
Gef6rderl yom

tibmb+f
Bund8lminilterium flir
Bildung. Willlnichaft.
Forschung und Technologie

erbmobil
Verbundvorhaben

Structural Translation with
Synchronous Tree Adjoining
Grammars in VERBMOBIL

Karin Harbusch

Un iversitat Koblenz-La nda u

Peter Paller

DFKIGmbH

Jm Report 184
Dezember 1996

Dezember 1996

Karin Harbusch

Universitat Koblenz-Landau, Abt. Koblenz
Fachbereich Informatik, Institut fUr Computerlinguistik

Rheinau 1
56075 Koblenz

Tel.: (0261) 9119 - 463
Fax: (0261) 9119 - 465

e-mail: harbusch@informatik.uni-koblenz.de

Peter Poller

DFKI GmbH
Stuhlsatzenhausweg 3

66123 Saarbrucken

Tel.: (0681) 302-5255
Fax: (0681) 302-5341

e-mail: poller@dfki.uni-sb.de

Gehort zum Antragsabschnitt: 9 Spontansprachliche und Inkrementelle Ge­
nerierung

Die vorliegende Arbeit wurde im Rahmen des Verbundvorhabens Verbmobil yom
Bundesministerium fUr Bildung, Wissenschaft, Forschung und Technologie BMBF
unter dem Forderkennzeichen 01 IV 101 G gefordert. Die Verantwortung fUr den
Inhalt dieser Arbeit liegt bei den Autoren.

Structural Translation
with

Synchronous Tree Adjoining Grammars
in VERBMOBIL

Karin Harbusch+ & Peter Pollert

t D FKI - German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, D - 66123 Saarbrucken, Germany

poller@dfki.uni-sb.de

t University of Koblenz - Computer Science Department,
Institute of Computional Linguistics

Rheinau 1, D - 56075 Koblenz, Germany
harbusch@informatik.uni-koblenz.de

Table of Contents

1 Motivation 4

2 Isomorphic Synchronous TAGs 6

3 Efficient Parsing of IS-TAGs 7
3.1 The Parsing Algorithm for TAGs 8

3.1.1 Context-free Analysis 8
3.1.2 Iterative Elimination of Complete Trees. 8

3.2 The Translation Algorithm. 9

4 Applying IS-TAGs in VERBMOBIL 11

5 Future Work 13

A The Language defined by the Source Grammar 17

B Examples 20
B.1 VM-INTRODUCTION. .. 20
B.2 VM-INTRODUCTION and VM-INTRODUCTION-REACTION. 22
B.3 VM-TOPIC .. 23
BA VM-TOPIC-REACTION .. 24
B.5 VM-PROPOSAL .. 26
B.6 VM-PROPOSAL-REACTION 27
B.7 VM-AGREEMENT. " 28
B.8 VM-BYE 28
B.9 VM-BYE-REACTION . , 28
B.10 Reversibility. .. 29

Summary

The VERBMOBIL project is developing a translation system that can assist a
face-to-face dialogue between two non-native english speakers. Instead of having
continiously speak english, the dialogue partners have the option to switch to
their respective mother tongues (currently german or japanese) in cases where
they can't find the required word, phrase or sentence. In such situations, the
users activate VERBMOBIL to translate their utterances into english.

A very important requirement for such a system is realtime processing. Real­
time processing is essentially necessary, if such a system is to be smoothly inte­
grated into an ongoing communication. This can be achieved by the use of anytime
processing, which always provides a result. The quality of the result however, de­
pends on the computation time given to the system. Early interruptions can
only produce shallow results. Aiming at such a processing mode, methods for
fast but preliminary translation must be integrated into the system assisted by
others that refine these results. In this case we suggest structural translation with
Synchronous Tree Adjoining Grammars (S-TAGs), which can serve as a fast and
shallow realisation of all steps necessary during translation, i.e. analysis, transfer
and generation, in a system capable of running anytime methods. This mode
is especially adequate for standardized speech acts and simple sentences. Fur­
thermore, it provides a result for early interruptions of the translation process.
By building an explicit linguistic structure, methods for refining the result can
rearrange the structure in order to increase the quality of the translation given
extended execution time.

This paper describes the formalism of S-TAGs and the parsing algorithm im­
plemented in VERBMOBIL. Furthermore the language covered by the german
grammar is described. Finally we list examples together with the execution time
required for their processing.

3

1 Motivation

As a prime target of the VERBMOBIL project (see, e.g., [Wahlster 93]), a ma­
chine translation system is being developed to assist translation in the following
situation. Two non-native english speakers one japanese the other german, are
engaged in an englisch dialogue assisted by the VERBMOBIL system on demand.
Both partners can also use their mother tongues. In this case VERBMOBIL
translates their utterances into english.

The natural integration of such a system into an ongoing face-to-face com­
munication requires realtime processing. In VERBMOBIL, realtime processing
is realized by anytime constructions (see, e.g., [Dean & Boddy 88]). Under the
presupposition of always providing a translation result in realtime, processes can
be interrupted at any time cutting off time-intensive tasks. In such a situation
more or less preliminary results (e.g., by estimating the most probable result or
analyzing in a rudimentary mode) are preferred instead of a complete syntactic
and/or semantic/pragmatic transfer1 result whose computation could impose an
unnatural delay on the ongoing communication.

Beside the fact that all components of an anytime system have to be able
to produce shallow output on demand, they must also have the ability to deal
with rudimentary information as input. In order to manage an efficient commu­
nication for the far range of differences in the input, the individual components
can be combined with each other depending on the level of how rudimentary the
processing was. In this way different processing levels become possible according
to the expected processing time. In the field of language translation, we propose
the addition of a component for immediate structural translation in addition to
a complete syntactic and semantic/pragmatic transfer component based on the
above mentioned idea of providing different processing levels for the same task.
In addition to the above mentioned anytime processing with which time intensive
tasks can be cut off in favour of more or less preliminary translation results, di­
rectly relating syntactic structures for conventionalized speech acts or idioms is
often more efficient than the algorithmic transfer of their complete syntactic and
semantic/pragmatic representations into each other.

The component presented here becomes active in the production of shallow
translations with respect to "flat" transfer and early anytime interruptions. In
both cases, the input is rudimentarily analyzed in the following two situations:

• the syntactic component has not yet been activated. The terminal words,

1 Transfer is a mapping function from an analyzed syntactic or semantic/pragmatic source
structure onto an according target structure (for more information on the differences between
transfer and interlingua see, e.g., [Nirenburg 93]).

4

i.e., the best hypothesis of the speech analyzer, are associated with their
syntactic category but they remain unrelated to each other,

• a basic hypothesis of the content of the dialogue contribution is given by the
VERBMOBIL-dialogue component [Alexandersson et.al. 1995] (e.g., salu­
tation or reject- date) applying statistical methods2 .

Since the quality of the result of an anytime component monotonously increases
with time, basic linguistic structures must be created in such a way that the com­
ponents can be rearranged if the systems gets more execution time. Therefore the
synchronization of two adequate linguistic formalisms seems to be an appropri­
ate representation for that. We propose Synchronous Tree Adjoining Grammars
(S-TAGs) that have been introduced for the immediate structural translation in
[Schabes & Shieber 90]. The synchronization of two TAGs is realized in the fol­
lowing way. The elementary trees in the so called source and target grammar
are specified as pairs in order to express structural correspondencies. In addition,
such tree pairs can contain links between nonterminal nodes. These links are used
to restrict the recursion operation in such a way that it has to take place in linked
nodes in parallel only. Finally, the two inserted structures must belong to the
same rule pair.

According to these constraints S-TAGs can be used for structural translation
as follows. First, the input is analyzed with respect to the source-grammar which
produces a source-derivation D L • In a second step the synchronized derivation
DR can be constructed by identifying the synchronized derivation step of each
derivation step in DL with respect to the condition that synchronous derivation
steps must be sanctioned by an appropriate link. Finally the translation result is
the terminal string of DR.

Unfortunately, considering the original definition of S-TAGs one can show that
it allows the construction of a non-Tree-Adjoining language in one component
although this component itself is specified by a TAG. This makes the parsing
problem for S-TAGs harder than TAG parsing meaning that the above mentioned
translation algorithm cannot work. As a result, a restricted definition for S-TAGs
that requires a valid synchronous derivation to consist of isomorphic derivation
trees in both components (in the following, we refer to this formalism by IS-TAG
for Isomorphic S-TAG) was proposed in [Shieber 94]. In this case, only tree­
adjoining languages can be formed in each component.

The next section gives the formal definition of IS-TAGs. After briefly de­
scribing Peter Poller's TAG-parser [poller 94], we extend it to produce the target

2 Actually, the second kind of information can be used to skip the indepth analysis of the
dialogue contribution, if a conventionalized speech act is expected to be uttered in this situation.

5

derivation trees in parallel in an efficient manner. Section 4 outlines the appli­
cation of structural transfer in the VERBMOBIL system using IS-TAGs. Expe­
rience gained especially from a prototype implementation is discussed. Finally
future work is addressed. The appendices describe the current grammar G for
the domain of appointment scheduling, the output language of G and a collec­
tion of translation examples along with their execution time on a MAC IVORY
LISP-Machine.

2 Isomorphic Synchronous TAGs

As outlined in [Shieber 94]' the original definition of S-TAGs does not restrict
the structures that can be produced in the source and target languages. As a
result, this allows for non tree-adjoining languages in one component, despite
the fact that this component is specified as a TAG. Shieber therefore proposes a
restricted definition of synchronous derivation, namely the condition that a valid
synchronous derivation must consist of two isomorphic TAG-derivations. Since
this definition restricts the power in both component grammars to TAG languages,
the so called Isomorphic Synchronous TAGs (IS-TAGs) allow for a TAG-parsing
strategy for the two individual grammars. Therefore IS-TAGs can be applied in
our translation module.

A formal definition of IS-TAGs follows below:

Definition 1
A synchronous tree-adjoinng grammar G (S-TAG) is a set of triples {(Li'
~, ~i)}. Li and ~ are elementary trees, both either initial or auxiliary. GL :=
{Li} is called the source grammar and G R := {~} the target grammar3 . ~i
is the linking relation between tree addresses (i. e. nodes) in Li and ~.

In [Schabes & Shieber 90], a synchronous derivation is defined as a synchro­
nous rewriting process. This rewriting process is responsible for the mentioned
additional generative power in one component. The following definition of syn­
chronous derivation as isomorphic TAG-derivations uses the standard notations
of TAG-derivation trees by [Vijay-Shanker 87]. Here is a short recapitulation of
the notation: a derivation tree consists of a set of nodes 7]. Each arc from 7] to
parent(7]) is labeled with addr(parent(7])) which means that tree(7]) is an auxiliary

3Both TAGs allow for the definition of initial and auxiliary trees with an empty leaf string
as long as such a tree is paired with a tree that contains at least one terminal in its leaf string.
A tree which possesses an empty leaf string is called non productive oder empty tree. So, for
reasons of implementability, a prerequisite of our parser described in the next section is that the
source grammar does not contain empty trees. This is explained there in more detail

6

(or substitution-) tree that has been adjoined (or substituted) in tree(parent(7}))
at node address addr(parent(7})).

Definition 2
A isomorphic synchronous derivation ofa S-TAG G = {(GL,G R), ~i} is (,
pair (DL, DR) for which the following conditions hold:

1. D Land DR are well-formed derivation trees with respect to GLand G R,

respectively.

2. D Land DR are isomophic, i. e. there is a one-to-one mapping f from th~
nodes of D L to the nodes of DR that preserves dominance, i. e. if f(7}t1 = r}r

then f(parent(7}l)) = parent(7}r)

3. The isomorphic operations are sanctioned by links in tree pairs, i. e. if f(7}t)
= 7}r, then there is a pair (tree(r}d, tree(7}r), ,-...') in G. Furthermore, if 7}!
has a parent, then there is a tree pair (tree(parent(7}l)), tree(parent(7}r)), ,.-....)
in G and addr(parent(7}l)) ,.-.... addr(parent(7}r)).

As compared to original S-TAGs, constraint propagation is impossible in Iso­
morphic S-TAGs because a constraint now always applies to the node it is attached
to. Therefore, one individual component in IS-TAGs can only form tree-adjoining
languages. The proof for that is a reduction to tree-set-Iocal MCTAGs and it is
given in [Shieber 94].

3 Efficient Parsing of IS-TAGs

The restriction of synchronous derivations to isomorphic TAG-derivations ensures
the implement ability of a translation module that bases on a TAG-parser. Ad­
ditional effort is only necessary for the detection of valid synchronous adjoinings.
This section shows how the TAG-parser designed by Peter Poller ([Poller 94]) has
been extended to detect isomorphic synchronous derivation steps.

Peter Poller's TAG-parser has a time complexity of O(n6) in the worst case
and works in a two-level mode in a Earley-style manner. This means that in a
first step, a context-free analysis for the source grammar is carried out using an
extended version the Earley algorithm [Earley 70]. In the second step all context­
free derivations which do not correspond to a valid TAG-solution are ruled out on
the resulting item lists of the first step. This is done by an iterative identification
and elimination process of innermost (so called complete) elementary trees4 . Be­
fore we show how this second parsing step is extended to the identification of valid
synchronous adjoinings, let us look at a short introduction of the parser itself.

4Complete elementary trees are elementary trees in the context-free parsing result in which

7

3.1 The Parsing Algorithm for TAGs

As mentioned above the parser works in a two-level mode. The first parsing
step is a context-free analysis of the input sentence using an extended version of
the Earley algorithm with respect to a contextfree interpretation of a TAG, the
so-called context-free kernel of a TAG. The second parsing step is the iterative
elimination of complete trees on the context-free parsing result by which invalid
TAG solutions are ruled out.

The context-free kernel of a TAG is defined as the context-free grammar that
results from the interpretation of each mother-daughter relation in all elementary
trees as a context-free rule. The computation of the context-free kernel of the
underlying TAG grammar can be done in a preliminary step before parsing. In
order to be able to identify the elementary tree from which a rule of the context­
free kernel had been extracted all elementary trees and their nodes get unique
numbers which are attached to them and thereby into the rules of the context­
free kernel.

3.1.1 Context-free Analysis

The context-free analysis uses an extended version of the Earley algorithm. How­
ever, the second parsing step which involves the identification of valid adjoinings
in the context free parsiong result, makes extensions necessary. In order to be
able to identify elementary trees inside the context-free parsing result, additional
effort is necessary for the administration of the mentioned unique node numbers
during the Earley-analysis. Furthermore, additional pointers are used between
the individual items produced by the Earley algorithm. This ensures an explicit
encoding of all derived trees of the context-free kernel inside the context-free
parsing result. When using the original Earley algorithm the derived trees are
only implicitely given.

3.1.2 Iterative Elimination of Complete Trees

The iterative elimination must be initialized by the first set of so called innermost
trees, i.e., auxiliary trees in which no adjoining has taken place. At least one such
tree must exist in each iterative step. After the correct elimination of all complete
elementary trees, this condition holds again. Therefore the elimination procedure
is iterated until nothing but initial trees remain.

no adjunction has taken place. The elimination of a complete elementary tree means the removal
of the tree which makes its adjunction undone. This procedure can be iterated and at least one
complete tree must exist in each iteration step [Harbusch 89].

8

This initialization procedure is organized as a recursive top-down traversal
of all context-free derivations. Context- free derivation steps that belong to the
same elementary tree can be identified by using the unique node numbers.

After the initialization of the first set of complete trees in the context-free
parsing result, their iterative elimination is initiated in order to make all adjoinings
undone until only initial trees remain. If this step succeeds all correct TAG­
derivations are identified.

Obviously the elimination of elementary trees is done only virtually, otherwise
we would risk loosing the completeness of the parsing result. So an elimination
of a complete tree is organized as the definition of an immediate neighbourhood
between the root and foot node of an auxiliary tree. In this way complete elemen­
tary trees that have been eliminated by this method are simply skipped inside the
consequent iteration steps.

Finally an input sentence is accepted, if and only if, nothing but initial trees
remain after the iteration.

3.2 The Translation Algorithm

This section shows how this parsing algorithm can be extended to detect syn­
chronous adjoining and produce all synchronously derived trees. Since the TAG­
parser explicitely identifies the individual derivation steps in the source grammar
it is possible to extend the identification and elimination of a complete elemen­
tary tree in the source grammar by checking the synchronicity condition. The
adjunction node must have a link and the partner tree of the adjoined tree in
the source grammar must be adjoinable in the node the link impinges on. If the
synchronicity condition does not hold, the complete tree in the source grammar is
ruled out. So, doing elimination and synchronicity check at the same time has the
advantage that invalid synchronous derivation steps can be ruled out immediately.

If the synchronicity condition holds, the step of eliminating a complete ele­
mentary tree in the source grammar is extended to produce a so called building
instruction for the synchronized derivation step in the target grammar. The main
advantage of building instructions in favour of producing all synchronous deriva­
tions simultaneously after each elimination in the source grammar is that inter­
mediate target-structures can be shared instead of spelling them out. So the time
complexity is not increased by this additional computation. The production of
such building instructions is described in the following.

Suppose the adjunction of a tree /31 in a tree (\(1 at node Xl has been iden­
tified in the source grammar. If the synchronicity condition of this adjunction
holds, a building instruction for the synchronized adjoining of the following form
is constructed:

9

adjoin (a2' X2, (32)'

This instruction implies that the synchronous derivation step is the adjunction of
the tree {32 into the tree a2 in node X2 - where (al, (2) and ({3I, (32) are tree
pairs and there is a link between the node Xl in al and X2 in a2'

This instruction is propagated inside the further iteration steps. So, once the
next complete elementary tree in the source grammar is identified, its elimination
is carried out in the same way. The propagated building instruction thereby
serves as the synchronous tree of the currently found complete tree in the source
grammar. In this way we get such embedded building instructions like:

adjoin h2! Y2, adjoin (a2 ,X2 , (32))'

This means that during the iteration, the individual building instructions are
combined step by step in a similar way as derivation trees for TAGs are specified
in order to share subdescriptions in an efficient manner. For reasons of efficiency,
all building instructions remain uninstantiated until the iteration has terminated
successfully. At the end of the iteration only those complex building instructions
that are attached to valid readings in the source grammar are evaluated.

A main advantage of using a two level analysis approach - where the second
step follows the derivation definition in an inverse manner - for IS-TAGs is that
the system always operates on related subresults according to the source and the
target grammar.

Another feature of our system is that it allows switching between source and
target languages. The system is therefore reversible as long as no €-trees, i.e.
elementary trees with an empty terminal string, occur in the selected source
grammar.5 The reason for this restriction is that empty trees in the source gram­
mar could lead to an infinite number of derivations for the input sentence. This
in turn leads to an infinite number of translation results thus making it unclear
what the translation of the input sentence should be.

In general, ambiguous input sentences require further strategies to select the
best alternative. As we describe in section 4, the solution computed first is taken
as the translation result in our system. Of course, better strategies - e.g. me­
thods concerning additional knowledge about the input sentence (e.g., a semantic

5Reversibility is an overall goal in VERBMOBIL. However, the analysis is realized by another
formalism other than TAG. On the long-term, a synchronization between this formalism and
TAG is planned so that the anytime mode can run interleaved with "free" analysis. As mentioned
above with respect to generation, this is an important reason which determines the formalisms
to be selected. Currently we have some basic ideas, on how this combination can be stated using
a mixed synchronization of two different formalisms, although their expressivity should be just
the same here.

10

representation) - should be preferred. Since we haven't implemented any know­
ledge based decision making, we will return to this task in the final section, where
future work is mentioned.

4 Applying IS-TAGs in VERBMOBIL

In the VERBMOBIL translation scenario, Isomorphic S-TAGs are used as an
additional transfer component in anytime processing in the following contexts.
Synchronized structures in germanfjapanese and english allow for rudimentary
translation results in case of an early anytime interruption of the system (e.g.,
quick and dirty translation of keywords). Consequently, a broad coverage of the
source language must be represented in the synchronous framework.

On the other hand, direct translation of special constructions (e.g., conven­
tionalized speech acts or idioms) by synchronized structures speeds up the system
thus preserving more time for the processing of difficult phenomena in the source
utterance. In this case, the final translation result is only partially processed in
the synchronous framework so that the synchronous framework has to only cover
a sublanguage.

In the second case however, an elaborate structural representation is crucial. It
allows for the integration of phrases produced by the synchronous framework into,
loosely speaking, "freely" generated phrases in order to form a correct translation
result. This consideration rules out an approach on the basis of "flat" templates
in favour of a "deep" grammatical representation.

Necessarily, anytime processing has effects on the overall architecture. The
results can be preliminary in two different respects:

• The result is underspecified (e.g., an NP without determined syntactic func­
tion). The effect on the architecture of the overall system is that each
component must be flexible enough to additionally deal with underspecified
input. This flexibility can be realized by providing several sub-components
for the same task depending on the type of underspecification (e.g., a pure
semantic NP-analyzer if the syntactic function is unknown), or it results
from one component which works with incomplete knowledge - similar to
an incremental system [Kilger & Finkler 95] .

• The result is guessed, e.g., by estimating defaults, statistics etc. Since the
result can be wrong, the next components must be able to identify contra­
dictions, which require backtracking in the input-providing components and
thus revising their own computation as soon as revised input specifications
arrive.

11

This paper focusses on the first alternative. We describe a component that
can translate with rudimentary knowledge in specific situations. In the following
situations, there is only rudimentary knowledge to start with:

• the syntactic component has not yet been activated. So terminals, i.e.,
the best chain of the speech analyzer, are associated with their syntactic
category but remain unrelated to each other.

• A basic hypothesis of the content of the dialogue contribution is given by the
VERB MOBIL-dialogue component (e.g., salutation or accept-date) using
statistac methods [Alexandersson et.al. 1995].

A main advantage of such a behaviour instead of detailed processing is that a
result is always provided (interrupts). Furthermore, simple constructions do not
waste time (realtime processing).

Currently, we have an implementation of a fiat translation system from ger­
man into english in the formalism of IS-TAGs. As mentioned before, fiat trans­
lation consists of the following steps. First the input sentence is analyzed on
the source grammar with respect to synchronicity constraints and, if successful,
its synchronous derivations are generated in the target grammar. The terminal
string of the solution computed first is taken as the translation result (best-first
strategy). This means that we have not yet implemented an elaborate strategy to
choose the best alternative for ambiguous sentences (see also the final section).

Figure 1 exemplifies fiat transfer rules for ((wunder-)* schonen) Tag (Herr
Miller) and Hello (Mister Miller) How are you, respectively. The example illus­
trates the necessity of empty trees. In english only the conventionalized grea­
ting "hello, how are you" is possible. In german however, an infinite number of
"wunder-" may modify "schoen" or "Tag". Addressing the dialogue partner by
name is facultatively possible in both languages.

Our system covers all typical dialogue contributions in the VERBMOBIL sce­
nario in order to allow for early interrupts. The grammar consists of approxi­
mately 500 trees separated into 10 different dialogue-act classes. This allows the
system to switch between individual subgrammars in order to restrict the number
of grammar rules to be regarded in a structural transfer step (for a compact de­
scription of the individual dialog-acts distinguished in our system see Appendix
A together with the examples in Appendix B). Peter Poller's parser, implemented
in COMMON LISP on an MAC-IVORY machine, was initially extended to run
Synchronous TAGs without multiple links (respective nodes are duplicated in the
current grammar). In the average case, a structural transfer step takes 0.5 sec on
a SYMBOLICS MAC-IVORY machine.

12

S

A
NP~SA(S2'S4) NP S
I I -=====---==--
N N How are you

I I
Tag Hello

wunder-

schonen

84: NP 0
~

NP 0 ADDRESS
--------=::::--
Herr Miller

t4: NP

A
NP ADDRESS

--------=::::--
Mister Miller

Figure 1: Example trees in a Synchronous TAG (with Constraints).

5 Future Work

In the last section, we mentioned the problem of ambiguous translation results and
the unsatisfying best-first strategy to handle it. A more sophisticated strategy
should allow for a better selection of the best alternative for ambiguities in the tar­
get language. The new strategy we are currently testing is to define probabilities
for the individual competing structures.

As outlined in the motivation section, VERBMOBIL is designed to work in
a system-wide anytime fashion. Up to now, we have realized a specific line of
processing on the syntactic level. Obviously, for semantic and pragmatic transfer,
the same algorithm can be applied. We have started to realize a transfer grammar
containing information on the semantic/pragmatic level. Currently, we have no
experience with the performance of such a grammar. This must be studied in
future work. A further question concerning all levels of processing remains open:
the intregation of those directly coupled lines of processing with the elaborate
processing of other parts of the dialogue contribution. Basically, we favour a
technique of sharing structures efficiently.

Finally, we address a more theoretical problem. As mentioned before, the
general definition of S-TAGs is more powerful than that of TAGs. In order to
find further formalisms beside IS-TAGs, that are equivalent to tree-set-Iocal MC­
TAGs, we are currently studying Synchronous Context-free Grammar (S-CFG).

13

Figure 2 depicts the example of an S-CFG producing the language an bn cn dn in
one component. Note that multiple links are propagated to the leftmost nonter­
minal daugther here without loss of generality.

\
81 : T t1: S) \

83: S t3: h) I I ~
€ € a T d

~

\
82: S , t2:

~) \
84: T t4: I) ~ ~ I

a S d b T d ok
I <:

Figure 2: Two synchronized CFGs for an bn cn dn

We assume that it is possible to show the equivalence of TAGs and S-CFGs.
If so, S-CFGs can be an interesting formalism for the specification of natural­
language grammars. Furthermore, we hope that a direct parser for S-CFGs will
have a better time complexity - at least in the average case, because the control
of the synchronous contextfree derivation in the target grammar can be managed
more locally than for TAGs. These points are open questions to be addressed in
the future.

As outlined in [Shieber 94] constrastive phonomena exist in different languages
which cannot be expressed by isomorphic S-TAGs whenever they require the syn­
chronization of non-isomorphic TAG-derivations. For example in the sentences

• Le docteur lui soigne les dents,
The doctor treats his teeth,

the pronoun "lui" is a modification of the main verb "soigne" while "his" modifies
"teeth". It's not possible to describe this correspondency with IS-TAGs because
the two derivations of the sentences above are non-isomorphic as figure 3 shows.

In order to express such non-isomorphic correspondencies, we propose a re­
laxation on the synchronicity constraint. This allows for dynamic links that may
be defined between trees even if they do not form a tree pair in the synchronous
TAG. The dynamics then come in automatically during a synchronous derivation
because such a link between non paired trees is only applicable if both trees are
part of the current two derivations of the components, i.e. it requires adjunctions
to have taken place before. The new formalism resulting from this extension is
called Non-isomorphic Synchronous TAG (NIS-TAG, [Harbusch & Poller 96]).

14

fdt: a(soigne) edt: a.' (treats)

A
f3 (docteur) 8 (lui) -y (dents)

~
f3' (doctor) -y' (teeth)

')le) Tl)les) ')the) 8' (Ls)

Figure 3: Non-isomorphic synchronous derivation trees

Similar to S-TAGs, in NIS-TAGs constraints may also have an indirect effect
on synchronous adjoinings. The reason is that the satisfaction of a constraint in
one component may influence derivation steps in the other component because
of the synchronicity condition. NIS-TAGs also allow for the formation of a non
tree-adjoining language in one component although this component is specified
by a TAG. Furthermore, in NIS-TAGs, the two nodes at which an adjoining takes
place should not necessarily belong to trees of a tree pair anymore. So the parsing
problem for NIS-TAGs is similar to that of S-TAGs. Nevertheless, a parser for
NIS-TAGs that bases on a TAG-parser for the source grammar is available and is
described in [Harbusch & Poller 96]. The construction of the synchronized target
derivation however, needs exponentional runtime because links can be applied
dynamically. Metaphorically speaking, the construction of valid target derivations
is a puzzle comprising individual target derivation steps, whose solution are all
target derivation trees, in which all puzzle pieces are used.

Since we have no implementation of the new formalism, we are not in a po­
sition to compare it with our IS-TAG implementation. A comparison based on
an average case is expected to help in making a decision, as to which grammar
type should be further developed for use in the shallow translation module of the
VERBMOBIL project.

15

References

[Alexandersson et.al. 1995] J. Alexandersson, E. Maier, und N. Reithinger.
1995. A Robust and Efficient Three-Layered Dialog Component for a
Speech-to-Speech Translation System. In Procs. of the 7th EACL, Dublin,
Ireland, pp. 188-193.

[Dean & Boddy 88] Th. Dean, M. Boddy. 1988. An Analysis of Time­
Dependent Planning. In Procs. of the 7th AAAI, pp. 49-54.

[Earley 70] J. Earley. 1970. An Efficent Context-free Parsing Algorithm. Com­
munications of the Association for Computing Machinery (ACM), 13:2,
pp. 94-102.

[Harbusch 89] K. Harbusch. 1989. Effiziente Strukturanalyse naturlicher
Sprache mit Tree Adjoining Grammars. Dissertation, Universitat des Saar­
landes, Saarbriicken.

[Harbusch & Poller 96] K. Harbusch, P. Paller. Non-Isomorphic Synchronous
TAGs. to appear in CSLI Lecture Notes.

[Kilger & Finkler 95] A. Kilger, W. Finkler. 1995. Incremental Generation for
Real-Time Applications. Technical Report RR-95-11, DFKI, Saarbriicken.

[Nirenburg 93] S. Nirenburg (ed). 1993. Forum Issue: Current Research in
Machine Translation. Machine Translation 7:4, pp. 229-33l.

[Poller 94] P. Paller. 1994. Incremental Parsing with LD/TLP-TAGs. Compu­
tational Intelligence 10:4, pp. 549-562.

[Schabes & Shieber 90] Y. Schabes, S.M. Shieber. 1990. Synchronous Tree
Adjoining Grammars. Procs. of the 13th COLING, Helsinki, Finland,
Volume 2, pp. 253-258.

[Shieber 94] S.M. Shieber. 1994. Restricting the weak-generative capacity of Syn­
chronous Tree-Adjoining Grammars. Computational Intelligence, Volume
10, Number 4, pp. 371-385.

[Vijay-Shanker 87] K. Vijay-Shanker. 1987. A Study of Tree Adjoining Gram­
mars. Ph.D. Thesis, Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA, USA.

[Wahlster 93] W. Wahlster. 1993. VERBMOBIL: Translations of Face-to-Face
Dialogs. In Procs. of the MT Summit IV, , Kobe, Japan, pp. 127-135.

16

A The Language defined by the Source Gram­
mar

In this section, the covered languages of the individual partitions of the german
grammar are described in terms of regular expressions. The following abbrevia­
tions are used:

Notation
(x) 01

(x)*

(xly)
X.y

[X,y]
<x>

i,j

Meaning
o or 1 occurrences of x
o up to n occurrences of x
either x or y
x and y in exactly this order
either x y or y x
is a template for a substructure
1. .. 31

VM-INTRODUCTION (currently 32 tree-pairs (TP»:

((einen)(Oll) . (((wunder-)* . schoenen)(011) . guten)(011) . TaglMorgenlnAbendlAbend
I gruess . (Sie)(Oll) . Gott)
· [(wuensche . ich . (Ihnen I Dir)(Oll»)(Oll) , (aus . Saarbruecken)(OII) ,
(nach . Muenchen)(Oll) , < AN REDE >(011)]

< ANREDE > ::=
(((mein)(Oll) . (lieber I sehr. geehrter))(Oll) . (Hans I (Herr. (Doktor I Professor)(OII)

· Meier))
I ((meine)(011) . (liebe I sehr. geehrte))(011) . (Maria I (Frau. (Doktor I Professor)(OII)
· Kunze)))(Oll)

VM-INTRODUCTION-REACTION (45 TP):

(ebenfalls I (auch . (Ihnen I Dir)(Oll»))(Oll)
· (einen)(Oll) . (((wunder-)*schoenen)(Oll) . guten)(Oll) . Tag I Morgen I nAbend
· [(wuensche . ich . (Ihnen I Dir)(011»)(011) , ((zurueck)(Oll) . nach . Saarbruecken)(Oll)
, (aus . Muenchen)(Oll) , < AN REDE >(011)]

(ebenfalls I gruess . (Sie)(Oll) . Gott) . [((zurueck)(Oll) . nach . Saarbruecken)(Oll)
, (aus . Muenchen)(Oll) , < AN REDE >(011)]

(PRON)

17

VM-TOPIC (26 TP):

[(Sie . wissen . schon)(Oll) , (weshalb . ich . anrufe)(Oll)]
· «(wir . (muessen I wollten) . (doch . (noch)(Oll))(Oll) . (einen I diesen) . Termin
· < REISE >(011) . (machen I festlegen)))
I (es . geht . urn) . (einen I diesen) . Termin . < REISE >(011))

· < NACHFRAGE - WANN >(01 1)

< REISE> ::=

fuer . (die I unsere) . Reise. [(Sie . wissen . schon/oil)
, «in. die. Schweiz) . (zu . unsern . Geschaeftspartnern)(Oll))(Oll)]

< NACHFRAGE-WANN > ::=
«(wann . waere . es . (Ihnen I Dir)(Oll) . (am. ehesten)(Oll) . recht)
I (wann . waere . es . «am. ehesten)(Oll) . geschickt) I (am. geschicktesten)))
· bei . (Ihnen I Dir))

VM-TOPIC-REACTION (35 TP):

(oh)(Oll) . (ja)(Oll) . (primaltoll)(Oll)

· « (dann) (011) . (lassen . Sie I lass) . uns . doch
· (einen I einen . solchen I solch . einen I diesen) . Termin . ausmachen)
I «dann)(Oll) . (lassen. Sie I lass) . uns . doch . (ma1)(011) . schauen))
· [< NACHFRAGE - WANN >(011) , «haben . Sie) I (hast. Du)
· (einen I Deinen I Ihren I den) . Kalender . (gerade)(011) . (vorliegen I da)(OI1))(011)]

VM-PROPOSAL (65 TP):

< INTRO >(011) . wie . waere . es . «mit. dem I am) . i-ten. Januar I vom
· i-ten. bis . j-ten . Januar). < EI NSCH RAEN K >(011)

· < N ACH F RAGE - GEHT >(01 1)

< INTRO >(011) . ich . koennte . (Ihnen I Dir)(011) . «den. i-ten. Januar)
I (vom . i-ten . bis . j-ten . Januar)) . anbieten . < EINSCHRAENK >(01 1

)

· < NACHFRAGE - GEHT >(01 1)

< INTRO >(011) . am . (naechsten)(Oll) . Dienstag. «den. i-ten. Januar)
I (vom . i-ten. bis . j-ten . Januar))(Oll) . haette . ich . einen . Termin . frei
· < EINSCHRAENK >(011) . < NACHFRAGE - GEHT >(01 1

)

18

< INTRO > ::=
(oh)(Oll) . ja I nein I aber I (mal. sehen) I (mal. schauen)

< EINSCHRAENK > ::=
aber. (nur I nicht) . (nachmittags I (am. Nachmittag))

< NACHFRAGE - GEHT > ::=
((geht . das . bei . (Ihnen I Dir)) I (waere . (Ihnen I Dir) . das
· (recht I geschickt)))(Oll)

VM-PROPOSAL-REACTION (19 TP):

((oh)(Oll) . (ja I ja . doch I nein))(Oll)
· (da . kann . ich . (nicht I schlecht I prima)(Oll)
I das . geht . (prinzipiell)(Oll) . nicht
I (das I Dienstag)(Oll) . ist . (prinzipiell)(Oll) . (ganz)(Oll) . (schlecht I prima))
· [(bei . mir I (fuer . mich))(Oll) , (in. meinem . Terminkalender)(Oll) , (mit. meinen
· Terminen)(Oll)]

VM-AGREEMENT (8 TP):

(prima I gut I ok)(Oll) . «ich . trage . (es I (den. Termin)) . (bei . mir)(Oll) . ein)
I (ich . trage . mir . den. Termin . ein)
I (hal ten . wir . den . Termin . fest))

VM-BYE (6 TP):

(bis. dann)(Oll) . (in. der. Schweiz)(Oll) . «(auf. Wiedersehen) I tschuess) . (dann)(OllJ

VM-BYE-REACTION (6 TP):

(bis . dann)(Oll) . (in. der. Schweiz)(Oll) . «auf. Wiedersehen) I tschuess) . (dann)(Oll)

19

B Examples

In the following are examples of translations from german into english. They are
organized in subsections that reflect the predicted dialogue act and its correspond­
ing grammar partition used for the translation. The respective execution time on
a MACIVORY Lisp-Machine is given in brackets.

B.l VM-INTRODUCTION

Tag :::=} hello how are you (0.466152 sec)

Morgen :::=} good morning how are you (0.496051 sec)

Abend :::=} good evening how are you (0.433755 sec)

gruess Gott :::=} hello how are you (0.502105 sec)

gruess Sie Gott :::=} hello how are you (0.491554 sec)

guten Tag :::=} hello how are you (0.543846 sec)

guten Morgen :::=} good morning how are you (0.571269 sec)

guten Abend ==> good evening how are you (0.545040 sec)

einen guten Tag :::=} hello how are you (0.594746 sec)

einen guten Morgen :::=} good morning how are you (0.591639 sec)

einen guten Abend :::=} good evening how are you (0.627422 sec)

Tag wuensche ich ==> hello how are you (0.712472 sec)

Tag wuensche ich Ihnen ==> hello how are you (0.985506 sec)

Tag Hans :::=} hello Hans how are you (0.684729 sec)

Tag mein lieber Herr Professor Meier :::=} hello my dear professor Meier how
are you (1.015726 sec)

20

Tag liebe Frau Kunze =? hello dear Misses Kunze how are you (0.932308
sec)

Tag sehr geehrter Herr Meier =? hello dear Mister Meier how are you (1.275869
sec)

Tag sehr geehrter Herr Doktor Meier =? hello dear doctor Meier how are
you (1.216402 sec)

schoen en guten Tag =? hello how are you (0.593036 sec)

schoenen guten Morgen =? good morning how are you (0.608246 sec)

schoenen guten Abend =? good evening how are you (0.609144 sec)

einen schoenen guten Tag =? hello how are you (0.635377 sec)

einen schoenen guten Morgen =? good morning how are you (0.636726 sec)

einen schoenen guten Abend =? good evening how are you (0.633265 sec)

wunder- schoenen guten Tag =? hello how are you (0.704340 sec)

wunder- schoenen guten Morgen =? good morning how are you (0.731259 sec)

wunder- schoenen guten Abend =? good evening how are you (0.692479
sec)

einen wunder- schoenen guten Tag =? hello how are you (0.723414 sec)

einen wunder- schoen en guten Morgen =? good morning how are you (0.757820
sec)

einen wunder- wunder- schoenen guten Abend =? good evening how are you
(0.888301 sec)

einen wunder- schoenen guten Tag wuensche ich Dir =? hello how are you
(1.236423 sec)

einen wunder- schoenen guten Tag wuensche ich Ihnen =? hello how are you

21

(1.218007 sec)

Tag wuensche ich Dir ==} hello how are you (0.970725 sec)

Tag wuensche ich Ihnen ==> hello how are you (0.988851 sec)

Tag wuensche ich aus Saarbruecken =:::} hello from Saarbrucken how are you
(1.001368 sec)

Tag aus Saarbruecken wuensche ich ==} hello from Saarbrucken how are you
(1.239584 sec)

Tag heber Hans =:::} hello dear Hans how are you (0.833119 sec)

Tag sehr geehrter Hans =:::} hello dear Hans how are you (1.056448 sec)

Tag sehr geehrter Herr Doktor Meier ==} hello dear doctor Meier how are
you (1.392789 sec)

Tag meine liebe Frau Professor Kunze ==} hello my dear professor Kunze
how are you (1.042731 sec)

B.2 VM-INTRODUCTION and VM-INTRODUCTION­
REACTION

ebenfalls =:} thank you fine how are you (0.545043 sec)

ebenfalls einen wunder- schoenen guten Tag ==} fine how are you (1.093603
sec)

auch Ihnen einen wunder- schoenen guten Tag mein heber Herr Professor Meier
=:::} fine my dear professor Meier how are you (2.070439 sec)

ebenfalls einen wunder- schoenen guten Tag zurueck nach Saarbruecken =:} fine
in Saarbrucken how are you (1.433055 sec)

Tag zurueck nach Saarbruecken =:::} fine in Saarbrucken how are you (0.883770
sec)

22

Tag nach Saarbruecken ===} fine in Saarbrucken how are you (1.562337 sec)

Tag wuensche ich Ihnen ===} fine how are you (1.201394 sec)

Tag wuensche ich nach Saarbruecken ===} fine in Saarbrucken how are you
(1.212710 sec)

Tag nach Saarbruecken wuensche ich ===} fine in Saarbrucken how are you
(1.219446 sec)

Tag wuensche ich Ihnen nach Saarbruecken ===} fine in Saarbrucken how are
you (1.574126 sec)

B.3 VM-TOPIC

wir muessen einen Termin machen ===} we have to make a date (0.784800 sec)

wir muessen einen Termin machen wann waere es recht ===} we have to make a
date when would it suit you best (1.336077 sec)

wir muessen einen Termin festlegen ===} we have to determine a date (0.785351
sec)

wir muessen doch einen Termin machen ===} we have to make a date (0.972783
sec)

wir muessen doch noch einen Termin machen ===} we have to make a date
(1.396464 sec)

wir muessen doch noch diesen Termin machen ===} we have to make this date
(1.135776 sec)

wir wollten doch noch einen Termin machen ===} we wanted to make a date
(1.107128 sec)

wir wollten doch noch diesen Termin machen ===} we wanted to make this
date (1.259343 sec)

23

wir wollten doch noch diesen Termin fuer die Reise machen ===? we wanted
to make this date for the journey (1.475527 sec)

wir wollten doch noch diesen Termin fuer unsere Reise machen ===? we wanted
to make this date for our journey (1.466356 sec)

weshalb ich anrufe wir muessen doch noch einen Termin machen ===? the reason
for my call is we have to make a date (1.246564 sec)

Sie wissen schon wir muessen doch noch einen Termin machen ===? you know
we have to make a date (1.531589 sec)

wir muessen doch noch einen Termin Sie wissen schon machen ===? we have
to make a date you know (1.318011 sec)

wir wollten einen Termin fuer die Reise in die Schweiz machen ===? we wanted
to make a date for the journey to Switzerland (1.899738 sec)

wir wollten einen Termin fuer die Reise in die Schweiz zu unsern Geschaeftspart­
nern machen ===? we wanted to make a date for the journey to Switzerland to
talk to our partners (2.304599 sec)

Sie wissen schon wir wollten einen Termin fuer die Reise in die Schweiz zu unsern
Geschaeftspartnern machen ===? you know we wanted to make a date for the
journey to Switzerland to talk to our partners (3.473346 sec)

wir wollten doch noch diesen Termin fuer die Reise festlegen ===? we wanted to
determine this date for the journey (1.511424 sec)

wir wollten doch noch diesen Termin fuer unsere Reise machen ===? we wanted
to make this date for our journey (1.504470 sec)

B.4 VM-TOPIC-REACTION

oh ja dann lassen Sie uns doch mal schauen ===? well then let us see (1.879303
sec)

24

ja lassen Sie uns doch mal schauen ==} well let us see (1.298260 sec)

ja lassen Sie uns doch mal schauen hast Du Deinen Kalender vorliegen ==} well
let us see do you have your agenda available (2.899873 sec)

ja lassen Sie uns doch mal schauen haben Sie Ihren Kalender gerade vorliegen
==} well let us see do you just have your agenda available (2.581686 sec)

ja lassen Sie uns doch mal schauen hast Du Deinen Kalender gerade da ==} well
let us see do you just have your agenda available (3.241916 sec)

lass uns doch diesen Termin ausmachen ==} let us just fix this date (1.065608
sec)

lass uns doch einen Termin ausmachen ==} let us just fix a date (1.084223 sec)

lass uns doch einen solchen Termin ausmachen ==} let us just fix such a date
(1.212981 sec)

lass uns doch soleh einen Termin ausmachen ==} let us just fix such a date
(1.265757 sec)

lassen Sie uns doch einen solehen Termin ausmachen ==} let us just fix such a
date (1.259212 sec)

lassen Sie uns doch einen Termin ausmachen ==} let us just fix a date (1.166236
sec)

lassen Sie uns doch soleh einen Termin ausmachen ==} let us just fix such
a date (1.203139 sec)

prima dann lassen Sie uns doch diesen Termin ausmachen ==} fine then let
us just fix this date (1.609818 sec)

ja lassen Sie uns doch mal schauen wann waere es recht ==} well let us see
when would it suit you best (2.319408 sec)

ja lassen Sie uns doch mal schauen wann waere es Ihnen recht ==} well let
us see when would it suit you best (2.079591 sec)

25

ja lass uns doch mal schauen wann waere es Dir recht ===> well let us see when
would it suit you best (2.085727 sec)

ja lass uns doch mal schauen wann waere es Dir am ehesten recht ===> well
let us see when would it suit you best (2.318236 sec)

B.5 VM-PROPOSAL

ich koennte Ihnen den 3-ten Januar anbieten ===> I would propose January the
3rd (1.997028 sec)

ich koennte Ihnen vom 3-ten bis la-ten Januar anbieten ===> I would pro-
pose January the 3rd to the 10th (2.885111 sec)

mal sehen ich koennte Ihnen vom 3-ten bis la-ten Januar anbieten ==} well I
would propose January the 3rd to the 10th (3.182099 sec)

mal schauen ich koennte Ihnen vom 3-ten bis lO-ten Januar anbieten ===> well
I would propose January the 3rd to the 10th (4.019270 sec)

oh ich koennte Ihnen vom 3-ten bis la-ten Januar anbieten ==} I would propose
January the 3rd to the 10th (4.026952 sec)

aber ich koennte Ihnen vom 3-ten bis la-ten Januar anbieten ===> but I would
propose January the 3rd to the 10th (3.091083 sec)

ja ich koennte Ihnen vom 3-ten bis 10-ten Januar anbieten ===> well I would
propose January the 3rd to the 10th (3.749869 sec)

wie waere es mit dem 7-ten Januar aber nicht am Nachmittag ===} what about
January the 7th but not in the afternoon (6.088878 sec)

wie waere es mit dem 7-ten Januar aber nur am Nachmittag ===> what about
January the 7th but only in the afternoon (8.750999 sec)

wie waere es mit dem 7-ten Januar aber nicht nachmittags ===} what about
January the 7th but not in the afternoon (8.357143 sec)

26

wie waere es mit dem 7-ten Januar aber nur nachmittags ===> what about
January the 7th but only in the afternoon (5.223726 sec)

am naechsten Dienstag haette ich noch einen Termin frei ===> I would have
time on the following Tuesday (2.027760 sec)

am Dienstag den 9-ten Januar haette ich noch einen Termin frei ==> I would
have time on Tuesday January the 9th (4.455410 sec)

B.6 VM-PROPOSAL-REACTION

nein Dienstag ist schlecht ==> oh no Tuesday is bad (0.860921 sec)

oh nein Dienstag ist schlecht ===> well oh no Tuesday is bad (1.071660 sec)

ja Dienstag ist prima ===> oh yes Tuesday is fine (0.878548 sec)

ja Dienstag ist ganz prima ===> oh yes Tuesday is absolutely fine (0.959341 sec)

ja Dienstag ist prima fuer mich ==> oh yes Tuesday is fine with me (1.138630
sec)

ja Dienstag ist ganz prima mit meinen Terminen ==> oh yes Tuesday is ab­
solutely fine with my appointments (1.422854 sec)

nein da kann ich nicht ===> oh no that does not work with me (2.031872
sec)

nein da kann prinzipiell ich nicht ===> oh no basically that does not work
with me (1.476331 sec)

ja das ist ganz prima bei mir mit meinen Terminen ===> oh yes that is ab­
solutely fine with me with my appointments (1.750520 sec)

27

B.7 VM-AGREEMENT

gut ich trage es bei mir ein ==} fine I am taking down the date (0.716945 sec)

prima ich trage es bei mir ein ==} fine I am taking down the date (0.669607 sec)

ok ich trage den Termin bei mir ein ==? ok I am taking down the date in
my agenda (0.742390 sec)

halten wir den Termin fest ===} I am taking down the date (0.535127 sec)

B.8 VM-BYE

bis dann in der schweiz auf wiedersehen ===} see you in Switzerland good bye
(0.656059 sec)

tschuess bis dann ==} bye bye see you (0.375373 sec)

auf Wiedersehen bis dann ==} good bye see you (0.414960 sec)

auf Wiedersehen ==} good bye (0.297690 sec)

B.9 VM-BYE-REACTION

bis dann in der schweiz auf wiedersehen ==} see you in Switzerland good bye
(0.656059 sec)

tschuess bis dann ==? bye bye see you (0.375373 sec)

auf Wiedersehen bis dann ==} good bye see you (0.414960 sec)

auf Wiedersehen ==} good bye (0.297690 sec)

28

B.lO Reversibility

As mentioned before, the grammar is reversible as long as it doesn't
contain empty trees in the source grammar. Thereby the subgrammars
VM-INTRODUCTION, VM-INTRODUCTION-REACTION, VM-TOPIC, VM­
TOPIC-REACTION, VM-PROPOSAL, VM-BYE and VM-BYE-REACTION are
not reversible! The following reverse examples originate from VM-PROPOSAL­
REACTION.

VM-PROPOSAL-REACTION:

oh no Thesday is bad :::::::> nein Dienstag ist schlecht (0.896618 sec)

oh yes Thesday is fine :::::::> ja Dienstag ist prima (0.780978 sec)

oh yes Thesday is fine with me :::::::> ja Dienstag ist prima fuer mich (1.177638
sec)

oh no basically that does not work with me :::::::> nein das geht prinzipiell
nicht fuer mich :::::::> nein nein da kann prinzipiell ich nicht (1.605726 sec for
both readings)

29

	Vm-184-0001
	Vm-184-0002
	Vm-184-0003
	Vm-184-0004
	Vm-184-0005
	Vm-184-0006
	Vm-184-0007
	Vm-184-0008
	Vm-184-0009
	Vm-184-0010
	Vm-184-0011
	Vm-184-0012
	Vm-184-0013
	Vm-184-0014
	Vm-184-0015
	Vm-184-0016
	Vm-184-0017
	Vm-184-0018
	Vm-184-0019
	Vm-184-0020
	Vm-184-0021
	Vm-184-0022
	Vm-184-0023
	Vm-184-0024
	Vm-184-0025
	Vm-184-0026
	Vm-184-0027
	Vm-184-0028
	Vm-184-0029
	Vm-184-0030
	Vm-184-0031

