’ ‘ 3" Deutsches Research

_ Forschungszentrum

fir Kiinstliche Report

Intelligenz GmbH
RR-94-11

A Consequence-Finding Approach for
Feature Recognition in CAPP

Knut Hinkelmann I

March 1994

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
67608 Kaiserslautern, FRG 66123 Saarbriicken 11, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341



Deutsches Forschungszentrum
far
Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fiir Kiinstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

oooooe

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wend|
Director



A Consequence-Finding Approach for Feature Recognition in
CAPP

Knut Hinkelmann

DFKI-RR-94-11



This research report will be published in the Proceedings of the Seventh
International Conference on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems (IEA/AIE'94), Austin Texas, May 31-June 3, Gordon
and Breach Science Publishers, 1994.

© Deutsches Forschungszentrum fur Kinstliche Intelligenz 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the tollowing: a notice that such copying is by permission of
Deutsches Forschungszentrum fir Kinstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fir Kiinstliche Intelligenz.

ISSN 0946-008X
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Feature Recognition in CAPP

Knut Hinkelmann
DFKI (German Research Center for Artificial Intelligence)
Postfach 2080, 67608 Kaiserslautern, Germany
Email: hinkelma@dfki.uni-kl.de

Abstract

We present a rewriting approach for a consequence-finding inference of logic
programs. Consequence finding restricts the derivations of a logic program
to exactly those facts that depend on an explicitly given set of initial facts.
The rewriting approach extends the Generalized Magic Sets rewriting, well-
known [rom deductive databases, by an up propagation in addition to the usual
down propagation. The initial motivation for this inference was to realize the
abstraction phase of a knowledge-based CAPP system for lathe turning. The
input to the CAPP system is a detailed description of a workpiece. During the
abstraction phase characteristic parts, called features, are recognized for which
predefined skeletal plans exist. Consequence finding is a inethod to restrict the
computation such that exactly the features of the actual workpicce are derived.
The same inference can also be used for checking integrity constraints: given
an update ol a deductive database or a logic program, consequence finding
applies only those rules that are effected by the update operation.
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1 Introduction

In order to create a knowledge-based CAPP (Computer-Aided Process Planning)
system for lathe turning [Bernardi et al., 1991] we studied the actions of a human
process planner [Klauck et al., 1993]: regarding process planning as a problem-solving
task, this procedure can be scen as an instance of the “Heuristic Classification”
inference scheme [C'lancey, 1985] (see Fig. 1). The expert is given the description of
a workpiece (see Fig. 2). It consists of all geometrical and technological data which
are necessary to generate the process plan. These data describe the surfaces of the
workpiece on a very detailed level. To generate a work plan the expert abstracts from
these details and looks for characteristic parts, so-called features, of the workpiece
for which he has in mind (or in a library) a number of prefabricated skeletal plans.
The connection of features and associated skeletal plans reflects the experience of the
expert. The skeletal plans play the role of cases in case-based reasoning [Kolodner,
1993]. The final plan is created by merging the abstract skeletal plans associated to
the recognized features and by adapting them for the particular workpiece.

It is important to realize that this observation implies that the features and skeletal
plans depend on the concrete expert as well as on the concrete working environment
and may vary for different companies. Therefore, in order to have a general solution
for an automated CAPP system which is transferable to a changing environment, we
have developed a domain-specific shell on top of a hybrid knowledge representation
formalism by extending and specializing well-known knowledge representation and
reasoning techniques. The shell consists of domain-specific representation languages
which offer all the necessary constructs to describe the workpiece, the features, and
the skeletal plans. Thus, in order to build a particular application it is easy to
represent the domain-specific features and associated skeletal plans. The shell offers
all the inferences tor the abstraction, match, and refinement phase of the problem-
solving process (Fig. 1). Inference engines of the hybrid knowledge representation
and compilation laboratory CoLAB [Boley et al., 1993] have been tailored for the
production planning application (e.g. [Meyer and Miiller, 1993; Meyer and Miiller,
1993; Baader and Hanschke, 1992]).

problem class —maich " principal solution
(workpiece features) mate (skeletal plans)
abstraction refinement
concrete problem concrete solution
(workpiece data) (NC program)

FIGURE 1: Heuristic Classification Inference Scheme
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FIGURE 2: Lathe-turning Workpiece

In this paper we will present a consequence-finding inference for the abstraction
phase ol CAPP. Consequence finding restricts the derivations of a logic program to
exactly those facts that depend on an explicitly given set of initial facts, e.g. the
description of the actual workpiece. The inference procedure is not strictly bottom-
up but also relies on the proof of conditions. To integrate these bottom-up and
top-down phascs. we extend well-known query-answering techniques for deductive
databases, propagate query information down at compile-time, and reason strictly
bottom-up at run-time. This set-oriented evaluation is efficient, in particular, if the
facts reside on a database. This is especially useful since in general software systeins
are not used stand-aloue but must have interfaces to already existing softwarc and
data. Thus. the presented realization of the consequence-finding inference not only
is an clegant way to integrate bottom-up and top-down evaluation as it 1s necessary
for this application but it also serves as a link to allow access to data stored in
conventional databases.

2 Feature Recognition

The application problem we are dealing with for the rest of the paper is the ab-
straction phase ol CAPP: the generation of an abstract feature description of the
workpiece is the first step of the process planning process. The importance of feature
recognition stems from the fact that each featurc can be associated with knowledge
about how the [eature should be manufactured. From this point of view, feature
recognition lorms a major component of the CAD/CAM interface for CAPP [Chang,
1990].

The workpiece is composed ol adjacent rotational-symmetric surfaces that are fixed
to the symmetry axis of the lathe work. Attributes of each surface carry detailed
geometrical and techunological information. Since the surfaces are fixed to an axis,



groove

FIGURE 4: Feature Aggregation

they can be characterized by four rational numbers ry, ry, ¢;, and ¢, two radii and
two coordinates (Iig. 3). An important geometric element is the truncated cone.
This surface can be specialized to a cylinder hy restricting the radii as being equal.
Similarly, the definitions of ascending and descending truncated cones, rings, etc.
can be obtained by specialization. In addition to this geometric data the surfaces
have attributes for technological information. There are also topological relationships
specifying which surfaces are adjacent.

Most features cover a number of surfaces. This
means that it is natural to define a feature as consist-
ing of simpler features (and having some additional ‘
requirements, e.g. neighborhood). The basic compo-
nents of a feature are surfaces of the workpiece. In Fig-
ure 4 it is shown schematically that the feature shoul-
derhca,n be recggnize(l, i we can ﬁn'c! two neighboring FIGURE 3 A truncated cone
surfaces, a cylinder and a ring. With two shoulders
that share their ground surface we can build another
feature, called a groove. Thus, finding a feature means to find instances representing
the components and to generate a ncw instance aggregating the simpler features using
e.g. part-ol attributes. Therefore, feature recognition is equivalent to the aggregation
of its components.

In [Hanschke and Hinkelmann, 1992] we have suggested a hybrid declarative for-
malism for the abstraction phase of heuristic classification. Following the distinc-
tion between concepts and instances, it is rather natural to define all the possible
teatures and surfaces as concepts in a terminological language and to represent a
single case, 1.e. a workpiece. by assertions. Since terminological reasoning systems
as also used in COLAB directly support the abstraction mechanisms generalization
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and classification but do not bother about aggregation, we have integrated termi-
nological reasoning with a logical rule component: Horn clauses are a declarative
knowledge-representation formalism for logic programming which serve also as query
language for deductive databases [Minker, 1988; Kowalski, 1991]. Rules for feature
aggregation can be expressed as Horn clauses in a natural way. The (simplified) rule’

shoulder( f(X,Y)) «— cylinder(X),
ring(Y'),
ncighboring(X,Y)

specifies that a cylinder and a neighboring ring can be regarded as a shoulder (see
[Mig. 1).

The task of the feature aggregation phase is to derive all the features appearing on
the workpiece. Similar to parsing strategies, a bottom-up reasoning approach is most
appropriate, since it 1s not known in advance, which kinds of features are present in
the workpiece [Klauck and Mauss, 1992]. In bottom-up reasoning systems a rule is
applied, il all its prenuses are satisfied. Then, starting from the workpiece’s surfaces,
a features trecis successively build up (Fig. 5). Let the workpiece description contain
the following asscrtions:

cylinder(ceyll)

ring(rng?)
netghboring(cyll,rmg?)

'For reasons of simplicity we omitted. for instance, details of checking coordinates of feature
components and technological requirements.



Then applying the above rule, bottom-up evaluation will derive that f(cyll,rng2) is
a shoulder, since all the premises of the rule are satisfied by the facts.

Bottom-up reasoning starts with all the facts in the working memory. In each
phase, however, only a subset of the rules are needed. For the abstraction phase,
for instance, we want to apply only those feature rules that can be satisfied with
facts representing the surfaces of the actual workpiece. This can be achieved by
modularization of the rules, such that in each phase (abstraction, match, refinement,
Fig. 1) only the relevant subset of the rules is accessible.

A further problem is that we do not want to use all the available facts in each
phase. For the abstraction phase we must have access to facts representing the actual
workpiece, while others are not needed. Depending on the environment in a real
company, data often do not reside in a working memory but must be retrieved from
a database. But in a database there might be data representing many workpieces.
Additionally, there are data about many other things that are not needed in the
abstraction phase and thus should not be used for testing rule applicability in this
phase. An example are the facts about the tools that can be used to manufacture
the workpiece which are selected in the refinement phase [Meyer, 1992]).

For feature aggregation we have developed a consequence-finding inference which
derives the consequences of an explicitly given set of facts wrt to a theory of logical
formulas. The theory in our case is the set of rules defining workpiece features and
the initial facts are the facts describing one particular workpiece. The consequence-
finding inference makes sure that exactly those facts are derived which are conse-
quences of these initial facts.

3 Integrity Constraints

The same consequence-finding inference that is applied for feature aggregation can
also be used to detect whether database updates (e.g. because of changes in the
design of the workpiece) would lead to inconsistencies. Consider a logic program with
integrity constraints denoting negative or disjunctive knowledge. These integrity
constraints are represented as denials, i.e. clauses with empty head. Eshghi and
Kowalski use this kind of integrity constraints for their abduction procedure [Eshghi
and Kowalski, 1989]. We can also represent them as clauses with the special atom
inconsistent as conclusion [Manthey and Bry, 1987].

Example 1 Let S1 and 52 be two surfaces and let the relations coordinatel and
coordinate? denote the attributes c;, and ¢y of the surface (see Fig. 3) Then the
following rule demands that two connected solids must coincide at their contact

=3



point:

inconsistent  «—  mneighboring(S1,52),
coordinate2(S1,C1),
coordinatel (S2,C2),
Cl1#£C2.

A real database will have many of these integrity constraints. Let’s assume that the
facts

coordinatc2(cyll,5)
coordinatcl (truncone?, 6)

are in the databasc. Now we want to connect these elements. Using a proof-finding
approach one has to assert the new fact nerghboring(cyll, truncone2) and then ask
the query

?- inconsislent

This procedure would invoke all integrity constraints in backward direction even if
they are independent {rom the new fact. Instead, it would be more efficient to derive
only those facts, that are consequences of this new assertion. In [Eshghi and Kowalski,
1989] it is argued to do this kind of constraint checking by forward reasoning starting
with the new fact. Forward reasoning alone, however, is not sufficient.

Example 2 Consider the following program:

endpoint{X) — conc(X),radius2(X,0)
starlpomt(X) — cone(X),radiusl(X,0)
cone(cl)

radiusl(cl,0)

radius2(cl,20)

cylinder(cyll)

The following integrity constraints say that you cannot connect two elements if there
is no surface but only a point at the end of one element (see Fig. 6):

mconsistend  — nerghboring(11,12),
endpont (1)

meonsisten!t  —  nerghboring(I11, 12),

startpomnt(12)

Adding the new fact nerghboring(cyll, cl) would lead to an inconsistency which
will not be detected by forward chaining alone. Additionally we need to prove
whether the premise startpoint(cl) can be satisfied.
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FIGURE 6: Forbidden Connection

The extended SLDNF resolution of [Sadri and Kowalski, 1988] combines forward
and backward chaining depending on whether a positive or negative literal is resolved
upon. In [Manthey and Bry, 1987] a model-generation approach has been applied
for this problem. In the following we will regard checking of integrity constraints as a
consequence-finding problem. We will restrict the generation of a complete minimal
model by specializing the relevant rules. Instead of using a backward-chaining com-
ponent to prove premises, we apply the Generalized Magic Sets rewriting algorithm
well-known from deductive databases.

4 Consequence Finding

Consequence-finding had been investigated intensively after the resolution principle
has been invented but then hasn’t been studied very much for a number of years.
Recently, [Inouc, 1991] presented a consequence-finding implementation based on
ordered linear resolution. In this section we will give an overview on consequence
finding. Then in the next section we will present an approach that is efficient for
applications that use data on external databases.

The cousequence-finding problem [Lee, 1967) may be formulated as:

Given a set of statements Ay,..., A,, find a statement B such that B

follows from Ay, ..., A, [Slagle et al., 1969].

There are a number ol specializations of this general formulation. They are char-
acterized by restrictions ol the statement B which we are interested in. In [Lee, 1967]
the consequence-finding problem is expressed in a more restricted form:

Given a set ol lormulas 1" and a resolution procedure P, for any logical
consequence D of T, can P derive a logical consequence (7 of 7" such that
C subswes D7

In [Slagle el al.. 1969] consequence finding is examined for prime (non-trivial)

conscquences. Also proof finding can be regarded as a special case of consequence
finding if B is the empty clause.

9



Inoue presents an extended ordered linear resolution strategy which is complete for
consequence finding in the sense that only clauses having a certain property (called
characteristic clauses) should be found [Inoue, 1991]. A useful spccialization is to
compute exactly the newly derivable consequences caused by new information added
to the theory. These new consequences are called new characteristic clauses.

Here we will adapt this latter version of the consequence-finding problem for logic
programs. In logic programming, deductive databases, and rule-based reasoning we
are not interested in gencral consequences but only in ground unit clauses (i.e. ground
facts). Thus, our consequence-finding problem can be informally described as:

Given a set of Horn clauses T' and a set of ground unit clauses F¥ C T (F
is called the set of initial facts), derive all the consequences B of T" such
that B is a ground unit clause and at least one clause " € F' has been
used to derive B.

5  How to Implement Consequence Finding,

From Fixample 2 about integrity constraints it became clear that forward chaining and
backward chaining may interchange to solve the consequence-finding problem. An
obvious approach would be to use an integrated system with lorward and backward
chaining components.

The forward chaining process starts with the set F' of initial facts. A rule
C—PFP, . ...P

is triggered if at least one .7 € {l,...,n} is unifiable with a fact f € F'. Then the
remaining premises have to be proved. Besides changing the implementation, this
can be achieved by a program transformation declaring the premises as backward-
provable and evaluating them by the backward chaining component. Since each of the
premises can serve as a trigger premise, this approach is equivalent to the following
transforimation of the above rule:

(" — Pprove(Py). ... prove(P,)

C = prove(Py), Py.... prove(P,)

(" prove(Py) provd(Py). .., Py

The rules are evaluated by forward chaining. Each premise can act as a trigger
while the remaining ones have to be tested by backward chaining. The predicate
prove acts as a built-in operator activating the backward chaining component to
prove its argument.

In the following we will present a rewriting approach for consequence finding which
avoids a call Lo the backward chaining system. It is an extension of well-known rewrit-
g techniques lor query-answering in deductive databases. These techniques allow

10



query answering by bottoni-up evaluation. Information about variable bindings given
by the query is propagated down into the bodies of the rules at compile-time. When
the rewritten program is evaluated by a bottom-up fixpoint procedure like semi-
naive evaluation [Bancilhon and Ramakrishnan, 1986], only those facts are derived
that are necessary to answer a query. Since these techniques in some sense integrate
bottom-up and top-down reasoning, it seems natural to extend them for consequence
finding.

5.1 Generalized Magic Sets Rewriting

Before we will present the consequence-finding transformation, let us first give an
impression of the rewriting techniques for query answering. Readers already familiar
with this approach may skip this subsection. Rcwriting strategies like Generalized
Magic Sets [Bancilhon el al., 1986; Beeri and Ramakrishnan, 1991] or more recently
Magic Teimnplates [Ramakrishnan. 1988] have been developed for efficient query an-
swering in deductive databases. Magic-Sets rewriting propagates the values of bound
arguments of a query down to the premises of applicable rules at compile time. Con-
sider a logic program containing two rules:

(XY )« (X, Z),s(2.Y)
S(Z.Y) —u(W, Z) oY)

and the query
(e, Y) .

By using a top-down query answering approach, the query would be unified with
the head of the first clause binding variable X to «. This means that ¢ is also
called with first argument bound to «. Bottom-up reasoning, however, does not have
this kind ol mlormation passiug. The only kind of information passing for bottom-
up reasoning is called sideway information passing: by solving a premise predicate
variable bindings are obtained which can be passcd to another premise in the same
rule to restrict the computation lor that predicate. Magic-Sets rewriting introduces
an additional premise magic® (X) to imitate the information passing strategy of
top-down reasoning by sideway information passing. The arguments of the new
premise correspond to the bound arguments of the query. To pass the actual value
of X, a new fact  called Magic Seed - is asserted. A superscript bf denotes that
(according to a sideway information passing strategy) the first argument of a literal
is bound and the second argument is [ree:

XYY — magieaT (X)),
(X, 7).
SHZY
‘)ILag‘I('_I'bf((L)

11



Now, evaluating this rule by a bottom-up strategy will satisfy the first premise
magic.r® (X)) with the new fact binding X to @ as it would be the case by top-down
evaluation. By satisfying the second premise - with X bound to « - the variable
Z will also be bound such that the computation of s will be restricted, too. The
Generalized Magic Sets method further propagates this binding down to the rules
defining t and s. For further details see [Beeri and Ramakrishnan, 1991].

5.2  Consequence-Finding Transformation

Now we will extend Generalized Magic Sets (GMS) to support the conscquence-
finding inference. Instead of calling a backward chaining system to prove the re-
maining premises of triggered rules, we can apply the GMS rcwriting approach. It
specializes a logic program by introducing additional rules and predicates. When
the rewritten program is evaluated by a bottom-up fixpoint procedure, exactly the
consequences of the intial facts are derived. In our system we use the semi-naive
evaluation strategy lor logic programs [Bancilhon and Ramakrishnan, 1986] which
avoids multiple derivations of equivalent [acts. Because it is a set-oriented strategy
it 1s very ellicient il facts have to be retrieved from a database.

GMS rewriting needs a query to start the transformation. For consequence find-
ing, however, we do not have a query but a number of {facts from which to reason
lorward. l'or the consequence-finding inference, the down propagation of the Gener-
alized Magic Sets rewriting is extended by an up propagation phase. For the initial
facts we can lind the applicable rules by testing if a premise is unifiable with an
imitial lact. T'he remaining premises ol this rule have to be proved. This means that
a GMS rewriting has to be made for them. Their adornments can be derived by the
sideway inflormation passing strategy. lor each of the rules found in this first step
we now look lor successor rules, i.e. rules which have a premise that is unifiable with
the conclusion of an alveady found rule. For the premises of these rules again a GMS
rewriting ts made. 'inding successor rules corresponds to the up-propagation phase.
The propagation stops if no new successor rule is found. In the lollowing we will
demonstrate botlom-up consequence finding with an example.

Example 3 Counsider a logic program containing the following rules where the pred-
1cates by, by, by, by, and by are base predicates:

rino plNLY) — X2 Z V) pa( X, VY
ror g VOWT) — g (U 2 W) p( 4, V)

1y (XL Z) — h(Z, ) ) by (YL X))

rano s XOVOY) o b (XUVL ) by (Z.Y)

rer U ZW) = (XL Z), b (UL X W)

Let’s assume we want to derive the consequences of the fact b(a,b). That is, the



Upmagic Seed specifying the bound arguments of the initial facts - [or consequence
finding is
upmagic_b(a.b)

To derive the consequences of a given fact, a first step is to select all the rules
which can be triggered by this fact. In our example it is rule r;. The arguments of
the initial fact upinagic.b(a,b) bind variables Z and V by bottom-up propagation.
If we assume that the sideway information passing strategy is determined by a left-

) : L . , fb _bbf
to-right evaluation of the remaining premises, we see that we have to prove pi-, ps

Thus, the rewritten rule r is

p(X,Y) — wupmagicb(Z,V),
pl(X,2),
psl (X V,Y)

The derived lacts of rule r; can themselves trigger further rules. In our example
rule 75 is such a successor rule. Analogously as before, the values for p(X,Y) are
propagated up to rule r,. resulting in the following rule:

gUV W) = p(Z V), gl (U, 2. W)

For the adorned predicates p!®, pi/ (from rule 1) and qlfbj ([rom rule ;) we apply

the usual Generalized Magic Sets rewriting, propagating the initial values down to
the rules defining p1, p3 and ¢:

p{b( X, Z) — magicp!®(2),
bi(Z,Y),
02(Y, X')

pgbf (X, V)Y) « 777.agic_pgbf (X,V),
bs( XV, Z),
bi(Z.Y)

([{bj((,'. ZW) — 'm.agic_(/lfbf(Z),
b (X, 7).
bs(U'. X, W)

The argument values of the trigger fact, 1.e. the initial fact upnmiagic_b(a,b) and
the derived consequences p(Z. V), are propagated up as initial values (seeds) for these
rules:

m(r,gi(:_p{b(Z) — upmagicb(Z, V)
PIX V) — upmagich(Z,V),pl*(X, Z)

magic_ps
2y — plz.v)

— —

magic_q

‘This kind of transformation has to be performed for each of the initial facts. Then
the evaluation ol the rewritten program by a bottom-up reasoning system, e.g. the
semi-naive strategy, solves the consequence-finding problem.

13



5.3 Specifying initial Facts

Instead of explicitly giving a single initial fact as in Example 3, there are a number
of possibilities for specifying mulitple initial facts. The transformation itself does not
change, only the representation of the Upmagic Seed has to be adapted.

o For a set of initial facts an Upmagic Seed is generated for each element of the
set. For a workpiece the initial facts are the descriptions of the surfaces. The
sct of initial facts may be [7 = {cylinder(cyll),ring(rng2), cylinder(cyl3)}.
The corresponding seeds are:

upmagre_cylinder(cyll)
upmagrcring(rng?2)
upmagic_cylinder(cyl2)

The lirst and third fact differ only for their constants. This means that exactly
the same transformation will be made for them. This 1s recognized by the
rewriting algorithm: cach rule will be generated exactly ones.

e i is not necessary to explicitly present every initial fact. To express that every
surface neighboring cylinder ¢yll should serve as nitial fact we can use a vari-
able: ncighbormg(cyll. X). In this case the Upmagic Seed cannot be expressed
by a single [act since il 1s not range-restricted. The following rule, however,
accomplishes the needs:

wpmagrenerghborong(cyll, X'y —
netghboring(cyll, X)

Variables can also be used to express conditions about initial facts, lor instance,
il two arguments should coincide in their values: 6(X, Y X).

o [or [eature aggregation we can go one step further: since for the facts describing
the workpiece surlaces all arguments are bound, we need to tell the rewriting al-
gorithm ouly the predicates representing the surfaces, e.g. {{runcone, cylinder,
ring}. The corresponding Upmagic Seeds are:

wprnagre trunconc (X)) — truncone(X)
upmagie_cylinder(X) « cylinder(X)
upmagiering(X) — ring(X)

The lacts describing the workpiece trigger these rules, which themselves trigger
the rules deriving theiv consequences. Thus, the rewritten rule system then
is a specialized rule system, which exactly derives the feature tree for every
workpiece. ‘I'his means, that rewriting has to be done only once after the
feature rules have been delined and the specialized rule system can be reused
lor various workpieces.

14



e Similar to LDL [Naqvi and U'sur, 1989], we can also give fact forms as initial
lacts: it is sulficient to tell the rewriting algorithm which of the arguments are
bound (designing them with a special symbol $) instead of explicitly giving the
value of bound arguments, e.g. neighboring($,X).

Example 4 Consider again the rules and facts ol Fxample 1

endpoint(X) — cone(X),radius2(X,0)
startpont(X) — cone(X),radiusl(X,0)
cone(cl)

radiusl(cl,0)

radius2(cl,20)

cylinder(cyll)

with integrity constraints

iconsistenl  — ncighboring(11,12),
cndpomt (1)
(I1.12),

inconsistenlt  — ncighboring
startpomnt(12)

If the initial facts are specified as newghboring(X,Y), the rewritten knowledge base is:

upmagee_netghboring(X,Y') «—
neighboring(X,Y)

mconsistent  «— upmagic_nerghboring(/1, 12),
endpoint®(11)

meonsislend — upmagicnerghboring(11, 12),
startpoint®(12)

endpoint®(X)  « magic_endpoint®(X),
cone(X).
radius2(X,0)

startpon!®(X) « magic_startpoint®( X)),
cone(X),
radius|(X,0)

magic_endpont®(I1) —
upmagic_nerghboring(I1,12)

magic_startpoint®(J2) —
upmagic_nerghboring(I1,12)

cone(cl)

radius](cl.0)

radius2(cl, 20)

cylinder(eyll)
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Adding the new fact neighboring(cyll, c1) will derive upmagic-ncighboring(cyll, cl),

which then initiates the derivation of magic_startpoint®(cl) and startpoint®(cl) which
finally leads to the derivation of inconsistent as a consequence of this update opera-
tion.

6 Conclusion

We have presented a consequence-finding approach that has been developed for the
abstraction phase of a process planning system. The theory is the sct of rules defining
workpiece features and the initial facts are the facts describing the workpiece [Boley
et al., 1993]. The approach extends the Generalized Magic Sets rewriting approach of
deductive databases by an up propagation in addition to the usual down propagation.
Thus, it has been investigated how the inference for query answering can be embed-
ded nto a complex problem-solving process. Because of the set-oriented reasoning
strategy it is efficient, in particular if the facts reside on a database. This shows that
declarative knowledge representation can be applied to real-world problems.

The consequence-finding transformation is an example of our knowledge com-
pilation paradigni. Instead ol having its own interpreter for each problem solving
inference, we prefer a transformation approach, where a knowledge base — described
i a declarative representation lormalism — is specialized {or a particular task. The
rewritten knowledge base can be interpreted by a “general-purpose” reasoning sys-
tem. Thus, we have the advantage that we can reduce the number of special-purpose
imference engines. This is especially useful in a hybrid representation system. The
larger the number of iterpreters the greater would be the effort for integrating them
imto the system. because the interpreters have to cooperate to solve the overall prob-
lem. Investigating the opportunities of knowledge compilation for an application in
a techmecal environment has been the objective of the development of the hybrid
knowledge representation and compitation laboratory COLAB.
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