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A CONTINUOUS SPEECH RECOGNITION SYSTEM USING PHONOTACTIC
CONSTRAINTS

B. Plannerer and G. Ruske

Technische Universität München
Lehrstuhl für Datenverarbeitung, Franz-Joseph-Str. 38,

D-80801 München, Germany

ABSTRACT

This paper describes a speaker-independent recognition
system for continuous German speech based on
semicontinuous Hidden-Markov-Models which produces a
phonetic transcription of the spoken sentence. The
recognition units are parts of syllables while the output is a
phoneme level transcription. During recognition, the
phonotactic constraints of German are taken into account
by a micro syntax constrained Viterbi algorithm. A
maximum likelihood training procedure based on Viterbi
training together with a simple but efficient seed model
generation algorithm is presented.

Keywords:
phonotactic constraints, semicontinuous HMMs, seed
model generation, Viterbi training.

INTRODUCTION

Automatic recognition of large vocabularies and
continuous speech necessitates introduction of some kind
of subword units. One question is how to define suitable
phonetically based units which usually are chosen to be
phonemes. Due to coarticulation effects, phoneme-sized
units have to be represented together with their phonetic
context and are often realized as context-dependent units.
Alternatively, the syllabic structure of speech favouarbly
can be utilized since the number of possible consonant
combinations between vowels is reduced drastically. These
phonotactic constraints are completely independent from
the actual vocabulary, they only reflect the type of
language. If we use parts of syllables as recognition units,
the phonotactic rules are fulfilled without fixing the
vocabulary. In this way it is possible to test the acoustic-
phonetic recognition accuracy itself, independent from the
vocabulary.  This enables comparison of different
recognition methods or modelling approaches
independently from the application. It is typical, that
recognition now works in a bottom-up manner which only
takes into account the phonotactic constraints. In a second

stage, words have to be estimated from the recognized
units. Of course, in real applications, word recognition
usually is performed top-down by composing the words
from the recognition units and matching the entire word
pattern with the unknown input. Now all phonotactic
constraints are contained in the word patterns itself. Here,
integrated search techniques offer an economic solution to
the overall recognition problem.
The paper deals with the phonotactic constraints of
syllables which are represented by a so-called "micro
syntax". This syntax has to be followed during application
of Hidden Markov Models for recognizing the units. Now
recognition rates can be evaluated which would not be
possible if a fixed vocabulary would have been used.

SUBWORD UNITS

The use of syllable-based subword units has proven to be a
successful approach in speech recognition.
The German language contains only about 50 initial
consonant clusters (ICC), but up to 160 final consonant
clusters [1,2,3]. A substantial reduction in this number is
achieved by dividing the final clusters into a so-called
"rudiment" (RUD) and a subsequent "suffix" (SUF),
whereby suffixes contain only fricatives and plosives or
combinations of both. The suffixes are achieved by cutting
that part within a final consonant cluster which begins
with one of the consonants /s, t, f, or ∫/. This is possible
because after suffixes no other consonants can follow.
Since these 4 consonants have similar places of
articulation, they can be appended to all rudiments in the
same way. Now the 160 final consonant clusters are
composed of 23 rudiments and 17 suffixes. The syllabic
units can appear only in a fixed order which is described
by a phonotactic micro syntax and which reduces the
number of possible combinations drastically; this micro
syntax has strictly to be kept during the concatenation of
the Hidden Markov Models when using the Viterbi
algorithm for recognition. By introducing empty initial
consonant clusters, vowels in syllable initial position can
be represented, too. Empty rudiments and suffixes are
represented by skipping arcs. Further, there are about 20
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vowels in the German language, inclusive 3 diphthongs.
Since consecutive vowels also may be coarticulated very
strongly, they should be represented together by a common
unit containing the vowel pair or a pair of vowel and
diphthong. Correspondingly, these units are called "vowel
clusters" (VOW). The number of vowel clusters
theoretically may sum up to about 130 units; however, in
applications with 1000 words only about 30 - 50 different
vowel clusters are really necessary. Some problems may
arise if due to the elision of a schwa-sound /∂/ some
consonants from the syllable initial and the final position
may come together, the combinations of which are not
contained in the consonant cluster inventories. Since the
schwa-sound elision mostly appears in front of /l/, /m/, /n/
and /R/, this problem can be solved by defining these
consonants additionally as "syllabic consonants" (SC) /l./,
/m./, /n./ and /R./ and putting them into the inventory of
the vowels.
For instance, in the German word "haben" (/h a: b n./) now
the consonant /b/ again stands in syllable initial position in
front of the syllabic /n./ and therefore belongs to the
inventory of the initial consonant clusters. Introduction of
the syllabic /R./ was not necessary since most of these cases
were contained in the initial consonant clusters.The final
"er" in German mostly is reduced to a /a/-like vowel /R/-
schwa so that the syllabic /R./ can be avoided. With these
agreements, now the class VOW contains vowels,
diphthongs, /R/-schwa, /m./, /n./, and /l./. By defining
these inventories, recognition now always produces the
fixed sequence

... ICC VOW RUD SUF ICC VOW RUD SUF ...
If a rudiment or suffix is not present, a special symbol is
generated. Additionally, models for pauses are allowed to
follow a rudiment or a suffix model.
During recognition, the Viterbi algorithm will find the best
mapping of labels to the uttered sentence with respect to
the additional constraints given by the micro syntax graph.
The main advantage of this approach is that the resulting
transcription will not show the well-known effects of the
free running Viterbi algorithm, e.g. splitting of units into
multiple repetitions of the same unit etc.  These effects will
not occur in our system since multiple repetitions of the
same phonotactic class are prohibited by the syntax graph.
Instead, the resulting transcription will always be a valid
sequence of phonotactic units.

MICRO SYNTAX

Localization of the syllable nuclei can be performed
explicitly by means of a segmentation algorithm or is
achieved implicitly during the Viterbi recognition by
means of the VOW-models. Omitting a vowel may produce
severe errors in such cases where the word model demands
a vowel at that position. This problem can be handled to a
certain extent by alternative pronunciations with and
without that vowel stored in the word pronunciation
lexicon. However, a schwa-elision cannot be recognized
explicitly since this sound has not been spoken at all. This
task now is carried out by the models for syllabic

consonants (SC) which are treated in the same way as
models for ICC, RUD and SUF. Again these units can
appear only in a distinct order which altogether is
represented by the synatx graph depicted in Fig. 1 and
which contains all paths for the Viterbi recognition. The
main coarse of the syntax graph in Fig. 1 (bold arcs)
represents the "normal" sequence in a loop from ICC to
SUF and back again to ICC etc. Besides that, the path with
SC indicates a syllabic consonant. In this case a reduced
syllable nucleus has been detected; the Viterbi algorithm
decides between both choices. In most cases a syllable
consonant is followed only by a suffix, as e.g. in the word
"zweifelt" (/tsv ai f l. t/). If also rudiments should be
allowed (which are few cases), the syntax graph has to be
extended accordingly. At the beginning or at the end of a
sentence the graph gets rather simple; the graph has to to
be entered with an ICC and has to be left at the syllable
boundary which is located in front of an ICC.

As shown in Fig.1, there are copies of the same
phonotactic classes (and therefore, of the items in that
class) needed to treat the different predecessors. Of course,
these copies somewhat increase the necessary amount of
memory and computation.

Fig. 1: micro syntax

MODELING OF SUBWORD UNITS

As mentioned above, the subword units are modeled by
semicontinuous Hidden Markov Models, which have
shown to be a robust modeling approach.
As is well known, the probability density of a given
observation vector 

�

xt   in state i of the semicontinuous

HMM is given by
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1

where CBE is the number of  codebook entries and ϕ k

denotes the codebook distribution number k .
The computation of initial model parameters is based on a
modified version of our algorithm described in [4]: In that
paper, we presented a dynamic segmentation procedure for
giving a first estimate of the model parameters. The basic
principle of that procedure is to measure the stationarity of
the training pattern by computing the Euclidean distance
between every two subsequent feature vectors: a small
distance indicates stationary parts of the pattern, while a
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large distance indicates instationarity. Using the
accumulated distances in a given state, a simple threshold
decision was made to proceed to the next state of the
model. A drawback of this method is, that the feature
vectors must be all available for the computation of the
euclidean distance. As far as continuous HMMs are used,
the feature vectors are always available during the training
procedure. On semicontinuous HMMs however, one might
want to perform the vector quantization first an then deal
with the corresponding codeword sequence only.
Therefore, a different distance measure has to be used: If
the top-1-codeword number remains the same for a
sequence of frames, a stationary segment can be assumed.
Therefore, a simple measure of stationarity can be derived
by observing the rank of the top-1-codeword between
subsequent frames: Given the top-1-codeword at a given
time frame t, its rank at the next time slot t+1 is used as a
distance measure, e.g, if the codeword has fallen to the top-
3 position, a distance of 3 between the two feature vectors
is assumed. This distance measure allows directly the use
of the state segmentation procedure as described in [4].
Given this initial state segmentation, the transition
probabilities and mixture coefficients can be estimated
using the reestimation formulae of the Viterbi training
procedure.
For estimation of the mixture coefficients, the Viterbi
training procedure with a-posteriori weighting of
observations is used as shortly described below.
A product codebook of three diagonal-covariance
codebooks is applied for the features (log-)spectra, delta-
spectra and energy. The number of codebook-entries is
256, 128 and 64, respectively. The log-scores of these three
codebooks are added after multiplication with an
empirically determined weighting factor. In addition to
these modeling parameters, the total duration of the
subword unit is represented by a single gaussian
distribution.

HMM TRAINING

For parameter estimation, we use the Viterbi training

procedure as described in [4]. Let p X( )
�

λ  be the joint

probability density of the concatenated training set

observations { }� � � �

X X X X H= ( ) ( ) ( ), ,...,1 2  of all HMMs and

let ( ){ ( ) ( ) ( )}λ λ λ λ λ= 1 2, ,..., ,H CB  be the complete

parameter set of all H  HMMs and the codebook CB, then
optimization of the joint probability yields the following
reestimation formula for the mixture coefficients
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where Mi  denotes the number of observation vectors

associated with state i by the Viterbi algorithm. Note that
every observation vector 

�

xm  is splitted across the mixture

coefficients according to its a-posteriori probability

( )P xi k mϕ
�

 instead of simply incrementing the counter for

the mixture corresponding to the top-1 codeword.

Update of the codebook parameters can be performed by
the following reestimation formula:
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where 
�

μ k   and Rk  denote the mean vector and the

covariance matrix of codebook distribution number k ,
�

xm  the observation vector number m, and
( ) ( )P xi
h

k mϕ
�

 again represents the probability that

observation vector 
�

xm  belongs to the codebook distribution

ϕ k  when observed in state i of HMM number h .

The above formulae show that the a-priori probability of a
given HMM h  in the training data will have an important
impact on its representation in the updated codebook. That
is, a subword unit having a high occurrency in the training
data will be well represented in the updated codebook
parameters, while a subword unit which has a low
occurence in the training data will have hardly any impact
on the reestimation process. This effect may be of
importance if the distribution of subword unit occurrencies
in the training set significantly differs from the distribution
of the test set.

IMPLEMENTATION

In our implementation, only the top-K codewords were
used for training and testing  to reduce the necessary
amount of computation. The actual number of codewords
used is determined every frame by a threshold decision: If
a codeword score falls below a given threshold relatively to
the score  of the top-1 codeword, it is pruned. Thus, the
actual number of codewords may vary from frame to frame
and is not fixed as implied by the reestimation formulae.
For our tests, a full Viterbi search is performed without any
pruning of hypotheses. This is possible since there are only
a few node copies required according to the syntax graph
given in Fig. 1.
In order to compute a lattice of subword units, we first
implemented an exact N-best search algorithm to get the
N-best transcription hypotheses, but as often observed with
N-best search algorithms [5], our experiments showed that
most of the hypotheses varied in the most ambiguous
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vowels of the utterance and thus N had to be chosen very
large to yield useful alternatives.
For this reason, we decided to use the top-1 segmentation
of the utterance computed by the Viterbi algorithm and to
compute the N-best labels within this given segmentation.
All these labels were now chosen from the phonotactic
class determined by the top-1 segmentation. However, the
main drawback of using the top-1 segmentation is that the
alternative subword units are constrained to the
phonotactic class given by this segmentation. For example,
if a rudiment /p/ was found by the top-1 decision, there can
never be an alternative recognition of a /t/, since /t/ belongs
to the suffixes.

RECOGNITION EXPERIMENTS

This section presents some of the recognition experiments
made with our subword unit models.
Direct evaluation on the phonetic string is somewhat
difficult since there are cases in which more than one
correct segmentation into subword units is possible.

Therefore, to evaluate the model performance, we decided
to use automatically segmented and labeled data for
testing. Thus, the HMMs were run within a given
segmentation to avoid the problems stated above.
The training database consisted of  a total of 503 sentences
spoken by 5 male speakers, while the test database
contained  250 sentences  spoken by 5 different male
speakers which are part of the German PHONDAT train
time table information database. In this experiment, the
standard Viterbi training procedure without codebook
update was used for parameter estimation.
In Tab. 1, all experiments are given for top-1 decision and
the top-N decision with N = 4. Note that recognition
results for the top-4 decision are significantly higher. This
implies that in most cases there is only a small difference
in score between the correct subword unit and the wrong
classified top-1 subword unit.
In all recognition experiments, a "hard decision" was made
for error counting, that is, a subword unit is counted as an
error if  it does not match the given labeling even if some
of its phonemes were correctly classified.  It should be
mentioned that the test sentences were spoken at a
significantly higher speed (more than 10 % faster) than the
sentences of the training set and therefore the test  was
carried out under relatively hard conditions.

ICC VOW RUD SUF
top-1 53 % 49 % 69 % 86 %
top-4 78 % 78 % 88 % 94 %

Tab. 1.: correctly recognized subword units

DISCUSSION

The syntax graph given in Fig. 1 shows that the resulting
transcription can never contain such effects as multiple

insertions of  identical subword units. For example, the
VOW class can never be followed by itself  directly.
However, this implies that every possible vowel clusters of
the application under concern has to be present in the
inventory of vowels and therefore the number of  subword
units needed can be relatively high which will require a
large amount of training data. In addition, as mentioned
above, the subword units are divided into 5 phonotactic
classes. This implies that subword units that consist of
identical phonemes or phoneme clusters will be treated as
different subword units depending on their phonotactic
position. For example, the phomeme sequence /∫t/ belongs
to the ICC class as well as to the SUF class. Therefore, the
training data available for each model is further reduced.
As a consequence, some of the larger subword units cannot
be estimated due to the limited training data, even if our
"smooth" training technique with a-posteriori probability
weighting is used. In these cases, the subword unit will
have to be represented by a concatenation of smaller
subword units.

CONCLUSION

We presented a simple method of utilizing phonotactic
constraints for improvement of automatic recognition /
transcription of continuous speech. These constraints can
easily be implemented with only a modest increase of
computational complexity  or memory requirements, but a
large amount of training data is required or otherwise the
subword units have to be concatenated by smaller units.

This work has been partly carried out within the
ASL/VERBMOBIL project which is sponsored by the
German BMFT.
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