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Abstract 
The compilation of RELFUN programs consists of two main stages, 

horizontal transformations and vertical translations. The horizontal trans­
former performs both source-to-source steps into a subset of RELFUN 
and source-to-intermediate steps into a RELFUN-like language. The ver­
tical translator is also divided into two phases, the classifier and the code 
generator. The classifier produces a declarative clause language; the code 
generator optimizes target code for underlying WAM emulators. These 
parts can be used incrementally-individually, as a relational/functiona l 
compilation laboratory, or batch-composed, as a complete RELFUN com­
piler. All intermediate steps employ explicit declarative representations, 
which can be displayed via RELFUN's user interface . The compiler is 
implemented in a subset of COMMON LISP; one em\llator runs in COI\l­
MON LISP, the other in ANSI C. 
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tJ 2 THE USER INTERFACE 

1 Introduction 

T his work describes the compilation and execution environment of the Rela­
tional/Functional Machine (RFM) . The RFM is a LISP /C-based implementa­
tion of RELFUN [BoI92] and consists of an interpreter, a multi-pass compiler, 
and two emulators. 

The compilation of RELFUN programs consists of two main stages, hori­
zontal transformations and vertical translations. The horizontal transformer is 
divided into several steps, whose target is mainly a simpler subset of RELFUN, 
but for advanced features can also be extended representations. The ensuing 
vertical translator is divided into two stages, the classifier and the code genera­
tor. The classifier transforms RELFUN source clauses to so-called "Classified 
C laIIS(~~"; from these WAM-annotated clauses the code generator can almost 
' I('ar! of 1" the WAM code (sec below). 

A II compilation s teps can be used separately, as a compilation laboratory, as 
wedl as batch- composed, as a complete RELFUN compiler. Of course, various 
groups of these steps could be joined into single steps for optimizing compilation 
t.ime. But organizing the compiler into such steps enhances its modularity and 
readahility, which helps in the development of optimizations of execution time, 
our main concern. 

Both emulators are extensions of the WAM (Warren Abstract Machine). 
Tile first emulator is called GWAM (Generalized WAM [Sin95]), the successor 
to the NyWAM [Hei89], which originated from Nystr0m's WAM [Nys]. The 
GWAM is built in COMMON LISP on a general implementation platform , 
t.h t' GAMA (General Abstract Machine [Sin95]) , which contains a debugger, 
;UI ;l.~~( ! lllblcr, and a loader. The second emulator is called RAWAM (Relfun 
Adapted WAM), more based on [AK91]' and built in ANSI C [Per96]. 

It. is assumed that the reader be somewhat familiar with RELFUN (see 
[UAE+9Gj), and with WAM architect ures ([War83], [AK91]' [VR94]) . For fur­
ther information a.bout the RFM see [80192] [Kra90], [Hei89], [Els90]. 

The IIser interface of the RFM is described in section 2. The horizontal 
iransformations are the subject of section 3.1. Sections 4 and 5 treat the classi­
fier and code generator for vertical translations; sections 6 and 7, the G AMA 
ewel t.he embedded GWAM emulator. The last section contains an example 
di,tiog that will show some aspects of the compiler/emulator system ' live' . 

2 The user interface 

The \l ser interface provides several commands each of which represents a sep­
arate compilation step . The commands are hierarchically structured and top­
down ordered as depicted by the indentation tree below: Each node can be 
ca.lled illdividually; inner nodes perform groups of compilation steps so that th e 
root is the r.ompIcte compiler. 



2.1 The user interface for layered compiiat:ion 

The command hierarchy: 

compile 
horizon 

ext ron 
undeclare 
untype 
urunacro 
unor 
unlambda 
hitrans 
uncomma 

bastron 
untup 
flatter 
passtup 
deanon 
normalize 
footen 

verti 
classify 
codegen 

The given order reflects the order the commands are executed during REL­
FUN compilation. 

2.1 The user interface for layered compilation 

The compilation of RELFUN clauses into WAM code is done ill several steps; 
the user interface enables to execute each step or groups of compatible steps 
se parately. 

The complete compiler is invoked by the compile command; it can be 
called with an extra argument for compiling a single procedure , thus allow­
ing procedure-based incremental compilation. The compile command is di­
vided into two stages, the precompilation (horizontal transformations) and the 
proper compilation (vertical translations) . The horizontal transformations are 
performed by the horizon command, the vertical translations by the verti 
command. 

horizon is itself divided into two parts, extron and bast ron . 1'110. extron 
I.ransformations undeelare , untype, unmacro, and unor map into extended 
constructs, in particular lambda expressions, which are then further transformed 
by unlamda a nd uncomma into a RELFUN subset (these are described in section 
3.1). The bastron transformations convert these reduced RELFUN clauses 
illto an even smaller subset that is ready for the vertical transformations. E.g. 
at the time of the verti command all tups will have been transfo rmed into 
ens structures via the untup command ; it is also CI...'is umed tha t on ly fl at tened 
clallses are in the da tabase, which is p(~rf()rmed by the flatter co mmand (the 
bast ron t.ransformations a.re descr ihed ill spct ioll 3.2). 
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verti consists of two phases, the classifier and the code generator. Like 
in horizon these phases can also be called explicitely by typing classify and 
codegen. The classify command collects all clauses starting with the same 
name and arity, and groups them together on the property list of the symbol 
determined by the procedure name, using the tag clauses. This is necessary be­
cause the basic entity in the WAM is a group of clauses with the same name and 
arity, called a 'procedure'. After this, the classified clauses are generated and 
stored in a global variable called *classified-database*. The codegen com­
mand reads the contents of *classified-database* and produces GWAM 
code from it. 

It is possible to pretty print the classified clauses by typing listclass and 
the code with the listcode command. 

2.2 The user interface and the GWAM 

The user interface has four prompts 1: "rfi-p>" or "rfi-l>" is displayed when 
the queries are sent to the interpreter and its database, while "rfe-p> " and 
"rfe-l> " show that the query, which is a valued conjunction of n ~ 1 liter­
als, will be emulated after compilation. The suffix of the prompt is "-p> " or 
"-1>", respectively, when the system is running in PROLOG or LISP style (see 
[Her92]). The code obtained is stored under the name main, the data struc­
tures for the variables in the query are created and their names and locations 
are memorized to get the variable names when the goal succeeds. Finally the 
emulator is railed, producing failures or returned values with possible variable 
hindings. When a goal succeeds, the reslllts are printed; backtracking is invoked 
if tlte user's next input is more so tllat the next solution may be computed. 
When spy is enabled, the query's compilation is shown and the GWAM is set 
into debugging (interactive or nUll-interactive single-step) mode. With nospy 
this feature is turned off. 

3 The transformers 

The transformers behind the horizon command ' horizontally' map RELFUN 
so urce programs to source programs that are either still in RELFUN (subsection 
3.2) or in an extended high-level language (subsection 3.1). Both kinds of 
transformers lay the ground for latcr compilers 'vertically' proceeding into th e 
\vAM. 

While some of the transformer steps can be performed independently from 
the other oncs, many require previous transformers as a precondition for ob­
Laining their effect (all transformers just deliver a database unchanged if they 
are inapplicable, either because their pre transformations are still missing or 
thei r fixpoint is reached). While the order shown in the command hierarchy of 
sectioll 2 need not be obeyed totally, ill the following we use it as the canonical 
order ratlH"r than indicating more detailed d(~pelldellcies. 

' TIH'IC is 011( ' additioll;t\ prolllpt. , " 11 '>", fOI LISP l igh t (see [Sill % J) 
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3.1 The ext ron transformers 

These transformations principally reduce language extensions to an unexLcnded 
kernel. The sequence of these transformations, shown in the command hierar­
chy, is reflected by the subsection ordering. 

3.1.1 undeclare 

undeclare handles two different kinds of declarations: signature declarations 
(sg clauses) and declare facts which are used for various declaration types. 

undeclare performs the following three steps: 

1. transform operators with sg definitions 

2. evaluate declare facts 

3. remove declare facts 

Transforming sg definitions 
Tbe transformation of operators which contain sg definitions is shown in the 

following example, a definition of Fibonacci numbers working on both ordinary 
integers and their successor representation . 

Applying undeclare to this operator transforms each sg definition into 
an ordinary (ft) clause which calls an operator fib.n (n E {1,2,3}). The 
delini t ions of fib. n are obtained simply by renaming the original fib clauses, 
lIsing fib.l for the first sg-block, fib.2 for thr. second, and fib.3 for the 
Lllird. 

sg fib($integerp). 

fib(O) & 1. 
fib(t) & 1. 

fib(N) & +(fib(-(N,l» , 
fib(-(N,2») . 

sg fib(nu11). 

fib(null) : & s[null]. 

sg fib(s [X]) . 

fib~s[nu11]) :- & s[nu11]. 
fib(N) :-

subl(N,Nml), 
sub1 (Nm1 ,Nm2), 
Rl is fib(Nm1), 
R2 is fib(Nm2), 
plllS(Rl,R2,R) & 
R. 

fib(bnd[Arg#l,$integerp]) 
fib .1(Arg#1) . 

fib.l(O) & 1. 
fib.1(1)-&1. 
fib.l(N) & +(fib(-(N,l», 

fib(-(N,2») . 

fib(bnd[Arg#l,null]) :- & 
fib.2(Arg#1) . 

fib.2(null) :- & s[nu11]. 

fib(bnd[Arg#l,s[X]]) :- & 

fib. 3 (Arg#1) . 
fib.3(s[nullJ) :- & s[null]. 
fib.3(N) 

subl(N,Nm1), 
subt(Nm1,Nm2) , 
Rl is fib(Nml), 
R2 is fib(Nm2), 
p1us(Rl,R2,R) & 
R. 

& 
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(sg (fib $integerp)) 

(ft (fib 0) 1 

(ft (fib 1) 1 

(ft (fib _n) 
(+ (fib (­

(fib (-

(sg (fib null» 

n 1) 

n 2» ) ) 

(ft (fib null) '(s null» 

(sg (fib (s _x»)) 

(ft (fib (s null» 
'(s null)) 

(ft (fib _n) 
(subl _n _run1) 
(subl _runl _run2) 
(is _rl (fib _runl» 
(is _r2 (fib _run2» 
(plus rl r2 _r) 
_r ) 

J THE TRANSFORMERS 

(ft (fib (bnd _arg#l $integerp) 
(fib.l 3rg#1) ) 

(ft (fib.l 0) 1) 
(ft (fib. 1 1) 1) 
(ft (fib.1 _n) 

(+ (fib (­
(fib (-

n 1) 

n 2» ) ) 

(ft (fib (bnd _arg#l null») 
(fib.2 _arg#1) ) 

(ft (fib .2 null) '(s null) ) 

(ft (fib (bnd _arg#1 (s _x))) 
(fib .3 _arg#1) ) 

(ft (fib.3 (s null» 
«s null) ) 

(ft (fib . 3 _n) 
(subl_n _run1) 
(subl _run1 _run2) 
(is _rl (fib _nml» 
(is _r2 (fib _nm2» 
(plus rl r2 _r) 
r ) 

Evaluating declare facts 
The general form of a declare fact is as follows: 

declare (tag[argt, . .. , argnJ, . . . ). 

where tag [ar-gt, . .. ,argnJ can be, amongst some others2 , one of 

• info [ter-m, . .. ] - print term, . .. at compile time 

• tupstruct [atom, . . . ] - declare atom,.. . to be structure/operator 
names that must be handled like lists to allow them to be used with 
varying arity ("I"-operator) 

• macro [name, fun ctional-object] - declare a macro to be transformed by 
unmacro (since fun ctional-object is a COMMON LISP fun ctional object, 
using the macro feature is not encouraged) 

3 .1.2 untype 

untype transforms types3 , i. e. rlomains (dom-terms), exclusions (exc-terms), 

2defun to define COMMON LISP fun ctions used by macro, proto-class and indi-class 
for defining ORF classes, 11 and IIp to define LISP light functions and pred icates accessible by 
RELrUN, and mode and dfmode for mode declarations currently used for the transformation 
of RELFUN operators into LISP light functions . 

3lu add it ion to types, untype also ha nd les ORr clauses which arc not described in this 
paper. 
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and sorts ("$"-terms) into active calls of the type/t ype1 4 builtin (which is only 
available in compiled RELFUN). Furthermore, expressions of the form expr : 

type and bnd [ exprl, expr2] are handled by transforming them into is-calls or 
type-calls . 

The meaning of type (term, tterm) , where tterm is either a dorn-term, an 
exc-term, or an atom (denoting the name of a sort), is: if term is a variable, type 
it with tterm (i.e., fill the type slot of the GWAM representation of variables, 
ref-cells , with tterm), otherwise check if term is of type tterm. 

The following examples show some of the cases covered by untype :5 

pC) :- q($integerp). 
p(X) :- X is dorn[1,2,3] . 
p(X) :- X : dorn[1,2,3]. 
p(exc[1,2,3]) . 
p(X : $realp) :­
p(bnd[X,$realp]) 

q(X). 
q(X) . 

(hn (p) (q $integerp» 
(hn (p _x) (is _x C (dorn 1 2 3») 

(hn (p _x) ex C (dorn 1 2 3») 

(hn (p (exc 1 2 3») 
(hn (p ex : $realp» (q _x» 
(hn (p (bnd _x $realp» (q _x)) 

3.1.3 unmacro 

pO :- q(type1(integerp)). 
p(X) :- X is typel(dorn[1, 2 ,3]). 
p(X) :- X is type1(dorn[1,2,3]) . 
p(typel(exc[1,2,3])) . 
p(type (X,realp» q(X). 
p(type(X,realp») : - q(X). 

(hn (p) (q (typel integerp») 
(hn (p _x) 

(is _x C, (typel C (dorn 1 2 3)) 
(hn (p _x) 

(is _x c, (typel C (dorn 1 2 3))) 
(hn (p ,(typel C (exc 123») 
(hn (p ,(type x realp) (q _x» 
(hn (p , (type _x realp)) (q J») 

unrnacro is a transformation tool that handles various predefined as well as 
user-defined macros. 

User-defined macros are declared with declare fac ts (see sect ion 3.1.1). 
Since the syntactic transformation performed by these macros is defined via 
COMMON LISP functional objects, using them is not encouraged und thus 
not further described in this paper. 

The followinl!; macros are predefined : 

• progn simply denotes an inline conjunction of expressions, returning the 
value of the las t one (analogously to LISP) ; unrncaro trans forms it into it 

si mple lambda application , which will be removed by hi trans (see section 

) 
(progn PI ... Pn) 

3. 1.6 : t t 
«(lambda 0 PI·'· Pn ») 

• let creates a context with local (vd and aux iliary variables (ai) in which 
so me premises (Pi) are evaluated: 

4 type 1 (tterm) is the short form of type C, tlc7"1n) a nd is pxp.1ndecl by unmacro . 

5 I n our current implementatio n, R ELF UN does not ha nd Ie " , " -ex.prc:ssi ons ( ~ee sec t ion 
31.7) WItPIl us ing PROLOG syntax. In this paper , expressio ns like' (s _x , (p _y» ;uld 

( hn (q .x . (p _y») arc shown as s [X . p(Y)] and qO. p(V». ill rnOLOG- li kc sYllLtx . 
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(let ((VI PI) ... (1!n en) al ... a1l1 ) PI ... Po) 

Its meaning is identical to that in COMMON LISP; it is, analogously to 
progn, translated into lambda expressions . 

• let*, just like let, creates a local context, but does not evaluate the 
expressions ei in parallel but sequentially (just like its COMMON LISP 
counterpart), thus allowing any Vi to access any Vj with j ~ i. 

• new-once is the new version6 of once used in compiled RELFUN which 
allows multiple expressions, returning the value of the last one, which are 
enclosed in a single lambda expression: 

(new-once PI ... Pn) 

(new-once (lambda () P; ... p~» 
• naf is handled analogously to new-once: 

(naf PI ... Pn) 

(naf* (lambda () P'l . .. P:» 
• tupof is handled analogously to new-once: 

(tupof PI ... Pn) 

(tupof* (lambda () p'\ ... p~» 

• "I" is transformed i lito all active call, (eli t), in order to simplify thp. 
vertical compiler: 

(cut) 

• type1 is expanded to type with an anonymous variable: 
(type1 t) 

(type id t) 

The following examples show how let and let* are transformed into lambda 
applications. Since we did not yet develop a PROLOG-like syntax for these 
constructs, only thr. LISP-like syntax is shown. 

(hn (p _x _y) 

Cis _y 
(let (Ca 1) Cb 2) Cy 3) _ab) 

(p _a _b _ab) 
(+ _ab _x _y»» 

(ft (q _x _y) 

(hn (p _x _y) 
(is _y 

( (lambda Ca b -y 
(p _a _b _ab) 
(+ ab _x _y) 

1 2 3 ) ) ) 

(ft (q _x _y) 

&aux _ab) 

(let* ((_a (+ _x _y» 
Cb (* _a 5») 

(j 3 _b») 

((lambda (&aux _a _b) 
(is _rbl (+ _x _y» 
(is 3 _rb1) 
(is _rb2 (* _a 5» 
(is _b Jb2) 
C/ _a _b) » ) 

0Th(~ ll illn C neu-onc e is Il sed for his tori cal reas ons , as well as it.s trall s formatiull into allother 
neu-once alln 1I0t illto a neu- once* . 
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3.1.4 unor 

unor transforms inline disjunctions into corresponding, argument-less lambda 
applications, which are removed by unlambda using separate clauses (see section 
:3.1 .5) 

p(X,Y,Z) 
ore Z is +(X,Y), Z is *(X,Y) ) . (hn (p _x _y _z) 

«lambda () 

(hn (p x _y _z) (or 
(or (is z (+ x _y» 
(is z (+ x _y» (is z (* x _y» 
(is z (* x _y» ) ) 

3.1.5 W1lambda 

unlambda trrtnsforrlJs lambda expressions that cannot be expanded inline7
, I.e. 

additional clauses are r-;cnerated: 

• if a lambda expression is used as a value (as in (is _1 (lambda La _b) 
... », a single clause containing the lambda literals is generated; 

• if a lambda expression contains an or as its only literal (as introduced by 
unor), (t clause is grnerated for each of tile or literals. 

J II hoth C;:\S(~s, I;h(~ lambda expression is replaced by a structure' (lambdaH 
II ... j"J. wilet'(o lambdan is a new symhol created by gentemp alld fl fill 
;tiT the frec varia.bles occurring in the] ambda expression (for m = 0, instead of 
, Clambdan), only <i llCW constant. lambdan is generated). 

(hn (p _x _y) (hn (p _x _y) 
(is c 5) (is c 5) 

(is 1 (lambda <-a _b) (is _1 ( (lambdal _c» 
(+ a b _c») <-1 _x _y) ) 

( 1 - x _y» (ft «lambdal _c) - a _b) 
(+ a b _c) ) 

(hn (p _x _y _z) (hn (p x -y _z) 

«lambda () ('Clambda2 _z _x _y» 
(or (ft «lambda2 z _x _y» 
(is z (+ x _y» (is 3 (+ x _y» ) 

(is z ( * x _y» ) ) ) ) (ft «lambda2 z _x _y» 
(is _z (* x _y» ) 

3.1.6 hi trans 

hi trans reduces higher-order C'xpressions 1.0 apply udb. l,'llrUlermOr('. struc 

tlm:s ill rllllc'Lor positiolls arc (iat.tclIrd. 

'1IIIill(' rXjl;)lldabl" lCilllbda c"'r)}'('~cinlls ilrc~ t.rilllSrnrIlWc\ h\· uncomma (SI'C' St~r:t.il)ll :3 1.7) 

) ) ) ) 
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sorted [Comp] ([A,BIR]) : ­
Comp(A,B), 
sorted[Comp] ([BIR]) . 

(hn «sorted _comp) 
(tup _a _b I _r» 

Ccomp _a _b) 
('(sorted _comp) 

letup _b I _r» 

3.1.7 uncomma 

3 TIlE TRANSFORMERS 

sorted(Comp,[A,BIR]) :­
apply(Comp,tup(A,B),user), 
sorted(Comp,[BIR]). 

(hn (sorted _comp (tup _a b I _r» 
(apply _comp (tup _a _b) user) 
(sorted _comp letup _b I _r» ) 

uncomma transforms ",» -expressions, which arc used to activate expressIOns 
inside of structures, and inline expandable lambda applications. 

(hn (p _x _y) 

(is _y 
«lambda (_a b _y &aux _ab) 

(p _a _b _ab) 
(+ ab _x _y) ) 

123 ) ) ) 

3.2 The bastron transformers 

(ft (p _x _y) 

(is _s5 C+ _x _y» 
'(s _x _y _s5) ) 

(hn (p _x _y) 

(p 1 2 _aux6) 
(is _y (+ _aux6 x 3» ) 

Source-to-source transformations performed by- bast ron are characterized by 
delivering programs that can always still ue understood by the normal REL­
FUN interpreter. In fact, they map into a RELFUN subset which is usually 
more simply interpreted and is always more simply compiled by the 'vertical' 
techniques described in later sections. The following subsections are ordered 
according to their position in the command hierarchy of section 2, where the 
flatten command (subsection 3.2.2) just serves to prepare the flatter com­
mand (subsection 3.2.3). Most material in subsections 3.2.2, 3.2.3, and 3.2.7 is 
taken from [BoI00j. 

3.2.J Untupling 

Ulltupling (command: untup) replaces both active and IJassive n-ary tups by 
corresponding binary cns nestings, where the empty tup becomes the distin­
guished constant nil. This transformation, similar to list parsing in LISP's 
read, prepares PROLOG-like list allocation in the GWAM. 

For example, the ternary tup expression in 

list3(E) :- & tup(E,E,E). 

becomes as in 

list3(E) :- & cns(E,cns(E,cns(E,nil»). 
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whil<> the equivalent. tup st.ructure (cf. subsection 3.2.4) in 

list3(E) :- & [E,E,E]. % list3(E) :- & tup[E,E,E]. 

becomes as in 

list3(E) :- & cns[E,cns[E,cns[E,nil]JJ. 

Sample dialog (untupling of passive bead and active body tups): 

rfi-p> az listn([] ,_) :- & tup() . 
rfi-p> az listn([L] ,E) & tup(Ellistn(L,E». 
rfi-p> untup 
rfi-p> listing 
listn(nil,_) :- & nil. 
listn(cns[L,nil] ,E) ' - & cns(E,listn(L,E». 

3.2 .2 Flattening 

Flattening (command: flatten) replaces embedded subexpressions in the 
premises (both body and foot) by newly generated vitriabJes and associates 
these with each other through preceding is-calls. 

For example, one can employ child as a binary operator defined by 

child(john,lucy) 
child(john,mary) 

& ann. 
& bob . 

ill ralls like child (P, Q), evaluating to P and Q's children. An embedding of 
s uch a n eva.lua tive [ornlllia into <l.llotlwr ev<tluati\'( ~ forlllu\;t makes Lhe lllaill 
rormllia lles ted . Thus, the cares bod.y or the r()()t(~lwd rorlll (d, slJhs(~c:l.ilJll 

3.2.7) 

parental(P) :- cares(P,child(P,Q» & true. 

wilt be fiat tClled to 

parental(P) : - _1 is child(P,Q), cares(p,_l) & true . 

Sample dialog (llPs l,cd fooLs would also work): 

rfi-p> az f(k[]) - g(hO) & j(k[]). 
rfi -p> flatten 
rf i -p> listing 
f (k [] ) 1 is hO, gCl) & j(k[J). 

3.2.3 Flattering 

Flattering (command: flatter) aeLs like flatten (cf. s ubsecl.ioll 3.2.2) lmL 
additioll a lly replaces ellllwdded structures (both ill the premi se'S illid ill 1.11(' 

hl~ ad) by t)('wly genera ted w1.l'iables anel associ a tes these \\'ith (~ach otll e ) Llll'Ol1f,;ll 
p!'(~ recl i ng is-ca lls. 

VOl' exa mple , OtH: Cil ll also (~ mpl ()y child as illl undefin ed hinary ('()IlSL)llf'i;OI 
ill s l.rucr.lIlCS like child [P, 0] , .iust denoting P (t lld Q 's Cllildlf'll\ II r ' llllj( ~d 

dill!!; or ~ 1l (: l1 i t dCllot.a l.i vc ['OlIllUla illl.O a n ( ~vi.dllali \· c forllilila 1 (~ i1 \, ( ''i I.IIf' 111;lill 
ft)l'lTllila ();\t. Tilits. 11)(' cares hod y of Ih( ~ fo()t.cllcd frmll 
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parental(P) :- cares(P, child[P,Q]) & true . 

in subsection 3.2.7 cannot be flattened but il can be flattered to 

parental(P) :- _1 is child[P,Q], cares(P,_l) & true. 

Sample dialog (equivalent to flatten followed by flatter up to variable 
renam ing): 

rfi-p> az f(k[]) - g(h(» & j(k[). 
rfi-p> flatter 
rfi-p> listing 
fCl) :- _1 is k[), 2 is hO, gC2), 3 is k[] & jC3) . 

3.2.4 Tuple- and cons-passivating 

T\lple- and cons-passivating (command: passtup) replaces active, parenthe­
sized tup and ens calls containing only constants, variables, and structures/lists 
by passive, bracketed tup structures , i.e . lists, and ens structures, respectively. 

For (>xample, the tup and ens expressions in 

list3 (E) 
cons2 (E) 

& tup(E,E,E). 
& cnseE,E). 

cont.ai 11 variables on Iy, a lld tllllS a re t up- a nd ens-passivated to structu res as , 
respectively, ill 

list3(E) & [E,E,E]. 
cons2(E) - & cns[E,E]. 

% [E,E,E] shortens tup[E,E,E] 

Sample dialog (only a fter flatten becomes second tup pass ive): 

rfi-p> a z listn([],_) :- & tupO. '!. [] for 0 
rfi-p> az listn([L] ,E) & tup(Ellistn(L,E». 'I. [L] for n+ l 
rfi -p> passt up 
rfi-p> li s ting 
li s t n ( [J ,_) : - & []. 

listn ( [L],E) :- & tup (Ell is tn(L,E». 
rfi-p > flatten 
rfi-p > listing 
listn( [] ,_) :- & [J. 
listn([L],E) :- 1 is listn(L,E) & tup(EI_l). 
rfi-p> passtup 
rfi-p > li s ting 
listn ( [] ,_) :- & [J. 
listn( [LJ ,F.) :- _1 i s listn(L,E) & [EI_1J . 
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3.2.5 Deanonymization 

Deanonymization (command: deanon) transforms anonymous varia l>les 
(PROLOG-like syntax: "_"; LISP-like syntax: "id"), domains (dom-ter ms), 
exclusions (exc- terms), and types ("$"-prefixed predicates) to named versions. 
For doing this new variables are generated replacing each "_" / "id" -occ urrencp 
and providing the occurrence-binding (bnd-term) variables for dom/exc-terms 
and "$" -predicates . 

For example, the anonymous terms in the P-pattern of 

t(Al,A2) : - P is C,dom[a,b] ,exc[c] ,$atom], 
[P,P] is [Al,A2]. 

become as in 

t (Al, A2) : - P is [_1, bnd [_2, dom [a, b]] ,bnd [_3, exc[c]] ,bnd [3, $atomJ J , 
[P,P] is [Al,A2]. 

The bnd-variables effect that after further compilation, although both the goals 
t([true,a,b,c] ,[true,a,b,c]) and t([false,b,a,d], [false,b,a,d]) 
succeed, the goal t([true,a,b,c], [false,b,a,d]) correctly fails. 

Sample dialog (only the first clause's head is affected): 

rfi-p> az listn([] ,_) :- & tupO. 
rfi-p> az listn([L] ,E) & tup(Ellistn(L,E». 
rfi-p> deanon 
rfi-p> listing 
listn([],_l) -&tupO. 
listn([L],E) :- & tup(Ellistn(L,E» . 

3.2.6 Normalizing 

N ormalizi ng (command: normal i ze) per forms several par tial-evaillittion-li k(~ 
transformations such as the propagation of passive right-hand sirles of is -calls 
[K ra91] . 

For exa mple , the constant V-binding in 

f(V,W) V is a & V. 

l(~ads 1.0 

f(a,W) :- & a. 

Sampk dialog (only after flatter call normalize operate) : 

rfi-p > az f(k[]) - geh(» & j(k[J). 
rfi-p> normalize 
rfi-p> listing 
f(k[J) : - g(hO) & j(k[J). 
rfi-p> flatter 
rfi - p> listing 
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fCl) :- _1 is k[], 2 is hO, gC2), 3 is k[] & jC3). 
rfi-p> normalize 
rfi-p> listing 
f(_l) :- _1 is kO, 2 is he), g(_2) & j(_l). 

3.2.7 Footening 

Footening (command: footen) trivially transforms Hornish clauses to footed 
clauses by introducing the explicit foot true . (A footen argument can also 
specify a non-true foot .) 

For example, the (implicitly true-) denotative Hornish rule 

parental(P) :- cares(P,child[P,Q]). 

becomes normalized to the following (explicitly true-) denotative footed rule:8 

parental(P) :- cares(P,child[P,Q]) & true. 

Sample dialog (nothing changes since the clause is already footed): 

rfi-p> az f(k[]) 
footen 
listing 

g(hO) & j(k[]). 
rfi-p> 
rfi-p> 
f (k []) g (h () & j (k [] ) . 

4 The classifier 

The classifier's task is to extract information (e.g. about the kinds of clauses 
and variables) from the program (database) that enables the code generator 
(vertical compiler) to produce efficient RFM (WAM) instructions. This in­
formation, often implicit in compilers, is here explicitely represented in the 
declarative intermediate language Classified Clauses; for this the classifier ex­
tends normal RELFUN source clauses with numerous declarations on different 
levels of description. The following short introduction is based on the current 
implementation status of the Classified Clauses. A more detailed introduction 
of an earlier version is presented (in German) in [Kra90] . This section briefly 
describes the Classified Clauses by stepwise refinement; in section 4.7 the de­
scription grammar is given in an EBNF syntax. 

In Classified Clauses we distinguish six levels of description, namely the . 
database, procedure, clause, chunk, literal, and term levels. A databa.'3e consists 

8If performed indiscriminately, footening prevents the last-call optimization in the WAM 
(here, parental cannot just jump to , or execute, cares since it still has to puLconstant 
true). In order to avoid this, footening should, in practice, only be performed on Hornish rules 
for which it cannot be assured that the last premise (here, cares) on success will itself return 
true . If, however, this 'true-return' property can be established for a Hornish rule, it should be 
'foot-optimized', i.e. transformed into a footed rule reusing the last (relational) premise as its 
(functional) foot (here obtaining parental(P) : -& cares (P. child [P. Q]) . While in general 
this requires global analysis , for the important special case of tail-recursion optimization the 
analysis can be confined to individual procedures. Benchmark results for the la tter case can 
be found in [Heigl) . 
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of an unordered set of procedures each consisting of an ordered set of clauses . 
All clauses of one procedure have the same name and arity. Name and arity yield 
the procedure name 'name/arity'. For example, the clause foo(V,W) belongs 
to the procedure foo/2. 

The Classified Clauses for a RELFUN program (database) are accordingly 
defined as follows: 

classified_database .. - (db9 {classified_procedure} *) 

4.1 Procedure level 

Syntax: 

classified_procedure ::= (proc procedure...name clause_count indexing 
{ clause_classification} +) 

Description: 

proc Each description of a procedure starts with the tag proc. 

procedure_name The name and the arity of clauses yield the procedure name. 

clause_count Clause_count gives the number of clauses belonging to the pro­
cedure. 

indexing Indexing information for the procedure. 

Example: 

Prolog-like source: 

faa ( ... ) . 
faa ( ... ) 

Lisp-like source: 

(hn (faa ... )) 
(ft (faa ... ) . . .) 

Classified Clauses: 

(db (proc foo/2 2 
indexing 
clause_classification 
clause_classification) 
. ) 

9The db tag is omitted in the current implementation 
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Remark: 
It is planned for the future to extend the description of a procedure by infor­
mation about the modes of the arguments in all feasible calls to the procedure. 
In this way it should be possible that, on the one hand, the user can declare 
the modes and, on the other hand, a mode interpreter can compute the modes 
automatically. Thus the mode interpreter could check the consistency of the 
modes generated by the user in exactly the same way. 

4.2 Indexing 

Syntax: 

indexing .. -
iblock .. -.. 
pblock .. -
rblock .. -
clauses .. -
arg-col .. -.. 
base-type .. -.. 
const .. -.. 
struct .. -
var .. -
1block .. -
sblock .. -.. 
seqind .. -.. 
seqind-arg .. -

constants .. -
structures .. -
element .. -
element-name .. -.. 

lists .. -
empty-lists .. -
others .. -

Description: 

iblock indexed block 

(indexing [iblockJ) 
pblock I sblock 
(pblock rblock {sblock 11block}+) 
(rblock clauses {arg-col} +) 
(clauses {clause-number} +) 
(arg arg-number {base-type}+) 
const I struct I var 
(const symbol) 
(struct symbol arity) 
(var symbol) 
(lblock clauses {arg-col}+) 
(sblock rblock seqind [pblock]) 
(seqind {seqind-arg} +) 
(arg arg-number (info inhomogenity) constants 

structures lists empty-lists [others]) 
(const {element} *) 
(struct {element }*) 
(element-name clauses [iblock]) 
symbol I (symbol arity) 
(list clauses [iblock]) 
(nil clauses [iblock]) 
(other clauses [iblock]) 

pblock partition block 

sblock standard index block 

1 block block consisting of only one clause 

rblock raw block containing the initial data 

seqind sequential indexing 

arg-col argument column 
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others (possibly indexed) clauses for elements not occurring in any hash table 

Example: 

Prolog-like source: 

foo(alpha,beta). 
foo(T,gamma) 

Lisp-like source: 

(hn (foo alpha beta» 
(ft (foo t gamma) . . .) 

Classified Clauses: 

(db (proc foo/2 2 
(indexing 
(sblock 
(rblock 
(clauses 1 2) 
(arg 1 (const alpha) (var t» 
(arg 2 (const beta) (const gamma» ) 

(seqind 
(arg 2 
(info 2) 
(const (beta (clauses 1» (gamma (clauses 2») 
(struct) (list) (nil) ) 

(arg 1 
(info 1) 
(const (alpha (clauses 1 2») 
(struct) (list) (nil) 
(other (clauses 2» ) ) ) ) 

. ) 

Here we insert a more complete example from a propositional nor­
malizer [Sin93]: 

Prolog-like source: 

norm(X, X) :- literal(X). 
norm(or[X, Y], or[X, Y]) :- literal(X) , literal(Y). 
norm(and[X, Y], and[X, Y]) :- literal(X) , literal(Y). 
norm(or[X, Y], or[Xl, Y]) :- literal(Y), norm(X, Xl). 
norm(or[X, or[Y, Z]], W) :- norm(or[or[X, Y], Z], W) . 
norm(or[X, and[Yl, Y2]], or[Xl, Y12]) :-
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norm(X, Xl), norm(and[Yl, Y2J, Y12). 
norm(and[X, YJ, and [Xl , YJ) :- literal(Y), norm(X, Xl). 
norm(and[X, andry, ZJJ, W) :- norm(and[and[X, YJ, ZJ, W). 
norm (and [X , or[Yl, Y2JJ, and [Xl , Y12]) :- norm(X, Xl), 

norm(or[Yl, Y2J, Y12). 

Classified Clauses: 

(db (proc norm/2 9 
(indexing 
(sblock 
(rblock 

norm/2 has 9 clauses 

; info block for first node 
(clauses 1 2 3 4 5 6 7 8 9) ; of the index tree 
(arg 1 ; possible contents of the first argument 
(var x) (struct or 2) (struct and 2) (struct or 2) 
(struct or 2) (struct or 2) (struct and 2) 
(struct and 2) (struct and 2) ) 

(arg 2 possible contents of the second argument 
(var x) (struct or 2) (struct and 2) (struct or 2) 
(var w) (struct or 2) (struct and 2) 
(var w) (struct and 2) ) ) 

(seqind 
(arg 1 
(info 2) 
(const) 
(struct 

«or 2) 

first node of the index tree 
indexing for the first arg 
there are 2 possible arguments 
no constant in first arg 
there are heads with struct as 1st arg 
create new node in index tree 
norm (or [ .. J , .. ) 

(clauses 1 2 4 5 6) ; matches these clauses 
(sblock ; new node for 2nd-arg indexing 
(rblock ; information for possible subtree pruning 
(clauses 1 2 4 5 6) 
(arg 2 (var x) (struct or 2) 

(struct or 2) (var w) (struct or 2» ) 
(seqind 
(arg 2 
(info 1) 1 possible arg 
(const) no constant as 2nd arg 
(struct norm(or[ .. J,or[ .. J) 
«or 2) (clauses 1 2 4 5 6») create try-trust block for 

these clauses 
(list) ; no list as 2nd arg 
(nil) ; no [J as 2nd rg 
(other (clauses 1 5» ) ) ) ) ; variable as 2nd 

«and 2) ; norm(and[ .. J, .. ) 
(clauses 1 3 7 8 9) ; matches these clauses 
(sblock ; new node for 2nd-arg indexing 
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Remark: 

(rblock ; information for possible subtree pruning 
(clauses 1 3 7 8 9) 

(arg 2 (var x) (struct and 2) 
(struct and 2) (var w) (struct and 2)) ) 

(seqind 
(arg 2 
(info 1) 
(const) 
(struct 

1 possible arg 
no constant as 2nd arg 

«and 2) (clauses 1 3 7 8 9))) 

(list) ; no list as 2nd arg 
(nil) ; no [] as 2nd arg 

create try-trust block for 
these clauses 

(other (clauses 1 8)) ; variable as 2nd arg 
))))) (struct ... 

(list) 
(nil) 
(other (clauses 
) ; (arg 1 

(arg 2 
(info 2) 

no list as 1st arg 
no list as 1st arg 
1)) ; variable as 1st arg 

indexing for the 2nd arg 
2 possible arguments 

(const) no constants 
(struct there are heads with struct as 2nd arg 
«or 2) (clauses 1 2 4 5 6 8)) create try-trust block for 

; norm( .. , or [ .. ] ) 
«and 2) (clauses 1 3 5 7 8 9))) ; and for norm( .. ,and[ .. J) 

(list) no list as 2nd arg 
(nil) no [] as 2nd arg 
(other (clauses 1 5 8)) ) ) ) ) ; variable as 2nd arg 

. ) 

For further information about indexing see [8te93, 8in93, 8892]. 

4.3 Clause level 

Syntax: 

clause_classification 
chunk...sequence 
cuUnfo 
perm_varlist 
temp_varlist 
cuLtype 
globaLperm_ var _descr 
glo baUem p_ var _descr 
permAescr 
temp_descr 

(clause_type cuUnfo perm_varlist temp_varlist chunk...sequence) 
head_chunLfact I head_chunk...rule body _chunklist 
(cut-info cuLtype) 
(perm {globaLperm3aLdescr} *) 
(temp {globaUemp_vaLdescr}*) 
lonely I first I last I general I nil 
(variable perm_descr) 
(variable temp_descr) 
(Y -reg_nr useJlead (lasLchunk lasLchunkliteral)) 
(X-reg_nr use_head use_premise) 
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Description: 

clause_type The clause_type describes the kind of clauses, which are distin­
guished in relO, funlden, funleva, fun*den, fun*eva. We give the 
type relO to a hn-clause without any body literal. Thus relO tags an 
ordinary fact, as known from PROLOG. The "1" in the types funlden 
and funleva indicates that the clause contains only one chunk. Hence 
"*,, means the clause contains two or more chunks. "den" stands for 
denotative foot and "eva" for evaluative foot . It should be noted that an 
hn-clause with an evaluative last body literal still is a "den" -like clause, 
because hn-clauses implicitly return the value true and not the value of 
their last premise 

cuLinfo (Information about the occurrence of a cut in the clause) The cuLinfo 
contains exactly one argument, cuLtype, which maps directly to the cor­
responding GWAM-instructions (see section 7) . The cuLtype argument 
is nil if there is no cut . Since currently RELFUN clauses always return a 
value, only first and general are in use. 

perm_var jist (Global information about the permanent variables of the 
clause) An element of the perm-Yar Jist is a pair of the form: (variable 
perm_descr). The perm_descr is a 3-tuple describing a) where the vari­
able has to be located in the local environment in order to make optimum 
environment trimming, b) the occurrences in the head literal (a list of 
argument positions), and c) the last occurrence (the last chunk and the 
last literal in this chunk) of the variable in the clause. 

temp_vaLlist (Global information about the temporary variables in the 
clause) The temp_varJist describes a) which register (or X-reg_nr) has 
to be assigned to the temporary variable for register optimization on the 
machine level, b) the occurrence in the head literal (or useJ1ead), and c) 
the call literal (or use_premise). A temporary variable occurs only in one 
chunk by definition; in this way the call literal is unique and it is possible 
that neither useJ1ead nor use_premise are different from the empty list 
nil. 

Example: 

Prolog-like source: 

foo(alpha,beta). 
foo(T,gamma) bar(T,P)!& bar(P,Q). 

Lisp-like source: 

(hn (foo alpha beta» 
(ft (foo t gamma) (bar t _p) (bar _p _q» 
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Classified Clauses: 

(db (proc foo/2 2 (indexing 
(relO 

. ) 
hn-clause (foo alpha ... ) 
without body goals 

(cut-info nil) 
(perm) 
(temp) 
(chunk .)) 

there is no cut 
there are no permanent variables 
there are no temporary variables 

; head_chunk_fact 

(fun*eva the ft-clause (foo _t ... ). The 
clause contains two small chunks 

. ) 

4.4 Chunk level 

Syntax: 

head_chunk-±'act 
head_chunk.rule 

body _chunkJist 
body_chunk 
callJi teral 
chunLguard 
chunLdescr 
permvar _uselitJist 

and an evaluative foot calling bar/2 
(cut-info general) 
(perm (_p (1 nil (2 1)))); Permanent variable _po 

_p is assigned to the V-reg 1 in the 
local environment. _p doesn't occur 
in the head. Its last occurrence is 
in the second chunk and as the first 
literal in the chunk. 

(temp (_t (1 (1) (1))) ; The temporary variable _to 
_t is assigned to the X-reg 1. It 
has an arg-l occurrence in the head. 
Its call literal in the chunk is 

(chunk 
(chunk 

in the argument position 1. 
(_q (2 nil (2)))) ; _q is assigned to register 2 

because its occurrence in the call 
literal is at argument position 2. 
It has no head occurrence . 

. ) head_chunk rule 

.)) ; bOdy_chunk 

(chunk (headJiteral {chunk_guard} *) chunk_descr) 
(chunk (headJiteral {chunk_guard} * firsLpremiseJiteral) 

chunLdescr) 
{body_chunk}* [(({chunk_guard}*) chunLdescr)] 
(chunk ({chunk_guard}* callJiteral) chunk_descr) 
literaLclassification I lispcalLclassification 
builtin I passive_term 
(luJeg ({ (variable permvaLuselitJist)} *)) 
({ arg_nr} +) 
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Description: 

body _chunk A chunk is a 2-argumented structure composed of the tag chunk, 
a list of denotative literals called chunk_guards with an additional evalu­
ative literal called callJiteral as the last element, and some information 
about the chunk called chunLdescr. 

head_chunk_fact If there are no call literals in the body of the clause, then 
the clause contains only one chunk ending with a denotative literal. We 
call this kind of chunk head_chunk.iact. In fact, all clauses with type 
relO or funlden arEi constructed with only the head_chunk.iact. 

head_chunk-Iule If there is at least one call literal in the clause, then the 
first chunk ends with a call literal (firsLpremiseJiteral). All clauses with 
types different from relO and funlden have a head_chunkJule as their 
first chunk. 

chunk_descr The classifier computes optimized register assignments for tem­
porary variables. The information IUJeg tells the code generator which 
register is the last one used by the classifier. For example the code genera­
tor has to take register numbers higher than IUJeg for handling the perma­
nent variables in the chunk. The pair (variable permvaLuselitJist) tells 
the code generator where the permanent variables occur in the calUiteral 
of the chunk. 

Example: 

Prolog-like source: 

foo(alpha,beta). 
foo(T,gamma) bar(T,P)!& bar(P,Q). 

Lisp-like source: 

(hn (foo alpha beta)) 
(ft (foo t gamma) (bar t _p) (bar _p _q)) 

Classified Clauses: 

(db (proc foo/2 2 (indexing ... ) 
(relO hn-clause without body goals 

(cut-info nil) 
(perm) 
(temp) 
(chunk The tag for the first chunk. 

(head_literal) ; There exists only the head literal 
nil) ) There is no need for any chunk descr 
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(fun*eva 

. ) 

(cut-info general) 
(perm (_p (1 nil (2 1»» 
(temp (_t (1 (1) (1») 

(_q (2 nil (2»» 
(chunk ; The tag for the first chunk. 

«usrlit ... » ; head_literal first_premise_li tel 
(2 «_p (2»» ); lu_reg = 2 because of the arity 

of the first_premise_Iiteral. The 
permanent variable _p occurs at 
position 2 in the call_literal. 

(chunk The tag for the second chunk. 
«usrlit ... » there is only a call_literal. 
(2 «_p (1»»») _p occurs at position 1 

in the call literal . 

4.5 Literal level and argument level 

Syntax: 

Ii teraLclassification 
lisp call_classification 

builtin 
arglist_classification 
term_classification 

is_primitive 
Ihs_term 
rhs_term 
constant_classification 
variable_classification 
structure_classification 

locaL var _descr 
Ii teraLdescr 
lisp calLdescr 

Description: 

.. -.. 

.. -.. 

.. -.. 

.. -.. 

.. -.. 

.. -

.. -.. 

.. -.. 

.. -.. 

.. -

.. -.. 

.. -.. 

.. -.. 

.. -.. 

(usrlit (functor arglisLclassification) literaLdescr) 
(lispcalUype (lisp-builtin argIisLclassification) 

lispcalLdescr) 
unknown I is_primitive I (refl-Xreg lhs_term) 
{term_classification} * 
constanLclassification I variable_classification 

I structure_classification 
(is lhs_term rhs_term) 
constanLclassification I variable_classification 
term_classification 
constanLname 
(variable locaL var _descr) 
'( functor arglisLclassification) 

I (inst (functor arglisLclassification)) 
(occurrence saveness var _class) 
(arity env..size arg_seq) 
(arity env..size arg_seq) 

term_classification A term is a denotative literal. The insLop ("'" or "inst") 
indicates that a literal is a denotative (sometimes called passive) one. 

10caLvar _descr A variable is locally described (with respect to all its occur­
rences in the clauses) by the locaLvaLdescr. It is a list of three elements 
(occurrence saveness vaLclass). The occurrence can be first, nonfirst, or 
reuse. While the meaning of first and nonfirst is intuitively clear, reuse 
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means that the classifier has assigned a register to more than one tem­
porary variable. If a variable occurs first it gets the information reuse 
(instead of first) when the register was assigned to another temporary 
variable before in the same chunk. This is more an information for the 
user than for the code generator. Because of the different possible ref­
erences of a variable, we describe the different reference states by the 
information saveness. The saveness is distinguished into global (a ref­
erence to the heap), safe (a reference to a caller environment or to the 
heap), and unsafe (a possible reference to the local environment). The 
information var_class tells the code generator whether the variable is temp 
or perm. 

literaLdescr The arity gives the number of arguments in the literal. 

env --size denotes how many permanent variables have to survive the call to 
the literal. The Y-register assignment in the permvarJist has been done 
in a way that the env...size is as small as possible. 

arg--seq is a list that tells the code generator in which order the argument 
positions have to be represented by GWAM instructions. It is possible 
that some arguments need no instructions. A missing argument position 
in arg-seq indicates such a case. 

Example: 

Prolog-like source: 

foo(alpha,beta). 
foo(T,gamma) bar(T,P)!& bar(P,Q). 

Lisp-like source: 

(hn (foo alpha beta)) 
(ft (foo t gamma) (bar t _p) (bar _p _q)) 

Classified Clauses: 

(db (proc foo/2 2 (indexing ... ) 
(relO 

(cut-info nil) 
(perm) (temp) 
(chunk 

«usrlit (foo alpha beta) 
(2 0 (1 2)))) ; The literal foo has 2 

arguments. The env_size is O. 
Use the order given in 
arg_seq (1st: alpha, 2nd: 
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beta. 
nil» No chunk description needed 

(fun*eva 

. ) 

Remark: 

(cut-info general) 
(perm (_p (1 nil (2 1»» 
(temp (_t (1 (1) (1») (_q (2 nil (2»» 
(chunk 

«usrlit (foo (_t (first safe temp»; _t occurs 
; first and is safe because 
; it has a reference to the 

gamma); caller's environment 
(2 1 (2»); _t needs no instruction 

; since it stays first arg 
(usrlit (bar (_t (nonfirst safe temp» 

(_p (first unsafe perm») 
; _p is potentially unsafe 

(2 1 (2»»; As above! 
No instruction for t 

(2 (Cp (2»» ) 
(chunk «cutlit (cut) (0 1 nil») (0 nil» 
(chunk 

«usrlit (bar (_p (nonfirst unsafe perm» 
(_q (first unsafe temp») 

(2 0 (1 2»» 

(2 «_p (1»»») 

The WAM-instruction meaning of the Classified Clauses is described in para­
graph 5, where an introduction to the code generator is given. The code gen­
erator takes as input the Classified Clauses for RELFUN and produces the 
GWAM code. Therefore, in paragraph 5 you can find more detailed informa­
tion on how the added annotations are used for code generation. 

4.6 An example with structures 

We consider an example showing in which way structures are represented in 
the Classified Clauses. The first step we show is the flattening and normalizing 
that precedes (as part of the horizon command, d. section 3.2) the compilation 
before classified clauses are generated (see [Kra91] and section 2). 

Prolog-like source: 

bareR,S). 
fie(f[b] ,f[b] ,b) :- W is g[f[b]] & bar(b,W). 

Leads after flattering and normalizing to: 
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bareR,S). 
fieL3,_3,b) 3 is f[b], W is g[_3] & bar(b,W). 

Lisp-like source: 

(hn (bar _r _s» 
(ft (fie _3 _3 b) 

(is _3 ' (f b» 
(is _w '(g _3» 
(bar b _w) ) 

Classified Clauses: 

(db (proc bar/2 1 
(indexing) 
(relO 

no indexing 

(cut-info nil) 
(perm) 

bar/2 is an hn-fact 
no cut 
No permanent variables 
2 temporary variables (temp (_r (1 (1) nil» 

(_s (2 (2) nil») 
(chunk 

«usrlit (bar (_r (first safe temp» 
(_s (first safe temp») 

(2 0 (1 2» »; Proposed instructions for posltlon 1 and 
nil») ; 2, but the code generator will make it better 

; Start of the description of the next procedure 

(proc fie/3 1 
(indexing) 
(fun1eva 

no indexing 
A one-chunk rule with an evaluative foot 

(cut-info nil) 
(perm) 
(temp L3 (1 (2 1) nil» ; the variable _3 has no occurrence 

in the call literal of its chunk 
(_w (2 nil (2»» 

(chunk «usrlit (fie (_3 (first safe temp» 
(_3 (nonfirst safe temp» 
b) ; A constant gets no further description 

(3 0 (3 1 2» ) ; Generate code for the constant first! 
(is (_3 (nonfirst global temp» 

'(f b» A chunk guard gets no further description 
(is All is-primitives are used denotatively 

(_w (first unsafe temp» ; in the Classified Clauses 
'(g (_3 (nonfirst safe temp»» The structure g/2 

; beginning with "'" 
(usrlit (bar b 

(_w (nonfirst unsafe temp») 
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(2 0 (1)))); No instruction for _w necessary because 
the register 2 is assigned to it 

(3 nil))))) ; lu_reg = 3, because of the literal foo/3 
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4.7 EBNF syntax for Classified clauses 

classified_database 
classified_procedure 

indexing 
iblock 
pblock 
rblock 
clauses 
arg-col 
base-type 
const 
struct 
var 
Iblock 
sblock 
seqind 
seqind-arg 

constants 
structures 
element 
element-name 
lists 
empty-lists 
others 
clause_classification 
chunk....sequence 
cuLinfo 
head_chunk-±'act 
head_chunk..rule 

body _chunk Jist 
body_chunk 
chunLdescr 
headJiteral 
firsLpremiseJiteral 
callJiteral 
chunLguard 
passive_term 
permvar _uselit.Jist 
Ii teraLclassification 
lispcall_classification 

builtin 
arglisLclassification 

-.. 
-" 

-" 

,,-
" 

-.. 
,,-

,,-

-" 

-" 

.. -
-" 

,,-
" 

.. -
" 

,,-

.. -
,,-

"-
" 

-" 

"-
" 

,,-

-" 

"-
" 

,,-

" 

,,-
" 

.. -
" 

-" 

.. -
" 

,,-

" 

"-
" 

.. -
-.. 

"-
" 

,, -

,,-.. 
"-
" 

,,-

"-
" 

,,-

"-
" 

,,-

"-
" 

(db {classified_procedure} *) 
(proc procedureJlame clause_count 

indexing {clause_classification} +) 
(indexing [iblock)) 
pblock I sblock 
(pblock rblock {sblock Ilblock}+) 
(rblock clauses {arg-col} +) 
( cla uses {clause-number} +) 
(arg arg-number {base-type} +) 
const I struct I var 
(const symbol) 
(struct symbol arity) 
(var symbol) 
(lblock clauses {arg-col}+) 
(sblock rblock seqind [pblockJ) 
(seqind {seqind-arg} +) 
(arg arg-number (info inhomogenity) constants 

structures lists empty-lists [others]) 
(const {element} *) 
(struct {element}*) 
(element-name clauses [iblock]) 
symbol I (symbol arity) 
(list clauses [iblockJ) 
(nil clauses [iblock)) 
(other clauses [iblock]) 
(clause_type cutjnfo perm_var.list temp_var.list chunk....sequence) 
head_chunk-±'act I head_chunkJule body _chunk.list 
(cut-info cuLtype) 
(chunk (headJi teral {chunLguard} *) chunLdescr) 
(chunk (headJiteral {chunLguard}* firsLpremiseJiteral) 

chunk_descr) 
{body _chunk}* [( ({ chunk_guard }*) chunk_descr)] 
(chunk ({ chunk_guard} * callJiteral) chunk_descr) 
(luJeg ({ (variable permvar _uselitJist)} *)) 
literaLclassification 
callJiteral 
Ii teraLclassification I lispcalLclassification 
builtin I passive_term 
term_classification 
({ arg_nr} +) 
(usrlit (functor arglisLclassification) literaLdescr) 
(lispcalUype (lisp-builtin arglist_classification) 

lispcalLdescr) 
unknown I is_primitive I (refl-Xreg lhs_term) 
{ term_classification} * 
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term_classification 

is_primitive 
lhs_term 
rhs_term 
constant_classification 
variable_classification 
structure_classification 

perm_varJist 
temp_varJist 
literaLdescr 
lispcalLdescr 
glo baLperm_ var _descr 
globaLtemp_ var _descr 
perm_descr 
temp_descr 
locaL vaLdescr 
clause_type 
lispcalUype 
Y-reg_nr 
X-regJlr 
las Lchunk 
lasLchunkliteral 
useJ1ead 
use_premlse 
arg-seq 
lUJeg 
occurrence 
saveness 
var_class 
variable 
procedureJlame 
functor 
lisp-builtin 
lisp-fcts 
lisp-preds 
lisp-extras 
constantJlame 
clause_count 
arg-Dr 
reg_nr 
chunk_nr 
Ii t-Dr 
env-size 
arity 

.. -

.. -

.. -.. 

.. -.. 
"-.. 
.. -
.. -

-.. 
"-.. 
.. -.. 
.. -
.. -
" -.. 
.. -.. 
"-.. 
"-.. 
.. -.. 
"-.. 
.. -.. 
.. -.. 
.. -.. 
.. -.. 
-.. 

.. -

.. -.. 
"-.. 
.. -.. 
.. -.. 
.. -.. 
"-.. 
.. -.. 
"-.. 
.. -.. 
.. -.. 
.. -.. 
"-.. 

constanLclassification I variable_classification 
I structure_classification 

(is lhs_term rhs_term) 
constanLclassification I variable_classification 
term_classification 
constantJlame 
(variable locaLvaLdescr) 
'( functor arglisLclassification) 

I (inst (functor arglisLclassification)) 
(perm {globaLperm_var_descr }*) 
(temp {globaUemp_vaLdescr }*) 
(ari ty env -size arg-seq) 
(ari ty env -size arg-seq) 
(variable perm_descr) 
(variable temp_descr) 
(Y -regJlr use-.bead (lasLchunk lasLchunkliteral)) 
(X-regJlr use-.bead use_premise) 
(occurrence saveness var _class) 
relO I funlden I funleva I fun*den I fun*eva 
cl-func I cl-pred I cl-extra 
regJlr 
regJlr 
chunkJlr 
lit..nr 
({reg_nr}*) 
( {reg_nr } *) 
({ arg_nr} *) 
regJlr 
first I nonfirst I reuse 
global I safe I unsafe 
perm I temp 
-Dame I (vari name) 
name/arity 
name 
lisp-fcts Ilisp-preds I lisp-extras 
;;;;; RELFUN supported LISP functions 
;;;;; RELFUN supported LISP predicates 
;;;;; RELFUN supported LISP functions with side effects 
name 
cardinal 
cardinal 
cardinal 
cardinal 
cardinalO 
cardinalO 
cardinalO 
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name 
cardinal 
cardinalO 
letter 
digit 
digitO 

letter {letter I digitO}* 
digit {digitO}* 
o I cardinal 
a I b 1 ... 1 z 

1121·· ·19 
o 1 digit 

4 THE CLASSIFIER 
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5 The code generator 

The basic idea of the code generator is to keep it as simple as possible to allow 
an easy replacement of the GWAM by another abstract machine. The classi­
fied clauses should be considered as a 'machine-independent' representation of 
RELFUN procedures. It was not necessary to modify the code generator when 
proceeding from Nystr0m's WAM to our GWAM and C-based emulators. 

The internal program structure of the code generator resembles the structure 
of the EBNF syntax. Therefore, in the following we give the EBNF syntax and 
the corresponding LISP functions. . 

The idea is to associate with each nonterminal symbol a function returning 
code for the corresponding construct; the returned code is appended to the 
already existing code. This ensures a (more or less) functional structure of the 
code generator. To avoid possible performance problems of the code generator, 
all calls to the expensive append are encapsulated in the macros doappend and 
addeode, where they could be replaced by cheaper neone calls. 

In this section the functions and macros of the code generator will be intro­
duced. The descriptions of the function's parameters will not be given, so the 
reader should consult the source code, although the variable names should be 
self-explaining. 

The source of the code generator has been written in a very functional style 
using only a small subset of COMMON LISP, having in mind a simple reimple­
mentation of the code generator in RELFUN. Thus, we make extensive use of 
CONDs instead of using eease, jump tables, and other specialities COMMON 
LISP is offering. 

5.1 Software interface 

The code generator has two access functions from the outside (from the view 
of software modules). (code-gen-proe classified_procedure) is used to 
generate WAM code from a classified procedure. This is the function we use 
from the outside to compile a procedure incrementally. 

In the future, the compilation of a single clause may become important for 
dynamic asserts and retracts. The appropriate function to produce WAM code 
for a single classified clause is (code-gen-ec clause_classification). 

If extensions to the code generator are made, one should ensure that this 
interface does not change. 

In the following, functions for code generation are described. Nontermi­
nals are used as input parameters representing the argument type. The right 
arrows prefix the returned value of the system, which is often represented by 
nonterminal symbols. The symbols in bold case are the terminal symbols. 

5.2 classified_procedure 

classified_proced ure (proc procedureJlame clause_count 
indexing {clause_classification} +) 
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• (s-cg-proc-id classified_procedure) 
-} proc 

5 THE CODE GENERATOR 

remark: s-cg = selector for code generator 

• (s-cg-procedure_name classified_procedure) 
-} procedure~arne 

• (s-cg-clause_count classified_procedure) 
-} clause_count 

• (s-cg-clause_classific<l-tions classified_procedure) 
-} list of clause_classification(s) 

• (code-gen-proc classified_procedure) 
-} GWAM code for the procedure. This procedure is responsible for 
generating try/retry/trust instructions. 

5.3 indexing 

indexing (indexing [iblock]) 

• (icl.s-iblock-from-class-proc classified_procedure) 
-} sblock I pblock 
remark: icl = indexing classifier part 

• (icl.s-iblock-type iblock) 
-} pblock I sblock 

• (icl.s-rblock-from-pblock pblock) 
-} rblock 

• (icl.s-iblock-list-from-pblock pblock) 
-} list of sblock I Iblock 

• (icl.s-rblock-from-sblock sblock) 
-} rblock 

• (icl.s-seqind-arg-list-from-sblock sblock) 
-} list of seqind-arg 

• (icl.s-iblock-from-sblock sblock) 
-} pblock 

• (icl.s-clause-from-lblock Iblock) 
-} clause-number 

• (icl.s-arg-col-list-frorn-lblock Iblock) 
-} list of arg-col 

• (icl.s-clauses-from-rblock rblock) 
-} list of clause-number 
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• (icl.s-arg-col-list-from-rblock rblock) 
---* list of arg-col 

• (icl.s-arg-no-from-arg-col arg-col) 
---* arg-number 

• (icl.s-it-list-from-arg-col arg-col) 
---* list of base-type 

• (icl.s-arg-no-from-seqind-arg seqind-arg) 
---* arg-number 

• (icl.s-info-from-seqind-arg seqind-arg) 
---* (info inhomogenity) 

• (icl.s-constant-list-from-seqind-arg seqind-arg) 
---* constants 

• (icl.s-structure-list-from-seqind-arg seqind-arg) 
---* list of elements of structures 

• (icl.s-list-from-seqind-arg seqind-arg) 
---* lists 

• (icl.s-nil-from-seqind-arg seqind-arg) 
---* empty-lists 

• (icl.s-other-from-seqind-arg seqind-arg) 
---* others 

• (icl.s-var-from-raw-seqind-arg seqind-arg) 
---* lists 

• (iif.mk-tree clause_classification) 
---* produces indexing trees for further use by the code generator 
remark: iif = indexing interface 

5.4 clause_classification 

clause_classification (clause_type cut-info perm_var Jist 
temp_ var Jist chunk...sequence) 
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chunk...sequence head_chunk.iact I head_chunk..rule body _chunkJist 

• (s-cg-clause_typ clause_classification) 
---* clause_type 

• (s-cg-cuLinfo clause_classification) 
-7 cut-info 

• (s-cg-perm_ val' Jist clause_classification) 
-7 perm_varJist 
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• (s-cg-temp_ val' J.ist clause_classification) 
-7 temp_varJ.ist 

• (s-cg-chunks clause_classification) 

5 THE CODE GENERATOR 

-7 list of head_chunkJact or list of head_chunk Jact or list of 
head_chunkJule 
body _chunkJule. 

• (code-gen-cc clause_classification) 
-7 GWAM code for a classified clause. This function has to cope with 
relO, funlden, funieva, fun*den and fun*eva and with setting up an 
appropriate environment. 

head_chunkJact 
head_chunkJ·ule 

(chunk (headJ.iteral {chunLguard} *) chunk_descr) 
(chunk (headJ.iteral {chunk_guard} * firsLpremiseJ.iteral) 

chunLdescr) 
body _chunkJ.ist 
body_chunk 

{body_chunk}* [« {chunk_guard}*) chunk_descr)] 
(chunk ({chunk_guard} * callJ.iteral) chunk_descr) 

Let chnk be an abbreviation for head_chWlkJact, head_chunk..rule or 
body_chunk. 

• (s-cg-chunk_id chnk) 
-7 chunk 

• (s-cg-chunk_descr chnk) 
-7 chunk_descr 

• (s-cg-chunk_headJ.iteral chnk) 
-7 headJ.iteral 

• (s-cg-chunk_hd_cgfpl head_chunkJule) 
-7 list: «chunLguard/s) firsLpremiseJiteral) 
remark: cgfpl = chunk guard, first premise literal 

• (s-cg-chunk-bd_cgcl body_chunk) 
-7 «chunks_guard/s) calUiteral) 
remark: cgcl = chunk guard, call literal 

• (code-gen-hdchunk perms temps chunk callexeflg deallocflg chunknr) 
This function returns code for the first chunk in the clause. One may no­
tice that this function is very similar to code-gen-chunk below, although 
further enhancements (indexing, global compilation) may result in a com­
plete reformulation of that function, whereas code-gen-chunk is likely to 
keep the same. 

• (code-gen-chunk perms temps chunk callexeflg deallocflg chunknr) 
Returns WAM code for a chunk to be found in the body. 
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5.6 chunk_descr 

chunLdescr (luJeg ({ (variable permvaLuselitJist)} *)) 

• s-cg-chunkJuJeg (chLdescr) 
--+ IUJeg 

• s-cg-chunLvpul (chk_descr) 
--+ list of (variable permvaLuselitJist) 

5.7 literaLclassification 
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literaLclassification .. - (usrlit (functor arglisLclassification) literaLdescr) 

• (s-cg-usrliUd literaLclassification) 
--+ usrlit 

• (s-cg-literaLdescr li teraLclassification) 
--+ literaLdescr 

• (s-cg-faclist literaLclassification) 
--+ (functor arglisLclassification) 
remark: fac = functor arglist classification 

• (s-cg-functor fac) 
--+ functor 

• (s-cg-arglisLclassification fac) 
-t arglisLclassification 

• (code-gen-head perms temps fac arg~eq) 
Generates code for the first literal in the clause. 

(code-gen-head-arg place temps arg) 
Generates code for an argument place in the first literal in the clause. 

(code-gen-head-temp place temps arg) 
Generates code for an X-variable in the first literal of a clause. 

(code-gen-head-perm place temps arg) 
Generates code for a Y-variable in the first literal of a clause. 

• (code-gen-tail perms temps arity permcnt fac callexeflg deallocflg cnknr 
litnr arg~eq) 
Generates code for the literals except the first in the clause. 

(code-gen-tail-arg place perms temps arg chknr litnr) 
Generates code for an argument place in the literals except the first 
in the clause. 

(code-gen-tail-temp place temps arg) 
Generates code for an X-variable in the body literals of a clause. 

- (code-gen-tail-perm place perms arg chknr litnr) 
Generates code for the literals except the first in the clause. 
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5.8 variable_classification, locaLvar _descr 

variable_classification 
locaL var _descr 

(variable locaL vaLdescr) 
(occurrence saveness var_class) 

• (s-cg-Iocal-var-descr variable_classification) 
--t locaL var _descr 

• (s-cg-locaL var _occurrence variable_classification) 
-t locaL var _occurrence 

• (s-cg-locaL var ...save ness variable_classification) 
-t locaL var ...saveness 

• (s-cg-locaLvar_class variable_classification) 
-t locaLvaLclass 

5.9 Global variables 

• Emulator-related variables 

*user-variables* 
Contains the user's variables when a query is issued. 

*registers* 
The define-register function adds each register to this list, caus­
ing the debugger to output the variables of this list. 

*read-mode* 
This is a global flag in the machine indicating the read/write status, 
which is used in the unify instructions. 

*emu-debug* 
This flag determines whether the emulator is in a debugging state or 
will just run through the code. It can have the following values: 

* : interactive the emulator performs single steps 

* T the emulator shows all executed instructions without interac­
tion 

* nil if no debugging is demanded 

• code generator-related variables 

*lureg* 
This variable determines which X-registers can be used by the code 
generator without any interference with the classifier's allocations. 

y-x-usage-list 
An assoc-list mapping Y variables to X-registers. 
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perm_varJist 
temp_varJist 
glo baLperm_ var _descr 
globaLtemp_ var _descr 

(perm {globaLperm_var _descr} *) 
(temp {globaUemp_var_descr }*) 
(variable perm_descr) 
(variable temp_descr) 

• (s-cg-perm_var globaLperm_vaLdescr) 
---+ variable 

• (s-cg-perm_descr globaLperm_var_descr) 
---+ perm_descr 

• (s-cg-temp_var globaLtemp_vaLdescr) 
---+ variable 

• (s-cg-temp_descr globaLtemp_vaLdescr) 
---+ temp_descr 

5.11 perm_deser, temp_deser 

perm_descr 
temp_descr 

(Y-reg-Ilf useJ:tead (lasLchunk lasLchunkliteral)) 
(X-reg_nr use.1lead use_premise) 

• (s-cg-perm_yJlr perm_descr) 
---+ Y-reg_nr 

• (s-cg-perm_use_head perm_descr) 
---+ use.1lead 

• (s-cg-permJasUiteral perm_descr) 
---+ lasLchunkliteral 

• (s-cg-temp-xJlr temp_descr) 
---+ X-reg_nr 

• (s-cg-temp_use.1lead temp_descr) 
---+ useJ:tead 

• (s-cg-temp_use_premise temp_descr) 
---+ use_premise 

5.12 literaLdeser 

literaLdescr (arity env -Bize arg-Beq) 

• (s-cg-arity literaLdescr) 
---+ arity 

• (s-cg-env_size literaLdescr) 
---+ env -llize 

• (s-cg-arg_seq literaLdescr) 
---+ arg_seq 

39 
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5.13 lisp calLtype , lispcalLclassification 

lispcalLclassification 
lispcalLtype 

(lispcalLtype (lisp-builtin arglisLclassification) lispcalLdescr) 
cl-func I cl-pred I cl-extra I cl-relf 

• (cg-lispcall-p lispcalLclassification) 
-t t, if it is an external LISP call, nil otherwise 

• (cg-lispcall-fun lispcalLclassification) 
-t lisp-function 

• (cg-lispcall-args lispcalLclassification) 
-t arglisLclassification 

5.14 arglisLclassification, 
constant_classification 

{ term_classification} * 

term_classification, 

arglist_classification 
term_classification constanLclassification I variable_classification 

constanLclassification ::= 

variable_classification ::= 

structure_classification ::= 

I structure_classification 
constanLname 
see 5.8 
'(functor arglisLclassification) 

I (inst (functor arglisLclassification)) 

• (cg -inst-p term_classification) 
-t t, if argument is an instantiation operator, nil otherwise 

• (cg-s-inst-functor term_classification) (already knowing term is inst-op) 
-t functor 

• (cg -s-inst-funargs term_classification) (already knowing term is inst-op) 
-t arglisLclassification 

• (arg-var-p term_classification) 
-t t, if argument is a variable_classification, nil otherwise 

• (arg-nil-p arglisLclassification) 
-t t, if argument is an empty list, nil otherwise 

• (arg-const-p arglisLclassification) 
-t t, if argument is a constant, nil otherwise 

5.15 Getting global information on variables 

When it is known that a variable with a local description occurs, it is useful to 
look up the global information. At this level of processing, it is assumed that 
the code generator already has stored the global X- and Y-variable information 
in a local variable further referred to as perms and temps. 

• (geLperm_descr arg_var perms) 
get the global information of the permanent variable arg_var. 
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• (geLtemp_descr arg_var perms) 
get the global information of the temporary variable arg_var. 

5.16 Obtaining the procedure arity 

When coping with a classified_procedure, the arity is needed. This is coded in 
the procedure-Ilame following the proc identifier. However, the arity is coded 
in an atom symbol unsuitable for (numeric) processing. It is straightforward to 
extract the number via the COMMON LISP symbol processing functions. The 
alternative employed here is to use some selectors to get the information from 
a 'lower' level. 

• (s-cg-arity-of-proc proc) 
-T arity of the procedure 

5.17 The builtins, is_primitive 

• (code-gen-is argl arg2 perms temps chknr litnr vpul putinl) 
-t WAM code for an is-primitive. 

• (cg-lispcall-p fac) -T t, if fae is a LISP external call. 

• (code-gen-cl actual perms temps arity permcnt fac callexeflg deallocflg 
cnknr litnr arq...seq) 
-T WAM code for a LISP external call. 

• (code-gen-refl-xreg perms temps arg chknr litnr) 
-t WAM code for a refl-xreg builtin. It is used if a value in Xl must be 
unified with a variable. 

(code-gen-refl-xreg-perm perms arg chknr litnr) 
-t WAM code for a V-variable in a refl-xreg builtin. 

(code-gen-refl-xreg-temp temps arg) 
-t WAM code for an X-variable in a refl-xreg builtin. 

5.18 Y-variable scoreboarding 

The idea of V-variable scoreboarding is to safe memory bandwidth by remem­
bering which V-variable was already loaded into an X-register. Every time 
a V-variable is 'touched', the corresponding X-register is saved as a pair (Y­
variable X-register) on an assoc-list named y-x-usage-Hst, which is a global 
variable meaning that the V-variable can also be found in an X-register. 

The following functions are dealing with V-variable scoreboarding: 

• (is-y-in-x y-vari y-x-usage-list) 
This function associates the V-variable with its X-argument position. If 
the V-variable is not in an X-register, the result is nil. 

• (add-y-x-list y-vari x-reg y-x-usage-list) 
This function adds a (Y-variable X-register) pair to the scoreboard. 



42 5 THE CODE GENERATOR 

• (d_yreg_assoc yreg y-x-usage-list) 
This is used to eliminate a pair specified by its Y-variable. 

• (d...xreg_assoc xreg y-x-usage-list) 
This is used to eliminate a pair specified by its X-variable. 
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6 The GAMA10 

GAMA, the General Abstract Machine Assembler, is a programming envi­
ronment supporting the development and integration of abstract machines. In 
[Sin95], it was used to integrate an existing implementation of the WAM (our 
development of the NyWAM [Nys], [Hei89)) with the LLAMA [Sin95)). 

In the following subsections, the constituents of the GAMA, 

• the memory organization, 

• hash tables, jump tables, and the module system, 

• the definition of assembler instructions, and 

• the assembler and loader 

are described. 

6.1 Memory organization 

In the GAMA, only one memory area for all abstract machines exists: the 
general purpose memory Memory. This memory is managed via a free list 
which contains all areas in Memory which are currently unused. Memory can 
be allocated and deallocated with the following functions l1: 

• (gmem. alloc n) returns the address of the newly allocated memory area 
of size n 

• (gmem. dealloc addr n) deallocates the memory area starting at addr 
with size n 

• (gmem. defractionize) cleans up the free list, i.e. adjacent freed memory 
areas are collected (after calls to gmem. dealloc) 

Memory cells can be accessed with the following functions: 

• (gmem.put addr x) stores x in the cell with address addr 

• (gmem.get addr) returns the contents of the cell with address addr 

6.2 Hash tables, jump tables, and the module system 

In the GAMA, hash tables are simply areas in Memory occupying three memory 
cells for each hash table entry. The use of three cells was motivated by the 
intended usage of hash tables as jump tables: the first cell contains the key 
(the name of a procedure), the second contains an address (the entry point of 
the procedure), and the third cell contains further information (concerning the 
procedure). 

The following functions are defined on hash tables: 

IOThis chapter is completely adopted from chapter 7, "Integrating Abstract Machines: The 
GAMA" in [SingS]. 

liThe GAMA is implemented in COMMON LISP; in order to avoid name conflicts, func­
tion names are preceded by a prefix 'mod.' indicating that a function belongs to module mod, 
here gmem (we did not use the COMMON LISP package system). 
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• (gmht .make-ht n) returns a new hash table handle with n entries 

• (gmht. remove-ht ht) removes the hash table ht 

• (gmht .put ht key a b) creates a new entry in ht for key, storing a and 
b in it 

• (gmht. get ht key) returns the address (in Memory) of a hash table entry 
(the first address is returned, i.e. the address of the memory cell containing 
the key) 

These hash tables are the basis of the GAMA module system: a hash table 
can be viewed as a name space containing all addresses and further information 
concerning all procedures of a module. 

The reason why addresses are stored independently of the other information 
is that the hash tables are used as jump tables: a machine instruction like call 
does not have the name of a procedure as argument but only the address of 
the second memory cell in the corresponding hash table entry, thus avoiding to 
look up the address in the hash table at run time. 

The following diagram shows how a hash table entry for a procedure f /2 is 
used: at the address 1000, a call to f/2 is expressed as call 101 where 101 is 
the address of the memory cell in the hash table which contains the entry point 
for f/2: 

100 

101 

102 

f/2 

500 

(label 

Hash Table: 

(end 512) (dynamic t)) 

Code: 

500 Iput_constant true 1 

1000 I call 101 

Since abstract machines for PROLOG- and LISP-like languages are highly 
dynamic in that they allow procedures to change even at run time, procedures 
are not jumped at directly but via jump tables. This has the effect that, if a 
procedure is changed (recompiled), none of the procedures calling this procedure 
have to be changed. 



6.3 Defining assembler instructions 45 

6.3 Defining assembler instructions 

In the GAMA, new assembler instructions for an arbitrary abstract machine 
are defined with definstr. definstr expects a COMMON LISP argument 
list, a type specification for these arguments 12 , and the COMMON LISP code 
defining the instruction. 

The following example shows the definition of the GWAM instruction 
put_constant: 

(definstr put_constant (C Ai) (CONST NAT) :standard 
(gwam.put_constant 

(set-argument-reg Ai (constant C»» 

gwam. puLconstant is the name of the COMMON LISP function corre­
sponding to the puLconstant instruction. The keyword : standard declares 
puLconstant to be a simple instruction. The next example shows a non­
standard instruction for which more than one COMMON LISP definition is 
needed: 

(definstr call (proc k) (LABEL NAT) 
:static (gwam.call/st 

(set-reg CP (reg P)) 
(set-reg CUTP (reg B)) 
(if (ref-Iessp (reg B) (reg E)) 
(set-reg A (ref-plus (reg E) (offset Y) k))) 

(set-reg P proc)) 
:dynamic (gwam.call/dy 

(set-reg CP (reg P)) 
(set-reg CUTP (reg B)) 
(if (ref-Ie ssp (reg B) (reg E» 
(set-reg A (ref-plus (reg E) (offset Y) k») 

(set-reg P (gmem.get proc)))) 

All instructions expecting a label can be used in two different ways: statically 
and dynamically. In the dynamic version, the address corresponding to the label 
is an entry in a jump table: an additional gmem. get is needed to dereference 
it. The static version does not use a jump table entry but directly uses the real 
address: dereferencing is not needed. It is used for procedures which will not 
be changed (like those in the pre I ude). 

6.4 The assembler and loader 

In the GAMA, assembler and loader are interleaved: in contrast to most as­
semblers for native machines which first produce a relocatable object file which 

12The available types are: NAT for natural numbers, CONST for constants, FUNCTOR for WAM 
functor specifications of the form (name arity) , FUNCTION for COMMON LISP functions (e.g. 
used for builtins), LABEL for labels, VARIABLE for global variables, HASHTABLE for hash tables 
(used in the WAM switch instructions), and X for arbitrary arguments. Additional types can 
be defined with gasm. deftype . 
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is linked together with other object files by a linker and then loaded into memory 
for execution, the G AMA assembler and loader directly transform assembler 
code into executable machine code in memory. 

In addition to the instructions defined via definstr, the GAMA assembler 
handles the following pseudo instructions: 

• . proc marks the beginning of a procedure; it is mainly used to restrict 
the scope of local labels thus allowing different procedures to use the same 
local labels 

• . end marks the end of a procedure; in addition to restricting the scope of 
local labels together with. proc, it adds the end address of a procedure 
to the information in the corresponding hash table entry (third cell) in 
order to allow the procedure to be removed from memory 

• . dynamic declares the following global labels (the entry points for proce­
dures) to be dynamic (see section 6.3) 

• . static declares the following global labels to be static 

• any symbol is taken as a global label 

• any number or string is taken as a local label 

• (.module mod) declares all following global labels to be in module mod; 
if this module does not yet exist, it is created 

• (. import-from mod labell ... labeln ) imports Labell ... labeln from 
module mod (qualified import) 

• (. import-module mod) imports all labels from module mod (unqualified 
import) 

The following example shows the usage of some of these pseudo instructions 
and how the assembler and loader transform assembler code into executable 
machine code in memory. 

Example: 

The assembler and machine code (with the corresponding hash table 
entry) for the function 

fac(O) 
fac(N) 

& 1. 
>(N,O) & *(N,fac(1-(N»)). 

is as follows: 



Assembler code 
.module user 
.proc 
. dynamic 
fac/1 

set_indexJlumber 1 
swi tch_on_term 

Ilabel8965" 2 2 
2 "label8963" 

switch_on_constant 1 
«0 "label8963")) 2 

"label8963" 
try 1 1 
trust 2 1 
1 
get_constant 0 1 
put_constant 1 1 
proceed 
2 

allocate 1 
get_y_variable 1 1 
put_constant 0 2 
cl-pred > 2 
puLy _value 1 1 
cl-func 1- 1 
call fac/1 1 
getJ_variable 2 1 
put_y 3alue 1 1 
deallocate 
cl-func * 2 
proceed 
.end 
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Hash table entry and machine code 
Hash Table (for module user): 

21534: facl1 
21535: 263881 
21536: (label 

(destroyable t) 
(end 263900) 
(source ... ) 
(dynamic t)) 

Code: 
263881: 
263882: 

set_indexJlumber 1 
swi tch_on_term 

263883 263889 263889 
263889 263884 

263883: switch_on_constant 1 
«0 263884)) 263889 

263884: 
263885: 

263886: 
263887: 
263888: 

263889: 
263890: 
263891: 
263892: 
263893: 
263894: 
263895: 
263896: 
263897: 
263898: 
263899: 
263900: 

try 263886 1 
trust 263889 1 

get_constant 0 1 
put_constant 1 1 
proceed 

allocate 1 
get_y3ariable 1 
put_constant 0 2 
cl-pred > 2 
puLY3alue 1 1 
cl-func 1- 1 
call 21535 1 
getJ_variable 2 
puLy_value 1 1 
deallocate 
cl-func * 2 
proceed 

1 

1 
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The GWAM is derived from a LISP-based emulator that was originally ob­
tained from Sven-Olof Nystr0m [Nys], Uppsala University; it was modified to 
work within our relational-functional compilation approach RFM. This LISP­
based implementation has been complemented by two WAM emulators in C: 
Klaus Elsbernd's rudimentary C emulator [Els90] has now been replaced by 
Markus Perling's complete first-order emulator. Leaving the layered compiler 
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system in LISP (for flexibility and short turnaround times), but having the em­
ulator in C, seems to be a good combination under UNIX. Thus the GWAM 
is an ideal prototype implementation choice. 

7.1 Terminology 

'Global Stack' and 'heap' as well as 'local stack', 'stack' and 'runtime stack' are 
synonyms, an environment and a choice point are portions of the local stack, the 
push-down list (PDL) is astack used temporarily by the unification procedure, 
but it is not needed within the GWAM, since this is done recursively in LISP. 
In most publications the A-registers are assumed to be the same as the X­
registers and for those authors assuming disjoint A and X sets of registers the 
A-regs can be mapped to a single X-register set. Therefore argument registers 
will be referred herein as X-registers. 

7.2 The data structures 

The WAM model assumes a tagged memory model. This means that memory 
locations are 'typed', i.e. that it is possible to tell which datatype is in the 
memory location. Since registers have neither tags nor addresses, with these it 
is only possible to handle references (or at most constants) but it is impossible 
to represent free variables, structures or lists directly. The tagged memory is 
handled by the following tags: 

Tag Value 
empty undefined 

ref a memory address 
struct a memory address 

list a memory address 
const constant symbol 
fun a list (function-name arity) 
trail a list of references to bound variables 

The memory layout is shown in table 1. At the top are the low addresses, 
increasing downwards. 

7.2.1 The local stack 

The local stack contains environment and choicepoint frames. An environment 
must be created in a clause (using the allocate instruction) as soon as local 
variables become necessary. 

A choice point is needed if there is more than one clause in a procedure. If a 
recent goal failed, the next clause must be explored with all argument registers 
appropriately (re- )set and the variables bound later than the invocation of the 
current clause restored to an unbound state. 
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heap (address 0) 
. .. 

heap (address n) 
heap (address n+m) 

. . . 

.. . 
maximum heap address 

local stack 
.. . 

environment and 
choicepoint frames 

.. . 
local stack 

.. . 

. . . 

f- start-of-heap 

f- HB 
f-H 

f- start-of-stack-1 
f- start-of-stack 

f-A 

f- memory-size 

Table 1: The memory layout of the local and global stacks 

previous environment pointer (CE) f- new E 
previous continuation pointer (CP) 

cut pointer (CUTP) 
Y-variablel 

.. . 
Y-variablen 

f- new A 

Table 2: The memory layout of an environment 

7.2.2 The heap 
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The heap holds compound terms. These compound terms may be lists or struc­
tures. The H-register points to the top of the heap, whereas the register HB is 
the (redundant) heap backtrack register used for speeding up references to the 
old heap pointer. 

7.2.3 The trail 

Contrary to other implementations the trail is realized as a LISP list . This 
is possible since no random access may happen on that structure. Either a 
reference is pushed on the trail (When a binding occurs) or the information is 
popped sequentially (when backtracking to a certain point occurs) . 

7.3 The registers 

A register defined by define-register can be set using (set-reg register 
value) and referenced using (reg register). Currently, there are 1000 x-
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X-registerl 
... 

X-registern 

previous environment pointer (BCE) 
previous continuation pointer (BCP) 

previous choice point (B I) 
next clause pointer (BP) 

trail pointer (TRI) 
heap pointer (HI) f- new B 

f- new A 

7 THEGWAM 

Table 3: The memory layout of a choicepoint (backtrack point) 

Register Description points to Definition 
P program counter program code define-register 

CP continuation pointer program code define-register 
E last environment local stack define-register 
B last choicepoint local stack define-register 
A top of stack local stack define-register 

TR trail list define-register 
H top of heap heap define-register 

HB heap backtrack point heap define-register 
S structure pointer heap define-register 

IX index register define-register 
CUTP cut pointer local stack define-register 

X · , registers heap, stack array 

Table 4: The registers of the GWAM 

registers defined in the array. 

7.4 The instructions 

The instructions are written in a LISP-like manner. The indexes of X and Y 
variables start with the index 1. Structures are coded by a list (fun ari ty) . 
The list structures are coded as nestings of the structure (ens car cdr) on the 
classified clauses representation level. The code generator takes care of these 
structures, generating the more optimal list instructions. 

7.4.1 PUT-instructions 

• (puLy_variable Y from X to ) 

• (put_Jcvariable Xfrom X to ) 

• (puLy 3alue Y from X to ) 

• (put_Jcvalue Xfrom X to ) 
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• (puLunsafe_value Y from X to ) 

• (puLconstant C X to ) 

• (puLnil X to ) 

• (put..structure F X to ) 

• (putJist X to ) 

7.4.2 GET-instructions 

• (get ... Jcvariable Xn Ai) 

• (geLy_variable Yn Ai) 

• (get-x_value Xn Ai) 

• (geLy_value Yn Ai) 

• (geLnil Xi) 

• (geLconstant C Xi) 

• (get..structure F Xi) 

• (getJist Xi) 

7 .4.3 UNIFY-instructions 

• (unify -x_variable Xi) 

• (unify_y_variable Yi) 

• (unify_void n) 

• (unify-x-yalue Xi) 

• (unify_y_value Yi) 

• (unify-x...locaLvalue Xi) 

• (unify_y...locaLvalue Yd 

• ( unify ....nil) 

• (unify _constant C) 

7.4.4 Indexing instructions 

• (switch_on_term Lconst Lstruct Llist Lnil Lvar) 

• (switch_on_constant Len Table Default) 

• (switch_on..structure Len Table Default) 

• (seLindex....number No) 
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7.4.5 Procedural instructions 

• (try L n) 

• (retry L n) 

• (trust L n) 

• (try _me_else L n) 

• (retry --Ille_else L n) 

• (trust-me_elseJ'ail n) 

• (allocate n) 

• (deallocate) 

• (proceed) 

• (execute proc/n) 

• (call proc/n envsize) 

7.4.6 Special instructions 

• (has-succeeded) 

• (has-failed) 

7.4.7 Special builtins - cuts and metacall 

• (save_cut-pointer) 
This instruction must be generated if there is a cut occurring in the clause 
except in the first chunk. This implies that there is more than one chunk 
and an environment must be existent. 

• (first-cut) 
This instruction is used when the cut is in the first chunk and the first 
chunk is no pseudochunk. It contains a call to another procedure and 
thus is not the only subgoal in the clause. 

• (lonely_cut) 
This instruction stands for a clause with a cut at the end of the first and 
only chunk. (So a call to another procedure is not present.) 

• (last-cut) 
last-cut is to be used in a clause, which has a chunk (and hence a call to 
a procedure) and a cut at the very end of the last {pseudo)-chunk. 

• (cut n) 
This instruction represents a cut occurring in a chunk except the first and 
the last chunk. The parameter n indicates the size of the environment used 
(for trimming). 
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7.4.8 LISP interface 

Only ground arguments (not variables) can be converted to LISP. The LISP 
functions are not allowed to return structures (nor variables). All GAMA-LISP 
interface instructions convert arity argument registers into a LISP list and apply 
the function fun to this list. Only RELFUN tups - but not structures - can 
be converted. 

• (cl-func fun arity) 
This function returns the value obtained from LISP to the argument reg­
ister Xl. 

• (cl-pred fun arity) 
This instruction generates a failure if the returned value is nil.13 

• (cl-extra fun arity) 
This instruction is used for side-effect LISP calls .14 

7.5 User interface of the GWAM 

The user may define a procedure using the definstr macro. Queries are dynam­
ically compiled by flattening, classifying and generating code for a procedure 
named 'main/arity'. The arity of this procedure is determined by the number 
of variables originally found in the user query. 

7.5.1 The debugger control commands 

The debugging behavior of the GWAM can be controlled by the variable 
*emu-debug*, which is normally set to nil to just run through the WAM code. 
If the user wishes to have WAM debugging information, this global variable 
may be set to t or : interactive by the RFE-command spy. 

If *emu-debug* is set to : interactive, the following interactions com­
mands may be used: 

All control commands consist of one character. 

E,e 
F,f 

? 

X,x 
S,s,newline 
V,v 

Terminate and go to LISP. 
Generate a fail. (Sometimes this command may 
cause trouble.) 
Output this Help-Menu. 
Execute until program succeeds. 
Single step execution. 
Output values before single step. 

13In the interpreter a false is produced, which generates a failure if used as a body premise. 
14Xl will not be changed. 
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7.5.2 The debugger display commands 

This mode will be enabled by typing v in the control mode. 

All display commands consist of one character. 

? Output this Help-Menu. 
X,x Output n (to be read) argumentregisters X(1) .. X(n) . 
H,h Output Heap . 
R,r Output all registers except argument registers. 
S,s Output stack. 
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8 A sample session 

We consult and compile the well-known naive reverse benchmark, run an nrev­
query and then demonstrate the usage of the debugger using a simple append­
query. Except from the explicit true values for successful queries, this does 
not differ from PROLOG's semantics permitting an easy comparison. Once the 
debugging principles are thus understood, the reader can also debug functional 
programs. 

rfi-p> emul 
Collecting modules for the emulator: 
sortbase workspace 
rfe-p> consult "exa/bench" 
Reading file "/home/perling/RELFUN/RFM/demo/exa/bench.rfp" 

rfe-p> listing 
app( [] ,L,L). 
app([HIL1] ,L2,[HIL3]) :- app(L1,L2,L3). 
nrev ( [] , [] ) . 
nrev([HIL1],L3) :- nrev(L1,L2), app(L2,[H] ,L3). 

rfe-p> style lisp 
rfe-l> listing 
(hn (app (tup) _1 _1» 
(hn (app (tup _h I _11) 12 (tup h I _13» 

(app _11 _12 _13) ) 
(hn (nrev (tup) (tup») 
(hn (nrev (tup _h I _11) _13) 

(nrev _11 _12) 
(app _12 letup _h) _13) ) 

The database has been consulted and listed. In the following we do some 
horizontal transformations and list the result. 

rfe-l> style prolog 
rfe-p> horizon 
rfe-p> listing 
app(nil,L,L). 
app(_l,L2,_2) :- 2 is cns[H,L3], 1 is cns[H,L1], app(L1,L2,L3) & true. 
nrev(nil,nil). 
nrevCl, L3) :-

1 is ens [H,L1] , 
nrev(Ll,L2), 
_2 is cns[H,nil], 
app(L2,_2,L3) & 
true. 

rfe-p> style lisp 
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rfe-l> listing 
(hn (app nil 1 _1)) 
(ft (app _1 _12 _2) 

(is _2 '(ens _h _13)) 
(is _1 '(ens _h _11)) 
(app _11 _12 _13) 
true ) 

(hn Cnrev nil nil)) 
(ft (nrev _1 _13) 

(is _1 '(ens _h _11)) 
(nrev _11 _12) 
(is _2 '(ens _h nil)) 
(app 12 2 _13) 
true ) 

8 A SAMPLE SESSION 

The horizontal transformations are followed by the vertical transformations 
into WAM code. The resulting code is shown by the listcode command. If 
you want to see the classified clauses, type listclass. 

rfe-l> style prolog 
rfe-p> verti 
rfe-p> listcode app/3 
«set_index_number 1) 
(switch_on_term nil nil 2 1 "labe138") 
"labe138" 
(set_index_number 3) 
(switch_on_term 1 1 "labe139" 1 "1abe139") 
"labe139" 
(try 1 3) 
(trust 2 3) 
1 

(get_nil 1) 
(get_x_value 2 3) 
(put_constant true 1) 
(proceed) 
2 

(allocate 0) 
(get_list 3) 
(unify_x_variable 4) 
(unify_x_variable 5) 
(get_list 1) 

(unify_x_value 4) 
(unify_x_variable 6) 
(put_x_value 6 1) 
(put_x_value 5 3) 
(call app/3 0) 
(put_constant true 1) 



(deallocate) 
(proceed) ) 

rfe-p> listcode nrev/2 
«set_index_number 1) 
(switch_on_term nil nil 2 1 "label28") 
"label28" 
(set_index_number 2) 
(switch_on_term 2 2 2 "labe129" "label29") 
"label29" 
(try 1 2) 
(trust 2 2) 
1 
(get_nil 1) 
(get_nil 2) 
(put_constant true 1) 
(proceed) 
2 

(allocate 3) 
(get_y_variable 3 2) 

(get_list 1) 
(unify_y_variable 2) 
(unify_x_variable 3) 
(put_y_variable 1 2) 
(put_x_value 3 1) 
(call nrev/2 3) 
(put_list 2) 
(unify_y_value 2) 
(unify_nil) 
(put_unsafe_value 1 1) 
(put_y_value 3 3) 
(call app/3 0) 

(put_constant true 1) 
(deallocate) 
(proceed) ) 
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We are now finished compiling the database. Next we perform an nrev­
query. 

rfe-p> nrev([1,2,3],X) 
true 
X= [3,2,1.] 
rfe-p> more 
unknown 

Now we are interested in obtaining a trace of a simple query, displaying the 
internal structures when something interesting happens . The query is compiled 
and then the debugger is invoked. 
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rfe-p> spy 
rfe-p> app([l] ,[2] ,X) 

«MAIN (VARI X» (IS (VARI 1) (INST (CNS 1 NIL») 
(IS (VARI 2) (INST (CNS 2 NIL») (APP (VARI 1) (VARI 2) (VARI X») 

«PROC MAIN/1 1 (INDEXING) 
(FUN1EVA (CUT-INFO NIL) (PERM) 

(TEMP «VARI X) (3 (1) (3») «VARI 1) (4 NIL (1») «VARI 2) (2 NIL (2»» 
(CHUNK 

«USRLIT (MAIN «VARI X) (FIRST SAFE TEMP») (1 0 (1») 
(IS «VARI 1) (FIRST UNSAFE TEMP» (INST (CNS 1 NIL») 
(IS «VARI 2) (FIRST UNSAFE TEMP» (INST (CNS 2 NIL») 
(USRLIT 

(APP «VARI 1) (NONFIRST UNSAFE TEMP» «VARI 2) (NONFIRST UNSAFE TEMP» 
«VARI X) (NONFIRST SAFE TEMP») 

(3 0 (1 3»» 
(4 NIL»») 

«GET_X_VARIABLE 3 1) (PUT_LIST 4) (UNIFY_CONSTANT 1) (UNIFY_NIL) (PUT_LIST 2) 
(UNIFY_CONSTANT 2) (UNIFY_NIL) (PUT_X_VALUE 4 1) (EXECUTE APP/3» 

The following is a debugger trace. 

[260932] = (GWAM.TRY 260934 0) v 

Value of? s 

[160930] = unused-stack-cell <== E <== B 

Initially there is not much on the stack. Registers E and B point to the 
beginning of the stack. The next instruction creates a choicepoint and the 
registers are set appropriately. This is the standard choicepoint which is re­
sponsible for the output of unknown/success messages, having the next clause 
entry pointing to code causing the output of the user's variables. 

[260932] (GWAM.TRY 260934 0) : s 

[260934] = (GWAM.CALL/DY QUERY@[30514] 0) v 

Value of? s 

[160930] 
[160931] 
[160932] 
[160933] 

= unused-stack-cell <== E 
(ref 160930) 
260935 
(ref 160930) 



[160934J 
[160935J 
[160936] = 
[260934] 
[264018] 
[264019] 
[264020] 
[264021] = 

[264022] 
[264023] 
[264024] 
[264025] 
[264026] = 

Value of? a 

260933 
(trail nil) 
(ref 60931) <== B 
(GWAM.CALL/DY QUERY@[30514] 0) 
(GWAM.GET_X_VARIABLE 3 1) s 
(GWAM.PUT_LIST 4) : s 
(GWAM.UNIFY_CONSTANT 1) s 
(GWAM.UNIFY_NIL) : s 
(GWAM.PUT_LIST 2) : s 
(GWAM.UNIFY_CONSTANT 2) : s 
(GWAM.UNIFY_NIL) : s 
(GWAM.PUT_X_VALUE 4 1) : s 
(GWAM.EXECUTE/DY APP/3@[23842]) 

Number of argument registers: 3 

A(l) (LIST 60932) 
A(2) (LIST 60934) 
A(3) (REF 60931) 

s 

v 

[264026] = (GWAM.EXECUTE/DY APP/3@[23842]) v 

Value of? h 

[60930J = unused-heap-cell <== S 
[60931J (ref 60931) <== HB 
[60932] (const 1) 
[60933] (const nil) 
[60934] (const 2) 
[60935] (const nil) <== H 
[264026] = (GWAM.EXECUTE/DY APP/3@[23842]) s 
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The code above allocates the structures for the query in the data space and 
sets the argument registers accordingly. Register Xl points to a list at memory 
locations 2 and 3, representing the list (1. nil), and register X2 points to 
the list at memory locations 4 and 5. The third argument (X3) is a reference 
to memory location I, whose contents points to the same location. This is the 
representation of a free variable. 

[263895] 
[263896] = 

[263905] 
[263906] 

(GWAM . SET_INDEX_NUMBER 1) s 
(GWAM.SWITCH_ON_TERM 260931 260931 263905 263901 263897) 
(GWAM.ALLOCATE 0) s 
(GWAM.GET_LIST 3) : s 

Note that indexing leads the program flow immediately to the second clause 
of append/3 . 

s 
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[263907] = (GWAM.UNIFY_X_VARIABLE 4) v 

Value of? s 

[160930] = unused-stack-cell 
[160931] = (ref 160930) 
[160932] = 260935 
[160933] (ref 160930) 
[160934] 260933 
[160935] = (trail nil) 
[160936] (ref 60931) <== E <== B 
[160937] (ref 160930) 
[160938] 260935 
[160939] = unused-stack-cell 
[263908] = (GWAM.UNIFY_X_VARIABLE 5) s 
[263909] (GWAM.GET_LIST 1) : s 
[263910] (GWAM.UNIFY_X_VALUE 4) : s 
[263911] (GWAM.UNIFY_X_VARIABLE 6) : s 
[263912] (GWAM.PUT_X_VALUE 6 1) : s 
[263913] (GWAM.PUT_X_VALUE 5 3) : s 
[263914J (GWAM.CALL/DY APP/3@[23842] 0) 

Value of? a 

Number of argument registers: 3 

A (1) (CONST NIL) 
A(2) (LIST 60934) 
A(3) = (REF 60937) 

8 A SAMPLE SESSION 

v 

[263914] = (GWAM.CALL/DY APP/3@[23842] 0) v 

[60930] = unused-heap-cell 
[60931] (list 60936) <== HB 
[60932] (const 1) 

[60933] (const nil) <== S 
[60934] (const 2) 
[60935] (const nil) 
[60936] = (const 1) 
[60937] (ref 60937) <== H 
[263914] = (GWAM.CALL/DY APP/3@[23842J 0) : s 

Now app/3 is called with the following arguments: Xl is nil, X2 is (2.nil) 
and X3 is a free variable. Clearly, the first clause of app/3 must be applied. 

[263895] = 
[263896J 
[263901] 

(GWAM.SET_INDEX_NUMBER 1) : s 
(GWAM.SWITCH_ON_TERM 260931 260931 263905 263901 263897) 
(GWAM.GET_NIL 1) : s 

s 



[263902] 
[263903] 
[263904] 
[263915] 
[263916] 
[263917] = 

[260935] 

Value of? s 

(GWAM.GET_X_VALUE 2 3) : s 
(GWAM.PUT_CONSTANT TRUE 1) 
(GWAM.PROCEED) : s 
(GWAM.PUT_CONSTANT TRUE 1) 
(GWAM.DEALLOCATE) : s 
(GWAM.PROCEED) : s 
(GWAM.HAS-SUCCEEDED) v 

[160930] = unused-stack-cell <== E 
[160931] (ref 160930) 
[160932] 
[160933] 
[160934] 
[160935] = 

[160936] 
[260935] 

true 
X=[1,2] 
rfe-p> more 

263915 
(ref 160930) 
260933 
(trail nil) 
(ref 60931) <== B 
(GWAM.HAS-SUCCEEDED) s 

61 

s 

s 

Indexing has pruned the search space for backtracking so that after the user's 
more request no other possibilities need be tested and the unknown message is 
generated. 

[260933] 
[260930] 

unknown 
rfe-p> 

(GWAM.TRUST 260930 0) s 
(GWAM.HAS-FAILED) : s 
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