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ABSTRACT

We propose Multi-level Semantic Classification Trees to
combine different information sources for predicting speech
events (e.g. word chains, phrases, etc.). Traditionally
in speech recognition systems these information sources
(acoustic evidence, language model) are calculated inde-
pendently and combined via Bayes rule. The proposed ap-
proach allows one to combine sources of different types -
it is no longer necessary for each source to yield a proba-
bility. Moreover the tree can look at several information
sources simultaneously. The approach is demonstrated for
the prediction of prosodically marked phrase boundaries,
combining information about the spoken word chain, word
category information, prosodic parameters, and the result
of a neural network predicting the boundary on the basis
of acoustic-prosodic features. The recognition rates of up
to 90% for the two class problem boundary vs. no boundary
are already comparable to results achieved with the above
mentioned Bayes rule approach that combines the acoustic
classifier with a 5—gram categorical language model. This is
remarkable, since so far only a small set of questions com-
bining information from different sources have been imple-
mented.

1. INTRODUCTION

Semantic classification trees (SCTs) [5] are a modification
of the well known classification tree approach [1] intended
to model natural language. They can be trained automati-
cally using a labeled text corpus. Classification is done by
moving from the root to a leave of the tree while asking at
each node binary questions about e.g. strings of words. So
far, we have successfully applied SCTs to the mapping of
word sequences onto semantic classes in the context of lan-
guage understanding [5], the classification of dialog acts [7],
development of context dependent phone models [4], and
the prediction of phrase boundaries and accents on the ba-
sis of the word sequence [4]. All of this research has been
carried out in the context of automatic speech understand-
ing. In state—of-the—art word recognition, different infor-
mation sources such as acoustic and word sequence infor-
mation are modeled separately. If the results of the sources
can be interpreted as probabilities, then Bayes Rule can
be used to combine the information sources. In this pa-
per, we will show that SCTs are well suited for the inte-
gration of different knowledge sources in one model. We
will show that SCT's can process information as different as
automatically chosen word classes, the word identity itself

1This work was funded by the German Federal Ministry of
Education, Science, Research and Technology (BMBF) in the
framework of the Verbmobil Project under the Grant 01 IV 102
H/0. The responsibility for the contents of this study lies with
the authors.
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(categorical variables), acoustic feature values (continuous
variables), and classifier outputs (probabilities, activation
levels, or certainty factors). As an example of an applica-
tion, we employ enhanced SCTs to classify each word in an
utterance as either preceding a prosodically marked phrase
boundary or not. The models stored in the leaves of the
SCTs can be seen as modeling the a posterior: probabili-
ties of these two events. The data are part of the German
Verbmobil database (VM, [9]).

The paper is organized as follows: in section 2 we intro-
duce the standard SCT approach and the training proce-
dure that we use. Then we give a description of the exten-
sions, necessary for handling several information sources.
Following this, we will show in section 3 what kind of
prosodic information we combine with the linguistic infor-
mation. We will present the experiments and finally in sec-
tion 4 we will discuss the results and indicate our future
work plan.

2. MULTI-LEVEL SEMANTIC
CLASSIFICATION TREES

2.1. Semantic Classification Trees
In [5] Kuhn and De Mori describe SCTs and use them to

solve problems involving Speech Understanding. They clas-
sify complete utterances (e.g. is an utterance a question
about air travel fares?) or parts of an utterance (substrings;
e.g. is a mentioned airport a start, stop or destination air-
port?). For this classification to take place, the temporal
structure of an utterance (the sequence of the words w =
wiWs ... wm) is analyzed by means of regular expressions.

The structure of a binary SCT is as follows: each non—
terminal node consists of a YES/NO-question, a YES-
subtree and a NO-subtree, and each node is labeled with a
probability vector for the recognizable classes. The classifi-
cation of a word sequence w begins with the question at the
root of the SCT. Depending on the answer to the question,
the YES or NO subtree respectively will be entered. This
process is repeated until a leaf node has been reached. The
classification vector of this leaf is then assigned to w.

A possible question ¢;1 at the beginning of the analysis
(at the root node) is:

Has w the structure +w;+ ¢

where + is a non—zero gap (unknown sequence of words of
length > 1) and w; a word of a given vocabulary. If the
word w; is exactly once in w and neither at the beginning
nor at the end, ¢; is answered by YES?. In this case, the
known structure of w is +w;+. If ¢1 is answered by NO,
the known structure of w is the previously known structure,

2To analyze a sequence of words in a unique way by regu-
lar expressions, six different types of questions are needed: the
join-, left-, right-, wnique-, twin-, and non-adjacent-questions,
as shown in [5]; in this example, q;1 is a unigue-question.
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i.e. “4+” in the example. It is important to remark that a
question handles exactly one unknown part (i.e. one gap
of the known structure) of a sequence of words. Hence,
a possible question ¢z to word sequences which have the
structure indicated by a YES answer to ¢ is

Has w the structure w; + w;+ ¢

g2 tests whether the first of the two gaps in +w;+ has the
structure w;+.

The question at each node of a SCT is established by an
automatic training process, explained in the next section.

2.2. The Training of SCTs

The training of the SCTs [2] is carried out by alternating
expansion and pruning steps for an initial tree, using two
labeled and disjunct training sets Si and S». At first, the
initial tree is expanded using set S;. The result is a tree 7T7.
This tree is pruned by means of set S; which gives a tree
T>. By expanding 7> with 53, a tree T3 is created. Pruning
Ty with 51 gives Ti.

This process generates a sequence of trees Th, 7%, ..., T},
It stops if two subsequently pruned trees 75; and Tp(;41)
have the same structure (i.e. they have the same number of

nodes). The resulting SCT is To(; 41y

For the expansion, two basic elements are needed [1]:

e a set of possible YES/NO-questions that can be ap-
plied to the items of the task domain,

e a rule for selecting the best question at any node or
deciding that it should be a leaf node.

The set of possible questions is build up by employing all the
words in the given vocabulary with the regular expressions
proposed in [5]. The rule to select the best question is the
Gini impurity criterion [1].

The expansion of a node n is done by assigning the best
question g to the node, creating child nodes nygs and
nyo, splitting the set of training items S, into Sn, o and
Snyo according to ¢, and expanding the child nodes with
the training set Sny 5o and Sn,,, respectively. If the quality
of the best question of a node is zero, this node is declared
a leaf node and will not be expanded anymore. Each node
is assigned the class of the most present pattern class in the
node’s training set (i.e., among all the data items that have
passed through that node).

To prune the expanded tree with a disjoint training set,
the following steps are carried out. First, each data item in
this set is fed into the root and shuttled to the appropriate
leaf; meanwhile, a counter at each node calculates the error
rate of items passing through the node (i.e., how often the
node’s class differs from the class of an item in it). Next, in
a recursion that moves upward from the leaves to the root,
all YES and NO subtrees whose leaves yield higher error
rates than the parent are deleted, with the parent being
converted into a new leaf.

2.3. Multi-level Information

The only information used for the classification done by
standard SCTs is the word sequence of the utterance. How-
ever, additional information can be attached to an utter-
ance. Figure 1 shows an example of appending knowledge
at several levels to an utterance. The information that each
level contains is represented in one of the following ways:

o discrete features represent textual information (i.e. the
spoken words on level word) as in the standard SCTs
and/or categorical information, e.g. syntactic/semantic
tagging information at the levels syn/sem, the accent
judgement, which is represented in the example as an
integer between 0 (not accented at all) and 10 (strongly
accented) at the level acc, and

word it is | Okay Con | Friday
syn pron% auxv§ adv prep noun
sem - - i conf |- | time
acc 1.0 7 0 6
reg 1.5 12 110 | -7
phr 0 2 |8 |15 |10

Figure 1. Examples of different information sources
for a Multi-level semantic classification tree.

e continuous features represent acoustic information ex-
tracted from the speech signal, i.e. the slope of the FO
regression line as an indicator for the sentence mood
question at the level reg. Continuous features can also
be the output of classifiers — in the example, the acti-
vation of a neural net to classify phrase boundaries is
given at level phr.

The additional information is handled by questions about
the values of the parameters. The possible types of ques-
tions depend on the representation of the information. In
the case of

e discrete parameters: questions can be used in order to
find out whether the value of a parameter is equal to a
specific value;

e continuous parameters: questions can be used in order
to find out whether the value of a parameter

— is less than or equal to a specific threshold?,

— is the maximum/minimum in a segment of the ut-
terance, or

— is the absolute maximum/minimum.

We extended the SCT approach to handle not only the
word sequence of an utterance but also to take into account
additional information as shown above. We will call the
enhanced SCTs Multi—Level Semantic Classification Trees
(MSCTs).

Note that the SCT approach allows the processing of vari-
able length input vectors, i.e. the number of information
units that are presented to the SCT is solely determined
by the length of the utterance. In most other classification
approaches, like for instance neural networks, the number
of information units (i.e. input nodes) is fixed.

2.4. The types of the questions

We will now have a closer look at the design of the ques-
tions that analyze the multi-level information attached to
an utterance. The following example contains only the lev-
els word and phr referred to in Figure 1:

yes ¢ will come to Erlangen tomorrow

9.1 .0 6.0 4 1.0
oh yes ¢ will come to Erlangen tomorrow
.1 .9.1 .0 6.0 4 1.0

The two sentences of the example are nearly the same. One
of the differences is that the position of the words in the
first utterance is shifted by one compared with the words
in the second utterance. Although the (semantic, syntactic,
etc.) parameters of the two utterances are likely to be very
similar (also just shifted by one), this similarity cannot be
recognized by asking questions like:

3The value of the threshold is determined automatically dur-
ing training.



18 the value of the parameter at position m of level
n equal to a specific value?

18 the value of the parameter at position m of level
n the maximum in a segment of the utterance?

This problem can be solved by taking advantage of the
fact that the elements at the entrance level, which match
a regular expression in any parent node are marked, and
thus the temporal order of the elements from all the levels
is known. Questions about other information levels only
concern marked elements and they can use the information
about the order. We will call this level the entrance level.
Notice that the entrance level does not have to be the word
level but could also be another categorical level, like syn.
In asking questions like

Is the value of the parameter of level reg of the
n'™ marked element on the entrance level < k17
or

Is the value of the parameter of level phr of the
k" marked word the mazimum in a limited neigh-

borhood?

it might be possible to show the similarity of the two sen-
tences in the example above.

Therefore the different question types are used in a spe-
cific order: apply the regular expressions to the elements of
the entrance level. If an utterance has the structure asked
for in the regular expression, the keyword(s) appearing in
the regular expression is/are marked at level 1 of the ut-
terance. Questions dealing with parameters located at the
appended levels are only allowed if the word of the utterance
in the column of the parameter is marked.

3. PROSODIC PHRASE BOUNDARY AND
ACCENT DETECTION

As the task for the first experiments with the MSCTs we
chose the problem of classifying major prosodic boundaries
(henceforth B3), which in most cases mark clause bound-
aries [3]. The speech data used are spontaneously spoken
turns obtained from face—to-face dialogs in the domain of
appointment scheduling in the context of the German VM
project. We consider this task as an interesting problem,
where it seems useful to integrate information about the
wording and acoustic features in a single model. A draw-
back of the VM database is, that so far not much training
data 1s available. We also have prosodically labeled data
available for a large corpus of read speech, but the per-
plexity of this corpus is so small that experiments using
language models are not significant.

3.1. Material

For VM there are 25 dialogs labeled prosodically. Out of
these we chose 22 for training (592 turns, 32 different speak-
ers, 71 minutes of speech, 9336 words), and 3 for testing (80
turns, 4 different speakers). In [3] we report on experiments
on word chains and word graphs using n—grams, where we
used a subset of these turns. To keep the results compara-
ble we chose the same subset of 48 turns as testing data for
the experiments of this paper. These consist of 237 seconds
of speech, 520 words, 74 B3, and thus 398 =B3 boundaries
not counting the end of turns. The prosodic reference labels
are based on perceptive evaluation done by non-naive lis-
teners [8]. To exclude word recognition errors for this paper
all experiments are based on the spoken word chain.

3.2. The Acoustic—prosodic Features

The computation of the features is based on a time align-
ment of the spoken words on the phoneme level using our
HMM word recognizer. For each word final syllable the
following prosodic features were computed from the speech
signal for the syllable under consideration and for the two
syllables in the left and the right context:

MSCT input % recognized
Exp. | entrance | additional total B3
no. level features
1 words — 86.6 22.9
7| cat. — 871 | 294
3 cat. words 87.5 324
4 — B3 87.9 36.5
5 cat. words, B3 87.7 44.6
6 cat. words, B3, A
M, FEAT 90.3 | 44.5
7 words B3, A M, FEAT 89.6 54.1
[ 8 [ MLP & SCT(cat) | 88.6 | 40.5 |

Table 1. Results of the different MSCTs for B3
detection.

e the normalized duration of the syllable nucleus with re-
spect to phoneme intrinsic mean and standard deviation
and to the speaking rate as suggested by [10],

e the position of the FO maximum on the time axis relative
to the position of the syllable under consideration,

e the mean energy, and the mean FO,

o flags indicating if the syllable carries the lexical word
accent or if it 1s in a word final position.

Furthermore the following features were computed only
for the syllable under consideration:

e the duration of syllable and syllable nucleus using differ-
ent normalization methods as well as no normalization
at all (all together 6 features),

o the length of the pause (if any) preceding or succeeding
the word containing the syllable,

o the linear regression coefficients of the FO contour and the
energy contour computed over different 7 and 2 windows
respectively to the left and to the right of the syllable.

This yields the same 46 features used in the VM B3 clas-
sification experiments described in [3].

We tried to classify these features directly with MSCTs,
but we yielded poor results due to the limited amount of
training data. Thus we first trained a multi-layer percep-
tron (MLP) as acoustic—prosodic model using Quickpropa-
gation to classify the features described above for the pur-
pose of B3 classification (row phrin Fig. 1). The MLP had
40/20 nodes in the first/second hidden layer and one out-
put node per class, in this case one for B3 and the other
for = B3. Since we trained the MLP with the unity vec-
tor as desired output, the output values can in theory be
considered as a posteriori probabilities (our experience is
that the sum of the output activations in general is very
close to one). However, in order to balance for the a pri-
or1 probabilities of the different classes, during training the
MLP was presented with an equal number of feature vectors
from each class. Furthermore, the sum of the ML.P outputs
was normalized to be equal to one in any case.

Another MLP was trained to classify accented syllables
on a similar feature set as described above (row accin Fig.
1). A third MLP classifies FO contours at the end of words
into one of the classes rising, continuation-rise, falling; this
is based on features obtained from the FO contour and its
linear regression line.

3.3. MSCT experiments

The results of seven experiments with MSCTs (no. 1-
7) are depicted in Table 1. The first column specifies the
experiment number to which it is referred to in the follow-
ing; the second and third column specify the input features
used (except for experiment 8); the fourth column shows
the total recognition rate, whereas the fifth column gives
the recognition rate of B3 alone. Note, that the recognition



rates do not take into account the turn final boundaries,
which to classify is a trivial task.

We used the following categorical input levels:

o the words itself (about 1200), and

e 150 categories (cat in Table 1 and henceforth) as for the
n—gram (polygram) experiments described in [3], which
were determined automatically in order to minimize the
perplexity of a bigram.

Experiments were conducted with the word or the cat
level being the entrance level. Note, that in the first case
the catlevel is of no further use. So far no explicit syntactic
or semantic information (which could e.g. be computed by
a parts—of-speech tagger) was used.

Furthermore, the following continuous input features
were used:

e B3: the probability for a B3 boundary computed by the
MLP as described above.

e A: the probability for a word being accented computed
by an MLP. (The position of accents can indicate the
phrase structure of a turn in addition to the prosodic
boundary markers.)

e M: the probability for the intonation contour being ris-
ing, falling or continuation-rise. (These three types of
contours roughly indicate the sentence mood.)

o FEAT: the following five features: normalized duration
of syllable and syllable nucleus, FO regression over two
different windows, the mean FO over the syllable. Note,
that these are a subset of the features being input to the
B3-MLP.

From experiment 1 to 7 the recognition rate of B3 im-
proves with increasing experiment number. In most cases
also the total recognition rate increases. In the following
we will mention the B3 recognition rates only: in the first
experiment only the words were used, yielding a recognition
rate of 22.9%. This could be improved to 28.4% by using
the categories instead of the words (exp. 2). So far only
the “traditional” SCT approach with regular expressions as
questions is used. When combining the cat level and the
word level with the cat level being the entrance level, the
recognition rate further improves to 32.4% (exp. 3). So
far only discrete features have been used. In exp. 4 the
B3 probability was used as the only feature; since the en-
trance level is undefined only numerical questions over the
B3 probability attached to the word to be classified is used.
Thus, the SCT more or less learns the a priori probability
of B3. The recognition rate of this classifier is better than
the one of the purely categorical ones (36.5%). Combin-
ing these different information sources, i.e. words, cat, and
B3, in a single MSCT the recognition rate increases again
to 44.6% (exp. 5). Using the A and M features in addition
does not change the B3 recognition rate, but it improves the
total recognition rate (exp. 6). When keeping these contin-
uous features but switching to the words as entrance level,
the different knowledge sources obviously are integrated in
a more effective manner by the MSCT, which improves the
recognition rate further to 54.1%.

In experiment 8 we combined the probabilities for B3
and for =B3 computed by the B3-MLP and by the SCT
of exp. 3, which is a pure language model, via Bayes rule
(see below) yielding a recognition rate of 44.4%. Note, that
this is better than the result of exp. 5 with which it directly
compares, however, the MSCT allows for the integration of
much more different knowledge sources, which finally yields
better results than the pure multiplication of probably bad
probability estimates.

4. FUTURE WORK AND CONCLUSION

The main conclusion we can draw from our experiments
is, that the integration of different knowledge sources in-
cluding categorical and continuous features improves the
recognition rate. However, the recognition rates are still
somewhat lower than the ones we achieved with the combi-
nation of the B3-MLP and n—grams, which were reported
in [3]. We believe that the main reason is the small amount
of training data, which especially does not allow the MSCT
to make use of a broad context within the questions in the
nodes. On the training data the MSCT shows about 1/3 as
much errors as on the testing data; this also indicates that
the amount of training data i1s not sufficient.

During the experiments, we observed that adding more
input features sometimes can reduce the recognition rate of
the MSCTs a lot. This is caused by the optimization of
the trees which i1s done locally on the current leaf nodes.
This can cause a globally suboptimal question to be asked
early, since it might split the training data best at that
time. In an extreme case, the subtrees of this node could be
identical, which causes optimization problems having only
sparse training data. Of course with “unlimited” training
data this problem does not exist.

We have implemented the training described in [6]. In
the future we will compare this training with the one
that we used so far [2]. Also we will soon have a large
VM training database of about 7 hours that has syntacti-
cally/prosodically labeled phrase boundaries. This will al-
low us to verify our results on a large corpus, test out new
question types, and look at the importance of individual
questions in detail.

REFERENCES

[1] L. Breiman. Classification and Regression Trees.
Wadsworth, Belmont CA, 1984.

[2] S. Gelfand, C. Ravishankar, and E. Delp. An Iterative
Growing and Pruning Algorithm for Classification Tree
Design. IEFE Trans. on Pattern Analysis and Machine
Intelligence, 13:302-320, 1991.

[3] R. Kompe, A. KieBling, H. Niemann, E. Noth, E.G.
Schukat-Talamazzini, A. Zottmann, and A. Batliner.
Prosodic scoring of word hypotheses graphs. Proc. EU-
ROSPEECH, Vol. 2, pp. 1333-1336, Madrid, 1995.

[4] R. Kuhn, A. Lazarides, Y. Normandin, J. Brousseau,
and E. Noth. Applications of Decision Tree Method-
ology in Speech Recognition and Understanding. In
Proc. of the CRIM/FORWISS Workshop (Minchen,
1994), pp. 220-232, Sankt Augustin, 1994. infix.

[5] R. Kuhn and R. De Mori. The Application of Semantic
Classification Trees to Natural Language Understand-
ing . IEEFE Trans. on Pattern Analysis and Machine
Intelligence, 17:449-460, 1995.

[6] D.M. Magerman. Natural Language Parsing as Statis-
tical Pattern Recognition. PhD thesis, Stanford Uni-
versity, 1994.

[7] M. Mast, E. Noth, H. Niemann, and E.G. Schukat-
Talamazzini. Automatic Classification of Speech Acts
with Semantic Classification Trees and Polygrams. In
IJCAI-95 Workshop “New Approaches to Learning for
Natural Language Processing”, pp. 71-79, Montreal,
1995.

[8] M. Reyelt and A. Batliner. Ein Inventar prosodischer
Etiketten fur VERBMOBIL, VM-Memo—33-94, 1994.

[9] W. Wahlster. Verbmobil — Translation of Face—To—
Face Dialogs. Proc. EUROSPFECH, Vol. “Opening
and Plenary Sessions”, pp. 29-38, Berlin, 1993.

[10] C.W. Wightman. Automatic Detection of Prosodic
Constituents. PhD thesis, Boston University, 1992.



