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Abstract

This dissertation presents the Bochica framework for Agent-Oriented Software

Engineering (AOSE). The framework’s task in the software development process is

(i) to capture the design decisions for a system under consideration on a platform-

independent level of abstraction and (ii) to project this design to a target platform.

Bochica goes beyond the state-of-the-art in AOSE as it combines the benefits of a

platform-independent approach with the possibility to address concepts of custom

application domains and execution environments. Several extension interfaces are

specified to enable the customization of the underlying modeling language to the

engineer’s needs. Bochica is accompanied by an iterative adaptation process to

gradually incorporate extensions. Conceptual mappings for projecting Bochica

models to executable code are specified. In order to enable Bochica for modeling

agents that inhabit semantically-enhanced virtual worlds, an according extension

model is proposed. Finally, a model-driven reverse engineering approach for lifting

the underlying design of already implemented Multiagent System (MAS) to the

platform-independent layer is introduced. The framework has been successfully

evaluated for designing intelligent agents that operate a virtual production line

as well as for extracting the underlying design of an already implemented MAS.

The evaluation results show that the Bochica approach to AOSE contributes to

overcome the gap between design and code.





Kurzzusammenfassung

Diese Arbeit präsentiert das Bochica Rahmenwerk für agentenorientierte Soft-

wareentwicklung. Die Aufgabe des Rahmenwerks ist es, die Designentscheidungen

für ein IT-System auf einer plattformunabhängigen Ebene festzuhalten und auf

eine Zielplattform abzubilden. Bochica erweitert den Stand der Wissenschaft

der agentenorientierten Softwareentwicklung durch die Kombination von plattfor-

munabhängigen und plattformspezifischen Eigenschaften. Zu diesem Zweck wer-

den konzeptionelle Schnittstellen für die Anpassung an benutzerspezifische Anwen-

dungsdomänen und Ausführungsumgbungen spezifiziert. Ein iterativer Adaption-

sprozess ermöglicht die schrittweise Integration von neuen Konzepten. Für die Pro-

jektion von Bochica-Modellen auf eine Agentenplattform werden entsprechende

Abbildungsregeln spezifiziert. Um das Bochica Rahmenwerk für die Model-

lierung von Agenten in semantisch annotierten virtuellen Welten anzupassen wird

eine entsprechendes Erweiterung eingeführt. Abschließend wird ein modellgetriebe-

ner Ansatz für die Extraktion des zugrundeliegenden Designs eines bereits imple-

mentierten Agentensystems auf die platformunabhängige Ebene vorgestellt. Bo-

chica wurde in zwei Fallstudien für die Modellierung von Agenten in einer virtuelle

Fabrikumgebung und die Extraktion des Designs eines bereits implementierten

Agentensystems evaluiert. Die Evaluierungsergebnisse zeigen, daß das Rahmen-

werk die Lücke zwischen einem plattformunabhängigen agentenorientiertem Design

und der Zielplattform effektiv verringert.
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Chapter 1

Introduction

The research field of Agent-Oriented Software Engineering (AOSE) is concerned

with investigating how concepts, algorithms, and methods developed in the wide

area of Artificial Intelligence (AI) can be used for engineering intelligent software

agents in a systematic way. AOSE strongly differs from Object-Oriented Software

Engineering (OOSE) since agents possess an internal architecture which governs

the information processing and decision making process. Many different agent

architectures have been developed (see Chapter 2). Two prominent examples are

the reactive subsumption architecture [Brooks, 1986] and the deliberative Belief,

Desire, Intention (BDI) architecture [Bratman, 1987][Rao and Georgeff, 1991].

The intelligent agent paradigm for software engineering [Jennings and Wooldridge,

2000] promises to leverage the development of goal-driven and failure tolerant

software as required by today’s and future Information Technology (IT) systems.

AOSE is still a young research area. In 2000, the first annual Workshop on Agent-

oriented Software Engineering [Ciancarini and Wooldridge, 2001] was held and

in 2007 the first issue of the International Journal of Agent-Oriented Software

Engineering (IJAOSE) [IJA, 2007] was published. Since then, many different

agent-oriented methods, methodologies, and modeling languages have been pro-

posed [Weiß and Jakob, 2004][Henderson-Sellers and Giorgini, 2005][Sterling and

Taveter, 2009]. Although significant research effort has already been made, AOSE

has still not arrived in mainstream software development. The acceptance problem

of agent technology is being discussed within the agent community [Jennings and

Wooldridge, 2000][Belecheanu et al., 2006][McKean et al., 2008]. Four of the iden-

tified main problems are (i) misunderstandings or wrong assumptions by non-agent

experts, (ii) disappointing experiences of the past, (iii) insufficient agent-oriented

standards for industry needs, (iv) lack of powerful methods and tools. Further

consolidations accompanied by the development of industry strength methods, de-

velopment processes, and tools are required to make agent technology accessible

1
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for mainstream software development.

AOSE should not be seen in an isolated manner: as it is increasingly applied

in main stream software engineering, AOSE is confronted (of course) with typi-

cal problems of today’s software development such as (i) an increasing number of

software frameworks, software languages, and execution platforms, (ii) shorter de-

velopment cycles, and (iii) heterogeneous and distributed IT environments. In

order to leverage AOSE, agent-oriented methods and tools have to cope with

those problems. A key to tackling the rapidly growing complexity in software

development is abstraction. High-level software languages are required to hide

the complexity and focus on the design of IT systems. Model-Driven Software

Development (MDSD) is driven by industry needs to deal with complex software

systems. Several aspects of MDSD have been standardized by the Object Man-

agement Group (OMG) as Model-Driven Architecture (MDA) [OMG, 2003]. The

underlying idea of MDA is to model the System Under Considerations (SUC)

on different levels of abstraction and use model transformations to gradually re-

fine them from Computational-Independent Models (CIM) to Platform-Independent

Models (PIM), and finally to Platform-Specific Models (PSM) and executable code.

According to Kleppe [2008], the level of abstraction of a software language can be

defined as the distance between the computer hardware and the concepts of that

language. Since the invention of computer systems, the level of abstraction has

steadily been increased from opcodes, assembler languages, procedural languages,

up to object-oriented languages. The question that arises is what the next gener-

ation of software languages will look like. It has been recognized by Belecheanu

et al. [2006], that one benefit of the intelligent agent paradigm is intuitive termi-

nology which comes much closer to how humans perceive a problem domain than

the terminology of other paradigms. From this point of view, agent technology is

a very promising candidate for next generation software systems.

1.1 Problem Statement and Research Questions

Model-driven development of real world agent-based systems is a complex endeav-

our that demands expressive and well designed modeling languages. In order to

efficiently model a SUC, an ideal agent-oriented modeling language would have to

be tailored to a certain application domain (e.g. agent-based simulation or virtual

worlds), to the target execution environment (e.g. a proprietary virtual reality or

simulation platform), as well as to the development process (e.g. modeling support

for AOSE methods such as goal-oriented requirements engineering). At the same

time it is desirable that the language abstracts from low-level technical details.
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The following statement expresses my language-driven view on AOSE:

Intelligent agent technology provides the means to embody high-level concepts

like goals, roles, and organizational structures which are required by next gen-

eration software languages. The combination of experiences which led to the

development of MDA and the conceptual foundation of AOSE has the poten-

tial to have a major influence on how IT systems will be designed in future

mainstream software engineering.

In the same line of argumentation, I see agent technology as an enabler to

address the requirements expressed by [Kleppe, 2008, p. 8] in the context of tradi-

tional MDSD: “The challenge for language engineers is that the software languages

that we need to create must be at a higher level of abstraction, a level we are not

yet familiar with. They must be well designed, and software developers must be

able to intermix the use of multiple languages. Here too, we are facing a new,

unknown, and uncertain task.” The majority of today’s agent-oriented modeling

approaches have been created to either support (i) an agent-oriented methodology

or (ii) a certain agent execution platform. One problem in model-driven AOSE

is that most modeling languages only focus on the core concepts of MAS and

often fail to address concepts of custom application domains and execution en-

vironments. Thus, certain design decisions cannot be captured. As the design

is projected to concrete code, this causes extensive manual refinements to close

the gap. The manual refinements potentially cause code and design to diverge

over time and thus, undermine a model-driven approach. Agent-oriented model-

ing languages require more flexibility to address those problems. The transition of

agent technology from research to main stream software development will only be

successful with industry strength methods and tools. In this regard, the following

research questions are addressed by this dissertation:

What are the core concepts of an expressive agent-oriented modeling

language?

When today’s software developers think about object-orientation, there is a

common understanding of basic concepts like classes, objects, attributes, or inher-

itance. The Unified Modeling Language (UML) [OMG, 2011d] is a standardized

and broadly accepted modeling language that specifies concepts common to the

majority of object-oriented systems. This level of maturity has not been reached for

the intelligent agent paradigm. Besides the conceptual unification and standard-

ization, the expressiveness of modeling languages is essential for their acceptance.
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In order to classify the expressiveness of modeling languages, Warmer and Kleppe

[2003] defined six Modeling Maturity Levels (MMLs). MML 0 means that there is

not even a textual specification of the SUC, and MML 5 stands for models only.

In the context of MDA, current modeling languages aim at MML 4 (precise mod-

els). In my opinion, most of today’s agent-oriented modeling languages only reach

MML 3 (models and text). In order to close the gap between design and code, agent

model artifacts have to be better interleaved (e.g. behaviors, interaction protocols,

and organizational structures). Moreover, the question that arises is how 3rd-party

software languages (e.g. reasoning and knowledge representation languages) and

often neglected concepts like knowledge bases and data and information models

can be integrated.

How can agent-oriented modeling languages better support concrete

application domains and execution environments?

Abstract concepts such as agent, behavior, or interaction are common to most

agent-oriented systems. Depending on the target platform, the application do-

main, and the overall approach, those concepts might be realized in different ways

in order to address custom features. As a modeling language is applied to differ-

ent scenarios, the demand for adding more and more highly specialized concepts,

only relevant for a small sub-set of agent systems, arises. This bears the dan-

ger of making the modeling language unusable over time. Today’s agent-oriented

modeling languages have a static nature and focus on the core concepts of MAS.

Platform-specific languages are created for exactly one execution platform while

platform-independent ones lack concepts for addressing features of a legacy target

platform or application domain. The question of how the benefits of platform-

independent and platform and domain-specific approaches can be joined arises.

How to effectively close the gap between platform-independent agent

models and concrete code?

Model transformations are used in MDA to close the gap between high-level

design artifacts and concrete code. One common problem in model-driven AOSE

is that models created by agent methodologies are often implemented manually

(at least partially) and thus, code and design diverge over time. Moreover, in real

world applications, agent platforms are usually embedded into larger execution

environments with additional IT systems. The execution environment depends on

the concrete use case. The conceptual mappings have to be tailored to the execu-

tion environment in order to exploit platform features and to minimize the need
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for manual changes. As the number of execution environments an agent platform

can be embedded in is arbitrary, one problem is the high development and mainte-

nance cost for having custom transformations for all the target environments the

platform is embedded in. The question that arises is how to make the transforma-

tion process more flexible in order to share common conceptual mappings across

execution environments.

How to make the underlying design of concrete implemented multiagent

systems reusable?

Software engineers usually approach complex problems by separating them

into sub-problems. In AOSE, sub-problems are solved by autonomous agents that

build organizational structures. Each agent internally further decomposes a prob-

lem by goal and plan hierarchies. The underlying design of a system reflects

an engineers experience with approaching complex problems. It is desirable to

reuse patterns and structures that have proven their practical use and have been

validated (e.g. interaction protocols, goal hierarchies, behavior templates, and or-

ganizational structures). As of today, only little work has been spent on reverse

engineering in the context of agent-based systems. A method for agent-oriented

reverse engineering is required (i) to extract and reuse design patterns of already

implemented MAS, (ii) as a starting point for refactoring (restructuring) systems

(e.g. to migrate to MDSD), and (iii) for analyzing and visualizing existing sys-

tems. Thus, reverse engineering is an important method to prepare AOSE for

main stream software engineering.

1.2 Contributions

In this dissertation, I will propose a novel model-driven framework for AOSE. The

framework, called Bochica1, goes beyond the state-of-the-art AOSE research as

it combines the advantages of platform-independent and platform-specific mod-

eling approaches. This has been reached by providing conceptual interfaces for

integrating 3rd-party software languages (e.g. knowledge representation or reason-

ing languages) and concepts into the platform-independent core. Additionally, I

propose an iterative adaptation process for incorporating conceptual extensions

during a typical software development process. The framework is accompanied

by a flexible forward transformation architecture for BDI agents which is tailored

1Bochica was a semi-god of the Muisca culture, who brought the people living skills and
showed them how to organize their lives. The Muiscas are known for the ceremony of “El
Dorado”.
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to the needs of Bochica. Reusability of design patterns and model artifacts is

enabled by the platform-independent core of Bochica and supported by a novel

method for model-driven reverse engineering of BDI agents. Finally, an exten-

sion model for agents in semantically-enriched virtual worlds is proposed as an

extension of Bochica. The overall framework has been evaluated in a virtual

production line and a retail case study. The contributions of this dissertation to

the state-of-the-art in AOSE research are summarized as follows:

Model-driven AOSE Framework. The Bochica framework provides the

means for capturing platform-independent MAS designs and mapping them to

concrete code. The extension interfaces provided by Bochica significantly widen

the scope of application domains, execution environments, and development pro-

cesses in which Bochica can be applied. Instead of defining yet another agent-

oriented methodology for Bochica, the framework is aligned to existing agent

methodologies and software development processes. Moreover, the research focus

lies on increasing the MML of the Domain-Specific Language (DSL) underlying the

Bochica framework to better bridge the gap between high-level model artifacts

and concrete code. The Bochica framework was initially introduced in [Warwas,

2012] and [Warwas et al., 2012a]. The framework paper was nominated for the Best

Student Paper Award at the 4th International Conference on Agents and Artificial

Intelligence (ICAART’12). The adaptation process was also discussed in [Fischer

and Warwas, 2012]. The concrete syntax and static semantics of the core DSL

was discussed in [Warwas and Hahn, 2008] and [Warwas and Hahn, 2009b]. The

development environment which implements the Bochica framework was pre-

sented in [Warwas and Hahn, 2009a] and [Warwas et al., 2012b]. It was awarded

with the Best Academic Software Award at the 8th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS’09).

Forward Engineering. As Bochica gets extended with 3rd-party concepts and

software languages, a flexible model transformation architecture is required to

effectively close the gap to concrete code. For this purpose, I define conceptual

mappings between Bochica and the BDI agent platform Jadex. Based on the

experiences our research group has gained with model transformations to various

agent platforms, I propose a modular and extensible transformation architecture

that enables the reuse of conceptual mappings from Bochica to multiple execution

environments which are based on the same agent platform. The transformation

approach was initially presented in [Warwas et al., 2012a] and [Warwas, 2012].

Some of the design patterns were presented in [Warwas et al., 2009].
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Reverse Engineering. This dissertation contributes a novel reverse engineering

approach to the state-of-the-art in model-driven AOSE. For this purpose, concep-

tual mappings between the BDI agent platform Jadex and Bochica are specified.

After the code has been lifted to the model level, the conceptual mappings are

applied to extract the underlying design of a concrete implemented MAS. The

extracted artifacts can be re-used as blue print for solving similar problems on

similar execution platforms, visualizing the underlying structure, or for migrating

an implemented agent system to model-driven AOSE. In this context, I have also

developed a platform-specific metamodel for the Jadex platform which enables the

reverse engineering approach. The method was initially discussed in [Warwas and

Klusch, 2011].

Extension Model for Agents in Semantically-enriched Virtual Worlds.

In the research project Intelligent Simulated Realities2 (ISReal), our research group

developed a deployment platform for semantically-enriched virtual worlds [Nesbi-

gall et al., 2010]. Semantic Web-based annotations of geometric objects in the 3D

scene are used by intelligent agents for reasoning and planning. I was responsible

for the agent-related aspects. In order to evaluate Bochica in a complex real

world scenario, I developed a platform model for agents in semantically-enriched

virtual worlds. The ISReal-specific extension includes (i) platform and domain-

specific concepts for intelligent ISReal agents, (ii) the integration of Semantic Web

reasoning and knowledge representation languages, and (iii) additional conceptual

mappings to the ISReal-enabled Jadex platform. The approach was first published

in [Warwas, 2012] and [Warwas et al., 2012b].

SmartFactory and IRL Case Studies. The SmartFactory3 is a living lab of

the DFKI in Kaiserslautern (Germany) which is concerned with innovative tech-

nologies for the factory of the future. One objective of the ISReal project was the

design of intelligent agents which are able to operate a virtual counterpart of the

real SmartFactory and simulate typical workflows (e.g. for training employees and

testing virtual production lines). In this context, the ISReal-enabled Bochica

framework was evaluated to design and implement intelligent agents which are

able to flexibly interact with their virtual environment. In a collaboration with

the Semantic Product Memory4 (SemProM) project and the DFKI Innovative Re-

2http://www-ags.dfki.uni-sb.de/~klusch/isreal/index.html
3http://smartfactory.dfki.uni-kl.de/en/
4http://www.semprom.org

http://www-ags.dfki.uni-sb.de/~klusch/isreal/index.html
http://smartfactory.dfki.uni-kl.de/en/
http://www.semprom.org
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tail Laboratory5 (IRL) living lab, our research group developed an agent-based

system for guiding products through a supermarket environment and updating

the according product memories (e.g. surveillance of temperature, location, and

use-by date) [Kahl et al., 2011]. Initially, the system was directly implemented in

Jadex (as Bochica was not fully functional at that time). The objective of the

IRL case study was to evaluate the reverse engineering approach by extracting and

lifting the underlying design of the already existing agent system to Bochica.

1.3 Structure

This dissertation is structured as follows:

Chapter 1 introduces and motivates this thesis and provides an overview of

the addressed research questions and the contributions (this chapter).

Chapter 2 discusses the related work in MDSD and model-driven AOSE. This

includes an overview of the state-of-the-art of agent-oriented methodologies, agent

modeling languages, and agent-oriented modeling tool support.

Chapter 3 introduces the Bochica framework for model-driven AOSE. This

includes an iterative adaptation process, the alignment of Bochica to typical

software development processes, the extension interfaces, and the transformation

approach. Finally, a brief overview of the technical infrastructure is provided.

Chapter 4 provides an overview of the Bochica metamodel and introduces

a platform-specific metamodel for Jadex.

Chapter 5 presents a forward transformation approach for BDI agents. For

this purpose, conceptual mappings from Bochica to the Jadex BDI platform are

specified. The mappings build the foundation for the forward transformation as

required by Bochica.

Chapter 6 presents a novel model-driven reverse engineering approach for

AOSE. For this purpose, conceptual mappings between the Jadex metamodel and

Bochica are specified. Finally, the conceptual mismatches are discussed.

5http://www.dfki.de/irl/uk/project.htm

http://www.dfki.de/irl/uk/project.htm
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Chapter 7 introduces an extension model for agents in semantically-enriched

virtual worlds. After a brief overview of the ISReal platform, the conceptual exten-

sions of Bochica for ISReal and the integration of Semantic Web languages are

discussed. Finally, the conceptual mappings to the ISReal platform are specified.

Chapter 8 evaluates the Bochica framework in the SmartFactory and IRL

case studies. The results are discussed and set into context to the related work

presented in Chapter 2.

Chapter 9 concludes this thesis and provides an outlook on future work.
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Chapter 2

Related Work

Most books about agent technology and AOSE start with a philosophical discus-

sion about the concept of agent by comparing it to the concept of object. Usually,

properties like autonomy, pro-activeness, social ability, and reactivity are high-

lighted [Wooldridge and Jennings, 1995]. Although those discussions are impor-

tant, they do not contribute much to the understanding of what it actually means

to design and implement a SUC using the agent paradigm. It is important to

underline the importance of the internal architecture of agents, which governs the

information processing and decision making process, to AOSE. An agent architec-

ture might make use of mentalistic notion (e.g. BDI) or not (e.g. subsumption

architecture). The used agent architecture has to be appropriate to the problem

at hand. Software engineers have to exploit the characteristics of the agent ar-

chitecture in order to gain benefits from it. When non-agent experts think about

agent technology, some of the aspects which immediately come into their minds

are learning, game theory, or planning. Although those aspects are definitely in

the scope of AOSE, the current research focus is on a much more fundamental

level and addresses questions like (i) what are the core concepts of MAS, (ii) how

to combine the different aspects into a coherent industry-strength framework, (iii)

what is an adequate development process for implementing MAS, or (iv) when to

apply AOSE or stick to traditional OOSE. Weyns [2010, p. 1] describes AOSE

as follows: “Developing multi-agent systems software is 95% software engineering

and 5% multi-agent systems theory.” Although the ratio might be too high, it em-

phasizes the need to consider systematics and methods developed by traditional

software engineering research. In the following, Section 2.1 presents the state-of-

the-art in MDSD, which has been developed by traditional software engineering to

separate software design and code. Afterwards, Section 2.2 summarizes the related

work in model-driven AOSE. For an introduction and overview of the foundations

of agents and multiagent systems we refer to [Weiß, 1999] and [Wooldridge, 2009].

11
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2.1 Model-driven Software Development

The underlying idea of MDSD is to design a SUC from an abstract and technology-

neutral viewpoint and use model transformations for refining the design until con-

crete code is generated. The Object Management Group6 (OMG) standardized

several aspects of MDSD as Model-Driven Architecture7 (MDA) [OMG, 2003].

This includes the definition of different viewpoints such as the computational

and platform-independent viewpoints as well as the platform-specific viewpoint.

Computational-Independent Models (CIM) specify a system without computational

considerations in mind. Platform-Independent Models describe the system with

computational considerations but abstract from low-level technical details. Fi-

nally, Platform-Specific Models (PSM) specify the technical details for a concrete

execution platform. In the context of MDA, several standards for metamodeling

(see Section 2.1.1) and model transformations (see Section 2.1.2) have been pub-

lished. Moreover, auxiliary standards like the Object Constraint Language (OCL)

[OMG, 2012] for querying and constraining metamodels or the Software and Sys-

tems Process Engineering Metamodel (SPEM) [OMG, 2008b] for defining software

development processes are available. The remainder of this section discusses the

role of models (see Section 2.1.1) and model transformations (see Section 2.1.2)

in MDA. Finally, Section 2.1.3 provides a brief overview of available modeling

frameworks.

2.1.1 Models and Metamodels

According to OMG [2003, p. 2-2], a model “. . . of a system is a description or

specification of that system and its environment for some certain purpose.” Meta-

models are models that define the abstract syntax of a modeling language in terms

of objects and their relations (see Figure 2.1). The vocabulary available for defin-

ing metamodels is provided by other metamodels - so called meta-metamodels.

Meta-metamodels are recursively defined by themselves. Usually, the graphical

notation of UML class diagrams is used to visualize metamodels. Two important

meta-metamodels are the Meta Object Facility8 (MOF) [OMG, 2011b] and Ecore

[Steinberg et al., 2008]. MOF was standardized by OMG and builds the foundation

of MDA and UML. Ecore can be seen as a sub-set of MOF which was introduced

to simplify MOF (see Section 2.1.3). MDA is about software languages and the

conceptual mappings from one to another language.

6http://www.omg.org
7http://www.omg.org/mda/
8http://www.omg.org/mof/

http://www.omg.org
http://www.omg.org/mda/
http://www.omg.org/mof/
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Figure 2.1: The top-most layer depicts the meta-metamodel layer (here Ecore).
Metamodels are instances of meta-metamodels and specify the abstract syntax of
modeling languages (here an agent-oriented language). Finally, the lowest layer
depicts an instance of the metamodel which describes a concrete SUC using the
vocabulary defined by the metamodel. The concrete syntax is used to visualize
the model elements.

A graphical modeling language consists of:

• abstract syntax (grammar): The abstract syntax of a modeling language

defines the available concepts and their relations for modeling a SUC. In

MDA, this is done by metamodels.

• concrete syntax (notation): The notation defines graphical representations

for the concepts of the abstract syntax.

• static semantics: The static semantics describes constraints that have to be

fulfilled by a model in order to be well-formed.

• dynamic semantics: The dynamic semantics defines the meaning of well-

formed expressions.

According to Kleppe [2008], the semantics of a modeling language can be de-

fined (i) denotational, (ii) by providing a reference implementation, (iii) by map-

ping the language’s concepts to another language with well-defined semantics, or
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(iv) by providing the operational semantics (e.g. by a state transition system). For

example, UML is a semi-formal graphical modeling language. The abstract syn-

tax of UML is described by a metamodel, called the UML Superstructure [OMG,

2011d]. The mapping between the graphical notation of UML and its abstract

syntax is expressed using natural language. The semantics of UML is defined by

formal OCL constraints and additional natural language remarks.

2.1.2 Model Transformations

Model-to-model transformations are used within MDA for mapping the concepts

of one modeling language to the concepts of another one. Model-to-text trans-

formations generate source code for a target platform. Figure 2.2 depicts the

model-to-model transformation approach used in MDA. Transformation rules de-

fine conceptual mappings from the concepts of the source to the target metamodel.

The transformation engine generates the target model by applying the mapping

rules to the source model. One can distinguish between vertical and horizontal

transformations. Vertical transformations map a model of one level of abstraction

(e.g. PIM) to another level of abstraction (e.g. PSM), whereas horizontal trans-

formations stay on the same level of abstraction. Moreover, it is important to

distinguish between following transformation types (taxonomy aligned to [Chikof-

sky and Cross II, 1990]):

• Forward Engineering: transforming the model of a SUC to a lower level of

abstraction (e.g. from PIM to PSM)

• Reverse Engineering: analyzing a SUC and creating a model on a higher

level of abstraction (e.g. PSM to PIM)

• Reengineering: implementing a SUC in a different way; e.g. by reverse engi-

neering it and applying a forward transformation

• Restructuring (refactoring): improving or changing the structure of a model

without modifying the functionality

• Roundtrip Engineering: forward and reverse transformations can be done in

an arbitrary order (requires an additional synchronization mechanism be-

tween the transformations)

In the context of MDA, the Queries, Views, and Transformations (QVT)

[OMG, 2011c] language has been standardized for model-to-model transforma-

tions. Code generation from models has been standardized by Model to Text (M2T)
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Figure 2.2: In order to transform a source model to a target model, mapping rules
between concepts of the source and target metamodels have to be specified. The
transformation rules as well as the source model are the input to the transformation
engine.

Figure 2.3: Abstract view of PIM to PSM transformations according to [OMG,
2003, p.2-7].

[OMG, 2008a]. Figure 2.3 depicts an abstract and technology-independent view

of how models in MDA are mapped from PIM to PSM. The platform-independent

model is complemented by a Platform Description Model (PDM) which provides

additional information about the target platform. Both models are the input to

the model transformation which generates the platform-specific model. Usually,

there exist multiple ways of how to structure and implement a SUC given a certain

target platform. The specification of a model transformation to a certain execu-

tion platform implies to anticipate design decisions. In the context of OOSE,

object-oriented design patterns have been developed [Gamma et al., 1995]. Design

patterns provide reusable solutions to well-known and recurrent problems. The

application of design patterns during code generation helps to guarantee a certain

quality of the generated code. An interesting research question that requires more

attention is how design patterns for the needs of AOSE look like.
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2.1.3 Modeling Frameworks and Workbenches

Besides MDA, there exist several other DSL frameworks and language workbenches

for MDSD. The Visual Studio Visualization and Modeling SDK9 (VSVMSDK) is

Microsoft’s approach to MDSD. It is available as part of the Visual Studio10 de-

velopment environment and provides tool support for developing custom DSLs.

VSVMSDK does not implement OMG standards. Moreover, it is more pragmatic

compared to MDA (e.g. there exists nothing comparable to CIM, PIM, and PSM in

MDA). The tool also supports the user in designing the graphical notation. A fur-

ther modeling framework is based on the Graph-Object-Property-Role-Relationship

(GOPRR) [Kelly et al., 1996] language. It has its origin in the 90’s before MDSD

according to MDA was available. The MetaEdit+11 workbench provides the devel-

opment environment for specifying custom DSLs. A DSL is defined by concepts,

properties, and additional rules. The workbench also provides a design tool for the

graphical notation. The Eclipse Modeling Framework12 (EMF) [Steinberg et al.,

2008] provides a collection of tools for MDSD based on Eclipse technology. This

encompasses implementations of MDA standards such as UML13, QVT14, OCL15,

and SPEM16. EMF is based on the Ecore metamodel which has the same role for

EMF as MOF for MDA. Since Ecore builds the foundation for several aspects of

this dissertation, we provide a brief overview of Ecore and EMF.

Eclipse Modeling Framework. Ecore defines object-oriented concepts such

as EClassifier, EPackage, and EClass (see Figure 2.4). An EClass is an ENamed-

Element and contains EAttributes, EReferences, as well as EOperations. It is

important to note that Ecore unifies two different aspects: (i) it is the meta-

metamodel for specifying DSLs based on Eclipse technology and (ii) it is a meta-

model for Java. EMF provides automatic mappings from Ecore to UML classes,

Java, and XML Schema Definitions (XSD) [W3C, 2004b] - and vice versa. Graph-

ical DSLs are defined using the infrastructure provided by the Graphical Modeling

Framework17 (GMF). Likewise, textual DSLs can be specified using EMFText18 or

XText19. Besides the standardized QVT, there exist other model transformation

9http://archive.msdn.microsoft.com/vsvmsdk/
10http://www.microsoft.com/visualstudio/
11http://www.metacase.com/mwb/
12http://www.eclipse.org/modeling/emf/
13http://www.eclipse.org/modeling/mdt/?project=uml2
14http://www.eclipse.org/m2m/
15http://www.eclipse.org/modeling/mdt/?project=ocl
16http://www.eclipse.org/epf/
17http://www.eclipse.org/modeling/gmp/
18http://www.emftext.org/index.php/EMFText
19http://www.eclipse.org/Xtext/

http://archive.msdn.microsoft.com/vsvmsdk/
http://www.microsoft.com/visualstudio/
http://www.metacase.com/mwb/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/m2m/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/epf/
http://www.eclipse.org/modeling/gmp/
http://www.emftext.org/index.php/EMFText
http://www.eclipse.org/Xtext/
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Figure 2.4: This figure depicts the central concepts of the Ecore metamodel.

languages like the declarative Atlas Transformation Language20 (ATL). Model-to-

text transformations are supported by XPand21 and the Java Emitter Templates22

(JET). Moreover, metamodel and DSL zoos, which enable the reuse of existing

modeling languages, became available during the recent years. Two examples are

the EMFText Concrete Syntax Zoo23 and the Atlantic Metamodel Zoo24. Finally,

it is worth mentioning the Teneo25 and Dawn26 projects which provide the infras-

tructure for model repositories and collaborative modeling.

2.2 Model-driven Agent-oriented Software Engi-

neering

MDA is driven by industry needs to separate software design from low-level tech-

nical details. Model-driven AOSE transfers experiences and technology from tra-

ditional software engineering to the young research field of AOSE. At the same

time, AOSE offers a powerful conceptual foundation which goes beyond OOSE.

Standardization plays an important role for increasing the acceptance of new tech-

nology. The Foundation for Physical Agents27 (FIPA) is a standardization orga-

nization for agent technology. Published standards like the Agent Management

Specification [FIPA, 2004] define the general structure for agent platforms. More-

20http://www.eclipse.org/atl/
21http://www.eclipse.org/modeling/m2t/?project=xpand
22http://www.eclipse.org/modeling/m2t/?project=jet
23http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
24http://www.emn.fr/z-info/atlanmod/index.php/Zoos
25http://wiki.eclipse.org/Teneo
26http://wiki.eclipse.org/Dawn
27http://www.fipa.org

http://www.eclipse.org/atl/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=jet
http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
http://www.emn.fr/z-info/atlanmod/index.php/Zoos
http://wiki.eclipse.org/Teneo
http://wiki.eclipse.org/Dawn
http://www.fipa.org
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over, several communication-related aspects such as interaction protocols [FIPA,

2003] or an Agent Communication Language (ACL) [FIPA, 2002a][FIPA, 2002b]

were standardized. The remainder of this section provides an overview of available

agent technology (Section 2.2.1), discusses the state-of-the-art of agent-oriented

methodologies (Section 2.2.2), modeling languages (Section 2.2.3), and modeling

tools (Section 2.2.4).

2.2.1 Agent Architectures and Platforms

Agent platforms provide the environment for implementing and executing MAS.

This also encompasses the internal architecture of agents which has to be addressed

by the developer. Many different agent architectures have been proposed. One

of the most influential ones is the Procedural Reasoning System (PRS) [Georgeff

and Ingrand, 1989] architecture which belongs to the family of BDI architectures.

BDI agents have an explicit representation of beliefs and goals. Goals represent

a desired goal state (what should be achieved), whereas plans determine how an

adopted goal is reached. Deliberation is the process of deciding which goal to pur-

sue. The process of deciding how to achieve a goal is called means-end reasoning.

In PRS systems, the means-end reasoning process is realized by a look-up mecha-

nism (also called planning from second principles). For this purpose, a PRS agent

is equipped with a plan library with predefined behavior templates (means). The

templates specify the agent’s behavior in certain situations - similar to methods

in (offline) Hierarchical Task Network (HTN) planning [Nau et al., 2004]. Plan

templates related to the currently active goals (ends) are being looked-up and in-

stantiated. In PRS, metalevel reasoning is the process of deciding which option

to choose (if there are multiple ones). Another agent architecture is the reactive

subsumption architecture [Brooks, 1986]. In contrast to BDI, it works without an

explicit representation of the world state. Instead, subsumption agents use pri-

oritized layers of behaviors which are triggered by the agent’s perceptions. BDI

agent systems are especially interesting for AOSE since they provide execution

semantics for high-level concepts like goals. For the development of agents based

on other agent architectures, goals are design artifacts which are only implicitly

represented at the code level. Two further agent architectures worth mentioning

are the cognitive Soar architecture [Milnes et al., 1992][Laird, 2012] and the hybrid

Integration of Reaktive behaviour and Rational Planning (InteRRaP) [Müller and

Pischel, 1994][Müller, 1997] architecture.

There exist various agent platforms for the different agent architectures. The

Java Agent Development Framework28 (Jade) [Bellifemine et al., 1999] is a popular

28http://jade.tilab.com

http://jade.tilab.com
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Figure 2.5: This figure depicts the Jadex BDI architecture (taken from33). The
practical reasoning interpreter implements an agent’s goal deliberation and means-
end reasoning process.

and mature FIPA-based agent platform. Jade can be seen as a Java-based toolbox

which provides the infrastructure for agent-based systems (e.g. a FIPA-based

communication service, a distributed execution platform, agent management tools,

and support for mobile devices). Jack29 [Busetta et al., 1999] is a commercial BDI

agent platform. The Jack language extends Java with agent-oriented concepts

(e.g. for posting goals and declaring agents). Jack also supports organizational

structures, called teams. Other agent platforms focus on the needs of certain

application domains. For example, XaitControl30 is an agent platform for computer

games. The behavior of XaitControl agents is defined by finite state machines and

the focus is clearly on performance – less on features. According to Dikenelli et al.

[2005] and Dikenelli [2008], SEAGENT31 is an agent platform based on Semantic

Web technology. Agents are equipped with knowledge bases based on the Ontology

Web Language (OWL) [W3C, 2009] and support the invocation of semantic service

descriptions based on OWL-S32. SEAGENT plans are defined in HTN-style.

Several chapters of this dissertation consider the agent platform Jadex34 [Pokahr

et al., 2005][Pokahr and Braubach, 2009] as target platform. Figure 2.5 depicts

the Jadex BDI architecture. The Jadex platform provides typical services such

29http://www.agent-software.com/products/jack/index.html
30http://www.xaitment.com/english/products/xaitcontrol/xaitcontrol.html
31http://seagent.ege.edu.tr
32http://www.ai.sri.com/daml/services/owl-s/
33http://jadex-agents.informatik.uni-hamburg.de
34http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

http://www.agent-software.com/products/jack/index.html
http://www.xaitment.com/english/products/xaitcontrol/xaitcontrol.html
http://seagent.ege.edu.tr
http://www.ai.sri.com/daml/services/owl-s/
http://jadex-agents.informatik.uni-hamburg.de
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
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Figure 2.6: Overview of the Jadex kernel infrastructure (taken from [Pokahr and
Braubach, 2009, p. 776]).

as a directory service, a FIPA-based messaging service, and tools for managing

the platform. Jadex agents are configured by XML files and behaviors are imple-

mented as Java-based plans. The XML files make use of XML Schema definitions

which encompass the configuration of applications, agents, capabilities, and the en-

vironment. Jadex supports four different goal types such as perform goal (perform

some action), achieve goal (achieve a certain goal state), maintain goal (maintain

a certain state), and query goal (provide an answer). There exist no specialized

concepts for organizational structures nor an explicit representation of interaction

protocols. Figure 2.6 depicts the technical infrastructure of the Jadex rule kernel

(Jadex version 2). The bottom layer depicts the generic rule engine Jadex is built

on. The current state of the system is maintained in an Object Attribute Value

(OAV) representation. The initial state of an agent is initialized by XML files.

Jadex can be extended with other agent architectures, too. This is achieved by

providing a so called kernel module for the considered agent architecture. The

Jadex BDI kernel is one example kernel module. The top-most layer of Figure 2.6

depicts the agent engineer’s interface to the underlying layers.

2.2.2 Agent-oriented Methodologies

Several software development processes like the classical waterfall model [Royce,

1987] and the iterative spiral model [Boehm, 1986] originated from traditional

software engineering. During the recent years, iterative and agile development

processes gained more and more attention by software developers. For example,

the Rational Unified Process (RUP) [Kruchten, 2003] is a widely accepted itera-

tive development process and provides a customizable framework for configuring

the development process (see Figure 2.7). RUP uses UML for capturing the de-

sign decisions. It has been widely recognized within the agent community that
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Figure 2.7: This figure depicts the waterfall model according to Royce [1987] and
the iterative RUP according to Kroll and Krutchten [2003, p. 7].

the existing software engineering methodologies do not satisfy the needs of AOSE

(e.g. [Zambonelli et al., 2003], [Padgham and Winikoff, 2004, p. 22]). During

the recent years, various agent-oriented methodologies have been proposed. The

FIPA Methodology Technical Committee 35 and the FIPA Working Group: Design

Process Documentation and Fragmentation36 are two initiatives for the unification

and standardization of agent-oriented methodologies. As of today, there exists

no standardized agent-oriented approach and the methodologies are still driven by

research. The framework presented by this dissertation is related to agent method-

ologies as it provides the means for capturing design decisions and bridging the

gap between high-level designs and executable code. For this purpose, we provide

a brief overview of the relevant approaches. The methodologies were selected due

to their influence in the community and the relevance to our approach.

Gaia. According to Wooldridge et al. [2000] and Zambonelli et al. [2003], Gaia

is an agent-oriented methodology which follows a sequential development process.

Gaia covers the agent-oriented analysis and design phases. The design artifacts

are kept abstract and leave many aspects open (e.g. concrete interaction protocols

or behavior patterns are not defined). Gaia highlights the role of organizational

structures and the environment. During the analysis phase, organizational struc-

tures, interactions, and an environment model are defined. The architectural and

detailed design phases further refine the models by adding agent and service mod-

els. Moräıtis et al. [2003] and Moräıtis and Spanoudakis [2004] discussed how to

implement a personal (travel) assistant manually using the Gaia methodology and

Jade.

INGENIAS. According to Gómez-Sanz [2002], Pavón and Gómez-Sanz [2003],

and Pavón et al. [2005], INGENIAS is an agent-oriented methodology which sup-

35http://www.fipa.org/activities/methodology.html
36http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/

http://www.fipa.org/activities/methodology.html
http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/
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ports the development of agents with a mental model. INGENIAS originated from

the MESSAGE [Garijo et al.] methodology and is aligned to RUP. Much research

effort has been spent on detailed design and implementation. In [Gómez-Sanz

et al., 2009], testing and debugging of interaction protocols in INGENIAS was dis-

cussed. The INGENIAS approach has been evaluated for scenarios like a surveil-

lance system [Gascueña and Fernández-Caballero, 2007] and crisis management

[Garćıa-Magariño et al., 2009]. In order to unify the benefits of INGENIAS with

other approaches, the combination with Tropos [Fuentes-Fernández et al., 2006]

and Prometheus [Gascueña and Fernández-Caballero, 2009][Fernández-Caballero

and Gascueña, 2010] was discussed.

O-MaSE. According to DeLoach [2006], Garćıa-Ojeda et al. [2008] and De-

Loach and Garćıa-Ojeda [2010], the Organization-based Multiagent System Engi-

neering (O-MaSE) methodology originated from the MaSE [DeLoach and Wood,

2001] methodology and has an organizational view on AOSE. For example, it sup-

ports policies for constraining the behavior of a system. The O-MaSE methodology

does not define a fixed development processes. Instead, O-MaSE provides a frame-

work for combining different method fragments for the requirements, analysis, and

design phases. Method construction guidelines support this process. O-MaSE does

not prescribe a certain agent architecture but was used to engineer BDI agents.

The process framework was initially based on the Open Process Framework (OPF)

[Firesmith and Henderson-Sellers, 2001] and was migrated to SPEM. According to

DeLoach and Garćıa-Ojeda [2010], O-MaSE has been evaluated in sequential and

iterative development processes.

Prometheus. According to Padgham and Winikoff [2004], Prometheus37 is a

methodology for developing BDI agent systems. It covers the three development

phases (i) system specification, (ii) architectural design, and (iii) detailed design

(see Figure 2.8). Testing and debugging has been discussed by Padgham et al.

[2005b], Zhang et al. [2007], and Zhang et al. [2008]. Although Prometheus is not

limited to a certain agent execution platform, the design artifacts of the detailed

design phase are inspired by the Jack platform. During the system specification

phase, system goals, typical processes of a system (called scenarios), and percep-

tions and actions are collected. Similar goals, perceptions, and actions are grouped

to functionalities. The architectural and detailed design phases are concerned with

identifying agent and capability types by grouping functionalities and specifying

interaction protocols using AUML. The integration of AUML for specifying inter-

action protocols has been discussed by Winikoff [2007] and Padgham et al. [2007].

Prometheus was applied to scenarios such as an online book store [Padgham and

37http://www.cs.rmit.edu.au/agents/SAC2/methodology.html

http://www.cs.rmit.edu.au/agents/SAC2/methodology.html
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Figure 2.8: This figure depicts an overview of the Prometheus methodology ac-
cording to [Padgham and Winikoff, 2004, p. 24].

Winikoff, 2004] and a conference management scenario [Padgham et al., 2008].

Tropos. According to Giunchiglia et al. [2002], Bresciani et al. [2004] and

Penserini et al. [2006], Tropos38 is an agent-oriented methodology dedicated to

BDI agents. The Tropos methodology covers the development phases starting

form early and late requirements until architectural and detailed design. However,

the research focus was clearly on the early phases (e.g. [Giorgini et al., 2005]).

In Tropos, models undergo an incremental step-wise refinement. The develop-

ment process starts with identifying actors (stakeholders), the system’s goals and

their dependencies. Goals are further decomposed into sub-goals and means-end-

analysis is used for identifying plans and resources (means) necessary for achieving

a goal (end). The architectural design phase is concerned with identifying sub-

actors and specifying information and control flows. The detailed design phase

uses UML activity diagrams for defining the behavior of agents and AUML se-

quence diagrams for the interaction between agents. It has been discussed how

Tropos can be used for developing Jack [Bresciani et al., 2004], Jade [Penserini

et al., 2006], and Jadex [Morandini et al., 2008] agent systems. There exists also

an extension of Tropos for adaptive systems [Morandini, 2011].

Table 2.1 summarizes important properties of the selected agent-oriented meth-

odologies. There exists a number of other approaches like PASSI [Cossentino and

Potts, 2002], MaSE [DeLoach and Wood, 2001], MASSIVE [Lind, 2001], or MES-

SAGE [Caire et al.] which are not discussed by this dissertation. Weiß and Jakob

38http://troposproject.org

http://troposproject.org
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Process Agent Ar-
chitecture

Phases

Gaia sequential not specific analysis, architectural and detailed
design

INGENIAS RUP BDI analysis, design, implementation
O-MaSE not pre-

defined
not speci-
fic/ BDI

analysis, design, implementation

Prometheus iterative BDI system specification, architectural and
detailed design, implementation

Tropos sequential
refinement

BDI early and late requirements, architec-
tural and detailed design, implemen-
tation

Table 2.1: This table summarizes the introduced methodologies.

[2004], Henderson-Sellers and Giorgini [2005], and Sterling and Taveter [2009] pro-

vide a good overview of the state-of-the-art. It can be stated that the different

approaches have two commonalities: (i) most of them are dedicated to BDI agents

and (ii) the majority proposes to follow an iterative development process. The

methodologies differ in their foci – e.g. on early are late phases. Currently, the

agent-oriented methodologies are undergoing a consolidation phase. There are sev-

eral initiatives for unifying the different approaches using process languages like

SPEM. We expect that this phase will continue for some more time. The next

section provides an overview of agent-oriented modeling languages.

2.2.3 Agent-oriented Modeling Languages

Expressive agent-oriented modeling languages are required to capture the design

decisions in formal models which can be used for MDSD. In order to classify the

expressiveness of modeling languages, Warmer and Kleppe [2003] defined six Mod-

eling Maturity Levels (MMLs): (0) no specification, (1) textual specification, (2)

text and models, (3) models with text, (4) precise models, and (5) models only. As

already mentioned in the introduction, current agent-oriented modeling languages

are mostly on MML three (e.g. Prometheus behavior models are specified with

text). Only certain aspects reach MML four. There exist several approaches to

unify the diverse field of agent-oriented modeling languages. The FIPA Modeling

Technical Committee39 is an initiative for developing an agent-oriented metamodel

similar to UML. In this context, the Agent UML40 (AUML) approach was founded.

39http://www.fipa.org/activities/modeling.html
40http://www.auml.org

http://www.fipa.org/activities/modeling.html
http://www.auml.org
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As of today, both initiatives had only limited success. The most important out-

come was an agent-specific variant of UML sequence diagrams for specifying agent

interactions. In the context of OMG, the Agent Metamodel and Profile41 (AMP)

approach aimed on extending UML with agent concepts. Finally, approaches like

the FAME Agent-oriented Modeling Language (FAML) [Beydoun et al., 2009] try

to unify existing agent metamodels. The same has been done for graphical no-

tation (e.g. [Padgham et al., 2009]). However, the success of those unification

approaches is limited. Before we provide an overview of agent-oriented modeling

languages, we introduce following four categories:

• Platform-independent vs. Platform-specific: This category directly

corresponds to the definition of the platform-independent and platform-

specific layers of MDA. Platform-independent languages abstract from con-

crete technologies or implementation details. This enables the engineer to

focus on the overall design of the SUC without technical details. Platform-

specific languages are able to exploit the low-level features of the target

platform.

• Agent Architecture-independent vs. Agent Architecture-specific:

The agent architecture specifies the internal information processing and de-

cision making process of an agent. Every agent architecture needs different

model artifacts. For example, the PRS architecture requires concepts for

supporting metalevel reasoning. Of course, the possibility to address agent

architecture-specific properties is essential to exploit agent technology.

• Application Domain-independent vs. Application Domain-specific:

All agent-oriented modeling languages are domain-specific in the sense that

they address the domain of MAS. However, we additionally distinguish whe-

ther an agent-oriented DSL is specific for a certain application domain such

as Agent-Based Simulation (ABS), virtual worlds, or eBusiness. Application

domain-specific languages allow the engineer to better address concepts of

the considered application domain.

• Methodology-independent vs. Methodology-specific: Finally, we dis-

tinguish whether an agent-oriented modeling language offers concepts for

supporting a certain methodology. For example, a method for goal-oriented

requirements engineering (as the one of Tropos) requires specialized concepts.

41http://www.omgwiki.org/AMP-team/doku.php

http://www.omgwiki.org/AMP-team/doku.php
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Platform-independent Agent Modeling Languages

In the following, we separate the modeling approaches into platform-independent

(this section) and platform-specific ones (succeeding section). Most agent-oriented

platform-independent modeling languages have been created in order to support a

certain agent methodology. As most methodology languages do not have an own

name, we will refer to them with <methodology-name>-ML.

DSML4MAS. Version 1.0 of the Domain-Specific Modeling Language for Mul-

tiAgent Systems (Dsml4Mas) has been presented by Hahn et al. [2009a]. The ab-

stract syntax of Dsml4Mas is based on the Platform-Independent Metamodel for

Agents (Pim4Agents). Dsml4Mas was designed to capture the core concepts

of MAS on a platform, methodology, and application domain-independent level of

abstraction. The strength of the language is the tight integration of agents, orga-

nizational structures, interaction protocols, and behaviors. Dsml4Mas 1.0 does

not cover goals, knowledge bases, and environment interactions. Dsml4Mas has

been further developed as part of this dissertation. Version 2.0 provides interfaces

for specializing the language for application domains, execution environments, and

methodologies (see Chapter 3). Moreover, goals were introduced and the overall

expressiveness was increased. Dsml4Mas has been realized with Ecore and GMF.

INGENIAS-ML. Compared to other methodology-oriented modeling lan-

guages, INGENIAS-ML offers many specialized and fine-grained concepts. The

original INGENIAS modeling language is based on GOPRR [Kelly et al., 1996] but

there also exists a mapping to Ecore [Garćıa-Magariño et al., 2007]. INGENIAS-

ML provides concepts for modeling agents, goals, interactions, organizational struc-

tures, environments, and simple behaviors. Use cases can be modeled to analyze

a SUC as part of the INGENIAS methodology. Moreover, it is possible to specify

deployment configuration.

O-MaSE-ML. The modeling language supporting the O-MaSE methodology

covers concepts like agents, goals (including detailed dependencies), organizational

structures, UML-style interaction protocols, capabilities, services, behaviors (in-

cluding behavior bodies), and domain objects. One speciality is the possibility to

specify policies to constrain the system’s behavior. O-MaSE-ML is well structured

but is not based on Ecore. Instead, it uses an XML-based approach.

Prometheus-ML. Prometheus-ML is a well structured methodology language.

It is not based on Ecore and uses an XML-based approach. Prometheus-ML covers

concepts like goals, interaction protocols, and actions. Only the header informa-

tion of behaviors can be modeled (e.g. triggering events). The concepts of the

detailed design phase are aligned to Jack. The language supports high-level model
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artifacts like scenarios and functionalities which are required by the Prometheus

methodology. Prometheus-ML integrates the textual AUML approach presented

by [Winikoff, 2007] and [Padgham et al., 2007] for specifying agent interactions.

Tropos-ML. Tropos-ML supports the Tropos methodology and is based on

Ecore [Susi et al., 2005]. It covers the concepts of the requirements and architec-

tural design phases. This includes concepts like actor, hard and soft goals, plans

(no plan bodies), and resources. The language supports means-end analysis and

the specification of dependencies and contributions between goals and plans. One

speciality of the Tropos language is the separation into a formal and an informal

part. According to Fuxman et al. [2001], the Formal Tropos language is used for

the verification of requirements. An extension for adaptive systems (TAOM4AS)

was introduced in [Morandini et al., 2009] and [Morandini, 2011].

Platform-specific Agent Modeling Languages

Platform-specific modeling approaches are usually driven by concrete needs of

developers (e.g. to get a graphical overview of interdependencies between platform

artifacts). Moreover, they are usually more pragmatic and are able to address low-

level features of an execution platform. Several agent-oriented approaches follow

a mixed approach: some aspects are modelled graphically, whereas others are still

coded. In the following, we focus on those aspects which abstract from source

code.

Jack. The Jack Development Environment42 (JDE) provides a proprietary

integrated graphical design tool [AOS, 2011a] and plan editor [AOS, 2011b]. The

design tool provides so called design views which abstract from the underlying

code. The modeling support encompasses agents, events, goals, single messages

(no complete interaction protocols), and teams. The behavior of agents can be

visualized similar to today’s workflow languages and are annotated with Java code.

The view elements are directly linked to artifacts of the source code. JDE allows

graphical tracing of executing plans. It does not support high-level design artifacts

like those of Prometheus.

Jadex BPMN. According to Braubach et al. [2010], Pokahr et al. [2010], and

Jander and Lamersdorf [2011], the Jadex platform has been extended with a kernel

module for the execution of workflows based on the Business Process Modeling

Notation (BPMN) [OMG, 2011a]. BPMN models are created with the modeling

tool of the Eclipse SOA Tools Platform43 (STP) project. The business processes

are annotated with Java expressions – e.g. to express conditions. Moreover, the

42http://aosgrp.com/products/jack/index.html
43http://www.eclipse.org/stp/

http://aosgrp.com/products/jack/index.html
http://www.eclipse.org/stp/
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Goal Process Modeling Notation (GPMN) was developed to support goal-oriented

workflows. GPMN supports goal-oriented decomposition of the system. Plans to

achieve the goals can be modeled in BPMN. GPMN models are executed by Jadex

BDI agents.

Jadex DE. Kardas et al. [2009] presented a platform-specific modeling ap-

proach for Jadex. The language covers the concepts of the Jadex BDI XSD files

which are used within the Jadex platform to configure BDI agents. The contribu-

tion consists of graphical modeling support of Jadex BDI XML files. However, the

approach does not allow the graphical specification of plan bodies (only references

to Java class files). Moreover, expressions (e.g. preconditions) are plain strings.

The model can be used to generate the according Jadex files.

SEAGENT. According to Dikenelli [2008], the SEAGENT Development Envi-

ronment (SDE) provides graphical modeling support for the SEAGENT platform.

This includes HTN-based behaviors, interaction protocols, roles, and goals. Since

SEAGENT is dedicated to agents based on Semantic Web technology, the mod-

eling language offers specialized concepts for OWL-based knowledge bases and

support for the invocation of OWL-S-based service descriptions.

WOLF. According to Caire et al. [2008], the Workflow and Agent Development

Environment44 (WADE) is an extension of the agent platform Jade for executing

workflows. The concepts of the workflow language are based on the XML Process

Definition Language (XPDL) [WfMC, 2008] which is a standard of the Workflow

Management Coalition45 (WfMC). It encompasses typical workflow concepts like

process, activity, and transition. There exists a direct mapping of the workflow

elements to Java-based Jade behaviors that implement the workflow. Code activi-

ties contain Java code to be executed. Modeling support for WADE is provided by

the WOrkfLow LiFe cycle management environment (WOLF) plug-in for Eclipse.

Table 2.2 provides an overview of the selected approaches. The depicted results

were gained by evaluating the available publications, manuals, and the available

software. We created the summary to the best of our knowledge. Regarding the

platform-specific approaches we only considered those parts which abstract from

source code (e.g. only behaviors in WADE). It is important to note that the num-

ber of circles and bullets does not express that one approach is superior to another

one. The compared languages are created for different purposes and thus, have

different foci. Moreover, the bullets do not express how well the different aspects

are interleaved. For example, a language might support interaction protocols, be-

haviors, and organizational structures but it does not necessarily imply that the

different aspects are tightly integrated in order to generate fully executable code.

44http://jade.tilab.com/wade/
45http://www.wfmc.org

http://jade.tilab.com/wade/
http://www.wfmc.org
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Specific for Concepts
M P A D Goal Beh. Prot. Org. Env. KB Depl.

Dsml4Mas 1.0 • • • ◦ •
Dsml4Mas 2.0 ◦ ◦ ◦ ◦ • • • • ◦ ◦ •
INGENIAS-ML • • • ◦ • • ◦ ◦ •

O-MaSE-ML • ◦ • • • • •
Prometheus-ML • ◦ • • ◦ • ◦ • ◦

Tropos-ML • • • ◦ ◦
Jack • • • • ◦ • • •

Jadex BPMN • • ◦ •
Jadex DE • • • ◦ ◦ ◦

SEAGENT • • • • • • ◦ ◦ •
WOLF • • •

Table 2.2: A bullet means that the aspect is covered by an approach, whereas
a circle stands for “to some degree”. Following abbreviations are used: (M)
methodology-specific, (P) platform-specific, (A) agent architecture-specific, and
(D) application domain-specific. Moreover, following concepts were evaluated:
goal, behavior (Beh.), protocols (Prot.), organizations (Org.), environment (Env.),
knowledge base (KB), and deployment (Depl.).

Those aspects are hard to measure. However, the application to software projects

will turn out over time which ones are mature enough for real world projects.

2.2.4 Agent-oriented Modeling Tools

Besides agent-oriented methodologies and expressive modeling languages, model-

driven AOSE requires powerful tool support. This includes modeling support

during design-time, model transformations for generating executable code, and

support for software engineering methodologies. This section provides an overview

of modeling tools belonging to the languages and methodologies introduced in the

previous sections.

agentTool III. AgentTool III46 [DeLoach and Garćıa-Ojeda, 2010] provides tool

support for the O-MaSE methodology based on Eclipse technology. It provides

diagrams for modeling agents, capabilities, the domain, goal decompositions, be-

haviors, etc. Models are based on XML. Code generation is provided for Jade.

Additionally, agentTool III supports the computation of different metrics. The

AgentTool Process Editor (APE) [Garćıa-Ojeda et al., 2009] is based on the Eclipse

46http://agenttool.cis.ksu.edu

http://agenttool.cis.ksu.edu
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Process Framework (EPF)47 and enables engineers to create custom development

processes based on O-MaSE method fragments.

DDE. The Dsml4Mas development environment has been developed as part

of this dissertation. It is based on Eclipse technology (see Section 3.5) and MDA

standards. Forward transformations to Jack and Jade for Dsml4Mas 1.0 were

presented by Hahn et al. [2009a]. An early prototype of a model transformation

from Dsml4Mas to Jadex was presented in the master thesis of Alexander Trenz

[Trenz, 2011]. A model transformation to the Malaca platform has been presented

by Ayala et al. [2010]. The development environment offers several diagrams for

modeling organizational structures, interactions, deployment configurations, be-

haviors, etc. Moreover, model validation based on OCL is provided.

IDK. The INGENIAS Development Kit48 (IDK) [Gómez-Sanz et al., 2008] is a

stand-alone Java application (version 2.8) which supports the INGENIAS method-

ology. It covers several diagrams for capturing the design decisions of the INGE-

NIAS methodology. The integrated Intelligent Agent Framework (IAF) generates

code for Jade. IAF uses a proprietary code generator which uses annotated code

templates. Additionally, IDK is able to generate reports and documentation (e.g.

HTML).

Jack DE. As already discussed, JDE is a commercial stand-alone Java devel-

opment environment for the Jack platform. JDE was a very early agent-oriented

tool with graphical modeling support. Unfortunately, it makes extensive use of

proprietary technology which hampers interoperability with other tools. However,

JDE provides interesting features like graphical tracing of executing plans.

Jadex DE. The platform-specific modeling environment for Jadex was presented

in [Kardas et al., 2009]. The development environment is based on Eclipse technol-

ogy and provides graphical modeling support for Jadex. The model transformation

to Jadex XML files has been implemented in MOFSCRIPT.

PDT. According to Padgham et al. [2005a] and Sun et al. [2010], the Prometheus

Design Tool49 (PDT) is an Eclipse-based modeling tool for the Prometheus method-

ology. PDT offers various diagrams for the analysis and design phases. The

47http://www.eclipse.org/epf/
48http://sourceforge.net/projects/ingenias/
49http://www.cs.rmit.edu.au/agents/pdt/

http://www.eclipse.org/epf/
http://sourceforge.net/projects/ingenias/
http://www.cs.rmit.edu.au/agents/pdt/
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Prometheus language is not based on Ecore and uses an XML-based approach. It

offers code generation for the Jack platform.

SDE. According to Dikenelli [2008], the SEAGENT Development Environment

(SDE) is an Eclipse-based tool for modeling SEAGENT agents. The modeling lan-

guage is based on Ecore and provides modeling support for HTN-based behaviors.

The diagrams are well structured. SDE also integrates the SEAGENT platform.

TAOM4E. According to Morandini et al. [2011], the Tool for Agent-Oriented

visual Modeling for the Eclipse platform5051 (TAOM4E) provides modeling support

for the Tropos methodology. TAOM4E offers code generation support for Jadex

through the t2x plug-in. Several auxiliary tools like eCat [Morandini et al., 2008]

for goal-oriented testing and the T-Tool52 for checking a specification, based on

Formal Tropos, for consistency have been developed.

WOLF. WOLF [Caire et al., 2008] is an Eclipse plug-in which provides behavior

modeling support for WADE (Jade). The modeling support is restricted to behav-

iors. It is possible to trace workflows at runtime. Although the idea behind WADE

and WOLF is simple, the provided abstraction is useful in real world applications.

Table 2.3 summarizes the introduced agent-oriented modeling tools. The most

famous target platforms are Jade and Jadex. Jack is supported by commercial

tools developed by Agent-Oriented Software53 (AOS). Most modeling tools are

based on Eclipse technology. Unfortunately, agent-oriented approaches make only

little use of MDA and EMF. This hampers interoperability between the different

approaches.

Summary

This section presented an overview of the state-of-the-art in MDSD and model-

driven AOSE. Section 2.1 discussed the role of models, metamodels, and model

transformations in MDA. Afterwards, Section 2.2 provided an overview of agent

architectures and platforms, agent-oriented methodologies, modeling languages,

and modeling tools. As can be seen by the discussions in this section, the research

50http://code.google.com/p/taom4e/
51http://selab.fbk.eu/taom/
52http://disi.unitn.it/~ft/ft_tool.html
53http://aosgrp.com/index.html

http://code.google.com/p/taom4e/
http://selab.fbk.eu/taom/
http://disi.unitn.it/~ft/ft_tool.html
http://aosgrp.com/index.html
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Methodology Target Plat-
forms

Technology

agentTool III O-MaSE Jade Eclipse, GEF, XML
DDE — Jack, Jade,

Jadex,
ISReal
(Jadex)

Eclipse, EMF, GMF, OCL,
QVT, ATL, XPand

IDK INGENIAS Jade Java, GOPRR/EMF
Jack DE — Jack Java

Jadex DE — Jadex Eclipse, GMF, MOFSCRIPT
PDT Prometheus Jack Eclipse, GEF, XML
SDE — SEAGENT Eclipse, GEF

TAOM4E Tropos Jadex Eclipse, GEF, EMF
WOLF — Jade Eclipse, GEF, Java

Table 2.3: This table summarizes the presented modeling tools.

field of model-driven AOSE is quiet diverse. A modeling approach has to con-

sider the agent architecture, features of the execution platform, different software

languages, and methodologies. Only few approaches make use of standardized

technology developed by traditional software engineering. Chapter 3 introduces a

model-driven framework for AOSE which unifies the benefits of platform-specific

and platform-independent agent modeling approaches based on MDA principles.



Chapter 3

The Bochica Framework

The Bochica framework for model-driven AOSE follows a language-driven ap-

proach to the development of agent-based systems. In our point of view, an ideal

agent-oriented modeling language would have to be tailored to a certain appli-

cation domain, agent architecture, execution environment, and methodology (see

Figure 3.1). At the same time, the modeling language should abstract from tech-

nical details in order to separate system design from implementation. The better

a modeling language covers the concepts of a SUC, the less manual refinements

are required at code level. The Bochica framework approaches this problem by

an expressive platform-independent agent-oriented core DSL and several extension

interfaces which are used to tailor the core DSL to the engineer’s needs. The re-

mainder of this chapter provides an overview of the core DSL (Section 3.1) and

discusses the integration of Bochica into typical software development processes

(Section 3.2). Moreover, the conceptual interfaces for extending Bochica are

specified (Section 3.3) and an extensible transformation architecture for bridging

the gap to concrete code is proposed (Section 3.4). Finally, a brief overview of the

used technology stack is provided (Section 3.5).

3.1 Core Modeling Language

The Bochica core DSL is based on a platform and application domain-independent

agent-oriented modeling language, called Dsml4Mas. Dsml4Mas was initially

introduced by Hahn et al. [2009a]. As part of this dissertation, it has been fur-

ther developed regarding the covered concepts, expressiveness, and extensibility.

Bochica structures the language concepts into three different degrees of abstrac-

tion (see Figure 3.2). The macroscopic layer covers concepts for defining the or-

ganizational structures of a SUC. The internal structure and behavior of agents is

defined by concepts of the microscopic layer. Finally, the deployment layer encom-
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Figure 3.1: This figure depicts an overview of the diverse field of AOSE. The perfect
modeling language for AOSE would have to be tailored to a custom configuration
of the different aspects.

passes concepts for specifying deployment configurations. Agent platforms usually

do not exist in isolation. In real world applications, the target agent platform

is embedded into a larger execution environment with additional IT components.

The setting depends on the application domain and the concrete use case. Since

the core DSL focuses on the core concepts of MAS, it fails to address concepts

specific to certain domains. The aim of the extension mechanism is to prevent the

core DSL from getting cluttered by concepts that are only relevant for a small sub-

set of applications. Moreover, by extending Bochica large parts of the existing

infrastructure can be reused. The common conceptual foundation also eases the

reuse of model artifacts. In the following, we provide a brief overview of the three

layers. The abstract syntax of Dsml4Mas is presented in Chapter 4.

Macroscopic. The overall structure of a MAS is specified by Dsml4Mas in

terms of organizational structures. The responsibilities inside an Organization are

represented by DomainRoles and AbstractGoals. The communication between

the involved parties is defined by Interactions. An Interaction defines the valid

message sequences between interaction roles (called Actors). The design artifacts

of the macroscopic layer serve as a contract between the agents and are used for

deriving the basic structure of artifacts of the microscopic layer (e.g. behaviors).

Microscopic. The microscopic layer of Bochica defines concepts for mod-

eling the internals of agents. This encompasses concepts like Behavior, Event,
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Figure 3.2: This figure depicts the big picture of the Bochica framework. The
bottom layer shows a target agent platform embedded into a larger system environ-
ment. The modeling language underlying the Bochica framework is structured
into a macroscopic, microscopic, and deployment layer. The Bochica framework
provides interfaces for customizing the core DSL to custom application domains,
execution environments, and software development processes.

Resource, KnowledgeBase, and Collaboration. A Behavior specifies the behav-

ior of agents in terms of Activities which are connected by Flows. Concrete-

Goals are used to refine the AbstractGoals from the macroscopic layer. The inter-

nals of an Organization are defined by Collaborations. A Collaboration speci-

fies the bindings between roles of an Organization and Actors of an Interaction.

Deployment. The deployment layer specifies concrete instances of Agents and

Organizations defined by the microscopic and macroscopic layers. Moreover, an

AgentInstance contains Initializers for specifying the initial state of an agent.

3.2 Development Process

The role of Bochica in the overall software development process is to provide the

means for capturing design decisions and bridging the gap between design and code

(see Figure 3.3 a). Instead of proposing yet another agent-oriented methodology,

we align the Bochica framework to already existing ones. Thus, Bochica is
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Figure 3.3: (a) depicts the different abstraction layers as defined by MDA. The
blue box indicates that the conceptual framework underlying Bochica is ded-
icated to the analysis and design layers. The ability to extend Bochica with
additional method, application domain, and platform-specific concepts simplifies
the transition from CIM to PIM and from PIM to PSM. (b) shows an iterative
adaptation process for customizing the Bochica framework.

orthogonal to the existing methodology-driven approaches introduced in Section

2.2.2. As of today, iterative and agile software development processes turned out

to better meet the demands of software projects than strictly sequential ones.

This has also been recognized by the majority of agent-oriented methodologies

(see Section 2.2.2). In the following, we take the widely applied RUP as basis

for the discussion of how to integrate Bochica into a typical iterative software

development process.

According to Kruchten [2003], RUP distinguishes between the four phases in-

ception, elaboration, construction, and transition. Each phase undergoes at least

once the whole cycle from requirements to code and produces a deployable artifact

(see Figure 2.7). Each phase in RUP is dedicated to answers certain questions. For

example, the inception phase focuses on determining the feasibility of the overall

project, while later iterations phases narrow down the concrete software architec-

ture. Thus, the possibility to produce early prototypes which can be refined in

later iterations is important to RUP. The gained experiences of each iteration are

used to derive requirements for the next iteration. Of course, the prototype of the

first iteration is simple and gets refined during the succeeding iterations. A further

output of the inception phase is the definition of the concrete development process

(e.g. the utilized methods) and the used tools.

In the context of AOSE, the O-MaSE approach provides a customizable pro-

cess framework which composes an individual development process by method

fragments (similar to RUP). In order to adapt Bochica to a development pro-



3.2. DEVELOPMENT PROCESS 37

cess, the framework provides interfaces for integrating agent-oriented methods (see

Section 3.3.4). The interface enables 3rd-party providers to define own model arti-

facts which extend and complement the Bochica core DSL. For example, as part

of the Prometheus methodology so called functionalities of the system are identi-

fied in the system specification phase. In the design phase, related functionalities

are grouped together to define agent types. In order to support the Prometheus

method for the system specification phase, additional model artifacts for capturing

the design decisions with Bochica are required. This is enabled by the method

interface presented in Section 3.3.4.

3.2.1 Iterative Adaptation

One of the main reasons in model-driven AOSE which causes design and code

to diverge over time is that the modeling language is not expressive enough for

capturing all important design decisions. This makes extensive manual code refine-

ments necessary. We propose an iterative adaptation process to gradually tailor

Bochica to the needs of user-specific application domains and execution environ-

ments. The custom concepts build a so called extension model. The activities of

the adaptation process depicted in Figure 3.3 b) are characterized as follows:

• Modeling. The Bochica core DSL is used to capture the design decisions

of the SUC. As the core DSL gets extended by an extension model in later

iterations, the framework minimizes the need for customizations at code

level.

• Code Generation. A forward transformation is used to automatically gen-

erate code for a target environment. We distinguish between a base transfor-

mation which maps the concepts of the core DSL to code and an extension

transformation which complements a base transformation with mapping rules

for the custom concepts of the extension model.

• Refinement. The generated code is refined by adding business logic where

necessary. Concepts for capturing the design decisions for the SUC which

are not covered by the modeling language and/or the model transformation

are manually refined at the code level.

• Evaluation. Aspects of the SUC which required manual refinements of the

generated code are candidates for further extensions of Bochica. This is

especially the case when there are no adequate concepts for expressing impor-

tant design decisions. We call those requirements bottom-up requirements.
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• Extension. The collected requirements are used to create an extension

model that extends the Bochica core DSL with missing concepts. More-

over, required views and tools are integrated. Finally, an extension transfor-

mations is created with additional mapping rules for the custom concepts.

Figure 3.4 depicts an example development process which exemplifies the adap-

tation of Bochica to a target environment over several iterations. It is assumed

that there already exists an ecosystem consisting of base transformations from

Bochica to various target platforms (e.g. Jack and Jadex). The initial iteration

is dedicated to determine the target platform, the definition of the development

process, and the configuration of the tool stack. For this purpose, a simple pro-

totype of the SUC is designed using the Bochica core DSL. Existing base trans-

formations are used for mapping the model to different target platforms. If no

transformation is available for the considered target platform in the initial iter-

ation, the design has to be mapped manually. The generated code can be used

to evaluate the target platforms and estimate the adaptation effort. Finally, the

individual development process is defined (similar to RUP and O-MaSE) and the

target platform and additional tools are selected (e.g. Bochica plug-ins). At the

beginning of the second iteration, Bochica is configured with the available plug-

ins. The models of the SUC are refined and the base transformation to the selected

target platform is applied. Based on the gained experiences with the code genera-

tion and the manual refinement, bottom-up requirements are collected (e.g. using

UML class diagrams). An extension model is created which extends the core DSL

with the missing concepts. Moreover, an extension transformation complements

the base transformation with additional conceptual mappings. The third iteration

further refines the models of the SUC using the additional concepts and uses the

extension transformation for generating executable code. The conceptual gap is

gradually closed with each iteration. This process continues until the language

suffices the engineer’s needs.

It is important to note that the goal of the customization process is not to

clutter Bochica with arbitrary low-level concepts. A balance between abstrac-

tion and custom concepts has to be found. The goal is to complement the core

DSL for missing concepts which are required to capture the important design deci-

sions for the SUC. However, the balance between abstraction and platform-specific

details also depends on the demands of the engineers. The conceptual extension of

the core DSL requires an experienced language engineer who finds the right level

of abstraction. The discussion in this section mainly focused on the alignment of

Bochica to the iterative RUP. However, we see no restrictions for transferring the

approach to other iterative and non-iterative development processes. For example,
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Figure 3.4: This figure depicts an example development process for adapting
Bochica to a target environment.

sequential processes (similar to the waterfall model presented in Section 2.2) also

benefit from specialized concepts for an application domain or execution environ-

ment. In the following, Section 3.2.2 defines the stakeholders and their tasks for

the application of Bochica and Section 3.2.3 discusses the Bochica ecosystem.

3.2.2 Framework Stakeholders

The application of the Bochica framework requires the interplay of different

stakeholders. In the following, we characterize the involved parties and define

their tasks. It is important to note that methodologies and software development

processes define own stakeholders which are not specific to Bochica.

Language Engineer. Since Bochica is based on a DSL, the language en-

gineer is responsible for extending it with new concepts. Detailed knowledge of

the core DSL and the underlying metamodel is required to align new concepts to

existing ones. We distinguish between (a) language engineers who further develop

the core DSL and (b) those who create 3rd-party extensions. The first one is not

involved in the development process. The latter one is involved in the evalua-

tion and extension tasks. The language engineer has to choose the right level of

abstraction for the conceptual extensions.

Tool Developer. The tool developer is responsible for building the develop-

ment environment based on the core DSL. This includes (i) writing model trans-

formations (ii) creating new or extended diagrams, and (iii) providing further

usability extensions such as wizards and additional tools. He has to make sure

that the tools cover the (required) functionality of the target platform. The tool

developer is involved in the evaluation and extension tasks.

Agent Engineer. The agent engineer is the end user of the development

environment. According to his needs, he installs the required plug-ins and uses an

agent methodology to design the MAS. Model repositories are used to cooperate
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with colleagues and reuse existing model artifacts. The agent engineer is also

responsible for refining the generated code where necessary. He is involved in the

modeling, code generation, and evaluation tasks.

3.2.3 Ecosystem

The development of real world agent-oriented software systems requires the collab-

oration of different parties. We expect that an ecosystem of providers which offer

agent-oriented solutions (based on Bochica) for certain application domains and

user groups will establish (see Figure 3.5). One group of providers focuses on the

creation of extension bundles which address the demands of certain application

domains. Other providers offer mature and tested model artifacts which can be

incorporated into software projects. Furthermore, the providers offer consulting

and training for model-driven AOSE and the modeling solutions.

The actual end-users utilize the infrastructure and functionality provided by

the Bochica framework to configure the development environment for a SUC. The

common conceptional core provided by the Bochica framework enables the ex-

change and reuse of model artifacts. For example, BDI experts use organizational

structures and means-end decompositions for decomposing a problem into smaller

sub-problems. Protocol experts are responsible for specifying communication and

negotiation protocols. Research results (e.g. about the properties of a specific

auction protocol) can be directly linked to model artifacts in the model repository.

This information helps engineers in constructing MAS. Specialized views enable

the experts to abstract form other details. Validated and tested model artifacts

are shared through model repositories.

3.3 Extension Interfaces

This section specifies the extension interfaces of the Bochica framework. The

benefit of extending Bochica in opposite to creating a custom solution is that

large parts, which are common to most MAS, can be reused. In principle, each

concept of the underlying core DSL can be specialized. However, the remainder

of this section provides an overview of central concepts which we consider most

interesting for 3rd-party extensions. The interfaces are defined using the under-

lying Bochica metamodel and additional OCL constraints. An overview of the

complete metamodel is provided in Chapter 4. In the following, we distinguish be-

tween conceptual extensions for application domains and execution environments

(Section 3.3.1), the integration of external software languages (Section 3.3.2), the

data model (Section 3.3.3), and the method interface (Section 3.3.4).
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Figure 3.5: The Bochica ecosystem.

3.3.1 Conceptual Interface

Conceptual extensions of Bochica are used (i) to introduce alternative ways of

modeling existing aspects (e.g. behaviors or interaction protocols), (ii) to introduce

new aspects which are not covered by Bochica (e.g. commitments), and (iii) to

define customizations for a certain application domain or execution environment.

In the following, an overview of the agent, behavior, and interaction aspects of

Bochica is provided. We consider those aspects most relevant for extensions.

Agent Interface

Figure 3.6 depicts the metamodel which defines the concept of Agent in Bochica.

An Agent is an autonomous entity which performs DomainRoles of organizational

structures, has access to Resources, and uses Sensors to perceive its environ-

ment. An agent’s beliefs about the environment are stored in a KnowledgeBase

for reasoning and planning. Goals represent desired goal states of an Agent and

Behaviors define plan templates which guide an agent’s actions in order to achieve

a Goal. A Capability groups closely related Behaviors and Knowledges (variable

slots) to a functional unit. Concepts like Sensor, Resource, and KnowledgeBase

highly depend on the application domain and execution environment. Thus, they

are primary candidates for 3rd-party extensions. For example, a KnowledgeBase

requires a knowledge representation language for encoding the beliefs. Which lan-

guage to use depends on the requirements of the SUC.Concepts like DomainRole
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Figure 3.6: This figure provides a high-level overview of the definition of the
concept Agent in Bochica.

and Knowledge interleave the concept of Agent with other aspects of Bochica

(e.g. organizational structures and the data model).

Behavior Interface

The concept of Behavior is an abstract placeholder for any kind of behavior spec-

ification in Bochica. The Bochica framework provides one concrete type of

behavior, called Plan (see Figure 3.7). A Plan consists of Activities which

are connected by Flows. Moreover, a Plan contains Knowledges for storing local

information. A Task is an atomic Activity which is not further decomposed.

The Knowledges contained by a Task are the task’s input and output parameters.

The enumeration ParameterDirection defines the access rights to Knowledges.

StructuredActivities are Activities that contain nested Activities. Bochi-

ca provides a default set of Tasks and StructuredActivities which are intro-

duced in Chapter 4.

One often neglected aspect in agent-oriented modeling languages is a clean

scoping mechanism of variables between agents and behaviors. Figure 3.8 depicts

how an Agent’s Knowledges are passed to Plans. The PlanUse concept contains

a set of KnowledgeBindings which define a mapping between Knowledges of an

Agent to Knowledges of a Plan. The scoping mechanism also enables an Agent

to use the same Plan in different configurations. Listing 3.1 depicts additional

OCL invariants which constrain the binding. Furthermore, a Plan consists of

nested StructuredActivities that span a sub-scope with own Knowledge decla-

rations. Inside a StructuredActivity, the Knowledges’ names have to be unique

(see OCL invariants in Listing 3.1). The getVariable() operation of Activity

is responsible for resolving a variable symbol in the surrounding scope if it can-

not be resolved in the local one. The described mechanism significantly increases

the expressiveness of Bochica models and eliminates imprecisions of conceptual
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Figure 3.8: PlanUses define KnowledgeBindings for providing Plans access to an
Agent’s Knowledges.

mappings to execution platforms. Moreover, it defines a clean interface for concep-

tual extensions. Most 3rd-party behavior extensions to Bochica will customize

the existing Plan definition. Especially Tasks and StructuredActivities are

interesting for specifying custom Activities for the interaction with the execu-

tion environment. However, some application domains might require a different

realization of Behavior.

Interaction Interface

Interaction protocols are used within MAS to specify valid message sequences for

the communication between agents. The implementation of agent communication

protocols by software engineers is one of the most demanding tasks in AOSE

since MASs are concurrent systems. Usually, agent execution platforms like Jade,

Jack, or Jadex only provide a platform messaging service (e.g. FIPA-based) and

a low-level API which enables the engineer for sending and receiving messages on

a programmatic level. In most cases, there exists no explicit representation of

communication protocols at the platform level. Bochica follows a contract-based

approach for the specification of interaction protocols. This means that there exists
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// source knowledge i s par t o f agent
context PIM4Agents : : behavior : : KnowledgeBinding inv :
s e l f . agent . localKnowledge −> includes ( s e l f . source )

// t a r g e t knowledge i s par t o f behav ior
context PIM4Agents : : behavior : : KnowledgeBinding inv :
s e l f . behavior . localKnowledge −> includes ( s e l f . t a r g e t )

// source and t a r g e t knowledges have same type
context PIM4Agents : : behavior : : KnowledgeBinding inv :
s e l f . source . type = s e l f . t a r g e t . type

// parameter d i r e c t i o n has to be IN , OUT, or INOUT
context PIM4Agents : : behavior : : KnowledgeBinding inv :
s e l f . t a r g e t . d i r e c t i o n <> PIM4Agents : : in formationmodel : :

ParameterDirect ion : : Local

// names have to be unique i n s i d e a scope
context PIM4Agents : : behavior : : S t ruc tu r edAct iv i ty inv :
s e l f . localKnowledge −> forAll (d |

s e l f . localKnowledge . name −> select ( e | e . name = d . name)
−> s ize ( ) = 1)

Listing 3.1: OCL invariants for scoping between agents and behaviors. The context
defines the metamodel concept the invariant is defined for and self refers to an
object the invariant is checked for.

a global specification of valid message sequences, conversation states, timeouts, etc.

(similar to UML interaction diagrams) that takes the function of a contract for the

involved interaction roles. The protocol specification is used to generated model

artifacts (e.g. behavior templates) which can be used as starting point for the

behavior specification. In previous work, Hahn et al. [2011] proposed an approach

for generating behavior templates from Pim4Agents interaction protocols. Those

behavior templates use explicit send/receive tasks and have to be manually refined

(e.g. with business logic). However, the approach resulted in complex behavior

patterns (like those on the platform level) since the full complexity of sending

messages, collecting responses, handling timeouts, etc. was lifted almost one-to-

one to the platform-independent layer. The benefit of the approach was a partial

generation of the required behavior structures. However, the question arises, how

to abstract from fine-grained behaviors with explicit send/receive tasks and shift

the focus on a higher level of abstraction and on the business logic.

In the following, we abstract from concrete protocol specification approaches

and discuss the interfaces for integrating 3rd-party protocol specification languages
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Figure 3.9: This figure depicts an overview of how to incorporate interaction spec-
ification approaches into Bochica.

into Bochica (see Figure 3.9). Bochica distinguishes between (i) the actual

protocol specification, (ii) the protocol configuration, and (iii) the implementa-

tion and execution. A protocol specification defines interaction roles, the message

sequences, and timeouts. Moreover, the responsibilities of the involved interac-

tion roles, when a certain state of the interaction is reached, are represented by

abstract goals. A protocol configuration defines (i) concrete role bindings, (ii)

concrete message types (including content types), concrete timeout values, (iii)

concrete goals realizing the abstract goals of the protocol specification, and (iv)

business logic for processing the concrete goals. There can be an arbitrary number

of protocol configurations for one protocol specification. The underlying assump-

tion is that the protocol specification is expressive enough to generate code which

controls the protocol execution (including sending/receiving messages, handling

timeouts, etc.). Thus, the engineer’s task is reduced to (i) import a required pro-

tocol, (ii) define role bindings, concrete messages, and timeout values, and (iii)

realize abstract goals and provide the business logic. The execution of the pro-

tocol is transparent for the agent modeler as the code for message handling and

sending is generated. As the protocol specification is mapped to the execution

platform, the platform-independent artifacts are mapped to artifacts which make

use of the platform’s messaging service and API. This might be done by interpret-

ing the interaction protocols or generating capabilities and code which handle the

execution (e.g. conversation management).



46 3. THE BOCHICA FRAMEWORK

The Bochica metamodel defines the abstract concept Interaction which is

an abstract placeholder for interaction protocol specifications. A ProtocolConfi-

guration defines how an Interaction is used in a concrete setting. For this

purpose, role bindings between DomainRoles and Actors, the content types (con-

cept Type; see Section 3.3.3) of messages, and concrete timeout values are defined.

The interface between a protocol specification and the concrete behavior is de-

fined by AbstractGoals. An AbstractGoal represents the business logic to be

executed when a conversation state is reached. The Bochica framework defines

one type of Interaction, called Protocol. The Protocol concept has been inten-

sively discussed by Hahn et al. [2011]. León-Soto [2012] proposed an alternative

extension of the Interaction concept for defining modular protocols. At the time

of the creation of that extension, the Bochica framework was not available so

that it was hard-wired into the core DSL. With the Bochica framework it is

now possible to integrate such extensions without touching the core DSL. End

users can choose which approach to use. The interaction metamodel is discussed

in more detail in Section 4.1. A design pattern for mapping Interactions and

ProtocolConfigurations to code is proposed in Chapter 5 as part of the for-

ward transformation. Finally, the case study presented in Section 8.1 provides a

concrete example.

3.3.2 Software Language Interface

There exists a large number of software languages that are relevant for developing

agent-based systems such as (i) knowledge representation languages, (ii) reasoning

languages, (iii) rule languages, (iv) communication languages, and (v) program-

ming languages. A software language is always developed with a certain purpose

in mind. Thus, it depends on the concrete use case which one to use. Bochica

provides abstract language interface concepts which can be extended by external

language plug-ins (see Figure 3.10). The main concept is Expression. There

exist several specialized expression types such as BooleanExpression, Rule, and

ContextCondition. The abstract expression types are used throughout the frame-

work. For example, an AchieveGoal has a target and failure condition of type

BooleanExpression and a Plan has a context condition of type ContextCondi-

tion. ControlFlows, which are used to specify the execution order of Activities,

can specify a precondition of type BooleanExpression. External plug-ins can spe-

cialize the abstract expression types with concrete languages. We assume that an

external language is also based on Ecore. This is not a hard restriction since more

and more software languages such as Java and SPARQL Protocol And RDF Query

Language (SPARQL) [W3C, 2008b] are becoming available in public metamodel
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Figure 3.10: The Expression concepts abstracts from concrete software lan-
guages. The four concepts Rule, ContextCondition, BooleanExpression, and
InitializerExpression are specializations of Expression and are used through-
out the framework.

zoos (e.g. EMFText concrete syntax zoo54, Atlantic metamodel zoo55). The text

attribute of the Expression concept holds the plain expression string as defined

by the user. We use a reflection-based approach for parsing expression strings

into a language-specific expression model (interface concept EObject) and assign

it to the Expression object’s object attribute (see Figure 3.10). The value of the

typeURI attribute is set by the external plug-in and is used to resolve the concrete

language concept of the external metamodel (attribute clazz). The variables

attribute contains the list of variable symbols of the expression. Since the vari-

able symbols are declared in each software language differently, the computation

of the values has to be done by the external plug-in. The editorURI can be used

to specify an external editor for editing the expression string (e.g. to support

syntax highlighting). Finally, the prefix attribute is used to display the expres-

sion type to the user. Figure 3.11 depicts an example expression in SPARQL.

SPARQL is a Semantic Web query language. The shown SPARQL-Ask expres-

sion is parsed into a SPARQL model and plugged into the target condition slot of

an AchieveGoal. The OCL invariant is used to ensure that variable symbols of

any BooleanExpression (here SPARQL-Ask) are bound in the surrounding scope

(here AchieveGoal). Parsing the expression string into an expression model has

following benefits: (i) the syntactical correctness of an expression is ensured, (ii)

invariants ensure that variable symbols are bound in the surrounding scope, and

(iii) the expression models can be processed by model transformations. Moreover,

54http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
55http://www.emn.fr/z-info/atlanmod/index.php/Atlantic

http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
http://www.emn.fr/z-info/atlanmod/index.php/Atlantic
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Figure 3.11: The depicted MoveNearGoal makes an agent (parameter self) walk to
a target object (parameter object). The target condition is defined by a SPARQL-
Ask expression which is parsed into a SPARQL model and plugged into the target
condition slot of the AchieveGoal. The invariant ensures that the variable symbols
self and object are bound in the surrounding scope.

the benefit of our approach is that technical details, such as the integration of the

knowledge base and reasoning languages into the concrete agent execution plat-

form, are hidden on the modeling level. At the same time, models can be tailored

to a certain target environment. Of course, the integration at the platform level

has to be done at some point (we discuss it in Section 3.4) but the agent engineer

has a consistent view and can concentrate on the design of the overall system.

3.3.3 Data Model Interface

The data model interface of Bochica is based on the abstract concept Type (see

Figure 3.12). Knowledges are used throughout Bochica to store data with a

certain Type. An InternalType encompass Bochica concepts like Event, Goal,

and Message. They are required for accessing model artifacts from inside a plan

(e.g. the parameters of an Event). The type attribute of a Knowledge defines

the type of its value. The ExternalType concepts is the interface to external

type definitions. The definition of concrete data types has been separated from

Bochica and is based on the Ecore metamodel provided by EMF (see Section

2.1.3). Ecore is used to model classes, their operations, attributes, and relations

among each other (see Figure 2.4). Reusing Ecore as data model has several

advantages: we get (i) graphical modeling support (UML class diagram style)

and (ii) import from UML, XML Schema (including XML de-/serialization), and

existing Java code for free. EClassifiers defined by an Ecore-based data model

are made available within Bochica by the concept EType. Moreover, Bochica

defines basic data structures such as Sequence, Set, or HashMap. The data model

of Bochica can be extended by external plug-ins. For example, it would also be

possible to base the data type definitions on other metamodels than Ecore.
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Figure 3.12: The definition of concrete data types has been separated from the
core DSL and is based on Ecore. The concept EType imports Ecore to Bochica.

3.3.4 Method Interface

During the recent years, many agent-oriented methodologies have been proposed

(see Section 2.2.2). In contrast to most other approaches, our research focus was

always on the development of an expressive platform-independent agent-oriented

modeling language which is compliant to MDA. The role of a modeling language

is to provide the means for capturing the design decisions for a SUC. Our research

focus was less on the methodology part. Since both aspects are complementary, we

use method plug-ins for extending the Bochica framework to the needs of method-

ologies. In the same way as Bochica can be extended with new agent concepts,

methodology providers can contribute plug-ins with new views and method-specific

concepts. For example, the Prometheus methodology collects in the system spec-

ification phase abstract functionalities and goals of a SUC. In the architectural

design phase the functionalities and goals are grouped to agents. A Prometheus

extension for Bochica could extend the framework with the missing concepts

for collecting abstract functionalities in the system specification phase (since the

required concepts are not natively covered by the core DSL). The architectural

design phase could be based on existing concepts of the core DSL to benefit from

Bochica. The interface concept in Bochica is called MethodArtifact. Instead

of having a separate modeling language and tool for each methodology, most of

the methodologies could be based on the same framework. This joins the efforts

of the involved parties and eases maintenance of the tool chain.

3.4 Forward Transformation Architecture

Model transformations in MDA are used to gradually refine a model of a SUC until

executable code is generated. The possibility to customize Bochica for certain
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Figure 3.13: A base transformation maps the core concepts of the Bochica frame-
work to an agent platform. An extension transformation complements the base
transformation as Bochica gets extended with additional concepts.

application domains and execution environments requires a transformation archi-

tecture which is able to handle those extensions. Based on our experiences with

model-driven AOSE, we propose a transformation architecture for supporting the

Bochica framework (see Figure 3.13). Base transformations are responsible for

mapping the concepts of the core DSL to executable artifacts of an agent plat-

form. A transformation consists of several modules which group closely related

conceptual mappings together (e.g. agent mappings or behavior mappings). In

Figure 3.13, we visualize transformation modules as UML components with map-

ping rules as interfaces. Each port can be seen as an extension point that can be

modified by external plug-ins. For example, Figure 3.13 depicts an agent module

that consists of mapping rules for configuring an agent’s beliefs, behaviors, goals,

etc. As Bochica gets extended with new concepts, an existing base transforma-

tion is no longer complete regarding the covered concepts. Thus, an extension

transformation is required which extends an existing base transformation for the

new concepts (if the target platform shall be enabled for the extension). For ex-

ample, the extension module in Figure 3.13 might equip every agent with a default

plan for the registration at a proprietary execution environment during start-up.

We see three possibilities how the extension mechanism of the proposed transfor-

mation architecture can be realized. Some model transformation languages (e.g.

QVT) allow to write a new transformation which inherits from an existing one.

Thus, an existing mapping rule can be overloaded by a new and extended one.
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Other transformation languages like XPand use an aspect-oriented approach for

hooking into an existing transformation and extending it. A further possibility is

to chain transformations t0 ◦ . . . ◦ tn , where t0 is a base transformation and the

succeeding transformation supplements the result of the proceeding ones. The

model transformation architecture depicted in Figure 3.13 has been realized with

model transformation languages like QVT and XPand (see Chapters 5 and 7).

The benefit of our approach is that large parts of the conceptual mappings can be

reused as Bochica gets extended. The code generation patterns use by the base

transformation will improve over time. Finally, the transformation architecture

supports rapid prototyping as described in Section 3.2. During the first iterations,

existing base transformations can be used to develop an early prototype. As the

core DSL gets customized in later iterations, additional conceptual mappings are

added to the extension transformation.

3.5 Technology Stack

This section provides a brief overview of the technology stack used to realize the

Bochica framework. The set of components which make up the Bochica im-

plementation is called DSML4MAS Development Environment (DDE) 2.0. DDE

makes extensive use of MDA standards and Eclipse technology (see Figure 3.14).

The abstract syntax of the core DSL has been specified using Ecore and addi-

tional OCL constraints. The mapping between the abstract syntax and graphical

symbols has been specified using GMF. Bochica models are serialized by EMF

into XML Metadata Interchange (XMI) [OMG, 2011e] files. Current model-to-

model transformations are based on QVT and ATL. Code generation is based on

XPand, JET, and MOFSCRIPT56. Technically, the Bochica extension mecha-

nism is based on the Eclipse Equinox Open Services Gateway initiative57 (OSGi)

framework and EMF. A typical plug-in for Bochica consists of (i) conceptual

extensions, (ii) the definition of a custom graphical representation, and (iii) an

extension transformation for the required target environment (assuming that the

base transformation already exists). Figure 3.15 depicts an overview of DDE.

Model repositories store model artifacts such as interaction protocols, behaviors,

and organizational structures. The artifacts are reused across projects. DDE pro-

vides support for validating model artifacts using OCL constraints. After a SUC

has been modeled, forward transformations are used to generate executable code.

Likewise, reverse transformations are used to import the underlying design of al-

56http://www.eclipse.org/gmt/mofscript/
57http://eclipse.org/equinox/

http://www.eclipse.org/gmt/mofscript/
http://eclipse.org/equinox/
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Figure 3.14: This figure depicts the technology stack underlying the Bochica
framework.
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Figure 3.15: Overview of the Bochica development environment.

ready implemented MAS. The lifted models are refined, validated, and shared via

the model repository (see Chapter 6). The current model repository is file-based

but model repositories like Teneo are just becoming available.

3.6 Summary

This chapter introduced the Bochica framework for model-driven AOSE. This

included an overview of the core DSL, the integration into software development

processes, the extension interfaces, a forward transformation architecture, and the

technology stack used for implementing the framework. The following chapters

introduce a base transformation for the BDI agent platform Jadex (Chapter 5), a

reverse transformation for Jadex (Chapter 6), and an extension model and trans-

formation for agents in semantically-enhanced virtual worlds (Chapter 7). Finally,

the framework and the extension mechanism are evaluated in Chapter 8 in two

case studies.



Chapter 4

Metamodels

Metamodels are used by MDA to specify the abstract syntax (vocabulary) of a

modeling language. A modeling language is used for capturing the design deci-

sions of a SUC. The metamodels presented in this chapter provide the conceptual

foundation for the mapping rules between Bochica and the Jadex BDI platform

defined by Chapters 5 and 6. The Bochica core DSL is based on Dsml4Mas.

The abstract syntax of Dsml4Mas is defined by the Pim4Agents metamodel. In

order to realize the MDA stack for the Jadex platform, a PSM for Jadex is required.

The remainder of this chapter introduces the platform-independent Pim4Agents

metamodel (see Section 4.1) and the platform-specific Jadex metamodel (see Sec-

tion 4.2). Finally, Section 4.3 summarizes this chapter.

4.1 Platform-independent Metamodel for Agents

The Pim4Agents metamodel has been continuously further developed by the

DFKI multiagent system research group over the recent years. As part of this

dissertation, Pim4Agents has been refined regarding expressiveness and the con-

ceptual extension interfaces. Chapter 3 already introduced selected aspects of

Pim4Agents as part of the Bochica extension interface specification. Figure

4.1 depicts the core concepts of Pim4Agents. Section 4.1.1 introduces the con-

cepts of the macroscopic layer, Section 4.1.2 the microscopic layer, and Section

4.1.3 the deployment layer.

4.1.1 Macroscopic Metamodel

The macroscopic layer of Bochica defines the overall structure of a SUC in terms

of Organizations and DomainRoles. Figure 4.2 depicts the according concepts

of Pim4Agents. The responsibilities of an Organization are represented by
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Figure 4.1: This figure depicts the overall structure of a Pim4Agents model. The
MultiagentSystem is the top-most container and aggregates the different model
artifacts.

DomainRoles and AbstractGoals. DomainRoles are performed by Agents that

are modeled at the microscopic layer. AbstractGoals can be decomposed by the

subgoal relationship. The conflictingGoals relationship defines conflicts be-

tween AbstractGoals. The communication inside an Organization is specified

by Interactions. An Interaction can be seen as a contract that defines the

communication between different DomainRoles. Interactions play an important

part in Bochica since they are used to derive ConcreteGoals and Behaviors of

the microscopic layer. Figure 4.3 depicts the Pim4Agents interaction metamodel.

The Protocol concept realizes the abstract Interaction concept and defines the

valid message sequences between Actors (interaction roles). An Actor represents

a named set of role-fillers at design-time. Moreover, Actors can be decomposed

into sub-Actors. The states of an interaction are represented by MessageFlows. A

MessageScope defines the ExchangeMode for sending and receiving ACLMessages

(e.g. Sequence or Loop). MessageScopes are forked and joined by MessageFlows

that are contained by Actors. Timeouts between sending a message and receiv-

ing the response(s) are defined by the TimeOut concept. Responsibilities of an

Actor when a certain state (concept MessageFlow) of a conversation is reached

(e.g. the evaluation of an incoming call-for-proposal message) are represented by

AbstractGoals. AbstractGoals are realized by ConcreteGoals of the micro-

scopic layer. It is important to note that Interactions do not define the content

types of ACLMessages, nor concrete role-fillers and timeout values. For a detailed
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Figure 4.2: This figure provides an overview of the Pim4Agents concepts for the
macroscopic layer.

Figure 4.3: The Pim4Agents interaction metamodel.

overview of the Pim4Agents interaction metamodel we refer to [Hahn et al.,

2009b] and [Hahn et al., 2011].

4.1.2 Microscopic Metamodel

The concepts of the microscopic layer provide the conceptual foundation for the

specification of agent and capability types, the internals (role bindings) of orga-

nizational structures, and the behavior of agents. Section 3.3 already introduced

the agent metamodel and parts of the behavior metamodel. In the following, the

goal, behavior, and collaboration metamodels are presented.
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Figure 4.4: The Pim4Agents collaboration metamodel.

Agent and Organization Aspect

Figure 4.4 depicts the collaboration metamodel of Pim4Agents. The main pur-

pose of Organizations in Pim4Agents is the definition of the overall struc-

ture of a MAS. However, Organizations can also be agentified – meaning they

perform DomainRoles and execute Behaviors like Agents. The role of agenti-

fied Organizations in Pim4Agents has been discussed by Madrigal-Mora et al.

[2008]. As part of this dissertation, Organizations are only considered as pure

design artifacts for defining the overall structure of a SUC.

The microscopic layer defines the internal role bindings of an Organization in

terms of Collaborations. A Collaboration uses DomainRoleBindings to bind

a DomainRole of an Organization to an Actor (interaction role) of an utilized

Interaction. This is necessary since Interactions are self-contained design

artifacts that are independent of a concrete use case. A Collaboration in com-

bination with a ProtocolConfiguration defines how an interaction protocol is

utilized. Similar to the DomainRoleBinding, an ActorBinding binds an Actor to

a Collaboration. The combination of DomainRoleBindings and ActorBindings

enables an engineer to bind the same DomainRole to multiple Actors (e.g. of mul-

tiple Interactions) of the same Collaboration. For example, an agent might

perform the requester role of a request response protocol and at the same time

the participant role in a Contract Net Protocol (CNP) [FIPA, 2002c]. This mecha-

nism also enables nesting of protocols. Finally, a ProtocolConfiguration defines

concrete message and content types for a certain interaction protocol.

Goal Aspect

Figure 4.5 depicts the Pim4Agents event and goal metamodel. A Signal is

an internal event of an agent. A ConcreteGoal inherits from Event and has
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Figure 4.5: The Pim4Agents event and goal metamodel.

Knowledges as parameters. Relationships between Goals can be modeled using

the conflictingGoals and subgoal relationships. The subgoal relationship can

be either an AndDecompositionLink or an OrDecompositionLink. There exist

four different goal types: AchieveGoal (achieve a target condition), MaintainGoal

(maintain a state), PerformGoal (perform some action), and QueryGoal (provide

an answer). The goal types make use of the BooleanExpression concept for

defining the target, failure, and maintain conditions.

Behavior Aspect

As part of the Bochica extension interface specification, the basic infrastructure

for behavior definitions was already introduced in Section 3.3.1. The Pim4Agents

metamodel provides one realization of the abstract Behavior concept, called Plan.

The Activities of a Plan are connected by ControlFlows and InformationFlows.

Figure 4.6 depicts the structured activity metamodel. A StructuredActivity is

an Activity that contains nested sub-Activities (see Figure 4.6). A Loop is

used to (i) iterate over a set of values or (ii) to iterate until a BooleanExpression

becomes false. The Parallel concept is used to model n parallel branches. Each

branch bi consists of a sequence of Activities that are connected by Control-

Flows. Likewise, a Decision consists of multiple branches that are protected

by a BooleanExpression as precondition (if-then-else). Depending on the pre-

condition, the branches are activated. ParallelLoops are used for sending and
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Figure 4.6: The Pim4Agents structured activity metamodel.

receiving Messages to/from a set of agent instances (represented by an Actor of a

Protocol). The ParallelLoop performs the contained Activities for each role-

filler of an Actor in parallel. A set of Behaviors and Knowledges with a close

relationship can be aggregated by a Capability to a functional unit. Similar to

the PlanUse concept introduced in Section 3.3, a CapabilityUse makes an agent’s

Knowledges available within a Capability using KnowledgeBindings.

Figure 4.7 depicts the Pim4Agents task metamodel. A Task is an atomic

Activity that is not further decomposed. Every StructuredActivity has exactly

one Begin and one End task. The Begin task has one outgoing ControlFlow

and the End task one incoming ControlFlow. It is not allowed to model loops or

branches using ControlFlows – this has to be done using StructuredActivities.

Goals are posted by an agent using the AssumeGoal task. The DelegateGoal task

is used to delegate goals to DomainRoles (e.g. inside an Organization). The Wait

task makes the agent wait for a timeout. An InternalTasks is a placeholder for

business logic that is not further detailed at the modeling level (e.g. an algorithm).

Interaction protocols are instantiated using the concept InitiateProtocol. The

InitiateProtocol task refers to a ProtocolConfiguration and takes the role-

fillers of the Actors as parameters. Messages are exchanged using the Send and

Receive tasks. The InvokeWS and ReceiveWS tasks are used to orchestrate Web

services. The details are discussed in Xiaoqui Cao’s master thesis [Cao, 2011].

Synchronous Web service calls use the InvokeWS task, whereas asynchronous calls

use the additional ReceiveWS tasks to wait for the invocation result.
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Figure 4.7: This figure depicts the Pim4Agents task metamodel.

Figure 4.8: This figure depicts the Pim4Agents metamodel for the deployment
layer. Green and yellow concepts are from the type layer, whereas red and blue
ones represent instances of those types.

4.1.3 Deployment Metamodel

The macro- and microscopic layers specify the entities of a SUC on the type

level. Deployment configurations are defined by the concepts of the deployment

layer (see Figure 4.8). An AgentInstance represents an instance of an Agent

or Organization. The Membership concept is used to specify the DomainRole

that is performed by an AgentInstance in an Organization. Of course, the

bindings have to meet the definitions of the according Agent and Organization

types. Those restrictions are enforced using OCL invariants. Finally, the initial

set of beliefs and goals of an AgentInstance is configured using the Initializer

concept. For example, the KnowledgeInitializer and GoalInitializer con-

cepts are used to set the initial values of Knowledges and to configure the initial

ConcreteGoals.
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4.2 Platform-specific Metamodel for Jadex

As introduced in Section 2.2.1, Jadex is a BDI agent execution platform. In or-

der to enable Jadex for MDSD according to MDA, a platform-specific metamodel

for Jadex is required. The Jadex PSM is necessary to make the Jadex concepts

and resources accessible for MDA tools. A Jadex application consists of a set

of XML-based configuration files and Java-based behaviors. In order to better

understand where the pitfalls for the creation of a Jadex PSM are, Figure 4.9 de-

picts a typical Jadex application (a part of the official Jadex Mars World Classic

application). The arrows visualize the inter-dependencies between the XML and

Java files. For example, the application XML file on the left hand side declares

an application (name “1 Sentri, ...”) with one component (agent instance)

of type Producer. The component type declaration of Producer is resolved to the

Production.agent.xml file. The production agent XML file imports the Pro-

duceOrePlan Java class. The Java behavior is used as body of the produce ore plan

declaration. Finally, one can see how the ProduceOrePlan posts the move dest

goal. The move dest goal is declared by the Movement capability and imported

to the production agent XML file. It is important to note that the references are

plain strings - meaning, there exists no support for resolving those strings auto-

matically. To process those files, one has to resolve the references manually (e.g.

by analyzing the imports). The remainder of this section introduces the Jadex

project metamodel (Section 4.2.1), the application metamodel (Section 4.2.2), the

BDI metamodel (Section 4.2.3), and the behavior metamodel (Section 4.2.4). To-

gether, they make up the Jadex PSM58.

4.2.1 Project Metamodel.

A PSM for Jadex has to cover the XML and Java-based resource of a Jadex

application. This requires metamodels for the XML and Java-based platform

artifacts. Jadex provides XML Schema definitions for the XML-based platform

artifacts. This encompasses the definition of Jadex applications59 and BDI60 re-

sources (e.g. agent and capability definitions). The XML Schema files build the

basis for the Jadex application and BDI metamodels. EMF provides the possi-

bility to derive Ecore metamodels from XML Schema files. This has the advan-

tage that the Ecore-based metamodel corresponds one-to-one to the XML Schema

files. Moreover, EMF provides automatic de/serialization from/to XML. The Java

58The Jadex PSM is based on Jadex version 2.0 RC6.
59http://jadex.sourceforge.net/jadex-application-2.0.xsd
60http://jadex.sourceforge.net/jadex-bdi-2.0.xsd

http://jadex.sourceforge.net/jadex-application-2.0.xsd
http://jadex.sourceforge.net/jadex-bdi-2.0.xsd
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MWC.application.xml

package … .producer;

public class ProduceOrePlan 
                        extends Plan {
  public void body() {
    …
    IGoal go_dest = 
      createGoal("move.move_dest");
    go_dest.getParameter("destination").
      setValue(target.getLocation());
    dispatchSubgoalAndWait(go_dest);
    …
  }}

ProduceOrePlan.java

<agent
    name="Production"
    package="….producer">
  … 
  <import>….producer.*</import>
  … 
  <capability 
    name="move" 
    file="….Movement"/> 
  … 
  <messageevent 
    name="request_production" 
    type="fipa" … > … 
  </messageevent>
  … 
  <plan name="produce_ore">
    <body class=
      "ProduceOrePlan"/>
    <waitqueue>
      <messageevent 
    ref="request_production"/>
    </waitqueue>
  </plan>
    …
</agent>        

Production.agent.xml
… 
<goals> <achievegoal 
  name="move_dest" exported="true">
  <parameter name="destination" … />
  </achievegoal> … </goals>
… 

Movement.capability.xml

Figure 4.9: This figure depicts a typical Jadex application. It consists of an ap-
plication file, agent configurations, capabilities, and Java-based plans. The arrows
visualize references.
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Figure 4.10: This figure depicts the Jadex project metamodel. The Project con-
cept is the top-most container and aggregates all resources of a Jadex application.

metamodel of the Eclipse MoDisco61 project is used as Jadex behavior metamodel.

The Jadex project metamodel’s task is to aggregate the model artifacts of a Jadex

application to one model (see Figure 4.10). The Project concept of the Jadex

project metamodel imports the root elements of the other metamodels, such as

Applicationtype (application metamodel), MBDIAgent (BDI metamodel), and

Model (behavior/Java metamodel).

4.2.2 Application Metamodel

The Jadex application metamodel covers concepts for configuring the compo-

nents of a Jadex application. This encompasses deployment configurations of

agent instances as well as the configuration of the Jadex platform. Figure 4.11

depicts an overview of the created Jadex application metamodel. The concept

61http://www.eclipse.org/MoDisco/

http://www.eclipse.org/MoDisco/
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Figure 4.11: This figure depicts the Jadex application metamodel (root concept
Applicationtype). It encompasses concepts for configuring applications (green,
yellow, orange), platform services (white), agents (blue), and the environment
(gray).

Applicationtype is the root concept of a Jadex application and possesses a name

and package attribute. Resources like Java classes that are not in the current

scope (defined by package) are imported by the ImportsType concept. All com-

ponents (such as agents) that are part of the application are declared by the

concept Componenttype. A Componenttype has a filename attribute. The at-

tribute references a Jadex agent XML file. The concept Application defines a

single Jadex application configuration (there can be several) and contains a set of

Component (agent instance) declarations. A Component is an instance of a declared

Componenttype (identified by the type attribute). Moreover, the Component’s

configuration attribute refers to an MConfiguration defined by the agent model

(referenced by the Componenttype). An MConfiguration defines the initial be-

liefs and goals of a Component. Jadex platform services, such as messaging or

directory services, are configured using the ServicesType concept. The concept

SpacetypesType is used to import environment definitions based on the Jadex

envspaces62 metamodel. For example, it is used to specify data structures that are

shared between agents. The envspace metamodel is covered by the Jadex PSM

but it is not further detailed in this dissertation.

62http://jadex.sourceforge.net/jadex-envspace-2.0.xsd

http://jadex.sourceforge.net/jadex-envspace-2.0.xsd
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Figure 4.12: This figure depicts the Jadex BDI metamodel. The core concepts are
MCapability and MBDIAgent. The metamodel covers concepts like beliefs (ma-
genta), capability imports (orange), event declarations (gray), goal declarations
(yellow), used plans (green), agent instance configurations (blue), and expressions
(dark yellow).

4.2.3 BDI Metamodel.

The Jadex BDI metamodel specifies the concepts for defining Jadex BDI agents

and capabilities (see Figure 4.12). The central concepts are MBDIAgent and MCapa-

bility. The main difference between Jadex agents and capabilities is that agents

possess an own execution thread. Capabilities are self-contained modules and

extend an agent with additional beliefs, events, and behaviors. In Jadex, the con-

cept MBDIAgent inherits from MCapability. An MCapability imports resources

(e.g. Java classes) by the concept ImportsType. The CapabilitiesType con-

tainer imports external MCapabilities using the MCapabilityReference con-

cept. The file attribute references the according XML file. The MBeliefbase

is a container for belief declarations (concept MBelief). The event types of an

MCapability are defined by the MEventbase. For example, MInternalEvents

are internal events of an agent and MMessageEvents are used for the commu-

nication between agents. The MGoalbase contains goal declarations (discussed

later). The behaviors of an MCapability are defined by the MPlanbase (see Sec-

tion 4.2.4). MExpressions are used in Jadex to initialize MBeliefs. Finally, an

MConfiguration defines the initial events, beliefs, and plans of an agent. It is im-

portant to note that beliefs, events, goals, etc. can be exported/imported to/from

other MCapabilities. For this purpose, each of those concepts has an abstract

equivalent. The abstract element serves as placeholder for an entity that is declared

elsewhere. For example, the MBeliefReference concept is an abstract placeholder
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Figure 4.13: This figure depicts the Jadex goal metamodel. There exist four goal
types (blue).

for an MBelief that is imported from an external MCapability. Likewise, there

exist MInternalEventReference and MGoalReference concepts.

Goals. The goal metamodel is part of the Jadex BDI metamodel (see Figure

4.13). The MGoalbase contains the goal declarations of an MCapability. MGoal

is the abstract base concept for all goal types. Its attributes control the execution

behavior of a goal. For example, the retry attribute defines whether the goal is

retried after a plan failed. Moreover, the MInhibits concept is used to specify

that one goal suppresses the execution of another one. There exist four goal types

in Jadex: MAchieveGoal (achieve some goal state), MPerformGoal (perform an

action), MMaintainGoal (maintain a state), and MQueryGoal (provide an answer).

The MInternalCondition concept is used to define the target, maintain, and

failure conditions of goals. Metalevel reasoning is supported by the MMetaGoal

concept. Goals can be imported and exported by MCapabilities. For exam-

ple, the MPerformGoalReference concept is used as placeholder for importing an

MPerformGoal from an external capability.

4.2.4 Behavior Metamodel

The behavior specification of a Jadex agent consists of two parts: (i) the behavior

meta information defined by the Jadex BDI metamodel and (ii) the actual behav-

ior implementation by a Java class. Figure 4.14 depicts the behavior metamodel
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Figure 4.14: This figure depicts the behavior metamodel. It encompasses the
reference to the plan body (green), the definition of context and preconditions
(blue), the declaration of the triggering event (orange), and a plan’s parameters
(gray).

as defined by the Jadex BDI metamodel. The MPlanbase concept contains the

behavior declarations of an MCapability. An MPlan defines an MPlanBody. The

MPlanBody refers to a Java-based Jadex plan implementation (impl attribute).

The MPlanTrigger concept specifies the triggering event that activates the MPlan.

This can be an event, goal, or belief change. An event or goal type is referenced

by the ref attribute of the MReference concept. The MAssign concept is used to

define a belief change as trigger. An MPlan can also declare MPlanParameters.

An MPlanParameter is a parameter of a plan and can be initialized with beliefs or

the triggering event’s parameters (referenced by the MAssign concept). Moreover,

an MInternalExpression can be used to define a set of binding options (possible

values) for an MPlanParameter. Finally, the precondition of an MPlan is defined by

the MStaticValue concept and the context condition by the MInternalCondition

concept. It is important to note that context conditions in Jadex are invariants

for the execution of a plan. In Jack, context conditions are used to compute the

plan candidates (similar to the binding options in Jadex). Thus, the semantics is

different.

Jadex behaviors are implemented as Java classes. Because the creation of a

Java metamodel is a big endeavour on its own, we rely on the Java metamodel and

tool support provided by the Eclipse MoDisco project. The top-most container



66 4. METAMODELS

Figure 4.15: This figure depicts a part of the Java metamodel which is used as
Jadex behavior metamodel. The root concept is Model. The metamodel defines
different kinds of statements (green).

for a set of Java files is the concept Model (see Figure 4.15). A ClassFile has

an originalFilePath which points to the location of the original Java file. Fur-

thermore, its type is specified by an AbstractTypeDeclaration. An Abstract-

TypeDeclaration contains a set of AbstractMethodDeclarations (methods of

that class). The body of a method declaration is specified by the (code-) Block

concept. It contains a sequence of Statements. There are different kinds of

Statements. For example, a ForStatement has a (condition-) Expression (rela-

tion expression), an initializer Expression (relation initializers), and an it-

erator Expression (updaters relation). A MethodInvocation is an Expression

that invokes a method. VariableDeclarationStatements are used to declare

variables and have a Modifier (e.g. visibility or whether a variable is static).

It is important to note that the Java metamodel does not contain Jadex-specific

concepts (e.g. a concept that represents a Jadex API call for sending a message). In

order to make use of the Java metamodel for Jadex, one has to take the Jadex API

into consideration. For example, an instance of type AbstractTypeDeclaration

that extends the jadex.bdi.runtime.Plan class of the Jadex API represents a

Jadex behavior. Other AbstractTypeDeclarations are no Jadex plan declara-

tions. A further example is an instance of type MethodInvocation that invokes

the jadex.bdi.runtime.Plan.dispatchSubgoal() method of the Jadex API for

posting a sub-goal from inside a plan. Table 4.1 depicts an overview of important

instantiations of the Java metamodel for the Jadex API. Those types will be used

by the reverse transformation in Chapter 6.
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Java MM Concept Property Value Description

AbstractTypeDecla-
ration

superclass jadex.bdi.runtime.
Plan

Jadex behavior implementa-
tion

AbstractTypeDecla-
ration

– – Data type declaration

MethodDeclaration name jadex.bdi.runtime.
Plan.body()

Main method of a Jadex be-
havior

MethodInvocation name jadex.bdi.runtime.
Plan.dispatchSub-
goal[AndWait]()

Post sub-goal (async./sync.)

MethodInvocation name jadex.bdi.runtime.
Plan.sendMessage-
[AndWait]()

Send message (async./
sync.)

MethodInvocation name jadex.bdi.runtime.
Plan.waitFor-
MessageEvent()

Receive message

MethodInvocation name jadex.bdi.runtime.
Plan.waitFor()

Delay execution

Table 4.1: This table depicts the relation between the Java metamodel and the
Jadex API. For example, an instance of a Java MethodInvocation that invokes
the jadex.bdi.runtime.Plan.sendMessage() method is a call to the Jadex API
for sending a message asynchronously.

4.3 Summary

Metamodels build the foundation for MDSD. In order to build-up the MDA stack

for the Jadex platform, this section introduced a PSM for Jadex. Moreover, the

Pim4Agents metamodel has been introduced. It defines the abstract syntax of

Dsml4Mas which is used as Bochica core DSL. Existing metamodels and tools

were reused where possible. By comparing the Pim4Agents and Jadex metamod-

els one can see that the Jadex PSM is more fine-grained than Pim4Agents. For

example, it defines platform services, fine-grained goal execution semantics, and

Java-based behaviors. On the other side, Pim4Agents offers high-level model

artifacts such as organizational structures and interaction protocols. The pre-

sented metamodels build the foundation for the conceptual mappings presented in

Chapters 5 and 6.
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Chapter 5

Model-driven Forward

Engineering of BDI Agents

Based on the transformation architecture introduced in Section 3.4, this Chapter

defines a base transformation for BDI agents founded on the Jadex platform. For

this purpose, conceptual mappings between the Bochica core DSL and the Jadex

PSM are defined. Although Jadex as well as Bochica make use of typical BDI

concepts, there exists a conceptual gap which has to be overcome. The Jadex plat-

form provides low-level infrastructure for implementing BDI agent systems (e.g.

platform services, capability infrastructure, and Java-based behaviors) but it has

no explicit representation of high-level artifacts like interaction protocols or orga-

nizational structures. Moreover, the platform leaves room for different “flavours”

for implementing a MAS. How an agent engineer makes use of this toolbox depends

on his experience with AOSE and Jadex. The specification of a base transforma-

tion implies to anticipate several design decisions by using design patterns. Design

patterns help to (i) guarantee a certain quality independent of the developer’s ex-

perience, and (ii) ease the understanding of the generated artifacts. The generated

code should be (i) modular, (ii) extensible, (iii) complete, and (iv) scalable. Fig-

ure 5.1 depicts an overview of the proposed transformation architecture for Jadex.

The base transformation consists of the five modules (i) application, (ii) BDI, (iii)

interaction, (iv) behavior, and (v) data model. The application, BDI, and interac-

tion modules are mapped to the Jadex PSM and serialized to XML. Bahaviors are

directly mapped by a model-to-text transformation to Java code. The decision to

map behaviors directly to code is based on our experience with model transforma-

tions to Jack and Jade. Java-based behaviors are very fine-grained so that writing

model-to-model transformations becomes tedious. As Bochica gets extended by

a custom extension model for an execution environment or application domain,

the additional concepts are covered by an extension transformation. Chapter 7
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Figure 5.1: This figure depicts the forward transformation architecture for Jadex.
It consists of model-to-model mappings (green and blue) and model-to-text map-
pings (gray and white). The green and gray parts represent the base transforma-
tion and the blue parts an extension transformation.

introduces an extension transformation for agents in semantically-enhanced vir-

tual worlds which extends the Jadex base transformation. The remainder of this

chapter presents the mapping rules and code generation patterns for the applica-

tion (Section 5.1), BDI (Section 5.2), behavior (Section 5.3), interaction (Section

5.4), and data model (Section 5.5) aspects. Following abbreviations for the meta-

models are used: Pim4Agents (P4A), Jadex BDI (BDI), and Jadex Application

(APP). Moreover, the prefix CODE indicates that the target of a mapping rule is

a Java code template. CODE is used for model-to-text mappings (Java concepts).

Each mapping rule consists of (i) an identifier, (ii) the signature (head) of the rule

(source and target concepts), (iii) an optional OCL-based precondition, and (iv)

the body of the rule. Additionally, tables, figures, and listings are used to provide

an overview of the interdependencies of the rules. The variable self is used by OCL

conditions to refer to the object the rule is being applied to. Some rules are sep-

arated into sub-rules (e.g. MR-11a/b, etc.) in order to indicate that a concept is

mapped to two target concepts with a close relationship (e.g. passing parameters

between an agent and a capability).

5.1 Application Mappings

The following conceptual mapping rules project Pim4Agents concepts onto con-

cepts of the Jadex application metamodel. This covers aspects like the deployment

configuration and platform services.
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Figure 5.2: This figure depicts the relationship between agents of a Pim4Agents
model and the corresponding artifacts in Jadex. Every agent type is transformed
by MR-4 to an according Jadex agent model. The agent model is imported by the
Jadex application model (MR-2). Likewise, an instance of a certain agent type is
declared in the Jadex application model (MR-3) and configured in the Jadex agent
model (MR-10).

MR-1: P4A : MultiagentSystem → APP : Applicationtype

Body: The concept MultiagentSystem is the root concept of a Pim4Agents

model. It is mapped to a Jadex application model (root concept Application-

type). Figure 5.2 provides an overview of the structural interdependencies of the

related mapping rules. Table 5.1 depicts the details of this mapping rule.

MR-2: P4A : Agent → APP : Componenttype

Pre: $self.oclIsTypeOf(P4A:Agent)

Body: A Jadex Applicationtype imports the Componenttypes (agent types)

which are used by the application. The precondition ensures that no Organiza-

tions are mapped by this rule. Every Pim4Agents Agent of the source model

is transformed to a Jadex Componenttype declaration in the application model.

The Componenttype has a filename attribute that references the according agent

model (MR-4; see Figure 5.2).
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MR-1: P4A : MultiagentSystem → APP : Applicationtype
target source MR

name The name of the Pim4Agents MultiagentSystem. –
imports The import section adds the required Java packages to the class-

path. For example, classes implementing platform services used
in the services section are imported.

compo-
nent-
types

For each Agent of the source model an according Jadex
Componenttype is declared which references the according Jadex
agent model generated by MR-4.

2,
4

services A Jadex application requires the initialization of platform ser-
vices, such as (i) a directory service, (ii) a component manage-
ment service, and (iii) a messaging service. The mapping rule
initializes the required Jadex platform services.

–

appli-
cations

A MultiagentSystem is mapped to a Jadex Application. All
AgentInstances of the source model are mapped to Components

of this Application. The application has the name of the
Pim4Agents MultiagentSystem.

3

Table 5.1: Details of the application mapping (MR-1). The first column depicts
the target attributes of the Applicationtype, the second column summarizes the
mapping, and the third column shows the related mapping rules.

MR-3: P4A : AgentInstance → APP : Component

Pre: $self.agentType.oclIsTypeOf(P4A:Agent)

Body: A Pim4Agents AgentInstance is mapped to a Jadex Component. The

precondition ensures that no organization instances are mapped by this rule.

The initializers of a Pim4Agents AgentInstance (e.g. GoalInitializer or

BeliefInitializer) are mapped to an MConfiguration in the agent model (see

MR-10). The MConfiguration is referenced by the configuration attribute of

the Component. Moreover, the type attribute references a Componenttype (agent

type; see MR-2).

5.2 BDI Mappings

The mapping rules related to the BDI aspect cover the internals of agents like

beliefs, events, or goals. As mentioned in Chapter 4, the main difference between

agents and capabilities in Jadex is that agents possess an own execution thread.
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Figure 5.3: This figure depicts two examples of how scoping can be realized in
Jadex. a) shows a top-down assignment of an element x of an agent to some used
capabilities. b) shows how a capability defines an element x that is imported by
the agent and assigned to another capability. X can be beliefs, events, or goals.

As the Jadex MBDIAgent inherits from MCapability, the mapping rules for agents

and capabilities are very similar. Before we go into detail, it is important to note

that Jadex offers different mechanisms for defining the scope between an agent and

its capabilities (see Figure 5.3). Case a) makes an element x available in Cap1 and

Cap2 by assigning it top-down, whereas b) imports x form Cap1 and assigns it to

a placeholder in Cap2. The design decision is left open to the developer. However,

goals and events in Pim4Agents have a global scope inside the agent and are

not explicitly assigned by the developer (in contrast to Jadex). Instead, the used

events and goals are derived from an agent’s plan templates. The transformation

moves the goal and event declarations to the outmost scope (e.g. the agent) and

assigns the entities top-down to abstract placeholders in the capabilities that make

use of it (like case a). Thus, the designer does not have to think about event and

goal scoping in Pim4Agents. The assignment of beliefs is solved in Pim4Agents

similar to Jadex by the PlanUse and CapabilityUse concepts.

MR-4: P4A : Agent → BDI : MBDIAgent

Body: The Pim4Agents Agent concepts is projected onto the Jadex MBDIAgent

concept. Since Bochica and Jadex are both based on the BDI model of agency,

the basic structure of agents is similar. Table 5.2 summarizes the details of this

mapping rule.

MR-5: P4A : Capability → BDI : MCapability

Body: A Pim4Agents Capability is transformed to an MCapability in Jadex.

Since agents and capabilities in Jadex have the same properties, the capability

mapping rule is very similar to MR-4 (see Table 5.2). The main difference is that

the MCapability mapping uses abstract placeholder concepts for beliefs, events,

and goals. For example, MR-8a is replaced by MR-8b, and 38a by 38b. MR-9a is
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MR-4: P4A : Agent → BDI : MBDIAgent
target source MR

name The name of the Pim4Agents Agent. –
imports The import section adds Java classes to the agent’s classpath.

This is done for data types of MBeliefs and MPlanParameters.
–

beliefs Each local Knowledge that is declared by the Pim4Agents
Agent is mapped to an MBelief. Section 5.3 provides details
on how beliefs are passed as parameters to plans and capabili-
ties.

38a

capabi-
lities

Each CapabilityUse of the Pim4Agents Agent is mapped to
a Jadex MCapabilityReference. The file attribute refers to
the according capability model. A Pim4Agents Plan is also
mapped to an MCapability (see MR-11). For every PlanUse of
the agent, an MCapabilityReference is generated. It imports
the according MCapability.

6,
7

goals Every Pim4Agents ConcreteGoal that is used by the agent is
mapped to a Jadex MGoal and added to the agent’s MGoalbase.
MGoals are passed to capabilities using the assignto relation-
ship (see Section 5.3).

8a

events Each Signal of a Pim4Agents Agent is mapped to an MInter-

nalEvent and added to the MBDIAgent’s MEventbase.
9a

configu-
rations

Every AgentInstance of the Pim4Agents Agent is mapped
to an MConfiguration (see Figure 5.2). The MConfiguration

is referenced by the application mappings (see MR-3). The
MConfiguration’s name is set to the name of the Agent-

Instance.

10

Table 5.2: Details of the agent mapping (MR-4).

replaced by MR-9b for Knowledges with direction IN or INOUT (the Knowledges

are mapped to placeholders). Knowledges with direction LOCAL or OUT are mapped

by MR-9a.

MR-6: P4A : CapabilityUse → BDI : MCapabilityReference

Body: A CapabilityUse assigns a Knowledge of a Pim4Agents Agent or Capa-

bility to an imported Capability. In Jadex, it is mapped to an MCapability-

Reference that imports the referenced capability model into an agent or capability

model using the file attribute. The scoping of beliefs, events, and goals is done

by MR-8, MR-9, and MR-38.
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MR-7: P4A : PlanUse → BDI : MCapabilityReference

Body: Similar to a CapabilityUse, a PlanUse assigns beliefs of an agent or ca-

pability to an used Plan. As Pim4Agents Plans are mapped to MCapabilities

(see Section 5.3), the corresponding MCapability has to be imported to an agent

or capability that makes use of the plan. This is done by the file attribute of

the MCapabilityReference. The scoping of beliefs, events, and goals is done by

MR-8, MR-9, and MR-38.

MR-8a/b: P4A : ConcreteGoal → BDI : MGoal [Reference]

Body: Pim4Agents and Jadex use the same four goal types: perform goal,

achieve goal, maintain goal, and query goal. The concepts are mapped accordingly.

Goals in Pim4Agents have a global scope inside an agent. In contrast to Jadex,

the developer does not have to do explicit scoping between agents and capabili-

ties. Instead, the used goals are automatically derived from the agent’s plan tem-

plates. The transformation moves the goal declaration to the outmost scope (e.g.

the agent) and then assigns the goal top-down to abstract placeholders (concept

MGoalReference) in the used (plan-) capabilities using the assignto relationship

of MGoal. MR-8a maps a ConcreteGoal to an MGoal declaration, whereas MR-8b

creates the abstract goal placeholder in a sub-capability or plan (see Section 5.3).

A Pim4Agents AchieveGoal’s target condition (concept BooleanExpression)

is mapped to a target condition (concept MInternalCondition), and the Main-

tainGoal’s maintain condition (concept BooleanExpression) to a maintain con-

dition (concept MInternalCondition; see MR-39b). The conflictingGoals re-

lationship is mapped to the inhibits relationship in Jadex.

MR-9a/b: P4A : Signal → BDI : MInternalEvent [Reference]

Body: This mapping rule maps a Pim4Agents Signal to an MInternalEvent

in Jadex. The scoping is solved in the same way as for goals in MR-8a/b. MR-9a

maps the Signal to an MInternalEvent declaration, whereas MR-9b maps it to

an abstract placeholder. The assignto relation is used by an MInternalEvent to

assign it to a sub-capability.

MR-10: P4A : AgentInstance → BDI : MConfiguration

Body: This mapping rule is the counterpart for MR-3 in the application section

(see Figure 5.2). It is responsible to setup the initial goals, events, and beliefs of a
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certain AgentInstance. Therefore, the Pim4Agents concepts GoalInitializer

and KnowledgeInitializer are mapped to MConfigGoal and MConfigBelief of

the MConfiguration. The ref relation is used to refer to the according goal type

or belief declaration. The MConfiguration has the name of the AgentInstance.

5.3 Behavior Mappings

The mapping of a Pim4Agents Plan to Jadex consists of three parts (see Figure

5.4): (i) the mapping of the plan to a plan capability (MR-11), (ii) the plan’s head

(meta data) inside the plan capability (MR-12), and (iii) the actual Java-based

plan template (MR-13). The plan is mapped to a capability since Pim4Agents

plans might contain complex structures that are split-up during model transforma-

tion into several parts. The capability groups those parts into one self-contained

entity. Moreover, the mapping to the plan capability is responsible for configur-

ing the plan’s interface to the outer scope (e.g. placeholders for beliefs, events,

and goals). The business logic (encapsulated by InternalTasks) gets separated

during the mapping process from the plan body into factory classes (MR-21a/b).

The factories can be customized at code level. This avoids customizations of the

generated code. The mapping rules presented in the remainder of this section have

many structural interdependencies. Figure 5.4 depicts a high-level overview of the

three target artifacts. Section 5.3.1 introduces the Task mappings, and Section

5.3.2 the mappings for StructuredActivities.

Pre- and Context Conditions. There exists an important difference between

Bochica and Jadex in how the agent engineer (and thus the model transforma-

tion) has to initialize the parameters of a plan. Usually, a plan has a set of plan

parameters P = {p1, . . . , pn}. In Jadex, for each pi ∈ P a set of values (variable

bindings) can be assigned. In order to generate all possible plan candidates for

handling a goal, Jadex computes the cartesian product p1 × . . . × pn . For each

computed tuple an according plan candidate is created. In Bochica, the engi-

neer initializes the plan parameters using a context condition (similar to Jack).

A context condition contains unbound variables p1, . . . , pn (also called logicals in

Jack) and is a query to the agent’s knowledge base. The computed tuples are used

to create the plan candidates (like in Jadex). The difference for the agent engi-

neer is that Jadex expects a separate initialization of each plan parameter, while

Bochica uses a single query per plan that is evaluated in the agent’s knowledge

base. One solution to make this difference transparent for the agent engineer dur-
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Figure 5.4: This figure depicts an overview of the structural dependencies between
the generated artifacts for one Pim4Agents Plan which is used in n configurations
by one agent. For each Pim4Agents plan, an according Jadex capability model is
generated (MR-11). All goals, beliefs, and events which are declared by the outer
scope (here the agent) and accessed by the plan are passed to the plan capability.
MR-38a/b and MR-15 exemplify this relationship for Knowledges. MR-38a gen-
erates the belief declaration and MR-38b the abstract belief placeholder. Finally,
the belief is accessed from the plan body to initialize the class attribute (MR-15).

ing model transformation is to wrap a Bochica context condition into a single

Jadex MPlanParameter and generate code that uses the computed tuples for ini-

tializing the single plan parameters. However, the used workaround also depends

on the utilized knowledge base. The workaround has to be realized as part of an

extension transformation that is aware of the used knowledge base. Moreover, the

concept of context condition is used in Jadex as an invariant for plans. Whenever a

Jadex plan’s context condition is violated the according plan instance is dropped.

Preconditions in Bochica and Jadex have the same semantics.
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MR-11: P4A : Plan → BDI : MCapability
target source MR

name The name of the Pim4Agents Plan. –
imports For every data type (Java class) that is used by a Jadex MBelief

or MPlanParameter declaration an import is generated.
–

beliefs Every Pim4Agents Knowledge of the source plan which has
the direction IN, OUT, or INOUT is mapped to an abstract
MBeliefReference in the Jadex plan capability model (MR-
38b). The belief is initialized by the outer scope using the bind-
ing information provided by a Pim4Agents PlanUse.

38b

plans The plan capability’s MPlanbase is initialized with exactly one
MPlan declaration for the current Pim4Agents Plan.

12

goals Every goal that is used inside the Pim4Agents Plan’s

body (including the triggering goal) is mapped to an abstract
MGoalReference declaration in the Jadex plan capability. The
MGoalReference is initialized by the outer scope (e.g. the
agent).

8b

events Every event which is used inside the Pim4Agents plan’s
body (including the triggering event) is mapped to an abstract
MInternalEventReference declaration in the Jadex plan capa-
bility. It is initialized by the enclosing scope (e.g. the agent).

9b

Table 5.3: Details of the plan capability mapping (MR-11).

MR11: P4A : Plan → BDI : MCapability

Body: As already mentioned, a Pim4Agents Plan is mapped to an MCapability.

It aggregates all plan-related artifacts and configures the capability’s interface to

the surrounding scope (e.g. beliefs, events, and goals). Table 5.3 summarizes the

details of this mapping rule and Figure 5.4 depicts an overview of the structural

dependencies between an agent and the plan capability.

MR12: P4A : Plan → BDI : MPlan

Body: This rule declares a plan’s head inside the according plan capability model

(see Figure 5.4). The meta information encompasses (i) the declaration of the

plan trigger (concept MPlanTrigger), (ii) the declaration of in/out parameters

of the plan (type MPlanParameter), and (iii) the precondition and binding op-

tions (context condition). Moreover, the body attribute (concept MPlanBody)

points to the Java-based plan implementation. The plan trigger is mapped from

the triggeringEvent attribute of the Pim4Agents Plan. Knowledges of the
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Pim4Agents Plan with directions IN, OUT, and INOUT are mapped to MPlanPara-

meters. The MPlanParameters are initialized by the according abstract MBelief-

References mapped by MR-38b (see Figure 5.4). The precondition of type

BooleanExpression is mapped to an MStaticValue of the precondition prop-

erty of the MPlan (MR-39a). The ContextCondition of the source plan is mapped

by default to one MPlanParameter (MR-39b). The parameter’s bindingoptions

relations is initialized by an MInternalExpression. The MInternalExpression

has the value of the source context condition.

MR-13: P4A : Plan → CODE : PlanClass

Body: This mapping rule projects a Pim4Agents Plan to a Jadex plan class

(model-to-text). Listing 5.1 depicts the basic structure of the created Jadex plan

template and the cross references to related mapping rules. The Java class inherits

from jadex.bdi.runtime.Plan (provided by the Jadex API). MR-15 maps the

Pim4Agents Plan’s Knowledges to attributes. The class overloads the body()

method defined by the Jadex API. The body consists of (i) getting the trigger-

ing event (MR-16), (ii) the actual behavior code (MR-18), and (iii) setting the

out-variables (MR-17). The passed(), failed(), and aborted() methods of the

Jadex API provide the possibility to react to plan abortions (MR-20).

MR-14: P4A : Plan → CODE : ImportSection

Body: This mapping rule is responsible for generating the imports required by the

Java-based plan class. This encompasses imports for (i) types of the Jadex API

(e.g. IMessageEvent, IGoal), (ii) classes defined by the data model, (iii) native

Java types (e.g. java.util.ArrayList), and (iv) types from additional libraries

used by the mapping rules.

MR-15: P4A : Knowledge → CODE : Attribute

Body: A local Knowledge of a Pim4Agents Plan is mapped to an object at-

tribute of the Jadex plan class (see Listing 5.2). If the current Knowledge has the

parameter direction IN or INOUT, the attribute is initialized with the value of the

MPlanParameter mapped by MR-12 (see Figure 5.4). Otherwise, the Knowledge’s

value attribute is used. The variable type mapping is discussed in Section 5.5.
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1 package <$basepackage>.<$se l f . name>; <imports : MR-14>

2 pub l i c c l a s s <$se l f . name> extends jadex . bdi . runtime . Plan {
3 <plan v a r i a b l e s : MR-15>

4 pub l i c <$se l f . name> ( ) {
5 <con s t ruc to r : MR-20d>

6 }
7 @Overrides

8 pub l i c void body ( ) {
9 <t r i g g e r : MR-16>

10 <body : MR-18>

11 <out−parameters : MR-17>

12 }
13 @Overrides

14 pub l i c passed ( ) {
15 <passed : MR-20a>

16 }
17 @Overrides

18 pub l i c f a i l e d ( ) {
19 < f a i l e d : MR-20b>

20 }
21 @Overrides

22 pub l i c aborted ( ) {
23 <aborted : MR-20c>

24 }}

Listing 5.1: This listing depicts the code template for MR-13 ($self refers to a

Pim4Agents Plan; $basepackage is the location of the Java code). Angle brackets

define code generation instructions (e.g. an invocation of a mapping rule).

1 <IF ( $se l f . parameterDirect ion = P4A: ParameterDirect ion :LOCAL

2 | | $se l f . parameterDirect ion = P4A: ParameterDirect ion :OUT)>

3 p r i v a t e <$se l f . type> <$se l f . name> = <$se l f . value >;

4 <ELSE-IF>

5 p r i v a t e <$se l f . type> <$se l f . name> =

6 (<$se l f . type>) t h i s . getParameter (”<$se l f . name>”) . getValue ( ) ;

7 <END-IF>

Listing 5.2: Code template for Knowledges of a Plan (MR-15; $self refers to a

Pim4Agents Knowledge).
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1 <IF ( $se l f . t r i gg e r i ngEvent . oclIsTypeOf (P4A: ConcreteGoal )>

2 IGoal t r i g g e r = ( IGoal ) t h i s . getReason ( ) ;

3 <ELSE-IF ( $se l f . t r i gg e r i ngEvent . oclIsTypeOf (P4A: S igna l )>

4 I In te rna lEvent t r i g g e r = ( I In te rna lEvent ) t h i s . getReason ( ) ;

5 <END-IF>

Listing 5.3: This listing depicts the code template for MR-16. Depending on the

type of the trigger, a local variable called trigger is initialized ($self refers to a

Pim4Agents Plan).

1 t h i s . getParameter (”<$se l f . name>”) . setValue(<$se l f . name>) ;

Listing 5.4: This template sets an out parameter of a plan (MR-17; $self refers to

a Knowledge with direction OUT or INOUT).

MR-16: P4A : Plan → CODE : PlanTrigger

Body: This mapping rule generates the Java code that is required to access the

triggering event or goal of a plan in the plan’s body (see Listing 5.3). The rule

is related to the trigger parameter set in the Jadex plan capability (see MR-12;

Figure 5.4).

MR-17: P4A : Knowledge → CODE : OutParameter

Pre: $self.parameterDirection = P4A:ParameterDirection:OUT or

$self.parameterDirection = P4A:ParameterDirection:INOUT

Body: At the end of a plan body, this mapping rule updates the value of each

Knowledge of a Pim4Agents Plan with parameter direction OUT or INOUT. Thus,

the outer scope (e.g. an agent’s beliefs) gets updated (see Listing 5.4).

MR-18: P4A : Plan → CODE : PlanBody

Body: A Pim4Agents Plan consists of an ordered sequences of Activities

(a0, . . . , an), where a0 is of type Begin and an of type End. The sequencing is

enforced by ControlFlows that connect two succeeding Activities. Cycles and

branches are not allowed. Activities can be atomic Tasks or StructuredActivi-

ties with sub-Activities (see Section 4.1). MR-19 generates the actual code for

the Activity sequence.
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Figure 5.5: This figure depicts the design pattern which is used to generate an
InternalTask factory for every Pim4Agents Plan. The factory can be ex-
changed by providing a custom factory implementation which instantiates cus-
tom InternalTask implementations. The abstract InternalTask class provides
get/set methods for every input/output parameter. Moreover, the execute()

method is used to invoke the business logic.

MR-19: Sequence(P4A : Activity)→ CODE : PlanBody

Body: This mapping rule iterates over a sequence of Activities (a0, . . . , an) and

invokes the according mapping rules. Sections 5.3.1 and 5.3.2 present the relevant

mapping rules.

MR-20a/b/c/d: P4A : Plan → CODE : Passed/Failed/Aborted/Constructor

Body: The three methods and the constructor are placeholders that can be used

by extension transformations to perform tasks on the initialization, termination,

or failure of a plan. The methods are defined by the Jadex API.

MR-21a: P4A : Plan → CODE : FactoryInterface

Body: As introduced in Section 4.1, an InternalTask is used at the modeling

level as black box that represents business logic. In order to separate the custom

code from the generated one, this mapping rule generates a factory interface for

the source plan (see Figure 5.5). The factory provides one create() method for

each InternalTask of the current plan. A create() method is responsible for

instantiating the custom InternalTask implementation.
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1 // i n s t a n t i a t e custom Interna lTask implementation
2 <$se l f . name> my<$se l f . name> =
3 <$plan . name>Factory . c reate<$se l f . name>() ;
4 // s e t input parameters
5 <FOREACH $sel f . inparameter AS p>
6 my<$se l f . name>. set<p . name>(<p . value >) ;
7 <END-FOREACH >
8 // execute bus ine s s l o g i c
9 my<$se l f . name>. execute ( ) ;

10 // get output parameters
11 <FOREACH $sel f . outparameter AS p>
12 <p . o u t v a r i a b l e . name> = my<$se l f . name>. get<p . name>() ;
13 <END-FOREACH >

Listing 5.5: This listing depicts a template for invoking an InternalTask

implementation (MR-22). $self refers to a Pim4Agents InternalTask and $plan
to the Plan that contains the InternalTask.

MR-21b: P4A : InternalTask → CODE : InternalTaskInterface

Body: This rule maps an InternalTask to a Java interface class (see Figure

5.5). The interface provides an execute() method to run the encapsulated busi-

ness logic. The method is invoked by the plan body (see MR-22). Moreover, the

task’s Knowledge parameters are mapped to get-/set-methods for accessing the

input/output parameters.

5.3.1 Tasks

This section introduces a representative selection of mapping rules for Pim4Agents

Tasks.

MR-22: P4A : InternalTask → CODE : Invocation

Body: Mapping rules MR-21a/b already introduced the InternalTask factory

and the InternalTask interface (see Figure 5.5). This mapping rule is responsi-

ble for invoking a custom InternalTask implementation from a Jadex plan body.

For this purpose, the InternalTask is mapped to the code template depicted in

Listing 5.5. Before and after the execute() method is invoked, the input and out-

put parameters are set according to the input and output Knowledges specified in

Pim4Agents.
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1 IGoal <$se l f . name> = createGoa l (”<$se l f . goa l . name>”) ;
2 <FOREACH $sel f . inparameter AS p>
3 <$se l f . name>. getParameter (”<p . name>”) . setValue (”<p . value >”) ;
4 <END-FOREACH >
5 t h i s . d i spatchSubgoal [ AndWait](< $se l f . name>) ;

Listing 5.6: This listing depicts a code template for the AssumeGoal task (see
MR-23; $self refers to an AssumeGoal task).

1 t h i s . waitFor(<$se l f . t imeout ∗ 1000>) ;

Listing 5.7: This listing depicts a code template for the Wait task (MR-24; $self

refers to a Pim4Agents Wait task).

MR-23a/b: P4A : AssumeGoal [AndWait ]→ CODE : DispatchGoal [AndWait ]

Body: Dispatching goals in Pim4Agents is done using the AssumeGoal (asyn-

chronous) and AssumeGoalAndWait (synchronous) tasks. Both tasks are mapped

to the corresponding API calls dispatchSubgoal() and dispatchSubgoalAnd-

Wait() (see Listing 5.6). The listing also depicts how the parameters (attribute

inparameter) are assigned to the goal. The invocation of createGoal() demands

that the referred MGoal is declared in the plan capability (see MR-8a/b and Figure

5.4).

MR-24: P4A : Wait → CODE : WaitFor

Body: The Pim4Agents Wait task is used to wait for a timeout in seconds.

Listing 5.7 depicts the according code template for Jadex.

MR-25: P4A : InvokeWS → CODE : WSInvocation

Body: This mapping rule maps a Pim4Agents InvokeWS task to code for invok-

ing a Web service. The details of orchestrating Web services with Pim4Agents

and the according code generation have been presented in Xiaoqi Cao’s master

thesis [Cao, 2011] and are not detailed in this dissertation. Chapter 7 discusses

how to use the InvokeWS concept for orchestrating object services in semantically-

enriched virtual 3D worlds.
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1 f o r (<$se l f . i t e r a t o r . type> <$se l f . i t e r a t o r . name>;

2 <$se l f . cond i t ion >; <$se l f . i t e r a t o r >++) {
3 <$se l f . s t ep s −> apply MR-19>}

Listing 5.8: Code template for a Pim4Agents Loop ($self refers to a Pim4Agents

Loop).

MR-26: P4A : InitiateProtocol → CODE : InitiateProtocolEvent

Body: The initialization of an interaction protocol is done by posting an MInter-

nalEvent. The MInternalEvent is handled by the according protocol capability.

The details of the protocol transformation are discussed in Section 5.4

5.3.2 StructuredActivities

In contrast to atomic Tasks, StructuredActivities contain nested Actvities.

In the following, the mapping rules for the Loop and Decision StructuredActi-

vities are presented.

MR-27: P4A : Loop → CODE : ForLoop

Body: A Pim4Agents Loop is mapped to a Java for-loop (see Listing 5.8). There

exist two different modes of how the Loop concept can be used: (i) using a counter

variable and a termination condition or (ii) for iterating over a collection of values

(e.g. a set of received messages). Listing 5.8 depicts the code template for the first

case. The Loop’s body consists of a sequence (a0, . . . , an) of Activities. The

Activities are mapped by MR-19 to code.

MR-28: P4A : Decision → CODE : If − Then − Else

Body: A Pim4Agents Decision is mapped to a Java if-statement. The Deci-

sion’s body contains one Begin task, one End task, and a set of branches (b0, . . . ,

bn). The branches fork at the Begin and join at the End using ControlFlows. Each

branch consists of a sequence (a0, . . . , an) of Activities which are connected by

ControlFlows. For each branch, the Begin task has an outgoing ControlFlow to

the first Activity of a branch. The ControlFlow defines a BooleanExpression

that is the precondition of that branch. Listing 5.9 depicts the code template for

generating the according source code. The branches are mapped by MR-19.
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1 <VAR branches = getBeginTask ( $se l f ) . outFlow>

2 <FOREACH branches AS b>

3 <IF branches −> indexOf (b) = 0>

4 i f (<b . preCondit ion >) {
5 <b . s ink −> apply MR-19>

6 }
7 <ELSE-IF >

8 e l s e i f (<b . preCondit ion >) {
9 <b . s ink −> apply MR-19>

10 }
11 <END-IF >

12 <END-FOREACH >

Listing 5.9: This listing depicts a code template for a Pim4Agents Decision

(MR-28). The helper function getBeginTask() returns the Begin task of a

StructuredActivity.

5.4 Interaction Mappings

This section presents the mapping rules related to the Bochica interaction meta-

model. Figure 5.6 depicts an overview of the developed design pattern for Jadex.

The pattern maps the Bochica interaction interface introduced in Section 3.3.1

to Jadex. It consists of three parts: (i) the initialization of the protocol by a user-

defined plan using the Pim4Agents InitiateProtocol task (MR-26), (ii) the

automatically generated capability(s) for managing the protocol execution (MR-

29a/b, MR-30a/b, MR-31a/b), and (iii) the user-defined behaviors for executing

the business logic. The protocol execution and management module consists of

three sub-parts. The protocol execution plan implements the message handling

of an Actor of a Pim4Agents interaction protocol (MR-31a/b). For example,

it checks whether a certain state of a conversation has been reached using Jadex

MExpressions, manages timeouts, and posts the user-defined goals for invoking

the business logic. The message types, timeouts, and goals are defined in the pro-

tocol execution capability where the protocol execution plan is part of (MR-29a/b).

The protocol execution capability defines the goals, message types, and timeouts

as abstract placeholders. The placeholders are initialized by the protocol configu-

ration capability (MR-30a/b). The separation leverages the reuse of the protocol

execution plans and capabilities. For example, the same protocol might be ini-

tialized with different timeouts (e.g. 10s vs. 1h) and different content types of

messages. For each of the Actors of a Pim4Agents interaction protocol, an own
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Figure 5.6: This figure depicts an overview of the design pattern used for realizing
Bochica interaction protocols in Jadex. It consists of (I) the plan that initiates
a protocol (see MR-26), (II) the protocol management capabilities and plans, and
(III) the business logic capabilities for handling the messages (see Section 5.3).
The protocol management (II) is separated into c) the protocol execution plan
that sends and receives the messages (see MR-31a/b), b) the protocol execution
capability (see MR-29a/b), and a) the protocol configuration capability (see MR-
30a/b).

set of the just introduced plans and capabilities is generated. The remainder of

this section introduces the involved mapping rules.

MR-29a/b: P4A : Actor → BDI : MCapability

Pre: a) $self.isInitiatorActor(); b) $self.isParticipantActor()

Body: This rule maps an Actor of a Pim4Agents Protocol to an according

MCapability in Jadex. The capability enables an agent to participate in the pro-

tocol. The resulting protocol execution capabilities for the initiator (a) and the

participant actor (b) are slightly different. For example, the participant capability
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MR-29a/b: P4A : Actor → BDI : MCapability
target source MR

name The name of the source Actor. –
imports An import is generated for every data type (Java class) that is

used by a Jadex MBelief or MParameter.
–

beliefs Every Pim4Agents TimeOut of the current Actor is
mapped to an abstract MBeliefReference in Jadex. The
MBeliefReference is set from the protocol configuration capa-
bility and is accessed by the protocol execution plan. Moreover,
for every received ACLMessage of the Actor, an own MBelief

is created. It is used for collecting the received messages. The
beliefs are used for evaluating state expressions (see MR-37).

33b,
34b

plans The protocol execution capability declares exactly one plan. It
is responsible for executing the protocol.

31a,
31b

goals Every AbstractGoal of the Pim4Agents Protocol that is ref-
erenced by one of the current Actor’s MessageFlows is mapped
to an abstract MPerformGoalReference. The concrete goal is set
by the protocol configuration capability (see Figure 5.6). The
protocol execution plan posts the goals to invoke the business
logic.

32

events Every ACLMessage that is sent or received by the current actor
is mapped to an abstract MMessageReference. The concrete
message is set by the protocol configuration capability. The pro-
tocol execution plan uses the messages as templates for sending
and receiving messages. Moreover, the InitiateProtocol task
is mapped to an MInternalEventReference which initiates the
protocol.

34b,
36b

expres-
sion

Every Pim4Agents MessageFlow of the current Actor is
mapped to a Jadex MExpression which is used to compute
whether a certain state (concept MessageFlow) in the commu-
nication has been reached.

37

Table 5.4: Details of mapping rules 29a/b.

declares no MInternalEvent to initiate a new conversation. Instead, the partici-

pant protocol execution plan is triggered by the first MMessageEvent sent by the

initiator. The concrete message types, goal types, and timeout values are set by

the protocol configuration capability. Table 5.4 depicts the details for this map-

ping rule.

MR-30a/b: P4A : ProtocolConfiguration → BDI : MCapability

Pre: a) self .isInitiatorActor(); b) self .isParticipantActor()
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Body: This mapping rule maps a Pim4Agents ProtocolConfiguration to a

protocol configuration MCapability. The MCapability initializes a protocol ex-

ecution capability with concrete goals (MR-32), message events (MR-34a), and

timeouts (MR-33a). The source concept ProtocolConfiguration provides the

specification of the concrete artifacts. Analogous to MR-29a/b, this mapping rule

distinguishes between initiator and participant protocol configurations. The main

differences are: (i) a participant configuration declares no MInternalEvent to ini-

tialize the protocol and (ii) the message events have inverse sent/receive directions

(a message which is sent from one party is received by the other).

MR-31a/b: P4A : Actor → CODE : Initiator − /ParticipantPlan

Pre: a) $self.isInitiatorActor(); b) $self.isParticipantActor()

Body: This mapping rule is responsible for generating the protocol execution plan

for the initiator (a) and participant (b) actors. The resulting code accesses the

message events, beliefs, timeouts, etc. that are declared by the protocol execution

capability (see MR-29a/b). How the plan is actually realized depends on (i) the

used protocol specification approach at the platform-independent layer and (ii)

whether the protocol model is interpreted or according executable code is gener-

ated. Since we want to stay independent of a concrete approach, we leave it open

at this point.

MR-32: P4A : AbstractGoal → BDI : MPerformGoalReference

Body: AbstractGoals are used in Bochica to represents business logic that has

to be performed when a certain state of a conversation is reached (see Section

4.1). This rule maps an AbstractGoal to an MPerformGoalReference in Jadex.

The concrete goals which realize an AbstractGoal are defined by the agent model.

The Bochica realizedBy relationship is mapped to an assignto relationship in

Jadex.

MR-33a/b: P4A : TimeOut → BDI : MBelief [Reference]

Body: The TimeOut concept is used by a Bochica Protocol to specify a time

constraint between two states (concept MessageFlow). It is mapped by MR-

33a to an MBelief of a protocol configuration capability that holds the time-

out value. MR-33b maps the TimeOut to an abstract MBeliefReference. The

MBeliefReference is a placeholder for the concrete timeout value in the proto-
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col execution capability (see Figure 5.6). The assignment of the MBelief to the

MBeliefReference is done using the assignto attribute.

MR-34a/b: P4A : Message($actor)→ BDI : MMessageEvent [Reference]

Pre: $actor.sentMessages -> includes($self.aclMessage)

Body: MR-34a maps a Bochica Message to a Jadex MMessageEvent. The pre-

condition ensures that the Actor (passed as parameter), for which this rule is

invoked, is the sender of the current Message. The direction of the message is set

to sent and the according FIPA parameters are set as specified by the Bochica

model. MR-34b maps a Pim4Agents Message to an MMessageEventReference.

It is used by the protocol execution capability as placeholder for the concrete mes-

sage event mapped by MR-34a.

MR-35a/b: P4A : Message($actor)→ BDI : MMessageEvent [Reference]

Pre: $actor.receivedMessages -> includes($self.aclMessage)

Body: MR-35a maps a Bochica Message to a Jadex MMessageEvent. The pre-

condition ensures that the Actor (passed as parameter), for which this rule is

invoked, is the receiver of the current Message. The direction is set to received

and the according FIPA parameters are set as specified by the Bochica model.

MR-35b maps a Pim4Agents Message to an MMessageEventReference. It is

used by the protocol execution capability as placeholder for the concrete message

event mapped by MR-35a.

MR-36a/b: P4A : ProtocolConfiguration → BDI : MInternalEvent [Reference]

Body: Protocols in Bochica are initialized using the InitiateProtocol task.

The task is mapped by MR-26 to code. The code posts an MInternalEvent that

triggers the protocol execution plan (see Figure 5.6). Mapping rule MR-36a maps a

ProtocolConfiguration to an MInternalEvent that initializes a certain protocol

configuration. The assignto attribute is used to pass the event to (i) all plan

capabilities which contain an InitiateProtocol task that references the current

ProtocolConfiguration ($self) and (ii) the protocol capability generated for

$self. Mapping rule MR-36b maps the ProtocolConfiguration to an abstract

MInternalEventReference. The MInternalEventReference is a placeholder for

the concrete event (assigned by the agent).



5.5. DATA MODEL MAPPINGS 91

MR-37: P4A : MessageFlow → BDI : MExpression

Body: As introduced in Section 4.1, a MessageFlow in Bochica represents a

state in a conversation. The code generation pattern depicted in Figure 5.6 uses

a Jadex MExpression to check whether a certain state has been reached. This

mapping rule is responsible for generating such an expression. How the expression

is mapped to Jadex depends on the protocol specification approach used at the

platform-independent layer and is left open at this point.

5.5 Data Model Mappings

As introduced in Section 3.3.3, Bochica data models are based on Ecore. The re-

mainder of this section defines mapping rules related to the Bochica data model.

MR-38a/b: P4A : Knowledge → BDI : MBelief [Reference]

Pre: $self.eContainer.oclIsTypeOf(P4A:Agent) or

$self.eContainer.oclIsTypeOf(P4A:Capability)

Body: This rule maps a Bochica agent’s or capability’s Knowledges to MBeliefs

in Jadex. The MBelief has the name of the Knowledge and the value attribute is

used to set the initial value. For every PlanUse and CapabilityUse of an agent or

capability that references the Knowledge, the according Jadex assignto property

is set for passing the MBelief to the MBeliefReference (MR-38b).

MR-39a/b/c: P4A : Expression → BDI : MStaticValue,BDI : MInternalCon-

dition,CODE : Expression

Body: This rule maps a Bochica Expression to code. Since the expression lan-

guage depends on the used language extension, this rule has to be specialized by an

extension transformation (see Section 3.3.2). One has to distinguish between (i) ex-

pressions of Jadex XML files (concepts MStaticValue and MInternalCondition)

and (ii) expressions of Java behaviors (e.g. an if-then-else condition). By default,

the Expression’s text attribute is mapped one-to-one to code.
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Bochica Type Java Type

EString java.lang.String
EBoolean boolean
EChar char
EInt int
ELong long
EByte byte
EClass java.lang.Class
P4A:Sequence java.util.Vector
P4A:HashMap java.util.HashMap
P4A:Set java.util.Set
P4A:Message jadex.bdi.runtime.IMessageEvent
P4A:ConcreteGoal jadex.bdi.runtime.IGoal
P4A:Signal jadex.bdi.runtime.IInternalEvent

Table 5.5: Mapping of Bochica data types to Java types.

MR-40: P4A : EType → CODE : Type

Body: This rule maps a Bochica EType to concrete code. Table 5.5 depicts an

overview of the type mappings to Java and the Jadex API.

MR-41: Ecore : EClass → CODE : JavaClass

Pre: $self.instanceClassName = OclUndefined

Body: The generation of Java code from Ecore models is supported by EMF.

However, Listing 5.10 depicts an alternative code generation pattern which sup-

ports the Jadex BDI reasoning engine. The precondition ensures that no code is

generated for EClasses with an instanceClassName. The instanceClassName

attribute is used when there already exists Java code at the platform (e.g. as

part of a library). Jadex makes use of the Java Beans design pattern. The Java

Beans pattern provides a notification mechanism when attributes of a Java class

are modified. This enables the agent to react to belief changes. For example,

the set() method invokes the firePropertyChange() method to notify listeners

about a changed property value.
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1 package <$se l f . package >;

2

3 import . . .

4

5 pub l i c c l a s s <$se l f . name>Impl extends <$se l f . name> {
6

7 p r i v a t e PropertyChangeSupport p ;

8 <FOREACH $sel f . eAt t r ibu t e s AS a>

9 p r i v a t e <a . eAttributeType> <a . name>;

10 <END-FOREACH >

11

12 pub l i c c l a s s ( ) {
13 t h i s . p = new PropertyChangeSupport ( t h i s ) ;

14 }
15

16 <FOREACH $sel f . eAt t r ibu t e s AS a>

17 pub l i c set<a . name>(<a . eAttributeType> <a . name>) {
18 <a . eAttributeType> o ld = t h i s .<a . name>;

19 t h i s .<a . name> = <a . name>;

20 t h i s . pcs . f i rePropertyChange (”<a . name>”, old , t h i s .<a . name>) ;

21 }
22 pub l i c <a . eAttributeType> get<a . name>() {
23 return <a . name>;

24 }
25 <END-FOREACH >

26 . . .

27 pub l i c void addPropertyChangeListener

28 ( PropertyChangeListener l ) {
29 p . addPropertyChangeListener ( l ) ;

30 }
31 pub l i c void removePropertyChangeListener

32 ( PropertyChangeListener l ) {
33 p . removePropertyChangeListener ( l ) ;

34 }}

Listing 5.10: Java Beans code template for an Ecore EClass in Jadex.
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Figure 5.7: Example QVT-based implementation of MR-38a.

5.6 Summary

This chapter presented conceptual mappings for bridging the gap between Bochi-

ca and the Jadex BDI agent platform. The conceptual mappings build the basis

for the implementation of the Jadex base transformation. The code quality of

manual implementations of a Jadex application depends highly on the agent engi-

neer’s experience. The design patterns presented in this chapter anticipate design

decisions (e.g. for implementing interaction protocols) and support engineers to

guarantee a certain quality level. By further developing the base transformation

over time, all applications that make use of it directly benefit from improvements.

The conceptual mappings have been implemented with QVT and XPand as a

Bochica base transformation. The mapping rules build the infrastructure for

extension transformations. Figure 5.7 depicts an example implementation of MR-

38a in QVT. It is responsible for configuring the MBeliefbase with MBeliefs.

The first mapping rule prepares the MBeliefbase (see Section 4.2.3) of a Jadex

agent. For every Knowledge of a Pim4Agents agent, the toBelief mapping

rule is invoked. The toBelief mapping rule configures the name and data type

of the MBelief. Moreover, it passes the belief to behaviors that make use of it

(concept PlanUse). The mapping rule uses additional helper functions. For ex-

ample, the getTypeForKnowledge() function converts the Ecore-based data type

specification of Bochica to a concrete Java type. The variables self and result
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are predefined variables of QVT which represent the source and target objects of

the mapping rule. The adjustBeliefbase and adjustBelief mapping rules are

overloaded by an extension transformation for modifying the existing base transfor-

mation. For example, an extension transformation can add additional MBeliefs

to the MBeliefbase. The XPand-based mapping rules are similar to the code

templates presented in this chapter.
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Chapter 6

Model-driven Reverse

Engineering of BDI Agents

Agent-Oriented Reverse Engineering (AORE) is concerned with extracting the un-

derlying design of concrete implemented MAS. The extracted artifacts can be used

(i) to visualize and analyze an existing MAS implementation, (ii) to extract the

design for later reuse, and (iii) to migrate a SUC from traditional AOSE to model-

driven AOSE. Model-driven AORE uses model transformations for bridging the

gap between the platform-specific and the platform-independent layer (in upward-

direction). The remainder of this chapter introduces a model-driven agent-oriented

MDRE approach for the BDI platform Jadex. Figure 6.1 a) depicts an overview of

the developed reverse engineering architecture. The process consists of (i) lifting

the platform artifacts to the platform-specific layer and (ii) extracting the underly-

ing design. The design extraction encompasses model artifacts like (i) the problem

decomposition in terms of organizational structures, agent types, and means-end

decompositions, (ii) behavior templates and interaction patterns, and (iii) deploy-

ment configurations as well as data models. The extracted artifacts are manually

refined where necessary.

Before we define the actual conceptual mappings, we provide an overview of the

technical infrastructure that builds the foundation of the mapping rules. The first

task is to lift the Jadex source code (e.g. Jadex Java and XML files) to the Jadex

PSM presented in Section 4.2. This task is already supported by EMF (XML files)

and the MoDisco project (Java files). A fully automatic model extractor integrates

both tools and assembles the Jadex PSM based on the platform artifacts. The

lifting is followed by the design extraction step which maps the underlying design

to Bochica. As discussed in Section 4.2, references between Jadex model artifacts

(e.g. Jadex application and BDI models) are only represented as plain strings

which cannot be directly processed by the model transformation implementation.
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Figure 6.1: a) depicts the transformation architecture. b) depicts the technical
infrastructure of the design extraction step.

Moreover, the generic Java metamodel does not define Jadex-specific types. For

this purpose, Table 4.1 defines additional constraints which enable the generic Java

metamodel for the use with Jadex. In order to address those technical problems,

Figure 6.1 b) depicts an overview of the technical infrastructure of the model

transformation. The lowest layer consists of helper functions for checking Jadex

and Java types (e.g. whether a Java MethodInvocation is an invocation of the

Jadex API’s dispatchSubgoal() method). Based on the type checking helpers,

additional helpers for resolving string references between XML and Java files are

defined. Based on this infrastructure, the actual mapping rules are defined. One

general problem of the design extraction step is that there exist different flavours

of how to use the infrastructure provided by the Jadex platform for implementing

a MAS. For example, there exist no fixed patterns for implementing interaction

protocols or organizational structures in Jadex. Moreover, Java-based behaviors

provide numerous possibilities to implement a system (e.g. by using nested classes

and complex inheritance relationships). Thus, it is difficult to specify generic

rules that cover all cases. Due to those problems, the extracted structures have

to be manually refined (e.g. by using existing platform-independent artifacts like

interaction protocols).

In the following, we specify the Mapping Rules (MR) for extracting the un-

derlying design of Jadex applications and representing it in Pim4Agents. The

mappings are structured into application mappings (Section 6.1), BDI mappings

(Section 6.2), behavior mappings (Section 6.3), interaction mappings (Section 6.4),

and data model mappings (Section 6.5). Following metamodel abbreviations are

used: Jadex Project (PROJ), Jadex Application (APP), Jadex BDI (BDI), Java

(JAVA), and Pim4Agents (P4A). The mapping rules presented in the remainder
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right hand side depicts the target concepts in Pim4Agents. The dotted lines
highlight dependencies.

of this section consist of (i) the head of the mapping rule, (ii) the OCL precondition

that has to be fulfilled in order to apply the mapping rule, and (iii) the body that

specifies the actual mapping. Finally, Section 6.6 summarizes and discusses the

approach.

6.1 Application Mappings

The Project concept is the main container of the Jadex PSM presented in Section

4.2. It aggregates a set of Jadex application models (root concept Application-

type). Each application model declares the utilized agent types (concept Compo-

nenttype) and one or more deployment configurations (concept Application). A

deployment configuration specifies a number of agent instances (concept Compo-

nent). In order to identify the application model and configuration to be mapped,

the model transformation requires the two parameters $applicationName and

$configurationName. Figure 6.2 depicts an overview of the application mappings.

MR-1: PROJ : Project → P4A : MultiagentSystem

Body: The entry point of the reverse transformation is the mapping from Project

to MultiagentSystem. The parameter $applicationName identifies the applica-

tion model to be transformed (concept Applicationtype). MR-2 is applied to

map the user-specified application to a Pim4Agents MultiagentSystem.
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MR-2: APP : Applicationtype → P4A : MultiagentSystem
target source MR

name The name of the Jadex Applicationtype is mapped to the name
of the Pim4Agents MultiagentSystem.

–

agent Each Componenttype declaration of a Jadex Applicationtype

is resolved to the actual MBDIAgent model. The resolved MBDI-

Agent is mapped to a Pim4Agents Agent.

6

behav-
ior

Each Jadex Java plan class (concept AbstractTypeDecla-

ration) that is used by an agent (concept MBDIAgent) or capa-
bility (concept MCapability) of the Jadex application is mapped
to a Pim4Agents Plan.

13

capabi-
lity

Each capability (concept MCapability) used by agents of the
Jadex application is mapped to a Pim4Agents Capability.

7

proto-
colCon-
figura-
tion

Jadex has no explicit representation of interaction protocols.
Thus, all MMessageEvents declared by Jadex agents or capabil-
ities are transformed to Pim4Agents Messages. All messages
of the same agent or capability are grouped by a Pim4Agents
ProtocolConfiguration (for later manual refinement).

22,
23

goal Each goal (concept MGoal) used by agents of the Jadex applica-
tion is mapped to a Pim4Agents ConcreteGoal.

10

in-
stance

Each Component that is contained by the user-specified de-
ployment configuration (concept Application) is mapped to a
Pim4Agents AgentInstance.

3

event Every Jadex MInternalEvent that is declared by an agent or ca-
pability of the application is mapped to a Pim4Agents Signal.

9

type The data types used within a Jadex application are lifted to an
external data model based on Ecore. The lifted data types are
imported by the concept EType into Pim4Agents.

26,
27

Table 6.1: Details of the application mapping (MR-2).

MR-2: APP : Applicationtype → P4A : MultiagentSystem

Pre: $self.name = $applicationName

Body: The Applicationtype concept is the top-most container of a Jadex appli-

cation and is mapped to a Pim4Agents MultiagentSystem. The Multiagent-

System is the root element of a Pim4Agents model. Table 6.1 depicts the details

of this mapping rule. The parameter $configurationName is used to identify the

deployment configuration to be mapped (concept Application).
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MR-3: APP : Component ,BDI : MConfiguration → P4A : AgentInstance

Body: The agent instances of a Jadex application are specified by the con-

cept Component. A Component’s type attribute refers to an agent type (concept

Componenttype). The filename attribute of the Componenttype is used to resolve

the concrete Jadex agent model (concept MBDIAgent). The resolved MBDIAgent is

mapped by MR-6 and used as type of the Pim4Agents AgentInstance. More-

over, a Jadex Component refers to a configuration (concept MConfiguration) that

is part of the resolved Jadex MBDIAgent. The MConfiguration defines the initial

beliefs and goals of the AgentInstance (see MR-4 and MR-5).

MR-4: BDI : MConfigGoal → P4A : GoalInitializer

Body: The Jadex MConfigGoal concept is used to assign an initial goal to an

agent instance. It corresponds to the Pim4Agents GoalInitializer concept.

The referenced Jadex goal type (concept MGoal) is resolved and assigned to the

GoalInitializer (after it has been mapped by MR-10).

MR-5: BDI : MConfigBelief → P4A : KnowledgeInitializer

Body: The Jadex MConfigBelief concept initializes an agent instance’s MBelief.

It corresponds to the Pim4Agents KnowledgeInitializer concept. The MBelief

declaration is resolved and assigned to the Pim4Agents KnowledgeInitializer

(after it has been mapped by MR-8).

6.2 BDI Mappings

The mapping rules related to the Jadex BDI metamodel extract the agent types of

the MAS. This includes capabilities, internal events, and the goal hierarchy. One

further important aspect is the visibility (scoping) of beliefs between an agent and

its capabilities and plans. Jadex has no explicit representation of organizational

structures. How an agent manages its relations to other agents depends on the

engineer who designed the MAS. Thus, there exists no generic way for extracting

the organizational structure (see discussion in Section 6.6). Figure 6.3 depicts an

overview of the mappings of the BDI, behavior, and interaction mappings.
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Figure 6.3: The left hand side depicts concepts of the Jadex BDI metamodel (gray)
and Java metamodel (white). The right hand side depicts the target concepts in
Pim4Agents.

MR-6: BDI : MBDIAgent → P4A : Agent

Body: This rule maps a Jadex MBDIAgent to a Pim4Agents Agent. Table 6.2

summarizes the details. Each MPlan declaration of the MBDIAgent is mapped by

MR-11 to a Pim4Agents PlanUse. Additionally, a default DomainRole with the

name of the agent is created. The DomainRole is used during the manual refine-

ment step for modeling missing organizational structures.

MR-7: BDI : MCapability → P4A : Capability

Body: As discussed in Section 4.2, the concept MBDIAgent inherits from MCapbili-

ty. Thus, the mapping rules for both concepts are very similar and we refer to

Table 6.2 for the details. The major difference is that no DomainRole is created

for the MCapability (as it has no own execution thread).

MR8: BDI : MBelief → P4A : Knowledge

Body: The concept MBelief is used by a Jadex agent or capability to store in-

formation. The name of the MBelief is assigned as name of the Pim4Agents

Knowledge. The data type of the MBelief is mapped by MR-27 and assigned to

the Knowledge’s type attribute.
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MR-6: BDI : MBDIAgent → P4A : Agent
target source MR

name The name of the Jadex MBDIAgent is set as the name of the
Pim4Agents Agent.

–

know-
ledge

Each MBelief that is declared by the MBDIAgent is mapped to
a Pim4Agents Knowledge.

8

capa-
bility-
Use

Each MCapabilityReference of the MBDIAgent is mapped to a
CapabilityUse of the Pim4Agents Agent. An MCapability-

Reference represents an imported MCapablity.

12

plan-
Use

Each MPlan that is declared by the MBDIAgent is mapped to a
Pim4Agents PlanUse. The PlanUse contains a reference to
the Pim4Agents Plan which is generated from the Java plan
class (concept AbstractTypeDeclaration).

11,
13

domain-
role

A default Pim4Agents DomainRole is created. It has the name
of the agent.

Table 6.2: Details of the agent mapping (MR-6).

MR-9: BDI : MInternalEvent → P4A : Signal

Body: This rule maps a Jadex MInternalEvent to a Signal in Pim4Agents.

The MInternalEvent’s MParameter elements are mapped by MR-24 to Pim4-

Agents Knowledges.

MR-10: BDI : MGoal → P4A : ConcreteGoal

Body: This rule defines the mapping of a Jadex MGoal to a Pim4Agents Con-

creteGoal. Pim4Agents as well as Jadex distinguish between perform goals,

achieve goals, maintain goals, and query goals (see Chapter 4). The goal types are

mapped accordingly. An MGoal’s name is set as the name of the Pim4Agents

ConcreteGoal. The Jadex MGoal’s MParameter elements are mapped by MR-

24 to Pim4Agents Knowledges. Conflicts between Jadex MGoals defined by

the inhibits relationship are mapped to the conflictingGoals relationship in

Pim4Agents. The target and maintain conditions are assigned to the correspond-

ing attributes in Pim4Agents.

Goal Hierarchy Extraction. Goals and goal hierarchies play a central role in

AOSE. During the design of a SUC, agent engineers decompose complex goals into

sub-goals. The goal analysis is usually performed using AND/OR-decomposition

trees. A means-end analysis step is used to specify how goals are achieved by means
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(behaviors). Usually, this process is done top-down. The model-driven AORE

approach for Jadex starts with an already existing means-end decomposition and

extracts the goal hierarchy as far as possible (bottom-up). Goal hierarchies are not

explicitly represented in Jadex. The design extraction transformation analyzes the

dispatchSubgoal() Jadex API invocations inside the body() method of the Java

behaviors. Moreover, the trigger properties of the MPlans are used to compute

the goal hierarchy. Figure 6.4 depicts the patterns in Jadex and their mappings to

Pim4Agents. The relevant plan set Πg represents the set of plan templates that

are triggered by an MGoal g . The computed sub-goals of an MGoal are assigned

to a Pim4Agents goal’s subgoalLinks property. It is assumed that plans post

goals sequentially. Basically, we distinguish three cases:

1. | Πg |= 1: There exists exactly one relevant plan π ∈ Πg for goal g . The rele-

vant plan π posts a sequence of sub-goals (g1, . . . , gn). Since we assume that

goals are posted sequentially, an AND-decomposition from g to (g1, . . . , gn)

is defined (case a). If π does not post sub-goals, g is mapped without any

decompositions (case b).

2. | Πg |> 1: If there exists more than one relevant plan for g , it depends

on the plans’ preconditions which one is applicable in a certain situation.

Thus, g and its sub-goals (g11, . . . , g1x , . . . , gn1, . . . , gny) are mapped to an

OR-decomposition.

3. | Πg |= 0: Every goal g should have at least one relevant plan. If this is not

the case, g is mapped by MR-10 without any decomposition information.

MR-11: BDI : MPlan → P4A : PlanUse

Body: An MPlan defines the header information of a Jadex behavior specification

(e.g. triggering event and precondition). Moreover, it references the Java class

which implements the behavior and defines the parameters that are passed by the

agent to the plan (concept MPlanParameter). This rule maps a Jadex MPlan to

a Pim4Agents PlanUse. The PlanUse concept specifies the parameter interface

using the Pim4Agents KnowledgeBinding concept. One KnowledgeBinding is

created for every MPlanParameter of the MPlan. All other behaviors related as-

pects (e.g. the behavior implementation) are handled by MR-13.
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Figure 6.4: This figure shows how the goal hierarchy is extracted from Jadex. It
is assumed that plans post goals sequentially.

MR-12: BDI : MCapabilityReference → P4A : CapabilityUse

Body: The MCapabilityReference concept imports an MCapability to a Jadex

MBDIAgent (similar to a PlanUse for plans). This rule maps a Jadex MCapability-

Reference to a Pim4Agents CapabilityUse. The CapabilityUse specifies the

parameter interface using the Pim4Agents KnowledgeBinding concept. For ev-

ery MBelief of the MBDIAgent that defines an assignto relationship for passing

the MBelief to the imported MCapability, an according Pim4Agents Knowl-

edgeBinding is created.

6.3 Behavior Mappings

As already discussed, the Java classes of a Jadex application are lifted to a Java

model. Since the underlying Java metamodel only defines generic Java concepts

(not specific to Jadex), the Jadex API is additionally taken into consideration

to identify the relevant artifacts (see Table 4.1). In the following, the precondi-

tions of the mapping rules define Jadex-specific constraints to the Java concepts

(e.g. whether a Java MethodInvocation represents an invocation of the Jadex

dispatchSubgoal() method). Figure 6.5 depicts an overview of the mappings

related to the Jadex behavior metamodel. Every Java class that implements a

Jadex plan has a body() method which implements the actual behavior. The

body() method consists of a sequence of Java statements (s0, . . . , sn) of concept
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Figure 6.5: The left hand side depicts concepts of the Java metamodel. The gray
concepts are instances of the Java concept MethodInvocation. The right hand
side depicts the target concepts in Pim4Agents.

Statement. In order to map the a Java-based behavior to a Pim4Agents Plan,

the transformation iterates over all statements of the behavior and applies the

according mapping rules. Algorithm 6.1 depicts the according process. Java con-

cepts that are mapped to Pim4Agents StructuredActivities contain nested

code blocks with additional Statements (e.g. an if-then-else or a for-loop). The

sub-sequences are recursively transformed by Algorithm 6.1. Concepts for which

no mapping rule applies are aggregated and mapped to an InternalTask (see

MR-20). An InternalTask in Pim4Agents is used to encapsulate business logic

or aspects that are not modeled in Pim4Agents (e.g. algorithms). The vari-

ables that are accessed by the aggregated statements are used as interface for the

InternalTask. Besides the mapped Activities, Algorithm 6.1 also returns a set

of ControlFlows. The ControlFlows link the mapped Activities according to

their execution order.

MR-13: JAVA : AbstractTypeDeclaration,BDI : MPlan → P4A : Plan

Pre: $self.superclass = “jadex.bdi.runtime.Plan”

Body: This rule maps a Java class (concept AbstractTypeDeclaration), that

inherits from the Jadex API class jadex.bdi.runtime.Plan, to a Pim4Agents

Plan. Additionally, the plan’s meta information defined by the MPlan is taken into

consideration. Table 6.3 depicts the details of this mapping rule.
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Algorithm 6.1 This algorithm controls the behavior extraction. The stmts pa-
rameter is a sequence of Java Statements (s1, . . . , sn). The algorithm returns a
sequence of Pim4Agents Activities that are connected by ControlFlows. The
function relevantStatement() returns true if the parameter is an instance of a
type that is handled by one of the mapping rules defined by this section. “MR-X”
stands for the rule that is applicable to a Java Statement.

1: processStatementSequence(stmts) {
2: activities := Sequence{}
3: flows := Set{}
4: unknown := Sequence{}
5: for i = 1 to | stmts | do
6: s := stmts [i ]
7: if relevantStatement(s) ∧| unknown |= 0 then
8: activities := activities .append(MR-X(s))
9: else if relevantStatement(s) ∧| unknown |> 0 then

10: activities := activities .append(MR-20(unknown))
11: activities := activities .append(MR-X(s))
12: unknown := Sequence{}
13: else
14: unknown := unknown.append(s)
15: if i =| body | then
16: activities := activities .append(MR-20(stmts))
17: end if
18: end if
19: end for
20: flows := MR-21(activities)
21: return Sequence{activities ,flows}
22: }

MR-14a/b: JAVA : MethodInvocation → P4A : AssumeGoal

Pre: a) $self.name = “jadex.bdi.runtime.Plan.dispatchSubgoal”;

b) $self.name = “jadex.bdi.runtime.Plan.dispatchSubgoalAndWait”

Body: Goals in Jadex are posted by calling the (a) dispatchSubgoal() or

(b) dispatchSubgoalAndWait() methods (asynchronous and synchronous). Both

methods get an instance of an MGoal declaration as input. The method invo-

cation is mapped to a Pim4Agents AssumeGoal task. The declaration of the

posted MGoal is resolved within an agent or capability model and assigned to the

Pim4Agents AssumeGoal task (see MR-10).
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MR-13 JAVA : AbstractTypeDeclaration,BDI : MPlan → P4A : Plan
target source MR

name The name of the Java AbstractTypeDeclaration is assigned to
the Pim4Agents Plan.

–

local-
Know-
ledge

Each VariableTypeDeclarationSatement is mapped to a
Pim4Agents Knowledge.

25

steps The plan class’s body() method is resolved (concept Abstract-
MethodDeclaration) and all contained Java Statements are
mapped by Algorithm 6.1 to corresponding Pim4Agents Ac-

tivities. The resulting task sequence is started by a Begin

and terminated by an End task.

14
to
20

control-
Flow

Algorithm 6.1 also returns a set of Pim4Agents ControlFlows
which define the execution order of the mapped Activities.

21

Table 6.3: Details of the behavior mapping (MR-13).

MR-15a/b: JAVA : MethodInvocation → P4A : Send

Pre: a) $self.name = “jadex.bdi.runtime.Plan.sendMessage”;

b) $self.name = “jadex.bdi.runtime.Plan.sendMessageAndWait”

Body: Messages in Jadex are sent using the (a) sendMessage() and (b) sendMes-

sageAndWait() methods. The methods get an MMessageEvent as parameter.

The referenced MMessageEvent declaration is resolved inside an agent or capa-

bility model. The resolved message is mapped by MR-23 and assigned to the

Pim4Agents Send task’s message attribute (see MR-23). Resolving the message

declaration is not always possible since Jadex message events can also be assem-

bled in Java code which makes the extraction difficult.

MR-16a/b: JAVA : MethodInvocation → P4A : Receive

Pre: a) $self.name = “jadex.bdi.runtime.Plan.waitForMessageEvent”;

b) $self.name = “jadex.bdi.runtime.Plan.waitForReply”

Body: The Jadex (a) waitForMessageEvent() and (b) waitForReply() methods

are mapped to a Pim4Agents Receive task. The methods get an MMessageEvent

as parameter. The MMessageEvent defines a template for the event to be received.

The parameter is resolved to an MMessageEvent declaration in an agent or capabil-
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ity model. This is not always possible since Jadex message events can also be

assembled in Java code which makes a generic extraction difficult.

MR-17: JAVA : MethodInvocation → P4A : Wait

Pre: $self.name = “jadex.bdi.runtime.Plan.waitFor”

Body: A call to the Jadex waitFor() method is mapped to a Pim4Agents Wait

task. The method’s timeout parameter is assigned to the timeout attribute of the

Wait task.

MR-18: JAVA : ForStatement → P4A : Loop

Body: A ForStatement is directly mapped to a Loop in Pim4Agents. The de-

clared variables (concept VariableDeclarationStatement) are mapped to Know-

ledges (see MR-25). The contained Java Statements are transformed by Algo-

rithm 6.1 to Pim4Agents Activities. Additionally, a Pim4Agents Begin task

is prepended to the resulting sequence and an End tasks is appended. The accord-

ing ControlFlows are created and assigned to the Loop’s flows attribute.

MR-19: JAVA : IfStatement → P4A : Decision

This rule maps a Java IfStatement to a Pim4Agents Decision. Each branch

b1, . . . , bn of the if-then-else statement consists of a sequence of Java Statements.

Algorithm 6.1 is applied to each of the branches. One Begin task is added to the

Decision to fork the n branches and one End task to join them. If n = 1, an

additional empty branch from Begin to End is inserted using a ControlFlow. The

created ControlFlows are assigned to the Decision’s flows attribute.

MR-20: Sequence(JAVA : Statement)→ P4A : InternalTask

Body: A sequence of Java Statements that cannot be mapped to a certain

Pim4Agents Task or StructuredActivity is mapped to an InternalTask. An

InternalTask is a black box that encapsulates business logic. All variables that

are accessed by the enclosed code are added as input/output parameters to the

InternalTask (see MR-25).
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MR-21: Sequence(P4A : Activity)→ Set(P4A : ControlFlow)

Pre: $self -> size() > 1

Body: The execution order of Activities in Pim4Agents is defined by Control-

Flows. This mapping rule links the passed Activities in $self according to their

order in the source Sequence with ControlFlows. The result of this mapping rule

is the set of created ControlFlows.

6.4 Interaction Mappings

Jadex message events (concept MMessageEvent) are usually declared by an agent

or capability model (they can also be assembled programmatically using Java

code). The actual sending/receiving is performed by Java-based behaviors. As

Jadex has no explicit representation of interaction protocols, Pim4Agents pro-

tocols can only be partially extracted. Thus, the protocols have to be manually

refined afterwards.

MR-22: BDI : MCapability → P4A : ProtocolConfiguration

Pre: $self.messageevent -> size() > 0

Body: This rule maps a Jadex MCapability to a Pim4Agents ProtocolConfi-

guration. It is important to note that this mapping rule also applies to the concept

MBDIAgent (MBDIAgent inherits from MCapability). Each declared MMessageEvent

is mapped by MR-23 to a Pim4Agents Message and assigned to the ProtocolCon-

figuration.

MR-23: BDI : MMessageEvent → P4A : Message

Body: The name of the MMessageEvent is assigned to the Pim4Agents Message.

If the MMessageEvent conforms to a FIPA message, the content parameter is

used to determine the content type. We propose to use an already existing

Pim4Agents interaction protocol from a model repository to manually refine

the extracted Pim4Agents Messages (see discussion in Section 6.6).



6.5. DATA MODEL MAPPINGS 111

6.5 Data Model Mappings

As discussed in Section 3.3.3, the Bochica data model is based on Ecore. There

are two possibilities how to use the data model in the reverse engineering approach:

(i) the data model can be automatically extracted using the mapping rules pre-

sented in this section and (ii) it can be manually created for small projects using

the Ecore modeling tool (see also [Steinberg et al., 2008]). In the following, the

mapping rules for the data model aspect are introduced. As part of Section 5.5,

Table 5.5 already defined basic type mappings from Bochica to Java which also

apply to the reverse transformation (in inverse direction). If no data type defini-

tion can be found in the Java model (e.g. because it is part of an external library

that is not accessible to the model transformation), the type strings that are used

within the Jadex PSM are mapped to placeholders (see MR-27).

MR-24: BDI : MParameter → P4A : Knowledge

Body: The Jadex MParameter concept specifies the parameters of events and

plans. In Pim4Agents, an MParameter is mapped to a Pim4Agents Knowledge.

The name and type of the MParameter are mapped one-to-one to the Knowledge’s

name and type (see MR-27). The parameter direction (in, out, inout) is assigned

to the Knowledge accordingly.

MR-25: JAVA : VariableDeclarationStatement → P4A : Knowledge

Body: A VariableDeclarationStatement is used by a Java-based plan body

to declare a local variable. The VariableDeclarationStatement is mapped to

a Pim4Agents Knowledge. The variable name is assigned as the Knowledge’s

name. The data type is mapped by MR-26.

MR-26a/b: JAVA : AbstractTypeDeclaration → ECORE : EClass ,P4A : EType

Body: This rule maps a Java class to (a) an Ecore EClass and (b) an according

Pim4Agents EType that makes the EClass available within the Pim4Agents

model. The EClass’s instanceClassName attribute holds the fully qualified name

of the Java class. Moreover, the attributes (concept VariableDeclarationState-

ment) and methods (concept AbstractMethodDeclaration) are mapped to EAt-

tributes and EOperations of the Ecore EClass.
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MR-27a/b: String → ECORE : EClass ,P4A : EType

Pre: fully qualified Java class name

Body: If a data type used by the source model cannot be resolved within the

Jadex Java model (see MR-26), this mapping rule is responsible for mapping the

fully qualified Java type string to a placeholder EClass. The EClass uses its

instanceClassName attribute to store the type information. For every EClass,

an according Pim4Agents EType is created that imports the EClass into the

Pim4Agents model.

6.6 Summary

This chapter introduced a novel reverse engineering approach for BDI agents. A

model-driven approach was chosen to extract the underlying design of an already

implemented Jadex application to the platform-independent Bochica core DSL.

In order to extract the underlying design, we specified conceptual mappings from

the Jadex PSM to the Bochica core DSL. The design extraction is done in two

steps. First, the platform artifacts are lifted by a model extractor to the Jadex

PSM. Afterwards, the conceptual mappings to Bochica are applied. It is im-

portant to note that the forward transformation presented in Chapter 5 and the

reverse transformation of this chapter are not isomorphic – meaning, the reverse

transformation followed by the forward transformation (or vice versa) does not

produce the exact same model/code. One of the main problems is that there exist

many different “flavours” of how to implement a Jadex application. Thus, it is

hard to specify generic mapping rules which cover all variants. Moreover, there

also exist conceptual mismatches (see Table 6.4). The mismatches are caused

by (i) high-level concepts that are not represented explicitly at the platform, (ii)

concepts that have a slightly different semantics, and (iii) low-level details that

are abstracted by Bochica. For example, Jadex has no explicit representation

of organizational structures and interaction protocols. Moreover, there exists no

concept for knowledge bases (the integration is left open to the developer). Jadex

provides the possibility to configure platform services (e.g. messaging or directory

services). Those services are not explicitly considered by Bochica and setup by

the Jadex forward transformation. Furthermore, business logic (e.g. an algorithm

implemented in Java) is abstracted by the Bochica core DSL as black box. Like-

wise, expressions (e.g. Java conditions) are currently mapped as plain strings. An
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Jadex Pim4Agents

– Organization
– DomainRole
– Interaction
– KnowledgeBase
Platform Service –
Business Logic –
Expressions –
Fine-grained
Goal Semantics

–

Table 6.4: Conceptual mismatches between Jadex and the Bochica core DSL.

ideal solution would be to create a Jadex extension for Bochica that enables

Bochica for native Jadex expressions. Finally, Jadex and Bochica share the

same four goal types. However, Jadex provides more fine-grained control over the

goal life cycle. As agent technology is getting applied more widely in main stream

software engineering and the number of legacy agent systems increases, reverse

engineering of agent-based systems is getting increasingly important. The concep-

tual mappings presented in this chapter were implemented as a QVT-based model

transformation. Section 8.2 evaluates the reverse engineering approach in the IRL

case study. The presented approach drastically increases the number of available

models for model-driven AOSE and Bochica. Moreover, it lays the foundation

for model-driven refactoring of existing applications and roundtrip engineering.
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Chapter 7

An Extension Model for Agents

in Semantically-enhanced Virtual

Worlds

Virtual worlds play an increasingly important role for many application domains.

Besides entertainment, they are used for serious applications like digital engineer-

ing and for training employees in virtual environments before a product or plant

has been actually built. As of today, realistic and flexible behavior of agents in

virtual worlds is usually simulated by triggered script sequences which create the

illusion of intelligent behavior for the user. In the research project Intelligent

Simulated Realities (ISReal), the DFKI Agents and Simulated Realities (ASR) re-

search group developed a simulation platform based on Semantic Web technology

for bringing intelligent behavior into virtual worlds [Kapahnke et al., 2010]. The

basic idea of ISReal was to use Semantic Web technology to extend geometric

objects with ontological information and specify their functionality by semantic

service descriptions, called object services (see Figure 7.1). Intelligent agents per-

ceive this information, store it in their knowledge base, and use it for reasoning and

planning. Thus, agents can interact much more flexible with their environment.

The design of intelligent ISReal agents requires the combination of concepts and

techniques developed by the Semantic Web community, computer graphics, and

AOSE. In the following, an extension model for intelligent agents in semantically-

enhanced virtual worlds is presented. The extension model complements Bochica

with ISReal-specific concepts (e.g. for orchestrating object services and Semantic

Web reasoning languages). The domain-specific extensions enable an engineer to

address concepts specific to ISReal without considering low-level technical details.

This also reduces the need for manual customizations at code level and prevents

that design and code diverge over time. In ISReal, I was responsible for the con-
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Figure 7.1: The left hand side depicts the geometry of a door as part of the scene
graph. A scene graph object is annotated with (i) an ontological concept and
object URI, as well as (ii) the offered object services. The right hand side depicts
a part of the global ontology for the concept Door. The lower part shows the
OpenDoorService object service. The precondition has to be entailed by the global
world state in order to execute the service. The service is grounded in animation
scripts. The effects are updated during service execution.

ceptual design and realization of the agent-specific aspects. In the remainder of

this chapter, Section 7.1 provides an overview of the ISReal platform and Section

7.2 discusses the properties of intelligent ISReal agents. Afterwards, Section 7.3

specifies the ISReal extension model for Bochica and Section 7.4 discusses the in-

tegration of external reasoning languages. The ISReal extension transformation is

presented in Section 7.5. Finally, Section 7.6 provides an overview of the notation

of the ISReal concepts.

7.1 The ISReal Platform

The ISReal platform provides the infrastructure for combining different types of

simulation components for deploying simulated realities. Currently, the ISReal

platform provides interface definitions for four different types of simulation com-

ponents:
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Global Semantic Environment. The Global Semantic Environment (GSE)

maintains the global ontological facts of the virtual world. It is responsible for (i)

executing object services (e.g. checking the precondition and invoking the service

grounding), (ii) updating facts (e.g. when a door gets closed), and (iii) handling

queries to the global world state.

Agent Environment. The ISReal agent environment defines interfaces for

connecting 3rd-party agent execution platforms to the ISReal platform. This in-

cludes infrastructure for perception handling and service execution. Every ISReal

agent is equipped with a Local Semantic Environment (LSE) which is an agent’s

local knowledge base. The LSE stores the perceived information and enables the

agent to reason about it. Moreover, the LSE is equipped with a Service Composi-

tion Planner (SCP).

Graphics Environment. The user interface of the ISReal platform is real-

ized by an XML3D63-enabled standard Web browser [Sons et al., 2010]. The 3D

scene graph is part of the browser’s Document Object Model (DOM) and can be

manipulated using Java Script. The semantic annotation of 3D objects is realized

using RDFa [W3C, 2008a]. Moreover, the graphics environment runs the agent

sensors. The sensors enable agents to perceive the annotated 3D objects.

Verification Environment. The verification environment is used to verify

properties of the scene objects (e.g. whether there exists a failure state for a cer-

tain configuration of a machine). The verification environment is not considered

by this dissertation.

7.2 Intelligent ISReal Agents

An intelligent ISReal agent consists of (i) the body geometry and animations, (ii)

semantic annotations, (iii) a sensor component, (iv) the agent that processes the

perceptions and controls the body, and (v) an OWL-based knowledge base (see

Figure 7.2). An agent’s body geometry is part of the scene graph like any other

annotated object. The geometry and animations are developed using state-of-the-

art 3D modeling tools like Cinema 4D64 or Blender65. The Semantic Annotation66

(SA) Tool is an XML3D-based tool for semantically annotating 3D objects. It

has been developed as part of the ISReal project. The agent that controls the

body is developed using Bochica and the ISReal extension model presented in

63http://www.xml3d.org
64http://www.maxon.net/products/cinema-4d-studio/
65http://www.blender.org
66http://www.dfki.de/isreal/xml3dsat/xml3dAnnotation.xhtml

http://www.xml3d.org
http://www.maxon.net/products/cinema-4d-studio/
http://www.blender.org
http://www.dfki.de/isreal/xml3dsat/xml3dAnnotation.xhtml
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Figure 7.2: This figure depicts the different artifacts that encompass an ISReal
agent configuration and the according tools.

this chapter. Finally, Semantic Web tools like Protegé67 are used to model the

ontologies and semantic service descriptions. Before we introduce the extension

model for ISReal agents, some more details about the ISReal agent architecture

are discussed. The background information is required to derive the requirements

for creating the ISReal extension model.

ISReal Agent Architecture

Figure 7.3 depicts an architectural pattern for ISReal agents. It is independent of

a concrete agent platform. In order to enable a 3rd-party agent platform to host

ISReal agents, the pattern has to be realized for that platform. As part of the

ISReal project, this has been done for the BDI agent platforms Jack and Jadex.

The LSE equips an agent with (i) an OWL-based knowledge base, (ii) a Semantic

Web reasoner, and (iii) a Service Composition Planner (SCP). The remainder of

this section provides an overview of the different components of the ISReal agent

architecture.

Behavior Component. Intelligent ISReal agents are autonomous entities

which are situated in a 3D scene, use perception-based service discovery, and

orchestrate the object services of their environment in order to achieve their design

objectives. The orchestration can be done (i) by an agent developer at design-

time by modeling behavior templates or (ii) during runtime by the SCP. The

behavior component provides interfaces for invoking the SCP and executing object

67http://protege.stanford.edu

http://protege.stanford.edu
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Figure 7.3: This figure depicts an architectural design pattern for ISReal agents.
The components are connected by control flows (continuous lines) and information
flows (dotted lines).

services. The sequence diagram depicted by Figure 7.4 visualizes an object service

invocation. First, the agent checks whether the service’s precondition holds in

its LSE. Afterwards, the agent invokes the service by passing the service Unified

Resource Identifier (URI) and according parameter bindings to the GSE. The GSE

checks whether the precondition holds globally. If so, it invokes the according

service grounding which performs simulation and animation calls. Finally, the

effects of the service are updated by the GSE. The effects are not delivered to the

agent. The agent uses its sensor to indirectly perceive the effects. After the agent

perceived the effects, it requests the according facts from the GSE and updates its

LSE. In order to prevent the agent from deadlocks, timeout te restricts the total

execution time. If the effects are not perceived in time, the agent assumes the

service call to be failed.

Perception Component. An intelligent ISReal agent’s sensor is maintained

by the graphics environment. As part of the ISReal project, XML3D has been

extended with a sensor node that shoots rays into the scene to compute the line of

sight (parameters: resolution, opening angle, and update rate). The sensor causes

perception events which are handled by the perception component of the agent.

A perception event contains the object’s ID in the scene graph and the semantic

annotations of that object. Figure 7.5 visualizes the perception delivery process

of the ISReal platform. As an object o enters the sensor area sa of an agent a, it

causes a perception event for a. Moreover, the tuple (a, o) is added to the GSE’s

visibility list. The visibility list is necessary to notify a when the ontological facts
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Figure 7.4: This sequence diagram visualizes the execution of object services. te
is the total time between the service invocation and the perception of the effects
and tp is the time that passes between setting the facts in the GSE and perceiving
the facts by the agent.

about o change while o is already in the line of sight. The underlying problem

is that the global world state is distributed over the scene graph (geometry) and

the GSE (semantic facts). Thus, semantic changes might only be recognized by

the GSE – not by the sensor observing the geometry (e.g. switching a machine

on). The agent’s perception component proceeds with fetching the facts about o

from the GSE and updating the agent’s LSE. If the facts about an object change

(e.g. as part of a service execution), the GSE notifies all agents that are registered

at the visibility list for o. Finally, as an object moves out of the sensor area, the

sensor notifies the agent and the GSE. The GSE removes the entry (a, o) from

the visibility list. It is important to note that (i) agents can overlook effects when

the affected object is not in the line of sight and (ii) an agent’s LSE might get

inconsistent with the GSE over time. Those properties are design decisions in

order to simulate realistic perception. This causes high requirements towards the

design of the agent who has to flexibly interact with the environment it is located

in.

Information Component. In order to make rational decisions, intelligent

ISReal agents reason about the beliefs stored in their LSE. For example, context

conditions and preconditions of plans have to be evaluated in the LSE. Moreover,

the target conditions of goals are evaluated in the LSE to decide whether an

agent assumes its goals to be achieved. The information component provides

the interfaces for integrating the LSE into a 3rd-party agent platform. Moreover,
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Figure 7.5: This figure visualizes the perception delivery mechanism of the ISReal
platform.

it provides basic operations for processing perception data and handling queries

to the LSE. In ISReal, the T-box (ontological types) is assumed to be globally

known and static. However, an agent’s A-box (object knowledge) evolves as new

individuals are discovered.

7.3 Conceptual Extension

As introduced in Chapter 3, the core DSL underlying the Bochica framework

covers the core concepts of MAS. Modeling ISReal agents using just the Bochica

core DSL is possible, but many details specific to agents in semantically-enhanced

virtual worlds cannot be captured since the according concepts are missing. For

example, an ISReal agent’s LSE is based on Semantic Web technology, the agent’s

body is a geometrical and annotated object in the scene graph, and the sensor has

ISReal-specific properties. By extending Bochica, large parts of the infrastruc-

ture for modeling MAS can be reused. Moreover, Bochica enables the separation

between MAS design and code. Figure 7.6 depicts the big picture of the Bochica

framework for developing ISReal agents. In the following, we introduce the exten-

sion model which extends Bochica with ISReal-specific concepts.
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Figure 7.6: The bottom layer depicts the components of the ISReal platform. The
upper central part shows the inherent degrees of abstraction of Bochica. The
left an right hand sides represent the interfaces for extending the framework.

Section 7.2 already provided an overview of the components that encompass

an ISReal agent. All parts have to be integrated into one consistent ISReal agent.

Figure 7.7 depicts the ISReal extension model for Bochica. In order to link a

Bochica Agent to its geometrical body, the ISRealAgent concept provides an

URI. Moreover, the ISRealAgent has (like every 3D object in ISReal) an on-

tological concept defined by an URI. The ISRealRaySensor concept specializes

the Bochica Sensor concept for ISReal. For example, it provides additional

properties like resolution, opening angle, and update rate. An intelligent ISReal

agent’s knowledge base is based on Semantic Web technology. For this purpose, the

LocalSE concept specializes the KnowledgeBase concept for ISReal. The ISReal

platform already provides a metamodel for configuring the LSE, called Ontology

Management System Configuration (OMSConfig). The OMSConfig metamodel is

used for configuring ontologies, object services, and other parameters of the LSE.

The extension model imports the OMSConfig concept of the ISReal platform. The

OntologyFile concept is used to refer to ontologies (e.g. A- and T-box, as well as

semantic service descriptions). Bochica already provides support for orchestrat-

ing traditional Web services by plans (see Section 4.1). Since ISReal object services
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Figure 7.7: This figure depicts the main concepts of the ISReal extension model.
Four types of concepts are shown: (i) interface concepts of Bochica (yellow),
(ii) concepts of the ISReal extension model (gray), (iii) concepts of the ISReal
platform (orange), and (iv) concepts of the SPARQL metamodel (green).

need similar parameters to ordinary Web services, the existing InvokeWS concept

can be reused. However, the technical meaning of the concept changes during code

generation. Instead of generating code for the invocation of a traditional Web ser-

vice, the generated code invokes an ISReal object service of the GSE (see Section

7.5). Likewise, messaging between agents causes an additional logging event to

the ISReal platform (e.g. for the visualization of negotiations). The integration of

Semantic Web reasoning languages is discussed in the succeeding section.

7.4 Language Extension

In order to make rational decisions, it is essential for intelligent ISReal agents to

reason about their beliefs. GSE and LSE use the Resource Description Framework

(RDF) [W3C, 2004a] for knowledge representation. The interface to a knowledge

base is usually defined by a query language. The SPARQL Protocol And RDF

Query Language (SPARQL) [W3C, 2008b] is a widely supported query language

for RDF graphs. GSE and LSE use SPARQL as query interface. There exist

different kinds of SPARQL queries. A SPARQK-Ask query returns a boolean

value. The result depends on whether a variable binding is found or not (| result |>
0). A SPARQL-Select query returns a set of variable bindings for the unbound

variables of the query. In the following, we discuss the integration of SPARQL

into Bochica.

As explained in Section 3.3.2, Bochica defines language interface concepts for

integrating 3rd-party software languages. One requirement for integrating exter-

nal software language is that the language specification is based on Ecore. The
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Figure 7.8: The main concepts of the EMFText SPARQL metamodel.

EMFText concrete syntax zoo already provides an Ecore-based SPARQL DSL68

which we reused for the ISReal extension model. Figure 7.8 depicts the EMF-

Text SPARQL metamodel. SparqlQueries is the root concept of the metamodel.

It consists of a Prologue which defines name spaces and the actual query object.

The four concepts ConstructQuery, SelectQuery, AskQuery, and DescribeQuery

represent the four query types of SPARQL. The Bochica BooleanExpression

has been extended with SPARQL-Ask and the ContextCondition with SPARQL-

Select (see Figure 7.7). The automatically generated parser of EMFText is used

for parsing textual SPARQL queries into SPARQL query models that are plugged

into the Bochica extension slot (see Section 3.3.2). EMFText also provides a

SPARQL editor with syntax highlighting for convenient query editing.

7.5 ISReal Extension Transformation

Section 3.4 introduced a forward transformation architecture which is tailored to

the needs of Bochica. Base transformations map the concepts of the Bochica

core DSL to platform artifacts. Extension transformations complement the base

transformation with additional conceptual mappings for a certain execution envi-

ronment. In the following, we consider Jadex as target platform for implementing

intelligent ISReal agents. The conceptual mappings of the Jadex base transforma-

tion presented in Chapter 5 are taken as basis for the ISReal extension transfor-

mation. The remainder of this section introduces additional conceptual mappings

for the ISReal extension model. Figure 7.9 depicts an overview of the ISReal-

specific transformation architecture. The base transformation from Bochica to

68http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_SPARQL

http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_SPARQL
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Figure 7.9: ISReal (Jadex) transformation overview. The left hand side depicts
the Jadex base transformations. The blue part depicts the ISReal extension trans-
formation.

Jadex consists of the four modules application, BDI, interaction, and behavior (see

Chapter 5). The blue parts in Figure 7.9 depict (i) the ISReal extension model,

(ii) the ISReal extension to the Jadex base transformation, (iii) the generation of

ISReal configuration files (e.g. ISReal PSM), and (iv) an additional ISReal library

that enables Jadex for the ISReal platform. The ISReal library implements the in-

terfaces of the ISReal agent environment as presented in Section 7.2 for the Jadex

platform (e.g. it equips a Jadex agent with an LSE). Moreover, it includes Jadex

into the start-up procedure of the distributed ISReal platform. In the following,

we provide an overview of the extension transformation. The mapping rules have

the same structure as those of Chapters 5 and 6. Concepts of the ISReal extension

model have the prefix ISREAL. The ISReal mapping rules use the two keywords

extends and replace to refer to mapping rules of the Jadex base transformation.

Extends means that the original mapping rule is modified, whereas replace sub-

stitutes the original mapping rule by the ISReal-specific one. Mapping rules of the

Jadex base transformation are referenced by MRB-X.

MR-1: ISREAL : ISRealAgent → JADEX : MBDIAgent extends MRB-4

Body: This mapping rule extends MRB-4 for mapping an ISRealAgent agent to

Jadex. The generated code implements the ISReal agent architecture as depicted

in Figure 7.3. For example, every Jadex ISReal agent is equipped by default with

an ISReal capability that provides access to the ISReal library (e.g. the LSE).
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Additional beliefs for storing the semantic concept and object URIs, the reference

to the geometrical body, the sensor parameters, and information for connecting

to the ISReal platform are generated. Moreover, for every PlanUse (MRB-7) and

CapabilityUse (MRB-6), additional parameter bindings are generated that make

the ISReal capability (e.g. the LSE) accessible within the used plans and capabil-

ities of an agent (e.g. to evaluate the precondition of a plan in the LSE).

MR-2: ISREAL : SPARQLAsk → JADEX : MStaticValue extends MRB-39a

Pre: $self.eContainer.oclIsTypeOf(P4A:Plan)

Body: The SPARQL-Ask precondition of a Bochica Plan is mapped to a precon-

dition (concept MStaticValue) of an MPlan in Jadex. Wrapper code for evaluating

the query in the LSE is generated (Section 8.1.2 provides an example). The Jadex

ISReal library provides a transparent layer for evaluating the SPARQL-Ask query

in the LSE. The model transformation also resolves the variable symbols of the

query in the surrounding scope of the expression (see Figure 7.10 a). For example,

assuming that v1 is a variable defined in the surrounding scope (e.g. the belief

base) that should be used as parameter in a plan’s SPARQL-Ask precondition, the

mapping rule first checks whether the MPlan declares such a parameter. If not, it

is tried to resolve the symbol in the parameters of the triggering event (concept

MPlanTrigger). Finally, the MBeliefbase is checked. If no match can be found,

the variable stays unbound. It is also possible to explicitly define the scope by

using variable prefixes as depicted in Figure 7.10.

MR-3: ISREAL : SPARQLAsk → CODE : Expression extends MRB-39c

Pre: $self.eContainer.oclIsTypeOf(P4A:ControlFlow)

Body: A SPARQL-Ask condition contained by a ControlFlow is mapped to Java

code that invokes the LSE. The ISReal library provides the according interface for

evaluating the query in the LSE. For example, this mapping rule is used to generate

the condition of an if-then-else expression (concept Decision in Pim4Agents).

The variable symbols are resolved using the getVariable() method of concept

Activity (discussed in Section 3.3.1).
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explicitly address the variables of a certain scope.

MR-4: ISREAL : SPARQLSelect → JADEX : MInternalCondition extends

MRB-39b

Pre: $self.eContainer.oclIsTypeOf(P4A:Plan)

Body: The SPARQL-Select context condition of a Bochica Plan is mapped

to an MPlanParameter in Jadex. The differences between Bochica and Jadex

have been discussed in Section 5.3. The SPARQL-Select query returns a collection

of possible variable binding records. Each record contains an assignment for the

query’s unbound variables. The collection is used to initialize the binding options

of the MPlanParameter. At runtime, Jadex generates for each record of the collec-

tion an own plan candidate. As a plan candidate gets selected for execution, the

according record is used to access the values of the single variables (according code

is generated automatically). Thus, the SPARQL-Select query seamlessly integrates

into Jadex and can be used to initialize plan candidates in Jadex. To evaluate the

query, the Jadex ISReal library provides a wrapper for passing SPARQL-Select to

the LSE (similar to SPARQL-Ask queries). Figure 7.10 a) shows how the variable

symbols are resolved in the surrounding scope.

MR-5: ISREAL : SPARQLAsk → JADEX : MInternalCondition extends MRB-

39b

Pre: $self.eContainer.oclIsTypeOf(P4A:ConcreteGoal)

Body: SPARQL-Ask queries are used to define the target and maintain conditions

of ConcreteGoals in ISReal. Similar to the previous mapping rules, the generated

code passes the SPARQL-Ask query to the Jadex ISReal capability. Figure 7.10

b) depicts how the variable symbols are resolved in the surrounding scope.
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MR-6: P4A : InvokeWS → CODE : OSInvocation replace MRB-25

Body: This mapping rule replaces the code generated for the invocation of a

traditional Web service with code for the invocation of an object service at the

GSE. The service invocation uses the serviceEndPoint and operation attributes

of the InvokeWS concept to address the service implementation. Moreover, the

Knowledge parameters are used as parameters of the service call. The timeout

attribute specifies the timeout te of Figure 7.4. The Jadex ISReal capability pro-

vides the interface for calling the object service invocation.

MR-7a/b/c: ISReal : LocalSE , ISReal : GlobalSE , ISReal : ISRealPlatformCon-

fig → ISREAL : PSM

Body: The concepts LocalSE, GlobalSE, and ISRealPlatformConfig were im-

ported to the ISReal extension model (e.g. for configuring the agent’s LSE using

OWL ontologies). This mapping rule is an one-to-one mapping of the concepts to

the according artifacts of the ISReal PSM.

The mapping rules were implemented using XPand for model-to-text trans-

formations and QVT for model-to-model transformations. Figure 7.11 depicts

an XPand-based aspect-oriented mapping rule which replaces the original map-

ping rule of the Jadex base transformation for invoking a standard Web service

by the invocation of an ISReal object service (MR-6). The first part sets the

variable bindings of the object service and the second part does the actual invo-

cation through a helper class provided by the ISReal library. Figure 7.12 depicts

the QVT-based implementation of MR-5. The call to self.resolveVariables()

resolves the variable tokens of a SPARQL-Ask query in the surrounding scope

so that the proper parameters are passed to the invocation (see Figure 7.10).

The MInternalCondition’s text attribute encapsulates the call to the ISReal

library. The LSE is accessed through the Jadex $ beliefbase.lse MBelief. The

SPARQL query, including the resolved variable symbols, is passed to the LSE’s

sparqlAsk method.

7.6 ISReal Notation and Views

The technical details explained so far are (in the ideal case) not visible to the agent

engineer. He follows an agent methodology and uses graphical diagrams to design

a MAS for a certain use case (e.g. agents operating a virtual production line).
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Figure 7.11: This aspect-oriented mapping implements MR-6. It replaces a stan-
dard Web service invocation by the invocation of an ISReal object service.
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Figure 7.12: This figure depicts an example QVT-based extension transformation
(agent module). The transformation and extends keywords refer to the Jadex base
transformation. The toISRealSPARQLAsk rule implements MR-5.

The graphical front-end abstracts from technical details such as (i) the integration

of Jadex into the ISReal platform, (ii) the invocation of ISReal object services in

Jadex, or (iii) the evaluation of SPARQL queries in the LSE. Custom views are

created to show new aspect or to show existing ones in a different context. Table

7.1 depicts an overview of the concrete syntax of the ISReal-specific concepts

introduced in Section 7.3. Two new diagram types have been created:

• ISReal Agent Diagram: The ISReal agent diagram extends the Bochica

agent diagram with ISReal-specific model elements like the ISRealRaySensor

and the LocalSE (see Figure 7.13). Moreover, it uses the ISReal notation.

• ISReal Platform Diagram: The ISReal platform diagram enables the

modeler to configure the ISReal platform. For example, the ontologies of the

GSE and the components of the ISReal platform can be configured.

Figure 7.13 depicts the ISReal agent diagram. Placing an ISReal agent into

the diagram implies, compared to a plain Bochica agent, the generation of an
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Table 7.1: This figure depicts the notation of the ISReal-specific concepts.

ISReal-enabled agent that integrates into the ISReal platform (e.g. the integration

of the LSE and support for object service invocations).

7.7 Summary

This chapter introduced an extension model for agents in semantically-enriched vir-

tual worlds. First, an overview of the ISReal platform and intelligent ISReal agents

was provided. Afterwards, the conceptual extensions, the extension transforma-

tions, and the graphical notation have been introduced. The Bochica approach

to AOSE has several advantages: (i) Bochica already provides the core concepts,

diagrams, etc. for modeling agent systems, (ii) the existing base transformation

to Jadex can be reused, (iii) only missing aspects have to be extended in order to

create an individual development environment for agents in semantically-enhanced

virtual worlds, and (iv) it enables the reuse of existing model artifacts (e.g. in-

teraction protocols). The level of abstraction provided by Bochica enables an

engineer to orchestrate object services without knowing how they are technically

incorporated into the agent platform. Moreover, the extension model is not limited

to the ISReal-enabled Jadex platform. Our experiences with Jack show that the

ISReal models can be used for other ISReal-enabled agent platforms, too. The

decision which methodology to apply is left open to the agent engineer who is the
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Figure 7.13: The customized ISReal agent diagram.

end-user of the framework. The succeeding chapter evaluates the ISReal-enabled

Bochica framework in a virtual production line case study.
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Chapter 8

Evaluation and Discussion

The previous chapters introduced the Bochica framework for model-driven AOSE.

This included the underlying design principles, the alignment to existing develop-

ment processes, an iterative extension mechanism, and a base transformation to a

BDI platform. Moreover, an extension model for agents in semantically-enhanced

virtual worlds and a method for model-driven reverse engineering was proposed.

The remainder of this chapter evaluates the Bochica framework in two case

studies. The SmartFactory case study (Section 8.1) evaluates Bochica and the

ISReal extension for capturing the design decisions of a virtual production line sce-

nario and the IRL case study (Section 8.2) evaluates the agent-oriented method for

model-driven reverse engineering for extracting the underlying design of an already

implemented MAS. Finally, Section 8.3 summarizes this chapter. Mapping rules

introduced by previous chapters are referenced as MRB-X for the Jadex base trans-

formation (Chapter 5), MRR-X for the Jadex reverse transformation (Chapter 6),

and MRE-X for the IReal extension transformation (Chapter 7).

8.1 SmartFactory Case Study

The aim of the DFKI SmartFactory69 living lab in Kaiserslautern is to evaluate

technology for the factory of the future. One goal of the collaboration between

the ISReal project and the SmartFactory was to design intelligent agents that are

able to operate a virtual representation of the SmartFactory and perform typical

workflows. Such systems can be used to simulate operating sequences before a

plant is actually built and also for training employees. Semantically-enriched 3D

objects enable intelligent agents to flexibly react to their environment without the

need of adapting hard-coded script sequences. Chapter 7 already discussed the

69http://www.smartfactory-kl.de

http://www.smartfactory-kl.de
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capabilities of the ISReal platform and introduced a Bochica extension model

for agents in semantically-enhanced virtual worlds. The case study is structured

into four parts. First, the ISReal-enabled Bochica framework is applied to the

SmartFactory scenario for modeling the behavior of human-like entities (e.g. ma-

chines are not considered as intelligent agents in this case study). Afterwards, the

Bochica approach is compared to (i) a methodology-oriented approach and (ii)

a platform-specific approach. Finally, the results and experiences are summarized

and set into context to the related work in Chapter 2.

The development of an ISReal scenario is a complex endeavour which involves

different stakeholders such as computer graphics experts (geometry, animations),

semantics experts (ontologies, semantic service descriptions), and agent experts

(behavior simulation). The objective of this case study is not to go through the

entire development process of an ISReal scenario. This is out of scope of this

dissertation. Instead, the focus is on the aspects related to the design of intelligent

ISReal agents. Following assumptions have been made:

• Platform Integration. It is assumed that the BDI agent platforms Jack

and Jadex are already enabled for ISReal. In particular, this encompasses

the implementation of the ISReal agent architecture depicted in Figure 7.3.

• Scenario Implementation: 3D objects, animations, ontologies, and object

service implementations are given.

• Extension Model: It is assumed that the ISReal extension model presented

in Chapter 7 already exists. This assumption is reasonable since the ISReal

platform can be used for a wide range of applications and is not specific to the

SmartFactory case study. The effort for creating the extension is discussed

at the end of the case study.

• Forward Transformation: Likewise, it is assumed that the base transfor-

mation to Jadex and the ISReal extension transformation already exist.

As representative of the methodology-oriented approaches to AOSE we selected

the Prometheus methodology and the according PDT modeling tool. Prometheus

has been chosen because it is one of the most elaborated agent-oriented methodolo-

gies. It supports the development of BDI agents starting from requirements until

implementation. Moreover, PDT provides according modeling support and offers

code generation for Jack. INGENIAS and O-MaSE only provide tool support for

the Jade platform (which is not a BDI platform). Tropos offers tool support for

the BDI platform Jadex but is less mature than Prometheus and has a focus on

the early phases of software development.
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Figure 8.1: The SmartFactory Fair Module and its virtual counterpart.

The commercial BDI platform Jack and the according JDE workbench were

chosen as representative of the platform-specific approaches. Jack is a very mature

platform that is under continuous development for more than ten years. The other

platform-specific approaches presented in Section 2.2 either do not support BDI

agents or are not mature enough.

The SmartFactory case study is structured as follows: Section 8.1.1 provides

an overview of the SmartFactory and the concrete scenario. The Bochica design

artifacts of the macroscopic, microscopic, and deployment layer are discussed in

Section 8.1.2. Moreover, an overview of the generated code is provided. After-

wards, Section 8.1.3 discusses how to apply the Prometheus methodology to the

SmartFactory scenario. Section 8.1.4 shows how the case study has been realized

in Jack. Finally, Section 8.1.5 discusses the results and the related work.

8.1.1 The SmartFactory

The virtual machine used in the following scenario is called SmartFactory Fair

Module and was built by the DFKI SmartFactory living lab in Kaiserslautern (see

Figure 8.1). The fair module is a portable version of the SmartFactory which

is used for demonstration purposes on fairs. The machine’s objective is to fill

certain quantities of different types of pills into cups. Each cup carries an Radio-

Frequency IDentification (RFID) tag which stores an individual order. The fair

module is equipped with an RFID reader to process the next order. A stopper

halts the carriage below the dispenser. The doser is responsible for retrieving the

right quantity of each type of pill according to the current order. In total, the

fair module has three pill magazines which store different types of pills. Finally,

the dispenser fills the pills into the cup. The machine has a status light that

can visualize four states: running (green), error (yellow and red), and off (no

light). Figure 8.2 depicts the SmartFactory scenario as considered by this case
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Figure 8.2: This figure depicts the SmartFactory scenario as considered by the
case study.

study. It consists of three rooms that are connected by doors. The workbench

is an additional machine for the production of new pills. Here follows a list of

requirements towards the demonstrator to develop:

• Production: The worker is responsible for maintaining the production.

This includes (i) to handle new orders and to start the production, (ii) to

react on failures of the machine and request help from the supervisor if

necessary, and (iii) to organize supplies by negotiating with the suppliers.

• Supervisor: The supervisor is responsible for providing help to the worker

agent if a problem occurs that cannot be solved.

• Supplies: The pharmacy agents have no active role in the scenario. They

represent external suppliers and provide the ingredients for the production

of new pills on the workbench.

• Movement: The agents have to be able to navigate through the virtual

environment. This includes (i) movement inside rooms, (ii) across rooms,

and (iii) searching for unknown objects.

• SmartFactory: The agents need the capability to perform basic tasks at

the SmartFactory like (i) switching the machine on/off, (ii) using the RFID

writer for writing orders onto cups, (iii) refilling pill magazines, and (iv)

using the workbench.
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• Negotiation: The worker agent negotiates with the suppliers to get the

ingredients for producing new pills on the workbench. Likewise, workers can

request help from the supervisor.

8.1.2 Bochica

This section provides an overview of the model artifacts of the macroscopic, mi-

croscopic, and deployment layer created with Bochica. Moreover, the generated

code and implementation-related aspects are discussed.

Macroscopic

According to Section 3.1, the macroscopic layer of Bochica structures the SUC in

terms of organizational structures, domain roles, and abstract goals. The three do-

main roles Production, Supervision, and Supplies have been introduced to represent

the responsibilities in the SmartFactory scenario (see Figure 8.3). The SmartFac-

toryOrganization specifies the organizational structure between the domain roles.

The role-fillers of the Production role have the abstract goal to maintain the pro-

duction, while the agents performing the Supplies role are responsible to provide

supplies. Finally, the role-fillers of the Supervision role are responsible to assist the

production. In order to specify the communication between the domain roles, the

SmartFactoryOrganization makes use of two standard agent interaction protocols.

The ContractNet and RequestPresonse protocols are independent of the context

they are used in. They are imported from a model repository. The concrete role

bindings inside the organization are defined by the microscopic layer. For exam-

ple, the RequestResponse protocol is used by production agents to request help

from agents performing the Supervision role. The ContractNet protocol is used by

agents of the Production role to buy ingredients from the suppliers. Figure 8.4

depicts the Contract Net Protocol (CNP) [FIPA, 2002c] which is a frequently used

negotiation protocol for MAS. The Initiator sends a request-for-proposal message

to the role-fillers of the Participant actor. Every participant evaluates the request

and either proposes or refuses. The Initiator collects the responses and chooses

the best one(s) and sends according notifications to the Participants. Finally, the

Participant confirms the completion of the task.

Microscopic

The microscopic layer encompasses collaborations inside organizations, concrete

goals, agent types, capabilities, behaviors, and the data model.
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Figure 8.3: This diagram depicts the domain roles of the SmartFactory scenario
and their dependencies and responsibilities. The SmartFactoryOrganization uses
two interaction protocols to specify the communication between the involved roles.

Figure 8.4: This figure depicts the CNP modeled with Bochica.

Collaborations. The concept of Collaboration specifies the bindings between

domain roles of an organization and actors of an interaction protocol. Figure
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8.5 depicts how the RequestHelpCollaboration defines the communication between

the Production and Supervision domain roles using the RequestResponse protocol.

The RequesterBinding binds the Production role to the Requester actor of the Re-

questResponse protocol. Likewise, the Supervision role is bound to the Responder

actor. The role bindings define the minimum and maximum number of role-fillers

of an actor. Interaction protocols define the valid message sequences in terms

of abstract messages (concept ACLMessage). The concrete messages and con-

tent types are specific to a certain collaboration where the protocol is utilized

in. For this purpose, the concept ProtocolConfiguration defines concrete mes-

sage types (concept Message) for the abstract messages. For example, the abstract

RequestMessage is realized by the RequestHelp message, which has the content type

RequestHelpDocument (not depicted in the figure). The abstract goals linked to

message flows of the RequestResponse protocol represent the responsibilities of an

actor in a certain state. The abstract goals are realized by concrete goals of the

microscopic layer.

Goals. Abstract goals of the macroscopic layer are realized by concrete goals

of the microscopic layer. Concrete goals define the goal type, parameters, and

conflicts with other goals. Figure 8.6 depicts how the abstract goals of the Re-

questResponse protocol from Figure 8.5 are realized by concrete goals. For ex-

ample, the EvaluateEnquiry goal realizes the abstract ProcessRequest goal. The

goal’s requestMessage parameter holds the incoming RequestHelp message (direc-

tion IN). Likewise, the proposeMessage and refuseMessage slots hold the response

messages (direction OUT). The out-slots have to be set by a behavior of an agent

that performs the Supervision role (after it processed the incoming message). The

behavior templates, concrete goals, and messages are derived from the interac-

tion protocol. Figure 8.7 depicts an overview of the concrete goals related to

the SmartFactoryOrganization. For example, the MoveNearGoal and the Wander-

Around goal are two concrete goals which realize the abstract Movement goal. The

WanderAround goal is a perform goal that makes the agent wander around the

3D scene. The TurnAround goal is a sub-goal for exploring a room (e.g. scan-

ning the environment with the agent’s sensor). The MoveNearGoal is an achieve

goal that makes the agent walk to some target object (parameter object). The

goal’s SPARQL target condition checks whether the agent is near the target ob-

ject or located inside the object (e.g. a room). The MoveNearGoal has the sub-goal

MoveThroughDoorGoal for the movement across rooms. The abstract MaintainPro-

duction goal is realized by the KeepMachineRunning maintain goal (maintain con-

dition: hasComponent(?machine, ?light) ∧ StatusLight(?light) ∧ hasColor(?light ,

GREEN ) ∧ On(?light)). The variable ?machine is bound by the goal’s machine
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Figure 8.5: This figure depicts the interdependencies between organizations, do-
main roles, interaction protocols, abstract goals, and collaborations. The abstract
goals PrepareRequest, ProcessRequest, and EvaluateResponses represent the respon-
sibilities of the actors in certain states of the RequestResponse protocol.
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Figure 8.6: This figure depicts the concrete goals for the RequestResponse proto-
col as utilized by the RequestHelpCollaboration. The PrepareRequest and Evaluate
Reponses goals belong to the Requester actor, whereas the EvaluateEnquiry goal is
part of the Responder.
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Figure 8.7: This figure depicts an overview of the concrete goals of the SmartFac-
tory case study. The black diamonds represent sub-goal relationships.

parameter (see MRE-5). The RefillMagazine goal conflicts with the HandleNewOrder

and WanderAround goals. The target and maintain conditions of the concrete goals

are directly specified in SPARQL.

Agent Types. Figure 8.8 depicts the three agent types that have been designed

for performing the domain roles of the SmartFactoryOrganization. Each agent has

an own LSE, a geometrical body, and a sensor. The Worker agent performs the

Production domain role. Moreover, Figure 8.8 depicts the EvaluateResponsesPlan

and PrepareEnquiriesPlan which handle the Production role’s goals of the RequestRe-

sponse protocol. The two capabilities Movement and SmartFactory equip the agents
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Figure 8.8: This figure depicts an overview of the agent types of the SmartFactory
scenario. The ISReal extension model enables the agent engineer to configure an
agent’s body geometry, knowledge base, and sensor.

with additional behaviors for moving through the scene and operating the Smart-

Factory. The Supervisor agent’s ProcessEnquiry plan handles the EvaluateEnquiry

goal of the RequestResponse protocol. Moreover, the supervisor is equipped with a

behavior for invoking the SCP. It enables the agent to react more flexible to prob-

lems (e.g. to support the Worker agent). Finally, the Pharmacy agent is responsible

for providing the ingredients for manufacturing new pills on the workbench.

Capabilities. Capabilities are reusable and self-contained components that group

together a set of behaviors, goals, and knowledges. Two different capabilities have

been created for the SmartFactory case study. The SmartFactory capability pro-

vides basic functionality for operating the SmartFactory (e.g. switch on/off, use

RFID writer). In the following, we focus on the Movement capability (see Figure

8.9). The Movement capability equips an ISReal agent with the behavior related

to the abstract Movement goal. This includes (i) movement to objects in the same

room, (ii) navigation to known objects in remote rooms, (iii) search for unknown

objects and rooms, and (iv) interaction with doors. Some selected behaviors are

detailed in the following.

Behaviors. As already discussed in Chapter 7, intelligent ISReal agents inter-

act with their environment by orchestrating object services. Moreover, they use

SPARQL expressions for reasoning. Figure 8.10 depicts the MoveNearPlan. It

is used for in-room navigation (movement inside a room – no pathfinding across

rooms). All high-level movement behaviors (e.g. WanderAround) make use of the
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Figure 8.9: This figure depicts the plans of the Movement capability. It covers low-
level plans such as the TurnAroundPlan or the OpenDoorPlan. High-level plans, such
as the FindObject plan, make use of low-level plans.

!"#$%&"
'"()*%+)#,
!"#$%&'

%-()#+

!"#$%&'"()*+,-./.+,0
"$1234'567/.780'9://60;;<<<=->?.=-);.5()78;567/.78@+,/+8+AB=+<8CD
#!E'FG5)8>'567/.780.5&+*7/)-3,'G(++H'=
'''''G+IJ)*/'567/.780.5&+*7/)-3,'G(++H'=K

!"#$%&'"()*+,-./.+,0
"$1234'567/.780'9://60;;<<<=->?.=-);.5()78;567/.78@+,/+8+AB=+<8CD
#!E'FG5)8>'567/.780.5&+*7/)-3,'G(++H'=
'''''G+IJ)*/'567/.780.5&+*7/)-3,'G(++H'=K

Figure 8.10: This figure depicts the MoveNearPlan. It is responsible for in-room
navigation of ISReal agents. It invokes the MoveNearService by passing the param-
eters of the triggering goal.

MoveNearPlan. The plan is triggered by the MoveNearGoal and its SPARQL pre-

condition ensures that it is only activated for target objects located in the same

room as the agent. The plan’s body invokes a single object service, called MoveN-

earService. The MoveNearService is imported from the service registry (defined by

an OWL-S-based semantic service description).

The MoveThroughDoorPlan enables an agent to walk from the current room to

an aligned room (see Figure 8.11). The behavior is triggered by the perform goal

MoveThroughDoorGoal. As depicted by the ontology in Figure 7.1, the concept

Door defines the fromRoom and toRoom relationships for each side of the door.
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Figure 8.11: Moving through a door involves (i) walking to the door, (ii) open-
ing the door, and (iii) invoking the WalkThroughDoorService or WalkBackThrough-
DoorService.

Likewise, there exist two different animation services for moving an agent from

one side of the door to the opposite one. Depending on the side of the door the

agent is located at, the according animation service has to be invoked. This de-

cision is made by the MoveThroughDoorPlan (see Figure 8.11). The body of the

MoveThroughDoorPlan consists of (i) walking to the door by posting a MoveNear-

Goal, (ii) opening the door by posting the OpenDoorGoal, and (iii) either invoking

the WalkThroughDoorService or WalkBackThroughDoorService. Figure 8.11 also de-

picts the target conditions of the sub-goals. If a target condition is already fulfilled

at the time the goal is posted (e.g. the door is already open), the goal is imme-

diately achieved. The control flow forking from the decision’s begin node uses a

SPARQL-Ask query to decide on which side of the door the agent is located at

and invokes the according object service.

Data Model. Figure 8.12 depicts a representative part of the Ecore-based Smart-

Facotory data model. The Order, Client, and Item classes define simple data types

for assigning new orders to the Worker agent (see HandleNewOrder goal in Figure

8.7). Sometimes, it is necessary to access data types of the target platform. For

example, the Topology and PlannerOutput classes are placeholders at the modeling

level for already existing artifacts of the ISReal platform. For this purpose, the

Ecore metamodels provides the instanceClassName attribute. It defines the fully
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Figure 8.12: A part of the Ecore-based SmartFactory data model. The classes
Topology and PlannerOutput are placeholders for data types of the target platform.

qualified class name. During code generation, the instanceClassName is resolved

to the according platform artifact. For example, the Topology class is part of the

jgrapht70 library which is used to compute the shortest path (rooms are repre-

sented as nodes and doors as vertices). Moreover, the PlannerOutput class defines

the result type of an SCP invocation. Thus, data types of the target platform can

be made available at the modeling level. One example of how those types are used

is the InvokeSCPGoal depicted in Figure 8.7. It uses the PlannerOutput data type

as output parameter.

Deployment

Figure 8.13 depicts the deployment configuration of the SmartFactory scenario.

The organization instance org1 is an instance of the SmartFactoryOrganization and

has five members. Bob is an instance of the Supervisor agent and performs the

Supervision role, nancy is a Worker agent that performs the Production role, and

the three Pharmacy agents perform the Supplies role. The agent instances use

knowledge and goal initializers to configure the initial state. For example, nancy

has an initial goal of type KeepMachineRunning with the SmartFactory fair module

as parameter.

Implementation

The Bochica model artifacts presented in the previous section are mapped by

the model transformations introduced by Chapters 5 and 7 to the ISReal-enabled

70http://jgrapht.org

http://jgrapht.org
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Figure 8.13: This figure depicts an example deployment configuration for the
SmartFactory case study.
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Figure 8.14: Overview of the Eclipse project layout.

Jadex platform. Large parts of the source code can be generated and only punc-

tual manual extensions are required (mainly for adding business logic). Figure

8.14 depicts an overview of the overall project structure. The top-most project

is the Bochica modeling project. The generated Jadex project uses Maven71 to

configure the required Java libraries for ISReal and Jadex. The generated code

(src/main/java folder) is separated from the manually written code (src/custom/

java folder). Moreover, the config folder holds the configuration files for the ISReal

platform (e.g. LSE and GSE configurations). The factory.properties file configures

the location of the custom code.

Figure 8.15 depicts the fully automatic generated code of the MoveNearPlan

shown in Figure 8.10. The code consists of (i) the plan capability and (ii) the

actual plan body (see MRB-11, MRB-12, MRB-13). The plan capability configures

71http://maven.apache.org

http://maven.apache.org
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Figure 8.15: The fully automatic generated Jadex code for the MoveNearPlan.
This figure depicts (1) the placeholders for the required beliefs, (2) the placeholder
for the MoveNearGoal, (3) the meta information of the plan, (4) the plan’s pre-
condition in SPARQL-Ask, (5) the actual plan implementation, (6) the parameter
bindings of the object service invocation, and (7) the actual object service invo-
cation. The arrows visualize important references. The gray parts highlight code
generated by the ISReal extension transformation.

the beliefs, goals, etc. that are accessed by the plan body. The ISReal extension

transformation added the lse belief to the bliefbase. It enables the plan to access

the agent’s LSE (see MRE-1). The LSE is accessed to evaluate the SPARQL-Ask

precondition. The extension transformation resolved the variable symbols of the

SPARQL-Ask expression in the surrounding scope and assembled the according
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SPARQL-Ask expression as required by the generated Jadex code (see MRE-2).

For example, the $object reference was resolved to the triggering goal’s object pa-

rameter ($goal.object). Moreover, the plan header references the plan implementa-

tion (attribute body). The plan implementation makes the parameters accessible

within the code, prepares the parameter bindings of the service invocation, and

invokes the MoveNearService which is executed by the GSE as discussed in Section

7.2. At runtime, the GSE checks the service’s precondition globally, invokes the

service grounding, and updates the global world state as the agent arrives at the

target object. The effects are perceived by the agent through its sensor. As the

agent updates its LSE, it achieves the target condition of the triggering MoveNear-

Goal. What should be noted is a significant difference in the level of abstraction

compared to the Bochica model. Implementing the generated Jadex code manu-

ally is very error prone as (i) many references are defined as string values (possible

typing errors), (ii) the passing of the parameters is verbose and one can easily

forget elements, (iii) the SPARQL expression has to be assembled manually as

depicted in Figure 8.15, and (iv) the engineer has to know how to implement the

object service invocation at code level. The code that has been generated by the

ISReal extension transformation is highlighted in gray. One can clearly see how

the extension transformation applies punctual extensions which integrate into the

overall structure generated by the base transformation. Figure 8.16 depicts the

ProcessEnquiry plan. It implements the Supervisor agent’s behavior for evaluating

a RequestHelp message. The RequestHelp message is part of the RequestResponse

protocol (see Figure 8.5). The business logic for evaluating the message is encap-

sulated by the internal task Evaluate. Figure 8.16 depicts the generated Java code

for the plan and the internal task as discussed in Section 5.3 (MRB-21a/b). The

Evaluate Java interface defines the getter and setter methods for the parameters.

The EvaluateImpl class is a custom implementation of the internal task. The agent

engineer’s task is to (i) process the content of the incoming message (parameters

with direction IN) and (ii) set the out-parameters of the internal task (parame-

ters with direction OUT). In order to execute the encapsulated business logic, the

generated code (i) uses the plan’s generated internal task factory to instantiate

the business logic, (ii) uses the setter methods for passing the input parameters,

(iii) executes the business logic by invoking the execute() method, and (iv) reads

the output parameters using the getter methods. Afterwards, the generated code

automatically processes the messages according to the interaction protocol specifi-

cation (see MRB-29, MRB-30, MRB-31). Thus, the implementation of the protocol

is transparent to the agent developer. He can focus on the implementation of the

business logic. Figure 8.16 also shows how the Message data type of Bochica

has been mapped according to Table 5.5 to a Jadex IMessageEvent.
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Figure 8.16: This figure depicts the ProcessEnquiry plan and the generated Java
files for implementing the business logic of the internal task (see MRB-21a/b).

8.1.3 Prometheus

The Prometheus methodology for AOSE guides agent engineers through several de-

velopment phases from system specification to implementation (see Section 2.2.2).

Prometheus is supported by the PDT modeling tool which provides graphical di-

agrams for capturing the design decisions. In contrast to Bochica, Prometheus

provides support for gradually deriving the relevant model artifacts of a SUC (e.g.

specification of goals, interactions, actions, perceptions). Later phases use those

artifacts as basis for the system design (e.g. agent types, capabilities, and behav-

iors) similar to Bochica. In the following, we depict representative parts of the

different development phases of the Prometheus methodology for the SmartFactory

case study.

System Specification

Prometheus uses so called scenarios for identifying typical workflows of a SUC. Fig-

ure 8.17 depicts the “Handle new order scenario” of the SmartFactory case study.

It describes the process for handling a new order by the Production role. First, the

incoming order causes a HandleNewOrderGoal for the Production role. The order
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Figure 8.17: This figure depicts the “Handle new order scenario” in Prometheus.

is written to the Orders data set. Moreover, the order causes a MoveNearGoal for

walking to the SmartFactory. In this scenario, the role filler performing the Pro-

duction role realizes that the fair module is switched off. This causes the role filler

to switch the machine on (represented by the SwitchOn action). After the agent

perceived that the machine is running, it uses the WriteOnChip action to write

the order onto the RFID tag of a cup. Prometheus scenarios are well suited for

identifying model artifacts and responsibilities. The “Handle new order scenario”

involves only one role. In the architecture design phase, the model artifacts of the

different scenarios are grouped to functionalities72. Textual remarks are used to

document the rational behind the model artifacts (e.g. descriptions of actions and

perceptions). The system specification phase also identifies the system’s goals and

their dependencies. Figure 8.18 depicts an overview of the identified goals. At the

first sight, the diagram looks very similar to the Bochica goal diagram depicted

in Figure 8.7. However, goals in Prometheus are only design artifacts that are

replaced by events in later development phases. Thus, Prometheus goals are simi-

lar to AbstractGoals in Bochica and are not directly used for code generation.

Thus, Prometheus goals do not specify goal types, parameters, or formal target

conditions.

Architectural Design

In Prometheus, interaction protocols specify the interactions between agents and

actors (external entities of the system). Besides messages, the interactions also

cover perceptions and actions. Interactions in Prometheus are derived from the

modeled scenarios of the system specification phase (see Figure 8.19 a). After

the identified functionalities and roles of the system are grouped to agents, the

72Since the publication in [Padgham and Winikoff, 2004], Prometheus has been further devel-
oped and some details changed. For example, functionalities are now replaced by roles and the
concept of actor has been introduced to represent external entities of the system.
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Figure 8.18: Prometheus goals of the SmartFactory scenario.
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Figure 8.19: (a) depicts the role of interactions in Prometheus (taken from
[Padgham and Winikoff, 2004, p.68]), (b) depicts the textual representation of
an AUML interaction, and (c) depicts the graphical AUML representation of the
interaction.

messages required for the communication between the agents are derived. Finally,

those messages, perceptions, and actions are grouped to interaction protocols. Fig-

ure 8.19 b) depicts a textual AUML representation of the interaction which causes

the worker agent to request help from the supervisor agent. The Environment

is modeled as external actor. After the worker agent perceived a problem that

cannot be solved by itself, it requests help from the supervisor using a request
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Figure 8.20: The Prometheus system overview diagram of the SmartFactory case
study.

response protocol. Figure 8.19 c) depicts the graphical AUML representation. It

is important to note that the interaction protocols model the message exchange

between agent types, whereas interaction protocols in Bochica define the mes-

sage exchange between named sets of role-fillers. Moreover, interaction protocols

in Bochica are abstract artifacts that are independent of a concrete use case.

In Prometheus, interaction protocols are used to capture the interactions of the

system for supporting the manual implementation. Bochica does not guide the

user in identifying the required message sequences and only covers messages (no

actions and perceptions). Thus, protocols in Bochica and Prometheus have a

slightly different use.

Figure 8.20 depicts the Prometheus system overview diagram for the Smart-

Factory case study. The three agent types Worker, Supervisor, and Pharmacy have

been identified. Each of them has an own Data object that represents the ISReal

LSE. Moreover, the used interaction protocols, messages, perceptions, and actions

are visualized. For example, the OpenDoor action represents the ISReal object

service for opening a door. However, the model artifacts are very abstract and

require textual explanations to specify their purpose.

Detailed Design

Figure 8.21 depicts the Movement capability of the Worker agent. Six different

plans have been modeled. All of them have access to the agent’s LSE. Moreover,
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Figure 8.21: The movement capability modeled with Prometheus.

the involved messages and actions are visualized. For example, the OpenDoorPlan

is triggered by the OpenDoorEvent and makes use of the OpenDoor action. Plan

bodies are specified at code level. It is also important to note that PDT does not

provide the possibility for modeling events with formal target conditions. Likewise,

the LSEWorker is only a placeholder for something to be manually implemented at

code level. Deployment configurations are not part of PDT.

Implementation

After the system has been specified using Prometheus, PDT offers the possibility

to generate code for the Jack platform. Figure 8.22 depicts the generated code

template for the OpenDoorPlan. The template consists of (i) the declaration of the

handled and posted events, (ii) the used data, (iii) the declaration of the context

condition, and (iv) the actual plan body. The context condition as well as the plan

body are described using plain text. It is important to note that the integration

of the LSE and SPARQL-based context conditions into Jack requires extensive

customizations. The created Prometheus models and thus, the generated code do

not cover those aspects. It is easy to see that the generated code only provides

simple code templates with textual annotations. Moreover, interactions have to be

implemented manually using the AUML diagrams. The succeeding section realizes

the ISReal case study using a Jack-only approach. The results of the Jack-only

approach are used to discuss the effort for customizing the generated Prometheus

code templates presented in this section.
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Figure 8.22: The generated Prometheus OpenDoorPlan template.

8.1.4 Jack

In the third part of the SmartFactory case study, we use a platform-specific ap-

proach to implement the SUC. As part of the ISReal project, the BDI agent plat-

form Jack has been enabled for ISReal by implementing the architectural pattern

depicted in Figure 7.3. The integration of the LSE and SPARQL-based reasoning

into Jack required several extensive extensions. Since there exists no prescribed

development process in Jack, the design of agents and the structure of the Java

code depends on an agent engineer’s experience. Figure 8.23 depicts an overview

of the plans and events related to an ISReal agent’s movement in Jack. The task

of diagrams in Jack is to visualize the interdependencies between the different Java

artifacts. Interaction protocols have to be implemented manually.

Figure 8.24 depicts the OpenDoor plan implemented in Jack. The plan is

triggered by the OpenDoorGoal. The plan’s context condition ensures that the

plan only gets activated when the agent and the door are located in the same

room. In order to evaluate the SPARQL-Select statement, the adapter class

JackISRealAgentAdapter provides access to an agent’s LSE using the getSPAR-

QL() method. The invocation of the select() method (i) passes the SPARQL

query to the LSE and (ii) converts the query result to a so called Jack belief cur-

sor. Belief cursors are used by Jack to access the variable bindings of the context
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Figure 8.23: Jack goto goal and plan diagram.

condition. So called logicals make the variable bindings of the context condition

available within the plan body (e.g. v1 in Figure 8.24). The plan’s body depicts

the invocation of a Jack @subtask for executing the OpenDoorService object ser-

vice. The sub-task requires the variable bindings for the object service invocation

and posts a sub-goal to perform the invocation. The actual service invocation is

implemented equivalently to the object service invocation in Jadex (see Section

8.1.2).

By comparing the generated Jadex code and the manually written Jack code,

one can see that the effort for implementing ISReal behaviors is similar in Jack and

Jadex. In both cases, the integration of the LSE and SPARQL required extensive

custom extensions. The service invocation is done very similar in Jack and Jadex.

Moreover, one can see that the Jack code templates generated by Prometheus only

provide a rough structure of the code. One reason is that the Prometheus models

leave many details open and use informal textual descriptions. The gap between

the models and the implementation can cause design and code to diverge over

time. The manual implementation of ISReal scenarios in Jack and Jadex requires

the agent engineer to over and over again write down the same ISReal-specific

extensions (e.g. for SPARQL preconditions and context conditions). A model-

driven approach requires the customization of the model transformation only once.

All succeeding code generations solve the issue automatically. Writing a custom

transformation would also work for Prometheus but the modeling language leaves

many details open. What is not specified in a formal way at the model level cannot

be processed by model transformations.
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Figure 8.24: This figure depicts the OpenDoor plan in Jack. The integration
of SPARQL can be seen at the context condition. The body invokes the Open-
DoorService using a Jack sub-task.

8.1.5 Summary and Discussion

There exist many different ways of how to implement the behavior of intelligent

agents in the SmartFactory case study. One could hard code the behavior of

the agents in more or less flexible scripting languages (e.g. Java Script) or use

classical object-oriented languages (e.g. Java). An agent-oriented approach has

the advantage that agent platforms already provide the infrastructure for goal-

driven behavior, messaging, etc. MDSD was developed by industry to approach the

increasing complexity of IT systems. The underlying idea of MDSD is to separate

the design of a SUC from its implementation. The ideal modeling language for

specifying intelligent agents in semantically-enriched virtual worlds would cover

typical agent concepts, concepts related to Semantic Web technology and computer

graphics, as well as concepts of the ISReal platform. The benefit of such a language

is that the SUC can be efficiently modeled on an abstract level. Moreover, the

better a modeling language covers the concepts of the target domain, the less



8.1. SMARTFACTORY CASE STUDY 157

manual modifications are required at code level. The creation of such a software

language from scratch is a complex endeavour. Furthermore, many concepts would

be similar to other agent-oriented languages of other application domains. Thus,

it would mean to reinvent many things.

The SmartFactory case study presented in this section provides a challenging

setting for the evaluation of agent-oriented modeling languages. The aim of the

case study was to design agents that simulate human behavior in a virtual pro-

duction line scenario based on the DFKI SmartFactory living lab and the ISReal

platform. In order to specify a running system, a modeling language has to ex-

ploit the intelligent agent paradigm, address application domain-specific concepts

and software languages, and consider features of a proprietary target platform.

Especially the integration of knowledge bases and reasoning languages is an of-

ten neglected aspect in agent-oriented modeling – but is inevitable for intelligent

ISReal agents. Finally, the agent platform is not considered as a self-contained

system. Instead, the platform is embedded into a larger execution environment.

In Section 2.2.3, we have classified existing agent-oriented modeling approaches

into platform-specific and platform-independent ones. This section compared the

Bochica framework to one representative of each category. In the following,

we further discuss and analyse the created system and made experiences. One

important question is the customization effort required to tailor Bochica to a

certain target environment. Table 8.1 compares the infrastructure provided by the

Bochica framework and the ISReal-specific extensions. The Bochica core DSL

encompasses around 124 concepts. The Jadex base transformation (introduced in

Chapter 5) was implemented in 137 QVT-based mapping rules with 2795 Lines

of Code (LOC) and 70 XPand-based rules with 1350 LOC. The ISReal extension

model for Bochica consists of eight new concepts and one software language (see

Chapter 7). The ISReal extension transformation was implemented in 16 QVT and

six XPand-based mapping rules. One can see that around 10% of custom concepts

and mapping rules were introduced. The relative increase between the number of

mapping rules (10.6%) and LOC (17.5%) of the extension transformation is caused

by helper functions for processing SPARQL expression models in the extension

transformation. For example, the helper functions resolve variable symbols of

SPARQL expressions in the surrounding scope and embed the LSE invocation

into Jadex. During the implementation of the SmartFactory case study in Jadex,

this functionality turned out to be one of the essential benefits over the manual

implementation in Jadex. The manual implementation of SPARQL queries in

Jadex XML files is very error-prone. The manual implementation of one SPARQL

query (e.g. a context condition of a plan) sometimes took more than one hour

(caused by typos and the debugging effort). One example for the code produced by



158 8. EVALUATION AND DISCUSSION

Bochica ISReal Extension

Concepts 124 8 (1 language) 7.3%

QVT Rules 137 16 11.7%
XPand Rules 70 6 8.6%
Total Rules 207 22 10.6%

QVT LOC 2795 576 20.6%
XPand LOC 1350 150 11.1%
Total LOC 4145 726 17.5%

Table 8.1: This table compares the infrastructure provided by the Bochica frame-
work (Bochica core DSL and Jadex base transformation) and the ISReal-specific
extension model and extension transformation.

the helper functions is depicted in Figure 8.15. The base transformation provides

the basic infrastructure and the extension transformation complements the existing

code where necessary. The result is a modeling environment that is tailored to the

design of intelligent ISReal agents.

Another important aspect to discuss is how good Bochica and the ISReal

extension close the gap between design and code. Table 8.2 compares the generated

and the manually written code. In order to compute the LOC values, the automatic

Eclipse code formatter was applied to the Java and XML files. The numbers are

without comments and blank lines. Moreover, ontology files and semantic service

descriptions are not considered. They are referenced by the OMSConfig concept

of the ISReal extension model. In total, the SmartFactory implementation in

Jadex consists of 6796 LOC. 6312 LOC have been automatically generated by the

Jadex base transformation and the ISReal extension transformation. Additionally,

484 LOC were implemented manually. The manual code mainly encompasses

business logic, such as the computation of the shortest path between two objects

or the evaluation of message content in negotiations. In Bochica, the business

logic is represented by InternalTasks. The model transformation separates the

manual changes from the generated code. The third row of Table 8.2 depicts the

portion of code that has been generated by the ISReal extension transformation

(e.g. SPARQL queries to the LSE or object service invocations). One can take

the gray parts in Figure 8.15 as example for the code generated by the extension

transformation. The ISReal-specific code (20.6%) is an estimate for the manual

changes required for developing the system using Bochica without the ISReal

extension. However, it is important to note that the ISReal-specific code is tightly

integrated with the rest of the implementation. Thus, it is hardly possible to

separate the manual code from the generated one. This would potentially lead

to problems during code regeneration (similar to Prometheus). Moreover, several
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Java XML Total

Total LOC 3327 3469 6796 100%
Base Transf. LOC 2357 2554 4911 72.3%
Ext. Transf. LOC 486 915 1401 20.6%
Custom LOC 484 0 484 7.1%

Table 8.2: This table compares the total LOC (Java and XML code) for imple-
menting the SmartFactory case study (first row) with (i) the generated code of the
base transformation (second row), (ii) the generated code of the extension trans-
formation (third row), and (iii) the manually written code (last row). In total,
92.9% of the code could be generated.

ISReal-specific aspects cannot be modeled without the Bochica extension, so

that the model would be incomplete.

Prometheus and the PDT modeling tool were chosen as representative for the

methodology-oriented approaches to AOSE (see Section 8.1.3). By comparing the

model artifacts presented in Sections 8.1.2 and 8.1.3, one can see that the code

produced by the Prometheus approach requires extensive manual modifications, as

(i) the Prometheus models are less expressive (e.g. they do not cover plan bodies

and several aspects are specified in natural language) and (ii) the models do not

have ISReal-specific concepts (e.g. no LSE, no SPARQL integration, and no IS-

Real object service orchestration). One benefit of the Prometheus approach is that

it supports the user in collecting the requirements of the system (e.g. using scenar-

ios). This functionality could be provided by a Prometheus plug-in to Bochica.

Jack was chosen as representative of the platform-specific approaches (see Section

8.1.4). Our experiences show that the implementation of ISReal applications in

Jack and Jadex have similar difficulties (e.g. the integration of knowledge base

into the agent). The agent engineer has to over and over again write the same

glue-code for integrating the ISReal library into the agent platform. Moreover, the

integration of SPARQL queries is very error prone. MDSD has the benefit that a

well designed modeling language abstracts from those technical details.

As discussed in Section 2.2.3, the majority of the existing platform-independent

modeling languages were created in order to support a certain agent methodology.

For example, methodology-oriented languages support design artifacts which are

not directly used for code generation (e.g. scenarios in Prometheus). One problem

of existing methodology-oriented modeling approaches that we see is that they do

not clearly distinguish between the methodology and the modeling language. Two

indicators which support our perception are (i) the development of the modeling

languages is not decoupled from the methodologies and (ii) none of the languages

has an own name (only the tools have names). However, in our opinion the devel-
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opment of modeling languages is orthogonal to the development of agent method-

ologies and tools. Of course, a methodology can (and most likely will) have certain

requirements to a modeling language (e.g. own methodology artifacts and views).

Moreover, the methodology languages fail in addressing features of a certain tar-

get platform which makes extensive manual code modification necessary. This

potentially causes design and code to diverge over time. One further drawback is

the insufficient expressiveness of many methodology languages. Unfortunately, the

majority of the developed modeling tools are only partially based on standardized

technology for model-driven development which hampers the benefits of MDSD.

For example, the Prometheus Design Tool (Prometheus methodology) has no ex-

plicit underlying metamodel. Others, like AgentTool III (O-MaSE), INGENIAS

Development Kit (INGENIAS), TAOM4E (Tropos) are only partially based on

standardized technology for MDSD (e.g. proprietary or non-MDA-based model

transformations). To the best of our knowledge, the mentioned approaches do not

consider extensibility as presented by this dissertation. Besides the methodology-

based modeling languages, there exist also approaches for extending the Unified

Modeling Language (UML) with agent concepts (e.g. OMG’s Agent Metamodel

and Profile (AMP) or FIPA Agent UML). Those approaches promise to reuse the

ecosystem built around UML – including the large user group. However, model-

ing agents is fundamentally different from modeling objects. Agents possess an

internal architecture and require different methods and design patterns. More-

over, our experiences in AMP showed that it is hard to extend UML for AOSE

since the underlying Meta Object Facility (MOF) metamodel is complex and ex-

tensions of existing elements have many not desired and non-obvious implications.

Thus, we are sceptical that extending UML in its current form suffices the needs of

AOSE. UML, which is a general purpose modeling language, offers two extension

mechanisms: (i) heavy weight metamodel extensions and (ii) light weight profiles.

Metamodel extensions of UML underlie the standardization process of OMG and

are not for the normal end user. Profile-based extensions can be created by end

users and allow a limited customization. An alternative to our approach would be

the creation of a platform-specific modeling language (e.g. for the ISReal-enabled

Jadex platform). This would mean to reinvent many things that are already part of

Bochica. Two platform-specific examples are Jadex DE and SEAGENT DE (see

Section 2.2.4). The possibility to customize the languages as the agent platform

(e.g. Jadex) is integrated into a larger execution environment is not discussed.

Our approach is especially suited for large scale applications or target environ-

ments with many end-users (e.g. the ISReal platform) where customizations pay

off. Small applications can be realized with the functionality provided by the core

modeling language and the base transformations (similar to existing approaches).
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We see Bochica complementary to existing methodology-oriented approaches as

it provides a clean conceptual framework and extension interfaces.

8.2 IRL Case Study

This section evaluates the model-driven method for reverse engineering BDI agents

introduced in Chapter 6. The case study is based on a demonstrator developed in

a collaboration between the German Federal Ministry of Education and Research

(BMBF)-founded research projects ISReal and Semantic Product Memory73 (Sem-

ProM). One of the main objectives of SemProM was to equip products with a Dig-

ital Product Memory (DPM) that collects product-related information throughout

a product’s life cycle (e.g. supply chain, cooling chain, best-before date). In order

to identify single entities, products are equipped with Radio-Frequency IDentifica-

tion (RFID) tags. Every station a product passes in its life cycle has to maintain

the according data records in the DPM (see Figure 8.25). The project involved

the DFKI IUI and IRL research groups as well as industry partners. As part

of the collaboration between the ISReal project (DFKI ASR) and the SemProM

project (DFKI IUI, IRL), a prototype for agent-based maintenance of the DPM

in a supermarket environment was developed. The underlying idea was to assign

each product in the supermarket environment an according agent that proactively

collects sensor data, notifies the management in case of problems, and updates

the DPM. My task in the cooperation was to design the MAS. Moreover, Pas-

cal Liedtke (DFKI ASR) was responsible for the XML3D-based visualization, and

Gerrit Kahl (IRL) and Jens Haupert (DFKI IUI) were involved as representatives

of the SemProM project.

The developed demonstrator was directly implemented using Jadex. One of

the reasons was that Bochica and the Jadex tool stack were not mature enough

at that time. Thus, the SemProM demonstrator is representative for the majority

of today’s agent-based systems which are also not yet making use of model-driven

AOSE. The method for model-driven reverse engineering for MAS presented in

Chapter 6 can be used (i) to visualize and analyze the underlying structure of an

implemented MAS and (ii) to extract model artifacts for later reuse. It can also be

used as staring point for migrating a system to model-driven AOSE. Moreover, the

reverse engineering method drastically increases the number of available models

for Bochica. In the following, Section 8.2.1 provides an overview of the IRL and

the developed demonstrator. Afterwards, Section 8.2.2 evaluates the reverse engi-

73http://www.semprom.org/semprom_engl/

http://www.semprom.org/semprom_engl/
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Figure 8.25: This figure depicts the stations a product passes throughout its life
cycle. The digital product memory has to be maintained by the different stations.

neering approach in the SemProM case study. Finally, section 8.2.3 discusses the

experiences and sets them into context to the related work.

8.2.1 The IRL Demonstrator

This section provides a brief overview of the developed demonstrator. The super-

market environment considered by the demonstrator was provided by the DFKI

IRL living lab. It is co-located with Globus GmbH in St. Wendel, Germany. The

living lab provides the typical infrastructure of a supermarket and is used by DFKI

for developing and evaluating new technology in a realistic retail environment. Ev-

ery product instance (e.g. a single pizza) is identified by an RFID tag throughout

its life cycle. The different product types have individual requirements regarding

the required sensor data for updating the DPM. For example, deep-frozen products

need temperature data in order to observe the distribution cold chain. As of today,

products are usually not equipped with own sensors and thus, the environment has

to provide the data (e.g. a freezer’s temperature sensor). The requirements for

the demonstrator were:

• Agent-based Guidance: Every product of the supermarket should act

proactively by collecting sensor data according to the product’s type and

maintain its DPM. Devices collaborate with products by providing the sensor

data. The supermarket management has to be notified as a problem is

recognized (e.g. product placement and violation of constraints).

• Management Cockpit: The management cockpit is responsible for mon-

itoring the products and devices in the supermarket environment. It uses

a 3D Web front-end for visualizing the current situation. The product con-

straints are configured using the management cockpit. Products have to

update their status and location in the management cockpit as something

changes.
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Figure 8.26: The physical layer is the real supermarket environment. The agent
layer runs the agents that control the devices and products of the physical layer.
Finally, the management layer uses an XML3D-based Web application to monitor
and manage the supermarket environment.

• Policies: Policies are used to configure products and devices in the super-

market environment (e.g. minimum quantity of a product type in a shelf;

warning x days before the best before day is reached; notification for mis-

placed products; violation of contractor agreements for the presentation of

certain brands).

Figure 8.26 depicts an overview of the developed system architecture. The

physical layer encompasses the (real) supermarket environment including devices,

products, shelves, and employees. The entities are equipped with sensors. The

sensor data is collected and processed by according agents running in the agent

layer. Finally, the management cockpit is an XML3D-based Web front-end for

monitoring the situation in the supermarket and for configuring the entities. Three

different agent types have been realized: Product agents represents a single product

instance and are responsible for (i) collecting the sensor data in the environment,

(ii) updating the product memory accordingly, and (iii) reporting problems to the
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Figure 8.27: The sensors put sensor data on the event heap. Perception queues
are registered for certain events and map them to according events of the agent
system.

management cockpit. The management agent is responsible for creating a new

product agent as a new product ID is sensed in the supermarket. Likewise, it

destroys the agent as the product got payed. Finally, a device agent is responsible

(i) to manage the products under its responsibility and (ii) to apply the device

policies for configuring the device’s behavior. In this case study, freezers are the

only considered devices. The agents report their current states and events to the

management cockpit. The system is currently running as a demonstrator in the

IRL and is being further developed. As one can easily imagine, one agent per

product easily leads to thousands of agents in a normal supermarket environment.

However, the underlying idea behind the design decision was that in the near future

RFID chips will have enough computing power to process the data on the product

itself. Thus, the architecture of the demonstrator is a step into this direction.

Finally, we want to provide an overview of the different sensors. The infras-

tructure of the IRL provides an event heap where all sensors post their sensor

data (see Figure 8.27). Agents register themselves for certain sensor events. The

perception queue is responsible for mapping relevant sensor events to events of

the agent system. Agents process this information and react to the changed sit-

uation. Supported sensors are (i) temperature sensors that provide temperature

information in regular intervals, (ii) proximity sensors that sense RFID tags in

their environment, (iii) room-change sensors that are located at doors, and (iv)

product-payed sensors. Figure 8.28 depicts an example session of the developed

system.
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Figure 8.28: Demonstrator overview (management cockpit)74: (1) overview of the
supermarket, (2) empty freezer before initialization, (3) initialized freezer and vio-
lated device policy (misplaced product “Pizza Schinken”), (4) fixed device policy,
(5) product temperature warning, (6) new pizza arrives at stock, (7) pizza trans-
ported to salesroom, (8) pizza added to freezer, (9) pizza removed from freezer
and payed.

74This figure was created by Pascal Liedtke as part of the collaboration.



166 8. EVALUATION AND DISCUSSION

8.2.2 Reverse Engineering

As introduced in Chapter 6, the reverse engineering process consists of (i) lifting

the platform artifacts to the Jadex PSM and (ii) the application of the design

extraction rules. In total, the developed SemProM demonstrator encompassed

one Jadex application, three agent types, 13 capabilities, and 58 Java-based files.

The lifting of the source code to the Jadex PSM is done by the model extractor.

Figure 8.29 depicts an overview of the overall project structure and the Jadex PSM.

In the following, we discuss the Bochica artifacts extracted by the mapping rules

presented in Chapter 6. The remainder of this section is structured into (i) agent

types, (ii) goals and events, (iii) behaviors, (iv) the deployment configuration, and

(v) the data model.

Agent and Capability Types

The underlying design of the agent types of the SemProM demonstrator is mapped

by MRR-6 to according agent definitions in Bochica. Figure 8.30 depicts an

overview of the extracted artifacts of the Freezer agent. The agent diagram shows

the agent’s behaviors (mapped by MRR-13) and capabilities (MRR-7). The right-

hand side of Figure 8.30 additionally depicts the agent’s Knowledges (MRR-8),

PlanUses (MRR-11), and CapabilityUses (MRR-12). For example, the Freezer

agent’s internalTemp and externalTemp beliefs (see Figure 8.30 (4)) hold the cur-

rent internal and external temperature values as measured by the freezer’s sensors.

The TemperatureSensor capability equips an agent with the behaviors and events

for connecting it to a temperature sensor in the supermarket. For this purpose,

the capability maintains a belief called currentTemperature. As depicted in Figure

8.30 (5), the Freezer agent imports the TemperatureSensor capability twice (once

for the internal and once for the external temperature). The CapabilityUses bind

the agent’s internalTemp and externalTemp beliefs to the capabilities’ currentTem-

perature beliefs. Thus, the capabilities automatically maintain the internal and

external temperature beliefs of the Freezer agent.

Likewise, the ProximitySensor capability encapsulates the behaviors and events

for connecting to and processing the data of a proximity sensor. The Freezer agent

uses the ProximitySensor capability to sense the products contained by its freezer

device. For this purpose, the capability (i) listens to sensor events delivered by

the event heap and maps them to according events of the agent, and (ii) processes

the events and updates the capability’s sensedProducts belief accordingly. The

CapabilityUse of the Freezer agent imports the sensedProducts belief and makes

it available within the Freezer agent as containedProducts Knowledge. The Freezer

agent has additional behaviors which are built on top of the functionality provided
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Figure 8.29: The figure at the top depicts the SemProM Jadex project. It shows (1)
the source folder containing the Jadex source code, (2) the “tmp” folder containing
the lifted Jadex PSM, and (3) the resulting Bochica model and data model.
The figure at the bottom depicts the details of the Jadex PSM. It shows (4) the
application model, (5) the agent models, (6) the capability models, and (7) the
Java model.

by the imported capabilities. For example, the NotifyTemperatureChangePlan no-

tifies the management cockpit about a temperature change. Moreover, the Freezer

agent uses several plans for managing policies and products. For example, the

InitFreezerPlan is responsible for initializing the sensors and connecting the agent

to the management cockpit. The CheckConstraints plan is responsible for checking

the current device policies (e.g. temperature constraints or misplaced products)

and sending according warnings to the management cockpit. The extracted arti-
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Figure 8.30: This figure depicts an overview of the extracted artifacts related to
the freezer agent. It shows (1) the ProximitySensor capability, (2) the Temperature-
Sensor capability, (3) the agent’s PlanUses, (4) the agent’s Knowledges, and (5)
the agent’s CapabilityUses.
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facts visualized by Figure 8.30 already provide a detailed overview of the overall

structure of the system and the information passed between agents, capabilities,

and plans.

Events and Goals

By extracting the relationship between behaviors, events, and goals, large parts of

the structural dependencies of a MAS can be made reusable. Figure 8.31 depicts

an overview of some of the extracted event and goal types of the SemProM demon-

strator. For example, Figure 8.31 a) shows the PerformGoal create product agent

of the Manager agent. It triggers the agent’s behavior for initializing a new Product

agent as a product is sensed for the first time. Moreover, it declares input and

output parameters. For example, the product id and product url are read from the

product’s RFID chip and used to identify the product and access the product’s

DPM. The goal types are mapped by MRR-10 and the parameters by MRR-24.

The agents of the IRL case study mainly make use of internal events for triggering

behaviors. Thus, the goal hierarchy extraction is limited in this example. Section

8.2.3 provides an additional example to discuss the goal hierarchy extraction. Fig-

ure 8.31 b) depicts some of the extracted Signals mapped by MRR-9. The events’

parameters are mapped by MRR-24 to Knowledges in Bochica. For example, the

TemperatureChangedEvent is used by the TemperatureSensor capability to update

the currentTemperature belief as a temperature change was recognized. The

UpdateTemperatureSensorPlan is triggered by the TemperatureChangedEvent and

performs the task.

Message events are used within the SemProM demonstrator for the commu-

nication between devices, products, and the manager agent. Figure 8.32 a) de-

picts an example communication for the initialization of a new product agent.

The communication has been logged by the management cockpit at runtime. As

discussed in Chapter 6, the extraction of interaction protocols from Jadex source

code is only partially possible since Jadex has no explicit representation of interac-

tions. Messages in Jadex can be assembled within Java code. The agent developer

has to manage conversations on his own. Every Jadex capability that declares

MMessageEvents is mapped by MRR-22 to a Bochica ProtocolConfiguration.

The ProtocolConfiguration holds the message events mapped by MRR-23. Fig-

ure 8.32 b) depicts two example ProtocolConfigurations. The ProductProtocol

was mapped form the Product capability of the Product agent and the Product-

ManagementProtocol from the ProcutManagement capability of the Manager agent.

It is important to note that there exist at least two corresponding message decla-

rations for each message type (one for sending and one for receiving the message).
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Figure 8.31: The goals, events, and messages of the SemProM demonstrator.

Figure 8.32 b) visualizes this relationship for the InitProductAgentMessage and Ini-

tializationDoneMessage. The messages correspond to the communication depicted

in Figure 8.32 a). However, the relationship between the messages is not explicitly

represented at code level and was only monitored at runtime. Moreover, the match-

ing names are not a generic indicator that two message declarations correspond to

each other. Jadex uses pattern matching for matching message events to message

type declarations of agents and capabilities. Thus, ProtocolConfigurations are

candidates for manual refinement.

Behaviors

As introduced in Section 4.2, a Jadex behavior consists of an XML-based header

and a Java-based plan body. Figure 8.33 depicts the Manager agent’s Resolve-

ProductIDToAgentPlan for resolving a product ID (stored on a RFID tag) to an

existing product agent. The behavior is triggered by the AgentIDRequestMessage

which has the product ID and product URL as parameters. Device agents can use

the manager’s service for resolving sensed product IDs to agents. If no existing



8.2. IRL CASE STUDY 171

!"#

$%&'())*+&$)*,-&.(//0,1.$-1(,&2/$,$)*/*,-&.(.341-%

5%&67-8$.-*+&48(-(.(9&.(,:1)08$-1(,;

!""#$$ !""#$%

Figure 8.32: Figure a) depicts the logged communication for the initialization of a
new product agent: (1) the manager creates and initializes the new product agent,
(2) the product agent initializes itself from the product memory, (3) the product
agent updates the product memory for the new location, and (4) the product agent
confirms the successful creation. Figure b) shows the extracted message types in
Bochica.

product agent can be found by the manager agent, it will initialize a new one

and assign it to the product. The behavior is mapped by MRR-13 to a Bochica

behavior. The first part of the behavior consists of a number of variable declara-

tions (concept VariableDeclarationStatement). They are mapped by MRR-25

to Knowledges of the Bochica plan. For example, the request variable stores

the incoming request message. Algorithm 6.1 iterates over the Java statements

of the body() method and invokes the according mapping rules. For example,

the IfStatement is mapped by MRR-19 to a Bochica Decision. The decision

uses the productMap knowledge (type HashMap) to check whether there already

exists an agent for the product ID. If not, the plan creates a ProductAgent and

returns the according ID. The actual creation of the product agent is done by

posting a create product agent PerformGoal. The AssumeGoal task is mapped

by MRR-14. The initialization of the goal is done by InternalTask1 (mapped by

MRR-20). Finally, the AgentIDResponseMessage is initialized and sent as response

to the requester. A sequence of statements that could not be mapped to Bochica
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Figure 8.33: This figure depicts the ResolveProductIDToAgentPlan. The left hand
side shows the Java source code and the right hand side the resulting Bochica
plan.
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Figure 8.34: a) depicts the deployment configuration of the IRL demonstrator.
It encompasses the two agent instances ProductManager1 of type Manager and
Freezer1 of type Freezer. b) depicts the extracted IRL data model.

concepts is aggregated and mapped by MRR-20 to an InternalTasks with in-

put/output parameters for the accessed variables. This example mapping shows

how the basic structure of a Jadex behavior is mapped to Bochica.

Deployment

Figure 8.34 a) depicts the deployment configuration of the developed demonstrator.

The agent instances are mapped by MRR-3 to Bochica. The system initially

only consists of the manager agent and one freezer agent. The product agents

are initialized as they are sensed by the manager or the freezer during runtime.

The initial configuration of an agent instance’s beliefs and goals (e.g. sensor IDs,

and IP and port of the management cockpit) is mapped by MRR-4 and MRR-5 to

Bochica Knowledge- and GoalInitializers.

Data Model

Figure 8.34 b) depicts a part of the data types that have been extracted by MRR-26

and MRR-27 from source code to Ecore. Every class uses the instanceClassName

attribute to store a fully qualified reference to the Java type. For example, the

SemProMPerceptionQueue implements the base class for mapping events of the IRL

event heap to an agent’s internal events. The class points to the de.dfki.sem-

prom.agents.sensor.SemProMPerceptionQueue class. The extracted data types
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Jadex (source) Jadex PSM Bochica Jadex (target)
Application 1 1 1 1
Agent Type 3 3 3 3
Capability 13 13 8 41 (8 + 33)
Behavior 38 38 33 33
Instance 2 2 2 2

Table 8.3: This table compares the model artifacts of the SemProM application
at the different stages of the reverse transformation. The last column depicts
the model artifacts after a forward transformation has been applied to Bochica
(without previous refinements).

are used within the Bochica model (e.g. parameter types and knowledge types).

The fully qualified type is used by a forward transformation to resolve the platform

classes. A further example is the SemProMSocketServer. It realizes a socket server

connection to the XML3D-enabled Web browser.

8.2.3 Summary and Discussion

This section applied the reverse transformation introduced in Chapter 6 to an

already implemented Jadex application. Section 6.6 already discussed the main

conceptual differences between the Jadex platform and the Bochica core DSL.

In the following, we summarize and further analyze the made experiences.

Table 8.3 depicts an overview of the model artifacts of the SemProM demon-

strator at the different stages of the reverse transformation process. The first

column summarizes the original platform artifacts of the Jadex project. The sec-

ond column shows the model artifacts of the Jadex PSM after the lifting. The

third column depicts the extracted Bochica model artifacts after the application

of the design extraction rules presented in Chapter 6. Finally, the fourth column

summarizes the artifacts that were generated by a forward transformation to Jadex

(based on the extracted Bochica model). The forward transformation was per-

formed on the Bochica model without any previous refinements. One can see

that the different model artifacts are lifted one-to-one from Jadex source code to

the Jadex PSM presented in Section 4.2. The design extraction rules presented in

Chapter 6 extracted eight capabilities and 33 behaviors. The mismatch between

the source/target behaviors and capabilities is caused by five capabilities and be-

haviors which are part of the project but not used by the existing agent types.

For example, one capability was created for a shopping cart agent that guides a

customer through the supermarket environment. Due to the limited duration of

the project, the focus was on the freezer device and the product agent. Thus,
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Jadex (source) Jadex PSM Bochica Jadex (target)
Capabilities 4 4 4 12 (4 + 8)
Beliefs 12 12 12 12
Behaviors 8 8 8 –
Msg./Int.Evt. 7/6 7/6 –/6 –/6
Goals – – – –

Table 8.4: This table compares the model artifacts belonging to the freezer agent
(Freezer.agent.xml file) at the different stages of the reverse transformation. The
last column depicts the model artifacts in Jadex after a forward transformation
has been applied to Bochica (without previous refinements).

the shopping cart capability was not used in the final demonstrator. Therefore,

the reverse transformation did not consider the capability since it was not used

by any agent type. Likewise, the five behaviors were not mapped. Finally, the

forward transformation to Jadex creates one capability for every extracted plan.

The underlying pattern was introduced as part of the forward transformation pre-

sented in Chapter 5. The reasoning behind it was that Bochica behaviors can

be complex and the created Jadex capability groups multiple generated artifacts

into one self-contained component with a clean interface. The plan capabilities are

imported by the agent.

Table 8.4 depicts the model artifacts belonging to the freezer agent of the

IRL case study. The freezer agent consists of four capabilities, twelve beliefs,

eight behaviors, seven message events, and six internal events. As already dis-

cussed, the freezer agent does not make use of goals in the current implementa-

tion. One can see that all artifacts are lifted one-to-one to the Jadex PSM. The

design extraction step maps the Jadex concepts to the Bochica core DSL. One

difference discussed in Chapter 6 is that Jadex MMessageEvents are mapped to

ProtocolConfigurations in Bochica. Thus, the message events are separated

from the agent. The forward transformation to Jadex creates a separate messaging

capability that declares the message events and implements the protocol behav-

ior. However, in order to generate the messaging code, additional refinements are

required at PIM level. The agent’s behaviors are externalized to capabilities dur-

ing the forward transformation. Finally, the agent imports those capabilities (see

Chapter 5 for details).

Since the SemProM demonstrator makes only limited use of goals, Figure 8.35

depicts an extracted goal hierarchy of the Mars World Classic (MWC) application.

The MWC application is part of the official Jadex distribution. Section 4.2 already

used the MWC example to provide an overview of a typical Jadex application. The

walk around and produce ore goals have the move dest goal as sub-goal (visualized
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Figure 8.35: This figure depicts an extracted goal hierarchy. The black diamonds
represent the sub-goal relationship.

by the black diamond). The sub-goal relationship has been computed by the design

extraction rules presented in Chapter 6. Moreover, one can see that there are

conflicts between the walk around and the carry ore and produce ore goals (meaning,

they cannot be performed at the same time). Those conflicts have been mapped

from the Jadex inhibits relationship. Finally, one can see the parameters of the

goals and their data types. The goal diagram is well suited to get an overview of

a system.

Refinement. The reverse engineering approach presented in this dissertation

focuses on lifting the platform artifacts to the Jadex PSM and the conceptual

mappings from Jadex to Bochica. However, in the following we want to provide

an outlook on how the extracted models can be refined with high-level artifacts.

This step is important to prepare the artifacts for later reuse (e.g. to transfer the

design to other use cases and agent platforms). Figure 8.36 depicts the basic work-

flow for refining an extracted Bochica model. (1) depicts the extracted domain

roles and agent types of the reverse transformation. In step (2), model artifacts

(e.g. an interaction protocol - here the request response protocol) are imported

from a model repository. Step (3) adds the IRLOrganization to the model for spec-

ifying the collaboration between the involved parties using interaction protocols.

In step (4), the refined model is validated (e.g. using OCL-based constraints).

Finally, the model is committed to a model repository in step (5). Of course,

the refinement also requires the specification of the collaborations of agents (e.g.

the role bindings inside an organization) and the behaviors of agents. In previous

work, we already showed that models based on Dsml4Mas can be mapped to

other agent platforms, such as Jack and Jade (see [Hahn et al., 2009a]).

In the following, we set our reverse engineering approach into context to the

related work. In Favre [2010], a general overview of MDRE is provided. Chikofsky

and Cross II [1990] provide a taxonomy of reverse engineering. Reverse engi-
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Figure 8.36: This figure depicts a general overview of the refinement process. The
process consists of (1) the extraction of model artifacts by the reverse transforma-
tion, (2) the import of model artifacts form a model repository (e.g. interaction
protocols), (3) the refinement of organizational structures, behaviors, etc., (4) a
model validation step, and (5) the export of design artifacts to the model reposi-
tory.

neering of agents differs from reverse engineering of object-oriented systems since

additional agent-oriented artifacts have to be considered (e.g. organizational struc-

tures, goals, interaction protocols). According to Gómez-Sanz et al. [2008], the IN-

GENIAS Development Kit (IDK) offers a component called code uploader that is

used for synchronizing INGENIAS models with code that has been generated from

those models (forward engineering). No further information is provided how this

component works or which aspects are covered. Similar to IDK, the Prometheus

Development Tool (PDT) offers code synchronization functionality for generated

code [Padgham et al., 2007]. The mechanism is not further detailed. Both, IDK

and PDT, support only forward engineering. To the best of our knowledge, there

exists no MDRE approach for MAS. In general, there exists not much work regard-

ing agents and reverse engineering. A. Hirst [2000] proposed a reverse engineering

approach for Soar75 agents. He focused on reverse engineering of production rules.

In Lam and Barber [2005], an approach for software comprehension was presented.

The idea was to observe agents at runtime (their execution traces) and reconstruct

their structures. A similar approach could be used to collect additional informa-

tion about the organizational structures of agents at runtime (e.g. to reconstruct

the interaction protocol depicted in Figure 8.32). Agent-oriented methodologies

also do not cover reverse engineering.

75http://sitemaker.umich.edu/soar/home

http://sitemaker.umich.edu/soar/home
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8.3 Summary

This chapter presented two case studies for the evaluation of the Bochica ap-

proach to AOSE. The SmartFactory case study evaluated the ISReal-enabled

Bochica framework for the design of intelligent agents that operate a virtual

representation of the DFKI SmartFactory. The evaluation results show that the

ISReal extension model and extension transformation significantly narrow the

gap between design and code. The ISReal extension enabled the generation of

additional 20% of code compared to the Jadex base transformation. Only 7%

had to be implemented manually. The Bochica approach was compared to one

methodology-oriented modeling approach (Prometheus) and one platform-specific

approach (Jack). It was shown that the Bochica core DSL is more expressive

than Prometheus. Compared to the platform-specific approach, Bochica pro-

vides an abstraction layer that enables the engineer to focus on the overall design

of the system, instead of dealing with technical details. The second case study

evaluated the model-driven method for reverse engineering of Jadex agents. The

reverse engineering approach was applied to the IRL demonstrator which has been

implemented as a collaboration between the DFKI ASR and IRL. The evaluation

showed that large parts of the model artifacts could be extracted. It was discussed

how to refine the model artifacts for later reuse.



Chapter 9

Conclusion

With this dissertation, I propose a novel model-driven framework for engineering

multiagent systems. The Bochica framework goes beyond the state-of-the-art in

AOSE as it combines the benefits of a platform-independent modeling language

with the possibility of addressing selected features of target platforms and appli-

cation domains. Chapter 1 motivates this dissertation and provides an overview

of the research questions and contributions. Afterwards, Chapter 2 discusses the

state-of-the-art in MDSD and model-driven AOSE. The Bochica framework and

the underlying design decisions are introduced in Chapter 3. Moreover, the exten-

sion interfaces and the alignment to existing methodologies are discussed. Chapter

4 presents the metamodel of the Bochica core DSL and a PSM for the Jadex BDI

platform. Conceptual mappings from Bochica to Jadex are specified in Chapter

5. The mappings build the foundation for the forward transformation to Jadex.

A reverse transformation for extracting the underlying design of BDI agents is in-

troduced in Chapter 6. For this purpose, conceptual mappings between the Jadex

PSM and the Bochica core DSL are specified (in upward direction). In order

to enable Bochica for modeling agents in semantically-enhanced virtual worlds,

Chapter 7 introduces an according extension model and extension transformation.

Chapter 8 presents two case studies which evaluate the framework for modeling

agents that operate a virtual representation of the SmartFactory and for extracting

the underlying design of an already implemented MAS. The Bochica framework

has been implemented as an Eclipse-based development environment. The devel-

opment environment will be published at Sourceforge76. In the following, I will

pick up the research questions of the introduction and summarize the contribu-

tions that this dissertation offers to answering them.

76http://sourceforge.net/projects/bochica

http://sourceforge.net/projects/bochica
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What are the core concepts of an expressive agent-oriented modeling

language?

Formal and expressive agent-oriented modeling languages are required by model-

driven AOSE to capture abstract design decisions and to project the created mod-

els to a target platform. Chapter 2 provides an overview of the diverse field of

agent-oriented modeling languages. The strength of the Bochica core DSL is the

tight integration of the different parts of a MAS specification. In order to increase

the expressiveness, Chapter 3 discusses how often neglected aspects, such as vari-

able scoping, knowledge bases, data models, and software languages, have been in-

tegrated into the modeling language. Furthermore, it is shown how to utilize OCL

invariants for reducing ambiguities and increasing the expressiveness. Chapter 4

introduces the metamodel underlying the Bochica core DSL. The SmartFactory

case study presented in Chapter 8 evaluates the Bochica framework for model-

ing agents that operate a virtual production line. The case study shows that the

ISReal-enabled Bochica core DSL is expressive enough to generate 93% of the

code automatically (including orchestration of services, interaction protocols, etc.).

The manual implementation is limited to business logic (e.g. processing message

content or computing the shortest path). Moreover, Bochica is compared to one

methodology-driven and one platform-specific approach.

How can agent-oriented modeling languages better support concrete

application domains and execution environments?

Besides the expressiveness of a modeling language, the possibility to address the

concepts of a custom application domain or execution environments is important to

capture the design decisions for a SUC. The Bochica framework approaches this

problem with a platform-independent core DSL and several extension interfaces.

The extension interfaces are specified in Chapter 3. Furthermore, I propose an

iterative adaptation process for gradually incorporating conceptual extensions into

the framework. In order to enable Bochica for the application domain of agents

in semantically-enriched virtual worlds, Chapter 7 proposes an extension model

which complements Bochica with the missing concepts. The ISReal extension

model encompasses eight new concepts and one reasoning language – compared to

124 concepts of the Bochica core DSL. The evaluation in Chapter 8 shows that

the ISReal extension model raised the amount of automatically generated code by

around 20%. By using the extension mechanism, large parts of the infrastructure,

which is common to most MAS, can be reused to create a customized modeling

environment.
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How to effectively close the gap between platform-independent agent

models and concrete code?

As a part of Chapter 3, I have introduced an extensible transformation archi-

tecture for mapping Bochica models to a target platform. A Bochica model

transformation is separated into a base transformation which covers the concepts

of the Bochica core DSL and a complementary extension transformation which

handles the concepts of an extension model. The idea is that a base transformation

can be reused across application domains. An extension transformation is created

as a part of the iterative adaptation process presented in Chapter 3. In order to

enable the Jadex BDI platform for the Bochica approach, Chapter 4 introduces

a PSM for Jadex. In Chapter 5, I specify conceptual mappings from Bochica

to the Jadex PSM that build the foundation of the Jadex base transformation.

As a part of this dissertation, an extension model and extension transformation

for agents in semantically-enhanced virtual worlds have been introduced in Chap-

ter 7. The extension transformation complements the Jadex base transformation

with ISReal-specific conceptual mappings. The evaluation in Chapter 8 shows

that around 11% custom mapping rules (compared to the base transformation)

are sufficient to cover the ISReal-specific concepts. The conceptual extensions

raise the amount of generated code by around 20%. In total, it was possible to

automatically generate 93% of the overall code. Due to the used design patterns,

the manually written code (around 7%) could be separated from the generated

code (see Chapter 5).

How to make the underlying design of concrete implemented multiagent

systems reusable?

The majority of existing agent-based systems has been implemented without

MDSD in mind. In Chapter 6, I have introduced a model-driven reverse engineer-

ing approach for extracting the underlying design of already implemented MAS.

The approach consists in (i) lifting the code to the platform-specific level and

(ii) a design extraction step. In order to enable Jadex for MDSM according to

MDA, Chapter 4 introduces a PSM for the BDI agent platform Jadex. Based on

the Jadex PSM, I have specified conceptual mappings (design extraction rules)

from the Jadex PSM to the Bochica core DSL in Chapter 6. In this chapter, I

also discuss the conceptual mismatches between Jadex and Bochica. The case

study presented in Chapter 8 applies the design extraction rules to an already

implemented Jadex-based application. By comparing the design artifacts of the

different reverse engineering stages it is shown that large parts of the underlying
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design can be extracted. Moreover, it is discussed how to refine the extracted

model artifacts and prepare them for later reuse. The presented agent-oriented

MDRE approach drastically increases the number of potential models available to

model-driven AOSE and Bochica.

The Bochica framework is especially suited for projects, execution environ-

ments, and application domains with many end users (agent engineers who make

use of an extension). The ISReal platform, for instance, can be used in a large

variety of virtual reality applications so that the customization effort will soon

pay off. One obstacle that might stand in the way of applying Bochica is the

effort for getting comfortable with MDSD and the framework itself. The creation

of an extension model requires a developer to be comfortable with metamodel-

ing, model transformation, and the concepts and interfaces defined by Bochica.

Until today, most agent researchers and developers are not familiar with those

technologies. My personal experience with carrying out the SmartFactory case

study shows that Bochica shifts the focus from technical details to the design of

the overall system. Thus, the experience of designing a system differs from a clas-

sical code-centered approach. Small software projects can (i) make use of existing

extensions or (ii) use the functionality of the Bochica core DSL and the exist-

ing base transformations (similar to existing agent-oriented modeling approaches).

My expectation is that bundle providers providing ready-to-use combinations of

conceptual extensions, software languages, views, and model transformations for

certain target environments become available.

Future Work. Up to today, AOSE is still driven by research and has not yet

reached main stream software engineering. One of the main problems is that there

is no common terminology which is accepted throughout the agent community –

this already starts with the definition of the concept agent. I see the Bochica

core DSL as a nucleus which has the potential to build a basis for the unifica-

tion of the wide area of AOSE. Metamodels are perfectly suitable for discussing

(i) which concepts are relevant, (ii) how those concepts are defined, and (iii) how

they relate to each other. At the same time, metamodels build the foundation

of MDSD and can be used for transferring concepts from research to concrete

software development. The framework proposed by this dissertation provides the

infrastructure and conceptual core for extensions by external researchers. Ideally,

the Bochica approach will lead to a metamodel becoming widely accepted within

the agent community. Currently, Bochica covers the core concepts of MAS (from

our point of view). External researchers working on certain sub-areas of MAS are

likely to lack concepts specific to their research field (e.g. agent architectures and

commitments). It would be highly interesting to integrate those demands into one
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consistent framework. Another important aspect which requires further research

effort is the integration of the Bochica framework with existing agent-oriented

methodologies. Currently, the agent-oriented methodologies are undergoing a con-

solidation phase in which methodologies are split-up into method fragments. The

alignment of those method fragments to Bochica is a highly interesting task as it

could lead to a holistic approach. Moreover, an integrated framework with a com-

mon conceptual core also reduces the maintenance costs of the tool chain. The

proposed model-driven AORE approach enables agent engineers to extract the

underlying design of concrete implemented (Jadex) applications to the platform-

independent level. One of the next steps would be to develop refactoring methods

which can be applied to the extracted model artifacts. Finally, the approach could

be extended to a complete roundtrip engineering approach.
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