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Abstract

The paper explores the possibility of performing anaphora resolution and presupposi-
tion accommodation in a situation where scope relations are only partially known. For
underspecification of scope ambiguity, the approach builds on Reyle’s formalism of Un-
derspecified Discourse Representation Structures (UDRSs, (Reyle, 1993)) which is ex-
tended to cover arbitrary constraints from anaphora resolution. Wellformedness condi-
tions are formulated for UDRSs to restrict scope readings as required by anaphora res-
olution. Based on these conditions, a disambiguation algorithm is presented for scope
resolution and presupposition accommodation, which has also been implemented.

Keywords: definition and use of underspecified semantic representations,
scope resolution, anaphora and presupposition.

1 Introduction

In natural language discourse the phenomenon of ambiguity is pervasive. As the
number of interpretations is in general large, an enumeration of all interpreta-
tions is apt to slow down a Natural Language Processing system considerably.
The traditional approach to the problem (Woods, 1978) consists in applying
heuristics (Poesio, 1995) to get a single “preferred” interpretation and resort-
ing to backtracking in case of wrong choice. Unfortunately in the worst case all
readings are enumerated. This is why another method, dubbed underspecifica-
tion, has become the focus of attention. The main insight behind this approach is
that evaluation processes can very often work on whole classes of interpretations
so that disambiguation among the members of these classes is superfluous. Two
things are required for underspecification: (1) a formalism for compact represen-
tation of interpretation classes (underspecified representations) and individual
interpretations (fully specified representations) and (2) a disambiguation device

'This work was funded by the German Federal Ministry of Education, Science, Research
and Technology (BMBF) in the framework of the Verbmobil Project under Grant 01 IV 101
U. Many thanks are due to J. Bos, E. Kénig-Baumer, P. Krause, U. Reyle, and C.J. Rupp.
Also appeared in Proc. of the Second International Workshop on Computational Semantics,
Department of Computational Linguistics, Tilburg University, 1997.
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to connect underspecified representations with fully specified representations.
At least the fully specified representations should be interpretable in a model
theory. Two roads lead to underspecification.

Operational Underspecification: Operations that typically introduce am-
biguity are recorded in the representation formalism and executed only by the
disambiguation device. For scope resolution, this approach has been taken e.g.
in the Core Language Engine (Alshawi, 1992) where the quantifier raising rules
are recorded in quantified terms and in Ambiguous Predicate Logic (van Eijck
and Jaspars, 1996) where nested Cooper storages (Cooper, 1983) are explicitly
integrated into the language.

Representational Underspecification: Another approach practicable for
scope resolution is to reify the structuring objects of a semantic representa-
tion formalism. The structural relations between these objects are then appro-
priately weakened to capture the correct range of ambiguity. This approach
is pursued in Underspecified Discourse Representation Theory (UDRT) (Reyle,
1993), (Frank and Reyle, 1992) which has pointers to basic formulae (labels?) in
its repertory. A traditional semantic representation? has a tree structure. UDRT
weakens such trees to directed acyclic graphs. Representational Underspecifica-
tion has the advantage that all binding constraints can be made explicit so that
the Free Variable Constraint (Hobbs and Shieber, 1987), (van der Sandt, 1992,
365) plaguing quantifier raising does not need extra enforcement. On the other
hand the well-formedness conditions of UDRSs transcend what can be read off
the representations’ form and are thus more costly to check.

This paper adopts the UDRS formalism. It further assumes that the evaluative
processes of anaphora resolution and presupposition binding or accommoda-
tion (van der Sandt, 1992) work on UDRSs directly, i.e. with unresolved scope.
UDRT is u-deductive (Konig-Baumer and Reyle, 1996) (i.e. deductions can
be done directly on the underspecified structure) and therefore supports the
proving required for presupposition binding. In the second section the UDRS
formalism with extensions for anaphora binding is introduced. The third section
discusses a problem that crops up when scope resolution and donkey anaphora
are considered together. The following sections propose a solution in terms of
ambiguity domains and extend the UDRS well-formedness conditions to this
purpose. Finally, an algorithm for scope resolution and presupposition accom-
modation is presented that obeys the constraints imposed by anaphora resolu-
tion and presupposition binding.

?The idea of labels and labelled conditions advocated in UDRT has been found useful in
applications like theorem proving (Reyle, 1993), (Reyle, 1995), shake-and-bake machine trans-
lation (Copestake et al., 1995), (Dorna and Emele, 1996) and underspecification of syntactic
ambiguity (Schiehlen, 1996).

3That is, a formula of first order predicate logic (PL1) or a Discourse Representation
Structure (DRS) of Discourse Representation Theory (DRT, (Kamp and Reyle, 1993)).
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2 TUnderspecified Discourse Representation Struc-
tures

This section extends the UDRS formalism with two new sorts of constraints:
accessibility and binding constraints. Accessibility constraints are needed to
avoid disjunction? in the constraint language (see definition 11). [1; acc lo] means
that 12 is a member of the A-structure of 1; (van der Sandt, 1992, 354). Binding
constraints record which anaphors have been bound and which are still awaiting
accommodation (see definitions 6 and 7). Thus, [l; < l3] records a transfer of
an anaphoric sub-DRS 1; to its binding site lo. Anaphora resolution introduces
binding constraints and equality constraints for the discourse referents (van der
Sandt, 1992, 358), semantic construction all the other constraints.

Definition 1 (UDRS)

Let R be a set of discourse referents, L. a set of labels, V a set of predicates and
O a set of operators (negation, conditional, disjunction, quantifiers in DRT).
Then K is a UDRS confined to R, L, V, O iff K is a finite set consisting of
conditions of the following form.

e structural information

o top label constraint o accessibility constraint
[top(11)], where 1} € L (I; acc lg], where 13, 15 € L
o subordination constraint o binding constraint
[11 < 12], where 1;, 1 € LL [11 — 12], where 1, 1, € L

e content information
o universe o atomic condition
[l : x], where 1; € L,, xé¢ R Iy : P(x3,...,%n)], where P is an n-place
predicate in V, 1; € L, x3,...,x, € R

e structural and content information
o complex condition

[1:Q(ly,...,1,)], where 1, 1y,..., 1, € L, Q an n-place operator in O

It is useful to distinguish between overt constraints introduced by semantic
construction or anaphora resolution and implicit constraints or relations. Qvert
constraints are represented in square brackets. For an illustration of a UDRS

“In sentences like Buery representative of a big computer company uses a laptop manufac-
tured by it the laptop must be subordinate or equal to the company unless the company is
in the quantifier’s restriction in which case the leptop must be subordinate or equal to the
quantifier’s nuclear scope.
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enriched with information from anaphora resolution look at the following ex-

ample.

Every farmer likes his donkey.

[top(lT)] 15 < 1] [17 : donkey (x2)]
[; <l1y] [I5 : like(x1,%2)] (17 : of(x2,x3)]
[11 H every(xl, 12, 13)] [16 S lT] []7 acce 13]

2 : x1] [l6 : x2] (Ig : x3]

[14 S 12] [15 acc 16] [lg X1 =X3]

[l4 : farmer(x, )] 17 < 1g) [Is — o]

The same UDRS is depicted below in a Hasse diagram. Continuous lines without
arrows represent immediate subordination links ([<], definition 2), continuous
lines with arrows stand for subordination links ([<]). Dashed lines designate

accessibility links ([acc]).

It

X3 X1 Xo
X]=X3 - b : donkey(x2)
\
A — ., ~
~~_/_ == \
-t )
14: 173
farmer(x;) of(x2,x3)

I like(xq,%2)

Figure 1: Every farmer likes his donkey

Some useful relations on the UDRS graph structures are defined below. Overt
immediate subordination pulls out the structural component of the content of

complex conditions.

Definition 2 (overt immediate subordination)
[11 = 12] L4 [12 : Q(...,ll,...)]

Definition 3 (overt subordination)
LCEL & [11 < 12] \% [11 < 12]

Definition 4 (leaf %)
lea.fR(ll) < '1312 . 12 R* 11
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In UDRT, labels can serve two purposes: Either labels are place holders for
sub-DRSs and have a function in the DRS tree. or they are simply used to
designate semantic material. Tree labels are special in that they can never be
set equal with each other: A well-formedness condition (unique tree labels)
prevents inadvertently “unifying” tree labels (that is, sub-DRSs), which would
destroy the tree order.

Definition 5 (tree labels)

1; is a tree label (written t1) & 1y =17 v 3l : [} < 1y].

Labels which are not tree labels are called ambiguity labels (written a;). The
only function of ambiguity labels is to bear some content information.

Not all anaphoric material must be bound. According to van der Sandt’s (1992)
proposal definite descriptions can optionally be accommodated. Since by as-
sumption the binding process is already over, having worked on the underspeci-
fied representation, and only accommodation still needs to be done, we can dis-
tinguish accommodation from binding by the fact that no binding constraints
are introduced.

Definition 6 (resolved anaphor)

l; racc Iy & 3l3: [11 acc 13] A [13 — 12]

Definition 7 (anaphor awaiting accommodation®)
l; aacc ly & [y acc ] A -3l : [l — 14l

Definition 8 (anaphoric link)

I accly & 1y racc s V 1] aacc Iy

The auxiliary definitions introduced so far allow us to formulate a set of well-
formedness conditions on UDRSs. One of the well-formedness conditions of
UDRSs (which Reyle (1993) calls goodness) prohibits alignment of both re-
striction and scope of complex conditions on a single branch. The purpose of
this condition is to ensure that every DRS corresponds to a tree structure, i.e.
a structure where every path from a label to the root is linear. We prefer to
call the condition Linear Branches, the name by which it is known in the tree
literature (Backofen et al., 1995).

Constraint 1 (Well-Formedness Conditions)
e Existence of a root
Vll : 11 ;* tT
o Tree labels are unique’.
th,tg it~ bty ot =t
e Linear Branches
Vi, s:LhC*lhy A LTLCE*1l3 A Ihb#lz3— -3l [12 = 14] A [13 =< 14]
o Acyclicity
Vvl - -1 (; Uacc)+ 1;

5The symbols * and * denote transitive closure as usual.
6], aacc 1> means that 1, is still in the A-structure of 1, and has not been moved out yet.



Disambiguation of UDRSs under Anaphoric Constraints

Another useful definition singles out the links produced by the semantic con-
struction component and thus ultimately motivated by syntax.

Definition 9 (syntactic link)
L, Lo L Cly VI aacely

In DRT some operators are barriers to anaphoric relations, some are not. This
classification is used in the definition of accessibility (Kamp and Reyle, 1993).

Definition 10 (operators licensing accessibility)

t; = t2 « 3 : [ @ Q(t1,t2)], where Q is a suitable complex condition
(quantifiers and conditional in DRT). t; is the restriction and t2 the nuclear
scope of Q.

Definition 11 (accessibility®)
l; is accessible to I & 1; <l Vv 33: (I =13 A 1 <13)

3 Problems with Scope and Anaphora

Let us have a second look at the UDRS in Figure 1. Why can the definite
lg not get wide scope? The box with the donkey l; must be subordinate to
either the restriction 15 or the scope I3 of the universal quantifier 1; for 15 to be
accessible from 1;. In any case 1; along with 1; would be in the nuclear scope
of the definite if the definite had wide scope. Since 17 is also in the definite’s
restriction the configuration violates Linear Branches (restriction and scope

cannot be aligned). Figure 2 is an example of multi-sentence discourse.
tr

e
T~ \

b g
boy(b) b M| girl(g)
y

v
sleep(b) [awake(g) |

Figure 2: Every boy was sleeping. A girl was awake.

'I'he box a; cannot go into the nuclear scope t, of the universal since in this
case a; would be subordinate to both the first and second conjunct of t.

But wait a minute. Both these explanations refer to PL1 concepts unknown in
DRT (Kamp and Reyle, 1993): restriction and scope of a definite or indefinite

7~ is the relation of scope equivalence.

8< is DRS subordination.
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article, conjuncts of a conjunction operator. In DRT neither definites nor in-
definites have a restriction or a nuclear scope, since they lack quantificational
force. Donkey anaphora (Every farmer who owns a donkey beats it.) shows
that the indefinite inherits both quantificational force and nuclear scope from
the universal since retention of the original existential force would make the
representation uninterpretable. Likewise, conjunctions are no obstacles to the
scope extension of definites and indefinites, witness cross-sentential anaphora.
So there are some good reasons to discard the surplus structure. But exactly
this structure is apparently needed to exclude the illicit readings. Without fur-
ther provisos the following perfectly well-formed DRSs can be constructed for
the wrong readings, the one with the common donkey and the one that asserts
many girls to be awake.

X2
donkey(x2)
X1 X3 b
X1=X3 of(x2,x3) boy(b)
farmer(x;) like(x; ,x2)

The literature does not help very much with the problem. Most authors have
focused on scope resolution alone and simply ignored donkey anaphora, inter-
sentential anaphora and other DRT phenomena. So Bos (1995) treats indefinites
just like ordinary quantifiers. Reyle (1993) uses o-conditions to keep material
from different sentences apart. The interaction of o-conditions with accessibility
remains opaque. Another technique discussed by Reyle (1993), dependency con-
straints, unfortunately is lacking in detail. It is not clear how these constraints
could be automatically derived from parse trees.

4 Ambiguity Domains

In order to discard the inadmissible readings discussed above we are left with
finding a surrogate for Linear Branches. The main idea is to draw a distinction
between leaf labels® (standing for predicates) and inner labels (which represent
PL1 operators). Using this dichotomy a restriction on subordination relations
is formulated as an additional well-formedness condition on UDRSs: Connect-
edness states that a subordination relation (<) between two labels 1; and 1,
can only be introduced if 1; and ly are connected, i.e. if they are members to
the same extended ambiguily domain. Put differently, ambiguity domains are

defined as the sets of labels which can take scope over each other.
9The leaf labels of the UDRS in Figure 1 are 14, 15, and 1.
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Constraint 2 (Well-Formedness Condition)
e Connectedness
Vi, 1b: 1 <lb—>dl3:1; EEAD(I3) Al EEAD(13)

At least those operators can take scope over each other which depend on the
same predicate. This insight gives us a first definition of ambiguity domains.
Note that the definition only considers links introduced by semantic construc-
tion (E,)-

Definition 12 (ambiguity domain)
I, € AD(lp) ¢ Iy T 1; where leafc, (1)

According to definition 12 there is a one-to-one relation between leaf labels
and ambiguity domains such that leaf labels identify ambiguity domains. In the
course of scope resolution ambiguity domains can be extended: The subordina-
tion links which are introduced by scope resolution (<) admit new members to
ambiguity domains. This is where recursion enters the picture: Subordination
and extended ambiguity domains depend on each other.

Definition 13 (extended ambiguity domain)
I, € EAD(IQ) > lg(ga U S)*ll where lea,f;a(lg)

Theorem 1 states that the term “connected” as it is used here (sharing an
extended ambiguity domain) is interchangeable with the term “comparable”
known from order theory (standing in a subordination relation).

Theorem 1

Viglp:3dls: EEAD(13) Al EEAD(13)(—) L <1l v <.

Proof: (=) If =l; <1y A =l <1; we infer from the tree axioms that 33, 14,15 :
M3 < Iy AJls < I Als # 15 AL} <13 Al < 1s. Suppose ]; and 1, are
in EAD(lg). Then lg is subordinate to both 13 and 15 violating Linear Branches.
(«) Connectedness.

5 Conjoining Chains

Definitions 14 — 16 serve to single out the relevant PL1 two-place operators.
Every PL1 two-place operator is superordinate to two leaf labels which are
guaranteed to end up in its two argument places. Hence every conjoining label
is a PL1 two-place operator.

Definition 14 (conjoining label)
1; conjoins AD(lz) and AD(l3) « 1y = min{l{l € AD(l;) A 1€ AD(l3)} where
I, #13
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Definition 15 (conjoining sequence)

(l3,...,1;) conjoins two ambiguity domains A; and Ap4+; ¢ JAg,..., A, Vi €
{1,...,n} : }; conjoins A; and A;yq1, where none of the ambiguity domains
A1,...,Ap41 is equal to another and no label occurs twice in the sequence.

A well-formedness condition (unique conjoining labels) forbids incomparable
conjoining sequences: Whenever there are two conjoining sequences between
particular ambiguity domains, a member of one of them subordinates all the
other labels. As a side effect, the condition guarantees that conjoining labels
are unique.

Constraint 3 (Well-Formedness Condition)
e Unique Conjoining Labels!?

If a label Iy and a sequence (l,...,1,) conjoin A; and Ay then 3l € {ly,...,1,} :

I &1 A ... ANLC*]

A conjoining chain is a “minimal” conjoining sequence. Conjoining chains exist
and are unique, since according to condition 3 conjoining sequences are compa-
rable.

Definition 16 (conjoining chain'!)

A sequence of labels (l,...,1,) is a conjoining chain from 1 to 1’ « it is the
shortest sequence that conjoins some ambiguity domains A; and As such that
le 4 A Y € Ay and V(kl, ..., k) that conjoin A; and A, Vlelki : lj C* k;.

Theorem 2

l; <1y = V1 in the chain from 1; to l5: 1; <1,

Proof: By Connectedness 1; and 1, must be in the same extended ambiguity
domain 13. By the recursion assumption there must be a conjoining chain from
13 to 1; and one from 13 to 1y such that all chain members are subordinate to 1y
or lp, respectively. But if a label is subordinate to 1, it is also subordinate to 1s.

Theorem 2 retraces Linear Branches for PL1 operators. If 1; is subordinate to
I, and the operator 13 conjoins the ambiguity domains A; of 1; and Ag of 1o,
then lo must not be subordinate to 13, since 13’s argument places, A; and Aj,
are both subordinate to lo. We can now explain the examples of Figure 1 and 2.
In Figure 1 15 is accessible to 17, hence 1; subordinate to 13. By theorem 2 the
definite lg, which is on the chain from I; to 13, is also subordinate to 13. In Figure
2 the possibility of a; being subordinate to t; is discussed. The chain from a;
to t) consists of the single element t+ which would have to be subordinate, by
the root condition equal, to t;. Tree labels cannot be set equal.

1°By constraint 3 semantic construction must not produce a configuration like
P(a,b), (b, ¢), R(c, a).

"In Figure 1 1, and (l,1v) conjoin AD(l5) and AD(L), s and {IT,1;) conjoin AD(l7)
and AD(ls), It and (ls,]1) conjoin AD(l7) and AD(l4). The conjoining chain from AD(l7)
to AD(I5) is (ls), the conjoining chain from AD(l7) to AD(l4) is (Is, l1).
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6 Computed Subordination

The subordination relation in a DRS tree structure is partly given by syntax
(overt subordination, C), partly determined in the course of scope resolution
(computed subordination, <, see a functional definition below).

Definition 17 (computed subordination, functional)
Lh<bel <L A "L E*D

To define computed subordination for a tree label t constructively we make an
induction assumption that all scope relations involving tree labels superordinate
to t have already been resolved. 1; is then computable to be subordinate to t
if 1; could have been assigned to some ancestor t; of t (1; T |,t1) but was
not (-t < 1;). Any label I; overtly subordinate (C*) to t; can be equal to
t; except for tree labels, so we restrict C to ambiguity labels (Ct |,). For 1;
to be subordinate to t, l; has to be connected with t (constraint 2). Since
connectedness implies comparability (theorem 1), the only place where we have
to look for potentially subordinate labels 1, that are not overtly subordinate is
t’s ancestor line.

Definition 18 (computed subordination, constructive)
Lh<teoItt<ty ALCH|it1 A st <l A (1} conng t V (1; conn, t
A =3ty : 1) assigned to) V 1; assigned t)

For the implementation of connectedness we make use of the insight recorded in
theorem 2 that membership to extended ambiguity domains can be determined
along conjoining chains. Let AD(l3) be the ambiguity domain by virtue of which
1, is connected with t, i.e. Iy is the leaf that 1; shares with the first link I3
of the chain from 1, to t. By theorem 2 l3 is also subordinate to t and if
we induce over the length of chains!? this subordination relation is computed
(I3 =t V 13 < t). Two cases must be distinguished: Either 1, is subordinate to
1; over subordination links alone (connectedness over subordination) or there
is at least one accessibility link in the series (connectedness over accessibility).

Definition 19 (connectedness over subordination)
1; conn; t « 3l : leafga L)AL T L1 A (L Crtv(@ls: L T T K t))

Definition 20 (connectedness over accessibility)
l; conng t < 3y : leaf;a(lg) A ly EZ_ L A =l T I} A 2 Lz tV diz:
b, T 13 A 13 <<t)

If 1, is connected with t over accessibility links and t is the nuclear scope of a
suitable operator, there is the further option of assigning 1; to the operator’s
restriction (which realizes intermediate accommodation). If this option is taken
we record it with a relation assigned.

2As no label occurs twice in a chain all conjoining chains are finite.

10
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Definition 21 (assignment to restriction)
1; assigned t; > 3t :t; =t A 1; conn,t

The full algorithm for enumerating the readings of a UDRS enriched with con-
straints from anaphora resolution is given in the appendix. It can also be used
as a consistency checker for UDRSs. If it produces no solution but simply fails,
the UDRS is inconsistent.

7 Conclusion

The proposed algorithm disambiguates UDRSs with constraints from anaphora
resolution and handles accommodation in the way of van der Sandt (1992). It
can also be used as a consistency checker for UDRSs. Some new well-formedness
conditions for UDRSs are directly applied in the algorithm. They can not only
be used for complete disambiguation but also for an early detection of inconsis-
tency in case of partial disambiguation or for supplying a set of discourse refer-
ents accessible in some of the readings. Van der Sandt (1992, 365) requires that
anaphoric DRSs may only be resolved if they do not contain anaphors them-
selves. In this approach no such requirement is necessary. A theorem prover
(Reyle, 1995), (Konig-Baumer and Reyle, 1996) is used for matching anaphoric
and antecedent content in presupposition binding. Embedded anaphors must
only be resolved if the theorem prover discovers it cannot work without knowl-
edge about the antecedent. Van der Sandt (1992, 362,367) also specifies some
further criteria for accommodation sites, viz. consistency, informativity, and
preference for global accommodation. The latter constraint can only be tested
if the whole projection line is known, in contrast to the first two criteria. Since
the algorithm works top-down, the projection lines of presupposed sub-DRSs
have already been determined when they are met. Generation of readings is
stopped as soon as the algorithm finds out that the readings lead to incon-
sistent or uninformative DRSs or in case a higher accommodation level for a
presupposition has been found in some previously generated reading. Further
work might be to extend the coverage to plural noun phrase ambiguities. Most
interesting is here the possibility to surmount quantifier boundaries by set for-
mation (called abstraction in Kamp and Reyle (1993)). Another extension to
be envisaged is the treatment of further types of ambiguities such as collective
and distributive readings (Frank and Reyle, 1995) and syntactic ambiguity in
general (Schiehlen, 1996).

11
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A Description of the Algorithm

The algorithm traverses the UDRS graph from top down beginning with the root
label t7. In the following description, sets gained by abstraction are abbreviated
by omission of the label abstracted over (e.g. {[t <]} = {l|[t < 1]}). The
algorithm starts with a call to disamb(t+). It is nondeterministic in the sense
that it yields several solutions (i.e. UDRS readings or DRSs) on backtracking.
The individual steps are explained in turn below.

DRS := DRS(tT)

{«tt}:=0
{t'r -<+} =0
{tT acc} :=0

disamb( t ) +

(1) {<lat}:={C" ot} U{< t},
(2) {~t}:C{< ]t}

(3) {<lat} = {< lat}\{~ t},
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(4) {t<}={t<"}Uft}U{~t},
(5) Vhie{~t}:(
(I <} € {e <) A
{ly acc]} C {¢ <}U {t acc} )
(6) DRS(t) := { Condy, ,prgt,Fh: 1l € {t}u{~t} A [l :Cond]},
(7) {=t}:={[<N), wherel; € {t} U{~ t}},
(8) Vhe{<t)}:
(h <} = {t <,
{1; acc} := {t acc} U (if p: lx = L)) {lk} U {~ L},
(9) Vit e {<t}Vl € {<|st}:
DLL(t;) := ({E;’ t1} U {;* I3, where 13 < tl}) N Ieaf;a
(93.) {E* 11}0 DLL(tl) ?é w — add 11 to {<< tl},
(9b) {€* L1}n DLL(t:) =0 A {Cj L}n DLL(t,) # 0 —
either add 1; to {<< tl} or if Aty : to = t1, add 1; to {<< tz},
until no more 1; can be added to {<K t1}.
(10) Vti,t € {=t},t1 #to: {Kt1}n{Kt} =0
(11) VI € {< |ot}3t1 € {<t}: ] € {« t;}
(12) Vt; € {<t} :disamb( t; )

(1) First we determine the labels that could be equal to the tree label t. By
def. 17 we have to look at overt and computed subordination. The set
{L |1l € t} iscomputed at the mother label of t and is known by
top-down assumption.

(2) Next we arbitrarily choose some of the potentially equal labels (< |,) to
also be equal in the currently generated reading (~). This step is the main
source of nondeterminism (C instead of =) in the algorithm. So this is the
point to invoke additional heuristics.

(3) All labels under t not equal to t are strictly subordinate to t (< |,). These
labels must be set equal to some tree label below (see def. 18).

(4) With scope equivalence we can define the tree order of DRS subordination
(<). Since the disambiguation process works from top down, the part of the
graph above t (<) is always fully specified. This step merely computes a
reflexive order (<) out of an irreflexive one (<) and equivalence (=).

(5) The two constraints check the overt constraint information ([<] and [acc])
against the tree being built. The set {l;|t < 1;} is known according to the

top-down assumption!3.
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(6) In order to generate a DRS from a UDRS it suffices to determine the
relation of scope equivalence (~) which assigns to each ambiguity label a
tree label. With scope equivalence, we can define a function DRS(.) from
tree labels to sub-DRSs. Cond,_,; stands for a version of Cond where all a’s
are replaced by b’s. The sub-DRS associated with the top label (DRS(t))
is the fully specified DRS that expresses the currently generated reading.

(7) This step determines all the daughter labels of the tree label t.

(8) Here the daughter labels 1; are assigned their superordinate labels (<*)
and the labels that are accessible from them but not superordinate (acc).
The latter relation is computed according to the formula t acc 1; < 3tq, to :
i~ At =t At <ty (see def. 11).

(9) This step distributes the labels 1; below t among t’s daughter labels t;.
The sets DLL are the sets of leaves that are syntactically linked to the
respective daughter labels (C, is defined in def. 9). Note that these sets
grow as more and more labels 1; are distributed. Fortunately conjoining
chains are finite.

(9a) If 1; is connected with t; over subordination links only (def. 19) 1; is sub-
ordinate or equal to t;.

(9b) If 1; is connected with t, over at least one accessibility link (def. 20) 1; is
either subordinate to t, itself or, if t; is nuclear scope, to the corresponding
restriction.

(10) If 1; shares ambiguity domains with two daughter labels t; and ty of t,
then 1; > t, since theorem 1 demands that 1; be on a branch with both t;
and t2.

(11) If1; shares ambiguity domains with a label t but with none of t’s daughters,
then 1; > t, see Connectedness (constraint 2). Checking (10) and (11) runs
interleaved with (9).

(12) Top down recursion step.

Since all C relations are recorded (in step (1) and (7) by definition 5) the root
axiom guarantees completeness: Every label in the graph is visited. Inconsis-
tency results when step (5) requires that a label 1; be subordinate to t while
steps (10) or (11) necessitate 1;’s being equal to t.

!3In the implementation checking constraint (5) and determining the set of scope equivalent
labels (2) is an interleaved process. This is possible since the subordinated labels 1; can be
ordered according to the following metric: Assign to each subordinated label 1; the length n
of the longest chain of [<] U acc-links involving only labels < |qt. The number n is always
finite since a UDRS is an acyclic graph. Check the labels with least n first.
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