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Abstract 

During the last few years, word graphs have been gammg increasing interest 
within the speech community as the primary interface between speech recognizers 
and language processing modules. Both development and evaluation of graph­
producing speech decoders require generally accepted measures of word graph 
quality. While the notion of recognition accuracy can easily be extended to word 
graphs, a meaningful measure of word graph size has not yet surfaced. 

We argue, that the number of derivation steps a theoretical parser would need 
to process all unique sub-paths in a graph could provide a measure that is both 
application oriented enough to be meaningful and general enough to allow a useful 
comparison of word recognizers across different applications. 

This paper discusses various measures that are used, or could be used, to mea­
sure word graph quality. Using real-life data (word graphs evaluated in the 1996 
Verbmobil acoustic evaluation), it is demonstrated how different measures can 
affect evaluation results. 

Finally, some algorithms are presented that can significantly improve word graph 
quality with respect to specific quality measures. 



Contents 

1 Introduction 

2 Definition and properties of word graphs 

3 Conventional graph evaluation methods 

4 Application-oriented evaluation of word graphs 

4.1 Integrated measures. . . . . . . . . . . . 

4.2 New measures for word graph evaluation 

4.3 Evaluation procedures . 

4.3.1 Number of paths 

4.3.2 Number of derivations 

4.3.3 Rank of path . . . . . 

4.3.4 Number of derivations until best path is found 

5 Operations on word graphs 

5.1 Information-preserving operations 

5.1.1 Score normalisation .... 

5.1.2 Operations concerning silence 

1 

3 

5 

12 

16 

16 

17 

22 

22 

22 

25 

27 

29 

30 

30 

33 



Verbmobil Report 186 

5.1.3 Reducing paths in a word graph 

5.2 Other operations . . . . . . . . . . 

5.2.1 

5.2.2 

5.2.3 

Joining contiguous silences . 

Unique word sequences 

Reducing families 

6 Conclusion 

7 Bibliography 

2 

36 

38 

38 

39 

41 

50 

52 



Chapter 1 

Introduction 

The success of language processing modules within a speech understanding (or 
interpreting) system depends heavily on the quality of the outcome of the first 
stage in processing, the speech recognizer. The most widely used interface between 
a word recognizer and subsequent language understanding modules consists of a 
chain of words representing the sequence of words best matching the acoustic 
input signal (best chain recognition). It is highly advantageous to be used as add­
on to already existing language processing systems, since the input has the same 
form as written input (save for punctuation and capitalization). 

When the recognition rate of a speech recognizer is sufficiently high, the informa­
tion provided by the best chain may suffice for the language processing modules. 
In many cases, however, these modules either require perfect input or the average 
number of errors in the best chain is simply to high. In these cases, the recognizer 
has to pass more information to subsequent processing steps. The simplest way to 
do this is to present a list of different word sequences, which represent the n-best 
chains the recognizer was able to detect. Language processing modules may thus 
choose among the set of possible utterances presented by the recognizer. 

However, it is usually not enough to deliver just the best 10 or 20 utterances, 
at least not for reasonable sized applications given todays speech recognition 
technology. To significantly increase overall system performance, n (the number 
of utterance hypotheses) has to be quite large. It increases exponentially with the 
length of the sentence (Oerder and Ney, 1993). 

Word graphs offer a simple and efficient way to represent an extremely high 
number of competing hypotheses and have therefore become very popular as the 
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primary interface between speech recognizers and language processing modules 
(Oerder and Ney, 1993), (Aubert and Ney, 1995). 

In order to improve speech recognition systems, a reliable measure of system per­
formance is needed. Most well known evaluations (e.g. Resource Management, 
Wall-Street Journal, Switchboard) only consider the best chain. It is often as­
sumed that the best system with respect to the best chain will also be the best 
system to produce word graphs. We think it may be misleading to rely on a 
secondary measure of system performance (provided we consider word graphs as 
primary output), because it is not at all clear why the assumption mentioned 
above should hold. The evaluation results of the 1996 Verbmobil accoustic evalu­
ation (Reinecke, 1996) provide some empirical evidence to question this assertion. 

Previous attempts to directly evaluate word graphs have been hampered by the 
lack of a meaningful measure of word graph quality (Lehning, 1996). While the 
notion of word accuracy can easily be extended to the best-fitting path through 
a word graph (Paulus and Lehning, 1995), it is much harder to find a meaningful 
measure of word graph size. In the following chapters, various measures of the 
size and quality of word graphs are discussed and some methods to improve word 
graph quality are presented. 

In the second chapter, a formal definition of word graphs is given and some prop­
erties of word graphs are explained. Chapter 3 presents the "classical" methods 
of evaluation of word graphs together with some new results from the latest 
Verbmobil speech evaluation, which took place in September 1996. We will argue 
that the measures used there do not fully account for the criteria of languague 
processing modules regarding problem size and thus tractability of processing. 
Chapter 4 tries to motivate a different kind of measurement for the problem size 
and gives some examples, again derived from the latest Verbmobil evaluation. Fi­
nally, chapter 5 presents a number of methods that modify word graphs with the 
aim of reducing word graph complexity in order to simplify language processing. 
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Chapter 2 

Definition and properties of word 
graphs 

To set up some terms we will use for the rest of the paper, we start by defining 
word graphs and some of their graph-theoretic properties. We do not start with 
fundamental definitions of graphs, but instead directly begin with word graphs. 

Definition 1 [Word graph] 
A word graph is a directed, acyclic, weighted, labelled graph with distinct root and 
end vertices. It is a quadruple G = (V, £, W,.c) with the following components: 

• A nonempty set of vertices V = {VI, ... , vn }. Each vertex may be associated 
with additional information, say the point in time represented by a certain 
vertex (see below for functions that return specific properties of vertices). 

• A nonempty set of weighted, labelled, directed edges £ = {el, ... , em} ~ 
V X V X W x.c. The edges are directed, i.e. in general (v,v',w,l) E £ # 
(v', v, w, l) E E. In particular, this would be forbidden by the acyclicity of 
the graph, too (see below). 

• A nonempty set of edge weights W = {WI, ... ,wp}. Edge weights normally 
represent a score modelling the degree of similarity between the acoustic 
signal and a model for a particular word. I 

1 Usually, edge weights are modelled as a function w : V x V x £, --t R, but this would 
)revent edges identical except for acoustic score, which will arise from time to time. 
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• A nonempty set of Labels £ = {lI, ... , lo}, which represents information 
attached to an edge. Commonly, each edge bears the word label, representing 
the lexicon entry that was recognized. 

We define some relations to access several properties of vertices and edges: 

6 

• Accessor functions for vertices 
Generally, vertices are attached to certain points in time representing the 
progress of the utterance. We measure this time in 10ms frames, and define 
a function t : V --t N, that returns the frame number for a given vertex. 

• Accessor functions for edges 
To allow for easier reading of formulae we will use in the following, we 
define seperate functions to access components of an edge. In particular, let 
e = (v, Vi, w, l) E £ be an edge of the word graph. Then we define: 

The accessor function for start vertices of edges as 

a: £ --t V,a(e):= v 

The accessor function for end vertices of edges as 

f3 : £ --t V, a(e) := Vi 

The accessor function for edge weight as 

w: £ --t W,w(e):= w 

The accessor function for edge labels as 

l: £ --t £,l(e):= l 

• Reachability of vertices 
We define the relation of reachability for vertices (-+) as follows: 

Vv, w E V : v -+ w ¢:> 3e E £ : a( e) = v 1\ f3( e) = w 

The transitive hull of the reachability relation -+ is denoted by .-;. 

• Paths through graphs 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

A path through a graph (or a subgraph) is the sequence of edges traversed on 
that path. We denote the sequence as e[l;Kj, the ith element of the sequence 
as e[l;Kj(i). Each edge must be adjacent to the next one, i.e. Vi E {I, ... , k­
I} : f3( e[l;Kj(i)) = a( e[l ;Kj(i+1)). We call the number of edges in the sequence 
(k) length of the sequence. To express that two vertices are connected by a 

E 
sequence of edges, we use v --t w. 



What's in a word graph 

• Degree functions for vertices 
For several purposes, we want to know how many edges start from (are 
incident from) or end at (are incident to) a given vertex. 

To this behalh we define the function #in : V -t N to return the number 
of edges incident to a vertex: 

#in(V):= #{e E EJ,6(e) = v} (2.6) 

Analogously, we define #out : V -t N to return the number of edges inci­
dent from a vertex: 

#out(v) := #{e E EJa(e) = v} (2.7) 

Additionally to the properties stated above, for a graph to be a word graph, the 
following must hold true: 

• The graph must be acyclic, meaning that there is no sequence of edges emerg­
ing from one vertex and ending in the same vertex: 

"Iv -.; w : v :j:. w (2.8) 

• The graph contains a distinct root vertex. This vertex represents the start 
of the utterance: 

:3v(r) E V : #in( vCr)) = 0 1\ "Iv E V : #in( v) = 0 =} v = vCr) (2.9) 

Note that the property of being acyclic and rooted entails the connectivity 
of the graph, i. e. every vertex is reachable from the root vertex. 

• The graph contains a distinct end vertex. This vertex represents the end of 
the utterance:2 

:3vU) E V: #out(vU)) = 0 1\ "Iv E V : #out(v) = 0 =} v = vU) (2.10) 

An important property of word graphs that has consequences for the complexity 
(and execution time) of several algorithms is the possibility to impose a topolog­
ical ordering on them. 

2Note that this property does not hold when dealing with incremental word graphs. 
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Definition 2 (Topological ordering) A topological ordering is a function T : 

V ~ N on the vertices of a directed graph having the property that 

'tIe E £: T(et(e)) < T(,6(e)) (2.11) 

The natural topological ordering for a word graph is given by time stamps of 
vertices. Acyclicity and topological ordering are consequences of the fact that 
words are uttered linearily in time. A word graph can additionally be viewed as 
a lattice; more precisely, the set of vertices is a lattice, if we consider -t to be the 
ordering relation for vertices (cf. Carree (1979, p. 23)). The topological ordering 
can be established in 0(1£1 + IVI) time (cf. Cormen, Leiserson, and Rivest (1990, 
p.486). 

However, word graphs in general are not planar. This can be either shown by 
homeomorphism of subgraphs to special nonplanar graphs (cf. McHugh (1990, p. 
33)) or simpler by using a theorem on the linear bound on the number of edges 
(cf. McHugh (1990, p. 38)). Thus, several algorithms applying to planar graphs 
only can not be used. 

The most advantegous property of word graphs is their compactness. Even very 
small graphs (in terms of number of edges, the most commonly used size measure 
for word graphs) can contain a huge number of different utterance hypotheses, 
which makes this representation superior to n-best interfaces. Consider the graph 
in Figure 2.1, one of the early Verbmobil toy graphs. It consists of only 97 edges, 
yet contains 1380 paths. 

Coarticulation poses a problem for any kind of modelling of speech, which can be 
partly overcome by using a graph as representation. If a german speaker utters 
trag's (trage and es glued together), it is at best problematic to retrieve the 
relevant words. The reduced form is in general not part of the system's lexicon. 
Both unreduced lexems may be in the graph, but most certainly they overlap in 
time, meaning there is no path through the graph which covers both edges. There 
are methods to handle edges with small overlaps, the simpest of them abandoning 
word graphs and retreating to sets of words without a connection condition. But 
this solution poses too much other problems to be adequate for these cases. Below, 
we will present an algorithm which unifies vertices that are close together in time 
under certain circumstances; for a large number of coarticulated cases, this might 
help. 

8 
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~.~ 

' "Ifl 

Figure 2.1: A simple Verbmobil wordgraph representing the utterance "ja das 
wuerde gehen sie muessten mir nur noch grade den weg dorthin erklaeren" 

_____ gruen 

_--_ gruen 

Figure 2.2: A family of edges for the word gruen 
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But there are problems present with word graphs, too. The worst, from a point 
of view of speech recognition evaluation and language processing, are: 

10 

• The density of graphs is sometimes too high to allow reasonable processing 
times for language modules. Density is measured as the mean number of 
edges spanning a certain point in time. The reason to hunt for a high density 
is quite clear: The higher the number of edges, the higher the probability 
of the right edge being present where it was actually spoken. On the other 
hand, language processing modules work best when given sparse graphs. 

Theoretically, word graphs (and, in general, sets of word hypotheses) can 
be parsed in cubic time complexity, assuming context free grammars (cf. 
Weber (1995, p. 29)). For example, given an augmented Tomita Parser 
(Kipps, 1991), the complexity is O(n3 IGI2), where n denotes the number of 
vertices in the graph and IGI denotes the number of symbols in the grammar 
given. Ambiguity present in a graph does not change the complexity either. 
Even if a word hypothesis ewl spans several other, there is no need to handle 
this case through a grammar rule that maps ewl (or, rather, the preterminal 
category of it) to the sequence of edges covered. You could simply add the 
category at the proper point in the derivation matrix. 

In practical, dense graphs are not efficiently computable. The first reason for 
this is that language modules are not constrained to context free grammars, 
but often use more powerful models, like complex feature based formalisms. 
Second, although the theoretical bound holds even in case of lexical ambi­
guity, the linear burden on a parser is tremendous and must be avoided if 
you want to achieve reasonable computing times . 

• Families of edges form the last difficulty we want to present here. They arise 
due to the nature of speech recognizers which try to recognize words wher­
ever they can. A family of edges consists of edges with identical labelling 
(word form) that end at vertices being close together in time. Figure 2.2 
shows an example of a family of edges belonging to the word gruen. Note 
that each edge starts at the same vertex, but the endpoints are distant from 
one another for one or two frames. 

To treat those edges individually in a parser results in a huge processing 
overhead. The goal again is to unite vertices to reduce the number of edges 
to be used (ideally, one for each family). Note that the definition of fami­
lies (as used by Weber (1995)) can be extended to cover edges with close 
start vertices, too. The treatment taken in Weber (1995) then has to be 



What's in a word graph 

extended to use directed hypergraphs as a representation for word graphs 
(d. Gondran and Minoux (1984, p. 30)). 
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Chapter 3 

Conventional graph evaluation 
methods 

If graphs are evaluated at all, the quality measure used is usually a straightforward 
extension of the word accuracy measure as used for the best hypothesis: 

#errors 
word accuracy = 100 - 100· # d. . . 

wor s ill transcnptlOn 

#errors = #substitutions + #deletions + #insertions 

The word accuracy of the graph is then just the word accuracy of the path through 
the graph with the best rating according to this measure (Paulus and Lehning, 
1995), (Reinecke, 1996), (Oerder and Ney, 1993) , (Tran, Seide, and Steinbiss, 
1996). 

The size (or density) of the graph is usually defined as the average number of 
edges per (transcribed) word (e.g. (Aubert and Ney, 1995), (Woodland et al., 
1995)). This measure is rather vague, as figures 3.1 and 3.2 demonstrate. Even 
without any formal definition of graph size or complexity, it seems intuitively 
clear that the graph in figure 3.2 is somehow "bigger". However, both graphs 
have the same number of edges. 

To account for this, the average number of incoming or outgoing edges per vertex 
is sometimes taken into account (Reinecke, 1996). As pointed out by Lehning 
(1996), these two measures don't allow to directly judge the complexity of a graph. 
As an illustration, consider figures 3.3 and 3.4. The first one represents the results 
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What's in a word graph 

Figure 3.1: example graph 

Figure 3.2: example graph 

of the 1996 Verbmobil acoustic evaluation in the main category (see Reinecke 
(1996) or http://www.sbvsrv.ifn.ing.tu-bs.de/eval. html for more details). 
The word accuracies are plotted against the graph densities (edges per word) in 
figure 3.3, while the same accuracies are plotted against the average number of 
edges incident from a vertex in figure 3.4. The comparison 1 shows that the two 
measures might suggest different ratings (compare, for instance, the curves for 
"TUM2" with "FP2" or "DB" with "UHH"). It would also be hard to find a 
sensible way to combine the two measures. 

It should be noted that both charts would not support the assumption that the 
recognizer that is better on the best hypotheses will also be better on graphs (e.g. 
compare "DB" with "FP2"). 

IThe "edges per vertex" charts were not part of the official evaluation in 1996. 
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Figure 3.3: Results of the 1996 Verbmobil acoustic evaluation (cat. t1) 

Three alternative measures of graph complexity are proposed in Lehning (1996): 
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1. number of all paths through the graph 

2. some combination of the two measures: number of edges and average num­
ber of outgoing edges 

3. error rates of randomly selected paths 
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Chapter 4 

Application-oriented evaluation 
of word graphs 

In the last chapter, we have presented conventional methods to evaluate the 
performance of word recognition. The size of graphs was measured using edge­
based counts, e.g. the number of edges per word in a reference transliteration. In 
this chapter we will set out a new measure for graph size that - as we will argue 
- is more suitable if one wants to evaluate speech recognition in the broader 
context of a large speech understanding system. 

4.1 Integrated measures 

Provided the correct word sequence is in a graph, one could ask: "How much in­
formation is needed to select the correct path among all the paths in the graph?" . 
There are (at least) three measures that could be used to answer this question 1 : 

• the (renormalised) probability of the correct path according to the graph 

• the rank of the correct path in the graph 

• the number of processing steps a component (e.g. a probabilistic parser) 
would have to carry out before it arrives at the correct path 

1 In sections 4.3 .3 and 4.3.4 we present algorithms to compute two of them. 
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What '8 in a word graph 

Problems with these measures include: 

• The correct path is often not in the graph at all . 

• The results can not be compared with the evaluation results for best-chain 
evaluations. 

4.2 New measures for word graph evaluation 

The assumption we will use here is that the output of a word recognizer cannot 
be evaluated isolated from the components that use that output. We assume 
that a parser is the primary module using word graphs for further analysis. In 
particular, we assume that it uses a formalism based on complex features. This 
prevents the use of algorithms with a cubic time complexity, as we may assign 
different structures to each two edges or constituents covered by a rule of the 
syntax (e.g. by defining a feature that holds the sequence of word labels attached 
to the words the edge spans). We constrain ourselves to grammars that use a 
context-free backbone for convenience, and further constrain the rules to have 
at most two right-hand side nonterminals, i.e. the grammars are in Chmomsky 
normal form. We do not, however, apply constraints regarding search strategy or 
pruning mechanisms. 

These assumptions have serious consequences for parsing complexity, as we cannot 
hold a fixed size set of nonterminal categories for each interval of graph vertices 
(which leads to polynomial complexity, see above). Instead, we have to produce 
one derivation step for each pair of edges (word hypotheses or complex edges 
covering more than one word) to simulate the processing of a parser. 2 

A first attempt to establish a measure for word graph size relevant for the overall 
performance of a speech understanding system is to investigate into the number 
of paths in a graph. This measure is motivated by the fact that a parser may 
construct an analysis for each sequence of word hypotheses covering the whole 
utterance. A wordgraph may have as many as (tft )IVI-l paths in it, if the edges 

2Since a grammar may contain ambiguities, there may be more than one derivation step 
for each pair of edges. We abstract from this fact as well as from the fact that not every pair 
of edges may be combined due to grammar restrictions. Thus, we do only take into account 
the consequences obtainable from the raw input, the word graph, and set aside properties of 
grammars and such . 
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are distributed evenly among the graph. Determining the number of paths in a 
graph can be done efficiently in 0(1£1 + IV!) time given the acyclicity of word 
graphs. The simple algorithm is outlined in figure 4.4 below. Figure 4.1 shows 
results obtained for two sets of word graphs where the size of graphs is measured 
as the number of paths in the graph. 
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Figure 4.1: Recognition accuracy vs. number of paths (in 1OX
) (cat. tl) 

The next possible extension is to reduce the graph to only contain unique word 
sequences. The motivation behind this modification of a graph, which is described 
below in section 5.1.3, is the observation that two identically labelled yet different 
paths through the graph can only differ regarding two pieces of information3 : 
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• The vertices the paths visit. This should not bother a parser, since the 
mapping from words to exact intervals in time may be irrelevant. Note that 
this is not the case if information other than the words given by a speech 

3For an account of two paths identical except for silence, cf. section 5.l.2. 
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recognizer is to be taken into account, e.g. prosodic information which may 
well be bound to specific time intervals . 

• The acoustic scores the words are annotated with. The algorithm should 
preserve the order in which different paths are ranked according to acoustic 
score. 4 If that is not possible (as with our algorithm), the least it should 
do is always to retain better word scores, thus only augmenting the overall 
score of a path. Given this schema, we only need to hold one path for each 
unique word sequence. 
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Figure 4.2: Recognition accuracy vs. number of unique paths (in lOX) (cat. t1) 

The algorithm to achieve unique label sequences comes in two flavors: The first 
version acts information-preserving, as defined in section 5.1. It has proven to 
be unpractical, as it creates a very large number of new vertices and edges, 
yielding a graph that cannot be efficiently handled. The second version abandons 
with the information-preserving property, i.e. the scores of partial paths may be 

4Cf. the exact definition of information-preserving operations in section 5.1. 
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changed and, according to parametrisation of the algorithm, new paths may be 
introduced. It preserves, however, the property to modify only the scores of paths. 
This version has been used for graph evaluation purposes. 

Unfortunately, the information-preserving algorithm has exponential time com­
plexity in the worst case (d. section 5.1.3), so it is not applicable in the general 
case. By using the version that does not preserve information and by introducing 
some optimization, we could reduce run time for most graphs to a reasonable 
amount of time5 . That way, we can at least compare graph sizes using that 
method. The outcome of an evaluation based on the number of unique paths to 
determine the size of a graph is shown in figure 4.2. 

The next step in the direction of a suitable size measurement is to account for 
the number of derivations a parser has to carry out in order to fully parse a word 
graph. We first consider the analysis of one path and extend our argument to 
derivations over a full graph. 

The number of derivation steps (d(p)) for a full analysis of one path (p) through 
the graph is 

6 
( 4.1) 

, where n denotes the length of the path, i.e. the number of edges covered by it. 
The number of derivation steps directly corresponds to the number of processing 
steps needed to fill the derivation matrix of the CKY-algorithm (d. Mayer (1986, 
p. 107)). Note again that (4.1) does not entail that parsing with complex feature 
based grammars is cubic. The only property extending over context-free parsing 
we use in our argument (namely not to guarantee a fix-sized set of hypotheses at 
any vertex) prevents us from incorporating many paths into one operation. 

If we assume that all paths through the graph are independent of each other, the 
total number of derivations is 

(4.2) 

5Nevertheless, it is still exponential in the worst case. 
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, which gives a linear dependency between the number of paths and the number of 
derivations in a graph. However, subparts of a graph are shared among different 
paths. Thus, the formula above is only an upper bound. To account for subgraph 
sharing, we have to use a slightly more complex algorithm, given in figure 4.5 
below. The complexity of this algorithm yields O(I£IIVI). The method used to 
compute the number of derivation assumes some kind of chart parser which does 
not compute partial analyses twice. Shared left contexts are preserved, thus only 
adding once to the desired number. 
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Figure 4.3: Recognition accuracy vs. number of derivation steps (in lOX) (cat. t1) 

By using the number of derivations generated by this algorithm we take into 
account the impact of different graph shapes onto parsing effort (cf. chapter 3). 
Thus, given two graphs with identical number of paths, the graph that has the 
largest amount of subgraph sharing in it will be the best one to parse. To give 
an example, consider the graph shown in figure 5.11. It consists of 37 vertices 
and 260 edges. Without any modification, there are 1.4 . 109 paths in it. If all 
paths are treated independently of each other, a parser would build 9.48 . 1011 
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derivations, while sharing only yields 8.91 . 1010 derivations. Constraining the 
graph to unique label sequences reduced the graph to 172 edges (the number of 
vertices rises to 57). After modification, the graph contains 8221 (different) paths, 
and a parser with sharing would construct 5.88.105 derivations only. An example 
of an evaluation based on the number of derivation steps is shown in figure 4.3 

If we are to evaluate more than one graph, we use a geometric average instead 
of simple arithmetic average. This prevents an overly large influence from the 
largest graph in the set. 

4.3 Evaluation procedures 

In this section, we describe in detail the algorithms outlined in the sections before. 
For each method mentioned, we give an abstract definition of the algorithm and 
also state some complexity observations. 

4.3.1 Number of paths 

The algorithm in figure 4.4 determines the number of paths in a word graph. The 
input to the algorithm is a word graph G = (V, £, W,.c) as defined in definition 
1. The output is the number of paths through that graph, p(G). 

The complexity of the algorithm yields O(I£I+IVI). Although we use two cascaded 
loops, the outer loop (line [1]) solely determines the order in which edges are 
accounted for. Since each edge ends at a single vertex, no edge is considered 
twice. 

4.3.2 Number of derivations 

The algorithm in figure 4.5 determines the number of derivation steps a reasonable 
chart parser has to compute in order to fully parse a word graph. The assumptions 
made are 

• There is no ambiguity present in the underlying grammar. 

22 



What's in a word graph 

begin 
Handle each vertex 

[1J for each vertex v E V(G), taken in topological order, do 

Compute the number of paths ending at v 
p(v) := Ep(w) : (w,v,x,y) E E 

[2] p[vJ t- 0 
[3] for each edge e = (w, v, x, y) ending in v do 
[4] p[v] t- p[vJ + p[wJ 

The number of paths in the graph is the 
number of paths up to the final vertex 
p(G) t- p(v(f)) 

[5] return p(G) 

end 

Figure 4.4: Determining the number of paths in a word graph 

• There is no restriction to the number of partial analyses the parser holds at 
each vertex. This, of course, is nothing a real parser would do. All parsers 
for large graphs known to the authors perform some kind of pruning . 

• There is no restriction to the applicability of rules. The algorithm thus com­
putes the largest number of derivations possible with the least restrictive 
grammar. 

The complexity of this algorithm is O(IEIIVI). The outermost (line [2]) and in­
nermost (line [5]) loops ensure that each edge is considered and steer the order of 
evaluation of the edges. The remaining loop (line [4]) increments the number of 
derivations up to the current vertex, taking into account all shorter derivations 
of precedent vertices. The sequences can be at most of length lVI, thus the bound 
on the complexity. 
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begin 
Initialization 

[1 J totalderiv f- 0 

Handle each vertex 
[2J for each vertex v E V(G), taken in topological order, do 

Adjust the number of rule applications for this vertex 
and the total number of derivations so far. 

[3J derivv[lJ f- #in(V) 
[4J for all i E {2, ... , IVI} do 
[5J for each edge e = (w, v, x, y) ending in v do 
[6J derivv[iJ f- derivv[iJ + derivw[i - 1J 
[7J totalderiv f- totalderiv + derivv[iJ 

totalderiv holds the number of derivations 
[8J return totalderiv 
end 

Figure 4.5: Determining the number of derivations in a word graph 
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4.3.3 Rank of path 

The following algorithm determines the rank of a path within a word graph. More 
exactly, it determines the rank of a path with a given total acoustic score among 
the scores of all paths in the graph. The input thus consists of a word graph and 
a reference score sreI. 

begin 
Compute paths in the graph as given in figure 4.4 

Compute minimum and maximum prefix scores 
[1] for each vertex v E V(G), taken in topological order, do 
[2] Sv,min ~ 00 

[3] Sv,max ~ 0 
[4] for each edge e = (W,V,Se,Y) ending in v do 
[5] Sv,min ~ min(sw,min + Se, Sv,min) 
[6] Sv,max ~ max(sw,max + Se, Sv,max) 

Compute rank of path with score sreI recursively, starting at the final vertex 
[7] r ~ComputeRank (v f, SreI) 

r is the rank of a path with score Srej through the graph 
[8] return r 

end 

Figure 4.6: Determining the rank of a given path 

The algorithm operates by stripping edges from the end of a path and compar­
ing maximal and minimal scores at vertices. This should be superior to simply 
performing a best-first search based on acoustic scores in order to enumerate the 
number of paths until the desired is found. 

Unfortunately, the algorithm to find the rank of a path with a given score is 
exponential in the number of vertices in the worst case. This is because the whole 
graph may be enumerated path by path. 

Consider a graph with IVI vertices and n(IVI - 1) edges for some odd n (An 
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function ComputeRank ( v, srei) 

If the reference score is lower or equal than the minimum score, all paths 
left from here are worse and need not be considered 

[1] if Srei ~ Sv,min 

[2] return 0 

If the reference score is greater or equal than the maximum score, all paths 
left from here are better and need not be considered 

[3] if Srei 2': Sv,max 

[4] return p(v) 

Now comes the hard part. Recursively consider all vertices incident to v 

[5] rtmp ~ 0 
[5] for each edge e = (w, V, Se, y) ending in v do 
[6] rtmp ~ rtmp+ComputeRank (w, sreI - se) 
[7] return rtmp 
end 

Figure 4.7: Determining the rank of a given path (part 2) 
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example of such a graph with 4 vertices and n = 5 is given in figure 4.8). The edges 
are evenly distributed between the vertices, n edges between each neighbouring 
pair. Let the vertices be numbered from 1 to IVI according to the topological 
position. The weights of the edges between vertex i and vertex i + 1 are assigned 
as follows: 

• The edge belonging to the reference path has the median weight, say O. 

• Half of the remaining edges have weight -J.. 
• The remaining edges have weight - -J.. 

0.5 0.25 0.125 

-0.25 -0.125 

Figure 4.8: A hard graph for rank computation 

Now consider the function ComputeRankO shown in figure 4.7. It is first called 
at the final vertex of the graph with a reference score of O. Since this is neither 
greater than the maximum score nor lower than the minimum score, n subsequent 
calls to ComputeRankO are issued. As no partial path ending at the final vertex 
can have a total score with an absolute value larger than any but one edge ending 
at the start vertex of this particular partial path, it follows that with every call 
to ComputeRankO n additional calls are generated, save the root vertex. 

In total, this yields 

IVI-l 
lin 
i=l 

n 1V1 - 1 

calls, which results in a worst case complexity of 8(nIVI) . 

4.3.4 Number of derivations until best path is found 

(4.3) 
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begin 
Perform best first search, thereby marking traversed edges 

[1] Push vs,nil,nil,O 
[2] while reference path not found do 
[3] Pop v, p, e, s with best score s 

Check success 
[4] if v = V! /\ P = Pre! do 
[5] Reference path is found, end loop 
[6] else do 
[7J Mark edge e as processed 

Construct new states 
[8] for all edges evw = (v, W, Svw, l)incident from v do 
[9J Push W,p U evw , evw , s + Svw 

[10] Remove all unmarked edges from graph 
[l1J return the number of derivations from figure 4.5 
end 

Figure 4.9: Determining the number of derivations until the best matching path 
is found 
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Chapter 5 

Operations on word graphs 

This chapter focuses on algorithms for modifications of word graphs. We distin­
guish between operations on word graphs that preserve all the information in the 
input graph and operations that may lead to an information loss. 

To qualify as being information-preserving, an operation has to fulfil the following 
criteria: 

• All paths in the input graph must be contained in the output graph, with 
one exception: When the input graph contains any two paths that represent 
exactly the same sequence of words, the one with the lower (i.e. worse) score 
may be deleted. 

• There must be no path in the output graph that was not in the input one. 

• The quotient of the scores of any two complete paths through the graph 
must stay the same. 

Information-preserving operations might for instance remove duplicate paths 
from the graph. 
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5.1 Information-preserving operations 

5.1.1 Score normalisation 

The acoustic score a HMM-based word recognizer might attach to an edge as the 
edge weight (w(i) E W) might have different meanings, e.g. probability of the 
acoustic signal given the corresponding label (l(i) E £) or probability per frame 
of it, etc. In this section, we want to define an edge weight measure, that allows 
(as far as possible) to compare the likelihood of edges (e(i) E E) or edge sequences 
(E(t(;) ,t(j»)) that cover different intervals ([i; j]) of the observation sequence (O[ijjl) ' 

To achieve such a comparability, the acoustic scores have to be normalised with 
respect to the properties of the acoustic signal, i.e. the corresponding observation 
interval. We do this by dividing the acoustic score by an approximation of the 
probability of the observation sequence. Other attemts to renormalize scores (e.g. 
Young (1994)) usually require specific changes in the acoustic recognizer. Our 
recognizer, for instance, uses a global triphone model, trained on all phones, to 
recognize out-of-vocabulary words. The score this model assigns to an observation 
sequence could be used for the normalisation step. 

However, we want to define a normalisation procedure that is applicable to any 
word lattice and does not rely on some specific model. 

In all further discussions, we will refer to the resulting measure (m( e(x,y))), an 
approximation of the mutual information between the label and the corresponding 
observation sequence, as "score". 

Using Bayes formula, the probability that a specific model (A) was the source of 
a sequence of observations 0 can be calculated as follows: 

P(AIO) = P(OIA) . P(A) 
P(O) 

For classification purposes, the quantity P( 0) is usually ignored, since for all 
hypotheses that cover the same 0, the probability of it is obviously the same. 
However, when hypotheses covering different observation sequences are to be 
compared (to sort an agenda of a probablisitic chart parser, for instance) or the 
cost function of a classification error is not symmetric (i.e., the exact a-posteriori 
probability influences the classification decision), an estimate of P( 0) is needed. 
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What's in a word graph 

In theory, it could be calculated using: 

P(O) = L P(OJA)· P(A) 
AEmodeis 

The remaining question is: How can we extract the information needed to solve 
the above equations from a given word graph? Obviously, a word graph will not 
contain the scores for all possible ways in which all possible models (e.g. sentences 
in a language) could have produces the given observations. For a relatively big 
word graph, this problem should not be too severe, since we can assume that all 
hypotheses not in the word graph would have such a low score that they would 
not contribute much to the overall sum. More difficult problems with word graph 
score normalisation include: 

conditional model instance probabilities: Edge labels are generally not (HM~ 
model names - there might be different models that carry the same label 
(e.g. due to pronunciation variants or context dependent versions of the 
same model). Even if the model itself was known, the a-priory probability 
of the model P( A) would not be readily available. 

local score normalisation: We don't just want to calculate P( 0(t(v(r)),t(vU )))) 

for the complete observation seqence, since this would only allow to renor­
malise the acoustic score of full paths (from root vertex v{r) to the final 
vertex vU )) through the graph. Instead, we want to attach renormalised 
scores to each edge in the graph separately. In order to normalise the score 
of an edge that starts at frame x and ends at frame y, we need P(O(x,y)), 
the probability of the observation sequence starting at frame x and ending 
at frame y. To calculate it, we might need to take into account acoustic 
scores of edges that cover the interval [x; y] only partially and may cover 
neighbouring observations as well. 

As these considerations indicate, we see no way to calculate the exact value of 
P( O(x,y)) from the information contained in the word graph. Instead, we first 
try to calculate a normalisation constant (an approximation of P( o(i))) for each 
frame i and then divide each edge probability by the product of the normalisation 
constants of all frames covered by it, in order to get an approximation of the 
mutual information (m) between edge and corresponding observation sequence. 
From this score, the a-posteriori probability of a edge sequence P(EJO) can easily 
be calculated, possibly using sophisticated language models to calculate P(E). 
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More formally: 

m(e(x,y») ld( P( e(x,y), O(x,y») ) 
P( e(x,y»)P( O(x,y») 

(5.1 ) 

ld( P( O(x,y) le(x,y»)) 
P( O(x,y») 

(5.2) 

~ 
ld( P( O(x,y) le(x,y»)) 

ru=x P( o(i») 
(5.3) 

usmg: 

P( O(x,y) le(x,y») - w( e(x,y») (5.4) 

P( o(i), e(i») r..J (3(e) -o(o/ w( e(x,y»)P( l (e(x,y»)) (5.5) r..J 

p(o(i») .-..J L maxi eE£II(e)=IAt(a(e»9<t(,6(e))}P( o(i) ie(i») (5.6) .-..J 

IE.c 

P(l(e)) a-priori probability according to language model 

These formulae imply the following assumptions: 

1. P(O(x,y») = nf=x P(o(i») (independence) 

2. P( O(x,y), l) = max{eE£II(e)=IAt(a(e»=XAt(,6(e»=y}P( O(x,y) Ie) (Viterbi) 

3. P( O(x,y) , e(x ,y») = nf=x P( o(i), e(i») 

It is quite obvious that these assumptions do not really hold. It should be noted, 
however, that the score of each complete path (from v(r) to v U») is just multiplied 

with the same constant factor (I1~~~(r) P(Oi)). The score normalisation is there­
fore information-preserving according to the above definition. We think that even 
though the observation-normalisation used is certainly not "correct", comparing 
different partial paths will at least be much more meaningful after this normali­
sation than without any normalisation at all. As a side effect, this method also 
allows us to deal with (discrete) probabilities, while the original scores attached 
to labels by the recognizer we are using for our experiments (Huebener, Jost, and 
Heine, 1996) attaches values of density functions to the output edges. 
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5.1.2 Operations concerning silence 

Silence edges deserve some special treatment since they usually are not supposed 
to carry any meaning that has to be preserved for subsequent language processing 
modules after recognition. By agreement each word graph starts and ends with 
silence, but in principle all other silence edges don't count. They are, for example, 
not considered as errors during evaluation. 

We implemented three different methods to simplify graphs containing silence. 
The first one deals with vertices connected solely by silence in a straightfoward 
way. The second one tries to join contiguous silence edges 1 , while the third simply 
removes all silence edges from the graph (even at the start and end of the graph). 

Naturally, the algorithms removing silence edges can be applied to other types of 
edges, too. We have been experimenting with the removal of several small filling 
or hesitation-marking words (iih or iihm in German). The removal of such words 
can be assumed advantegeous if they are considered as noise in the signal. On 
the other hand, they may be important for the detection of repairs or restarts in 
systems processing spontaneous speech. 

Removing single silences 

A single silence edge being the only edge between two vertices is a rare condition 
in graphs delivered by a speech recognizer. However, the number of such cases 
may rise if several other operations are applied to a word graph, such as those 
described later. The simple idea behind the algorithm shown in figure 5.1 is to 
join two vertices if a silence edge is the only one between the two and they 
are otherwise mutually not reachable. In some versions we added a further time 
constraint. As each vertex is assigned a point in time, we demanded that no edge 
leaving the earlier vertex may end at a vertex that lies before the other. This was 
done to ensure that the ordering of edges and vertices in time is preserved. In 
general, however, this constraint is not mandatory and not shown in figure 5.l. 
Note that the scores of prolongated edges have to be incremented by the score of 
the silence edge to preserve the informational content of the graph. 

The function to merge two vertices is described seperately, as we will use this 
function in the algorithms to come, too. Figure 5.2 describes how to merge two 
vertices, v and w, by copying all edges at w to v. Afterwards, w is normally 

1 Since this algorithm is not information preserving, it is described below in section 5.2.1. 
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begin 
[1] 

[2] 
[3] 

[4] 
[5] 

[6] 
[7] 
end 

for each vertex v E V, taken in topological order, do 
Search for silences leaving v 
for each edge e = (v,w,s,< SIL » do 

if v t+ w, disregarding e, then 
Adjust scores 
for each edge e' = (v, w', s', I'), e =I e, do 

s' f--- s' + s 
Merge vertices v and w 
Merge(v, w) 
Delete w 

Figure 5.1: Removing single silence edges 

deleted. To reduce overhead, new edges are only constructed if there is no iden­
tically labelled edge already present. In that cases, scores are simply updated . 

Removing all silence edges 

The most effective method to reduce the number of paths in a graph (if not the 
number of edges) only by operating on silence edges is to remove them all. This 
can easily be done by copying all edges at the endpoint of a silence edge. 2 The 
newly introduced edges start at the startpoint of the silence, thereby in gen­
eral generating much more edges. However, in many cases an identically labelled 
edge has already been present. This fact reduces the growth in the number of 
edges. Figure 5.3 describes the algorithm. This algorithm operates information­
preserving, provided we assume that silence edges carry no meaning, i.e. paths 
are considered equal that only differ in the distribution of silences among them. 

2Silence edges that end at the final vertex of a graph have to be preserved, thus not generating 
multiple end vertices. 
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procedure Merge( v, w) 
Merge two vertices v and w 
First, copy w 's ingoing edges 

(1] for each edge e = (x, w, s, l), do 
[2] if :le' = (x, v, s', l), then 
[3] s' +-- min(s,s') 
[4] else 
[5] Create a new edge e" = (x, v, s, l) 

Now, copy w's outgoing edges 
[6] for each edge e = (w,x,s,l), do 
[7] if :le' = (v,x,s',l), then 
[8] s' +-- min(s, s') 
[9] else 
[10] Create a new edge e" = (v, x, s, l) 
end 

begin 
[1] 
[2] 

[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
end 

Figure 5.2: Merge two vertices 

for each vertex v E V, taken in topological order, do 
for each edge e = (v,w,s,< SIL », do 

Copy edges from the endvertex 
for each edge e' = (w, x, t, l), do 

if :le" = (v , x, t', l), then 
t' +-- min(t + s, i') 

else 
Create a new edge e" = (v, x, i + s, l) 

Delete e 

Figure 5.3: Removing all silence edges 
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5.1.3 Reducing paths in a word graph 

Constraining to unique word sequences 

As mentioned earlier, a parser may not be interested in more than one path 
through a graph covering a given word sequence. The algorithm shown in figure 
5.4 modifies a word graph to ensure just that. It guarantees that no vertex is 
ever left by two edges with identical labels. This local condition has the effect 
that from a global point of view no two distinct paths through the graph bear 
identical word sequences. 

begin 
[1] 
[2] 

[3] 

[4] 
[5] 

[6] 
[7] 

end 

for each vertex v E V(G), taken in topological order, do 
for each pair of identically labeled edges el, e2 do 

Perform edge merging and create new vertex 
Create a new vertex v having 
t(v) := min(t(.B(el)' t(.B(e2)))), 
inserting v into the topological order 
Copy all edges incident from .B( el) to v 
for each edge e = (.B(et), w, s, y) do 

Create a new edge e' := (v, w, s, y) 
Copy all edges incident from .B( e2) to v 
for each edge e = (.B(e2),w,s,y) do 

Create a new edge e' := (v, w, s, y) 
Delete ell e2 

Figure 5.4: Reducing a graph to unique label sequences 

The worst case complexity of this algorithm is exponential in the number of 
vertices of the graph. To see this, consider a graph as shown in figure 5.5. Every 
vertex except the last two have two edges incident from them, one incident to the 
next vertex, one incident to the one after next. Both edges are labelled identically. 
If we apply the algorithm, a new vertex has to be created for each pair of such 
edges. The new vertex has twice as many incident from it as the original vertex. 
More generally, if we assume d pairwise identically labelled edges incident from 
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a 

Figure 5.5: A hard graph concerning unique paths 

each vertex, we have 21VI- 1 edges in the graph. Let us follow a chain of vertex 
creations and application on the new vertices. For the first vertex, ~ new vertices 
are created, each of them equipped with 2 d edges incident from it. Operating on 
one of the new vertices again yields ~ new vertices, now with 4 d edges. We can 

repeat this cycle J.¥l-l times, as we advance two vertices with every step. During 
the cycle, we create 

M.-l 
2 . 

L 2'd (5.7) 
i=l 

new edges, which all have to be considered by the algorithm. This yields at least 

M. 
d(2 2 - 2) (5.8) 

operations, thus the complexity of our algorithm is 8(J2iVT). 

The algorithm proposed here has not been applied to any real-world word graphs. 
This is due to the large number of vertices and edges that are created anew. In 
section 5.2.2 below we will present a version of this algorithm wich does not 
preserve information, but is faster and has been used to a larger extent. 
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5.2 Other operations 

5.2.1 Joining contiguous silences 

Two paths only differing in the number of silence edges at a particular place are 
considered different, yet they might not change word recognition rates - silence 
is usually ignored during evaluation and in general considered worthless during 
linguistic analysis3

. Hence, the number of paths can be reduced by concatenating 
multiple silence edges. 

c 

e 

Figure 5.6: Joining two consecutive silence edges 

The easy case arises if three vertices are only connected by silence edges. This 
case can be handled by the algorithm described in figure 5.1. A more complex 
example is shown in figure 5.6. The difficult part is to decide where to attach 
edges c and d. If the edges incident to vertex 2 are attached to vertex 1, and the 
edges incident from vertex 2 attached to vertex 3 (as is shown in the figure) new 

3Pauses in the speech signal may well be used to constrain the application of certain grammar 
rules, e.g. in the case of multi-utterance grammars (Kasper and Krieger, 1996). In those cases, 
however, one should use a dedicated recognizer for prosodic events like (Strom and Widera, 
1996). 
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paths are introduced in the graph (in this case the edge sequence c - e - d). If, 
on the other hand, d is attached to 1 and c to 3, sequences vanish. 4 

The algorithm ist straightforward and defined in figure 5.7. This algorithm is not 
information-preserving. 

5.2.2 Unique word sequences 

The algorithm to constrain a word graph to unique label sequences outlined above 
is correct and preserves the informational content of a word graph, but it can not 
be efficiently applied to larger graphs. The main augmentation that has a positive 
effect on run time is to merge vertices of the graph. 5 Vertices should be merged 
whenever possible to reduce the number of edges in the graph. 

Merging of vertices is carried out by copying the edges from one vertex, which is 
afterwards deleted, to the other (d. figure 5.2). Edges that bear labels already 
present at the remaining vertex are not copied, rather the score is possibly up­
dated to reflect the better score of both edges. Naturally, in order to avoid the 
introduction of cycles into the word graph, only vertices that are mutually not 
reachable may be merged. 

Merging, however, is severly restricted if we constrain ourselves to information­
preserving operations. Two vertices can only be merged under the conditions 
that 

• they have the same set of vertices incident to and from them, 

• the edges incident to and from them are identically labelled, and 

• the edges incident to and from them have identical scores. 

These conditions are hardly ever met. To allow for further merging, we departed 
from an information preserving approach and loosened the constraints somewhat. 
Some conditions for merging could be: 

• Two vertices can be merged if they have the same set of vertices incident 
to and incident from them. This adds slightly to the number of paths, since 
there may be new partial paths of length 2 introduced by the merging. 

4We don't discuss the two remaining possibilities. 
5 Even using the augmentations the algorithm is still exponential in the worst case. 
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begin 
[1] 

[2] 

[3] 
[4] 
[5] 

[6] 
[7] 
[8] 
[9] 
[10] 

[11] 
[12] 
[13] 
[14] 
[15J 

[16J 
end 

40 

for each vertex v E V, taken in topological order, do 
Search for two silences 
if3el = (VI,V,S,< SIL »,e2 = (V,V2,S',< SIL » E £, then 

Check applicability 
for each edge e = (w,v,x,y) E £, do 

if e falls into the range [t(VI)' t(V2)], then 
continue with loop in line [2] 

Move edges incident to v along 
for each edge e = (v',v,x,y) E £,e i= ell do 

if v' = VI, then 
Create new edge e' = (VI,V2,X + s',y) 

else 
Create new edge e' = (V',VI,X - s,y) 

Move edges incident from v along 
for each edge e = (v,v',x,y) E £,e i= el, do 

if v' = V2, then 
Create new edge e' = (VI, V2, X + s, y) 

else 
Create new edge e' = (V2' v', X - s', y) 

Delete v and all incident edges 

Figure 5.7: Algorithm to join consecutive silence edges 
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• Two vertices can be merged if they have the same set of vertices incident 
from them. 

• Two vertices can be merged if they belong to the same point in time. This 
situation can arise given two conditions: First, a recognizer may create 
more than one vertex for some frame (e.g. to preserve the shape of the 
search space within the recognizer). Second, the creation of new vertices 
during the algorithm might lead to vertices belonging to the same point in 
time. 

The merging of vertices is in general carried out each time a new vertex is consid­
ered. Additionally, after creating new vertices due to edges with identical labels, 
one might want to merge all those vertices. They are guaranteed to have the 
same set of vertices incident to them (exactly one) and are primary candidates 
for merging. 

Using merging of vertices with identical vertices left and right and merging of 
newly created vertices (but only in case they have identically vertices incident 
from them), we were able to create reduced graphs in a reasonable amount of 
time. The run time is shown in figures 5.8 and 5.9 below. 

5.2.3 Reducing families 

As explained in chapter 2, word graphs usually contain a large number of families, 
i.e. overlapping edges with a common label. This is a reflection of the fact that 
word graphs usually contain many paths that represent exactly the same label 
sequence with slightly different segmentations. Since the exact segmentation of 
the speech signal is often not really important for word graph processing modules, 
one might want to reduce graphs so as to contain unique label sequences only. An 
algorithm to do this is described in sections 5.1.3. Unfortunately, the complexity 
of this algorithm is exponential. 

Furthermore, even a graph that contains unique label sequences only might con­
tain a high proportion of families, namely when family members have different 
neighbours. A more radical reduction in the number (or size) of families can be 
reached when the information-preserving requirement of the algorithm is given 
up and additional paths can be inserted into the graph. 

In this section we describe a very fast (n log n in the number of edges) algorithm, 
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Figure 5.8: Runtime used for unique word sequences (x-axis: turn number, y-axis: 
runtime in seconds) 
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Figure 5.9: Runtime used for unique word sequences (x-axis: log(number of paths), 
y-axis: runtime in seconds) 
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that reduces the number of families drastically by joining vertices to "meta ver­
tices" (u). 

begin 
Initialization 

[1] u = {u(a)} 

[2] a( uta)) = v(r) 

[3] [J( uta)) = v(f) 

find meta vertices 
[4] for each edge e E £, sorted according to 

increasing length do 
[5] if u(a(e)) == u([J(e)) 
[6] split u( a( e)) at t(a(e))~t(v(e)) 

split meta vertices if they are longer than permitted 
replace vertex by meta vertex 

[7] for each edge e E £ do 
a(e) = u(a(e)); [J(e) = u([J(e)) 

end 

Figure 5.10: Merge vertices 

To get some impression of the impact of the algorithm, compare figures 5.11 and 
5.12. Note that the number of edges and vertices was reduced from 141 edges and 
37 vertices to 91 edges and 22 vertices. At the same time, the number of paths 
increased from 24409 to 87742 and the nuber of unique paths from 8221 to 34554. 

The original graph contains many very short edges with the label "#PA USE#". 
If these edges are ignored during the meta-node splitting process, the reduced 
graph contains only 25 edges, 8 vertices and 1098 paths, that are all unique. The 
resulting graph is plotted in figure 5.13. 

To compare the results of reducing a graph to unique label sequences and of re­
ducing families using the algorithm just described, consider figures 5.14 and 5.15. 
To achieve better readability, all "#PA USE#" -edges except the ones starting at 
the root vertex were removed (see section 5.1.2 for the algorithm). The first graph 
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Figure 5.11: Graph for reference utterance: "ich trage es ein" 

contains 47 edges, 24 vertices and 300 paths while the second one contains 31 
edges, 9 vertices and 756 paths. 

As mentioned above, previously unconnected partial paths will be connected by 
this algorithm. On the one hand, this is a desired effect that can for instance help 
to deal with the problem of coarticulation (see chapter 2). On the other hand, one 
could say: "What an HMM has divided, man should not join." In other words: 
Graph manipulations should ideally compensate for deficiencies in the acoustic 
and lexical modelling only and otherwise retain all the information that could 
be extracted from the acoustical signal. Therefore it is advisable to restrict the 
maximal length of meta-nodes and to punish the joining of paths according to 
same distance measure between the original nodes in further processing steps. 
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Figure 5.12: Reduced graph for reference utterance: "ich trage es ein" 
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Figure 5.13: "#PAUSE#"-reduced graph for reference utterance: "ich trage es 
ein" 
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Figure 5.14: Graph for reference utterance: "ich trage es ein" containing unique 
hypotheses only 
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Figure 5.15: Family-reduced graph for reference utterance: "ich trage es ein" 
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Chapter 6 

Conclusion 

In this paper, we have proposed a new measure for the problem size represented 
by word graphs. Starting from conventional evaluation of best-chain recognizers, 
we argued that a straightforward generalization of well known procedures to 
graph recognizers may be misleading. While word accuracy can be extended to 
graph evaluation, a sensible notion of the size of a problem is much harder to find. 
Measures taken until now, like the number of word hypotheses per reference word 
or the average fan out of vertices, are insufficient in our view, since the topology 
and shape of the word graphs are not properly reflected by these measures. 

Instead, we propose to choose the amount of processing a hypothetical parseI 
would have to carry out in order to process a graph as the principal meaSUf(: 
for graph size. This measure takes account of the number of edges as well as thE 
number of paths, and simultaneously the shape of a word graph is considered. ThE 
assumption taken here was that a large amount of subgraph sharing reduces thE 
burden placed on a language processing component considerably. We motivated 
this measure and gave efficient algorithms to compute it. 

The second part of this report was dedicated to algorithms modifying word graphE 
with different degrees of severity. We introduced the notion of "harmless" (i.e. 
information-preserving) operations and presented some algorithms concerning thE 
reduction of silence edges and the construction of graphs containing only uniquel) 
labelled edge sequences. Since the run times were sometimes dissatisfying, WE 

showed versions of that algorithm that do not preserve information content, bui 
in general need only a fraction of the processing time. We feel that even whih 
they introduce new paths and modify paths scores, they do not too much "harm': 
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to a graph. Finally, we presented a very fast algorithm that in essence reorganizes 
a word graph to a large degree, but has several favoring properties, among them 
that it results in extremly small, compact graphs and partly copes with the 
problem of coarticulation. 
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