
Deutsches
Forschungszentrum
fUr KOnstliche
Intelligenz GmbH

RFM Manual:

Document
D-91-03

Compiling RELFUN into the
Relational/Functional Machine

Harold Boley, Klaus Elsbernd, Hans-Gunther Hein,
Thomas Krause, Markus Perling, Michael Sintek, Werner Stein

Third, Revised Edition

July 1996

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern , FRG
Tel.: (+49631) 205-3211/13
Fax: (+49 631) 205-3210

Stuhlsatzenhausweg 3
66123 SaarbrUcken, FRG
Tel.: (+49 681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fUr
Kunstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrucken is a non-profit organiza­
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and
Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry
of Education, Science, Research and Technology, by the shareholder companies, or by other
industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation .

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Dr. Dr. D. Ruland
Director

RFM Manual:
Compiling RELFUN into the RelationallFunctional Machine
(Third, Revised Edition)

Harold Boley, Klaus Elsbernd, Hans-Gunther Hein, Thomas Krause,
Markus Periing, Michael Sintek, Werner Stein

OFKI-O-91-03

-his work has been supported by a grant from The Federal Ministry for Research
tnd Technology (FKZ ITW-8902 C4).

Deutsches Forschungszentrum tur Kunstliche Intelligenz 1996

lis work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
lole or in part without payment of fee is granted for nonprofit educational and research purposes provided that
such whole or partial copies include the following: a notice that such copying is by permission of Deutsches

,rschungszentrum fur Kunstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
knowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
tice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
!utsches Forschungszentrum fur Kunstliche Intelligenz.

RFM Manual:
Compiling RELFUN into the Relational/Functional

Machine

Harold Boley, Klaus Elsbernd, Hans-Gunther Hein,
Thomas Krause, Markus Perling, Michael Sintek, \A,1erner Stein

DFKI
UniversiUit Kaiserslautern
Erwin-Schrodinger-Straf3e

67663 Kaiserslautern
Germany

Third, Revised Edition

July 1996

Abstract
The compilation of RELFUN programs consists of two main stages,

horizontal transformations and vertical translations. The horizontal trans­
former performs both source-to-source steps into a subset of RELFUN
and source-to-intermediate steps into a RELFUN-like language. The ver­
tical translator is also divided into two phases, the classifier and the code
generator. The classifier produces a declarative clause language; the code
generator optimizes target code for underlying WAM emulators. These
parts can be used incrementally-individually, as a relational/functiona l
compilation laboratory, or batch-composed, as a complete RELFUN com­
piler. All intermediate steps employ explicit declarative representations,
which can be displayed via RELFUN's user interface . The compiler is
implemented in a subset of COMMON LISP; one em\llator runs in COI\l­
MON LISP, the other in ANSI C.

1

2

Contents

1 Introduction

2 The user interface
2.1 The user interface for layered compilation
2.2 The user interface and the GWAM

3 The transformers
3.1 The extron transformers

3.1.1 undeclare

3.l.2 untype

3.l.:1 unmacro

3.l.4 unor

3.1..'> unlambda

3.l.6 hitrans
3.l.7 uncorruna.

3.2 The bastron transformers
3.2.1 Untupling.
:~ . 2.2 Flattening

3.2.3 Flattering
3.2.4
3.2.5
3.2.6
3.2.7

Tuple- and cons-passivatiIlp;
Deanonymization
Normalizing.
Footening

4 The classifier
4 .1 Procedure level
4.2 Indexing . .
4 .3 Clause level . .
4.4 Chunk l(~vel . .
4.5 Lit~ral level and argum~Ilt level

4.6 An example with structures ..
4.7 EBNP syntax for Classified clauses

5 The code generator
fl.l Software interface.
5.2 c1:1ssified _proccdur~.

fl .3 iltd(~xing
5.4 clause_classification .
5.5 llead _chunLfact, head_chunLrule, body _chunk
5.6 chunLdescr .
5.7 litnaLclassification
5.8 variable_classification, localvar descr

5.0 Glubal variables.
S.lO PI'rllLViUJisL, L(~llIpvarJist

;) .1] p(~rnLdescr, tl'lll p dcscr

CUNTENTS

4

4

5
6

6
7
7

8
9

11
11
11
12
12
12
13
13
14
15
15
16

16
17
18
21
23
25
27

30

33
33
33
34
35
36
37
37

38
38
39
:l9

CONTENTS :1

5.12 literaLdescr. :Fl
513 lispcalUype, lispcaILcla~sification. . . 40
5.14 arglis Lclassificat ion, ternLclassificat iOIl, cons tan Lclass i fication 40
5.15 Getting global information on variables 40
5.16 Obtaining the procedure arity 41
5.17 The builtins, is_primitive. 41
5.18 V-variable scoreboarding . 41

6 The GAMA 43
G.1 Memory organization. 1;{
6.2 Hash tables, jump tables, and the module system 43
G.3 Defining assembler instructions
G.4 The assembler and loader

7 The GWAM
7.1 Terminology.
72 The data structures

7.2.1 The local stack
7.2.2 The heap
7.2.3 The trail

7.:J The regis ters ..
7.4 The instructions

7.4.1 PUT-instructions
7.4.2 GET-instructions.
7.4.3
7.4.4

7.4.5
7.4.6
7.4.7
7.4.8

{.: NIFY -instructions
Indexing illstructions .

Procedural instructions
Special instructions.
Sper.ial builtins - r.uts and metacall
LISP interface

7.5 Uscr interface of th~ GWAM ..
7.5.1 The debugger control commands
7.5.2 The debugger display commands

8 A sample session

45
45

47
10
tl~

48
49
49
;j0

50
50

51
51
51
52
52
52
53
53
53
54

55

tJ 2 THE USER INTERFACE

1 Introduction

T his work describes the compilation and execution environment of the Rela­
tional/Functional Machine (RFM) . The RFM is a LISP /C-based implementa­
tion of RELFUN [BoI92] and consists of an interpreter, a multi-pass compiler,
and two emulators.

The compilation of RELFUN programs consists of two main stages, hori­
zontal transformations and vertical translations. The horizontal transformer is
divided into several steps, whose target is mainly a simpler subset of RELFUN,
but for advanced features can also be extended representations. The ensuing
vertical translator is divided into two stages, the classifier and the code genera­
tor. The classifier transforms RELFUN source clauses to so-called "Classified
C laIIS(~~"; from these WAM-annotated clauses the code generator can almost
' I('ar! of 1" the WAM code (sec below).

A II compilation s teps can be used separately, as a compilation laboratory, as
wedl as batch- composed, as a complete RELFUN compiler. Of course, various
groups of these steps could be joined into single steps for optimizing compilation
t.ime. But organizing the compiler into such steps enhances its modularity and
readahility, which helps in the development of optimizations of execution time,
our main concern.

Both emulators are extensions of the WAM (Warren Abstract Machine).
Tile first emulator is called GWAM (Generalized WAM [Sin95]), the successor
to the NyWAM [Hei89], which originated from Nystr0m's WAM [Nys]. The
GWAM is built in COMMON LISP on a general implementation platform ,
t.h t' GAMA (General Abstract Machine [Sin95]) , which contains a debugger,
;UI ;l.~~(! lllblcr, and a loader. The second emulator is called RAWAM (Relfun
Adapted WAM), more based on [AK91]' and built in ANSI C [Per96].

It. is assumed that the reader be somewhat familiar with RELFUN (see
[UAE+9Gj), and with WAM architect ures ([War83], [AK91]' [VR94]) . For fur­
ther information a.bout the RFM see [80192] [Kra90], [Hei89], [Els90].

The IIser interface of the RFM is described in section 2. The horizontal
iransformations are the subject of section 3.1. Sections 4 and 5 treat the classi­
fier and code generator for vertical translations; sections 6 and 7, the G AMA
ewel t.he embedded GWAM emulator. The last section contains an example
di,tiog that will show some aspects of the compiler/emulator system ' live' .

2 The user interface

The \l ser interface provides several commands each of which represents a sep­
arate compilation step . The commands are hierarchically structured and top­
down ordered as depicted by the indentation tree below: Each node can be
ca.lled illdividually; inner nodes perform groups of compilation steps so that th e
root is the r.ompIcte compiler.

2.1 The user interface for layered compiiat:ion

The command hierarchy:

compile
horizon

ext ron
undeclare
untype
urunacro
unor
unlambda
hitrans
uncomma

bastron
untup
flatter
passtup
deanon
normalize
footen

verti
classify
codegen

The given order reflects the order the commands are executed during REL­
FUN compilation.

2.1 The user interface for layered compilation

The compilation of RELFUN clauses into WAM code is done ill several steps;
the user interface enables to execute each step or groups of compatible steps
se parately.

The complete compiler is invoked by the compile command; it can be
called with an extra argument for compiling a single procedure , thus allow­
ing procedure-based incremental compilation. The compile command is di­
vided into two stages, the precompilation (horizontal transformations) and the
proper compilation (vertical translations) . The horizontal transformations are
performed by the horizon command, the vertical translations by the verti
command.

horizon is itself divided into two parts, extron and bast ron . 1'110. extron
I.ransformations undeelare , untype, unmacro, and unor map into extended
constructs, in particular lambda expressions, which are then further transformed
by unlamda a nd uncomma into a RELFUN subset (these are described in section
3.1). The bastron transformations convert these reduced RELFUN clauses
illto an even smaller subset that is ready for the vertical transformations. E.g.
at the time of the verti command all tups will have been transfo rmed into
ens structures via the untup command ; it is also CI...'is umed tha t on ly fl at tened
clallses are in the da tabase, which is p(~rf()rmed by the flatter co mmand (the
bast ron t.ransformations a.re descr ihed ill spct ioll 3.2).

6 3 THE TRANSFORMERS

verti consists of two phases, the classifier and the code generator. Like
in horizon these phases can also be called explicitely by typing classify and
codegen. The classify command collects all clauses starting with the same
name and arity, and groups them together on the property list of the symbol
determined by the procedure name, using the tag clauses. This is necessary be­
cause the basic entity in the WAM is a group of clauses with the same name and
arity, called a 'procedure'. After this, the classified clauses are generated and
stored in a global variable called *classified-database*. The codegen com­
mand reads the contents of *classified-database* and produces GWAM
code from it.

It is possible to pretty print the classified clauses by typing listclass and
the code with the listcode command.

2.2 The user interface and the GWAM

The user interface has four prompts 1: "rfi-p>" or "rfi-l>" is displayed when
the queries are sent to the interpreter and its database, while "rfe-p> " and
"rfe-l> " show that the query, which is a valued conjunction of n ~ 1 liter­
als, will be emulated after compilation. The suffix of the prompt is "-p> " or
"-1>", respectively, when the system is running in PROLOG or LISP style (see
[Her92]). The code obtained is stored under the name main, the data struc­
tures for the variables in the query are created and their names and locations
are memorized to get the variable names when the goal succeeds. Finally the
emulator is railed, producing failures or returned values with possible variable
hindings. When a goal succeeds, the reslllts are printed; backtracking is invoked
if tlte user's next input is more so tllat the next solution may be computed.
When spy is enabled, the query's compilation is shown and the GWAM is set
into debugging (interactive or nUll-interactive single-step) mode. With nospy
this feature is turned off.

3 The transformers

The transformers behind the horizon command ' horizontally' map RELFUN
so urce programs to source programs that are either still in RELFUN (subsection
3.2) or in an extended high-level language (subsection 3.1). Both kinds of
transformers lay the ground for latcr compilers 'vertically' proceeding into th e
\vAM.

While some of the transformer steps can be performed independently from
the other oncs, many require previous transformers as a precondition for ob­
Laining their effect (all transformers just deliver a database unchanged if they
are inapplicable, either because their pre transformations are still missing or
thei r fixpoint is reached). While the order shown in the command hierarchy of
sectioll 2 need not be obeyed totally, ill the following we use it as the canonical
order ratlH"r than indicating more detailed d(~pelldellcies.

' TIH'IC is 011(' additioll;t\ prolllpt. , " 11 '>", fOI LISP l igh t (see [Sill % J)

3.1 The extron transformers 7

3.1 The ext ron transformers

These transformations principally reduce language extensions to an unexLcnded
kernel. The sequence of these transformations, shown in the command hierar­
chy, is reflected by the subsection ordering.

3.1.1 undeclare

undeclare handles two different kinds of declarations: signature declarations
(sg clauses) and declare facts which are used for various declaration types.

undeclare performs the following three steps:

1. transform operators with sg definitions

2. evaluate declare facts

3. remove declare facts

Transforming sg definitions
Tbe transformation of operators which contain sg definitions is shown in the

following example, a definition of Fibonacci numbers working on both ordinary
integers and their successor representation .

Applying undeclare to this operator transforms each sg definition into
an ordinary (ft) clause which calls an operator fib.n (n E {1,2,3}). The
delini t ions of fib. n are obtained simply by renaming the original fib clauses,
lIsing fib.l for the first sg-block, fib.2 for thr. second, and fib.3 for the
Lllird.

sg fib($integerp).

fib(O) & 1.
fib(t) & 1.

fib(N) & +(fib(-(N,l» ,
fib(-(N,2») .

sg fib(nu11).

fib(null) : & s[null].

sg fib(s [X]) .

fib~s[nu11]) :- & s[nu11].
fib(N) :-

subl(N,Nml),
sub1 (Nm1 ,Nm2),
Rl is fib(Nm1),
R2 is fib(Nm2),
plllS(Rl,R2,R) &
R.

fib(bnd[Arg#l,$integerp])
fib .1(Arg#1) .

fib.l(O) & 1.
fib.1(1)-&1.
fib.l(N) & +(fib(-(N,l»,

fib(-(N,2») .

fib(bnd[Arg#l,null]) :- &
fib.2(Arg#1) .

fib.2(null) :- & s[nu11].

fib(bnd[Arg#l,s[X]]) :- &

fib. 3 (Arg#1) .
fib.3(s[nullJ) :- & s[null].
fib.3(N)

subl(N,Nm1),
subt(Nm1,Nm2) ,
Rl is fib(Nml),
R2 is fib(Nm2),
p1us(Rl,R2,R) &
R.

&

8

(sg (fib $integerp))

(ft (fib 0) 1

(ft (fib 1) 1

(ft (fib _n)
(+ (fib (­

(fib (-

(sg (fib null»

n 1)

n 2»))

(ft (fib null) '(s null»

(sg (fib (s _x»))

(ft (fib (s null»
'(s null))

(ft (fib _n)
(subl _n _run1)
(subl _runl _run2)
(is _rl (fib _runl»
(is _r2 (fib _run2»
(plus rl r2 _r)
_r)

J THE TRANSFORMERS

(ft (fib (bnd _arg#l $integerp)
(fib.l 3rg#1))

(ft (fib.l 0) 1)
(ft (fib. 1 1) 1)
(ft (fib.1 _n)

(+ (fib (­
(fib (-

n 1)

n 2»))

(ft (fib (bnd _arg#l null»)
(fib.2 _arg#1))

(ft (fib .2 null) '(s null))

(ft (fib (bnd _arg#1 (s _x)))
(fib .3 _arg#1))

(ft (fib.3 (s null»
«s null))

(ft (fib . 3 _n)
(subl_n _run1)
(subl _run1 _run2)
(is _rl (fib _nml»
(is _r2 (fib _nm2»
(plus rl r2 _r)
r)

Evaluating declare facts
The general form of a declare fact is as follows:

declare (tag[argt, . .. , argnJ, . . .).

where tag [ar-gt, . .. ,argnJ can be, amongst some others2 , one of

• info [ter-m, . ..] - print term, . .. at compile time

• tupstruct [atom, . . .] - declare atom,.. . to be structure/operator
names that must be handled like lists to allow them to be used with
varying arity ("I"-operator)

• macro [name, fun ctional-object] - declare a macro to be transformed by
unmacro (since fun ctional-object is a COMMON LISP fun ctional object,
using the macro feature is not encouraged)

3 .1.2 untype

untype transforms types3 , i. e. rlomains (dom-terms), exclusions (exc-terms),

2defun to define COMMON LISP fun ctions used by macro, proto-class and indi-class
for defining ORF classes, 11 and IIp to define LISP light functions and pred icates accessible by
RELrUN, and mode and dfmode for mode declarations currently used for the transformation
of RELFUN operators into LISP light functions .

3lu add it ion to types, untype also ha nd les ORr clauses which arc not described in this
paper.

3.1 Th e extron trans form ers

and sorts ("$"-terms) into active calls of the type/t ype1 4 builtin (which is only
available in compiled RELFUN). Furthermore, expressions of the form expr :

type and bnd [exprl, expr2] are handled by transforming them into is-calls or
type-calls .

The meaning of type (term, tterm) , where tterm is either a dorn-term, an
exc-term, or an atom (denoting the name of a sort), is: if term is a variable, type
it with tterm (i.e., fill the type slot of the GWAM representation of variables,
ref-cells , with tterm), otherwise check if term is of type tterm.

The following examples show some of the cases covered by untype :5

pC) :- q($integerp).
p(X) :- X is dorn[1,2,3] .
p(X) :- X : dorn[1,2,3].
p(exc[1,2,3]) .
p(X : $realp) :­
p(bnd[X,$realp])

q(X).
q(X) .

(hn (p) (q $integerp»
(hn (p _x) (is _x C (dorn 1 2 3»)

(hn (p _x) ex C (dorn 1 2 3»)

(hn (p (exc 1 2 3»)
(hn (p ex : $realp» (q _x»
(hn (p (bnd _x $realp» (q _x))

3.1.3 unmacro

pO :- q(type1(integerp)).
p(X) :- X is typel(dorn[1, 2 ,3]).
p(X) :- X is type1(dorn[1,2,3]) .
p(typel(exc[1,2,3])) .
p(type (X,realp» q(X).
p(type(X,realp») : - q(X).

(hn (p) (q (typel integerp»)
(hn (p _x)

(is _x C, (typel C (dorn 1 2 3))
(hn (p _x)

(is _x c, (typel C (dorn 1 2 3)))
(hn (p ,(typel C (exc 123»)
(hn (p ,(type x realp) (q _x»
(hn (p , (type _x realp)) (q J»)

unrnacro is a transformation tool that handles various predefined as well as
user-defined macros.

User-defined macros are declared with declare fac ts (see sect ion 3.1.1).
Since the syntactic transformation performed by these macros is defined via
COMMON LISP functional objects, using them is not encouraged und thus
not further described in this paper.

The followinl!; macros are predefined :

• progn simply denotes an inline conjunction of expressions, returning the
value of the las t one (analogously to LISP) ; unrncaro trans forms it into it

si mple lambda application , which will be removed by hi trans (see section

)
(progn PI ... Pn)

3. 1.6 : t t
«(lambda 0 PI·'· Pn »)

• let creates a context with local (vd and aux iliary variables (ai) in which
so me premises (Pi) are evaluated:

4 type 1 (tterm) is the short form of type C, tlc7"1n) a nd is pxp.1ndecl by unmacro .

5 I n our current implementatio n, R ELF UN does not ha nd Ie " , " -ex.prc:ssi ons (~ee sec t ion
31.7) WItPIl us ing PROLOG syntax. In this paper , expressio ns like' (s _x , (p _y» ;uld

(hn (q .x . (p _y») arc shown as s [X . p(Y)] and qO. p(V». ill rnOLOG- li kc sYllLtx .

10 J THE TRANSFORMERS

(let ((VI PI) ... (1!n en) al ... a1l1) PI ... Po)

Its meaning is identical to that in COMMON LISP; it is, analogously to
progn, translated into lambda expressions .

• let*, just like let, creates a local context, but does not evaluate the
expressions ei in parallel but sequentially (just like its COMMON LISP
counterpart), thus allowing any Vi to access any Vj with j ~ i.

• new-once is the new version6 of once used in compiled RELFUN which
allows multiple expressions, returning the value of the last one, which are
enclosed in a single lambda expression:

(new-once PI ... Pn)

(new-once (lambda () P; ... p~»
• naf is handled analogously to new-once:

(naf PI ... Pn)

(naf* (lambda () P'l . .. P:»
• tupof is handled analogously to new-once:

(tupof PI ... Pn)

(tupof* (lambda () p'\ ... p~»

• "I" is transformed i lito all active call, (eli t), in order to simplify thp.
vertical compiler:

(cut)

• type1 is expanded to type with an anonymous variable:
(type1 t)

(type id t)

The following examples show how let and let* are transformed into lambda
applications. Since we did not yet develop a PROLOG-like syntax for these
constructs, only thr. LISP-like syntax is shown.

(hn (p _x _y)

Cis _y
(let (Ca 1) Cb 2) Cy 3) _ab)

(p _a _b _ab)
(+ _ab _x _y»»

(ft (q _x _y)

(hn (p _x _y)
(is _y

((lambda Ca b -y
(p _a _b _ab)
(+ ab _x _y)

1 2 3)))

(ft (q _x _y)

&aux _ab)

(let* ((_a (+ _x _y»
Cb (* _a 5»)

(j 3 _b»)

((lambda (&aux _a _b)
(is _rbl (+ _x _y»
(is 3 _rb1)
(is _rb2 (* _a 5»
(is _b Jb2)
C/ _a _b) »)

0Th(~ ll illn C neu-onc e is Il sed for his tori cal reas ons , as well as it.s trall s formatiull into allother
neu-once alln 1I0t illto a neu- once* .

:rJ The extron tmlls[orJlICrs II

3.1.4 unor

unor transforms inline disjunctions into corresponding, argument-less lambda
applications, which are removed by unlambda using separate clauses (see section
:3.1 .5)

p(X,Y,Z)
ore Z is +(X,Y), Z is *(X,Y)) . (hn (p _x _y _z)

«lambda ()

(hn (p x _y _z) (or
(or (is z (+ x _y»
(is z (+ x _y» (is z (* x _y»
(is z (* x _y»))

3.1.5 W1lambda

unlambda trrtnsforrlJs lambda expressions that cannot be expanded inline7
, I.e.

additional clauses are r-;cnerated:

• if a lambda expression is used as a value (as in (is _1 (lambda La _b)
... », a single clause containing the lambda literals is generated;

• if a lambda expression contains an or as its only literal (as introduced by
unor), (t clause is grnerated for each of tile or literals.

J II hoth C;:\S(~s, I;h(~ lambda expression is replaced by a structure' (lambdaH
II ... j"J. wilet'(o lambdan is a new symhol created by gentemp alld fl fill
;tiT the frec varia.bles occurring in the] ambda expression (for m = 0, instead of
, Clambdan), only <i llCW constant. lambdan is generated).

(hn (p _x _y) (hn (p _x _y)
(is c 5) (is c 5)

(is 1 (lambda <-a _b) (is _1 ((lambdal _c»
(+ a b _c») <-1 _x _y))

(1 - x _y» (ft «lambdal _c) - a _b)
(+ a b _c))

(hn (p _x _y _z) (hn (p x -y _z)

«lambda () ('Clambda2 _z _x _y»
(or (ft «lambda2 z _x _y»
(is z (+ x _y» (is 3 (+ x _y»)

(is z (* x _y»)))) (ft «lambda2 z _x _y»
(is _z (* x _y»)

3.1.6 hi trans

hi trans reduces higher-order C'xpressions 1.0 apply udb. l,'llrUlermOr('. struc

tlm:s ill rllllc'Lor positiolls arc (iat.tclIrd.

'1IIIill(' rXjl;)lldabl" lCilllbda c"'r)}'('~cinlls ilrc~ t.rilllSrnrIlWc\ h\· uncomma (SI'C' St~r:t.il)ll :3 1.7)

))))

12

sorted [Comp] ([A,BIR]) : ­
Comp(A,B),
sorted[Comp] ([BIR]) .

(hn «sorted _comp)
(tup _a _b I _r»

Ccomp _a _b)
('(sorted _comp)

letup _b I _r»

3.1.7 uncomma

3 TIlE TRANSFORMERS

sorted(Comp,[A,BIR]) :­
apply(Comp,tup(A,B),user),
sorted(Comp,[BIR]).

(hn (sorted _comp (tup _a b I _r»
(apply _comp (tup _a _b) user)
(sorted _comp letup _b I _r»)

uncomma transforms ",» -expressions, which arc used to activate expressIOns
inside of structures, and inline expandable lambda applications.

(hn (p _x _y)

(is _y
«lambda (_a b _y &aux _ab)

(p _a _b _ab)
(+ ab _x _y))

123)))

3.2 The bastron transformers

(ft (p _x _y)

(is _s5 C+ _x _y»
'(s _x _y _s5))

(hn (p _x _y)

(p 1 2 _aux6)
(is _y (+ _aux6 x 3»)

Source-to-source transformations performed by- bast ron are characterized by
delivering programs that can always still ue understood by the normal REL­
FUN interpreter. In fact, they map into a RELFUN subset which is usually
more simply interpreted and is always more simply compiled by the 'vertical'
techniques described in later sections. The following subsections are ordered
according to their position in the command hierarchy of section 2, where the
flatten command (subsection 3.2.2) just serves to prepare the flatter com­
mand (subsection 3.2.3). Most material in subsections 3.2.2, 3.2.3, and 3.2.7 is
taken from [BoI00j.

3.2.J Untupling

Ulltupling (command: untup) replaces both active and IJassive n-ary tups by
corresponding binary cns nestings, where the empty tup becomes the distin­
guished constant nil. This transformation, similar to list parsing in LISP's
read, prepares PROLOG-like list allocation in the GWAM.

For example, the ternary tup expression in

list3(E) :- & tup(E,E,E).

becomes as in

list3(E) :- & cns(E,cns(E,cns(E,nil»).

J.2 The bastron transform ers

whil<> the equivalent. tup st.ructure (cf. subsection 3.2.4) in

list3(E) :- & [E,E,E]. % list3(E) :- & tup[E,E,E].

becomes as in

list3(E) :- & cns[E,cns[E,cns[E,nil]JJ.

Sample dialog (untupling of passive bead and active body tups):

rfi-p> az listn([] ,_) :- & tup() .
rfi-p> az listn([L] ,E) & tup(Ellistn(L,E».
rfi-p> untup
rfi-p> listing
listn(nil,_) :- & nil.
listn(cns[L,nil] ,E) ' - & cns(E,listn(L,E».

3.2 .2 Flattening

Flattening (command: flatten) replaces embedded subexpressions in the
premises (both body and foot) by newly generated vitriabJes and associates
these with each other through preceding is-calls.

For example, one can employ child as a binary operator defined by

child(john,lucy)
child(john,mary)

& ann.
& bob .

ill ralls like child (P, Q), evaluating to P and Q's children. An embedding of
s uch a n eva.lua tive [ornlllia into <l.llotlwr ev<tluati\'(~ forlllu\;t makes Lhe lllaill
rormllia lles ted . Thus, the cares bod.y or the r()()t(~lwd rorlll (d, slJhs(~c:l.ilJll

3.2.7)

parental(P) :- cares(P,child(P,Q» & true.

wilt be fiat tClled to

parental(P) : - _1 is child(P,Q), cares(p,_l) & true .

Sample dialog (llPs l,cd fooLs would also work):

rfi-p> az f(k[]) - g(hO) & j(k[]).
rfi -p> flatten
rf i -p> listing
f (k []) 1 is hO, gCl) & j(k[J).

3.2.3 Flattering

Flattering (command: flatter) aeLs like flatten (cf. s ubsecl.ioll 3.2.2) lmL
additioll a lly replaces ellllwdded structures (both ill the premi se'S illid ill 1.11('

hl~ ad) by t)('wly genera ted w1.l'iables anel associ a tes these \\'ith (~ach otll e) Llll'Ol1f,;ll
p!'(~ recl i ng is-ca lls.

VOl' exa mple , OtH: Cil ll also (~ mpl ()y child as illl undefin ed hinary ('()IlSL)llf'i;OI
ill s l.rucr.lIlCS like child [P, 0] , .iust denoting P (t lld Q 's Cllildlf'll\ II r ' llllj(~d

dill!!; or ~ 1l (: l1 i t dCllot.a l.i vc ['OlIllUla illl.O a n (~vi.dllali \· c forllilila 1 (~ i1 \, (''i I.IIf' 111;lill
ft)l'lTllila ();\t. Tilits. 11)(' cares hod y of Ih(~ fo()t.cllcd frmll

J THE TRANSFORMEHS

parental(P) :- cares(P, child[P,Q]) & true .

in subsection 3.2.7 cannot be flattened but il can be flattered to

parental(P) :- _1 is child[P,Q], cares(P,_l) & true.

Sample dialog (equivalent to flatten followed by flatter up to variable
renam ing):

rfi-p> az f(k[]) - g(h(» & j(k[).
rfi-p> flatter
rfi-p> listing
fCl) :- _1 is k[), 2 is hO, gC2), 3 is k[] & jC3) .

3.2.4 Tuple- and cons-passivating

T\lple- and cons-passivating (command: passtup) replaces active, parenthe­
sized tup and ens calls containing only constants, variables, and structures/lists
by passive, bracketed tup structures , i.e . lists, and ens structures, respectively.

For (>xample, the tup and ens expressions in

list3 (E)
cons2 (E)

& tup(E,E,E).
& cnseE,E).

cont.ai 11 variables on Iy, a lld tllllS a re t up- a nd ens-passivated to structu res as ,
respectively, ill

list3(E) & [E,E,E].
cons2(E) - & cns[E,E].

% [E,E,E] shortens tup[E,E,E]

Sample dialog (only a fter flatten becomes second tup pass ive):

rfi-p> a z listn([],_) :- & tupO. '!. [] for 0
rfi-p> az listn([L] ,E) & tup(Ellistn(L,E». 'I. [L] for n+ l
rfi -p> passt up
rfi-p> li s ting
li s t n ([J ,_) : - & [].

listn ([L],E) :- & tup (Ell is tn(L,E».
rfi-p > flatten
rfi-p > listing
listn([] ,_) :- & [J.
listn([L],E) :- 1 is listn(L,E) & tup(EI_l).
rfi-p> passtup
rfi-p > li s ting
listn ([] ,_) :- & [J.
listn([LJ ,F.) :- _1 i s listn(L,E) & [EI_1J .

3.2 Th e bastron trans formers

3.2.5 Deanonymization

Deanonymization (command: deanon) transforms anonymous varia l>les
(PROLOG-like syntax: "_"; LISP-like syntax: "id"), domains (dom-ter ms),
exclusions (exc- terms), and types ("$"-prefixed predicates) to named versions.
For doing this new variables are generated replacing each "_" / "id" -occ urrencp
and providing the occurrence-binding (bnd-term) variables for dom/exc-terms
and "$" -predicates .

For example, the anonymous terms in the P-pattern of

t(Al,A2) : - P is C,dom[a,b] ,exc[c] ,$atom],
[P,P] is [Al,A2].

become as in

t (Al, A2) : - P is [_1, bnd [_2, dom [a, b]] ,bnd [_3, exc[c]] ,bnd [3, $atomJ J ,
[P,P] is [Al,A2].

The bnd-variables effect that after further compilation, although both the goals
t([true,a,b,c] ,[true,a,b,c]) and t([false,b,a,d], [false,b,a,d])
succeed, the goal t([true,a,b,c], [false,b,a,d]) correctly fails.

Sample dialog (only the first clause's head is affected):

rfi-p> az listn([] ,_) :- & tupO.
rfi-p> az listn([L] ,E) & tup(Ellistn(L,E».
rfi-p> deanon
rfi-p> listing
listn([],_l) -&tupO.
listn([L],E) :- & tup(Ellistn(L,E» .

3.2.6 Normalizing

N ormalizi ng (command: normal i ze) per forms several par tial-evaillittion-li k(~
transformations such as the propagation of passive right-hand sirles of is -calls
[K ra91] .

For exa mple , the constant V-binding in

f(V,W) V is a & V.

l(~ads 1.0

f(a,W) :- & a.

Sampk dialog (only after flatter call normalize operate) :

rfi-p > az f(k[]) - geh(» & j(k[J).
rfi-p> normalize
rfi-p> listing
f(k[J) : - g(hO) & j(k[J).
rfi-p> flatter
rfi - p> listing

16 4 THE CLASSIFIER

fCl) :- _1 is k[], 2 is hO, gC2), 3 is k[] & jC3).
rfi-p> normalize
rfi-p> listing
f(_l) :- _1 is kO, 2 is he), g(_2) & j(_l).

3.2.7 Footening

Footening (command: footen) trivially transforms Hornish clauses to footed
clauses by introducing the explicit foot true . (A footen argument can also
specify a non-true foot .)

For example, the (implicitly true-) denotative Hornish rule

parental(P) :- cares(P,child[P,Q]).

becomes normalized to the following (explicitly true-) denotative footed rule:8

parental(P) :- cares(P,child[P,Q]) & true.

Sample dialog (nothing changes since the clause is already footed):

rfi-p> az f(k[])
footen
listing

g(hO) & j(k[]).
rfi-p>
rfi-p>
f (k []) g (h () & j (k []) .

4 The classifier

The classifier's task is to extract information (e.g. about the kinds of clauses
and variables) from the program (database) that enables the code generator
(vertical compiler) to produce efficient RFM (WAM) instructions. This in­
formation, often implicit in compilers, is here explicitely represented in the
declarative intermediate language Classified Clauses; for this the classifier ex­
tends normal RELFUN source clauses with numerous declarations on different
levels of description. The following short introduction is based on the current
implementation status of the Classified Clauses. A more detailed introduction
of an earlier version is presented (in German) in [Kra90] . This section briefly
describes the Classified Clauses by stepwise refinement; in section 4.7 the de­
scription grammar is given in an EBNF syntax.

In Classified Clauses we distinguish six levels of description, namely the .
database, procedure, clause, chunk, literal, and term levels. A databa.'3e consists

8If performed indiscriminately, footening prevents the last-call optimization in the WAM
(here, parental cannot just jump to , or execute, cares since it still has to puLconstant
true). In order to avoid this, footening should, in practice, only be performed on Hornish rules
for which it cannot be assured that the last premise (here, cares) on success will itself return
true . If, however, this 'true-return' property can be established for a Hornish rule, it should be
'foot-optimized', i.e. transformed into a footed rule reusing the last (relational) premise as its
(functional) foot (here obtaining parental(P) : -& cares (P. child [P. Q]) . While in general
this requires global analysis , for the important special case of tail-recursion optimization the
analysis can be confined to individual procedures. Benchmark results for the la tter case can
be found in [Heigl) .

4.1 Procedure level 17

of an unordered set of procedures each consisting of an ordered set of clauses .
All clauses of one procedure have the same name and arity. Name and arity yield
the procedure name 'name/arity'. For example, the clause foo(V,W) belongs
to the procedure foo/2.

The Classified Clauses for a RELFUN program (database) are accordingly
defined as follows:

classified_database .. - (db9 {classified_procedure} *)

4.1 Procedure level

Syntax:

classified_procedure ::= (proc procedure...name clause_count indexing
{ clause_classification} +)

Description:

proc Each description of a procedure starts with the tag proc.

procedure_name The name and the arity of clauses yield the procedure name.

clause_count Clause_count gives the number of clauses belonging to the pro­
cedure.

indexing Indexing information for the procedure.

Example:

Prolog-like source:

faa (...) .
faa (...)

Lisp-like source:

(hn (faa ...))
(ft (faa ...) . . .)

Classified Clauses:

(db (proc foo/2 2
indexing
clause_classification
clause_classification)
.)

9The db tag is omitted in the current implementation

18 4 THE CLASSIFIER

Remark:
It is planned for the future to extend the description of a procedure by infor­
mation about the modes of the arguments in all feasible calls to the procedure.
In this way it should be possible that, on the one hand, the user can declare
the modes and, on the other hand, a mode interpreter can compute the modes
automatically. Thus the mode interpreter could check the consistency of the
modes generated by the user in exactly the same way.

4.2 Indexing

Syntax:

indexing .. -
iblock .. -..
pblock .. -
rblock .. -
clauses .. -
arg-col .. -..
base-type .. -..
const .. -..
struct .. -
var .. -
1block .. -
sblock .. -..
seqind .. -..
seqind-arg .. -

constants .. -
structures .. -
element .. -
element-name .. -..

lists .. -
empty-lists .. -
others .. -

Description:

iblock indexed block

(indexing [iblockJ)
pblock I sblock
(pblock rblock {sblock 11block}+)
(rblock clauses {arg-col} +)
(clauses {clause-number} +)
(arg arg-number {base-type}+)
const I struct I var
(const symbol)
(struct symbol arity)
(var symbol)
(lblock clauses {arg-col}+)
(sblock rblock seqind [pblock])
(seqind {seqind-arg} +)
(arg arg-number (info inhomogenity) constants

structures lists empty-lists [others])
(const {element} *)
(struct {element }*)
(element-name clauses [iblock])
symbol I (symbol arity)
(list clauses [iblock])
(nil clauses [iblock])
(other clauses [iblock])

pblock partition block

sblock standard index block

1 block block consisting of only one clause

rblock raw block containing the initial data

seqind sequential indexing

arg-col argument column

4.2 Indexing 19

others (possibly indexed) clauses for elements not occurring in any hash table

Example:

Prolog-like source:

foo(alpha,beta).
foo(T,gamma)

Lisp-like source:

(hn (foo alpha beta»
(ft (foo t gamma) . . .)

Classified Clauses:

(db (proc foo/2 2
(indexing
(sblock
(rblock
(clauses 1 2)
(arg 1 (const alpha) (var t»
(arg 2 (const beta) (const gamma»)

(seqind
(arg 2
(info 2)
(const (beta (clauses 1» (gamma (clauses 2»)
(struct) (list) (nil))

(arg 1
(info 1)
(const (alpha (clauses 1 2»)
(struct) (list) (nil)
(other (clauses 2»))))

.)

Here we insert a more complete example from a propositional nor­
malizer [Sin93]:

Prolog-like source:

norm(X, X) :- literal(X).
norm(or[X, Y], or[X, Y]) :- literal(X) , literal(Y).
norm(and[X, Y], and[X, Y]) :- literal(X) , literal(Y).
norm(or[X, Y], or[Xl, Y]) :- literal(Y), norm(X, Xl).
norm(or[X, or[Y, Z]], W) :- norm(or[or[X, Y], Z], W) .
norm(or[X, and[Yl, Y2]], or[Xl, Y12]) :-

20 4 THE CLASSIFIER

norm(X, Xl), norm(and[Yl, Y2J, Y12).
norm(and[X, YJ, and [Xl , YJ) :- literal(Y), norm(X, Xl).
norm(and[X, andry, ZJJ, W) :- norm(and[and[X, YJ, ZJ, W).
norm (and [X , or[Yl, Y2JJ, and [Xl , Y12]) :- norm(X, Xl),

norm(or[Yl, Y2J, Y12).

Classified Clauses:

(db (proc norm/2 9
(indexing
(sblock
(rblock

norm/2 has 9 clauses

; info block for first node
(clauses 1 2 3 4 5 6 7 8 9) ; of the index tree
(arg 1 ; possible contents of the first argument
(var x) (struct or 2) (struct and 2) (struct or 2)
(struct or 2) (struct or 2) (struct and 2)
(struct and 2) (struct and 2))

(arg 2 possible contents of the second argument
(var x) (struct or 2) (struct and 2) (struct or 2)
(var w) (struct or 2) (struct and 2)
(var w) (struct and 2)))

(seqind
(arg 1
(info 2)
(const)
(struct

«or 2)

first node of the index tree
indexing for the first arg
there are 2 possible arguments
no constant in first arg
there are heads with struct as 1st arg
create new node in index tree
norm (or [.. J , ..)

(clauses 1 2 4 5 6) ; matches these clauses
(sblock ; new node for 2nd-arg indexing
(rblock ; information for possible subtree pruning
(clauses 1 2 4 5 6)
(arg 2 (var x) (struct or 2)

(struct or 2) (var w) (struct or 2»)
(seqind
(arg 2
(info 1) 1 possible arg
(const) no constant as 2nd arg
(struct norm(or[.. J,or[.. J)
«or 2) (clauses 1 2 4 5 6») create try-trust block for

these clauses
(list) ; no list as 2nd arg
(nil) ; no [J as 2nd rg
(other (clauses 1 5»)))) ; variable as 2nd

«and 2) ; norm(and[.. J, ..)
(clauses 1 3 7 8 9) ; matches these clauses
(sblock ; new node for 2nd-arg indexing

4.3 Clause level 21

Remark:

(rblock ; information for possible subtree pruning
(clauses 1 3 7 8 9)

(arg 2 (var x) (struct and 2)
(struct and 2) (var w) (struct and 2)))

(seqind
(arg 2
(info 1)
(const)
(struct

1 possible arg
no constant as 2nd arg

«and 2) (clauses 1 3 7 8 9)))

(list) ; no list as 2nd arg
(nil) ; no [] as 2nd arg

create try-trust block for
these clauses

(other (clauses 1 8)) ; variable as 2nd arg
))))) (struct ...

(list)
(nil)
(other (clauses
) ; (arg 1

(arg 2
(info 2)

no list as 1st arg
no list as 1st arg
1)) ; variable as 1st arg

indexing for the 2nd arg
2 possible arguments

(const) no constants
(struct there are heads with struct as 2nd arg
«or 2) (clauses 1 2 4 5 6 8)) create try-trust block for

; norm(.. , or [..])
«and 2) (clauses 1 3 5 7 8 9))) ; and for norm(.. ,and[.. J)

(list) no list as 2nd arg
(nil) no [] as 2nd arg
(other (clauses 1 5 8)))))) ; variable as 2nd arg

.)

For further information about indexing see [8te93, 8in93, 8892].

4.3 Clause level

Syntax:

clause_classification
chunk...sequence
cuUnfo
perm_varlist
temp_varlist
cuLtype
globaLperm_ var _descr
glo baUem p_ var _descr
permAescr
temp_descr

(clause_type cuUnfo perm_varlist temp_varlist chunk...sequence)
head_chunLfact I head_chunk...rule body _chunklist
(cut-info cuLtype)
(perm {globaLperm3aLdescr} *)
(temp {globaUemp_vaLdescr}*)
lonely I first I last I general I nil
(variable perm_descr)
(variable temp_descr)
(Y -reg_nr useJlead (lasLchunk lasLchunkliteral))
(X-reg_nr use_head use_premise)

22 4 THE CLASSIFIER

Description:

clause_type The clause_type describes the kind of clauses, which are distin­
guished in relO, funlden, funleva, fun*den, fun*eva. We give the
type relO to a hn-clause without any body literal. Thus relO tags an
ordinary fact, as known from PROLOG. The "1" in the types funlden
and funleva indicates that the clause contains only one chunk. Hence
"*,, means the clause contains two or more chunks. "den" stands for
denotative foot and "eva" for evaluative foot . It should be noted that an
hn-clause with an evaluative last body literal still is a "den" -like clause,
because hn-clauses implicitly return the value true and not the value of
their last premise

cuLinfo (Information about the occurrence of a cut in the clause) The cuLinfo
contains exactly one argument, cuLtype, which maps directly to the cor­
responding GWAM-instructions (see section 7) . The cuLtype argument
is nil if there is no cut . Since currently RELFUN clauses always return a
value, only first and general are in use.

perm_var jist (Global information about the permanent variables of the
clause) An element of the perm-Yar Jist is a pair of the form: (variable
perm_descr). The perm_descr is a 3-tuple describing a) where the vari­
able has to be located in the local environment in order to make optimum
environment trimming, b) the occurrences in the head literal (a list of
argument positions), and c) the last occurrence (the last chunk and the
last literal in this chunk) of the variable in the clause.

temp_vaLlist (Global information about the temporary variables in the
clause) The temp_varJist describes a) which register (or X-reg_nr) has
to be assigned to the temporary variable for register optimization on the
machine level, b) the occurrence in the head literal (or useJ1ead), and c)
the call literal (or use_premise). A temporary variable occurs only in one
chunk by definition; in this way the call literal is unique and it is possible
that neither useJ1ead nor use_premise are different from the empty list
nil.

Example:

Prolog-like source:

foo(alpha,beta).
foo(T,gamma) bar(T,P)!& bar(P,Q).

Lisp-like source:

(hn (foo alpha beta»
(ft (foo t gamma) (bar t _p) (bar _p _q»

4.4 Chunk level 23

Classified Clauses:

(db (proc foo/2 2 (indexing
(relO

.)
hn-clause (foo alpha ...)
without body goals

(cut-info nil)
(perm)
(temp)
(chunk .))

there is no cut
there are no permanent variables
there are no temporary variables

; head_chunk_fact

(fun*eva the ft-clause (foo _t ...). The
clause contains two small chunks

.)

4.4 Chunk level

Syntax:

head_chunk-±'act
head_chunk.rule

body _chunkJist
body_chunk
callJi teral
chunLguard
chunLdescr
permvar _uselitJist

and an evaluative foot calling bar/2
(cut-info general)
(perm (_p (1 nil (2 1)))); Permanent variable _po

_p is assigned to the V-reg 1 in the
local environment. _p doesn't occur
in the head. Its last occurrence is
in the second chunk and as the first
literal in the chunk.

(temp (_t (1 (1) (1))) ; The temporary variable _to
_t is assigned to the X-reg 1. It
has an arg-l occurrence in the head.
Its call literal in the chunk is

(chunk
(chunk

in the argument position 1.
(_q (2 nil (2)))) ; _q is assigned to register 2

because its occurrence in the call
literal is at argument position 2.
It has no head occurrence .

.) head_chunk rule

.)) ; bOdy_chunk

(chunk (headJiteral {chunk_guard} *) chunk_descr)
(chunk (headJiteral {chunk_guard} * firsLpremiseJiteral)

chunLdescr)
{body_chunk}* [(({chunk_guard}*) chunLdescr)]
(chunk ({chunk_guard}* callJiteral) chunk_descr)
literaLclassification I lispcalLclassification
builtin I passive_term
(luJeg ({ (variable permvaLuselitJist)} *))
({ arg_nr} +)

24 4 THE CLASSIFIER

Description:

body _chunk A chunk is a 2-argumented structure composed of the tag chunk,
a list of denotative literals called chunk_guards with an additional evalu­
ative literal called callJiteral as the last element, and some information
about the chunk called chunLdescr.

head_chunk_fact If there are no call literals in the body of the clause, then
the clause contains only one chunk ending with a denotative literal. We
call this kind of chunk head_chunk.iact. In fact, all clauses with type
relO or funlden arEi constructed with only the head_chunk.iact.

head_chunk-Iule If there is at least one call literal in the clause, then the
first chunk ends with a call literal (firsLpremiseJiteral). All clauses with
types different from relO and funlden have a head_chunkJule as their
first chunk.

chunk_descr The classifier computes optimized register assignments for tem­
porary variables. The information IUJeg tells the code generator which
register is the last one used by the classifier. For example the code genera­
tor has to take register numbers higher than IUJeg for handling the perma­
nent variables in the chunk. The pair (variable permvaLuselitJist) tells
the code generator where the permanent variables occur in the calUiteral
of the chunk.

Example:

Prolog-like source:

foo(alpha,beta).
foo(T,gamma) bar(T,P)!& bar(P,Q).

Lisp-like source:

(hn (foo alpha beta))
(ft (foo t gamma) (bar t _p) (bar _p _q))

Classified Clauses:

(db (proc foo/2 2 (indexing ...)
(relO hn-clause without body goals

(cut-info nil)
(perm)
(temp)
(chunk The tag for the first chunk.

(head_literal) ; There exists only the head literal
nil)) There is no need for any chunk descr

4.5 Literal level and argument level 25

(fun*eva

.)

(cut-info general)
(perm (_p (1 nil (2 1»»
(temp (_t (1 (1) (1»)

(_q (2 nil (2»»
(chunk ; The tag for the first chunk.

«usrlit ... » ; head_literal first_premise_li tel
(2 «_p (2»»); lu_reg = 2 because of the arity

of the first_premise_Iiteral. The
permanent variable _p occurs at
position 2 in the call_literal.

(chunk The tag for the second chunk.
«usrlit ... » there is only a call_literal.
(2 «_p (1»»») _p occurs at position 1

in the call literal .

4.5 Literal level and argument level

Syntax:

Ii teraLclassification
lisp call_classification

builtin
arglist_classification
term_classification

is_primitive
Ihs_term
rhs_term
constant_classification
variable_classification
structure_classification

locaL var _descr
Ii teraLdescr
lisp calLdescr

Description:

.. -..

.. -..

.. -..

.. -..

.. -..

.. -

.. -..

.. -..

.. -..

.. -

.. -..

.. -..

.. -..

.. -..

(usrlit (functor arglisLclassification) literaLdescr)
(lispcalUype (lisp-builtin argIisLclassification)

lispcalLdescr)
unknown I is_primitive I (refl-Xreg lhs_term)
{term_classification} *
constanLclassification I variable_classification

I structure_classification
(is lhs_term rhs_term)
constanLclassification I variable_classification
term_classification
constanLname
(variable locaL var _descr)
'(functor arglisLclassification)

I (inst (functor arglisLclassification))
(occurrence saveness var _class)
(arity env..size arg_seq)
(arity env..size arg_seq)

term_classification A term is a denotative literal. The insLop ("'" or "inst")
indicates that a literal is a denotative (sometimes called passive) one.

10caLvar _descr A variable is locally described (with respect to all its occur­
rences in the clauses) by the locaLvaLdescr. It is a list of three elements
(occurrence saveness vaLclass). The occurrence can be first, nonfirst, or
reuse. While the meaning of first and nonfirst is intuitively clear, reuse

26 4 THE CLASSIFIER

means that the classifier has assigned a register to more than one tem­
porary variable. If a variable occurs first it gets the information reuse
(instead of first) when the register was assigned to another temporary
variable before in the same chunk. This is more an information for the
user than for the code generator. Because of the different possible ref­
erences of a variable, we describe the different reference states by the
information saveness. The saveness is distinguished into global (a ref­
erence to the heap), safe (a reference to a caller environment or to the
heap), and unsafe (a possible reference to the local environment). The
information var_class tells the code generator whether the variable is temp
or perm.

literaLdescr The arity gives the number of arguments in the literal.

env --size denotes how many permanent variables have to survive the call to
the literal. The Y-register assignment in the permvarJist has been done
in a way that the env...size is as small as possible.

arg--seq is a list that tells the code generator in which order the argument
positions have to be represented by GWAM instructions. It is possible
that some arguments need no instructions. A missing argument position
in arg-seq indicates such a case.

Example:

Prolog-like source:

foo(alpha,beta).
foo(T,gamma) bar(T,P)!& bar(P,Q).

Lisp-like source:

(hn (foo alpha beta))
(ft (foo t gamma) (bar t _p) (bar _p _q))

Classified Clauses:

(db (proc foo/2 2 (indexing ...)
(relO

(cut-info nil)
(perm) (temp)
(chunk

«usrlit (foo alpha beta)
(2 0 (1 2)))) ; The literal foo has 2

arguments. The env_size is O.
Use the order given in
arg_seq (1st: alpha, 2nd:

4.6 An example with structures 27

beta.
nil» No chunk description needed

(fun*eva

.)

Remark:

(cut-info general)
(perm (_p (1 nil (2 1»»
(temp (_t (1 (1) (1») (_q (2 nil (2»»
(chunk

«usrlit (foo (_t (first safe temp»; _t occurs
; first and is safe because
; it has a reference to the

gamma); caller's environment
(2 1 (2»); _t needs no instruction

; since it stays first arg
(usrlit (bar (_t (nonfirst safe temp»

(_p (first unsafe perm»)
; _p is potentially unsafe

(2 1 (2»»; As above!
No instruction for t

(2 (Cp (2»»)
(chunk «cutlit (cut) (0 1 nil») (0 nil»
(chunk

«usrlit (bar (_p (nonfirst unsafe perm»
(_q (first unsafe temp»)

(2 0 (1 2»»

(2 «_p (1»»»)

The WAM-instruction meaning of the Classified Clauses is described in para­
graph 5, where an introduction to the code generator is given. The code gen­
erator takes as input the Classified Clauses for RELFUN and produces the
GWAM code. Therefore, in paragraph 5 you can find more detailed informa­
tion on how the added annotations are used for code generation.

4.6 An example with structures

We consider an example showing in which way structures are represented in
the Classified Clauses. The first step we show is the flattening and normalizing
that precedes (as part of the horizon command, d. section 3.2) the compilation
before classified clauses are generated (see [Kra91] and section 2).

Prolog-like source:

bareR,S).
fie(f[b] ,f[b] ,b) :- W is g[f[b]] & bar(b,W).

Leads after flattering and normalizing to:

28 4 THE CLASSIFIER

bareR,S).
fieL3,_3,b) 3 is f[b], W is g[_3] & bar(b,W).

Lisp-like source:

(hn (bar _r _s»
(ft (fie _3 _3 b)

(is _3 ' (f b»
(is _w '(g _3»
(bar b _w))

Classified Clauses:

(db (proc bar/2 1
(indexing)
(relO

no indexing

(cut-info nil)
(perm)

bar/2 is an hn-fact
no cut
No permanent variables
2 temporary variables (temp (_r (1 (1) nil»

(_s (2 (2) nil»)
(chunk

«usrlit (bar (_r (first safe temp»
(_s (first safe temp»)

(2 0 (1 2» »; Proposed instructions for posltlon 1 and
nil») ; 2, but the code generator will make it better

; Start of the description of the next procedure

(proc fie/3 1
(indexing)
(fun1eva

no indexing
A one-chunk rule with an evaluative foot

(cut-info nil)
(perm)
(temp L3 (1 (2 1) nil» ; the variable _3 has no occurrence

in the call literal of its chunk
(_w (2 nil (2»»

(chunk «usrlit (fie (_3 (first safe temp»
(_3 (nonfirst safe temp»
b) ; A constant gets no further description

(3 0 (3 1 2») ; Generate code for the constant first!
(is (_3 (nonfirst global temp»

'(f b» A chunk guard gets no further description
(is All is-primitives are used denotatively

(_w (first unsafe temp» ; in the Classified Clauses
'(g (_3 (nonfirst safe temp»» The structure g/2

; beginning with "'"
(usrlit (bar b

(_w (nonfirst unsafe temp»)

4.6 An example with structures 29

(2 0 (1)))); No instruction for _w necessary because
the register 2 is assigned to it

(3 nil))))) ; lu_reg = 3, because of the literal foo/3

30 4 THE CLASSIFIER

4.7 EBNF syntax for Classified clauses

classified_database
classified_procedure

indexing
iblock
pblock
rblock
clauses
arg-col
base-type
const
struct
var
Iblock
sblock
seqind
seqind-arg

constants
structures
element
element-name
lists
empty-lists
others
clause_classification
chunk....sequence
cuLinfo
head_chunk-±'act
head_chunk..rule

body _chunk Jist
body_chunk
chunLdescr
headJiteral
firsLpremiseJiteral
callJiteral
chunLguard
passive_term
permvar _uselit.Jist
Ii teraLclassification
lispcall_classification

builtin
arglisLclassification

-..
-"

-"

,,-
"

-..
,,-

,,-

-"

-"

.. -
-"

,,-
"

.. -
"

,,-

.. -
,,-

"-
"

-"

"-
"

,,-

-"

"-
"

,,-

"

,,-
"

.. -
"

-"

.. -
"

,,-

"

"-
"

.. -
-..

"-
"

,, -

,,-..
"-
"

,,-

"-
"

,,-

"-
"

,,-

"-
"

(db {classified_procedure} *)
(proc procedureJlame clause_count

indexing {clause_classification} +)
(indexing [iblock))
pblock I sblock
(pblock rblock {sblock Ilblock}+)
(rblock clauses {arg-col} +)
(cla uses {clause-number} +)
(arg arg-number {base-type} +)
const I struct I var
(const symbol)
(struct symbol arity)
(var symbol)
(lblock clauses {arg-col}+)
(sblock rblock seqind [pblockJ)
(seqind {seqind-arg} +)
(arg arg-number (info inhomogenity) constants

structures lists empty-lists [others])
(const {element} *)
(struct {element}*)
(element-name clauses [iblock])
symbol I (symbol arity)
(list clauses [iblockJ)
(nil clauses [iblock))
(other clauses [iblock])
(clause_type cutjnfo perm_var.list temp_var.list chunk....sequence)
head_chunk-±'act I head_chunkJule body _chunk.list
(cut-info cuLtype)
(chunk (headJi teral {chunLguard} *) chunLdescr)
(chunk (headJiteral {chunLguard}* firsLpremiseJiteral)

chunk_descr)
{body _chunk}* [(({ chunk_guard }*) chunk_descr)]
(chunk ({ chunk_guard} * callJiteral) chunk_descr)
(luJeg ({ (variable permvar _uselitJist)} *))
literaLclassification
callJiteral
Ii teraLclassification I lispcalLclassification
builtin I passive_term
term_classification
({ arg_nr} +)
(usrlit (functor arglisLclassification) literaLdescr)
(lispcalUype (lisp-builtin arglist_classification)

lispcalLdescr)
unknown I is_primitive I (refl-Xreg lhs_term)
{ term_classification} *

4.7 EBNF syntax for Classified clauses 31

term_classification

is_primitive
lhs_term
rhs_term
constant_classification
variable_classification
structure_classification

perm_varJist
temp_varJist
literaLdescr
lispcalLdescr
glo baLperm_ var _descr
globaLtemp_ var _descr
perm_descr
temp_descr
locaL vaLdescr
clause_type
lispcalUype
Y-reg_nr
X-regJlr
las Lchunk
lasLchunkliteral
useJ1ead
use_premlse
arg-seq
lUJeg
occurrence
saveness
var_class
variable
procedureJlame
functor
lisp-builtin
lisp-fcts
lisp-preds
lisp-extras
constantJlame
clause_count
arg-Dr
reg_nr
chunk_nr
Ii t-Dr
env-size
arity

.. -

.. -

.. -..

.. -..
"-..
.. -
.. -

-..
"-..
.. -..
.. -
.. -
" -..
.. -..
"-..
"-..
.. -..
"-..
.. -..
.. -..
.. -..
.. -..
-..

.. -

.. -..
"-..
.. -..
.. -..
.. -..
"-..
.. -..
"-..
.. -..
.. -..
.. -..
"-..

constanLclassification I variable_classification
I structure_classification

(is lhs_term rhs_term)
constanLclassification I variable_classification
term_classification
constantJlame
(variable locaLvaLdescr)
'(functor arglisLclassification)

I (inst (functor arglisLclassification))
(perm {globaLperm_var_descr }*)
(temp {globaUemp_vaLdescr }*)
(ari ty env -size arg-seq)
(ari ty env -size arg-seq)
(variable perm_descr)
(variable temp_descr)
(Y -regJlr use-.bead (lasLchunk lasLchunkliteral))
(X-regJlr use-.bead use_premise)
(occurrence saveness var _class)
relO I funlden I funleva I fun*den I fun*eva
cl-func I cl-pred I cl-extra
regJlr
regJlr
chunkJlr
lit..nr
({reg_nr}*)
({reg_nr } *)
({ arg_nr} *)
regJlr
first I nonfirst I reuse
global I safe I unsafe
perm I temp
-Dame I (vari name)
name/arity
name
lisp-fcts Ilisp-preds I lisp-extras
;;;;; RELFUN supported LISP functions
;;;;; RELFUN supported LISP predicates
;;;;; RELFUN supported LISP functions with side effects
name
cardinal
cardinal
cardinal
cardinal
cardinalO
cardinalO
cardinalO

32

name
cardinal
cardinalO
letter
digit
digitO

letter {letter I digitO}*
digit {digitO}*
o I cardinal
a I b 1 ... 1 z

1121·· ·19
o 1 digit

4 THE CLASSIFIER

33

5 The code generator

The basic idea of the code generator is to keep it as simple as possible to allow
an easy replacement of the GWAM by another abstract machine. The classi­
fied clauses should be considered as a 'machine-independent' representation of
RELFUN procedures. It was not necessary to modify the code generator when
proceeding from Nystr0m's WAM to our GWAM and C-based emulators.

The internal program structure of the code generator resembles the structure
of the EBNF syntax. Therefore, in the following we give the EBNF syntax and
the corresponding LISP functions. .

The idea is to associate with each nonterminal symbol a function returning
code for the corresponding construct; the returned code is appended to the
already existing code. This ensures a (more or less) functional structure of the
code generator. To avoid possible performance problems of the code generator,
all calls to the expensive append are encapsulated in the macros doappend and
addeode, where they could be replaced by cheaper neone calls.

In this section the functions and macros of the code generator will be intro­
duced. The descriptions of the function's parameters will not be given, so the
reader should consult the source code, although the variable names should be
self-explaining.

The source of the code generator has been written in a very functional style
using only a small subset of COMMON LISP, having in mind a simple reimple­
mentation of the code generator in RELFUN. Thus, we make extensive use of
CONDs instead of using eease, jump tables, and other specialities COMMON
LISP is offering.

5.1 Software interface

The code generator has two access functions from the outside (from the view
of software modules). (code-gen-proe classified_procedure) is used to
generate WAM code from a classified procedure. This is the function we use
from the outside to compile a procedure incrementally.

In the future, the compilation of a single clause may become important for
dynamic asserts and retracts. The appropriate function to produce WAM code
for a single classified clause is (code-gen-ec clause_classification).

If extensions to the code generator are made, one should ensure that this
interface does not change.

In the following, functions for code generation are described. Nontermi­
nals are used as input parameters representing the argument type. The right
arrows prefix the returned value of the system, which is often represented by
nonterminal symbols. The symbols in bold case are the terminal symbols.

5.2 classified_procedure

classified_proced ure (proc procedureJlame clause_count
indexing {clause_classification} +)

34

• (s-cg-proc-id classified_procedure)
-} proc

5 THE CODE GENERATOR

remark: s-cg = selector for code generator

• (s-cg-procedure_name classified_procedure)
-} procedure~arne

• (s-cg-clause_count classified_procedure)
-} clause_count

• (s-cg-clause_classific<l-tions classified_procedure)
-} list of clause_classification(s)

• (code-gen-proc classified_procedure)
-} GWAM code for the procedure. This procedure is responsible for
generating try/retry/trust instructions.

5.3 indexing

indexing (indexing [iblock])

• (icl.s-iblock-from-class-proc classified_procedure)
-} sblock I pblock
remark: icl = indexing classifier part

• (icl.s-iblock-type iblock)
-} pblock I sblock

• (icl.s-rblock-from-pblock pblock)
-} rblock

• (icl.s-iblock-list-from-pblock pblock)
-} list of sblock I Iblock

• (icl.s-rblock-from-sblock sblock)
-} rblock

• (icl.s-seqind-arg-list-from-sblock sblock)
-} list of seqind-arg

• (icl.s-iblock-from-sblock sblock)
-} pblock

• (icl.s-clause-from-lblock Iblock)
-} clause-number

• (icl.s-arg-col-list-frorn-lblock Iblock)
-} list of arg-col

• (icl.s-clauses-from-rblock rblock)
-} list of clause-number

5.4 clause_classification

• (icl.s-arg-col-list-from-rblock rblock)
---* list of arg-col

• (icl.s-arg-no-from-arg-col arg-col)
---* arg-number

• (icl.s-it-list-from-arg-col arg-col)
---* list of base-type

• (icl.s-arg-no-from-seqind-arg seqind-arg)
---* arg-number

• (icl.s-info-from-seqind-arg seqind-arg)
---* (info inhomogenity)

• (icl.s-constant-list-from-seqind-arg seqind-arg)
---* constants

• (icl.s-structure-list-from-seqind-arg seqind-arg)
---* list of elements of structures

• (icl.s-list-from-seqind-arg seqind-arg)
---* lists

• (icl.s-nil-from-seqind-arg seqind-arg)
---* empty-lists

• (icl.s-other-from-seqind-arg seqind-arg)
---* others

• (icl.s-var-from-raw-seqind-arg seqind-arg)
---* lists

• (iif.mk-tree clause_classification)
---* produces indexing trees for further use by the code generator
remark: iif = indexing interface

5.4 clause_classification

clause_classification (clause_type cut-info perm_var Jist
temp_ var Jist chunk...sequence)

35

chunk...sequence head_chunk.iact I head_chunk..rule body _chunkJist

• (s-cg-clause_typ clause_classification)
---* clause_type

• (s-cg-cuLinfo clause_classification)
-7 cut-info

• (s-cg-perm_ val' Jist clause_classification)
-7 perm_varJist

36

• (s-cg-temp_ val' J.ist clause_classification)
-7 temp_varJ.ist

• (s-cg-chunks clause_classification)

5 THE CODE GENERATOR

-7 list of head_chunkJact or list of head_chunk Jact or list of
head_chunkJule
body _chunkJule.

• (code-gen-cc clause_classification)
-7 GWAM code for a classified clause. This function has to cope with
relO, funlden, funieva, fun*den and fun*eva and with setting up an
appropriate environment.

head_chunkJact
head_chunkJ·ule

(chunk (headJ.iteral {chunLguard} *) chunk_descr)
(chunk (headJ.iteral {chunk_guard} * firsLpremiseJ.iteral)

chunLdescr)
body _chunkJ.ist
body_chunk

{body_chunk}* [« {chunk_guard}*) chunk_descr)]
(chunk ({chunk_guard} * callJ.iteral) chunk_descr)

Let chnk be an abbreviation for head_chWlkJact, head_chunk..rule or
body_chunk.

• (s-cg-chunk_id chnk)
-7 chunk

• (s-cg-chunk_descr chnk)
-7 chunk_descr

• (s-cg-chunk_headJ.iteral chnk)
-7 headJ.iteral

• (s-cg-chunk_hd_cgfpl head_chunkJule)
-7 list: «chunLguard/s) firsLpremiseJiteral)
remark: cgfpl = chunk guard, first premise literal

• (s-cg-chunk-bd_cgcl body_chunk)
-7 «chunks_guard/s) calUiteral)
remark: cgcl = chunk guard, call literal

• (code-gen-hdchunk perms temps chunk callexeflg deallocflg chunknr)
This function returns code for the first chunk in the clause. One may no­
tice that this function is very similar to code-gen-chunk below, although
further enhancements (indexing, global compilation) may result in a com­
plete reformulation of that function, whereas code-gen-chunk is likely to
keep the same.

• (code-gen-chunk perms temps chunk callexeflg deallocflg chunknr)
Returns WAM code for a chunk to be found in the body.

5.6 chunk_descr

5.6 chunk_descr

chunLdescr (luJeg ({ (variable permvaLuselitJist)} *))

• s-cg-chunkJuJeg (chLdescr)
--+ IUJeg

• s-cg-chunLvpul (chk_descr)
--+ list of (variable permvaLuselitJist)

5.7 literaLclassification

37

literaLclassification .. - (usrlit (functor arglisLclassification) literaLdescr)

• (s-cg-usrliUd literaLclassification)
--+ usrlit

• (s-cg-literaLdescr li teraLclassification)
--+ literaLdescr

• (s-cg-faclist literaLclassification)
--+ (functor arglisLclassification)
remark: fac = functor arglist classification

• (s-cg-functor fac)
--+ functor

• (s-cg-arglisLclassification fac)
-t arglisLclassification

• (code-gen-head perms temps fac arg~eq)
Generates code for the first literal in the clause.

(code-gen-head-arg place temps arg)
Generates code for an argument place in the first literal in the clause.

(code-gen-head-temp place temps arg)
Generates code for an X-variable in the first literal of a clause.

(code-gen-head-perm place temps arg)
Generates code for a Y-variable in the first literal of a clause.

• (code-gen-tail perms temps arity permcnt fac callexeflg deallocflg cnknr
litnr arg~eq)
Generates code for the literals except the first in the clause.

(code-gen-tail-arg place perms temps arg chknr litnr)
Generates code for an argument place in the literals except the first
in the clause.

(code-gen-tail-temp place temps arg)
Generates code for an X-variable in the body literals of a clause.

- (code-gen-tail-perm place perms arg chknr litnr)
Generates code for the literals except the first in the clause.

38 5 THE CODE GENERATOR

5.8 variable_classification, locaLvar _descr

variable_classification
locaL var _descr

(variable locaL vaLdescr)
(occurrence saveness var_class)

• (s-cg-Iocal-var-descr variable_classification)
--t locaL var _descr

• (s-cg-locaL var _occurrence variable_classification)
-t locaL var _occurrence

• (s-cg-locaL var ...save ness variable_classification)
-t locaL var ...saveness

• (s-cg-locaLvar_class variable_classification)
-t locaLvaLclass

5.9 Global variables

• Emulator-related variables

user-variables
Contains the user's variables when a query is issued.

registers
The define-register function adds each register to this list, caus­
ing the debugger to output the variables of this list.

read-mode
This is a global flag in the machine indicating the read/write status,
which is used in the unify instructions.

emu-debug
This flag determines whether the emulator is in a debugging state or
will just run through the code. It can have the following values:

* : interactive the emulator performs single steps

* T the emulator shows all executed instructions without interac­
tion

* nil if no debugging is demanded

• code generator-related variables

lureg
This variable determines which X-registers can be used by the code
generator without any interference with the classifier's allocations.

y-x-usage-list
An assoc-list mapping Y variables to X-registers.

5.10 perm_var .Jist, temp_var .Jist

perm_varJist
temp_varJist
glo baLperm_ var _descr
globaLtemp_ var _descr

(perm {globaLperm_var _descr} *)
(temp {globaUemp_var_descr }*)
(variable perm_descr)
(variable temp_descr)

• (s-cg-perm_var globaLperm_vaLdescr)
---+ variable

• (s-cg-perm_descr globaLperm_var_descr)
---+ perm_descr

• (s-cg-temp_var globaLtemp_vaLdescr)
---+ variable

• (s-cg-temp_descr globaLtemp_vaLdescr)
---+ temp_descr

5.11 perm_deser, temp_deser

perm_descr
temp_descr

(Y-reg-Ilf useJ:tead (lasLchunk lasLchunkliteral))
(X-reg_nr use.1lead use_premise)

• (s-cg-perm_yJlr perm_descr)
---+ Y-reg_nr

• (s-cg-perm_use_head perm_descr)
---+ use.1lead

• (s-cg-permJasUiteral perm_descr)
---+ lasLchunkliteral

• (s-cg-temp-xJlr temp_descr)
---+ X-reg_nr

• (s-cg-temp_use.1lead temp_descr)
---+ useJ:tead

• (s-cg-temp_use_premise temp_descr)
---+ use_premise

5.12 literaLdeser

literaLdescr (arity env -Bize arg-Beq)

• (s-cg-arity literaLdescr)
---+ arity

• (s-cg-env_size literaLdescr)
---+ env -llize

• (s-cg-arg_seq literaLdescr)
---+ arg_seq

39

40 5 THE CODE GENERATOR

5.13 lisp calLtype , lispcalLclassification

lispcalLclassification
lispcalLtype

(lispcalLtype (lisp-builtin arglisLclassification) lispcalLdescr)
cl-func I cl-pred I cl-extra I cl-relf

• (cg-lispcall-p lispcalLclassification)
-t t, if it is an external LISP call, nil otherwise

• (cg-lispcall-fun lispcalLclassification)
-t lisp-function

• (cg-lispcall-args lispcalLclassification)
-t arglisLclassification

5.14 arglisLclassification,
constant_classification

{ term_classification} *

term_classification,

arglist_classification
term_classification constanLclassification I variable_classification

constanLclassification ::=

variable_classification ::=

structure_classification ::=

I structure_classification
constanLname
see 5.8
'(functor arglisLclassification)

I (inst (functor arglisLclassification))

• (cg -inst-p term_classification)
-t t, if argument is an instantiation operator, nil otherwise

• (cg-s-inst-functor term_classification) (already knowing term is inst-op)
-t functor

• (cg -s-inst-funargs term_classification) (already knowing term is inst-op)
-t arglisLclassification

• (arg-var-p term_classification)
-t t, if argument is a variable_classification, nil otherwise

• (arg-nil-p arglisLclassification)
-t t, if argument is an empty list, nil otherwise

• (arg-const-p arglisLclassification)
-t t, if argument is a constant, nil otherwise

5.15 Getting global information on variables

When it is known that a variable with a local description occurs, it is useful to
look up the global information. At this level of processing, it is assumed that
the code generator already has stored the global X- and Y-variable information
in a local variable further referred to as perms and temps.

• (geLperm_descr arg_var perms)
get the global information of the permanent variable arg_var.

5.16 Obtaining the procedure arity 41

• (geLtemp_descr arg_var perms)
get the global information of the temporary variable arg_var.

5.16 Obtaining the procedure arity

When coping with a classified_procedure, the arity is needed. This is coded in
the procedure-Ilame following the proc identifier. However, the arity is coded
in an atom symbol unsuitable for (numeric) processing. It is straightforward to
extract the number via the COMMON LISP symbol processing functions. The
alternative employed here is to use some selectors to get the information from
a 'lower' level.

• (s-cg-arity-of-proc proc)
-T arity of the procedure

5.17 The builtins, is_primitive

• (code-gen-is argl arg2 perms temps chknr litnr vpul putinl)
-t WAM code for an is-primitive.

• (cg-lispcall-p fac) -T t, if fae is a LISP external call.

• (code-gen-cl actual perms temps arity permcnt fac callexeflg deallocflg
cnknr litnr arq...seq)
-T WAM code for a LISP external call.

• (code-gen-refl-xreg perms temps arg chknr litnr)
-t WAM code for a refl-xreg builtin. It is used if a value in Xl must be
unified with a variable.

(code-gen-refl-xreg-perm perms arg chknr litnr)
-t WAM code for a V-variable in a refl-xreg builtin.

(code-gen-refl-xreg-temp temps arg)
-t WAM code for an X-variable in a refl-xreg builtin.

5.18 Y-variable scoreboarding

The idea of V-variable scoreboarding is to safe memory bandwidth by remem­
bering which V-variable was already loaded into an X-register. Every time
a V-variable is 'touched', the corresponding X-register is saved as a pair (Y­
variable X-register) on an assoc-list named y-x-usage-Hst, which is a global
variable meaning that the V-variable can also be found in an X-register.

The following functions are dealing with V-variable scoreboarding:

• (is-y-in-x y-vari y-x-usage-list)
This function associates the V-variable with its X-argument position. If
the V-variable is not in an X-register, the result is nil.

• (add-y-x-list y-vari x-reg y-x-usage-list)
This function adds a (Y-variable X-register) pair to the scoreboard.

42 5 THE CODE GENERATOR

• (d_yreg_assoc yreg y-x-usage-list)
This is used to eliminate a pair specified by its Y-variable.

• (d...xreg_assoc xreg y-x-usage-list)
This is used to eliminate a pair specified by its X-variable.

43

6 The GAMA10

GAMA, the General Abstract Machine Assembler, is a programming envi­
ronment supporting the development and integration of abstract machines. In
[Sin95], it was used to integrate an existing implementation of the WAM (our
development of the NyWAM [Nys], [Hei89)) with the LLAMA [Sin95)).

In the following subsections, the constituents of the GAMA,

• the memory organization,

• hash tables, jump tables, and the module system,

• the definition of assembler instructions, and

• the assembler and loader

are described.

6.1 Memory organization

In the GAMA, only one memory area for all abstract machines exists: the
general purpose memory Memory. This memory is managed via a free list
which contains all areas in Memory which are currently unused. Memory can
be allocated and deallocated with the following functions l1:

• (gmem. alloc n) returns the address of the newly allocated memory area
of size n

• (gmem. dealloc addr n) deallocates the memory area starting at addr
with size n

• (gmem. defractionize) cleans up the free list, i.e. adjacent freed memory
areas are collected (after calls to gmem. dealloc)

Memory cells can be accessed with the following functions:

• (gmem.put addr x) stores x in the cell with address addr

• (gmem.get addr) returns the contents of the cell with address addr

6.2 Hash tables, jump tables, and the module system

In the GAMA, hash tables are simply areas in Memory occupying three memory
cells for each hash table entry. The use of three cells was motivated by the
intended usage of hash tables as jump tables: the first cell contains the key
(the name of a procedure), the second contains an address (the entry point of
the procedure), and the third cell contains further information (concerning the
procedure).

The following functions are defined on hash tables:

IOThis chapter is completely adopted from chapter 7, "Integrating Abstract Machines: The
GAMA" in [SingS].

liThe GAMA is implemented in COMMON LISP; in order to avoid name conflicts, func­
tion names are preceded by a prefix 'mod.' indicating that a function belongs to module mod,
here gmem (we did not use the COMMON LISP package system).

44 6 THEGAMA

• (gmht .make-ht n) returns a new hash table handle with n entries

• (gmht. remove-ht ht) removes the hash table ht

• (gmht .put ht key a b) creates a new entry in ht for key, storing a and
b in it

• (gmht. get ht key) returns the address (in Memory) of a hash table entry
(the first address is returned, i.e. the address of the memory cell containing
the key)

These hash tables are the basis of the GAMA module system: a hash table
can be viewed as a name space containing all addresses and further information
concerning all procedures of a module.

The reason why addresses are stored independently of the other information
is that the hash tables are used as jump tables: a machine instruction like call
does not have the name of a procedure as argument but only the address of
the second memory cell in the corresponding hash table entry, thus avoiding to
look up the address in the hash table at run time.

The following diagram shows how a hash table entry for a procedure f /2 is
used: at the address 1000, a call to f/2 is expressed as call 101 where 101 is
the address of the memory cell in the hash table which contains the entry point
for f/2:

100

101

102

f/2

500

(label

Hash Table:

(end 512) (dynamic t))

Code:

500 Iput_constant true 1

1000 I call 101

Since abstract machines for PROLOG- and LISP-like languages are highly
dynamic in that they allow procedures to change even at run time, procedures
are not jumped at directly but via jump tables. This has the effect that, if a
procedure is changed (recompiled), none of the procedures calling this procedure
have to be changed.

6.3 Defining assembler instructions 45

6.3 Defining assembler instructions

In the GAMA, new assembler instructions for an arbitrary abstract machine
are defined with definstr. definstr expects a COMMON LISP argument
list, a type specification for these arguments 12 , and the COMMON LISP code
defining the instruction.

The following example shows the definition of the GWAM instruction
put_constant:

(definstr put_constant (C Ai) (CONST NAT) :standard
(gwam.put_constant

(set-argument-reg Ai (constant C»»

gwam. puLconstant is the name of the COMMON LISP function corre­
sponding to the puLconstant instruction. The keyword : standard declares
puLconstant to be a simple instruction. The next example shows a non­
standard instruction for which more than one COMMON LISP definition is
needed:

(definstr call (proc k) (LABEL NAT)
:static (gwam.call/st

(set-reg CP (reg P))
(set-reg CUTP (reg B))
(if (ref-Iessp (reg B) (reg E))
(set-reg A (ref-plus (reg E) (offset Y) k)))

(set-reg P proc))
:dynamic (gwam.call/dy

(set-reg CP (reg P))
(set-reg CUTP (reg B))
(if (ref-Ie ssp (reg B) (reg E»
(set-reg A (ref-plus (reg E) (offset Y) k»)

(set-reg P (gmem.get proc))))

All instructions expecting a label can be used in two different ways: statically
and dynamically. In the dynamic version, the address corresponding to the label
is an entry in a jump table: an additional gmem. get is needed to dereference
it. The static version does not use a jump table entry but directly uses the real
address: dereferencing is not needed. It is used for procedures which will not
be changed (like those in the pre I ude).

6.4 The assembler and loader

In the GAMA, assembler and loader are interleaved: in contrast to most as­
semblers for native machines which first produce a relocatable object file which

12The available types are: NAT for natural numbers, CONST for constants, FUNCTOR for WAM
functor specifications of the form (name arity) , FUNCTION for COMMON LISP functions (e.g.
used for builtins), LABEL for labels, VARIABLE for global variables, HASHTABLE for hash tables
(used in the WAM switch instructions), and X for arbitrary arguments. Additional types can
be defined with gasm. deftype .

46 6 THEGAMA

is linked together with other object files by a linker and then loaded into memory
for execution, the G AMA assembler and loader directly transform assembler
code into executable machine code in memory.

In addition to the instructions defined via definstr, the GAMA assembler
handles the following pseudo instructions:

• . proc marks the beginning of a procedure; it is mainly used to restrict
the scope of local labels thus allowing different procedures to use the same
local labels

• . end marks the end of a procedure; in addition to restricting the scope of
local labels together with. proc, it adds the end address of a procedure
to the information in the corresponding hash table entry (third cell) in
order to allow the procedure to be removed from memory

• . dynamic declares the following global labels (the entry points for proce­
dures) to be dynamic (see section 6.3)

• . static declares the following global labels to be static

• any symbol is taken as a global label

• any number or string is taken as a local label

• (.module mod) declares all following global labels to be in module mod;
if this module does not yet exist, it is created

• (. import-from mod labell ... labeln) imports Labell ... labeln from
module mod (qualified import)

• (. import-module mod) imports all labels from module mod (unqualified
import)

The following example shows the usage of some of these pseudo instructions
and how the assembler and loader transform assembler code into executable
machine code in memory.

Example:

The assembler and machine code (with the corresponding hash table
entry) for the function

fac(O)
fac(N)

& 1.
>(N,O) & *(N,fac(1-(N»)).

is as follows:

Assembler code
.module user
.proc
. dynamic
fac/1

set_indexJlumber 1
swi tch_on_term

Ilabel8965" 2 2
2 "label8963"

switch_on_constant 1
«0 "label8963")) 2

"label8963"
try 1 1
trust 2 1
1
get_constant 0 1
put_constant 1 1
proceed
2

allocate 1
get_y_variable 1 1
put_constant 0 2
cl-pred > 2
puLy _value 1 1
cl-func 1- 1
call fac/1 1
getJ_variable 2 1
put_y 3alue 1 1
deallocate
cl-func * 2
proceed
.end

7 The GWAM

Hash table entry and machine code
Hash Table (for module user):

21534: facl1
21535: 263881
21536: (label

(destroyable t)
(end 263900)
(source ...)
(dynamic t))

Code:
263881:
263882:

set_indexJlumber 1
swi tch_on_term

263883 263889 263889
263889 263884

263883: switch_on_constant 1
«0 263884)) 263889

263884:
263885:

263886:
263887:
263888:

263889:
263890:
263891:
263892:
263893:
263894:
263895:
263896:
263897:
263898:
263899:
263900:

try 263886 1
trust 263889 1

get_constant 0 1
put_constant 1 1
proceed

allocate 1
get_y3ariable 1
put_constant 0 2
cl-pred > 2
puLY3alue 1 1
cl-func 1- 1
call 21535 1
getJ_variable 2
puLy_value 1 1
deallocate
cl-func * 2
proceed

1

1

47

The GWAM is derived from a LISP-based emulator that was originally ob­
tained from Sven-Olof Nystr0m [Nys], Uppsala University; it was modified to
work within our relational-functional compilation approach RFM. This LISP­
based implementation has been complemented by two WAM emulators in C:
Klaus Elsbernd's rudimentary C emulator [Els90] has now been replaced by
Markus Perling's complete first-order emulator. Leaving the layered compiler

48 7 THEGWAM

system in LISP (for flexibility and short turnaround times), but having the em­
ulator in C, seems to be a good combination under UNIX. Thus the GWAM
is an ideal prototype implementation choice.

7.1 Terminology

'Global Stack' and 'heap' as well as 'local stack', 'stack' and 'runtime stack' are
synonyms, an environment and a choice point are portions of the local stack, the
push-down list (PDL) is astack used temporarily by the unification procedure,
but it is not needed within the GWAM, since this is done recursively in LISP.
In most publications the A-registers are assumed to be the same as the X­
registers and for those authors assuming disjoint A and X sets of registers the
A-regs can be mapped to a single X-register set. Therefore argument registers
will be referred herein as X-registers.

7.2 The data structures

The WAM model assumes a tagged memory model. This means that memory
locations are 'typed', i.e. that it is possible to tell which datatype is in the
memory location. Since registers have neither tags nor addresses, with these it
is only possible to handle references (or at most constants) but it is impossible
to represent free variables, structures or lists directly. The tagged memory is
handled by the following tags:

Tag Value
empty undefined

ref a memory address
struct a memory address

list a memory address
const constant symbol
fun a list (function-name arity)
trail a list of references to bound variables

The memory layout is shown in table 1. At the top are the low addresses,
increasing downwards.

7.2.1 The local stack

The local stack contains environment and choicepoint frames. An environment
must be created in a clause (using the allocate instruction) as soon as local
variables become necessary.

A choice point is needed if there is more than one clause in a procedure. If a
recent goal failed, the next clause must be explored with all argument registers
appropriately (re-)set and the variables bound later than the invocation of the
current clause restored to an unbound state.

7.3 The registers

heap (address 0)
. ..

heap (address n)
heap (address n+m)

. . .

.. .
maximum heap address

local stack
.. .

environment and
choicepoint frames

.. .
local stack

.. .

. . .

f- start-of-heap

f- HB
f-H

f- start-of-stack-1
f- start-of-stack

f-A

f- memory-size

Table 1: The memory layout of the local and global stacks

previous environment pointer (CE) f- new E
previous continuation pointer (CP)

cut pointer (CUTP)
Y-variablel

.. .
Y-variablen

f- new A

Table 2: The memory layout of an environment

7.2.2 The heap

49

The heap holds compound terms. These compound terms may be lists or struc­
tures. The H-register points to the top of the heap, whereas the register HB is
the (redundant) heap backtrack register used for speeding up references to the
old heap pointer.

7.2.3 The trail

Contrary to other implementations the trail is realized as a LISP list . This
is possible since no random access may happen on that structure. Either a
reference is pushed on the trail (When a binding occurs) or the information is
popped sequentially (when backtracking to a certain point occurs) .

7.3 The registers

A register defined by define-register can be set using (set-reg register
value) and referenced using (reg register). Currently, there are 1000 x-

50

X-registerl
...

X-registern

previous environment pointer (BCE)
previous continuation pointer (BCP)

previous choice point (B I)
next clause pointer (BP)

trail pointer (TRI)
heap pointer (HI) f- new B

f- new A

7 THEGWAM

Table 3: The memory layout of a choicepoint (backtrack point)

Register Description points to Definition
P program counter program code define-register

CP continuation pointer program code define-register
E last environment local stack define-register
B last choicepoint local stack define-register
A top of stack local stack define-register

TR trail list define-register
H top of heap heap define-register

HB heap backtrack point heap define-register
S structure pointer heap define-register

IX index register define-register
CUTP cut pointer local stack define-register

X · , registers heap, stack array

Table 4: The registers of the GWAM

registers defined in the array.

7.4 The instructions

The instructions are written in a LISP-like manner. The indexes of X and Y
variables start with the index 1. Structures are coded by a list (fun ari ty) .
The list structures are coded as nestings of the structure (ens car cdr) on the
classified clauses representation level. The code generator takes care of these
structures, generating the more optimal list instructions.

7.4.1 PUT-instructions

• (puLy_variable Y from X to)

• (put_Jcvariable Xfrom X to)

• (puLy 3alue Y from X to)

• (put_Jcvalue Xfrom X to)

7.4 The instructions 51

• (puLunsafe_value Y from X to)

• (puLconstant C X to)

• (puLnil X to)

• (put..structure F X to)

• (putJist X to)

7.4.2 GET-instructions

• (get ... Jcvariable Xn Ai)

• (geLy_variable Yn Ai)

• (get-x_value Xn Ai)

• (geLy_value Yn Ai)

• (geLnil Xi)

• (geLconstant C Xi)

• (get..structure F Xi)

• (getJist Xi)

7 .4.3 UNIFY-instructions

• (unify -x_variable Xi)

• (unify_y_variable Yi)

• (unify_void n)

• (unify-x-yalue Xi)

• (unify_y_value Yi)

• (unify-x...locaLvalue Xi)

• (unify_y...locaLvalue Yd

• (unifynil)

• (unify _constant C)

7.4.4 Indexing instructions

• (switch_on_term Lconst Lstruct Llist Lnil Lvar)

• (switch_on_constant Len Table Default)

• (switch_on..structure Len Table Default)

• (seLindex....number No)

52 7 THEGWAM

7.4.5 Procedural instructions

• (try L n)

• (retry L n)

• (trust L n)

• (try _me_else L n)

• (retry --Ille_else L n)

• (trust-me_elseJ'ail n)

• (allocate n)

• (deallocate)

• (proceed)

• (execute proc/n)

• (call proc/n envsize)

7.4.6 Special instructions

• (has-succeeded)

• (has-failed)

7.4.7 Special builtins - cuts and metacall

• (save_cut-pointer)
This instruction must be generated if there is a cut occurring in the clause
except in the first chunk. This implies that there is more than one chunk
and an environment must be existent.

• (first-cut)
This instruction is used when the cut is in the first chunk and the first
chunk is no pseudochunk. It contains a call to another procedure and
thus is not the only subgoal in the clause.

• (lonely_cut)
This instruction stands for a clause with a cut at the end of the first and
only chunk. (So a call to another procedure is not present.)

• (last-cut)
last-cut is to be used in a clause, which has a chunk (and hence a call to
a procedure) and a cut at the very end of the last {pseudo)-chunk.

• (cut n)
This instruction represents a cut occurring in a chunk except the first and
the last chunk. The parameter n indicates the size of the environment used
(for trimming).

7.5 User interfa.ce of the GWAM 53

7.4.8 LISP interface

Only ground arguments (not variables) can be converted to LISP. The LISP
functions are not allowed to return structures (nor variables). All GAMA-LISP
interface instructions convert arity argument registers into a LISP list and apply
the function fun to this list. Only RELFUN tups - but not structures - can
be converted.

• (cl-func fun arity)
This function returns the value obtained from LISP to the argument reg­
ister Xl.

• (cl-pred fun arity)
This instruction generates a failure if the returned value is nil.13

• (cl-extra fun arity)
This instruction is used for side-effect LISP calls .14

7.5 User interface of the GWAM

The user may define a procedure using the definstr macro. Queries are dynam­
ically compiled by flattening, classifying and generating code for a procedure
named 'main/arity'. The arity of this procedure is determined by the number
of variables originally found in the user query.

7.5.1 The debugger control commands

The debugging behavior of the GWAM can be controlled by the variable
emu-debug, which is normally set to nil to just run through the WAM code.
If the user wishes to have WAM debugging information, this global variable
may be set to t or : interactive by the RFE-command spy.

If *emu-debug* is set to : interactive, the following interactions com­
mands may be used:

All control commands consist of one character.

E,e
F,f

?

X,x
S,s,newline
V,v

Terminate and go to LISP.
Generate a fail. (Sometimes this command may
cause trouble.)
Output this Help-Menu.
Execute until program succeeds.
Single step execution.
Output values before single step.

13In the interpreter a false is produced, which generates a failure if used as a body premise.
14Xl will not be changed.

54 7 THE GWAM

7.5.2 The debugger display commands

This mode will be enabled by typing v in the control mode.

All display commands consist of one character.

? Output this Help-Menu.
X,x Output n (to be read) argumentregisters X(1) .. X(n) .
H,h Output Heap .
R,r Output all registers except argument registers.
S,s Output stack.

55

8 A sample session

We consult and compile the well-known naive reverse benchmark, run an nrev­
query and then demonstrate the usage of the debugger using a simple append­
query. Except from the explicit true values for successful queries, this does
not differ from PROLOG's semantics permitting an easy comparison. Once the
debugging principles are thus understood, the reader can also debug functional
programs.

rfi-p> emul
Collecting modules for the emulator:
sortbase workspace
rfe-p> consult "exa/bench"
Reading file "/home/perling/RELFUN/RFM/demo/exa/bench.rfp"

rfe-p> listing
app([] ,L,L).
app([HIL1] ,L2,[HIL3]) :- app(L1,L2,L3).
nrev ([] , []) .
nrev([HIL1],L3) :- nrev(L1,L2), app(L2,[H] ,L3).

rfe-p> style lisp
rfe-l> listing
(hn (app (tup) _1 _1»
(hn (app (tup _h I _11) 12 (tup h I _13»

(app _11 _12 _13))
(hn (nrev (tup) (tup»)
(hn (nrev (tup _h I _11) _13)

(nrev _11 _12)
(app _12 letup _h) _13))

The database has been consulted and listed. In the following we do some
horizontal transformations and list the result.

rfe-l> style prolog
rfe-p> horizon
rfe-p> listing
app(nil,L,L).
app(_l,L2,_2) :- 2 is cns[H,L3], 1 is cns[H,L1], app(L1,L2,L3) & true.
nrev(nil,nil).
nrevCl, L3) :-

1 is ens [H,L1] ,
nrev(Ll,L2),
_2 is cns[H,nil],
app(L2,_2,L3) &
true.

rfe-p> style lisp

56

rfe-l> listing
(hn (app nil 1 _1))
(ft (app _1 _12 _2)

(is _2 '(ens _h _13))
(is _1 '(ens _h _11))
(app _11 _12 _13)
true)

(hn Cnrev nil nil))
(ft (nrev _1 _13)

(is _1 '(ens _h _11))
(nrev _11 _12)
(is _2 '(ens _h nil))
(app 12 2 _13)
true)

8 A SAMPLE SESSION

The horizontal transformations are followed by the vertical transformations
into WAM code. The resulting code is shown by the listcode command. If
you want to see the classified clauses, type listclass.

rfe-l> style prolog
rfe-p> verti
rfe-p> listcode app/3
«set_index_number 1)
(switch_on_term nil nil 2 1 "labe138")
"labe138"
(set_index_number 3)
(switch_on_term 1 1 "labe139" 1 "1abe139")
"labe139"
(try 1 3)
(trust 2 3)
1

(get_nil 1)
(get_x_value 2 3)
(put_constant true 1)
(proceed)
2

(allocate 0)
(get_list 3)
(unify_x_variable 4)
(unify_x_variable 5)
(get_list 1)

(unify_x_value 4)
(unify_x_variable 6)
(put_x_value 6 1)
(put_x_value 5 3)
(call app/3 0)
(put_constant true 1)

(deallocate)
(proceed))

rfe-p> listcode nrev/2
«set_index_number 1)
(switch_on_term nil nil 2 1 "label28")
"label28"
(set_index_number 2)
(switch_on_term 2 2 2 "labe129" "label29")
"label29"
(try 1 2)
(trust 2 2)
1
(get_nil 1)
(get_nil 2)
(put_constant true 1)
(proceed)
2

(allocate 3)
(get_y_variable 3 2)

(get_list 1)
(unify_y_variable 2)
(unify_x_variable 3)
(put_y_variable 1 2)
(put_x_value 3 1)
(call nrev/2 3)
(put_list 2)
(unify_y_value 2)
(unify_nil)
(put_unsafe_value 1 1)
(put_y_value 3 3)
(call app/3 0)

(put_constant true 1)
(deallocate)
(proceed))

57

We are now finished compiling the database. Next we perform an nrev­
query.

rfe-p> nrev([1,2,3],X)
true
X= [3,2,1.]
rfe-p> more
unknown

Now we are interested in obtaining a trace of a simple query, displaying the
internal structures when something interesting happens . The query is compiled
and then the debugger is invoked.

58 8 A SAMPLE SESSION

rfe-p> spy
rfe-p> app([l] ,[2] ,X)

«MAIN (VARI X» (IS (VARI 1) (INST (CNS 1 NIL»)
(IS (VARI 2) (INST (CNS 2 NIL») (APP (VARI 1) (VARI 2) (VARI X»)

«PROC MAIN/1 1 (INDEXING)
(FUN1EVA (CUT-INFO NIL) (PERM)

(TEMP «VARI X) (3 (1) (3») «VARI 1) (4 NIL (1») «VARI 2) (2 NIL (2»»
(CHUNK

«USRLIT (MAIN «VARI X) (FIRST SAFE TEMP») (1 0 (1»)
(IS «VARI 1) (FIRST UNSAFE TEMP» (INST (CNS 1 NIL»)
(IS «VARI 2) (FIRST UNSAFE TEMP» (INST (CNS 2 NIL»)
(USRLIT

(APP «VARI 1) (NONFIRST UNSAFE TEMP» «VARI 2) (NONFIRST UNSAFE TEMP»
«VARI X) (NONFIRST SAFE TEMP»)

(3 0 (1 3»»
(4 NIL»»)

«GET_X_VARIABLE 3 1) (PUT_LIST 4) (UNIFY_CONSTANT 1) (UNIFY_NIL) (PUT_LIST 2)
(UNIFY_CONSTANT 2) (UNIFY_NIL) (PUT_X_VALUE 4 1) (EXECUTE APP/3»

The following is a debugger trace.

[260932] = (GWAM.TRY 260934 0) v

Value of? s

[160930] = unused-stack-cell <== E <== B

Initially there is not much on the stack. Registers E and B point to the
beginning of the stack. The next instruction creates a choicepoint and the
registers are set appropriately. This is the standard choicepoint which is re­
sponsible for the output of unknown/success messages, having the next clause
entry pointing to code causing the output of the user's variables.

[260932] (GWAM.TRY 260934 0) : s

[260934] = (GWAM.CALL/DY QUERY@[30514] 0) v

Value of? s

[160930]
[160931]
[160932]
[160933]

= unused-stack-cell <== E
(ref 160930)
260935
(ref 160930)

[160934J
[160935J
[160936] =
[260934]
[264018]
[264019]
[264020]
[264021] =

[264022]
[264023]
[264024]
[264025]
[264026] =

Value of? a

260933
(trail nil)
(ref 60931) <== B
(GWAM.CALL/DY QUERY@[30514] 0)
(GWAM.GET_X_VARIABLE 3 1) s
(GWAM.PUT_LIST 4) : s
(GWAM.UNIFY_CONSTANT 1) s
(GWAM.UNIFY_NIL) : s
(GWAM.PUT_LIST 2) : s
(GWAM.UNIFY_CONSTANT 2) : s
(GWAM.UNIFY_NIL) : s
(GWAM.PUT_X_VALUE 4 1) : s
(GWAM.EXECUTE/DY APP/3@[23842])

Number of argument registers: 3

A(l) (LIST 60932)
A(2) (LIST 60934)
A(3) (REF 60931)

s

v

[264026] = (GWAM.EXECUTE/DY APP/3@[23842]) v

Value of? h

[60930J = unused-heap-cell <== S
[60931J (ref 60931) <== HB
[60932] (const 1)
[60933] (const nil)
[60934] (const 2)
[60935] (const nil) <== H
[264026] = (GWAM.EXECUTE/DY APP/3@[23842]) s

59

The code above allocates the structures for the query in the data space and
sets the argument registers accordingly. Register Xl points to a list at memory
locations 2 and 3, representing the list (1. nil), and register X2 points to
the list at memory locations 4 and 5. The third argument (X3) is a reference
to memory location I, whose contents points to the same location. This is the
representation of a free variable.

[263895]
[263896] =

[263905]
[263906]

(GWAM . SET_INDEX_NUMBER 1) s
(GWAM.SWITCH_ON_TERM 260931 260931 263905 263901 263897)
(GWAM.ALLOCATE 0) s
(GWAM.GET_LIST 3) : s

Note that indexing leads the program flow immediately to the second clause
of append/3 .

s

60

[263907] = (GWAM.UNIFY_X_VARIABLE 4) v

Value of? s

[160930] = unused-stack-cell
[160931] = (ref 160930)
[160932] = 260935
[160933] (ref 160930)
[160934] 260933
[160935] = (trail nil)
[160936] (ref 60931) <== E <== B
[160937] (ref 160930)
[160938] 260935
[160939] = unused-stack-cell
[263908] = (GWAM.UNIFY_X_VARIABLE 5) s
[263909] (GWAM.GET_LIST 1) : s
[263910] (GWAM.UNIFY_X_VALUE 4) : s
[263911] (GWAM.UNIFY_X_VARIABLE 6) : s
[263912] (GWAM.PUT_X_VALUE 6 1) : s
[263913] (GWAM.PUT_X_VALUE 5 3) : s
[263914J (GWAM.CALL/DY APP/3@[23842] 0)

Value of? a

Number of argument registers: 3

A (1) (CONST NIL)
A(2) (LIST 60934)
A(3) = (REF 60937)

8 A SAMPLE SESSION

v

[263914] = (GWAM.CALL/DY APP/3@[23842] 0) v

[60930] = unused-heap-cell
[60931] (list 60936) <== HB
[60932] (const 1)

[60933] (const nil) <== S
[60934] (const 2)
[60935] (const nil)
[60936] = (const 1)
[60937] (ref 60937) <== H
[263914] = (GWAM.CALL/DY APP/3@[23842J 0) : s

Now app/3 is called with the following arguments: Xl is nil, X2 is (2.nil)
and X3 is a free variable. Clearly, the first clause of app/3 must be applied.

[263895] =
[263896J
[263901]

(GWAM.SET_INDEX_NUMBER 1) : s
(GWAM.SWITCH_ON_TERM 260931 260931 263905 263901 263897)
(GWAM.GET_NIL 1) : s

s

[263902]
[263903]
[263904]
[263915]
[263916]
[263917] =

[260935]

Value of? s

(GWAM.GET_X_VALUE 2 3) : s
(GWAM.PUT_CONSTANT TRUE 1)
(GWAM.PROCEED) : s
(GWAM.PUT_CONSTANT TRUE 1)
(GWAM.DEALLOCATE) : s
(GWAM.PROCEED) : s
(GWAM.HAS-SUCCEEDED) v

[160930] = unused-stack-cell <== E
[160931] (ref 160930)
[160932]
[160933]
[160934]
[160935] =

[160936]
[260935]

true
X=[1,2]
rfe-p> more

263915
(ref 160930)
260933
(trail nil)
(ref 60931) <== B
(GWAM.HAS-SUCCEEDED) s

61

s

s

Indexing has pruned the search space for backtracking so that after the user's
more request no other possibilities need be tested and the unknown message is
generated.

[260933]
[260930]

unknown
rfe-p>

(GWAM.TRUST 260930 0) s
(GWAM.HAS-FAILED) : s

62 REFERENCES

References

[AK91] Hassan Ait-Kaci. Warren's Abstract Machine: A Tutorial Recon­
struction. The MIT Press, Cambridge, Massachusetts, 1991.

[BAE+96] Harold Boley, Simone Andel, Klaus Eisbernd, Michael Herfert,
Michael Sintek, and Werner Stein. RELFUN Guide: Programming
with Relations and Functions Made Easy. Document 0-93-12, DFKI
GmbH, July 1996. Second, Revised Edition.

[Bo190] Harold Boley. A relational/functional Language and its Compilation
into the WAM. SEKI Report SR-90-05, UniversiUit Kaiserslautern,
1990.

[Bo192] Harold Boley. Extended Logic-plus-Functional Programming. In
Lars-Henrik Eriksson, Lars Hallnas, and Peter Schroeder-Heister,
editors, Proceedings of the 2nd International Workshop on Exten­
sions of Logic Programming, ELF '91, Stockholm 1991, volume 596
of LNAI. Springer, 1992.

[EIs90] Klaus Eisbernd. EfIizienzvergleiche zwischen einer LISP- und C­
codierten WAM. SEKI Working Paper SWP-90-03, Universitat
Kaiserslautern, Fachbereich Informatik, June 1990.

[Hei89] Hans-Gunther Hein. Adding WAM-Instructions to Support Valued
Clauses for the Relational/Functional Language RELFUN. SEKI
Working Paper SWP-90-02, Universitat Kaiserslautern, Fachbereich
Informatik, December 1989.

[Hei91] Hans-Gunther Hein. WAM indexing and footening techniques for
RELFUN - a case study on the DNF benchmark. ARC-TEC Dis­
cussion Paper 91-11, DFKI Kaiserslautern, August 1991.

[Her92] Michael Herfert. Parsen und Generieren der PROLOG-artigen Syn­
tax von RELFUN. Technical Report D-92-23, DFKI GmbH, October
1992.

[Kra90] Thomas Krause. Klassifizierte relational/funktionale Klauseln:
Eine deklarative Zwischensprache zur Generierung von Register­
optimierten WAM-Instruktionen. SEKI Working Paper SWP-90-04,
Universitat Kaiserslautern, Fachbereich Informatik, May 1990.

[Kra91] Thomas Krause. Globale Datenfluf3analyse und horizontale Compi­
lation der relational-funktionalen Sprache RELFUN. Diplomarbeit,
DFKI D-91-08, Universitat Kaiserslautern, FB Informatik, Postfach
3049, 0-6750 Kaiserslautern, March 1991.

[Nys] Sven Olof Nystn;jm. Nywam - a WAM emulator written in LISP.

[Per96] Markus Perling. RAWAM - a Relfun Adapted WAM, 1996.

REFERENCES 63

[Sin93] Michael Sintek. Indexing PROLOG procedures into DAGs by heuris­
tic classification. DFKI Technical Memo TM-93-05, DFKI GmbH,
1993.

[Sin95] Michael Sintek. FLIP: Functional-plus-logic programming on an in­
tegrated platform. Technical Memo TM-95-02, DFKI GmbH, May
1995.

[SS92] Werner Stein and Michael Sintek. A generalized intelligent indexing
method. In Workshop "Sprachen JUr KI-Anwendungen, Konzepte
- Methoden - Implementierungen" in Bad HonneJ, 12/92-1. Insti­
tute of Applied Mathematics and Computer Science, University of
Munster, May 1992.

[Ste93] Werner Stein. Indexing Principles for Relational Languages Applied
to PROLOG Code Generation. Technical Report Document D-92-
22, DFKI GmbH, February 1993.

[VR94] Peter Van Roy. 1983-1993: The wonder years of sequential Prolog
implementation. The Journal oj Logic Programming, 19,20:385- 441,
1994.

[War83] David. H. D. Warren. An Abstract Prolog Instruction Set. Technical
Note 309, SRI International, Menlo Park, CA, October 1983.

Deutsches
Forschungszentrum
fUr Kunstliche
Intelligenz GmbH

Veroffentlichungen des DFKI

-Bibliothek, Information

und Dokumentation (BID)-

PP 2080

67608 Kaiserslautern

FRG

Telefon (0631) 205-3506

Telefa.x (0631) 205-3210

e-mail
dfkibib@dfki.uni-kl.de

WWW
http://www.dfki.uni ­

sb.de/dfkibib

Die folgenden DFKI Veroffentlichungen sowie die aktuelle Liste von allen bisher erschienenen Publikatio­
nen k6nnen von der oben angegebenen Adresse oder (so sie als per ftp erhaeltlich angemerkt sind) per
anonymous ftp von ftp .dfki.uni-kl.de (131.246.241.100) im Verzeichnis pub/Publications bezogen werden.
Die Berichte werden , wenn nicht anders gekennzeichnet , kostenlos abgegeben.

DFKI Publications

The following DFKI publications or the list of all published papers so far are obtainable from the above ad­
dress or {if they are marked as obtainable by ftp} by anonymous ftp from ftp ·dfki .uni-kl.de {131.246.241 .100}
in the directory pub/Publications.
The reports are distributed free of charge except where otherwise noted.

DFKI Research Reports

1996
RR-96-0S
Stepban Busemann
Best-First Surface Realization
11 pages

RR-96-03
Gunter Neumann
Interleaving
Natural Language Parsing and Generation
Through Uniform Processing
51 pages

RR-96-02
E.Andre, J. Muller, T .Rist:
PPP-Persona: E in objektorientierter Multimedia-Pdi­
sentationsagent
14 Seiten

1995
RR-9S-20
Hans-Ulrich Krieger
Typed Feature Structures, Definite Equivalences,
Greatest Model Sem antics , and Nonmonotonicity
27 pages

RR-9S-19
Abdel Kader Diagne, Walt er Kasper, Hans-Ulrich Krie­
ger
Distributed Parsing With HPSG Grammar
20 pages

RR-9S-1B
Hans- Ulrich Krieger, Ulrich Schafer
Efficient Parameterizable Type Expansion for Typed
Feature Formalisms
19 pages

RR-9S-17
Hans- Ulrich Krieger
Classification and Representation of Types in TDL
17 pages

RR-9S-16
Martin Muller, Tobias Van Roy
Title not set
a pages

Note: The author(s) were unable to deliver this docu­
ment for printing before the end of the year . It
will be printed next year .

RR-95-1S
Joachim Niehren, Tobias Van Roy
Title not set
a pages

Note: The author(s) were unable to deliver this docu­
ment for printing before the end of the year. It
will be printed next year.

RR-9S-14
Joachim Niehren
Functional Computation as Concurrent Computation
50 pages

RR-95-13
Werner Stephan, Susanne Biundo
Deduction-based Refinement Planning
14 pages

RR-95-12
Walter Hower, Winfried H. Graf
Research in Constraint-Based Layout, Visualization,
CAD, and Related Topics: A Bibliographical Survey
33 pages

RR-95-11
Anne Kilger, Wolgang Finkler
Incremental Generation for Real-Time Applications
47 pages

RR-95-10
Gert Smolka
The Oz Programming Model
23 pages

RR-95-09
M. Buchheit, F. M. Donini, W. Nutt, A . Schaerf
A Refined Architecture for Terminological Systems:
Terminology = Schema + Views
71 pages

RR-95-08
Michael Mehl, Ralf Scheidhauer, Christian Schulte
An Abstract Machine for Oz
23 pages

RR-95-07
Francesco M. Donini, Maurizio Lenzerini, Daniele Nar­
di, Werner Nutt
The Complexity of Concept Languages
57 pages

RR-95-06
Bernd Kiefer, Thomas Fettig
FEGRAMED
An interactive Graphics Editor for Feature Structures
37 pages

RR-95-05
Rolf Backofen, James Rogers, K. Vijay-Shanker
A First-Order Axiomatization of the Theory of Finite
Trees
35 pages

RR-95-04
M. Buchheit, H.-J. Burckert, B. Hollunder, A. Laux, W .
Nutt,
M . W6jcik
Task Acquisition with a Description Logic Reasoner
17 pages

RR-95-03

RR-95-02
Majdi Ben Hadj Ali, Frank Fein, Frank Hoenes, Thor­
sten Jaeger,
Achim Weigel
Document Analysis at DFKI
Part 1: Image Analysis and Text Recognition
69 pages

RR-95-01
Klaus Fischer, Jorg P. Muller, Markus Pischel
Cooperative Transportation Scheduling
an application Domain for DAI
31 pages

1994

RR-94-39
Hans-Ulrich Krieger
Typed Feature Formalisms as a Common Basis for Lin­
guistic Specification.
21 pages

RR-94-38
Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Ab­
del Kader Diagne,
Elizabeth A. Hinkelman, Walter Kasper, Bernd Kiefer,
Hans- Ulric11 Krieger,
Klaus Netter, Gunter Neumann, Stephan Oepen, Ste­
phen P. Spackman.
DISCO-An HPSG-based NLP System and its Applica­
tion for Appointment Scheduling.
13 pages

RR-94-37
Hans- Ulrich Krieger, Ulrich Schafer
TDL - A Type Description Language for HPSG, Part
1: Overview.
54 pages

RR-94-36
Manfred Meyer
Issues in Concurrent Knowledge Engineering. Knowl­
edge Base and Knowledge Share Evolution.
17 pages

RR-94-35
Rolf Backofen
A Complete Axiomatization of a Theory with Feature
and Arity Constraints
49 pages

RR-94-34
Stephan Baumann, Michael Malburg, Hans-Guenther Stephan Busemann, Stephan Oepen, Elizabeth A. Hin­
Hein, Rainer Hoch ,
Thomas Kieninger, Norbert Kuhn
Document Analysis at DFKI
Part 2: Information Extraction
40 pages

kelman,
Gunter Neumann, Hans Uszkoreit
COSMA - Multi-Participant NL
pointment Scheduling
80 pages

Interaction for Ap-

RR-94-33
Franz Baader, Armin Laux
Terminological Logics with Modal Operators
29 pages

RR-94-31
Otto Kiihn, Volker Becker, Georg Lohse, Philipp Neu­
mann
Integrated Knowledge Utilization and Evolution for the
Conservation of Corporate Know-How
17 pages

RR-94-23
Gert Smolka
The Definition of Kernel Oz
53 pages

RR-94-20
Christian Schulte, Gert Smolka, Jorg Wiirtz
Encapsulated Search and Constraint Programming in
Oz
21 pages

RR-94-19
Rainer Hoch
Using IR Techniques for Text Classification In Docu­
ment Analysis
16 pages

RR-94-18
Rolf Backofen, Ralf TI-einen
How to Win a Game with Features
18 pages

RR-94-17
Georg Struth
Philosophical Logics-A Survey and a Bibliography
58 pages

RR-94-16
Cert Smolka
A Foundation for Higher-order Concurrent Constraint
Programming
26 pages

RR-94-15
Winfried H. Graf, Stefan Neurohr
Using Graphical Style and Visibility Constraints for a
Meaningful Layout in Visual Programming Interfaces
20 pages

RR-94-14
Harold Boley, Ulrich Buhrmann, Christof Kremer
Towards a Sharable Knowledge Base on Recyclable
Plastics
14 pages

RR-94-13
Jana Koehler
Planning from Second Principles-A Logic-based Ap­
proach
49 pages

RR-94-12
Hubert Comon, Ral! Treinen
Ordering Constraints on Trees
34 pages

RR-94-11
Knut Hinkelmann
A Consequence Finding Approach for Feature Recogni­
tion in CAPP
18 pages

RR-94-10
Knut Hinkelmann, Helge Hintze
Computing Cost Estimates for Proof Strategies
22 pages

RR-94-08
Otto Kiihn, Bjorn HoBing
Conserving Corporate Knowledge for Crankshaft De­
sign
17 pages

RR-94-07
Harold Boley
Finite Domains and Exclusions as First-Class Citizens
25 pages

RR-94-06
Dietmar Dengler
An Adaptive Deductive Planning System
17 pages

RR-94-05
Franz Schmalhofer, J. Stuart Aitken, Lyle E. Bourne jr.
Beyond the Knowledge Level: Descriptions of Rational
Behavior for Sharing and Reuse
81 pages

RR-94-03
Gert Smolka
A Calculus for Higher-Order Concurrent Constraint
Programming with Deep Guards
34 pages

RR-94-02
Elisabeth Andre, Thomas Rist
Von Textgeneratoren zu Intellimedia-Prasentationssy­
stemen
22 Seiten

RR-94-01
Elisabeth Andre, Thomas Rist
Multimedia Presentations: The Support of Passive and
Active Viewing
15 pages

DFKI Technical Memos

1996
TM-96-01
Gerd Kamp, Holger Wacbe
CTL - a description Logic with expressive concrete do­
mains
19 pages

1995
TM-95-04
Klaus Schmid
Creative Problem Solving
and
Automated Discovery
- An Analysis of Psychological and AI Research -
152 pages

TM-95-03
Andreas A becker, Harold Boley, Knut Hinkelmann, Hol­
ger Wacbe,
Franz ScbmaIbofer
An Environment for Exploring and Validating Declara­
tive Knowledge
11 pages

TM-95-02
Micbael Sintek
FLIP: Functional-plus-Logic Programming
on an Integrated Platform
106 pages

DFKI Documents

1996

D-96-05
Martin Scbaaf
Ein Framework zur Erstellung verteilter Anwendungen
94 pages

D-96-03
Winfried Tautges
Der DESIGN-ANALYZER - Decision Support im Desi­
gnprozess
75 Seiten

1995

D-95-12
F. Baader, M. Bucbbeit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI '95 Workshop:
KRDB-95 - Reasoning about Structured Objects:
Knowledge Representation Meets Databases
61 pages

TM-95-01
Martin Bucbbeit, Rudiger Klein, Werner Nutt
Constructive Problem Solving: A Model Construction
Approach towards Configuration
34 pages

1994

TM-94-04
Cornelia Fiscber
PAntUDE - An Anti-Unification Algorithm for Ex­
pressing Refined Generalizations
22 pages

TM-94-03
Victoria HaIl
U ncertainty-Valued Horn Clauses
31 pages

TM-94-02
Rainer Bleisinger, Bertbold Kroll
Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations
11 pages

TM-94-01
Rainer Bleisinger, Klaus-Peter Gores
Text Skimming as a Part in Paper Document Under­
standing
14 pages

D-95-11
Stepban Busemann, Iris Merget
Eine Untersuchung kommerzieller Terminverwaltungs­
software im Hinblick auf die Kopplung mit natiirlich­
sprachlichen Systemen
32 Seiten

D-95-10
Volker Ebresmann
Integration ressourcen-orientierter Techniken in das wis­
sensbasierte Konfigurierungssystem TOOCON
108 Seiten

D-95-09
Antonio Kruger
PROXIMA: Ein System zur Generierung graphischer
Abstraktionen
120 Seiten

D-95-08
Tecbnical Staff
DFKI Jahresbericht 1994
63 Seiten

Note: This document is no longer available in printed
form .

D-95-07
Ottmar Lutzy
Morphic - Plus
Ein morphologisches Analyseprogramm fUr die deutsche
Flexionsmorphologie und Komposita-Analyse
74 pages

D-95-06
Markus Steffens, Ansgar Bernardi
Integriertes Produktmodell fUr Behalter aus Faserver­
bundwerkstoffen
48 Seiten

D-95-05
Georg Schneider
Eine Werkbank zur Erzeugung von 3D-Illustrationen
157 Seiten

D-95-04
Victoria Hall
Integration von Sorten als ausgezeichnete taxonomische
Pradikate in eine relational-funktionale Sprache
56 Seiten

D-95-03
Christoph Endres, Lars Klein, Markus Meyer
Implementierung und Erweiterung der Sprache ALCP
110 Seiten

D-95-02
Andreas Butz
BETTY
Ein System zur Planung und Generierung informativer
Animationssequenzen
95 Seiten

D-95-01
Susanne Biundo, Wolfgang Tank (Hrsg.)
PuK-95, Beitrage zum 9. Workshop "Planen und Kon­
figurieren", Februar 1995
169 Seiten

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$) .

1994

D-94-15
Stephan Oepen
German Nominal Syntax in HPSG

- On Syntactic Categories and Syntagmatic Relations

SO pages

D-94-14
Hans-Ulrich Krieger, Ulrich SchiiJer
TDL - A Type Description Language for HPSG, Part
2: User Guide.
72 pages

D-94-12
Arthur Sehn, Serge Autexier (Hrsg.)
Proceedings des Studentenprogramms der IS. Deut­
schen Jahrestagung fUr Ktinstliche Intelligenz KI-94
69 Seiten

D-94-11
F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'94 Workshop: KRDB'94 - Rea­
soning about Structured Objects: Knowledge Represen­
tation Meets Databases
65 pages

Note: This document is no longer available in printed
form. "

D-94-10
F. Baader, M. Lenzerini, W. Nutt, P. F. Patel-Schneider
(Eds.)
Working Notes of the 1994 International Workshop on
Description Logics
US pages

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

D-94-09
Technical Staff
DFKI Wissenschaftlich-Technischer Jahresbericht
1993
145 Seiten

D -94-08
Harald Feibel
IGLOO 1.0 - Eine grafikuntersttitzte Beweisentwick­
lungsumgebung
5S Seiten

D-94-07
Claudia Wenzel, Rainer Hoch
Eine Ubersicht tiber Information Retrieval (IR) und
NLP-Verfahren zur Klassifikation von Texten
25 Seiten

D-94-06
Ulrich Buhrmann
Erstellung einer deklarativen Wissensbasis tiber recy­
clingrelevante Materialien
U7 Seiten

D-94-04
Franz Schmalhofer, Ludger van Elst
Entwicklung von Expertensystemen: Prototypen, Tie­
fenmodellierung und kooperative Wissensevolution
22 Seiten

D-94-03
Franz Schmalhofer
Maschinelles Lemen: Eine kognitionswissenschaftliche
Betr"achtung
54 Seiten

Note: This document is no longer available in printed
form .

D-94-02
Markus Steffens
Wissenserhebung und Analyse zum EntwicklungsprozeB
eines DruckbehaIters aus Faserverbundstoff
90 pages

D-94-01
Josua Boon (Ed.)
DFKI-Publications: The First Four Years
1990 - 1993
75 pages

R
F

M

M
a

n
u

a
l:

C

o
m

p
il
in

g

R
E

L
F

U
N

in

to

th
e

R

e
la

ti
o

n
a

l/
F

u
n

c
ti

o
n

a
l

M
a

c
h

in
e

(T

h
ir

d
,

R
e

v
is

e
d

E

d
it

io
n

)

H
a

ro
ld

B

o
le

y,

K
la

u
s

E
ls

b
e

rn
d

,
H

a
n

s
-G

u
n

th
e

r
H

e
in

,
T

h
o

m
a

s
K

ra
u

se
,

M
a

rk
u

s
P

e
rl

in
g

,
M

ic
h

a
e

l
S

in
te

k,

W
e

rn
e

r
S

te
in

D
-9

1
-0

3

D
o

cu
m

e
n

t

	D-91-03-0.1-0011
	D-91-03-0.2-0012
	D-91-03-0.3-0015
	D-91-03-0.4-0020
	D-91-03-01-0021
	D-91-03-02-0022
	D-91-03-03-0023
	D-91-03-04-0024
	D-91-03-05-0025
	D-91-03-07-0026
	D-91-03-08-0027
	D-91-03-09-0028
	D-91-03-10-0029
	D-91-03-11-0030
	D-91-03-12-0031
	D-91-03-13-0032
	D-91-03-14-0033
	D-91-03-15-0034
	D-91-03-16-0035
	D-91-03-17-0036
	D-91-03-18-0037
	D-91-03-19-0038
	D-91-03-20-0039
	D-91-03-21-0041
	D-91-03-22-0042
	D-91-03-23-0043
	D-91-03-24-0044
	D-91-03-25-0045
	D-91-03-26-0046
	D-91-03-27-0047
	D-91-03-28-0048
	D-91-03-29-0049
	D-91-03-30-0050
	D-91-03-31-0051
	D-91-03-32-0052
	D-91-03-33-0053
	D-91-03-34-0054
	D-91-03-35-0055
	D-91-03-36-0056
	D-91-03-37-0057
	D-91-03-38-0058
	D-91-03-39-0059
	D-91-03-40-0060
	D-91-03-41-0061
	D-91-03-42-0062
	D-91-03-43-0063
	D-91-03-44-0064
	D-91-03-45-0065
	D-91-03-46-0066
	D-91-03-47-0067
	D-91-03-48-0068
	D-91-03-49-0069
	D-91-03-50-0070
	D-91-03-51-0071
	D-91-03-52-0072
	D-91-03-53-0073
	D-91-03-54-0074
	D-91-03-55-0075
	D-91-03-56-0076
	D-91-03-57-0077
	D-91-03-58-0078
	D-91-03-59-0079
	D-91-03-60-0080
	D-91-03-61-0081
	D-91-03-62-0082
	D-91-03-63-0083
	D-91-03-64-0084
	D-91-03-65-0085
	D-91-03-66-0086
	D-91-03-67-0087
	D-91-03-68-0088
	D-91-03-70-0089
	D-91-03-71-0090

