage

was not performed within the context of the SHAPE project [EHJL10].

9.5.1 SWOT Analysis

In order to summarize the results of the implementation of the SHAPE tech-

nologies in the context of the Saarstahl scenario a Strengths, Weaknesses,

Opportunities and Threats (SWOT) analysis was performed. This analysis

is summarized in Figure 9.13.

Strengths

Among the strengths, we find an enhanced interoperability of existing IT so-

lutions, an improvement of the complete software development process and

the wrapping of legacy systems behind SOA participants. Through the solu-

tion in this scenario, systems that were isolated from each other, such as the

steelwork and rolling mill planning systems and various inventory systems

are now able to communicate and propagate their changes so that following

the production status of an order is more transparent.

9.5. SCENARIO EVALUATION 173

Figure 9.13: SWOT analysis of SHAPE technologies in the Saarstahl scenario

[EHJL10]

In order to achieve this interoperability, various legacy systems were

wrapped under a Web service interface. Thus enabling a faster solution

deployment that reimplementing those systems, but at the same time ensur-

ing than when the time comes to replace any of these legacy systems the

transition will be easier since the web service interfaces to be fulfilled by the

new system are already defined.

As a general strength, the overall software process has been improved.

The use of models not only support the generation of the system’s code, but

has allowed the different parties involved in the technical specification of the

system to have a better, shared understanding of what the system does.

Weaknesses

In spite of the strengths, one weakness has been identified: the lack of a

bottom-up approach. The approach developed in SHAPE starts at the top

level with CIM modeling and through transformations this information is

transferred and refined at the PIM, PSM and code levels.Nevertheless, the

integration of already existing participants, like legacy systems, has to be

174
CHAPTER 9. CASE STUDY: APPLYING MULTIAGENT SYSTEMS

TO A STEEL PRODUCTION PROCESS

performed by modeling them at the CIM level. Thus requiring to ‘manually’

preserve the consistency between the existing systems and their model coun-

terparts. Perhaps a reverse engineering approach could assist in generating

the model artifacts at the various abstraction levels.

Opportunities

The application of our approach has presented a big opportunity to improve

the communication between the different stakeholders. This opportunity is

very closely related to one of the strengths but it is not focused on the

technical issues. The improvement in communication is particularly visible

in the interactions with non-technical stakeholders. They are now able to

provide richer feedback from the business perspective based on the increased

understanding they have achieved.

Threats

The main threat we have identified relates to the reliance on a few modern

techniques and languages. Even though a model driven approach, like ours,

can always be extended to additional languages and platforms, extending

such a system implies an additional effort and risk. These should be consid-

ered when applying such an approach, since it is not uncommon to find a

great variety in the technological landscape of today’s enterprise.

The SWOT analysis has presented us with a overview of the performance

of the approach in this scenario and it has helped identify the areas where it

can be improved.

9.6 Summary

In this chapter, we have presented the application of a model driven approach

of multiagent system technologies to the industrial production of steel. The

scenario presented examples on how different production systems can be in-

terconnected through a SOA, and how a multiagent system can play a coor-

dination role in the tracking of orders and the production stages related to

each order.

The scenario was modeled at the CIM level (ARIS EPC and BPMN)

and then transformed and refined to the PIM level (PIM4Agents) and PSM

level (JadeOrgs). The generated system was then evaluated in how far the

9.6. SUMMARY 175

solutions works and how much it helps the current IT infrastructure. In

addition, a Strengths, Weaknesses, Opportunities and Threats analysis was

performed in order to identify the areas where the current situation of the

SHAPE approach and how it could be improved in the future.

Chapter 10

Conclusions and Future Work

176

10.1. SUMMARY 177

10.1 Summary

In this thesis, we have introduced a new model-driven approach to agent-

oriented software engineering in which organizations not only play a crucial

role, but are also represented in every abstraction level, even runtime. In this

approach, MAS are modeled at the PIM level and transformed into PSM level

preserving the organizational structures.

This approach evolved from the perceived need of a common abstract lan-

guage to model MAS. In project ATHENA, we modeled SOAs at the PIM

level and transformed directly into PSMs related to different agent platforms.

As these PSMs had lots of commonalities, we extracted the common features

into an agent PIM, namely the PIM4Agents. Therefore, the change of do-

main from the application domain to the MAS domain is performed via a

transformation an equivalent abstraction level (PIM-to-PIM transformation)

and then the MAS PIM is mapped to the desired PSM(s).

In order to assist the system designer to model effectively, we described

a methodology that guides the creation of the various model views in a fash-

ion consequent with the dependencies between these views. Depending on

the system requirements or designer preference, the system designer has the

option to model the system in a goal-driven or a behavior-driven fashion.

In the goal-driven fashion, the responsibilities for each role are modeled as

goals. These goals include system overall goals, organization goals and the

goals for each agent type. In the behavior-driven way, the achievement of

goals is implicit in the successful completion of the behaviors and the roles

in the system depend on their required behaviors. Aside for the goal defini-

tion stages, the methodology is the same for both variations by defining: the

information model, the roles with respect to the responsibilities (goals or be-

haviors), the organizational structures and their relationships through roles,

the communication protocols, the detailed process entailed by each behavior,

and the deployment configuration of the MAS.

The PIM4Agents modeling tools support each of these methodology

stages and provide a graphical model for each of the views. In addition

to the graphical modeling support, model validation is performed on the

saved models. The validation avoids the introduction of inconsistencies in

the model and guarantees that the following transformations will work suc-

cessfully.

Once a target agent platform is chosen, the models are transformed into a

178 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

PSM for the given platform. In this thesis, we introduced a PSM for the Jade

Agent Platform, JadeOrgs. JadeOrgs provides the modeling constructs avail-

able in the agent platform and extends this set with the constructs necessary

to represent the organizational structures, their roles and their responsibili-

ties. In addition, a definition for these structures was formalized using the

Object-Z specification language. As these constructs are not implemented

in the Jade Agent platform, JadeOrgs also includes a programming API and

a runtime component so that these structures are also available during the

execution of the modeled MAS. In order to connect the different abstraction

levels, a series of transformations were defined. They consisted in a series of

maps of concepts from one abstraction level to the next and in a set of code

templates in the serialization stage of the PSM to Java code.

In order to prove the viability of such models and transformations, first

an early version of JadeOrgs was applied to a proof of concept in the context

of service oriented architectures. From this experience, it was determined

that a agent-oriented PIM metamodel would be beneficial and eventually led

to the definition of the PIM4Agents. Once the PIM level metamodel was

further developed, along with the transformations and graphical modeling

tools, the complete approach was applied to a scenario in steel production.

The implementation of the scenario proved successful and generated valu-

able feedback that has been integrated into following version of the tools,

metamodel definitions and transformations.

10.2 Future Work

In spite of the success had in the scenarios presented in this thesis, the ap-

proach and tools need further validation and can still be extended to address

a variety of issues and topics that were deemed beyond the scope of this

work. In the following list, we suggest some of these topics that could prove

interesting as further research. This list is not comprehensive, but represents

a sample of the possible directions in which this work could be improved or

extended.

10.2.1 Role Deployment Dynamics

The runtime components in JadeOrgs enable the construction and modifi-

cation of organizational structures programatically. The current modeling

10.2. FUTURE WORK 179

approach takes a somewhat static view on the definition of roles and organi-

zations. It would be interesting to model and perhaps regulate what kind of

dynamics can be incorporated:

1. Can roles change in time as long as the parties involved agree upon it?

2. Can role responsibilities be modified in a running system? Under what

conditions?

3. How would a role negotiation take place?

4. Does the organization“own” the roles and therefore the members either

comply to the new roles or leave the organization?

Also under the role dynamics, issues related to service level agreements

could be addressed. As the terms of such agreements change in time, how

could these changes be propagated in a running system while guaranteeing

that processes that were already in progress comply to the terms that were

valid when the process was started.

10.2.2 Norms and Electronic Institutions

The role that norms play in organizational structures in MAS is an ongo-

ing topic of research following seminal works such as Electronic Institutions

[Est02, RA03, Bog07]. We have already sketched how a such norms could be

included in our metamodels. Figure 10.1 presents how such norms could be

modeled as part of JadeOrgs.

Figure 10.1: Sketch of normative view for JadeOrgs

180 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

The interesting issue would not be to just model the norms at PIM and

PSM level, but determine a way to enforce them in the targeted agent plat-

forms while still preserving agent and organization autonomy and, hopefully,

without requiring a complete redesign of the agent platform itself.

10.2.3 Bottom-up Approach

During the development of the Saarstahl scenario, we noted that the consis-

tency between existing systems or modules, and what is modeled at the CIM

or PIM levels is only guaranteed through careful modeling. While care and

attention to detail will always be critical to modeling and other development

stages, it would be easier if we could reverse engineer current existing sys-

tems to guarantee that the modeled interfaces to these systems comply to

the actual interfaces that these systems offer. These is also relevant when

encapsulating legacy systems behind web services.

The issue here is to automate the selection of relevant features with re-

spect to the level of abstraction desired. Every time the level of abstraction is

raised, there is some information loss given that the more abstract concepts

are more general than the more specific ones. Perhaps there is no optimal

solution for this problem in every scenario, but perhaps general guidelines

could be found and a customizable framework be implemented so that this

feature extraction can be customized to the application domain in question.

10.2.4 Other Application Domains

In this thesis, we only applied the proposed approach to proof-of-concept

scenarios and one industrial scenario in the context of steel production. The

combination of MAS and SOAs is potentially a viable solution to scenarios

where there are multiple parties involved and coordination is critical, or sit-

uations where resource availability or cost is dynamic. Therefore, it would

be interesting to further validate our tools in areas in which we have some

experience, but because of time constraints did not carry it out in full:

Travel reservation The booking of lodging and travel arrangements always

include a series of variables and preferences that need to be satisfied

to fulfill the user’s requirements. These may include cost, duration,

time of day, location of lodging with respect to desired activities, room

type preference, airplane sitting preference, preferred loyalty programs,

10.2. FUTURE WORK 181

etc. The amount of variables and available offers make the automatic

composition of a travel solution a non-trivial task with very practical

commercial application.

Negotiation and instantiation of service-level agreements Given the

desire for an agent organization that implements certain terms of service

between the involved parties, how can these service level agreements

be modeled and how could changes and violations to these terms be

handled.

Navigation with augmented reality on mobile devices If a user wants

to find and book given service in his/her vicinity, could we model a

MAS that would assist him in guiding this user to the location, fulfilling

his time and cost constraints, and making a reservation for him with

minimum interaction. This would go further than guiding the user’s de-

cision process, like Apple’s Siri1, but would consider in the background

issues like: time constraints as defined in the user’s agenda/calendar

and the services time availability (i.e. a restaurant’s opening times),

or the user’s preferences (i.e. dietary needs in the case of a restaurant

search, or movie genre in case of a movie theater search) and perform a

prebooking for these services and present the user with a list of viable

solutions. Such a result list can be then displayed over the map on the

navigation system or as a heads-up-display using the mobile device’s

integrated camera.

1http://www.apple.com/iphone/features/siri.html

List of Figures

2.1 Relation among models, metamodels and platforms (based on

[MKUW04]) . 23

2.2 Example of a CIM, PIM and PSM 26

4.1 Overview of the model-driven approach with PIM4Agents . . . 38

5.1 The Multiagent System View of the PIM4Agents. 49

5.2 The metamodel reflecting the agent aspect of the PIM4Agents. 49

5.3 The metamodel reflecting the organizational aspect of the

PIM4Agents. 51

5.4 The metamodel reflecting the goal aspect of the PIM4Agents. 53

5.5 The metamodel reflecting the role aspect of the PIM4Agents. . 54

5.6 The partial metamodel reflecting the behavior aspect of the

PIM4Agents. 56

5.7 The hierarchy of StructuredActivities. 57

5.8 The hierarchy of Tasks. 57

5.9 The partial metamodel reflecting the partial interaction aspect

of the PIM4Agents. 60

5.10 The partial metamodel reflecting the information model view

of the PIM4Agents. 62

5.11 The Condition hierarchy. 63

5.12 The metamodel for the Deployment View of PIM4Agents . . . 64

5.13 The abstract goal decomposition for ManagePaperSubmission 66

5.14 The concrete goal decomposition for ManagePaperSubmission 67

5.15 The Information Model for the CMS 69

5.16 The Role View for the CMS example 70

5.17 The Organization View for the CMS example 72

5.18 The Agent View for the CMS example 74

182

LIST OF FIGURES 183

5.19 The PaperReviewCollaboration for the PC organization 75

5.20 The RequestReview protocol 76

5.21 The ManagePaperSubmissions plan 79

5.22 The CMS deployment view . 80

6.1 View of the Project package of the JadeOrgs metamodel . . . 97

6.2 The Core of the JadeOrgs metamodel 98

6.3 Partial view of the Behavior class hierarchy 100

6.4 Representation of the FSMBehaviour 101

6.5 The JadeOrgs Process package 102

6.6 The JadeOrgs Ontology . 103

6.7 The JadeOrgs Goals . 105

6.8 The Deployment View in JadeOrgs 106

6.9 Agent Description in JADE 107

6.10 The RoleFillerRequest protocol 108

6.11 The TaskRequest protocol . 109

6.12 The Product Sale Protocol . 111

6.13 Organizational structures for the Product Sale scenario 112

6.14 Loan Application protocol . 113

6.15 Instance distribution of the scenario (initial state) 115

6.16 Example of organization structure instances: Two Organiza-

tions bound to N Agents through 4 roles 118

7.1 Partial views of the JadeOrgs CMS model 126

7.2 Extract from the Method2Java text transformation 127

8.1 Overview of the AIF technical framework [BEF+07] 134

8.2 The service metamodel of the PIM4SOA. 136

8.3 The process metamodel of the PIM4SOA. 138

8.4 Behaviour, Scope and the Steps inheritance hierarchy. 139

8.5 The overall picture: From service-oriented architectures to

agent systems using MDA standards. 141

8.6 The example illustrates the service model. 150

8.7 The example illustrates the process model. 151

8.8 The example after the transformation to JADE was applied. . 152

9.1 Saarstahl departments involved in the Steelwork-Rolling Mills

Scenario [CEG+09] . 157

184 LIST OF FIGURES

9.2 Model transformations from business models to heterogeneous

executable platforms [CEG+09] 160

9.3 Saarstahl Architecture in SoaML [CEG+09] 162

9.4 Order agent specification [CEG+09] 163

9.5 Event handling performed by the Order agent [CEG+09] . . . 165

9.6 Melting request performed by the Order agent [CEG+09] . . . 166

9.7 Activity diagram for “Purchasing Process” [CEG+09] 167

9.8 Agent diagram [CEG+09] . 168

9.9 Organization diagram for the Costumer-Manufacturer Net-

work [CEG+09] . 169

9.10 Ordering collaboration diagram [CEG+09] 169

9.11 Organization diagram for the Saarstahl Architecture [CEG+09] 170

9.12 Evaluation framework [EHJL10] 171

9.13 SWOT analysis of SHAPE technologies in the Saarstahl sce-

nario [EHJL10] . 173

10.1 Sketch of normative view for JadeOrgs 179

Bibliography

[AFV04] Mercedes Amor, Lidia Fuentes, and Antonio Vallecillo. Bridg-

ing the Gap Between Agent-Oriented Design and Implemen-

tation Using MDA. In Agent-Oriented Software Engineering

(AOSE-2004), number 3382 in Lecture Notes in Computer Sci-

ence, pages 93–108, 2004.

[Age05] Agentlink III AOSE Technical Fo-

rum Group. Methodologies evaluation.

http://www.pa.icar.cnr.it/cossentino/al3tf3/docs/aose-

evaluation.ppt (Accesssed March, 2009), September 2005.

[AOS06] AOS. JACK Intelligent Agents, The Agent Ori-

ented Software Group (AOS), http://www.agent-

software.com/shared/home/, 2006.

[ATL06] ATLAS Group, INRIA & LINA, University of Nantes. IN-

RIA, ATL - The Atlas Transformation Language Home Page,

http://www.sciences.univ-nantes.fr/lina/atl/, 2006.

[Aus62] John L. Austin. How to do things with words. Harvard U.P.,

Cambridge, Mass., 1962.

[Bau02] Bernhard Bauer. UML Class Diagrams revisited in the context

of agent-based systems. In Agent-Oriented Software Engineer-

ing II: Second International Workshop, AOSE 2001, Lecture

Notes in Computer Science 2222, page 101118. Springer, 2002.

[BBC+10] Gorka Benguria, Arne J. Berre, Davide Cerri, Brian Elvesæter,

Klaus Fischer, Christian Hahn, Sven Jacobi, Einar Landre,

Dima Panfilenko, Andrey Sadovykh, and Michael Stollberg.

185

186 BIBLIOGRAPHY

SHAPE Whitepaper. http://www.shape-project.eu/wp-

content/uploads/2010/05/shape whitepaper.pdf, January

2010.

[BBG+08] Matteo Baldoni, Guido Boella, Valerio Genovese, Roberto

Grenna, and Leendert van der Torre. How to Program Or-

ganizations and Roles in the JADE Framework. In MATES,

pages 25–36, 2008.

[BCG+04] Carole Bernon, Massimo Cossentino, Marie Pierre Gleizes,

Paola Turci, and Franco Zambonelli. A study of some multi-

agent meta-models. In James Odell, Paolo Giorgini, and

Jörg P. Müller, editors, AOSE, volume 3382 of Lecture Notes

in Computer Science, pages 62–77. Springer, 2004.

[BEF+07] Arne-Jørgen Berre, Brian Elvesæter, Nicolas Figay, Claudia

Guglielmina, S. Johnsen, Dag Karlsen, Thomas Knothe, and

S. Lippe. The ATHENA Interoperability Framework. In Ri-

cardo Jardim-Gonçalves, Jörg P. Müller, Kai Mertins, and

Martin Zelm, editors, IESA, pages 569–580. Springer, 2007.

[BGPLHS05] Ghassan Beydoun, Cesar Gonzalez-Perez, Graham Low, and

Brian Henderson-Sellers. Synthesis of a generic mas meta-

model. In SELMAS ’05: Proceedings of the fourth interna-

tional workshop on Software engineering for large-scale multi-

agent systems, pages 1–5, New York, NY, USA, 2005. ACM

Press.

[BGPP02] Carole Bernon, Marie Pierre Gleizes, Sylvain Peyruqueou, and

Gauthier Picard. Adelfe: A methodology for adaptive multi-

agent systems engineering. In Paolo Petta, Robert Tolksdorf,

and Franco Zambonelli, editors, ESAW, volume 2577 of Lecture

Notes in Computer Science, pages 156–169. Springer, 2002.

[BMO00] Bernhard Bauer, Jörg P. Müller, and James Odell. Agent UML:

A Formalism for Specifying Multiagent Software Systems. In

Paolo Ciancarini and Michael Wooldridge, editors, AOSE, vol-

ume 1957 of Lecture Notes in Computer Science, pages 91–104.

Springer, 2000.

BIBLIOGRAPHY 187

[BMO01] Bernhard Bauer, Jörg P. Müller, and James Odell. Agent UML:

A Formalism for Specifying Multiagent Software Systems. In-

ternational Journal of Software Engineering and Knowledge

Engineering, 11(3):207–230, 2001.

[Bog07] Anton Bogdanovych. Virtual Institutions. PhD thesis, Univer-

sity of Technology, Sydney, Australia, 2007.

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto

Giunchiglia, and John Mylopoulos. TROPOS: An Agent-

Oriented Software Development Methodology. Journal of Au-

tonomous Agents and Multiagent Systems, 8(3), 2004.

[BPR99] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.

JADE - a FIPA-compliant agent framework. In Proceedings

of the Practical Applications of Intelligent Agents, 1999.

[Bra90] Michael E. Bratman. What is intention? In Philip R. Cohen,

Jerry L. Morgan, and Martha E. Pollack, editors, Intentions

in Communication, pages 15–32. The MIT Press, Cambridge,

MA, June 1990.

[Bro90] Rodney A. Brooks. Elephants don’t play chess. Robotics and

Autonomous Systems, 6(1&2):3–15, June 1990.

[Bro91] Rodney A. Brooks. Intelligence without reason. In Ray My-

opoulos, John; Reiter, editor, Proceedings of the 12th Interna-

tional Joint Conference on Artificial Intelligence, pages 569–

595, Sydney, Australia, August 1991. Morgan Kaufmann.

[BSM+03] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and

T. Grose. Eclipse Modeling Framework. Addison Wesley Pro-

fessional, 2003.

[CEG+09] Davide Cerri, Brian Elvesæter, Birgit Grammel, Christian

Hahn, Sven Jacobi, Einar Landre, Marcel Muth, and Dima

Panfilenko. Case Study Execution and Validation, Interim Re-

port, Work Package 1. Deliverable D1.3, SHAPE Project, Eu-

ropean Commission, 7th Framework Programme, December

2009.

188 BIBLIOGRAPHY

[Cos05a] M. Cossentino. From requirements to code with the PASSI

methodology. In B. Henderson-Sellers and P. Giorgini, editors,

Agent-Oriented Methodologies, Hershey, PA, USA, 2005. Idea

Group Inc.

[Cos05b] Massimo Cossentino. Methodology evaluation questionnaire.

http://www.pa.icar.cnr.it/cossentino/al3tf3/docs/questionnaire.doc

(Accesssed March, 2009), 2005.

[CTCG04] Radovan Cervenka, Ivan Trencanský, Monique Calisti, and Do-

minic A. P. Greenwood. AML: Agent Modeling Language

Toward Industry-Grade Agent-Based Modeling. In Agent-

Oriented Software Engineering (AOSE-2004), number 3382 in

Lecture Notes in Computer Science 3382, pages 31–46, Berlin

et al., 2004. Springer.

[DD01] Virginia Dignum and Frank Dignum. Modelling Agent Soci-

eties: Co-Ordination Frameworks and Institutions. In Progress

in Artificial Intelligence, LNAI 2258, pages 191–204. Springer-

Verlag, 2001.

[DeL91] Scott A. DeLoach. Multiagent Systems Engineering: A

Methodology and Language for Designing Agent Systems. In

Agent-Oriented Information Systems ’99 (AOIS’99), Seattle

WA, May 1991.

[DeL02] Scott A. DeLoach. Modeling organizational rules in the multi-

agent systems engineering methodology. In Robin Cohen

and Bruce Spencer, editors, Canadian Conference on AI, vol-

ume 2338 of Lecture Notes in Computer Science, pages 1–15.

Springer, 2002.

[DeL05] Scott A. DeLoach. Engineering organization-based multiagent

systems. In Alessandro F. Garcia, Ricardo Choren, Carlos

José Pereira de Lucena, Paolo Giorgini, Tom Holvoet, and

Alexander B. Romanovsky, editors, SELMAS, volume 3914 of

Lecture Notes in Computer Science, pages 109–125. Springer,

2005.

BIBLIOGRAPHY 189

[DeL07] Scott A. DeLoach. Developing a multiagent conference man-

agement system using the o-mase process framework. In Luck

and Padgham [LP08], pages 168–181.

[DGO10] Scott A. DeLoach and Juan C. Garćıa-Ojeda. O-mase: a cus-

tomisable approach to designing and building complex, adap-

tive multi-agent systems. IJAOSE, 4(3):244–280, 2010.

[DR00] Roger Duke and Gordon Rose. Formal object-oriented specifi-

cation using Object-Z. Macmillan, Basingstoke :, 2000.

[DS83] Randall Davis and Reid G. Smith. Negotiation as a metaphor

for distributed problem solving. Artificial Intelligence, 20:63–

109, 1983.

[D’S01] D. D’Souza. Model-Driven Architecture and Integration - Op-

portunities and Challenges, Version 1.1, Kineticum, 2001.

[EdlCS02] Marc Esteva, David de la Cruz, and Carles Sierra. Islander:

an electronic institutions editor. In Proceedings of the first in-

ternational joint conference on Autonomous agents and mul-

tiagent systems: part 3, AAMAS ’02, pages 1045–1052, New

York, NY, USA, 2002. ACM.

[EHJL10] Brian Elvesæter, Christian Hahn, Sven Jacobi, and Einar Lan-

dre. Case Study Execution and Validation, Final Report, Work

Package 1. Deliverable D1.4, SHAPE Project, European Com-

mission, 7th Framework Programme, May 2010.

[Est02] Marc Esteva. ISLANDER: an electronic institutions editor. In

In First International Conference on Autonomous Agents and

Multiagent systems, pages 1045–1052. ACM Press, 2002.

[Fer92] Innes A. Ferguson. Touring machines: Autonomous agents

with attitudes. Computer, 25(5):51–55, 1992.

[FFMM94] Timothy W. Finin, Richard Fritzson, Donald P. McKay, and

Robin McEntire. Kqml as an agent communication language.

In CIKM, pages 456–463. ACM, 1994.

190 BIBLIOGRAPHY

[FG98] J. Ferber and O. Gutknecht. A meta-model for the analysis and

design of organizations in multi-agent systems. In Proceedings

of the Third International Conference on Multi-Agent Systems

(ICMAS’98), pages 128–135, 1998.

[FHMM07] Klaus Fischer, Christian Hahn, and Cristián Madrigal-Mora.

Agent-oriented software engineering: a model-driven approach.

Int. J. Agent-Oriented Software Engineering, 1(3/4):334–369,

2007.

[Fou01] Foundation for Intelligent Physical Agents. FIPA ACL Mes-

sage Structure Specification (fipa00061). FIPA, 2001.

[Fou02a] Foundation for Intelligent Physical Agents. FIPA ACL Mes-

sage Structure Specification. Document number SC00061G.

http://www.fipa.org/specs/fipa00061/SC00061G.html, 2002.

[Fou02b] Foundation for Intelligent Physical Agents. FIPA Communica-

tive Act Library Specification. Document number SC00037J.

http://www.fipa.org/specs/fipa00037/SC00037J.html, 2002.

[Fou02c] Foundation for Intelligent Physical Agents.

FIPA Contract Net Interaction Protocol Spec-

ification. Document number SC00029H.

http://www.fipa.org/specs/fipa00029/SC00029H.html, 2002.

[Fou02d] Foundation for Intelligent Physical Agents.

FIPA Request Interaction Protocol Spec-

ification. Document number SC00026H.

http://www.fipa.org/specs/fipa00026/SC00026H.html, 2002.

[Fou02e] Foundation for Intelligent Physical Agents. FIPA SL Con-

tent Language Specification. Document number SC00008I.

http://www.fipa.org/specs/fipa00008/SC00008I.html, 2002.

[Gen91] Michael R. Genesereth. Knowledge Interchange Format. In

KR, pages 599–600, 1991.

[GF92] Michael R. Genesereth and Richard E. Fikes. Knowledge In-

terchange Format Version 3.0 Reference Manual. Technical

BIBLIOGRAPHY 191

Report Logic-92-1, Computer Science Department, Stanford

University, 1992.

[GL87] Michael P. Georgeff and Amy L. Lansky. Reactive reasoning

and planning. In AAAI, pages 677–682, 1987.

[GPP+98] Michael P. Georgeff, Barney Pell, Martha E. Pollack, Milind

Tambe, and Michael Wooldridge. The belief-desire-intention

model of agency. In Müller et al. [MSR99], pages 1–10.

[Gue05] Zahia Guessoum. MAS Meta-Models and

MDA, AgentLink III AOSE TFG2. Online at:

http://www.pa.icar.cnr.it/c̃ossentino/al3tf2/docs/zahia slovenia.pdf,

2005.

[HBSS00] Mahdi Hannoun, Olivier Boissier, Jaime Simão Sichman, and

Claudette Sayettat. MOISE: An Organizational Model for

Multi-agent Systems. In IBERAMIA-SBIA, pages 156–165,

2000.

[Hor51] Alfred Horn. On sentences which are true of direct unions of

algebras. J. Symb. Log., 16(1):14–21, 1951.

[HSB02] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier.

MOISE+: towards a structural, functional, and deontic model

for MAS organization. In AAMAS, pages 501–502. ACM, 2002.

[JK05] Frederic Jouault and Ivan Kurtev. Transforming Models with

ATL. In MoDELS 2005, Montego Bay, Jamaica, 2005.

[Lin01] Jürgen Lind. Iterative Software Engineering for Multiagent

Systems: The MASSIVE Method, volume 1994 of Lecture

Notes in Computer Science. Springer, 2001.

[LP08] Michael Luck and Lin Padgham, editors. Agent-Oriented Soft-

ware Engineering VIII, 8th International Workshop, AOSE

2007, Honolulu, HI, USA, May 14, 2007, Revised Selected

Papers, volume 4951 of Lecture Notes in Computer Science.

Springer, 2008.

192 BIBLIOGRAPHY

[LTB+08] Einar Landre, Knut Tungeland, Arne-Jørgen Berre, Brian

Elvesæter, Sven Jacobi, Christian Hahn, Stefan Warwas, and

Sebastian Kämper. Case study scenario descriptions and re-

quirements specifications, Work Package 1. Deliverable D1.1,

SHAPE Project, European Commission, 7th Framework Pro-

gramme, December 2008.

[LTB+09] Einar Landre, Knut Tungeland, Arne-Jørgen Berre, Brian

Elvesæter, Sven Jacobi, Christian Hahn, Stefan Warwas, and

Sebastian Kämper. Case Study Execution and Validation Ð
Initial Report, Work Package 1. Deliverable D1.2, SHAPE

Project, European Commission, 7th Framework Programme,

January 2009.

[MKUW04] Stephen J. Mellor, Scott Kendall, Axel Uhl, and Dirk Weise.

MDA Distilled. Addison Wesley Longman Publishing Co., Inc.,

Redwood City, CA, USA, 2004.

[MLF95] James Mayfield, Yannis Labrou, and Timothy W. Finin. Evalu-

ation of kqml as an agent communication language. In Michael

Wooldridge, Jörg P. Müller, and Milind Tambe, editors, ATAL,

volume 1037 of Lecture Notes in Computer Science, pages 347–

360. Springer, 1995.

[MMLSF08] Cristián Madrigal-Mora, Esteban León-Soto, and Klaus Fis-

cher. Implementing Organisations in JADE. In MATES, pages

135–146, 2008.

[MNP+07] Mirko Morandini, Duy Cu Nguyen, Anna Perini, Alberto

Siena, and Angelo Susi. Tool-supported development with tro-

pos: The conference management system case study. In Luck

and Padgham [LP08], pages 182–196.

[MP93] Jörg P. Müller and Markus Pischel. The agent architecture

inteRRaP: Concept and application. Technical report, German

Research Center for Artificial Intelligence, 1993. RR 93-26.

[MS06] Pavlos Moraitis and Nikolaos I. Spanoudakis. The Gaia2Jade

Process for Multi-Agent Systems Development. Applied Arti-

ficial Intelligence, 20(2-4):251–273, 2006.

BIBLIOGRAPHY 193

[MSR99] Jörg P. Müller, Munindar P. Singh, and Anand S. Rao, editors.

Intelligent Agents V, Agent Theories, Architectures, and Lan-

guages, 5th International Workshop, ATAL ’98, Paris, France,

July 4-7, 1998, Proceedings, volume 1555 of Lecture Notes in

Computer Science. Springer, 1999.

[Mül98] Jörg P. Müller. The right agent (architecture) to do the right

thing. In Müller et al. [MSR99], pages 211–225.

[Obj03] Object Management Group (OMG). MDA Guide

Version 1.0.1, Document omg/03-06-01, June 2003,

http://www.omg.org/docs/omg/03-06-01.pdf, June 2003.

[Obj04] Object Management Group (OMG). Meta Object Facility

(MOF) 2.0 Core Specification, Document ptc/04-10-15, Oc-

tober 2004, http://www.omg.org/docs/ptc/04-10-15.pdf, Oc-

tober 2004.

[ONL04] James Odell, Marian H. Nodine, and Renato Levy. A meta-

model for agents, roles, and groups. In AOSE, pages 78–92,

2004.

[OPF03] James Odell, H. Van Dyke Parunak, and Mitchell Fleischer.

Modeling agent organizations using roles. Software and System

Modeling, 2(2):76–81, 2003.

[PBL05] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI

Reasoning Engine, volume 15 of Multiagent Systems, Artificial

Societies, and Simulated Organizations, chapter 6, pages 149–

174. Springer, Berlin et al., 2005.

[PGS03] Juan Pavón and Jorge J. Gómez-Sanz. Agent oriented software

engineering with ingenias. In Vladimı́r Maŕık, Jörg P. Müller,

and Michal Pechoucek, editors, CEEMAS, volume 2691 of

Lecture Notes in Computer Science, pages 394–403. Springer,

2003.

[PGSF06] Juan Pavón, Jorge J. Gómez-Sanz, and Rubén Fuentes. Model

Driven Development of Multi-Agent Systems. In Arend

Rensink and Jos Warmer, editors, ECMDA-FA, volume 4066 of

194 BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 284–298. Springer,

2006.

[PH01] M. Papasimeon and C. Heinze. Extending the UML for design-

ing JACK agents. In Proceedings of the Australian Software

Engineering Conference (ASWEC 01), 2001.

[PL07] Lin Padgham and Michael Luck. Introduction to aose tools

for the conference management system. In Luck and Padgham

[LP08], pages 164–167.

[PTW07] Lin Padgham, John Thangarajah, and Michael Winikoff. The

prometheus design tool - a conference management system case

study. In Luck and Padgham [LP08], pages 197–211.

[RA03] Juan A. Rodŕıguez-Aguilar. On the Design and Construction

of Agent-Mediated Electronic Institutions. PhD thesis, IIIA-

CSIC, Bellaterra, Spain, 2003.

[Rab09] David Raber. A Model-Driven Approach for the Integration of

Multiagent Systems and Service-Oriented Architectures in the

Steel Industry. Master’s thesis, Saarland University, December

2009.

[RG95] Anand S. Rao and Michael P. Georgeff. Bdi agents: From

theory to practice. In Victor R. Lesser and Les Gasser, editors,

ICMAS, pages 312–319. The MIT Press, 1995.

[RN02] Stuart J. Russell and Peter Norvig. Artificial Intelligence:

A Modern Approach (2nd Edition). Prentice Hall, December

2002.

[Sea69] John R. Searle. Speech acts : an essay in the philosophy of lan-

guage / John R. Searle. Cambridge University Press, London

:, 1969.

[SF03] Michael Schillo and Klaus Fischer. Holonic multiagent systems.

KI, 17(4):54–55, 2003.

[SIN06] SINTEF ICT. MOFScript,

http://www.eclipse.org/gmt/mofscript, 2006.

BIBLIOGRAPHY 195

[Smi00] Graeme Smith. The Object-Z specification language. Kluwer

Academic Publishers, Norwell, MA, USA, 2000.

[SO04] J. M. Serrano and S. Ossowski. On the impact of agent com-

munication languages on the implementation of agent systems.

In Proceedings of the Eight International Workshop CIA 2004

on Cooperative Information Agents, volume 3191 of Lecture

Notes in Computer Science, pages 92–106, Berlin et al., 2004.

Springer.

[Spi89] J. M. Spivey. The Z notation: a reference manual. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[TC05] I. Trencansky and R. Cervenka. Agent modeling language

(AML): A comprehensive approach to modeling MAS. Infor-

matica, 29(4):391–400, 2005.

[VBE+10] Julien Vayssiére, Gorka Benguria, Brian Elvesæter, Klaus

Fischer, and Ingo Zinnikus. Rapid Prototyping for Service-

Oriented Architectures, pages 93–106. ISTE, 2010.

[vRDW08] M. Birna van Riemsdijk, Mehdi Dastani, and Michael Winikoff.

Goals in agent systems: a unifying framework. In AAMAS

’08: Proceedings of the 7th international joint conference on

Autonomous agents and multiagent systems, pages 713–720,

Richland, SC, 2008. International Foundation for Autonomous

Agents and Multiagent Systems.

[Wei00] Gerhard Weiss. Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence. MIT Press, Cambridge, MA,

USA, 2000.

[WH08] Stefan Warwas and Christian Hahn. The contrete syntax of the

platform independent modeling language for multiagent sys-

tems. In Proceedings of the Agent-based Technologies and ap-

plications for enterprise interOPerability (ATOP 2008). Work-

shop to be held at the Seventh International Joint Conference

on Autonomous Agents & Multiagent Systems (AAMAS 2008),

2008.

196 BIBLIOGRAPHY

[WJ95] Michael Wooldridge and Nicholas R. Jennings. Intelligent

agents: Theory and practice. Knowledge Engineering Review,

10:115–152, 1995.

[WJK00] M. Wooldridge, N.R. Jennings, and D. Kinny. The Gaia

methodology for agent-oriented analysis and design. Au-

tonomous Agents and Multi-Agent Systems, 3(3):285–312,

2000.

[Woo02] Michael Wooldridge. An Introduction to MultiAgent Systems.

John Wiley & Sons, 1st edition, June 2002.

[ZJW01] F. Zambonelli, N.R. Jennings, and M.J. Wooldridge. Organi-

zational rules as an abstraction for the analysis and design of

multi-agent systems. International Journal of Software Engi-

neering and Knowledge Engineering, 11:303–328, 2001.

[ZJW03] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing

multiagent systems: the Gaia methodology. ACM Transac-

tions on Software Engineering and Methodology, 12(3):417–

470, 2003.

	I Introduction
	Motivation
	Objectives
	Contributions
	Structure

	Background
	Foundations of Multiagent Systems
	Basic concepts
	Types of agents
	Interaction
	Communication

	Model-Driven Software Development
	Models and Metamodels
	Model Transformations
	The Abstraction Levels of the Model Driven Architecture

	State of the Art in AOSE
	Agents and the Unified Modeling Language
	MAS Metamodels and Frameworks
	Agent-Oriented Programming Languages
	Model-Driven Development of MAS

	II A Model-Driven Approach for Organizations in Multiagent Systems
	Modeling Agent Organizations
	Modeling of the Abstract Goals
	Definition of the Information Model
	Refinement of the Abstract Goals into Concrete Goals
	Modeling of the Roles in the System
	Modeling of Organizational Structures and Relations between Roles
	Modeling of the Communication Patterns
	Definition of the Detailed Behaviors of the Agents
	Establishment of the Initial Deployment Configuration of the System

	PIM4Agents
	Multiagent System Viewpoint
	Agent Viewpoint
	Organization Viewpoint
	Goal Viewpoint
	Role Viewpoint
	Behavior Viewpoint
	Interaction Viewpoint
	Information Model Viewpoint
	Deployment Viewpoint
	Case Study: The Conference Management System
	The CMS Goal Model
	The CMS Information Model
	The CMS Role Model
	The CMS Organization Model
	The CMS Agent Model
	The CMS Interaction Model
	The CMS Behavior Model
	The CMS Deployment Model

	Summary

	JadeOrgs
	Formal Specification of Organizations in JADE
	Basic types
	Condition
	Goal
	Variable
	Message
	Plan
	Role
	Agent
	Organization
	AgentPlatform

	The JadeOrgs metamodel
	The JadeOrgs Project View
	The JadeOrgs Core View
	The JadeOrgs Behavioral View
	The JadeOrgs Process View
	The JadeOrgs Ontology View
	The JadeOrgs Deployment View

	JadeOrgs protocols and interactions
	Publishing to the Directory Facilitator
	Establishment of the Organization
	Task Request and Goal Achieve

	Small Example: Product Sale with Loan
	Related works
	Metamodel comparison
	Other approaches to runtime organizations in JADE

	Summary

	Transforming PIM4Agents into JadeOrgs
	The Mapping Rules
	Generated JadeOrgs models
	Code Serialization
	Summary

	III Applications and Conclusions
	Proof of Concept: Modeling e-Procurement with PIM4SOA and JadeOrgs
	Metamodel for Service-Oriented Architectures
	Service Metamodel
	Process Metamodel
	Information Metamodel

	Model to Model Transformations
	From PIM4SOA to JadeMM
	Use Case Scenario
	SOA Model in accordance to the PIM4SOA
	Applying the transformation from PIM4SOA to JadeMM

	Summary

	Case Study: Applying Multiagent Systems to a Steel Production Process
	Scenario Description
	Methodology
	Modeling the PIM Layer with SoaML
	Corresponding PIM4Agents Models
	Scenario Evaluation
	SWOT Analysis

	Summary

	Conclusions and Future Work
	Summary
	Future Work
	Role Deployment Dynamics
	Norms and Electronic Institutions
	Bottom-up Approach
	Other Application Domains

	List of Figures
	References
	Index

