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ABSTRACT 

Parsing can be improved in automatic speech understand­
ing if prosodic boundary marking is taken into account, 
because syntactic boundaries are often marked by prosodic 
means. Because large databases are needed for the train­
ing of statistical models for prosodic boundaries, we de­
veloped a labeling scheme for syntactic-prosodic bound­
aries within the German VERB MOBIL project (automatic 
speech-to--speech translation). We compare the results of 
classifiers (multi-layer perceptrons and language models) 
trained on these syntactic-prosodic boundary labels with 
classifiers trained on perceptual-prosodic and purely syn­
tactic labels. Recognition rates of up to 96% were achieved. 
The turns that we need to parse consist of 20 words on the 
average and frequently contain sequences of partial sentence 
equivalents due to restarts, ellipsis, etc. For this material, 
the boundary scores computed by our classifiers can success­
fully be integrated into the syntactic parsing of word graphs; 
currently, they improve the parse time by 92% and reduce 
the number of parse trees by 96%. This is achieved by in­
troducing a special Prosodic Syntactic Clause Boundary 
symbol (PSCB) into our grammar and guiding the search for 
the best word chain with the prosodic boundary scores. 

1. INTRODUCTION 

Prosody structures utterances and helps the listeners to un­
derstand and disambiguate their meaning. To our knowl­
edge, however, so far nobody has really integrated this in­
formation into a complete automatic speech understanding 
system. We will present a syntactic analysis of word hy­
potheses graphs using prosodic clause boundary informa­
tion. Our research is carried out in the speech-to--speech 
translation project VERBMOBIL [19, 61 (domain: appoint­
ment scheduling) where the influence o( prosody can already 
be evaluated in an end-to-end system; for the integration 
of prosody in the VERBMOBIL system, cf. [12], for the lin­
guistic processing of VERBMOBIL, cf. [4]. 

A corpus analysis of VERBMOBIL data (human-human 
dialogs) showed that about 70 % of the utterances contain 
more than one single sentence [18]. About 25 % of the 
utterances are longer than 10 seconds. Especially for such 
a material, the use of prosody in parsing is crucial for two 
reasons: 

First, to ensure that most of the words that were spoken 
are recognized, a large word hypotheses graph (currently 
about 10 hypotheses per spoken word) has to be generated. 
Finding the correct (or approximately correct) path through 

lThis work was partly funded by the German Federal Ministry 
of Education, Science, Research and Technology (BMBF) in the 
framework of the VERBMOBIL Project under Grant 01 IV 101 AO 
and funded under Grants 01 IV 102 F 14 and 01 IV 102 H/O . The 
responsibility for the contents lies with the authors. 
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a word hypotheses graph is thus an enormous search prob­
lem. 

Second, spontaneous speech contains many elliptic con­
structions. So even if the spoken word sequence has been 
recovered by word recognition correctly, there still might 
be many different parses possible, especially with longer 
turns. Consider the following two of the at least 36 differ­
ent syntactic readings for a word sequence taken from the 
VERBMOBIL corpus 

"Ja zur Not. Geht's auch am Samstag?" 
vs. "Ja zur Not geht's auch am Samstag." 

The appropriate English translations are 
"O.K., if necessary. Is Saturday possible as well?" 
vs." Well, if necessary, Saturday is possible as well." 

In these examples, only the prosodically marked boundaries 
can disambiguate between the two different semantic mean­
ings and pragmatic interpretations. 

We use prosody only to guide the search for the best syn­
tactic parse through the word graph; no hard decisions are 
made. Partial parses are ranked in an agenda according to 
a score which takes into account the prosodic probability 
for a clause boundary. At each step of the search the best 
partial parse is extended. So the main use of prosodic infor­
mation will be to speed-up the search for the best complete 
parse. However, in a system with limited resources (i.e. the 
syntax has to produce a parse after nxturn length or it will 
receive a time out signal), this speed-up will also increase 
the recognition rate of the syntax module. 

2. PROSODIC SYNTACTIC BOUNDARY 
MARKERS - THE M-LABEL SYSTEM 

We developed a syntactic-prosodic labeling scheme for Ger­
man that provides a coarse labeling of syntactic boundaries. 
It can be done fast and fairly reliable because it is based 
solely on the transliteration of the turn; i.e., we do not have 
to listen to the turns. Prosodic knowledge is used, i.e., 
syntactic boundaries are marked differently depending on 
whether they are likely to be marked prosodically. Typical 
spontaneous speech phenomena are taken into account as 
well. Currently we distinguish 10 labels which are grouped 
into three major classes: 

M3: clause boundary (between main clauses, subordinate 
clauses, elliptic clauses, etc.) 

MO: no clause boundary 
MU: undefined, i.e. M3 or MO cannot be assigned to this 

word boundary without context knowledge and/or per­
ceptual analysis. 

The labeling scheme is described in more detail in [2, 31 . 
In [2] we compared these labels with purely prosodic tabers 
(B-Iabels)2 [14], and precise syntactic labels (S-labels) [7] . 

2In the following we use B3 for a word boundary, which is 
perceived as a major prosodic boundary. 
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LM 
MLP+LM 

vs. -. 
165 VS. 1284 

87 87 
92/85 
94 89 

vs. 
177 vs. 1169 

87 83 
95/86 
96 89 

vs. 
190 vs. 1259 

85 82 
92/84 
94 88 

Table 1. Percentage of correct classified word 
boundaries for different combinations of classifiers: 
total vs. class-wise average 

This comparison showed that there is a high agreement be­
tween these labels and, hence, justifies our rather coarse 
labeling scheme. The advantage of the M-labels is that 
a high number of labeled data can be produced within a 
short time, because they do not require a complete syntac­
tic analysis and they do not rely on perceptual evaluation. 
Meanwhile, there are 7,286 turns (about 150,000 words) la­
beled with the Ms, which took only a few months. 

3. SPEECH DATABASE 

For the classification experiments in Section 4, we used 3 
dialogs of the VERBMOBIL database for testing (64 turns of 
3 male and 3 female speakers, 1513 words, 12 minutes in to­
tal). For the training of the multi-layer perceptron (MLP) 
all the available data labeled with the B-labels were used 
(797 turns) except for the test set; for the language model 
(LM), trained with the M labels, 6297 turns were used. For 
the parsing experiments in Section 5 we chose 594 turns out 
of 122 dialogs. These turns had been selected for evaluation 
purposes by the DFKI (Saarbriicken), which was respon­
sible for the integration of the VERBMOBIL demonstrator. 
For all of these turns, word graphs were provided by DFKI 
using the word recognizer of the University of Karlsruhe3

. 

The word graphs contained 9.3 hypotheses per spoken word. 
The word accuracy, i.e., the highest accuracy of any of the 
paths contained in the graph, was 73.3%. 117 word graphs 
were correct, i.e. they contained the spoken word chain. 

4. AUTOMATIC BOUNDARY 
CLASSIFICATION 

We will now compare classification results obtained with a 
multi-layer perceptron (MLP), a stochastic (n-gram) lan­
guage model (LM), and a combination of both classifiers. 
The MLP serves as an acoustic-prosodic classifier getting 
acoustic and few lexical features as its input. The LM esti­
mates probabilities for boundaries given a few words in the 
context of the word. With these classifiers for each of the 
words in a word chain or in a word graph a probability for 
a clause boundary being after the word is computed. 

The computation of the acoustic-prosodic features is 
based on an automatic time alignment of the phoneme se­
quence corresponding to the spoken or recognized words. 
For the boundary classification experiments we only use the 
aligned spoken words thus simulating 100% word recogni­
tion. For each word a vector of prosodic features is com­
puted automatically from the speech signal. The feature 
set is described in [3] and, in more detail, in [91. In order to 
balance for the a priori probabilities of the different classes, 
during training the MLP was presented with an equal num­
ber of feature vectors from each class. For the experiments, 
MLPs with 40/20 nodes in the first/second hidden layer 
showed best results. During training B3 vs. -.B3 was taken 
as reference. 

Trigram language models (LM) were additionally used for 
the classification of boundaries. They model partial word 
chains where M3 and MO boundaries have been inserted. 

3We would like to thank Andreas Kliiter, who provided us 
with these word graphs using the word recognizer described in 
[20] . 
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This method as well as the combination of LM and MLP 
scores is described in more detail in tH, 101-

In Table I, we compare the results of different classifiers 
for the two main classes boundary vs. not-boundary using 
two different types of reference boundaries: B, M, and MB, 
which is a combination of both. In the case of M3 vs. MO, 
the 'undefined' boundaries MU are not taken into account. 
As for MB, MB3 represents all word boundaries which are 
either labeled with M3 or with MU and B3; MBO refers to 
all other word boundaries. These combined labels repre­
sent best what the syntax would like to get delivered by the 
prosody. The first number in each row of the table shows 
the overall recognition rate, the second is the average of the 
class-wise recognition rates. The recognition rates take all 
word boundaries except the end of turns into account; the 
latter can be classified in a trivial way. It can be noticed 
that, roughly, the results get better from top left to bottom 
right. Best results can be achieved with a combination of 
the MLP with the LM no matter whether the perceptual B 
or the syntactic-prosodic M labels serve as reference. The 
LM alone is already very good; we have, however, to con­
sider that it cannot be applied to the 'undefined' classes 
MU, which are of course very important for a correct syn­
tactic/semantic processing and which account for about 4% 
of all word boundaries and for 23% of all non-MO bound­
aries. Especially for these cases, we need a classifier trained 
with perceptual-prosodic labels. Note, however, that even 
on the M3/MO-task the combination of the two classifiers, 
MLP+LM, shows slightly better results than the LM alone. 

Due to the different a priori probabilities, the boundaries 
are recognized worse than the non-boundaries with the LMs 
(e.g., 80.8% for M3 vs. 97.7% for MO for the MLP+LM 
classifier); this causes the lower average of the class-wise 
recognition rates compared to the overall recognition rates. 
It is of course possible to adapt the classification to various 
demands, e.g., in order to get better recognition rates for 
the M3 boundaries if more false alarms can be tolerated. 

In the following section, prosodically scored word graphs 
are used for parsing. This means, that for each of the 
word hypotheses contained in the graph the probability for 
a clause boundary following this word is computed. The 
computation of the acoustic features as well as of the LM 
score is based on ±2 context words. In the case of the 
word graphs, the best scored word hypotheses being in the 
context of a word hypothesis are used. This approach is 
sub-optimal, but we could show in [11], that the recogni­
tion rate does not decrease very much when classifying word 
graphs instead of the spoken word chain. 

5. GRAMMAR AND PARSER 

In this paper, we describe the interaction of prosody with 
the syntax-module developed by Siemens (Munich); for the 
interaction with another syntax-module developed by IBM 
(Heidelberg) cf. [1]. In the module described here, we use 
a Trace and Unification Grammar (TUG) [5J and a mod­
ification of the parsing algorithm of Tomita [17]. The ba­
sis of a TUG is a context free grammar augmented with 
PATR-II-style feature equations. The Tomita parser uses a 
graph-structured stack as central data structure [16]. After 
processing word Wi the top nodes of this stack keep track of 
all partial derivations for WI •.. Wi. In [15], a parsing-scheme 
for word graphs is presented using this parser. It combines 
different knowledge sources when searching the word graph 
for the optimal word sequence: a TUG, a statistical trigram 
or bigram model and the score of the acoustic component. 
In the work described here we added another knowledge 
source for clause boundaries computed as indicated in Sec­
tion 4. 

When searching the word graph, partial sentence hy­
potheses are organized as a tree. A graph-structured stack 
of the Tomita parser is associated with each node. In the 



(rule1) input ~ phrase input 
~rule2 phrase ~ s PSCB 
rule3 phrase ~ s_el1 PSCB 
~rule4 phrase ~ np PSCB 
rule5 phrase ~ exe1 PSCB 

(rule6 phrase ~ exel 

Table 2. Grammar 1 for multiple phrase utterances 

search an agenda of score-ranked orders to extend a partial 
sentence hypothesis (hypoi = hypo(wl, ... ,w;) by a word 
Wi+l or by the PSCB symbol, respectively, is processed: The 
best entry is taken; if the associated graph-structured stack 
of the parser can be extended by Wi+l or by PSCB, respec­
tively, new orders are inserted in the agenda for combin­
ing the extended hypothesis hYPOi+l with the words, which 
then follow in the graph, and, furthermore, the hypothesis 
hYPOi+l is extended by the PSCB symbol. Otherwise, no en­
tries will be inserted. Thus, the parser makes hard decisions 
and rejects hypotheses which are ungrammatical. 

The acoustic, prosodic and trigram knowledge sources 
deliver scores which are combined to give the score for an 
entry of the agenda. In the case the hypothesis hYPoi is ex­
tended by a word Wi+l the score of the resulting hypothesis 
is computed by 

score(hypoHd = score(hypo;) 
+acoustic_score( wi+d 
+0 . trigram..score( Wi-l, Wi, WH1) 
+/3' prosodic..score(wHl, B) 

+' score of optimal continuation' . 

where B can be PSCB or -.PSCB. prosodic..score(w, PSCB) 
is a 'good' score if the prosodic classifier detected a 
clause boundary after word w, a 'bad' score otherwise. 
prosodic..score(w, -.PSCB) is 'good' if the prosodic classifier 
has evidence that there was no prosodic clause boundary 
after word w, 'bad' otherwise. 
The weights 0 and /3 are determined heuristically. Prior 
to parsing, a Viterbi-like backward pass approximates the 
scores of optimal continuations of partial sentence hypothe­
ses (A· -search). After a certain time has elapsed, the search 
is abandoned. With these scoring functions, hard decisions 
about the positions of clause boundaries are only made by 
the grammar but not by the prosody module. If the gram­
mar rules are ambiguous given a specific hypothesis hYPoi, 
the prosodic score guides the search by ranking the agenda. 

In order to make use of the prosodic information, the 
grammar had to be slightly modified. The best results were 
achieved by a grammar that neatly designed the occurrence 
of PSCBs between the multiple phrases of the utterance. A 
context-free grammar for spontaneous speech has to allow 
for a variety of possible input phrases following each other 
in a single utterance, cf. (rule1) in Table 2. Among those 
count normal sentences, (rule2), sentences with topic ellipsis 
(rule3), elliptical phrases like PPs or NPs (rule4), or pre­
sentential particle phrases (rule5 and rule6). Those phrases 
were classified as to whether they require an obligatory or 
optional PSCB behind them. The grammar fragment in Ta­
ble 2 says that the phrases s, s-ell and np require an oblig­
atory PSCB behind them, whereas exe1(amative) may also 
attach immediately to the succeeding phrase (rule 6). The 
segmentation of utterances according to a grammar like in 
Table 2 is of relevance to the text understanding compo­
nents that follow the syntactic analysis, cf. the following 
two examples which differ w.r.t. the attachment of the ex­
clamative particle ja. In the first example it is followed 
immediately by a sentence (rule6), whereas in the second it 
is separated by a PSCB from the following sentence (rule5). 
Semantic analysis or dialog can make use of these different 

3 

~rule 7~ input ~ phrase , PSCB , input . 
rule 8 phrase ~ s 
~rule 8) phrase ~ s_e11 . 
rule 9) phrase ~ np . 

(rule 10) phrase ~ exe1 . 

Table 3. Grammar 2 for multiple phrase utterances 

rules. The exclamative particle in example (1) might be 
identified as introduction, in example (2) it might be inter­
preted as affirmation. 

(1) Path found in VMl/NOllK/NHW3K002.A16: 
[ja,also,bei,mir,geht,prinzipiel1,jeder,Montag, 
und,jeder,Donnerstag,PSCB] 
Well, as far as I'm concerned, in principle every Monday 
or Thursday is possible. 

(2) Path found in VM4/G275A/G275A002.B16: 
[ja,PSCB,das,pa"st,mir,Dienstag,PSCB,ist, 
der,f"unfzehnte,PSCB] 
Yes. This Thesday, that suits me. That is the fifteenth. 

The occurrence of the second PSCB in example (2) does 
not mirror the intention of the speaker: Here the PSCB di­
vides the subject Dienstag from its matrix clause ist der 
fonfzehnte. A hesitation in the input that did not get de­
tected as false alarm might be responsible for this. However 
(2) is a syntactically correct segmentation since a grammar 
for spoken language has to allow for topic ellipsis and the 
phrase ist der funfzehnte constitutes a correct sentence ac­
cording to (rule 3). The grammar therefore retrieves the 
interpretation for this lattice as indicated by the English 
translation.4 

6. EXPERIMENTAL RESULTS 
In experiments using a preliminary version of the sub­
grammars for the individual types of phrases, we compared 
the grammar explained in Section 5 with a grammar that 
obligatorily required a PSCB behind every input phrase, see 
Table 3. 

With the grammar shown in Table 2 149 word graphs 
could successfully be analyzed; with the one given in Ta­
ble 3, only 79 word graphs were analyzed. This indicates 
that often the prosody module computes a high score for 
-.PSCB after exclamative particles so that parsing fails if a 
PSCB is obligatorily required as in the grammar of Table 3. 

With an improved version of the grammar for the in­
dividual phrases, we repeated the experiments using the 
grammar of Table 2 and compared them with the parsing 
results using a grammar without PSCBs. For the latter, we 
took the category PSCB out of the grammar and allowed 
all input phrases to adjoin recursively to each other. The 
graphs were parsed without taking notice of the prosodic 
PSCB information contained in the lattice. In this case, the 
number of readings increases and the efficiency decreases 
drastically, cr. Table 4. The statistics show that on the 
average, the number of readings decreases by 96% when 
prosodic information is used, and the parse time drops by 
92%. If the lattice parser does not pay attention to the 
information on possible PSCBs, the grammar has to deter­
mine by itself where the phrase boundaries in the utterance 

4For this word chain, it would make no difference for the text 
understanding component, whether the PSCB is before or after 
Dienstag. Actually, the spoken word chain is: Ja, das paflt. Nur 
Dienstag ist der fUnfzehnte. and the dialog goes like this: A: 
What about Tuesday the sixteenth? B: Yes. That's ok. But 
Tuesday is the fifteenth. A: Sorry. Then let's say Wednesday 
the sizteenth. B: OK. Fine. B thus only confirms the sixteenth, 
but not Tuesday. 



Table 4. Parsing statistics for 594 word graphs 

might be. It may rely only on the coherence and complete­
ness restrictions of the verbs that occur somewhere in the 
utterance. These restrictions are furthermore softened by 
topic ellipsis, etc. Any simple utterance like Er kommt mor­
gen results therefore in a lot of possible segmentations, see 
Table 5. 

~er,kommt,morgen] 
[er],[kommt,morgen] 
[er kommt] ,[morgen] 
[er] , [kommt] , [morgen] 

He comes tomorrow. 
He? Comes tomorrow! 
He comes. Tomorrow! 
He? Comes! Tomorrow. 

Table 5. Syntactically possible segmentations 

The fact that 9 word graphs (Le. 2%) could not be an­
alyzed with the use of prosody is due to the fact, that 
the search space is explored differently and that the fixed 
time limit has been reached before the analysis succeeded. 
However, this small number of non-analyzable word graphs 
is neglectable considering the fact that without prosody, 
the average real-time factor is 6.1 for the parsing. With 
prosodic information the real-time factor drops to 0.5; the 
real-time factor for the computation of prosodic informa­
tion is 1.0 (with word graphs of about 10 hypotheses per 
spoken word). 

Empty categories are an even more serious problem. 
They are used by the grammar in order to deal with verb 
movement and topicalisation in German. The binding of 
these empty categories has to be checked inside a single 
input phrase, Le., the main sentence. No movement across 
phrase boundaries is allowed. Now, whenever a PSCB signals 
the occurrence of a boundary, the parser checks whether 
all binding conditions are satisfied and accepts or rejects 
the path that was found so far. This mechanism works 
efficiently in the case prosodic information was used. For 
the grammar without PSCBs, no signal where to check the 
binding restrictions is available. Therefore, the uncertainty 
about segmentation of multiple phrase utterances led to in­
definite parsing time for some of the lattices in the corpus. 
Those lattices were analyzed correctly with PSCBs. 

7. CONCLUSION 

We showed that prosodic clause boundary information can 
reduce the parse time of word graphs computed for spon­
taneous speech by 92%. The number of parse trees of the 
resulting analyses decreases by 96%. This is especially due 
to the high number of elliptic and interrupted phrases con­
tained in spontaneous speech, which cause that the position 
of clause boundaries is highly ambiguous. Apart from dif­
ferences in the particular technical solutions of some sub­
problems, our approach differs from the prosodic parse­
rescoring described in [13, 81 mainly in the fact that we 
first compute prosodic scores based on the word hypotheses 
generated by the word recognizer. These scores are then 
integrated directly into the parsing process which does not 
only reduce the number of readings but also the parse time. 
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