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Preface 

This report contains the Proceedings of the Second Workshop on Security of Mobile Multiagent 
Systems (SEMAS'2002). The Workshop was held in Bologna, Italy on July 16,2002, as a satel­
lite event to the 1st International Conference on Autonomous Agents and Multiagent Systems 
2002. The First Workshop on Security of Mobile Multiagent Systems (SEMAS'2001) was held 
in Montreal , Canada as a satellite event to the 5th International Conference on Autonomous 
Agents in 200l. 
The far reaching influence of the Internet has resulted in an increased interest in agent tech­
nologies, which are poised to playa key role in the implementation of successful Internet and 
WWW-based applications in the future. While there is still considerable hype concerning 
agent technologies, there is also an increasing awareness of the problems involved. In par­
ticular, that these applications will not be successful unless security issues can be adequately 
handled. Although there is a large body of work on cryptographic techniques that provide basic 
building-blocks to solve specific security problems, relatively little work has been done in inves­
tigating security in the multi agent system context. Related problems are secure communication 
between agents, implementation of trust models/authentication procedures or even reflections 
of agents on security mechanisms. The introduction of mobile software agents significantly in­
creases the risks involved in Internet and WWW-based applications. For example, if we allow 
agents to enter our hosts or private networks, we must offer the agents a platform so that they 
can execute correctly but at the same time ensure that they will not have deleterious effects 
on our hosts or any other agents / processes in our network. If we send out mobile agents, we 
should also be able to provide guarantees about specific aspects of their behaviour, i.e., we are 
not only interested in whether the agents carry-out their intended task correctly. They must 
defend themselves against attacks initiated by other agents, and survive in potentially malicious 
environments. 
Agent technologies can also be used to support network security. For example in the context 
of intrusion detection, intelligent guardian agents may be used to implement active protection 
strategies on a firewall or intelligent monitoring agents can be used to analyse the behaviour 
of agents migrating through a network. Part of the inspiration for such multi-agent systems 
comes from primitive animal behaviour, such as that of guardian ants protecting their hill or 
from biological immune systems. 
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ABSTRACT 
We introduce a multi-modal logic that combines comple­
mentary features of authentication logics and trace-based 
approaches. Our logic contains two kinds of modalities: im­
plicit belief, which formalizes the view of an external agent 
reasoning about interleaved protocol executions, and explicit 
belief, which uses awareness to model the resource-bounded 
reasoning of the agents involved in the executions. We em­
ploy these modalities to formalize extensional and inten­
sional specifications of protocols and their properties, and 
use these formalizations to characterize and reason about at­
tacks. As an example, we consider the Needham-Schroeder 
Pu blic Key protocol and use our logic to demonstrate the 
existence of the well-known man-in-the-middle attack, and 
also show the equivalence of our modal specification to one 
based on an interleaved trace semantics. 

1. INTRODUCTION 
Security protocols describe how agents should exchange mes­
sages to achieve security goals such as confidentiality and 
integrity of data, or authentication of the identity of agents 
in a network. A number of approaches have been proposed 
for rigorously analyzing security protocols. Some of these 
are based on specialized security logics, such as the foun­
dational BAN logic for authentication protocols [6] and its 
extensions, e.g. [1 , 4, 7, 13, 20, 21]. These logics work by 
formalizing the doxastic or epistemic reasoning of agents 
executing a protocol, and security properties are formalized 
and reasoned about in terms of the way the beliefs or the 
knowledge of the agents evolve as messages are exchanged. 
Although effective for finding some kinds of flaws, the logics' 
semantics are often lacking or restrictive (e.g. the logics are 
designed to reason about a single protocol execution). 

An alternative way of reasoning about security protocols is 
to consider protocols as sets of possibly interleaved commu­
nication traces. For example, given a protocol and an at­
tacker model, Paulson [18] turns these into an inductive def­
inition (of the trace set) in higher-order logic. The resulting 
set can be used to inductively establish security properties 
by showing that they hold for all traces. Similar inductive 
definitions are used by Basin in [3] to provide a basis for 
finding attacks (traces violating security properties) using 
infinite-state model-checking. The strengths and weaknesses 
of trace-based methods are in some sense complementary to 
security logics. Although trace-based methods provide a 
simple and expressive theory for formalizing the semantics 
of protocols and security properties in terms of interleaved 
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executions, characterizing attacks as properties of traces can 
be tricky, whereas BAN-like specifications are generally sim­
pler and more abstract. 

In this paper, we introduce a multi-modal logic that com­
bines complementary features of authentication logics and 
trace-based approaches. Our account is semantic: traces are 
used to build a Kripke structure upon which a modal logic 
is defined to reason about actions occurring in interleaved 
protocol executions. The modalities are used to formalize 
the implicit and explicit beliefs of agents, allowing modal 
specifications of security properties while being based on 
an underlying interleaved trace semantics. The two belief 
modalities give us considerable flexibility in our specifica­
tions. Roughly speaking, using the implicit belief modality 
we can model what agents would believe had they seen all 
messages exchanged by all agents, and using explicit be­
lief we can model what agents believe based on what they 
have actually seen. We define implicit belief as the standard 
modality of belief logics [14] . To formalize explicit belief and 
express the local reasoning of an agent based on the actions 
he has participated in , we adapt the notion of awareness 
(introduced in logics for artificial intelligence [10, 11, 22] to 
address the problem of agents having unbounded reasoning 
power and thus being logically omniscient, which is a char­
acteristic of most doxastic/epistemic logics). 

We present two applications of our logic. First , we apply it 
to formally characterize different kinds of specifications of 
security properties. It has been observed that specifications 
are generally either intensional, i.e. based on details of the 
protocol steps, or extensional, i.e. formulated independently 
of message exchanges. We use the explicit belief modality 
to characterize intensional specifications, and the implicit 
belief modality to characterize extensional specifications. 

Second, we show how to use these modalities to character­
ize and reason about attacks in interleaved protocol exe­
cutions. Our specifications of security properties combine 
intensional and extensional specifications: the intensional 
part is used to represent the completion (or commitment) 
of agents in protocol executions, and the extensional part 
formalizes properties such as message secrecy. We illustrate 
this using the Needham-Schroeder Public Key protocol as a 
running example and show how the semantics can be used to 
demonstrate the existence of attacks. Afterwards we show 
the equivalence of our modal specification to those based on 
interleaved trace semantics. 



We proceed following the structure given above. §2 gives 
the semantic foundations of our logic, and §3 and §4 discuss 
the two applications. We compare with related work in §5 
(as explained there, this work supersedes our previous work 
on awareness-based security logics [2]) , and conclude in §6. 

2. A MULTI-MODAL SECURITY LOGIC 
2.1 Syntax 
We start by defining the set of messages, which are built 
from primitive terms by pairing and encryption. Based on 
this, we define a multi-modal language extended with oper­
ators expressing, e.g., possession and secrecy of messages. 

Definition 1 Let the set T of primitive terms consist of 
three disjoint subsets: II of agent identifiers, TK of crypto­
graphic keys 1, and TN of nonces. The set M of messages is 
the smallest set closed under the following rules: (i) ME M 
if MET; (ii) MoM' E M if M,M' E M; and (iii) 
~MUK EM if ME M and K E TK. 

The set F of formulas is the smallest set closed under the 
following rules: (i) .i E F; (ii) rp -+ 'Ij; E F if rp E F and 
'Ij; E F; (iii) saysA(B , M), seesA(M), hasA(M), secg(M) , 
commIA(B, M) , commRA(B , M) E F if A,B E II, 9 ~ II, 
and ME M ; (iv) XArp, HArp E F if A E II and rp E F. • 

The formulas express properties of message exchanges be­
tween the agents engaged in a protocol execution (also called 
run). Intuitively, the formula saysA(B, M) denotes agent A 
saying M to B, seesA(M) denotes A seeing M, hasA(M) 
denotes A posses.9ing M, and secg(M) denotes that J\![ is 
a secret possessed only by the agents in the group g. The 
formula commIA(B , M) (respectively, commRA(B, M)) ex­
presses that agent A uses message M to commit as the ini­
tiator (respectively, responder) in a protocol execution with 
agent B2 The modalities XA and BA denote the explicit be­
lief and the implicit belief of an agent A. Other connectives 
and modalities are defined in the usual manner, e.g. negation 
-'rp == rp -+ .i and conjunction (rp 1\ 'Ij;) == -,( rp -+ -,'Ij;). 

To distinguish between the variables appearing in a pro­
tocol description and the actual values with which these 
variables are instantiated in a protocol execution, variables 
ranging over agent identifiers are denoted by capital let-
ters A, B , C, ... , and the concrete values by lowercase let-
ters a , b, c, .. . , where the special constant spy denotes the 
attacker. We use the same convention also for keys and 
nonces, and write K and k, and N and n. We write 9 to 
denote a group of agents, a to denote an awareness set, and 
rp and 'Ij; to denote formulas. 

IWe assume an underlying algebra where (K- 1
)-] = K for 

all keys K E TK, and the function . -I : TK -+ TK maps 
a key K to its inverse key K -I . For protocols employing 
(symmetric) shared keys we also have K- 1 = K. 
2The two predicates are used to express commitment of 
agents executing protocols with two roles, initiator and 
responder. It is straightforward to generalize the syntax 
and subsequent semantics with families of predicates like 
comm](AJ, ... , Ak, I'v!), which formalizes commitment for 
the agent in the j-th role for a protocol with k roles. 
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2.2 Model of computation 
Our model of computation combines ideas from trace-based 
methods for protocol verification [3 , 18] with ideas from au­
thentication logics [1, 6] and from approaches to reasoning 
about knowledge in multi-agent systems [10, 11 , 22]. 

Trace-based foundations 
An event e is a messa.ge exchange of the form A -+ B : 
lW and a trace is a sequence el, ... , ek of events (where () 
denotes the empty trace). A protocol is modeled as a set of 
traces; namely, the smallest set of traces closed under rules 
that formalize the effects of protocol steps and the possible 
actions by an attacker. 

In Fig. 1 we show the NSPK protocol and its definition as an 
inductively defined set P of traces. The rules nspk], nspk2 , 

and nspk3 formalize the three protocol steps. For example, 
nspk2 models the second step of the protocol and says that 
a trace t E P can be extended with B -+ A: ~NA 0 NBUKA 
whenever N8 has not been used in t (i.e. it is a fresh nonce) 
and t contains an event A' -+ B : ~AoNA U Ke' The attacker 
rule formalizes the attacker model of Dolev and Yao [9]: 
the spy can say anything that he can synthesize from the 
analyzable parts of the messages he spies, where spies(t) is 
the set consisting of all messages that have been sent in a 
trace t (which formalizes the assumption that the attacker 
has control over the network) . The attacker rule uses the 
auxiliary functions synth and analz, which we now define 
(along with parts) as they will be needed in our modeL 

Definition 2 Let M be a set of messages. Using the corre­
sponding rules in Fig. 2, we build the following three sets: 
the set parts(M) is the smallest extension of M obtained 
by adding the components of compound messages and the 
bodies of encrypted messages; the set analz(M) is the small­
est extension of M closed under projection and decryption 
by keys in analz(M); and the set synth(M) is the smallest 
extension of M closed under pairing and encryption. • 

Modal foundations 
The local state of an agent A E II is a pair consisting of 
the set of actions that A has performed and the set of mes­
sages in A's possession. A global state w is an n-tuple of 
local states, where n is the number of agents in the system, 
including the attacker. In our model , the actions that an 
a.gent A can perform are sending a message M to another 
agent B, in symbols sendA(B , M), and receiving a message 
M, in symbols req( :v!), where the identity of the sending 
agent is not known a priori. 

We combine the notions of trace and state by defining func­
tions that, given a trace, compute the local state of each 
agent participating in the (possibly partial, interleaved) pro­
tocol executions in the trace. 

Definition 3 Given t E P, the sets of actions and posses­
sions of an agent A are defined by the functions ACA (t) and 



NSPK 1. A ---+ B: ~A o NA ~KB 

NSPK 2. B ---+ A: ~NA 0 NBaKA 

NSPK 3. A ---+ B : flNB,}KB 

-- empty 
OEP 

eVl = a ---+ spy : fla 0 naak.'Ptl 
eV2 = spy ---+ b : ~aOna G kb 

eV3 = b ---+ a : Dna onbGkn 

ev4 = a ---+ spy : OnbGk.py 

evs = spy ---+ b : ~ nb G kb 
t E P X E synth(analz(spies(t») 
---------==--=--'--=--.....;....;..;...;.. attacker 

t, spy ---+ B : X E P 

Figure 1: The NSPK protocol (L), the rules defining it inductively (e), and the MITM attack on it (R) 

M E M 
parts-inj 

ME parts(M) 

MJ 0 M2 E parts(M) 

M (M) 
parts-i (i E {I , 2}) 

i E parts 

f M UK E parts(M) 
-'----=------'--...:... parts-body 

ME parts(M) 

o M~ K E analz(M) K- 1 E analz(M) 
M E analz(M) analz-dec 

MEM analz-inj 
ME analz(M) 

MJ 0 M2 E analz(M) 

() 
analz-i (i E {1,2}) 

Mi E analz M 

MEM 
synth-inj 

ME synth(M) 

MJ E synth(M) M2 E synth(M) 
---'---'----'---~.,.....:---=--....:... synth-pair 

MJ 0 M2 E synth(M) 

ME synth(M) K E synth(M) 
synth-enc o M~ K E synth(M) 

Figure 2: The rules defining the sets parts, analz and synth 

POA (t) as follows: ACA (OJ = 0 and ACA (B -t G : M, ts) is 

{

{sendB(C' M)}UACA(tS) ifA=B 
{recc(M)} U ACA (ts) if A = C 
{sendB(C, M),recc(M)} U ACA (ts) if A = spy 

ACA (ts) otherwise 

and PO A (0) = initState(A) and POA (B ---+ G : M , ts) 
is {M} U POA (ts) if A E {B , G, spy} and POA (ts) other­
wise, where ts ranges over event sequences and initState is 
a protocol-dependent function returning the message items 
that an agent initially possesses (e.g. his private and public 
keys, and the public keys and identifiers of other agents) . 

Thus, given a trace t E P , the local state SA (t) of an agent 
A is simply (ACA(t),POA(t» , and the global state W is the 
n-tuple of the local states SA (t) for all n agents. Given a 
global state w , we will (overloading notation) write SA (W) 
to denote the local state of an agent A at w, and ACA (w) 
and PoA(w) to denote the two components of SA(W). • 

Hence, the spy 's local state contains the actions performed 
by all the agents, as well as the messages they exchange, 
while the local state SA (w) of an agent A different from 
the spy is built only from the events that A participated in . 
Since the spy possesses all the messages sent in the network, 
PO,py(w) captures the same information as the set spies used 
in Fig. 1 to formalize the attacker 's control over the network. 

Let t be a trace and ts be the sequence of all prefixes of t. 
The set W t of global states (or worlds ) relative to t is ob­
tained by computing, for each prefix of t , the corresponding 
sets of actions and possessions for all agents A. Formally, 
W t = wrl(ts ), where 

wrl(ts) = {{{ACA{t') , POA{tl ))} u wrl{tsl ) ifts =t',tsl 
{(ACA «), POA «))} if ts = 0 
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Modeling resource-bounded agents 
In the artificial intelligence literature, resource-bounded a­
gents have limited computational resources, such as memory 
or time. In our approach, we model resource-bounded agents 
where the limitations are both in (1) the propositions an 
agent may reason about (his language) and (2) his deductive 
ability (what he can conclude) . As an example of (1), if a 
nonce N is a secret between A and B, then another agent 
G should not even be able to formulate propositions about 
it. As an example of (2), when G learns the nonce N, he 
can then conclude that he possesses it, but not necessarily 
that some other agent D possesses it (even when this is the 
case). 

Our first step in limiting resources is to restrict an agent's 
language by making the messages he can construct a func­
tion of the information he possesses at a state. 

Definition 4 The set }vtA(W) of messages that an agent A 
can construct at a global state W is defined as MA(W) = 
{M I M E synth(analz(PoA (w»))}. The set .FA(W) of for­
mulas of an agent A at a global state W is the smallest set 
of formulas closed under the following rules: (i) 1.. E .FA (W) ; 
(ii) <p -t t/J E .FA (w) if <p, t/J E .FA (w) ; (iii) saYSB (G, M), 
seesB(M), hasB(M) , seco(M), commIB(G, M) , commRB(G, 
M) E .FA(W) if B,G E MA(W) n 0, M E MA(W), and 
(} S;;; MA(W) n 0; and (iv) XA <p E .FA(W) if <p E .FA(W) .• 

Clause (iii) expresses that each agent has its own language 
for the predicates says, sees, has, sec, comml , and commR, 
which depends on the messages that an agent possesses at 
some state w. In comparison with rule (iii) in Def. 1, here we 
simply require that the message items belong to the set of 
messages of the agent . For example, saysA(B , M) E .FA(W) 
if A and B are agent identifiers in M A (W) (denoted by 



A, B E MA(W) n TJ) and M is a message in the set of 
messages of A (in symbols M E MA(W)) . 

With respect to (iv), note that since the agents' languages 
do not include the modality B for implicit belief, an agent 
can reason about neither his own nor other agents' implicit 
beliefs, nor can he have explicit beliefs about the explicit be­
liefs of other agents (as is standard in belief logics, e.g. [15]). 

2.3 Semantics 
We begin by fixing a set 71 of agent names, where, for nota­
tional simplicity, we identify its elements with the previously 
defined set TJ of agent identifiers; thus, from now on we will 
simply talk of agents. Similarly, for keys and nonces. 

Given a trace t E P , we obtain the corresponding model 
!mt = (wt , ~ , 0), where W t is a non-empty set of worlds, ~ 
is an agent-indexed family of equivalence relations on W t , 

and 0 is an agent-indexed family of awareness sets , where 
the set OA (w) consists of the formulas that agent A is aware 
of at world w. The family of equivalence relations ~ captures 
indistinguishability: two global states are indistinguishable 
to an agent A iff the local state of A is the same at these 
two global states. Formally, W ~A w' iff SA (W) = SA (w'), 
i.e. ACA(W) = ACA(W') and POA(W) = POA(W'). Note that 
our model does not contain a valuation function as we do 
not have propositional symbols. 

A protocol execution results from agents taking actions and 
corresponds to a multi-agent system. We can view this sys­
tem from two perspectives: that of an external agent who 
observes the system from the outside and does not interact 
with the agents executing the protocol, and that of the in­
ternal agents engaged in the execution. The former view is 
formalized using a global truth relation, denoted by F. The 
latter is formalized by a local truth relation, which is a family 
of truth relations FA , indexed by agents A. 

2.3.1 Global truth 
The global truth relation formalizes what an external ob­
server can conclude from the system. By design, this agent 
is not resource-bounded and has access to all communication 
and can reason about the local states of individual agents. 
In particular, he ascribes implicit belief to the agents, i.e. he 
can compute whether an agent A would implicitly believe in 
some formula rp , had A enough information about the overall 
communication that is taking place. 

In order to formalize these ideas, and to define the semantics 
for predicates such as says and sees, we need to express spe­
cific relationships between agents and messages at a global 
state. For example , an agent should only be entitled to say 
the messages he is able to compose from the information he 
possesses. Similarly, he should be entitled to see the sub­
messages that he can obtain from a message he receives. To 
this end, we introduce the operators comp and submsg to 
define two abbreviations that will be useful in the semantic 
definitions in §2.3; assuming that M is a message at w , the 
set comPA(w, M) contains all the sub-messages that A used 
to construct the message jV[ at w , i.e. com P A (w, M) = 

if ME MA(W) 

otherwise 
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and the set submsgA (w, M) consists of all sub-messages that 
A can obtain from M given the keys he possesses at w , i.e. 

submsgA(w, M) = analz(PoA(W)) n parts( {M}). 

We use commit sets C to define the semantics of the comml 
and commR formulas. During one execution of a protocol 
Prot, an agent A can take either the initiator role or the 
responder role . Intuitively, within an execution, each role 
is identified by some message M, where M is, or contains, 
a nonce. The set C{rot(A, B , M) contains the actions that 
A performed in order to commit as initiator to a responder 
B using message M . Similarly, c~rot(A , B , M) contains the 
actions that B performed in order to commit as responder 
to an initiator A using message M. Both sets are obtained 
directly from the description of the protocol. We illustrate 
this by means of our running example. 

Example 5 In an execution of the NSPK protocol (Fig. 1), 
the initiator A commits to the responder Busing N A after 
performing the actions corresponding to the steps encoded 
by the rules nspkJ' nspk2 and nspk3 ' Hence, the commit 
set C7 SPK (A, B , NA) = {sendA(B, ~A 0 NA frKB)' recA( ~NA 0 

NBfrKA ), sendA(B, ~NBfr KB)}' Similarly, the responder's 
"view" is formalized by the set Cj't"(A,B,NB) = {recB(~Ao 
NAfrKB), sendB(A, ~NA 0 NBfrKA ), recB( ~NBfrKB)} ' • 

We are now ready to define the global truth relation . 

Definition 6 The truth of a formula rp at a global state w 
in a model !m = (W, ~ , 0) , in symbols !m, W F rp, is the 
smallest relation satisfying: 

9Jt, W i= saysA(B, M) if sendA(B, M') E ACA(W) and 
ME comPA(w , M') for some M' 

9Jt,w F seesA (M) if recA(M') E ACA(W) and 
M E submsgA (w , M' ) for some M' 

9Jt,w F hasA(M) if ME analz(PoA(W)) 

9Jt , w F secg(M) if 9Jt, W F hasA (M) for all A E 9 and 
9Jt, w f6 hasB(M) for all B rf. 9 

9Jt ,w F commIA(B, M) if C{rot(A, B , M) <:;; ACA(W) 

9Jt,w ~ commRA(B, M ) if C~ro t ( B , A , M ) <:;; ACA (w) 

9Jt , W F 'P -+ 1/1 if 9Jt, W f6 'P or 9Jt, W ,= 1/1 
9Jt, W F BA 'P if 9Jt, w' F 'P for all w' 

such that W rv A W' 

9Jt , w F XA 'P if 9Jt , W F A 'P and 'P E F A(W) 

We write !m F rp iff!m, W F rp for all W E W . • 
In other words, at a global state W an agent A says M to 
an agent B iff he sent an M' to B such that he used M in 
composing M', A sees M iff he received an M' such that 11,;! 
is a readable sub-message of M', and A has M iff M is an 
analyzable message in A's set of possessions. A message M 
is a secret shared among the agents in a group 9 at W iff at W 

all the agents in 9 possess M and no agent outside the group 
possesses M. Moreover, A commits to an agent B as an ini­
tiator (respectively, responder) using M iff A has performed 
the actions in the initiator's (respectively, responder's) com­
mit set. Furthermore, an agent A implicitly believes in rp at 



w iff c.p holds in all the worlds indistinguishable to A from w, 
which is the standard interpretation of the belief of logically 
omniscient agents. We employ the explicit belief modality 
(and awareness) to formalize the formulas in which a non­
omniscient, resource-bounded agent believes: We start by 
restricting the formulas c.p that an agent might explicitly be­
lieve in at a global state w to those in his language, which 
is expressed by c.p E FA(W) (see Def. 4), and then further 
restrict these formulas to those he can prove using the infor­
mation he currently possesses, which is captured using the 
local truth relation FA. 

2.3.2 Local truth 
!JR, W FA c.p captures the truth of a formula c.p relative to an 
agent A at a global state w. Since there are situations in 
which c.p expresses properties of A himself, and situations in 
which c.p expresses properties of other agents, we will distin­
guish between these two forms of reasoning in our definition 
below. In particular, different forms of reasoning require 
different kinds of information. For example, if A has to 
check whether he possesses M, he will check whether his 
possession set contains M . But, to check whether an agent 
B has M , A cannot just access the set of B's possessions. 
In our formalization, A uses his awareness set to determine 
whether Bused M to compose a message B has sent, or 
that B received M in some message M' that B can analyze. 

Modeling an agent reasoning about his own local state is 
straightforward: we use the sets camp, submsg and analz to 
define the semantics for the says, sees and has predicates, 
respectively, as in Def. 6. 

Modeling an agent reasoning about other agents is more 
complicated. Here we employ the agent's awareness set to 
define the semantics of the formulas . To accomplish this, 
we define "meta-versions" of the sets comp and submsg, 
expressing the messages that some other agent may have 
used to compose a message he has sent, as well as the sub­
messages he might be able to obtain from a message he 
has received. These capabilities are formalized by means 
of the sets m-comp and m-submsg, respectively. The set 
m-com p A (B, C, w, kJ) consists of the messages that , at global 
state w, A expects B to have used to send the message M 
to some agent C. The set m-submsgA (B, w, M) consists of 
the sub-messages of M that , according to A's awareness set 
at w, agent B might be able to possess. The rules defining 
these sets are given in Fig. 3. 

We explain the intuition behind some these rules. Rule 
mc-inj formalizes that if an agent A is aware that an agent 
B sent a message M, then M is among the messages that A 
expects B to have sent. In ms-pk, if A observed that B re­
ceived a message M' such that M encrypted with B's public 
key K8 is part of M', then A concludes that B has M. Note 
that, although an agent reasons about messages that he may 
be unable to analyze, there will not be any secrecy violation 
following from these rules: reasoning about the existence of 
a message does not correspond to possessing it. 

The awareness set of an agent encodes the actions that he 
expects other agents to have performed. To reason about 
commitment, we have to check whether a set of actions, i.e. a 
commit set, is a subset of the awareness set of an agent. To 
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this end, we introduce a function that maps actions ac in a 
set C to the corresponding set Jorm(C) = {a2J(ac) I ac E C} 
offormulas, where a2J(ac) = saysA (B, M) if ac = sendA (B, 
M) and a2J(ac) = seesA(M) if ac = recA(M) . 

We now turn to the formal definition of FA . 

Definition 7 The truth of a formula c.p relative to an agent 
A at a global state w in a model !m = (W, ~, a), in symbols 
!JJl, w FA c.p, is the smallest relation satisfying: 

VYI,w FA <P -+ 'IjJ if VYI,w ~A <P or VYI,w '=A 'IjJ 

For an agent reasoning about himself:3 

VYI,w F AsaysA(B,M) if sendA(B,M')EAcA(W) 
and ME compA(w, M') for some M' 

VYI,w F A seesA(M) if recA(M') E ACA(W) 
and ME 5ubmsgA(w,M') for some M' 

VYI,w I= A hasA(M) if ME analz(PoA(W)) 

VYI,w '=A commIA(B, M) if C[rot(A, B, M) ~ ACA(W) 

VYI, W FA commRA(B, M) if C~rot(B, A, M) ~ ACA (w) 

For an agent A reasoning about an agent B :j:. A: 

VYI,w I=A saysB(C, M) if saysB(C,M') E QA(W) 
and M' such that ME m-compA(B,C,w,M') 

VYI,w I=A seesB(M) if sees8(M') E QA(W) 
and M' such that ME m-submsgA(B,w, M') 

VYI,w I=A hasB(M) if VYI ,w I=A saysB(C,M) for 
some C or VYI,w I=A sees8(M) 

VYI,w I=A commIB(C, M) if jorm(C[rot(B , C, M)) ~ QA(W) 
for some C 

VYI,w I=A commRB(C, M) if jorm(C~rot(C, B, M)) ~ QA(W) 
for some C 

The semantics for secrecy (where the agent identifiers range 
over the identifiers in A's possession set POA (w)) is: 

VYI,w I=A secc(M) if VYI,w I= A hass(M) for all BEg and 
VYI,w tt=A hasc(M) for all C rf. g . • 

Let us give the intuition behind the definitions for an agent 
A reasoning about another agent B. We define that, for an 
agent A at global state w, B says M to an agent C iff A 
is aware that B has sent an kI' to C such that M was (ex­
pected to be) used by B to compose M', Similarly, agent 
B sees a message M iff A is aware that B has received a 
message M' such that M is a sub-message that B is (ex­
pected to be) able to see from M' . Agent B has M iff either 
B says or sees M. From the point of view of A , an agent 
B has committed to an agent C as an initiator of an exe­
cution identified by M iff A is aware that B has performed 
the actions in the initiator's commit set. Similarly, for the 
commR formula. As we observed above, there is no clause 
for explicit belief since an agent cannot reason about what 
another agent may explicitly believe. 

Note that an agent reasoning about his own state (local 
truth) coincides with an external agent reasoning about this 

3We do not define the FA relation in the case of the XA 
since this reduces trivially to FA. 



saYSB(C, M) E O<A(W) nM rr K-l E m-eomPA(B, C,w,M') 
B MJ 0 M2 E m-eompA(B, C,W, M) 

ME m-eompA(B, C, w , M) 
me-inj 

ME m-eomPA(B , C, w, M') 
me-sig 

Mi E m-eomPA(B,C, w , M) 
me-i (i E {l , 2} ) 

seesB(M) E O<A(W) 
ms-inj 

nMrrKB E m-submsgA(B,w,M') 
ms-pk 

MJ 0 M2 E m-submsgA(B,w, M) 
ms-i (i E {l, 2} ) 

ME m-submsgA(B,w , M) ME m-submsgA(B,w, M') Mi E m-submsgA(B, w, M) 

Figure 3: The rules defining the sets m-comp and m-submsg 

agent (global truth). Hence, as shown in the appendix, it 
follows straightforwardly from Def. 6 and Def. 7 that: 

Lemma 8 For all agents A and B, global states w , and 
formulas r.p E FA(W) such that r.p E {saysA(B, M) , seesA(M), 
hasA(M)}, we have that DJ1,w 1= BAr.p iffDJ1,w 1= XAr.p .• 

To summarize, our formalization expresses that there are 
two sources of information (local states and awareness sets), 
which provide different levels of reliability (certainties and 
expectations) and are employed differently (for reasoning 
about oneself or about other agents) . 

2.4 Defining awareness 
We use awareness to represent the expectations of an agent 
with respect to the actions of the agents with whom he is 
communicating. Each step of a protocol gives rise to (i) a 
rule capturing the expectations of the sender with respect to 
the send action he has performed, and (ii) a rule capturing 
the expectations of the receiver regarding the correspond­
ing ree action . Note that an agent's expectations may not 
correspond to reality, as he might be aware of, and thus 
explicitly believe in , false statements (as is the case in the 
man-in-the-middle attack on the NSPK protocol, which we 
consider below). 

The rules representing the sender perspective are obtained 
from the protocol steps in a straightforward manner. Given 
the n-th step A -t B : M of a protocol Prot, the sender A, 
who has the sendA(B, M) action recorded in his local state, 
expects the receiver B to get the message Mj thus, the rule 
ProLsn adds the formula seesB(M) to A's awareness set: 

sendA(B,M) E Aq(w) 

( 
ProLsn . 

seesB(M) E O<A w) 

The rules capturing the expectations of the receiver depend 
on the protocol the agents are executing, and thus cannot 
be given in a general form like the sender rule. Instead, we 
consider a concrete example and give the receiver rules for 
the NSPK protocol in Fig. 4. 

The intuition behind the rule nspk_rJ is that, upon the re­
ceipt of the first message, agent B expects that it has been 
sent by agent A. The rule nspk_r2 formalizes that when A 
receives his nonce NA back, he may conclude that B sent it. 
The intuition behind nspk_r3 is similar . 

Note that the expectations of the agents do not always cor­
respond to what is actually happening. In fact, attacks run 
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counter to the expectations of the agents (as these are based 
on incomplete information). 

Although illustrated only for the NSPK protocol, the ideas 
presented here are general. We have used our logic to rea­
son about a number of other protocols, e.g. the full NSPK 

protocol and the Otway-Rees protocol with shared keys. 

3. MODALITIES AND SPECIFICATIONS 
In this section, we use our modalities to formally charac­
terize different kinds of specifications of security properties. 
Furthermore, we show how to use them to reason semanti­
cally about attacks in interleaved protocol executions. 

3.1 Extensional and intensional specifications 
A number of researchers , e.g. [5 , 12, 19], have observed that 
there are two different kinds of security specifications: exten­
sional specifications, which are, in some sense, independent 
of the details of a particular protocol, and intensional spec­
ifications, where statements of properties are based on the 
protocol itself. For example, consider the definitions given 
by Roscoe [19, pages 31 and 34] : 

We classify a specification as extensional when 
it is independent of the details of the protocol 
and would apply to any other protocol designed 
to achieve the same effect. Thus, inevitably, it 
cannot mention the actual messages passing be­
tween nodes during a protocol since these vary 
from one to another . Instead, it will test the 
states of mind (knowledge, belief, etc.) of the 
various participants including the spy. 

A specification is classified as intensional when 
its primary purpose is to assert a property of 
the way, in terms of communications within a 
protocol, a particular state is reached. 

Until now, these definitions have lacked a formal status. One 
of the contributions of our work is to characterize these no­
tions in terms of our modalities. 

We begin by observing that the implicit belief modality 
has an extensional character as the properties it formalizes 
are independent of the particular message exchanges. Intu­
itively, this is because implicit belief captures the view of an 
external , resource-unbounded observer following the proto­
col execution. In order to check whether a property denoted 
by a formula r.p holds, such an observer need not be aware 
of the particular message exchanges of the protocol execu­
tionj rather, he simply checks whether the local states of the 
agents satisfy r.p. 



sendA(B, ~A 0 NA~KB) E ACA(W) 
req(~NA 0 NB~KA) E ACA(W) 

sendB(A, ~NA 0 NBJKA ) E ACB(W) 
recB(~NB~KB) E ACB(W) 

Figure 4: Receiver rules for the NSPK protocol 

r-I Implicit bellel ~ Ext~nslonal -1 ProtOCOl Ii specifications Independent 

ModaIlt1es Properties 

L- I Explicit bellel ~ Intensional -1 ProtOCOl 

I 
--l 

spedficaHons dependent 

Figure 5: Relation between modalities, kinds of 
specification and security properties 

In contrast, the explicit belief modality has an intensional 
character. This modality is based on the agents' aware­
ness sets, which model the agents' local, resource-bounded 
views of the expected results of their actions. The aware­
ness sets are in turn determined by the protocol rules, and 
hence statements about explicit belief are statements about 
the results of particular protocol steps. Fig. 5 summarizes 
these relationships. 

This logical characterization of the two definitions has the 
status of a thesis: since the definitions are informal (natural 
language), our thesis cannot be formally proven. However, 
we can support it by showing that it holds for different com­
monly considered kinds of specifications. In what follows, we 
will consider two examples: secrecy of a message (which can 
be specified extensionally) and an agent's completion of a 
protocol execution (which is inherently intensional). 

To illustrate how these properties can be modally specified, 
we return to the NSPK protocol, our running example. We 
will start from an informal specification of a correctness re­
quirement for a responder of the protocol, expressed in terms 
of secrecy and completion. We then show how a progressive 
refinement of the informal specifications of these properties 
leads to their formal specifications in terms of implicit and 
explicit belief, supporting our thesis. Moreover, in §3.3 and 
§4, we will use the resulting specification to show how we 
can reason about modal specifications, and in what sense 
this specification is equivalent to one stated directly in terms 
of properties of interleaved traces. 

3.2 Fonnalizing secrecy and completion 
A message is a secret between a group of agents at some 
state of a protocol execution when, at that state, all the 
agents in the group have the message, and all the remaining 
agents do not have it. The way in which the state is reached 
is irrelevant to the secrecy of a message. Only the possession 
of the agents at that particular state matters! On the other 
hand, the completion of a protocol execution by an agent 
refers to a sequence of actions performed by the agent, not 
to the properties of an individual state. Thus, a specifica­
tion of completion involves the details of the protocol and is 
therefore intensional. 

Consider again the NSPK protocol. Agent B uses his nonce 
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NB as a challenge to authenticate agent A. One way of 
expressing the correctness requirement for a responder B 
executing an instance of the NSPK protocol with an initiator 
A is by means of the following two properties that must hold 
in a trace t: 

PI. Completion: B completes an execution with A using 
the nonce N B. 

P2. Secrecy: The responder's nonce NB is a secret between 
B and the initiator A. 

Note that secrecy is necessary, but not sufficient, for correct­
ness; we should check whether the responder's nonce N B is 
a secret only when the corresponding protocol execution is 
completed. That is, property I should imply property 2. 

We refine these informal specifications and formalize them 
within our logic. We start with the completion property, 
which we state in a more refined but still informal way. 

PI'. There exists a state in the trace such that B completes 
an execution as a responder with an initiator A using 
a nonce NB. 

Formalizing the meaning of "B completes an execution with 
an initiator A using a nonce N B" , we obtain: 

PI". There exists a state w of 9JlI such that 9JlI, W F XB 
commRB(A , NB). 

More specifically, the predicate commR formalizes that B 
has completed the execution as a responder, and the in­
tensionality is represented by the use of the explicit belief 
modality. 

We now turn to the secrecy property, which (bringing out 
its inherent extensionality) we can state in a more refined 
but still informal way as: 

P2'. There exists a state in the trace such that N B is a 
secret between agents B and A. 

The formalization of this extensional specification is based 
on the fact that, in order to specify what a secret is, we do 
not need to refer to the protocol: NB is a secret between B 
and A iff B and A are the only agents who possess N B. We 
can directly formalize this using the sec predicate and the 
implicit belief modality to obtain: 



P2". There exists a state W of 9J1t such that 9J1t , W F BB 
SeC{A,B}(NB). 

The correctness requirement for the responder of an execu­
tion of the NSPK protocol combines completion and secrecy 
by requiring that if, for some trace t, B completes an exe­
cution identified by N B as a responder of A, then N B must 
be a secret between B and A. Formally, the responder's 
requirement for the protocol is: for all t E P, models 9J1t , 
agents A and B, and nonces N B , 

9J1t F XBcommRB(A,NB) --+ BBSeC{A,B}(NB). (1) 

3.3 Reasoning about the NSPK protocol 
We now show how to use our semantics to reason about 
specifications. There are two possibilities, depending on the 
relationship of the specification to the set of intended mod­
els (i.e. traces). The first possibility is verification, which is 
establishing the correctness of a protocol by showing that 
it holds for all "protocol conform" models. For instance, 
we could show that all models 9J1t , resulting from all possi­
ble NSPK protocol traces t, satisfy the agents' requirements, 
such as that for B in (1). In a manner similar to Paulson's 
inductive method, such verification could be carried out by 
induction over the set of all models 9J1t , corresponding to 
those t in the inductively defined set of traces. 

A second possibility is falsification. We will illustrate this 
here by giving a model where B's requirement (1) fails to 
hold. That is, to falsify (1), we give a particular model 
9J1~lIn' that models an execution trace corresponding to the 
man-in-the-middle (MITM) attack. 

Theorem 9 There exist an NSPK execution trace t, a model 
9J1t , agents A and B, and a nonce N B such that 9J1t V= 
XB commRB(A, NB) --+ BB sec{A,B} (NB). • 

The MITM attack on the NSPK protocol [16] consists of the 
sequence of events shown in Fig. 1. Thus, consider the 
model 9J1~,ml = (wt,~,a) obtained from the trace t = 
(evI, eV2, eV3, eV4, eV5), which represents the smallest sequence 
of events containing this attack. The components of 9J1~IITM 
that are relevant for our analysis are: 

• ~a= {(wo,wo), (WI,WI), (WI, W2), (W2, WI), (W2,W2), 
(W3,W3), (W4, W4), (W4, W5), (W5,W4), (W5, W5)}, 

• ~b= {(wo,wo),(wo,WJ),(WI,WO),(WI,WI),(W2,W2), 
(W3,W3), (W3, W4), (W4, W3), (W4,W4), (W5, W5)}, 

• aa (W5) = {sees.py ( ~a 0 na rr k,py)' says.py (a, ~na 0 nb rr k",y), 
sees.py ( Dnb rr k"Pu)}' 

• ab(w5) = {saysa (b, Da 0 na rr kb)' sees a ( Dna 0 nbh.), 
saysa(b, Dnbrrkb)}' 

We focus on W5 since it is the global state obtained after the 
last event in t. The local states of the agents a and b and 
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the possessions of the spy at W5 are: 

{ 

POa (W5) = {a, ka, k;; I, spy, k. py , na, nb}, 

Sa (W5) = ACa (W5) = {senda ( spy, {Ia 0 na Ih,pu)' , 
reca(Dna 0 nbrrk.), senda(spy, Dnbak"'Pu)} 

{

POb(W5) = {b, kb, k;1 ,a, ka,na,nb} 

Sb(W5) = ACb(W5) = {recb( Da 0 na rr kb)' 
sendb(a, ~na 0 nbrrk.),recb(Dnb~kb)} 

where initState(a) = {a, ka, k;;l, spy, k.py }, initState(b) 
{ka,b,kb,kb-

I } and initState(spy) = {spy,k.py,k .. ;,~,a, ka, 
b, kb}. We can then use the semantics to demonstrate the 
existence of the attack (as shown in the proof of Theorem 9 
in the appendix). 

4. MODAL VERSUS TRACE-BASED SPEC-
IFICATIONS 

We now show that our modal specification for B's correct­
ness requirement for the NSPK protocol is equivalent to a 
trace-based specification of the same protocol requirement. 
We establish this by showing the logical equivalence of both 
specifications with respect to our semantics. 

As noted above, a trace-based interleaved semantics can be 
used both for interactive verification [18] and for falsifica­
tion based on infinite-state model-checking [3]. The specifi­
cations in both approaches are intensional and specify what 
must (or cannot) hold after certain occurrences of events. 
For example, for verification, in the case of NSPK one might 
specify B's requirement by formalizing that NB is a secret 
after the last two steps of the protocol have occurred: 

(seesB( ~NB ~ KB) 1\ saysB(A, ~NA 0 NB ~ K A )) 

--+ ...,has.py(NB). (2) 

For falsification, one formalizes the negation of (2), i.e. 

(seesB (~N B ~ KB) 1\ saysB (A, ~N A 0 N B ~ K A )) 

1\ has.py(NB), (3) 

and searches for a trace with this property. 

The specification (3) is a direct translation of the Haskell 
program used in [3] to specify an attack.4 This can be di­
rectly expressed as a formula in our logic and proved for 
some A, B, and N B, at some world W of some model s:mt 

resulting from some execution trace t. 

Showing that this is equivalent to the statement of Theo­
rem 9 establishes that the attack in the trace-based specifi­
cation is equivalent to the attack in our modal specification 
with respect to our semantics. The equivalence between 
the two specifications can be shown alternatively (in terms 
of "verification" rather than "falsification") by showing the 

4Paulson's verification specification is similar to (2). He 
formalizes an intensional specification of secrecy for the 
nonce N B by stating that if there is an event B --+ A : 
~ N A 0 N B ~ {( A in the set of traces modeling the NSPK proto­
col, then the spy does not possess the nonce N B. 



equivalence of (1) and of a formula representing the cor­
rectness of B's requirement. As shown in the appendix, for 
non-compromised agents we have: 

Theorem 10 For all traces t of the NSPK protocol, mod­
els WIt, agents A, B such that A ::/; spy, B ::/; spy, WIt F= 
...,has,py(KA: 1

) and WIt F= ...,has,py(KB1
), and nonces NB, 

WIt F= XBcommRB(A,NB) -t BBsec{A,B}(NB) 

iff 

WIt F= (seesB (~NB ~ KB) /\ saysB (A, ~NA 0 NB ~ K A )) 

-t ...,has,py(NB). 

5. RELATED WORK 
We now compare our work with related approaches to spec­
ifying and classifying security properties. Abadi and Tut­
tle [1] define a possible-worlds semantics for an extension 
of BAN that models interleaved protocol executions. How­
ever, details and examples are lacking so that a thorough 
comparison is difficult. Although their logic lacks an ex­
plicit notion of awareness, their hide operator conceals the 
contents of unreadable messages, and thus provides a basis 
for modeling "belief as a form of resource-bounded, defeasi­
ble knowledge" [1, p. 202]. It thereby captures some of the 
notions that our explicit belief modality formalizes. 

In [2], we initially investigated how to use awareness to 
model resource-bounded reasoning in interleaved protocol 
executions. The multi-modal logic that we have given here 
differs considerably from [2]: while both are based on the ex­
plicit and implicit beliefs of the agents, here we modified and 
systematized the semantics for the modalities, the method 
how the awareness sets are computed, and how the logic is 
employed to specify properties and reason about attacks. 

Interleaved trace-based semantics is a standard approach to 
modeling distributed computation. Paulson [18] has cham­
pioned its use for inductive verification of security protocols, 
and the same semantic model can directly be used for model 
checking as well , e.g., as in [3]. Specifications in this setting 
(whether for verification or model checking) tend to be in­
tensional as they are formalized in terms of sequences of 
protocol specific events. Our results in §4 illustrate how 
we can employ our modal specification to provide more ab­
stract, high-level specifications of security properties with 
similar expressive power based on this semantic model. 

Our definitions of intensional and extensional specifications 
come from Roscoe [19]. He also introduces the notion of 
canonical intensional specification, which "simply asserts that 
the protocol runs as expected" [19, p. 34]' i.e. no agent can 
believe a protocol execution has completed unless the cor­
rect series of messages has occurred (consistent with all the 
various parameters) up to and including the last message 
the agent communicates. In our approach, this intensional 
character is directly formalized by the commit sets C, and 
specified with the explicit belief modality. Note, however, 
that since we model action sets instead of action sequences, 
we cannot formalize the order in which the actions occur. 
However, it is straightforward to modify our framework to 
capture this idea. 

9 

A number of other authors, e.g. [5, 12, 17, 21], have looked 
at classifying and relating specifications. Notable in this re­
gard is the work of Lowe [17], who uses CSP to formalize 
a hierarchy of authentication specifications, in which each 
level of the hierarchy expresses one possible meaning of "en­
tity authentication" . These specifications are all intensional; 
abstract notions such as secrecy are not accounted for. Us­
ing explicit belief it should be possible to formalize similar 
hierarchies in our setting. Moreover, using implicit belief it 
should be possible to extend these hierarchies, for example 
combining the intensional notion of "injective agreement" 
with the extensional requirement that some of the messages 
exchanged should remain secret. 

6. CONCLUSIONS AND OUTLOOK 
We have defined a multi-modal security logic with a trace­
based semantics. Our logic combines the simple expressive 
semantics of trace-based approaches with the use of modal­
ities to support high-level, trace-independent specifications 
of security properties based on different notions of belief. 
The logic also sheds light on , and allows us to give a logi­
cal characterization of, extensional and intensional specifi­
cations of security properties. 

There is considerable work ahead and many interesting prob­
lems are still open. First, the account we have given is se­
mantic. Via a semantic embedding, for example in higher­
order logic, we could mechanize deductions in Isabelle (we 
have already carried out some initial work in this direction). 
More interesting though is to derive, from the semantics, 
higher-level proof rules for reasoning about the modalities. 

Second, we have illustrated the logical equivalence between 
trace-based specifications (translated into our setting) and 
modal specifications. What is missing is a general statement 
about such equivalences. Such a statement is difficult as it 
requires the definition of a general class of trace-based speci­
fications, and circumscribing such a class is problematic due 
to their intensional nature. One possible solution, which we 
would like to investigate, is to show equivalence for partic­
ular classes of specifications. For example, the semantics of 
the commit formulas captures an idea that is very close to 
the one of matching histories [8], except that, since we use 
sets of actions instead of sequences, we cannot talk about 
their ordering. 

Finally, in our example in reasoning about attacks (i.e. the 
man-in-the-middle attack on the NSPK protocol) we knew of 
its existence in advance. One of the advantages of logics like 
BAN is that , in some cases, they allow for a kind of abduc­
tive reasoning as they provide a way of finding attacks by 
identifying missing assumptions required for proofs. When 
a deductive system for our logic is in place, we will also have 
the chance to explore these possibilities. 
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APPENDIX 
PROOF OF LEMMA 8. We begin by observing that, for a 

formula tp E FA (w) such that tp E {saysA (B , M) , seeSA ( IV!), 
hasA (M)}, we trivially have that 

911 , W F tp iff 911, W FA tp (4) 

since the definitions of 911 F tp and 911 FA tp are in this case 
identical. The proof then proceeds as follows. 

(Left-to-right) Assume that 911 F BA tp. By definition, 
911, w' F tp for all w' such that w ~ A w' , and thus 911, w F tp 

as w ~A w by definition. From (4) , we then have that 
911 , W FA tp , and thus, by definition, 911, w F <1'A cp. 

(Right-to-left) Assume that 911, w F <1'A tp . By definition , 
911, w FA tp and thus from (4) we have that 911, w F tp. Since 
tp characterizes a property of A's local state, if 911, w F tp 

then 911, w' F tp for all worlds w' in the equivalence class 
induced by A's indistinguishability relation ~A . Thus, by 
definition, 911, W F BA tp. D 

PROOF OF THEOREM 9. We first show that 911~IIT'" Ws F 
<1'b commRb(a, nb) and 911~IITM , W5 ~ Bbsec{a.b} (nb). By def­
inition of explicit belief, 911~!ITM ' 105 F <1'b commRb(a, nb) iff 
!JJl~!In"w5 Fb commRb(a,nb) and commRb(a,nb) E Fb(w5). 
From Pob(ws) it follows that commRb(a, 7tb) E Fb(ws) holds. 
By definition , 911~"n" w" Fb commRb(a ,7tb) holds iff c1tK 

(a ,b, nb) ~ ACb(W5) , which holds because C'!r"(a,b,7tb) = 
{recb(naonaGkb)' sendb(a, ~naonbGkJ , recb (nnbGkb)}' We 
can thus conclude that 911~!Inf ' Ws F <1'bcommRb(a, nb). 

To show that b does not implicitly believe in SeC{a.b} (nb) at 
W.'i, observe that by definition 911~fIl'" W5 ~ Bb SeC{a .b}(nb) 
iff 911;""" w' ~ sec{a.b} (nb) for some w' such that Ws ~b w'. 
Since 10' can only be Ws by the definition of ~b in 911~IIT'" 
we check whether 911~"n" 105 F sec{a.b} (nb) , which holds iff 
911~"n" Ws F hasc (7tb) for all agents C E {a , b} , and 911~f1nl ' 
W5 ~ hasD(nb) for all agents D (j. {a , b}. POa (W5) and 
Pob(w.'i) tell us that both a and b possess nb. Since we are 
only considering agents a, b and the spy, D can only be 
the spy. Since 911~IIT '" Ws F has.py(nb) , we conclude that 
!JJl~fI1'" Ws ~ sec{a.b} (nb). D 

PROOF OF THEORE:VI 10. (Left-to-right) We assume 911t 
F <1'a commRR(A , N a ) ~ BB sec{A.a}(NB) and 911t , w F 
seesB (nNa G K /1) 1\ saysa (A, nN,\ 0 NaG l<.J for an arbitrary 
w , and show that !JJl t

, w F -,has.py(Na) . 

911t , w F seesB(nNaGK8) implies that there exists a mes­
sage M such that recB(ivI) E ACB (w) and nNaGl</1 E 
submsg a CUI , M) . By the inductive definition of the protocol, 
M can only be nN B G Kg, which implies that recB( ijN B G KB) 
E ACB(W). 

911t , w F saysa(.4 , UNA 0 NBGKA) implies that there ex­
ists an M such that sendB(A, M) E Aca (w) and UNA 0 

NBG,,'! E comPA(w, M) . By the inductive definition of the 
protocol, M can only be UNA 0 NaGKA' which implies that 
sendB (A, UNA 0 NB G K,,) E Aca (w). 

From senda(A, UNA 0 NBGKA ) E ACB (w) and from reCB 
( UNa G K B) E ACB (w) it follows, again by the inductive def-
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inition of the protocol, that rec B ( ~ A 0 NAG K B) E Aca Cw). 
Thus, C,;£PK(A , B , Na) ~ Aca(w). This implies that 911 t , w 
FB commRB(A,Na). Since it is straightforward to show 
that commRB(A,NB) E FB(w), we have that 911t ,w F 
<1'BcommRB(A,NB). 

The assumption and 911t , w F <1'B commRa(A, NB) imply 
911t ,w F BBsec{ A.a}(NB), i.e. 911t , w' F sec{A,B}(Na) for 
all w' such that w ~ B w'. By the reflexivity of ~ B we have 
911t , w F SeC{A.B}(Na ), and by the definition of secrecy we 
have 911t, w ~ hasc(Na) for all C ~ {A , B} , so we can 
conclude that 911t , w F -,has.py (N B). 

(Right-to-left) We assume 911t F (seesB(UNBGKB) 1\ saysB 
(A , ~NAONBGKA)) ~ -,has.py(NB) and 911t ,w F <1'B commr 
(B , A, N B) for an arbitrary w , and show that 911t , w F 
BB sec{A.B}(NB), i.e. 911t , w' F sec{A.B}(NB) for all w' E 
911t such that w ~ B w'. 

911t ,w F <1'B commRB(A , N B) implies, by definition, that 
911t ,w FB commRa(A,NB). From the definition of com­
mitment, it follows that C,;£PK(A , B , NB) ~ ACB(W) . Since 
w ~B w', we have that ACB (w) = Aca (w') and thus 
C~SPK(A,B , NB) ~ ACB(W'). This implies both (i) 911 t , w' F 
saysa(A , UNA 0 NBGKA), since sendB(A , UNA 0 NBGKA) E 
ACB (w') and UNA 0 NBGK 4 E compB(w' , nNA 0 NaGK A ) , 

and (ii) 911 t ,w' F seesB(~NBGKB)' since reca(ijNaGK8) E 
ACB(W') such that ijNBGKB E submsgB{w' , ijNBGKB) ' The 
assumption , together with (i) and (ii), implies 911t

, 10' F 
-,has.py (N B). Since B sent a message in the form of step two 
to A, we also have that UNA ONBGKA E PoA(w') and Na E 
analz(PoA (11.1')), which implies that 911t , w' F hasA(NB). 
Moreover, ijNBGKB E POB(W') and NB E analz(PoB(W')) , 
imply that 911t ,w' F hasB(Na ). It thus follows that 911t ,w' 
F sec{A.B}(NB) for an arbitrary w' such that w ~B w', and 
hence 911t , w F BBsec{A,B}(NB ). D 
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ABSTRACT 
As agent technology is evolving, security becomes more im­
portant . This paper addresses the problem of computing 
with secret data, in particular the application of a digital 
signature. In case an agent must sign a document at a for­
eign host, it is not desirable to give the agent 's private key 
to this host. The private key can be seen as the only infor­
mation that can proof the identity of the agent , hence this 
information should not be revealed to anyone. This paper 
gives several solutions how an agent can sign a document 
without giving its private key to the host. Double signing 
is a problem here, and also for this some solutions are given 
that makes it less attractive for the host to sign documents 
under the agent's name without having permission for it. 
The solutions can be seen as a new privacy enhancing tech­
nology for agent applications. 

General Terms 
Digital signatures, blind signatures, hidden private key, pri­
vacy enhancing technologies, agent security 

1. INTRODUCTION 
Agent technology is nowadays seen as one of the technologies 
that will playa key role for future IT-applications. As this 
technology evolves, awareness about security of this kind of 
technology is increasing. When looking from the user 's point 
of view, an agent is sent out to be executed at some foreign 
host . Sometimes, information with respect to security about 
this host is known and appropriate measures can be taken. 
However, in many cases the user does not know anything 
about the foreign host and therefore wants it to be protected 
against this host and against other agents present at that 
host. 

Providing security solutions for agents is even more complex 
than in conventional systems for the simple reason that the 
agent uses resources from a host it does not know whether 
it can be trusted. Even in the case that a good working 
trust model is present, there is still some data that an agent 
should not provide to any entity in the system, including 
the host. Such kind of data is the agent's private key. The 
agent's private key is the information that enables the agent 
to proof its identity to other parties. It is clear that no other 
entity than the user of the agent should have access to it. 

'This research has been performed within the framework 
of PISA, an interdisciplinary project related to privacy en­
hancing technologies in intelligent agent systems supported 
by the 1ST-programme of the European Commission. 
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One of the security mechanisms an agent should have access 
to is the digital signature. During its life cycle it will need 
to be able to sign documents or authenticate itself by using 
digital signatures. The problem is that signing a document 
involves the agent's (or user's) private key and as said before 
this is the most privacy-critical information of the agent , 
hence in case the agent platform cannot be trusted how can 
an agent sign a document without the platform being able to 
use its private key for other purposes. This paper proposes 
several solutions to this specific problem of how an agent 
can sign some document without anybody (except the user) 
can have access to the agent 's private key. It can be seen as 
a special case of computing with secret data. 

This paper is organized as follows. In the following section 
a solution outline is proposed in combination with related 
research. Section 3 describes several solutions and finally 
conclusions are written in section 4. 

2. SOLUTION OUTLINE 
In [14] several problems are stated that should be solved 
in order to provide security to mobile agents . One of these 
problems is how computing with secrets in public is possible. 
An example of computing with secrets in public is the ques­
tion of how an agent can remotely sign a document without 
disclosing the private key. Sander proposes an outline how 
these signatures should be constructed. In [10] a solution is 
proposed based on RSA , where not only the private key is 
hidden but the complete signature procedure. Several other 
solutions are proposed in [6] and [9] . 

The approach taken in this paper is different in a way that 
not the entire function is hidden , but only the data (private 
key) , while maintaining the property that a signature can 
only be set once. The advantage is that the signature and 
verification formulas can be used with a hidden key, but also 
like a conventional signature with a normal private key. The 
idea for the solution is that a transformation on the private 
key is needed, which results in a hidden private key. The 
original private key is stored at the user's trusted computer 
and the agent only has access to the hidden private key. It 
is clear, that it must not be possible to calculate the private 
key directly from the hidden private key. 

In several applications, such as electronic voting [13] and 
anonymous electronic cash [1] [12], the idea of computing 
with secret data is already well established, but is not al­
ways seen as such. These applications are based on blind 



signatures, first introduced by Chaum [3] . A blind signa­
ture allows a person to let somebody else digitally sign a 
message, without this signer knowing the content. The se­
cret in this signature function is the original message. In 
order to make this possible, the message is blinded and this 
is used by the signer to perform the signature operation [4]. 

In agent technology this idea of blinding data can be used. 
Instead of blinding the message, the private key should be 
blinded. This signature will then exist out of the following 
steps: 

1. Key generation 

2. Blinding operation on private key 

3. Signature operation 

4. Activation of signature 

5. Verification 

Steps 1, 3 and 5 are necessary in any conventional digital 
signature algorithm. Step 2 is the transformation from pri­
vate key into a blinded version and in step 4, the signature 
is activated. This step is necessary because in step 3 a sig­
nature is set using a blinded private key. This signature 
cannot yet be verified by using the agent's public key, be­
cause the blinded private key and the agent's public key are 
not related as such. Hence an activation procedure must be 
added. 

Steps 1 and 2 must be performed in a trusted environment , 
e.g. the user's computer. Step 3 and 4 are done at the 
foreign host . Finally the verification can be done anywhere 
in the system. 

3. AGENT DIGITAL SIGNATURE 
3.1 Introduction 
The various digital signatures as presented in this paper are 
based on the elliptic curve digital signature algorithm [8]. A 
small modification, similar to the one in [2] is done in order 
to be able to transform the digital signature function into 
one where a parameter is private. 

The security in elliptic curve cryptographic systems is based 
on the hardness of the discrete logarithm problem for elliptic 
curves. This problem can be informally described as follows 
[15] : Given two points P and Q on an elliptic curve such 
that Q = dP , find the integer d. This problem is gener­
ally believed to be infeasible in case the space in which d is 
chosen, is large enough. Certain curves are believed not so 
secure, such as supersingular curves [11]. To provide clarity 
in notation, for a point on the curve a capital letter is used 
and integers are shown in lowercase letters. 

In a conventional system, the digital signature exists out 
of three steps: key generation, signature operation and sig­
nature verification (steps 1,3 and 5 in paragraph 2) . The 
signer owns two kinds of keys; the private and public key. 
The private key, which is only known to the signer is used 
to sign a digital message and the public key is used to ver­
ify the validity of the signature [15]. In practice, the public 
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key is certified by a Trusted Third Party (TTP) , such that 
the public key is connected to an identity. Hence, the veri­
fication of the signature using the public key can proof who 
signed the document and this entity can not deny its signa­
ture afterwards. This property provides non-repudiation. 

1. Key generatio n 
The key generation starts with the signer choosing an 
elliptic curve E defined over Zp. The number of points 
on E(Zp) should be divisible by a large prime n. The 
signer selects a point P on E(Zp) of order n and selects 
a random integer d in the interval [1 , n -1]. Parameter 
d is the private key of the signer and must be kept 
secret. Using the private key, the signer can compute 
its public key: 

Q = dP over E(Zp) . (1) 

The public key is formed by the parameters (E, n , P, Q) 

2. Signature generation 
In order to sign a message m , the signer selects a ran­
dom secret integer k E [1 , n - 1] and computes: 

R 

r 

s 

kP = (xo , yo) , 

Xo mod n , 

km+rd mod n . 

(2) 

(3) 

The signature exists out of the parameters (r , s) and 
this is sent to the verifier in combination with the mes­
sage m. Parameter k must be different for each signa­
ture based on one private key d. In case k is equal for 
two different messages, d can easily be computed [5] . 

3. Verification 
By obtaining the right signature parameters, public 
key and digital signature, the verifier can check the 
validity of the signature by computing: 

T (sP-rQ)m-I=(xl , yJ) (4) 

t Xl mod n 

The signature is valid if and only if: 

t=r 

3.2 Agent digital signature 
In case a software agent needs to sign a document , the agent 
cannot follow the above procedure, because there are some 
fundamental differences: 

• The agent is the signer of the document , but does not 
own the resources to be able to compute the signature. 

• The signer does not know whether it is located in a 
trusted environment. 

In case the agent lets the host compute a signature for it , 
using the algorithm described in 3.1, the host would have 
access to the agent 's private key d and that gives it the 
possibility to sign other messages out of the agent's name 
or it could pretend to be the agent (during authentication). 
In this case the property of non-repudiation would not be 
present anymore, because multiple entities have now access 



to the agent 's private key, hence there is no guarantee that 
the agent signed the document. 

As is described in the solution outline, the idea is to sign a 
document using the hosts resources by using an agent's hid­
den private key. After the signature is computed, the host 
activates the signature. The user generates several blinding 
factors , which hide the private key. These factors are then 
needed to activate the signature. This can be accomplished 
by storing a part of the blinding factors in the agent and 
a part securely at the user 's computer. How this can be 
achieved such that the activation can take place at the host 
and the private key cannot be computed by the host , is 
shown in the description of the algorithm. 

1. Key generation 
An elliptic curve is defined over Zp, of which the num­
ber of points on E(Zp) is divisible by a large prime 
n. The user selects a random integer d in the interval 
[1, n - 1]. Parameter d is the agent's private key and 
is securely stored at the user's computer. The user 
computes the agent's public key: 

Q = dP over E(Zp) . (5) 

The public key is formed by (E , P, n, Q) and this is 
stored in the agent and at the user's computer. Besides 
calculating a regular public key, the user computes a 
"temporary" public key: 

8 
r 

d-y mod n, 

8P, over E(Zp). 

(6) 

(7) 

and here -y is a blinding factor and 8 can be seen as 
a temporary private key. The parameters -y and d are 
stored securely at the user and not given to any other 
element in the system. Parameter r is also stored in 
the agent for verification purposes. 

Two extra parameters, a and A, are chosen at random 
in the interval [1, n -1] and the following is computed: 

C 

A 

a-y mod n , 

ACP over E(Zp) . 

(8) 

(9) 

In the next steps it will become clear why these pa­
rameters are necessary. The parameters A and C are 
stored in the agent, while a, -y and A are kept secret 
at the user's computer. 

2. Blinding operation on private key 
This step, the hiding of the private key, is completed 
at the user's computer. In order to obtain a blinded 
private key, the user selects one other blinding factor 
13 at random in the interval [1, n -1] . As in the digital 
signature algorithm, the user also selects a parameter 
k at random in [1, n - 1] and computes: 

R = kP = (xo, yo), (10) 

l' Xo mod n, 

R cR+!3P=(XI ,YI , ) (11) 

r = Xl mod n, 

d a-ld+Amodn, (12) 

in which d is the blinded private key. The blinding 
factors a, A and -y must be kept secret at the user's 
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computer, just like the agent's private key. Parame­
ters d, k, r, 13 and C are stored in the agent and therefore 
known to the host . These parameters in combination 
with the system parameters give the agent the oppor­
tunity to sign a document m while located at a foreign 
host and using its computational resources without let­
ting this host having access to its private key. Also, 
knowing these parameters, d cannot be computed by 
the host. 

3. Signature generation 
During the signature generation, the agent is located 
at the host. The signature on message m is then com­
puted by: 

s = km + rd mod n (13) 

It can be seen in equation (13) that the signature oper­
ation that the host must execute for the agent is equal 
to the signature operation in equation (3). It only dif­
fers in the fact that in (13) the hidden private key is 
used instead of the original private key. 

In paragraph 3.1 it is said that parameter k must be 
kept secret in order to prevent the revealing of the 
private key. Here, that would mean that the host must 
either not have access to it or the user must trust the 
host not to abuse this knowledge. Fortunately, this 
does not matter here, because the private key is not 
used. By using the same k twice, the host would not 
gain any more knowledge about the private key. 

4. Activation of signature 
Because some of the blinding factors are stored in the 
agent, the host is able to transform the signature to­
wards a valid signature. With valid, it is meant that 
the signature must be verified using the agent's public 
key as is registered at a Trusted Third Party (in case 
a PKI is used). The activation of the signature can be 
performed by computing: 

s = c8 + 13m mod n. (14) 

Parameters c and 13 are known by the host, but this 
is not sufficient to compute d or -y . Substitution of 
parameters gives the following signature: 

s = (a-yk + ,8)m + -yrd + a-yrA mod n. (15) 

From (15) , it can be seen that this signature is of the 
same form as (3). Out of (15) it is seen that it is not 
important whether k is kept secret or not. In case 
k is known and kept at the same value for multiple 
signatures, it depends still on the factor -y whether d 
can be calculated. Because the factor A is unknown 
by the host, it is impossible for the agent platform to 
calculated d or 8. Hence, neither the private key or 
the temporary private key can be computed. 

However, it is possible for the host to compute f = 
-yd + CA , but during the verification process it will be 
shown that this does not make it less secure. In case 
parameter A would not be used, e.g. no A would occur 
in (15), it would be possible for the host to calculate 
the temporary private key 8. 

5. Verification of signature 
The verification formulas are the same as in a con­
ventional digital signature algorithm based on elliptic 



curves, only now the temporary public key must be 
used in combination with parameter 11. : 

T = (sP-r(lI.+r))m- 1 =(xl,yd (16) 

XI mod n 

The signature is valid if and only if: 

t = r. 
For the verification process it is important that rand 
II. are given to the verifier as two distinct parameters 
instead of (II. + r) , because for the host it is possible 
to calculate f = ,d + c'\ and hence €P = II. + r, but 
the host cannot calculate "Id and c'\ separately and 
therefore cannot pretend to be the agent. 

By introducing this temporary public and private key, some­
thing extra is also achieved besides making it possible to 
activate the signature at the host. This temporary key pair 
can be seen as a pseudo-identity of the agent. Parame­
ter r must then be registered at the Trusted Third Party 
(TTP), just as r. Giving the agent multiple temporary key 
pairs is actually giving the agent more identities. Hence, 
this algorithm can be seen as a privacy enhancing technol­
ogy [7) for agent specific applications. Using these types 
of pseudonyms is an advantage over the simple solution of 
registering a temporary public key with the TTP and using 
the corresponding private key without blinding it , because 
the host cannot compute the temporary private key in the 
above proposed solution , hence the host or another agent 
cannot pretend to be an agent it is not. Depending on the 
amount of pseudonyms an agent wishes, extra overhead is 
added to the TTP for key distribution and revocation . 

Out of the parameters known by the host: it is impossi­
ble to calculate the private key, because of the hardness of 
the discrete logarithm problem for elliptic curves. There­
fore , the identity of the agent, d, is protected. However, 
this algorithm does not give control to the user about what 
the agent signs or how many times the host executes this 
algorithm. For the host it is possible to repeat the algo­
rithm with different messages and all the signatures will be 
valid. This drawback makes this algorithm only suitable in 
a trusted environment . It does not mean it is useless. On 
the contrary, it is preferred to the conventional digital signa­
ture in trusted environments, because the private key is not 
revealed at any time. That means the host can sign out of 
the agent's name, but cannot pretend to be the agent . The 
problem of multiple signing can be compared to the double 
spending problem in applications as digital anonymous cash 
[1) . Several solutions can be found to this problem, of which 
two are presented in the next paragraph. 

3.3 Agent digital signature and solutions to 
double signing problem 

An idea to prevent hosts from performing an agent signa­
ture multiple times, is to include the host 's identity in the 
verification of the signature. Each time a signature is veri­
fied, the verifier can see at what location the document has 
been signed. This solution does not make the double signing 
operation impossible, but it will be an extra threshold to do 
so. Two algorithms are proposed in this paper to accom­
plish the idea. The first is one without a signature from the 
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host, only its identity is added to the verification formula. 
The second algorithm gives two signatures on the message. 

3.3.1 Agent signature combined with host 's identity 
The host 's identity must be added in the verification for­
mula. In order to obtain this, the public key is added to 
this formula. This means that the public key or the pri­
vate key must also be added in the signature. This solution 
does not include a host 's signature and therefore the host's 
public key, which represents its identity, is added during the 
blinding operation on the agent 's private key. Adding the 
host's identity must occur at the user 's, because this will 
make it impossible for the host to change its identity on the 
signature at a later stage. 

1. Key generation 
As in the previous algorithms, the key generation starts 
with selecting an elliptic curve E over Zp, of which the 
number of points on E(Zp) is divisible by a large prime 
n. The user selects a random integer da in the interval 
[1 , n - 1). Parameter da is the agent 's private key and 
is securely stored at the user's computer. The user 
computes the agent 's public key: 

(17) 

Besides calculating a regular pu blic key, the user also 
selects the first blinding factor a and computes a "tem­
porary" public key and as in the previous paragraph 
parameter 11.: 

<5 = "Ida mod n, (18) 

ra = <5P over E(Zp), (19) 

c ai mod n , (20) 

II. '\cP over E(Zp) . (21) 

and here "I is a blinding factor and the combination 
"Ida can be seen as a temporary private key. The pa­
rameters a , " ,\ and da are stored securely at the user 
and not given to any other element in the system. 

In this algorithm, also the host generates a key pair: 

(22) 

where dh is the host 's private key and Qh is its corre­
sponding pu blic key. 

2. Blinding operation on private key 
This step is equal to the blinding operation in the pre­
vious paragraph. Only to the parameter R, the host 's 
identity is added in the form of its public key Qh : 

R kP = (xo : yo) , (23) 

f Xo mod n, 

R' = aiR + f3 P (24) 

R R' + Q h = (x 1 , Yl) (25) 

r Xl mod n , 

ia a-Ida +,\ mod n . (26) 

The parameters that are stored in the agent and there­
fore known to the host are r , d: , k, c and f3 and for 
verification purpose r. 



3. Signature generation 
Again the signature operation is equal to (3) , with the 
exception that d is replaced by io.: 

s = km + rd:' mod n . (27) 

4. Activation of signature The activation does not in­
volve the host's identity, and therefore is equal to the 
activation in the previous algorithm: 

s = cs + 13m mod n. (28) 

Again parameters c and 13 are known by the host, but 
this is not sufficient to compute do. or ,. Substitution 
of parameters gives the following signature: 

s = (a,k + f3)m + ,rdo. + a,r>' mod n. (29) 

Again the signature is of an equal form as (3) . 

5. Verification 
The idea was to add the host's identity in the verifi­
cation formula, such that it is always possible to know 
where the signature operation was executed. Adding 
the host's identity is possible, because the public key 
of the host is already used in the blinding operation: 

T (sP-r(A+ro.))m- I +Qh=(XI,yJ)(30) 

XI mod n 

The signature is valid if and only if: 

t = r. 

This algorithm has the advantage that the host's identity 
is attached to the agent's signature, which makes it for the 
host less attractive to sign documents in the agent's name 
without having permission for it. 

A disadvantage, however, is that the agent must know the 
identities of the hosts it is planning to visit. An easy mea­
sure to overcome this is by storing several R' parameters in 
the agent and before roaming to another platform, it lets 
the current host add the next host's identity to form pa­
rameter R. The signature as proposed here is only from the 
agent and not the host, because the host 's private key is 
not used.In the next paragraph it is shown how this can be 
achieved. 

3.3.2 Combined agent and host signature 
This signature is similar to the previous one. In various 
stages extra information is added about the host, such that 
also the host signs the document. 

1. Key generation 
As in the previous algorithms, the key generation starts 
with selecting an elliptic curve E over Zp, of which the 
number of points on E(Zp) is divisible by a large prime 
n . The user selects a random integer do. in the interval 
[1 , n -1]. Parameter do. is the agent 's private key and 
is securely stored at the user 's computer. The user 
computes the agent's public key : 

Qo. = do.P over E(Zp) . (31) 
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Besides calculating a regular public key, the user also 
computes the "temporary" public key for the agent 
and the parameter A: 

5 ,do. mod n , (32) 

r" 5P over E(Zp), (33) 

c = a, mod n, (34) 

A = >'cP over E(Zp). (35) 

and here, E [1, n -1] is a blinding factor and 5 can be 
seen as a temporary private key for the agent. Again, 
the parametersa, " d"and >. are stored securely at the 
user and not given to any other element in the system. 

In this algorithm, also the host generates a key pair: 

(36) 

where dh is the host 's private key and Qh is its corre­
sponding public key. 

2. Blinding operation on private key 
This step is equal to the blinding operation in the pre­
vious paragraph. Only to the parameter R, the host's 
identity is added: 

R kP = (xo, yo), (37) 

l' Xo mod n, 

R' a,R + f3P (38) 

R R' +Qh = (xI , yd (39) 

r Xl mod n , 

do. a-Ido. + >. mod n, (40) 

c a, mod n. ( 41) 

The user also computes a temporary public key for the 
host: 

r h = cQ" over E(Zp). (42) 

The host can check whether the right public key is 
used, by performing the same operation as in (42). 
The parameters that are stored in the agent and there­
fore known to the host are r, i", k, c, r" and 13 and for 
verification purpose r". 

3. Signature generation 
In this step the signature operation is executed at the 
host and the signature should involve the private keys 
of the agent and the host. This can be accomplished 
by the following operation: 

S = km + rd"",. + rd" mod n. (43) 

4. Activation of signature 
The activation does not involve the host's identity, and 
therefore is equal to the activation in the previous al­
gorithm: 

oS = cS + 13m mod n. (44) 

Parameters c and 13 are known by the host , but this 
is not sufficient to compute do. or -y. Substitution of 
parameters gives the following signature: 

s = (cqk + f3)m + ,rdo. + a,rd" + a,r>' mod n . (45) 

Again the signature is of the same form as (3), only 
now signed by two parties. 



5. Verification The verification formula is here a little 
different, because also the private key of the host is 
used to sign the message: 

T sP-r(ra+A+rlt) Q ( )(46) 
------'.--'----~ + It = Xl, Yl 

m 
Xl mod n 

The signature is valid if and only if: 

t = r. 

This algorithm, like the previous one, makes it less attractive 
for a host to sign messages in the agent 's name without 
having its permission. Here it is accomplished that both the 
agent and the host signed the document and the host cannot 
deny afterwards that it signed this document. 

4. CONCLUSIONS AND DISCUSSION 
In this paper, several solutions are presented for a special 
case of computing with secret data in public, namely the 
digital signature for agents. The secret data in agent digital 
signatures is the private key, as is this the information that 
proofs the agent's identity. The agent should not reveal this 
information to anyone, not even a trusted host. 

Several agent digital signatures are described in this paper, 
all based on one principle; the private key is transformed 
to a blinded private key. The blinded private key is stored 
in the agent and the original private key is stored securely 
at the user 's computer. The first described digital signature 
for mobile agents has the problem that the host is capable of 
signing multiple messages in the agent's name without hav­
ing its permission. This agent signature can also be seen as a 
new privacy enhancing technology, as pseudo-identities can 
easily be introduced here, without adding extra complexity 
of the scheme. 

Two solutions are proposed to prevent the problem of double 
signing, such that the problem is not solved, but it makes 
it less attractive to the host to sign in the agent 's name 
without having its permission. The first of these solutions 
use the host's identity at time of signature verification , such 
that the verifier can locate where the signature operation has 
been executed. The second solution let not only the agent 
sign the message, but also the host. This method makes it 
impossible for the host to deny the signature afterwards. 

The advantage of all the proposed algorithms is that they 
can be used specific for agents (where the private key is hid­
den) , but also for non-agent systems, where the computation 
is done in a trusted environment. In the latter case, the pri­
vate key is simply not hidden and the rest of the algorithms 
is the same. 

Some solutions for a digital signature in agent technology are 
proposed in this paper, but this is only a first step towards 
securing intelligent software agents. The next step in these 
digital signatures would be to provide non-repudiation not 
only for the host but also for the agent. Non-repudiation for 
the agent is not provided yet , because in case a malicious 
host has the purpose to sell products, it can double sign 
an order and the agent is not capable of proving whether it 
gave permission for this order, or it cannot be proven that 
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the agent gave its permISSIOn, because in this case it's in 
the host's advantage to have its name on the signature. A 
solution must be found to this problem in order to provide 
full functionality of a digital signature. 
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ABSTRACT 
Today, the security community is in search on novel solu­
tions to deal with efficient responses to an intrusion. This is 
particularly needed because the attackers intervene in an au­
tomated way at the computer speed. There is also a need to 
respond according to the kind of the detected attack. That 
is why the Intrusion Detection systems (ID systems) and 
the Intrusion Response systems (IR systems) have to work 
in parallel. For this purpose, it is quite efficient to design the 
IR system according to the ID system. This paper describes 
an IR system based on Mobile Agents (MAs) distributed in 
the network. This IR system is strongly adjustable to the 
corresponding ID system also based on MAs. Both, the ID 
system and the IR system, are designed in a quite similar 
way, mapping both the natural system behavior. We present 
our approach to build these both systems based on natural 
life. We particularly stress upon the design of our IR system 
and we present some simulations to prove its efficiency. 

Keywords 
Intrusion Detection and Response System, Mobile Agents, 
natural system. 

1. INTRODUCTION 
As attacks against information systems are growing and 

becoming more and more sophisticated, there is a need to 
enhance research in response to intrusion. This is also a 
report done by the Computer Emergency Response Team 
(CERT) which announces every year an increase in the com­
puter security incidents and, in many cases, no solution were 
proposed to solve them [1]. This is principally due to the 
fact that people in charge of the information security focused 
their attention essentially on deploying intrusion detection 
systems (ID systems) and control systems without dealing 
with the intrusion response. Formerly, this approach was 
justified as long as the number of elements to supervise (de­
vices, connections) in the networks was not too large. It was 
quite sufficient to let the system administrator manually in­
tervene to stop the attack for small scale networks without 
harming to much the global integrity of the system. How­
ever, today, the size of information networks has consider­
ably grown and, even if the used ID system is quite effective, 
it is not reasonable to let a human administrator manually 
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intervene to stop the attack, to notice the scale of the dam­
ages and to regenerate a safe state which is acceptable in 
term of the security policy. The solution is to generate cor­
rective or defensive actions as soon as a suspicious activity 
is detected without waiting for the administrator system to 
react. 

Our research work encompasses both Intrusion Detection 
(ID) and Intrusion Response (IR) and is influenced by the 
behavior of natural systems: 

• For the detection, natural immune system provides 
a source of inspiration for today computer security 
in building ID systems because the immune system 
evolves many interesting mechanisms to defend the hu­
man body against external attacks and aggressions. 

• For the response, we also took our inspiration from 
social insect paradigm. Namely the collective behav­
ior of ants foraging. This behavior expresses the way 
ants collect food collectively using an indirect commu­
nication mechanism where each ant's behavior is influ­
enced by a chemical information (called pheromone) 
deposited by the other ants in the environment. Our 
Intrusion Response System (IR system) maps the col­
lective behavior of ants population foraging, using mo­
bile agents (MAs) technology and an electronic version 
of pheromone. 

In this paper we describe an Intrusion Detection and Re­
sponse system (IDR system), combining both these mech­
anisms and focus on the response scheme to intrusion in a 
local network using MA technology. This IDR system is 
based on social insects paradigm to trace the source back 
where the intrusion alert was generated. We specially study 
and describe the tuning of such a mechanism, to allow an 
effective scheme for intrusion response. Section 2 provides 
an overview of the different kinds of IR systems and re­
lated works. Section 3 presents our approach for intrusion 
response based on MA technology as well as social insects 
paradigm. We show in this section how systems inspired by 
nature provide a suitable paradigm for IDR systems. Sec­
tion 4 describes the simulation done with Starlogo [2] to 
trace the route back to the source of the alert and the effec­
tiveness of established parameters. The obtained results are 
also summarized in this section. Section 5 investigate the 
future works and draws a conclusion. 



2. RELATED WORKS IN INTRUSION RE­
SPONSE 

Fortunately, today the security community seems to re­
alize the lack of efficient intrusion response and some of 
its members try to investigate possible response schemes. 
These works are based on the use of either static or mobile 
components, the latter offering the widest possibilities. 

2.1 Static systems 
Such systems were initially built in the case of central­

ized ID systems. Only the emergence of distributed archi­
tectures, gave way to mobile components. However, some 
distributed systems implement a response scheme based on 
static software components. This is for instance the case 
in [3] where a technique for adapting responses to intrusions 
is proposed. Such a system has one or more intrusion de­
tection systems that identify intrusions. Separate modules 
classify the nature of the intrusion and determine appro­
priate responses based on an intrusion response taxonomy. 
This ta.'Conomy refers to a previous work done in [4] , which 
provides a categorization of possible offensive and defensive 
responses. As it is also reported in [3], there are a number 
of systems which have been developed for a response to in­
trusive actions. They are classified as notification systems, 
manual response systems or automatic response systems. 
The table 1 borrowed from [3] summarizes this classifica­
tion of static response systems. 

Intrusion Response Classification Number of Systems 
Notification 31 

Manual Response 8 
Automatic Response 17 

Total 56 

Table 1: Classification of Static Response Systems 

The notification systems only generate a report or an 
alarm and wait for the system administrator to provide the 
answer. The manual response systems give the administra­
tor the capability to launch a manual response from limited 
pre-programmed set of responses. Automatic response sys­
tems immediately answer an attack with pre-programmed 
responses. In this case, such a taxonomy mentioned in [4] 
will lead to an indication of generic response categories and 
is useful to launch automated responses. As far as we are 
concerned, we are targeting at automated response schemes 
where the Intrusion Response Agents (IR agents) identify 
the kind of alert reported in the pheromone and execute 
automated process to undertake corrective actions. Mean­
while, our architecture is based on a population of MAs 
interacting in the network environment . As we will see now, 
the use of mobility brings a lot of pros from a security point 
of view. 

2.2 Systems based on mobile components 
In traditional static systems, the ID system is easier to 

localize and can itself be subject to a successful attack that 
could let the entire network open. A big problem is hence 
to ensure above all the security and the robustness of the 
ID system itself. By allowing stealth abilities and dynamic 
reconfiguration , MAs can be a good solution to this prob­
lem. A MA is a piece of code that can run on host, perform 
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transparent migration to another host, and resume its run­
ning state. While autonomously visiting the network, MAs 
can interact with each other. In order to accomplish their 
task, MAs can also gather data and use services present on 
visited hosts. To date just a few investigations as a response 
to intrusion using MAs were undertaken [5] [6], even if MA 
technology seemed to exhibit good proprieties to accomplish 
this task. As in [5], we advocate the use of MA technology 
as an answer to intrusions rather than using MAs simply to 
detect intrusions. 

The MA characteristics that could be retained for the an­
swer are: 

• the rapidity of execution due to the small quantity of 
code the MA represents. This is particularly desirable 
to answer the attack as soon as possible. 

• the ability to adjust their execution code depending 
on the characteristics of the machine they visit. This 
factor is also quite important since it enables the MAs 
to adjust the defence parameters to better protect the 
system. 

• the mobility which is the main propriety. Because 
the MAs can travel across the network they can filter 
the relevant information from the different machines. 
They have the ability to correlate all this information 
and adapt the answer. For instance it could be helpful 
if one attack is coming from several sources or if one 
attack reaches several destinations. They can also use 
these migration abilities in order to limit the possibil­
ities of interaction between the agents themselves and 
a potential offensive piece of code. 

We can notice that these characteristics are similar to 
those we retained for the use of MAs to deal with intrusion 
detection as it is already mentioned in [7] . 

The following section gives a classification of the different 
types of responses to an intrusion. 

2.3 Different degrees of responses 
Two main degrees can be distinguished in the response 

process. 

2.3.1 Passive responses 
A response can happen before an attack really begins be­

cause there are already some indications that the system 
is becoming vulnerable. It is an anticipated way to place 
the system on the defensive without disturbing too much 
its operation. For instance, a user can always access his 
account but some file accesses are limited because the sys­
tem is checking the integrity of these files . Responses can 
also be implemented after the attack has occurred. One can 
for example attempt to repair the damages of the attack, 
gather informations related to this attack from heteroge­
neous sources, or try to avoid the repetition of the same 
attack in the future. These patterns are the easiest to im­
plement since the time as well as the speed of the answer are 
not of the essence; the attack has either not occurred yet, 
or is already finished (with all the following consequences, 
of course) . 

2.3.2 Active responses 
This type of response encompasses all the actions that can 

limit the damages of an occurring attack or stop it. Many 



measures can be implemented, like the automated gener­
ation of firewall rules to block an incoming data flow, the 
closing of open ports, the update of routers inner tables, etc. 
This kind of "real-time" response is not hard to implement 
when dealing with a human attacker using interactive tools. 
However, modern attack tools perform automated actions 
that often take only some seconds to penetrate a system. 
Moreover, actual response mechanisms loose their effective­
ness against multiple distributed attacks originating from 
many forged IP addresses. As it is suggested in [8] , infras­
tructures that support development of automated response 
systems are critically needed. Again, MAs could offer us 
solutions. As mentioned by [5] , they offer the ability to 
intervene on all the network components, and not only on 
the machines involved in the security policy. 

3. OUR APPROACH AND MODEL 
This section focuses on the design goals we retained for 

the intrusion detection and response model. The model has 
been designed to do: 

• intrusion detection based on Intrusion Detection agents 
(ID agents), which map the functionalities of natural 
immune system to distinguish between normal and ab­
normal events (respectively "self" and "non seW' in the 
immune system) as it is mentioned in [9]. 

• intrusion response based on IR agents, which map the 
collective behavior of ants population by triggering in 
the network the release of a synthesized information 
specific to the collected events. This kind of collec­
tive paradigm is pretty interesting in the sense that 
it is based on a quite light tasks each ant (MAs play 
the role of ants in the IR system) executes to provide 
collectively a more complex behavior and it will be 
explained in more details in the section 3.2. 

Our approach is also very powerful because the ID system 
as well as the IR system are completely distributed in the 
network without any centralized control:both systems are 
essentially constituted by MAs which travel across the net­
work, dynamically adjusting their routes according to the 
collected events , without any simple way to trace them. Be­
sides, the MAs are quite polyvalent because they can detect 
and/or respond to intrusion. This enhances the difficulty for 
an attacker to distinguish between ID agents and IR agents. 

We are principally dealing with response after the attack 
is detected. Our ID system checks the behavior's deviation 
of applications. A high level deviation is a sure sign that an 
attack is occurring and triggers the response mechanism. In 
addition, our ID system is able to check the vulnerability of 
applications. By adjusting the level of acceptable deviation, 
we can also choose to detect the processes with a low devi­
ation. For instance, too many processes which run with a 
low deviation, indicate that the system is not stable and po­
tentially attackable. In response, some anticipated actions 
could be executed to avoid future attacks. 

We are looking at the target host (device , user account, ... ) 
that suffers the attack. In our IR system, the response con­
sists in intervening where the source of the alert is located 
by diffusing the alert in the neighborhood of the target . We 
are also partially looking at the origin of the attack insofar 
as the intruders are inside the network because it is easier 
to isolate them. For intruders coming from outside, we take 
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the point of view that it is not necessary to directly react 
against them as long as we are blocking their access inside 
the network. 

3.1 Background concerning our ID system model 
As we already mentioned it , our IDR system combines 

two mechanisms inspired from natural systems, namely the 
immune system for the intrusion detection step and the so­
cial insects paradigm for the intrusion response one. Indeed, 
we were really struck by the fact that natural systems ex­
hibit many interesting characteristics which could be trans­
posed to distributed networks in general and to face secu­
rity problems in particular. Natural systems are complex 
systems, endowed with mechanisms allowing them to react 
efficiently to any perturbation coming from their environ­
ment, by adapting themselves to these changes. 

3.1.1 The immune system paradigm 
To defend the body against undesired organisms, the im­

mune system distinguishes between molecules and cells of 
the body called "self' from foreign ones called "nonself". 
The body's immune defences normally coexist peacefully 
with cells that carry distinctive "seW' markers. But when 
immune defenders encounter "nonselfs" they have to elimi­
nate them quickly, to ensure some kind of body integrity. 

3.1.2 The social insects paradigm 
In the same way, social insects organize themselves to en­

sure the survival of the colony by mean of a reactive in­
dividual behavior and a cooperative collective one. These 
behaviors could be observed at different tasks: foraging, 
nests building, larvas sorting, ... etc. Cooperation in these 
systems is mediated by an efficient mechanism of communi­
cation through the inscription of task evolution in the en­
vironment . This paradigm introduced for the first time by 
P. P. Grasse in [10] described the way social insects com­
munities (ants , termites, bees, ... ) interact through their 
environment . Schematically, each entity has a local view 
of its neighborhood but uses a chemical volatile substance 
(the pheromone) to mark its environment when achieving 
a collective task. The pheromone deposited is propagated 
in the environment and evaporates with time. The deposit 
of pheromone creates a gradient field in the environment 
which tends to attract other insects, and enrolls them in an 
auto catalytic behavior, making the task being achieved as 
well as the recruitment of other insects to be enforced as 
long as the pheromone is present in the environment. When 
the task is finished, no more pheromone is deposited, mak­
ing this information disappear after a laps of time through 
the evaporation mechanism. Each time an ant deposits a 
pheromone along the path it reinforces the probability the 
other ants will choose the same path to reach the food. The 
amount of deposited pheromone is called pheromonal gra­
dient and every ant scanning its neighborhood goes up the 
gradient. This indirect communication between the differ­
ent members of the colony through the environment is called 
stigmergy. This paradigm inspired many persons in varied 
computer research topics such as robotic [11], network rout­
ing [12], optimization algorithms [13]. In all the cases the 
global and complex collective behavior emerging from inter­
actions between simple entities is dominating. That is the 
reason why we think that we can map this mechanism to 
modelize a collective response to an intrusion. 



3.2 Mapping these paradigms in our model 

3.2.1 The detection step 
Like the human body, computers systems have to protect 

themselves because they are often placed in an unsafe and 
uncontrolled environment such as the open Internet . In a 
first step the immune system attempts to prevent or stop the 
entry of external organisms before they enter the body. This 
is the same role played by firewalls in the computer world; 
firewalls attempt to limit access of undesired users and pro­
cesses coming from outside the network they are protecting. 
In a second step the immune system seeks the presence of 
undesired organisms in the body in order to destroy them. 

The idea in our work was to map the "self'-"non seW' 
detection in the immune system with the intrusion detec­
tion. Our approach is targeted at corporate intranet which 
corresponds to a logical security domain. We subdivide this 
intranet in several smaller local domains constituted by a set 
of hosts or machines. We want to avoid having a monolithic 
ID system on every host because of its cost ; instead, we pro­
pose to dispatch MAs, dynamically visiting and monitoring 
randomly different local domains. To detect local attacks, 
these Intrusion Detection Agents (ID agents) responsible for 
a local domain have to be able to discriminate between nor­
mal and abnormal activity. In the immune system it is doing 
by distinguishing" seW' from " nonseW'. For more simplicity 
we choose to examine the good running of different programs 
and their deviation compared to a normal activity. For that, 
ID agents dispatched in the network collect application spe­
cific system calls and compute the deviation between these 
system calls and other safe system calls stored in a database 
as it was done in the work of Forrest and all. [9] . If the 
deviation is too high an alert is launched waiting for the 
response mechanism to come into play 

3.3 IR system deployment and tuning: source 
tracmg 

The network is a distributed environment, subject to per­
turbation and dynamic evolution. When an attack is de­
tected on the network, it is not trivial to locate efficiently 
and rapidly its source. The behaviour of ants foraging , 
seems to provide an interesting issue to this problem. In 
the nature, they trigger in their environment the release of 
a chemical information (the already mentioned pheromone) 
to trace the way from the nest to the source of food ; we use 
this metaphor to allow MAs (artificial ants) to detect the 
alert's localisation and to go up back to the source of the 
attack to answer the attack. 

3.3.1 building the electronic pheromone 
Agent surviving an attack evades as soon as possible the 

attack locations, but should find a way to tell the IR agents 
where the source of the attack was located. In fact, identify­
ing the source is quite fundamental to undertake a response 
plan adapted to the kind of attack as well as to the kind 
of incident reported. For instance, if the source is a fire­
wall and a service is misused, the response to the attack 
could be to change the access rights to the service protected 
by the firewall; if the source is a mail server and a user 
is flooding the server with a series of mails, the response 
could be to disable the user account in this server. As the 
quality of the response depends on the rapidity to trace the 
source of the alert , we want to take advantage from MAs 
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completely distributed in the network which can rapidly in­
tervene. An alert message is initiated at a node as soon as a 
local ID agent present in the node detects an anomaly. For 
this locally detected attack, the ID agent creates a so called 
pheromonal message which is randomly launched in the net­
work and will help other IR agents in the system to trace 
the way back to the alert source. The ID agents dispatched 
through the network are able to launch an alert and to build 
and diffuse an electronic pheromonal information synthesiz­
ing a just happened attack scenario for other IR agents. The 
IR agents completely distributed in the network can track 
this pheromone and go up the pheromonal gradient tracing 
the source back. For the moment, the different fields which 
compose the synthesized pheromone are gathered in a list 
and are: 

• the identifier of the ID agent which detects the suspi­
cious activity and builds the pheromone: IdA; 

• the suspicion index of the alert: SI. The proposed re­
sponse scheme depends on a behavior-based ID system 
scheme depicted in [7]. In [7] , ID agents dispatched 
in the network collect application specific system calls 
and compute the deviation between these system calls 
and other safe system calls stored in a database. In 
other words, S I is the deviation between the "self" 
events stored in the database and the monitored events 
when the agent enters the node and detects the attack; 

• the number of hops: Hop. It corresponds to the dis­
tance in term of number of links to propagate the 
pheromonal information from the initial node; 

• the pheromonal gradient: Cd. Like the ants with the 
source of food, the IR agents have to find the better 
way to locate the source of the alert. For this pur­
pose an electronic gradient, field, Cd, is introduced in 
the pheromone. When the pheromone is diffused in 
the network , Cd decreases hop by hop according to a 
strictly decreasing function . Cd is used in the opposite 
direction by other travelling IR agents to go up to the 
source of the attack; 

• the date to that corresponds to the date the attack 
is detected in the initial node and the pheromone is 
built ; 

• the date ti that corresponds to the date the pheromone 
is deposited in each intermediate node i during the 
pheromone propagation; 

• In the rest of the paper, i is the number of the ith 
node reached by the pheromone during its diffusion: 
i varying from 0 to n. The initial node, where the 
pheromone is built , is 0 and the last node is n. 

The different steps of the response are: 

• the setting-off of the alert by an ID agent ; 

• the building of the pheromone; 

• the pheromone diffusion; 

• the pheromone detection by an IR agent; 

• the travel of the IR agent to the source of the alert ; 

• the response of the IR agent. 



3.3.2 Evaporation of the electronic pheromone 
In ants colony the effect of each pheromone's deposit is 

limited in the time until the entire pheromone disappears. 
This phenomena is called the pheromone evaporation and it 
limits the number of ants reaching the source of food. The 
equivalent phenomena for the electronic pheromone is rep­
resented by two computed dimensions: (a) the general evap­
oration index and (b) the extrapolated evaporation date at 
each node i. These two dimensions are defined in the fol­
lowing sub-sections. 

(a) Determining the evaporation index at the last node:6. 
As long as the electronic pheromone is present along the 

path back to the source, the IR agents can go up the pheromonal 
gradient to the first node. But the pheromone should not 
stay eternally in the network for two reasons: 

• first, it overloads needlessly the network if the response 
has already occurred. So the pheromone has become 
obsolete; 

• second, even if no IR agent detects the pheromone for 
a long time, and if the attack's suspicion persists, it 
is preferable to relaunch a pheromone from the same 
source. In this way, it should be more probable that 
other IR agents located elsewhere in the network meet 
the pheromonal path. In the worst case where the 
response is really too slow, we can imagine that the 
administrator has already solved the problem without 
waiting for the IR agents to react . Here again , the 
pheromone has become useless. 

Obviously, the evaporation process of the electronic pheromone 
has to begin in the last node reached by the pheromone. 
Then it reaches the other nodes of the pheromone's path in 
the reverse way of the pheromone's diffusion. In this man-
ner, an IR agent visiting an intermediate node can always go 
up the pheromonal gradient to the first node. We define the 
evaporation index 6. as the period of life, allocated to the 
electronic pheromone deposited in the last node n, before it 
disappears. Indeed, this deposit disappears first at the last 
node nafter a duration of 6.. Then, it will successively dis­
appear at the node iafter a duration corresponding to the 
sum of three parameters: 

• the diffusion 's duration of the pheromone between the 
node iand the last node n: Diff; 

• the evaporation index 6.; 

• the disappearance's duration of the pheromone be­
tween the last node nand the node i: Disp; as we con­
sider that the pheromone disappears along the reverse 
path at the same speed as it is diffused, Disp is equal 
to Diff. 

Figure 1 represents the different evaporation's durations at 
the last node nand at an intermediate node i. 

We decide to evaluate empirically D according to the com­
putational time an IR agent needs to execute its tasks. The 
IR agent entering a node has to: 

• access the list to read the pheromonal information, no­
tably the pheromonal gradient; 

• probe the nodes in its neighborhood to find the same 
pheromone with a higher gradient; 
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Figure 1: Evaporation's Duration at the Different 
Nodes 

• move to the selected node. 

To empirically evaluate 6., we repeated a series of simu­
lations with a simulation tool called Starlogo. Starlogo is 
a programmable modelling environment for exploring the 
workings of decentralized systems [2]. We modelized a net­
work with 20 nodes. Each node knows uniquely its neigh­
bors and has at least 4 neighbors. The node 0 has the 
maximum number of neighbors which is 10. We diffused the 
pheromone at a distance of 14 hops from the initial node 
and we repeated the diffusion 's process until each node was 
reached at least three times. Then , we placed an IR agent 
on a node as soon as the pheromone was deposited and we 
saved the IR agent computational time as it is showed in 
the Figure 2 . On average, the value of 6. is equal to 2,44 
Star logo time unit . 
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Figure 2: Evaluation of the Evaporation Index 6. 

(b) Determining the extrapolated evaporation date at the 
node i: Tevap(i) 

An IR agent can respond to an intrusion only if it reaches 
a node i before the pheromone's evaporation date at this 
node i. We attract your attention that we are now, speaking 
in term of date and not in term of duration any more. We 
want to evaluate this evaporation date at the node i in order 
to compare it with the IR agents arrival date at the same 
node. This will be the subject of more simulations in the 
section 4. When the pheromone is deposited at the node i 
and continues its travel to the last node n, we have to find 
a way to compute an extrapolated evaporation date at the 
node i because there are two missing parameters: 

• the node i does not have the means to know the du­
ration of one hop (average or maximum duration); 

• the node i does not know the arrival date of the pheromo 
at the last node; 

This extrapolated evaporation date at the node i is called 
Tevap(i). This evaporation date should be smaller than the 



evaporation date at the node (i-I) and higher than the evap­
oration date at the node (i+I). This is quite logic if we con­
sider that an IR agent in the node (i + 1) should have time to 
go up to the node i (and obviously to the node (i-I)), before 
the pheromone at the node i (respectively at the node (i-I)), 
evaporates. 

In order to deal with the missing parameters we proceeded 
as it follows: 

• hop duration: as each node i can only save the date ti 
when the pheromone reaches it, it is easy to compute 
the average duration of a hop from the node 0 to the 
node i because to is carried by the pheromone. Then, 
the average hop duration seen from the node i is equal 
to: 

ti - to 

• arrival date at the node n: the node i has computed 
the average duration of a hop and can also compute 
the (n-i) remaining hops until the last node n. Then , 
viewed from the node i, the pheromone will evaporate 
at the last node nat the date: 

. n - i (. 0) tz + --. - X tl - t 
l 

In the same way, the pheromone will evaporate at the node 
nat the date: 

ti + n -:-i x (ti - to) + ~ 
l 

The pheromone will evaporate at the node i after a dura­
tion equal to Disp (see sub-section (a)) from the evaporation 
date at the node n. From the node i Disp equal to: 

n- i 
-.- x (ti - to) 

l 

Finally, the pheromone will evaporate at the node i at the 
date: 

Tevap(i) = ti + 2 x n -:- i x (ti - to) + ~ 
l 

Figure 3 resumes these different steps. 

...... ... , .... ..., 
... 

Figure 3: The Extrapolated Evaporation Dates at 
the Node i 

3.3.3 Limiting the number of responding IR agents 
with the inhibition index at the node i 

After an IR agent has found a pheromone and traced the 
route back to the alert's source, it is not necessary that 
other IR agents trace the same source, even if the pheromone 
has not totally evaporated. To avoid to many IR agents 
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converging to the same alert's source, we inhibit the effect 
of the pheromone. For that, we choose to speed up the 
pheromone evaporation in each node already visited by an 
IR agent, as it is explained in the following. 

A first IR agent entering the node i should intervene be­
tween the date ti and Tevap(i) as it is showed in the Figure 
3.3.3. We call tAl (i) the intervention date of the first IR 
agent . 

TAllil 

Figure 4: Intervention Date at the Node i 

So this IR agent has an intervention duration equal to: 

Tevap( i) - ti = 2 x n -:- i x (ti - to) + ~ 
l 

So, after the date tAI(i), the remaining time before the 
pheromone completely evaporates at the node i is: 

2 x n -:- i x (ti - to) + ~ - tAl(i) 
l 

Suppose that a second IR agent reaches the node i dur­
ing this time. As a first IR agent already began to trace 
the source, we want to avoid having too many IR agents 
converging to the same source for the same response. For 
that , we found a way to inhibit the pheromonal effect by 
decreasing the remaining time for the next IR agent by a co­
efficient that we call the inhibition index. Simply resumed, 
this mechanism functions as it follows: 

• the first IR agent intervenes at the date tAl(i); 

• the second IR agent should intervene in a laps of time 
corresponding to 90% (which is the inhibition index) 
of the remaining time; 

Then the remaining time for the second IR agent is equal 
to: 

n - i 
0.9 x (2 x -.- x (ti - to) + ~ - tAI(i)) 

l 

So the second IR agent has to reach the node i at the date 
tA2(i) such that: 

tAl(i) $ tA2(i) $ tAl(i)+O.9x(2 x n -:- i x (ti - to) + ~ - tAl 
l 

This inhibition process is repeated for every IR agent de­
tecting the same pheromone at the same node i, until the 
pheromone completely disappears. 

4. SIMULATION AND RESULTS 
As we already said, currently, the response model is being 

investigated by a simulation tool called Starlogo. Starlogo 
is a programmable modelling environment for exploring the 
workings of decentralized systems [2] . A number of prelim­
inary results are reported in the following paragraphs. 



4.1 Simulation topology 
The simulation topology of the chosen response scenario 

takes the following points into consideration: 

• the 20 hosts are represented by single nodes in the 
topology; the nodes are numbered from 0 to 19; 

• each host knows only its neighbor nodes; 

• different nodes are subject to an attack; 

• different ID agents visiting the nodes can detect a sus­
picious activity and launch an alert; 

• a pheromonal information is built by an ID agent as 
soon as the suspicious index is too high. The ID agent 
sends this pheromonal information choosing randomly 
one node in its neighborhood. This operation is repeated 
by each node receiving the pheromone until the last 
hop; 

• different IR agents visiting the nodes can detect the 
pheromone and trace the pheromonal gradient up to 
the alert source. 

The Table 2 represents the neighbors of each one of the 
20 nodes. 

Node Number Corresponding Neighbors 
0 1-2-3-4-6-7-9-10-12-16 
1 0-2-4-5-7-11-14-15-19 
2 0-1-3-6-8-10-12-15-19 
3 0-2-5-9-11-16-17 
4 0-1-5-8-11-16-18 
5 1-3-4-6-13-14-19 
6 0-2-5-8-9-10-15 
7 0-1-8-9-12-14 
8 2-4-6-7-10-13-17 
9 0-3-6-7-11-13-15 
10 0-2-6-8-16-17-18-19 
11 1-3-4-9-12-18 
12 0-2-7-11-14-16 
13 5-8-9-14-15-19 
14 1-5-7-12-13-15-16 
15 1-2-6-9-13-14-19 
16 0-3-4-10-12-14 
17 3-8-10-18 
18 4-10-11-17 
19 1-2-5-10-13-15 

Table 2: Neighbor of each Node 

4.2 Simulation context 

4.2.1 Pheromone evaporation date 
The following simulation parameters are used for the first 

set of evaluations: 

• we choose the node 0 to launch a suspicious activity; 
we iterate this suspicious activity five times; 

• we diffuse the pheromone at a distance of 5 hops and 
we record the nodes reached by the pheromone; 

24 

• we collect for each iteration the date of the pheromone 
evaporation at the visited nodes; 

• the average evaporation gradient is set to ~ = 2,44 
Starlogo time units, computed in the section 3. 

Figure 5 shows the date of the pheromone evaporation at 
each visited node. Each color represents one of the 5 paths 
borrowed by the pheromone for each iteration. 

Figure 5: Pheromone Evaporation Dates for a 5 
hops simulation 

4.2.2 Agents response dates 
For the fastest pheromone evaporation of the previous 

simulation (path number 3), we dispatched IR agents in the 
network and we collected the date of the IR agents arrival 
on all nodes of the network. The following simulation pa­
rameters are used for this second set of evaluations: 

• we choose the node 0 to launch a suspicious activity; 

• for the path 3, the evaluated evaporation duration is 
10,18 Starlogo time units; 

• at the end of the pheromone diffusion, we launch ran­
domly the IR agents during the evaporation duration 
of the pheromone; 

• there is a random delay between two successive IR 
agent launches; 

• on each visited node, we collect the date of each IR 
agent arrival; 

• we repeat the simulation 10 times; 

Figure 6 show the date of the IR agents arrivals during the 
fastest evaporation duration for one of the 10 simulations. 

4.3 Simulation results 
The object of this section is to correlate the simulations 

represented in the Figure 6 with the particular case of the 
fastest evaporation duration (path 3 in Figure 5). For this 
purpose, we compare the arrival dates of the IR agents 
on the different nodes with the evaporation dates of the 
pheromone along the path 3. By locating the nodes in com­
mon, we compute the number of IR agents which responded 
on time. Table 3 summarizes the obtained results of the en­
tire simulations of the section 4.2.2. Each row of the table 
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Figure 6: Agents Response Dates for the First sim­
ulation 

shows the frequency of the effective responses according to 
the number of dispatched IR agents through the network. 

We notice that in all simulations there are IR agents which 
answered before the complete evaporation of the pheromone. 
Considering that we did not limit the number of acting IR 
agents during the evaporation duration , there is in average 
27,5% of the dispatched IR agents which responded on time. 
Besides, there are in average 5 effective responses. These 
first results show the efficiency to use the concept of elec­
tronic pheromone to trace the alert's source and to obtain a 
significative number of responses. This also proves that the 
computed values of the section 3, are viable, even if some 
of them should be adjusted in the future. We are already 
investigating how to tune our model by: 

• adjusting the inhibition index in order to limit the 
number of IR agents responses; 

• adjusting t.; 

• limiting the number of randomly dispatched IR agents 
in order to find their optimal number. That is, the 
minimal number of needed IR agents to obtain just 
one answer. 

Simulation Answers Agents Frequency 
1 6 24 0.250 
2 6 20 0.300 
3 3 13 0.231 
4 4 17 0.235 
5 7 23 0.304 
6 9 17 0.529 
7 4 14 0.286 
8 4 26 0.154 
9 5 14 0.357 

10 2 19 0.105 
Average frequency 0.275 

Table 3: Responses Frequency According to the 
Number of IR agents 

5. FUTURE WORKS AND CONCLUSION 
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We have presented in this paper an approach inspired by 
natural systems for intrusion detection and response. Our 
approach uses the immune system metaphor for intrusion 
detection (ID agents) and social insects stigmergic behaviour 
metaphor for intrusion response (IR agents). The paper is 
focused on the study of the intrusion response scheme, going 
further the approach proposed in [6), by tuning the param­
eters of electronic pheromone diffusion and evaporation and 
introducing a new mechanism for limiting the number of 
responding IR agents, using an inhibition index. We pre­
sented the first results of a simulation, which show that the 
approach is promising. The next steps consist in refining 
the approach in order to determine if some parameters can 
be omitted or merged and still result in a useful behavior, or 
if, on the contrary, additional parameters are needed . This 
work is beneficial for the general understanding of the model 
and also for the optimization of the implementation. This 
model is being implemented using the J-SEAL2 mobile agent 
framework [14]. As can be deduced from the previous sec­
tions there are three kinds of agents involved: ID agents, IR 
agents and Pheromone agents. This specialization of roles 
is designed to make the agents as light-weight as possible, 
in order to achieve good performance. An IR agent is, on 
the other hand, intentionally very generic; the goal is to be 
able to locate the source of an alert using a single "univer­
sal" mechanism, and once this source is reached, to enable 
a threat-specific response by downloading and activating a 
dedicated class file designated by a URL contained in the 
pheromone. 
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ABSTRACT 
We present an approach to some security problems in multi-agent 
systems based on distributed trust and the delegation of permis­
sions, and credibility. We assume an open environment in which 
agents must interact with other agents with which they are not fa­
miliar. In particular. an agent will receive requests and assertions 
from other agents and must decide how to act on the requests and 
assess the credibility of the assertions. In a closed environment, 
agents have well known and familiar transaction partners whose 
rights and credibility are known. The problem thus reduces to 
authentication - the reliable identification of agents' true identity. 
In an open environment, however, agents must transact business 
even when knowing the true identities is un-informative. Decisions 
about who to believe and who to serve must be based on an agent's 
properties. These properties are established by proving them from 
an agent's credentials. delegation assertions. and the appropriate 
security policy. We begin by describing our approach and the con­
cepts on which it is built. Then we present a design that provides 
security functions (authorization and credibility assessment) in a 
typical agent framework (FlPA) and describe initial work in its re­
alization using the semantic web language DAML+OIL. 

1. INTRODUCTION 
Though there has been some research in trust based security for 

multi-agent systems. generally multi-agent systems have always re­
lied on traditional security schemes like access control lists. role 
based access control and public key infrastructure. These physi­
cal methods use system-based controls to verify the identity of an 
agent or process. explicitly enabling or restricting the ability to use, 
change, or view a computer resource. However these methods gen­
erally require some sort of central repository or control to provide 
authentication and need to store access control information for in­
dividual agents or groups of agents. We believe that these schemes 
will not scale adequately or provide the increased flexibility re­
quired for emerging dynamic multi-agent systems that consists of 
an extremely large number of agents that are spread over a large 
geographic area [II] like the agentcities project I . Hence we argue 
that it no longer makes sense to divide authorization into authenti­
cation and access control [16, 14]. 

We propose a security framework for multi-agent systems which 
is based on distributed trust management. Distributed trust manage­
ment involves proving that an agent has the ability to access some 

'This work was supported by NSF Awards lIS 9875433 and CCR 
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service/resource solely by verifying that its credentials comply with 
the security policy of the requested service [16, 2]. These creden­
tials include properties of the agent. for example. membership in 
certain organizations, age or host of the agent, recommendations 
and delegations by other agents. The process of verifying the cre­
dentials is itself under the security policy of the veIifying agent. 
Aspects of trust management include creating security policies, as­
sociating credentials with certain abilities and reasoning over these 
policies and credentials to decide the rights of an agent. Our trust 
management system includes a trust ontology for specifying enti­
ties or principals, policies, credentials. a mechanism for verifying 
credentials and a mechanism for checking if the credentials con­
form to the policy. The policy includes a set of rules that associate 
a required set of credentials with a certain ability or right; imply­
ing that only agents with the specified credentials can possess the 
ability. 

Agents communicate their beliefs with each other for trust man­
agement. Beliefs are exchanged in terms of delegations. creden­
tials. abilities of other agents and trust values. An agent will reason 
about beliefs (its own and of other agents) and policies while mak­
ing authorization decisions. 

This framework, based on FIPA specifications [6], addresses many 
of the security threats generally associated with Multi-Agent Sys­
tems (MAS) [20] . The challenges usually associated with MAS 
are corrupted naming (Agent Management System) and matchmak­
ing (Directory Facilitator) services, insecure communication. inse­
cure delegations. lack of accountability, access control for foreign 
agents, and lack of cenu·al control [20J. 

2. RELATED WORK 
There has been a lot of interesting work in security for multi­

agent systems. and in this section we describe some research projects 
that are most relevant to ours. 

Wong and Sycara describe the design of a security infrastructure 
for multi-agent systems [20]. Their work is based on RETSINA, 
a resuable multi-agent infrastructure . The authors describe sev­
eral threats associated with multi-agent systems with respect to the 
RETSINA framework; corrupted agent naming servers or match­
makers. insecure communication channels. insecure delegations. 
and lack of accountability. To prevent the threat of corrupted ANSs 
or matchmakers, the authors believe it is necessary to use only 
trusted ANSs and matchmakers that behave as they should, by only 
servicing valid requests, inserting/removing entries from their databru 
in a way that is consistent with the request and giving responses that 
are consistent with their databases. As a way of counteracting lack 
of accountability, all agents should be given proofs of identity that 



cannot be forged and deployers of agents should be made responsi­
ble for the actions of their agents. Communication channels should 
be made secure and agents should be made to prove that they are 
delegatees of whom they claim to be. Certificates are used to link 
agents to actions and deployers to agents for accountability. The 
authors describe mechanisms for agent key certification and revo­
cation, in which the deployer interacts with the ACA. Then they 
discuss protocols for registration, unregistration and lookup. To 
handle insecure communication channels, the authors plan to add 
SSL (secure socket layer) underneath their agent communication 
layer. 

In their paper 'Distributed Trust in Open Multi-Agent Systems', 
the authors build on earlier work by Herzberg et al [8] to define 
an infrastructure for distributed trust in multi-agent systems [15]. 
Following Herzberg's assumptions, the authors think that identity 
is not required for trust management, and that there is no need for 
a centralized certificate mechanism or trusted third parties. This 
work is based on the use of certificates. Most role based access con­
trol mechanisms map users' identities to role. However this is not 
the approach used in this work; an agent uses its policy to map an­
other agent to a role, based on the latter's certificates [8] . Any agent 
can be a certificate issuer, and may not be globally trusted. An is­
suer is trusted when it can provide sufficient certificates from other 
issuers to satisfy the requester's policy. An agent could have several 
certificates certifying its capabilities and its performance. These 
certificates will be from other agents that have used the agent's ser­
vices. However these certifying agents may not be globally trusted. 
If an agent X needs to find a particular service, it sends a request to 
the MatchMaker in a system like RETSINA [20]. The MatchMaker 
will return a list of matching agents and their certificates. The re­
questing agent will reason about these certificates to decide which 
agents can be trusted. The policy will define rules for deciding trust 
levels based on the certificates. To solve the problem of authoriz­
ing accessing agents, every agent has as part of its architecture an 
access control mechanism. This component helps the agent decide 
which services should be accessible to a certain agent. The access 
control component uses certificates to map an accessing agent to 
a role, and then uses role based access control to decide its access 
rights. 

In his paper, Hu explains how to build up an agent oriented PKl 
and demonstrates some delegation mechanisms for it [9]. In this 
agent oriented PKl, there are two types of certificates; identity cer­
tificates for humans and their agent, and authorization certificates 
for humans and agents. Authorization certificates are used to repre­
sent authorizations by entities. These include the public key for the 
granting entity, the public key of the entity receiving the authoriza­
tion, the acrual authorization (access right), re-delegation bit, and 
the validation period. However, the re-delegation bit always set to 
I, because the author does not have any fail-proof method of pre­
venting re-delegation. Though there is a difference between trust 
between humans and agents and between agents, the author mod­
els them in the same way. Hu also describes 3 types of delegations; 
chain-ruled, threshold, and conditional. In chain-ruled the access 
rights are delegated in a cascading manner. Threshold delegation 
allows an entity to delegate to multiple subjects. These subjects 
must co-operate with each other to perform the delegation. When 
the subject has to satisfy certain conditions in oder to use the del­
egation, it is called conditional delegation. As authorizations can 
be re-delegated, they form delegation networks. The verification 
process checks that every entity in the delegation network has the 
authority to re-delegate, that all the authorizations are within the 
validity period, and that none of the required certificates have been 
revoked. However, this srudy does not include mechanisms for han-
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dling revocation of certificates. The verification can either be done 
by a Trusted Third Party or the original issuer agent. Usually the 
service guardian authorizes other agents to use the service, who in 
turn authorize other agents. Generally the original issuer agent is 
the verifying authority as well. Rules for verifying an authority are 
specified as part of the delegation policies within the original issuer 
agent's rule base. If a Trusted Third Party is responsible for verifi­
cation of authority validity, then it is also responsible for all the ser­
vice access control. The author has included several performatives 
for human/agent identity certificate management and human/agent 
authorization certificate management. Hu also describes how these 
performatives are encoded in XML for agent communication. 

Poslad et aI. describe the security and trust notions currently part 
of the FIPA specifications and point out some of its strengths and 
weaknesses [17]. The FlPA security specifications were started in 
1998, but are still not complete and have acrually been made obso­
lete by FlPA. The authors believe that security is domain dependent 
and that it is not possible to have a general security architecture 
which is suitable for all applications. The authors describe the trust 
models existing in FlPA. All agents that want to use services or pro­
vide services in a platform must register with the platform's Agent 
Management System (AMS). The AMS is trusted and maintains 
the identity of all registered agents. However as authentication is 
not mandated, spoofing is possible. AMS is responsible for the life 
cycle for all agents in the platfOim and agents must report all sig­
nificant changes to the AMS and allow the AMS to control their 
life cycles. However an agent need not obey orders from the AMS, 
causing the AMS to take some other course of action like using an 
external API or de-registering the agent. Agents also register their 
capabilities/services with the Directory Facilitator (OF). There are 
no specifications about this registration, so a malicious agent could 
cause a lot of damage by registering non-existent services, register­
ing wrong service descriptions etc. FIPA does not define how ac­
cessing agents can specify their preferences. There exists a trust re­
lationship between the Agent Communication Channel (ACe) and 
registered agents. The ACC is trusted to transmit the messages in 
a timely fashion and to maintain the integrity of the messages. The 
FIPA security model [7] defines mechanisms for keeping messages 
private, mechanisms to check the integrity of messages and authen­
tication messages. This model extends the functionality of AMS 
and OF and introduces an entity called Agent Platform Secwity 
Manager (APSM), which is responsible for maintaining security in 
the platform. The AMS uses public key infrastrucrure mechanisms 
for authenticating agents wishing to register with it. This raises 
issues related to PKl [3]. The agents define additional security pa­
rameters as part of their service descriptions which they register 
with the OF. The current specifications also include some sugges­
tions for secure Agent Communication Language (ACL) commu­
nications, mainly the envelop construct. Certain keywords like au­
thentication, non-repudiation etc can be used to express a level of 
security. When an agent requests a service, it is the responsibility of 
the message transport layer to encapsulate the messages based on 
these levels. The semantics of these keywords are provided by the 
platform. The authors propose certain requirements for adding se­
curity to FIPA systems, including authentication of agents by mid­
dle agents (AMS and OF) when writing to directories accessed via 
middle agents, use of private channel to send messages, and au­
thentication of middle agents by agents for bi-directional trust. 

3. DESIGN 
This model provides security based on distributed trust manage­

ment for open, dynamic agent platforms, with methods for intra­
platform and inter-platform security. 



Agents are authorized to access a certain service if they have the 
required credentials. Our work is similar to role based access con­
trol in that a user"s access rights are computed from its properties. 
However, we use additional ontologies that include not just role 
hierarchies but any properties and constraints expressed in a se­
mantic language including elements of both description logics and 
declarative rules. For example. there could a rule specifying that 
if an agent in a meeting room is using the projector. it is probably 
a presenter and should be allowed to use the computer too. In this 
way. rights can be assigned dynamically without creating a new 
role. Similarly, rights can be revoked from a user without changing 
his/her role, making this approach more flexible and maintainable 
than role based access control. 

We extend the functionality of the Agent Management System 
(AMS) and the Directory Facilitator (DF) to manage security for 
the platform, as not all agents should be able to register on a partic­
ular platform or use a certain DF. Similarly, agents are also given 
some access control ability. The AMS, DF and agents follow cer­
tain security policies to decide the access rights of requesting agents. 

Our system addresses the challenges associated with MAS, namely, 
corrupted AMS and DF, insecure communication, insecure dele­
gations. lack of accountability, access control for foreign agents, 
and lack of central control. The model manages corrupted nam­
ing and matchmaking services by using a PKI handshaking proto­
col between the agent and the AMS to verify validity of both par­
ties. All messages are encrypted according to Public Key Infras­
tructure . However we do not use these certificates for authenticat­
ing agents but for exchanging messages securely. Our delegation 
mechanism is able to thwart any invalid or insecure delegations. 
Only agents with the right to delegate can actually make valid del­
egations that change the access rights of other agents. All agents 
are held accountable for their actions because they have to sign all 
service queries and requests with their own private key. As there 
is a unique private key public key pair, once an agent signs a re­
quest, the agent can be held accountable. Our infrastructure allows 
foreign or unknown agents access into the system using trust man­
agement. When an unknown agent tries to register with a platform, 
the platform checks the agents credentials, and decides its rights 
with that platform based on the security policy. Multiagent sys­
tems are inherently decentralized and it is not possible to have a 
central database of access rights or policies. This is not a problem 
in our system as no central information is required. The policy is 
enforced individually at the entity processing the request. The pol­
icy is enforced at two levels; at the platform level, where access 
to the AMS and DF is controlled and at the agent level, where an 
agent can specify who can access its services. 

Agents are able to delegate their rights in a controlled and secure 
fashion. For example. if agent A delegates some service to agent B. 
and agent B tries to delegate this service to agent C, then the second 
delegation will fail as agent A did not give agent B the ability to 
redelegate. 

The agents use a semantic language like DAMI..+OIL [4] as an 
ontology language. DAML+OIL is an ontology language for mark­
ing up resources. and is basically being developed for the realiza­
tion of the Semantic Web2

. The agents express security informa­
tion including credentials, delegations. and policies in DAML+OlL 
making it easier for other agents to interpret them correctly. 

3.1 Security Classification 
We classify security into two levels depending on where it is en­

forced : platform or agent. In platform security, the AMS and DF 

2W3Cs Ontology Wrapper Language (OWL) is based on 
DAML+OIL 
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have additional security features. The AMS can decide whether or 
not to allow an agent to register, search or use its other functions . 
Similarly, the DF can also decide whether to allow an agent to reg­
ister, modify or search for agents based on certain access control 
information. An agent, while registering with a platform. can send 
some security information to the AMS specifying its security cat­
egory; private, secure or open. A private agent's Agent Identifier 
(AID) is not displayed to any other agent by the AMS. a secure 
agent has to send some access control information so that the AMS 
can filter requests to the agent and and an open agent is visible to all 
agents. Similarly. while registering its services with a DF. the agent 
can choose a category for each service. For example, an agent A 
can register as an open agent with the AMS and register two ser­
vices with the DF. a GPS service which is open and a navigator 
service which is secure. Agent A also specifies that only agent B, 
with certain credentials, can access the navigator service. In agent 
security, the agent uses a policy to decide how to further validate 
service requests. 

3.2 Platform Security 
In platform security the AMS and DF use distributed trust man­

agement principles to authorize requests to their services. 

3.2.1 Security Module for an AMS 
When an agent wants to register with the AMS. it signs it's re­

quest and sends it to the AMS. along with its digital identity cer­
tificate. The AMS verifies the certificate based on the rules. The 
rules could be of the form. an entity X of the organization Y with 
a certificate from trusted Certificate Authority CA(Y) is valid. Or 
there could be a rule saying. for all certificates from organization Z, 
calculate certification path and verify with the CA. If the certificate 
is valid. the AMS checks the signature. The AMS uses its policies 
to decide what access rights the agent has on the platform. 

If the agent does not have the right to register with the AMS. its 
request is denied. If the agent does have the right to register with 
the AMS. the AMS starts the handshaking protocol that is com­
mon in Public Key Systems. It sends the agent a small message. a 
nonce. encrypted with the agents public key. and attaches the plat­
fOims certificate. to the address specified by the requesting agent. 
This is not only done so that both parties can verify each other. 
but also in order to verify the agents location. prevent spoofing and 
securely exchange information. The agent can now go ahead and 
verify the platforms certificate . It then replies to the AMS with the 
same nonce encrypted with the platforms public key. On receiv­
ing this. the AMS creates a trust certificate containing the platform 
related rights of the agent, the associated public key, time validity 
and other relevant information and sends it back. This certificate 
is valid only for a short time, after which the agent has to start the 
registration process again. This period is directly based on the level 
of trust associated with the agent or in fact the agent's reputation in 
the platform. Using a trust certificate enables the AMS and DF to 
skip the rechecking of the agents' credentials everytirne the agent 
tries to use the services of the platform. 

After creating the trust certificate. the AMS will inform the agent 
about all the agents that are either in the open category or the se­
cure category for which the agent fulfills the required conditions 
for access. During the period of validity of the trust certificate, the 
agent can make requests to access the AMSs services. These re­
quests have to be signed. The AMS does not need to check all the 
credentials of the agent. but only verifies that the agent has the right 
to the requested service . 

3.2.2 Security Module for a DF 



After obtaining a trust certificate from the AMS of a platform, 
the agent can access various services of the AMS and the OFs. Us­
ing the trust certificate, an agent can register its services with the 
OF, if the platforms policy allows that particular agent to use the 
OF. This service registration message is signed with the agents pri­
vate key, and acts as a digital signature. This forces agents to be ac­
countable for their actions. The OF verifies the trust certificate and 
checks that the trust certificate is valid and belongs to the agent. It 
retrieves the agents public key from the trust certificate, and checks 
the signature of the registration message . If the certificate states 
that the agent has the right to register, the OF proceeds with the 
registration. An agent can register its different services under dif­
ferent categories. This service description is also in OAML+OIL. 
making the searching more semantic and more flexible. To query 
the OF, the agent sends a signed query message to the OF. The OF 
verifies the message and the checks the category of the service that 
fulfills the search query, the conditions anached if a secure service. 
and the access rights of the requester before sending back any re­
sults. These results are encrypted with the agents public key, which 
is associated with the trust certificate. 

Agents can 'delegate' authorization ability to the OF if they share 
domain ontology. If an agent carmot use the OF for making autho­
rization decisions on its behalf, then the agent has to contain a trust 
management engine and interpret its own policies. This makes the 
presence of the engine in an agent optional, allowing agents to run 
on smaller, lightweight, devices. The AMSIDF has a list of condi­
tions that an agent must satisfy in order to contact a particular agent 
or use a particular service. However the AMS and OF need to un­
derstand the service agent's3 policy or have access to its knowledge 
base. It is upto the service agent to make sure that these conditions 
are accurate and conform to its policy. In some cases, the AMS or 
OF carmot understand the associated conditions. Then, based on 
the policy of the platform, the AMS and OF can decide to reject all 
requests for the agent or service or accept all requests and forward 
them to the appropriate service agent for interpretation. 

3.3 Agent Security 
The authorization decisions carried out by individual agents for 

access to their services comprises agent security. 

3.3.1 Security Module for Agent 
Every service agent has two modes of operation as an owner of 

a service and as a requester of a service. 
Owner of a service 

Security on the agents side can be handled in multiple ways. An 
agent can decide to register its services as open or private on the 
OF, so that the agent itself is completely responsible for access con­
trol. The second way, is for the agent to categorize its services as 
secure and specify the access control conditions in the OF. If the 
agent trusts the OF completely, it can rely on the OF to handle ac­
cess control and the agent need not have a security module at all. If 
the agent does not trust the OF, it can implement its own security 
module for stricter access control. In this case, after the requests 
are filtered by the OF. they can be re-verified by the service agent. 

Requester of a service 
After an agent receives a matching list of services as a result of its 
OF query, it tries to execute one of them. The agent sends a request 
to the service agent and anaches its identity certificate and trust 
certificate. This message is encrypted using the agents private key. 
The receiving agent carries out similar reasoning as the AMS, by 
going through its certificate verification rules to verify the identity 
certificate and trust certificate. If both the certificates are valid, it 

3The agent controlling a service is known as service agent 
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verifies the signature. It then uses its security policy to decide if the 
agent meets its requirements for accessing that particular service. 
If all the checks are valid, then the receiving agent sends the result 
back encrypted with the senders public key. The agent does not go 
through the handshaking procedure because the sender has a valid 
trust certificate from the platform. Even after the platform checks 
by the AMS and OF, a service agent may decide not to honor a 
certain request. because there may be certain additional constraints 
it requires that the requesting agent fails to meet. 

4. INTER PLATFORM SECURITY 
If an agent is already registered with a platform and wants to 

access the AMS or OF on another platform, the agent should send 
along with its identity certificate. its current trust certificate, which 
contains information about its access rights. The remote platform 
decides the agents rights in the normal fashion based on its own 
security policy, and may take into consideration the platform that 
the agent is currently registered on. 

OF's of different platforms can be accessed if they register with 
each other through principles offederations of DF [6]. If an agent 
is searching for a particular service. and its OF cannot find any 
matching service, the OF will forward the request with the trust 
certificate to the other OFs registered with it. These OFs will pro­
cess the agents request as normal and return the results . 

5. VERIFICATION OF CREDENTIALS 
Credentials are properties of agents that are described in a se­

mantic language and signed by other agents. Oelegations are spe­
cial credentials and are discussed in detail in Section 6. In order to 
accept credentials of other agents, an agent must be able to verify 
these credentials. Verification can be carried out in the following 
ways 

• Simple Verification: In this scheme, a service agent ex­
pects all the credentials necessarily at the time of request. 
In order to use its services, a requesting agent must send all 
required credentials along with the request for service. The 
service agent will check its knowledge base, and question 
other agents about their beliefs in order to verify the creden­
tials. Suppose agent A has an alarm service which requires 
that requesters be AAAI members. The security policy of 
agent A also states that the agent XYZ should be trusted to 
verify AAAI certificates. An agent B sends A a request to use 
the service along with its certificate from the AAAI CA. This 
certificate states that the bearer of this certificate is a member 
of AAAI. Agent A asks agent XYZ to verify the certificate. 
If the certificate is valid then agent B is authorized to use the 
alarm service. If agent B did not send the required certificate 
or sent an invalid certificate, its request would be denied. 

• Negotiation: Certain service agents may provide a more in­
teractive requesting mechanism. If the requested agent does 
not provide the correct credentials to access the service, the 
service agent asks the requester for specific additional cre­
dentials. For example, a service agent A only allows employ­
ees of XYZ Pvt. Ltd. to access its services, and accepts dele­
gations from these employees. Agent B approaches agent A 
with a credential from AAAI. Agent A decides that the cre­
dential is not good enough and asks the agent B to prove that 
it is an employee of XYZ or if B has a delegation from an 
employee. Agent B possesses a delegation from Bob who is 
an employee of XYZ and sends this delegation to A. A ver-



ifies the delegation and the chain of delegations and decides 
to authorize agent B's request. 

• Third Party: Some service agents do not have the resources 
to verify credentials and so request trusted third parties to 
handle the verification on their behalf. Suppose a trusted 
agent. C. did have the resources and the inclination to help 
agent A. agent A would send B's credentials to C to be veri­
fied and would trust C's response. C could either use simple 
verification or negotiation to verify these credentials. 

6. DELEGATIONS 
An agent has the ability to make any delegation. but wbether it is 

honored depends on various factors. including the security policy. 
the agent's rights. and the rights of the agents abe ad it in the del­
egation chain. Agents are not prevented from making delegations. 
but the delegations by unauthorized agents are considered invalid. 
Only agents with the ability to delegate can make valid delegations. 
Valid delegations cbange access rights of other agents. The right to 
delegate is defined implicitly and explicitly. Implicitly. an agent can 
delegate rights to any service it offers. Explicitly. an agent that has 
been given the right to delegate by an authorized agent can perform 
valid delegations. as long as the delegation fulfills the constraints 
of the previous delegation. This forms a chain of constraints; the 
agent at the end of the chain must satisfy all the constraints associ­
ated with the delegations in the chain. Our delegation mechanism. 
written in logic. verifies that the requesting agent satisfies all the 
constraints of the delegations before it in the chain. 

Our framework allows certain authorized agents to delegate ac­
cess rights. with restrictions attached. to other agents. A delegation 
usually has constraints attached. such as one that limits the access 
to a certain period. or to whom the right can be re-delegated. A del­
egation consists of various information: delegator. right. constraints 
on delegatee. constraints on execution. constraints on re-delegation 
and time period. By using constraints on delegatee. the delegator 
can specify whom to delegate to. For example. a delegation could 
be conferred on all agents with certificates from a certain CA and 
registered with a certain platform. By restricting which of the dele­
gatee can actually use the right. the delegator can prevent wrongful 
execution of the right. Constraints on re-delegation allow the dele­
gator to decide whether the right can be re-delegated and to whom 
it can be re-delegated. We have developed rules that capture this in­
formation and enforce security by checking these constraints at the 
right time. We have separated the constraints on execution from the 
constraints on de legatee. to make delegation more flexible and its 
management more complete. 

6.1 Delegation Management 
Though delegation is very important for the propagation of trust. 

managing delegations in a distributed and dynamic environment is 
rather difficult. Consider the following example. an agent (delega­
tor), who is delegated a certain right, delegates it to another agent 
(delegatee) and goes down immediately. The delegatee asks to use 
the certain resource and presents its delegation certificate. How­
ever this request cannot be validated because the delegator's ability 
to delegate cannot be checked. 

We suggest three schemes for managing delegations 
Delegation Chain The previous example can be solved by mak­

ing the delegator attach its own delegation certificate to the newly 
created delegation before sending it to the delegatee. This means 
that every agent will have to store a chain of delegation certificates 
leading to its own delegation. in order to validate its delegation. 
This is not feasible because each chain could be very long and there 
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could be several delegations for every agent. To reduce the number 
of certificates in a chain. certificate reduction could be used [I]. but 
the original delegator may not be accessible. 

Centralized Delegation To avoid handling and processing chains 
of delegations. all delegations can be addressed to the service agent 
or the agent platform responsible for the service agent. However 
this scbeme has two problems; it is rather centralized and the dele­
gator may not be able to access either the service agent or the agent 
platform at the time of the delegation. 

Delegations on the Web The last scheme is to continue using 
delegation chains. but instead of storing the cbains within the agent. 
the chains could be stored on web pages. In order to prove it has 
a certain ability. an agent could point to a certain delegation on its 
delegation page. This delegation in turn would refer to a delegation 
on the page of the agent who made the delegator. By traversing this 
delegations. the agent platform and/or service agent would be able 
to verify the delegation and decide whether or not to authorize the 
request. 

7. TRUST PERFORMATIVES AND INTER­
ACTION PROTOCOLS 

FIPA is based on speech acts, predicate logic and public ontolo­
gies. Speech acts are ways of communicating or expressing oneself 
[18]. A speech act only succeeds if it is understood by the recip­
ient as intended. However FIPA does not include the speech acts 
required for trust management. As part of this security initiative, 
several speech acts. that are common to distributed trust domains. 
will be modeled. In this framework. agents will use certain speech 
acts to explain their intent; delegating. requesting etc. For example. 
"I delegate to you the ability to access my files for one hour", or "I 
request you to delegate to me the use of your workstation". These 
statements contain a lot of information that needs to be captured. 
An ontology. grounded in DAtvD..+OIL will be used to describe 
these speech acts. This ontology will enable the audience to cor­
rectly interpret the speech act and understand its purpose. FIPA 
Communicative Acts describe a set of "utterances" used in multi­
agent systems. and FIPA Interaction Protocol specifies the order 
of messages exchanged. Though most of the communication be­
tween the agents can be modeled with existing FIPA performative. 
we believe certain additional performatives are required for agent 
security and trust. 

The performatives that will be added are Request Permission. 
Delegate. Request Verification. and Credential Required. 

• Request Permission 
The action of asking another agent for permission to access 
a certain service. 

• Delegate 
The action of delegating to another agent or group of agents 
the ability to perform a certain action on a certain service. 

• Credential Required 
The action of asking the recipient to provide additional cre­
dentials. The content is the credential required and this per­
formative is the response to a request where the recipient did 
not provide the correct credentials. 

• Request Verification 
The action of asking the recipient to verify credentials sup­
plied by an agent requesting access to the sender's service. 

Using existing FIPA communicative acts and the performatives 
described above. we describe the interaction protocols for trust man­
agement in our system. 



contain rules for verifying certificates and credentials, access con­
trol, and delegation. Rules for verifying certificates could specify 
which certificate authorities are trusted, and the procedW'e involved 
in verifying different kinds of certificates, based on the CA, princi­
pal, agent etc. Rules for access control will state the credentials an 

rc;;:;;;S:;:-l>,-;:-:-==;;jIi=::;;;;;~::::::;::-;:;;;;:k---..agent must have for a certain access light. The policy also contains 
l.6ii_iiid~I.",;~~::'~t:==-~ ~~bd!i .. rules that describe the way delegations and revocations propagate 

in the system, how re-delegations are handled, how prohibitions af­
fect access control and delegations and how revocations should be 
managed. For example, if a delegation is revoked, should all the 
agents that the delegatee delegated to, lose the access right as well Figure 1: Our trust ontology as a class hierarchy 

• Request Interaction Protocol 
This interaction protocol allows the initiator to request the 
use of another agent's service. The initiator sends the re­
cipient a request message. Similar to FIPA, some responses 
are not-understood, refuse, agree, failW'e, inform-done, and 
inform-ref [5] . However depending on the kind of velifica­
tion being performed by the recipient, the responses could 
also include Credential Required. The sender would now 
have to resend its request with the new credentials in order to 
gain access to the service. 

• Request Permission Interaction Protocol 
An agent uses this protocol to request another agent to del­
egate certain abilities to it. The initiator starts the protocol 
by sending the recipient a Request Permission message. The 
responses from the recipient include not-understood, refuse, 
agree, failW'e, and Delegate. 

• Request Verification Interaction Protocol 
The initiator uses this protocol when it is unable to verify 
some credentials and requires the recipient to verify the cre­
dentials on its behalf. The initiator starts this interaction pro­
tocol by sending a Request Verification message. The valid 
responses to this message are not-understood, refuse, agree, 
failW'e, inform-done, and inform-ref. 

8. ONTOLOGIES 
Our infrastructW'e uses ontologies expressed in DAML+OIL to 

represent security information and policies in a multi-agent system. 
We have designed an ontology for trust and security infOlmation 

in this system, which is illustrated in Figure One. The root of the 
ontology is divided into State, Entity and Action. State contains 
all information pertaining to the current state. It currently has one 
subclass, Proposition, which is further sub-classified into Permis­
sion, Obligation, and Belief. Propositions are clauses that have a 
truth value in the system. An Entity could either be an Agent or 
an Object. An object can be extended to define domain specific re­
soW'ces like credentials, files, computers, printers, etc. An Action 
is associated with a set of Objects or resoW'ces. Speech acts like 
Requests and Delegations are extensions of Actions. 

The ontology specific to agent systems extends the main trust 
ontology with infOlmation related to FIPA platforms; register an 
agent, deregister an agent, search, create, agent service, etc. as ac­
tions and certificates, platform address. network address, network 
protocol used etc . as objects. Figme 1\vo shows part of the Agent 
ontology. 

9. POLICY 
The security policies are based on the Agent ontology. Each plat­

form and agent follows a security policy. A security policy may 
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or can they keep it and whether a prohibition is given priority over 
a delegation while deciding access lights. 

OW' default policy defines certain rules about the propagation of 
delegations so that all constraints in the delegation chain are ap­
plied before an agent can gain access to a service. If a certain link 
in the delegation chain fails or the right is revoked, the rest of the 
chain after this failed link loses the access right as well. This de­
fault policy also includes rules for the mechanisms of credential 
verification and belief management. 

10. PREVIOUS WORK 
We have previously developed two security systems based on 

distributed trust management - an agent-based supply chain man­
agement application [12] and an agent-mediated pervasive com­
puting environment [13. 19]. During tbeir implementation we have 
refined oW' trust management concepts and developed several pro­
grams in logic for handling the propagation of delegation, and val­
idating requests. 

10.1 Security for Supply Chain Management 
Systems 

We successfully implemented a trust based framework for the 
Extended Enterprise COalition for Integrated Collaborative Manu­
facturing Systems (EECOMS) project, which is aimed at providing 
a set of technologies for imegrated supply chain and business to 
business electronic commerce [to]. A supply chain management 
system consists of groups of buyers and sellers that need to open 
up their internal systems to each other in a secW'e way. In other 
words, a supply chain management system consists of a network of 
heterogeneous agents that interact to perform certain actions that 
mayor may not need autholization. The main problem is guaran­
teeing the authenticity of requests between these agents, whether 
within a company or between one or more companies. 

OW' system sets up authorization and delegation rules, so that 
the information in the SCM may be accessed only by authorized 
agents. Special intelligent agents called security agents are re­
quired for authentication and authorization within a particular do­
main, and are trusted within the company and by the companys 
buyers and sellers. They also represent the company in some sense. 
The security agents of a company enforce the company policy. This 
policy describes certain rules for rights, delegation and for reason­
ing about them. The policy is not changed frequently and usually 
involves human intervention. Agents within a company possess an 
identity certificate that is signed by a trusted Certificate Author­
ity. Agents within a company can be authenticated by the security 
agents through their ID certificates. 

In order to allow the buyer's employees to access certain infor­
mation within its company, the security agent of the seller gives the 
security agent of the buyer the permission to access that informa­
tion, and the ability to delegate this light. To propagate this trust 
within its own company, the seller's security agent delegates this 
right to some of its employees based on the policy. Depending on 
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Figure 2: This image shows a portion of the Agent System Ontology. Registration of an agent, deregistration of an agent, querying a 
DF, etc. are aU subclasses ofthe Action class in our Trust Ontology. Similarly, certificates, addresses, organizations etc. are subclasses 
of the Object class in our Trust Ontology. 

the previous delegations, the employees can further delegate this 
right to other employees, fonning a chain of delegation from the 
buyer's security agent to the seller's security agent to the seller's 
employees. If at any point a delegation fails or is revoked the access 
cannot go through. The same holds if the situation is reversed and 
the supplier gives the buyer access to some of its resources. Delega­
tion chains should always trace back to a security agent to be valid. 
Security agents are responsible for all accesses originating from its 
company and act as gateways. All access to information outside 
the company must go tlu'ough a security agent. This agent will au­
thenticate the requester, check the delegation chain and verify that 
the requester has the right to access the requested information. The 
security agent creates an authorization certificate for the requesting 
agent, that the requesting agent can use for access. 

This framework led us to view trust management as a very ef­
fective method for resolving several issues related to security in 
distributed systems. 

10.2 Security for Pervasive Systems 
We have designed and implemented Vigil, a security framework, 

which provides security and access control in pervasive systems 
[13] . Vigil has been optimized to work in SmartS paces, which is 
a specific instance of pervasive environments. A SmartS pace envi­
ronment provides services and resources, that users can access us­
ing some short range wireless commwtications such as Bluetooth, 
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IEEE 802.11, or Infrared, via any hand-held device, within a Vigil 
can also be lIsed in wired systems, but the focal point of our re­
search is the security in dynamic, mobile systems . Vigil is designed 
so that clients can move, attach, detach, and re-attach at any point 
within the framework. 

Our infrastructure is designed to minimize the load on portable 
devices and provide a media independent infrastructure and com­
munication protocol for the provision of services. Vigil, in ad­
dition to solving the issue of controlling access to services in a 
SmartS pace, also accommodates users that are foreign entities. that 
is entities that are not known to the system in advance. In many 
conventional systems, access rights are static; agents are not able 
to request pennission to access a Service to which they are not pre­
authorized. To overcome these issues, we have incorporated the 
Vigil Security Agent. This Security Agent allows agents to ask for 
access permission and other agents to actually delegate rights that 
they have. This extends the security policy in a secure manner, as 
only agents that have the permission to delegate, can actually dele­
gate. 

The Vigil system is divided into SmartSpaces, and each SmartS pace 
uses one or more security agents to maintain security. The Secu­
rity Agent is responsible for maintaining distributed trust in the 
Vigil system. It enforces the security policy of the organization 
or SmartSpace, It interprets the policy to provide controlled access 



to Services and uses distributed trust as a more flexible and eas­
ily extensible policy based mechanism. There is generally a global 
policy associated with the organization and a local policy associ­
ated with a SmartS pace. All security agents in the organization 
will enforce the global policy and will additionally enforce a local 
policy, which is specific to the Space. A policy includes rules for 
role assignment, rules for access control, and rules for delegation 
and revocation. 

The Security Agent uses a knowledge base and sophisticated rea­
soning techniques to handle security and distributed trust. On ini­
tialization, it reads the policy and stores it in a Prolog knowledge 
base. All requests are translated into Prolog, and the knowledge 
base is queried. The policy contains permissions which are access 
rights associated with roles, and prohibitions which are interpreted 
as negative access rights. The policy also contains rules for role as­
signments, access control and delegation. A user has the ability to 
access a service if the user has not been prohibited from accessing 
the service by an authorized entity and if it either has the role based 
access right or if some authorized entity has delegated this right to 
it. An entity can only delegate an access right that it has the ability 
to delegate. 

When a user needs to access a service that it does not have the 
right to access, it requests another user, who has the right, or the 
service itself, for the permission to access the Service. If the entity 
requested does have the permission to delegate the access to the 
Service, the entity sends a delegate message, signed by its own 
private key, along with its certificate, to the Security Agent and the 
requester. The Security Agent checks the roles of the delegator 
and the delegatee and ensures that the delegator has the right to 
delegate, and that the delegation follows the security policy. It then 
adds the permission for the Client to access the Service, but sets a 
very short period of Validity for the permission. Once this period 
is over, The Security Agent has to reprocess the delegation. This is 
very useful incase of revoked certificates, delegations or rights. If 
anyone entity in the delegation chain loses the permission, then it 
is propagated down the chain very quickly, till everyone after the 
entity loses the ability. Every time a Service Broker asks about the 
delegated rights of the client, the Security Agent sends back only 
valid permissions. 

11. SUMMARY 
In this paper we present the design for a security framework for 

multi-agent systems based on trust management, the delegation of 
permissions and credibility. We believe that other interesting con­
cepts like reputations and obligations can also be built in once the 
basic framework is developed. This approach is particularly use­
ful in open environment in which agents must interact with other 
agents with which they are not familiar. Research in security for 
multi-agent systems often tends to focus on a limited subset of the 
security challenges of MAS. We believe our model addresses sev­
eral prominent security issues associated with these agent environ­
ments and provides a comprehensive trust based solution. 
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ABSTRACT 
We present an access control method for mobile agent sys­
tems. It is based in role-based access control and trust man­
agement and provides a flexible and scalable method to con­
trol the access to resources. It uses roles and allows the 
delegation of authorizations to mobile agents. The method 
uses SPKI to implement the role system and the delegation 
of authorizations. It is part of the MARISM-A project, a 
secure mobile agent platform for Sea of Data (SoD) appli­
cations. We also show its functionality with an example 
application based in the 1ST project INTERPRET. It is a 
medical imaging SoD application , and we provide a suitable 
solution to control the access to the data. 

Keywords 
Mobile Agents Security, Role-based Access Control, SPKI. 

1. INTRODUCTION 
Mobile agent systems are gaining popularity in the last years, 
allowing the development of new services and applications. 
Some applications, which are difficult to implement with 
more traditional programing paradigms, can now be easily 
implemented with mobile agent systems. One of these ap­
plications are known as Sea of Data (SoD) , applications that 
need to process huge quantities of distributed data. 

With mobile agent systems, we do not need to send the data 
across a network and centralize all the data processing. In­
stead, the code is executed where the data is located. The 
initial launching platform does not need to be always on-line 
to access the remote resources, so the user may be discon­
nected during the execution of the application. It is also 
possible to parallelize the execution of processes allowing a 
high degree of scalability. 

One of the most important challenges of mobile agent sys­
tems is the security. An important security service that 
needs to be achieved, specially in SoD applications, is the 
resource access control. We need a lightweight , flexible and 
scalable method to control the access to data and resources 
in general. Traditional methods are normally based in the 
authentication of global identities (X.509 certificates). They 
allow to explicitly limit access to a given resource, through 
attribute certificates or ACLs. So they also require a certi­
fication authority and a centralized control. 
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An alternative to implement the access control are the au­
thorization infrastructures. These infrastructures are based 
on trust management and allow to assign authorizations 
(permissions or credentials) to entities and delegate trust 
from one entity to another. One of these infrastructures is 
the Simple Public Key Infrastructure (SPKI) [6], which seem 
to be the most accepted. We think that SPKI provides a 
good base to implement the access control method. There 
are existing security frameworks providing SPKI function­
alities [10], and it is probably the most standard solution to 
implement trust management mechanisms such as the dele­
gation of authorizations. There is also some propositions to 
use authorization infrastructures to implement access con­
trol methods [2], [11). 

We present a resource access control method for mobile 
agent systems. It is based in roles and trust management. 
It allows to control the access to resources based on role 
membership , as in systems such as Role-base Access Con­
trol (RBAC) (14), (18) , which facilitates the management of 
the access control. An important feature of our model, not 
provided by general role-based access control, is the possi­
bility of delegating trust to manage and control the access. 
This way, it does not need a certification authority or other 
trusted third parties. It makes the system scalable, and 
allows the distribution of some of the main tasks for con­
trolling and managing the access. 

The particularities of mobile agent systems introduce some 
restrictions and limitations, not found in more classical sys­
tems (distributed or not). Specially when considering the 
security involved in a mobile agent. Our model allows to 
authorize a mobile agent to access a given resource and con­
trol its access with quite flexibility. The mobile agent does 
not need to carry any kind of information with regard to 
the resource access. This avoids the inconveniences of stor­
ing sensitive information in the mobile agent. 

The model is going to be implemented in the MARISM-A 
(An Architecture for Mobile Agents with Recursivp- Itineraries 
and Secure Migration) project [3], a secure mobile agent 
platform for SoD applications. To clarify and explain our 
proposal, we will explain an example application based in 
the 1ST project INTERPRET (International Network for 
Pattern Recognition of Tumors Using Magnetic Resonance) 



[1]. 

In Section 2 of the paper we introduce the environment of 
our proposition. Section 3 gives a brief overview of SPKI. 
We present our model in Section 4 and the example applica­
tion in Section 5. Section 6 explains the main functionality 
of the proposed model and finally, Section 7 contains our 
conclusions. 

2. MARIMS-A EXTENSION 
As said before, the proposed access control model is an ex­
tension of the MARlSM-A platform [17]. MARlSM-A is a 
secure mobile agent platform implemented in Java. It is im­
plemented on top of the FIPA-OS system 1·7], which follows 
the standards proposed by FIPA [8]. 

The basic element of the MARISM-A platform is the agency, 
the environment for the execution of agents. An agency con­
sists of a directory service, an agent manager and a message 
transport service. An agent system has several agencies dis­
tributed on a network. Each agency in controlled by an 
entity (its owner). 

Agents in MARISM-A can be mobile or static, depending 
on the need of the agent to visit other agencies to fulfill 
its task. There are several types of mobile agents accord­
ing to the characteristics of its architecture: basic or recur­
sive structure, plain or encrypted, itinerary representation 
method, etc. Agents can communicate each other through 
the agency communication service. 

All mobile agent architectures in MARISM-A share some 
basic aspects, such as the differentiation of internal parts 
and migration mechanisms. A mobile agent consists of code, 
data, state, and an explicit itinerary. Code is the set of in­
struction describing the execution of the agent. Data is an 
infonnation storage area that can be used by the agent at 
any moment for reading and writing and goes with it all the 
time. Results of executions are stored in this area, normally 
using some convenient protection mechanisms. State is re­
served to store the agent information related with its state. 
Explicit itinerary is a structure containing all agencies that 
are going to be visited by the agent on its life cycle [13]. 
Itineraries consist of several basic structures: sequences, sets 
and alternatives. These structures can be combined to build 
complex itineraries. In a sequence, the agent will migrate to 
each agency one after the other. In a set, a group of agencies 
will be visited by the agent in no special order. On the other 
hand, only one agency of those listed in an alternative will 
be visited by an agent, depending on some conditions. 

MARISM-A considers a minimal security infrastructure to 
protect the communications between agencies. All the agen­
cies are registered in a CA, and we use SSL to provide both 
confidentiality and authentication for agency communica­
tions. 

lt is important to assume that a\!",enc\es untrust each other. 
Therefore, they might try to modify results carried by the 
agent, or to gain knowledge about its itinerary, to favor 
themselves to the detriment of the rest. It is also reasonable 
to assume that agencies are not malicious and they do not 
seek to adversely affect the owner of the agent (the client), 
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or the agent itself. 

From now on, we will use the following notation: 

• Ei(m): encryption of m using a symmetric cipher with 
i's secret key. 

• F;(m): encryption of m using an asymmetric cipher 
with i's public key. 

• Si(m): signature of musing i's private key. 

• hash(m): hash function of m. 

• ha8h;(m): keyed hash function of musing i's secret 
key. 

Subsections 2.1 and 2.2 introduce the architecture of the 
static agents and mobile agents with explicit itinerary as an 
extension to MARISM-A mobile agents. 

2.1 Static Agents 
A MARISM-A static agent has the following form: 

Agent = Control Code, State, Code, Data 

Because agent control code is in the agent itself, it is indif­
ferent for the platform to deal with mobile or static agents. 
There are not many words to say about security in static 
agents. Communication and interface with other agents are 
provided by secure services of the agency. Data protection 
is assured by the agency too, and there is no itinerary to 
protect here. 

2.2 Mobile Agents with explicit itinerary 
Agent code is split into several pieces in this architecture. 
There is a main code that will be executed in all agencies 
(Common Code), and as many code fragments as agencies 
are in the itinerary, each one to be executed in a particu­
lar agency (Local Code). This feature makes MARISM-A 
very useful in some types of application where execution is 
context dependent. We consider the following mobile agent 
architecture: 

Agent, = PubKeyo, Control Code, StateData, 
Common Code, GlobalData, Itinerary 

Itinerary = (LocalCodel, LocalDatal, Agencies1), ... , 
(Local Coden , LocalDatan, Agenciesn) 

Agencies; is the agency (or agencies, depending on the type 
of itinerary) the agent is going to visit (migrate) next. The 
agent that is sent to the next hop of the itinerary (Agenti+ 1) 
has the same structure. CommonCode is executed by all 
agencies when the agent immigrates and before the specific 
Loca\Coue. Programmi.n\!", i.s si.m-p\i.neu by u!'.i.n\!", thi.s com­
mon code to include the non agency dependent code only 
once. The control code in the agent deals with the functions 
of agent management, in this case extracting the relevant 
parts of the agent. PubKeyo is a public key provided by the 
owner. 



It might be interesting to protect integrity and secrecy of 
data that has been written in some agency. In an e-commerce 
application, for instance, where agencies represent shops and 
agents act on behalf of buyers, it might be necessary to pro­
tect offers from rival shops. The method to provide the 
secrecy and integrity required for this data in this agent ar­
chitecture is based on a hash chain. Some of the data area 
is reserved to store results from executions (Results Data). 
Results are not stored plain, but they are firstly encrypted 
using agent's owner cryptographic information. Only the 
owner of the agent will be able to read these results. Once 
the result has been written a hash of the Result and pre­
vious hashed information is calculated, signed and written 
also . This hash has information about the identity of next 
agency in the itinerary, so that no agency can neither modify 
the result area nor remove some result. Each agency verifies 
during immigration that all hashes in the Results Data are 
correct . The format of the Results Data is: 

Results Data = Po(nil, Id l ) , So(hash(Po(nil, IdJ))), 
Po(RI , I d2), SI (hash(Po(R 1 , I d2))), 
Po(R2, Id3) , S2(hash(Po(R2 : Id3))), ... , 
Po(Rn, Ido), Sn (hash(Po(Rn , Ido))) 

where 0 is the owner of the mobile agent; R; is the result of 
agency i and I di is the identifier of the agency i . 

We also need a way to ensure the agent's integrity. The 
owner, before sending the agent , computes a keyed hash of 
the Control Code, the Common Code and the Itinerary of 
the agent (hashKo (ControlCode , CommonCode , Itinerary)). 
Then, when the agent finishes its execution, the owner can 
verify the agent's keyed hash. 

To protect the itinerary we use the following encryption 
schema: 

Agenti= PubKeyo, ControlCode, StateData, 
Common Code, GlobaiData, Itinerary, 
hashKo (ControICode, CommonCode, Itinerary) 

LocaiStructures= EJ (LocalCodet , LocalDatal , 
Agenciesl : tripmark), ... , 

En (Local Coden , LocaiDatan, 
Agenciesn , tripmark) 

where tripmark is usually a timestamp or nonce, which 
identifies the agent journey and prevents replay attacks. As 
we will see, the encryption is performed by the agency itself 
before the whole agent is constructed. So the symmetric 
key is only used by the agency and it does not need to be 
distributed. Note that the keyed hash in the agent is only 
useful to the owner, thus it does not need to be included in 
the mobile agent . We show it in the agent definition just for 
clarity reasons. 

A variant of this agent is the mixed one, where the list of 
information for agencies is scrambled. This makes it not 
possible to know which is the part of the agent that will be 
executed on which agency. 
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3. SPKI 
The base to our proposal is SPKI (more formally named 
SPKI/SDSI) . It is an infrastructure which provides an au­
thorization system based in the delegation of authorizations 
and a local name model. It provides mainly two kind of 
certificates, authorization and name certificates. Any indi­
vidual, software agent or active entity in general is called 
a principal. It is a key-oriented system, each principal is 
represented and may be globally identified by its public key. 
We can say that in SPKI a principal is its public key. Since 
it does not need a certification authority, each principal can 
generate and manage its keys . A key is a generic crypto­
graphic key pair (public and private) . Currently the SPKI 
specification supports RSA and DSA keys. The representa­
tion format used by SPKI is S-expressions [16]. 

An authorization certificate has the following fields : 

• Issuer: principal granting the authorization. 

• Subject: principal receiving the authorization. 

• Authorization tag: specific authorization granted by 
the certificate. 

• Delegation bit: if it is active, the subject may forward 
delegate the authorization received. 

• Validity specification: specifies the validity of the cer­
tificate through a time range and on-line tests. 

It is signed by the issuer. The on-line tests from the valid­
ity specification field , provide the possibility of checking, at 
verification time: the validity or revocation of the certificate. 

In a normal situation there will be a principal controlling 
a resource, which delegates an authorization. The autho­
rization may be further delegated to other principals. If a 
principal wants to access the resource, it needs to provide 
an authorization proof. Te proof is a certificate chain , which 
binds the principal controlling the resource to the one re­
questing the access. To find this certificate chain there is a 
deterministic algorithm, Certificate Chain Discovery Algo­
rithm[5], which finds the authorization proof in polynomial 
time. 

In SPKI a principal may have a local name space and define 
local names to refer to other principals. To define a name, a 
principal issues a name certificate. It has an issuer, subject, 
validity specification, (just as an authorization certificate) 
and a name. The issuer defines the name to be equivalent to 
the subject. For example a principal with pu blic key K may 
define the name Alice to be equivalent to the the principal 
with public key K A . Now K can refer to the principal KA 
by the name Alice instead of the public key. Such a name 
certificate can be denoted as: 

K Alice --t KA 

meaning that K defines the name Alice in its local name 
space to be equivalent to K A. If a principal wants to refer 
to a name defined in another name space, it just has to add 



the local name space owner's public key to the name as a 
prefix. When we say KA Alice , we mean the name Alice 
defined in KA'S local name space. 

SPKI also provides the ability of defining compound names. 
Names that refer to other names which may also reference 
other names and so on. For example, the principal K B can 
define the following name in its local name space: 

K B employee ---+ K Alice 

It defines the name employee to be equivalent to the name 
Alice defined in K's local name space. Note that it is refer­
ring to KA without knowing it. 

This is a key concept in our proposal since we will consider 
a role as a SPKI local name. 

4. OUR ACCESS CONTROL MODEL 
One of the first problems we found when planning the au­
thorization model, is if the mobile agents should have a 
SPKI key and be considered as principals. A mobile agent 
cannot trivially store a private key, so it cannot perform 
cryptographic operations such as digital signatures. There 
are some propositions to store sensitive information (pri­
vate keys) in mobile agents [15]. But the problem arises 
when the mobile agent uses the private key to compute a 
cryptographic operation. The agency where the agent is in 
execution will be able to see the private key. As a result we 
consider that a mobile agent should not have a private key. 

Our solution is to delegate authorizations directly to the 
agent. This way the mobile agent does not need to carry 
any kind of authorization information , making the agent 
more simple and lightweight. This issue will be discussed in 
Section 6.2. 

The main components of the access control method can be 
seen as independent modules. Each module is implemented 
as a static agent , has a SPKI key, and it is considered as a 
SPKI principal. The modules are: 

Authorization Manager (AM) it manages the delega­
tion of authorizations, issuing SPKI authorization cer­
tificates. It follows a local authorization policy. 

Role Manager (RM) it manages the roles (mainly the 
role membership) by issuing name certificates. It fol­
lows a local role policy. 

Certificate Repository Manager (CRM) it manages a 
certificate repository. Provides services such as certifi­
cate chain discovery. 

Resource Manager (DM) it is an authorization manager, 
which controls a resource (data), it has to verify re­
source access requests . Normally its authorization pol­
icy will be quite restrictive, delegating to an authoriza­
tion manager the responsibility of performing complex 
authorization tasks. 
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Figure 1 shows a simple schema of the model with two 
DMs, an AM, a RM and a CRM. The RM defines the roles 
and determines its membership. The DMs delegate the au­
thorizations related to the resources to the AM, and the 
AM delegates authorizations to the roles. Each static agent 
stores the issued SPKI certificates in the certificate reposi­
tory through the CRM (denoted by broken lines). 

4.1 Authorization Manager (AM) 
The main functionality of the AM is to provide authoriza­
tion certificates under request. To obtain an authorization 
certificate, a principal sends a request to the AM with the 
specific authorization , it wants to obtain. Then the AM de­
cides whether to issue the certificate or not, and under what 
conditions it has to be issued. To do that, it follows its local 
authorization policy. Since the policy is local to the AM 
agent, it does not need to follow any specification and its 
format is implementation dependent. 

We propose an authorization policy, described as a SPKI 
ACL, where each rule can be expressed as an ACL entry in 
S-expression format. A SPKI ACL entry is an authorization 
certificate without the issuer and it does not need to be 
signed because it is local to the AM and stored in secure 
memory. It has the following fields: 

• Subject: the principal receiving the authorization. It 
may be a role or another AM . 

• Authorization tag: determines the specific authoriza­
tion that the subject can obtain . SPKI allows quite 
flexibility to specify the authorization tag with S-ex­
pressions. 

• Delegation bit: determines whether the subject may 
receive the right to delegate the authorization or not. 

• Validity specification: allows to limit the authoriza­
tion to a time range, and include some on-line tests to 
verify the validity or revocation of the authorization 
certificate. 

To be more specifics, the AM will receive authorization del­
egation requests from a RM or another AMs. It has to 
delegate authorizations to roles or to other AM which \V;ll 
finally authorize roles. 

4.2 Role Manager (RM) 
The RM is responsible for assigning and managing roles. 
and determines the role membership . The use of roles facili­
tates the access control management and the specification of 
policies . The main idea is to exploit the advantages of Role 
Based Access Control (RBAC) [14] and trust management. 
The RM assigns a role by issuing a SPKI name certificates 
following its local role policy. It can also assign a role to a 
role defined by another RM, thus allowing the delegation of 
role membership management. Section 6.1 details how roles 
are assigned and used. 

Each RM has a local role policy which determines what roles 
does it manage. It also includes rules to determine if a given 
principal requesting a role membership has to be granted or 
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Figure 1: Authorization modules 

not. If we choose to describe the role policy as a SPKI 
ACL, it is quite similar to an authorization policy. Now the 
subject of the SPKI ACL entry is a principal or another 
role and the authorization tag determines the role that the 
subject can have. This local policy also provides rules for 
the RM to define role hierarchies an constraints over the 
user assignment to roles if needed. 

4.3 Certificate Repository Manager (CRM) 
A CRM implements a certificate repository. For example, 
one agency may have one CRM to collect all the certificates 
issued by agents inside the agency. The CRM provides the 
repository and all the services needed to query, store or re­
trieve the certificates in the repository. It also provides a 
certificate chain discovery service. A principal can make a 
query to the CRM to find a specific certificate chain. This 
way we solve the problems derived from certificate distribu­
tion and leave the task to perform chain discoveries to the 
CRM and not to the other principals. It decreases the com­
munication traffic, certificates do not need to travel from 
one principal to another and reduces the task that generic 
principals need to perform. 

4.4 Resource Manager (DM) 
The main task of a DM is to control the access to a re­
source (data). It holds the master SPKI key to access the 
resource , delegates authorizations to AMs, and verifies that 
an agent requesting access to the resource has the proper 
authorization. Another important feature of a DM is to is­
sue Certificate Result Certificates (CRC) to agent hashes, 
see 6.2. 

As it has to delegate authorizations issuing authorization 
certificates it also acts like a AM and follows a local autho­
rization policy. But this policy is much more restricted. A 
DM only has to issue authorization certificates to AMs and 
a special certificate to mobile agents (see 6.2), which are 
quite straightforward operations. 

5. EXAMPLE APPLICATION 
This example is derived from the project IST-1999-103l0 
INTERPRET [1]. The example is going to be developed us-
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ing the MARISM-A platform. Consider a medical SoD ap­
plication for radiology images. There are several hospitals, 
research centers and companies with a radiology department 
which produces some kind of sensitive, and possibly expen­
sive, radiology images such a magnetic resonances or high 
resolution radiologies. Each center organizes the data in a 
database accessed by at least one agency with DMs. The 
application may provide the ability for clients to process the 
distributed data in a variety of ways, for example testing 
a classification algorithm. The owner of the data may also 
provide classification services, such as a trained classifica­
tion algorithm, which a client may use to classify a reduced 
set of data provided by herself. 

The reason for using a mobile agent approach in this appli­
cation, is due to the high quantity of distributed data, which 
is difficult to centralize. Also because medical data normally 
contains some sensitive information, which the hospitals are 
normally not allowed to give it to someone else. That is, a 
mobile agent processing the data, may get back to the client 
with the obtained results, but not with the data. 

We will consider each participating entity as a principal. A 
principal may be a static agent or an individual (normally 
the owner of a mobile agent) with its own SPKI key. We 
consider three kinds of principals, data producers, data con­
sumers and process consumers: 

• data producer: updates the database, adding new im­
ages or replacing existing ones. 

• process consumer: provides a reduced set of data, and 
wants to use some processing service provided by the 
agency (normally a complex trained algorithm such as 
a classification one). 

• data consumer: it provides a code to be executed with 
the data provided by the agency. 

A simple definition of roles for the example application may 
be: 



• physician: authorized as data and process consumer 
for all the resources. 

• externaLphysician: authorized as process consumer for 
a reduced set of data. 

• radiography_technologist: authorized as a data provider. 

• externaLresearcher: authorized as data consumer for 
a restricted set of data. 

These roles may be hierarchically extended, for example as 
mdiogmphy_technologist, there may be radiographer, which 
provides only radiographies and mLtechnologist, which pro­
vides only magnetic resonances. Specially the externaLre­
searcher role, which may be seen as a client , may have sev­
eral sub-roles to be able to specify several specific autho­
rizations for different kinds of clients. The definition of role 
hierarchies is quite application dependent. Thus, we do not 
explicitly specify any role schema. In some specific environ­
ments the role definition will not require the use of hierar­
chies or constraints over the assignment of role membership. 

6. ACCESS CONTROL MANAGEMENT 
Given the example application we will show the functionality 
of the access control method. The main features are the 
role system and the delegation of authorizations to mobile 
agents. A principal may be authorized to access a resource 
as a role member. The AM may give several authorizations 
to a specific role. Then a principal belonging to that role, 
has all the authorizations of the role. We already said that 
we do not consider a mobile agent as a SPKI principal. Thus 
we need a way to authorize mobile agents and control its 
access to resources. 

We also consider the distribution of the access control man­
agement by distributing some of the modules. We can dis­
tribute several modules, or just one, for example. This 
makes the model easily adaptable to specific applications. 
Since a module is implemented in a static agent, to dis­
tribute a module means to use several static agents, which 
may operate independently. 

6.1 Roles 
An important issue of the RM is that it is the main re­
sponsible to grant access permissions to principals. When a 
principal requests a role membership and succeeds, it auto­
matically has all the authorizations of the role. The main 
task of the RM is to deal with role management. This in­
volves three main tasks: 

• Role definition and membership management . 

• Role hierarchies definition. 

• Apply constraint to the user assignment to roles. 

The constraints determine mutually exclusive roles or sub­
sets of roles. These constraints are what the proposed NIST 
standard calls Separation of Duties[14]. The hierarchies are 
defined by issuing name certificates. For example, consider 
that the role radiography_technologist inherits all the permis­
sions of the role mLtechnologist. If both roles are defined 
by RMA , it will issue the following name certificate: 
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RMA mr _technologist 
--+ RMA radiography..technologist 

Another important issue is that the role membership can 
be restricted through the validity specification of the name 
certificate, which grants the membership. That is, it can 
have a not-after and not-before time range and some on-line 
tests [6]. 

6.2 Authorizing mobile agents 
A client, as a principal, may be member of a role or roles, 
say externaLclient. It may be authorized to access resource 
A with a mobile agent. Since mobile agents cannot have 
private keys, we can not delegate authorizations to the mo­
bile agent or make it member of a role. Our approach is 
to delegate the authorization to a hash of the agent. The 
subject of a SPKI authorization certificate and any SPKI 
principal in general can be a public key or a hash of a pub­
lic key. So a hash may be seen as a principal, subject of a 
certificate. This idea does not really follow the SPKI speci­
fications. Since the subject is not the hash of a public key, 
it is not a principal. Thus we need to extend the SPKI 
specifications to introduce this idea. 

As we said before the mobile agent is constructed from the 
itinerary, separately including the code to be executed in 
each agency. Let mi be the local structure of the agent to 
be executed in the agency i . That is: 

mi == E i(LocalCodei, LocalDatai, AgenciesHl, 
tripmark) 

The client already has an authorization to access resource A , 
which is controlled by Dk[A. Once the client has specified 
all the miS it constructs the itinerary and proceeds to gel 
the authorization for the agent . The main idea is to reques' 
a Certificate Result Ceriificate(CRC) to DMA having the 
hash of mi as the subject of the certificate. The CRC is al 
authorization certificate, which resumes a certificate chain 
in this case the authorization proof for the client to acces! 
resource A. The process involves the following steps: 

1. The client sends a CRC-request to D MA. It include! 
the specific authorization it wants to obtain, the cod! 
mi and the client's public key. This request is signee 
by the client. 

2. The DMA requests the CRM to verify if the client i~ 
authorized to access the resource . That is, verifies il 
there is an authorization proof which allows the client 
to access the resource. 

3. If the authorization is correctly verified , the DMA 
computes the hash of the code, and issues an autho· 
rization certificate which has D MA as the issuer anG 
the hash of the code as the subject. The specification 
tag and the validity specification is the intersection be· 
tween the ones from the client 's CRC-request and thE 
ones returned in the authorization proof request. 

4. Finally the DMA encrypts the code m i with a sym­
metric cipher. It uses a secret key only known by th€ 



DMA . The DMA is the only one who is able to decrypt 

Once the mobile agent is constructed it will be able to access 
the resource. The mobile agent will travel to the agency 
and request access to DMA. The D l\tIA just has to compute 
the hash of the agent code (mi) and check if there is an 
authorization certificate, which directly authorizes the hash 
to access. This authorization verification is straightforward, 
since it does not require the generation of a full authorization 
proof. 

This approach allows to delegate authorizations to mobile 
agents. Note that the mobile agent does not need to include 
any kind of authorization information, it just has to provide 
the specific code so the DMA can compute the hash. 

One thing we have not explicitly talked about is how to 
control the proper behavior of the mobile agents. In our 
example, how do we know that a mobile agent is not steal­
ing data? First of all , the process of authorizing a mobile 
agent involves the computing of the hash of the piece of code 
of the agent , which is going to be executed in the agency. 
Therefore, we can easily log this code for auditing purposes. 
It is also feasible for an agency to include a local monitoring 
system looking for anomalies in the behavior of the agents. 

6.3 Distribution of Role Management 
Due to the local names provided by SPKI, the role manage­
ment can be easily distributed. We can have several RMs 
managing its local roles and using compound names to ref­
erence one local role to another. For example, consider we 
have two RMs, RM A and RM B. Each one has its local roles 
definitions, RMA may define: 

RMA radiography..technologist --+ KJ 
RMA physician --+ K2 
RMA physician --+ K3 
RMA companyB-client --+ RMB ext._researcher 

That is, it says that the principal K 1 is member of the radiol­
ogy_technologist role; the principals K2 and K3 are members 
)f the role physician. And that the name externaLresearcher 
(which is also a role) defined in the local name space of RM B 

is member of the role companyB_client. Then RM B may de­
fine: 

RM B externaL-re searcher --+ K4 
RNJB externalJ'esearcher --+ K5 

30 the principals K4 and K5 are members of the role exter­
'!aLresearcher defined by RM B. And they are also mem­
)ers of the role companyB_client defined by Ri\tJA . Note 
;hat each RM defines independent roles, both RMs could 
iefine locally two roles with the same name, and they will 
Je considered as different roles by the system. Is imp or­
;ant to notice that all the roles , as SPKI names, are local 
;0 each RM. We can globally identify the role by adding 
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the public key of the RM as a prefix of the role Oust as a 
SPKI name). This independence of role definitions makes 
the system easily scalable and distributed. Note that in the 
example we can say that the role management is distributed 
over the two RMs since both of them take part in the hole 
role management. So independent RMs can interact in the 
same model without having to redefine roles. 

This can be also seen as trust management, in some way 
RMA trusts RMB to manage the role RMA companyB_cli­
ent. From the RBAC point of view it is considered a role 
hierarchy definition. We can say that the role RMB exter­
naLresearcher inherits all the permissions (authorizations) 
of the role RMA companyB_client. 

6.4 Distribution of Authorization Management 
The distribution of the authorization management is achieved 
by distributing the management over several AMs. This 
distribution is straightforward. Each AM manages autho­
rizations following its local policy. It can only delegate the 
authorizations that it has received. To be more precise an 
AM or any principal may delegate a certificate granting an 
authorization it does not have. But any principal receiving 
the authorization will not be able to have the proper autho­
rization proof, since the certificate chain will be broken. 

There will be no conflict between several AMs. If there is 
an authorization proof for one principal to access a resource, 
the principal will be able to access no matter which AMs or 
principals have interfered. 

6.S Distribution of the Certificate Repository 
The distribution of the certificate repository is a complex 
task. All the authorization proofs are obtained from the 
repository. In fact, it is the CRM which performs the cer­
tificate chain discovery. To distribute the repository will 
considerably increase the complexity. We need to use a dis­
tributed certificate chain discovery algorithm, which adds 
not only complexity to the implementation but also intro­
duces the need for more communication and process re­
sources. 

There is some work done in relation to distributed certificate 
repositories and chain discovery, such as dRBAC [9] or [12] . 
These approaches could be used if an specific application 
really needs to distribute the certificate repository. 

The application we are going to implement does not im­
pose the distribution of the certificate as a must . In fact, 
it can easily be implemented with a centralized repository. 
And there is no need to add complexity to the system by 
distributing the repository. 

7. CONCLUSIONS 
We have proposed an access control model for mobile agent 
systems, specially suitable for SoD application. It provides 
a simple, flexible and scalable way of controlling the ac­
cess to resources. It takes the advantages of RBAC and 
trust management ideas. The proposed model is part of 
the MARISM-A project. A secure mobile agent platform 
for SoD applications. We have also introduced an exam­
ple application, a medical SoD imaging application based 



in the 1ST project INTERPRET. Even though , there are 
some problems which are still unsolved, like malicious hosts 
acting agrunst agents, which are still open problems [4] . 

We are working on the implementation of the proposed model. 
This process involves the study of subtle aspects, which still 
are open question. For example considering alternatives to 
implement the local policies. By using SPKI ACLs, the 
policy is based in SPKI keys . This may be reflected in ~im­
itations of the key management. We also want to consIder 
issues such as anonymity, specially relevant in key-oriented 
systems. 

8. ACKNOWLEDGMENTS 
This work has been partially funded by the Spanish Gov­
ernment Commission CICYT, through its grant TIC2000-
0232-P4-02, and Catalan Government Department DURSI, 
with grant 2001SGR 00219. 

9. 
[1] 

REFERENCES 
INTERPRET Project - IST-1999-10310. International 
Network for Patern Recognition of Tumors Using 
Magnetic Resonance. 1999 
http://carbon.uab.es/INTERPRET. 

[2] T . Aura. Distributed access-rights management with 
delegation certificates. In J. Vitek and C. Jensen , 
editors, Secure Internet Programming: Security Issues 
for Distributed and Mobile Objects , LNCS 1603, pages 
211-235. Springer Verlag, 1999. 

[3] CCD Research Group. MARISM-A, An Architecture 
for Mobile Agents with Recursive Itineraries and 
Secure Migration. http://WTJW .marism-a . org. 

[4] D. Chess. Security issues of mobile agents. In Mobile 
Agent.s, volume 1477 of LNCS, pages 1-12. 
Springer-Verlang, 1998. 

[5] D. Clarke, J. Elien , C. Ellison, M. Fredette, 
A. Morcos. and R. Rivest. Certificate chrun discovery 
in SPKI/SDSI. Journal of Computer Security, 
9(9) :285-322, 2001. 

[6] C. Ellison , B. Frantz, B. Lampson , R. Rivest, 
B. Thomas, and T . Ylonen. RFC 2693: SPKI 
certificate theory. The Internet Society, September 
1999. 

42 

[7] Emorphia. FIPA-OS. 
http : //fipa-os . sourceforge.net. 

[8] Foundation for Intelligent Physical Agents. FIPA 
Specifications, 2000. http://WT.TW . FIPA. org. 

[9] E. Freudenthal, T. Pesin, L. Port, E. Keenan , and 
V. Karamcheti. dRBAC: Distributed role-based access 
control for dynamic coalition environments. New York 
University, Technical Report TR2001-819.(to appear 
ICDCS 2002), 2001. 

[10] Intel Architecture Labs. Intel Common Data Security 
Architecture. 
http://developer.intel.com/ial/security/. 

[11] 

[12] 

[13] 

[14] 

[15] 

L. Kagal, T . Finn, and A. Joshi. Trust-Based Security 
in Pervasive Computing Environments. IEEE 
Computer, pages 154-157, Dec. 2001. 

N. Li , W. Winsborough , and J. Mitchell. Distributed 
credential chrun discovery in trust management. 
Accepted for publication in Journal of Computer 
Security, Nov. 2001. 

J. Mir and .J. Borrell. Protecting general flexible 
itineraries of mobile agents. In Proceedings of ICISC 
2001, LNCS 2288. Springer Verlag, 2002. 

D. Rerrruolo, R. Sandhu, S. Gavrila, D. Kuhn, and 
R. Chandramouli. Proposed NIST standard for 
role-based access control. In ACM Transactions on 
Information and System Security, volume 4, pages 
224-274, August 2001. 

J. lliordan and B. Schneier. Environmental key 
generation towards clueless agents. In Mobile Agents 
and Security, pages 15-24, 1998. 

[16] R. Rivest. S-expressions. Internet-draft: The Internet 
Society, 1997. 

[17] 

[18] 

S. Robles, J. Mir, and J . Borrell. Marism-a: An 
architecture for mobile agents with recursive itinerary 
and secure migration. In 2nd. IW on Security of 
Mobile Multiagent Systems, Bologna, Italy, 2002. 

R. Sandhu, E. Coyne, H. Feinstein , and C. Youman. 
Role-Based Access Control Models. IEEE Computer, 
pages 38-47, February 1996. 



A Security Framework for a Mobile Agent System 

* Guido van 't Noordende 
Computer Systems Group 

Faculty of Sciences 
Vrije Universiteit Amsterdam 

The Netherlands 

Frances M.T. Brazier Andrew S. Tanenbaum 
Computer Systems Group 

Faculty of Sciences 
Vrije Universiteit Amsterdam 

The Netherlands 

Interactive Intelligent 
Distributed Systems 
Faculty of Sciences 

guido@cs.vu.nl 
Vrije Universiteit Amsterdam 

The Netherlands ast@cs.vu.nl 
frances@cs.vu.nl 

ABSTRACT 
The Mansion paradigm provides a logical model for design­
ing distributed multi-agent applications. Mansion is de­
signed to be a scalable, secure and extensible system for 
supporting multi-agent applications. This paper presents 
the security architecture of Mansion. 

An Agent Container (AC) allows for secure transport and 
flexible storage of heterogenous agents and data. The AC 
uses lists of trusted hosts, fixed rules about how persistent 
and transient segments are handled, and possibly policies 
that describe the allowed changes to the AC at trusted des­
tinations. A secure handoff protocol is presented as part of 
the agent transfer protocol, that allows for on-the-fly detec­
tion of malicious alterations to an AC. 

Mansion provides protection of agents, hosts and informa­
tion in the system. Avoidance of security risks, and (audit) 
mechanisms to detect malicious actions of entities in the sys­
tem are important mechanisms used to protect the system. 

Keywords 
Mobile Agents, Multi-Agent Systems, Middleware, Security, 
Distributed Systems, Agent Transfer Protocol, Audit Trail 

1. INTRODUCTION 
Mansion is a system aimed at supporting heterogenous, large­
scale distributed mobile agent applications. Mobile agents 
have a number of well-described advantages over traditional 
distributed systems [1]. The most significant of these is that 
an agent can move its computation to the resource or data 
which it needs, which alleviates problems due to latency or 
bandwidth limitations. 

There are a number of solutions for Multi-Agent Systems 
(MASes) , most of which provide little structure to applica­
tion developers. Most existing MASes provide some form of 
security to agents and machines in the system, but typically 
those solutions are tied to a single programming language 
(e.g., Java) [2, 3, 4] . Mansion is a MAS which provides a 
clear paradigm for designing multi-agent applications. 

Important aspects for security in this system are: protec­
tion of agents, protection of hosts, protection of information 
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and protection of the middleware and resources. This paper 
first introduces the logical and physical model underlying 
Mansion. Then we will explain how the identified security 
areas are addressed in Mansion, followed by a discussion and 
related work. 

2. THE MANSION FRAMEWORK 
The Mansion framework consists of a logical and a physical 
model. The logical model is used to structure an applica­
tion and to provide a consistent view of this application to 
agent programmers. The physical model underlies the logi­
cal model, and consists of a network of (heterogenous) hosts 
on which the logical model is mapped. Mansion provides a 
(distributed) middleware which provides an interface (API) 
to agents which they can use to interact with the system 
and hides distribution and location aspects of the system. 

2.1 Logical Model 
An application in our framework is modeled as a closed 
world containing a set of hyperlinked rooms. Entities in 
a room can be agents, objects, or hyperlinks. Each agent 
is a (possibly multithreaded) process running on one host. 
No part of the internal process state of an agent can be ac­
cessed from the outside by other agents. Objects are strictly 
passive: they consist of data and code hidden by an inter­
face. Hyperlinks determine how the rooms in a world are 
connected. 

An agent is injected into a world (by its owner) through a 
world entry daemon (WED) . Each world has one or more 
entry rooms, each of which contains a WED. The WED 
does some security and consistency checks on each injected 
agent , and places the agent in its entry room. Once in an 
entry room, an agent may follow a hyperlink to go to another 
room. 

Once in a room, an agent can access a special object , called 
Room Monitor Object (RMO) . The RMO registers all con­
tent in the room, and provides an interface for agents to 
interact with the room. Descriptions of entities in a room 
(e.g. , agents, objects and hyperlinks to other rooms) are 
specified in A ttribute Sets (A S es) which can be 0 btained 
through the RMO interface. The RMO Interface is auto­
matically loaded in an agent's address space when it enters 
a room. 



Each entity has a (possibly empty) attribute set, placed in 
the RMO, using which the entity is described. Example 
attributes are the name of an agent or the coordinates of an 
object in a room. Attribute sets are represented as a set of 
(entity, attribute, value) triples. The attributes of an AS are 
typically predefined in a world, but they may be extensible 
in some applications. An agent can alter an attribute set if 
it is the owner of the entity. 

Each object in a room can also contain an attribute set in­
ternally, independent of the RMO, which specifies additional 
(private) attributes. An event-mechanism can be provided 
by objects (including the RMO), based on attribute set 
matching, comparable to template-tuple matching in Linda 
or Javaspaces [5]. 

Every world can also have an attic. The attic contains global 
services and is directly accessible to agents in any room. 
Through the attic, an agent can obtain world-scoped infor­
mation , for example, the topology (hyperlink layout) of a 
world, directory services, or a bulletin board service (e.g., 
for publishing agent information) . Services in the attic are 
provided as attic objects or attic agents. Attic agents are 
the only agents allowed in the attic. Other agents cannot 
move to the attic. 

Each world has a basement, which keeps track of the in­
formation needed to make the world function , such as the 
location of the agents. When an agent enters a world, it is 
assigned a Global Agent ID (GAID), which is registered in 
the basement. The basement is not visible to agents. 

2.2 Examples 
As an example of the Mansion paradigm, consider a shop­
ping mall world. A shopping mall can be modeled as a 
number of separate stores, which each consist of a set of 
hyperlinked rooms, one or more of which are entry-points 
to the store. An entry room to the mall is provided by the 
world owner, which provides hyperlinks to the (entry) rooms 
of the shops in the mall. In each room, there may be ob­
jects that represent items (for example clipart or music) for 
sale, and shopkeeper agents which can be queried for infor­
mation or be involved in commercial transactions. Agents 
that represent users can roam through the mall to find items 
to their liking. Agents can communicate with each other or 
their owner to speed up their search or notify each other 
of interesting bargains. An agent may take some form of 
digital cash with it to be able to buy items for its owner. 
Items that are bought by an agent can be transported to 
their owner by means of inter-agent communication or as 
part of the agent. 

Other examples are: Multi-User Dungeons (MUDs) , in which 
players have to find their way through a maze of rooms, in 
which they can find items and may meet many adversaries ; a 
virtual learning environment, where users can move among 
classrooms; and a library world, where (groups of) rooms 
represent sections for different topics. 

In short, the Mansion paradigm replaces the World Wide 
Web paradigm of a collection of hyperlinked documents that 
users can inspect v..ith that of a collection of hyperlinked 
rooms in which agents can meet to do business. 
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2.3 Physical Model 
A world may be spread over multiple machines. In partic­
ular, a room can be distributed over multiple machines by 
means of distribution of the RMO and other objects in the 
room. Globe is an object architecture [6] which can be used 
to distribute passive objects over multiple hosts (e.g. , using 
active replication). This can provide reliability (availability) 
and locality of data in the system. 

The basement is a central component in each world. To 
achieve scalability, the basement can be distributed over 
multiple hosts (servers). In particular, for worlds with a 
large number of agents which may migrate frequently, the 
agent location database which is part of the basement may 
be partitioned over multiple separate servers based on a hash 
over the agent's GAID, possibly combined with a primary 
backup scheme to provide reliability. 

In Mansion , logical and physical migration are coupled into 
one atomic operation follow_hyper/ink, which is invoked by 
an agent on the Mansion API. A hyperlink is a logical link, 
which uniquely identifies a target room. If necessary, part of 
following a hyperlink is that the middleware transports the 
agent to a physical location from which the room is available. 

Mansion - by design - only supports weak migration. An 
agent's execution state is not retained during migration. Af­
ter physical migration , each agent is restarted from its initial 
state. This decision is in part taken because of supporting 
heterogenous agents (agents written in multiple program­
ming languages); only weak migration can be supported 
by all programming languages that we want to support, 
which includes binary agents whose stack and data cannot 
be transparently transported from machine to machine. 

In order to support migration of an agent , Mansion pro­
vides a data structure for transporting the agent and its 
data. This data structure is managed by the middleware 
and called an Agent Container (A C). The AC contains a 
number of (typed) segments, which are used to contain the 
agent 's code, data, authentication information and other in­
formation needed by the agent on its itinerary. The AC can 
be used to transport data back to the agent's owner, or to 
move objects from one room to another, for example. An 
agent needs to serialize all information that it needs for its 
own execution, and store all data that it or its owner may 
need at a later time, in its AC. 

Currently, each hyperlink is internally associated with a set 
of IP-addresses from which the target room is available. If 
the agent does not already reside on one of those machines , 
the agent has to be physically migrated to one of the ma­
chines associated with the hyperlink. 

A zone is used to indicate the physical boundary for dis­
tributing a room. A room is only accessible from one of the 
hosts in the room 's zone. An agent that wants to access a 
room has to migrate to a host in that room's zone. 

The room owner trusts the zone in which he / she deploys 
his room (and the objects therein); typically, the zone owner 
is also the owner of the rooms in the zone. 



As an example, a zone may consist of a set of trusted hosts 
located in a protected network segment within an organi­
zation (e.g., a staff-network segment at a university). In 
another case, a zone may consist of a number of hosts which 
are placed in 'server hotels' located allover the world, which 
are deployed by an organization to host rooms. 

2.4 Zone Administration 
A world deployer determines which and how many zones 
may be deployed in its world. For example, certain worlds 
may consist only of one zone owned by the world adminis­
trator, while other worlds may contain zones (and rooms) 
owned by a number of organizations. 

Zones are protected by public-key cryptography. Each zone 
has a unique public/private key-pair, which is registered 
with the world. The public keys of registered zones in a 
world are made available through the basement (possibly 
signed by the world owner). 

Which hosts are part of a particular zone is managed in a 
decentralized way. Each host in a zone has a zone certificate, 
using which it is capable of proving that it is part of a zone. 
A zone certificate consists of a host 's public key, signed using 
the zone's private key. Using its zone certificate, a host can 
prove that it is part of a zone. A host's certificate may 
expire or be blacklisted: a zone manager may revoke host 
certificates, or issue them for a limited time only (i.e., as a 
lease). 

Using zone certificates has administrative scalability advan­
tages: zones can be managed decentralized. In addition 
to this, there are security advantages compared to using a 
shared private key for all zone members (i.e., it is possible 
to pinpoint the host on which a security violation took place 
within a zone) 

3. SECURITY ASPECTS 
The previous sections discussed the logical and physical model 
of Mansion. The following sections discuss the security as­
pects that need to be considered for applications using Man­
sion: protection of an agent against malicious hosts in the 
system, protection of hosts against agents, and protection 
of objects and information in the system. 

3.1 Agent Protection 
In Mansion , we do not assume general availability of mech­
anisms which protect an agent from the host on which it 
executes. Although solutions exist which protect an agent 
against the host on which it resides (at least for a limited 
period of time [7]), it is not yet clear whether these solutions 
can be applied in a multiple-language, heterogenous system. 
For example, solutions based on language-dependent mech­
anisms or secure hardware cannot be expected to be imme­
diately applicable in a heterogenous, large-scale system. 

Zones are convenient to express and analyze distribution and 
security properties of the hosts on which rooms are deployed. 
The zones in a world and their properties (e.g., owner) can 
be listed in a central service, for example in the attic. 

The owners of agents can use the central zone-infor mation 
service to gather information about the zones in a world, and 
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determine which zones they trust enough for their agent to 
migrate to. 

Certain worlds may require a certificate containing a set 01 
predefined properties to be published by each zone-deployer. 
These properties can then be stored in a database which can 
be queried by users (agent-owners) of that world . For ex­
ample, this can be used to find all zones owned by company 
xyz, or all zones that guarantee to protect your privacy. 

In our model, an agent's owner can make sure that its agent 
does not migrate to a host in a zone which is not trusted. To 
do this, the agent is equipped with a list of trusted zones to 
which the agent may migrate. The host on which the agent 
executes then is assumed not to send an agent to a host in an 
untrusted zone. This is not fail-proof, but Mansion provide!; 
a mechanism to detect which host violated the agent owner's 
trust by sending the agent to an untrusted host, and for 
detecting this violation as soon as the agent is migrated to 
another host (see section 3.1.1). 

As an aside, note that it does not make sense for an agent 
to specify its own list of allowed zones as an argument when 
it follows a hyperlink. This would offer no security, sinCE 
no-one except the agent's current host can , in retrospect 
verify what the list of allowed zones was, in case the agent '~ 
host sent the agent to an untrusted host after all. 

If an agent needs to inspect data or a room that is located on 
an untrusted machine, it has to spawn off a 'helper agent,' 
which is equipped to take orders from its parent, or has min­
imal functionality and takes minimal (sensitive) information 
with it to the untrusted host. 

3.1.1 Agent Container Security 
An agent should be able to pick up data and / or objects 
on its way. Objects in Mansion can be transported from 
room to room in some worlds. Details of this mechanism 
are outside the scope of this paper. Simply put, however. 
this entails storage of a reference to this object, or storagE 
of serialized state of the object , in the AC. 

Data storage is a more general requirement. Since we unly 
support weak migration , an agent does not retain data storec 
in its address space if it migrates to another host. Therefore, 
it has to store any data it may need later, or which it thinh 
is useful for its owner , into its AC. 

The AC is also used to store the agent 's code and pas· 
sibly initial data (dependent on the agent 's programmin€ 
language) , static information about the agent, such as it~ 
Global AgentID, authentication information , owner, and sc 
on. 

Agent Container Design 
A Mansion AC consists of a number of (typed) segments ana 
a table of content (TOC). For each segment, an entry exist~ 
in the AC's TOC, which maps the segment's name to it~ 

internal segment-name and other metadata about the seg­
ment. The segments are typed to indicate the information 
(e.g. , the agent's code or data saved by the agent) stored 



in the segment. Furthermore, each TOC-entry contains a 
checksum (e.g., a secure hash) of the entry's content. Using 
the checksum, the segments integrity can be verified. 

When a new segment is created, as part of the per-segment 
TOC-entry a bit may be set which indicates whether this 
segment is persistent (nonremovable), or whether it is tran­
sient (i.e., it may be removed some time later). For transient 
segments, it is possible to note in the segment's entry where 
(in what zone or on what host) the segment may be removed. 

For integrity verification throughout the agent's itin erary, 
we use a mechanism in some ways similar to work by Karnik 
and Tripathi [8]. Each time an agent migrates to another 
host, the agent's middleware signs the agent's TOC (reflect­
ing the AC's current content) with the private host key. By 
retaining old TOCs as part of the AC (before the new one 
is signed), a complete audit trail can be established of all 
the changes that are made to the AC during its itinerary. 
The world entrance daemon's (trusted) host signs the first 
TOC of the agent's AC (the initial signature is returned to 
the agent's owner). 

It is important that the private host key of each host on 
the agent's itinerary is used to sign the TOC, since this 
makes it possible to pinpoint the exact location where a 
possible security breach took place; for convenience, the zone 
certificate of the signing host may be added to the AC before 
it is signed. 

One problem with this solution, is that it is possible to roll 
back the state of the AC to an earlier state, by removing all 
changes that were made to the AC after visiting a particular 
host, and by reinstating the TOC to the one signed by that 
host. 

Including forward references in the AC to the next host that 
has to sign the TOC (i.e., the host that the agent is going to 
be sent to), makes it harder to revert back to an arbitrary 
previous state of the AC, however, it is still possible to re­
move segments if cycles are present in the agent's itinerary. 

As a simple solution to avoid rollback, each TOC can be sent 
to a trusted 'auditor process' which is part of the world. This 
way, the audit trail is stored at a (trusted) location external 
to the AC, where it can be collected by the agent's owner. 
It can also be timesta.mped upon arrival at the auditor to 
make it possible for the owner to track agents roughly in 
real time. 

The audit trail mechanism makes it possible to verify whether 
segments were illegitimately removed on a particular host 
(typically, this can already be verified by the next host on 
the agent's itinerary). 

Agent Transfer Protocol 
A handoff protocol between hosts is used as part of the agent 
transfer protocol (ATP) which requires that each host veri­
fies the content of the AC as it comes in. The TOC of the 
outgoing AC is already signed: in the protocol discussed 
above, each host on the agent's itinerary signs the TOC as 
the agent is migrated to the next host. An additional re­
quirement on the ATP is that the target host verifies the 
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Host A Host B 

Figure 1: The agent handoff protocol. 1) Middle­
ware A connects to the basement and initiates agent 
migration using the call iniLmigr(GAID,[target host)}. 
Next it connects with Middleware B on host B, and 
tranfers the agent's AC to B (2). Middleware B ver­
ifies .the AC's TOC as signed by middleware A, and 
pOSSibly evaluates whether any changes (visible by 
means of the audit trail) made to the AC on host A 
were actually allowed (see sec. 3.1). If middleware 
B accepts the agent, it sends back the AC's TOC 
signed with its own key, and it commits the migra­
tion on the basement (3 + 4). Middleware A verifies 
middleware B's signature, and commits the migra­
tion on the basement (4). Both Middleware A and 
B can abort the migration transaction at any time 
during the protocol (5). Middleware A can store the 
signed TOC obtained from B, or it can send it to an 
auditor (sec. 3.1). The basement authenticates both 
middleware A and middleware B during the proto­
col - only the agent's current host may initiate an 
agent's migration, while the target host is indicated 
by the source host using the iniLmigr call. 

integrity of the incoming agent's AC, and returns the TOC 
back to the source-host signed with its own key (see fig. 1), 
as proof that the AC arrived consistent with the AC's TOC 
as signed by the source host. 

In Mansion, physical migration is completed by registering 
the agent's new physical location in the basement. Before 
this happens, both the sending host and the receiving host 
have to agree to agent migration, and both have to indicate 
this agreement to the basement. Essentially, agent migra­
tion is an (atomic) transaction involving both the sender 
and the receiver (host) of the agent. The sending host will 
only commit a migration transaction if it has obtained the 
signed TOC from the target-host; the target host will only 
commit the migration (and return this TOC signed with its 
own secret key) if it has verified that the content of the AC 
corresponds to the AC's signed TOC. Note that the base­
ment does not need to know anything about the handoff 
protocol, signed TOCs or any other security measure taken 
as part of the ATP. 

Verifying incoming TOCs is important so that the target 
host cannot claim at a later time that the source-host omit­
ted certain segments; conversely, the source-host cannot omit 
segments and claim that the target host removed them. En­
forcing that each host on the agent's itinerary verifies the 
AC's integrity avoids the situation that a valid audit-trail 
is established, but that the segments are lost nevertheless 



along the way, without being able to prove where those 
segments were lost exactly. This is an improvement over 
the system proposed in [8]. The 'incoming-TOC' which was 
signed by the target host can be stored by the source-host, 
or it can be forwarded to a (trusted) auditor process in the 
world. 

An essential and not often realized advantage of audit trails, 
is that an audit trail views a host on which an agent executes 
as a black box. An audit trail shows which segments have 
been added and which segments have been removed on each 
host that the agent visited. 

Since in Mansion the signed TOCs can be stored as readable 
(unencrypted) segments in the AC, this audit trail can be 
used to verify whether any changes were made to the AC 
that were not allowed on the previous host , or possibly even 
further back. 

For example, for each transient segment, there may be an 
indication of the host or zone that may remove this segment 
in the segment 's TOC-entry. If the segment is removed by a 
different host than the indicated one, this will be detected. 
If an agent is sent to a host that is not part of one of the 
zones of the trusted zones list that was provided as part of 
the agent, this can be observed from the audit trail too. 

Audit-trail Based Security 
As an example of a security measure that can be based on 
an audit trail, an agent's owner may equip an agent with a 
policy describing the changes that may take take place to an 
agent's AC at any host on its itinerary. This 'AC-change' 
policy can be used to avoid that a supposedly trusted host 
can do too much or any damage to an agent, for example by 
stealing (removing) segments from its AC. 

An AC-change policy may specify how many (transient) seg­
ments (for example containing e-cash) may be removed from 
the agent 's AC per zone. Verification of policies regarding 
(changes to) the AC may take place as part of the TOC­
verification step at the next host on the agent 's itinerary, 
Alternatively, verification may be done by an independent 
'notary' process to which the agent's signed TOC is sent 
after each physical migration . Such a notary process can, 
for example, make the validity of a particular e-commerce 
(e.g. , payment) transaction dependent on adherence to the 
agent's AC-change policy (see related work). Another ex­
ample is a policy that specifies that segments may only be 
added to the AC. 

The secure audit trail makes it possible to pinpoint ille­
gitimate changes made to an AC to the host where these 
changes took place. This detection can take place as soon as 
the next host on the agent's physical itinerary; this host can 
not only refuse the agent if it finds a discrepancy between 
the TOC and the AC, but also if it detects an illegitimate 
removal of a transient segment (e .g., at the wrong host) or 
an 'AC-change' policy violation . 

Providing an agent with a list of trusted zones (security do­
mains) makes it possible to limit the chances of malicious 
attacks against an agent. Note that it is not necessary to 
predefine the full physical itinerary of the agent . This is im-
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portant, since in Mansion the physical itinerary of an agent 
depends on the hyperlink layout of the world, in combination 
with the agent's interests. Which zones will be transfered as 
the agent roams a world will (in most cases) not be known 
before the agent sets out. 

3.1.2 Secrecy of Data 
To provide secrecy of data in an AC, public key encryption 
can be used. An agent or the agent's middleware can encrypt 
data (segments) intended for its owner using the owner's 
public key, which can be provided as part of the agent 's AC. 
It is also possible to encrypt data (segments) intended for 
usage in a particular zone or on a particular host, using that 
zone or host 's public key. 

To provide secrecy of data between two communicating agents 
(or other entities), link encryption can be used to hide the 
information sent over the wire between two hosts (see sec­
tion 3.4). 

3.2 Protection of hosts 
Protecting hosts in Mansion has two important aspects. The 
first is that a host should start up (untrusted) agents in a 
sandbox which makes it possible for the execution environ­
ment to control an agent 's actions and resource-usage, and 
to protect the host from a malicious agent. An example 
sandbox is the well-known Java Virtual Machine, which can 
be used to protect a host from Applets downloaded from the 
Internet. Another example is the padded cell approach used 
for interpreting Safe-Tcl applets [4]. 

The other aspect is trust . This aspect is particularly im­
portant because of the support for heterogenous agents in 
Mansion. Some applications may support agent program­
ming languages against which no easy or foolproof way exist 
to completely protect the machine. An example is of course 
a binary program. In this case, it. is important that some 
verification company or the author of the code vouches for 
the agent 's safety. In some cases, it may be that a host's 
owner knows the owner of an agent personally, and therefore 
trusts the agent. Authentication of the principal owning an 
agent and possibly other principals related to the agent are 
important to establish trust in an agent, which may deter­
mine whether a host will execute the agent or not . 

3.2.1 Agen.t Authen.tication 
Agent authentication in Mansion is based on the Agent Pass­
port (AP, see also [9]) concept. An AP is composed of a set 
of signatures of the agent's code!. In particular, the agent's 
owner signs the Agent Passport; this signature declares that 
the agent is sent in the system on behalf of this owner, i.e., a 
middleware that receives the agent can find out what prin­
cipal owns the agent. The AP is stored in a segment of the 
agent's AC. 

Another principal that can sign the agent's code is the au­
thor of that code. This may allow receiving hosts to attach 
trust in an agent's code (e.g., because the agent was written 
by Sun Microsystems). In addition , a (trusted) code ver­
ification company may sign the agent's code (this may be 

IThis can be executable or interpretable code, or an URL 
from which the code can be obtained, for example. 



required for languages that one cannot sandbox easily, such 
as binaries) . 

In how far an agent 's author or a code verification principal 
should sign the code, depends on the application and the 
agent programming language in question (e.g., a Java applet 
or Safe Tcl program may be sandboxed enough to avoid 
malicious agent behaviour, so it is more easily trusted). The 
AP contains as much information as necessary to convince 
a host that the agent packed in the AC is trustworthy. 

3.2.2 Secure Agent Execution 
In Mansion, each agent is started up as a separate process. 
The only interactions that an agent may make with the (out­
side) world is by using the Mansion API. The Mansion mid­
dleware can act as a reference-monitor with regard to all 
invocations made by an agent, and is it possible to enforce 
security policies (access control policies) . The Mansion mid­
dleware (MMW) runs in a protected address space separate 
from the agent's address space. The middleware may even 
run on a different host . 

A Mansion agent is started up by the middleware in a sand­
box, which makes sure that a sandboxed agent can only in­
teract with the Mansion middleware using an IPC channel 
(e.g., a socket connection) to the middleware. Invocations by 
an agent on the Mansion API (provided through the agent's 
runtime system) are sent as marshaled invocations to the 
middleware. 

The agent's execution environment (sandbox) has to take 
care that the agent does not bypass the middleware's control 
mechanisms. The way in which sand boxing is implemented 
differs per programming language and operating system, and 
is subject to research. As an example, it is possible to ex­
tend an OS kernel (e.g., Linux or FreeBSD) with a system 
call which makes sure that all system calls made by a child 
process of the process that invoked the system call (i.e., the 
MMW) are sent to its parent (in marshaled format) , rather 
than being executed by the OS. This mechanism can be used 
to sandbox binary agents. 

Typically, the supported languages in a world are decided 
upon by a world designer based on the application 's require­
ments (e.g., a scientific application may require high perfor­
mance, and assume trustworthy agent owners. This may 
lead to support for binary programs. Other worlds may 
only support Java or SafeTci agents). Whether an individ­
ual agent is accepted on a host (and whether its code is run) 
is decided by the host's Mansion middleware. This decision 
can be based on the language in which an agent has been 
developed, its size or any other aspect. 

3.3 Protecting Information (Authorization) 
When an agent migrates to a host in a zone, it is authen­
ticated using its agent passport. Then it immediately has 
to access the RMO of the room to which it migrated. Sub­
sequently, the agent may have to access many more objects 
which are located in the room. 

All objects (including RMO) are located in the room's zone. 
As soon as an agent attempts to access an object (using a 
bind request , which results in the object 's interface being 
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loaded into the agent 's address space), the agent will have 
to be authorized with regard to the object. 

In Mansion, we use the Globe access control mechanism us­
ing roles [10] for access control to objects. A role-certificate 
is a bitmap, signed by the object 's owner , which indicates 
the methods that may be invoked on an object by the client 
to which the role-certificate was issued. 

Normally in Globe, the role-certificate binds an authorized 
user's public key to a role-bitmap. In Mansion, the mid­
dleware obtains a role-certificate using which it accesses the 
objects that an agent is bound to on the agent's behalf. 

To obtain a role-certificate, the middleware that authen­
ticated the agent contacts a central database in the zone, 
called the authorization server. The authorization server 
trusts the agent's middleware to provide proper authentica­
tion information about the agent 's principal (owner), which 
is obtained from the agent's AP, and looks up what role is 
associated with this owner. The owner-to-role mapping is 
stored in the authorization server by the object's owner. The 
authorization server returns a role-certificate to the middle­
ware reflecting the agent owner's role. 

The middleware stores the role-certificates for each object 
that an agent is bound to in an internal table. Each time 
an agent does a method invocation on an object, the mid­
die ware provides the role-certificate belonging to this agent 
to the object . Role-certificates are only valid within a zone, 
possibly only for a limited time (this is a decision made by 
the object's owner). 

In some cases , there may be a 'guest' role-bitmap for prin­
cipals for whom no specific access rights were set by an ob­
ject's owner. 

3.4 Link Encryption and Middleware Authen-
tication 

The basement stores each agent's current location in a world. 
For example, for each agent, the IP-address a.nd port number 
to which a connection request can be made may be stored 
in the basement. 

Besides this information, the basement can contain the zone 
certificate of the host on which the agent currently resides. 
Using this informa.tion , any middleware process in a world 
can verify whether it is communicating with the right host , 
for example when a request for communication is made. 
There are mechanisms to keep track of the agent 's current 
location in a secure and verifyable way (using the handoff 
protocol, explained in sec. 3.1). 

Agent authentication in Mansion happens transitively and 
contains a trust component. This applies only to inter-zone 
authentication of entities. Within a zone (i.e., intra-zone) , 
all hosts and middlewares trust each other equally, so au­
thentication of an agent taking place by one MMW in a zone 
is assumed to be correct and trusted by all other MMW pro­
cesses in that zone (e.g. , the authorization server) . 

An agent executes as a process on a host , and is under con­
trol of that host: all data in transport can be intercepted by 



the agent's current host , in general. Also, an agent's execu­
tion can be tampered with by the host on which it executes. 
Therefore, one can never be sure that one is not talking with 
an impersonating process rather than the agent one intended 
to talk to. In short , one needs to trust the host on which 
an agent executes not to impersonate the agent; in general, 
one depends on the host on which the agent executes to 
authenticate an agent properly. 

In Mansion, end-to-end (middleware-to-middleware) authen­
tication will be used to set up authenticated, encrypted com­
munication channels (e.g., using SSL) between middleware 
processes, and for communication with the basement. 

4. RELATED WORK 
In the literature a number of Multi-agent systems are de­
scribed that support mobile agents [11 , 12, 2] . Security of 
Mobile agents is addressed in most multi-agent systems [13, 
4, 12], although often only briefly. Most MASes are Java­
based and build on protection mechanisms offered by Java. 

There are some approaches that address the problem of pro­
tecting agents against the host on which they execute. Code­
obfuscation (cloaking) or time-limited blackbox [7] techniques 
can be used to obtain secrecy of data or computation inside 
an agent , at least for a limited period of time. Another ap­
proach is protecting agents based on cryptographically hid­
ing polynomials or rational functions in an agent [14]. As 
discussed in section 3.1 , we do not currently use such mecha­
nisms as part of the Mansion security architecture, although 
Mansion could easily support agents that embed their own 
internal security mechanisms or detection mechanisms (e.g. , 
cryptographic tracing [15]) in addition to the mechanisms 
provided by the Mansion middleware. 

Ajanta [8] is a java-based mobile agent system. Ajanta is 
the first MAS that provides a tamper-detection mechanism 
as part of its append-only data container. Ajanta's audit 
trail (based on signing added objects) is only visible to the 
agent 's owner because this information is encrypted using 
the agent 's public key; the audit trail cannot be inspected 
by other principals (hosts) on the agent 's itinerary. 

In contrast to Mansion, Ajanta's ATP requires only the 
sending host to update the location service. This makes 
it hard for a host to defend itself against certain security 
attacks that can be mounted by a malicious source-host. 
For example, a host can send an AC of which the segments 
are tampered with, even though the TOC still reflects the 
original, untampered state. It is hard for the target host to 
prove that it did not change the segments itself. The handoff 
protocol in Mansion makes it possible for the target host to 
refuse an agent based on verification of the incoming agent's 
AC. 

Ajanta supports removable (transient) data in an unpro­
tected container, but does not allow an agent or host to spec­
ify where (e.g., on which host) this data may be removed. 
Deviation from a (fixed) itinerary can only be detected in 
retrospect by the agent 's owner. 

An interesting technique that may be usable in Mansion, is 
the blinded-key signature proposal by Ferreira and Dahab 
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[16]. This proposal is based on the idea of blinding secret 
keys. A blinded secret can be used to sign agreements, for 
example. A notary is a trusted third party which is re­
sponsible for verifying blinded-key signatures and enforcing 
agreements signed by agents using the blinded key. Enforce­
ment of an agreement can only be done by a notary process 
which has access to the blinding factor using which the pri­
vate key is blinded. Such enforcement of an agreement (e.g. , 
a payment transaction) by a notary may be dependent on 
adherance to the AC-change policy set by the agent 's owner, 
as explained in section 3. 

D 'Agents [13] is one of the few systems that supports het­
erogenous agents (currently Tel, Scheme and Java agents). 
D ' Agents supports strong migration within trusted domains; 
transitive trust is used to authenticate the agent from host 
to host. Only if a host trusts the previous host on the agent's 
itinerary (and this one trusts the one before, etc.) , does an 
agent remain 'owned' (authenticated). As soon as an agent 
migrates to a host that does not trust the previous host , the 
agent becomes anonymous (hence it has less access rights) . 
After that , the agent can never become owned again , that 
is, the agent can no longer be authenticated transitively, so 
it remains anonymous. 

In a large-scale system this approach's applicability can be 
questioned: agents whose execution state been changed will 
probably not be trusted by any machine after they have been 
changed on their itinerary. 

Ara [9] distinguishes mutable and immutable parts of an 
agent's execution state, and has an agent passport concept. 
This is similar to our approach. Ara supports heterogenous 
agents using strong migration. Ara does not provide an 
AC concept. Instead, as many other systems, Ara relies on 
sending an agent from one host to another over a protected 
channel, but provides no mechanisms to protect an agent 
or its stored data from tampering by malicious hosts on the 
agent's itinerary. 

5. DISCUSSION 
Mansion provides a framework for designing MASes in a 
structured way. The logical model provides a clear frame­
work for developing applications. This model is mapped on 
a set of hosts, using zones as an abstraction to group hosts 
that belong to a common (security) domain. 

Mansion provides a middleware layer for multi-agent sys­
tems. This middleware provides the basic primitives for 
interaction with the world, such as inter-agent communi­
cation, binding to objects, and for logical (hyperlink) and 
physical migration. Mansion provides location and distri­
bution transparency of logical entities in a world. 

Some parts of Mansion 's middleware functionality will be 
based on the AgentScape OS middleware system [17], for 
which a prototype exists. Mansion middleware is currently 
being implemented as a second middleware layer on top of 
the AgentScape OS. AgentScape OS offers basic functional­
ity such as inter-agent communication and migration prim­
itives. The Globe middleware [6] is used to provide access 
to distributed objects. The security design of Mansion will 
be supported by AgentScape OS. 



In this paper, we presented a number of security mecha­
nisms, which are designed to provide protection of agents, 
hosts and information in the system. 

Agents can be sandboxed to protect the host. Agents are 
authenticated using their agent passport , which contains at 
least a signature of the agent's code by its owner, but pos­
sibly also of other principals like the author of the code. 
Authorization takes place using the authorization server in 
a zone, which assigns role-certificates for the objects in the 
room that an agent entered. Besides by using the Mansion 
API, an agent is not allowed to interact with the outside 
world. This way, it is possible to sandbox an agent in the 
Mansion environment, and enforce the logical rules and se­
curity policies set by the world. 

An agent communicates directly with the Mansion middle­
ware. The Mansion middleware manages such issues as 
inter-agent communication, binding to objects and migra­
tion to another room, possibly another host , mostly trans­
parent from the agent. The middleware contains an Agent 
Container for each agent, which is the programming-language 
independent physical representation of an agent in Mansion. 
Agent protection is based on defining lists of trusted zones 
to which the agent may migrate, in addition to protection 
of the AC. 

To our knowledge, there is currently no middleware design 
that allows for storing heterogenous agents and both per­
sistent and transient segments in a secure and flexible way. 
Mansion's AC design is the first attempt to build a flexi­
ble container for transporting heterogenous agents as well 
as fixed and transient data from host to host in a secure 
way. The secure audit trail makes it possible to pinpoint 
illegitimate changes made to an AC to the host where these 
changes took place. Providing an agent with a list of trusted 
zones makes it possible to limit the chances of malicious at­
tacks against an agent by those hosts, while not depending 
on fixed , completely predefined itineraries of trusted hosts. 
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ABSTRACT 
The problem of protecting mobile code from both denial-of­
service and state tampering attacks by malicious hosts are 
not well addressed in existing techniques for mobile code se­
curity. We propose a possible approach based on extending 
an existing mobile code secu.rity technique: cryptographic 
tracing. This is achieved through the introduction of a 
trusted third party, the verification server, which undertakes 
the verification of execution traces on behalf of the agent 
owner. The interaction between the verification servers and 
host platforms in the new protocol is outlined. Security 
properties of the protocol are verified by modelling the sys­
tem in CSP and checking the resulting state transitions us­
ing the model checker FDR. Limitations of this approach to 
verification are then briefly discussed. 

1. INTRODUCTION 
Mobile code security can be broadly classified into two areas: 
host security and code security. Host security is concerned 
with protecting the host platform (i .e. the computational 
environment that supports the execution of the agent) from 
malicious agents. Such agents may attempt to gain unau­
thorized access to local resources on the host or else in­
flict damage on other agents or programs executing on the 
host. Code security deals with the exact reverse; it attempts 
to safeguard honest agents from potentially malicious host 
platforms. Attacks from these malicious hosts could take the 
form of extracting confidential information (such as crypto­
graphic keys or credit card numbers) embedded within the 
agent. Many viable mechanisms have been developed to 
tackle the host security aspect, but code security still re­
mains problematic. An overview of security issues in both 
these areas, along with a comparative discussion of the cur­
rent techniques available to address them can be found in 
[10], [4] . 

In general, the most common types of attacks on mobile 
agents described in literature can be classified as involving 
either: 
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• manipulation / extraction / truncation of information 
accumulated in the agent from its previous hops, par­
ticularly in a free-roaming scenario (i.e. where the 
itinerary of the agent is dynamically determined dur­
ing migration) . Techniques such as forward integrity 
[11] and chained signatures [5] can provide some pro­
tection again this type of attack by making it possible 
to detect the point in the route at which the attack 
occurred. 

• alteration of the state or execution flow of the agent. 
Techniques such as execution tracing [24] or obfus­
cated code [9] are designed to either detect an attack 
and identify the perpetrator or render such attacks im­
practical by increasing the difficulty of interpreting the 
semantics of code execution correctly. 

More recently the issue of resource control has become a 
topic of interest in host security research [25], [18], partic­
ularly in the Java environment which is extremely popular 
for developing mobile agent systems. This raises the inter­
esting question from the viewpoint of code security: how do 
we ensure that an agent is provided sufficient resources by 
its host in order for it to complete execution successfully? 
In its most basic form, a denial-of-service attack would in­
volve a malicious host platform simply terminating all mo­
bile agents that migrate to it. A more subtle form of attack 
could involve withholding resources (memory, CPU cycles) 
for a protracted period of time so that an agent executes 
for a longer period than it normally would. This may be 
problematic in certain situations; for example, if the agent 
owner is later charged for the amount of resources allegedly 
consumed by the agent on that host. 

A survey of the code security literature reveals very few tech­
niques that address this problem directly. The techniques 
we have mentioned so far appear to be vulnerable to this 
type of attack. Approaches that could address this prob­
lem include the use of replicated agents [17]or co-operating 
agents [19]. In [17], replicated agents are executed on differ­
ent hosts and simple voting is used to determine the outcome 
of computational results. This approach is extended on in 
[19], where other strategies such as secret sharing, remote 
authorization or remote storage of commitments can be used 
as part of protocols involving two co-operating (but not nec­
essarily identical) agents that communicate with each other 
while migrating in different host platform domains. Some 



of the criticisms regarding these approaches are that they 
require replication of services on all host platforms and may 
fail if the number of malicious hosts outnumber the honest 
ones (for the case of replicated agents). Co-operating agents 
appear more feasible but require that a specific co-operating 
agent and associated protocol be created for each application 
scenario , thus making it difficult to use for generic mobile 
agents. 

In this paper, we provide three contributions: 

• Describe an approach to detecting some forms of denial­
of-service attacks that involves extending the execu­
tion tracing protocol, an existing code security tech­
nique. 

• Formally model the extended protocol using CSP and 
FDR and establish specific security properties. 

• Outline some general problems related to the use of 
finite state models in modelling mobile code security 
protocols. 

In the next section, we discuss the original protocol and how 
it is extended. The detailed protocol of message exchanges 
involved in this extension version is outlined in section 3. 
Formal modelling and verification of the protocol using CSP 
and the model checker FDR is presented in section 4. Sec­
tion 5 discusses the limitations of this modelling approach 
as well as some general problems that may arise when at­
tempting to formally model mobile agent security protocols. 
Finally, section 6 concludes with a short summary and di­
rection for future work. 

2. EXTENDING EXECUTION TRACING 
In execution tracing (Fig. 1), a host platform executing an 
agent creates a trace of an agent's execution that contains 
precisely the lines of code that were executed by the mo­
bile agent as well as all the external values that were read 
by the mobile agent. The trace is then stored by the host . 
This tracing activity is repeated for all hosts in the path of 
the agent. Upon its return, the agent owner may (if she/he 
suspects that the mobile agent was not correctly executed) 
request the complete trace of the agent 's execution com­
mencing from the first host platform (a) . The agent owner 
will then simulate the execution of the mobile agent based 
on the information contained in the trace. This simulation 
will result in an intermediate state and identify the next 
host platform in the mobile agent 's itinerary. The agent 
owner requests from this platform its trace (b) and proceeds 
in this manner for all hosts in the agent's itinerary (c) . If 
at some point a discrepancy is found during the verification 
of the trace provided by a particular host platform, then a 
malicious host has been detected. 

There have been some criticisms of this approach. The main 
drawbacks are the size and number of logs related to traces 
that need to be retained by the hosts, and the fact that 
the detection process is triggered only on suspicion that an 
agent has been manipulated. Other problems include the 
difficulty of tracing the execution results of multi-threaded 
agents. 
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Figure 1: Execution tracing - original protocol 

2.1 Introducing verification servers 
In extending this protocol, we seek only to change the man­
ner in which agents and traces are propagated in the system. 
The possible implementation of trace creation and verifica­
tion using the approach outlined in the original protocol 
merits a complete analysis of its own and will not be dis­
cussed in this paper. Our approach is based on an earlier 
proposal [23J which involves the introduction of a trusted 
third party, the veTifica.tion server that undertakes the pro­
cess of verifying traces on behalf of the agent owner (Fig. 
2) . When an agent owner launches a mobile agent to a host 
platform (b), it creates a copy of the agent's code and state 
and forwards it onto a verification server (a) designated by 
the host platform. While the host executes the agent , it cre­
ates a trace of this execution simultaneously. Upon request 
of migration, the host then forwards this trace and the final 
agent state (c) to the designated verification server, which 
ensures that the execution sequence is valid. Once a verifi­
cation server receives an agent copy, it wiII be aware of the 
identity of the platform executing the actual agent. It can 
thus implement a mechanism (for example, using time-outs) 
to ensure that a trace of the execution arrives from the re­
quired host within a reasonable time. This provides a way 
to safeguard against some forms of denial-of-service attacks. 

VA' Va ' Vc - Verillcatlon 
servers 

A. S , C - Host platforms 

o mobile agent 

I,.. .. - ~\ mobile agent 
'- / copy 

' - -' 

Figure 2: Execution tracing - extended protocol 

When the validity of a trace is ascertained by a verifica­
tion server, the agent is then forwarded from the verifica­
tion server to its next destination host (d) and a copy (e) 
is sent to the corresponding verification server. Verification 



and migration then proceed in this fashion until the agent 
completes its itinerary and returns to its owner (t). Host 
platforms do not need to retain traces once they are submit­
ted to the verification server; verification servers only retain 
su bmitted traces which do not verify properly. These faulty 
traces can later be submitted as evidence to the agent owner 
or a suitable arbitrator for appropriate sanctions to be un­
dertaken if so required. Only verification servers are allowed 
to migrate agents to host platforms; correspondingly, honest 
platforms will only accept agents from authenticated verifi­
cation servers (more on this in section 4). 

Prior to the commencement of a protocol run, host platforms 
will need to interact with verification servers to determine 
the servers that are willing (or capable) of verifying traces 
of agents executing in their environment. A host platform 
could thus have a choice of several verification servers to use 
in verifying any trace from its environment; conversely, a 
verification server could be responsible for verifying traces 
from several different hosts. Verification servers may dele­
gate verification activities to other verification servers in the 
system if they are overloaded; this allows the formation of 
trust relationships between servers as detailed in [22]. 

2.2 Comparison with existing protocol 
This extended protocol yields several advantages over the 
original one: 

1. Trace verification is now performed by a verification 
server for each host platform that an agent migrates 
to in its itinerary. This permits the detection of mali­
cious tampering as soon as it occurs at any platform 
on the agent's itinerary. In the original protocol, trac­
ing only commences when an agent completes its tour 
and returns (by which time the damage inflicted by a 
malicious host could have been propagated to the re­
maining hosts in the itinerary) and even then, is only 
an optional activity triggered by a suspicious owner. 

2. Traces have to be retained by a host in the original 
protocol (since the owner could request these for veri­
fication after a complete run of the agent), resulting in 
a high storage and maintenance overhead. This is no 
longer necessary in the extended version as verification 
is performed at every platform. In addition, verifica­
tion servers can discard successfully verified traces and 
need only retain those with discrepancies as possible 
future evidence. 

3. One of the primary motivations for using a mobile 
agent is to avoid communication problems attributable 
to low bandwidth or intermittent network links. In 
such an instance, the request of traces by an agent 
owner from potentially remote hosts in the original 
protocol could be problematic (for example, from be­
hind a firewall). It would be easier instead for a host to 
select verification servers in its network vicinity that 
it can establish reliable communications with. 

The extended protocol employs replication of agent code 
and state and is thus similar in motivation to the replicated 
agents approach. However, by imposing the trusted third 
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party concept (i.e. the verification server is assumed to be a 
trustworthy entity that would not willingly collaborate with 
other hostile parties), we eliminate the need for replication 
of hosts as well as the possibility of failure that may arise 
when the number of malicious hosts outnumber honest ones 
in a voting scheme. 

Our extended protocol shows greater similarity with the co­
operating agents approach. The agent copy forwarded to 
verification servers for purposes of verifying the actual agent 
that migrates along a separate itinerary of host platforms 
can be regarded as a 'co-operating' agent that helps to de­
tect tampering of the actual agent. However, the extended 
protocol offers the additional advantage of fault tolerance. 
A co-operating agent is not a replica of the actual agent 
to be protected, rather it is an agent that is specifically 
designed to support the actual agent in specific scenarios 
via constant communication so that it is immediately aware 
whenever the actual agent is compromised. In such an event 
however, it can only note or report the compromise but is 
incapable of continuing the compromised agent's agenda on 
its own. In the extended protocol however, if a verification 
server detects tampering in a trace, it can signal an excep­
tion to the agent copy executing in its environment so that 
suitable action can be taken. 

3. PROTOCOL DESCRIPTION 
In this section, we detail the protocol used in the extended 
version of execution tracing for one stage of a single protocol 
run (Fig. 3). A single protocol run is defined as the com­
plete traversal of an unique agent instance along its itinerary, 
starting from where it departs from its owner (Fig. 2 b) to 
the point when it returns again (Fig. 2 e). This may include 
any possible loops in its path (i.e. when an agent returns to 
a previously visited host). We assume that a PKI is operat­
ing in the background, from which appropriate certificates 
and corresponding public keys can be obtained to perform 
encryption of data or verification of digital signatures. The 
pseudocode for the verification server and host platform is 
given in the Appendix. The format and sequence of mes­
sages exchanged in the protocol are shown in Fig. 4 and are 
explained as follows: 

VA' VB' Vc' Verification 
servers 

A, B • Host platforms 

Message for current stage of protocol run 

----------... 
Message for next stage of protocol run 

Figure 3: Message sequence in extended protocol 

ml: This message sent by VA is in reaction to the mobile 
agent's request to migrate to A. It is essentially a request 
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{{ VA' A, nV A' Ie, {e} SPr(Owner)} S Pr(VA )} Pb(A) 

{{A, VA"AI ,nvA , Ie, Ace, Va,{A, VB}SPr(Va)}sp (A)} 
r Pb(V A) 

{{VA' A"AI ,nVA ,Ie, S(e, VA,T(e, VA))}SPr(VA)}Pb(A) 

{{A, VA' LA2' nVA ,Ie, S(e, VA' T(e, VA))} S Pr(A)} Pb(V
A

) 

{{VA' Va, {c} SPr(Owner)}SPr(V A)' '"4} Pb(Va) 

{ Va, VA, n VA' 1 e} P b( VA) 

{{A, Va, Ie, nV A' T(e, A), S(e, A, T(e, A))} S Pr(A)} Pb(Va) 

{Va, A, nVA' Ie} Pb(A) 

Notation 

• {X}sPr(Y) - indicates a message sequence X signed with the 
private key of entity Y 

• {X} Pb(Y) - indicates a message sequence X encrypted with the 
public key of entity Y 

• ty - indicates a timestamp created at entity Y 

• ny - indicates a nonce created at entity Y 

• Ie - refers to a unique agent identifier 

• e - refers to static mobile agent code 

• T{e, Y) - refers to the trace of the agent code e after execution 
at entity Y 

• S{e, Y, T(e, X)) - refers to the state of the agent code e after 
execution at entity Y, using the trace of the agent execution 
specified by T{e, X) 

Figure 4: Protocol messages 

to A to accept a mobile agent code instance Ie with asso­
ciated code c, A nonce nv.. is included here to keep track 
of a protocol run, and will be subsequently included in the 
following messages as a reference to that protocol run, 

m2: Upon receipt of ml, A can decide whether or not to ac­
cept the mobile agent, based on consideration of the agent 
code, This may involve performing security checks on the 
code itself (i,e, host security) using techniques such as byte­
code verification or proof carrying code, Ace in this message 
is therefore an indication of A's willingness (or otherwise) 
to accept the mobile agent, The last part of this message 
indicates the verification server (in this case VB) that will 
verify the execution of any dispatched agent to A. This 
is accompanied by a certification signed by the verification 
server in question ({A, VB}SPr(Va))' Message m2 must be 
dispatched regardless of A's willingness to accept the mobile 
agent; this is necessary for VA to distinguish between com­
munication/server failure or agent rejection. A time-stamp 
tAl is included so that a record can be kept of m2 in the 
event of a rejection, 

m3: An affirmative decision (with Ace = Accept) results 
in the state of the agent prior to migration being sent to 
A. In the event of rejection of platform A, the protocol run 
will terminate at this stage (with an appropriate exception 
flagged to the mobile agent), and recommence again at ml 
if so required by the mobile agent, 

m4: An acknowledgment message from A of the receipt of 
the agent, This message is vital to provide non-repudiation 
in the event that A attempts a denial of service attack once 
it has received the agent. The time-stamp tA2 provides a 
reference value to implement a time-out mechanism in VB 
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to safeguard against denial of service. 

m5: A copy of the agent code and the entire contents of m4 
(which includes the agent's state) along with the appended 
signature created by SPr(A) is then dispatched to VB, the 
server that will be responsible for verifying correct execution 
on A. The identity of this verification server is obtained 
from the second portion of message m2. Upon receipt of this 
message, a time-out mechanism will be in effect at VB using 
tA2 to ensure that m6 arrives within a reasonable period of 
time, the failure of which is an indication of either a denial 
of service attack or a possible failure at A. 

m6: A simple acknowledgement of receipt of m5 by VB with 
inclusion of nVA and Ie to keep track of the current protocol 
run and agent instance. 

m7: Upon completion of agent execution, a trace is created 
at A (T(c, A)) and then submitted along with the new agent 
state S(c, A, T(c, A)) to the appropriate verification server. 

m8: A simple acknowledgement of receipt of m7 by VB with 
inclusion of n v A and Ie to keep track of the current protocol 
run and agent instance. 

Upon receipt of m7, VB will commence replay of the agent e 
(identified by Ie) using the submitted trace T(c , A). If the 
resulting state from this replay S(e, VB,T(e,A)) is equiva­
lent to the submitted state S(c, A, T(e, A)), then the next 
stage of the protocol run can be initiated, that is VB can 
dispatch ml* (the equivalent of ml in the next stage of the 
protocol) to B. The submitted trace can then be discarded. 
If equivalence is not obtained, an appropriate exception is 
raised to the mobile agent and the faulty trace and state is 
retained as evidence for further action by the home platform 
or an arbitrator (if so required). 

4. FORMALLY MODELLING AND VERI-
FYING THE PROTOCOL 

The primary security goal of execution tracing is to safe­
guard the state and execution flow of an agent, which is ac­
complished in the original protocol and in our extended ver­
sion, by verifying agent states produced by replaying agents 
according to a given trace. If we assume that the verification 
and replay process is capable of detecting any malicious tam­
pering, then the security goal essentially reduces to ensuring 
that traces and agents are dispatched correctly and securely 
to their designated destinations as ou tlined in the protocoL 
The original protocol uses various cryptographic primitives 
in order to achieve this goal (in a similar fashion to us) but 
does not attempt to formally verify the satisfaction of any 
security property. As it has been noted in literature that de­
veloping good security protocols is notoriously difficult [2], 
we believe that some form of modelling and verification is 
necessary in order to provide a basic assurance that certain 
specific security properties are achieveable, In the case of 
our extended protocol, we are primarily interested in two 
security properties that provide guarantee of correct and se­
cure dispatch of agents and traces: 

• Mutual authentication of verification servers and host 
platforms - It is important to make a distinction be-



tween these two entities as host platforms should only 
accept mobile agents that are dispatched from verifica­
tion servers. This ensures that honest host platforms 
will never accept agents with potentially corrupted 
states directly from other platforms. The possibility 
of a hostile host platform spawning multiple copies of 
an agent and dispatching it randomly to other plat­
forms in the system is also circumvented. In a similar 
context , a verification server has to ensure that it re­
ceives a copy of an agent from an authentic verification 
server to ensure that it is verifying the correct agent 
instance for a particular protocol run . 

• Non-repudiation of commitment to executing agents -
It is important to retain evidence of the fact that a 
host platform has committed to executing a particu­
lar mobile agent instance in a given protocol run to 
prevent a denial of service attack (i.e. terminating a 
mobile agent or delaying its execution for an inordi­
nate period of time) . This is primarily achieved by a 
digital signature appended to m4 which is retained by 
VA. The trace of agent execution as encapsulated in 
m7 is also retained by VB in the event it turns out to 
be faulty; this can be later be submitted to a third 
party arbitrator or the agent owner for sanctions to 
be undertaken towards the erring platform if the need 
arises. 

In considering the security properties of the protocol, it 
should be mentioned that the basic underlying assumption 
is that the verification server is treated as a trusted third 
party. Thus we assume that verification servers will not en­
gage in any action that will directly or indirectly lead to the 
corruption of an agent's state. We also make the usual as­
sumption that the basic cryptographic primitives used are 
resistant to standard cryptanalysis and that private keys 
are not compromised. There are many approaches available 
for formally modelling and verifying properties of a security 
protocol. Some of the more commonly utilised ones include: 

1. BAN logic of authentication [3] , which reasons about 
the states and beliefs of agents involved in a protocol 
run and how these beliefs evolve with the reception of 
new information 

2. Spi-calculus [1], which is an extension of 7r-calculus 
designed to deal with cryptographic primitives 

3. Strand-spaces approach [6] uses the concept of a strand 
to represent the sequence of actions in which a partic­
ular protocol principal may participate and then rea­
sons about how the strands interact or intertwine as 
participants interact by the exchange of messages 

4. CSP-based approach [12] models the protocol interac­
tions as a system described by CSP process algebra [8], 
for which violation of given specifications can be de­
tected through the use of a finite-state model checker 
such as FDR [16] 

We have chosen the last approach as it has been used suc­
cessfully in discovering attacks upon cryptographic protocols 
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([12], [13], [15]) . In addition, modelling protocol runs as in­
teractions between entities using a process algebra like CSP 
appears to be a reasonably intuitive one. As a complement 
to this approach, tools such as Casper [14] have been devel­
oped that are capable of converting a high-level description 
of a security protocol to a CSP specification of the model 
that can be fed as input into the FDR model checker for 
subsequent verification. This greatly simplifies the process 
of CSP specification, which can be tedious and error-prone 
for complicated protocols. We employ Casper in describing 
our protocol in this section, further details on this protocol 
specification language can be found at [14]. 

4.1 Modelling the protocol in Casper 
For the free variables section, we have declared the following 
variable types: 

#Free variables 

A : Agent 
VA, VB : Server 
nva, ntl, nt2 : Nonce 
ea : AgentCode 
asva, asa : AgentState 
ata, atvb : AgentTrace 
PK : Agent -> PublieKey 
SK : Agent -> SeeretKey 
SSK : Server - > ServerSeeretKey 
SPK : Server -> ServerPublieKey 
hash : RashFunction 
InverseKeys = (PK,SK), (SSK, SPK) 

The agent code c, trace T(e, Y) and state of the agent S(e, 
Y, T(e, X)) (see Fig. 4) are represented by the types Agent 
Code, AgentState and AgentTrace respectively and can as­
sume different values independently of each other. This 
makes the protocol easier to model as it is difficult to de­
fine multi-variable functions correctly using Casper (i.e . the 
state of an executed agent would be a one way function of its 
code, initial state and trace). A side effect of this is that the 
chances for attack by a malicious host is increased since it 
can interleave different values of code, state and trace with 
impunity in a protocol run . Indirectly, this enhances the 
strength of the security property that we intend to estab­
lish. We distinguish between the public and private keys of 
host platforms and verification servers as we regard them as 
two distinct classes of entities in our protocol. A hash func­
tion is used to model the unique agent identifier, Ie, which 
we treat simply as a hash of the agent code (the actual value 
of Ie is explained at the conclusion of Section 6). 

There are three processes representing VA (SERVERINI­
TIATOR), VB (SERVERRESPONDER) and A (HOSTRE­
SPONDER) respectively of Fig. 3. All three entities will 
have knowledge of their respective secret keys and will be 
able to access the pu blic keys of the other entities. 

#Processes 

SERVERRESPONDER(VB) knows SSK(VB) , SPK, PK 
SERVERINITIATOR(VA, nva, ea, asva) knows SSK(VA) , SPK, PK 
HOSTRESPONDER(A, nt1, nt2, asa, ata) knows SK(A) , SPK, PK 

The protocol is modelled below, where lines 1 - 8 correspond 
to m] - ms of the protocol. 'vVe use ntI and nt2 (of type 



Nonce) to represent the time-stamps tAl and tA2 issued by 
A, as we are only interested in their unique values in the 
protocol run and do not employ them to enforce a notion 
of freshness. The protocol run is preceded with step Dc., 
which establishes the result of an earlier interaction where 
A obtains a certification from a verification server VB certi­
fying VB'S capability of verifying agent traces from A. The 
'l. notation is used to indicate that this certification is not 
processed directly by A, rather stored in a temporary vari­
able and then later relayed to VA in message 2. The same 
comments apply as well to enc in message 4 and 5. 

#Protocol description 

O. -) VA : A 
Oa. -) A : VA, VB 
Db. -) VB : A 
Dc. VB -) A : {{A, VB}{SSK(VB)} 'l. storecert}{PK(A)} 
1. VA -) A {{VA, A, nva, ca, hash(ca)}{SSK(VA)}}{PK(A)} 
2. A -) VA : {{A, VA, nva, ntl, hash(ca), VB, 

storecert 'l. {A, VB}{SSK(VB)}}{SK(A)}}{SPK(VA)} 
3. VA -) A : {{VA, A, ntl, hash(ca), asva}{SSK(VA)}}{PK(A)} 
4. A -) VA : {{A, VA, nt2, nva, hash(ca), asva}{SK(A)}, 

{A, VA, nt2, Dva, hash(ca), asva} 
{SK(A)} 'l. enc}{SPK(VA)} 

6. VA -) VB {{VA, VB, ca}{SSK(VA)}, 
enc'l. {A, VA, nt2, nva, hash(ca), asva} 
{SK(A)}}{SPK(VB)} 

6. VB -) VA : {VB, VA, nva, nt2}{SPK(VA)} 
7. A -) VB {{A, VB, hash(ca), nva, ata, asa}{SK(A)}}{SPK(VB)} 
8. VB -) A : {VB, A, nva, hash(ca)}{PK(A)} 

We assume that the intruder is capable of creating its own 
agent trace, code and state. In addition, in line with the 
normal assumptions for an intruder in Casper, the intruder 
will also be capable of creating its own nonces and accessing 
the public keys and identities of all entities in the system. 

#Intruder Information 

Intruder = BadBost 
IntruderKnowledge = {FirstServer, SecondServer, BadHost, Nb, 

Nbtl, Nbt2, Cb, PK, SPK, Asb, Atb, SK(BadBost)} 

4.2 Specifying security properties 
As mentioned earlier, the two important security proper­
ties to be established are mutual authentication and non­
repudiation. We employ the concept of authentication as 
outlined in Casper. This is briefly expressed in the form 
of the statement Agreement (A, B, [x]), which states that 
A is authenticated to B on the basis of the fact that both 
A and B agree on the value of x. More formally [14], this 
means that if B (taking the role of responder) completes 
a protocol run, apparently with A, using the data value x, 
then the same entity A (taking the role of initiator) has pre­
viously been running the protocol, apparently with B, using 
the same value x. In addition, each such run of B corre­
sponds to a unique run of A. x is typically some unique data 
item (such as nonce or time-stamp) known only to A or B. 
Mutual authentication will therefore require the additional 
statement Agreement (B, A, [x]) to be verified as well. 

For the case of VA and A, we can claim that these two en­
tities are properly authenticated to each other after the ex­
change of mJ - m4, if only these two entities agree on the 

56 

values Ie, tA2,nvA, S(e, VA, T(e, VA)). leis necessary to pro­
vide reference to the unique agent instance, nVA provides ref­
erence to the current protocol run, tA2 and S(e, VA, T(e, VA)) 
provides reference to A's response in m4. 

Agreement(VA, A, [nva, nt2, hash(ca), asva]) 
Agreement (A , VA, [nva, nt2, hash(ca), asvaJ) 

Similarly mutual authentication between VA and VB and 
between VB and A can be expressed as 

Agreement(VA,VB, [nva, nt2]) 
Agreement(VB,VA, [nva, nt2]) 
Agreement (VB, A, [nva, nt2]) 
Agreement (A, VB, [nva, nt2]) 

Non-repudiation can be simplified to the more general case 
of maintaining secrecy of specific data items whose non­
repudiation is to be established. If we know that only entity 
A issues item x in a protocol exchange between itself and an­
other entity B, and if we can establish that item x remains 
secret in such a protocol exchange, then we can conclude 
that A is indeed responsible for issuing x. In our protocol, 
we are not interested whether x can later be duplicated by 
another entity (such as B) in another protocol run, rather 
we are concerned with whether x is issued in a given protocol 
run. The property of non-repudiation then follows simply 
by applying a digital signature to x. As mentioned earlier, 
non-repudiation is necessary for messages: 

1. m2 - to provide evidence a host accepts or denies an 
agent for a particular protocol run indicated by nVA 

and an agent instance indicated by Ie; 

2. m4 - to provide evidence a host has received the state 
S(e, VA, T(e, VA)) necessary to begin execution of the 
agent instance Ie in the protocol run indicated by nVA; 

3. m7 - to provide evidence the agent instance was Ie 
executed with a trace T(e, A) to provide a state S(e, A, 
T(e, A)). 

In Casper, the statement Secret (A, x, [B]) is used to ex­
press the property that A believes x remains secret in an 
interaction between itself and an entity that appears to be 
B. If this entity is not B, then x will remain hidden to it. 
Thus, to show non-repudiation, we have the following secu­
rity specifications I: 

Secret (VA, nva, asva, ca, [A]) 
Secret (A, ntl, [VA]) 
Secret (A, ata, asa, [VB] ) 
Secret (VB, nt2, [A]) 

Both specifications for mutual authentication and secrecy 
were satisfied in the resulting CSP model that was checked 
using FDR. The checking process itself was lengthy (several 
hours) due to the complexity of the protocol and the number 
of independent data variables involved. 

JThese are provided in an abbreviated form; specifications 
for secrecy should be in the form Secret(VA, x, [A]) for each 
item x 



5. LIMITATIONS OF MODELLING USING 
CASPER AND FDR 

The use of Casper to model security protocols for mobile 
agent systems has been attempted previously by Hannotin 
et al. [7] . In their work , they attempt to verify the property 
of data integrity in a protocol proposed by Corradi et . al 
[5] which intends to safeguard data accumulated by a mobile 
agent (for example, price offers from various shop platforms) 
during its itinerary from invalid tampering. The protocol 
functions by making tampering of this data by a malicious 
host (for example:- modification or truncation of previous 
offers) detectable by either the home platform of the agent 
or the next honest host that the agent migrates to. Although 
this property is verified in the CSP model that they develop , 
the same protocol (as well as other protocols with a similar 
motivation of protecting accumulated data) was shown to 
be vulnerable to a certain type of attack described by Roth 
in [20], which has a general two-step approach: 

1. Protocol data from an honest mobile agent is cut and 
pasted on to a 'dummy' mobile agent generated by a 
hostile host. This mobile agent is then launched to 
another honest host with which it interacts in a cer­
tain manner to acquire critical information about the 
current protocol run (which it would not normally be 
able to acquire without the use of the 'stolen ' protocol 
data). 

2. The 'dummy' agent migrates back to the hostile host 
with this information , which is then used by the host 
in some way to change the accumulated data of the 
honest agent. This change will subsequently be unde­
tectable when the honest agent is migrated on to the 
next host or back to its home. 

The strategy of this attack is not new and is similiar in mo­
tivation to an earlier well-known attack on the Needham­
Schroeder public key protocol described by Lowe [13] . In 
his attack, a replayed message from a previous protocol run 
is used by an intruder to initiate a new protocol run in which 
an unsuspecting participant is then abused as an unwitting 
oracle to reveal confidential information . This information 
can then be used to compromise the integrity of a commu­
nication channel. Roth's technique is essentially the same 
with the primary difference being that a new mobile agent 
(instead of a replayed message) is used by a malicious host 
in a new protocol run to initiate the oracle attack. In order 
to nullify the attack, it is necessary to prevent one or both 
of these steps from occurring. Roth presents a method to 
prevent the first step by using authentication to uniquely 
associate the identity of an agent instance along with the 
protocol data transported by it . This would allow an hon­
est host to discern whether an incoming agent is carrying 
protocol data that belongs to it or that was 'stolen ' from 
another agent . The host could then refuse to accept or ex­
ecute agents carrying 'stolen' data, thus preventing itself 
from being abused as an oracle. This security measure is in 
actual fact a form of host security, and we have here an in­
teresting illustration of how the two different aspects of code 
and host security (which often appear to be orthogonal to 
each other) can be actually closely interlinked. 
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The main reason underlying the failure of Hannotin 's Casper 
model to detect such attacks is the inability to model a mo­
bile agent accurately using traditional cryptographic pro­
tocol analysis methods. In those methods, a fundamental 
assumption in analysis is that the format of messages ex­
changed between static entities and the sequence in which 
they occur within a single protocol run are predefined and 
remain fixed throughout the duration of the protocol run. 
Thus, attacks can only occur through judicious interleaving, 
reflection or replay of messages from different protocol runs. 
In Hannotin's approach (and our approach as well) the mo­
bile agent is implicitly treated as a unique, static portion 
of a message. This permits a reasonably straightforward 
approach to modelling, but as we have just seen, it is not 
accurate as it does not reflect the ability of the mobile agent 
to potentially alter the sequence and content of messages 
during an ongoing protocol run. For example, in the second 
step of the attack, the data carried back by the 'dummy' 
agent to the hostile host has to be part of the specification 
of the protocol run (since this is the data that actually al­
lows the hostile host to successfully carry out its attack). 
Obviously, the format and contents of this data cannot be 
predefined and will depend on the interaction of the agent 
with the honest host. Thus, in order for a model to be able 
to detect such attacks, two additional requirements are nec­
essary: 

1. The model must be able to encapsulate all possible 
behaviours of a mobile agent (as a function of its code, 
internal state and state of its execution environment) 
that have the ability to alter the format or sequence 
of messages exchanged within a single protocol run 

2. The model must be able to take into account all these 
different possibilities of message contents and sequences 
when it is used to simulate a protocol run 

With regards to the first requirement, the identification of 
the specific state or code of an agent that is capable of al­
tering the format or sequence of messages is clearly not a 
trivial matter. Even if this could be accomplished, the addi­
tional possibilities for protocol runs with different message 
contents and sequences will greatly increase the number of 
possible interleaving of protocol runs, consequently creat­
ing a potential explosion in the state space to be explored. 
This may make it less suitable for use on a finite state space 
model checker such as FDR. In that case, checking the vi­
ability of the model may require techniques to reduce the 
state space explosion (such as those used in [21]) or mod­
elling the protocol using a different approach (for example 
strand spaces or spi-calculus). As a matter of interest we 
note that the attacks described by Roth were discovered in 
an ad hoc, intuitive manner without resort to any formal 
methods of verification. It is thus possible that more subtle 
attacks may yet exist on the protocols in question (even after 
the remedy of authentication is applied) , if these protocols 
can be expressed and analysed in more thorough manner us­
ing models that encapsulate the two requirements that we 
have briefly discussed . 

Since we also treat the mobile agent as a static message in 
our approach, our model is equally susceptible to the same 



vulnerabilities as Hannotin's. However, our modified proto­
col for execution tracing differs from the approach employed 
by Corradi as well the original execution tracing protocol in 
an important way: agent state (and code) is replicated. In 
our approach , the agent that is actually migrated on to the 
next host platform is the mobile agent copy on the verifica­
tion server (the trusted platform), and not the actual agent 
on the current host. The consequence of this is that the cur­
rent host will not be able to directly manipulate the state 
of the mobile agent, in effect nullifying step two of Roth's 
attack. The only way a hostile host can affect the state of 
the agent copy is through the trace it supplies; this how­
ever will also contain the signature of the host to act as 
a measure of non-repudiation . Supplying faulty traces as a 
form of attack is thus meaningless as liability can eventually 
be established for the resulting problems that arise (this, of 
course, is based on the assumption that the economic cost 
of being sanctioned for an attack is greater than the eco­
nomic cost resulting from the attack). Therefore, our only 
concern is ensuring that traces , agent code and agent state 
are securely propagated in our system, and that traces are 
correctly associated with the corresponding agents. Mobile 
agent behaviour is subsequently of no concern to us any 
longer. We are therefore justified in using Casper to model 
our protocol as the nature of our protocol is now analogous 
to those modelled in standard cryptographic protocols. It 
is also our belief that completely secure code execution on 
untrusted platforms cannot be achieved without some form 
of code/state replication . 

6. CONCLUSION 
In this paper, we identified the need for code security tech­
niques that address the concept of denial-of-service attacks 
in addition to the usual data integrity and state tampering 
attacks. A technique to detect some forms of such attacks is 
proposed which involves the extension of a well known code 
security technique, execution tracing. This essentially in­
volves the introduction of a trusted third party, the verifica­
tion server, that undertakes verification of traces on behalf of 
the agent owner. The advantages of this modified technique 
as compared to the original approach as well as other tech­
niques that prevent denial-of-service attacks are outlined. 
The sequence of messages for the new protocol is described 
in detail, and is then modelled in CSP using the high-level 
security protocol description language, Casper. The model 
is then analysed in FDR to determine whether specific se­
curity specifications are valid. Finally, we discuss the lim­
itations of modelling the protocol using Casper and finite 
state model checkers such as FDR and point out the diffi­
culties involved in formal modelling of mobile agent security 
protocols in general. 

Our current work focuses on developing a practical method 
to implement creation and verification of traces in a work­
ing mobile agent system. In addition , we are also looking 
at ways of reducing the cryptographic cost of the protocol 
without compromising on its security properties. A more 
formal method of expressing the use of time-outs to pro­
vide protection against denial-of-service attacks would also 
be useful. Once the protocol is sufficiently refined and trace 
verification properly developed, a mobile agent framework 
using the extended protocol can be created and evaluation 
conducted against existing code security techniques. 
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APPENDIX 
Operation of host platform 

Accept m) 
Verify signature SPr(VA ) and identity of verification server (VA) 
through a certificate 
Verify signature on agent code ({e}sPr (Owner)) to detect possible 
tampering 
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Perform security check on agent code ({ c}) 
If decision is made to commit to running agent code 

Select verification server VB to be employed in verifying the code 
Submit in m2 suitable certification {A, VB} S Pr(VB ) 
If verification server responds with m3 

Verify signature on S(m, VA, T(m, VA)) to safeguard 
against possible tampering 
Respond with acknowledgment m4 

Instanstiate agent code with verified state 
Commence execution of mobile agent and create a trace of its 
execution sequence T(m, A) 
Upon completion of an agent run, sign trace and submit in m7 
to VB 

else 

else 

Terminate protocol run and await commencement from another 
verification server 

Indicate refusal in reply m2 
Terminate protocol run and await commencement from another 
verification Server 

Operation of verification server Va 

Receive initial state of agent S(c, VA, T( c , VA)) in m5 
Implement time-out mechanism using tA2 from m, 
lf trace T(e, A) in m7 arrives in specified t ime period 

Verify identity of host submitting trace 
Replay agent execution from initial state and submitted trace to 
obtain final state S(e, VB, T (c,A)) 
If final state S( c , VB, T(e,A)) is equivalent to submitted 
state S(c , A , T(c , A)) 

Identify destination platform contained in S(e, VB, T(e, A)) 
Submit m, * to destina tion 
Receive m2* 
If A ce in m2* is positive 

Verify identity of the verification server associated with 
submitted certification 
Submit final state of agent S(c, Va, T(c, A)) to 
host platform in m3* 
Receive acknowledgment of reception m, * from 
the host platform 
Forwa rd S(e, Va,T(e , A)) and {e}SPrOwn er 
on to the next verification server in m6 *) 

else 
Signal exception to agent 
Record platform identity that refused to host the agent 

else 

else 

Retain trace T( e , A) as evidence 
Signal exception to agent 
Record occurrence of trace inequivalence in age nt 

Signal exception to agent 
Record OCCurrence of time-out in agent 
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Abstract 
Communication between multi-agent platfonns has shown 
potential problems in aspects of security, for example 
confidentiality, authentication and integrity. To address some 
these issues, this document focuses on analysing and specifying 
inter-platform agent security in general. In this initial document, 
we investigate various core requirements and the SIMIME 
content-type for inter-platform messaging. This paper also 
presents a message confidentiality design using ' Enveloped 
Data' SIMIME content-type adhering PKCS 7 standards. In our 
design, we have also included CMS designs using ASN. l 
notations to derive our message identifiers supporting platform­
to-platform communication. We envisage the result of this 
specification to be applicable as most current HTTP messaging 
systems support MIME standards. Finally, further additional 
enhancements are discussed such as 'Enveloped and Signed 
Data' content-type and other key transport or key agreement 
methods; these will be covered in future publications. 

Keywords 
SIMIME (SecurelMultipurpose Internet Mail Extensions), 
MIME, ASN.I (Abstract Syntax Notation), CMS 
(Cryptographic Message Syntax), PKCS (Public-Key 
Cryptography Standards), SSL, PEM, CBC, RMI, lIOP, HTTP 
(Hypertext Transfer Protocol), FIPA. 

1. Introduction 
The Foundation for Intelligent Physical Agents (FIP A) Agent 
Message Transport Service (MTS) Specification [1] can be 
improved by applying security over transport messages in 
support of the MTS [II]. Security issues within this 
communication protocol may pose a threat in developing large­
scale e-business based solutions for example in 
Agentcities.RTD [2]. 

Agents mostly interact in two types of environments; inter 
platform and/or intra-platform communication [I] . In these 
environments agents may use various types of message 
transport protocols for instance HTTP, IIOP (Internet Inter-Orb 
Protocol) or RMI (Remote Method Invocation). In the MTS of 
an Agent Platform (AP), an agent has three options I when 
sending a message to another agent resident on a remote Agent 
Platform (AP) (see Figure 1): 

1. Agent A sends the message to its local Agent 
Communication Channel (ACC) using a proprietary or 
standard interface. The ACC then takes care of sending the 
message to the correct remote ACC using a suitable 

I A fourth possibility (not illustrated) is that instead of 
completing the last two stages of the flTst path, the ACC on 
the first platform contacts Agent B directly - this depends 
upon the address that the ACC is delivering to. 
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Message Transport Protocol (MTP). The remote ACC that 
will eventually deliver the message. 

2. Agent A sends the message directly to the ACC on the 
remote AP on which Agent B resides. This remote ACC 
then delivers the message to B. To use this method, Agent 
A must support access to one of the remote ACC's MTP 
interfaces. 

3. Agent A sends the message directly to Agent B, by using a 
direct communication mechanism. The message transfer, 
addressing, buffering of messages and any error messages 
must be handled by the sending and receiving agents. This 
communication mode is not covered by FIP A. 

Figure 1: Three Methods of Communication between Agents 
on Different Agent Platforms 

For now, the most commonJy used communication method is 
based largely on the flTst of the three methods above. This paper 
will address the problem of securing data transmission between 
two different agent platfonns over insecure channels. In doing 
so the following assumption has been made; the agent platform 
itself is secure. This means that intra-platform communication 
isn' t a threat to the domain, as a result of this the focus of this 
paper concerns secure inter-platform communication. 

2. Problem Analysis 
This section will try to address the problem by identifying the 
security requirements and suitability of various secure 
communication mechanisms used with HTTP. The modelling 
choice for HTTP is encouraged by factors pertaining to the 
robustness and advantages of HTTP in general against other 
Message Transport Protocols such as RMI or IIOP in FlPA. 
HTTP also runs on ports that most often permitted by most 
flTewalls and has been generally accepted as the de-facto 
transport protocol for data communication. 

FIPA message specification employs MIME (RFC822) [3] 
standard. RFC822 specifies that Encryption Types for mail may 
be assigned. There are currently no RFC822 encryption types 



assigned. Therefore usage of the Mail Privacy procedures is 
recommended [4) in RFCl421 [5). Privacy Enhanced Mail 
(PEM) [6) or RFCl42 1 were in the past a popular 
cryptographic technique for authentication and privacy of 
messages. Unfortunately the success of PEM has suffered 
because of drawbacks or flaws that have become apparent over 
the years, such as the following: 
• Support lnjrastntcture: the IETF standard that addresses 

secure e-mail proposes using a hierarchy of trusted bodies 
to reassure users of the validity of a particular e-mail 
message. At the top-level sits the Internet Policy 
Registration Authority (IPRA), which would be the 
governing certificate trusted by all. The IPRA would sign 
certificates for a second layer of trusted bodies called 
Policy Certification Authorities (PCAs). These in rum 
would authorize certificates for another layer of bodies 
calJed Certificate Authorities (CAs). In spite of this, there 
are several products on the market or the Internet that 
follow the PEM model, including ones from RSA Data 
Security, Trusted Information Systems, and Michigan State 
University (called RIPEM). However, because the 
certificate hierarchy suggested by PEM (the IPRA model) 
hasn't been established, some of these products use 
proprietary CA schemes. In other words, the lack of the 
infrastructure, public directories, has been the main 
obstacle in proliferation of PEM. For example, RJPEM, 
the flagship of PEM, does not implement certificates. 

• Surreptitious Forwarding: PEM essentially provides only 
two variants of mail security; a message can simply be 
signed, or it can be signed and then encrypted. PEM has 
no notion of signing or authenticating ancillary aruibutes, 
and also doesn't support extra crypto layers. To prevent 
surreptitious forwarding, a PEM message's author would 
have to include the recipient's name directly in the 
message-body. Of course, it could be very difficult for the 
receiving PEM mail-client to fmd the recipient's name in 
the body, thus making it difficult to automatically prevent 
surreptitious forwarding. 

Due to some of the PEM flaws mentioned above, newer 
improved standards have been developed such as SIMIME 
(SecurelMultipurpose Internet Mail Extensions) [7) and PKCS 
7:CMS (Cryptographic Message Syntax) [8), which provide a 
consistent way to send and receive secure MIME data. Based on 
this standard, we have proposed SlMlME to be complemented 
with FIPA Message Specification to provide secure electronic 
messaging: authentication, message integrity and 
confidentiality. 

2.1 Message Structure 
The FIP A Agent Message Transport Protocol for H1TP 
Specification is based on MIME Specification for multipart 
message content type (13), this contains an envelope section 
based on RFC822 [12) and a content section based on FIP A 
ACL Message Structure Specification [14). To provide security, 
using SIMIME over current H1TP Specification, we have re­
defined the content multipart section of the HTIP message to a 
SIMIME multipart using PKCS 7 Specification. This re­
definition doesn't change the overall specification, but merely 
contains the unencrypted ACL into a SIMIME defmition that 
already resemble the current MuJtipart MIME Message 
Strucrure. The SIMIME section of the content utilises CMS to 
provide the necessary definition of security components and 
encryption of the ACL Message. This SIMIME part is also 
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encoded in Base 64 encoding to ensure end to end transmission 
reliability of irregular character types. The figure below (Figure 
2), expresses how simply an SIMIME feature can be integrated 
to the present FIP A H1TP Message Structure: 

CURRENT RE\lSED 

Figure 2: Changes to Current FIPA H1TP Message Structure 
to support SIMIME 

In this context, SIMIME and PKCS 7 provides 4 core (there are 
more content types that are not listed) content types of security 
mechanisms: 

• Signed Data 

• Enveloped Data 

• Clear-Signed Data 

• Signed and Enveloped Data 

In the effort to provide secure communication between inter­
platforms, the use of SIMIME Enveloped data has been 
employed as a first step towards platform-to-platform security. 
The remainder of this paper will also provide an architecrure of 
the system followed by use cases describing the high level 
design. 

Figure 3: HTIP message structure 

Based on the above architecrure (Figure 3), some of the strong 
points have been noted in support of using SlMlME and PKCS 
7 with FIP A Message Transport Specification, these are as 
follows: 

• Clear separation between security related data (the signed 
attributes) and the application data (the content). 

• CMS is widely used syntax for S/MIME enabled 
messaging that is platform-independent as well. 



• 

• 

Allows double signing of messages, especially catered for 
multi agent to multi agent messaging. 

Privacy in end-to-end communication which does not 
impact mail processing by intermediate relay hosts that do 
not incorporale privacy facility. 

2.2 Use Case 
This section discusses the steps in processing a message 
encrypted in SIMIME wben it is transmitted from one ACC to 
another. 

Step 1: The ACC of an agent platform receives a HlTP 
message from another agent platform's ACe. The 
message contains MIME bodies with a SIMIME part. The 
Message Processing use case strips the message into 
separate boundaries and relays the parts into the relevant 
parsers and message strippers. 

Step 2: The encoded SIMIME message is decoded to retrieve 
the Java CMS objects. From the objects, the content key 
is decrypted using either a previous symmetric key or the 
private key of the recipient. 

Step 3: Once the content decryption key is retrieved, the 
encrypted content can be decrypted to retrieve the ACL 
Message and its relevant information. Following this, the 
ACL Message is passed to the Message Transport System 
(MTS) to be routed to the final recipient. 

3. SIMIME and CMS 
This section defines how secure message exchange between two 
F1PA compliant agent platforms is constructed. This section 
also provides examples of CMS objects, and the choices and 
functions that are employed. 

The process by which enveloped data is constructed involves 
the following steps [8] : 

I. A content-encryption key for a particular content­
encryption algorithm is generated at random. 

2. For each recipient, the content-encryption key is encrypted 
with the recipient's public key. 

3. For each recipient, the encrypted content-encryption key 
and other recipient-specific information is collected into a 
RecipientInfo value, defmed in Section 3.1.2 and 3.1.3. 

4. The content is encrypted with the content-encryption key. 
(Content encryption may require that the content be 
padded to a multiple of some block size) 

5. The RecipientInfo values for all the recipients are collected 
together with the encrypted content into an EnvelopedOata 
value, defined in Section 3.1.2. 

6. It is assumed that the enveloped data contains some binary 
information. Therefore Base64 Content-Transfer encoding 
is used. 

A recipient platform opens the envelope by first decoding and 
then decrypting the enclypted content-encryption keys with the 
recipient'S private key and decrypting the encrypted content 
with the recovered content-encryption key. The recipient's 
private key is referenced by an issuer distinguished name and an 
issuer-specific serial number that uniquely identify the 
certificate for the corresponding public key. In a similar 
scenario, two communicating platforms may also use symmetric 
key exchange to public key when continuing previous 

62 

communications using an earlier symmetric key. A big picture 
of HTTP Messages using MIME bodies coupled with SIMIME 
parts using PKCS-7 can be seen in the Appendix prior to the 
next part that is the CMS objects. 

3.1 CMS using ASN.1 Notation for S/MIME 
Body 
This section is divided into three parts. The first part describes 
the top-level type EnvelopedOata, the second part describes the 
per-recipient information type RecipientInfo, and the third part 
describes the content-encryption and key-encryption type. 

3.1.1 Top Level Type Enveloped Data 
The top level EnvelopedOata CMS Notation described below 
contains the identifier and enveloped data portions. The 
identifier defines the standards and specifications used for 
constructing an enveloped data SIMIME content type security 
mechanism. As for the other portion, it describes the version 
info, recipient info and encrypted content info that will be 
discussed in further detail in later sections of this document. 

id-envelopedData OBJECT IDENTIFIER ::= ( 
iso(l) member-body(2) 
us(840) rsadsi( 113549) pkcs( I) pkcs7(7) 3 

EnvelopedOata ::= SEQUENCE { 
version 0, 
recipientInfo Recipientlnfo, 
encryptedContentInfo EncryptedContentInfo 

3.1.2 Per Recipient Information Type 
This part describes the recipient information type; it consists of 
the choices available between using asymmetric or symmetIic 
key exchange for content decryption . Both methods are valid 
depending on a given situation, for example, if two platforms 
were conununicating, on their first attempt they would be using 
the RSA type objects. But if the platforms have communicated 
before they may choose the second option using symmetric keys 
for greater efficiency. There are 3 key management algorithms 
available in CMS [9] , they are: 

• Key transport: the content-encryption key is encrypted in 
the recipient's public key; 

• Key agreement: tbe recipient's public key and the sender's 
private key are used to generate a pairwise symmetric key, 
then the content-encryption key is encrypted in the 
pairwise symmetric key; and 

• Symmetric key-encryption keys: the content-encryption 
key is encrypted in a previously distributed symmetric key­
encryption key. 

In this document, we use two of the three available key 
management algorithms to secure communication between two 
platforms. The algorithms are expressed in Section 3.1.2.1 and 
3.1.2.2 below. 

3.1.2.1 Key Transport Algorithm 
This section has described the Recipient Info that contains 
version, key identifiers. encryption algorithm used and the 



encrypted key (will be described in Section 3.1.3) data. The key 
identifier refers to a unique conversation id and may also 
include more than one recipient. The encryption algorithm here 
refers to RSA encryption due to the nature of this algorithm that 
supports secure communication for the first time between two 
agent platforms that would latter facilitate symmetric key 
generation (can be used in conjunction with concepts in Section 
3.1.2.2) 

-- Used for first time connection, using RSA encryption of keys 
-- Start RSA type object 

Recipientlnfo ::= SEQUENCE ( 
version 2, 

subject Key Identifier 
agentB@agents.elec.qmul.ac.uk!12345678, 

KeyEncryptionAJgorithm rsaEncryption, 
encrypted Key EncryptedKey 

rsaEncryption OBJECT IDENTIFIER ::= ( 
iso(l) member-body(2) 
us(840) rsadsi(113549) pkcs(l) pkcs-I(I) I 

-- End of RSA type object 
-- use either the RSA (above) or Triple-DES (below) type 
objects for key encryption 

3.1.2.2 Symmetric Keys-Encryption-Keys 
Algorithm 
This algorithm caters for secure communication using a 
previously agreed or newly generated symmetric key between 
two agent platforms. As in the previous section, one or more 
sets of Key-Encryption-Key (KEK) recipients' info with the 
desired Key Identifier (specified with a unique ID and a 
timestamp) can be defined, and lastly the key encryption 
algorithm is based on Triple-DES algorithm that is described in 
ANSI X9.52 [15]. The Triple-DES is composed from three 
sequential DES [16] operations: encrypt, decrypt, and encrypt. 
Also, the key encryption algorithm must be declared in Cipher 
Block Chaining (CBC) mode making the algorithm 'des-ede3-
cbc' being declared in the syntax (CBC is mandatory in CMS). 

-- Used for following connection (presumably Secure 
Tunnelling) 

-- uses Triple-DES or RC2/40 
-- Start of Triple-DES type object 

RecipientInfo ::= CHOICE { 
Kekri KEKRecipientInfo 

KEKRecipientInfo ::= SEQUENCE ( 
version 4, 
kekid KEKIdentifier, 
keyEncryptionAlgorithm des-ede3-cbc, 
encrypted Key EncryptedKey 

KEKIdentifier ::= SEQUENCE ( 
keyldentifier 12345678, 
date 20020315T083000000Z 

-- End of Triple-DES type object 
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3.1.3 Content Encryption and Key Encryption 
Type 
This part declares the encrypted key defmed in the previous 
sections. The encrypted content info complements this 
declaration to provide information regarding the content type 
being used for instance 'Enveloped Data' in our example, 'des­
ede3-cbc' encryption algorithm as per defined in Section 
3.1.2.2, and the encrypted content which is a set of Octet String 
(64 bits). The encryption algorithm object identifier is defined 
in this part with associated information such as the initial CBC 
parameter. This parameter contains an Initialisation Vector (IV) 
that precedes the protected (encrypted) payload to make CBC 
happen [17]. Finally, the IV is declared as a set of Octet String, 
followed by the encrypted content payload. 

EncryptedKey ::= OCTET STRING 

EncryptedContentInfo ::= SEQUENCE ( 
contentType envelopedData, 
contentEncryptionAlgorithm des-ede3-cbc, 
encryptedContent EncryptedContent 

des-ede3-cbc OBJECT IDENTIFIER ::= ( 
iso(l) member-body(2) 
us(840) rsadsi(113549) encryptionAlgorithm(3) 2 

CBCParameter ::= IV 

IV ::= OCTET STRING 

EncryptedContent ::= OCTET STRING 

4. Implementation 
Before discussing the implementation, it is important to make 
clear that presently the system implementation only deals with 
securing inter-platform communication and not with intra­
platform communication. The reason for this is that it is 
assumed that agents within a particular platform are trusted and 
therefore the platform itself is relatively secure. The other 
reason would be to avoid double encryption where a message is 
encrypted twice, once between intra-platform and another 
between inter-platform communications. Encryption is an 
expensive (processor power wise) procedure and over-using it 
is generally not a good idea. 

The main advantage of the approach outlined here is that in 
securing inter-platform communication there is no need for 
changes in current ACL speciJication. As mentioned earlier, 
FIPA message specification employs MIME (RFC822), 
applying SlMlME protocol on top the current FIPA message 
structure will require just several additional tags (see section 3). 
If there is no encryption required these fields can be left blank. 

At the agent level there is a need to introduce a new method, 
which allows an agent to request for secure communication. For 
example, assuming that there is a FIPAAgent.forwardO method 
within a FIPA platform used to pass messages to the MTP. In 
order to specify a request for secure information transfer, a new 
FIP AAgent.secureForwardO method must be introduced. Please 
note that this is only an option, and from a performance 
perspective it makes more sense not to overuse encryption. In 
order to do so FIPAAgent.forwardO has been defined (i.e. 
unencrypted message transfer) as the default message sender 
method. The reason for this pertains to the paradigm of agent 
communication, where encryption is not always needed and is 
only needed when a user deems that security is necessary, 



allowing him or her 
FIP AAgent.secureForwardO 
transfer. 

to explicitly specify the 
method for secure message 

There should also be an option to specify an encryption level 
and the algorithm used for secure communication (cipher suite), 
these options can be parsed as parameters to the 
FIP AAgent.secureForwardO method. If no parameters have 
been specified the default cipher suite will be used. There also 
should be an option to specify a default cipher suite by invoking 
setCipherO method. Individual system developers can make this 
decision independently of their system requirements. If one of 
the platforms is not able to fulfil the cipher requirements, a 
CipherNotSupported message could be sent back to indicate 
that the receiver failed to decrypt the message supported by this 
particular cipher suite. In this scenario, the sender can either 
encrypt MIME contents of the message with one of the default 
algorithms or abort the communication all together. Since a 
situation where a recipient may not support a recommended 
cipher suite can occur, it makes sense to classify all available 
cipher suites into different levels according to the cryptography 
strength provided (level one, level two, etc. starting from the 
weakest). This will allow the agent developer to specify the 
security boundaries, and this information can be used in the 
process of establishing cipher suites. For example, Agent A has 
specified in the setCipherBoundariesO method parameters 2 
and 3, which means that it agrees to establish communication 
only if the recipient Agent B uses ciphers between level 2 and 
3. Consequently, Agent A sends a level 3-encrypted message to 
the other party and it appears that the recipient does not support 
this particular algorithm, and as a result it would reply with a 
CipherNotSupported message, also indicating its supported 
ciphers. Agent A can now check which ciphers between level 2 
and 3 are supported and resend the encrypted message using 
one or the other cipher suites. 

5. Conclusions and Further Work 
Our current efforts are targeted at providing secure 
communication over insecure channels. Although it is an 
important remedy in security some of the problems still remain. 
For example when using SIMI ME, secure communication must 
be tied to a specific transport protocol (e.g. HTTP), however in 
contrast to this, the proposed implementation is not attached to 
any technology such as SSL (Secure Socket Layers), instead 
SIMIME is a syntactical notation that is very well engineered 
and an open standard in HTTP transport. These also mean that a 
higher degree of interoperability can be achieved; both sender 
and receiver are not concerned about what type of SIMIME 
parsers each side is using. 

Another disadvantage of SSL is that there are no guarantees of 
where the information is from or who generated it. It is simply a 
secure highway with no rules, anyone can play here, it is 
relatively easy to fake identities, pathways are difficult to trace 
and there are no guarantees on the security of information at 
either end of the pathway. In addition to this, once a message 
has been received there is no cryptographic protection provided 
[18] by SSL, simply because SSL only protects the 
communication channel but not individual messages. In 
comparison to SIMIME, the content of the message is encrypted 
even after a transmission has ended. It is also worth mentioning 
that SSL only supports hierarchical trust models that can put 
certain restrictions on developing Multi Agent Systems as to 
supporting any nust models like SIMIME can [19]. Certainly, 
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this topic would require further discussions but this is outside 
the scope of this paper. 

One of the other drawbacks of employing SSL is that the 
present FIP A communication protocol will have to be changed 
because cipher suite negotiation process in SSL is done through 
a whole sequence of handshakes, also SSL does not support 
multicasting [19] which can be an interesting future research 
issue for the FIPA community. In addition to that, SIMIME is 
an open standard for 'future proof secure messaging systems 
[18] and its infrastructure is already in place, making it simple 
to reuse already available APIs (Application Programming 
Interface) to deploy the proposed security system. 

In our future work we are planning to address some of these 
problems, such as certificate distribution and revocation, and 
the support of 'signed and enveloped data' in SIMIME content­
type. 

As mentioned earlier, we assume that the platform is trusted and 
all inner communications are secure, in some cases this 
assumption might not be justified and therefore will be revised 
in the near future. 
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8. Appendix 

8.1 FIPA HTTP Messaging using SIMIME 
The FIP A HTTP MTP is based on the transfer of data 
represented in MIME format containing both the envelope and 
ACL Message. The HTTP data transfer is a two-step process: 
the sender makes a HTTP request and the receiver sends a 
HTTP response [I]. The receiver parses the message envelope 
where it is handled according to instructions and information 
given in the message envelope. 

The structure of the HTTP message is represented in Figure 3. 
As defined in Sections 2.1 [I] and 3, the message consists of a 
HTTP header and body, which is Multipart/Mixed MIME 
message (RFC2046) [to]. The encryption of such message is 
done using CMS objects in conjunction with MIME standards, 
making SIMI ME [7]. 

The two subsections below describe an overview of the secure 
MIME messages transferred between two ACCs with a 
successful response. 

8.1.1 ACC Sending HTTP Message 
POST http://foo.com:80/acc HTTP/l.1 
Cache-Control: no-cache 
Host: foo.com:80 
Mirne-Version: 1.0 
Content-Type: multipart-mixed ; 

boundary="251D738450AI71593AI583EB" 
Content-Length: 1518 
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Connection: close 

--251D738450AI71593A1583EB 
Content-Type: applicationlxml 

<?xml version=" 1.0",?> 
<envelope> 
<pararns index=" 1 "> 

<to> 
<agent-identifier> 

<name>receiver@foo.com<lname> 
<addresses> 

<url>http://foo.comlacc<lurl> 
<laddresses> 

<lagent-identifier> 
<Ito> 
<from> 

<agent-identifier> 
<name>sender@bar.com<lname> 
<addresses> 

<url>http://bar.comlacc<lurl> 
<laddresses> 

<lagent-identifier> 
<lfrom> 

<acl-representation>fipa.acl.rep.string.std<la 
representation> 

<payload-encoding>VS-ASCII<lpayload-encoding> 
<date>20000508T04265 1481 <ldate> 
<encrypted>S-MIME<lencrypted> 
<received> 
<received-by value=''http://foo.comlacc'' I> 
<received-date value="20000508T04265 1481 " I> 
<received-id value=" 123456789" /> 

<lreceived> 
<lpararns> 

<lenvelope> 

--25ID738450AI71593AI583EB 
Content-Type: applicationlpkcs7 -mime; smime­
type=enveloped-data; 

name=smime.p7m 
Content-Transfer-Encoding: base64 
Content-Disposition: attachment; filename=smime.p7m 

ghyHhHUujhlhjH77n8llliGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6 
4VQpfyF467GhIGfHfYT6jH77n8llliGghyHhHUujhJh756tbB9HGTrfvbnj 
n8llliGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4 
7GhIGfHfYT64VQbnj756 

--25ID738450A 171593A 1583EB--

8.1.2 The ACC responds with a successful 
notification 

HTTP/1.I 200 OK 
Content-Type: text/plain 
Cache-Control: no-cache 
Connection: close 
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A mobile agent is vulnerable to attacks by malicious hosts 
executing it. One of these attacks is the tampering of the 
data being carried by the agent. This is particularly relevant 
in comparison shopping scenarios where the mobile agent 
collects price quotes from various hosts. A malicious host 
in the itinerary could modify/delete the prices quoted by 
previous hosts, and/or insert spurious prices on behalf of 
latter hosts and modify the itinerary. 

While there is some work on detecting tampering by individ­
ual hosts, there is not much work on identifying malicious 
hosts that may collude with each other to tamper with the 
mobile agent's data. In this paper l we present mechanisms 
that enable the detection of tampering by individual as well 
as colluding hosts, and also the identification of such hosts. 

1. INTRODUCTION 
Mobile agents are software programs that may move from 
one host to another to perform computations on behalf of 
their owner. The set of hosts visited by the agent (termed 
as the itinemry), may be static, i.e., pre-determined by the 
agent owner, or dynamic, i.e., decided by the agent as it 
moves in the network. The reader may refer to [2], for a 
survey of the mobile agent design paradigm, different agent 
frameworks and possible applications. One interesting ap­
plication for mobile agents is comparison shopping in e­
commerce [3]. Here, the agent owner launches the agent 
with a description of the goods he wishes to purchase and 
the agent visits several hosts in the e-market, collects their 
price quotes and returns to the owner. 

At any host, the execution environment of the agent is con­
trolled by the host. Hence mobile agents are vulnerable to 
attacks by malicious hosts [1, 4]. One of these attacks is the 
tampering of data being carried by the agent. For exam­
ple, in the above comparison shopping scenario, a malicious 
host could modify/delete the prices quoted by other hosts, 
and/or modify the itinerary itself. 

Several schemes have been proposed for detecting the mod­
ification of an agent's data by individual malicious hosts [3, 
5]. However, these schemes do not address the problem 
of two or more malicious hosts colluding with each other 
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to delete the data of other hosts. For example, suppose 
an agent visits hosts HI,··· ,Hi, Hi+l,··· ,Hj, H j+I ,··· ,Hn . 

Now if hosts Hi and Hj+l are both malicious and collude 
with each other, they may delete the data of Hi+l, ... , H j 

without being detected. 

In [5], Karnik et. ai, propose the notion of AppendOnly­
Container for detecting the tampering of an agent's data 
by individual malicious hosts. However the mechanism does 
not indicate the identity of the malicious hosts. Also, two 
hosts colluding to delete the data of intermediate hosts may 
escape detection in this mechanism. 

In this paper, we incorporate and extend the notion of the 
AppendOnlyContainer to include not only the detection of 
tampering but also the identification of the malicious host. 
Subsequently, we introduce the notion of Expected Number 
of Deletions (END), that helps us to detect deletion of data 
by colluding malicious hosts in static as well as dynamic 
itineraries. 

The paper is organized as follows: In Section 2 we discuss 
the AppendOnlyContainer and in Section 3 we describe our 
extension to this mechanism that enables identification of 
the malicious host. In Sections 4 and 5, we describe our 
schemes for detecting deletion of data by colluding malicious 
hosts. Section 6 concludes with a discussion of related work. 

We use the following notation throughout this paper: 

EA(X) 
DA(X) 
hash(X) 
SigA(X) 

Encryption of data X using public key of A. 
Decryption of data X using private key of A. 
A one way hash on the data X. 
Signing of hash(X) using private key of A. 

2. AOC: APPEND ONLY CONTAINERS 
In this section, we briefly discuss the AppendOnlyContainer 
(AOC) mechanism proposed in [5]. Given an agent that 
visits several hosts to collect data, the agent owner may use 
the AOC mechanism to detect any modification/deletion of 
data by individual malicious hosts. The basic idea in AOC 
is: For each visited host C, record 

1. the data collected at the host, X, 

2. the digital signature of the host on that data, Sigc(X), 
and 



3. the identity of the signing host, C. 

A checksum is used to detect modification/deletion of data 
from the AOe. The computation of the checksum and its 
verification is discussed below. 

When an agent starts its itinerary, its AOe is empty. The 
checksum is initialized by encrypting a random nonce with 
the agent owner's public key: 

checkSum = Eowner(Na ) (1) 

This nonce Na is kept secret and is not carried by the agent. 

When a host C wants to insert data X, C first signs X using 
its own private key, Dc. Then the data item X, its signature 
Sigc(X) and the identity of the host C, are inserted into 
the appropriate arrays in the AOe. The checksum is then 
updated as follows: 

checkSum = Eowner(checkSum + Sigc(X) + C) (2) 

where + denotes concatenation of the corresponding values. 

When the agent returns to the owner, the integrity of the 
data is verified by decrypting the checksum and verifying the 
signature, in an iterative manner. Each step of the iteration 
is: 

Downer(checkSum) -t checkSum + Sigc(X) + C (3) 

followed by verifying if: 

Ec(Sigc(X)) == hash(X) ( 4) 

If in the last iteration, the agent owner recovers the original 
random nonce Na , it can be inferred that the AOe has not 
been tampered with. 

If the verification procedure fails in any iteration, the agent 
owner can infer that the AOe has been tampered with. It 
also implies that the values extracted up to this iteration 
are valid, while other values whose signatures are still nested 
within the checksum cannot be relied upon. 

In [6, 7], Roth describes an attack that will allow a malicious 
host to forge the AOe. The problem arises because a mali­
cious host can abuse other hosts as oracles for signing and 
checksum computation. Assume that a malicious host M 
receives an agent Ao created by host O. Let the checksum 
carried by that agent be checksumo· M creates another 
agent AM and initializes its checksum with check sumo . M 
can successfully add all the data added to AM'S AOe to 
Ao's AOe without risking detection. 

A solution to this problem, also suggested in [7], is as follows: 
For each agent instance, a unique identifier is constructed by 
the owner as id = hash (Downer (code, time.stamp)), where 
code is the agent's code. The timestamp is used to distin­
guish between multiple instances of the same agent. This 
unique identifier is carried by the agent while it visits the 
hosts in its itinerary. Whenever a host C signs a data item 
X, it actually computes Dc(id, X). This means that X is 
valid only in the context of the agent instance id. During 
verification, the host owner needs to check the context of the 
agent instance and verify that each data item was added in 
the context of the correct agent instance. 
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Since the above problem does not bear directly upon the 
focus of this paper, in the interest of simplicity, we con­
tinue to use the basic AOe mechanism for our discussion. 
Our proposal can be easily extended for an AOe mechanism 
augmented with the above modification. 

Now, we observe that while the AOe mechanism ensures 
the detection of: (i) any modification/deletion by a host to 
the data collected from earlier hosts, and (ii) any modifica­
tion by a host to its own data after it has been added to the 
AOe, it does not indicate the identity of the malicious host. 
Also, as explained subsequently (section 4.1), two hosts col­
luding to delete the data of intermediate hosts may escape 
detection in the AOe mechanism. In the next sections, we 
incorporate and extend the notion of AOe in order to pro­
vide solutions to these problems. 

3. X-AOC: IDENTIFYING THE MALICIOUS 
HOST 

In the AOe mechanism a host C upon adding data X into 
the AOe, re-computes the checksum using Sigc(X) and C. 
While this is sufficient for the agent owner to detect tam­
pering of data by a malicious host, it does not indicate the 
identity of the malicious host. 

We propose X-AGe, an extension to the AOe mechanism 
that enables the identification of the malicious host . The 
main idea is: A host C upon adding data X to a container, 
should append Sigc(container) and C, to the container. 
Sigc(container) is used to re-compute the checksum. In 
other words, a host, instead of merely signing the data item 
added by it, is required to sign the entire contents of the 
container at that point. 

X-Aoe assumes that all hosts in the itinerary add some 
data to the container. In case of multiple malicious hosts, 
X-AOe indicates the identity of the last malicious host that 
added data to the container. The detailed algorithm for 
X-AOe is shown in Figure 1. 

The checksum is initialized as in equation 1. To insert an 
item X, any given host C first adds X to the container and 
signs the container using its private key, Dc. The checksum 
is then updated as follows: 

checkSum = Eowner(checkSum + Sigc(container) + C) 
(5) 

When the agent returns to the owner, the integrity of the 
data is verified by decrypting the checkSum and verifying 
the signature, in an iterative manner. Each step of the iter­
ation is: 

Downer(checkSum) -t checkSum + Sigc(container) + C 
(6) 

followed by verifying if: 

Ec(Sigc(container)) == hash(container) (7) 

If in the last iteration, the agent owner recovers the original 
random nonce Na , it can be inferred that the container has 
not been tampered with. 

If the verification procedure fails in any iteration, the agent 



class X-AOe{ 

} 

Vector dataContainerj 
by teD checkSumj 
X-AOC (PublicKey k, int nonce) { 

dataContainer = new VectorO j 
checkSum = encrypt (nonce) j / / with key k 

} 
public void checkIn(Object X) { 

dataContainer.addElement(X)j 
sign = host.sign(datacontainer) j 
checkSum = encrypt (checkSum + sign + hostId)j 

} 
public boolean verify (PrivateKey k, int nonce){ 

previoushost = nullj 

} 

loop{ 
checksum = decrypt (checkSum)j 
sign = extract.sign (checksum)j 
currenthost = extract.hostId (checksum)j 
checkSum = extract.checkSum (checksum); 
If (Verify(sign) == TRUE), then 

previoushost = current host 
Else 

throw security exception. 
/ / Either currenthost or previoushost is malicious. 

}until (checkSum == nonce)j 

Figure 1: The X-AOe mechanism 

owner can infer that the container has been tampered by ei­
ther the current host or the previous host. For example, sup­
pose hosts HI, ... ,Hi, Hj, ... ,Hn are visited by the agent , 
in that order. Without loss of generality, let the verification 
fail while verifying SigH; (container). This implies that the 
tampering was done either by Hi after generating the check­
sum, or by Hj before generating the checksum. Hence, the 
malicious host can be identified to be one of either Hi or 
H j . 

Thus, the X-AOC mechanism not only detects modifica­
tion/deletion of data by malicious hosts: but also indicates 
the identity of the malicious host. In the next section we dis­
cuss mechanisms to detect collusions among malicious hosts, 
in static as well as dynamic itineraries. 

4. COLLUDING MALICIOUS HOSTS 
In this section we address the problem of collusion among 
malicious hosts and propose some solutions to the same. We 
use the AOC mechanism to demonstrate collusions. How­
ever, our solution can be easily extended to any protocol 
that uses other variants of signature chaining to protect data 
items. 

4.1 Attack 
Suppose an agent visits hosts HI, ... , Hi, Hi+I, ... , Hj, 
Hj+l, .. . , Hn , in that order. Further, assume that hosts Hi 
and HHI are both malicious and collude with each other. 

Host Hi on receiving the agent, does the following: 
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1. It adds its own data Di and signature SigH;(Di ) to 
the AOC. 

2. It re-computes the checksum as given in equation (2) . 
We shall denote this checksum by checkSum;. 

3. It forwards the agent to Hi+1 and sends checkSum; 
to HHI. 

Hj+1 on receiving the agent does the following: 

1. It removes data items Di+1 , ... ,Dj from the A OC. 

2. It adds its own data DH\ and signature SigHJ+1 (DH1) 
to the AOC. 

3. It re-computes the checksum as given in equation (2). 
However, it uses checkSumi instead of checkSumj. 

4. It forwards the mobile agent to the next host in the 
itinerary. 

In the conventional AOC mechanism, the agent owner would 
be unable to detect that items Di,··· ,Dj have been re­
moved from the AOC. 

We now propose solutions for detecting collusions among 
malicious hosts, in static as well as dynamic itineraries. 

4.2 Detecting collusions in static itineraries 
In the case of a static itinerary, the agent owner apriori 
knows the identities of the hosts to be visited by the agent. 
The order in which these hosts are visited may also be static 
or may be dynamically decided by the agent. 

The X-AOC mechanism can be easily extended for detecting 
collusions in a static itinerary, as follows: 

1. Each visited host is required to compulsorily add some 
data to the container, and 

2. The agent owner while verifying the integrity of the 
container , checks if there is data corresponding to each 
host in the itinerary. 

If the data corresponding to a host H is missing, then it 
indicates that the data was deleted by colluding malicious 
hosts. If the order in which various hosts are visited is also 
known, then the missing data also gives an indication of the 
identities of the malicious hosts. 

In the next section we present our scheme for detecting col­
lusion in dynamic itineraries. 

5. DETECTING COLLUSIONS: DYNAMIC 
ITINERARIES 

In the case of a dynamic itinerary, the agent owner does not 
apriori know the identities of the hosts to be visited by the 
agent. The set of hosts to be visited (and the order in which 
they are to be visited) is dynamically decided by the agent . 

A simple extension to the X-AOC mechanism for detecting 
collusions in a dynamic itinerary would be: 



1. Any given host C, adds data X to the container , and 
updates the checksum as in equation 5. 

2. C sends a notification Mcx , to the agent owner , indi­
cating that C was visited. 

3. The agent owner while verifying the integrity of the 
container, as in equations 6, 7, also checks if there is 
data corresponding to each host that sent a notifica­
tion. 

For any notification, if the corresponding data is mIssmg 
from the container, then it implies that the data was deleted 
by colluding malicious hosts. 

However, the above solution is expensive in terms of the 
number of notifications required. We argue that all hosts 
need not participate in the collusion detection process. We 
use a notion called Expected Number of Deletions to reduce 
the number of notifications, without significantly reducing 
the ability of the owner to detect collusions. 

5.1 Expected Number of Deletions 
Let k and n be the owner's estimate of the number of ma­
licious and honest hosts respectively. Now the malicious 
hosts may collude with each other to delete the data of one 
or more honest hosts. We assume that malicious hosts do 
not act against each other, and only the data of honest hosts 
may get deleted. 

The Expected Number of Deletions (END) is the average 
number of honest hosts whose data may get deleted, assum­
ing that all permutations of the itinerary are equally likely. 
If P(m) is the probability that the data of exactly m honest 
hosts are deleted, then, 

n 

END = LmP(m) (8) 
m=O 

We now have the following theorems. 

THEOREM 1. P(m) 

PROOF. Given k malicious hosts and n honest hosts, there 
are k + n hosts in the itinerary and (ktn) possible con­
figurations of the itinerary. For a given configuration, let 
XI, ... ) Xk be the positions of the malicious hosts. Without 
loss of generality, we assume that Xl is the position of the 
first malicious host, Xk is the position of the last malicious 
host, and that there are m honest hosts between Xl to Xk. 

Let the positions in the itinerary be numbered in the range 
[1,2 , .. , , k + n]. Now the highest value that Xk can take is 
k + n. Since there are m honest hosts and k - 2 malicious 
hosts in between positions Xl and Xk, the highest value that 
Xl can take is (k + n) - (k - 2 + m) - 1, i.e., (n + 1 - m). 
Similarly, the lowest value that XI can take is 1 and the 
lowest value that Xk can take is 1+(k-2+m)+1, i.e., (k+m). 
Thus 1 :::; Xl :::; (n + 1 - m) and (k + m) :::; Xk :::; (k + n) . 
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Now for a given m , the pair Xl, Xk can be chosen in (n + 
1 - m) ways. Also, there are (kk~~m) configurations of the 
(k - 2) malicious hosts and m honest hosts in between Xl 

and Xk. 

Thus the probability that the data added by exactly m hon­
est hosts will be deleted is given by 

(k-2+m) 
P(m) = (n + 1 - m) (Zt~) 0 

END - n(k-l) 
THEOREM 2. - k+l . 

PROOF. We note that 
n 

L P(m) = 1 
m=O 

Hence from Theorem 1 we have 

Now 
n 

END = LmP(m) 
m=O 

Since, the m = 0 term does not contribute to END, we have 

END = 1 ~ (k - 2+m) (ktn) ~ (n + 1 - m)m k _ 2 

1 n (k - 2 + m)' 
(ktn) ~ (n + 1 - m)m (m)'(k _ 2)! 

= 
1 n (k - 2 + m)! 

(ktn) ~I (n + 1 - m) (m - l)!(k - 2)! 

Let m' = m- 1 

1 n-I , (k+m'-l)' 

(k+n) L (n - m ) (m'!)(k _ 2)! 
Ie m'=O 

= 
1 n-l , (k - l)(k + m' - I)! 

(ktn) fo (n - m ) (L!)(k - 1)1 

k -1 ~ (n _ m') (k + m' - 1) 
(k.+n) L k - 1 

k m'=O 

Let k' = k + 1 and n' = n - 1 

k -1 n', , (k' + m' - 2) 
(ktn) fo (n + 1 - m ) k' - 2 

Using equation 9 

k -1 (k' +n') 
(ktn) k' 

k -1 (k + n) 
(ktn) k + 1 

= 
n(k - 1) 

(k + 1) 

o 



Table 1: END: Experimentation results 
Malicious Hosts (k) Honest Hosts (n) Notifications Sent (t) Deletions Detected Reduction in Notifications 

5 20 3 
5 20 5 
5 50 3 
5 50 5 
15 50 3 
15 50 5 
20 100 5 
30 100 5 

It is interesting to note that END is directly proportional to 
n, the number of honest hosts and, its value approaches n 
as the number of malicious hosts, k, increases. 

5.2 Reducing notifications 
As mentioned earlier, detecting collusions by requiring each 
host to send notification to the agent owner is expensive in 
terms of the number of notifications. Let each host in the 
itinerary send notifications with a probability A. Then, the 
average number of notifications sent by hosts whose data are 
deleted is given by A ' END. We need just one notification 
from such a host to detect a collusion. However, to take into 
account the variance in the actual number of deletions from 
the estimate END , especially for small k , we require that 
at least It ' messages are sent, where t 2: 1. In other words , 
A . END = t or A = E J~ D ' In practice, we found that a 
value of t = 5 works well. 

While it may seem intuitive that a host needs to send a 
notification with a greater probability as k increases , this 
is not the case. This is because as k increases more honest 
hosts are likely to have positions in between the malicious 
hosts and hence an individual honest host now may reduce 
the probability for its sending a notification. 

If k is large, then A becomes close to 1.. If we have no 
idea about the number of malicious hosts, then we can be 
conservative and assume that k = 2. That is each host will 
send notifications with a probability slightly greater than 
~ 
n 

We use END to reduce the number of notifications as follows: 

1. The agent owner calculates END using Theorem 2. 

2. The agent owner now calculates the value A = E ,~ D . 

3. Each host on receiving the agent does the following: 

(a) It adds its data to the container and updates the 
checksum as given in equation 5. 

(b) It generates a random number, r , (0.0 ~ r ~ 1.0) . 

(c) If r ~ A, it sends a notification to the owner. 

(d) It forwards the mobile agent to the next host in 
the itinerary. 

4. The agent owner while verifying the integrity of the 
container, as in equations 6, 7, also checks if there is 
data corresponding to each host that sent a notifica­
tion. 
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96 % 77% 
99 % 63 % 
95 % 91 % 
99 % 85 % 
96 % 93 % 
99 % 90 % 
100 % 95 % 
100 % 94 % 

5. For any notification, if the corresponding data is miss­
ing from the container, then the agent owner infers 
that the data was deleted by colluding malicious hosts. 

This probabilistic notification leads to a tremendous de­
crease in the number of notifications sent, without compro­
mising much on the ability to detect collusions, since a single 
notification from anyone of the affected hosts is sufficient 
to determine that a deletion due to collusion has occurred. 

5.3 Experimentation 
We performed experiments to determine the efficacy of our 
solution . In each run, the number of honest hosts and the 
number of malicious hosts were varied. An itinerary was 
chosen by a random permutation of hosts. The agent owner 
and the hosts follow the scheme in section 5.2. A collusion 
is detected by the agent owner if it receives a message from 
a host whose data would have been deleted by the colluding 
hosts. The actual number of deletions detected due to noti­
fications were noted. The simulations show that our method 
can assure a high degree of confidence in detecting deletions 
while significantly reducing the number of notifications. The 
results are summarized in Table 1. 

6. CONCLUSIONS 
In a related work [3], Karjoth et. al., propose protocols to 
detect modification/deletion of data collected by free roam­
ing agents. While some of these protocols are able to de­
tect modification to the data by colluding hosts, they do 
not tackle the problem of hosts colluding with each other to 
delete the data of intermediate hosts in the itinerary. Some 
other problems regarding the robustness of these protocols 
are reported in [6] . 

We have extended the AppendOnlyContainer mechanism pro­
posed in [5] to not only detect modification/deletion of data 
by individual malicious hosts, but also to identify the mali­
cious host. 

We have also proposed further mechanisms to detect mali­
cious hosts that collude with each other to delete the data 
of other hosts, for static as well as dynamic itineraries. We 
have shown that the notion of Expected Number of Dele­
tions helps us to significantly reduce the number of notifi­
cations that must be sent while offering a reasonable degree 
of confidence in detection of deletions. 
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ABSTRACT 
Network management applications using mobile agents require 
secure techniques for the LifecycJe of the mobile agent, from both 
mobile agent and host points of view. Based on the analysis of the 
security threats that may occur during the mobile agent based 
network management applications, this paper presents Mobile 
Agent Security Facility (MASF). MASF has several key features: 
I) a secw'e mechanism for dispatching agents to given domains or 
network elements from secured agent repository; 2) provision of 
encrypted communication; 3) a safe mobile agents execution 
environment that enables mobile agents different resource access 
permissions according to the result of authentication and 
authorization; 4) logging services to record security relevant 
events. MASF architecture is further integrated and verified in a 
practical network management application, inter-domain IP VPN 
configuration. 

General Terms 
Management, Security 

Keywords 
Mobile Agent, Security, Network Management, IP Network 

1. INTRODUCTION 
The current network is characterized by its increasing distribution, 
its dynamic nature, and the complexity of its resources, due to the 
increasing requirement of different services. To manage such a 
network, it is getting more imperative to provide an overall 
network management mechanism that can quickly, intelligently 
and automatically configure the network elements and resources 
across the large-scaled networks. The integration of mobile agent 
technology (MAD and policy-based network management 
(PBNM) provides a promising means to achieve this goal. 

Policy-based Network Management (PBNM) technology offers a 
more flexible management solution for a specific application 
tailored to a customer under the environment of large-scaled 
networks [I]. Nevertheless, this flexibility doesn ' t come easily. 
The current PBNM architecture has problems in the sense that it 
can only address fairly limited issues and usually requires human 
intervention. Mobile agent, as an enabling technology, can resolve 
many of these problems. The mobile agent paradigm intends to 
bring an increased performance and flexibility to distributed 
systems by promoting "autonomous code migration" (mobile code 
moving between places) instead of traditional RPC (remote 
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procedure call) [2]. With code migration, the actual code or script 
moves from place to place and executes locally, achieving lower 
latency, linle need for remote interactions and highly flexible 
control. Mobile agents can easily represent one of the roles 
involved in the network management, such as service provider, 
connectivity provider, resource or end-user, and act on their 
behalf, based on established policies. Mobile agents are widely 
used in network management as they can effectively take over the 
burden of the complex interaction between different network 
players, such as negotiations or new service injection, so as to 
realize the automation of the network management. 

Despite its many practical benefits, mobile agent technology 
results in significant new security threats from both malicious 
agents and hosts. For examples, as a mobile agent traverses 
multiple hosts that are trusted to different degrees, its state may be 
changed in a way that adversely impact its functionality. In the 
world of mobile agents, where a site can offer services not only to 
its local users but also to remote users, a number of serious 
security problems can develop. Many research work has been 
done about these problems [3], but most of which are undertaken 
theoretically and haven't been put into a real environment that is 
typical for mobile agent application and security problems, such 
as network management. This paper aims to give a concrete 
solution to the mobile agent security problems occurring during 
the use of mobile agents in IP network management. 

The work described in this paper is part of MANTRlP 
(MANagement Testing & Reconfiguration of IP based networks 
using mobile software agents), a currently undergoing two-year 
collaborative EU 1ST project, whose main objective is to provide 
a set of novel IP network management applications using mobile 
agent technology. 

The paper is organized as follow. Section I, this section, 
described the background of the work presented in this paper. 
Section 2 briefly introduces the MANTRIP mobile agent platform 
and its security extension. Based on the analysis of potential 
security risks existing in the mobile agent based network 
management system, from both mobile agent and host points of 
view, and the necessary mechanisms that should be adopted, as 
introduced in Section 3, Section 4 develops a Mobile Agent 
Security Facility (MASF) that copes with the whole possible 
security threats possibly occurring in the LifecycJe of mobile agent. 
MASF architecture is further integrated and velified in a practical 
network management application, inter-domain IP VPN 
configuration, which contributes to Section 5. Finally, Section 6 
concludes the paper. 



2. MANTRIP MOBILE AGENT 
PLATFORM AND ITS SECURITY 
EXTENSION 
Since its inception in 1990s, mobile agent has attracted enonnous 
attention from industry and institutes, which leads to a long list of 
mobile agent platfonns developed [4], either for academic usage 
or commercial purposes. Among these, both Grasshopper [5] and 
Voyager [6] are selected as the mobile agent platfonns used for 
network management application development in MANTRIP, 
based on the evaluation in MANTRIP Deliverable [7]. Both of 
these MA platfonns are commercial products with extensive 
documentation and future development under way, therefore are 
more suitable for commercially oriented IP network management 
applications. Furthennore, both of them provide capabilities for 
wrappers development, resource management, logging services, 
move transparency, and certain degree of security services. 

A common mobile agent API was developed in MANTRIP [7], 
which provides some MA services extensions and code portability 
between the two selected MA platfonns (Voyager and 
Grasshopper). Introducing such an API in the MANTRlP System, 
each user will be able to program independently from the platfonn 
running on a visited machine in a unifonn manner, as illustrated 
in Figure I. 

Visited Hosts (N etw ork El em ents 
or Lim.t< boxes next to them) 

Figure 1: MANTRIP Common Mobile Agent API 

The main terminologies used in the MANTRlP mobile agent 
platfonn adopt most of these from Grasshopper platfonn. which 
also confonn to mobile agent industry standard given by OMG, 
namely the Object Management Group's Mobile Agent System 
Interoperability Facility (MASIF) [8]. Before describing the main 
part of this paper, some of these terminologies are briefly 
explained as follows: Place: provides a logical grouping of 
functionality inside an Agency; Agency: is the actual runtime 
environment for mobile and stationary agents; Region: facilitates 
the management of agencies and agents. Along with these 
elements there is also the concept of agent, which can be further 
:ategorized into mobile agent and stationary agent. 

Both Grasshopper and Voyager provide certain degree of security 
;ervices, which mostly come from the security mechanisms 
mpplied by Java 2 (mainly JDKI.2). Based on these security 
;ervices, a security extension is furnished in this paper. This 
;ecurity extension takes into account the potential security threats 
from both mobile agent and the host mobile agents intend to move 
:0 . Since all the actions of mobile agent have to be taken via its 
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supporting environment, i.e. , Agency and/or region, the host 
protection mechanisms have to be fulfilled via Agency and/or 
region. Figure 2 illustrates the position of MANTRIP MA 
platfonn and its security extension. 

CotI'I1nlltl1l:&t10"1 I 
""&111,('11110111' I 

rns1lk1lcc I rl-"-.~-.-".-P-"T--" 

TU'I'POTt II &CClITttr I 0 

MA ac.rago 
InUna" 

Figure 2: MANTRIP Mobile Agent Platform and its Security 
Extension 

3. MOBILE AGENT BASED IP NETWORK 
MANAGEMENT AND ITS SECURITY 
3.1 MANTRIP Network Management 
Architecture 
The three basic network management applications that have been 
developed within MANTRlP project are the followings [7]: 

Access Network MGlUIgement Application 
QoS Configuration and Auditing Application 
Validation and Monitoring of Network Elements and Mobile 

Agents Application 
All three applications are carried out by mobile agents that are 
based on the MA common API. The architecture of QoS 
Configuration and Auditing Application is depicted in Figure 3. 
This architecture follows the overall MANTRlP Network 
Management System (NMS) architecture, although only the 
components and resources used for QoS and IP VPN are shown. 

Figure 3: MANTRIP Network Management Architecture 



The MANTRIP NMS has four layers as follows: Application 
Layel~ includes the MANTRIP management user applications, 
e.g. QoS Configuration and Auditing Application; Service Layer. 
contains the MANTRIP management services (e.g. Parlay/JAIN 
API) that may be used by either the MANTRIP applications or 
some other third party applications; Adaptation Layer. is 
responsible for hiding the protocol details from the service layer; 
Resource Layer. contains the managed/controlled MANTRIP 
resources. 

In MANTRIP QoS network management system, as shown in 
Figure 3, all the services in top tlu-ee layers are implemented by 
agents, either stationary agents or mobile agents. Mobile agents, 
on behalf of service providers/network administrators or other 
services, can move themselves between different layers, and fulfill 
management tasks. The security tlU"eats that may occur during the 
whole lifecycle of mobile agent come from both malicious agents 
and the hosts that agents migrate to. The requirement for 
protection of mobile agents, especially in the case of multiple 
hops, might be increased when portions of its functionalities or 
data only apply to a specific domain or network element. 

3.2 Security Threats and Strategies 
Taking into account the whole lifecycle of MA, the potential 
tlU"eats, from both mobile agent and host points of view, can be: 

Threat A: During mobile agent storage, the MA repositoty might 
be invaded and the class for the mobile agent might be changed 
before the initiation of the mobile agent. 

During mobile agent transit, mobile agent is under great 
possibility to be attacked, such as: 

Threat B1: When a mobile agent transports confidential data, 
disclosure of the data can be fatal. Since the migration of mobile 
agent often takes place across the networks that are out of the 
control of both sender and receiver thus cannot be physically 
secured . 

Threat B2: The execution logic of mobile agent might also be 
changed by the interrupter, which might cause damage to the 
destination host of mobile agent. It is especially dangerous in 
MANTRlP system when mobile agents for network management 
are usually granted the right to configure routers or frrewalls 
where Simple Network Management Protocol (SNMP), whose 
commands have the root permission of accessed elements, is used 
to configure the network elements. 

After mobile agent's arrival at destination, the following threats 
can come up: 

Threat C1: the supposed to be "destination" might not be the 
correct destination. This destination may be a counterfeit one 
created by business lival to steal the important information carried 
by mobile agent. 

Threat C2: even if the destination is correct, mobile agent may 
still be deceived by malicious destination host. For example, it 
might not be provided the contracted services or resources, or 
might even be maliciously changed before it goes for another hop. 

Threat C3: At the same time, the landing host of mobile agent 
should also be sure that the mobile agent is from the correct 
service contractor and it will not cause any damage to the host. 
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Threat C4: even if the mobile agent does come from the correct 
peer, the host still needs to keep alarmed on mobile agent's 
behaviors in case it may do something beyond the contract or its 
right. 

To address these tlU"eats, the MANTRIP MA platform must 
provide the following strategies: 

Authentication: involves checking that the agent was sent from a 
trustworthy role and also enables mobile agent to be aware of the 
real identity of the receiver, Le., the proper Service Level 
Agreement (SLA) contractor. Authentication can be mainly used 
for the solving Threat C1 and Threat C3. Authentication can also 
be used to check users who want to access mobile agent 
repository, which involves in the Threat A. Confidentiality: 
implemented by encryption/decryption, can cope with the 
potential data disclosure of Threat B1. Encryption can also 
prevents the mobile agent repository from attack, i.e., Threat A. 
Integrity check can prevent mobile agent from the code 
modification attack in Threat B2. Authorization determines the 
mobile agent's access permissions to the host resources and, 
empowered by access control, can defeat the potential tlU"eat from 
C4. Logging: it is a kind of mechanism to keep track of any 
security relevant events, such as agent's trying to access system 
resources or the system itself, as well as authentication failures. 
These events should be logged to a flIe for later analysis. Logging 
can, in some degree, detect and therefore latterly prevent the cheat 
of mobile agent from host, as described in Threat C2. 

The implementation of these features, for the protection of both 
mobile agent and host, is carried out in Mobile Agent Security 
Facility (MASF) service that locates in aU top tlU"ee layers as 
shown in Figure 3. 

4. MOBILE AGENT SECURITY FACILITY 
(MAS F) 

4.1 Design Goals of MASF 
Based on the analysis of potential security lisks existing in the 
mobile agent based network management system, tile MASF was 
developed with the following goals: 

All mobile agents are stored at the secure mobile agent 
repository. 

All mobile agents are digitally signed, which assures that the 
classes received by Agency are the same as the classes created by 
the specific customer or service provider. 

A secure mechanism is provided for dispatching agents to 
given domains or network elements from secured agent 
repository. 

A safe mobile agents execution environment that enables 
mobile agents different resource access permissions according to 
the result of authentication and authorization. 

Logging of security relevant events happened to mobile 
agents and Agency. 
• The design of MASF is based on the available standard 
solutions and products (e.g. the lAIK [9) SSL and J2SDK 1.4.0). 

4.2 Extended Conceptual Model of Agency 
and Agent 
In order to fully support security in mobile agent system, the 
concepts and mechanisms for security should be taken into 



account at the stage of mobile agent design. Both Grasshopper 
and Voyager have support for security, which adopted the same 
standard solutions for the security problems existing in the mobile 
agent systems. This also makes the design of MANTRIP mobile 
agent system much easier. In MANTRIP MA system, the security 
relevant information is further extended for both Agency and 
Agent, as straightforwardly illustrated in Figure 4. Both agent and 
agency have certificate feature because agent and agency need to 
exchange certificate to get authenticated by each other. Rights for 
agent define the operations this agent can perform at the 
destination host. 

Figure 4: Security relevant Information in Agency and Agent 

The actions that agents are authorized to perform depend on roles 
associated to agent principals. MASF pennits the dynamic 
definition and control of a range of roles, from almighty 
administrators to normal users. 

4.3 Mobile Agent Security Facility (MASF) 
Architecture 
The previous section has given an idea of necessary components 
and services needed to build secure architecture for mobile agent 
based network management system. Figure 5 illustrates this 
architecture, called Mobile Agent Security Facility (MASF), 
together with major dependencies among components during the 
lifecycle of a multi-hop mobile agent. The MASF architecture is 
functionally divided into two layers, with the higher layer as 
function layer and lower layer as base service layer. The 
components or services in base service layer provide common 
functionalities needed by function layer. 

Figure 5: Mobile Agent Security Facility (MASF) Architecture 

Obviously, many services of function layer depend on 
cryptographic functions using either symmetric or asymmetric 
keys to encrypt/decrypt and sign data. Therefore, MASF 
integrated a cryptography IibralY in its base service layer. 
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The Key Management service enables roles to administrate their 
own public/private key pairs and associated certificates for use in 
self-authentication (where the user authenticates hirnselflberself to 
other users/services) or data integrity and authentication services, 
using digital signatures. The authentication information includes 
both a sequence (chain) of X.509 certificates, and an associated 
private key, which usually is referenced as "alias". 

To achieve security, the MASF framework supports flexible 
security policies to govern the interactions of agents with both 
other agents and with the available resources in the execution 
sites. This function is performed by Policy Management service in 
the base service layer. The definition and enforcement of 
appropriate security policies can only proceed after a precise 
identification of the principals, i.e., roles that can be 
authenticated. 

Resource Usage Logging service fulfils the logging requirement 
mentioned in previous section. Although not specific to MASF, 
location service is sometimes used by MASF to identify the role. 

4.4 MASF Workflow 

4.4.1 Preparation: Certificate and Key Creation and 
Exchange 
First of all, keys tore is generated to store the keys and certificates. 
A keystore is a database of private keys and their associated 
X.509 certificate chains authenticating the corresponding public 
keys. keystore appears as a ftle and private keys are protected with 
a password. keystore can be easily generated by using security 
tool key tool or Java API provided by J2SDK 1.4. 

In MANTRIP, all the network configuration and management 
tasks are fulfilled by mobile agents and all mobile agent classes 
are stored in JAR ftles that are digitally signed either by jarsigner 
or Java API. Whenever the network administrator, or the software 
on his behalf, wants to fulfill network management task using 
mobile agents, he has to get his signature verified firstly before he 
can get access to these mobile agents stored in a protected JAR 
file. The agent factory for network management is usually set up 
by network administrator, therefore it is signed by the 
administrator. If the mobile agent is obtained from other parties, 
the celtificate and public key of this administrator should be pre­
imported in the signed JAR file guided by the contract. 

According to the network management requirement expressed in 
the XML-based policy, Policy Decision Point (PDP) module 
decides the traveling route of mobile agent. At least the first hop 
destination is needed as the second and latter hops of mobile 
agent can be decided at the end of execution according to the 
execution result. In this case, source and destination Agent 
Systems exchange their certificate in the first place. Generally, the 
exchange of certificate can be performed either statically based on 
familiarity set that is pre-created according to the cooperation 
relationship or dynamically depending on the execution result of 
mobile agent. The powerful Java API provided by J2SDK 1.4 
enables the fulfillment of dynamic certificate exchange. 

4.4.2 Security Environment Setup for Agent System 
As discussed above, before a mobile agent is deployed across 
network, two sides of security mechanisms need to be employed, 



i.e., agent supporting platform (i.e., agent system) and mobile 
agent. 

Regarding to the agent system side, firstly the security property of 
agent system is switched on in order to enable the security service; 
and then the agent system needs to be provided with the location 
of private key, public key and certificate that will be used. In 
MANTRIP, Mobile agent is dynamically created and sent off from 
Agency. Precisely speaking, Agency is the supporting 
environment for mobile agents. There can be multiple key-pairs 
and certificates in one agent system as multiple agencies can 
coexist in one agent system, which enables a multiple security 
controls within one agent system. 

Access control of agent system also needs to be enabled and 
corresponding policy file and policy entries are created, e.g., via 
policy tool. The following information can specified in a policy 
entry: URL location where the code originates from, alias name 
from the keys tore used to reference the signer whose private key 
was used to sign the code, an optional Principals entry indicating 
the list of principals that the code has to be executed as in order 
for the pennission(s) to be granted, and fmally one or more 
pennission entries indicating which pennissions are granted to the 
code from the source indicated by the URL location and alias 
name. The policy entries can also be changed dynamically using 
Java programming based on the SLA. 

4.4.3 Mobile Agent Workflow 
After all the key-pairs and certificates are available and the 
security environment has been set up in agent system, it is time for 
mobile agent to start working. After getting the classes of mobile 
agent, the administrator or the software on his behalf signs the 
mobile agents and attaches his certificate to the agent in order to 
show the initiator information, the first agent system etc. 
Administrator can also supplies agent via agency with necessary 
rights if no complex access control, i.e., security policy, is 
applied. Then mobile agents can move itself from one agent 
system to another in order to fulfill the network management 
work. The communication between two agent systems are SSL­
enabled using the key-pairs already existing in each agent system 
agency. 

When a mobile agent system, i.e., agency on its behalf in 
MANTRlP Mobile Agent system, receives a mobile agent from 
the communication network via ATP (Agent Transport Protocol), 
it decrypts it and tests the integrity of the data received by 
checking the signature that the sender has appended. After 
successfully passing the integrity check, the following step is 
authentication. The mobile agent system verifies signature and 
certificates attached to this mobile agent and further gets the 
information such as, who wrote the mobile agent, who sent it at 
the very beginning or in the intermediate locations. The 
information can be further used for authorization and access 
control latterly . 

Once authenticated, MASF authorizes the agent, i.e., it gets rights 
attached to the mobile agent or detennines rights based on the 
security policies defined in advance. Using security policy based 
access control is more flexible, though it might cause some 
performance deterioration. 

Then mobile agent can be executed under access control so as to 
enforce the network management task. When the mobile agent has 
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finished its work and wants to migrate to another location, the 
mobile agent system stops the execution of mobile agent and 
packs the agent with its current state, as it normally does. 
According to the network management task, rights adjusting 
module may be called at this moment to adjust the current right of 
mobile agent, e.g., give mobile agent more rights at its next 
location. Then, signer/encryptor module is caIled by Agency to 
sign the mobile agent to confirm the execution or any change of 
mobile agent. Encryption may be applied as well by this module. 
Finally, Agency opens a communication channel to the new 
Agency (or Place) and sends the agent. The channel might be a 
secure one enhanced by Secure Socket Layer (SSL). Further 
discussion about this is available in next two sub-sections. 

4.5 Implementation Issues 
Regarding to implementation, MASF uses X.S09 celtificates for 
authentication, which ascertain the role of the agent principal 
before authorizing any interaction with resources. The issue as to 
the management of certificates and other related administrative 
tasks has yet been integrated, but a commercial Public Key 
Infrastructure (PKI) provided by Entrust [!OJ expects to be used. 
Confidentiality is granted by encrypting/decrypting 
communications with SSL. Secure Socket Layer (SSL) provides a 
means for securing communication interchanges between agents. 
This protocol authenticates and encrypts TCP streams. There are a 
number of third party implementations available in Java, e.g., 
IAIK SSL. The integrity check can employ either MDS or SHAl, 
which are fully provided in J2SDKI.4.0. Access contml of agent 
action can be performed by using Java Access Control 
mechanism. 

Furthermore, three tools in J2SDKl.4 can greatly ease the key and 
certificate preparation work: key tool is used to create 
public/private keys; to display, import, and exp0l1 certificates: and 
to generate X.S09 certificates. jarsigner signs JAR (Java Archive 
Format) files. policy tool creates and modifies the extemal policy 
configuration files of a role such as service provider. 

4.6 Trade-off between security and 
performance 
Security mechanisms unavoidably cause pelformance 
deterioration. In order to get a better trade-off between security 
needs and required pelformance, the following guideline is 
adapted in our system: agents in trusted environments, i.e., intra­
domain such as a private Intranet of a division, could directly 
access resources after the authorization check; whilst agents 
moving in un-trusted environments such as the network belongs to 
other service provider or network provider (or so called DMZ: 
De-Militarised Zone). i.e., inter-domain. generally have to pass 
the confidentiality and integrity check apart from authentication 
and authorization. 

Figure 6: Intra-domain and Inter-domain Agent 
Communication and Migration 



5. CASE STUDY: INTER-DOMAIN IP VPN 
CONFIGURA TION SECURED BY MASF 
Based on MASF architecture given above, this section presents a 
case study to evaluate this architecture, i.e., safe inter-domain IP 
VPN provisioning fulftIled by mobile agents that are enhanced by 
MASF, as shown in Figure 7. Inter-domain management is also a 
challenging research field in network management due to the 
more potential security problems. MASF can also provide, as a 
case study, a solution to the security problems occurring during 
inter-domain communication. 

Lecen4: £ij Sub·d<moin e =lPlItA .. ~ .. S~dMA 
.. PBNM St.otion A 

" .. ~ ~~~~de .... > SSL:Polic":XM -+- Nm ... = 
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Figure 7: Inter-domain IP VPN Configuration 

Network administrator uses SLAlPolicy Management Station to 
manage the underlying network environment (including two 
domains with one Cisco router and one Linux machine next to 
Cisco router at each domain) by giving policies, which are further 
translated into XML flies and transported to sub-domain PBNM 
station after digitally signed. The sub-domain PDP (Policy 
Decision Point) manager can download the proper PDP via SSL, 
which is in the form of digitally signed mobile agent, to make the 
policy decision. After this, the selected orland generated policies 
are handed to PEP (Policy Enforcement Point) manager, which, 
also sitting on the sub-domain PBNM station, downloads the PEP 
codes, e.g., for new IP tunnel configuring, according to the 
requirement given in XML file. The PEP, also in the form of 
(digitally signed) mobile agent, moves itself to the Linux machine, 
00 which it uses SNMP to configure the Cisco router so as to set 
up one end of IP VPN tunnel. Same procedure happens for the 
other end of the IP VPN tunnel, therefore set up the IP VPN 
tunnel. 

6. CONCLUSIONS 
Despite the advantages for network management offered by 
mobile agent technology, a wider application of this technology is 
greatly limited by the lack of a comprehensive security mechanism 
suitable to address the protection of both agents and hosts without 
introducing significant performance loss. In the large scaled 
network environment, the use of mobile agents to fulfil the 
management tasks may cause more serious security problems. 
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This paper presents a practical solution for these kinds of security 
problems by introducing Mobile Agent Security Facility (MASF). 

The mobile agent security facility (MASF) supports a wide span 
of security mechanisms: authentication pennits to identify the 
communicating peers, both agent and Agency; integrity 
guarantees that agents and data have not been maliciously 
modified during transit; authorization recognizes whether an 
agent operation is pennitted on a resource; confidentiality permits 
to protect entities from any exposure to malicious intrusions; 
logging of security relevant events supplies information for 
analysis of security actions and prevents the later repeating of the 
same problems. All these mechanisms are seamJessly integrated to 
secure the mobile agent based network management. 

A practical network management application, inter-domain IP 
VPN configuration, integrated the MASF and provides a secure 
means for inter-domain network management. MASF is a very 
generic architecture and can be used in any mobile agent based 
network management applications. 

Although a solution for trade-off between security and 
performance is slightly discussed, there is still a lot of work to be 
done about this. The integration of PKl into MASF is also the 
future work of this paper. 
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1. INTRODUCTION 
Building trusted applications is hard, especially in a dis­

tributed or mobile setting. Existing methods and tools are 
inadequate to deal with the multitude of challenges posed by 
distributed application development. The problem is exacer­
bated in a hostile environment such as the Internet where in 
addition applications are vulnerable to malicious attacks. It 
is widely acknowledged that intelligent software agents pro­
vide the right paradigm for developing agile, re-configurable, 
and efficient distributed applications. Distributed process­
ing in general carries with it risks such as denial of ser­
vice, Trojan horses, information leaks, and malicious code. 
Agent technology, by introducing autonomy and code mobil­
ity, may exacerbate some of these problems. In particular, a 
malicious agent could do serious damage to an unprotected 
host, and malicious hosts could damage agents or corrupt 
agent data. 

SINS (Secure Infrastructure for Networked Systems) be­
ing developed at the Naval Research Laboratory is a mid­
dleware for secure agents intended to provide the required 
degree of trust for mobile agents, in addition to ensuring 
their compliance with a set of enforceable security policies. 
An infrastructure such as SINS is central to the successful 
deployment and transfer of distributed agent technology to 
Industry because security is a necessary prerequisite for dis­
tributed computing. 

2. SECURITY REQUIREMENTS OF MO­
BILE AGENTS 

The following requirements of secure mobile agents (see 
[5]) are addressed by SINS: 

• The author and initiator of an agent must be authen­
ticated. 

• The integrity of an agent's code must be checked. 

• Interpreters must ensure that agent privacy is main­
tained during data exchange. 

• Interpreters must protect themselves against malicious 
agents. 

• Interpreters must ensure that migrating agents are in 
a safe state. 
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• Agents must protect themselves from malicious hosts 
and interpreters. 

• An initiator must be able to control an agent's flexi­
bility; i.e., restrict or increase an agent 's authorization 
in specific situations. 

• Initiators must be able to control which interpreters 
are allowed to execute their agents. 

3. SINS ARCHITECTURE 
Figure 1 shows the architecture of SINS. Agents are cre­

ated in a special purpose synchronous programming lan­
guage called SOL (Secure Operations Language) [1] . A SOL 
application comprises a set of modules each of which runs 
on an Agent Interpreter (AI) which executes the module on 
a given host in compliance with a set of locally enforced se­
curity policies. A SOL application may run on one or more 
AIs, spanning multiple hosts across multiple administrative 
domains. Agents are created using a visual language vSOL 
(visual SOL) in an Agent Creation Environment (ACE) , and 
are automatically translated into SOL. Agent Interpreters 
communicate among themselves using an inter-agent proto­
col [7], similar to SOAP /XML [8]. 

Currently, the idea of protecting an agent from a mali­
cious host is still an area of ongoing research. Therefore, 
in our initial implementation of SINS, we assume a degree 
of trust among the hosts. This is reasonable, especially in a 
large organization such as the Department of Defense, where 
one may assume that other policing methods and techniques 
for intrusion detection are able to identify and isolate mali­
cious hosts and eavesdroppers. We plan to address the more 
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Figure 1: Architecture of SINS. 



general problem of survivability and agent protection in our 
future work. Therefore, the current SINS implementation 
assumes the following: 

• A host will run an agent interpreter to completion. 

• All agent interpreters will run agents correctly. 

• An agent interpreter will transfer agent data as re­
quested. 

• Agents' code and data cannot be kept private from 
hosts. 

• Agent-to-agent communication cannot be kept private 
from hosts. 

• Agents cannot carry secret keys. 

4. TECHNICAL APPROACH 
The SINS middleware and the associated Agent Creation 

Environment are designed to explicitly address requirements 
of security and high assurance described above, in addition 
to related problems of agent creation and deployment . Al­
though security is our primary concern , we also address 
problems of efficiency, reconfigurability, and ease of agent 
creation and debugging. SINS addresses each of the secu­
rity requirements as detailed below: 

4.1 Authentication and Authorization 
In SINS , code distribution is distinct from agent instantia­

tion. Consequently, the issue of code tampering by possibly 
compromised hosts is addressed. Agent code resides in a 
SOL code repository and is digitally signed. Hosts retrieve 
the code either directly from the repository or from another 
host that has the most recent cached copy. The execution 
of a set of agents comprising a SOL application is initiated 
by a single host. SINS provides role-based access control 
and management and trust management to authenticate the 
agent initiator and to provide access to resources on a given 
host . The initiating host has fine-grained control over each 
agent in the application. This gives the initiator the ability 
to run the agents with restricted authority in most cases, 
but with greater authority in certain situations. 

4.2 Integrity of Agent Code 
All agents are programmed in SOL, a verifiable synchronous 

language [1]. As opposed to agents developed in a Turing­
complete general purpose language such as Java, whose prop­
erties such as termination are undecidable, many properties 
of agents programmed in SOL, a more restricted language, 
are decidable. All analyzed and verified SOL agents are 
guaranteed to have no unbounded loops, violations of array 
index bounds, buffer overflows, etc . Therefore, as opposed 
to other agent systems where code integrity is based merely 
on trusting the author of the agent's code, integrity of agent 
code is ensured in SINS by proving (with mathematical cer­
tainty) the safety of SOL agents and their compliance with 
a host's local security policies. SINS includes a compliance 
checker (CC) [3] which establishes formally the compliance 
of the behavior exhibited by a SOL agent , or a set of agents, 
with the required security properties and the local security 
policies. 
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4.3 Agent Privacy 
Agent Interpreters communicate among themselves using 

a secure protocol (SSL) which ensures agent privacy during 
data exchange and prevents casual intruders from eavesdrop­
ping on inter-agent message exchanges. Also, SINS imple­
ments a security architecture for monitoring and coordinat­
ing agents ' activities. 

4.4 Protection from Malicious Agents 
Since SOL agents are composable and modular, CC can 

evaluate emergent behavior of agent communities, which is 
generally not possible in the absence of an agent aggrega­
tion framework. This capability enables early detection and 
prevention of an organized, cooperative attack in an envi­
ronment in which each agent performs some action that falls 
beneath the threshold of most analysis techniques, but ef­
fects serious damage as a distributed attack. Currently these 
types of vulnerabilities have defied formal analysis. 

4.5 Safe Agent Migration 
Because a migrating agent can become malicious, we equip 

each agent in SINS with an appropriate state appraisal func­
tion which is used each time an interpreter starts an agent. 
The state appraisal function ensures that an agent will per­
form as required and that its data has not been tampered 
with in a malicious way. The static analysis tool CC can 
guarantee that the state appraisal function satisfies key safety 
properties and is in conformance with security policies being 
enforced at a given host. 

4.6 Agent Protection from Malicious Hosts 
As we mentioned before, SINS agents are currently not 

fully protected from a malicious host . However, the likeli­
hood of agent corruption by a host is minimized by the in­
troduction of a special class of agents called security agents 
[2] that police other agents such as application agents de­
veloped to support a given distributed application. Security 
agents protect a system against Information Operation (10) 
attacks by implementing key security features such as en­
cryption , authorization, policy enforcement, virus checking, 
and intrusion detection. Since security agents have more 
privileges than application agents, we need higher assur­
ance during their development and deployment that they 
are safe and secure. This is achieved by the three-pronged 
approach of programming them in a safe language (SOL), by 
applying the compliance checker to establish formally their 
compliance with required safety properties, and by the se­
curity architecture for monitoring and coordinating agents' 
activities. 

5. SECURITY AGENTS 
In this section, we shall examine how enforceable safety 

and security policies [6] are expressed as Security Agents in 
SOL. The enforcement mechanism of SOL works by termi­
nating all executions of an agent for which the safety or 
security policy being enforced no longer holds. 

5.1 A Brief Introduction to SOL 
A module is the unit of specification in SOL and comprises 

variable declarations, assumptions and guarantees, and defi­
nitions. The assumptions section typically includes assump­
tions about the environment of the agent. Execution aborts 
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Figure 2: vSOL representation of safestack. 

when any of these assumptions are violated by the environ­
ment. The required safety properties of an agent are spec­
ified in the guarantees section. The definitions section 
specifies updates to internal and controlled variables. 

A variable definition is either a one-state or a two-state 
definition. A one-state definition, of the form x = expr 
(where expr is an expression), defines the value of vari­
able x in terms of the values of other variables in the same 
state. A two-state variable definition, of the form x = 
initially init then expr (where expr is a two-state ex­
pression), requires the initial value of x to equal expression 
init; the value of x in each subsequent state is determined in 
terms of the values of variables in that state as well as the 
previous state (specified using operator PREV or by a when 
clause). A conditional expression, consisting of a sequence of 
branches" [] guard -+ expression" , is introduced by the key­
word "if" and enclosed in braces ("{" and "}"). A guard 
is a boolean expression. The semantics of the conditional 
expression if { 09j -+ exprj 092 -+ expr2 ... } is defined 
along the lines of Dijkstra's guarded commands [4] - in a 
given state , its value is equivalent to expression expr, whose 
associated guard 9i is true. If more than one guard is true, 
the expression is nondeterministic. It is an error if none of 
the guards evaluates to true, and execution aborts. The 
case expression case expr { I]vj -+ exprj OV2 -+ expr2 ... } 
is equivalent to the conditional expression if { O(expr == 
vJ) -+ exprj o (expr == V2) -+ expr2 ··. }. The conditional 
expression and the case expression may optionally have an 
otherwise clause with the obvious meaning. 

5.2 Safety Property Enforcement 
We examine how SOL Security Agents are used to enforce 

safety properties. The example we shall use is a stack, which 
has the associated methods push, pop, and top. Informally, 
push (x) pushes the value of integer variable x on the stack 
and pop 0 pops the topmost value off the stack. The method 
topO returns the current value at the top of the stack. 
The stack can accommodate at most max_depth items. The 
safety policies we wish to enforce are: (i) No more than 
max_depth items are pushed on the stack. (ii) Invocations of 
methods top and pop are disallowed on an empty stack. Fig­
ure 3 shows a SOL module safestack which enforces these 
safety policies on all SOL modules which use the stack object 
(implemented in the embedding language). Figure 2 is the 
module safestack rendered in the visual syntax of SOL us­
ing ACE. Note that by deliberately omitting the otherwise 
clauses in the if statements, we abort the execution of an 
agent when none of the guards is true during execution. If 
this is too drastic, corrective action may be specified in an 
otherwise clause; for example, to ignore all push actions 
when the stack is full. 

6. CONCLUSIONS 
The goal of the NRL secure agents project is to develop 

enabling technology that will provide the necessary secu-
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deterministic reactive module 
safestack(integer max_depth) { 

interfaces 
void push(integer x); 
void popO; 
integer top 0 ; 

internal variables 
{empty. nonempty} status; 
integer in [0: max_depth] depth; 

guarantees 
INV1 = 

(status == empty) <=> (depth == 0); 
definitions 

[status. depth] = initially [empty. 0] then 
case PREV(status) { 

[] empty -> 
if { 

[] ~push -> [nonempty. PREV(depth) + 1] 
II other operations illegal! 

} 
[] nonempty -> 

if { 
[] <lltop -> 

} 

[PREV(status). PREV(depth)] 
[] <llpop when (depth > 1) -> 

[nonempty. PREV(depth) - 1] 
[] <llpop when (depth == 1) -> 

[empty. 0] 
[] <llpush when (depth<max_depth) -> 

[nonempty. PREV(depth) + 1] 
II <llpush when (depth == max_depth) 

}; II end case 
} II end module safestack 

illegal! 

Figure 3: Security agent for safestack. 

rity infrastructure to deploy and protect time- and mission­
critical applications on a distributed computing platform, 
especially in a hostile computing environment such as the 
Internet. Our intention is to create a robust and survivable 
information grid that will be capable of resisting threats and 
surviving attacks. One of the criteria on which this technol­
ogy will be judged is that critical information is conveyed 
to principals in a manner that is secure, safe, timely, and 
reliable. No malicious agencies or other threats will be able 
to compromise the integrity or timeliness of delivery of this 
information. 
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ABSTRACT 
Commercial or wide-network deployment of Mobile Agent 
Systems is not possible without satisfying security archi­
tecture. In this paper we propose architecture for secure 
Mobile Agent Systems, using Trusted Domains and Proxy 
agents. Existing approaches are based on security services 
at the level of an agent system, library or specific objects. 
Our concept uses proxy agents to enable transparent secu­
rity services both to security-aware mobile agents and legacy 
agents. Per-agent and domain-level security is provided. 
Proposed concept can be used with non-compatible envi­
ronments and legacy systems. 

Keywords 
Mobile Agents, Security, Proxy Agents and Trusted Domain. 

1. INTRODUCTION 
Commercial or wide-network deployment of Mobile Agent 

Systems is not possible without satisfying security architec­
ture. This paper outlines a design for a secure mobile agent 
architecture. 

Mobile agents and mobile agent platforms are exposed to 
various security threats. Attacks on mobile agents and plat­
forms usually come in two main forms: active and passive 
[8]. While passive attacks try to collect data without autho­
rization (e.g., eavesdropping), active attacks try to modify 
~ystem .and cause different behavior of system. The trust [2] 
In mobIle agent systems plays an important role. Byestab­
lishing a trust relationship mobile agents can gain access to 
resources, perform specific actions or delegate their rights. 

Existing solutions are focused on several approaches. Usu­
ally, the proposed solution is some kind of library [4] or ser­
vice [1] that provide security mechanisms for mobile agents 
and mobile agent systems. Many of security problems are 
resolved by using Public Key Infrastructure (PKI) [9]. Some 
approaches uphold "smart objects" (that are self-aware) 
[10], or security agents that provide secure communication 
[6, 14, 15]. In addition, some authors as in [16], create spe­
cialized agents (" priva{;y guardians") that are meant to pro­
tect the data and communication of agents. Trust solutions 
[11, 12, 7, 4] are mainly focused on how to delegate and 
negotiate trust between systems or agents. 

'This work has been supported by the spanish" Comisi6n 
Interministerial de Ciencia y Tecnologa" (CICYT) project 
TIC2001-1819. ' 
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In this paper we propose architecture for secure mobile 
agent systems, using trusted domains [3] and proxy agents 
[13]. We propose usage of a proxy agent paradigm for se­
curity services together with trusted domain and directory 
services for rights and authenticity distribution. Specialized 
Security Proxy Agents are used to provide security mecha­
nisms to both mobile agent systems and mobile agents. This 
concept enables security-context for legacy systems, simpli­
fies development of the agents and provides both domain­
level and per-agent security. In addition, proposed architec­
ture gives possibility of protecting the devices that does not 
have sufficient processing power (e.g. wireless devices). 

This paper is organized as follows: in Section 2 we present 
proposed architecture. Sample scenarios are discussed in 
Section 3. In Section 4 we present conclusions and future 
work. 

2. PROPOSED SECURITY ARCIDTEC­
TURE 

Security is a delicate issue. As the system is more secure 
it gets more difficult to build, more complex to maintain: 
Complex systems with more components have higher pos­
sibility of failure or breach; on the other side, too simple 
systems can be vulnerable. 

2.1 Security Proxy Agents and Trusted Do­
mains 

Having this as an idea, we propose architecture that elim­
inates certain aspects of complexity. We introduce security 
proxy agents as fa{;ilitators of security services for mobile 
agents and mobile agent systems. Notion of proxy-agents 
is not new [13]. Many authors used proxy-agents as agents 
that help other agents to do something, or to do something 
on the behalf of other agent [13]. Security proxy agent is 
mobile agent that provides security services to both agents 
and/or agent systems. This agent contains extensible set of 
security and cryptographic mechanisms that can be used by 
agent systems or agents autonomously. In addition, these 
specialized agents contain set of automatic actions that are 
transparently performed upon agents and agent systems. 
Each mobile agent system have one proxy factory that cre­
ates and associates the agents with the security proxy agent 
created within factory. Also, system assigns one or more se­
curity proxy agents to guard the" entrance" to the system. 
These security proxy agents check all incoming and outgoing 
agents in order to apply adequate trust policy and security 
checks. In addition, security proxy agents can be extended 



to support special requirements of some systems. 
Our architecture relies on the concept of Thusted Do­

mains. Fig. 1 shows proposed security architecture orga­
nized organized as trusted domains. We can see that every 
domain has one or more places (agent systems) that deal 
with security. 

One domain has responsibility to authenticate agents and 
agent systems, and to apply appropriate trust policy. Once 
in the domain, the agent can travel freely without any fur­
ther security checks, since it is considered trusted. Local 
access restrictions are applied (the user may not be willing 
to share some of the resources with others). Exceptionally, 
additional tests can be forced , and agents or agent system 
can require additional services from security proxy agent. 

If the agent is member of more than one domain, malicious 
agents could enter from another domain . In this case, trust 
relationship must be established between domains, and such 
agent system should have installed proxy factory in order to 
check and apply adequate trust policy for incoming agents 
from different domain. 

2.2 Security Proxy Agents' operations 
Security proxy agents perform several transparent func­

tions. By checking the agents' signature [15] and by en­
crypting it , they provide secure transport and identification 
of the agent. Also, using agents ' signature or the signa­
tures of the agent systems' modules, the alteration of agent 
or system code is automatically detected. Similar actions 
are done on the security proxy agents to ensure authenticity 
and non-alteration. Other security or cryptography services 
that agents can request such as state appraisal [5] or transac­
tion logging [8] are provided by security proxy agents upon 
request. Number of security functions supported by secu­
rity proxy agents is extensible as some systems may provide 
or require additional security mechanisms. Agent systems 
also enjoy transparent trust and security verification of the 
incoming and outgoing agents, and if needed, can request 
additional services from security proxy agent . 

Legacy agents, or agents that are not aware of security 
context will enjoy transparent services of security proxy 
agents. This leads to faster and easier development of mo­
bile agents that do not require some specialized levels of 
security. 

This architecture is built with public systems in mind . It 
is not focused on how to solve some of the specific attacks 
on agent or host, but on the architecture of a system that 
will include the features of the known solutions, and expose 
them in more transparent and efficient manner to the sys­
tem. Proposed architecture can be applied on the public 
systems such as Internet Service Providers (ISPs), or the 
systems that require some levels of security, such as Local 
Area Networks (LANs). 

3. SAMPLE SCENARIOS 
In this Section, we present common scenarios that occur 

within this security model. 
Let us suppose that one agent from the home-system A 

wants to travel to the remote-system B. From the Figure 1 
we can see that Home-system A belongs to the domain Dl 
and remote-system B to the domain D2. 

As the agent (from the system A) is in its home-platform, 
the agent will move to its domain controller (DC1). The 
proxy factory service located at domain controller will cre-
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(9) 

Figure 1: Sample scenario - agent trajectory. 

ate security proxy agent that will be assigned to our traveller 
agent, and will equip it with agent's credentials. The agent 
itself do not have to be aware of this process. Security proxy 
agent will perform the signing and optionally enveloping of 
the agent-traveller. Then, agent-traveller and security proxy 
agent will travel to the domain controller (DC2) of the desti­
nation domain D2. Upon arrival at domain controller DC2, 
security proxy agent will check the alteration of the agent­
traveller and itself. If there is no alteration detected, se­
curity proxy agent of the agent-traveller and security proxy 
agent of the domain controller DC2 will negotiate possibili­
ties of cooperation. 

If the cooperation is possible and the security require­
ments are met, the traveller-agent will be prepared for ex­
ecution (e.g., decrypted) . Then it will continue its journey 
to the remote-host B. Once in the domain, as described in 
Section 2, the traveller-agent can run without limitation and 
within his environment, without any needs to be decrypted, 
checked or bounded in any way, except for the current host 
access privileges (sandbox) . The security proxy agent will 
remain at the domain 's entrance (DC2), waiting for agent 
to finish its journey at domain . This can be suitable for de­
vices that do not have sufficient processing power, such as 
wireless devices. If the agents are trusted by the domain, it 
can travel to any mobile device within the domain without 
having to perform security or trust negotiations. 

In case that agent-traveller needs some extra security op­
erations, like transaction logging, encryption or signing, the 
traveller-agent will call its own security proxy agent to as­
sist him (see Figure l(B)). Similar behavior will occur if the 
agents from systems B want to use some security operations. 
In this case, domain D2's controller (DC2) will use its proxy 
factory to create specialized security proxy agent that will 
assist mobile agents that are "owned" by domain D2j in this 
case, for the agents from system B. 

Upon completion of its journey on the domain D2, 
traveller-agent will meet once again with its security proxy 
agent, and upon authenticity and alteration check, the 
traveller-agent will be returned to "safe to transport" mode, 
and the agents will continue their journey to another plat-



form. Similar behavior will be exercised on the mobile agent 
systems. 

We examined normal operation of the system. However, 
we expect that the agents and systems are exposed to at­
tacks. Here, we will discuss some of the situations when 
agents and agent-systems are malicious. 

If the malicious agent is launched from the very domain , 
this agent can do harm only to a limited number of hosts. 
This kind of agents will be detected first time they meet 
with the domain controller, or a security proxy agent. The 
malicious agent will be detected, and the agent origin will 
be tracked. Alternatively, every agent that is launched from 
one system can be forced to pass trough domain controller, 
where it could be checked and approved. However, our ap­
proach is based on the idea that one domain is internally 
safe, so this kind of a measure is considered as unnecessary. 
Also , if some of the systems detect an malicious agent or 
vice versa, these systems or agents can be easily tracked 
and eradicated from the domain. The possibility of mali­
cious agents performing unauthorized actions is also limited 
by the sandbox mechanism that is used on every platform, 
as described earlier. 

Similar situations will occur in the malicious mobile agent 
system scenario. Tampered agents will be detected as soon 
as they arrive on domain controller, or perform an opera­
tion with security proxy agents. The malicious host will be 
detected and eradicated. 

Legacy agents that are not aware of the proxy agents will 
be transparently processed by proxy agents. Agent systems 
that are not familiar with security proxy agents will treat 
them just as ordinary agents. Therefore, some levels of se­
curity will be conserved for legacy agents and systems. 

4. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a security architecture 

that uses security proxy agents and distributes security over 
trusted domains. The main features of this approach are: 

• This architecture uses known solutions to security 
problems (known mechanisms). 

• Proxy agents are used to provide security functions to 
both agents and platforms. 

• Security proxy agents can be extended to support ad­
ditional (and specific) features. 

• Security is distributed over trusted domains, which fa­
cilitates management and trust tasks. 

• This architecture supports legacy agents and systems. 

• This concept can enable security context for devices 
that cannot perform security computation (e.g, mobile 
devices). 

• Security proxy agents act transparently (easier agent 
development) . 

Our future work will be focused on implementing pro­
posed concept and in implementing autonomic logic to the 
prototype. Also, as a continuation of this work, some form 
of distribution and caching of certificates for mobile agents 
should be investigated. 
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ABSTRACT 
MARISM-A is a secure mobile agent platform providing 
complex security mechanisms to protect migration, confi­
dentiality and integrity of agents.Agent itinerary, data and 
code are protected through a new model of mobile agents , 
involving new agent architectures. Moreover, MARISM-A 
accepts user defined agent architectures in run time. Main 
aims in the designing of this platform have been security and 
extendability. Mobile and nomadic computing can be imple­
mented with MARISM-A , even though it has been specially 
designed to develop sea-of-data applications. 

Keywords 
Mobile Agent Security, Applications, Implementations. 

1. INTRODUCTION 
During the last times, multi agent systems have prolif­

erated to fill the demand for applications based on mobile 
agent technology. There is no doubt that mobile agents 
make feasible the implementation of a wider variety of ap­
plications than using classic paradigms. The price of this is 
a new branch of open issues concerning security. 

The MARISM-A platform [I] benefits from all intrinsic 
advantages of mobile agent technology, such as execution of 
code near the data or the possibility for the owner to be 
offline while remote resources are accessed. Furthermore, 
MARISM-A adds some others that make it especially suit­
able for sea-of-data applications. Some of the new features 
include secure migration , secure agent communication and 
the coexistence of different agent architectures (including 
our new recursive agents) in the same heterogeneous frame­
work. MARISM-A converges several mobile agent security 
techniques we have developed into a flexible scheme. All 
these traits confer to the platform the capability of easily 
creating new applications to solve difficult problems hardly 
face able without a framework like MARISM-A. 

From the new architectures introduced in MARISM-A a 
new paradigm for mobile agent programming has emerged. 
This new programming model is oriented to agencies and 
makes complex applications with itinerant agents be very 
easy to be coded. Furthermore, the new agent architectures 
we have designed allow to independently keep confidentiality 
on all agent components, and prevents attacks against agent 
integrity. This is indeed one of the more novel features of 
our platform. This paradigm extends the classical object 
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oriented programming to a new location oriented program­
ming in a highly intuitive fashion . Our new programming 
paradigm makes possible a new type of developing environ­
ment. In this IDE, the programmer graphically defines all 
components and destinations of agents. 

To date, MARISM-A is not yet completely finished. To 
date, we have developed some agent architectures and some 
other complex schemes are planned to be added soon, such 
as resource access control achieved through agent certificates 
over a SPKI. MARISM-A observes most of the FIPA spec­
ifications [2] Mobility mechanisms, not very concerned in 
the FIPA specifications, have been implemented taking into 
account the MASIF mobility standard [3] . 

The rest of the paper is structured as follows. Section 2 
provides a description of the MARISM-A platform. Differ­
ent implemented agent architectures are described in section 
3. In section 4 some implementation details are shown. Fi­
nally, section 5 is devoted to the conclusions. 

2. PLATFORM DESCRIPTION 
MARISM-A uses the traditional concepts of agent plat­

forms. A Mobile Agent System consists of several internet­
worked agencies. The agency is the basic environment for 
the execution of agents. An agency consists of a directory 
service, an agent manager and some internal facilities , such 
as a message transport service. 

Agents are software units executing in the agencies on 
behalf of their owners. Parts of the agent, security mecha­
nisms to protect it from attacks and other agent features are 
defined by its architecture. We have designed some archi­
tectures for MARISM-A including static and mobile agents, 
explicit and implicit itineraries, and with different types of 
explicit itineraries . 

2.1 Mobility 
We have designed our own migration protocols. We have 

tried to observe the MASIF standard as much as possi­
ble. Our mobility solution uses FIPA Agent Communication 
Language (ACL) for migration negotiation. Agent require­
ments about execution and the beneath transport protocol 
are dealt with at this level. Because our migration protocol 
is based on ACL the negotiation can be established between 
agencies observing FIPA specifications. If an agency has not 
the execution capabilities demanded by the agent, or a com­
mon transport protocol, it will refuse the migration request. 
This flexibility makes MARISM-A able to inter-operate with 



other FIP A platforms. 
If the agent destination agency accepts the migration re­

quest the second level of the migration protocol will be 
started. The destination agency reconstructs the agent in 
the remote side and resumes its execution. The whole mi­
gration protocol is shown in figure 1. 

Figure 1: Migration Protocol 

Step 5 of figure 1 represents the agent transfer process. 
To carry out this process we have used the reflection mecha­
nisms of the Java language (getting information about clas­
ses and interact with themselves), and its capabilities for 
network programming. Basic steps of the process are seri­
a1isation , codification and transmission. The remote agency 
carries out the inverse process when receives the agent. 

MARISM-A agencies have four components: a code server 
and client and a data server and client. Agent classes are 
stored on a class cache memory, so they are downloaded 
only once. When the agency receives a migration request it 
instantiates a data and a code clients to obtain the data 
and classes from the source agency. These clients use a 
special class loader designed for MARISM-A (AgentClass­
Loader), which is a subclass of the default Java class loader. 
This MARISM-A loader downloads remote classes, while the 
default Java class loader is still used to load local classes. 
When both code and data are obtained, the agent is recon­
structed and its execution is resumed. 

2.2 Security Infrastructure 
MARISM-A is based on two main pillars: security and ex­

tendability. Some basic security requirements, such as confi­
dentiality, authenticity and non-repudiation in communica­
tions between agents (within the same agency) are provided 
by the agency. This is easy to achieve, since the agency con­
trols the execution of all agents and provides the inter-agent 
communication service. 

In MARISM-A we are more interested in security aspects 
of migration (secret, authentic and non-repudiable migra­
tion), and protection of all components of agents. In or­
der to use some cryptographic mechanisms, all elements in 
MARISM-A share a Public Key Infrastructure (PKI). 

Migration security is achieved by using SSL beneath our 
migration protocol. This is enough to assure secrecy and au­
thentication in the migration process. To avoid the chance of 
repudiation after migration we use a simple protocol which 
finishes with a receipt (or non-falsifiable proof of reception). 

Protection of agents is achieved through specific agent ar­
chitectures which , at the same time, provide extendability 
to the platform. These architectures are analysed below. 

3. AGENT ARCHITECTURES 
One of the novel aspects introduced in our platform is 

the flexibility of the agent architecture. Instead of focusing 
on a specific type of agent, we have created different agent 
architectures . Some security mechanisms are applicable only 
for certain types of agents. Even mobility is a feature of 
only some agent architectures. Moreover, our design allows 
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to have several types of agents coexisting at the same time 
in a heterogeneous environment . 

Most bibliographic references on agents do not make a 
clear distinction between different parts of an agent. Some 
of them suggest the need of considering some internal parts 
independent, especially for mobile agents. This is the case 
of agent data in [4], of agent code in [5], or agent itinerary in 
[6] and [7]. Independence of these parts plays an important 
role for some agent protection mechanisms. In MARISM­
A, the architecture of the agent follows an adaptable model 
that determines the different parts in which an agent is di­
vided and the combination of security, integrity, or other 
mechanisms included in it. 

All mobile agent architectures share some basic aspects, 
such as the differentiation of internal parts and migration 
mechanisms. A mobile agent consists of code, data, state, 
and an implicit or explicit itinerary. Code is the set of in­
structions describing the execution of the agent. Data is 
an information storage area that can be used by the agent 
at any moment for reading and writing and goes with it 
all the time. Results of executions are stored separately in 
this area. State is like the data part of the agent but re­
served to store the agent information related with its state. 
Explicit itinerary is a structure containing all agencies that 
are going to be visited by the agent on its life cycle [8]. 
In MARISM-A, itineraries are constituted by several basic 
structures that can be combined to build complex itineraries. 
These itineraries allows the use of a wide range of mecha­
nisms to protect confidentiality and integrity. 

The implementation of the agent management methods 
is included in the agent itself. This allows, for example, 
to delegate specific mobility functions to the agent, freeing 
the agency from this responsibility. Using this implemen­
tation, MARISM-A becomes more generic, simultaneously 
supporting a wider range of agent architectures. 

3.1 Results 
If confidentiality and integrity for the results is required, 

MARISM-A provides a protection mechanism based on hash 
chains. Results are firstly encrypted using agent's owner 
cryptographic information. Only the owner of an agent will 
be able to read its results. Once the result has been writ­
ten , a hash of the Result and previous hashed information 
is calculated, signed and written next . This hash has infor­
mation about the identity of next agency in the itinerary, 
therefore no agency can neither modify the result area nor 
remove some result. Each agency verifies during immigra­
tion that all hashes in the Results Data are correct. This is 
the format of the Results Data area: 

ResultsData = Eo (nil,I dl ) , S o(H(Eo(nil, I dl ))), 

Eo(Rl , Id2), SI (H(Eo(R! , Id2))) , .. . 
Eo(Rn , Ido), Sn(H(EoCRn , Ido))) 

where Eo(m) is an encryption of m that can only be de­
crypted by the owner of the agent (0) ; Si(m) is a signature 
made by ij Hi is the result of agency ij I d; is the identity of 
the next agency, i; and HO is a hash function. 

3.2 Mobile with explicit nested itinerary 
This is only one of the architectures off-the-shelf in MA­

RISM-A, and shows the main concepts of designing. 
In this architecture, agent code is split into several pieces: 

there is a main code that will be executed in all agencies 



(Common Code), and as many code fragments as agencies 
are in the itinerary, each one to be executed in a particular 
agency (Local Code). This feature makes MARISM-A very 
useful in some types of application where execution is con­
text dependent. The agent changes after a migration. This 
dynamic aspect of the agent allows several security mecha­
nisms to be applied. This is the recursive architecture: 

Agenti = CtriCode, State, CommCode, GblData, ItinerarYi 
ItinerarYi = LclCodei, Data;, Agenciesi, ltinerarYi+l I Nil 

Agenciesi is the agency (or agencies, depending on the 
type of itinerary) the agent is going to visit (migrate) next. 
The agent that is sent to the next hop of the itinerary 
(Agenti+l) has the same structure. The last host is identi­
fied because of a Nil next agent. Common Code is executed 
by all agencies when the agent immigrates and before the 
specific LocalCode. Programming is simplified by using this 
common code to include the non agency dependant code 
only once. The control code in the agent deals with the 
functions of agent management, in this case extracting the 
relevant parts of the agent. 

This architecture allows to implement several protection 
mechanisms, in addition to the mechanism presented in the 
implicit itinerary architecture to protect results data. Fur­
thermore, code and itinerary are also protect able for agents 
using this architecture. The idea is to take advantage of 
the nested structure of the agent and make available to an 
agency (possible to decrypt) only the portion of the agent 
needed for the local execution. This is the structure of the 
agent when using data, code and itinerary protection: 

Agenti = CtriCode, State, CommCode, GblData 
ItinerarYi, So(H(ControlCode, CommonCode)) 

ItinerarYi = Ei(LdCodei , Datai, Agenciesi , 
Ei+l(ItinerarYi+l)) I Nil 

where EiO is an encryption using public key of agency i. 

4. IMPLEMENTATION 
The implementation of MARlSM-A has been done in Java 

and consists of three different parts: agencies, agents, and 
an set of tools for developing agents, including an IDE. 

A hierarchy of classes represents different agent architec­
tures. Although MARISM-A provides some of them, this 
hierarchy may be extended with new user-defined architec­
tures, as long as root classes are kept . Each class implements 
specific features of the architecture. Classes implementing 
basic security mechanisms for each architecture have also 
been included with MARlSM-A basic classes. 

In the IDE, the programmer graphically defines the itine­
rary of the agent and adds the code to be executed in the 
nodes representing agencies. To date, we have developed a 
first version of this IDE. Figure 2 shows a screenshot of the 
Itinerary Creation Tool, part of the IDE. 

5. CONCLUSIONS 
In this paper we have presented a novel secure platform 

for mobile agents. MARlSM-A implements complex mecha­
nisms to protect data, code, itinerary and migration of mo­
bile agents. One of the most novel features is the flexibil­
ity and extendability of the platform. MARISM-A provides 
some off-the-shelf agent architectures, implementing several 
security solutions. Programmers can also add their own at 
any time, therefore extending the platform. 
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Figure 2: Itinerary Creation Tool 

The new conception of migration mechanisms has lead us 
to a new programming paradigm based on location. We are 
developing an IDE that allows an agency-oriented program­
ming of mobile agent applications. 

We have not implemented solution for all attacks, but an 
extendable platform in which many solutions can be imple­
mented. To date, we are implementing a new resource access 
control mechanisms based on SPK1. 
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ABSTRACT 
The Internet will never reach its full potential as an electronic 
marketplace unless e-cornrnerce agents, or proactive Web 
Programs, are used to automatically or semi-automatically 
perform e-commerce tasks. The dynamic and heterogeneous 
interactions among them and the automations brought by them 
will create tremendous opportunities as well as introduce the risk 
and vulnerability for e-commerce. In this paper, we study the 
security issues with respect to an important multi-agent interaction 
- the multi-agent coalition formation where e-commerce agents 
dynamically forming coalitions to exploit the benefits of grouping. 
We propose a coalition signature mechanism to provide a means 
for a coalition to bind its identity to a piece of information during 
its interactions within an e-commerce marketplace. 

Keywords 
E-commerce agent, coalition security, coalition signature. 

1. INTRODUCTION 
The pervasive connectivity of the Intemet and the powerful 
architecture of World Wide Web are changing many market 
conventions and are creating tremendous opportunity for 
conducting business on Internet. Electronic commerce activities, 
such as on-line exchange of information services and products etc 
are bringing business to a whole new level of productivity and 
profitability. In parallel with the emergence of electronic 
commerce, there have been interesting developments in the area of 
intelligent software agents, or software entities that are capable of 
independent actions in open, unpredictable environments. The 
Intemet will never reach its fuJi potential as an electronic 
marketplace unless e-commerce agents, or proactive Web 
Programs, are used to automatically or semi-automatically 
perform e-commerce tasks such as negotiation, bidding, auction, 
transaction, and matchmaking etc. As e-commerce agent 
technology becomes more mature and standardized, we may 
envision that tens of thousands of e-commerce agents will be 
seamlessly embedded in everywhere of the Web. The dynamic and 
heterogeneous interactions among them and the automations 
brought by them will dramatically reduce certain types of 
frictional costs and time incurred in the exchange of commodities. 
However, before we fully enjoy the benefits brought by e­
commerce agents, we must realize that the risk and vulnerability is 
also imminent: the ubiquitous existence of various software agents 
designed by all kinds of people can work, interact, and also attack 
at any time from anywhere of the "wild web", where the 
"distance" among them has collapsed to near zero and the 
transactions can be done instantly. The electronic linking, either 
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wired or wireless, among vru10US agents has made security an 
issue that must be woven into any agent-based service 
environment, especially when digital agents migrating through 
wireless or wired linkage from one network computer or device to 
another and sensing, executing, transacting, and interacting along 
the way. The security issues, we believe, that related to agents 
include but not limited to the following: keeping data or 
preference of an agent secret from other agents except those who 
are authorized to access; ensuring data that belong to an agent not 
been altered by unauthorized agents; identifying and 
authenticating agents during agent interaction: verifying the 
source of data received by an agent; binding information to an 
agent; authorization during agents interaction; validation during 
agent interaction; access control in agent community; agent 
certification; acknowledging the receiving of data or services by 
agents; avoiding Internet wonns floods; the reputation and trust in 
mobile agent environment; and agent security against malicious 
hosts in the network, etc. 

It is important to study the security issues for a single agent. 
However, it is even more important to study the security issues 
with respect to a group of interacting e-commerce agents. Because 
it is the sheer interconnectedness and dynamic interactions among 
these agents that will make the future web a virtual dynamic 
marketplace, and at the same time, make the security issues one of 
the top issues to be addressed. In this paper, we study the security 
issues with respect to a very important multi-agent activity: the 
dynamic multi-agent coalition. 

The remainder of this paper is organized as follows. The next 
section details the issue of coalition secUl1ty. Section 3 proposes 
the coalition signature scheme for e-commerce multi-agent 
systems. Section 4 briefly concludes the paper. 

2. COALITION SECURITY 
Cooperation and sharing resource by creating coalitions of agents 
are an important way for autonomous agents to execute tasks and 
to maximize payoff. For example, e-commerce agents that 
represent self-interested real world parties such as buyers or 
sellers may explore the benefits of grouping by forming coalitions. 
Coalition formation has been addressed by researchers from both 
the game theory community and the multi-agent community. 
Game theory emphasizes the issues of N-person games formation 
under different settings and the distribution of the benefits among 
players, without providing alg0l1thms that agents can use to form 
coalitions [2] . It concentrates on the stability and fairness issues 
for given coalitions. Multi-agent research emphasizes the special 
properties of a multi-agent environment and considers the effects 



of communication costs and limited computation time on the 
coalition formation process [4][5) . 

Here we study a very important issue that has not been addressed 
before - the issue of coalition security. The advancement of 
technologies such as ED!, KQML, FIPA, bluetooth, Semantic 
Web, Peer-to-Peer, SOAP, Concordia, Voyager, Odyssey, 
Telescript, Java, and Serve let etc. will soon made the dynamic and 
heterogeneous interactions between tens of thousands of e­
commerce agents a reality [3][4). Under this environment, it will 
be a desired behavior for different agents to form coalitions for 
their own benefits. When coalitions are formed. securities will be 
an issue for agents belonging to different coalitions. Thus, how to 
define signatures for different coalitions wiu be an issue that must 
be addressed. 

In order to make our discussions easier, we define some concepts 

here. Suppose that there are totally n agents: A = {at,···, an }. 

Here A is the set of the agents. The index for agent ai is i . A 

coalition C = L. ,"', a. } is a subset of A such that ~/I 1m 

Vi . , a . E A, or in other words, C ~ A . If agent a is 
} I } 

alone, we assume that it forms a unit coalition {a}. A coalition 

structure CS at time r is the set of all the coalitions formed by 

agents in A, CS(r) = {Ct , ••• , Ca }. Where a is the 

number of coalitions at time r, a =1 CS (r) I· Ci 

(I :S; i :S; a) is a coalition formed by agents of A, Ci ~ A. 
The coalitions discussed in our paper are dynamic. An agent 
might leave its current coalition and either becomes a unit 
coalition or join another coalition, or an agent that belongs to a 
unit coalition might join another coalition. 

There are three basic kinds of coalition structures. The first kind is 
non-overlapping coalition structure, in the sense that there is no 
agent that belongs to two different coalitions. This is the coalition 
structure in the traditional sense - partitioning the set of agents 
into exhaustive and disjoint coalitions. For example, suppose that 

A = {a" a2 ' a3 ) is the set of agents, then {{a,}, {~, G:l}} is a 

non-overlapping coalition structure. A lot of research in coalition 
formations is related to non-overlapping coalition structure. The 
second kind is overlapping coalition structure, in the sense that an 
agent can appear in different coalitions, but no coalitions can 

contain another coalition. For example, {{at, a2 }, {at, a3 }} is 

an overlapping coalition structure. The third kind is nested 
coalition SU'Ucture, in the sense that partitioned coalitions can 

contain each other. For example, {{ at}, {at, a2 }, {a 3 }} is a 

nested coalition structure. Sometimes, a coalition structure might 
be a combination of the above-mentioned kinds of coalition 
structures. 

Here we present a coalition signature mechanism that can be used 
by any kinds of dynamically changing coalition su'Ucture 

CS (r). A coalition signature mechanism, we believe, is 

fundamental in authentication, authorization, and non-repudiation 
for coalitions in an e-commerce multi-agent system. The purpose 

88 

is to provide a means to bind identity of a multi-agent coalition to 
an agreement reached by the multi-agent coalition. The signature 

scheme for a given coalition C is based on identities of all 

members of C. A coalition signature Sig c (M) on message M 

is just some bits that reflect the structure of the coalition. Only a 
coalition itself can generate its own coalition signatures on 
messages. Other coalitions or parties cannot forge any coalition 
signature of the given coalition. The authenticity of a coalition 
signature can be verified by any parties. The following section 
presents details of our approach. 

3. COALITION SIGNATURE SCHEME 
The proposed coalition signature scheme is built on Guillou­
Quisqater signature scheme [I) and comprised of certificate 
issuing, coalition ce11ifying, coalition signing and coalition 
signature verifying as follows. 

3.1 Certificate Issuing 
Based on RSA, a Certification Authority (CA) randomly chooses 

two distinct big primes p and q and computes n=pxq and 

<l>(n) = (p-l)(q-l). Then CA randomly chooses its 

public key e such that gcd(e, <l>(n» = 1 and J < e < <l>(n) 

and computes its secret key d such that 

ex d = I(mod <l>(n». Finally, CA distributes (e, n) to all 

participants, but keep (d, p, q ) secret. The following is the 
process for CA to issue a secret certificate to an individual agent 

Step 1: Computer the hashed value hi . of the identity IDi. of 
J J 

agent ai . , i.e., h; . = H(lD; . ) , where H is an one-way hash 
J J J 

function that hashes an arbitrary length message into 160-bit 
message, such as Secure Hash Standard (SHS). 

Step 2: Generate the signature Si. for agent a· by u'ansforrning 
) Ij 

the hashed value hi . to 
J 

S = I(d (mod n). 
' } I 

Step 3. Issue the secret certificate (I D. , S . ) to a . through a 
I j I } I j 

secure channel. Here [D. is the identity of a · ,and S· is the 
I j ' j ' l 

secret key of ai . which is known only to the agent ai . besides 
I J 

CA. 

3.2 Coalition Certifying 
Suppose that at time Tc ' a coalition C = {a. ,"', a· } is 

11 I I;. 

formed. The representative of C is a; and the identity set of C 
I 

is Q c = {lD , .. ·,lD }. CA certifies the coalition C by 
I ) ' k 



signing Ic = {Q c = {lDi, , ••• ,IDi, },Tc,Le } where 

Lc is the lifetime of the coalition. The signature S e of CA on 

the message leis given by 

where H (l c) stands for the hash value of I c with SHS. Ie 

and Sc are passed to the coalition representative a. over a public I, 
channel. 

The signatUl'e S e of CA on the message Ie can be verified 

with the public key e of CA by checking whether 

S~ =H(le) (modn) 

holds or not. If so, the coalition certified by CA is authentic. 
Otherwise. it is a forged coalition. 

3.3 Coalition Signing 
Here we illustrate the procedure for the k agents in C to 

cooperatively sign a message M . We assume here that all the 

agents in C have already obtained their secret keys as described 
in Section 3. 1. 

Step 1: Each agent a· first randomly chooses an integer r 
l j I j 

(0 < r < n) and then computes T = r." (mod n). 
I j ' ) ' 1 

Step 2: Each agent a· submits T, .. to the representative ai of 
Ij J 1 

coalition C . 
Step 3: a. computes T = T,. x .. ·xT xT (modn) on 

'1 1 ' .\: -1 I t 

behalf of the coalition and then broadcasts T to members of the 
coalition. 

Step 4: After receiving T, each agent a. first computes 
I j 

m = H(M ,T, Se) and then computes 

D = r s'" (modn) 
I j I j Ij 

and submits Di
j 

to ai, . 

Step 5: a. computes D = D,' . D ... ,. D (modn) on 
'1 1 I~ 'I;, 

behalf of the coalition C and constructs the coalition's signature 

Sige(M) on M. Sige(M)consists m,D,Seand Ie. 

i.e .. Sige(M)={m,Sc,D,l e }. 
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3.4 Coalition Signature Verifying 
Here we illustrate the coalition signature verification process. The 

coalition signature Sigc(M)={m,Se,D,!c} on a 

message M can be verified by any verifier V in the following 
way: 

Step 1: V Checks the authenticity of the coalition according to 

equation S ~ = H (I c ) (mod n) where e is the public key 

of CA . 

Step 2: V Computes h" = H(lD. ) for all the agents a i J ' ; ) 

(1 :::; j :::; k) that belong to C. Then computes the value of h, 

h=h .. ·h h. (modn). 
'] ' k -l ' t 

Step 3: V Computes T* = DC . hm (modn). 

Step 4: Vcomputes m' = H(M, T', Sc). 

Step 5: If the above calculated value m* equals to the value of 
m in the coalition signature. then the coalition signature is valid. 

4. CONCLUSION 
The pervasive connectivity of the Internet and the powerful 
architecture of World Wide Web will create a vil1ual marketplace 
where tens and thousands of agents can work. interact. and also 
attack from anywhere and at any time. The electronic linking. 
either wired or wireless. among various agents has made security 
an issue that must be woven into any agent-based service 
environment. In this paper. we propose a coalition signature 
scheme within a multi-agent environment. We believe that there 
are a lot of security issues when multiple agents interact with each 
other and we plan to explore more in the future. 
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