Deutsches Research

Forschungszentrum
fiir Kiinstliche Report
Intelligenz GmbH RR-01-01

Theory and Practice of Hybrid Agents

Christoph G. Jung and Klaus Fischer

November 2001

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz
GmbH

Postfach 20 80

67608 Kaiserslautern, FRG
Tel.: +49 (631) 205-3211
Fax: + 49 (631) 205-3210
E-Mail: info@dfki.uni-kl.de




Deutsches Forschungszentrum ftir Kiinstliche Intelligenz

DFKI GmbH

German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in
the field of innovative software technology based on Artificial Intelligence (Al) methods. DFKI
is focusing on the complete cycle of innovation — from world-class basic research and tech-
nology development through leading-edge demonstrators and prototypes to product functions
and commercialization.

Based in Kaiserslautern and Saarbriicken, the German Research Center for Artificial Intelli-
gence ranks among the important “Centers of Excellence” worldwide.

An important element of DFKI’s mission is to move innovations as quickly as possible from the
lab into the marketplace. Only by maintaining research projects at the forefront of science can
DFKI have the strength to meet its technology transfer goals.

DFKI has about 115 full-time employees, including 95 research scientists with advanced de-
grees. There are also around 120 part-time research assistants.

Revenues for DFK| were about 24 million DM in 1997, half from government contract work and
half from commercial clients. The annual increase in contracts from commercial clients was
greater than 37% during the last three years.

At DFKI, all work is organized in the form of clearly focused research or development projects
with planned deliverables, various milestones, and a duration from several months up to three
years.

DFKI benefits from interaction with the faculty of the Universities of Saarbriicken and Kaisers-
lautern and in turn provides opportunities for research and Ph.D. thesis supervision to students
from these universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI’s six research departments are directed by internationally recognized research scien-
tists:

[ Information Management and Document Analysis (Director: Prof. A. Dengel)
[ Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
[ Deduction and Multiagent Systems (Director: Prof. J. Siekmann)

[d Language Technology (Director: Prof. H. Uszkoreit)

[ Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wabhlster
Director



Theory and Practice of Hybrid Agents

Christoph G. Jung and Klaus Fischer

DFKI-RR-01-01



This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research, and Technology (FKZ ITW-011W810 4).

(©) Deutsches Forschungszentrum fir Kilnstliche Intelligenz 2001

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum fir Kiinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying. reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fir Kinstliche Intelligenz.

ISSN 0946-008X



Theory and Practice of Hybrid Agents

Christoph G. Jung and Klaus Fischer
November 20, 2001

Abstract

Hybrid agents integrate different styles of reactive, deliberative, and coop-
erative problem solving in a modular fashion. They are the prime device of
(Distributed) Artificial Intelligence and Cognitive Science for realising a broad
spectrum of simultaneous functionalities in application domains such as Artificial
Life, (Tele-)Robotics, Flexible Manufacturing, and Automated Transportation.

In this report we propose a design methodology for hybrid agents which com-
bines complementary approaches of Software Engineering and declarative Cog-
nitive Robotics at five interconnected specification stages: Architecture, Compu-
tational Model, Theory, Inference, and Implementation.

The design methodology is then applied to the reconstruction of the layered
agent model InteRRaP (‘Integration of Reactivity and RAtional Planning’). In-
teRRaP, in spite of its practical success in the past, suffers from its originally
architecture-centred and informal description. The result is an agent model,
InteRRaP-R (the additional ‘R’ stands for ‘Resource-adapting’), which maps its
layered architecture onto the formally described interplay of concurrent processes
whose runtime is scheduled by meta-control: The processes of a higher layer con-
trol the processes of the subordinate layer by the allocation of (computational)
resources. Processes are continuous computational activities that are realised as
situated inference procedures which implement well-defined subsets of a com-
mon logic of time and action.

Three representative scenarios are chosen for an evaluation of InteRRaP-R:
the Automated Loading Dock, the RoboCup Simulation League, and the ROTEX
space robot. These case studies confirm the applicability of our slogan “Agent =
Logic + Architecture” to the theory and practice of hybrid agents.



Contents

1

The Design Space of Agents

1.1

Motivation: Broad Agents . . . . ... ... ... ...

1.2 Agent= Logic + Architecture . . . . ... .. ... ... ......

Architecture: InteRRaP-R

2.1
22
2.3
2.4
25

2.6

Deliberative Agents and Vertical Modularisation . . . . . . . ... ..
Reactive Agents and Horizontal Modularisation . . . . . . . ... ..

Meta-Control Agents . . . . . . . .. . ..o o
The InteRRaP-R Architecture . . . . . . . ... ... ... ... ...
2.5.1 Layering as Meta-Control . . . . . .. ... .. ... ....
2.5.2 AbstractResources . . . . .. ... ...
2.5.3 Inner-Layer Modularisation . . . . .. ... ... ... ...
BottomLine . . . . . . . ...

Computational Model: COOP

3.1
3.2
33

34

3.5

Computational ModelsandZ . . . . . . .. .. ... L.
A Crash-courseinZ . . . . . . .. ... ...
COOP: A Computational Model of InteRRaP-R . . . . . .. .. ...
3.3.1 Formal Specifications in Agent Design . . . . ... ... ..
3.3.2 A Computational Model of InteRRaP-R . . . .. .. ... ..
3.3.3 Concurrent Inferences . . . . . ... ..o
3.3.4 Continuous Processes and Exception Handling . . . . . . ..
3.3.5 Signals and Shared Memory . . . . . . ... ... ... ..
3.3.6  Control Process, Internal Profiling, and Resource Allocation .
Formal Specification . . . .. .. ... ... L.
34.1 The State of InteRRaP-R . . . . . ... ... ... ... ...
34.2 The Operationof InteRRaP-R . . . . . ... ... ... ...
BottomLine . . . . .. . ... L

Theory: HEC

4.1
4.2

4.3

4.4

First-Order Logic and Logic Programming . . . . . . . ... .. ...
Cognitive Robotics . . . . . . . ... ... oo
4.2.1 The State-Based Situation Calculus . . . . . ... ... ...
422 The Narrative-Based Event Calculus . . . . . . ... ... ..
Abstraction In The Event Calculus . . . . . .. ... ... ... ...
431 Prerequisites . . . . ... ..o
4.3.2 The Hierarchical Event Calculus . . . . . . ... .. .. ...
4.3.3  Domain Representation and (De-)Composition . . . . . . ..
4.3.4 Well-Definedness and Other Properties . . . .. . ... ...
BottomLine . . . . .. . ... Lo

Inference: ALP

5.1
5.2
53

Logic Programming and SLDNF . . . . . ... ... ... ... ...
Abductive Logic Programmingand IFF . . . . . .. ... ...
Local Planning: On-line Decision Making by ALP & HEC . . . . . .

i

10
13
14
15
16
18
19

19
19
20
22
22
23
24
26
27
28
30
30
35
45

46
47
49
51
54
59
61
63
66
68
69



5.3.1 Hierarchical Partial-Order Planning . . . . . .. . ... ...
5.3.2 Making Persistent, Approximate Decisions . . . . . . . . ..
5.3.3 Making Ego-Centred, Future-Oriented Decisions On-line . . .
5.4 LPL: Vertically Interacting Processes . . . . . . .. ... .. ... ..
5.4.1 Mental Model: On-line Prediction using ALP & HEC )
5.4.2  Plan Execution: On-line Decomposition by ALP & HEC . . .
5.5 InteRRaP-R: Horizontally Interacting Layers . . . . . . . ... ...
5.5.1 BBL: Behaviour Execution, World Model, and Reflex )
5.5.2 LPL: Abstraction and Abstract Resources . . . . . . . .. ..
5.5.3 SPL: Social Model, Social Planning, and Protocol Execution .
5.6 BottomLine. .. ... ... ... o

Implementation: CP
6.1 Constraint Logic Programming: CLP . . . . . ... ... .. ... ..
6.2 Concurrent Constraint Programming: CCP . . . . . . . . . .. .. ..
6.3 Constraint Programming: Reconciling CLP and CCP . . . . . . . ..
6.4 On the Similaritiesof ALPandC(L)P . .. ... .. .. ... ....
6.4.1 ImplementingTime. . . . . .. ... ... ... ... ....
6.4.2 General Abducibles, Negation, and Integrity . . . . . . . . ..
6.4.3 Representing Hierarchical Actions and Events . . . . . . . ..
644 The RETE Algorithm . . . . . . . ... ... ... ......
6.5 Implementing Inference Processes . . . . ... ... ... ... ...
6.6 Implementing Control Processes . . . . . .. ... ... ... ....
6.7 Compliance of Specification and Implementation . . . . . .. .. ..
6.8 BottomLine . . . . .. ... .o

Three Case Studies

7.1 Automated Transportation: The Loading Dock . . . . . . . ... ...
711 Scenar1o. ...
7.1.2  Programming Forklifts . . . . . ... ... ... ... ... .
7.1.3  Experience . . . . . ...

7.2 Robot Soccer: The RoboCup Simulation League . . .. . . .. ...
72,1 Scenario. . . . ...
7.2.2  Programming Soccer Players . . . . . . ... ... ... ..
723 Experience . . . .. ...

7.3 Tele-Robotics: The ROTEX Space Experiment . . . . . . .. .. ..
730 Scenario. . . ... ..
7.3.2  Programming Ground-Control Agents . . . . . . . ... ...
733 Experience . . . ... ...

7.4 BottomLine . . . . .. ..

Conclusion

8.1 Hybrid Agents and Holonic Multi-agent Systems . . .. . . ... ..
8.2  Learning and Evaluating Resource Control . . . . . . ... ... ...
8.3 Ramification and Natural Events . . . . ... ... ... ... ....
8.4 The Inferential Frame Problem and Resources . . . . . . . .. .. ..
8.5 A Programming Language for InteRRaP-R Agents . .. . .. .. ..

11

100
102
113

113
114
116
117
120
121
123
126
130
132
134
135
138

138
139
139
140
142
143
143
144
148
149
149
150
151
152



A Auxiliary Definitions | 160

B Proofs of Some Propositions and Theorems 161

v



Environment

Figure 1: Agent and Environment

1 The Design Space of Agents

There is currently a growing interest in basic research and industrial applications of
intelligent agents. Following modern textbooks on (Distributed) Artificial Intelligence
(DAI) and Cognitive Science [RN95] the term agent describes a self-contained compu-
tational structure, i.e., a state and a corresponding calculation which exist in a separate
environment. The agent perceives the environment through sensors and acts upon the
environment through effectors. Figure | illustrates this view which is close to the defi-
nition of a robot [Rei78], but is not necessarily the view of a hardware realisation (see
the softbots of, e.g., [Etz93]).

This generalisation makes sense in that many physical and virtual environments share
the same requirements for decentralisation, for handling an inherent complexity, and
for coping with open and heterogeneous settings. The intelligent agent subsumes many
ideas that, for example, originate in the early Shakey project [Nil84], and provides a
natural metaphor for addressing these requirements.

Due to the broadened perspective and due to new insights into the agent as asituated
entity, an enlarged set of agent properties, initially proposed by Wooldridge & Jennings
[WI95], 1s nowadays commonly agreed upon:

e Autonomy: Agents should be able to perform the majority of their problem
solving tasks without the direct intervention of humans or other agents. Hence,
they should have a degree of control over their own actions and their own internal
state. Autonomy is the central property also according to [RN95].

e Responsiveness, Reactivity: Agents should respond in a timely fashion to
changes that occur in their environment, i.e., they are reactive and perform in
real-time.

e Pro-activeness and Deliberation: Agents should not simply act in response
to their environment, but also exhibit goal-directed behaviour to take initiative
where appropriate. We speak of deliberative abilities in this respect and pre-
sume rationality: From its current belief (or state), the agent decides (chooses)
intentions (plans as sets of basic actions) in order to achieve its goals. The
agent avoids any measure that it believes to conflict with its goals. This is the
starting point for more restrictive and formal agent definitions in the literature
[CL90, RGO1].



e Social Abilities: Agents should be able to interact with other artifacts and hu-
mans in order to complete their own problem solving. In particular, they should
be able to help others with their activities if cooperation is part of their objec-
tive (as it is the case in Distributed Problem Solving). This requires that agents
can communicate their requirements to others. This also requires agents to em-
ploy internal mechanisms for deciding when interaction and communication are
necessary. These social abilities are the key to design open systems in which
heterogeneous artifacts operate upon different goals and on behalf of different
users in a common setting.

¢ Adaptivity Agents should be able to modify their behaviour according to chang-
ing environmental and computational conditions. These conditions we shall call
resources, such as fuel, space, tools, but also CPU-time, memory, etc. Adaptiv-
ity has a short-term component in compensating dynamic resource changes and
a long-term component in learning particular domain characteristics. The aim
of adaptivity is to approximate an optimal behaviour with respect to available
resources.

This coincides with the popular principle of bounded rationality | Goo76, Sim82]
that deviates from the intractable requirement of perfect rationality and optimal
behaviour regardless of available resources. There are three options to realise
bounded rationality [Z1195]: We distinguish (1) resource-adapted systems that
are pre-designed to the fixed resources of a domain. Resource-adaptive systems
(11) are ‘somehow’ able to react to changing resources of a domain at runtime.
Generic agent models, however, should be customisable to a range of domains
and should cope with a variety of resources. Hence, they favour the third option
of resource-adapting systems (iii) that incorporate explicit representation and
management' of resources.

Autonomy is the key requirement for any agent where it is often sufficient that only
one further property is satisfied, i.e., either reactivity, pro-activeness, social abilities,
or adaptivity. Other agent features, which are in our opinion not primary, are mobility
and benevolence.

1.1 Motivation: Broad Agents

With the growing importance of intelligent systems, especially in the Internet, the ap-
plication areas for agent technology become considerably larger: According to figures
from Ovum Ltd. [Gui95], agent-based software will comprise up to 20 percent from
an estimated 4.000.000.000$ segment of the year 2000’s software market containing
Groupware, Personal Digital Assistants, User Interfaces, Workflow Management, Net-
work Management and Information Retrieval. Subsequently, almost all major com-
panies such as Microsoft, IBM, Apple, AT & T, Siemens, Anderson Consulting and
Daimler-Benz, have launched strategic developments in these areas.

'Russell & Subramanian argue that any such management is itself subject to resource consumption
and thus prevents optimality [RS95]. We define the task of a resource-adapting system only Lo approx-
imate optimality — as already menlioned in [RW91], its results can often be compiled into simpler,
implicit forms of control afterwards.



autonomy

Small Agents

Figure 2: Small versus Broad Agents

These applications are usually based on small agents, i.e., software models with a
small band-width of functionalities. Small agents have a relatively uniform design
that is well-researched in theory and practice. Small agents are currently heading to-
wards commercialisation as ready-made tools which are justto be filled with additional
domain knowledge (or application code, in the narrow sense). This is called Agent-
Oriented Programming (AOP) [Sho90].

The Ovum study does not look into ‘real-world’ applications, such as in Artificial Life,
(Tele-)Robotics, Flexible Manufacturing, and Automated Transportation. These areas
will play an important role in future Information Technology (IT) applications in which
the strict border between virtual and physical settings will dissappear, for example in
intelligent buildings. In comparison to traditiond softbot domains, these areas have
a significantly more demanding profile and require broad agents as defined by Bates
[BLR92] (Figure 2).

Originally, the term broad agent describes life-like inhabitants of synthetic worlds
as entities that simultaneously display a whole range of shallow (cognitive) abilities,
rather than exhibiting a single ability exceedingly well. For our purposes, we would
like to extend this definition into the direction of bounded rationality: Broad agents
are computational entities that solve a range of cognitive problems, from reactive be-
haviour over deliberative tasking up to social interaction, in an approximately optimal
manner. Depending on available resources, they trade-off the quality of their decisions
versus the cost of computation and interaction.

Since Ferguson’s seminal work on hybrid Touring Machines [Fer92], broad agents
constitute a very active scientific field where the term ‘hybrid’ characterises a design
to integrate several small-agent methods. Many prototypical designs, such as InteR-
RaP [Miil96] (’Integration of Reactivity and RAtional Planning’), have been built and
analysed, many design methods have been proposed, and many representative appli-
cation scenarios have been defined (see, e.g., Figure 3). In order to settle the field
and to enable an industrial impact, it is now time to filter the gamut of methods into a
common design methodology* which bridges theory and practice. It is time to obtain

ZWebster’s Dictionary defines methodology as ‘a body of methods, rules, and postulates employed
by a discipline; the analysis of the principles or procedures of inquiry in a particular field’. In the



Automated Loading Dock
O @

RODOCUP Simuiation

Figure 3: Representative Scenarios for Broad Agents

methodologically-funded models that successfully operate in a range of domains.
This report represents a step towards such a design methodology, the Design Space of
Agents, and provides a particular design substrate, the InteRRaP-R model (the addi-
tional ‘R’ stands for ‘Resource-adapting’), whose rational reconstruction is based on
that methodology. In doing so, we do not stick to a high-level analysis and integration
of design patterns. Instead, our work is equally driven by the needs of a concrete imple-
mentation that, following the AOP-paradigm, is practically customisable to demanding
domains (Figure 3):

The Tele-Robotics experiment ROTEX [BLSH95] of the ‘Deutsche Luft- und Raum-
fahrtgesellschaft’ (DLR) has been on-board of the Columbia space shuttle and is an
example of both a reactive and a deliberative control problem. Also the Khepera fork-
lifts in the Automated Loading Dock, a testbed for InteRRaP as defined in [Miil96],
have to combine problem solving with sensor-motor feedback. In addition, their social
aspect 1s emphasised: Without coordinated transportation, the loading dock is not to
be served optimally by the robots.

Virtual versions of robotic scenarios can be at least as demanding, sometimes even
more sophisticated than many physical domains. An example is the official simulation
league of the RoboCup initiative [KTS"98] (Figure 3) which is based on a simula-
tion of conventional robot soccer tournaments. Each RoboCup player is modelled as
a separate agent with imperfect sensors and effectors. The timing constraints for re-
active soccer skills, such as catching, kicking, aiming, tracking, and positioning, are
close to real-time (100 milli-seconds). Deliberative capabilities are needed to realise
tactical behaviour, i.e., to perform reasonable soccer moves in attack or defence. So-
cial capabilities are necessary for a strategic team-play, thus for coordinated tactics
that assign particular roles to the players. Finally, RoboCup players must compensate
changes in environmental resources, e.g., the limited stamina of their simulated body,
and computational resources, e.g., the limited time that is available to adapt the agent’s
computation according to the rapidly altering status of the game.

context of broad agents, a design methodology hence comprises the different languages and notations
with which we describe their structure and communicate about it.



1.2 Agent = Logic + Architecture

Before bounded rationality developed to a common denominator for Al and Cognitive
Science, the appropriate notion of rationality, and hence the choice of agent design
methods, had been a highly controversial subject. While early symbolists concentrated
on building perfect knowledge-based systems (see Nilsson [Nil84]), the New Al com-
munity has argued against any expensive data-structures and computations (see Brooks
[Bro91]).

Both research streams can be seen as extreme, resource-adapted instances of small
agent design. Because of making particular types of decisions, i.e., either high-level
tasks or low-level control, their systems are optimised to particular classes of do-
mains. Because of being unable to adjust to varying needs and resources, their systems
show severe drawbacks in broad domains, such as the Automated Loading Dock, the
RoboCup simulation, or the ROTEX work-cell: It is difficult to force an inherently
myopic reactive system to goal-oriented behaviour. It is equally difficult to force an
inherently complex planning algorithm to responsive behaviour.

Agent Engineering Hybrid agents have been developed to integrate the reactive, but
myopic mechanisms initiated by Rodney Brooks with optimal, but expensive delib-
eration facilities, such as planning. A particular example of such a modular design
is InteRRaP (Figure 4). InteRRaP has a layered structure for the combination of a
reactive Behaviour-Based Layer, a deliberative Local Planning Layer, and a Social
Planning Layer. Each layer is associated with computations on a particular level of
representation. Each layer supplements its subordinate layers in order to put through
more abstract and more persistent goals and decisions.

With respect to bounded rationality, hybrid agents provide a resource-adaptive trade-
off between computational costs and solution quality, i.e., between reactive, delibera-
tive, and social abilities. As such, they have already proven quite successful in con-
structing broad agents for real-world and virtual-world domains (see the assessment of
[Miil99a)).

In order to fill their designated role in industrial-strength systems, however, hybrid
models face a fundamental engineering problem in that they lack a clear design
methodology. Up to now, their description is usually given in an informal architec-
tural manner. This pragmatic method of specification introduces very crude and ab-
stract concepts and leaves many design issues open. Hence, the space of possible
implementations does not necessarily reflect the original objectives, such as a practical
trade-off between reactivity, deliberation, and social abilities.

Moreover, by integrating a variety of modules from various backgrounds, hybrid mod-
els are not easily comprehensible. This complicates the identification of appropriate
programming constructs and impedes their customisation to various domains. We have
experienced these difficulties with previous InteRRaP implementations.

Cognitive Robotics Formal logic has always been used in the tradition of theories
of rationality. For example, Cohen & Levesque [CL90], Shoham [Sho90], and Rao
& Georgeff [RG91] describe agents in temporal and epistemic logic, thus deviating
from earlier informal descriptions in [GL87]. Kowalski & Sadri [KS96b] rely on the



inteRRaP-Agent \
( Knowledge

Base

Social Planning Layer

Behaviour-Based Layer

: A

World Interface .

J

Figure 4: Hybrid InteRRaP Agents (Outline)

Perceptidqn

ction
—

power of first-order logic augmented with abduction as the declarative basis of a uni-
fied agent. Especially the latter approach envisages a logic programming (LP) per-
spective [Kow79] in which the high-level agent axiomatisation is straightforwardly
implemented by a special inference procedure.

The logic-based specification of agents® comes nowadays under the umbrella title Cog-
nitive Robotics [Bow87]. It aims at a coherent, concise, and verifiable design whose
declarative concepts can immediately serve as intuitive programming constructs. How-
ever, the conceptual level is too high for deriving practical systems: Straight implemen-
tations via inference procedures are either not feasible or build on restricted expressive-
ness; the operational considerations to ‘make the theory run’ are seldom discussed. To
our knowledge, no such monolithic ‘rationality engine’ has ever been able to master
settings that are comparable to those of hybrid systems.

The Design Space of Agents From what we have just discussed, it is apparent that
Agent Engineering and Cognitive Robotics are rather complementary: Both ways of
specification introduce useful concepts for agents, either on the theoretical side —
the logic representations of Cognitive Robotics — or on the architectural side — the
modular structures of Agent Engineering. Both lack design issues, either in declarative
or in operational respect. Hence, a design methodology that reconciles both approaches
in a preferably formal setting seems promising.

Such a methodology helps to set up a well-understood collection of interrelated
methods (or specification stages) bridging theory and practice. In doing so, such a
methodology moreover addresses a matter that both Agent Engineering and Cognitive
Robotics have largely neglected up to now, namely how to derive sound implementa-
tions in effective programs. The methodology that we are looking for runs under the

*There are differences between logic theories for specifying agent computations, such as [Kow79],
and logic theories just for describing and verifying agent behaviour, such as [RG91]. We do not engage
into a discussion of this issue here, rather stay with the first perspective for our purposes.



abstract Theory

Fluents/Time/Action
Causal Laws

Levels of
Approximation

Inference

« Consequences
« Hypotheses

concrete

declarative < > operational

Figure 5: The Design Space of Agents

slogan “Agent = Logic + Architecture™ and is the basis for reconstructing InteRRaP
into an AOP-tool for broad applications.

In Figure 5, we have arranged the specification stages in the common Design Space
of Agents. This design space is spawned by two independent dimensions of specifi-
cation, namely the degree of abstraction and the degree of declarativity. Architectural
Engineering turns out to be a rather abstract and operational enterprise while Cognitive
Robotics covers the declarative side of the design space. Agent implementations are
most concrete; although they are a too low-level medium for research, their connection
to the higher-level specification is nevertheless of justified interest.

To complete the Design Space of Agents, the point of concern is to find an oper-
ational complement to the inference stage that is able to capture the architectural
features of hybrid agents, e.g., their modularisation, in formal and computational
terms. We call such descriptions computational models as inspired by formal program-
ming [Hoa69]. Computational models are written in dedicated specification languages,
such as Z [Spi92]. They describe the state and the operation of a kind of agent ‘inter-
preter’ running inferences in a particular logic. As formal specifications, they already
became a successful tool in modern Software Engineering and are just about to enter
(D)AI and Cognitive Science.

Computational models are the missing ‘puzzle-piece’ to our design methodology be-
cause they are sufficiently abstract to formally connect to high-level conceptuali-
sations, sufficiently concrete to derive concise agent implementations, sufficiently
declarative to integrate a theoretical perspective, and sufficiently operational to cap-
ture architectural considerations.

“Derived from the path-setting motto of Kowalski: “Algorithm = Logic + Control”



2 Architecture: InteRRaP-R

According to Webster’s Dictionary, a software architecture is “a method or style of
building; the manner in which the components of a computer or computer system are
organised and integrated”. Architectures are usually expressed in graphical notation
and informal text following two main strategies [Som92]: functional design [CY79,
Wir71, Wir76] and object-oriented design [Par72, Mey88, Boo91].

The basic building blocks of an architecture are modules (functions in functional de-
sign; objects in object-oriented design). They refer to functionally self-contained
([Som92] speaks of cohesive) parts of the system. Module interfaces are usually given
in the form of input-output relations: Input data, such as an agent’s perception, is nec-
essary to drive the computation of a module. Output data is generated as a result of the
module’s computation and either serves as input for another module or comprises the
ultimate output of the system, such as an agent’s action.

Primitive modules are black-boxes; their computation and their inner state are not
visible to the outside and usually remain not fully specified. In contrast, compound
modules can be recursively decomposed into more primitive sub-modules and cor-
responding interfaces. Compound architectures are the result of an iterated design
process which starts with the overall computer system as a single primitive module.
With respect to agents, such a starting point as illustrated in Figure 1 is given by the
physical symbol hypothesis of Newell & Simon [NS76] which postulates cognitive
behaviour as a symbol-manipulating activity and which is the basis of classical Al
systems. Their ‘architecture’ hence consists of a single module carrying the agent’s
mental state (knowledge base). The mental state receives perceptual input and com-
putes output actions by a rational reasoning procedure. This is too coarse a design for
practical purposes and poses the problem to the agent designer: Which refinement of
this picture 1s needed in order to cohesively address the functionalities that are required
from broad systems running in, e.g., Automated Loading Dock, RoboCup simulation,
and ROTEX work-cell?

2.1 Deliberative Agents and Vertical Modularisation

The refinement of compound modules imposes structure onto the system, thus deter-
mines the possible interactions (coupling according to [Som92]) between modules.
For example, if we combine the output of one module with the input of another, we
introduce a sequential chain in which the former module provides a service to the lat-
ter. In general, modules servicing each other introduce a vertical modularisation of a
system, where the direction of service provision, e.g., which module is the client and
which is the server, determines the flow of information. Usually, bidirectional interac-
tions allow for feedback (reporting errors, mutually accessing data) between modules
and are a more flexible choice than unidirectional chains.

Vertically arranged structures have been rather prominent in agent design and are for
example demonstrated by the ‘Procedural Reasoning System’ agents (PRS) of [GL87]
(Figure 6). PRS is organised along ‘mental categories’, such as believes, goals and
intentions, which coincide with different functional roles in a deliberative agent. The
belief data base or knowledge base is responsible for maintaining a representation of
the external world from incoming perceptual data. Goals are spawned to indicate which



7 PRS-Agent TN

Perceptiol iction

D complex primitive : module
modulc modulc interfaces

Figure 6: Vertical Modularisation in the PRS Architecture

future states of the world the agent prefers to be in. The decision making or planning
module then chooses intentions that are executed in order to turn the world into a
desired state. Hence, PRS is a unidirectional architecture.

Many variants of this design have been built [BIP87, Sho90], for example by exchang-
ing some of the modules by others with different computational properties. Bidirec-
tional module interfaces have also been introduced, since the manifested goals and
plans can now be communicated back to the knowledge base in order to, e.g., reason
about failure. Such nested accessibility of mental categories, i.e., believes about goals
and intentions, is a central proposition of BDI (‘Belief, Desire, Intention’) theories
[CL90, RG91, RGY5, Wo0096] of rational agents. Nevertheless, PRS has been theoret-
ically and empirically shown to be close to BDI [KG91]. For these and other reasons
(there exist a well-defined computational model[dKLW98] and several efficient im-
plementations, such as dMARS of the Australian Artificial Intelligence Institute and
UM-PRS of the University of Michigan), PRS is today one of the most successful agent
architectures. It offers a convenient way to structure, e.g., the task planning of forklift
robots in the Automated Loading Dock as well as the tactical planning of soccer agents
in the RoboCup simulation.

2.2 Reactive Agents and Horizontal Modularisation

Brooks [Bro86, Bro91], Agre and Chapman [ACS87], Kaelbling [KR90], Maes
[Mae90] and others voiced a fundamental criticism on deliberative agents questioning
the value of an explicit representation of the world (“Let the world be its own represen-
tation.””). They argue that the aggregation of complexity within a sequential reasoner is
intractable for most practical domains, such as robotics. The trick to severely restrict
the expressiveness of a decision making module is regarded as an impasse.

Their alternative method envisages a horizontal modularisation of the agent where
input is sent in parallel to several modules that independently compute possibly con-
flicting output. These modules hence compete for providing a service ([Som92] speaks
of concurrent systems design). Since the computational complexity of each module is
bound, the Subsumption architecture of Brooks [Bro86] and its derivates are proposed
as a suitable scheme for building reactive agents.

Brooks” architecture decomposes the agent according to its activities (orcompetences).
Figure 7 shows a possible realisation of a robot with three competences, namely driv-
ing along a road, avoiding collisions with obstacles, and approaching other robots.



( Subsumption-Agent \

Branching / \

Perception

Priorised
Arbitration

|Action

Control
. Module

Figure 7: Horizontal Modularisation in the Subsumption Architecture

These competences are evaluated in parallel or concurrently at different levels of a hi-
erarchy where each level is immediately coupled to sensor input (the inputbranches
into several modules) and effector output. For example, the drive module computes
steering commands from perceptual data of the road ahead.

In general, we distinguish between an uncontrolled and a controlled form of horizontal
modularisation. In its uncontrolled form, there is no priority for any module. Thearbi-
tration of output, 1.e., the choice of the module that is granted to provide the service, 1s
unspecified. In its controlled form, we identify higher-level modules that have priority
over lower-level ones. Hence, their output overwrites or at least influences the final
action in any case.

In order to combine the output of different competences in the Subsumption architec-
ture, higher-level competences overwrite the output of lower-level competences in an
arbitration module. For example, if an obstacle appears, the avoid-collision module
suppresses the driving commands and stops the motor. If the obstacle is a cooperative
agent and should be approached, the approach module is getting priority over avoid-
collision in turn. Control is given to the lower-level modules only as long as there
is no output of higher-level modules. As a result, the functionality of the lower-level
modules is thus subsumed by the higher-level modules.

Controlled horizontal modularisation turns out to be very successful for the reali-
sation of real-time robot behaviour (even in hardware) and has stimulated a whole
sub-discipline of Al. Subsumption-type of architectures are useful to handle, e.g., the
sensor-motor feedback of forklift robots in the Automated Loading Dock as well as
the reactive soccer skills of RoboCup agents.

2.3 Hybrid Agents

Deliberative and reactive architectures, i.e., the vertical and horizontal ways of structur-
ing agents, have different advantages and drawbacks. Vertical arrangements are good
for realising rationality, but their inherent complexity is problematic for installing rapid

10



/ InteRRaP-Agent \
Knowledge

B Social Planning Layer,

Perception

N

Figure 8: Vertical and Horizontal Modularisation in InteRRaP

feedback loops. Horizontal arrangements are good for responsive and real-time be-
haviour, but they have difficulty to make persistent and goal-oriented decisions. Hence,
both types of design deal with different aspects of broad agents, such as either soccer
skills or soccer tactics’, either low-level control of forklifts or their task-oriented prob-
lem solving.

Consequently, hybrid and layered agents [Fer92, Fir92, LH92, Dab93, BKMS95,
SP96] integrate both methods in order to benefit from a horizontally as well as a verti-
cally structured architecture. A typical arrangement® is realised in Firby’s RAP [Fir92]
and Bonasso et al.’s 3T [BKMS95]. They distinguish a planning layer, a sequencing
layer, and a behaviour layer which are organised in a layered hierarchy. This is sim-
ilar to the organisation of competences in the Subsumption architecture, but only the
behaviour layer carries reactive computations. It is triggered by the sequencing layer’s
execution of plans which have been synthesised by the planning layer.

For different applications, other constellations have been developed. The Touring Ma-
chines of Ferguson [Fer92] have a plan modification layer which modifies the plans of
a planning layer according to environmental conditions. Lyons & Hendricks [LH92]
proposed a planning layer which modifies the behaviour of a reactive layer. Sloman
& Poli’s SIM_AGENT [SP96] has a management process which operates upon plans
and reflexes. A non-hierarchical design with reactive, deliberative and diagrammatic
(quasi-analogue) computations, all of the same priority, has been proposed in [Pia99].
InteRRaP [Miil96] (‘Integration of Reactivity and Rational Planning” — Figure 8) aims
at bringing the hybrid and layered design closer to BDI, at the same time addresses the
need of coordination among multiple agents. The three InteRRaP layers, the reac-
tive Behaviour-Based Layer, the deliberative Local Planning Layer, and the Social
Planning Layer each integrate the BDI-cycle of goal activation, decision making, and

>That the BDI design of [BHW98] became champion in 1997 was due to its highly domain-
dependent implementation.

SInterestingly, a similar design has already been proposed for the Shakey robot back in the 60’s
[Nil84].

11



intention execution, but at different levels of representation. To this end, each layer is
given a special and pragmatic configuration of primitive modules.

The Behaviour-Based Layer (BBL) provides a short feedback loop to the environment
by applying procedural routines, so-called patterns of behaviour. Behaviour patterns
correspond 1o, e.g., soccer skills and basic forklift behaviours. Because behaviour
patterns are reactively triggered by situation recognition, the BBL decision making
is quite fast. The Local Planning Layer (LPL) plans how to meet long-term, abstract
goals. This covers, for example, the tactical planning of soccer players and the delivery
planning of forklifts. Social decisions (at the Social Planning Layer — SPL) that
involve negotiating and coordinating with other agents (forming soccer strategies in
a team of RoboCup agents; exchanging delivery tasks between forklift robots) are
also expressed in terms of planning and execution. Some common functionalities are
separated from the layers in two additional modules: theknowledge base (KB) and the
world interface (WIF).

Hybrid architectures have been successful in a range of demanding domains, especially
in building service robots [Mul99a]. For example, [Muil96, Ros96] demonstrated In-
teRRaP to handle the low-level motion and manipulation of loading dock forklifts via
the BBL, to plan the delivery tasks within the LPL, and to coordinate transportation
conflicts in the SPL. Still, InteRRaP and hybrid designs in general face two architec-
tural problems which impede their usefulness as industrial-strength tools.

First, they are complex beasts including a variety of heterogeneous modules. Figure
8 shows that the structure of each InteRRaP layer is rather arbitrary and incompre-
hensible at first sight. Moreover, structures often change over the different layers. As
a result, major code changes are even needed in the agent kernel in order to run the
implementation of [Ros96] (that was very much tight to the loading dock), e.g., in the
RoboCup. Hence, for developing an agent programming language a la AOP, a cohesive
and congruent architectural structure is a necessary prerequisite.

Secondly, layering is often regarded as being equivalent to horizontal modularisation.
In InteRRaP, layers interact via particular control modules and based on two mecha-
nisms: upward activation and downward commitment. 1f a goal cannot be resolved
by a lower layer, it is posted upwards to be handled by the next upper layer. In turn,
if the upper layer has made some decision, it will send particular commitments down
to the next lower layer. The result 1s quite close to the interplay of competences in
the Subsumption architecture [Bro86]: priorised decisions of the higher-layer modules
compete for execution with the lower-layer decisions; lower layers are integrated into
the functionality of the higher layers.

Due to the ditferent computational needs of its layers, InteRRaP is an instance of a
resource-adaptive system (see our definition in the previous section). Changing re-
sources in the environment and the computation device influence the quality of actu-
ally executed decisions: If the environment is reasonably calm, it is likely that the LPL
can timely influence the fast decisions of the BBL. If the environment becomes more
dynamic, the BBL will constantly act without the LPL being able to intervene. This is
implicitly encoded into the architecture and makes it quite difficult for the higher-layer
computations to have a meaningful impact in real-time domains. [Mil96, Ros96], for
example, ‘abused’ the WIF to install another, hidden forklift layer.

Moreover, demanding environments, such as the Automated Loading Dock and the
RoboCup simulation, are full of changing resources (time, state of the body, battery

12



/" Meta-Control-Agent

Perception —»  Action

Figure 9: Horizontal Modularisation in a Meta-Control Architecture

load, stamina, game situation, etc.) and require the relevant design-time conventions,
such as the implicit balance between SPL strategies, LPL tactics, and BBL skills, to
be a part of the run-time decisions of the agent. In order to turn this trade-off into an
explicit parameter of the InteRRaP architecture and in order to make the higher-level
computations feasible within real-time domains (100 milliseconds in the automated
loading dock and the RoboCup simulation), the module interaction between layers has
to be revisited.

2.4 Meta-Control Agents

In parallel to hybrid agents, a special form of controlled horizontal modularisation has
been put forward by people from Al and Cognitive Science [And93, Hor86, BD9%4,
RWO91, RS95]. Their ideas are based on the observation that one major ingredient
to human intelligence is the ability to reflect the changes in environmental and com-
putational resources. Hence, resource-adapting mechanisms are proposed as an ar-
chitectural principle to trade-off situated computations, such as the balance between
strategies, tactics, and skills inside a RoboCup agent, according to overall system con-
straints.

Following [Goo76, Sim82, RS95], a boundedly rational agent has to solve two nested
optimisation problems. The first problem is to optimise its external behaviour with re-
spect to environmental resources. The second problem is to modify its internal compu-
tation with respect to computational resources. Russell and Wefald [RW91] developed
a representative meta-control architecture (Figure 9) in which each of those optimisa-
tion problems is assigned a dedicated module: The object-level module works like a
traditional planner that makes complex decisions how to act in the environment. It is
monitored and configured by an additional meta-level module. For this purpose, the
meta-level assigns computational resources to the various computational options at the
object-level.

In contrast to the branching & arbitration in reactive architectures and the activation &
commitment in layered architectures, the monitoring & configuration interfaces decou-
ple the meta-level from the timing that the environment imposes onto the object-level.
Nevertheless, the meta-level also consumes computational resources and so it should
be of neglectable complexity. In Russell and Wefald’s design, this is accomplished by
the following assumptions:

13



e Meta-greediness: When going from simple, i.e., one-step decision problems to
complex ones, there is an exponential growth in complexity. Hence, a tractable
resource assignment on the meta-level incrementally applies simple allocation
decisions which are only locally optimal, i.e., just for the next step in time. This
is called a meta-greedy strategy.

¢ Independence: Complex dependencies at the object-level can be caused by side-
effects of computation, e.g., through shared data structures. They are a further
source of complexity. It is hence assumed that optional object-level computa-
tions are approximately independent with respect to computational resources,
i.e., choosing one particular option does not influence the outcome of other pos-
sibilities.

e Sequential Object-Level: Russell and Wefald’s meta-level restricts to assigning
a single computational resource, namely computation time, to the object-level
computations. Hence, time serves as a unified representation for all interdepen-
dencies between object-level options and is allocated sequentially.

Russell and Wefald report the successful application of their architecture to game-
playing under time constraints, such as chess. Other prominent meta-control ap-
proaches share several of their ideas: Anderson’s ACT-R architecture [And93] uses
a rational analysis (meta-)module to control the operation of a rule-based produc-
tion system and to learn parameters and utilities of object-level rules. Flexible al-
gorithms [Hor86] provide a special form of object-level whose outcome monotoni-
cally improves over time. Anytime algorithms [BD94] are flexible algorithms that are
continuously interruptible and have been given dedicated meta-controllers in terms of
deliberation scheduling algorithms. Deliberation scheduling is empirically shown to
provide a quasi-optimal behaviour in navigation planning and targeting.

However, meta-control architectures have drawbacks when it comes to the construction
of broad agents. Real-time conditions are difficult to handle with a single, sequential
object-level module. Moreover, the simplifications of the meta-level are not always
applicable: Interactions with other agents (between the soccer players of a RoboCup
team; between the forklift robots in the loading dock) and interdependencies between
optional object-level computations (such as different soccer skills and different low-
level forklift behaviours) go beyond the consumption of time. For example, aiming
at the opponent’s soccer goal improves the result of kicking afterwards. Finally, there
18 a conceptual problem with the separation into computational and environmental re-
sources, since they are substitutable: By withdrawing computation time from a mod-
ule, its taking actions in the external world can be prevented.

2.5 The InteRRaP-R Architecture

The architectural contribution of this thesis, the InteRRaP-R’ architecture (Figure 10),
1s a generalisation of the InteRRaP model, the design of Russell & Wefald, and the

"This name is inspired by Anderson’s switch from ACT* to ACT-R. Where the ‘R’ in ACT-R how-
ever emphasises the impact of meta-control to bounded ‘Rationality’, it should refer in InteRRaP-R
rather to its ‘Resource-adapting’ architecture.

14



/ InteRRaP-Agent \

Knowledge
Base »

Social ™
Model g

... Social Planning Layer

R
.
.

«.___Behaviour-Based Layer

e

= i
- >
*Siehaﬂmvug

pExecutiol

Perception 7 Action

Figure 10: InteRRaP-R: Layering as Meta-Control

PRS. It builds upon the observation that meta-control provides the desired resource-
adapting principle for layering in hybrid agents.

InteRRaP-R resembles the original InteRRaP being divided into a reactive, a delib-
erative, and a social layer. Each layer, however, is now congruently structured like
a Russell & Wefald agent into a (meta-level) control module and several object-level
modules. The object-level modules are arranged similarly to the PRS design.

The important difference to InteRRaP is that upper layers do no more immediately
interact with the environment, but their decisions parameterise the control module of
their subordinate layer towards a more rational (in the case of the LPL configuring the
BBL) and social (in the case of the SPL configuring the LPL) behaviour. Lower layers
are thus no longer subsumed by the upper layers in the sense of Brooks. Upper layers
no longer operate under the same timing constraints as their lower companions which
renders their more expensive computations more feasible.

The important difference to the Russell & Wefald agents is that InteRRaP-R introduces
the explicit management of computations according to situative resources at several
levels of the architecture, i.e., at the reactive, the deliberative, and the social layer.
InteRRaP-R computations are not simply bounded by time, but they are controlled
with respect to general interdependencies that are grounded in environmental as well
as computational restrictions. The representation device which we use to this end is
called abstract resources.

2.5.1 Layering as Meta-Control

The decisions of an upper layer in InteRRaP-R guide or restrict the resource alloca-
tion of the control module of the subordinate layer. Using the illustrating example of
RoboCup: Deliberative soccer tactics and moves at the LPL are realised as computa-
tional guidelines for the executing reactive soccer skills inside the BBL; team strategies
that are negotiated and decided by the SPL in turn represent constraints on the planning
and execution of soccer tactics within the LPL.

A lower layer, such as the BBL, therefore provides in-principle all the functionality

15



of the agent, such as the complete basis to control the motion of a forklift robot or
to exhibit skillful soccer behaviour. Hence, the BBL can be already thought of as an
autonomous reactive agent. Of course, its quick and myopic machinery allows a whole
corridor of external behaviour when interacting with a dynamic environment.

The aim of the LPL is to push the BBL towards a more specific, rational function,
such as to perform delivery tasks or to score a goal. Hence, LPL intentions are realised
as mid-term configurations of the BBL computation that probably lead to a desired
‘symbolic’ state in dynamic interaction with the world. Navigation, for example, can
be implemented as a sequence of resource parameterisations to primitive behaviour
patterns, such as following a line, turning right, and searching for a landmark. A
soccer attack can be modelled as a sequence of soccer moves, such as defending on the
left side, passing into the middle-field, and attacking from the left wing. Each soccer
move in turn is realised via resource parameterisations to BBL soccer skills, such as -
locating, positioning, tracking, kicking, etc.

Similarly, the SPL operates as the supervisor ofthe LPL with respect to the social coor-
dination issues. In negotiating with other agents, the SPL monitors the state of the local
decision making, e.g., to communicate active goals of the LPL planning module and
to reason about the currently executed LPL plans. If the commitment to adopt a new
goal or the agreement on a particular multi-agent plan is made during a negotiation, the
SPL influences the LPL computation accordingly. In the Automated Loading Dock, a
computational guideline that the SPL imposes to the LPL could enable the planning for
exchanging a box. In the RoboCup domain, the SPL lets the LPL incarnate a tactical
role (goal keeper, left defender, etc.) inside a global team strategy.

The BBL 1s thus no longer subsumed, but supported by its super-layer LPL; layers
do not stand in competition, but in a structured, cooperative relation with their super-
layers. This form of resource-adapting horizontal modularisation decouples the higher-
level reasoning from the critical timing of dynamic environments and renders its rep-
resentations, such as LPL plans, more persistent and more abstract. For example, the
typical timing of soccer moves in the RoboCup is between ten seconds and one minute.
This can be reasonably handled by Al planning algorithms. Team strategies are even
active for major parts of the game such that a sporadic reasoning and negotiation is pos-
sible. Almost identical timings can be stated for the forklift robots in the Automated
Loading Dock — this hints to the general scope of our design.

2.5.2 Abstract Resources

The InteRRaP-R control modules operate in a similar fashion to the simple Russell &
Wefald meta-level in order to refine the higher-layer gumidelines into concrete resource
assignments to the supervised modules, such BBL behaviours and LPL plans. The
complex reasoning inside LPL and SPL modules can thus focus on long-term conflict
resolution, while the simple control modules are responsible for a short-term optimisa-
tion. For this purpose, we propose a resource representation which integrates features
of both computational and environmental restrictions to the agent’s functioning. We
call this representation abstract resources, because of denoting general interdependen-
cies between or constraints on the (object-level) modules within a single layer.

The clear distinction between architectural and environmental resources does not seem
to be reasonable in the broad agent case: modules that, e.g., implement different soccer

16



Upper
? Global ~ Layer
Profile

Current
q Configuration

\\ %

Complex
Intention

7

R e
0 *e y N odule
// Local \ (’*)m‘r:_'(:‘ Local
vV !/ Profile ,v_'(’f_ N Profile
=Utitity | /77 5 v A TR T T
" ; g
#Resourves i #R (

Layer

Figure 11: Decision-Theoretic View of Abstract Resources and Layering

skills affect each other in a similar fashion no matter if this happens internally, e.g., by
running on the same computing device (aiming to the goal versus aiming to a team
mate), or if this happens externally by performing actions in the physical world (posi-
tioning versus chasing the ball). If we influence the internal computation of a module,

this also has an effect to the external environment.

In the Russell & Wefald architecture, this has been addressed by exclusively and se-
quentially allocating computation time. However, InteRRaP-R modules, such as posi-
tioning, kicking, and tracking the ball, exhibit interdependencies which go beyond the
consumption of processing time. At the same time, these modules should be able to
compute interleaved in order to support responsiveness (see the following section).

As an alternative representation, we regard an abstract resource as a limited set of
‘items’ for which several modules apply. For example, the BBL ‘landmark’ resource is
accessed by all location skills; the BBL ‘stamina’ resource is accessed by all movement
behaviours, and the LPL ‘role’ resource is accessed by the LPL planner and the LPL
plan execution modules. Hence, the task of each control module is to decide about the
distribution of the items to its subordinate modules.

A rather primitive example of an abstract resource is a unary set. This corresponds to
the well-known construct of a semaphore in multi-threaded programming languages.

The semaphore forces certain activities that apply for it to be executed exclusively,
because only one activity is able to get a hold on it and is allowed to compute and act.
Different modules can interact through different semaphores, thus a meta-controller is
able to schedule several, mutually non-interacting computations at the same time. The
semaphore is thus a representation of a selected subspace of computations; assigning
it is equivalent to putting guidelines on the object-level modules.

The allocation of abstract resources is based on decision-theoretic considerations about
how useful a particular resource assignment is. Each object-level module therefore
statistically monitors a so-called local profile illustrated as a two-dimensional graph in
Figure 11. The local profile describes the current performance or utility of a module

L7



(V) in relation to the possible resource configurations. A simple decision of the control
module thus amounts to a small overall improvement in several local profiles.

In this interpretation, the role of an upper layer is to construct aglobal profile by higher-
level knowledge about how resources are dynamically affected in the subordinate layer,
e.g., a released semaphore is free for further use and stamina regenerates while not
running around. The global profile can be illustrated as a three-dimensional space in
which the frequently gathered local profiles are merged into a temporal projection or
hypothesis of the subordinate layer’s evolution (5). The decisions of a planning layer
(a tactic; a delivery plan) correspond to paths through the global profile leading from
the current resource configuration to a globally optimal one. Each intermediate step
in such a path is the result of executing some higher-level action (a soccer move, a
navigation action) and denotates a selected sub-space of local profiles.

2.5.3 Inner-Layer Modularisation

The secondary objective of our redesign of InteRRaP has been to develop a more cohe-
sive architecture. A first step in this direction has been to remove the redundant World
Interface (WIF) which originally served to lift sensing and acting onto a more ‘sym-
bolic’ level. Conceptually, but, the separation into BBL and WIF is not necessary. Our
experience has shown that an efficiently implemented BBL can master close-to-real-
time settings without an intermediate level of processing (see Section 7) and provides
a transparent control through LPL and SPL. Even special-purpose hardware can be
itegrated by envisaging a distributed implementation model.

InteRRaP has been inspired by BDI logic and its complicated inner-layer structure can
thus be replaced by a design that is much closer to PRS and includes a knowledge
base module, a decision-making module, and several competing intention execution
modules per layer. In the case of the BBL, the decision making module performs
a quick computation which we call a reflex; planning inferences are applied in the
case of LPL and the SPL. BBL intentions are procedural behaviour patterns much like
the competences in the Subsumption architecture turning perceptual sensor data into
external actions. LPL and SPL intentions are plans and protocols, respectively, whose
execution finally affects the allocation of resources on the next-lower layer.

As opposed to PRS, InteRRaP-R layers are not realised as unidirectional chains. In-
stead they resemble the design of blackboard svstems |EM88] in which a central black-
board, the knowledge base module, is bidirectionally coupled to several other modules,
here the decision making module, the intention execution modules, the control module
(via monitoring & configuration), and the knowledge module of the next higher layer.
This design allows sensor data, goals, plans, profiling data, and resource parameteri-
sations to be a processible part of the knowledge base and thus to be accessible from
the upper-layer modules. For example, the LPL of our RoboCup agents is able to take
the current amount of available stamina into account when setting up a tactic. For ex-
ample, the SPL of forklift robots is able to communicate about the delivery tasks that
a robot intends to perform in its LPL.

18



2.6 Bottom Line

This section analysed the advantages and drawbacks of existing patterns of Agent
Engineering on the basis of representative architectures for deliberative agents (PRS
[GL87]), reactive agents (the Subsumption architecture [Bro86]), hybrid agents (InteR-
RaP [Miil96]), and meta-control agents (the architecture of Russell & Wefald [RW91]).
As a consequential and cohesive progression also to, e.g., [LH92, SP96, JC97], we
postulate to build layered agents based on a meta-control scheme in order to obtain a
resource-adapting design. For each layer, we congruently propose a blackboard design
with a central knowledge base module and PRS-inspired decision making and intention
execution modules.

In order to escape the stringent simplifications of traditional resource manage-
ment [BD94], we have introduced abstract resources as a way of representing general
interdependencies between those modules. Based on abstract resources, the monitor-
ing & configuration interfaces between layers have been illustrated using decision-
theoretic terms. The resulting InteRRaP-R architecture fits naturally the particular
needs of, e.g., the Automated Loading Dock and the RoboCup simulation, and will be
formally specified in the following.

3 Computational Model: COOP

The problem of describing systems via architectures, i.e., graphical notations and in-
formal texts, is that this introduces ambiguous concepts [Som92]. Thus, many design
decisions, such as the scheduling of computations inside a module or the algorithmic
realisation of primitive modules, are left to the programmer. Hence, an implementation
neither necessarily nor provably reflects the original goals of design, such as the prac-
tical integration of deliberation and reactivity in the case of InteRRaP. For example,
previous implementations of the original InteRRaP architecture [FMP95, Ros96] show
significant performance differences due to different scheduling strategies. This led us
to investigate a more concrete and formally agreed way of conceptualising InteRRaP-R
in order to remove unwanted ambiguities while upholding a decent degree of general-
isation.

Historically, the first detailed software specifications were written using proprietary
pseudo-code or ‘Program Description Languages’ (PDL) close to the implementation
level. However, as implementation languages have become more abstract, detailed
specifications can now be written using a formal mathematical notation. The area of
Formal Methods has now reached a stage where it can be used in industrial systems in
order to increase system quality and reduce development costs [Hal90].

3.1 Computational Models and Z

There are two types of formal specifications: algebraic specifications and model-based
specifications (henceforth called computational models). Algebraic specifications,
such as Hoare’s process calculi [Hoa69], focus on the operations that are done upon
the modules which makes them particularly useful in object-oriented design. Compu-
tational models construct a mathematical model of the system’s transition as well as its
state. Computational models are useful in both object-oriented and functional design.

19



A computational model is like an abstract interpreter built according to the system
architecture. In order to refine the given module structure, the computational model
explores encapsulation, i.e., how to divide the system’s state and its computation into
separate computational processes. Encapsulation determines whether there could be
inconsistencies between processes and also determines whether processes could com-
pute concurrently to one another in which case the overall behaviour of the system is
composed out of the interleaved or even simultaneous computation of processes. If a
computational model guarantees each concurrent process to eventually being able to
compute, it is said to be fair.

Process communication is responsible for the exchange of data between processes and
can be used to realise module interfaces. There are explicit forms of communication,
such as directed signals and undirected alarms. Shared memory is an implicit form
of communication. A communication channel that looses information is said to be
unsafe.

If we look at processes, a design option is to choose between complex and simple algo-
rithms for their realisation and therefore between complex and simple functions as the
basic building blocks of the system. Complex results, such as a plan, denote optimal
long-term structures that consist of several primitive actions (or output) of the system.
Usually, the corresponding procedures, such as planning, turn out to be complex, too,
in the sense that their amount of computation increases exponentially in problem size.
Simple results, e.g., a single action, are primitive measures that maximise the system’s
performance just for a single step in time. Often, they can be computed using fairly
un-demanding, therefore simple procedures.

The earliest model-based specification technique was VDM (the ‘Vienna Development
Method’ [Jon80, Jon86]) which was developed in the late 1970’s and refined during
the 1980’s. Its sometimes unintuitive semantics has been the reason for basing the
language Z [Hay87, Spi92] developed at the University of Oxford on classical typed
set theory. The standardisation and the widespread use of Z led to a number of spec-
ification tools, such as editors, presentation modules, type-checkers, animators, and
theorem provers, and extensions, such as special support for object-oriented design
(Object-Z). Z will be used to specify a computational model of InteRRaP-R in the
current section.

3.2 A Crash-coursein Z

Z is particularly well-suited for incrementally building formal specifications, because
they are presented in small, legible structures called schemas and are distinguished
from associated commentary using graphical highlighting. Operations such as refer-
ences, renaming and hiding allow schemas to be manipulated in their own right and
provide a powerful tool for system specifiers.

__DataDictionaryEntry|DataType]

kind : EntryType [signature]
description : seq DataType [sequence]
#description < 2000 [predicate]

20



The preceding schema of a DataDictionaryEntry (the schema’s name) describes a part
of the system state, e.g., the state of a process, as a mathematical expression. Its upper,
signature part defines the structure of entities of type DataDictionaryEntry. It introduces
two sub-entities under the identifiers kind and description. In Z, types are seen as sets;
operations on types thus are operations on sets. This makes it easy to describe that
the kind slot must be filled by an enumeration type EntryType, thus can take one of the
atomic values data_flow, data_store, user_input and user_output:

EntryType ::= data_flow | data_store | user_input | user_output [definition]

Not only types, but nearly all Z-constructs, such as relations, functions, and sub-
sequently sequences (which are represented as functions from the natural numbers
to a target type) are couched in set-theoretic terms. Sequences, as well as our
DataDictionaryEntry, need some extra care, because they are generic types which are
defined upon arbitrary targets (sequences of characters, sequences of natural numbers,
dictionary entries storing real numbers, etc.). They are defined as generic schemas
with additional type arguments (DaraType). Conceptually, a generic type is a func-
tion which maps the target to an instantiation of the generic type. Hence, the ap-
plication ‘seq DataType’ delivers the sequences over DataType. In order to define a
StringDataDictionary which maps (- denotes a partial function) a not further specified
index set NAME to a string-based DataDictionary, we thus simply write in an alternative
notation:

[NAME, CHAR) [given sets]
StringDataDictionary = [ddict : NAME - DataDictionaryEntry|CHAR])

The lower part of a schema, the predicate part, includes statements which constrain
the mathematical structure that is builtby the signature. In a logical interpretation, the
predicate part shrinks the number of valid models: For example, the sequence length
of a DataDictionaryEntry’s description field must not exceed 2000. Length (#) is one of
the many predefined operations on sequences (others are the empty sequence (), the
head of a sequence head, the tail of a sequence rail, or the concatenation of sequences
™). In Z, such built-in support is already present for types, such as pairs, numbers,
bags, grammars, etc.

The predicate part of the StringDataDictionary schema is empty which means no further
restriction to the signature, such as a maximal size for ddict. This demonstrates the
advantage of a model-based approach to formal specification: the specification is only
restricted where necessary; it remains open and abstract where choices do not mat-
ter. In this respect, the possibility to incrementally refine a previously under-specified
system provides a convenient prototyping environment.

Computational models do not stick with modelling the state of the system. They spec-
ify as well operational considerations how this state changes over time while running
the system. In Z, system operations are modelled by particular schemas, such as the
following MakeNewUserInput operation on our previously defined StringDataDictionary:

21



—_MakeNewUserlnput

AStringDataDictionary [delta operator]
entry : DataDictionaryEntry{CHAR]

name? : NAME [input to the transition]
data? : seq CHAR

name? € dom ddict [constraints to the transition]
entry.kind = user_input N\ entry.description = data? [build entry]
ddict = ddict ® {name? — entry} [override]

The A decoration to StringDataDictionary means that there exists a corresponding sub-
structure ddict before the state transition that is related to a resulting changed data
structure ddict of the same type. System operations are performed in the light of
additional input decorated with a question mark (rame? and data?). System operations
can also produce output that is decorated with an exclamation mark ().

Similarly to states, transitions are constrained by the predicate part of a Z schema. In
the case of MakeNewUserInput, the resulting dictionary ddict' is not an arbitrary entity,
but is derived from the former ddicr by mapping the input name? to a freshly created
string-based DataDictionary (using the override operator @ and the pair constructor — ).
MakeNewUserInput also requires the input name not being in the domain (dom) of the
initial dictionary. Fields of substructures are accessed as entry.kind and entry.description.
State transitions, such as for specifying processes, can hide unnecessary information,
such as the exact determination which of several processes should be run at which time.
For example, on of the last steps in a Z specification collects the alternative operations
of a system into an overall schema:

StringDataDictionaryProcess = [schema collection]
MakeNewUserlnput V MakeNewUserQutput NV MakeNewDataFlow V
MakeNewDataStore V MakeNewError NV RetrieveData Vv
RetrieveError V RemoveData NV RemoveError

For a detailed overview of all the Z constructs and their semantics, we refer to reference
manuals, such as [Spi92] from which we lend above DaraDictionary example.

3.3 COOP: A Computational Model of InteRRaP-R
3.3.1 Formal Specifications in Agent Design

The first efforts to pin down agent architectures with more formalised descriptions used
pseudo-code notations. For example, [Mul96] gave an object-oriented sketch of InteR-
RaP modules and their interfaces. However, such languages have no computational
semantics and leave many questions open, especially the issue of concurrency. More-
over, taking a purely object-oriented design stance, similar to the use of formal tran-
sition systems, algebraic specifications, and process logics [HABvdHCMO8, Fis93b].
delivers a too operational view onto an agent. This is especially because of leaving
a large gap to the declarative methods of Cognitive Robotics [Bow87] in which logic
theories and inferential frameworks are developed that determine how to intuitively
represent an agent’s environment and how to perform reasoning on these representa-
tions.

22



f COOP-Agent
L o N SPL

process

signals

control |

Percepfion 7 >< Action

Figure 12: Specifying InteRRaP-R via Processes, Signals, and Control

Hence, for the purpose of the Design Space of Agents, we argue that computational
models, such as those specified in Z, are the missing link between Cognitive Robotics
and Agent Engineering as well as between conceptualisation and implementation,
since they are sufficiently abstract to formally connect to high-level conceptualisa-
tions, concrete to derive concise agent implementations, declarative to integrate a
theoretical perspective, and operational to capture architectural considerations.

This has been first recognised by [Wo0095] who gives a computational model of the
experimental MyWorld architecture using VDM. Because of its standardisation and
support, the Z language has been used to specify variants of the PRS architecture
[dL98, dKLW98]. While these efforts focused on unified agents, i.e., models with
a low degree of modularisation, DESIRE [DKT94] is a proprietary formalism for de-
scribing arbitrary compound agents.

3.3.2 A Computational Model of InteRRaP-R

In the remainder of this section, we develop a consistent computational model of the
InteRRaP-R architecture. We use the Z notation [Spi92] which makes the model easy
to read (due to Z typesetting), clearly to understand (due to a standard interpretation),
and accessible to further processing (due to the available Z tools).

Being guided by the requirements of, e.g., the Automated Loading Dock and the
RoboCup simulation, we shall use constructs that were developed in computational
models of modern programming environments [Smo95, AG96] and reactive systems
[AZ87, BW96]. In particular, we introduce a concept of encapsulated processes which
compute continuously and concurrently to each other and this is why our compu-
tational model is called COOP (‘COncurrent, cOntinuous Processes’ — Figure 12).
Processes are able to communicate explicitly via information-transmitting signals and
implicitly via shared memory. Their exception handling facility allows a flexible reac-
tion to new, possibly inconsistent information.

COOP processes, such as knowledge base processes, planning processes. and be-
haviour execution processes, are closely related to threads in concurrent programming.
They are more special in that they do not represent arbitrary one-shot computations,

23



AT

G]A Ga
Py ': Py PA VP;;’ ;
GIA G GA Gy [T
[ I:\' P
 GA G

Figure 13: Search-Based Inference Procedure

but are mapped to well-defined subsets of a logic of action and time. Hence, primi-
tive InteRRaP-R modules are modelled as persistent and interactive COOP processes
which are in turn regarded as encapsulated inferences in a common logic theory.

The only exception to this logic interpretation are the InteRRaP-R control modules.
They are realised as simple allocation algorithms for abstract resources, so-called con-
trol processes. Ordinary processes, such as behaviour execution and local planning,
consume abstract resources while computing. The control process monitors their re-
source consumption and their performance. By its management of a particular type of
trigger signals, the control process is able to frequently optimise the allocation of fresh
abstract resources to processes, hence to optimise the active computations inside its as-
sociated layer. The complete formal specification which has some superficial relations
to labelled deductive systems [Gab96] is given in Subsection 3.4.

3.3.3 Concurrent Inferences

The first requirement for a computational model of an intelligent agent is the necessity
to model rational inferences, such as for performing navigation in the loading dock
and for setting up a tactic in the RoboCup. The lesson that we learn from Cognitive
Robotics 1s that even reactive ingredients, such as collision-avoidance or ball tracking,
can be reasonably described as special-purpose inferences operating on a low level of
representation [KS96b]. Therefore, the modules of InteRRaP-R can be expressed as
inference procedures that operate on logic representations. We call these procedures
inference processes.

There exist many inference procedures in theliterature. All of them can be described as
a step-wise rewriting of logic formulae (Figure 13). The state of an inference procedure
consists of a program formula P (an assumption, a theory) and a goal® formula G (an
observation, a call). The task of an inference procedure is to find extensions P’ to the
program P from which G follows logically, i.e.. G is a consequence of P' (P’ = G).
For this purpose, the inference procedure constantly strengthens the information in P

81t should be noted that we use the term goal in two related. but different meanings. An agent goal
as described in Section 2 is a data structure with a particular functional role inside the perception-action
cycle. A logic goal, in contrast, plays a representational role inside an inference process within the
perception-action cycle. Thus, we can use logic goals o encode agent goals, but logic goals also realise
other concepts, such as observations and requests. We will come back to this issue in Section 5.

24



Activation
Signal

Process  Exception Process
Begin Handling End
1B .
Logical Concurrent
Formula Inference

Processes

Figure 14: COOP: COncurrent, cOntinuous Processes

and G while keeping the logic meaning. G’ that results from a process transition thus
implies G under the extended theory P'. If the goal evaluates to true (T ), the procedure
has been successful.

It is not always possible to find all extensions of P and instantiations of G without
changing this canonical representation. Hence, we allow inference processes to pursue
several options of rewriting the initial formula whose combination, i.e., disjunction,
keeps the information of the predecessor expression. This is a technique which is
widely used in logic programming and combinatorial search. An inference process
thus maintains a set of optional programs and goals. In each step of the process, one
option is selected one sub-formula of which is transformed into a set of successor
options.

We propose a single logic and a corresponding inference framework to formally specify
InteRRaP-R modules in terms of inference processes (Sections 4 and 5). Each process
refers to a restricted sub-language of the logic and hence implements a well-defined
subset of the inference framework.

However, COOP distinguished from unified, logic-based agents such as proposed by
Cognitive Robotics in that its state and its canputation are encapsulated into rather in-
dependent parts (Figure 14). Independence in state is manifested by COOP processes
operating on different and partially inconsistent formulae. Independence in computa-
tion is manifested by COOP processes operating concurrently to each other. Hence, the
state of InteRRaP-R is a possibly conflicting combination of the state of its inference
processes and its operation amounts to the interleaved operation of these.

Both issues are important features of reactive systems [AZ87, BW96] for supporting
the overall responsiveness of the agent: The BBL, for example, must be able to meet
quick decisions interleaved and even inconsistent with the computations of the higher
layers. In the loading dock, collision-avoidance must be able to dodge the robot even
if this renders the planned movement impossible. In the RoboCup, the kick behaviour
must be able to clear the ball quickly out of the field, even if not getting into ball
possession.

This is not to say that a sequential, consistency-preserving computational model can-
not exhibit such interactive behaviour. High-level reasoning and consistency-checking
are costly tasks. Hence, the programmer of such a system has to add ‘scheduling

23



P* = G [~Exception . .
B Stk 1 e

>®51 

T~

Figure 15: Exception Handling

knowledge’ into his domain representations, such as the behaviours, the plans, and
the protocols. Analogue to multi-purpose programming platforms, however, we argue
that a good agent model should integrate those facilities which are required in most
envisaged domains in order to ease the programmer’s task.

3.3.4 Continuous Processes and Exception Handling

There 1s a danger in allowing too much concurrency and inconsistency which is the
lack of persistence. In the mid-term perspective, an agent should behave rational and
work constantly on particular tasks. Hence, processes, such as local planning and
behaviour execution, are not one-shot operations which vanish after having provided
a service, 1.e., after having inferred T. Instead, they are continuous computations that
are active over a longer period of time. This period could even comprise the complete
life-cycle of the agent which are 10 minutes in RoboCup and up to one day in the
Automated Loading Dock.

For example, the local planner does not disappear after having decided about a single
goal, but waits for new goals to extend itscurrent state. For example, an avoid-collision
reflex is not finished after having dodged the robot once, but computes further on until
a particular obstacle should be deliberately approached. Hence, COOP processes will
not die unless they finally fail, i.e., there exist no more inference options anymore.”
Inference processes are situated inside the agent just as the agent is situated inside
its environment. Hence, they must compute with incomplete information and under
dynamic changes of the environment. In particular, they must make preliminary as-
sumptions which turn out to be inconsistent afterwards. Instead of simply failing as a
result of foreseeable inconsistencies, COOP processes own mechanisms to restore their
operation. Advanced inference principles are one way of achieving this kind of incre-
mentality. In addition, COOP processes employ anexception handling mechanism that
shields dangerous computations against predictable failures (Figure 15).

Exception handling has been introduced in multi-threaded programming languages
[BWO6] in order to introduce fault recovery. It is a convenient way to separate the
regular way of program execution from the recovery actions. In a logical setting, re-
covery actions can be established as a set of optional inferences ready to replace the

“We regard the distinction into successful and ailed operations as an unfortunate concept for situated
agents because their outcome can only be evaluated in the eye of the beholder, such as the LPL which
surveys the operation of BBL processes.



9T

=T

G'R6*
'P_'@?l
P
G& E
P =g G
= . :
G o “liu
o] =
PR P
G2 G**

Figure 16: Emission and Incorporation of Signals

regular state of the process. While running deeper into the solution of a problem, an
exception stack is provided with more and more specific information about possible
failures. In the case of failure, the exception handler then determines the most specific
continuation for the process.

Continuity is important to ensure persistent behaviour. Nonetheless, for subduing in-
consistencies and concurrency between task planning and low-level robot control or
between active tactics and conflicting soccer skills, additional measures have to be in-
troduced. These are the exchange of information, i.e., formulae, between processes
and particular control processes to optimise active computations within a layer.

3.3.5 Signals and Shared Memory

COOP signals transmit information from one process to another in the form of logic
formulae. Depending on their content, we distinguish different types of signals, such
as information signals which transmit a part of a logic program, and request signals
which transmit a logic goal. Signals are generated as a by-product of inference. Figure
16 illustrates that they have to be consistent with their emitting inference option, i.e.,
they carry a a subset of its program and its goal.

Signals represent commitments of the process to its environment: Information signals
commit to certain hypotheses or assumptions about the world, such as a plan that has
been decided by the local planning process. Request signals commit to particular tasks
to be performed, such as a desire that is activated by a knowledge base process. As
such, signals are incorporated into every option of the recipient process.

Further types of signals are trigger signals that are able to resume the activity of a
suspended recipient process and activation signals which are used to initialise new
processes. Activation signals are sent out by knowledge bases processes in order to
create new intention execution processes (behaviours, plans, protocols).

Due to its logic content, a signal could only outlinea particular fact or a particular task.
For example, the knowledge base could activate the desire to deliver an arbitrary box
within the planner where the box is not fully determined. In return, the knowledge base
would like to know the result of calling the planner’s service, e.g., the identification
of the selected box, or it would like to specify the box in more detail, when getting
additional evidence. Using logic formulae as shared and incrementally refined data
structures, an implicit way of information exchange can be introduced for that purpose

27



transmit

Figure 17: The Shared Memory Model

(Figure 17).

In COOQOP processes, the formulae are annotated with the signals by which they have
been communicated. This means that there are shared references within the state of
signal sender and signal recipient. During the performance of an inference upon such
a shared formula, all referring processes are automatically transmitted a part of the
rewritten information: Not every option, for example every possible instantiation of
the delivery desire, has to be communicated, but possibly a non-empty subset thereof.
Not every hypothesis, for example every detail of a generated plan, is communicated,
but only a part of it. Shared goal formulae, in contrast, are completely communicated
and rewritten, because they represent the ‘shared tasks’.

Inference steps rewrite several sub-formulae of selected option. Inference steps also
have several options as their result. An appropriate labelling mechanism merges and
clones signals to ensure that process annotations always refer to identical formulae.

3.3.6 Control Process, Internal Profiling, and Resource Allocation

Control processes in COOP differ from deliberation schedulers [BD94, Hor86] in that
they do not develop a costly long-term scheduling policy which would be ineffective
in the real-time dynamics of, e.g., robotic domains. Similar to the Russell & Wefald’s
meta-level [RW91], control processes in COOP envisage a simple optimisation of the
ongoing computations, i.e., they temporally minimise mutual conflicts while maximis-
ing performance. The concurrent setting, however, requires extended representations
and scheduling algorithms:

1. We have already discussed that, unless sequentially scheduling processes, com-
putation time is a bad resource representation. Hence, we useabstract resources,
such as soccer ‘stamina’ and ‘aim’, for describing the interdependencies of pro-
cesses both with respect to environmental restrictions — positioning and chasing

28



Global Profile

Figure 18: Trigger Signals and Control Process

the ball meet conflicting action decisions and diminish stamina — as well as with
respect to computational restrictions — aiming to the goal and aiming to a team
mate redundantly consume time and memory. Abstract resources are modelled
as sets of items denoting the available amount of that particular resource. Pro-
cesses ‘consume’ these items by each step of inference. Once a process, such as
chasing the ball, has exhausted its local resources, such as its amount of stamina,
it is suspended. To resume activity, a new resource allocation from the control
process is required.

. To make useful allocation decisions, we need to estimate the performance of pro-
cesses. External profiling mechanisms evaluate computations at hand of sporadic
feedback from sensor data (scoring a goal or loosing the ball in the RoboCup)
and are suitable to guide such short-term decisions. Instead, we propose a built-
in self-evaluation of processes. Their transitions produce performance values
from which an average local profile is generated. For example, a RoboCup aim
process that has to evaluate the distance and the direction to the opponent’s goal
will frequently determine the likelihood of a successful scoring. This is called
internal profiling.

. To uphold responsiveness, we cannot synchronise a scheduler with each step
of computation in COOP. Instead, the control processes operate asynchronously
and interleaved. To this end, they are able to control the computations via con-
trolling their communication. Control processes collect all outgoing and incom-
ing signals to the processes under their control. Particular trigger signals must be
frequently routed to a process in order to transmit new allocations of resources,
thus to resume its processing. For example, to resume an aim process, a change
of the player’s relative position to the goal has to be transmitted from the knowl-
edge base. As long as a process is active, trigger signals are collected. As soon
as the process suspends, the stored signals are used to reallocate resources and
to resume the process.

29



In each step of the control process, allocation decisions are met by filtering the set
of collected trigger signals and by accordingly distributing the available resources to
the processes. The control process uses a static allocation of global to local resources
per process, such as a particular amount of stamina to be allocated to positioning. In
this case, filtering can be done by using a simple heuristic that sorts processes accord-
ing to their utility which is the difference between their current performance and the
cost of the resources that they have applied for. In order, the processes are granted
resources and routed trigger signals as long as their utility is greater than zero. Once
the utility is equal to zero, e.g., an applied resource has been exhausted, trigger signals
are suppressed which 1s why they are unsafe; activation signals can be routed without
assigning resources.

In order to establish optimality with this scheme, abstract resources should be exhaus-
tive, i.e., cover all the dependencies between the processes under control. They should
also be independent, i.e., different abstract resources describe independent conflicts
between processes. Our experience has shown, however, that the scheme is tolerant
with respect to small changes in the modelling and installs an approximately optimal
short-term control.

To achieve global optimality, control processes are guided by the decisions of the next
upper layer. Therefore, resource representations, profile data, and parameterisations of
the control process including static allocations, processemphasis, and process discount
are shared between control processes and their associated knowledge base process.
This allows, for example, to decompose the soccer moves in a RoboCup agent’s LPL
into configurations for its BBL control process. The goal keeper’s defending move , for
example, sets a particular home position (in terms of belief) and assigns small portions
of stamina for frequent positioning (in terms of allocation). At the same time, chasing
the ball receives a high priority (in terms of emphasis) and a large portion of stamina
for sudden ball interception (in terms of allocation, again).

3.4 Formal Specification

We now formalise the outlined agent interpreter by using the Z notation. First, we con-
centrate on defining the state of InteRRaP-R by mathematical definitions and schemas
(Subsection 3.4.1). Afterwards, we turn to the transitions of InteRRaP-R modelled as
schematic relations between these states (Subsection 3.4.2). The following specifica-
tion has been successfully type-checked using the ZTC tool [Xia95]. Some auxiliary
definitions can be found in Appendix A.

3.4.1 The State of InteRRaP-R

The most primitive constructs within InteRRaP-R are identifiers of type Identifier and
(logic) formulae of type Formula. Identifiers are constants that are used to address
processes and layers inside the agent. For the moment, formulae shall belong to an
arbitrary (first-order) logic injected into the COOP model. In Section 4, we present a
dedicated first-order theory for that purpose. Identifiers and formulae are not further
specified and are thus introduced as given sets.

[Formula. Identifier] [given sets]

30



Next, we define the conjunction and the disjunction of formulae. They are realised as
relations conj, disj which map a set of formulae to the equivalents of their conjunct, or
disjunct respectively. In the following definition, we use the notation P Formula which
is the power set of Formula. The unique formula true (false) represents the empty
conjunction (disjunction). We also distinguish particular identifiers perception, action
that address the external environment of the agent.

conj, disj : (P Formula) <> Formula [boolean combinators]
true, false : Formula [unique formulae]
perception, action : Identifier [unique environment id’s]
| conj(@) = true A disj(@) = false [logic laws]

A Signal is transmitted from a sending process to a recipient. Their addresses are en-
coded as pairs of identifiers one for the layer at which the respective process is located
and one for the process itself. The content of a signal consists of two conjunctions of
formulae (in the range of the conj relation, ran conj), the first denoting a logic program
and the second denoting a logic goal. Any signal can be cloned with respect to a par-
ticular process Option — this is a forward reference to an upcoming schema. Cloning
means to copy the signal into a different, but unique instance of Signal and is realised
as an injective function.

Signal

sender, recipient : Identifier x Identifier [addresses]
program, goal : ran conj [two-fold content; conjunctions]
clone : Option — Signal [clone function]

A clone always carries the same content and the same addresses as its original. Fur-
thermore, the transitive closure of cloning (clonex) must be anti-reflexive in order to
exclude cycles and its must map different signals to disjoint clones.

clone : Signal <> Signal [cloning as a relation]
Vs : Signal e clone( {s} |) = rans.clone [turn function into relation]
Vs : Signal; b : Option e [clones behave like their originall

((s.clone)(b)).recipient = s.recipient \ ((s.clone)(b)).sender = s.sender N
((s.clone)(b)).program = s.program A ((s.clone)(b)).goal = s.goal
Vs : Signal e s # clone % (s) [closure is anti-reflexive]
V 51,59 : Signal @ clone x (s1) = clone % (s2) < 51 = 59 [disjoint clones]

The following definitions introduce special sub-types of signals: TriggerSignal con-
tains a selection of signals that will be usad to control the computation of processes.
InformationSignal, RequestSignal and the environmental signals PerceptionSignal and
ActionSignal are characterised through their content and addresses. We use the Z set
construction (Ser == {Signature | Predicate ® Result}) for that purpose.

| TriggerSignal : P Signal [is a selected subtype of signal]
RequestSignal == {s : Signal | s.goal # true e s} [particular signal subtypes]
InformationSignal == {s : Signal | s.program # true e s}

ActionSignal == {s : Signal | s.recipient = (action, action) e s}

PerceptionSignal == {s : Signal | s.sender = (perception, perception) e s}

31



We now give the schema for a single Conjunct which is the COOP representation of a
formula that is annotated with a set of signals. Straightforwardly, any set of Conjunct
is translated to a regular formula by stripping off annotations (ranslateConjunct).

Conjunct = [state : Formula, annotation : P Signal [annotated formulal
I translateConjunct : P Conjunct — Formula [translate set of conjuncts]

’ Y pc : P Conjunct e translateConjunct(pc) = conj({c : pc e c.state})

InferenceState is the structure behind a particular process Option and an exception, i.e.,
an alternative continuation of inference. InferenceState consists of two sets of Conjunct,
one for the logic program and one for the logic goal. These sets are interpreted as
conjunctions, thus must exist in the domain dom of translateConjunct. An Option 1s
an InferenceState which additionally maintains an exception stack, i.e., a sequence of
alternative InferenceStates. An initial option InitOption has empty content and empty
exception stack.

InferenceState = [program, goal . dom translareConjunct| [two-fold state]
Option = [InferenceState; exceptions : seq InferenceState) [shielded inference]
InitOption = [Option | program = @ A goal = @ N exceptions = ()]

Before turning to process design, we need to introduce abstract resources, process
performance, and utility in advance. Abstract Resources will be modelled in terms of
particular resource items /tem, such as the role resource in a soccer team consisting of
several goalies, defenders, mid — fielders, and attackers, or such as the stamina resource
of a soccer player consisting of several staminaunits. The continuous UrilityScale from
which we draw performance and utility measures ranges from 0.0 to 1.0.

[Resource, Item) [given sets)
UtilityScale=={r:R | r>00A7r<1.0er} [continuous utility scale]

A ResourceValue is a partial mapping of Resource to multi-sets of Jzem, such as a current
line-up of a soccer team having 1 goalies, 4 defenders, 3 mid — fielders, and 3 attackers,
or such as the current stamina comprising 2.000 unirs. Multi-sets can be modelled
as functions from Irem to natural numbers N. A ResourceAllocation could consume as
well as produce resource items and maps each Resource to a function from ltem to
integers Z. Hence we can use integer operations to apply a set of ResourceAllocation
10 a ResourceValue (allocate). We also specify the reverse operation deAllocate to free
non-allocated resource items.

ResourceValue : P(Resource — (Item + N))
feach resource carries a set of countable itemsg)
ResourceAllocation : P(Resource — (ltem - 7))
lconsumed or produced amount of items per resource]
allocate, deAllocate : ResourceValue — P(ResourceAllocarion) — ResourceValue
[applying allocations to a valuation|

YV r: Resource; i: {tem e [resource operations are |
(V rv: ResourceValue; pra: P ResourceAllocation e [derived from integers}
allocate(rv)(pra)(r)(i) = (n(r)()) = X({ra: prae ra(r)(i)})) N
deAllocate(rv)(pra)(r)(i) = (rv(r)(i) + S ({ra : pra e ra(r)(i)})))

32



The utility of a process is the difference between its current performance and the cost
of resources (ResourceCost) that it currently applies for. ResourceCost depends on the
amount of items that are needed by the process. It also depends the amount of items
that are globally available, for example, a certain amount of stamina is more expensive,
if there are not many units left. If an resource is exhausted, i.e., the available amount
of items is less than allocated, resource costs are maximal (1.0).

ResourceCost : P(Resource — (Item - N) —
(Item - Z) — UtilityScale) [allocation cost relative to valuation]

YV r: Resource; i: Item e
(V rc : ResourceCost; rn : (Item + N); rz: (Item + Z) ®
rn(i) — rz(i) < 0 e re(r)(rn)(rz) = 1.0) [exhausting is invaluable]

In the following, let Id be the subset of Identifier that is reserved for internal ad-
dressing, i.e., for identifying processes and layers. The enumeration type ProcessType
(knowledge_base | reflex | behaviour_execution | . ..) determines which inferences are to
be performed by a respective process.

Id == Identifier \ {perception, action} [internal id’s]
ProcessType ::= knowledge_base | reflex | behaviour_execution | local_planning |
plan_execution | social_planning | protocol_execution [process types]

Now we are ready to construct the Process schema. Its state consists of a set of options.
Its active flag is a boolean B that indicates whether the process is suspended or active.
The local resources resourceValue describe the amount of resource items that have al-
ready been granted to the process. The local profile, i.e., the average performance of
the process, is maintained within itsperformance slot. Moreover, a process has two sig-
nal buffers, a sequence of input signals and a set of output signals, whose addressing
must be consistent. For example, action and perception signals are only allowed to
appear in the respective buffers of a process of type behaviour_execution.

Sk TOCBSS
layer,id : Id [id of layer, own id]
type : ProcessType [the type of process]
state : P Option [inference options]
active : B [ready to compute?]
resourceValue : ResourceValue [local resources]
performance : UtilityScale [average performance]
signals_in : seqSignal [a signal queue]
signals_out : P Signal [a signal buffer]
Vs : ran signals_in e s.recipient = (layer,id) N s € ActionSignal [constraints]
Vs : signals_out e s.sender = (layer, id) \ s ¢ PerceptionSignal [on]
(Fs: Signal e s € (ActionSignal N signals_out)U [addressing]

(PerceptionSignal N ran signals_in)) = type = behaviour_execution

A newly created InitProcess has empty signal buffers, has no local resources, consists
of a single InitOption, and has a neutral performance estimation set to0.7.

33



InitProcess
rProcess [a particular process]

signals_in = () N signals_out = @ N (3b : InitOption e state = {b})
resourceValue € Resource — (Item - {0}) A performance = 0.7

In COOP, we identify Layers of InteRRaP-R with their associated control process.
Hence, each Layer controls a set of processes with unique identifiers under which we
find exactly one of type knowledge_base. Since control processes survey the process
communication, they also maintain buffers in which they collect incoming and outgo-
ing signals from and to the process under control: inpur contains signals which come
from a different layer or from outside the agent and which are addressed to an inter-
nal process. ourput contains signals which have been emitted internally and are to be
sent into other layers or the outside of the agent. signa/Buffer stores every communi-
cation that is addressed to the inside. Finally, triggerStore is able to temporarily store
the trigger signals that are dedicated to already active processes. In the following, the
auxiliary projection functions 7' with i < n are used to extract particular values out of
n-ary pairs.

— Layer

processes : P Process; kb_process : Process [all subordinate processes]
id: Id lown id]
signalBuffer, triggerStore, input, output : P Signal [signal buffers]
resourceValue : ResourceValue [global resources]
costs . ResourceCost [cost specification]
allocations : Id — ResourceAllocation [allocations to processes]
processUtility : 1d — UtilityScale [current utility of process]
processEmphasis, processDiscount : 1d — UtilityScale [priority]
discountFactor: Id — {r : R | r> 0.0 e r} [curiosity]
kb_process € processes N\ kb_process.type = knowledge_base [constraints]
V p : processes ® p.layer = id \ (VY py : processes ® p.id = py.id = p = p,)

signalBuffer = | J{p : processes ® [route signals]

{s: p.signals_out | (% s.recipient) = id @ s}} U input U triggerStore
output = \J{p : processes @ {s : p.signals_out | (w? s.recipient) # id ® s}}

The above defined Layer also has a global resourceValue depot from which static
allocations can be given to the controlled processes. Layer depends on a costs specifica-
tion, the measured utility of processes in the global profile (processUtiliry), the process
emphasis (processEmphasis), and the process discount (processDiscount). discountFactor
determines for each process the degree of penalising its frequent activation, 1.e., how
curious the agent will be in trying to activate other, supposedly worse computations.

The complete InteRRaP-R agent consists of three uniquely identified layers which
disjointly encapsulate all internal processes. The types of processes are assigned
according to the architecture, i.e., at the BBL, there is a reflex process and sev-
eral behaviour_execution processes; at the LPL, there is a local_planning process and
several plan_execution processes, etc. Signals that are transmitted between the lay-
ers are collected and distributed through interLayerSignals. Two additional sets, the

34



perceptionBuffer and the actionBuffer, handle the interaction with the external environ-
ment during the agent’s processing.

__InteRRaP —~ R
bbl, Ipl, spl : Layer; processes : P Process [three layers; all processes]
interLayerSignals : P Signal [signals between layers]
perceptionBuffer : P PerceptionSignal [perception signals are buffered]
actionBuffer : P ActionSignal [action signals are buffered]
bbl.id # Ipl.id A bbl.id # spl.id N Ipl.id # spl.id [unique layers]

3, p : bbl.processes \ {bbl.kb_process} o p.type = reflex A [determ. modules]
(V p2 : (bbl.processes \ {bbl.kb_process,p}) ® pa.type = behaviour_execution)
3, p : (Ipl.processes \ {Ipl.kb_process}) ® p.type = local_planning N
(V po : (Ipl.processes \ {Ipl.kb_process,p}) e ps.type = plan_execution)
3, p : (spl.processes \ {spl.kb_process}) ® p.type = social_planning N
(Y pa : (splprocesses \ {spl.kb_process,p}) ® ps.type = protocol_execution)

processes = bbl.processes U Ipl.processes U spl.processes [collect procs]
interLayerSignals = bbl.output U Ipl.output U spl.output U perceptionBuffer
V1:{bbl, spl, bbl} e [route signals]

Linput = {s : interLayerSignals | wis.recipient = l.id e s}
actionBuffer = interLayerSignals N ActionSignal

3.4.2 The Operation of InteRRaP-R

We have now incrementally constructed the compound state of InteRRaP-R. Straight-
forwardly, specifying its overall operation will be composed by more primitive transi-
tions upon its substructures, starting at the process level. For this purpose, we instan-
tiate the general transition AProcess to a more specific AProcessOperation schema in
which some parts of the process state stay constant, such as identifiers and type. Other
parts are subject to change, such as signal buffers, local resources, local profile and the
activation flag; for the moment, we do not place any restrictions on their evolution.

__AProcessOperation
AProcess [a process transition]
optionMap : Option =+ P Option [several option transitions]
process, process' : Process; context : Process - Process [the process context]
layer = layer A id = id A type' = type [stable parts]
dom optionMap = state A state¢ = | J(ran optionMap) [do option transition]

Y by, by : Option e optionMap(by) N optionMap(by) # & = by = by [unique]
process = OProcess N process’ = @Process' N context(process) = process'

During AProcessOperation, the available inference options are rewritten according to
the concept of search procedures underlying COOP: The optionMap, a partial injective
function, allows each option to evolve into a unique set of successors. Moreover,
due to shared memory, each process operation happens in the light of operations on
other processes. These are simultaneously collected in the partial confext mapping.

35



The additional process, process’ slots are used to make the process under consideration
explicit and are bound by the dedicated 6 operator of Z.

A Layer evolves in a ALayerOperation as all of its embedded processes evolve in a corre-
sponding AProcessOperation. As before, the shared context is a partial injective function
which allows processes to have no successor, i.e., they have died because of containing
no more options. During ALayerOperation, a set of new processes newProcesses of type
InitProcess can be created.

__AlLayerOperation
ALayer [a layer transition]
newProcesses : P InitProcess [newly activated processes]
layer, layer’ : Layer [the layer under consideration]
context : Process - Process [process context]
V' p : (processes U newProcesses) N dom context e [process transition]

(3 op : AProcessOperation e op.process = p N\ op.context = context)
V p : (processes U newProcesses) \ dom context  p.state = &
[failed processes]

processes’ = context( processes U newProcesses |) [do transitions]
kb_process' = context(kb_process) N id = id N costs' = costs [these remain]
layer = OLayer N layer’ = OLayer [stable]

At the topmost level, the InteRRaP-R agent operates (AlnteRRaP — ROperation) by let-
ting all its layers perform a ALayverOperation. Hereby, the agent interfaces the environ-
ment via input perception? and output action! that are modelled as sets of signals. Input
signals are added to the perception buffer; output signals are taken out of the action
buffer. The overall conrext is defined in terms of the particular contexr mappings of the
layers.

__AlnteRRaP — ROperation

AlnteRRaP — R; newProcesses : P InitProcess lan InteRRaP-R transition]
perception?  action! : P Signal [perception and action signais)
context : Process ~ Process [process transitions)
actionBuffer = & N action! = actionBuffer Lclear action buffer]
perceptionBuffer = perceptionBuffer'\J perception? [fill perception buffer|
A blo, llo, slo : ALayerOperation e [layer operations|

blo.context = context A blo.layer = bbl A blo.layer = bbl' N

llo.context = context A llo.laver = Ipl A llo.layer = Ipl' A

slo.context = context A slo.layer = spl A slo.layer’ = spl' N\

newProcesses = blo.newProcesses U llo.newProcesses U slo.newProcesses
dom context C processes U newProcesses

L

Inferences and Signalling We now make these quite general operations more con-
crete. For example, the ‘regular’ way of computation within a process is to perform a
step of inference. For that purpose, we presume a common inference frameworkF that
is defined upon Formula: Tt takes a conjunctive program and a conjunctive goal as its
input and produces a set of optional program/goal pairs as its output.

36



| F: ranconj x ranconj <+ P(ran conj x ran conj) [step of inference]

COOP processes implement particular subsets of this inference framework by means
of the i relation. For each ProcessType, - describes a transition upon one selected
inference option of the process. - inputs a pair of P Conjunct consisting of a selected
portion of the options’ program and a selected portion of the option’s goal. = manip-
ulates the top of the option’s exception stack and consumes a characteristic amount
of resources specified by a ResourceAllocation. In turn, it produces some performance
value and a set of program/goal/exceptions/signals tuples from which the successor op-
tions and outgoing signals are generated. The important constraint to this construction
is that the transitions given by - are indeed according to I and, moreover, that pro-
duced signals transmit a part of the informationof their associated option. In Section 5,
we will describe in detail how - and - are to be further refined. In the following, conj™
denotes the inverse relation to conj.

- : ProcessType — [step of process is subset of inference+interface]
(P Conjunct x P Conjunct x seq InferenceState x ResourceAllocation) <
(UtilityScale x P(ran conj X ran conj x seq InferenceState x PP Signal))

Y pt : ProcessType; csy,cso : P Conjunct; ra: ResourceAllocation,
ex, ex' : seq InferenceState; fi,f> : ran conj; ss: P Signal e
(fi,fo, €X', s5) € w2(=(pt)(cs1, cs9, ex, ra)) =
(((f1,/2) € F (translateConjunct(cs,), translateConjunct(csz))) A [infer]
(Vs : ss ® conj™~(s.program) C conj™(fy) A conj~(s.goal) C conj~(fz)) A
((Fe: InferenceState @ ex' = (e) " ex) V ex' = ())) [push or pop]

- is embedded into the AProcessinf schema which is an instance of AProcessOperation.

First, an option inside the process state is selected. Within that option, we identify
selected parts of the program and the goal. The amount of resources that is required to
perform an inference step is allocated and the head of the exception stack is separated
(by the auxiliary exhead and extail). Then, the successor options registered in optionMap

are constructed from running - (type): Each element of the answer set is combined with
the non-selected conjuncts of the selected predecessor option. Signals of the selected
conjuncts are merged and cloned. Outgoing signals are added to the annotation of the
respective conjuncts. And the produced performance is averaged with the previous
profile such that the influence of past computations diminishes with time.

37



__AProcessinf
AProcessOperation; slctOpt : Option; slctPrem, slctGoal : P Conjunct

derivedOptions : P Option [new options inferred from selection]
derivedSignals, mrgSigs : P Signal [relevant (new) signals]
derived : P(ran conj X ran conj X seq InferenceState x P Signal) [raw result]
derivedPerformance : UtilityScale [produce some performance]
consume : ResourceAllocation [consume some resources)
B optionMap = {b : state @ b — {b}} @ {slctOpt — derivedOptions}  [transform]
slctPrem C slctOpt.program N slctGoal C slctOpt.goal [select]
resourceValué = allocate(resourceValue)({consume}) [allocate]
mrgSignals = | J{c : slctPrem U slctGoul ® c.annotation}
(derivedPerformance, derived) = —(rype)(slctPrem, [infer]

sletGoal, exhead(slctOpt), consume)
derivedOptions = {b : Option; fs1,fs, : P Formula; sex : seq InferenceState:
581,889 : P Signal | (conj(fsy), conj(fsy), sex, ssy) € derived N

b.exceptions = sex " extail(slctOpt) A |build excpt. stack]
sse = {s: mrgSignals e (s.clone)(b)} N [clone orig sigs]
(b.program = {c : Conjunct | c.state € fs; A c.annotation = [build ]

(559U {5 : 85 | c.state € conj™ (s.program) e s}) e ¢} [program]

U{c, ' Conjunct | ¢ € slciOpt.program\ slctPrem N
d.state = c.state N ¢ .annotation = clone(| c.annotation ) N mrgSignalsU
c.annotation\ clone™ (mrgSignals) e ¢'}) A
(b.goal = {c : Conjunct | c.state € fsy \ c.annotation = [build goal]
(ss2 U {s: 557 | c.state € conj™(s.goal) e s}) e ¢}
U{c, ' : Conjunct | ¢ € slctOpt.goal \ slctGoal A
' .state = c.state N\ ¢ .annotation = clone(| c.annotation |) N mrgSignalsU
c.annotation \ clone™(mrgSignals) e ¢'}) e b}
signals_in' = signals_in A derivedSignals = | {ffe : derived e 7 (ffe)}
signals_out’ = signals_out U derivedSignals
performance’ = ((performance + derivedPerformance)/2.0) (average perf.]

The selection of options, conjuncts, and inferences is not further specified here, but
crucial to the decent behaviour of processes. This issue is closely linked to the em-
bedded logic and the applied inference principle and will be discussed at length in
Section 5. We go on by describing the behaviour of the active flag that is set if and only
if there exists the possibility to compute, i.e., the respective process is able to perform
some AProcessinf under the currently available local resources.

Y p : Process ® p.active = 1 < (3 pi : AProcessinf e p = pi.process) [set flag]

Further process operations can be distinguished. A AProcessExtension 1S any process
operation which does neither change the profile nor consumes or produces any re-
sources. An instance thereof is the AProcessStable schema which, in addition, leaves
the inference options untouched.

AProcessExtension = [AProcessOperation | performance = performance N
resourceValue' = resourceValue)
AProcessStable = [AProcessExtension | optionMap = {b : statc b~ {b}}]

38



Incorporating an incoming signal into the state of a recipient process (see Figure 16)
is now defined as follows: The first signal in the input queue is read and the sending
process is looked up from the context. The content of the signal, i.e., that part of the
sender’s current state which is annotated with a clone of the signal, is incorporated into
every option of the recipient. For this purpose, the respective logic goal and a subset
of the logic program from some of the relevant options is taken. During incorpora-
tion, no outgoing signals are generated. The auxiliary annotation relates options to the
annotations in any of their conjuncts.

__AProcessSignal
AProcessExtension [an extension]
firstSignal : Signal; sender : Process [the processed signal/the sender]
firstSignal = head(signals_in) N signals_in' = tail(signals_in) [read first sig]
sender € dom context N\ (sender.layer, sender.id) = firstSignal.sender  [lookup]
optionMap = {b : state; bs : P Option | Vb’ : bs e [incorporate]

3b" : sender.state; s : annotation(| {b"} |) N clone x (| {firstSignal} |);
ps : P{c: b".program | s € c.annotation e c} ®

b'.exceptions = b.exceptions N\ b'.program = b.program U ps N\

b’ .goal = b.goal U {c : b".goal | s € c.annotation e c})
e b — bs} A signals_out’ = signals_out

We collect AProcessinf and AProcessSignal in the general schema AProcessCompute.

AProcessComputation = AProcessinf NV AProcessSignal

Shared Memory and Exception Handling Signal incorporation is just one side of
process communication in COOP. Actually, any process, which has a shared refer-
ence with another process that performs a AProcessComputation, could itself perform
a AProcessExtension (see Figure 17). In more detail, as a by-product of a single pro-
cess’ computation, the correspondingly annotated options in every other process are
extended. In the following AOptionExtension, we describe this effect of shared mem-
ory onto a single option which follows similar considerations as AProcessSignal. It is
used to establish the shared memory model afterwards.

39



__AOptionExtension

AOption; option, option' : Option; allSigs : P Signal [an option transition]
po : AProcessOperation [caused by this operation]
propagateProgram, propagateGoal : P Conjunct [propagated info]

option = 0Option
option’ = H0ption’
allSigs = annotation(| {option} |)
(annotation( po.process.state |) N allSigs = @ A
annotation( po.process .state ) N clone( allSigs |) = @ = option’ = option)
(35 : po.process.state; b' : po.optionMap(b) e
(annotation( {b} ) N allSigs # & V annotation( {b'} ) N clone( allSigs |) # @)
= exceptions’ = exceptions N [exceptions are stable]
(propagateProgram C {c : b’ .program |
c.annotation N clone( allSigs |) # @ e ¢}) A
(propagateGoal = {c : b'.goal |
c.annotationN clone(| allSigs ) # @ o ¢}) A
(program’ = {c : program; ¢ : Conjunct | ¢ .state = c.state A
' .annotation = c.annotation \ clone”™ (| annotation( {b'} |) YU
clone( c.annotation |) N annotation( {b'} |) e ¢'}U
propagateProgram) N\
(goal' = {c : goal | clone(| c.annotation )N
annotation( {b'} |) = @}U
propagateGoal))

The last mechanism that is left to specify on the process level is exception handling.
Exception handling ‘shields’ other process operations, such as a computation and a
shared memory operation. Thus, the AExceptionHandling schema refers to a shielded
operation po. Exception handling does only become active upon operations in which
some option fails, i.e., it is mapped to an empty set of successors. Failures are restored
by retrieving the topmost alternative option fromthe exception stack. If the exception
stack is empty, a recovery is not possible and the process possibly dies.

40



__AExceptionHandling

AProcessExtension [a process extension]
po : AProcessExtension U AProcessComputation [embed]
po.process = process

signals_in' = po.signals_in' [signals stable]
signals_out’ = po.signals_out'

Vb : state ®

((po.optionMap(b) # @ A optionMap(b) = po.optionMap(b)) V. [no excp.]
(po.optionMap(b) = @ A b.exceptions = () A optionMap(b) = @) vV [failed]
(po.optionMap(b) = @ A (F e : InferenceState; b' : Option e [raised excp.]

optionMap(b) = {b'} A [restore option]
head(b.exceptions) = e N [pop exception]
b'.program = e.program N\ [build option]

b'.goal = e.goal N
b'.exceptions = extail(D))))

Ordinary processes and control processes compute asynchronously. Therefore, ma-
jor parts of Layer, such as global resources, global profile, allocations, and priorities,
do not change during the operation of an internal process. This is expressed in the
following ALayerExtension schema.

__ALayerExtension
ALayerOperation [a layer operation]
resourceValue = resourceValue [much]
allocations = allocations [stays]
processEmphasis’ = processEmphasis [stable]

processUtility = processUtility

triggerStord = triggerStore

processDiscount’ = processDiscount

discountFactor’ = discountFactor

newProcesses = &

V p : processes o ((context(p)).signals_in) = (p.signals_in)

InteRRaP-R performs a computation AlnteRRaP — RCompute as a single of its pro-
cesses performs a computation po. As already anticipated, any other process is allowed
to simultaneously perform a (possibly non-empty) AOptionExtension to any of its op-
tions according to the shared memory model. Both po and shared memory extensions
are shielded by exception handling.

41



AlnteRRaP — RCompute
AlnteRRaP — ROperation; po : AExceptionHandling; process, process' : Process

3blc, llc, slc : ALayerExtension e blc.layer = bbl A bic.layer’ = bbl' A
lc.layer = Ipl A llc.layer’ = Ipl' A slc.layer = spl A slc.layer’ = spl
po.po € AProcessComputation \ process € processes N\ po.process = process
po.process' = process' N context(process) = process’
YV p,p' : Process e (p' = context(p) &
(I po’ : AExceptionHandling e (po’.po € AProcessExtension) N
po'.process = p A po'.process’ = p' A p'.signals_out = p.signals_out N
[each process performs an extension shielded by exception handling
(Vb : p.state; bs: P Option e
bs = {be : AOptionExtension | be.po = po’ .po e be.option'} A
po’ .po.optionMap(b) C bs A
(po.po.optionMap(b) = & < bs = @)))) [if possible]

—

Besides the InreRRaP — RCompute case in which a single, regular process is the ac-
tual source of computation, we also have the following AlInt¢RRaP — RControl case in
which a single layer or control process performs a control operation. The referred
ALayerControl schema will be specified in the following paragraph. Since control pro-
cesses are not only interleaved with respect to their internal processes, but also with
respect to one another, ALaverControl requires all other layers to remain virtually un-
touched (ALaverSiable).

ALayerStable = [ALayerExtension |V p : processes ® [processes stable|
Jop : AProcessStable ® op.process = p N op.process’ = context(p)]

AlnteRRaP — RControl
AlInteRRaP — ROperation

(3lc : ALayerControl; transition: {(bbl,bbl'), (spl,spl'), (Ipl,ip!')} e
lc.layer = Titransition N
lc.layer = w3transition A
lc.context = context N
(V transitiony = {(bbl, bbl'), (spl, spl'). (Ipl, Ipl')} \ {transition} e
(Ils: ALayerStable o
Is.layer = m¥transition, A
Is.layer = witransitiony N
Is.context = context)))

The overall COOP model is collected in the following COOP schema. At this point,
we informally state that COOP should be fair, i.e., that it eventually performs pending
control, signalling, and ordinary inferences. A formal treatment of fairness would
amount to a lengthy notation in the presented framework; we refer to Section 5 where
we present a possibility for establishing fairness atthe inference level in mathematical
terms.

COOP = AlnteRRaP — RCompute NV AlnteRRaP — RControl

42



Control The final part of our specification describes the already referenced control
operations of InteRRaP-R layers, i.e., control processes. Two functions build the in-
terface of a control process to its associated knowledge base process. readKnowledge 1s
used to obtain the current resource parameters, such as allocations, emphasis, and dis-
count factors from state of the knowledge base. writeKnowledge is used to store global
resources and global profile in the state of the knowledge base for further processing.

readKnowledge : P Option — ((Id — ResourceAllocation) [read]
X (Id — UtilityScale) x (Id — R)) [parameters from kb]
writeKnowledge : (P Option x ResourceValuex [write]
(Id — UtilityScale)) — P Option [parameters into kb]

Next, we give the equation to compute the process urility under a given ResourceValue,
an applied ResourceAllocation, a cost specification ResourceCost, the process perfor-
mance, the process emphasis, and the process discount.

utility : (Process x (Id — UtilityScale) x (Id — UtilityScale) X
ResourceAllocation X ResourceValue x ResourceCost) — UtilityScale

V p : Process; emph,disc : Id — UtilityScale; ra : ResourceAllocation,
rv : ResourceValue; rc : ResourceCost e [utility is]
utility(p, emph, disc, ra, rv, rc) = [performance-resource cost]
min{max{(disc(p.id)  (emph(p.id) * p.performance—
> ({r : Resource o rc(r)(ra(r))(rv(r))}))),0.0},1.0}

The recursive activate function realises the already mentioned filter that decides which
process is to be resumed from a set of candidate processes. Until the candidate set is
empty, activate chooses the process with the highest utility. If its utility is greater than
zero, the process is accepted for activation and is allocated the applied resources. If
its utility is equal to zero, the process is filtered out. In each case, the gathered utility
values are registered within the global profile pu.

43



activate : (P Process x (Id — UtilityScale) x (Id — UtilityScale) x
(Id — ResourceAllocation) x ResourceValue x ResourceCost) <>
(P Process x ResourceValue x (Id — UtilityScale))

V psi, psa : P Process; emph, disc, pu : (Id — UtilityScale); rc : ResourceCost,
pa : (Id — ResourceAllocation); rvy, rvy : ResourceValue e

So, I've, pu) = activate(psi, emph, disc, pa, rvy, rc) < [activation filter]
P

(ps1 = @ A psa =S A rvg = rvi A pu = emph) V [nothing to do]

(Ip:psieVpy:ps; e [choose best utility]

(utility(p, emph, disc, pa(p.id), rvy, rc) >
utility(po, emph, disc, pa(ps.id), rv, rc)) A
(utility(p, emph, disc, pa(p.id), rvi, rc) = 0.0 = [zero - no activation]
(Ipp : (Id — UtilityScale) o
(activate(psi \ {p}, emph, disc, pa, rvi, rc) = (psa, rva, pp) A
pu = pp ® {p.id — utility(p, emph, pa(p.id), rv1, rc)}))) A
(utility(p, emph, disc, pa(p.id), rvy, rc) > 0.0 =
[positive - activate & allocate]
(3pp : (Id — UtilityScale) o
(activate(psy \ {p}, emph, disc, pa, allocate(rv,)({pa(p.id)}), rc) =
(ps2 \ {p}, rv2, pp) A
pu = pp & {p.id — utility(p, emph, disc, pa(p.id), rvi, rc)}))))

activate 1s used in the context of the final ALayerControl schema. Herein, a Layer clears
and inspects its signal buffer by looking for trigger signals and the associated candidate
processes to be possibly resumed: These are suspended processes whose active flag is
down and new processes to be created.

After updating the resource parameters by accessing the knowledge base using
readKnowledge and deallocating non-consumed resources from the suspended pro-
cesses, the activate filter is called to decide about process activation, to compute the
new global profile, and to determine the new global resources.

All processes which are granted to be resumed are equipped with their trigger signals
and are allocated their applied resources, where anySequence is an auxiliary function
which turns a set (of signals) into an arbitrary ordered sequence (of signals). The
discount of resumed processes is increased, i.e., the scaling of their performance in the
utility function diminishes.

All processes which could have been activated, but are suppressed because of a bad
utility, just receive ordinary signals. Their discount is reset and their trigger signals
are thrown away, except the activation signals of new processes. These activation
signals and the trigger signals dedicated to already active processes are backed up in
the triggerStore, where the 4 notation means the domain anti-restriction of a relation.
Finally, resource data and global profile are stored in the knowledge base via
writeKnowledge; while all other processes stay stable, the knowledge base hence per-
forms a AProcessExtension.

44



__ALayerControl

ALayerOperation [a layer operation]
NormalSignals, TriggerSignals : Process — IP Signal [signal buffers]
PossiblyActive, WillBeActive : P Process [process sets]
collectValue : ResourceValue [collect resource rests]

V p : processes U newProcesses \ {kb_process} e
Jop : AProcessStable ® op.process = p N op.context = context

dpe : AProcessExtension e pe.process = kb_process N\
pe.process’ = kb_process'

(allocations', processEmphasis, discountFactor') = [read parameters]
readKnowledge(kb_process.state)

NormalSignals = {p : dom context ® p — {s : signalBuffer \ TriggerSignal |

s.recipient = (id, p.id) e s}} [normal signals]
TriggerSignals = {p : dom context ® p — {s : signalBuffer N TriggerSignal |

s.recipient = (id,p.id) ® s}} (trigs]
newProcesses = dom TriggerSignals \ processes [new procs]
PossiblyActive = {p : dom TriggerSignals | p.active =0 & p} [susp]
collectValue =

deAllocate(resourceValue)({p : PossiblyActive ® p.resourceValue})
(WillBeActive, resourceValué , processUtility ) =
activate(PossiblyActive, processEmphasis, allocations, collectValue, costs)
V p : (processes U newProcesses) N WillBeActive o
((context(p)).signals_in) =
anySequence(TriggerSignals(p))”
anySequence(NormalSignals(p)) " p.signals_in A
((context(p)).resourceValue) = allocations(p.id) N
processDiscount (p.id) =
min{1.0, (processDiscount(p.id) /discountFactor(p.id)) }
Vp : (processes U newProcesses) \ WillBeActive e

((context(p)).signals_in) = anySequence(NormalSignals(p)) " p.signals_in N\
(p € PossiblyActive =
((context(p)).resourceValue) € Resource — (Item + {0}) A
processDiscount (p.id) = 1.0) A
(p & PossiblyActive = ((context(p)).resourceValue) = p.resourceValue N
processDiscount (p.id) = processDiscount(p.id))
signalBuffer = triggerStore [empty the signal buffer]
triggerStord = |J(ran((PossiblyActive\
(newProcesses \ WillBeActive)) < TriggerSignals))
kb_process' .state = writeKnowledge(kb_process.state, resourceValue,
processUtility)

3.5 Bottom Line

The crucial role of formal specifications in software engineering and the importance
of computational models for the design of intelligent agents in particular has been

45



[Variable, Constant]
Term ::= Variable | Constant(Term*)
Wif = L | Constant(Term*) | ~Wff | Wif v Wff | 3 Variable. Wif

Figure 19: Syntax of First-Order Logic

discussed: Computational models based on a mathematical notation are a necessary
supplement to architectures, theories, and inference systems within a coherent agent
design methodology. Computational models are the key to bring operational agent
features into a verifiable and unambiguous setting. For the purpose of presentation and
analysis, the specification language Z is particularly well-suited.

The COOP model pins down the InteRRaP-R architecture in a type-checked and con-
sistent Z specification. It makes use of programming constructs known from reactive
system design [AZ87], modern programming languages [Smo95], fault-tolerant sys-
tems [BW96), and intelligent computation scheduling [RW91, BD94, Hor86]. COOP
describes InteRRaP-R as a network of concurrent processes interacting via signals,
shared memory, and exceptions. COOP realises abstract resources as quantitative rep-
resentations of process interdependencies. Based on these representations, COOP ap-
plies an asynchronous control algorithm to optimise computation via optimising com-
munication.

Our model differs from standard resource management such as [BD94, Hor86] in that
it handles a set of simultaneous and independent process dependencies in real-time;
to this end, internal profiling has been shown as a surprisingly simple and adequate
tool. Our model differs from alternative agent specifications such as [dKLW98, dLL98]
in that it regards processes not as arbitrary forms of computation, but as continuous
sub-inferences in a given logic. The data structures that are exchanged between pro-
cesses are thus logic data structures, i.e., formulae. In contrast to the architecture-
independent DESIRE [DKT94] in which components realise various types of logics,
COOP provides a concrete and layered framework for expressing inferential services
in a common logic of time and action. This shared logic theory will be developed in
the following.

4 Theory: HEC

The automation of symbolic logic (or computational logics) [Fit90] is to develop for-
mal languages for expressing theories in an intuitive (declarative) manner using a
mathematical semantics and to provide the computational (operational) means to effi-
ciently execute them on a computer. The computational means are proof procedures,
which check the validity of statements in the logic language, andinference procedures,
which provide more specialised services, such as the analysis of the consequences of a
given theory.

46



4.1 First-Order Logic and Logic Programming

In the rich history of computational logic researched by philosophers, computer sci-
entists, linguists, and researchers in Al, many formal languages and associated proof
procedures have been developed and are still an active topic. The semantics of the most
prominent first-order logic (Figure 19) is determined by particular mathematical struc-
tures which comprise the models of a formula (Definition 3). Syntactic sugar, such as
the truth value T and the connectives V, A, =, C, and D, are expressible in terms of
the existing constructs.

Definition 1 (First-Order Two-Valued Structure) A first-order two-valued struc-
ture M = (U, IF, IP) consists of a universe U, a functional interpretation

IF : Constant x N — (U* — U), and a relational interpretation

IP : Constant x N — (P U* — {0, 1}) such that for all C : Constant and n : N it holds
IF(C,n) € (U" — U) and IP(C,n) € (PU" — {0,1})

Definition 2 (Assignment and Mapping) Ler M = (U, IF, IP) be a first-order two-
valued structure. An assignment V : Variable — U is a total function from variables
to the universe U. The mapping of terms under an assignment
V : Term x (Variable — U) — U is defined for all C : Constant; Va : Variable;
n:N; Tey,... Te, : Term; andV : Variable — U as follows:

V(Va,V) = V(Va) and V(C(Tey,...,Te,)) = IF(C,n)(V(Ter, V), ..., V(Te,, V))

Definition 3 (First-Order Two-Valued Model) Let M = (U, IF, IP) be a first-order
two-valued structure. For a formula F : Wff, M is a first-order two-valued model,
M |=o F, iff F is valid with respect to M, i.e., under all assignments V: Variable — U,
we have M,V |=5 F. We define the two-valued valuation }=§O’l} for all

F,Fy,F3 : Wff; C : Constant; n : N; Va : Variable; Tey,...,Te, : Term; and
Bo, Boy, Bos : {0, 1} as follows:

M,VESL

M,V =B C(Tey, . . ., Te,) iff Bo = IP(C,n)(V(Tey, V), ..., V(Te,, V))

M,V Ey B -FifM VERF

M, v feretBorBos}y b\ Foiff MLV B Fy and M,V =5 Fy

M,V |=8° 3Va.Fiff B= max{D : U; Boy: {0,1} | M,V® {Va — D} 5" F e By}

The attraction of ‘logic programming’ (LP) [Kow79] as an engineering method is not
so much like telling the computer what to do when, but rather like telling what is true
and asking to try and draw conclusions. To quote:

“the advantages of logic programming should be that computer programs
are easier to read. They should not be cluttered up with details about how
things are to be done — they will be more like specifications of what a so-
lution will look like. Moreover, if a program is rather like a specification of
what it is supposed to achieve, it should be relatively easy, just by looking

47



Literal ::= Constant(Term*) | =Constant(Term*)
Goal := T | Literal A\ Goal

Clause = YConstant(Term*) C 3 Goal
Program ::= T | Clause N\ Program

Figure 20: First-Order Normal Form

at it (or, perhaps, by some automatic means), to check that it really does
do what 1s required. In summary, the advantages of a logic programming
language would result from programs having a declarative semantics as
well as a procedural one”|[CM87]

Hence, LP offers a means for rapid prototyping, i.e., to move directly from high-level
specifications, say an axiomatisation of the the delivery problems in the Automated
Loading Dock, to corresponding implementations. Particular LP languages, of which
Prolog [Col85] is perhaps the best known, correspond to well-structured recursive pro-
grams (Figure 20). The usual service that is provided in such languages is to check for
entailment of P : Program; G : Goal, i.e., whether P O 3G is valid in all first-order
structures (short: P = éG).

However, negation 1s usually not treated in the way that first-order logic postulates
(Kun87]. This is because one wants to draw conclusions in the absence of particular
pieces of information. For example in being ignorant about a particular box standing
on the shelf, we would normally not be able to infer that there is some space left on the
shelf. To this end, the underlying semantics is changed to aminimal model semantics
applying a closed-world assumption: as long as we are not explicitly told that the shelf
is occupied by a box, we assume its being free. Syntactically, this can be expressed by
modifying P in such as way that everything about which we are nothing told inP, e.g.,
the occupancy of the box, must be false. This can be captured by the following trans-
formation, the Clark completion [Cla78], which constructs a replacement theory for P.
For simplification purposes, we can regard programs as sets of conjuncted clauses.

Definition 4 (Completion) Let Comp : Program — WIf be the completion of logic
programs. For all P: Program it holds:

Comp(P /\VC Vay, ..., ) = \/ EiVal—Te] N\ Va,=Te, A G}
J(C.n)

where
T :={C: Constant\ {=}; n: N; Va,,..., Va, : Variable | Va; distinct and not inP}
and

J(C,n) = A{Tey, ..., Te, : Term; G: Goal | ‘;’C(Tel, .., Te,) C 3G e P}

The completion maps each program to a formula which, by using equivalence = def-
initions, still contains all the implications of the original program; the equivalences

48



additionally state that the predicates cannot be derived in any other way. Every pred-
icate not defined in P is assigned L by the completion. The construction makes use
of the binary relation = which should be interpreted as the equality of elements in the
universe. A widely used equality theory in logic programming is the Clark Equal-
ity Theory (CET) which has been introduced in combination with the completion and
is presented in Definition 5. We can now define the typical LP inference service as
checking the validity of Comp(P) A CET = 3Goal, i.e., whether the goal is valid
in all ‘minimal’ models associated with P. Proposition 1 states the straightforward
observation that each minimal model of P is also a model of P.

Definition 5 (CET) LetV : Term — P Variable be the mapping of terms to contained
variables. We define CET ::= CET1 N CET2 N\ CET3 N\ CET4

(CET1) VX=X A VYX=YDOY=X A VX=YAY=Z>DX=Z

{C: Constant; n: N; let X,...,X,,Y1,...,Y, : Variable o

CET?2 = ) ; .
( ) VCI(Xla'"1Xn):C1(Yla"'7Yn) 3/\,‘_—_1)(1':Xi}

{C, Cy : Constant; nym - N; let Xy,...,X,,Y1,...,Y, : Variable and
(CET3) ) Ci#Coorn#me
vcl(Xla & e 7Xn)ic2(ylv vy Ym) =) —L}

(CET4) {Te: Term; let X : Variable and X € V(Te) VX=Te D £y

Proposition 1 (Minimal Model) Let P be a normal logic program. Then any model
M for Comp(P) A\ CET is also a model of P.

The well-definedness of CET has been conjectured in [Kun87] and formally shown
in [Mah88]. Since the 1980’s, the LP framework has found successful applications in
many areas of software engineering and Al such as relational databases, mathematical
logic, natural language understanding, design automation, symbolic solving of equa-
tions, diagnosis, configuration, and biochemical structure analysis. From this back-
ground, many state-of-the-art programming environments, such as CHIP [DHS* 88],
ECLIPSE [MS92], and Oz [Smo095], have emerged. Can we transfer this appealing
paradigm to agent design, in particular to the construction of hybrid agents?

4.2 Cognitive Robotics

A first-order variant (Figure 21) has been introduced by [FK97] upon completed
clausal programs, i.e., by relying on equivalence definitions and disjunctive goals. Dur-
ing completion, clauses that represent facts melt into existentially quantified positive
literals including equality statements. Furthermore, integrity constraintsare introduced
which are universally quantified implications. The computational service that is mod-
elled with this logic is to verify for given P : Program; A : Facts; G : Goal,

and IC : Constraints the entailment of the goal by the completion of program and
facts Comp(P A A) A CET = 3G' and in addition the theoremhood of integrity:
Comp(P A A) A CET = IC". Throughout this thesis, we abbreviate these conditions

10Comp can be straightforwardly extended to equivalence definitions and facts.
! Another possibility to treat integrity constraints would be to check their consistency. Theoremhood
of constraints turns out to be semi-decidable, while consistency is not [FK97].

49



SubGoal ::= T | Literal A\ SubGoal

Facts := T | Constant(Term*) N Facts

Goal ::= L | 3SubGoal V Goal

Definition ::= Q’Constant(Variable"") = Goal
Program ::= T | Definition A Program
Constraint := VFacts D Goal

Constraints == T | Constraint A Constraints

Figure 21: First-Order Equivalence Definitions with Constraints

to P,IC,A = G.

Kowalski & Sadri {KS96b] propose this logic as an appropriate foundation to transfer
the features of logic programming to the design of agents. They pin down this claim
to the question of an agent’s having both to act deliberatively as the result of tracing
evidences back to a background theory of the world (by the logic program) as well
as to act reactively as the result of trying to maintain its mandatory integrity (by the
constraints stating, e.g., ‘never bump into a wall’). Although a plausible argument, this
1s too general for situated agents: Just as we would not describe an agent as a Turing
machine, but as a specific program running upon it, it is necessary to have a closer look
at a logical agent’s background theory, i.e., its logic program, in order to determine its
model of the world more precisely (Figure 22).

NG Logical
. &

Figure 22: Cognitive Robotics in Hybrid and Unified Agents

There is a substantial amount of research devoted to finding such declarative foun-
dations of situated representation and reasoning. Although the umbrella title Cogni-
tive Robotics [LLL794, Bow87] has been coined in the early 90’s, these works can
be traced back to the very fundamental ideas of McCarthy & Hayes in the late 50’s
[McC58, McC63, MH69]. Back then, McCarthy & Hayes proposed to introduce a
notion of fime into logic in order to describe how the state of the world (in the form
of information particles, called fluents) evolves as being caused by actions. By ax-
iomatising these concepts, an agent is able to logically trace or explain the frequent
observations about the world that it is perceiving and to logically anticipate or plan the
future state of affairs including its own actions.

50



It was not until the publication of [Rei91] that the fundamental frame problem posed
back in [MH69] has found a first satisfying solution in terms of a first-order theory
(Subsection 4.2.1). This has raised the interest in Cognitive Robotics and led to a num-
ber of alternative formalisms for realising the McCarthy & Hayes postulate. Today, re-
searchers tend to generalise their ideas about state constraints, side-effects, continuous
trajectories, natural actions, etc. across those core calculi. Current implementations
show a considerable expressiveness and performance when reasoning about partially
observable blocks worlds [Rei99] or robot navigation [Sha97a].

So why should we bother about Agent Engineering at all if there already exists a pro-
totyping methodology for agents? The answer is: because Cognitive Robotics is yet
incomplete. As conceptually clean as the separation of declarative theory and compu-
tational inference 1s, it is not enough to derive concrete and implemented agent systems
running, e.g., in the Automated Loading Dock and the RoboCup simulation. The more
practical agent design is based on the pragmatic and operational guidelines of hybrid
architectures and computational models.

So why should we care about Cognitive Robotics at all if we concentrate on tradition-
ally engineered agents? The answer is: because it provides the most convenient sup-
plement when it comes to specify the inner part of primitive modules, i.e., to specify
the reasoning processes inside an operational agent framework (Figure 22). For both a
unified agent, say a decision maker situated in a dynamic environment, as well as a par-
ticular module, say the local planning process operating inside the hybrid InteRRaP-R
agent, the same aspects of situated representation and reasoning are highlighted: For
both the agent and a process, the world (including other agents and processes) is a
partially observable and dynamic environment that is to be rationally explained and
controlled. This shows the intimate relation between Cognitive Robotics and Agent
Engineering and motivates a common logic framework.

The road-map of the present and the following section is to define such a theory and its
underlying inferences respectively which can be applied in a unified decision making
agent as well as in a decision making module of a hybrid agent. Concentrating on
planning, for the moment, this does not mean that other InteRRaP-R functionalities
cannot be handled by this logic-based approach. We will elaborate that, in the end,
every process within our hybrid agent model can be expressed as a well-defined sub-
theory and an associated sub-inference of the complete logic framework.

4.2.1 The State-Based Situation Calculus

The first approach to use a predicate logic formalisation for representing action and
change in a situated agent (called reasoning program or advice taker, back then) has
been given by McCarthy & Hayes [McC58, McC63, MH69]. Fluent predicates are
annotated with additional situation arguments in order to trace their validity over time
at(box,, truck, so)'?. An implicit temporal relation between situations is given by a
function do which maps situations to successor situations that have been caused by the
execution of actions do(pickup(rob,, box; ), sp). Change is expressed as an implication
of the applicability of actions, i.e., the validity of their preconditions:

12We use lower-case letters to distinguish individual constants box; from individual variables Box; .

51



‘&hola’ing(Box, Rob, do(pickup(Rob, Box), S)) C Jahead(Rob, Box, S)
(SIT) Nat(Box, Area, S)
Nhandempty(Rob, S)

Given a description of an initial situation/ : Facts, such as
I = ahead(rob;, box, sp) N at(boxy, truck, so) N\ handempty(roby, sq)

and a goal G : Goal, such as G ::= holding(boxi, roby, S), this Situation Calculus is
able to reason about the connection of a situation with a goal, i.e., it can both analyse
and synthesise plans: [ A SIT = 3G. This early formalisation has been implemented
by Green [Gre69] and, as shown by [GLRI1], its expressiveness exceeds the one
of typical planning algorithms of today [FN71, BF95, KS96a]. For example, it is
possible to reason about partial initial situations as well as conditional and universal
effects of actions. At the same time, a very principle problem behind the Situation
Calculus has been revealed [MH69] that is the problem of determining persistent facts
(non-effects) which do not change when applying an action, for example, the location
of other boxes, the category of their content, etc. In the Situation Calculus, these frame
fluents have to be treated just as the changing fluents by additional axioms (FRA):

Vat(Box,, Area, do(pickup(Rob, Box,),S)) C  Jat(Box,, Area, S)
A—Box;=Box,
Vat(Box,, Area, do(label(Rob, Box;).S)) € Jar(Box,, Area, S)
\A/caleg()ry(B()xrl, Caty, do(label(Rob, Box,, Cat,), S)) C
écaleg()ry(Boxl, Caty, S) N ~Box;=Box,
Veategory(Boxy, Caty, do(pickup(Rob, Box,), S)) C Jcategory(Boxi. Caty, S)

(FRA)

This frame problem is nowadays well-recognised as one of the classical problems of
Al Besides its philosophical aspect, it has great engineering repercussions: For speci-
fying a problem domain such as the Automated Loading Dock in the Situation Calcu-
lus, it is a tedious task to specify all the non-effects in the form of separate axioms, i.e.,
one for each fluent and each action. Small changes in fluent and action representation
amount to great changes in the axiomatisation. In order to make the logic-based ap-
proach to decision making practical, a different formalisation has to be found in which
the concise specification of effects implicitly also determines the non-effects. Such a
solution to the frame problem should possibly not restrict expressiveness as done in
traditional planning algorithms.

Equivalences, such as used in the Clark completion, play an important role in the
calculus proposed by Reiter [Rei91]. By combining all the explicit evidences for a
fluent being changed into a single definition, we derive Successor-State-Axioms (SSA).
From these equivalences, the independence of fluents and actions can then be logically
derived, such as the persistence of category over any pickup action:

‘9(.‘aleg0r_y(30x, Cat,do(A, S)) = JA=label (Rob, Box, Cat)
(SSA) V3categorv(Box, Cat, S)
A=3A=label(Rob, Box, Cat.)

52



The formulation of Reiter is the basis of the GOLOG language [LLL"94]. However,
it has the drawback of not separating its basic reasoning principle from the domain
representations of fluents and actions. In SSA, both aspects are intermingled. To enable
the extraction of such a domain-independent logic program, we have to switch from
a fluent representation by means of predicates to a fluent representation by means of
manipulatable objects, hence terms of our theory. The appropriate technical notion is
called reification and has been applied by Kowalski [KS94] to obtain a variant of the
Situation Calculus (SITK) which looks like a domain-independent version of SSA:

Vholds(F, do(A, S)) = éiyitiates(A, F,S)
(SITK) Vv3holds(F, S)
A—terminates(A, F, S)

In SITK, the holds predicate is introduced to describe whether a given fluent, now as
an element of the universe, is true in a particular situation. We can now separate an
initial situation description

I ::= holds(ahead(roby, box,), so) A holds(at(boxy, truck), so) A
holds(handempty(rob,), so) A holds(category(box,, toys), so)

and a goal G ::= holds(holding(rob, box,, do(pickup(roby, box1, s9)))) from the back-
ground theory SITK and a domain description DOM. DOM determines the positive and
negative effects of domain actions by means of the predicates initiates and terminates.

Vinitiates(A, F, S) = 3F=holding(Rob, Box)
AA=pickup(Rob, Box)
Aholds(at(Box, Area), S)
Aholds(ahead(Rob, Box), S)
Aholds(handempty(Rob), S)
VIF=category(Box, Cat)
AA=label(Rob, Box, Cat)
Vs
Vterminates(A, F,S) = JF=at(Box, Area)
AA=pickup(Rob, Box)
Aholds(at(Box, Area), S)
Aholds(ahead(Rob, Box), S)
Aholds(handempty(Rob), S)
VIF=category(Box, Cat,)
AA=label(Rob, Box, Cats)
Missa

(DOM)

This gives us the desired framework SITK A DOM A I = 3G (short notation:
DOMAI gk 3G). Inrecent years, the reification technique has been extended to also
cover possible combinations of fluents in partial situation descriptions [HS90, Thi99].
Their Fluent Calculus uses a particular equational theory (the multi-set theory AC1
[GHS™92]) to axiomatise changes in partial situations using State-Update-Axioms
(SUA). Tt can be shown that this treatment allows for computational advances when
inferring the frame.

53



4.2.2 The Narrative-Based Event Calculus

State-based approaches to Cognitive Robotics, such as the Situation Calculus, are char-
acterised by their implicit notion of time and thar explicit focus on global states. It has
been argued, especially in the context of natural language systems and narrative under-
standing [Al184, KS86], that this is a major reason for the frame problem to appear —
states enforce the distinction of what is relevant for the reasoning from what is not.
Furthermore, they are a cognitively non-plausible representation for a human hearer or
reader: In narratives and discourse, seldom an overall description of the initial world
state is given and hardly a complete sequence of actions is told. Rather, the important
parts of the story are introduced piecewise and presented with incomplete temporal
annotations (“first, there was a box labelled with ‘toys’ standing on the truck ... one
robot picked it up ... guess what its category was after the other robot labelled 1t with
‘guns’.”). The hearer or reader of the story then has to reason under the assumption
that all the relevant information has been given to him. Sometimes, he has to withdraw
wrong conclusions when getting more information (non-monotonic reasoning).

The role of an interactive hearer or reader is a natural picture for a situated agent within
a multi-agent system, too. The agent cannot perceive every detail of the world, but is
frequently gathering bits of information whose temporal ordering could be unclear.
From these bits, the agent must derive preliminary conclusions and decisions. Hence,
the agent is not able to project a complete state representation of the world into past and
future, but only the relevant parts of its vague estimation thereof. That is why narrative-
based logics of action, which were originally developed in the discourse understanding
and temporal database background to avoid global states, turn out as useful formalisms
for Cognitive Robotics, too.

One of these formalisms is the Event Calculus which has been introduced in [KS86]
and brought into a form quite similar to SITK by [Sha89, KS94]

(ECK ::= ECK1 N ECK2,ECK3 N ECK4 N\ ECKD).

Vholds(F, T)) = Shappens(E, A, Ts)
Ninitiates(A, F, Ty)

ECK1 .
( CEl) NTH<T)
/\—\clipped(F, TQ, T, )
Velipped(F, Ty, Ty) = 3Shappens(E, A, T;)
(ECK?2) Aterminates(A, F, T)

AT <T3<T,
(ECK3) VT<To AT<T: D ITi<Ty
(ECK4) VYT,<T; > 3L
(ECKb) ‘V;’lzappens(E,Al, T1) N happens(E,As, Tz) D JA, =40 A TV =T,

The ontological entities in ECK are fluents, events (as unique tokens of a certain type of
action), and time points. Similar to Kowalski’s approach inSITK, there exists a holds
predicate which denotes that a certain fluent is valid at a particular point in time. The
axiom of change ECK1 realises a restricted version of the law of strict inertia: A fluent

54



holds at a particular point in time if and only if there exists an event that happened (the
happens predicate) at earlier in time (the before relation < in infix notation; T} ok §)
is an abbreviation for 71 <T, V T;=T5,) and that has successfully initiated the fluent
— unless the fluent ceased to persist in the meantime (it is clipped: ECK2) as the
result of being terminated by some other event. ECK3 and ECK4 are the background
constraints to obtain temporal order as a transitive and anti-symmetric relation. ECK5
describes events to be unique and instantaneous action appearances over time.

Given an initial situation'® and a narrative

I ::= holds(on(boxy, truck), ty) A holds(category(box,, toys), o)

A ::= happens(ey, label(roby, box,, guns), t) N\ to<t;\
happens(es, pickup(roby, box,), t2) A tg<to A 1<t3 N\ 12<t3

and the identical domain description DOM as in the SITK case'®, we could now infer
ECKINECK2ADOMAINA, ECK3NECKANECKS = éiholds(category(boxl, guns), t3)

(short notation: DOM A I A A ek 3G).

This result is due to the completion of the situation/ and the narrative A that was not
mandatory in the Situation Calculus. In SITK, a closed-world assumption can connect
partial states to global situations, but is not able to deal with incomplete temporal
information. Quite as the Situation Calculus is regarded as the theory behind state-
space planners [McC85], the completion of < into a partial order thus closely relates
the Event Calculus to algorithmic partial-order planning [Esh88, Mis91, Sha97a].
However, the notion of a correct plan in ECK is different from the common intuition.
Typically, a solution plan is one which satisfies the goal in all of its linearisations, i.e.,
its extensions to totally ordered plans. By minimising the < relation, ECK already
demonstrates the validity of effects under the existence of a single successful lineari-
sation; Suppose we add another action and some initial facts

A ::= happens(es, pickup(robs, box,), t) A tg<ty A t;<t3

[ ::= holds(handempty(rob,), ty) A holds(handempty(rob,), ty) A\
holds(ahead(roby, box,), ty) A holds(ahead(robs, box,), t;)

we then infer G ::= Jholds(holding(roby, box,),t3) A holds(holding(rob, box,), ts)
which is not intuitive.

For partial-order planning with the Event Calculus, an alternative formalisation
ECS := ECK1 A ECS1 N ECS2,ECK3 N ECK4 N ECK5 has been proposed by
[Sha89, Mis91, Sha95]. Instead of qualifying persistence-destroying events inside the
persistence interval, they are now required not to happen outside the interval bounds.

Velipped(F, Ty, T,) = 3happens(E, A, T3)
(ECS1) Nterminates(A, F, T3)
N—out(T3, Ty, Tz)

13 According to ECK1, each holds expression must have an associated initiator. In the Event Calculus,
the initial situation is thus normally described by a particular "dummy’ event in A and DOM which
introduces all the initial fluents. We have omitted this for the purpose of simplification.

'4The correspondence of situations and time points has been used to compare ECK and SITK [KS94].

35



Vout(Ty, Ty, Ty) = 3T3<T,

ECS2 .
( ) VAT, < Ty

ECS restricts its models in such a way that a solutionplan has to be correct in all of its
linearisations. In the absence of relevant temporal information, such as in our previous
example, ECS would not predict that the box is kept by any of the robots — this is what
we expect from any hearer that requires more information in order to resolve a story.
But this restriction comes at the high price of a computationally intractable semantics!
For our example, we can construct two minimal £CS models which differ in the valid-
ity of statements: one in which rob, is successfully picking box;, thus rendering the
action of rob, non-eftective, and one in which the opposite is the case. To give this a
semantical basis, the notion of three-valued models (Definition 7) has been introduced
by [Kun87]. The minimal three-valued £CS model of our example hence leaves the
truth values for preconditions and effects of both pickup actions ‘undefined’ (0.5).

Definition 6 (First-Order Three-Valued Structure) A  first-order  three-valued
structure M = (U,IF,IP) consists of a universe U, a functional interpre-
tation IF . Constant x N — (U* — U) and a relational interpretation
IP : Constant x N — (PU* — {0,0.5,1}), such that for all C : Constant; n : N,
IF(C,n) € (U" — U) and IP(C,n) € (PU" — {0,0.5,1}).

Definition 7 (First-Order Three-Valued Model) We define three-valued assign-
ments, three-valued valuations }:;{go’l}, and three-valued models \=; identical 10 two-
valued assignments, =y, and Fzéo’l} in Definitions 2 and 3.

Proposition 2 (Two-Valued and Three-Valued Models) Every  first-order  two-
valued model of a formula is also a first-order three-valued model of that formula.

Proposition 3 (Two-Valued Models and Undefinedness)
Let My = (U, IF. IPy) and My = (U, IF, IPy) be two two-valued models for a formula
F - WIf. Then there exists a three valued model My = (U, IF, IPy) of F, such that

05/ IPl(C.,n)(Ul,...,U,,);ﬁ
IP(C.n)(Uy,..., U,) = IP(C,n)(Uy, ... . Uy)
IPy(C,n)(Uy,...,U,), else

i

Undefinedness gives a natural interpretation to the ECS behaviour. Nevertheless, it is
computationally intractable: In a minimal three-valued model, the conditions for ="

and =" turn out to be computable, but =" describes the case in which an inference
procedure cannot decide and does not halt. In other words, inference procedures will
steadily loop (‘flounder’) between the minimal two-valued models. Especially during
planning within ignorant agents, such as the forklifts in the loading dock, such cases
could appear rather often and ‘paralyse’ the agents forever.

Different semantics, such as stable models [GL88] and well-founded models [GRS88],
have been proposed to allow for more useful inferences, at the same time keeping the
expressiveness of the LP framework. We could adopt such semantics for ECS as well.
Since this would require special inference procedures, this would restrict the range of
implementability with respect to standard platforms for logic programming, such as
constraint-based languages.

56



Instead, we have taken in [JFB96a] the pragmatic approach to refine the calculus in
order to allow for unique two-valued models, again. At first sight, this is in conflict
with a purist view on Cognitive Robotics. It is however justified as long as the calculus
keeps its intuitive form, i.e., the extensions have a declarative reading. This argument
will be used again when talking about representational extensions in the following
subsection.

The crucial observation of [JFB96a] was that, instead of running into mutual dependen-
cies, some sort of pessimistic worst-case analysis has to be performed by the calculus,
i.e., to apply the most conservative notionof a partially specified planning solution that
is available. A first approach is thus to omit the precondition checks invoked by the
clipped axioms. This way, any action, even if its preconditions are not valid, could
threat the persistence of some fluent and requires efforts from the agent in order to
re-establish the wanted effect. Such efforts could be to strengthen temporal constraints
or to insert repair actions. This scheme does however not allow to incorporate imme-
diate counter-measures to ‘neutralise’ adversary actions in advance. These are highly
necessary means in non-cooperative multi-agent systems [EM91].

For this purpose, the calculus

ECJ 1= ECJ1 A ... N ECI4 NECS3,ECK3 A ... N ECKD

has been presented which just focuses its worst-case analysis on mutual dependencies,
thus is able to reason about the preconditions of persistence destroyers as well. ECJ
predicates, such as holds, are extended to keep book about the visited events in a causal
chain C (using a list representation, e.g., C=cons(e;, cons(es, .. .))), the current worst
case B, and the event E that is currently under consideration:

Vholds(F, T;,C,B,E) = JImember(E, C) A B=1
v3-member(E, C)
Nhappens(E,, A, T>)
(ECJ1) Ninitiates(A, F, Ty, cons(E, C), B, E»)
NT<Th
/\ﬂlp(37 BZ)
N=clipped(F, Ty, Ty, C, By, E)

Velipped(F, Ty, Ts, C,B,E) = Jhappens(Es, A, Ts)
(ECJ2) Nterminates(A, F, Ts, cons(E, C), B, Es)
/\—\OMI(Tg, 11, Tg)
(ECJ3) Vflip(B1, By) = 31?1:1. A B2=(? i
v3B;=0 A B=1
Vmember(E, C) = égicons(E, C,)
(ECJ4) V3AC=cons(E,, C3)
Amember(E, Cy)

ECJ reasons similar to ECS unless trying to prove the precondition of some event
E in ECJ1 which has already been entered into that list (the member predicate in
ECJ4). Then, we have detected some causal cycle and a worst case assumption must

57



be applied: The worst case is indicated by the additional parameter B which can take
any of the values 0 and 1. For example, the worst case for wanting to demonstrate
the validity of an effect is that the precondition of its initiator does not hold ().
For example, the worst case for demonstrating the persistence of some fluent is of
course that a possible destroyer is successfully terminating that fluent (1). Hence, B
is flipped (ECJ3) each time it crosses a negation in the calculus. The ultimate goals
for ECJ start with an empty causal chain nil and refer to a ‘dummy’ consumer E, e.g.,
holds(category(box,, guns), ts, nil, 0, E). Also the domain description DOM is corre-
spondingly extended:

Vinitiates(A,F,T,C,B,E) = dF=holding(Rob, Box)
NA=pickup(Rob, Box)
Nholds(at(Box, Area), T,C,B.E) A\ ...
(DOM)
Vterminates(A,F,T,C,B,E) = 3F=at(Box, Area)
NA=pickup(Rob, Box)
Nholds(at(Box, Area), T,C,B,E) A\ ...

We shall now prove the well-definedness of ECJ and use the following argumentation:
Any undefined value in a minimal three-valued £CJ model can only affect the defined
predicates holds, clipped, initiates, and terminates and results in an infinite sequence
of undefined holds values that incrementally build up a causal chain (Proposition 4).
For any given narrative, this chain then must have a cycle. From the definition of the
calculus, it follows that the appropriate holds value must be either 1 or 0 (Proposition
5). Since this prohibits any proper minimal three-valued model for ECJ, we can derive
the uniqueness of an appropriate minimal two-valued model (Theorem 1). Using a
similar areumentation. Theorem 2 shows that any statement valid in the worst case ()
is also valid in the optimistic case (1). Some of the proofs can be found in Appendix
B.

Proposition 4 (Existence of Infinite Sequences in £CJ) Let M be a minimal three-
valued (Herbrand) model for ECJ under 1, A, DOM:

M =5 Comp(ECJ1 A ... N ECJ4 A ECS3 A A AT A DOM)A
CET NECK3 A ... A ECK5

For all C : Constant; n : N, it holds 0.5 € ranIP(C,n) if and only if there exists an
infinite sequence i = N; Uiy, ..., U« U such that IP(holds, 5)(U;s, ..., Uis) = 0.5,
[P(happens,3)(U;s, Uig, U;2) = 1, and Uiy, 3 = IF(cons, 2)(U,5, U;3).

Proof. see Appendix B. a

Proposition 5 (Three-Valued Minimal Models of £ECJ) Any minimal three-valued
(Herbrand) model M of ECJ is already a two valued model of ECJ.

Proof. see Appendix B. O

58



Theorem 1 (Unique Minimal Two-Valued Model of ECJ) ECJ has a unique mini-
mal two-valued (Herbrand) model

M =y Comp(ECJ1 A ... N ECJA N ECS3ANANIANDOM)A
CET N ECK3 N ECK4 N ECKS

Proof. Suppose that there are two-valued (Herbrand) models M;, M2 which differ
in the truth value of some IP(C,n)(Ui,...,U,). Then by Proposition 3, we could
construct a three-valued (Herbrand) model M3 with IP(C, n)(Uy, ..., U,) = 0.5. This
contradicts Proposition 5. O

Theorem 2 (Treatment of Worst Case in ECJ) Let M be the minimal (Herbrand)
model of ECJ:

M = Vholds(F, T, C,0,E) D holds(F,T,C, 1, E)

Proof. see Appendix B. |

Due to its expressiveness and computational properties, ECJ has been successfully ap-
plied in the context of the original InteRRaP architecture and the Automated Loading
Dock by standard LP techniques [JFB96a]. Especially the ability to treat partially-
ordered multi-agent plans has been a key requirement to encode the delivery tasks and
- the necessary coordination between forklifts. [Sha97a] has shown that abductive infer-
ences with the Event Calculus closely mirror the behaviour of partial-order planning
algorithms, giving a declarative meaning to concepts such as protected links, threats,
clobberers, and the promotion and demotion of clobberers. In recent years, several
alternative narrative-based formalisms have been developed for dealing with the frame
problem. The Temporal Action Language (TAL) [DGKK98, San94], for example, grew
out of an evaluation framework for action logics. It is currently applied in the off-line
verification of an unmanned airborne vehicle. But, it has not yet been integrated into
on-line decision making.

4.3 Abstraction In The Event Calculus

With the core formalisms of SSA, SUA, ECJ, and TAL, the practical impact of Cogni-
tive Robotics has been sufficiently demonstrated and the frame problem seems to be
solved today. Research now focuses on other aspects, such as indeterminate effects
[Sha97b, BT97, Lin95], simultaneous actions [Sha97c, BT94, LS95], the modelling
of continuous actions [Sha90, HT96], and the incorporation of state-constraints and
side-effects of actions (the ramification problem [Thi97, KM97a]).

These extensions develop increasingly sophisticated, thus increasingly expensive rea-
soning machines without worrying about the foremost requirement of situatedness both
for agents as well as for particular reasoning modules inside agents: the need for do-
ing early and approximate decisions. Our experiments in [JFB96a], for example, have
demonstrated that an £CJ-based planner is able to navigate a forklift’s BBL, but only
if the timing requirements are not too tight. Otherwise, the planner takes too long at
computing future details, such as complete navigation paths, for influencing the fast
BBL reactions in time.

59



transport(Rob;, Box;, Areay Area, Area)
at(Roby,Area

at(Boxj,Areay) S )
at(Roby, Areay) > —= at(Box;, Areay)

free(Area,) \ al(Box  Area)) |

at(Roby, Areqp)

coT -(//-w-p?R-(JfI/,Bmy "

search(Roby Boxy. Areap Area v pickup(Rob;Boxy E% scarchFree(RobAreagArea )|

at(Roby Areqy) E ahead(Rob; Box ) ::'-‘ at(RobyAreay Jreeahead(Rob ) w
v at{RobyArea ) ihandempiy(Roby) i v i(Raby, Areay) vholding(Rob i Box )
al(RobAreall \ at(Box drea) HiRY TS~ itRob Arear) vat(Roby. Areay)
ut(Boxy, Areay) ; olding(Rob jBox p :: ) : at(BuxyArea j
= thead(Roby, Box, : Sreeahead(Rob J7; ! freeArea)} fiveahead(Rob . (dmud(Roh'/, Boxy)", y

Imn(lempg'(Ruby-: N
freeahcad(Roby',!

)
\ <’( reeahead(Roby i alicad(Rob1.Box it i
ahead(Roby,Box) H handempty(Rob ):.'..' ahead(Rob ;Box)
N~—~"__Ghead(Rob1Box)|f } al(Box Area ,);? Ne~e~/__ahead(Roby,Box)

transport(Roby, Boxy, Areas Area, Areas)

Figure 23: An Abstraction Hierarchy

Instead of being occupied with details, a reasoner should be able to first treat the im-
portant issues of the problem, hence to solve its problem approximately. Later, this
solution sketch is to be refined into a detailed result. This is the idea of anytime algo-
rithms [BD94]. In a logic-based setting, abstract representations are an intuitive means
to indicate which features of the original problem specification are most important and
to hide other information for later incorporation [tTvH98]. For planning systems, this
has been most reasonably argued by (Sac74]. Because abstract representations are
organised in a decomposition hierarchy, we often speak of hierarchical planning. In
hierarchical planning, abstraction can be applied to fluents (situation abstraction) and
narratives (action abstraction). The latter subsumes the former if regarding initial situ-
ations and goals as ‘dummy’ actions with no preconditions or no effects, respectively.
Abstraction planning is useful for interleaving planning and action in real-time archi-
tectures [WHR96]. Figure 23 shows an extract of a forklift’s representation hierarchy
in which two transport actions are performed concurrently. From an abstract view-
point, rransport is defined as an opaque action with preconditions and effects that
describe the movement of robot and delivered box. Hereby, transport looses informa-
tion about particular fluents which have to do with the robot’s positioning (areas of
the loading dock, their reachability, etc.) and with the robot’s ability to pick and drop
a box. The transport macro also looses information about its complex temporal sub-
structure that consists of two sequential sub-actions which are macros by themselves
(searcit the box and deliver it to a free destination, searchFree).

transport allows to quickly connect a delivery goal with the current situation. Using
this decision as a kind of ‘promise’ for being able to solve the goal, a planner could al-
ready commit to certain actions, e.g., by influencing a forklift’s BBL to move the robot
to the initial area of the box, while still refining transport on the next level of repre-
sentation, e.g., to insert pickup and drop actions and to develop a complete navigation

60



path to the destination.

Thus, both for a planning module inside InteRRaP-R and for a single decision-making
agent, abstract representations are a useful tool. Put in a more general context, any
rational agent and any situated reasoning process must always be aware of its rep-
resentations naturally being abstractions of the real world. To cater for this aspect,
a declarative foundation for abstraction hierarchies in Cognitive Robotics has to be
found. One prerequisite, the composition of primitive actions into macro actions, has
already been discussed for most of the core calculi [LRL97, San94, Dav96, EHT96].
In these extensions, macros are not allowed to have effects by themselves. Causal
reasoning is still performed at the most concrete level of representation. Shanahan
[Sha97a] goes further by introducing effect axioms also for macro events. Still, his
macros are not to be called abstract, since their effects must be logically equivalent to
the lower level axiomatisation. By this design, macros do not really loose information
which gives no advantage for enabling approximate reasoning.

It is the loss of information that makes real abstractions a non-trivial concept for logic-
based treatment. In the example of Figure 23, the conclusion at(Boxy, Areas) is prov-
able at a high level of abstraction. But this conclusion cannot be necessarily made at
the next lower level of abstraction, since, e.g., the delivering robot could already be
occupied with some other box (—holds(handempty(Rob,), . . .) alternatively written as
the dual fluent holds(handempty(Roby), . ..)) which we have not taken into account
before and which requires additional efforts, e.g., to drop the carried box, in order to
install the wanted result. Hence, treating macros by purely semantical or inferential
means, such as above approaches promote to preserve their minimal ontology, would
require some sort of non-monotonic reasoning principle.

Now we return to our previous argument in the context of ECJ. Why not extend the
calculus in order to explicitly deal with abstractions if this allows for an intuitive con-
struct (accessible by an agent programmer) and at the same time for a broader imple-
mentability because of standard interpretations?

The contribution of this section is to introduce causally-effective macros at separate
levels of abstraction into a logic theory of action and time which we call the Hierar-
chical Event Calculus (HEC). We chose the Event Calculus, in particular ECJ, as the
basis because of positive experience with its narrative-based reasoning in multi-agent
settings. It will turn out that, similar to the relaion between Event Calculus and partial-
order planning, we can install a one-to-one correspondence between HEC inferences
and hierarchical partial-order planning.

4.3.1 Prerequisites

Representing macros and levels of abstraction in the Event Calculus needs a few pre-
requisites which we would like to discuss before giving their formalisation. From
these, it will be apparent that HEC keeps an intuitive reading, moreover unveils and
addresses a deeper problem in reasoning about causality that is also inherent to single-
level approaches, such as ECS.

Duration In ECK, ECS, and ECJ, events are ideally regarded as instantaneous.
When switching to macro actions, such as transport, this idealisation does not hold
anymore.

61



Since macros are complex compositions of temporal substructures, e.g., they are pos-
sibly long-lasting configurations of underlying reactive processes, they must have a
positive duration. Therefore, events must be assigned a time interval consisting of a
start time point and an end time point. The end time is greater or equal to the start
time.

Preconditions In ECK, ECS, and ECJ, preconditions are valid iff they are provably
present at the start time of the respective instantaneous event which is equal fto its
end time. In HEC, events represent opaque substructures with duration. Thus, it is
not possible to prove preconditions just at the start of some action, such as to check
free(Areasy) just at the beginning of a transport.

Worst-case assumptions are the right tool to deal with the absence of further informa-
tion at this level of reasoning: In the worst case, preconditions are needed by some
sub-event of the macro which is located quite at the end (searchFree in transport).
Hence, it is safe to speak of a valid precondition iff it has been demonstrably initiated
before the start of the macro and is not clipped until its very end. For example, we need
to ensure that until the end of fransport, no concurrent activity is able to put a different
box to the last free space of the envisaged shelf, hence does not terminate free(Areas).

Effects When do effects become visible? Similar to the consumption of a precondi-
tion, the effect of a macro (at(Rob,, Area,) in transport) could be produced by some
sub-event relatively late with respect to the overall duration (here: searchFree). Thus,
we can take effects not for granted until the very end of some action.

On the other hand, effects could as well be caused by some sub-event rather early in the
course of the macro, such as at(Rob,, Areay) being terminated by search. Therefore,
the persistence of preconditions is violaed right from the beginning of some initiating
action. Vice versa, terminating effects violate the persistence of preconditions right
from the beginning of a destroyer event. Using these conservative rules, we take as
much as possible care of the further refinement of an abstract plan.

Causality Interestingly, a special version of the above worst-case assumptions has
already been present in the ECK and ECS calculi. ECK and ECS state that initiators
have to happen before (<) the consumption of their effects while destroyers already
influence simultaneous settings (<).

The inherent possibility of running into causal cycles with that design leads to the
computational intractability of ECS by partially undefined minimal models. A possible
fix is the requirement that no two actions can happen simultaneously [KS94]. For
HEC, this is too heavy a restriction, since actions have durations and could happen
interleaved (Figure 24).

Hence, we take over the solution of ECJ not as a purely practical issue to reinstall
well-definedness, but also as a deeper question with respect to the applied causality
principle: What ECJ already anticipated and what is taken over to HEC is, in a nutshell,
the naive physical stance that excludes any effect from altering its own cause, any event
to influence the validity of its own preconditions.

62



pickup(rob ;Box)
holdi by, bos
ahead(rob,box) holding(roby, box)
handempty(rob ) handempty(rob))
at(box,shlelj) Wbox,shelﬂ

pickup(robzbox) !
at(box, shelj)

at(box,shelf)
ahead(rob;box) handempty(rob,)
handempty(rob,) < Py

holding(rob;box)

Figure 24: Causal Cycles Lead to Partially Undefined Models

Dual Fluents Relying on the completion of partial information and worst-case anal-
yses, our calculus distinguishes between not being able to demonstrate the validity of
a fluent (—holds(at(Rob,, Areay), t, . ..)) and being able to demonstrate its not being
valid (the dual fluent holds(at(Robl,Areao), ,...)). It is sometimes convenient to talk
about the latter case in preconditions, thus we extend the calculus to reify duals and to
treat them symmetrically. For example,

—holds(at(Roby, Areay), t, . ..) A —holds(at(Rob,, Areay), t,. . .)
should be satisfiable as a matter of ignorance, while
holds(at(Rob,, Areay), t, . . .) A holds(at(Rob,, Areay), t, . . .)

should not.

Level of Abstraction So far, we concentrated on durable and information-loosing
macros. Once obtained, the representation of levels of abstraction nearly comes
for free: Predicates are simply annotated with abstraction-level terms, for exam-
ple one term referring to transport and corresponding fluents, one level referring
to search, searchFree, pickup, and drop and their respective fluents, etc. In this
way, we can express fluents which are valid at a particular level of abstraction
(holds(at(Boxs, Areas), t, . . ., ls) where this does not necessarily imply their being
valid at a different level (holds(at(Boxg,AreaQ) ., I3). The reasoning at different
levels is however not completely separated: An operatlon which performs the (de-
)composition of representations is added and installs the connection between abstract
macros and primitive sub-events, between high-level fluents and more concrete state
descriptions. This (de-)composition performs bidirectionally, hence serves as a declar-
ative foundation for decomposing approximate plans into refined decisions and for
reconstructing high-level intentions from piecewise observations.

4.3.2 The Hierarchical Event Calculus

We now incrementally formalise the Hierarchical Event Calculus

HEC 7= HECI A ... A HECS N ECI3 A ECH,

63



HEC6 N ... N HEC12 N ECK3 AN ECK4

In the following HEC1 definition, holds takes seven arguments which denote the en-
visaged fluent, two subsequent time-points between which we would like the fluent to
persist, a causal chain, the worst case flag, the event whose preconditions are currently
under consideration, and the current level of abstraction. It is to read as follows: the
fluent holds at a particular level of abstraction immediately before the beginning of
the indicated interval and it is exclusively touched by the event under consideration
throughout the whole interval. HEC1 provides a special interface to an initial situa-
tion / by using the predicate initially (see, e.g., [Sha97a]). Since we assume the initial
situation to happen at the very earliest time-point in the narrative, a special version of
persistence (iclipped) 1s used. The effects of actions are introduced by a single pred-
icate (causes) that is defined in the domain axiomatisation DOM. Both initially and
causes operate on fluents and dual fluents.

Vholds(F, Ty, Ty, C,B,E,L) = 3T\ <Ty A member(E, C) A B=1
VAT, <Ty A ~member(E, C)
Ninitially(F, L)

/\ﬂip(B./ BQ)
N—iclipped(F, Ty, C, By, E, L)

(HECT) \/éTléTg N —member(E, C)A\
Nhappens(E;, A;, Tz, Ty, L)
AT, <T;
Ncauses(A;, F, Ts, Ty, cons(E, C), B, E;, L)
/\ﬂl[)(B, Bz)

A—clipped(F, Ts, Ta, C, By, E, L)

The clipped predicate in HEC2 is also extended by the current level of abstraction
L. Since it is defined over fluents and dual fluents, a destroyer is now identified by
its causing the dual fluent — the dual predicate defined in HEC3 uses the function
symbol not to switch between the two fluent versions — and by its not being disjoint
(the disjoint predicate defined in HEC4) with the proper persistence interval. Since any
event should not be able to alter its own preconditions, a destroyer furthermore must
be different from £. This coincides with our above remark about holds in which only
E, if any event, is able to touch the fluent throughout the persistence interval.

Vclipped(F, Ty, To, C,B,E, LY = Zhappens(E,, A,, T3, Ty, L)
AE=F
(HEC2) Adual(F, F_)
Ncauses(A,, F_, Ty, Ty, cons(E, C), B, E,, L)
/\“‘diSjOiIl[(Tl, T, T3, T4)

Vdual(F,F_) = 3F=not(F_)

(HECS) VIF_=not(F)

Vdisjoint(Ty, Tz, T3, Ts) =  IT,<Ts

(HEC4) )
\/E]T4 <Ty

64



HECS defines iclipped which checks the defect of persistence between the very begin-
ning of the narrative and any time-point 7;. The temporal constraints in HEC2 simplify
in this case to a destroyer’s not starting after 7.

Viclipped(F,T,,C,B,E,L) = 3happens(E, A, T3, Ty, L)
N-E=F
(HECS) Ndual(F, F_)
Ncauses(A;, F_, T3, Ty, cons(E, C), B, E,, L)
/\"1T1 <T3

The following axioms (HEC6 — HEC9) relate neighbour levels of abstraction.
We assume that there exist (de-)composition operations decomposeMacro and
decomposeHolds which are defined in DOM and which describe the correspondence
of higher-level representations (macro actions and abstract fluents) with more primi-
tive occurrences (sub-events and more concrete fluents). Intuitively, there should be
an equivalence between happens and decomposeMacro which we do not immediately
express as a definition. Rather, we use two separate constraints (HEC6 and HECS)
for ‘maintaining the integrity’ of the given abstraction hierarchy. This will turn out
to be useful in the next section. Abstract holds statements are subject to information
loss. Hence, lower-level fluents will imply the occurrence of higher-level ones (HEC9),
but not vice versa. For the opposite direction, we determine a weaker relation (HECT)
which just focuses on the initial situation/ and requires a decomposelnitially definition
in DOM quite analogous to decomposeHolds.

(HEC6) \;’happens(E, AT, T, L) D gldecomposeMacro(E, AT, T, L)
(HECT) Vinitially(F, LD édecomposelnitially(F L)
(HECS) ‘QdecomposeMacro(E, ATy, Ty, L) D éhappens(E VA, Ty, Ty, L)

(HECY) ‘V’dfacomposeHolds(F,. T, Ty, nil, 0, E1, L) D
Jholds(F, Ty, Ty, nil, 0, Ey, L)

Finally, we add three constraints HEC10, HEC11, and HEC12 which state that each
event has a positive duration and is unique with respect to its action type, its duration,
and its level of abstraction, and that the initial situation must be consistent with respect
to dual fluents. The background theory of < is lend from ECK (ECK3 and ECK4).

(HEC10) Vhappens(E,A, Ty, Tp,L) D 3T, <T,

Vhappens(E, Ay, Th, To, Ly) N\ happens(E,As, T3, Ty, Ly) D 3A;=A,
NT1=T;5
/\TQiT_/;
AL =L,

(HEC11)

(HEC12) Vinitially(F, L) A initiall{F_, L) A dual(F,F_) > 31

65



4.3.3 Domain Representation and (De-)Composition

A narrative in HEC (see our example in Figure 23) is a set of facts of the form

A = happens(ey, transport(roby, box,, parking, truck, shelf3), t;, tz, )\
happens(eq, transport(roby, box,, parking, shelfy, truck), t3, ty, lo)A
happens(es, search(roby, boxy, parking, truck), ts, tg, I3) A ... A
L<ts<te<ty<t:<tg A 138417 A . ...

Where we had to encode the initial situation / within the narrative and the domain
description DOM before, this is now much easier to realise using theinitially predicate:

I ::= initially(at(box,, truck), ly) A initially(at(roby, park), I,) A\
initially(free(shelfs), lo) A initially(at(box,, truck), l3) A\
initially(handempty(roby), l3) A . ..

Domain-dependent situation abstraction is encoded by means of the following def-
mition of decomposeHolds (and an analogue definition of decomposelnitially) in
DOMSAB. 1t relates particular fluents at higher levels of abstraction to fluents within
a more primitive or even the same level of abstraction. For example, the occupancy of
areas within the loading dock can be inferred from more concrete positioning data with
respect to landmarks (atPos). For example, ahead can be derived from positioning and
orientation. The decomposition of most primitive fluents is simply T.

Q’decomposeHolds(F, 1,,T5,C,BE, L) =
AL=l5 A F=at(Object, truck)
Aholds(atPos(Object, 1,1), Ty, Ty, C, B, E, )
(DOMSAB) VL=l A F=ahead(Rob, Box) A X1=Xs A Yo=+(Y, 1)
Aholds(atPos(Rob, X1, Y1), Ty, T2, C, B, E, L)
Nholds(orient(Rob, north), Ty, To, C, B, E, L)
Aholds(atPos(Box, Xo, Yo), Th, To, C, B, E, L)

As for HEC’s ancestor calculi, DOM contains the causal effects of actions DOMCAU.
These are defined through a single causes predicate which assigns both fluents
(at(Box, Areay)) and dual fluents (not(at(Rob, Areag))) as the result of executing an
action under particular (positive or negative) preconditions. causes distinguishes ac-
tions according to different levels of abstraction, i.e., the same action type, such as
pickup, could have more abstract preconditions and effects at a higher level than at a
lower level of abstraction, such as the atPos fluent which does not become apparent
until level 4.

66



Veauses(A,F, Ty, Ty, C,B,E,L) =

L=l
NA=transport(Rob, Box, Areay, Area; , Areas)
NF=at(Box, Areas)
Nholds(at(Rob, Areay), Ty, T>, C, B, E, L)
Aholds(at(Box, Area,), Ty, Te, C, B, E, L)
Nholds(free(Areas), Ty, To, C, B, E, L)

V3L=l
NA=transport(Rob, Box, Areay, Area, , Areas)
A-Areay=Area;
AF=not(at(Rob, Areay))

(DOMCAU) A

VAL=ls
NA=pickup(Rob, Box)
AF=holding(Rob, Box)
Aholds(at(Box, Area), Ty, To, C, B, E, L)
Aholds(handempty(Rob), Ty, Ty, C, B, E, L)
Aholds(ahead(Rob, Box), Ty, T, C, B, E, L)

\AE=T
NA=pickup(Rob, Box)
NF=not(atPos(Box, X1, Y1))
Aholds(atPos(Box, X1, Y1), Ty, T2, C, B, E, L)
INE A

The final task of DOM is to encode abstraction within the temporal narrative by defin-
ing the decomposeMacro predicate (DOMAAB). A successful decomposition of a
macro is most straightforwardly described as the occurrence (happens) of correspond-
ing sub-events at the next level of abstraction and the validity of temporal constraints
between their duration. In our example, the transport macro decomposes into a se-
quence, i.e., a completely ordered set, of sub-actions. It is possible that actions just
decompose into more refined versions of themselves, such as it is the case for pickup
and drop from level /5 to I4.

VdecomposeMacro(E, A, Ty, To, L) =

L= Iy A\ A=transport(Rob, Box, Areay, Areay , Areas)
Ahappens(E,, search(Rob, Box, Areay, Area, ), Ty, Ts, I3)
Nhappens(Es, searchFree(Rob, Areay, Areas), Ty, T, I3)
AT <T3<Ty<T,

AL=1I5 A A=pickup(Rob, Box)
Ahappens(E, pickup(Rob, Box), T, T, 1)

éLi‘l:; A A=drop(Rob, Box)
Nhappens(E,, drop(Rob, Box), Ty, Ts, l3)

(DOMAAB)

Using the expressiveness of first-order logic, the (de-)composition predicates can be
converted into a powerful description tool. For example, arbitrarily interleaved activ-
ities, such as the two delivery macros in Figure 23, can be described in DOMAAB by

67



loose temporal relations

Shappens(Ey, transport(. . )s T3, Ty, la) A happens(Ey, transport(. . .), Ts, Ts, l2) A\

I <T3<T;,<To, NT' <T:<Ts<T)

As [Dav96] has shown, DOMAAB implements the fundamental concepts of a proce-
dural programming language including concurrent statements, sequential statements,
recursion, and even conditionals. For example, the search macro can be procedurally
refined as _

Jholds(at(Rob, Areay), Ty. Ty, I3)A

holds(ahead(Rob, Box), Ty, Ts, I3)

V3happens(E;, moveArea(Rob, Areay), Ty, Ts, 13) A
happens(E, look(Rob, Box, Areay, Areay ), Ty, To, 3) A
T\ <T5<T,

where moveArea and look are lower-level navigation ‘routines’.

This property of DOMAAB, namely the treatment of plans or narratives as procedures,
is the key to specify the complex intentions of agents. This is of course not too surpris-
ing, since the definitions just lift the expressiveness of underlying logic programming.
One may argue that the use of HEC is therefore a trivialisation to the general ap-
plication of logic programming to agent design. As already argued in [McC63], the
difference is that a logic ‘procedure’ and a logical ‘application of the procedure’ are
now represented as reified terms of our theory of time and action and hence subject
to ongoing reasoning about explicit causal and temporal relationships. This holds for
the prediction of abstract situations from given observations such as needed to build a
knowledge base module. This holds for the task of a planning module to synthesise an
intention from designer-given pieces of behaviour. And this holds for the plan’s on-line
interpretation in interaction with the environment within intention execution modules.
The final part of a HEC specification are the overall goals to be achieved which are
defined as a set of conservative holds expressions (sceptical mode 0, causal chain nil,
‘dummy’ consumer £, E5) referring to different levels of abstraction

G ::= holds(at(box,, shelfs), t7, ts, nil, 0, Ey, 2} A
hOldS(d[(bOXl, Sh@lfg), t7, s, nil, O, Es, 13)

We then derive the framework DOM A I A A Eyee 3G.

4.3.4 Well-Definedness and Other Properties

As we have demonstrated in the case of ECJ, it is important to establish the com-
putational tractability of HEC with respect to partially undefined models. Since the
technique of dealing with mutual dependencies has been carried over to HEC, the ar-
guments and proofs that partially moved into Appendix B are similar, if not identical.
First, we show that undefined predicates result in an infinite sequence of undefined
holds values incrementally building up a causal chain. The events referred in that se-
quence are introduced via happens facts in the narrative A (Proposition 6). Then, the
appearance of a causal cycle and the definedness of some intermediate holds value,
hence the collapse of the infinite sequence can be shown.

68



This construction also carries over to the worst-case behaviour of HEC (Theorem 4)
from which we finally derive in Theorem 5 that dual fluents are treated as intuitively
expected: It is not possible to demonstrate the persistence of both a fluent and its dual
within the same pessimistic context.

Proposition 6 (Existence of Infinite Sequences in HEC) Let M be a minimal three-
valued (Herbrand) model for HEC under I, A, DOM:

M k=3 Comp(HEC1 A ... N HEC5 AN ECJ3 A ECJAANA NI ADOM)A
CETNECK3NECK4ANHEC6 A ... \ HEC12

For all C : Constant; n : N, it holds 0.5 € ranIP(C,n) if and only if there exists an
infinite sequence i : N; Uy, ..., U;s : U such that IP(holds,7)(U;,,...,Uiz) = 0.5,
Ui+1,4 = IF(COIIS, 2)(U,‘76, U,-’4), and IP(happens, 5)(U,"6, U,"g, U,"z, U,'73, U,',7) = 1.0.

Proof. see Appendix B. O

Proposition 7 (Three-Valued Minimal Models of HEC) Any minimal three-valued
(Hebrand) model M of HEC is already a two valued model.

Proof. see Appendix B. o

Theorem 3 (Unique Minimal Two-Valued Model of HEC) HEC' has a unique min-
imal two-valued (Hebrand) model

M {=9 Comp(HEC1 A ... N HEC5 A ECJ3 AN ECJANA NI AN DOM)A
CETNECK3NECKANHEC6 A ... N\ HEC12

Theorem 4 (Treatment of Worst Case in HEC) Let M be the minimal (Herbrand)
model of HEC:

M |=Vholds(F, Ty, Ty, C,0,E, L) D holds(F, Ty, Ts, C,1,E, L)

Theorem 5 (Treatment of Dual Fluents) Let M be the minimal (Herbrand) model of
HEC:

ME 9/1olds(F, Ty, T, C,0,E,L) A Dual(F,F_) D —holds(F_, Ty, T», C, 0, E, &

Proof. see Appendix B. a

4.4 Bottom Line

A common declarative framework for describing the reasoning of unified agents
as well as of particular processes inside a hybrid agent has to care about the rep-
resentation of fluents, time, actions, and their inherent causal relationships possi-
bly in an ‘executable’ first-order logic. This section developed the Hierarchical

69



Event Calculus as an expressive theory that is derived from the narrative-based for-
malisms of [KS86, Sha97a, Dav96]. Like the calculi of [LRL97, Sha97a, Dav96],
HEC reifies a procedural sub-language which is able to synthesise and analyse the
complex intentions of agents, such as behaviours, plans, and protocols. Unlike
[LRLI97, Sha97a, Dav96], HEC explicitely deals with multiple levels of abstraction
that incorporate macro events with own duration, own effects, and own preconditions.
This is to address the foremost requirement of situatedness which is the making of
approximate inferences and decisions.

For this purpose, HEC relies on standard logic programming for broad implementabil-
ity and exhibits useful properties, such as well-definedness, in reasoning about incom-
plete information. Just as SC is regarded as the theory behind state-space planning,
just as the Event Calculus has been shown to declaratively mirror the computation of
partial-order planning 4 1a UCPOP [Wel94], HEC provides a formal basis for express-
ing the abstraction planning of, e.g., Hierarchical Transition Networks [EHN94], and,
in general, for expressing all the InteRRaP-R processes, such as mental model, reflex,
and protocol execution in an inferential setting. A suitable inference framework for
HEC shall be developed in in the following.

5 Inference: ALP

Model theory is the prime tool for designing and analysing logic specifications such
as the Hierarchical Event Calculus. Computational logics also rely on their proof-
theoretic, inferential semantics that describes how to trace consequences and explana-
tions of a given theory in a systematic fashion, e.g., how to ‘execute’ HEC for realising
various reasoning processes. Proof theory has even been propagated as a partial sub-
stitute for model theory [Kow95]. Usually, however, proof and inference procedures
are evaluated with respect to soundness and completeness for a given model theory;
sound procedures only accept statements which are valid in the model-theoretic sense.
Complete procedures are able to eventually derive all valid statements.

5.1 Logic Programming and SLDNF

The problem of determining the satisfiability of a first-order formula, i.e., to derive
whether for a given F' : Wff there exists a model M and an assignment V such that
M,V = F, is semi-decidable: We can only give procedures which terminate if a for-
mula is unsatisfiable or valid, but do not necessarily halt if the formulais satisfiable and
not valid. Early proof procedures by Davis & Putnam [DP60] and Robinson [Rob65]
were building on the work of Herbrand [Her67] who showed remarkable connections
between syntactical manipulations on first-order formulae and their semantics.

It was especially due to the resolution principle of Robinson that the automation of
first-order logic became an attractive and fruitful field of research. Resolution can be
coded as a relation : Wff < Wff that describes a set of possible computation steps
starting from an initial formula F : Wff and successfully ending if F =* L A F; where
the transitive hull =* enumerates all derivations that are according to the resolution
principle. Resolution incorporates the following particular inference steps AND +
FAL + TRU + RES + EXI + ALL which partially substitute the quantified variables

70



(Definition 8). For reasons of simplicity, we have omitted to establish the associativity
and commutativity of V and A. '

Definition 8 (Substitution) A substitution o : Variable — Term is a mapping from
variables to terms. The application of a substitutiono to a term Te, Teo, is inductively
defined for all Va : Variable, C : Constant; Tey, ..., Te, : Term as

Vao = o(Va) and C(Tey, ..., Te,)o = C(Teyo, . .., Te,0)

(ﬁ(F1VF2)VF3)/\F4 D (3 Va.F1VF2)/\F3 Cnotin Fy, Fo, F3
(—‘F1VF3)/\(_‘F2VF3)/\F4 (Fl(VCIF—)C)VFQ)/\Fg

EXI

("E]VCI.F]VFQ)/\F:; V(TE)ZQ
(=3 Va.Fy V Fy) A (~F,(Var— Te) V F3) A Fs

ALL

(LVF)AF,y -1l AF

FAF,  TAL F, IRU

(V,' C,-(Te,-yl, . Te,‘7,,i) V Fl) A\ (Vz _|C,'(T€,‘,1, ey, Te,-,n,.) V FQ) AN F3
(\/,- C,(Te,-,],, PN Te,-,,,,.) V F[) A (v, —1C,~(Te,-,] ye ey Te,-,n,,) V FQ) A (F1 \Y Fz) A F3

RES

Resolution is a sound refutation procedure. If L appears in the top-level conjunct
of a derived formula, we know that it is unsatisfiable, hence this must hold for all
intermediately computed formulae and thus the initial formula, too. To demonstrate
that a particular statement is valid, we demonstrate the unsatisfiability of its negation
by using the resolution principle. Resolution is a complete refutation procedure by
eventually deriving L from any unsatisfiable formula [Fit90].

But these are just in-principle statements because = does not immediately lead to a
deterministic algorithm. One measure for improvement is to switch to a unification-
based approach [Rob65, Sie89, LMMS&8] which delays the non-deterministic choice
of the right variable replacement in ALL until it is really needed to perform RES.
An unification algorithm is deployed to derive the most general unifier that renders
two literals dual and enables the application of the RES step. First-order unification
is decidable; early algorithms were specified recursively with exponential complexity.
Recent developments have shown that it can be done in quasi-linear time [MMS82].
Another measure is to choose more convenient canonical representations, such as nor-
mal logic programs, and more appropriate inference services, such as the checking
of entailment P = 3G. For example, if we restrict to positive literals in the body of
clauses and the goal (definite logic programs), all rewritings can fully concentrate on
the goal expression - Program — Goal <+ Goal and can be captured within a single
inference step. In the following, we abbreviate = (P) to bp, let o : Variable — Term
be a most general unifier, and suppose 7 (P) to be a variant of the program P that is an
equivalent formula, but has all variables ‘renamed apart’.

C(Ter,....Te,) NG, n(P) 3VC(Te,,...,Te,) C 3Gy Tejo = Teo
GQO' A Gla

SLD

71



This principle is called SLD (Linear Resolution with Selection Function on Definite
Clauses) and is due to [KK71]. It is a sound specialisation of a unification-based RES
step trying to refute P A =3G. When deriving G 3 T, we know that P A =3G is not
satisfiable, hence P = 3G.

By embanking the possible derivations, not every SLD-step eventually leads to the
T goal, anymore. A complete SLD algorithm therefore has to simultaneously trace
several optional rewritings G, V ...V G, that are scheduled by a search rule and build
a search tree quite similar to our construction of inference processes from Section 3.
SLD has been shown complete if it either terminates or its search rule eventually
rewrites all the available options. Then, it is called semi-fair. This 1s independent
of the computation rule that chooses the sub-goal to rewrite within the selected search
option. We speak of fairness if the derivation terminates or the computation rule even-
tually rewrites all the literals. For these concepts, see. e.g., [L1087].

The practical aspect of SLD comes at the price of expressiveness, here: the abandon-
ment of negated literals. SLD has been extended to cover normal logic programs by
treating negated literals in the goal as finite failures of embedded resolution proofs.
‘Negation-as-Failure’ (NF) that is safe for ground literals, i.e., those containing no
variables, has been theoretically investigated by Clark [Cla78] in connection with the
already presented completion semantics. In the following, -} captures all derivations
of length n : N.

_‘C(T(,’l,...,T@n)/\G] C(T(:'],...,Té’”) }_;, {_I_/\} V(Te,) =
G

NF1

~C(Tey, ..., Te,)) NG1 C(Tey,....Te,) F3 T V(Te) = ©
4

NF2

SLDNF::=SLD+NF1+NF2 has been shown sound with respect to inferring entail-
ment from Comp(P) A CET [Cla78]. Given fairness, [CL89] also demonstrated its
completeness under strict queries for which, alternatively, a three-valued fix-point se-
mantics has been given by |[Kun87]. In contrast to SLD, semi-fairness is no longer
enough for building a complete algorithm: We could imagine computation rules which
hinder the construction of finite failures, hence the existence of a finite depth of the
nested proof.

The expressiveness of normal logic programs under SLDNF matches the one of Turing
machines. This has rendered SLDNF the prime inference principle for logic program-
ming. It has been practically applied to a range of applications, especially in proto-
typing problem solving for, e.g., databases, linguistics, scheduling, and configuration
applications that are beyond the scope of traditional imperative or object-oriented pro-
gramming. It has initiated a highly active and influential field of research that investi-
gates the trade-off between first-order expressiveness and effectiveness.

5.2 Abductive Logic Programming and IFF

In several problem solving areas, such as diagnostics, two particular drawbacks of NF
are its closed-world assumption and its rigid safety condition. For example, we do not
always want to minimise lacking information within the system, such as observable
symptoms and their medical reasons. Rather we would like to derive all diagnoses

72



that lead (inter alia) to the observed symptoms. Some of these are minimal and trivial,
but some of these could be complicated and serious. Moreover, we do not want the
inference procedure to get stuck because of being ignorant about the colour of the
patient’s rash. Instead we would like to gain a proposed instantiation of the colour
depending on the current hypothesis, such as “Influenza is one possible diagnosis, if
the rash is not red.”

An inference service that extends the completion entailment of normal logic programs
is the ‘Abductive Logic Programming’ (ALP) framework of [KKT93]. So far, we dealt
with deductive inferences demonstrating that some formula G logically follows from a
background theory: Comp(P) ACET = 3G . Abduction additionally looks for possible
factual extensions A of the background theory which explain the desired or observed
goal: Comp(P A A) A CET = 3G. It can be shown that abductive assumptions about
a limited set of predicates, so-called abducibles, are just a special version of a closed-
world assumption [TK95] and can be realised using ordinary SLDNF. This form of
ALP is closely related to the minimisation policies of default logics [Rei80)].

In order to have a direct access to hypotheses and to cater for non-ground negative
literals, special ALP procedures have been developed [CDT91, DS92, JFB96a]. The
perhaps most comprehensive account that is based on the clausal, factual, and con-
straint representation of Figure 21 is given by the IFF proof procedure [FK97]:

-3G... V(Fy A=3G) D F;... G
_—3G6 e )2 F Sl (VLDFI)/\FQ'”SMP.%
(VG>IL)... VF, D (F,V3G). .. B
C(Te,...,Te)) AFy... m(P)3YC(Xy,...,X,) =V,3G; Xio = Te; i
Vi(GiO /\Fl) &
V(C(T: Te,) A G) D F. ~ IS ~ Xio = Te;
Craliiit 2 Yoy Ey=van
UNF2

A(V(Gia AG) D F)...

(Fy A Fy) V Fy F1=C(Te1,... Te,) A (V(C(S1,...,8,) AG) D Fy)

(VG D (éc(Tel, . Te) V) AF)VFs V(Te) NV(G) =
(C(Tel, ) Te,,) A FQ) \% ((QG D Fl) A Fz) V F3

FIR

(C(Tel, ceouy Te,,) A Fl) V F2 F1 = C(Sl, Gty Sn) VAN F3
(C(Tela sy Ten) A F] A v/\je{l,...,n} SjiTej ) 3—L) v (Fl /\je{l,...,n} SjiTej) \ F2

PCT

Starting from an initial formula G A IC, IFF applies a number of equivalence rewrit-
ings V; G; A A; ANIC; bp V;GE A A A IC}. These include simplification (SMP), the
unfolding (resolving) of goals and conetramt bodies (UNF1 and UNF2), the ‘prop-
agation’ of information into constraints (PRP), the splitting (‘firing’) of constraints
(FIR), and the condension of facts through factoring (FCT). Related to the ‘Negation-
as-Inconsistency’ principle of [GS86], SMP1 transforms negated goals —3G into a
particular type of constraints VG D 31 that are elaborated interleaved to the other
formulae.

73



IFF also employs a constraint-sensitive version (EQU) of the unification mechanism of

[MMB82] of which we leave out some of the details. IFF additionally introduces a case

analysis (CAS) of the equalities appearing in constraint bodies:

TeiTe N Fl e EQU] C(Tela R Ten):c(‘Sh CR 7Sn\) ..
Fy... Nie{t,...n Te=S; . ..

(XiTe/\ Fl) \% FQ

(X=Te ANF\(X = Te)) V F,

EQU3

(V(GAX=Te) D F)) ANF))VFs X ¢&V(Te)
(VG D FY)AX=Te A Fy) V (=3X=Te A Fy) V Fy

A successful derivation G A IC B} (A X;=Te; A A" AIC") V F produces a disjunct in
which, besides a set of equalities and constraints, only positive abducibles A’ : Fuct
(the so-called residue) appear. From such a disjunct, an answer hypothesis o; A can
be constructed as follows: Let o be a substitution such that N Xjo = Te; hold, such
that the inequalities in /C’ (constraints of the form VX=Te D 3L) are implied and such
that o assigns ground terms (V(7Te) = @) to all variables in A’. We then let A = A'g
and write f—f,,A( G. This construction can be generalised to any intermediate state of a
proof:

Definition 9 (Intermediate Substitutions and Hypotheses) Let
J

be an intermediate disjunct derived by IFF. We define corresponding sets of intermedi-
ate substitutions S(F) and intermediate hypotheses H(F) as

S(F) == {0 a ground substitution | 0 A CET = IC \ S;=Te;} H(F) == \/ Ao
J d€S(F)
Proposition 8 (Monotonicity of Intermediate Hypotheses) For all t : N such that
GANICHL (G ANA'NICYV Fyand (G ANANIC) Fp (G"ANA"NIC"YV Fy, it holds
that S(G" ANA" NICTY C S(G'ANA'NIC) and H(G'"NA" NIC") = H(G'ANA'ANIC).

Proof. This can be seen from the way that IFF is treating abducibles. New abducibles
can be added according to FIR and UNF, hereby extending the predecessor hypothesis.
Two abducibles can only be merged (FCT) by establishing new equalities. O

IFF is sound in that it does not change the satisfiability of a formula according to three-
valued completion semantics and the theoremhood of integrity. Moreover, IFF rewrites
the formulae equivalently under the given background program and hence improves the
completeness results of earlier proof procedures [CDT91, DS92, JFB96a]. Complete-
ness for abductive inferences is reasonably restricted to the generation of ‘plausible’
or ‘minimal” hypotheses. This is because we do not want to generate every possible
diagnosis to a given observation: there are infinitely many of them which distinguish
in fully problem-irrelevant details. Instead, for every possible diagnosis, we like to
find at least one representative explanation that is a valid hypothesis by itself and, at
the same time, comprises a subset of the original assumptions. This coincides with
the philosophical stance of Okham’s Razor and is technically realised in the following
theorem (where substitutions and residues are sets of literals):

74



Theorem 6 (Soundness and Completeness of IFF) The IFF procedure is sound and
complete with respect to the three-valued completion semantics, i.e., for all P :
Program and IC : Constraints; G : Goal, it derives }-ng Gonly if BIC, A= Go.
For all o, A" such that P, IC, A' = Go, there exists a A C A’ such that I—ngc G.

Proof. see [Fun96]. O

We recognise that IFF is as close to a traditional proof procedure as to a logic program-
ming service. This is due to its rich language, the expressive power of ‘Negation-as-
Inconsistency’, and the reintegration of all inference options into a single equivalence
transformation. As such, some of the IFF steps can result in explosive operations, such
as unfolding. IFF also keeps some of the problems related to negation and unfairness.
For particular programs and constraints, appropriate selection rules can be given which,
e.g., postpone explosive steps as long as possible, while still retaining fairness, hence
completeness. Then, IFF can be practically realised upon standard LP. IFF has already
been used for semantic query optimisation, for deductive database view updates, for
constraint programming, and even for planning.

Especially in the latter context, ALP and IFF exhibit some outstanding feature for turn-
ing an inference service into a situated reasoning process. As a by-product of abductive
completeness, IFF allows the incremental specification of problems, that is, at any time
during a proof and for any valid hypothesis, we can find an intermediate result that is
extendible to the hypothesis (Proposition 9). It follows that, even if we extend the
problem specification by establishing new constraints, new goals, new instantiations,
and new abducibles, completeness is not affected (Theorem 7). We will elaborate in
the rest of this section that this property renders ALP and IFF a flexible basis for ‘exe-
cuting’ a theory of time and action, such as HEC, within hybrid InteRRaP-R.

Proposition 9 (Existence of Intermediate Hypotheses) If P A A, IC |= Go, then for
eacht : N there exists GAIC Fy, (G'NA' ANIC') V F such thato € S(G' A A' A IC)
and A =H(G' ANA'ANIC).

Proof. Suppose at: N such that GAIC 'V, F; and A (= H(F;) or o ¢ S(F;). Then,
by Proposition 8, this also holds for all# > 7. Because of Theorem 6, however, there
must be some 7’ : N and F such that H(F) C A, S(F) = {o}, and for all " > "
there exists a F”” such that G A IC +"" F v F". This derives a contradiction. O

Theorem 7 (Incrementality of IFF) For anyt: N and
PANANALICANIC = (GAG)o, thereis ANGANICH, (A" AG" AIC") V F such
thato € S(A" AG"ANIC")and ANA' EH(A"AG' A C")

Proof. First, we note that for any A, the procedure A A G A IC FZ’AAA/ is sound
and complete with respect to inferring o, A’ such that P A A A A’ IC = Go. This is
because we could reduce its inference steps to those of the procedure G A IC I—Z’AAA'
for which, by Proposition 9, intermediate hypotheses compatible with A exist (1).

Within a minimal model, the monotonicity of logic consequence still holds.
Hence we have that PA A A A ICAIC' = (G A G')o = Go and furthermore
PAAANANICAIC = Goimplies PA A A A IC = Go. Thus, AAAis a

75



COOPAgen

of Local
> \Planning,

Figure 25: Abductive Inferences in Hybrid and Unified Agents

solution to the restricted problem for which, by (1), compatible intermediate results in
A A G AN IC H exist. a

5.3 Local Planning: On-line Decision Making by ALP & HEC

To realise agent systems with the presented inferential LP machinery, Cognitive
Robotics provides us with particular logic programs to be ‘executed” (the core calculi)
and particular data structures to be handled (e.g., fluents, events, and time). For exam-
ple, using the Situation Calculus SITK as the logic program for deductive SLDNF —
Fpomasire G — gives us a provably sound and complete algorithm for both analysing
and synthesising linear plans. In this framework, fluents, situations, and plans are ma-
nipulated terms of the first-order language. The type of service, i.e.. prediction versus
planning, smoothly varies with the degree of instantiating G through the answer sub-
stitution ¢. The resulting algorithm which we notate as I A DOM +{,, G can easily
imitate the behaviour of traditional state-space planners, such as STRIPS [McC85].
Using the Event Calculus ECJ under SLDNF — I A DOM N A b§., G — estab-
lishes a sound and complete algorithm for analysing non-linear narratives according to
the restrictive interpretation of partially-ordered solutions. For both calculi, we recog-
nise that LP introduces a programmable, verifiable, and flexible logic surface (includ-
ing, e.g., conditional and universal effects, partial specifications, deduced fluents, etc.)
while bridging the gap to algorithmic issues.

Because plans in the Event Calculus are formulae, not terms, a decision making agent,
such as the one in the right part of Figure 25, cannot be purely based on deductive
inferences. Rather, its planning requires to make hypotheses A about the future course
of the world. Similarly, perceptual observations G' do not immediately tell the agent
what its environment is like, rather represent symptoms from which the agent must
predict, how the world has been in the past and what it looks like presently. This 1s
a quite diagnostic setting and, subsequently, the ALP framework has been proposed
in [Esh88, Sha&9, JFB96a] to execute Event-Calculus-style of calculi, such as/ A
DOM F—?CAJ G', for obtaining sound and complete partial-order planning procedures a
la UCPOP [Wel94]. This considerably extends the range of the above deductive and
situation-based approach [KS94].

Figure 25 illustrates that there is even a more fundamental motivation for using ALP-

76



based agent inferences: Other agents and environmental processes perform actions
and inferences by themselves which leads to a stream of new observations and goals.
These have to be incorporated in order to continuously derive rational and consistent
commitments. Therefore we are also in a quite interactive setting and consequently,
[KS96b] proposed the incremental IFF to handle the commitments and observations of
a situated ALP-agent as on-line abducibles.

Equipped with a particular variant of the Event Calculus that is able to represent macro
events [Dav96], Kowalski & Sadri’s ALP-agent has been made programmable at the
level of plans. Similar to the GOLOG approach [LRL97], the employed background
theory however abolishes any proper axiom of causality to trace means and ends which
is why the resulting agents primarily execute macros and do not really plan them.
The rationale behind this simplification is to avoid the otherwise too complex logic
reasoning for simultaneously predicting, planning, and executing within a dynamic
environment.

The purpose of this section is to reinstall the full potential of Cognitive Robotics even
for the case of broad agents. This is possible by our HEC theory supporting approx-
imate reasoning about causality on several levels of abstraction. This is moreover
possible by describing the overall agent not as a single proof procedure, but as a set of
independent, but interacting inference processes. Each of those processes focuses on a
particular prediction, planning, or execution task within a vertically modularised layer.
Each of those layers focuses on a particular temporal and representational spectrum
within the horizontally modularised agent.

The local planning process developed in this subsection serves as a prototype to ob-
tain all other agent processes in Subsection 5.4, such as knowledge base processes
and intention execution processes. In Subsection 5.5, we will then discuss the mainly
representational issues which allow to distinguish BBL, LPL., and SPL of InteRRaP-R.

5.3.1 Hierarchical Partial-Order Planning

The encoding of planning problems into the Event Calculus comprises an initial situa-
tion /, a domain axiomatisation DOM, a goal expression G, and a plan representation
A that includes happens and < facts and should be the residue of an abductive proof
procedure.

[n the Hierarchical Event Calculus, all of these formulae now contain expressions
‘hat refer to various levels of abstraction. To define what constitutes an Abstraction
Planning Problem (APIP) in our formal language along [Sac74], we use the nota-
don F({ly,....1,}) to extract those definitions and facts out of a formula F which
-efer to a particular set of level of abstraction: We are then interested in a sequence
of incrementally refined plans down to the most concrete level of representation, but
10t necessarily starting with the most abstract level, all of which solve intermediate
blanning problems, i.e., the related goals logically follow from an appropriate por-
Jdon of the initial situation, the domain description, and HEC. To this end, we chose
PIHEC ::= HEC \ {HEC8, HEC9} as the sub-theory of HEC that focuses on refine-
ment, not the construction of abstractions and otherwise keeps all the properties shown
. Section 4.

77



Definition 10 (APIP) Let £ == {lp, L1, ... 1.} be a set of incremental levels of ab-
straction. Let I, DOM, G be an initial situation, a domain axiomatisation, and a goal.
The Abstraction Planning Problem APIP(I, DOM, G, L) is the problem of finding an
i : Nwithi < nand a series of incrementally refined plans and substitutions{(4;, o;) |
i <j<n} Foralli < j < n, it must hold that o; is identical to 0,1, restricted to
variables in G({ly,...,L;}) and Ny ({lo, ..., }) = A({l,...,1;}). Moreover, it
holds

I({lo, ..., [;}) NDOMCAU A A A O({1;}) Epmec G{li, - -, [i})o;

where ® is the set of all ‘decomposelnitially’ and ‘decomposeMacro’ literals such that
I AN DOMSAB N DOMAAB A A, = @.

The APIP is said to be solved completely if for all{(A}, 07) | i < j < n} which solve
the APIP, we can find a solution { (4, 0j) } such that Aj({1;}) € Aj({l;}) and 0; = o],

In order for a particular level of abstraction to be consistent with HEC6 and HEC7, the
conditions of the corresponding decomposeMacro and decomposelnitially operations
on the next level of abstraction have to be valid, too. Hence, Definition 10 regards an
abstract plan as correct if we can show the entailment of goals given all those literals
in O({/;}).

Using the IFF proof procedure as pjzpc immediately gives us a sound Abstraction
Planning Algorithm (APIA). This and the following results hold if either employing
the three-valued or the two-valued completion semantics in Definition 10. This is
because both coincide in the HEC case according to Theorem 3.

Theorem 8 (Sound APIA) /A DOM }_;}250 G is a sound Abstraction Planning Algo-
rithm (APIA) for solving an APIP (I, DOM, G, L).

Proof. In Definition 10, let i = 0. From the soundness in Theorem 6, we know that
INDOM A A E=pypc Go (1), and hence I A DOM A A entails all the constraints in
PIHEC (2).

For all j < n, we let A; == A({l,....;}) and o; be o restricted to variables in
G({lo, e lj}) Then we have Aj-H ({l(), PN [j}) = Aj = AJ({[()/ e, lj}) and Oj41
is identical to ¢ on variables from G({ly, ..., l;}) which is in turn identical to o; on

variables from G({ly, - .., [;}).

In order for decomposelnitially and decomposeMacro literals to be true, they have to
maximally refer to valid abducibles and facts on the next level of abstraction. By (2),
we know that 7({l, ..., ,})ADOMCAUNN;A®({];}) entails all constraints in PIHEC,
in particular HEC6 and HECT (2).

From the construction of HEC, we know that a holds goal on a particular level of

abstraction can be derived purely by happens, <, initially statements on the same level,
hence by (1) and (3):

1({10, RN l,,}) AN DOMCAU A Aj A (I)({lj}) l::PIHEC G({l,. ceey I})O’I

O

Completeness does not hold, because there may be solutions starting withi > 0, but
none with i = 0. In this case, some upper level of abstraction is not solvable at all,

78



while more concrete ones are. Hence, the inferential service of Theorem 8 would not
produce any result. More general, although we could be able to generate all the solu-
tions starting with i = 0, this does not necessarily enumerate all the solutions starting
at level [, Iy, etc., at the same time. The question is whether we could characterise
settings in which this implication holds, hence when our inference service is complete.
In [Yan90], two APIP properties are defined that relate the solutions on neighbour lev-
els of abstraction. The Downward Solution Property (DSP) states that each abstract
solution is always refineable to a more concrete solution. The Upward Solution Prop-
erty (USP) states that each concrete solution always has a more abstract version that
also solves the more abstract problem. Their formalisation can now be restated within
our logic.

Definition 11 (Downward Solution Property) The Downward Solution Property
(DSP) holds for an APIP(I, DOM, G, L) if and only if for all LI' : L; A; o with |
and I' subsequent levels of abstraction and IN DOM A A Epyre G({1})o, there are
A's o' such that I ADOM N A" =pigpe G LI} o!, A'({l, ..., 1}) = A({l, ..., 1}),
A'({I,....LY) 2 A({l,...,1,}), and o' restricted to variables in G({ly, . ..,1}) is
identical to o.

Definition 12 (Upward Solution Property) The Upward Solution Property (USP)
holds for an APIP(I,DOM, G, L) if and only if for all [I' : £; A; o with | and
I' subsequent levels of abstraction and I N DOM N A Eppee G({I'})o, there exist
A's o' such that INDOMANA' =ppge GH{L Yo', A'({I, ..., L}) = A{Z,. .., 1,}),
A'({lo, ..., 1}) 2 A({l, - .., 1}), and o restricted to variables from G({l, . .., 1,}) is
identical to o.

The Downward Solution Property is useful for improving the selection of available
options. If we are just interested in finding any solution, then we can fully commit to
the assumptions , i.e., plans, that are created at an upper level of abstraction, because
these are guaranteed to be refineable to a concrete solution (by induction over the levels
of abstraction and using Definition 11). We will come back to the issue of selection in
a minute.

For obtaining completeness, the Upward Solution Property is much more important
since ensuring that any solution plan to the APIP is extendible into one that starts from
i = 0. IFF then generates a minimal hypothesis that is provably contained within the
full plan and hence satisfies the conditions of Definition 10:

Theorem 9 (Complete APIA) If the APIP(I, DOM, G, L) exhibits the USP, then
I NDOM I—Z’,,A,EC G is a complete APIA.

Proof. Suppose, we have a solution {(A;,0;) | i < j < n} to the APIP. Then, by
Definition 10, A,({ly,...,L}) = Aj({l,...,1;}) and o, restricted to variables from
G({l, ..., 1;}) is identical to o;. Furthermore, we know that / A DOMCAU A A, |= ®
and ® O ®({l,}), hence I A DOM A A, Epiec G{l;, ..., L,})o. E G({l:})o,. We

can now repeatedly apply Definition 12 (with /' = [;,[;_y, ..., ly) and arrive at some
AI,(I’ such that I/ A DOM A A’ }:PIHEC GO”, A’({li, 5% .,lj}) = A,,({l,', Gis ,IJ}) =
Aj({L, ..., 1;}), and o' restricted to variables from G({/;, . .., 1;}) identical to o,, thus
Uj.

79



By the completeness of IFF that we have stated in Theorem 6, we are then able to derive
I A DOM v5¢" G such that A” C A’ and ¢” = ¢’. According to Theorem 8, this
constructs a solution { (A}, 07') | i <j < n} to the APIP(1, DOM, G, L), where A ::=
A"({los - - -, ;}) and o/ is identical to 0" restricted to variables in G({l, ..., }).
Furthermore, it holds that A7({/;}) = A"({L}) € A'({L}) = Au({L} = Ai({4})
and o/ restricted to variables in G({/;}) coincides with " = ¢’. Since o’ coincides
with o, upon variables from G({/;}) and since o, coincides with g;, we have shown
completeness according to Definition 10. u

Human-inspired abstraction hierarchies, which are useful to approximate decisions,
necessarily loose information. This makes DSP and USP hard to guarantee. While
other macro formalisations, such as the one of [Sha97a], stick with the expressiveness
(and even less) of Theorem 8, it is one of the achievements of HEC and Definition 10
that we do not rely on these properties'.

For establishing a complete planning process in the absence of USP, the crucial obser-
vation is that failures on some high level of abstraction hinder the service of Theorem
8 to find a proper concrete solution. Such as in algorithmic approaches to hierarchical
planning, the idea is to interleave ‘planning from scratch’ on a lower level of abstrac-
tion with the decomposition of results from the upper level. This is straightforwardly
expressible in HEC and leads to a provably sound and complete AP1A independently
of the domain.

Theorem 10 (Sound And Complete APIA) I ADOM 55 N GU{L, ..., 1,}) isa
sound and complete APIA for solving an APIP (I, DOM, G, ).

Proof. Soundness follows the proof of Theorem 8 by showing that any result A; o
solves at least one of the disjuncts, hence A; = A({l,...,/;}) and o; identical to o
restricted to variables from G({l, . .., /;}) comprises a solution to the APIP starting at
some leve] /.

Completeness follows from the fact that any solution Aj; o; starting with level
[ satisfies I A DOM N A, Epgee GH{L,...,L})on E Viee GHL ..., 1})o, for
which, by the completeness of IFF in Theorem 6, we can derive some A’; ¢’ with
A'({L}) € A({}) = Aj({4}) and o' restricted to variables from G({/;}) is identical
to o, which in turn coincides with o; upon those variables. O

We have now derived a sound and complete APIA from IFF and HEC which provides
for declaratively ‘programmable’ representations / and DOM. Algorithmic partial-
order planning concepts such as causal links, threats, promotion, and demotion come
as a by-product of the inferential semantics of the Event Calculus [Sha97a].

HEC extends this coincidence to techniques known from HTN planning [EHN94],
such as sharing: Early sub-optimal APIAs decomposed distinct macros into
disjoint sub-events.  For example, if a forklift performs two sequential de-
liveries, one from the truck to a shelf and one in the opposite direction,
the movement to the shelf should not be planned twice being already part

ISHEC9 is weaker than the USP because allowing for ‘phenomenal’ higher-level fluents without a
proper decomposition. These are needed for, e.g., imposing an absolute coordinate system onto the
Automated Loading Dock — see Subsection 5.5 and Section 7.

80



observations/commitments

—~ 1womp— nec

ol
1NDOMp— HEC
Gr

a2
IoMp— HEC
G2

transmit

Figure 26: Shared Memory and Signalling between Abductive Inference Processes

of the first delivery. Under IFF, sharing is a most natural consequence of
the FCT step unifying abducibles happens(E,, moveArea(roby, shelfs), Ty, To, 1) A
happens(E,, moveArea(roby, shelfy), Ts, Ty, 1y) from different transport macros.

Due to its incrementality (Theorem 7), this abductive planner furthermore
nicely coincides with the continuous process model of COOP by identifying
& (local_planning) ::=tpppc (Figure 26). The state of the resulting planning pro-
cess corresponds to a formula derived by IFF under PIHEC, I, and DOM. Different
Options of the process state correspond to the disjuncts of the intermediate formula.
The Program part of each process option consists of the residue, i.e., a narrative of
happens, and < facts, in the corresponding disjunct. Its Goal part is comprised by the
rest of the disjunct, in particular by holds statements and substitutions that describe
partial world situations in past, present, and future.

Accordingly, signals and shared memory exchanged between this planning process and
other processes during runtime bidirectionally transmit abducibles, situation requests,
and substitutions. But note that the (logic) separation intoProgram and Goal is orthog-
onal to the (functional) separation into agent believes and agent goals: Believes can be
transferred both by Program in terms of made observations and in fixing a particular
Goal in terms of unavoidable situations or predictions. Agent goals can be specified
both by Goal in terms of desired situations and by Program in the form of committed
occurrences of actions. This means that the input streamed into our logic-based plan-
ning process covers goal requests and state information, at the same time observed and
predicted actions and conditions. Its output covers solution plans and at the same time
instantiations and sub-services that the planner requests to be solved externally on its
behalf.

Although compatible in form, this does not mean that our logic-based planner already
already behaves reasonably as a continuous process that produces decisions for, e.g.,
forklift robots in the Automated Loading Dock. From any such computation within
InteRRaP-R, we expect interactiveness with its environment and other processes: It
must be able to issue approximate solutions rather early, such as the planning process

81



outputting an abstract transport intention right after receiving a delivery goal. It must
realise this approximation in a persistent manner not changing its commitments too
often, for example, by steadily switching the order of delivery tasks. At the same time,
any process must be able to frequently integrate the actual effects of its own decisions
(the robot leaves the initial area), the decisions of other processes (the robot reactively
dodges because of heading an obstacle), and the decisions of other agents (another
robot takes the envisaged box). This cannot be purely addressed at the declarative
surface.

5.3.2 Making Persistent, Approximate Decisions

IFF requires fair selection in order to establish completeness in deterministic settings.
In its equivalence transformations, the search rule corresponds to the selection of the
next non-success and non-failure disjunct to rewrite (success disjuncts satisfy the con-
dition of successful derivations, failure disjuncts can be simplified to L). The compu-
tation rule corresponds to the choice of the sub-formula of the selected disjunct that
should be the subject of the next step of inference.

Fairness can be formalised by attaching indices to the literals of a formula and by in-
troducing a system clock that measures the length of derivations. After each inference
step, the clock is increased and newly introduced literals are annotated by increas-
ing the maximal annotation of their selected predecessors. For example, we call the
procedure semi-fair if and only if for all F : Wff, either F * terminates or

limy_, oo min{i | F' a non-success disjunct such that F - F' V F” and
i = max{j | j the index of a literal in F'}} = oo

Fairness is not enough for an abstraction planning algorithm: Our presented
inference process is able to issue output (signals carrying abducibles, such as
happens(el,transport(robl,boxl,parking, truck, shelf;), t,, 1;), I,)) as soon as it has
solved one particular level of abstraction. However, the specification of PIHEC does
not determine which goals at which levels of abstraction are to be resolved first. Using,
€.g., a detailed navigation path to build up a rransport macro may be a good idea for
plan recognition (see Subsection 5.4), but not for quickly arriving at decisions.
Moreover, when looking at the inference service of Theorem 10, we would like to
delay planning from scratch as long as possible: Hierarchical approaches (also: ‘plan-
ning from second principles’) are able to pull the planning complexity down to be
exponential in the amount of abstraction levels rather than the greater, overall size of
the narrative [RN95]. Hence, even if the convenient solution properties of Definitions
11 and 12 are not exhibited by the domain, starting with goals on higher levels of
abstraction and incrementally working downwards, is a reasonable heuristics.
Practical agents must have relatively persistent believes, goals, and intentions. Hence,
this must hold for their computations, too. In that respect, having search and com-
putation rules that steadily switch options and priorities is certainly not a good idea.
For example, a planning process that has proposed some abstract solution, such as first
putting box; on the shelf and afterwards loading box, onto the truck, should stay with
that commitment as long as possible in order to not confuse the connected execution
process. Moreover, it is known in the planning literature that loosing a clear focus in
elaborating conjunctive goals (unloading box;, loading box,) immediately blows up

82



the search space. LIFO-strategies (last-in, first-out) has been empirically confirmed
as an appropriate counter-measure [GS96]. A rule which addresses these aspects in a
logic-based setting is traditional depth-first selection, such as used in PROLOG.
However, depth-first selection sometimes leads to explosive proof trees while there
would exist other selections which do not so. Typically, aleast-commitment strategy is
advisable for exponential problems: Simple, information-increasing steps in the proof,
such as {FCT, PRP, EQU, CAS, SMP, FIR} or such as resolving ground member liter-
als, which eventually have to be done are selected before any explosive UNF operation.
Depth-first also tends to unfairness, especially with respect to interleave planning from
scratch with planning from second principles, since the the existence of a solution plan
at a single level of abstraction is already undecidable. A good intermediate choice
to uphold fairness, but to stay as persistent as possible is theiterative-deepening ap-
proach. The idea is to use a depth-first search rule, but with a bound on the annotation
of the selected literals. This bound is then iteratively increased. Initially invented as
a tool to diminish memory consumption, we use it as a tool to gain persistency while
upholding completeness.

How could such bounds be designed in the case of ALP and HEC? In Theorem 3,
we have shown the well-definedness of HEC that avoids ‘floundering’ of deductive
inferences. This should now be investigated more closely within the abductive setting:
Given a bound on the intermediate residues and provided a least-commitment strategy,
IFF terminates upon PIHEC (Proposition 10).

Residue bounds have an intuitive interpretation in terms of the plausibility of a hypoth-
esis. Usually, we are interested in the most plausible hypothesis, here a cost-effective
plan. Hence, we can use such measures in a straightforward way to steer the selection
of disjuncts, i.e., to realise the search rule. From the termination of IFF & PIHEC
upon bounds and the existence of intermediate hypotheses (Proposition 9), it follows
that any semi-fair least-commitment rule has some interpretation in the form of plau-
sibility and vice versa, using plausibility to steer the selection amounts to a semi-fair
and complete procedure (Theorem 11).

Proposition 10 (Termination) LetC : A — N be a strictly monotonic cost function
on abducibles, i.e., Ay = Ay only if C(Ay) > C(Ay) and Ay H Ay only if C(A) =
C(A,). Then for any I, DOM; G, any search rule that never select disjuncts such
that C(H(F)) > k € N and any least-commitment computation rule that delays UNF
until all other steps including the unfolding of member literals, [N DOM tpippe G
terminates.

Proof. see Appendix B. O

Theorem 11 (Selection Strategy) Let C be any strictly monotonic cost function on
abducibles, then any least-commitment APIA of Theorem 10 is semi-fair if and only if
the APIA terminates or limy_,comin{C(H(F)) | F a non-success disjunct € ran '} =

oo (1). Any semi-fair least-commitment APIA of Theorem 10 is complete (2).

Proof. (1, only if): Suppose the least commitment APIA being semi-fair and non-
terminating. Each non-success disjunct is then eventually selected for an infinite

83



amount of times. Because of Proposition 10, there cannot exist any upper bound on
the cost of any disjunct. Hence the minimum of the residue costs must diverge.

(1, if) On the other hand, we know that any unfair search rule allows for a non-failure
and non-success disjunct not being selected for an infinite amount of times which also
implies its finite residue costs being constant. This gives an upper bound for the mini-
mal residue costs.

(2, terminating case) By Proposition 9, we know that for any solution to the APIP,
there must exist a compatible intermediate hypothesis in a non-failure node at any time
during the proof. If the APIA terminates, there are only success and failure nodes left.
Hence there must be some success node that comprises a compatible result according
to Definition 10.

(2, non-terminating case) In the case of semi-fairness and non-termination, the
minimal residue costs diverge over time (by 1). Hence, there is some point in time
at which there exist no more non-failure and non-success nodes with a residue cost
that 1s less or equal to the cost of any solution to the APIP. Proposition 9 then implies
that there must be at least one success node at that time which is compatible with the
solution and constructs a minimal hypothesis according to Definition 10. a

In the InteRRaP-R decision making processes, we chose a least-commitment, other-
wise depth-first approach that iteratively deepens a domain-dependent cost measure C
in favour of abstraction, i.e., macros are cheaper than their decomposition. A further
strategic issue has to do with unfolding the bodies of constraints, such as the—~clipped
goals realising the persistence checks in HEC, because they could generate numerous
options due to splitting (FIR) afterwards. In general, it is advisable to delay unfolding
these constraints with respect to unfolding ordinary goals, since the latter centrally in-
troduces new evidence. This evidence can be propagated into various constraints and
hence restricts their possibilities. In partial-order planning, this is closely related to the
LIFO-strategy trying to keep separate ‘threads’ of the plan independent.

5.3.3 Making Ego-Centred, Future-Oriented Decisions On-line

Approximate and persistent decisions is just one aspect of a local planning process
whose results are concurrently executed by plan execution processes located at the
same agent layer and simultaneously to whose processing, other agents and other, e.g.,
behavioural processes are computing and acting in the environment, thus changing the
status of its companion mental model process (see Subsection 5.4). We require such a
continuous planner to incrementally cope with new input in the form of COOP signals
and shared memory operations. Such input covers observations A" and constraints /C'
which come through dynamic changes of the world. Such input also covers additional
goals and instantiations G’ appearing during the course of planning.

ALP is an attractive device for this kind of situated reasoning because it does not
rely on a closed world assumption with respect to abducibles A’. Theorem 7 has
demonstrated that the incrementality of IFF moreover covers additional goals G' and
constraints IC'. Hence, we can frequently incorporate signals and shared memory
operations by extending the intermediate residues A, constraints /C, and goals G just
as illustrated in Figure 26. This does not affect completeness, i.e., incompatible options
will rewrite to L while the extendible ones are kept.

84



The HEC surface does not distinguish between future decisions for the agent’s own ac-
tions and past explanations for other agents’ activity. It does not discriminate between
wanted goals and unavoidable states. This is useful for allowing a flexible treatment of
the above on-line phenomena. This is painful, on the other hand, because of denying
an ego-centred and future-oriented decision making in the first place. We will now
discuss how to trade off these aspects by operational considerations.

Integrating On-line Observations Useful observations A’ incorporated during
planning are the (macro) actions that the agent has actually executed itself. For
example, a plan execution process of a forklift robot already starts decomposing a
planner-committed transport macro by moving the robot towards the truck while the
local planner is still computing landmarks towards the shelf. It is important that the
planner is up-to-date with the commitments that the executer does, hence is reported
A" ::= happens(e,, moveArea(roby, truck), t,, ty, ly).

In general, useful observations are all changes in the agent’s believes which are rel-
evant to the planning problem. Notice that, up to now, the initial situation / is fixed
throughout the whole planning problem. Indeed, the fact that the agent believed in a
certain fluent being valid, such as the location of hox; on the truck, does not become
invalid ever. Rather, the agent, or better the mental model process, has gained addi-
tional evidence, such as the other robot having already taken the box or being in the
course of doing so. Getting signalled A ::= happens(e,, pickup(robs, box, ), t3, 14, I3)
influences the planner’s prediction of present and future world states and forces it to
adapt its decisions accordingly.

Integrating On-line Goals & Surprises Given new evidence, the mental model
could also signal new goals. For example, a forklift’s local planning process is able
to adopt the command to deliver a particular box to the truck as the additional goal
G' ::= holds(at(boxs, truck), t5, tg, nil, 0, E, l).

Since goals and abducibles are logically coupled, the transmission of G' ::=
holds(not(at(boxy, truck))), tz, ts, nil, 0, E, I3) is an alternative to sending a proper ob-
servation: Such a surprise forces IFF & PIHEC to find a diagnosis in the past, such
as the A" ::= happens(ey, pickup(rob,, box, ), t3, 14, 13) from the previous paragraph,
which in turn adapts the future projection accordingly.

Integrating Miracles Diagnosis, here plan recognition, is an as expensive problem
as planning and should be reasonably restricted to knowledge base processes. Its in-
put to the planner should thus be given as a combination of A’, G’ in order to provide
ready-to-propagate goals G, at the same time reduce the effort for hypothesising an
explanation A'. Since agents are seldom to be equipped with a complete domain de-
scription, some evolvements rather appear as miracles which they cannot explain, but
which they must face.

A pragmatic miracle formalisation is to introduce, in advance, for each relevant fluent
an instantaneous dummy action type that unconditionally causes the fluent. Adding
changes in the form of temporally annotated miracles A’, we gather a redirected search
without putting too much effort into explanations. Miracles should not be accessible
to decision making, hence not be a subject to proper abduction. This is accomplished

85



by an operational restriction of the FCT step that enforces the unification of newly
introduced miracles with already introduced ones.

Integrating Constraints for Future-Orientation In a continuous planner, the initial
situation I always refers to the past. Hence, IFF & PIHEC allow for unrealistic agents
that try to make decisions about the past. To synchronise the reasoned time-points with
the external system clock, we assume both to be represented by the same logic vocab-
ulary (for which we give a reasonable implementation in the next section). At time
points #;, we then add the additional constraint IC' ::= Yhappens(E,A, Ty, T,, L) D
t; < Ty. This constraint must distinguish between past observations and future deci-
sions by a corresponding restriction of PRP.

Ego-Centreing An additional operational asymmetry helps to establish a more ego-
centred perspective for the planning process: The current formalisation takes a rather
objective stance making decisions for other agents, too. This is needed to infer multi-
agent plans which can be communicated, negotiated, and cooperatively executed. On
the other hand, we want the agent to take over responsibility for its own capabilities.
One effective measure is to let the residue costsC penalise other agent’s actions, such as
pickup(rob,. box,) being more expensive than pickup(roby, box;). This is reasonable
in terms of the implicitly present coordination efforts — see Subsection 5.5.3.

Handling Inconsistent and Unreachable Goals The incremental IFF deals with a
major part of intermediate inconsistencies that are unavoidable in situated reasoning.
Because of undecidability, it cannot detect inconsistent goals that steadily contribute
to the residue and prohibit a proper solution. It does also not identify generally un-
reachable goals which must be abandoned in order to recover the inference process.
With a bit of additional operational machinery, however, the most common cases can
be handled at the level of COOP (scetion 3).

If a forklift is asked to cancel a previously commanded delivery, its logic-based plan-
ning process can be recovered by using exception handling: Whenever goals are incor-
porated into the planning process, an additional exception is created whose continua-
tions contain rolled-up problem descriptions.

A rolled-up problem consists of deleting non-committed abducibles, compil-
ing the residue into a new initial situation /, and deleting several predecessor
goals. Cancelling a goal can then be done by adding the constraint IC' :=
Yholds(at(boxy, shelfy), t,, ta, nil, 0, E, I,) D L which immediately fails all the incon-
sistent options and invokes exception handling.

Thanks to an explicit representation of time, we reach a similar recovery effect by
detecting open goals whose deadline has been past and by rewriting them to L.

Roll-Up and Hypothesising the Initial State Although on-line signals and shared
memory operations enlarge the inference state at the first sight, we have documented
that, provided some operational means, new evidence can focus situated search as to
be similarly effective as traditional abstraction planning algorithms.

The roll-up mechanism plays an important role, because it does not only compile in-
cremental specifications into computationally more handier descriptions, but allows

86



level and
el direction of
reasoning

Figure 27: Inference Processes in the Vertically Modularised LPL

the agent to forget about past and future occurrences, about intermediate observations
and goals. Without such a frequently applied ‘mental garbage collection’, agents and
processes with life-cycles in the range of minutes, hours, days, and weeks would not
be constructible.

Due to the incomplete temporal information that the agent accumulates, the roll-up of
initial situations / must be necessarily incomplete, too. In general, we cannot expect
to equip agents with a complete description at startup, such as the forklift robots with
the complete state of the loading dock.

It is hence convenient to relax the closedness of I by making initially abducible, hence
a part of A. This does not affect the theoretical properties of the APIA and of the
upcoming processes. Rather, by the help of integrity constraints HEC7, HEC9, and
HEC12, it allows forklift robots to search for a box, which they temporally assume
to be located on the shelf, until they notice the contrary. Within a given domain, this
activity is restricted to dedicated types of fluents, for example, an agent should not
‘invent’ arbitrarily many helping partner agents.

5.4 LPL: Vertically Interacting Processes

The preceding subsection developed an on-line decision procedure from ALP & HEC
that comprises the local planning process of InteRRaP-R. We have presented opera-
tional restrictions which allow the otherwise too general logic to run practically and
focused on a particular abstraction planning functionality.

With respect to a perception-action cycle, such as InteRRaP-R’s LPL performs (Fig-
ure 27), planning is just an intermediate computation: Before the agent knows its
present situation and what its current planning goals are, there must be first some com-
putation which predicts the state of the world from made perceptions — the mental
model process & (mental_model).

And after the planner has outputted some approximate and abstract decision, there
must be some computation which interprets those decisions, i.e., decomposes them
into primitive actions — the plan execution processes - (plan_execution). We will
give ALP & HEC specifications of those functionalities in the following.

As Figure 27 illustrates, the resulting logic-based LPL hence simultaneously builds up
several partial models of the world each by taking a different ‘direction’ of reason-
ing (from past to future or vice versa, from abstract to concrete or vice versa). The

87



interaction between the responsible inference processes via COOP signals and shared
memory interfaces and adapts these partial models in order to jointly maintain a pos-
sibly consistent picture. This threefold design resembles bidirectional search, a quite
traditional technique known to damp the complexity of combinatorial problems.
From the logic perspective, the benefits of vertical modularisation and encapsulation
can now be remotivated: Independence in state avoids the multiplication of inference
options which would occur when simultaneously and always consistently trying to
explain the past, form the present, and plan the future. Independence in computation
avoids the sup-optimal and sticky behaviour of inferences and selection rules which
dive into one of these functionalities in order to produce a persistent output.

5.4.1 Mental Model: On-line Prediction using ALP & HEC

Declaratively, the task of a knowledge base relies on the same theoretical background
as decision making, hence can be based on a variant of HEC. Inferentially, its function
(the following Abstraction Prediction Problem, APP, builds on traditional plan recog-
nition [KP88]) is complementary: We are no longer trying to generate incrementally
refined ego-centred plans A; to enable wanted goals G. Rather, we are speculating all
(incrementally more abstract) effects G; of environmentally-invoked observations A.
For this purpose, we identify PrHEC ::= HEC \ {HECG6, HECT} as the well-defined
part of HEC that is concerned with building macro representations from primitives.

Definition 13 (APrP) Let £ ::= {ly,l,,...,1,} be a set of incremental levels of ab-
straction. Let I, DOM. A be an initial situation, a domain axiomatisation, and a nar-
rative of observations.

The Abstraction Prediction Problem APrP(I, DOM, A, L) is the problem of finding
an extension of the narrative N' O A and a series of incrementally more abstract
goals and substitutions {(G;,0;) | n > j} such that I N DOM N AN =pyee Gio;,
Gi{lw. .- })o; 2 Gii({Ly, - - .. ;})0j41, and 041 is identical to o) restricted to vari-
ables in G;. Moreover; if holds

‘I)({l,,, ey l/}) Q Gj(fj

where ® is anv conjunction of ground holds literals that refer to A" and that have at
most one duplicate entry in their causal chain such that IN DOM N A’ Epype .

The APrP is said to be solved completely if for all A"; {G}, o] | n > j > 0} which
solve the APrP, we can find a solution A'; {(Gj, 0;)}, such that A" C A" and o] = o;.

We could use IFF for that purpose if systematically guessing the goals G; and applying
the proof procedure with initial hypotheses A afterwards. But this is computationally
intractable, because there are infinitely many choices for G; which fail after an expen-
sive amount of computation. Following the same argumentation, we cannot simply
reverse the derivation relation of IFF, since this requires to invent hypotheses A’ and
constraints in advance.

Forward-Chaining Deduction: DLS & DLLSFN The stated functional complemen-
tarity actually needs a complementary definition of the inferences which tradition-
ally, such as in the case of SLD, SLDNF, and IFF, elaborate programs in abackward-
chaining manner (from a definition’s head to its body; from goals to preconditions). If

88



maintaining a database, for example, many users or processes are able to pose queries
not known in advance of which many subproblems are redundant. To optimise re-
sponses, forward-chaining procedures have been developed that compile the conclu-
sions of a database with respect to a background program ahead of time.

This database-driven approach is a quite natural specification of the initial part of an
agent’s perception-action cycle: Agents cannot behave purely goal-driven, because
they first need a prime means, their knowledge base process, for deriving these goals
from the environmental stimuli. Rule-based production systems have been successfully
applied in this context, such as in the ACT-R architecture [And93] and the MAGSY
system [Fis93a].

Complementary to backward-chaining, forward-chaining starts with an empty database
(T). It subsequently fills the database with consequences by feeding its intermediate
results into the bodies of clausal definitions. An example is the following DLS step
which builds the complement to SLD (letting Li : Literal):

Gy AGy, w(P)> (VLic 3G) Gio=Go
Lio N\ G1 VAN GQ

Answers can be extracted out of each intermediate database T F} G by generating all
substitutions o of free variables. If fairness is established in the selection of clauses and
goals, we derive a sound and complete procedure for generating all the conclusions of
a definite program. At the first sight, DLS is not close to an implementation, because
it does not prevent multiple derivations of the same goals. Moreover, the matching
of conjuncted goals within multiple clauses is more complicated than unifying literals.
To avoid redundancies, pattern-matching algorithms, such as RETE [For82], have been
employed that only propagate the deltas of the the database.

Trying to find a forward-chaining basis for normal logic programs, i.e., for deriving
negated literals, is not quite as straghtforward. The point in complementing SLDNF
is to build up negative consequences interleaved with the positive literals. The follow-
ing FN step arguments over the completion of the program: A negated literal can be
derived if, for all relevant clauses in the program, at least one literal in the body appears
negated (G denotes the set of dual literals) in the predecessor database. Fair selection
presumed, we thus gain a sound and complete DLSFN ::= DLS + FN procedure.
DLSFN is closely related to the fix-point semantics of [Kun87].

G w(P)=A;YLi; C 3G;AG, Lio # Lijo or (\; Gi A G)o C Go
—Lic NG

DLS

FN

Forward-Chaining Abduction: FFI In [BGLM92], a compositional fix-point se-
mantics for definite programs, Open Logic Programming (OLP), is given which has
some relations to Abductive Logic Programming. There have been efforts to con-
nect forward-reasoning procedures with assumption-based truth maintenance systems
(ATMS) [FDC87, O192] from the background of default logics [Rei80]. We will
now transfer the basic principle behind these approaches to equivalence programs
with integrity constraints to obtain the forward-chaining variant of IFF, FFI: Instead
of incrementally extending a database of pure literals, FFI maintains a set of range-
restricted clauses K ::= A(Gi D G; A G2) with V(G2) C V(G,). Each range-
restricted clause determines (positive and negative) hypotheses G; and their (posi-
tive and negative) consequences G; A G, with respect to P. Range-restricted clauses

89



are generalisations of integrity constraints: By ‘firing’ their consequences into P, we
eventually arrive at clauses whose conditions only refer to abducibles and equalities:
& F/\inTej/\ -X;=Te; D G. Given any o that satisfies the equalities and in-
equalities and that leads to A”0 \ A’c £, we gain answers A', o, G for which holds
A %:p Go.

The main step of FF1 is ‘folding’ (FLD1). Hereby, the conclusion of a range-restricted
clause is partially matched (modulo abducible expressions A and A’) against a dis-
junct in the body of a program definition. This derives a new clause that combines the
preconditions of its predecessor with the non-matched abducibles in the definition’s
body that collectively imply the defined literal, the abducibles, and the former conse-
quences. Similarly, we can fold negated literals (FLD2) by finding in each disjunct
of a definition at least one literal that appears dual in the range-restricted clause (or
that can be abduced as invalid). For reasons of simplicity, we have omitted to make
(dis-)unification explicit in FFI.

(G D G)AK m(P)> (VLi=3G5V Gy) Gs0 C (GaAAAND)o
(GiANANA D GoAAANDN AL)o A (GL D G)ANK

FLDI

- AR
(GiANANA D GoAANNA A=Li)o A(Gy D Go) AK

(Gi D G) AK Ai(GiAG)a C (Ge ANANAN o

RFLD2

By requiring FLD1 and FLD2 to match maximal subsets of conditions, FFI builds
up minimal hypotheses and recognises dead ends during a proof due to redundant
clauses (the following PMS simplification). Redundant clauses contain inconsistent

conclusions due to dual literals or failed dis-unification.
(Gy D (LiN-LiANGy)) ANK (Gy D (-Te=Te N G3)) NK
e PMS1 PMS2

Integrity constraints are a means to restrict the ‘hypothetical 1r<nodels’ generated by
FFI. This is realised by the following integrity analysis step (ITA). Since a complete
set of consequences is built within the conclusions of the range-restricted clauses, ITA
frequently tries to match constraint conditions there. ITA then introduces successor
clauses with possibly extended conditions and consequences that reinstall integrity.
ITA furthermore contains a version of case analysis by which the integrity of a con-
straint is also preserved, if the relevant parts of the clause can be dis-unified.

(Gi D G) AK 7(IC) 3 (YG3 D V,;3G) G306 C Goo  V,~X=Te; = -0
N(GL A =X;=Te;) D (G2 A ~X;=T¢))) Ni((G1 A Gi) D (G2 A G))o AK

ITA

The requirements triggered by I'TA on the left-hand side of range-restricted clauses do
not only cover (dis-)equalities and abducibles, but defined literals as well. Up to now,
these will not be resolved. In order to re-establish the canonical form of clauses, we
introduce unfolding steps (FNU1 and FNU2) which are quite similar to unfolding of
constraints in IFF, but also operate on negated literals. Unfolding enables FFI to be
incremental with respect to additional goals G'.

(Liy AG1 D G3) AGs  7(P) > (VLiz = V,;3G;) Lijo = Liso
/\,-(G,' A\ G1 D G,' A Gz)O’ A G;

FNUI

90



(Liy AGy D Go) AGs 7(P) > (VLiz = V,3G;) Lijo = Lixo
(/\i _'G,' A\ Gl ) /\i "TG,' A Gg)(f A G3

FNU2

FFI starts with the initial clause K ::= VA D A and by verifying that it performs
equivalence transformations under P, we gain soundness and completeness for deriv-
ing answers A’; o; G. This means that even infinite sets of consequences G are
appropriately approximated in the fix-point. We will not give a formal proof of this
result, here. Rather, we immediately turn to PrHEC where we postulate FFI to install
a sound and complete algorithm for solving the APrP.

Theorem 12 (Sound And Complete APrA) I ADOM 35 .- A is a sound and com-
plete Abstraction Prediction Algorithm (APrA) for solving an APrRI, DOM, A, L).

Proof. Similarly to planning with IFF in Theorem 9, soundness and completeness of
FFI carry over to the prediction task. In contrast to Theorem 9, this result does not
rely on any solution properties, because of the definition of the prediction task. O

In the following, we will look at operational issues which turn FFI & PrHEC into an
interactive prediction framework.

Making Persistent and Past-Oriented Predictions On-line FFI and PrHEC com-
prise InteRRaP-R’s mental model process, > (mental_model) ::=tp,yc, in which each
Option corresponds to a range-restricted clause, its Program containing the left-hand
side of the clause and its Goal containing the right-hand side. Moreover, FFI and
PrHEC provide a suitable on-line interface: Intermediate solutions can be extracted
which fully predict particular levels of abstraction and can be committed by sharing
and signalling its parts, e.g., to the local planning process, to plan execution processes,
and to other knowledge base processes (see Subsections 5.3.3, 5.4.2, and 5.5). In addi-
tion, FFI upholds the same degree of incrementality as IFF with respect to hypotheses
A’, goals G, and constraints /C" that are reported to the mental model process, i.e., we
can extend any intermediate clause VAA G, D Gy toVAAA'AGIAG D A'AGyAG'
and constraints /C to IC A IC' in order to redirect the inference.

As for local planning, operational design must be added to make the abductive pre-
diction framework running in practice. The FFI selection strategy solidifies in the
selection of range-restricted clauses (search rule) and definition matches (computation
rule). Least-commitment in FFI means to always choose new and maximal matches
(keep A and A’ in FLD as minimal as possible), to perform ITA, PMS, and FNU before
any FLD step, and to only member literals whose lists exclusively refer to events from
the residue and have at most one duplicate entry. The well-definedness of HEC gives
also in this forward-chaining case a terminating procedure for generating the finitely
many effects of a bounded residue, hence a complete prediction procedure by iterative-
deepening. The cost measure C is chosen to first recognise detailed occurrences and
afterwards turn to the more abstract ones, i.e., macros are more expensive than their
decomposition.

As a by-product of prediction, the mental model determines future goals G of the
agent from to the given environmental stimuli. We realise such intrinsic ‘desires’ as
the mandatory integrity of the mental model, thus as constraints and definitions of the
following form:

91



g’w}loadDesire(Box, Shelf, Ty, T», E) =
AT<Ty A holds(unloadCommand(Box), Ty, Ts, nil, 0, E, L)

(DES1) ), 1
Aholds(category(Box, Cat), Ty, Ts, nil, 0, E, ly)
Nholds(category(Shelf, Cat), Ty, Ts, nil, 0, E, I,)

g’u;zloadDesire(Box, Shelf, Ty, T», E) D

(DES?2) Jholds(at(Box, Shelf), Ts, T», nil, 0, E, I,)

~/\holds(at(Box./ Shelf), Ts, Ty, nil, 0, E, l3)
V3holds(at(Box, Shelf ), Ts, Ty, nil, 0, E, I5)

Whenever FFI predicts the situation defined in DES], the constraint DES? is fired by
ITA and adds its conclusions into the left-hand side of the selected range-restricted
clause. These are abstraction planning goals according to Theorem 10 and will be
signalled to (or better, requested from) the planner. In doing so, a particularly persisting
situation is not allowed to spawn arbitrarily many goals:

V—disjoint(T;, Ty, T3, Ty)
(DES3) AunloadDesire(Box, Shelf, Ty, Ty, E; )
AunloadDesire(Box, Shelf, Ts, Ty, E3) D 3E1=Ey A Ty=T, A Th=Ty

FFI has in principle the possibility to elaborate such goals by FNU, i.e., to perform
planning. Complementary to the partially suppressed explanation facilities of the local
planning process, the mental model just speculates about effects of, e.g., observed
intentions, but does not issue decisions by itself. Therefore, FNU is restricted not
to elaborate goals whose interval begins after the current time point ¢, Moreover,
it is enforced to unify abduced actions of its proper agent (pickup(rob,, box,)) with
commitments that have been reported by planner and executer.
Miracles are useful to provoke and explain ad-hoc updates in the knowledge base,
such as partial observations of object movements and unexpected robot displacements,
which have none or only expensive diagnoses, otherwise. Miracles are not used in the
regular course of prediction; they are associated a quite high cost C that is traded off
against the expense of inferences that are needed to explain the observation regularly.
When applying miracles to explain some low-level of abstraction, FFI and PrHEC
nevertheless recognise regular higher-level narratives, e.g., intentions of other agents
which cannot be immediately perceived, but could be communicated, from their ab-
stract effects.
When minimising persistence perturbations in the past, the mental model generates
partially-instantiated —happens abducibles. This is reasonable, since new evidence
always leads to back-dating explanations and requires to invalidate some of these hy-
pothesised persistencies. On the other hand, it is not plausible to let these activities
range arbitrarily far into the past. We thus strengthen the inferential power of the
knowledge base by stating that all furtherly abduced events must not have happened
after ¢;_, . y

e BN T —Jhappens(E,A, Ty, T», L)

where e is the layer- and domain-dependent roll-up interval (Subsection 5.5).
Exception handling and roll-ups in the mental model operate on the level of range-
restricted clauses to keep a compact and tractable representation and to recover from

92



incorporating inconsistent information, e.g., wrong hypotheses and unsatisfiable re-
quests. A roll-up at time #; compiles the predicted effects of time #;_. into a new initial
situation /, forgets hypotheses and goals before that time, and removes several of the
upcoming goals and observations. Usually, the incomplete/ must be a subject to (rea-
sonably domain-restricted) abduction, too, which is straightforwardly expressible in
FFI and PrHEC.

5.4.2 Plan Execution: On-line Decomposition by ALP & HEC

Plan execution processes complete the LPL’s perception-action cycle by mediating be-
tween the complementary functions of mental model and local planning. Their input
consists of abstract intentions A’ decided by the planner and a temporal trace of be-
lieved situations G predicted by the mental model, e.g.,

A" ::= happens(ey, transport(rob,, box,, parking, truck, shelfs), t1, ta, )
G ::= holds(atPos(rob,, 6,2), t;,ty,nil, 0, E, I;) A . ..

Their output consists of a decomposition A of the given intentions, for example
A ::= happens(ey, moveArea(roby, truck), t1, t3, l4) A. . ., which is in concordance with
the given situation trace. Since conflicts between high-level intentions should have
been resolved or will be resolved concurrently by the local planning process, their
separation into separate and newly initialised execution processes avoids the combi-
natorics inherent to optional decompositions and allows for a quick and interactive
inference.

In Section 4, we have demonstrated that HEC contains a sub-theory that comprises
an ‘interpreter’ for a macro language that includes primitive statements, test actions,
sequential and interleaved compositions, disjunctive choices, and finally procedural
abstraction by the instrument of DOMAAB. The respective sub-theory, ExHEC ::=
HECG6 AN HEC10 A HEC11 A ECK3 N\ ECK4, purely relies on constraints maintain-
ing the decomposition of macros, the uniqueness and duration of events, and their
partial temporal ordering. The Abstraction Execution Problem (AExP) formalised
in Definition 14 is thus solved soundly and completely by using IFF inferences
- (plan_execution) ::=tgyrc (Theorem 13).

Definition 14 (AExP) Let £ ::= {lo, L, ...,1,} be a set of incremental levels of ab-
straction. Let DOM, A', G be a domain axiomatisation, an abstract commitment, and
a situation trace.

The Abstraction Execution Problem AExP(DOM, A', G, L) is the problem of finding a
series of incrementally refined plans and substitutions{(2;, 0;) | 0 < j < n} such that
Ai{lo, .-, 1)) = A ({lo, - - -, 1)), & 2 A'({bo, - - ., 1)), and 0}y, is identical to o;
restricted to variables in G({1,,...,1,}). It must hold

G A Aj A (I)({lj}) }:E.XHEC Jj

where ® be the set of ground decomposeMacro literals such that DOMAABA A, = .
The AExP is said to be solved completely if for all{(A}, 07) | 0 < j < n} which solve
the AEXP, we can find a solution { (A, ;) } such that A;({;}) C Aj({};}) and o; = 0.

93



Theorem 13 (Sound and Complete AExA) A'ADOMAABAG Fﬁ;,‘;EC is a sound and
complete Abstraction Execution Algorithm (AExA) to solve an AExXB(DOM, N\, G, L)

Making Persistent and Present-Oriented Execution On-Line Incremental IFF &
ExHEC even provide on-line execution processes, i.e., besides early outputting por-
tions of the decomposed plan A (ranging through all necessary levels of abstraction),
they are able to integrate new situation information G’ as well as concurrently refined
planner commitments A’ both transmitted through the mental model on the fly.

To decompose a reasonable initial portion of the plan, a similar selection to the one
of Subsection 5.3.2, but with higher preference to expressions with a due time close
to the current clock. This can be reflected by looking at the < abducibles (and the
more practical temporal representation discussed in the next section). For example, it
is not necessary to get muddled by doing things too early, hence restricting our further
possibilities for pursuing other goals and for refining the already made commitments.
On the other hand, we should not wait too long, since any perturbation could render the
execution impossible. The strategy therefore depends on the likelihood of interruptions
and the usefulness of idle time in the domain.

LPL  plan execution processes have to decompose particular multi-
agent plans, such as two forklifs mutual exchange of a box
happens(e, exchange(roby, robs, boxy, shelfy), ty, t2,l5).  Hereby, those those parts
of the multi-agent macro must be decomposed in which the agent has an active
role, while passively waiting for contributions of other agents being reported as new
evidences A’ by the mental model. Hence, HECG is operationally restricted to macros
with arguments referring to, e.g., rob;.

On the most primitive level of abstraction, selected actions will be ‘time-stamped’
by extending the current substitution with 77=¢;. Usually, such primitive actions are
signalled to an external environment (the agent’s body) which reports, e.g., end times
and status information back. Since LPL actions represent parameterisations of BBL
computation, they rather invoke updates A’, G’ and feedback within the world model
by way of the mental model (see the following subsection). From the logic perspective,
this does however not make any difference.

Test actions which have been decomposed into holds statements are reported to the
mental model as requests. Looking up particular situation features on-demand saves a
lot of bandwidth in contrast to letting the mental model advertise its complete content
to all execution processes. Hence, the executer temporally assumes particular unknown
occurrences while proceeding with its decomposition. If such assumptions, similar to
awaited cooperative actions of other agents, turn out to be inconsistent. the selected
execution option fails, invokes exception handling and roll-up, i.e., a clean-up of the
situation trace and the scheduled events. This treatment will play an important role in

the following subsection when realising negotiations between multiple agents at their
SPL.

5.5 InteRRaP-R: Horizontally Interacting Layers

The preceding subsection demonstrated the vertical modularisation of a logic-based
agent (or LPL) allowing for a simultaneous solution to prediction, planning, and exe-

94



Figure 28: Inference Processes in the Horizontally Modularised InteRRaP-R

cution problems. Such deliberative capabilities are, but, just one aspect of broad agents
which also have to solve the reactive and social instances of these problems. To this
end, the InteRRaP-R design additionally envisages a horizontal modularisation into a
hierarchy of layers, the LPL being the intermediate one (see Figure 28).

In the following, we will express reactive capabilities in the BBL (Subsection 5.5.1)
and social capabilities in the SPL (Subsection 5.5.3) by the same logic instruments
used to obtained the LPL. Since uniformly representing complete perception-action
mappings, these layers are no longer distinguishable by functional criteria. Instead,
their processes are separated by temporal and representational differences which do
not differ in their theoretical and inferential background:

—(world_model) = ¥ (mental_model) = - (social_model)
—(reflex) = —(local_planning) = (social_planning)
- (behaviour_execution) = - (plan_execution) = - (protocol_execution)

Instead, layer characteristics are determined by choosing the domain representation
DOM accordingly. Figure 28 illustrates the meta-control principle of InteRRaP-R in
which the representations of an upper layer build on abstractions of the representations
of the lower layer. This is quite according to the way that abstraction hierarchies are
formalised in HEC. In addition, control representations become accessible — abstract
resources and their parameterisation — that influence the computation of the under-
lying layer by means of the computational model, here: dedicated control processes.
Subsection 5.5.2 discusses this at hand of the interaction between LPL and BBL.
Meta-control is not to confuse with full-fledged meta-reasoning in which the meta-
level possesses the actual computational model of the object-level as its representa-
tional basis. Even in the SPL, where some higher-level reflection about the mental
model of various agents has to be derived, we do not allow for complete computational
introspection because of tractability reasons.

95



line(no)

followLine

E]—‘I followMotor L

setSpeedimotory) TN followhator L
holdsline(lefi))
l setSpeedimoton, /}ﬁ r

motorl \
O\ tinetiesy)

Lf lineSensors linefon)

[

C7721/)7eary

\ (:3" W' inetright) ‘ walchLine Valucy) q
\ motor? / readSensor(lineSensorpVp ¥ ikl iner Fatuer) U
\ E:l / ’ readSensor(lineSensory V5 =
N — S e(na) readSensor(lineSensory ¥y

I

Figure 29: Moving along a Marked Line: The followLine Macro

5.5.1 BBL: Behaviour Execution, World Model, and Reflex

A typical reactive control problem of the forklift robots in the Automated Loading
Dock is the movement along a marked line by mapping concrete perceptions, e.g.,
readings from infrared sensors, onto concrete actions, e.g., wheel motor commands
(Figure 29). For this purpose, the processes inside their Behaviour-Based Layer must
be able to perform computations very quickly within the fraction of a second not to
loose sight of the line and not to bump into an obstacle at the same time. Inferences
are usually regarded as far too expensive for this task because of tending to elaborate
exponentially many options within the problem specification.

Having a closer look at the required reactive fluents (sensor readings, motor status) and
actions (sensing and commanding actions), a causal axiomatisation can be quite simple
such that HEC and ALP mainly rely on situation abstraction in DOMSAB and action
decomposition in DOMAAB. Since these definitions usually introduce just a bounded
number of mostly deterministically resolvableoptions, the above specified prediction,
planning, and execution procedures can reasonably operate as a quick, though logically
specified BBL. This BBL is very close to the agents of [KS96b, Dav96] and to PRS
of {GL87]. Its design is able to master settings, such as the Automated Loading Dock
and the RoboCup simulation, which are, say, modestly reactive with respect to timing
(close-to-real-time) and physics (small number of reliable sensors and effectors).
HEC and ALP surely do not ultimately address issues such as real-time behaviour
[AZ87], continuous control [Kha83], uncertainty [DvLV96], sensor fusion [DW88],
vision [Mar82], and object recognition [Hum96] to which dedicated research areas in
Al exist and for which a final logic treatment, if desirable, is not to be found. However,
what we outline in the following is that the declarative boundary can be pushed quite
far such that well-defined interfaces to these efforts become apparent.

Behaviour Execution: Primitive Actions and Active Perception One
focus of the BBL is the quick execution of behavioural ‘routines’ such
as the line-following macro  happens(e;,followLine, ty,12,15)  that  in-
vokes concurrent ‘sub-routines’ happens(es, followMotor, ty, ty, lg) and

96



happens(e,, watchLine(Val,), t;,12,1s). These, in turn, tail-recursively call sensing
actions, such as happens(eq, readSensor(lineSensorl, Val,), t1, t3, I7), and motor com-
mands in concordance with test conditions, such as holds(line(left), t1, t5, nil, 0,E, lg)
and happens(eg, setSpeed(motorl, 3), te, 17, 17).

The responsible behaviour execution processes —(behaviour_execution) go quite
along the lines of Subsection 5.4.2 unless arriving at the most primitive level of abstrac-
tion in which they must interact with the environment using particular types of COOP
signals. Primitive actions, such as A ::= happens(eg, setSpeed(motorl, 3), tg, 12, I),
are published to the environment via ActionSignal. In return, the environment reports

its status via PerceptionSignal, e.g.,

G’ ::= t4=t; A holds(speed(motorl, 3), t,, t, nil, 0, E, I7)

From the logic viewpoint, the agent’s body (the forklift robot’s BIOS, in this case)
including the access to sensor registers is modelled as an integrative part of the
environment. Hence, active perception is modelled by primitive actions A ::=
happens(ey, readSensor(lineSensorl, Valy), t,, t3,I;) that will be returned a reading
G' = t3=t; A holds(reading(lineSensorl,123), ts, t3, nil, 0, E, I;). The perceived in-
formation are signalled to the world model whose predictions in turn steer the decom-
position of active behavioural macros.

World Model: Sensor Fusion and Object Recognition The second focus of the
BBL is the world model that subjects incoming observations (executed actions A’,
status reports and sensor feedback G') to a prediction process quite along the lines
of Subsection 5.4.1. In fact, G’ is not immediately telling the agent what the world
looks like, rather it is a sensor-specific symptom caused by sensing actions in A’ under
particular environmental conditions. In fact, these environmental conditions stem from
the having issued motor commands in A’ which do not immediately change the state of
the world, but rather perturb a continuous trajectory of movement in interaction with
the trajectories of other agents and objects.

An approach for reasoning about continuous activities [Sha96, San97] could be incor-
porated into HEC in order to connect A’ and G’ by the prediction of the world model.
To keep this enterprise simple and effective, however, we can also shift to a discrete
level of representation by interchanging the causal role of sensing and acting:

Qc‘quses(readSensor(Sensor, Valy),F,T1,T>,C,B,E, [;) =
(DOMCAUY) Hl*:zrea(lf'ng(Sensmi, Val,)
V3-Val,=Valy, N\ F=not(reading(Sensor, Valy))
Nholds(reading(Sensor, Valy), Ty, T, C, B, E, I;)

Using DOMCAU1, the world model now deterministically builds up a history of sens-
ing samples to which situationabstraction can be applied: The stimuli from several line
sensors are fused into an estimation of the robot’s position with respect to the observed
line at level /4:

‘S’decomposeHolds(line(left), Ty, Ty, C, B, E, ls) = 3Val,>Valy>Vals
Aholds(reading(lineSensorl, Val,), Ty, Ty, C, B, E, I7)
Nholds(reading(lineSensor2, Valy), Ty, Ty, C, B, E, I7)
Aholds(reading(lineSensor3, Valz), Ty, Tz, C, B, E, I7)

(DOMSAB1)

97



Qcauses(watchLine( Valy), F, T\, T», C,B,E, ls) =
3F=line(Val,)
V3~ Val,=Valy A F=not(line(Valy))
Nholds(line(Valy), Ty, T, C, B, E, Is)

(DOMCAU2)

Already at this level, a feedback loop operating within the fraction of a second is
closed, because the world model’s prediction of the line status is sent to steer the con-
ditional decomposition of followMotor in a behaviour execution process. Similarly,
loosing sight of the line immediately triggers a desire of the form DES]1 that is sig-
nalled to the reflex process to find some appropriate counter measure, such as the
activation of the searchLine behaviour:

(DES1) gholds(line(no), Ty, Ty, nil, 0, Ey, Ig) D holds(safePos, Ts, Ty, nil, O, E., I5)

This rapid inference avoids to pursue combinatorially many options and becomes pos-
sible by the modelling of independent and reliable sensors. For noisy settings in which
various perceptions from different sensors can be caused by exactly the same stimulus,
this is not appropriate. The required fusion of sensors is usually performed by Bayesian
methods such as they have been introduced into abductive logic by [PK94] and the de-
ductive Situation Calculus by [BHL95]. Although Bayes allows to revert causality,
such as we have proposed above, the update of probability distributions within such
logics is still rather expensive.

[Sha97b] has proposed to express uncertainty as bounded and equally distributed non-
determinism, i.e., the ‘hypothetical” stimuli are supposed to lie within a specified range
o from the observed ones. By using compact numerical representations and corre-
sponding background theories (see, e.g., Section 6), the enumeration of inherent op-
tions is avoided, nevertheless plausible abstract information can be derived:

Qdec()mposeHolds(line(left)./ T, T2, C,B,E, I5) = é]\/al'l > Valfzé Val,
(DOMSABL') AVal)~8<Val, <Val,+0
Nholds(reading(lineSensorl, Valy), Ty, To, C, B, E. I7) A . ..

For both line-based navigation in the loading dock and landmark-based navigation in
the RoboCup, this approach installs a robust low-level of control. Hence, we simply
assume failure-safe moving and turning on the next level of abstraction in order to trace
the positioning, the orientation, and the surrounding of the robot:

Veauses(atPos(X,, Y)), followLine, Ty, Ty, C, B, E, l5) = ID=west
AY =Yy A X1=Xy~1 A holds(atPos(Xy., Ys), Ty, Ta, C, B, E. Is)
Nholds(orient(D), Ty, T». C, B. E, I5)

Nholds(freeAhead, Ty, Ty, C, B, E, I5)

(DOMCAU3)

The atPos fluent is an example of a ‘phenomenal’ fluent which is not immediately
grounded in observable primitives, thus without an identifiable ‘physical’ substrate.
Such representations play a major role in philosophical debates about qualia and in-
tentionality. They are technically relevant to connect sub-symbolic values with delib-
erative representations, e.g., for building coordinate systems, identifying objects, and
maintaining and communicating cognitive maps.

98



This way, but, the world model cannot detect that the robot has lost the line and has
recovered at a wrong position. For that purpose, we introduce miracle events which
explain the sudden displacements:

(DOMCAUA) chuses('atPos(X], Y1),displacePos(Xy, Y1), T, T2, C,B, E, l5) =
3‘1X1:X2 VAN holds(atPos(Xg, Yg), Ty, T, l Bi E, l5) \ AT

(DOMCAUS5) \;’causes(orient(D), displaceOrient(D), Ty, T, C,B,E,l5) = . ..

Miracles are annotated with extensive costs. The world model does not use these
without getting strong evidences that positioning has gone mad, for example, by unex-
pectedly arriving at a unique landmark. Because miracles do hardly interact with other
actions, the world model simply seeks the most plausible place in the collected history
where the displacement could have occurred and re-interprets its prediction.

For practicability purposes, the world model renounces to represent other objects and
agents on the same low-level of state and activity. Given the usual small-bandwidth
sensors, it is a hard problem to recognise objects and their actions. Hence, we deal with
the representation of multiple agents mainly on the basis of communication facilities,
e.g., basic behaviours say(Ag, W) and hear(Ag) and basic fluents heard(Ag, W) and
said(Ag, W) by which agents transmit who and where they are and what they are doing
(see Subsection 5.5.3). To enable box recognition in the loading dock, we have added
an extra ‘virtual’ sensor that is communicated the identifications.

Nevertheless, some of these issues can be addressed by the instruments of background
knowledge, hypothetical reasoning, and plausibility within our abductive logic. For
example, the existence of an object is inferable from scanning proximity sensors (the
watchAhead behaviour). If an object is not exactly identifiable by a stimulus, the world
model introduces an existentially quantified variable for its identity:

‘ngcomposeHolds(ahead (0),T1,T»,C,B,E,lg) =

(DOMSAB2) !
Jholds(reading(proxSensorl, Valy), Ty, To, C, B, E, I;) A . ..

Triggered by this information, a collision-avoidance desire of the form

\~7’hola’s(ahead(X), Ty, To, nil, 0, E, Ig) D

DES?2 ;
( ) holds(freeAhead, Ts, Ty, nil, 0, Es, I5)

can invoke some dodge behaviour by way of the reflex process. Object positions and
movements are even inferable from the agent’s own position and status:

g’decomposeﬂolds(atPos(0, X, 1), T, T,,C,B,E, I5) =
é]holds(ahead(O), Ty, T>,C,B,E, )
(DOMSAB3) Nholds(atPos(X1, Y1, Ty, Ts, C, B, E, I5)
Aholds(orient(D), Ty, T, C, B, E, I5)
AD=west A Y1=Y, A X;=Xo—1

(DOMCAUG)chuses(‘atPos(O, X1, Y1), displacePos(0, X, Y1), Ty, To, C, B, E, ) =
3-X,1=X5 A holds(atPos(Box, X, Ys), Ty, T2, C,B,E,I5) V . ..

99



By minimising its predictions, the world model then assumes the most plausible en-
vironmental actions that could have occurred in order to consistently explain the cur-
rent situation in relation to the agent’s history. Using background knowledge, such as
about sorts of objects and occupancy restrictions, this is massively simplified. Still, it
turns out a demanding enterprise in the case of displacement (loading dock) or many
unidentifiable, moving objects (RoboCup). This is why we restrict the world model to
a reasonable temporal horizon € in the range of a few seconds whose imposed roll-ups
frequently force to forget about unidentified objects and actions.

Reflex Since the reactive control of the BBL is mainly seated within prediction and
execution processes, the decision-making reflex process experiences the representa-
tionally most restrictive and computationally most focusing variation of functionality
by DOM:

\;’cc}uses(F,A, T,T,,C.B,E,L) =
(DOMCAUT) dL=I5 N\ F=safePos \ A=searchLine
VIL=Il; N F=freeAhead \ A=dodge

DOMCAUT models very restricted consequences and preconditions of just a few be-
haviours, such as searchLine to recover a lost marking line and dodge to avoid colli-
sions with facing objects. This way, the reflex process does not actually plan action
sequences, but quickly activates macros that are deterministically coupled to the low-
level goals transmitted from the world model. While the world model traces their
execution over sensory sub-routines shared with other behaviours, such as watchLine
shared by searchLine and followLine, the reflex process cannot causally analyse the
necessity of its decisions: It cannot issue, e.g., turnLeft and followLine actions by it-
self. It cannot decide to issue downArm, openCloseGripper, and upDownArm instead
of dodge in order to pickup an obstacle Box. And finally, it cannot resolve conflicts
between, e.g., an active followLine behaviour which tries to approach an object for
picking it up and a dodge decision.

Indeed, these tasks are delegated to the deliberative control of InteRRaP-R’s LPL that
configures the state and the computation of the presented BBL processes.

5.5.2 LPL: Abstraction and Abstract Resources

Roughly, the deliberative problem of forklift robots in the Automated Loading Dock
consists of performing (joint) delivery tasks. The representations of the inference-
based LPL that solves the corresponding (multi-agent) prediction, decision-making,
and execution problems have already been extensively discussed in Subsection 5.4
apart from their connection with the just outlined BBL by the coupling of mental model
and world model processes.

In the first place, this connection is established by stapling further deliberative levels
of representation (o, . . ., 4, roll-up interval ~ 30 seconds) on top of the just outlined
BBL levels Is, . . ., I; by the instrument of HEC abstraction hierarchies. For example,
the distinction of ego-centred and environmental representations, e.g., of atPos(6, 2)
and atPos(box;,1,1) and of upArm and upArm(rob,), is released for the sake of an
objective multi-agent perspective:

100



‘S’dgcomposeHolds(atPos(0, X1, 1), 1, T2, C,B,E, ly) =
(DOMSABY)  3holds(atPos(0, X, Y1), Ty, T, C, B, E, I5)
V3O0=rob; A holds(atPos(X1,Y), T, T>, C,B, E, )

Q’decomposeMacro(pickup(0, Box), Ty, T», 1)) =
(DOMAAB1) d0=rob; N happens(E, flownArm, Ty, Ts,15)
Nhappens(Es, closeGripper(Box), Ty, Ts, Is)
Nhappens(Es, upArm, Ty, Ts, I5)

As aforementioned, the lifted information from the world model serves to install the
agent’s positioning, orientation, and surrounding rather than to recognise hardly per-
ceivable multi-agent interactions. Nevertheless, the mental model is able to resolve
displacements and object movements by relying on additional background knowledge
in the form of cognitive maps and common-sense:

0 Vinitially(F, L) = X
dF=category(boxy, toys) N L=l V IF=at(boxy, truck) A L=l V . ..
(DOMSABS) Vd(fcomposeHolds(a-t(.O, truck), Ty, To, C, B, E, l;) =
Jholds(atPos(0,1,1), Ty, T2, C, B, E, L)
Particular LPL primitives, such as pickup(roby, box;) at 1, are executed in the plan
execution processes by procedurally decomposing them into high-level behaviours at
Is, such as the sequence downArm, closeGripper(box, ), and upArm, which could not
be decided by the quick, but myopic BBL alone. Respective signals are transmitted
through mental and world models to the final behaviour execution processes.
This is not sufficient regarding deliberation as a decoupled decision problem to min-
imise conflicts and optimise the performance of the BBL machinery. For example, the
BBL collision-avoidance desire DES? is inconsistent with the deliberative goal of ap-
proaching another robot for box exchange. For example, tactical soccer actions in the
RoboCup simulation are hardly expressible as ordinary abstractions of soccer skills.
For this purpose, LPL actions, such as the suppressDodging action at l4, represent
parameterisations of the BBL rather than simply activating BBL behaviours.
Abstract resources are the representation device that amalgamates the principle of
meta-control with a coherent abstraction hierarchy. Their status, their allocation, and
related parameters of the BBL’s control process are maintained quite as regular fluents
in the world model. As such they are accessible by the mental model:

holds(resourceValue(affect, intensity, 2), Ts, Ty, nil, 0, E, 1)
holds(resourceValue(battery, charge, 534), Ty, Ty, nil, 0, E, 1)
holds(resourceAllocation(reflex, affect, intensity, ?), Ts, Tg, nil, O, E, 1)
holds(processPriority(behaviourExecution(dodgeLeft), I, 0.5), Ty, Ts, nil, 0, E, I)

affect is an abstract resource that is consumed by a forklift’s reactive reflex process for
deciding about low-level goals. Depending on the selected inference option, e.g., in-
voking a moderately ‘dangerous’ searchLine or a heavily interacting dodge behaviour,

101



a respective amount of its intensity item is consumed. This value is 1 in the case of
searchLine and 2 in the case of dodge. The BBL control process acknowledges the con-
sumption of resources by incorporating resourceValue updates into the world model.
The history of resources (and other control parameters, such as resourceAllocation
and processpriority) is deterministically maintained by the following definition (and
analogue definitions for, e.g., changeResourceAllocation and changeProcessPriority):

‘;/causes(F , changeResourceValue(Resource, Resourceltem, Val,),
T\, T»,C,B,E, lj) =
(DOMCAUS) AF=resource Value(Resource, Resourceltem, Val,)
v3-Val 1=Valy N F=not(resourceValue(Resource, Resourceltem, Valy))
Aholds(resourceValue(Resource, Resourceltem, Valy), Ty, T», C, B, E, ;)

Abstract resources, their allocation, and other control parameters are now subject to
regular situation abstraction within the mental model and participate the deliberative
reasoning in prediction, planning, and plan execution. By the following axioms, the
forklift’s local planning process can decide that, in order to successfully exchange
a box, suppressDodging must be invoked which in turn decomposes into an update
of the allocation of affect intensity. Then, the BBL reflex process will be able to
decide searchLine, but no longer dodge. Since suppressDodging makes safe navigation
impossible, the local planner must use the allowDodging action which reinstalls the
original allocation before planning any further moveArea macro.

(DOMSABS6) g’decomposeH()lds(safeExchange, T1,T,,C,B,E, ;) =
3Val < 1 A holds(resourceAllocation(reflex, affect, intensity, Val), T\, T», C, B, E, ;)

(DOMCAUY) chus?s(F, suppressDoc{gtrz.g, Iy s O, Bj E, {4) =
JF=safeExchange ' 3F=not(safeNavigation)

(DOMAAB?2) g’decomposeMacro(suppressDodging, T, T,,C,B,E, ;) =
Jhappens(changeResourceAllocation(reflex, affect, intensity, 1, 5.C.BEL

5.5.3 SPL: Social Model, Social Planning, and Protocol Execution

In a heterogeneous domain, the social problem of broad agents is not to be defined
globally, rather appears as the economical adaption of the agent’s deliberation (Von
Neumann and Morgenstern’s theory of games and economic behaviour [VNM44]) to
the behaviour and especially to the conversations of other agents and humans (Searle’s
speech act theory [Sea69]). Even if restricting to artificial societies [Sin91] with a pre-
defined communication language, such as KQML [LF97], this still appears to be an in-
herently complex exercise involving the prediction of other agent’s state by communi-
cation performatives [CL95], full introspection into deliberative computations [Pet92],
and decision-making about performatives [GS90, CP79, PA80]. Although possibly to
formalise within a logic, such as BDI [RG91], this will most unlikely be an executable
one.

102



Figure 30: The Need for Social Coordination in the Automated Loading Dock

The forklifts in Figure 30 can be seen as a fully collaborative instance of a multi-
agent system that needs to maximise deliveries throughout the whole loading dock. In
the depicted case, one robot is blocking the other’s path to the shelf and the robots can
agree upon a multi-agent plan to exchange the box. This benevolent setting is similarly
true for RoboCup, in which the overall aim of the game, to beat the opponent, is
specified on the team level and can be reached by having players incarnating particular
strategic roles.

In this context, [Miil96] constructed a runnable SPL for forklifts using negotiation
protocols [RZ94]. Negotiation protocols, such as the contract net protocol [Smi80],
are artificial conventions to coordinate distributed representations, e.g., to reach an
agreement upon a multi-agent plan. They pre-structure the otherwise enormous space
of possible interactions. Moreover, due to the bounded number and the fixed status
of performatives within such a protocol, the modelling of complex communication
semantics is largely abandoned.

To revisit all of these issues within the presented inferential framework exceeds the
scope of this report and will presumably be a research topic on its own, such as other
approaches to the matter demonstrate [DST99]. In the following, we describe the pre-
liminary results that we obtained in ‘emulating” InteRRaP’s SPL within InteRRaP-R.
Our ability to build working teams of agents in loading dock and RoboCup indicates
that thinking about social processes in terms of causality may be an adequate enter-
prise. Indeed, most of the existing research around coordinating multi-agent activities
[VM92, DL89, CLL93] relies on narrative-based representations in one or the other
way. There is even no sensible alternative to treating other agents via default persis-
tence; more than for regular fluents in the frame problem, the space of options for such
‘mental fluents’ otherwise prevents any reasoning. And finally, if we assume all agents
to be InteRRaP-like artifacts, their mental attitudes are subject to causality by design.
The rationale behind the resulting ALP & HEC-based SPL condenses into the four
following points whose alternatives must be left to future investigations:

Coordination vs. Cooperation [MC91] distinguishes between jointly coming to
an agreement on doing some action such as exchanging a box — the coordination
problem which is doubtlessly the domain of the SPL — and jointly executing the action
afterwards — the cooperation problem. In original InteRRaP [Mul96], the latter was

103



partly addressed in the LPL by means of single-agent plans, but partly also in the
SPL'® by means of multi-agent plans from which the single-agent plans have been
extracted. This complicated design was due to the necessity of coordinating most of the
cooperation that a forklift performs. We have demonstrated that this is not the general
case: InteRRaP-R’s LPL is able to recognise, predict, and assume multi-agent activities
without explicit coordination. InteRRaP-R’s SPL hence focuses just on coordinating
the underlying LPL with those of other agents.

Reflection and Communication Allocating abstract resources, such as roles in a
soccer team, is one tool to enable the SPL’s coordination of the LPL. The other tool 1s
a moderate reflection facility built into situation abstraction (see the paragraph on The
Social Model below) which allows to create mental fluents, ‘snap-shots’ of regular flu-
ents, events, and time-points in the LPL of various agents. Mental fluents are the basis
for specifying performatives, for tracing social conditions , and for expressing coordi-
nation goals — currently under the support of highly domain-dependent background
knowledge.

Flat Coordination One particular limitation of mental fluents is their not being
nested, i.e., they do not range over the agents’ social model processes. This is rea-
sonable in terms of practicability, but problematic with respect to expressiveness. As
[HM90] and others have elaborated, the ‘when’ and ‘what’ to coordinate suffers a se-
vere bootstrapping problem, that is, in order to determine whether the mental states of
two agents interact, there must be first some mutual agreement on what their actual
mental states are. Similarly, negotiaions can fail to reach an absolute consensus for
which appropriate social goals (‘try to coordinate as much as possible’) must be de-
fined on a higher level. Finally, social situations are often symmetrical such that it is
not clear which agent should start the coordination.

In practical settings where the depth of the required agreement is bounded, e.g., fork-
lifts should agree upon some joint LPL action, it suffices that agents mutually know
a part of their mental models. The bootstrapping problem can then be resolved using
an initial (meta-) negotiation about incomplete information (the QUERY protocol in
[Miil96]) and election (the election protocol in [CR79]). We will not address reason-
ing about information exchange, failure of negotiations, and election in this thesis, as
it would require another level of reflection (the Conscious Planning Layer?). Rather
we handle these problems via domain representations that avoid symmetry, divergent
negotiations, and lack of information.

Negotiation Protocols and Strategies Finally, we introduce SPL negotiation proto-
cols as non-deterministic multi-agent macros butlt upon communication performatives
and LPL-coordination actions by using the action abstraction facilitiecs of HEC. By
interactively planning and executing these multi-agent macros in the given social set-
ting, the SPL realises agent-specific negotiation strategies. We especially focus on
protocols for coordinating plans, such as box exchange, and resources, such as roles.

This Jayer was thus called Cooperation Planning Layer (CPL). The above clarification suggests the
change o name.

104



The apparent relation between multi-agent plans and negotiation protocols has already
been anticipated in [Miil96] (Chapter 3.6, page 108):

“There are strong parallels between negotiation protocols and joint plans:
whereas plans restrict and synchronise the activities of agents in the world,
protocols restrict and synchronise the communication process itself; thus,
negotiation protocols can be looked upon as meta joint plans whose result
is a decision, e.g., about what plan to use.”

The Social Model Each time an intermediate solution is found in the mental model
process, the social model receives a decoupled ‘snap-shot’ of several deliberative lev-
els of representation. This is accomplished by a moderate reflection facility which
extends first-order logic by (meta-)constants 'x referring to the partial content of a vari-
able X, i.e., the established equalities, orderings, etc., which have been placed onto the
variable. This is just one piece of second-order logic [Pet92] to which inference proce-
dures have already been presented [CL94]. We do not discuss theoretical aspects here,
rather remark that this is compliant with our (higher-order) implementation platform
(see Section 6).

From the SPL perspective, mental believes fluents that are constructed within the fol-
lowing situation abstraction definitions at time #; can be seen as ordinary terms that
reflect the status of regular LPL fluents (holds), events (happens, not(happens)), and
time-points <. We sketch the holds and not(happens) cases with respect to two delib-
erative levels of abstraction:

‘é’decomposeHolds(believes(rob1, holds('f) 1, t2,' e,' 1)), t;_1, t;, nil, 0, E, I) =
(DOMSABT) 3L=14 A holds(F, T, Ty, nil, 0, E, L)

‘g/decomposeHolds(believes(r0b1,_not(happens(’e,’ a't, 1)),
(DOMSABS) ti—1, t;, nil, O,I é; l]) =
dL=I5 A —happens(E, A, T, T», L)

Tolerating the restricted expressiveness, these definitions do not build up believes in an
arbitrarily nested and compositional fashion, e.g., believes about believes or believes
about disjunctive formulae. Partly, compositional information is implicitly present in
more abstract representations. Partly, conjunctions can be reflected in order to make the
mechanisms presented in this subsection more practical, e.g., by coordinating complex
plans instead of actions.

We obtain a simple history mechanism of the social model in which updates are mod-
elled via changeBelieve miracles initiating new believes and terminating incompatible
ones. incompatible is a rule of thumb which determines what must have changed in the
commitments of an agent’s mental model, but which is not constructing a necessarily
consistent history.

Qcauses(changeBelieve(Ag, Fi),F,T\,T,,C,B,E,I}) =
IF,=believes(Ag, F1)
(DOMCAU10) VAF,=not(believes(Ag, F3))
Nholds(believes(Ag, F3), Ty, T, C, B, E, I;)
Nincompatible(Ag, Fy, F5, Ty, T2, C, B, E)

105



Vincompatible(Ag, F, Fy, Ty, T2, C, B, E) =

éFl ih()ldS(F, T3, T4, E17 L) N ng—'hOIdé'(ﬂOt(F), T5./ T(;, E;g, L)
/\holds(believes(Ag., <(T3, T(;)), T] 5 TQ, C, B, E, l])
Nholds(believes(Ag, <(Ts, T4)), T1, To, C, B, E, 1)

\/éFl':happens(EQ, A, T3, Ty, L) A Fo=not{happens(E,, A, Ts, T5, L)
Nholds(believes(Ag, <(T3,Tg)), T1, T2, C, B, E, I)
Nholds(believes(Ag, <(Ts,Ty)), Ty, T2, C, B, E, I)

\/3F1i<(713) Ty) A ngi(n, T3

(INCOMP)
),
)

It is to note that our formalism does not introduce mental fluents for goals and in-
tentions. According to BDI logic [RG91] and its Kripke-style semantics, goals are
particular ‘sub-worlds’ of optional beliefs, intentions are sub-worlds of optional goals.
By this construction, it can be distinguished between unavoidable situations and fu-
ture goals, between anticipated occurrences and decided intentions. We cannot uphold
this distinction, because believes do always refer to one particular option within the
mental model. Hence, we could only assume all believes about future events to be the
intentions of the agent, about future states to be its goals.

Communication is needed in order to derive mental fluents about other agents’ LPL.
Basic communication facilities for perceiving and issuing performatives are behaviour
execution processes within the BBL (hear(Ag) and say(Ag, W) at level I;). These are
are allowed to send ActionSignal

A = happens(say(roby, tell(holds(at(box,, shelfs), 1, t2," e, I2))), Ty, Tu, I7)
and to receive PerceptionSignal
G' ::= holds(heard(rob,, tell(happens('es, downArm(rob,), ts, t;, 1)), T, Ty, E, I7)

to and from the environment. As a short-cut, their results are immediately lifted from
the world model into the social model (DOMAAB?2 and DOMSAB12) where the causal
interpretation presumes benevolence, i.e., a proper belief is the necessary precondition
for uttering a rell performative (DOMCAU11).

‘é’dec'()mposeMacm(hear(A )T, T, 1)) =

DOMAAB?2 ‘
( ) Jhappens(hear(Ag), Ty, To, I7)
v e card 5, C.,B. E [})=
(DOMSABY) VdecomposeHolds(he ard(z‘Ag, W), T\, Ty, C,B,E, )
holds(heard(Ag, W), T\, Ty, C, B, E, I7)
(DOMCAU11) Veauses(hear(Ag), heard(Ag, tell(F)), T\, T, C. B, E.1,) =

Jholds(believes(Ag, F), T1, T, C, B, E. 1)

Benevolence usually goes further by possibly adopting the thus reported believes, for
example by integrating an execution report of a partner agent into the mental model
to support cooperative prediction, planning, and plan execution. Another example
are user-given delivery commands (tell(user, unloadCommand(box,, l,))) which we
expect to be carried out by the forklifts LPL according to the preceding subsection.
But, it 1s 1mportant not to so naively, because partner agents have an as incomplete

106



view of the world, pursue different goals, and work on possibly inconsistent intentions.
Since the social model is decoupled from the LPL, it is however able to force a (non-
monotonic) re-orientation of the mental model in order to accept observations, remove
goals, and change intentions there.

QhOIdS(bell.eVé’S(Ag’ F)7 li-1, li nil7 Oa El; ll) A\ —'Agirobl
(ADOPTE) AF=happens('e2, downArm(Ag), t3, ts,' 1) D
Jdhappens(E,, Ag, Ts, Ty, L)

To decide what is worth of being integrated and what is not, we again rely on a rule
of thumb. The above ADOPTE constraint (and analogues for fluents and time-points)
integrates other agents’ reported believes about past, present, and future events where
the criterion is that each agent is held capable of controlling its own actions. More
general incorporation principles could emerge from ongoing research on distributed
databases [Sub94].

Equally important to the adoption of information is to forget about mental states over
time; the temporal horizon € for rolling-up the social model ranges about one minute
back and forth. Mental states of agents are likely to change unobservably which some-
how stands in contrast to strict inertia. The roll-up mechanism can be thus be under-
stood as a way of circumventing the implausible infinite persistence of any fluent.

Social Planning: Social Goals and Initiating Negotiation How to incorporate told
information is a fundamental part of the agent’s coordination strategy. When to en-
gage into some communication, which coordination convention (negotiation protocol)
to use, and what to say during such a conversation are the other parts. Because of
incomplete perception, these decisions can take a complicated shape: To determine
that exchanging a box is useful, forklifts usually have to first exchange information
about their current environment, their related goals, and their relevant intentions, i.e.,
they have to coordinate their social models before coordinating their mental models.
For that purpose, [Miil96] used an additional level of meta-negotiation (the QUERY
protocol) whose formalisation exceeds the expressiveness of mental fluents. Instead,
we install desires (DES3) into the forklifts’ SPL which aim at informing (the said flu-
ent) a facing robot of relevant parts of their mental model. By DOMCAU12, the social
planner invokes a say action that immediately decomposes into a corresponding BBL
activity.

‘ﬂ?holds(believes(mbg, holds(ahead(Ag), Ts, Ty, E1, 1)), Ty, Ta, nil, 0, Ey, I, ))
(DES)/\holds(believes(robg, hola’s(at(Ag, sﬁelﬁ;), T3, T4, E1, 1)), Th, T, nil, 0,Es, 1)
Aholds(believes(roby, holds(free(8,7), Ts, Ty, E1, 13)), Ty, Ta, nil, 0, Eo, I;) D

glsaia’(Ag, tell(holds(free(8,7), Ts, Ty, E1, 1)), Ts, T4, nil, 0, Es, h)

\?’cquses(say(Ag, tel(W)), said(Ag, tel(W)), Ty, T», C, B, E, ) =

(DOMCAU12) :
Jholds(believes(rob,, W), Ty, T», C, B, E, )

By this design and the benevolent incorporation strategy, forklifts are able to complete
their social models, at the same time re-orientate their LPL. For example, as soon as the
robot delivering the box adopts the reported belief free(8, 7), its local planning process

107



refines the transport commitment at level /5 (that is dealing with the reachability of ar-
eas) with the multi-agent macro happens(exchange(rob,, robs, box, ,Shelfs), Ty, Ty, I).
This is because involving the other agent became less expensive than doing it on its
own (where inability amounts to infinite costs).

By comparing its own mental state with the one reported by the partner agent,
the delivering forklift then notices that it must reach an agreement about the
generated multi-agent plan. These statements are treated at the level of ab-
straction ly.  The fluent not(coor(Agi,Ags, Fy,F,)) (explained by the miracle
disCoor in DOMCAU11) describes that agents Agi,Ag, exhibit believes F,, F,
which are uncoordinated, such as different opinions about the occurrence of the
joint exchange (DOMSAB10). The unique agent Ag; then initiates the coordina-
tion effort by the SPL desire Vholds(not(coor(roby, Ag, Fi, F3)), Ty, Ty, nil, 0, E, Ig) >
holds(coor(rob,,Ag, Fy, Fy), Ts, Ty, nil, 0, E, lp) and lets the social planning process to
enter the coordination protocol coorProt(roby, Ag,, F,, F3) (DOMCAU12).

Q’decomposeHolds(not(coor(Ag1,Agg, F1,F3)), T1, T2, B,E, ) =
(DOMSAB10) JF; ihappe'ns(exchange(Agl ,Aga, Box, Area), T3, Ty, I3)
Aholds(believes(Ag,, F,), T,, T,, C, B, E, ly)
Nholds(believes(Ags, not(Fy)), Ty, Ty, C, B, E, 1)

(DOMCAUL3) chus?s(dzsCoor(Ag],Agg., F1,F3),F,T\,T»,C,B,E, |) =
dF=not(coor(Ag,Ags, Fi, F,))

(DOMCAU14) ‘v’cqus'es(coorProt(Agl.,Agg, F1,F), B, 11, 15,C,B,E, |y) =
Hcmoor(A<g17Ag2a F17 F?)

Protocol Planning and Execution: Coordinating Believes In [Miil96], a negotia-
tion mechanism for reaching an agreement about multi-agent plans is developed, the
Joint plan protocol (Figure 31, lower-left part). Its principle goes back to the monotonic
concession protocol of [RZ94] and must not be restricted to plans, but could cover any
representation such as mental fluents. One of the involved agents (the leader as op-
posed to the follower) that has first recognised the coordination problem constructs a
negotiation set which is a finite set of optional solutions to the coordination problem.
In our example, these options are that either both agents adopt the exchange event or
they both reject it. More complex negotiation sets can be constructed by plan critique
methods [vVM92].

The state diagram in Figure 31 is a shared convention between the agents according to
which they take initiative (the state nodes) and perform communication performatives
(the transitions) about the negotiation set. Non-determinism in the protocol has its
source in the actual choice of the performative and the selection of its content (plan,
element of the negotiation set). The individual negotiation strategies of the agents
determine concrete ‘runs’ through the protocol during which the negotiation set is
incrementally shrinked until both agents agree on a particular solution.

Reasoning about state and transition is central to our logic-based reconstruction of
InteRRaP-R. Hence, it is suggesting to think of diagrams such as used to describe
negotiation protocols of the SPL as multi-agent macros quite similar to the rransport
and exchange abstractions installed in the LPL. In the upper part of Figure 31, the

108



coorProt(Ag,AgsF1. )

[ propose(AgAgpFy ) F3) g> modProt/(Agr.Ag; F3)
; UC‘L'e’pl{,4 21,Ag.F3) :>L integrate(F3) —H>

modify(AgrAg,F3,F) modProt (Ag) AggFy)
ARl of

I accept(Ag).AgpFy) :>l integrate(Fg
miodifyi(Ag.Ag; modProy(Ag.
FJ*F.“ i Agl'lrj'

modify(P,P)

modify(Py,Py)

/ S

~

accept(P) /
accept(P)

\§F: N\
ool e ot
ol fon

Figure 31: The Coordination Protocol: State Diagram and Multi-Agent Macro

logic structure of the coordination protocol macro (coorProt) is outlined that transfers
the transitions of the original diagram into communication and coordination primi-
tives (propose, modify;, modify;, accept, integrate). Sub-graphs of the diagram are
realised as recursive sub-macros (modifyProt;, modifyProty). coorProt models non-
determinism by disjunctive decomposition and quantified arguments of action types.
To emulate the agents’ negotiation strategy, the idea is to introduce the (intermediate)
negotiation set as a set of high-level fluents nset(Ag;, Ags, F1, Fa, F3) at level [, relating
the possible solutions F3 to the actual coordination problem. These fluents are initiated
by the miracle buildNset.

\~/dgcon'zposeHolds(nset(Ag,, Ags, F1,F2,F3), T\, T2, B, E, ) =
(DOMSAB14)  3F3=F; A holds(not(coor(Ag;, Ags, Fi, F2)), T1, T2, B, E, ly)
VIF3=F; A holds(not(coor(Ag;, Ags, F1, F2)), T1, Ts, B, E, Iy)

(DOMCAU12) Vcrqusg(builstet(Ag,, Ags, F1,Fy, F3),F,T1,T5,B,E, l) =
HF:nset(Ag/, Agf, Fl, F2, F3)

Then, the protocol can be run distributedly by the situated interplay of both agents’
social model, social planning, and protocol execution processes that make inferences
about how the protocol actions manipulate the negotiation set. Hence, the individual
negotiation strategy is mapped to the individual selection strategy applied by the social
inference processes. For example, the propose action decomposes in DOMAAB3 into
either active (for the leader) or passive (for the follower) communication. propose
refers to some member of the negotiation set in its precondition. This member is picked
by the search rule of the social planner and marked as proposed. Since the leader’s
planner furthermore chooses the most cost-effective hypothesis, it simply assumes the
follower to accept; its protocol executer hence issues propose and waits for accept.

109



\;’dgcomposeMacro(propose(A AL Fi Fa Fy), Th, Ty, lp) =
(DOMAAB3) 3JAg=rob, A happens(say(Agy, propose(F, Fa, F3)), T1, Ty, I1)
V3Agr=rob; A\ happens(hear(Ag,, propose(F1, Fy, F3)), Ty, Ts, 1)

Veauses(propose(Ag, Ags, F1, Fa, F3), F, T, T2, B, E. ) =
AF=proposed(Ag, Ags, F, F2, F3)
Nholds(nset(Ag), Agy, Fr, Fa, F3), F, T1, Ts. B, E, lp)
Nholds(not(coor(Agi, Ags, F1, F2)), F, T\. T, B, E, l)

(DOMCAU15)

gdgcomposeHolds(proposea’(Agl, Agr F1, Fy, F3), T\, Ty, C,B,E, ly) =
(DOMSABI13) JAgi=roby N holds(said(Agys, propose(Fi, Fy, F3)), T1, Ty, C, B, E, )
V3Agr=rob, A\ holds(heard(Ag,, propose(Fy, Fa, F3)), Ty, T., C, B, E, I)

Even if the follower has not yet realised the coordination need, the arrival
of the proposed performative lets its social model infer that there is a con-
flict with respect to F,,F, pending, lets it create the identical negotiation
set nset, and lets the social planner engage into the modProfl sub-protocol
(DOMCAU16) by the desire Vholds(not(coor(Ag, rob,, Fy, F2)). Ty, Ta, nil, 0, E, ly) D
holds(coor(Ag, roby, Fy, Fy), Ts, Ty, nil, 0, E, 1).

While the SPL of the leading agent waits, the follower’s planner has the option
to accept and integrate the result. integrate (DOMAAB4) is a coordination action
which re-orientates the mental model. accept decomposes into a performative whose
transmission resumes the leader’s protocol execution process that integrates the in-
formation there. In this case, the protocol is terminated and both partners adopt
believes(rob, F3) N believes(robs, Fs3).

gcguses(modifyProtf(Ag,, Ags, F3), F,Th, T2, B, E, Iy) =
(DOMCAUlG) BFiCOOl‘d(Ag/,Agf, Fl, Fz)
Nholds(proposed(Agi, Ags, F1, Fa, F3), F, Ty, T2, B, E, L)

‘QdfcomposeMacro(integrate(happens(’e,’ a't3,"t4,' 1)), Ty, To, lp) =

(DOMAAB4)
Jhappens(E, A, T3, Ty, L)

The follower’s planner has also the option to modify; the proposal, i.e., to make a
counter-proposal from the negotiation set according to its selection strategy and the
estimated costs of the coordination solution. The preconditions of modify; require
some initial proposal from the leader and some counter-offer that is a different element
of the negotiation set. Its effects are that the new solution is now proposed and that
the previous proposal is no longer in the negotiation setnset. The follower passes the
initiative then back to the leader by suspending on the sub-protocolmodProt; under the
assumption that the leader accepts the counter-proposal.

Vcauses(modifys(Ags, Ay, Fs, F1), F, Ty, To, B, E, lp) =
3-F3=F; A F=not(nset(Ag,, Ags, Fy, Fa, F3))
(DOMCAULT)Y  Aholds(nset(Ag), Ags, Fi, Fa, F1), F, Ty, Ts, B, E, ly)
Nholds(proposed(Agi, Ags, F1, Fa, F3), T1, T, B, E, ly)
\/élﬁF,giF4 N F=proposed(Ags, Agi, F1, Fa, Fy) . ..

110



At the time that modifyy arrives at the leader, the selected options in both protocol
execution and the social planner are invalidated (the assumptionnset for integrate does
not hold anymore) and both inference procedures have to backtrack. They take the
second option to decompose modifyProt; which is to engage into modifyProt;. The
social planner decides about either accepting and integrating the counter-proposal or
making a counter-counter-proposal by which we return to above described situation.
Counter-proposals are available as long as there are more than two elements in the
negotiation set left.

Protocol Planning and Execution: Coordinating Abstract Resources Especially
with respect to realising RoboCup team strategies, social control is thought as the long-
term parameterisation of deliberative processes that realise, e.g., local soccer tactics.
Abstract resources, such as roles in a soccer team, that describe constraints on the
possibilities of LPL inferences are a suitable interface for this part of the coordination
aspect. Resource value, resource allocation, related performance data, and parameters
of the LPL control process are accessible as ordinary fluents in the mental model:

holds(resourceValue(roles, attacker, Y Tol T nil,.('), E, )
holds(resourceValue(roles, goalie, 1), T3, Ty, nil, 0, E, D)
holds(processPerformance(attackTactic,0.2), Ty, Ty, nil, 0, E, I5)

LPL processes frequently access abstract resources in order to make inferences. For
example, to plan some offensive LPL tactic (attackTactic) there must be some positive
value for the artacker item of roles. In order to enable movement in the penalty area
and catching the ball (keepGoal) there must be some goalie item accessible. An agent
which has both goalie and attacker resources at its disposal will most probably behave
not optimal, i.e., try to run across the whole field when possessing the ball. This is
revealed by an expectedly bad performance of executing attackTactic. The task of
the SPL is to improve the average performance of LPL processes by coordinating the
resource allocations throughout the whole agent team. For this purpose, the social
model is able to represent resource values and average performances of several agents.

(DOMSABl4)Vd§corr?poseHolds(resourceValue(Ag, B ¥) 13, 5, €, B, E, ) =
JAg=player; A\ holds(resourceValue(Ag,R,1,V), Ty, T, C, B, E, I5)

‘g’dgcomposeHolds(pelformance(Ag, P),T,,T>,C,B,E, ;) =
(DOMSAB15) JdAg=player, N P=(P,+Py+...+P))/i
Aholds(processPerformance(attackLeft, Py), Ty, T», C, B, E, I,)
Aholds(processPerformance(local_planning, Py), Ty, Ty, C, B, E, I5) . . .

Finding an optimal solution to this resource distribution problem is a complex task as it
requires a lot of detailed information about the global situation, the internal operation
of agents, the behaviour of the opponent, etc. It is to question whether such data
can be gathered, even more whether the result of such a computation can have any
impact in a steadily changing domain. Just as a coach frequently re-arranges a soccer
team’s strategy by observation, we are better off with a robust mechanism which helps
to dynamically adjust resource assignments according to performance reports. One

11l



! announce(Resowree, Resourceltem, Yalue)

(\ rbizlll('l'.;>

\7 T / k!i({([‘vaurnlu"('C)
contractNet(agy, agy, ,....ag, .R.LV)

rant(Valuc ) [unnuum:r'(agn.ﬂgh R.1 V)H >|I)id(ag,,.a_q,,,P/)‘D’;raul(agm,ag,‘, V) DI changeResourceValue(agy, R.1.1})

\ [mmuum’e(ag,,,.ug,,.R.l, I’)Mb’-‘l("gb"'g"'PJ)DE"Q’7‘(G&71»“§:-V.’} :)i changeResourceViduefag, R.1, i_,}JD

Irmmuum,-c(ag,,,,agb,R,I. V) Mbid{agb ,ag",P,/Mgmm(ug wHE BV 11 changeResourceVulue(ag, R4 V)

Figure 32: The Contract-Net Protocol: State Diagram and Multi-Agent Macro

such mechanism is the contract-net protocol [Smi80] (Figure 32) in which a dedicated
manager agent ag,, (the coach) coordinates a set of bidder agents agy, ..., ag), (the
soccer players). Thanks to its ability to represent arbitrarily interleaved actions, HEC
is capable of representing the contract-net as a compact multi-agent macro.

Originally invented for task assignment, the contract-net principle is suitable for dis-
tributing any type of representation, including abstract resources. Applied (o our do-
main, the manager keeps a central (strategic) representation of team resources, 1.e.,
how much overall defender, attacker, and goalie items should be available as team
roles, and of team performance. There is a domain-dependent heuristic which indi-
cates when performance goes down (not(optimal(R, 1)), DOMSAB1G) and which lets
the manager issue an announce performative (DOMCAU18) for these items. This in-
forms the bidders that resource coordination is pending to which they react by reporting
their average performance by the bid performative (DOMCAU18). According to its co-
ordination strategy, the manager distributes the announced items to the best performing
agents.

Veauses(announce(coach, Ag, R, I, V), F, T, Ty, C, B, E, ly) =
IF=announced (coach,Ag,R,1, V)
Aholds(not(optimal(R, 1)), T\, T,, C, B, E, L)
Nholds(resourceValue(R, 1, V), T\, Ty, C, B. E, ly)

(DOMCAU18)

VdecomposeHolds(not(optimal(R, 1)), Ty, Ty, C, B, E, ly) =
Jholds(resourceValue(Ag,R,1, V), T\, Ty, C, B, E. 1)

(DOMSAB16)
/\lwlds.(petf()rm.an.ce(Ag., P), T, T».C.B.E. )
A=V=0 A P<0.3
(DOMCAU19) Vcrcgu.s*es(bzd(Ag, coach, P), bade(Ag, coach, P), T\, T»,C, B, E, ly) =

Jholds(performance(Ag, P,), Ty, Ty, C, B, E. I})

112



5.6 Bottom Line

Underlying a theory of time and action, such as HEC, with an advanced inferen-
tial framework, such as ALP [KKT93], delivers executable specifications of domain-
independent agent functionalities, such as prediction, planning, and execution, at sev-
eral representational horizons, such as found in reactive, deliberative, and social rea-
soning. This aspect of Cognitive Robotics completes the rigorously formal description
of hybrid InteRRaP-R a sound and efficient implementation of which should be derived
in the following section. At the same time, we are provided with a clean programming
surface in terms of domain representations whose adequacy for our representative sce-
narios will be documented in Section 7.

The feasibility of the approach is supported by two factors. The first one is the sit-
uated reasoning that is performed by ALP, more specifically the presented IFF and
FFI proof procedures. To make a closed-world assumption rather than to introduce a
tremendously complex frame of possibilities is important for practical inferences, such
as realised in SLDNF [Cla78]. ALP’s additionally staying incremental with respect to
particular occurrences in the world is important because of ubiquitous and unavoidable
ignorance.

The second factor concerns the operational considerations which make the inferences
fast and mutually compatible. We have presented persistent, but complete selection
strategies for the various inference services. We have discussed their connection to
COOP exception handling for detecting inconsistent states, for recovery and for roll-
up. Finally, we have envisaged encapsulation, i.e., the individuation of the otherwise
too general logic framework into the adaptive interplay of specialised, but interactive
reasoning processes. These issues are usually neglected by relevant Cognitive Robotics
research, such as [Esh88, KS96b, Sha89, Sha97a].

6 Implementation: CP

Broad agents are a type of software systems that take too much effort to be programmed
from scratch every time again. Moreover, they cannot be easily understood at the level
of program code. This led us to introduce high-level design concepts to organise state
and computation of InteRRaP-R in both declarative and operational ways. Since the
applied design methodology is mainly formal, we have gathered by now a largely
unambiguous ‘agent interpreter’ in terms of COOP and embedded ALP & HEC. This
interpreter determines a set of domain-dependent data structures and describes their
step-wise treatment by domain-independent transitions.

The aim of this enterprise is to create concrete systems running on standard computers
programmed in a standard programming language, hence to implement the developed
speciﬁcatiori of architecture, computational model, theory, and inference. At this point,
we could rely on the reader’s trust in the presented concepts being implementable
and on his or her intuition about how they have been implemented. However, for
an approach to should avoid the fuzziness of previous research, this would be too
simpleminded.

On the other hand, installing a verified connection between specification and final pro-
gram, such as propagated by formal engineering, may be possible for critical and small
sub-modules of a software system. For a compositional framework, such as hybrid

113



abstract

concrete

declarative dwmm= mm— operational

Figure 33: Constraint Programming as an Implementation Methodology

InteRRaP-R with its several thousand lines of source code, this would certainly ex-
ceed the scope of this thesis. Hence, the current section takes an intermediate stance
and discusses useful realisations, limitations, and extensions of the high-level concepts
within modern programming languages, but does not engage into verification issues at
the code level.

For this purpose, we look at ‘Constraint Programming’ (CP, Subsection 6.3) [MRO5,
Fre96, Smo97, MP98] languages, such as Oz [Smo95], because the fruitful reconcil-
1ation of declarative inferences and operational computations lies at their very heart
(Figure 33). Oz builds on traditions from ‘Constraint Logic Programming’ (CLP, Sub-
section 6.1) that investigate the operational control of logic-based settings. CLP’s close
relation to ALP (Subsection 6.4) is the key to implement HEC inferences. Oz also
builds on traditions from ‘Concurrent Constraint Programming’ (CCP, Subsection 6.2)
that provide a unified inferential frame for, e.g., operations research, graph theory, and
distributed computing. By its emphasis on concurrency, the CCP model is predestined
for the implementation of interactive COOP processes (Subsection 6.5).

Hence, the current section demonstrates our conceptual framework to be imple-
mentable in modern programming environments in a sound way. It presents basic
recipes how Lo efficiently implement the agent-level concepts within a constraint-based
environment. And it finally discusses in Subsection 6.7 to what extend the derived im-
plementation is compliant to the computational and inferential model of InteRRaP-R
developed so far.

6.1 Constraint Logic Programming: CLP

We have already motivated the central role of unification in logic programming (LP)
for which a quasi-linear algorithm [MM82] can be deployed. Conceptually, however,
unification is still thought of as a deductive inference upon logic formulae, i.e., =
literals. that are interpreted over the Herbrand universe, 1.e., under the CET theory.

The general usefulness of combining a declarative problem-solving machinery, such as
definite clauses, with an operationally efficient treatment of a logic sub-language, such
as handling equality by unification, has been recognised and formalised by Jaffar &
Lassez [JL87] in their ‘Constraint Logic Programming’ (CLP(X) — Figure 34) frame-

114



BasicConstraint ::= Constant(Term*)

ProperLiteral ::= Constant(Term*) \ BasicConstraint
ComplexConstraint ::= 1 | T | BasicConstraint A ComplexConstraint
Goal ::= T | ProperLiteral \ Goal

Clause ::= ‘é’ProperLiteral C glComplexConsrraint A Goal

Figure 34: Definite Constraint Logic Clauses

work. CLP(X) identifies particular literals within the logic program, such as equalities,
that are called basic constraints.

Theoretically, constraints are not defined by the program, but parameterised via a given
theory X or, alternatively, by a set of corresponding first-order structures X. Hence,
CLP(CET) is the instantiation of CLP to theusual Herbrand semantics of LP.
Inferentially, CLP applies variation of SLD-resolution p: ComplexConstraint N
Goal <> ComplexConstraint N Goal that operates on regular literals and con-
junctions of basic constraints BasicConstraint. In the following SLC step where
Co; : ComplexConstraint, constraints are not resolved by P, but by a separate check for
satisfiability t,.;: ComplexConstraint x ComplexConstraint — ComplexConstraint.

Co, A GiA i 7(P) > Teio = Telo

C(Te,...,Te,) NC(Te,,...,Te)) CACo, AGy  (C010,C020) ey Coz
C03 VAN GQO’ N\ G]O'

SLC

Fu can be thought of as a ‘canonicaliser’ that takes two composite constraints as its
arguments and outputs a new representation that is equivalent to the conjunction of
the given constraints. In the case of unsatisfiability, it outputs L and fails the actual
derivation. Otherwise, I, outputs a constraint that is at least as strong as each of the
input constraints. In other words, new information Co, is ‘told’ to the intermediate
constraint ‘store’ Co; and results in a new constraint store Cos. That is why . is
called the fell operation. A successful SLC derivation starts with a goal G under an
empty constraint store and terminates with a satisfiable store G -}, C.

It is apparent that algorithms to implementt,; have to address particular semantical
demands in order to support a sound and complete inference service, namely they have
to be sound and complete with respect to the constraint language by themselves. The
unification algorithm is such a procedure that has been extended in Prolog II to cover
inequality constraints —X=7e and rational, infinite trees according to the RAT theory
[Mah88].

Another example is the Simplex algorithm in Prolog III's CLP(Q) framework that
can be used to handle linear constraints of the form ¥;a;#X;>b over rational num-
bers. For maintaining a partial order 7;<7T> on integer-valued variables (finite do-
mains, CLP(FD)), a quadratically-complex subset of the Warshall-procedure can be
employed.

We recognise that I, is an interface between LP and widespread research traditions
in Al, operations research, and mathematical programming that run under the title
constraint satisfaction algorithms [Wal97, Mac88]. Hence, the primary advantage of

115



constraint store

Figure 35: Concurrent Constraint Programming: The Actor Model

separating constraints from defined predicates and of separating the constraint store
from the problem solver is that one may wse specialised satisfaction algorithms for
particular domains that are otherwise only ceremoniously expressible as inferences
over the Herbrand universe.

The second advantage of this separation is that the balance between problem solver and
constraint solver may be usefully manipulated by the language designer. It is possible
to initially experiment with a purely clause-based theory. By gaining more insight into
the problem specification, more and more specialised inferences can migrate from the
problem solver into the constraint-solver. Thus, CLP is the straightforward descendant
of LP in terms of rapid-prototyping.

6.2 Concurrent Constraint Programming: CCP

Experiences with CLP languages of the first generation such as Prolog II, Prolog III,

and CHIP have shown that languages that should be extendible also by application pro-
grammers and that should contain more sophisticated constraints, such as over finite

domains, finite sets, record-like feature structures, pseudo-booleans, and real numbers,

the control facilities of the tell operation are too weak. For example, checking the satis-
fiability of finite domain constraints is an NP-complete problem and renders CLP(FD)

unusable in practice.

How could we build complete inference systems from approximate and specialised
constraint solvers that cannot immediately output an equivalent expression for their in-
put constraints because of tractability and representational purposes? Already [Mah87]
has proposed to regard constraint solvers not as one-shot procedures that release all of
their information at once, but rather as persistentactors'” that simultaneously watch the
constraint store upon changes and alternately propagate a portion of their information
to the shared store (Figure 35).

Because of deviating from the opaque and mostly depth-first selection strategy of stan-

dard (C)LP, the programming languages that have been developed in this philosophy
are attributed to ‘Concurrent Constraint Programming’ (CCP) [Sar93]. While propaga-
tion pretty much resembles the tell operation from CLP, CCP actors that watch upon the
constraint store require an additional ask operation that ‘blocks’ until relevant changes
have been made.

The introduction of ask (‘freeze’ in PROLOG-II, ‘suspend’ in ECLIPSE, ‘demons’ in
CHIP, ‘residuation’ in LIFE) has a great impact on the underlying operational model

7Often, the term ‘agent’ is used instead of ‘actor’ in the CP literature which is not to confuse with
our notion of intelligent agents.

116



AskConstraint ::= ask(ComplexConstraint)
Clause ::= VProperLiteral = IAskConstraint A ComplexConstraint \ Goal

Figure 36: Definite Concurrent Constraint Equivalence Clauses

and brings CCP very close to concurrent [Mil80], functional [Mil92], and distributed
[Tel94] programming. Consequently, Saraswat [Sar93] and others [KTW94] pointed
out that this relationship allows for a ‘glass-box’ approach to constraint solving in
which actors must not be identified with built-in ‘black-box” constraint solvers, but are
rather modelled as procedural, i.e., clausal abstractions of atomic ask and tell opera-
tions. Based on a set of well-defined atomic operations upon a useful class of basic data
structures given by the language designer, the application programmer can thus proto-
type more sophisticated, probably incomplete constraint procedures that are tailored to
the problem domain.

In Figure 36, we have sketched a minimal CCP language whose equivalence
clauses each incorporate a set of blocking AskConstraint to be asked, a set of
ComplexConstraint to be told and a set of regular sub-procedures Goal to be called.
We can easily extend SLC in order to handle this language: To resolve a goal, we
impose the additional restriction that the intermediate constraint storeCo; first has to
contain (or disagree with) the asked constraints A. This is established by an embedded
ask procedure i-,4: ComplexConstraint x AskConstraint <+ {T, L} that decides about
(dis-)entailment and that ‘suspends’ until7 : {T, L} can be determined.

’ s T
Coi A GiA ©(P) 3 VC(Te,, ..., Te, Teio = Teio

= (
B Coy0,A0) Fug T
C(Telﬂ ML | Ten) HA /\ C02 /\ G2 Colo_ /\ Cozo_ l_n;” C03

Cos NGoo ANGio AT SLCC
Saraswat’s complete cc(X) language [Sar93] analyses a gamut of additional control
constructs, such as ‘don’t care commitment’, ‘eventual publication’, and ‘global ask’,
which all build onto the basic notions of ask and tell and relate to features of other
concurrent logic programming languages, such as Concurrent Prolog [Sha87], Parlog
[CG86], and ALPS [Mah87]. The richness of the resulting framework made constraint
solving in, e.g., finite domains — cc(FD) — and floating-point arithmetics — cc(R)—
feasible, at the same time allowed for new and elegant implementations of standard
algorithms.

6.3 Constraint Programming: Reconciling CLP and CCP

As can be seen from the myriad of languages that have emerged, the discovery of the
intermediate space between declarative and operational programming has been a deep
and fruitful insight. It is thus no surprise that in recent years, even ‘Constraint Pro-
gramming’ (CP) environments in the intersection of CLP and CCP have been pushed
forward.

A special focus is placed on reconciling the rich actor model of CCP with ‘speculative’
computations from CLP that are introduced by optional resolvent clauses. Speculative

117



computation is an important means to deal withincomplete constraint solvers that get
stuck on a problem when all actors are blocked by asking. Speculative computation
plays a role when actors should be allowed to ask not only for basic constraints, but also
for complex expressions. And speculative computation is an elegant way for describing
conditionals, that are ubiquitous in functional and imperative programming, within the
constraint-based ask & tell framework.

The Oz Model of Computation Spaces One of the first systems moving into this
direction has been AKL [HJ90] which pretty much builds on Warren’s abstract ma-
chine for Prolog [War83]. AKL’s notion of encapsulated search has been overtaken to
the design of Oz [Smo095] which is a uniform and modern basis for functional, con-
current, constraint, and object-oriented programming. Figure 37 introduces its kernel
notation in accord with the already presented syntax. In the Oz model (Figure 38), the
constraint store is generalised to a set of hierarchically arranged computation spaces
each of which carries a set of actors called threads. Subordinate spaces carry out spec-
ulative computations on the information that is already present at or that is elaborated
concurrently within their ancestor spaces.

For example, a conditional cond(E,, E,, Es) spawns a subordinate computation space
in which the asked condition E; — a constraint or an arbitrary expression called the
guard — is elaborated within a new thread. The conditional will block until the sub-
ordinate space is entailed (all threads vanished and have not added any further in-
formation to the parent space) or disentailed (some inconsistency has occured). The
conditional either reduces to E, in the case of entailment, whereby the computation
space is merged with its parent, or to Ej in the case of dis-entailment, whereby the
computation space and its threads are deleted.

Procedures (proc(Vy, Vs, ..., V,, E)) are the Oz counterpart of clausal definitions. Just
as threads (thread(V;, E)) and spaces (space(V1)), they are first-class citizens of the
Oz universe that are assigned to logic variables (here: V;) and that are manipulated
in a higher-order fashion, such as by applying a procedure apply(Vi, T», ..., T,), by
suspending suspend(V;) or resuming resume(V;) a thread, and by inspecting inspect()
or influencing inject(), clone(), merge(), commit() the status of a space.

This results in a very expressive language, at the same time provides useful control
constructs for, e.g., programming search strategies in the language itself. This is be-
cause spaces can be used to trace the optional ways of elaborating an expression of the
form choice(Ey, E;). As controlled from, e.g., the top-level space, a stable space (all
active threads are suspended) in which above disjunction appears can be cloned into

Expression ::= BasicConstraint | Expression \ Expression | Expression |
cond(Expression, Expression, Expression) | choice(Expression, Expression) |
proc(Variable*, Expression) | apply(Variable, Term*) |

thread(Variable, Expression) | suspend(Variable) | resume(Variable) |
space(Variable) | inspect(Variable, Term) | inject(Variable, Variable) |
clone(Variable, Variable) | merge(Variable, Term) | commit(Variable, Term) | .. .

Figure 37: The Oz Kernel Language

118



felll

computation space computation space

P

Figure 38: Computation Spaces in the Oz Model

a separate space that contains equivalent, but named apart information and copies of
active threads. The disjunction is then committed to E; in the original in to E in its
clone. This way, a computation that is originally blocked, e.g., due to employing an
incomplete constraint solver, is reactivated in both successor spaces. The successors
collectively derive a complete set of solutions that are to be merged with the top-level
space on success.

This is the so-called ‘propagate-and-distribute’ search technique that proved to be
highly suitable for combinatorial problems: As much information as possible is added
to the store by constraint solving before any expensive branching, i.e., cloning, of the
search tree is performed. In a logic interpretation, ‘propagate-and-distribute” is closely
related to least-commitment selection.

State-of-the-art Constraint Programming In the current Mozart implementation
of Oz, there are many additional constructs and operational variations to the above
described mechanisms. The philosophy is that ‘everyday’ constructs are highly op-
timised in the kernel while convenient special-purpose expressions are added as syn-
tactic sugar. We can only give an overview here and refer the interested reader to
[Smo95, Hen97, Sch98, Meh99]. Oz is nowadays presented as the extension of con-
current functional programming with constraint techniques.

e Oz threads are lightweight. This is because of its computational model being
significantly different to the one of imperative languages such as Java. It is
possible to run up to 10.000 threads fairly scheduled on a single processor. At
the same time, explicit threading gives the programmer control about concurrent
composition and synchronisation of expressions. Locks preserve an user-level of
consistency.

e Oz incorporates an exception handling mechanism by which a flexible recovery
from, e.g., inconsistent tell operations, is reached. It is possible to raise user-
defined exceptions as a convenient way of structuring computations.

e Besides logic variables which do not change their assigned value, Oz provides
stateful data-structures, so-called cells, modelled as special actors with changing

119



references into the constraint store. Stateful computation is necessary to model
the transitions of objects as being accessed by methods. A major part of the
full-blown Oz language hence deals with defining classes, inheritance, object
creation, and further typical features of object-oriented programming. Objects
and threads are orthogonal concepts in Oz. In Java, for example, this is not quite
as transparent.

e Oz has built-in a set of useful data-types and corresponding constraint systems,
such as finite domain integers, floats, atoms, lists, finite sets, and records as a
generalisation to first-order trees. Oz also contains higher-order types, such as
procedures, threads, spaces, cells, ports, etc., supported by higher-order builtins,
e.g., for inspecting the (partial) value of logic variables to effectively control
search. There is a comprehensive C++-interface to extend Oz with user-defined
types and constraints.

e Oz is one of the first distributed constraint languages that allows several vir-
tual machines to construct a transparent and consistent constraint store. Pro-
gramming abstractions to control the network operation are provided. As a by-
product, Oz is able to export and import any type of stateless data (including
procedures) to the network and the file system.

Mozart and its precursors Oz-1 and Oz-2 are among the most advanced interpreted
programming languages. The successful applications realised so far cover as different
areas as scheduling [SW98], time-tabling [HW96], natural language understanding,
planning [JFB96a], and multi-agent systems [Mul96, FKM™95].

Oz for Implementing Agents Today, intelligent agents are proposed as a vehicle to
describe coarse-grained constraint-solving facilities that are, e.g., distributed over the
Internet. In the other direction, CP is viewed as the right tool to bridge theoretical and
practical aspects of multi-agent systems. To quote Les Gasser:

“There are currently only a few abstract models that can be useful for
reasoning both theoretically and practically about distributed, multi-agent
problem solving, and one of these is distributed constraint satisfaction.”

The usability of Oz for implementing broad agents has already been recognised in
[Miii96, Ros96] where object-orientation and concurrency were used to pragmatically
implement the modular InteRRaP structure. Indeed, the COOP processes from Sec-
tion 3 are quite close to lightweight actors or threads communicating over a shared
constraint store (Figure 36). A not quite as obvious, but more sophisticated correspon-
dence can be observed between abductive inferences and constraint-based computation
when identifying the residue with the constraint store. For that purpose, compare the
similar treatment of abducibles in IFF with the one of constraints in SLC.

6.4 On the Similarities of ALP and C(L)P

Several authors have commented on the similarities of ALP and CLP with respect to
a unified reasoning framework (see [KKT98] for a comprehensive overview). Their

120



common observation is that basic constraints as well as abducibles are predicates that
are undefined in the logic program, hence serve as not regularly resolved completions.
If we look at how SLC resolution treats a told constraint such as an ordering 7, < T,
we see that the constraint store is actually augmented by the formula, i.e., the con-
straint must hold for the resolution step being sound. Hence, a success node of a SLC
derivation carries a satisfiable constraint store, e.g., describing a partial order, which
in conjunction with the logic program entails the original goal. Consequently, the final
constraint store can be thought of as a factual hypothesis or explanation for the goal.
In both CLP and ALP, general satisfiability of the completed abducibles/constraints is
not enough. In the case of CLP(X), constraints obey a particular background theory
X which is implemented by the plugged-in satisfaction algorithms that, e.g., compute
the transitive closure and check the anti-symmetry of ordering constraints. This is an
identical function to the integrity conditions ECK3 and ECK4 of our HEC theory that
are placed onto the abducibles by ALP.

It is thus not surprising that these integrity conditions are called constraints in IFF
and other abduction frameworks, such as ACLP [KM97b]: Their operation of ‘asking’
information from the ‘store’ of abducibles and ‘telling’ conclusions in turn is just a
declarative version of what is happening during constraint propagation'®. Hence, IFF
constraints can be understood as an instance of the ‘glass-box” approach to CP and the
theoremhood of integrity can be seen as the theorem proving equivalent to satisfiability
in the constraint universe.

As [KKT98] has remarked, CP goes even further than ALP by allowing to sim-
plify constraints/abducibles in the store. Therefore, IFF should be reasonably imple-
mentable upon CP languages, such as Oz, by translating a logic program, such asHEC,
into a corresponding constraint program. In [JFB96a], we presented a syntax transla-
tion scheme for particular classes of ALP programs. It maps, e.g., clausal definitions
onto Oz procedures, conjunctions into composed expressions, existential quantifica-
tion into lexical scoping, disjunctions into chotes, equalities onto Oz-unification, and
goals into either basic constraints or procedure applications. We shall not repeat this
result which followed the abduction as deduction idea of [Fun96]. Rather, the current
subsection concentrates on the improvements that we could reach for implementing
HEC due to ‘abduction as constraint solving’.

6.4.1 Implementing Time

One example for improvement is the realisation of the partial-order < by means of
interval-based finite-domain constraints in Oz. Time constants can be mapped onto Oz
integers, time variables onto finite-domain variables, and abducibles of the form 7, < T
onto the predefined Oz constraint 7;+0=< : T». This provides us with a representation
that is effective in avoiding to elaborate particular disjunctions — remember that <
was just a short-cut for < V = — and in using negative information constructively —
—T,<T, can be modelled as To+1=<:T;".

"Whether we define propagation as transferring information from the store to the constraint (IFF),
as releasing information into the store (CLP), or as the combined activities (CP) is merely a question of
terminology.

¥Tn theory, this treatment presupposes the axiom \~1T1 <Ty V T1=T, V T;>T>, hence a total order of
time points, but still allows for partially-ordered solutions with simultaneous or interleaved events.

121



This representation is open in that it can be synchronised to the actual system clock for
specifying dead-lines and detect unreachable goals. The representation is expressive in
that it allows to describe minimal and maximal durations of events by T} +d,,=< : To
and Ty—d,.=<:T;. And the representation is supported by higher-order built-ins
which reflect the state of partially instantiated finite-domain variables, e.g., to steer
search and to communicate temporal narratives.

However, there is a danger in all too naively using available ‘black-box’ constraint
solvers, such as =<:, that are apparently suitable for particular applications, such as
HEC planning, because one must always be aware of hidden operational considera-
tions. Early experiments revealed spurious performance anomalies when facing tem-
poral inconsistencies, such as by being told T; <75 A T,<T;. In the course of planning,
the detection of such inconsistencies is crucial for resolving persistence threats by ei-
ther demoting or promoting events.

The reason for the stated ‘anomalies’ is that the Oz constraint has been designed to
provide local consistency in the first place, i.e., each single T;+1 =<:T, expression
corresponds to a single thread that is asking for information just about the related
finite-domain variables (e.g., 77 > 1087 and T < 1264.9716‘). Its possibilities for
telling (e.g., T3< 12649715 and T, > 1088) are similarly restricted. In order to
arrange global consistency in the constraint store, some interleaved effort of several
=<: propagators is necessary: T <T» each time pushes the lower bound of T and the
upper bound of 7) by one, hereby awaking the complementary propagator of T,<T;
which triggers the first one in turn, etc. If we choose our finite domain quite large, such
as we need to represent a fine-grained time scale, the detection of a single inconsistency
in a single computation space can consume up to several minutes of propagation!

A similar situation occurs in constraint-based scheduling when serialising tasks. For
that purpose, [Wir98] proposed to use global constraints which are actors that are
incrementally extendible by basic constraints. Global propagators collect all the con-
straint information in a specialised data structure within the constraint store, such as a
lazy list or even a pointer into conventional memory. Global constraints are thus able
to perform much stronger inferences than local ones. In turn, their propagation is also
more complex such that a reasonable trade-off between expressivity and effectiveness
has to be investigated in their design.

In Algorithm 1, we have sketched a global propagator for temporal constraints X-+d< Y
that allows to quickly detect inconsistencies, at the same time upholds a tractable
(quadratic) complexity. It maintains a matrix dist and two vectors up, dn storing the
intermediate distance between finite-domain variables and the current interval bounds,
respectively. The matrix is ‘initialised’ with —oo for distinct variables, otherwise with
0. Initial upper bounds up are set to oo, lower ones to —oo. The final implementation
allocates matrix and vector entries on-demand.

As an invariant, the propagator installs distance transitivity dist(Vy, Va) +
dist(Va, V3) < dist(Vy, V3) and bound adequacy dn(Vy) + dist(Vy, Vs) < dn(Vs);
up(V1) < up(Vs) — dist(Vq, Va). As a by-product, the dist(Vi, V) = 0 requirement
also preserves anti-symmetry, hence the satisfiability of a presumed total order. When-
ever a new basic constraint is told, the algorithm enters a nested loop ranging over
the variables constrained by V;+d; <X and those constrained by ¥+d,<V; in order to
combine the maximal distances, detect inconsistencies, and re-arrange interval bounds.
For simplification purposes, our above presentation has omitted an ask & tell-interface

122



Algorithm 1 Global Propagator F,(X+d<Y)

Require: X, Y : Variable, d : Z; dist : Variable x Variable — 7.°°;
up,dn : Variable — 7>

Ensure: dist(X,Y) > d; dist(Vy, Vo) +dist(Va, V3) < dist(Vy, V3); dist(Vy, Vy) = 0;
dn(Vy) + dist(Vy, Vo) < dn(Va); up(Vy) < up(Va) — dist(Vy, Vs)

for all V, : Variable and dist(V,, X) # —oo do
for all V; : Variable and dist(Y, V,) # —oo do
M := max(dist(Vy, Vs), dist(Vy, X) + d + dist(Y, Vs))
if Vi = Vo and M > 0 then
gl
else
dist(Vy, Vo) := M; dn(Vsy) := max(dn(Vs),dn(Vy) + M)
up(V1) == min(up(Vy), up(Vy) — M)
end if
end for
end for

to other constraints through the constraint store, such as the unification of variables
triggering matrix and vector simplification and such as conditions of the form dn(V) =
up(V) invoking unification V=up(V). Similarly, interval bounds can be shared with
other Oz-builtins, such as =<:.

For building propagators and associated portions of the constraint store in Oz, an ex-
tensive C++-interface [Miil99b] is available that includes hooks into unification and
garbage collection, at the same time transparently caters for the management of com-
putation spaces. Because of being a higher-order ‘glass-box’ language, Oz already
provides a built-in support for stateful data, such as the dist matrix. Oz provides lock-
ing which supports a consistent interleaved access from the level of programmable
threads. And Oz allows to reflect the status of bounds on finite domain variables. For
prototyping purposes, we thus chose to implement the above propagator as a procedu-
ral abstraction in the Oz language itself.

6.4.2 General Abducibles, Negation, and Integrity

The treatment of temporal constraints demonstrates that the very principle behind im-
plementing constructive ALP upon deductive LP is to reify as much as possible the
relational information in the residue, e.g., 71 <Ts, by functional information in the
‘constraint store’, e.g., 7;==18493.

This principle has been used in [Fun96, JFB96a] and similarly in the meta-
programming approach of [Sha97a] to realise general abducibles, such as happens,
by means of standard clausal or procedural definitions: Additional arguments H, and
H, are introduced to represent the residue as a list of terms where H; refers to the state
of the residue before entering the clause and where H, refers to its state after leaving
the clause:

123



g’hgppens(E,A, T, Ty,,L,H,, Hy) =
dmember(happens(E, A, Ty, T, L), Hy) N\ Hy=H,
VHy=Cons(happens(E, A, Ty, Ty, L), H»)

proc{Happens, E, A, Ty, T, L, H,, Hs,
choice{apply(Member, happens(E, A, Ty, T2, L), Hy),
H,=Cons(happens(E, A, Ty, Tz, L), H2)))

By routing the intermediate residues from the initial goals through any corresponding
clausal definition of a definite program, we can emulate an abductive proof using or-
dinary SLD or the basic search machinery of Oz. For example, the clipped predicate
and its corresponding Oz procedure Clipped can be implemented as follows:

Velipped(F, Ty, Ts, C, B, E. L, Hy, H,) =
Shappens(E,, A,, Ty, T4, L, Hy, H3) N E,#E
Nintersects(Ty, Ty, Ty, Ty) N dual(F, F_)
Ncauses(A,, F_, T3, Ty, cons(E, C), B. E,, L, H3, H.)

(HEC?2')

proc{Clipped, F. T\, T», C, B, E, L. H,, Ho,
Japply(Happens, E,, A,, T3, Ty, L, Hy, H3) A cond{E,=E, 1, T)
AT\ <Ty A T3<T, A apply{Dual, F, F_)
Aapply{Causes,A,, F_, T3, Ty, cons(E, C), B, E,, L, H3, Hs))

This is realisable on any LP platform. However, apart from temporal constraints, there
are some issues which prefer the C(L)P approach: Due to the routing of intermediate
residues, we have implicitly sequentialised the sub-goals in the above clipped pred-
icate. Having a computation rule that does not proceed in exactly that order, e.g.,
that tries to solve causes(. . . , Hy, H,) before H; is bound by happens(. .., H;, H3) will
cause an explosion in the search space and even leads to non-termination. Since Oz
elaborates conjuncts by a Prolog-like depth-first computation rule, such behaviour is
prohibited. In its higher-order language, we can even program the search rule upon
computation spaces such as an all-solution depth-first rule by the following SearchAll
procedure:

proc(SearchAll, Spaces, Solutions,
cond(3Spaces=cons(Space, Ry),
inspect(Space, 1) N\ cond{(I=succeeded,
dmerge(Space, Solution) N Solutions=cons(Solution, Ry) A\
Napply(SearchAll, Ry, Ry),
cond(I=failed, apply(SearchAll, Ry, Solutions),
Jclone{Space, SpaceClone) A commit{Space, 1) A commit{Space, 2)
Napply(SearchAll, cons(Space, cons(SpaceClone, R,)), Solutions))),
Solutions=nil))

However, HEC is not a definite program because of dealing with negated literals in its
definitions and because of containing integrity constraints. In the above Clipped pro-
cedure, the implementation of inequalities (—E,=E is replaced by cond(E,=E, L, T))

124



and negative temporal constraints (-7 <75 is replaced by T, <T) presents a very re-
stricted address of negation in the light of abduction.

In the LP context, this has been generally tackled by relying on the ‘Negation-as-
Failure’ (NF) principle [JFB96a, Sha97a]. For example, the —clipped sub-goal of the
holds predicate in HEC1 can be implemented as the failure of a purely deductive proof
that operates on the ‘frozen’ residue H,. This is equivalently expressible using en-
capsulated search in Oz: A nested search using SearchAll is conducted whose finite
failure (the search procedure returns nil) is required to proceed with the computation.
The safeness restrictions of SLDNF are implicit to the Oz model in which a subordinate
computation space blocks if trying to strengthen information of one of its ancestors’
variables.

VhOldS(F, T], TQ, C, B, E, L, Hl,HQ) ==
(HEC1) 3T1$T2 A —~member(E, C) A happens(E;, A;, Ts, Ty, L, Hy, H3)
AT4<Ti A causes(A;, F, Ts, Ty, cons(E, C), B, E;, L, H3, H>)
/\ﬂlp(B, BQ) A ﬂclipped(F, T3, TQ, C, BQ, E, L, Hz)

Vproc(Holds, F, Ti, Ty, C, B, E, L, Hy, H, . ..
3... A space(S) N\ proc(P, R, apply(Clipped, F, T3, Ts, C, By, E, L, Hy))
Ninject(S, P) A apply(SearchAll, cons(S, nil), nil))

The trouble in combining abduction with NF is that NF presumes a generally closed
world, while abduction must stay open with respect to abducibles. In particular, the
above scheme must assume that /5 is the final residue of the proof. This is not true

if we are to prove a further holds goal whose extensions of the residue (additional

assumptions) could invalidate the already obtained negations. The way-out that is
proposed in [JFB96a, Sha97a] is to collect the intermediate negated literals in a ded-
icated data structure. Until all goals have been resolved, these literals are frequently

re-checked each time the residue is extended.

Doing the same finite-failure checks over and over again is a costly enterprise, at the

same time not very constructive in its use of negative information. For this purpose, a
more principled way of treating negations —3Lif has been proposed in the IFF proce-

dure by means of universally quantified integrity constraints VLit > L (see the SMP1

step). We have already demonstrated at hand of cases from HEC (=E=Er, —T, T,

ECK3, and ECK4) that the interleaved operation of integrity constraints — asking in-
formation from the residue store and splitting new goals — can be reasonably emulated
by CP languages, such as Oz.

The important representational change to make is the switch from a sequence of fully
specified intermediate residues Hy, H» to a single partially specified data structure H,

such as a lazy list. Due to the ask & tell framework, CP languages provide exten-
sive support to controlledly access and enlarge such data structures without exploding
search spaces. For example, the following ForAll procedure applies a given unary pro-

cedure to all the elements of a lazy list. It simply blocks as long as the substructure of
the list is not determined.

proc(ForAll, L, P,
cond(3L=cons(H, T), apply(P,H) A\ apply(ForAll,T,P), T)

125



Due to their concurrent computational model, CP languages moreover enable an in-
terleaved access to this common data structure from several threads of control, such
as from the following Oz implementation of the ‘integrity constraint’ NotClipped. A
combination of SearchAll and ForAll is used to imitate the propagation of abducibles
into the constraint — P, is the procedure that looks up events from H that are not equal
to £ in a nested search — and the splitting of new goals from the constraint -— P, ei-
ther demonstrates the event not being a destroyer or pushes it out of the persistence
interval. Hence, NotClipped installs itself as a concurrent thread that is constructively
operating upon changes in the residue. This gives us a reasonable propagate & dis-
tribute scheme for general integrity constraints and negated literals in particular. In
the vocabulary of partial-order planning, NotClipped implements a link between two
actions that constantly shields persistence from possible destroyers.

proc{NotClipped, F, Ty, Ty, C,B.E.L, H, élapply(Dual, F,F_)
Nproc(Py, R, applv{Happens, E;,A;, Ts, Ty, L, H) A\ cond(E,=E, 1, T)
AR=happens(E,, A,, T3, T}))
Aproc(Py, happens(E,, A,, T3, Ty).
choice(apply{NotCauses, A,, F_, Ty, Ty, cons(E, C), B, E,, L, H)).
apply(Disjoint, Ty, T5, T3, T4))
Aspace(S) A inject(S, P;) A thread{apply{SearchAll, S, L))
Nthread{apply{ForAll, L, P,)))

For special applications, such as HEC planning, this scheme can be further improved.
Cloning of computation spaces, hence the elaboration of disjunctions, is a costly oper-
ation to be avoided as far as possible. In the above NotClipped procedure, we get rid
of the nested SearchAll because its task of looking up elements from the lazy residue
is equivalently performed by, e.g., a Filter procedure only relying on conditionals.

It is also wise to shrink the amount of propagated data, in this case the possible de-
stroyer events, in order to reduce the overhead of distribution afterwards, here: the
choices generated by applying ForAll. To this end, an additional CouldCause proce-
dure is used in P, which has not the full functionality of Causes, but just asks whether
the action potentially (without checking preconditions) has the particular effect. By
singling out the non-relevant parts of a plan quite early, we gain a significant speed-up.
The actual NotClipped implementation can also ‘peek’ how events behave with respect
to the persistence interval by inspecting the already imposed temporal constraints. This
way, some of the optional maintenance measures can be excluded ahead of time.
Finally, it is important to remove redundant symmetries in the search space. An ex-
ample is the above choice in NotClipped which either tries to prevent the unwanted
effect (although the event could happen outside the persistence interval) or pushes the
event out of the persistence interval (although it could be a non-destroyer). Adding an
additional Causes goal to the second choice makes both options incompatible, at the
same time strengthens the information in the second option.

6.4.3 Representing Hierarchical Actions and Events

To remove further symmetries in HEC we switched to a more structured representa-
tion of abducibles. The main drawback of the flat list A is that it models the incre-
mental construction of residues in ALP by the monotonic behaviour of unification in

126



LP. Any permutation of elements in H refers to the same set of abducibles and leads
to redundant computations. Any access to H, especially by the integrity constraints
that maintain the duration (HEC10), the identity (HEC11), and the (de-)composition
(HECG6, HECB) of events, has to completely map through the global data structure.

As seen in Subsection 6.4.1, a reasonable functional representation of an intermediate
hypothesis A, such as a partial-order matrix, often looks non-monotonic (or stateful)
from the Herbrand point of view. Secondly, the domain representation DOM contain-
ing action conditions and hierarchical relations is not conveniently described by con-
verting clauses into ordinary Oz procedures. Abstract action types and concrete macro
events have a far closer relationship in that the latter can be regarded as instances of
the first.

The Oz object system [Hen97] is able to address these issues. Oz objects carry in-
crementally refineable logic information in terms of a feature structure. Oz objects
carry dynamically changeable states in terms of an attribute structure. Methods are
special-purpose procedures that are coupled to a respective object and, during whose
application, features are accessed by means of unification and object attributes are ac-
cessed by means of read/write operations. Features, attributes, and methods are defined
by an inheritance hierarchy of classes that objects instantiate upon creation. [Hen97]
reduces these concepts to well-defined kernel primitives, such as logic variables, cells,
and procedures.

It is quite natural to define the action types of the given domain as Oz classes that
are instantiated by concrete event objects that build the residue of a constraint-based
HEC proof. Domain representations, i.e., pre- and postconditions of an action and its
hierarchical decompositions, can be encoded into the features of action classes and
are able to refer to other (sub-) classes of actions for that purpose. The derived event
objects encode references to sub-events and temporal ‘distance’ relationships between
them in their attribute structure.

As a result, the previously flat residue is now modelled as a hierarchical data struc-
ture that behaves monotonic where it is adequate and stateful and stateful where it
is more efficient. The interface between HEC and this data structure is built by pre-
defined methods of the super-class BaseEvent from which every action and every
event is derived and that is sketched in Figure 39 (now using proper Oz syntax). Its
methods are called from the HEC procedures and provide recursive access to features
and attributes of the possibly complex macro-event, such as its temporal information
(start, duration, fin, times, dist), its conditions (prec, £x), and its sub-
structure (options, events).

The initialise () method is called upon creation of a each new object of type
BaseEvent. initialise () serves to set the object-specific events attribute,
i.e., the extendible record of sub-events according to the class-defined options fea-
ture which carries the decomposition structure of the associated domain action. ini -
tialise () recursively instantiates the sub-events of a macro, hereby implement-
ing HEC6 and HECS. The identity of Oz objects automatically realises the HEC11
constraint. Finally, initialise () sets temporal informationstart, duration,
fin, times, and dist according to HEC10, ECK3, and ECK4.

Action and event references in options and events are organised such that sym-
metries are avoided. We have extended this representation to even reify the disjunctive
decomposition of a macro within a single data structure. By that design and corre-

| .4



class BaseEvent

feat %% the ‘'logic’ features:
start duration fin $% fd timepoints and interval
parameters %% parameters/roles
options $% decomposition structure
fx prec $% effects and their conditions
initiators $% precondition initiators
attr %% the ‘'stateful’ attributes:
events %% sub-events
times $% times of sub-events
dist $%$ temp. precendence matrix
cost %% current cost of macro
%% the methods:
meth initialise() end $% initialisation method
meth removeBranch(...) end %% delete decomp. option
meth chooseBranch(...) end $% commit decomp. option
meth happens(...) end %% look up sub-events
meth addEvent(...) end $$ add some new subevent
meth isBefore(...) end %% look up temp. constraints
meth before(...) end $% add temp. constraint
meth couldCause(...) end %% look up uncond. fx
meth causes(...) end %% look up cond. fx
meth execute(...) end %% decompose and execute
meth setTime(...) end $% instantiate time variables
meth openDisplay() ead $% display content

end

Figure 39: The BaseEvent Class (Sketch)

sponding interface methods to HEC (removeBranch (), chooseBranch ()), the
distribution effort of search can be diminished.

The happens () and addEvent () methods read and extent the events attribute
according to the two modes of accessing the residue in our previous definition of the
abducible happens. Similarly, isBefore () and before () implement the check
of entailment and the telling of a new temporal constraint upon dist and times
according to Algorithm 1. couldCause () and causes () access the effects and
conditions of the event and its substructures. execute () is used in plan execution
for (recursively) synchronising with particular external events and instantiating time
points with the current system time viasetTime ().

Oz classes allow locally-scoped variables in features and attributes, e.g., to implement
parameters, such as the Robor and Box roles of a pickup(Robot, Box) action. These
variables are not created until the creation of a new object and have been used to in-
troduce additional references (initiatoxrs) to the initiating eventsof particular pre-
conditions. In HEC, the relationship between producer and consumer of a fluent is not
explicitely encoded. A naive inference strategy hence repeats the effort to find possi-
ble precondition initiators, every time that the success of a particular effect is revisited.
Due (o the theory, however, a producer-consumer connection, once established, re-
mains valid forever, thus can be used as a lemma in the further proof. By establishing
references in initiators, repeated causes () calls immediately succeed without

128



any search effort.

faplorer pove Search Jlodez He Options.

Abductive HEC Demo

(c) 1997 CGJ, MAS Group

fuenEveal Fat ¢ I

J} P Do mm @018 twm 1 { T Basefveni (i  Optiens : i

’ Procondi tions = " :ﬂf 8 a )

ety

» 2 L e, stz e o

Figure 40: The Implemented Planning Process (Screen-shot)

In combination with the previously discussed improvements, this extension unleashes
the possibilities of ask & tell as well as propagate & distribute leading to significant
speed-ups for larger planning problems. In Figure 40, we have depicted a screen-shot
of our HEC implementation that has planned the house-building domain of [RN95].
We recognise that the search for refining the top-level solution into eight complexly
arranged actions on the second level of abstraction has collapsed into a purely deter-
ministic(!) problem that is solved within0.18 sec. Figure 40 also demonstrates the
intuitive graphical user interface that is attached to BaseEvent by the openDis-
play () method. openDisplay () accesses the data encapsulated into the event
object to visualise its conditions, its hierarchical decomposition, and its references to
other events.

Similarly, the computation of residue costs,cost, can be delegated to the event repre-
sentation itself where all the relevant data is stored and updated. In ordinary LP, such a
measurement would have to be syntactically reflected by the proof procedure in order
to steer the selection of disjuncts. In higher-order Oz, the selection can be influenced
from within the computation space, because choices can be generated on the fly and
according to the different costs of options that they enumerate. By this design, it is
also possible to specify a-priori bounds on the costs for a top-level plan to implement
the iterative deepening. We have omitted the respective methods inBaseEvent for
reasons of simplicity.

To render the initial situation / abducible, too, it is given a stateful representation sim-
ilar to the one of narratives. It also possesses an interface for access and extension that
is called from HEC and that uses information about predicate names, arity, and levels
of abstraction for speed-up.

129



[happens ‘Tnitiate.\'l clipped | | member Input Nodes
Joint Nodes
~. e
ma (]UCAA. N
dlcllc_,\\a LS

Negative Joint Nodes

Output Node

Figure 41: Matching Conditions of HEC1 with RETE

6.4.4 The RETE Algorithm

The previous subsections demonstrated that ALP, more specifically backward-chaining
abductive inferences under HEC such as needed for planning and execution, can be
efficiently realised in modern CP languages. Left to address ts how forward-chaining
prediction in terms of the FFI proof procedure can be programmed. As we have already
discussed, this especially requires an effective algorithm for matching the complex
conditions in the bodies of definitions and of integrity constraints. FFI’s folding, for
example, should avoid recomputing already derived information, e.g., literals that have
already been demonstrated valid and sub-conditions that have already been matched.
In [For82], an algorithm is given that recognises a set of valid conditions, i.e., formulae
composed of literals, conjunctions, and negations from a set of given facts. The impor-
tant property of this algorithm is that it maintains and updates matched sub-conditions
in an incremental data structure: a network of so-called matching nodes (Figure 41
shows the network for one particular condition of HEC1). Input nodes, such as those
at the top of Figure 41, operate as filters upon the given facts by exlracting instan-
tiations of particular literals. Joint nodes, such as those in the middle of Figure 41,
represent conjunctions that combine the instantiations from their predecessor nodes,
e.g., by finding corresponding variable assignments. Special negative joint nodes test
non-validity by only passing those instantiations of one predecessor that do not coin-
cide with the results of the other. Finally, output nodes, such as the one at the bottom
of Figure 41, produce the resulting instantiations that match the encoded condition.
Because nodes store intermediate instantiations, only the deltas of a changing set of
valid facts have to be routed through and recomputed in the network to update the
conditions. If the network is partitioned appropriately, small changes in the facts only
amount to small changes in the network, hence computation time i1s optimally traded
off against memory. Because of this data structure, the algorithm 1s called RETE
(lat.: network). An Oz implementation of RETE that uses constraints to compute
instantiations and object-oriented programming to implement the network structure
has been developed in {Leh96].

RETE is the basis of many rule-based languages, such as the production system OPS-5
[KR87], the SOAR language [New90], the ACT-R architecture [And93], and the agent
system MAGSY [Fis93a]. In these systems, the output of RETE is further condensed

130



by means of conflict resolution that triggers a unique external action. The result of
externally acting is again fed into the RETE network to perform the next cycle of
operation.

In the context of logic programming and FFI, we are not looking for one particular
action to take, but rather for deriving all the consequences of some set of valid facts, the
so-called inferential hull. In this case, we have to feed the results of the output nodes
such as derived holds literals back into the network. This is repeated until the network
gets stable, i.e., its computation has reached a fix-point according to the semantics of,
e.g., [VEK76] and [Kun87].

Computationally more advanced ‘stability’ conditions have been given in [GL88] (the
stable model semantics), [GRS88] (the well-founded model semantics) and [Van89]
(the alternating fix-point semantics). Based on the latter, [Boh97] has described the
implementation of the InteRRaP knowledge base (DKB') on top of RETE [Leh96].
By relying on the power of Oz and inspired by concepts from terminological repre-
sentations [BS85], DKB’ combines RETE with particular concept nodes and instance
nodes. These are implemented as classes and objects quite as we used to realise the
actions, events, and temporal structures of HEC.

Since HEC is designed to avoid undefinedness, its execution under the more advanced
forward-chaining principle of DKB’ amounts to a pretty much ‘classical’ result. Some
additional considerations are required to derive the final implementation of forward-
chaining HEC: First, there is the necessity to restrict the (recursive) computation of
member literals to a reasonable, finite subset, i.e., to lists with at most one cycle
and only containing events that have been already introduced via happens. Secondly,
events and temporal relations between time points are not static as in typical monotonic
settings, but extendible. This is because we are ideally looking for an abductive proof
procedure that is able to additionally generate and maintain several optional hypotheses
for given observations on the fly.

The idea is to extend RETE’s flow of control into a lazy bidirectional scheme (Fig-
ure 41): Whenever a particular goal, such as a holds literal or a member literal, is hy-
pothesised to be (in-)valid (it appears on the left-hand side of a range-restricted clause
in FFI) its corresponding node in the RETE network generates appropriate explana-
tions in the form of instantiationrequests to its predecessors.

Optional requests are elaborated by the predecessors within separately cloned compu-
tation spaces where they are checked for consistency and where they invoke further
requests in turn. This finally leads to newly instantiated abducibles within the input
nodes of the network (happens, <, member) which are connected to the top-level plan
object instance via method calls. Integrity constraints are implemented in the same
way: Their conditions are constantly watched by a dedicated part of the RETE net-
work. Upon instantiation, the conclusions of the constraint lead to new requests for the
relevant goal nodes.

This support of abduction is still at a preliminary stage. In our testbeds, plan recogni-
tion plays indeed not a major role due to too restricted sensing facilities for creating
necessary observations. Nevertheless, the further development of FFI and its imple-
mentation is an ongoing topic of our research that might turn out fruitful in application
domains with a different emphasis.

131



class Process
feat layers domain %% id of control procs & domain action classes

attr state active $% state of the search
resourceValue performance %% local resources, profile
signals_in %% incom. signal queue
meth initialise(layer:Layers domain:Domain ...) end %% creation
meth rollUp(initial:I plan:P goals:G $% insert fresh
bound:B) end %% computation space
meth search(...) end %% search method
meth pushException(...) end %% manipulate current
meth popException(...) end %% exception stack
meth sendSignal (recipient:R initial:I %% transmit signal
plan:P goals:G ...) end %% over control process
meth rcvSignal (sender:S resources:R % incorporate resources
initial:I plan:P goal:G ...) end $% and signal
meth reportFailure(recipient:R ...) end %% uncaught failure
meth openDisplay() end $% GUI stuff
end

Figure 42: The Process Class (Sketch)

6.5 Implementing Inference Processes

A central role in building processes based on the inferences presented in the preceding
subsection is played by dedicated higher-order search procedures, such as the previ-
ously described SearchAll. Search procedures initialise inference problems in subor-
dinate computation spaces. They implement search rules by inspecting and cloning
spaces. And they extract solutions by merging spaces upon success. According to the
COOQOP computational model, InteRRaP-R hence consists of the concurrent interplay
of several search procedures running in separate threads (as in Figure 38), interacting
with each other over the shared memory of the constraint store, and being steered by
additional control processes. In the current subsection, we want to take a closer look at
how inference processes are implemented as search procedures. Afterwards, we turn
to the implementation of control processes, i.e., the InteRRaP-R layers.

The depth-first SearchAll procedure gives us a first starting point, since we have al-
ready pointed out the importance of persistent search within the agent context. More-
over, most of the residue-cost related selection strategy is already realised by the Oz
implementation of ALP & HEC. However, SearchAll has to be extended, because we
require an iterative deepening procedure that is able to switch between planning from
scratch and planning from second principles. Moreover, we are not interested in gen-
erating all concrete solutions at once, but in continuously refining and outputting parts
of the currently optimal solution. Finally, a search procedure to implement COOP pro-
cesses should be able to interact with other processes and the environment at any time
by possibly revising a former partial result in the light of incremental evidence.

For this purpose, the Process class (Figure 42) has been developed from which, e.g.,
knowledge base processes, decision making processes, and intention execution pro-
cesses are derived. The Process class implements the Process schema of Section 3
by means of object features and attributes. The Process class realises the concrete

132



AProcess operations in the overall COOP specification by means of appropriate meth-
ods,

The initialise () method is called upon creation of a process in order to register
the superior control processes (the layers feature), to register the domain represen-
tation (the doma in feature), and to initialise an ‘empty’ inferential state according
to the InitProcess schema. initialise () makes use of the rol1lUp () method
that is a general means for ‘restarting’ (a part of) the state attribute by inserting a
new computation space using space(). Using inject(), rol1Up () provides the new
computation space with a ‘logic program’ consisting of a start situation I, an initial
narrative object P, the set of available actions in doma in, and the current cost-bound
B,

‘Logic goals’ G that drive the computation inside the computation spaces are applica-
tions to the globally defined HEC procedures, such as the previously discussed Holds.
The recursive search () method incrementally injects these goals via inject() ac-
cording to their level of abstraction into the computation spaces withinstate. It
constructs the resulting search space by clone() and commit() quite similar to the
depth-first SearchAll procedure. search () is activated within a dedicated thread
due to changes in state caused by, e.g., commitments, roll-ups or incoming signals
(see below).

Upon the intermediate success of a selected computation space, i.e., goals of a par-
ticular level of abstraction have been solved, search () merges the relevant parts of
its encapsulated constraint store and signals them to the outside. For that purpose, the
sendSignal () method transmits (via the control processes referenced in layers
— see below) intermediate abducibles about initial situation I and narrative P and
intermediate goals G to a recipient process.

Search is continued down to the most primitive (or up to the highest one in case of the
knowledge base process) level of abstraction in which case the process suspends and
the active flag goes down. search () also suspends in the case that the amount of
local abstract resources — resourceValueis frequently accessed by search ()

— becomes too small. The amount of consumption is domain-specific and depends

on the computed partial solutions. Similarly, the average per formance profile is

updated by measuring the improvement of the partial solution against the elapsed time.
Failed computation spaces in state dissappear during search (), unless they are
shielded by a non-empty exception stack. In this case, they can be recovered by call-
ing the rol11Up () method. To this end, the exception stack that is manipulated by
pushException () and popException () carries alternative situations I, nar-

ratives P, goals G, and bounds B. The iterative deepening of bounds can be elegantly
implemented in this manner.

Concurrently to search (), incoming signals are invoking the rcvSignal ()

method, hereby possibly refreshing the amount of abstract resources. For this purpose,
rcvSignal () shortly locks the required data structures in order to not interfere with
search (). In particular, rcvSignal () accesses state to incorporate the signal
content into the search space. It uses inject() to incrementally feed additional proce-
dure applications into the computation spaces. These procedures either immediately
influence the situation (I) and event (P) representations in the encapsulated constraint
store in the case of InformationSignal. They represent additional HEC goals (G) to be

pursued in the case of RequestSignal. rcvSignal () also stores the identity of the in-

133



coming signals as annotations to state such that search () is able to report failures
back to the sending process via the reportFailure () method.

For particular domains, the prediction of the knowledge base requires no hypothetical
reasoning. Also the decision making of the reflex process could lack any choices to
make. Furthermore, the decomposition of intention execution processes could have
no options to pursue. In these cases, the Process class can be further customised,
since not the full power of speculative computations by encapsulated search is needed.
Instead, the inferences can be immediately run, possibly by relying on conditionals
cond(), within the top-level computation space. This greatly simplifies the compu-
tational needs of rol1Up (), search(), and rcvSignal (). Especially for the
time-critical computations in the BBL of forklift and RoboCup agents, this turned out
to be a useful variation.

6.6 Implementing Control Processes

For transmitting signals and computational activity from a sender to a recipient Pro-
cess, sendSignal () and rcvSignal () are not immediately coupled. Instead,
they are connected over Layer objects (Figure 43) in charge of routing signals and ab-
stract resources dedicated to the processes at a particular layer of InteRRaP-R. Layer
installs the control of communication and hence of computation by implementing the
Layer and ALayer schemas.

Within the InteRRaP-Rclass (Figure 43), three layers are combined with an environ-
mental interface to the top-level schemas InteRRaP — R and AlnieRRaP — R. To create
an agent, an object of type InteRRaP-R is instantiated and its initialise()
method is called. In this method, the three layers bbl, 1pl, spl are created
as particular instances of Layer and are equipped with references to each other.
In a dedicated thread, InteRRaP-R then enters a loop by means of the recursive
perceive () method that frequently checks for sensor input which it signals as
PerceptionSignal to subscribed processes in the bb1l (in case of low-level sensing) and
the spl (in case of incoming communication) using the sendSignal () method.
The perception thread will persist until the agent closes its operation.

perceive () allows for both passive and active sensing by switching input chan-
nels (e.g., serial port, TCP/IP streams, UDP sockets) and process subscriptions on the
fly. Its current configuration is looked up in the activeChannels attribute and is
accessed concurrently by recvSignal (). An ActionSignal that has been generated
inside bbl or spl invokes the rcvSignal () method. If its content is a sensing
action, rcvSignal () locks and changes the activeChannels attribute. If its
content Is a proper action, such as a motor command, rcvSignal () invokes the
act () method in turn.

It should be noted that particular data structures which are a part of the formal speci-
fication, such as actionBuffer in InfeRRaP — R, are not explicitely present as features or
attributes of the implemented objects, such as InteRRaP-R They are rather implicit
to the employed Oz programming constructs, for example. in the synchronisation of
several method calls toact () that are suspended upon a shared lock.

This holds similarly for the inpur and owtpur buffers of the Layer schema that are a
by-product of scheduling the signal () method from Layer. signal () method
is called from a sender process’ sendSignal () method and updates the internal

134



class Layer

feat bbl 1pl spl %% references to layers
kb_process dm_process %% kb and decision making processes
domain costs %% domain and resource cost spec
attr ie_processes 2% intention executon processes
signalBuffer triggerStore %% signal buffers
resourceValue processUtility %% global resources and profile
processDiscount %% discount for process
allocations discountFactor %% parameters for
processEmphasis 2% allocation algorithm
meth initialise(layers:Layers ...) end %% initialise agent
meth signal (sender:S recipient:R ...) end %% route/buffer signal
meth allocate(...) end %% the allocation process
meth openDisplay () end %% GUI stuff
end

class InteRRaP-R

feat bbl 1pl spl %% the layers
attr activeChannels 2% active perception channels
meth initialise() end %% initialise agent
meth perceive() end %% perception cycle
meth sendSignal (recipient:R ...) end %% send perception signals
meth rcvSignal (sender:S ...) end $% receive action/sensing signal
meth act(...) end %% trigger action
meth openDisplay () end %% GUI stuff
end

Figure 43: The Layer and InteRRaP-R Classes (Sketch)

triggerStoreand signalBuf ferattributes. In the case that these attributes are
non-empty, the layer’s allocate () method is invoked within a separate thread.
allocate () implements the filtering of signals and the allocation of abstract re-
sources along the ALayerControl schema making use of the resource cost specifica-
tion in the costs feature. allocate () invokes the rcvSignal () method of
those processes that are granted signals and resources. allocate () is able to create
new intention execution processes that are not yet referenced in ie_processes and
equips them with the layer-specific domain representation.

The nonvolatile knowledge base and decision making processes are initiated upon cre-
ation of each Layer object (in the initialise () method) and are referenced in
dedicated features kb_process and dm_process. allocate () makes use of
special-purpose interfaces which we have omitted in Figure 42 and which allow to
read and write information, such as performance profiles and resource parameterisa-
tions, immediately from and into subordinate processes’ state.

6.7 Compliance of Specification and Implementation

We have now completed the overview of the Oz implementation of InteRRaP-R which
showed that constraint-based programming techniques are suitable to efficiently realise

135



FOKKS - Command e 2 B mR T T CoupAuem Browser { <U: CosnMagsviaents) R i
3 Cos i |

Figure 44: Implemented InteRRaP-R Agents (Screen-shot)

agent-based systems. A screen-shot of it can be found in Figure 44. In the following,
we discuss a few particularities with respect to its compliance with the abstract model.

CET versus FT As a successor to CLP(X), Oz does not confine to a Herbrand uni-
verse in which the main data structures are finite trees and in which equality is axioma-
tised by CET. As other constraint-based languages and computational formalisms, the
Oz universe has adopted convenient record-based data structures of imperative lan-
guages.

In a logic setting, records or henceforth called feature structures, such as root(entryl :
branch(Var) entry2 : leaf), provide a similar recursive construction to finite Her-
brand trees. In addition, they allow to label the substructures with some atomic type
(the feature, e.g., the constant entryl). For organising complex structures in com-
puter memory, features provide significant advantages. Similar to the usage of point-
ers 1n imperative languages, feature constraint languages, such as Oz, can handle cyclic
records such as Self=rtest(ref . Self).

For this purpose, the Oz unification algorithm omits the traditional ‘occurs check’ of
CET4 and is extended to terminate on cycles and match to the features, too. To this
end, it builds on the background theory FT that has been given in [BS95]. Due to
its advanced CP model, Oz is able to unify feature structures that are only partially
specified by so-called open feature constraints [Meh99].

Ordinary Herbrand terms, now called ‘tuples’, are still expressible as particular Oz
records labelled with integers denoting the order of branches. This means that while
resigning to finite data structures, the use of the Oz unification does not do any harm
to the inferential semantics, i.e., CET appears as a restriction to RAT (Mah&8] (the

axiomafsation of rational trees) which is in turn a specialisation of FT. That cyclic
references are useful for our purposes becomes apparent when reifying the recursive

136



decomposition of actions as explained in Section 4. Whether this recommends to base
the semantics of HEC on RAT or even FT is a question of ongoing research.

Shared Memory versus Encapsulated Search The Oz model of computation
spaces facilitates the implementation of a shared memory model between several in-
ference processes, i.e., search threads. To keep a declarative reading of the interaction
between computation spaces at different levels of the constraint store hierarchy, Oz has
to apply encapsulation restrictions. These restrictions are currently not present in the
COOP model.

For example, although a subordinate space is able to access information by references
into the top-level store, it is not able to increase the information there, e.g., by in-
stantiating a logic variable. Vice versa, a top-level space is not allowed to obtain any
reference into an encapsulated space because this information represents purely spec-
ulative data that needs to be first confirmed and merged.

To install a bidirectional transfer between two computation spaces, such as between
the states of two inference processes in the COOP model, some additional mecha-
nisms had to be incorporated into Process which go beyond the already described
reportFailure () method.

One of these mechanism is integrated into the injection of signals from top-level to
encapsulated space. Instead of immediately injecting the possibly partially speci-
fied top-level data structures I, P, and G, the implemented COOP processes use a
special-purpose ‘cloning’ procedure (in fact implemented by predefined methods of,
e.g., BaseEvent) that reconstructs these data structures locally within the subordi-
nate spaces.

BaseEvent does also have a special-purpose ‘merging’ method. It enables Pro-
cess to recombine the intermediately obtained search results with the original top-
level data in order to report the results to other processes for incorporation. Hence,
the shared memory model of COOP (including the indication of failures) is reasonably
restricted to the generation of partial results inside the inference processes.

It has turned out that the implementation does not make full use of the combined I,
P, and G channels in a bidirectional manner. Instead, processes rather interact in a
unidirectional service-oriented manner over particular of these data structures, e.g.,
the knowledge base ‘hands out’ a goal to the planner and is sent a plan in a separate
signal in turn. We are currently investigating whether the computational model should
be more specialised and closer to the implementation model in that respect.

Custom Exception Handling Oz-builtin exceptions follow the convenient try &
catch semantics of modern multi-threaded programming languages. As such, Oz-
builtin exceptions are raised and handled locally to a specific thread in a specific
computation space. This required a custom facility in thesearch (), pushExcep-
tion () and popException () methods of Process.

Related to the above treatment of encapsulation, for example, Oz exceptions that are
raised inside a space cannot be distinguished from the top-level. Furthermore, try &
catch is very much tailored to capturing the conflicts that have been caused within a
single thread of computation, such as a division by zero. It is not so much about re-
acting to external signals which have been concurrently injected and whose processing

137



must be temporarily protected against further interventions.

The implemented COOP exception handling in search () addresses these aspects
where the failure of a subordinate computation space is just one of its conditions. Apart
from that, it provides means of testing and reacting to inconsistencies within the I, P,
and G annotations of state already on the top-level, such as for handling a passed
deadline and inconsistent goals. To this end, the implementation specialises the purely
stack-based COOP model into a more convenient stack- and pattern-based approach
that is able to distinguish different sources of and reactions to inconsistencies. This
should be reflected in future revisions of the computational model.

6.8 Bottom Line

This section described an implementation of the computational and inferential mode]
of InteRRaP-R that we have developed in previous sections. We motivated and demon-
strated that Constraint Programming [MR95, Fre96, Smo97, MP98] is able to realise
both the declarative and the operational side of agents in unified implementation envi-
ronments. The Oz language [Smo95] is an implementation platform that builds upon
traditions from CLP(X) [JL87] and cc(X) [Sar93] and that enhances them with features,
such as advanced constraints, stateful objects, and distribution.

We showed how abductive inferences upon HEC, including negation and integrity con-
straints, can be soundly and efficiently implemented using the Oz model of encapsu-
Jated search. On top of that, we showed how to build interactive inference processes as
concurrent higher-order search procedures. These search processes are interconnected
over the constraint store and special control objects to realise the layered structure of
InteRRaP-R. The practicability of this implementation has been tested in three case
studies which are documented in the following.

7 Three Case Studies

(Distributed) Artifical Intelligence derives its inspiration from engineering, natural,
and cognitive sciences. Hence, its assessment can take place in many ways ranging
from formal criteria in theoretical Al, over analytical criteria in architectural Al, up to
empirical criteria in applied and cognitive Al.

This thesis has a design methodology at its core that aims at hybrid agents, i.e., rather
domain-independent systems with several (sub-) cognitive functionalities. The design
methodology incorporates several stages of research, such as architecture, theory, and
implementation, in order to describe coherent models that bridge theory and practice.
Because this type of integrative research is relatively new, there is no agreed scheme for
its evaluation. Hence, we propose to evaluate our methodological contribution in terms
of the InteRRaP-R model which has been reconstructed according to that design stance
and whose theoretical and analytical properties we have already extensively addressed
in the previous sections. What remains to be documented is that this has indeed lead
to an implementation that runs efficiently in realistic application settings.

To this end, we have chosen three prototypical scenarios, the Automated Loading
Dock, the RoboCup simulation league, and the ROTEX space-robot, which already
served to motivate the generic InteRRaP-R design. In the following. we describe the

138



efforts to customise the domain-independent agent core by respective domain represen-
tations. We give a comparison in adequacy and performance to the original forklifts
of [Miil96], to other teams participating RoboCup’98, and to modified tele-robotics
agents using a graph-based, algorithmic planning module.

7.1 Automated Transportation: The Loading Dock

In [Mul96], a real-world application for broad agents is presented: Today’s industrial
production such as the manufacturing of cars heavily relies on automated transporta-
tion facilities. The employed artifacts can be up to 2 meters in length and 1.5 meters
in height. They are equipped with modern actuators and sensors, such as differential
propulsion, flexible grippers, transponder detection, laser-scanners, ultrasonic sensors,
and bumpers. Typically, up to 40 of these robots are serving a single production line. In
spite of up-to-date hardware, their control software is extremely conservative: For ex-
ample, there are hardly autonomous functionalities on-board besides low-level safety
compliance. Instead, the navigation and tasking of the artifacts is computed centrally
by a single optimisation process. Vehicle status and central decisions are exchanged
between artifacts and optimisation process over radio-based network connections.
This design has disadvantages with respect to dynamics, robustness, flexibility, and
scalability: The time that it takes to locally recognise a change of situation, to notify
the central optimisation process, to integrate the reports of the dispersed artifacts into
a decision, and to download these decisions on the local platforms, prohibits a suitable
reaction to, e.g., human interception. The more transportation artifacts are to be con-
trolled by the central optimisation, the longer one such cycle of operation will take.
In the worst case, it will grow exponentially. Moreover, shortages and inaccuracies of
the robot hardware and the unreliability of the communication network raise to a high
power within the optimisation process.

For this purpose, the transportation systems are assigned exclusive and fixed navigation
paths by the central computer, such that encounters with humans and other artifacts are
avoided. Hence, changing the production line, e.g., if a new car series is introduced
and if more transportation systems are employed, enforces a global redesign. In the
case of failure, the complete production activity is halted. This is an inflexible and
costly solution.

7.1.1 Scenario

An alternative design implements the decision making process at the local level of
sensors and actors and thus gets rid of most of the unfortunate central processing duties.
To analyse the requirements of this approach and to demonstrate its feasibility, [Mil96]

has compiled the specification of the Automated Loading Dock scenario (Figure 45).

In the loading dock, transportation artifacts are represented by forklift robots. The
forklifts serve a set of rectangular shelves and a truck that is located in a loading ramp.
The forklifts are able to unload boxes from the ramp and to store them on the shelves
or vice versa by carrying one box at a time. The colours of boxes and shelves indicate
different categories of goods to be stored and shipped.

Because of its sophistication that exceeds the typical research experiments with robots,
the automated loading dock has been investigated in a series of experiments using

139



Figure 45: The Automated Loading Dock: Physical and Virtual Testbed

various versions of InteRRaP for controlling the forklifts. This ranges from two-
dimensional discrete simulations to three-dimensional physical realisations with Khep-
era robots [KT93]. Recently, its simulation core has been extended into a web-based
toolkit for distributed and interactive virtual worlds [JLG"99b]. Hence, the load-
ing dock provides a demanding and comparative testbed for the practical impact of
InteRRaP-R.

7.1.2 Programming Forklifts

Much of our forklifts” domain axiomatisation, in particula fluents, actions, and levels
of abstraction, has already been anticipated in the previous sections to exemplity the
general principles of InteRRaP-R. See the overview diagram (Figure 46) that uses the
notation of the Unified Modelling Language (UML) [Oes97].

UML provides a semi-formal standard for the organisation of complex software. UML
descriptions contain various views onto a software system, such as its physical real-
1sation (implementation diagrams consisting of run-time components, dependencies,
computing devices, and communication facilities) and its logical structure (luss dia-
grams consisting of packages, classes, and associations). UML views are displayed
and edited in a convenient graphical fashion. There are also automated tools for (re-
Jengineering available.

To present the domain-specific (Oz) representations of the Automated Loading Dock,
the RoboCup soccer field, and the ROTEX working space, UML is an adequate device.
Figure 46 displays a class diagram in which the nine levels of abstraction @y, . .., )
that InteRRaP-R forklifts are equipped with are modelled as UML packages. Fluents
and actions are presented as UML classes. Their signature corresponds to the attributes
and features of the implemented (Oz) constructs.

This diagram also describes the connections between these representations. For ex-
ample, fluents and actions placed within a particular package are axiomatised at the
corresponding level of abstraction, such as the transport macro being visible at
level [, within the LPL. If a fluent decomposes into more primitive fluents (at de-
composes into atPos) or if it is referenced in the conditions of a particular action

140



[ Tovet 0 Frannts 1591 |

Level 0 Actions /SPL
coor o PN sCoor
aoeri - Agord oaication Cagenti  Agert
Kby F"‘;' Capen  Agent Cagent) | Agemt [agentt - Agent Spentd soent
Faehiihibo el -apentz Agent -agentz _ Agent Fagents - Agent e
gy tactt : Fact tacn - Fact fact it el
Becdiel i e -tac2 - Fact -et2 Fact AN
ety Fact i (? ‘,‘{ / “agent! . Agant
fact2 | Facl — ~agent? . Agent
Hacts - Fact = | /( I » Aactt . Fact
opone taet2 . Fact
o Ceunnti | Agent Caneril - Agent oty tasi3 Fact
accepted -agenti  Agent agantl  Agernt -agentz Agent | agenti - Agent Socu
Capentl Agen | |-agentz Agent | |dastt : Fact -tactt - Fact -agent2 Agant | [agenti - Agent
agent2 Agent | |-Rat Fact fact2 | Fact etz - Fact -tact) . Fact sgeni? | Agent
it ¥ act wcts - Fact 3513 - Fach -taces - #act tactz | Fact et ¥t
¥ I 5
Towi ¥ Flnts TSR] { Level 1 Actions | SPC_ :
“agant | Ageni “apent: Agant Lagent Agert H
fact: Faet tact : Fact Lo |t Fae Lt v
\
= = H
o4 wATEEE ~agent_ agant :
s spmechact . Speectiac H
L i
o H
o H
o e 2 o 0L 1 :
; I !
! ML Associauons agent: Apent !
. Ls -areat - Ares 7
' Deromposition & arwaz- Arme :
y Fluent Referancs -areai . Ases H
: s -vox  Box 3
i - H
Lol 3 Flaonts / LPL_ | Level 3 Actions (LPL | 1 H
+ K
[ hatdiog [ category 1 connected semch prove
- agent . Agent I.nm Bax l -ateat Ares Cagent . Agert Cagert . Agent [ agent Agemt
| oo - B e |oategary categary ®a areat Area Larest . area | Toaras - asea
. o - Pasition -areuz Ares aress | Aren - mas B
Pt B oo Bax ;

o

ook
[ -agent  Agers

e

-

W,

agent Agent
Lobject | Object

131504

Cagent . Agent A
i-hox  Hox
exchonge

Cagents  Agent
- mgent2 | Agent
-area - pre:
box Brx

|

exchange

Canents - Agent
-agent2 : Agent
N )
-pasttion : Pasiton

Lot 4 Adtionws 5 BE. i A\ j /
ChangeResow coAllocation |
- &moursd | int ent” Agent
-ite . Ressurcettesn -pusHion . Fosiion

-pracens | Procsssliescrptor
resourcs - Resource

resoutcs - Fesource

i orientation

agmel Agent
-crientation | Orieatation

-abject Oljest
-positiors ' Position

-hox

ML

Action
Oacampositon

a7
S

atwad
|oniect: Obiect |

e

Ling Slatus

3 ]

-Stahs | MolorSIats

[ watcharm >
{ntatue . AmStatus | [status Amnstates ke

gripmer :

s ovoperewhs ]

- . oot

i/ | comroirpper

R 7 7 opsn ool ML Class=
\, A7 7 7
Lol 7F oL N\, e i /
/ g e

vt - int {-value - int

-sensor . Sensar {-sensar . Sensor l
] i (i Packages:
v L otor - Wokee / - o
[ wmangie foveiun it [ l""‘“" g r——-—‘—] Ahstraction
aripperPasiion

{reaie i [evvossion
-vaige it | en |

Figure 46: Fluents and Actions Representing the Automated Loading Dock

141



(atPos is precondition and effect of moveAhead), an UML association in the form
of a simple line is drawn between the associated classes.

Macros that decompose 1nto more primitive actions, such as transpoxt decompos-
ing into search and searchFree, are marked with an UML aggregation displayed
as a line with a diamond pointing to the higher-level class. Finally, the reflection of
formulae into higher-level fluents, such as for building believes, is modelled as a
dotted UML dependency arrow.

7.1.3 Experience

The resulting abstraction hierarchy quite naturally fills the space between low-level
sensing & acting, symbolic representations, and the social concepts that are present in
the Automated Loading Dock. The hierarchy moreover fits the general idea of layered
systems: The degree of association and dependency, hence the complexity of reason-
ing, smoothly increases with the level of representations, while the amount of relevant
concepts diminishes.

There is no such coherent overview of the original loading dock representation in
[Mu196] which roughly triples the size of ours (measured using wc on the relevant
source code). When comparing the domain-independent agent code {Ros96], an ad-
ditionally doubled overhead is revealed. As a reason for this, we see the lack of a
common declarative basis in InteRRaP. Its ‘computational model” has been tight to the
loading dock rather than to a suitable generic interpreter. It does also not prescribe
a common background semantics, e.g., for the vertical knowledge base and planning
modules. Moreover, there is no clean horizontal interface between layers in InteRRaP,
such as the instruments of decomposition and abstract resources provide in the case of
InteRRaP-R.

To allow a suitable prediction of world state from incoming sensor data, the degree
of knowledge base associations in InteRRaP and InteRRaP-R is quite similar. How-
ever, InteRRaP hardly installs conditional associations between situation features and
actions, such as extensively found in Figure 46. This means that InteRRaP focuses on
activating pre-stored macros, hence planning from second principles. Numerous and
inflexible aggregations for dealing with situative contexts are required.

With respect to performance, our experiments with InteRRaP-R show the same de-
gree of efficiency as the robots of [Mii196] in both simulation and physical realisation.
We did not expect any increase in performance, because the latest implementation of
[Ros96] has been very much improved for the line-based navigation approach. The real
strength of our concurrent computational model can be shown if forklifts are allowed to
navigate freely between the markers, e.g., for quickly searching for disoriented agents
[Mor98]. Similar to the soccer agents in the following subsection, such emphasis on
reactivity is hardly realisable within the original implementation.

For dealing with such open trajectories, two desiderata for future InteRRaP-R ap-
peared: It is no more trivial to immediately abstract from robot movement to discrete
position data. Instead, it would be more adequate to represent and reason about con-
tinuous fluents and activities in HEC, such as already presented in [Sha90, HT96] for
other action calculi.

In such a setting, the LPL’s deliberative control over the reactive BBL, such as by in-
fluencing the dodging reflex, must be enhanced. For example, in the current domain

142



axiomatisation, suppressAllowDodgingis a more or less fixed part of the ex-
changeBoxroutine. If the LPL planning process would be able to predict the BBL’s
dodging reaction (or the reactive behaviour of other, well-known robots) as a kind of
natural event triggered by the decisions of the agent, the planner could flexibly decide
about the crucial usage of suppressAllowDodging We will come back to these
issues in Section 8.

7.2 Robot Soccer: The RoboCup Simulation League

Benchmark problems are important to foster research in key areas of computer science.
For this purpose, [KWH"93] discusses the prospect of so-called grand Al challenge
problems which are analogue to, say, the enterprise of landing a man on the moon.
Grand Al challenges are visionary, long-term projects with an appealing goal and offi-
cial rules that can be incrementally approached at different degrees and from different
views. Grand Al challenges should have a significant social impact, such that public
awareness can be reached.

For enforcing real-world orientation in agent design, i.e., dealing with high dynamics,
continuity, incomplete and dispersed information, and team-orientation, one surprising
challenge has been found in terms of robot soccer: The kind of machine intelligence
needed to build a team of robots that can defeat the Brazilian national soccer team is
closer to an industrial application profile than, for example, Deep Blue’s undoubtfully
significant contribution to computer chess. Moreover, the game of soccer has a largely
competitive aspect which allows to measure research results in terms of tournaments
and championships. Finally, soccer provides an excellent and motivating vehicle to
transport research results to the public media.

To vitalise (D)Al in that direction, the Robot World Cup Initiative (RoboCup) has been
founded in 1993 [KAK"97]. Since 1996, RoboCup organises annual world cham-
pionships including workshops, tournaments, evaluation sessions, and publications.
Today, there are several hundred researchers, assistants, and students from all over the
world applying their concepts to that domain.

7.2.1 Scenario

RoboCup competitions are organised into five leagues. Small robots with maximally
15cm diameter, such as Kheperas, are placed on a kind of ping-pong table and play
with a golf ball. A global camera delivers a global view to their individual processing
facilities. In Figure 47, we have illustrated Sony’s legged platform and the middle-size
robots. In their leagues, a FIFA size 4 ball is used and on-board vision is required. In
the still closed league for bi-pedal humanoid robots, there exists yet a single platform
from Honda whose basic soccer skills are envisaged by the year 2002.

Currently, all these hardware platforms still suffer from very fundamental reactive de-
ficiencies in recognition, navigation, and ball handling. Hence, adaptive higher capa-
bilities such as deliberative soccer tactics and social soccer strategies would be out of
question if not being dedicated a fifth league that builds on a more simplistic, but still
realistic simulation of robot soccer [KTS98].

To this end, a simulation engine [Nod95] has been set up to which 22 separate agent
processes can connect from client machines via the UDP network protocol. This sim-

143



1999 RobgCefy

Iempasssanuy

Figure 47: The RoboCup Challenge: Robot and Simulation Leagues

ulation server emulates the noisy and incomplete field of view of all the soccer players
and sends them data packages with synthetic perception roughly every 100ms.

In turn, the server accepts fine-grained action commands, such as dashing, turning,
kicking, and catching that influence the simulated physical bodies including velocity
and stamina. The visualisation is done via separate 2D- and 3D-applets over the Inter-
net (Figure 47). We have participated the simulation track of the RoboCup’98 world
championships with a team of InteRRaP-R soccer agents (CosmOz).

7.2.2 Programming Soccer Players

Each CosmOz player is equipped with the identical domain representation incorporat-
ing five levels of abstraction [, . . ., /; (see the UML class diagram in Figure 48). Minor
excerpts have already been anticipated in the previous sections. The discrimination of
players partly emerges due to their different situative contexts, but more effectively
results from explicit social representations (team roles) and coordination.

BBL: Reactive Soccer Skills The CosmOz BBL implements basic soccer skills at
levels I3 and ly. For example, the reception of synthetic perception is done via the
recursive processPerceptionaction at level /4. Roughly every 100ms, the soccer
server signals a Perceptiondatagram containing the simulated field of view to the
behaviour executing process. Perception contains relative positions (distance and
angle) and movements (change in distance and angle) of the visible objects such as
players, ball, goals, lines, and flags.

The perceived fluents player, ball, goal, line, and £lag are explained by
the world model as the precondition of processPerceptionand the effect of the
displace miracle. The reasoning involved in the construction of level [, — includ-
ing the firing of reactive desires and the elaboration of subsequent reflexes — is very
simple and fast: Depending on the rapid trajectory of the near ball, low level events,
such as complexKick, catch, and approachBall (decomposes into turn and
dash) are invoked. We have indeed measured that, from receiving Perceptionto

144



Level 0 Fiuents / SPL Level 0 Actions / SPL |
contracthetProtocol
optimal
® N—M -tem * Resourceltern
et - Resourcallent Plavar I”"‘—“
-n;mn:‘l;»;e‘v:u % Cpiayers Flavers iLevel & Actions [ 8PL)
Pk " announced oromce aseurse  Reeource
ol -fem : -iter . Resourcetter //olvame in! ‘(}\-\
-manager  Plaver roanager | Player Ey Q \
- pisyee : Plaver -piwyer Fiayer ‘( L ey
resource | Resurme bade -tesoute  Resource bid
vaise | int . wajue int
T -hid . Real -bid | Raal
prsryy \ -n]unage; Pilayar xg::yr;ga;l ;&;{nyer grant
ey Player DW ek ’ ~nanager | Player
e Playsr 7 -plaver - Player
-value It M ) /7-va|ue:|m
Levol 1 Fluents /SPL__ | *\ Lavel 1 Actions / SPL ] >}/
-t Resourcettam / \ AL Hem Rgsuumnn«m
~plavet . Player - piayer © Piayiee
-resaurce | Resource / ‘\ - / 1esouce | Resource
value : Int heard \ hear -vatue - inl
-piaver :gyg_r - L7 | olaver Flaver | i
-speet! geachact e o
-slaver: Plaver -nlayer : Plaver
-speschiel, Bpeachatt -speachidct - Boeachact
g
Lovel 2 Flugnts /LA )~ Level 2 Actions /LPL | o
resourcevaiue [—-—-—-——-l globallactic changeResow ceValue
-en:  Rescurcelten: -ronde  Made nﬂ.m,Rss(;.-tcanem
-resaurce : Resource k‘,"fﬁﬁ'ﬁ.—l -pogession | Tesm -teenutoe | Rasoutce
ek / aytode /’/vscoreeimencnm vaius it
-made  Hode —-«"/
- cint defendTactic
-ourSoore | int -ares Area
near ToBall ime it -ballaction: Fm'
-player  Plaver
Heam  Team \
area halifiea
Immllnxm‘[mm]lmd. s|luuKk:kaﬂ Il 11 score
-ates Area TR 1 Tk
-sige " Sids i V i—" // =t
1
Levet 3 Fluents /BBL___| Level 3 Actions /BBL 1 s
¥
resourceAliocation \ “ i changeResourceAliocation
-item - Resourcetem / '\ D ~itere : Reacurceltern
-process | PracessDescriptor "o [process | PrecessDascrpter
-ragouree | Resoutce processPriority / ngePriority Resouree
Hedor o -process : FrocesaDestiptar e -process  FrorasaDestnpior Wit
valus - Reat -¥alue | Real
tactar il Crastar int i
-ptocess | ProcessDescriptor { homePos. -process | ProcessDascriptor [ I i "
s lmmePnsmon Pogilion
{-postion Fasilion: aboRall - Poshion
-posifion: - Position
-vanevel | ReaReal intercoptBall
‘goodAim dodim -ballPusition . Fosition
-anivel  Angle i ReahRaal
. Orierdation Bl vy TR Onentation
positan  Poeiiion Pasiion

gsition | Position
transVel | Reabdaal

absPlayer
~angvel | Angle

-pusition : Pasiion

almGoal

-prientalinn | Orentation
-pogition | Pasittan

-nummbe et

Onentation
-positien Fosilion
e Tewm
ransvel | ReahRes:

Origrdating
-position : Pestien

Level § Fluents
complexKick
. baliangie Argie
-siractian - Diraction -ualilistance  Real
-power | Power all -:::;ot; wr,::won
player . angle Angis {}
.3 e ” -angleDiatta - Angie
.::g:;[,,,‘f.g’"m., ~diatDela : Real -gcsgr)ana:maiu
sistoena . Feal distance *Ras) distance - feal -
~sie  Gide . ‘balltnghy Angis
-distance : Real N, -naliCistance ' Real
-number int % v
tpam . Team N '\\
A Y
fag dash
angle - Angls Cangio Angle \\ -dire:liur; ,’Dir:tﬁun Cansie : Aog
-angleDetta - Angie -angielata . Angle -pawer . Fowe:
bt thstOalta : Feeal L distOels | Rewl R e e T
-distante : Real -gistance : Resi b, % Kick
-side . Bive .5ige  Side & catch
[ypn Fiag -type Line paliangle  Argie {airection : Direction
-panCistance | Reat -pawer  Powar

Figure 48: Fluents and Actions Representing the Simulated Soccer Game

145



issuing an action signal, only a fraction of the required 100ms elapses!

To realise this tight reflex bow, /, avoids any inference about absolute positioning. For
example, there is a default aim precondition for ki ck that determines where and how
hard to kick when the ball is near. To effectively change this default, the changeaAim
action has to be invoked from a higher level of abstraction; this invocation is similarly
needed for tracking the ball’s movement even if not visible (searchBall) and for
navigating on the soccer field by turn and dash.

To this end, level /3 is dedicated to absolute positioning and navigation. These are still
basic skills, hence also belong to the BBL axiomatisation. For example, the player’s
absolute position and movement (abs Pos) is deduced from its relative position and
movement with respect to at least two immobile objects such as flags, goals, and lines.
A desire is installed that pursues the goal of keeping the at Pos fluent close to a
given (tactical) homePos. If differing too much, the reflex process decides to launch
keepPositionto renavigate the player by a sequence of turn and dash.

atPos is combined with relative data about player and ball into absPlayer and
absBall fluents that reconstruct a partial ‘god’s eye perspective’ onto the game.
Based on desires upon absPos and absBall, for example, the activation of the
interceptBallbehaviour is reactively decided. For example, triggered by desires
upon absPos and absPlayer, the doAim macro simultaneously decomposes into
aimSelf, aimPlayer, and aimGoal for dynamically changing complexKick’s
disposition to dribble, pass, or shoot via changeAim For that purpose, doAim is
equipped with a set of tactically reasonable aims (goodAim).

I3 and Iy cover the complete reactive basis for all the CosmOz players and all the
situations occurring during a soccer game. Thus, besides the nonsense of activat-
ing catch in non-goalies, it follows that BBL inference processes eventually raise
conflicts. These have external reasons, e.g., if simultaneously haunting the ball and
keeping the home position results in a ‘paranoid’ floundering. For example, ‘physical’
actions can fail due to restrictions in the simulaion cycle or due to exhausted stamina.
Process conflicts also have internal reasons, such as redundancy (usually, there are
many ways of deducing absolute positions in the world model) or the mutual over-
writing of output (the sub-actions of doAim). To enable the BBL control process for
handling these interdependencies, we introduce particular abstract resources at level
ly.

For example, the 1andmark resource restricts the redundant options for obtaining
absolute coordinates in the world model. The aimFocus resource introduces a simi-
lar restriction with respect to theaimPlayer, aimSelf, and aimGoal behaviours.
stamina matches the external simulated model of the soccer agents’ power and also
describes the internal dependency between the positioning behaviours keepPosi -
tionand interceptBall The actuatorresource describes the limited amount
of kick, catch, turn, and dash actions that are allowed in a single simulation cy-
cle. Finally, the neck resource mediates between the different needs for turning the
player in keepPositionand searchBall.

These abstract resources are consumed by the inferences of the depending BBL pro-
cesses, such as aimFocus by the execution of aimGoal. In turn, performance re-
ports are generated from the process status: In order to adjust the current aim, the
aimGoal behaviour analyses the distance and the direction to the opponent’s goal in
the atPos condition. The greater the distance, the less likely the next kick will score

146



a goal and the less useful the current chunk of execution has been. Similarly, perfor-
mance measures for executing aimPlayer, aimSelf, and other processes can be
found.

Based on performance reports, the signal routing and resource allocation facilities of
the BBL control process install a conflict-free short-term behaviour in which the con-
current inferences are smoothly interpolated into interesting ‘soccer moves’. An ex-
ample is the right-wing attack depicted at the bottom of Fig. 47 in which, by theaim-
Focus resource, the attacker agent steadily mediates between shooting to the goal,
dribbling, and passing depending on goal distance, navigation space, and the team
mate positions.

LPL: Deliberative Soccer Tactics To lead the BBL control process towards estab-
lishing a particular kind of soccer move, suchas the right-flank attack, it is important to
choose it parameterisation (resourceAllocationvia changeResourceAl-
location, processPriority via changeProcessPriority, and dis-
countFactor via changeDiscount) appropriately. Moreover, it is important
to identify a suitable homePos and a reasonable set of aims in goodAim This is
not in the responsibility of the skill-based and fast BBL. Rather, this is subject to the
tactical prediction, planning, and execution inside the LPL making use of levells.
Tactical fluents are abstract features of the current game situation, such as playMode
(comprising score, elapsed play time, pending kick-in’s, etc.), nearBal1l (players of
the teams that are nearest to the ball), ballPosession (the team in control of the
ball), area (the field region in which the player is located), and ballArea (the field
region in which the ball is located).

Tactical actions are aggregated under the gl obalTact icmacro. Its effect should be
to improve the current playmode and decomposes into two optional sub-goals (and
sub-macros), i.e., either scoring goals using the at tackTact icmacro or preventing
the opponent from doing so using defendTactic. These intermediate tactics de-
compose depending on the situation into particular soccer moves, such askeepGoal,
watch, runForward, or pass. Each soccer move finally installs a characteristic
set of resource parameterisations, valuable aims, and a home position in the BBL.

For example the keepGoal move of the goalie in Figure 47 is invoked if the opponent
possesses the ball and if the ball is residing within the own half of the field. Herein,
BBL's processPriorityis set to prefer catching before kicking before turning
before dashing. This allows the goalie to quickly intercept the movement of the ball,
afterwards shooting it away — possibly to a team mate nearby. Catching and kicking
are vital; their discount is chosen to be small. SinceaimGoal and aimSelf do not
make sense in this mode, they are disabled by setting their priority to zero.

It is also important for the goalie to frequently adjust its central position while tracking
the ball. Hence, the stamina resource is available in small amounts for keepPo-
sition. On the other hand, interceptBallshould be able to suddenly generate
a continuous trajectory for intercepting the ball if it is entering the penalty area. Thus
interceptBallis granted a greater allocation of stamina.

SPL: Social Soccer Strategies Soccer is not a purely tactical game in which the
goal-oriented behaviour of two or three players suffices. Soccer is an inherently strate-

147



gic game that requires the coordinated team-play of eleven players in order to beat the
opponent. For example, having more than one soccer agent deciding to play goalie
by activating keepGoal will most likely result in a disastrous outcome. The re-
quired soccer strategies are represented and reasoned about in the SPL at level /y and
l,. Strategies are realised by influencing the LPL control process’ allocation of ab-
stract resources. In this case, CosmOz players own a particular roles resource that
is consumed by executing tactical actions.

For example, keepGoal requires a non-zero amount of the goalieitemof roles.
For example, score is only available, if the player is assigned to be anattacker.
For example, the decomposition of runBack and runForward depends on the
amount of roles available at that time.

A concrete soccer strategy then consists of reasonably distributing a set of role items
to the whole team, such as an offensive 1 — 3 — 3 — 4 strategy consisting of one player
assigned to be a goalie, three players assigned as defenders, three middle-fielders, and
four attackers. This can be technically established as a default for the resource-
Value fluent at level /,. This can be moreover dynamically negotiated between a
manager agent (the trainer) and a set of bidders using the contract-net protocol as elab-
orated in Section 5 and depicted in Figure 48.

7.2.3 Experience

RoboCup was first intended only as a secondary domain for InteRRaP-R. When we
fully recognised its importance for testing hybrid designs and resource-adapting sys-
tems, we decided to participate the official world championships in Paris, 1998. The
rationale was not to implement a champion team by coding sophisticated skills, tactics,
and strategies in C, but to demonstrate that our generic, resource-based framework with
its constraint-based implementation can be practically customised to such a demanding
and competitive setting.

In contrast to other teams that already started their activity back in 1996 and that en-
gaged up to 10 developers in the meantime, the realisation of CosmOz took a total of 3
person-months. Its source code is about of the same size than the one of InteRRaP-R
forklifts. At the time of the competition, the reorganisation of the team strategy was
not yet ready and no support for the offside rule was present. But, we made heavy use
of the Mozart-built-in distribution facilities to conveniently release the agent team to
a designated pool of computers — this was remarkably easy to achieve thanks to the
transparent Oz language.

The first observation was that the resulting CosmOz agents were evidently able to ef-
fectively operate in the close-to-real-time setting, exhibiting reactive skills, deliberative
tactics, and social strategies. We could not adequately achieve this simultaneous com-
bination of (soccer) facilities, for example, with the original activation & commitment
principle of InteRRaP.

The unexpected result (because of our research objective) was that CosmOz reached
the quarter-finals of the RoboCup’98 competition beating some low-level-coded teams
with scores of up to 16:0. An analysis of the log-files has shown that this is partially due
to the broad functionality covered by CosmOz when playing against teams focusing
either on skills, tactics, orstrategies (see [Asa99]). This result is also due to the explicit
management of resources in InteRRaP-R: From 1997 to 1998, the RoboCup regulation

148



made the simulation of stamina more restrictive. Teams which did not address this
resource constraint became visibly tired and lethargic soon after kickoff.

For improvement, we could identify many issues with respect to domain representation
(that was not laid much emphasis on) and few aspects with respect to the agent model
(that performed ways better than to be expected). For example, the recognition of
the opponent’s strategy will certainly be important in future RoboCup competitions.
This is in-principle realisable in InteRRaP-R, i.e., its knowledge base processes, but
requires social representations that generalise over many alternative team designs.
Currently, the BBL resources, such as stamina, and parameters for their allocation are
abstractly hidden in the LPL representations. We noticed that most of these represen-
tations are robust with respect to changes in modelling, while some are quite sensitive,
in particular the chosen performance scale. To enable the LPL and SPL planning to
incorporate, e.g., the state of stamina into tactical and strategic decisions could signif-
icantly contribute to the adaptive behaviour of the multi-agent team; the Fluent Cal-
culus [Thi99] is a theory of time and action that is capable of efficiently representing
and reasoning about such resources. We could also think of incorporating a learning
mechanism into the InteRRaP-R control processes to improve the estimation of process
performance.

7.3 Tele-Robotics: The ROTEX Space Experiment

Service artifacts are used more and more in areas which are too hazardous or inacces-
sible to humans. Examples are robots for inspecting pipelines (the KURT platform,
[fAIS99]), for patrolling poisoned parts of nuclear plants (the Soviet Lunokhod rover
[Wie99] during the Chernobyl disaster), for exploring unstable buildings after earth-
quakes (the RoboCup Rescue Initiative [Kit99]), and for examining deep-sea cables.
There are also space-robots that perform assembly tasks on planet’s surfaces (see the
NASA Pathfinder project [Gol98]) and in deep space [fRuS99] for, e.g., repairing
satellites under zero-gravity.

Especially in the latter case, we recognise that the possibilities for establishing a high-
bandwidth communication channel between the remote artifacts and a mission control
site are highly restricted. For example, there is already an accumulated delay of about
6 seconds when tele-operating an orbiting system. Since these robots are additionally
placed in rather open and dangerous environments, their control poses an ultimate
research problem that the area of Tele-Robotics is dedicated to.

In the Tele-Sensor approach [BLSH95], agent technology has proven useful: The re-
mote operation of semi-autonomous space robots is combined with a simulation-based
ground operation. Remote agents are equipped with enough local autonomy to re-
actively decompose and execute given high-level tasks from the ground site. As the
bases for issuing these commands, the ground site runs a predictive simulation that is
frequently fed by the status of the remote system and that compensates the communi-
cation delay.

7.3.1 Scenario

The first Tele-Sensor experiment, ROTEX, was carried out on-board the Columbia
shuttle flight ST55 from April 26 to May 6, 1993. In this experiment, a small six-

149



Power Electrorucs
| _J Sensors v
H Vigion |
f Rabaz 1 Conrolier
l Ropor 2

VIE SUS

B Cnaser oo Superasion
Corzrolier |
S) | | Maintenanco|
(ACTS) | | (OrGrount) { Su;,e‘rv._-jsam.
| | |oner ; s -
o | Mamlenance
Cl | (OuBoardy
) - g
oo, 5 7
[ B v
| /@/ | il Q

Figure 49: The ROTEX Space-Robot in the Tele-Sensor Approach

axis robot with a working space of about 1 m®> was mounted inside a space-lab rack
(Figure 49). Its gripper was provided with a number of sensors, such as force-torque
wrist sensors, tactile arrays, grasping force control, laser-range finders, and stereo cam-
eras. In order to demonstrate servicing prototype capabilities, three basic tasks were
performed: The assembly of a mechanical grid structure, the (dis-)connection of an
electrical plug (the so-called Orbit-Replaceable-Unit — ORU), and the grasping and
stapling of cubes. In the experiment, the commands to pick, manipulate, and place par-
ticular parts were given by humans from the ground site. The humans were provided
with a web-based 3D visualisation of the simulated working space.

In order to increase the degree of automation, we suggested the use of hybrid
InteRRaP-R agents i) in the ground system to allow for a higher-level operational inter-
face and i1) in the remote system to increase autonomy and thus the range of tolerable
communication delays. The preliminary tests that we have conducted focus on the first
aspect. They have been performed using the original working space and a variation of
it, in which a variable set of up to 40 cubes was present.

7.3.2 Programming Ground-Control Agents

In the UML diagram of Figure 50, the domain representation for a ground-control
ROTEX agent is illustrated. It turns out asa quite conventional single-agent domain
description: Two levels of abstraction [, (LPL) and /, (BBL) describe states and move-
ments in the three-dimensional working space.

The ground-control agent is connected via a TCP/IP network connection to the pre-
dictive simulation which is either coupled to the physical working space or runs in a
special off-line mode. A human operator is provided with a browser displaying the
state of the simulation (through a Virtual Reality Modelling Language-plug-in) and the
agent (through the InteRRaP-R GUI). The browser allows the convenient specification
of high-level goals which are then immediately delegated to the agent.

150



Level 0 Fluents /LPL Level 0 Actions /LPL

onPiate pickAndPlaceORL pickAndPlaceTruss1 pickAndPlace Truss2
-uhjatt: Object =9 org I ~Fazs . TTuss ruest - Trugs
e /\ T [oruase Om iussBase  Trusspase truss2 : Truss
_ ST < /j
placedOn \ \ 0%
-object! - Object / ~. B ~
-anject2. Object \\ \ b / pickAndPlaceCube
-origntation - Onentation B 2 -
\ -cubet Cube
" . -tube2 : Cube
,//i

pickAndPlace

oripperEmpty ‘ -obiject * Objest pickAndDropCube
-onjeri2 . Object -cube - Cube

o
1

7s) N
<
/ { et
Lovel 1 Fipots/igBL | i Level 1 Actions / BBL 1
/ ,/’/ // ‘pick place
pose R
s g § -abject!  Object
onject Dbject /// AL b ] o (m_,xe_ae -objectZ : Object
-pileh - Angle y ) 77
ol ngle ] wsplace } Ny %
-x . Real ﬁﬁﬁ\‘—\ S /
i R?::x:ﬂe —— processPer ception W tokePuse
aw ripperP N :
-2 Real ose L -percephion | Farceplion / . |-8boye  Bool
-closed ' Bool BNE TSR oy i -opject: Goject
-pitch . Aagle '-—.__P_’,__——“_ 4 -pitch : angls
-roll - Angle / ~foit
x Real T P -thets . Angle
-y Real e o - : Real
-yaw . Angle Ry L graspUngrasp -y Real
-7 Real o yaw : Real
-objett® Object 2 Real

Figure 50: Fluents and Actions Representing the ROTEX Working Space

From the simulation, the agent frequently receives pose information of objects (pose)
and robot (gripperPose). These contain positioning in three degrees of freedom (¢,
Y, and z) and orientation in three degrees of freedom (pitch, yaw, and roll). The
incoming signals are processed via theprocessPerceptionaction at level [y. The
simulation server accepts commands for collision-free six-axis motion (takePose)
and tactile gripper control (graspUngrasp). The agent’s BBL aggregates these low-
level commands into shape- and pose-dependent pick and place macros.

At level /;, the pose data is abstracted into a blocks-world-like representation us-
ing the onPlate, above, holding and gripperEmpty fluents. For establish-
ing particular object constellations according to user requests, /; distinguishes sev-
eral pick-and-place macros: pickAndPlaceORUis to install an ORU device onto
its base. pickAndPlaceTrusslputs a truss on a truss base, while pickAnd-
PlaceTruss?2 serves to staple several trusses. pickAndPlaceCube staples the
cubes, while pickAndDropCubeplaces cubes on the working space plate.

For evaluation purposes, we also built a variation of InteRRaP-R in which the HEC-
based local planning process was replaced by the graph-based planning algorithm of
[BF95]. Its Oz implementation [Wen99] has been adapted to the COOP computa-
tional model and its logic data stiuctures: Because planning-graphs are not incremen-
tal, the algorithm 1s restarted when receiving a signal. Because planning-graphs are
non-hierarchical, the algorithm uses only the above pickAndPlace operator. In
both variations, the ground control agents had their SPL completely disabled.

7.3.3 Experience

We have run a small test series by running each variation of InteRRaP-R in each of the
two ROTEX working spaces. This has demonstrated that both variations of InteRRaP-
R provide for a more convenient and declarative user interface than the pure Tele-
Sensor approach. Moreover, in both versions of the ROTEX working space versions,

151



the potential to migrate further parts, such as robot motion and gripper control, into the
agent’s BBL has been revealed which is an indication for the applicability of InteRRaP-
R also to the remote site.

The tests in the original working space confirm the usage of abstraction hierarchies in
HEC to simplify the otherwise too complex planning of assembly tasks under on-line
conditions. The flat tire world (see, e.g., [RN95]) is a related assembly domain that
posed a challenging problem to non-hierarchical planning algorithms in the past. The
graph-plan-based local planning process staying on a single level of abstraction and
restarting upon any dynamic change shows significant disadvantages in this case.

On the other hand, when looking at the purely cube-inhabited version of ROTEX, the
logic-based planner runs into severe problems when confronted with complex goals,
e.g., to build towers of 5 and more cubes. Similar to a pure blocks-world, there are
no longer real abstractions and approximations to define, such as the object-dependent
pick-and-place operations in the original working space. Since, moreover, this version
of the domain was just available in the oft-line simulation mode, the incrementality of
abductive HEC is an expensive and unnecessary feature. The state-based graph-plan
approach has been designed to cover exactly these (artifical?) cases; its latest version,
for example, solves the off-line Tower-Of-Hanoi with dozens of slices.

Experiments such as ROTEX are likely to be extended in future space robotics. For
example, it is straightforward to introduce several robot arms that coordinately and
efficiently service a shared working space. Another example is the NASA deep space
project [Pro99] in which several autonomously controlled shuttles are to build up a kind
of ‘virtual satellite dish’. For coordinating their flight activity, a control architecture
with an equivalent to InteRRaP-R’s SPL will be needed.

7.4 Bottom Line

This section has documented the results of three case studies that we conducted in
order to evaluate the practical impact of InteRRaP-R and its design methodology. The
three scenarios that we have chosen are representative instances of application areas
for broad agents. They go beyond the typical laboratory experiments with robots and
simulations in agent research.

For all scenarios (that would be difficult to program from scratch) we have discussed
how the generic agent framework is to be customised by outlining the complete domain
representations. Due to the declarative background of InteRRaP-R, the correspond-
ing programming efforts are significantly smaller than for the predecessor InteRRaP.
Moreover, the domain code is quite comprehensible which can be attributed to the ad-
equate devices of abstract hierarchies and abstract resources. These are intuitive tools
for programming broad agents in all three domains.

The experience with these scenarios confirms our claim that the InteRRaP-R imple-
mentation, under support by the efficient Mozart system, is able to install reactive,
deliberative, and social facilities in non-trivial environments. It is also shown that the
concept of layering and abstract resources improves the practicability of the predeces-
sor InteRRaP and alternative agent designs.

Finally, we have identified possible improvements in InteRRaP-R that could ease the
modelling of such demanding domains in the future. We will discuss their compliance
to the existing model and the design methodology in the following conclusion.

152



abstract

Inference:

concrete

declarative ¢ » operational

Figure 51: The Instantiated Design Space of Agents

8 Conclusion

Aiming at Shoham’s notion of Agent-Oriented Programming [Sho90] for broad and
industrial-strength systems, this report has presented a design methodology for hybrid
agents, in particular for the layered InteRRaP model of [Miil96]. Section 1 presented
the Design Space of Agents as a way of structuring agent development process into five
interconnected stages of specification organised along the two dimensions of declara-
tivity and abstraction (Figure 51). Each specification stage — architecture, computa-

tional model, theory, inference, and implementation — contributes a characteristic set
of methods, notations, design patterns, and tools all of which are equally important for
obtaining models bridging theory and practice.

The Design Space of Agents reconciles and extends the isolated, but complementary
approaches of Agent Engineering (architectural descriptions as initiated by Bratman
et al. [BIP87] and promoted inter alia by Ferguson [Fer92] and Miller [Miil96])

and Cognitive Robotics (theoretical and inferential descriptions as initiated by Mc-
Carthy & Hayes [McC58] and promoted inter alia by Reiter [Rei99] and Kowalski et
al. [KS96b]). For this purpose, computational models provide the crucial (formal) in-
terface declarative and operational design issues as well as between conceptualisation
and implementation. On the one hand, this is close to the DESIRE approach to proto-
typing arbitrary agent models [DKT94]. On the other hand, where DESIRE is a toolkit
for organising modules using various types of logic, we aim at a coherent framework
for building and actually implementing hybrid systems incorporating a single logic of
time and action.

Throughout Sections 2 to 6, we have completely instantiated the Design Space of
Agents with the reconstructed InteRRaP-R model (Figure 51). So far, this enterprise
has a single match in the research on BDI theory [RG91], PRS architecture [GL87],

AgentSpeak computational model [dL98], and the dIMARS implementation. In con-
trast to the epistemic-logic foundation of BDI, our HEC theory builds on ‘executable’

logic programming. In contrast to the unified architecture of PRS, InteRRaP-R rep-

153



resents a layered account that avoids inflexible sequential processing and expensive
consistency-preservation for the purpose of integrating of a broad spectrum of func-
tionalities.

The design framework presented in this report is evaluated by three case studies that
have been documented in Section 7. The Automated Loading Dock, the RoboCup
simulation league, and the ROTEX space experiment are representative instances of
application areas that go beyond typical laboratory experiments. The case studies
confirmed that our InteRRaP-R implementation is able to install adaptive, reactive,
deliberative, and social facilities in non-trivial environments. The case studies more-
over demonstrated that the necessary programming efforts are considerably easier and
more straightforward than for alternative systems, including the predecessor InteR-
RaP. These results are a striking vindication for the applicability of our slogan “Agent
= Logic + Architecture” to the construction of hybrid systems.

8.1 Hybrid Agents and Holonic Multi-agent Systems

A DAI application methodology is a recipe for structuring MAS of up to thousands
of agents according to a given domain. In an application methodology, the choice of
the right agent design, such as a hybrid model for obtaining broad functionality, i just
one stage of specification [Lin99]. Hence, it is important to define interfaces between
application methodologies and design methodologies, such as the Design Space of
Agents.

In many application areas, e.g., Telematics [BFV98], the identification of agents and
their functions is not a trivial enterprise. For example, different shipping companies
have to be modelled as competitive agents. Dispersed freight centres and transportation
fleets of a single shipping company represent cooperative agents. It is also quite natural
to model individual trucks of a fleet as autonomous agents equipped with transportation
goals and route plans. And it can be appropriate to individuate the possibly different
needs and different destinations of tractors, trailers, cargo containers, and the human
driver of a single truck [Vie99].

The consequence is that a practical MAS should be organised as a society of agents
which are again composed of sub-agents in a self-similar way. In other words, struc-
tures with a higher-level of autonomy (groups, agents, layers) should be decomposed
into similar structures with a lower degree of autonomy (sub-groups, agents, layers,
processes). For this fractal principle, Siekmann et al. [GSV99] have coined the term
holonic MAS derived from the Greek holos meaning whole and the suffix -on meaning
part. We have argued in [JG97, JG98] that this principle is likely to bridge themicro-
macro gap of MAS design. Hence, a resource-adapting MAS architecture is presented
in which social layers are built up by so-called representative agents that control the
computation of subordinate agents by means of abstract resources quite similar to the
way that control processes affect subordinate computations within a single layer of
InteRRaP-R. In [Ger99], this architecture isextended to the ability of self-organisation,
1.e., the social resources that are monitored and reconfigured are, e.g., the number of
agents in a group, their design, and their communication facilities.

The holonic principle also serves as a theoretical means, €.g., to analyse InteRRaP-
R in comparison with the well-known BDI approach (see [Jun99a]). In traditional
BDI logic [RG91], the state of an agent is described by temporal and modal formulae

154



such as Bel(Agent,w), Goal(Agent,w), and Intend(Agent,w) that are interpreted over
a possible-worlds structure. BDI imposes additional semantical constraints onto that
structure, e.g., that an agent always believes in having its goals

Goal(Agent,w) D Bel(Agent, Goal(Agent,w))
and is always working to complete its intentions
Intend(Agent,w) D inevitableC—Intend(Agent, w)

For representing holonic and layered structures, we can also introduce holons which
are groups composed of either traditional BDI agents or sub-holons by the transitive
and anti-symmetric relation <. Mental states of holons (Bel*, Goal*, and Intend")
transparently ‘emerge’ from the attitudes of their parts:

Bel*(Holon,w) = JAgent < Holon A Bel(Agent,w)

(Meta-)control hierarchies, such as present in InteRRaP-R, are defined by the partial
order «:

Agenr, 4 Agent, D (Bel(Agent,,w) D Bel(Agent,,w))
Agent; 4 Agent; D (—Bel(Agenty, w) D =Goal(Agent,, optionalOBel(Agent, w)))

The first of the above conditions states that any higher layer (here: agent) has intro-
spection into the subordinate layer. The second condition (and analogue ones for goals
and intentions) states that any higher layer will only reconfigure the subordinate layer
consistently with its current mental attitudes. A formal result that we have obtained in
this Holonic and Layered BDI (HLBDI) logic is that, provided each InteRRaP-R layer
follows a suitable commitment strategy for realising persistent intentions, the complete
InteRRaP-R holon, though incorporating inconsistent attitudes, exhibits a quite similar
strategy [Jun99a]. So far, HLBDI is restricted to modelling layers as traditional BDI
agents. Once we manage to connect HLBDI to the process level of COOP, it could
provide a valuable verification tool for hybrid agents and their corresponding MAS in
general.

8.2 Learning and Evaluating Resource Control

Abstract resources are an instrument for the real-time scheduling of concurrent com-
putational activities. In this context, COOP rdies on internal profiling, i.e., the sched-
uler uses a built-in performance measurement. As in other approaches to meta-control
[BD94, RW91], this leads to short-term adaptivity provided that the designer supports
(approximately) correct evaluation functions for processes. However, there is the ques-
tion where to get these functions if the domain is not sufficiently known in advance. In
the RoboCup domain, for example, we have experienced that the usefulness of drib-
bling and passing the ball depends on the skills of the opponent team.

In such cases, adaptive systems such as the cognitive architecture ACT-R [And93]
envisage to learn long-term domain characteristics such as the quality of particular
scheduling decisions from external reinforcement at runtime [KL96]. Algorithmic
means are, for example, the memory-based reasoning procedure of [SW86] and the

155



bucket-brigade algorithm of [Hol85]. However, it is difficult to apply these algorithms
to real-time scheduling. Feedback that results from, e.g., scoring a goal or loosing the
ball, is too sporadic to drive required decision cycles of about 100 milliseconds.

In [JLG99a), we have thus presented an extended COOP control process that does not
learn the quality of scheduling decisions in the first place, but rather learns confidence
into the embedded internal profiling mechanisms. Hence, confidence measures are
integrated as an additional scaling factor into the allocation algorithm presented in
Section 3. They are gathered from external stimuli by a combination of memory-
based learning (to store and retrieve exemplary situations, process evaluations, and
the resulting feedback) and bucket-brigade learning (to distribute feedback among the
responsible processes).

For the practical evaluation of such algorithms, the identification of benchmarking sce-
narios is quite difficult. In this report, we have relied on observational experience with
the running systems in the RoboCup domain, for example. With a bit of systematics,
RoboCup can also be used as an empirical testbed: To measure the impact of particu-
lar concepts, such as resource-control, it is possible to let various versions of the same
agent model, e.g., one version with resource-control disabled, one version with slightly
changed parameterisation, and one version including learning, play against fixed op-
ponents in a statistically relevant number of games. The collected data for analysis
should not only cover final scores, but also percentage of ball possession, successful
passes, and other performance-related issues.

The 1999 version of the RoboCup simulation supports the gathering of such data:
Teams are allowed to connect a special trainer agent to the server engine that is
equipped with a god’s eye view. Since its synthetic perception is close to ordinary
players, we could already implement a preliminary situation recognition to the Cos-
mOz trainer. Recently, an inductive learning algorithm has been applied in the ISAAC
trainer [RTM99] that is able to generate rule-based team ratings from observing goal
shoots across various log-files.

8.3 Ramification and Natural Events

Section 4 discussed the impact of adversary environments to the specification of rea-
soning principles for agents. Worst case assumptions, such as applied in ECJ and
HEC, are one tool to address the agent’s vulnerability. What these calculi do not yet
cover is that other objects or agents in the environment are (pro-)active in themselves,
i.e., they affect the world by simple reaction to and by complex deliberation on the
agent’s proper actions. For example, a robot that opens its grippers while its arm is
raised triggers the carried box to move (fall out of the gripper). For example, a robot
that pushes a single box triggers the movement of several boxes if located in a row. For
a forklift’s local planning process deciding about navigation. even the reflex process
that is located in the same hybrid agent is a source of such ‘natural’ activities, e.g., by
forcing the robot to dodge when meeting an obstacle.

These are all special cases of the general ramification problem stated in [GS88]: Rather
than being representable as immediate effects of the agent’s actions, such as of mov-
ing ahead or of opening the gripper, these natural activities are indirect and situation-
dependent consequences of the world state. An advanced planner has to predict these
consequences and either avoid them (by circumventing obstacles or by suppressing the

156



dodge reflex) or cope with their effects (by forcing the BBL to dodge only to the right
or by re-approaching the partner for a box exchange).

For state-based calculi, [Thi97] has presented a formalisation of ramifications. It iden-
tifies particular, instable world states that violate given constraints, such as the im-
possibility of a forklift’s heading an object if its dodging reflex is enabled. There are
causal relationships inherent to these constraints: Active dodging causes a change in
the robot’s position immediately after heading an obstacle. By incrementally apply-
ing such causal rules for resolving the constraint violations, any state-based reasoner
is thus enabled to arrive again at ‘ordinary’ stable states and to continue its regular
inference.

To address ramifications in narrative-based formalisms, natural events [KM97a] have
been proposed which are ‘automatically’ introduced by predefined trigger situations.
For example, dodging always happens if an obstacle is ahead and the respective reflex
is simultaneously enabled. This can be expressed in HEC as follows:

‘\?lriggers(E,A, T, T, L) = élLilg A A=dodge/
(DOMTRIG) holds(ahead(Obstacle), Ty, Ty, nil, 1, E, L)\
holds(saveNavigation, Ty, Ty, nil, 1, E, L)

(NAT1) \Nfrriggers(E,A, T,,T»,L) D éhappens(E,A, Ty . L)

We recognise that basic HEC features, such as worst-case assumptions and levels of
abstraction, are compatible with and even useful for such extended reasoning principles
which enable, e.g., the LPL planner to predict the BBL’s dodging decision. Without the
following constraint, however, the planner would predict the triggered reflex infinitely
often as a consequence of the same situation:

Viriggers(Ey, A, Ty, To, L)A

(NAT?2) : e S
triggers(Es, A, Ts, Ty, L) D Idisjoint(Ty, Ty, T3, Ty) V IE;=E,

Modelling natural events in HEC via integrity, as done by NAT1, lets the planner cope
with the effects of ramification and at the same time keeps the reasonable properties
of well-definedness and termination upon finite residues. It is however not possible to
infer counter-measures, such as the disablement of the dodge reflex, which avoid in
advance the natural being triggered. For that purpose, we are currently experimenting
with a version of HEC in which the triggers condition is closely integrated into the
definitions of the core calculus.

8.4 The Inferential Frame Problem and Resources

In the light of ramification, a particular drawback of most narrative-based approaches
including HEC becomes apparent: Since there is no central representation of state,
checking the occurrence of situations in NAT1 and NAT?2 over the complete narrative
can be very expensive. When trying to demonstrate trigger conditions at various time-
points, HEC computes prior occurrences again and again, because the intermediate
results are not ‘stored’ in some shared data structure. Persistence caching by lemma
generation (see Section 6) improves the situation, but is not a full replacement for a
state representation.

157



A similar problem occurs when representing abstract resources as ordinary HEC flu-
ents which is useful for reasoning about, e.g., stamina in determining soccer tactics.
Any change of resources, such as by invoking a consuming process, must then be mod-
elled in terms of terminating the old value and initiating the new value. Checking the
(quantitative) persistence of resources is hence as expensive as the determination of
the (qualitative) persistence of fluents.

This has been recognised as the so-called inferential frame problem |Thi99]. Unlike
the traditional representational frame problem, the inferential frame problem is not
about minimising the effort of axiomatisation, but about minimising the effort of mak-
ing inferences with the chosen axiomatisation. These two i1ssues do not necessarily
correlate: Negation-as-failure, such as used in HEC, is a representationally elegant
solution to formalise persistence, but inferentially quite expensive. An alternative pro-
posed by [HS90] is to uniformly model change and persistence via an equational-logic
approach (GHS92]: In the Fluent Calculus (FC), situations are reified multi-sets of
fluents using the assoctative and commutative multi-set constructor o and a respective
ACT1-unification underlying =:

(FC1) Vholds(F,S) = IS=F o Z

Qcauses(Sl, P.S,) = IP=nil A $1=95
(FC2) VAP=cons(A, Py) A terminates(A, S1, S3) A initiates(A, S|, Sy)
NS5 0 S3=57 0 Sy A causes(Ss, Py, So)

Actually, AC1 treats fluents as resources that are consumed (the S5 multi-set in FC2)
by a terminating action and produced (the §; multi-set in FC2) by an initiating action.
Else, they remain unaffected which requires no additional effort if employing modern,
e.g., constraint-based unification algorithms. Regular fluents, i.c., the usual situation
properties, are obtained as special cases of resources that only appear once in a multi-
set (where & is the neutral to o):

VS=FoFoZ> F=&

Recently, FFC has been extended to represent narratives by introducing particular
happens and time fluents into the state representations [Thi98]. We could also think of
reifying states in HEC, such as in the following definition. Both are possible means for
transferring ideas from narrative-based HEC to state-based FC and vice versa, possibly
leading to an intermediate theory in the future.

Vholds(F o Z, T\, T,, C. B, E, L) = 3holds(F, T1, T, C, B E, L)
Nholds(Z, T\, Ts,C, B, E, L)

8.5 A Programming Language for InteRRaP-R Agents

In [R0s96], a programming language for the desig of InteRRaP agents (‘ALaDIn’)
was presented based on the rationale given Muller [Mul96] which was a library of ex-
tendible Oz classes, but not necessarily a convenient AOP language in its own right.
Due to the complex design, each InteRRaP module introduced classes of its own and

158



module interfaces required additional coding. This approach may be tolerable for cus-
tomising uniform agents to particular domains, such as the programming of PRS agents
in the dIMARS language. It is certainly not feasible in the hybrid case.

The A language of [GL93] first promoted to develop domain specifications indepen-
dently of underlying logics in special high-level languages.This idea has adopted for
state-based Cognitive Robotics in GOLOG [LRL97] and generalised to narrative-based
calculi by £ [KM97a] and Reactive Pascal [Dav96]. However, these languages com-
monly lack constructs for the crucial control of the resulting (agent) inferences.

As a design that is based on the reconciliation of Agent Engineering with Cognitive
Robotics, the domain representations of InteRRaP-R combine the concepts of action
languages, such as A, £, GOLOG and Reactive Pascal, with additional control con-
structs, such as abstract resources and their parameterisation. These representations
(currently written in Oz syntax) are moreover congruent across various modules and
across the different layers of the agent model. Hence, it should be a straighforward next
step to give them a neat surface syntax and possibly even a graphical notation which
can be compiled into respective Oz code and which finally realise the Agent-Oriented
Programming (AOP) of an advanced hybrid model.

159



A Auxiliary Definitions

The following are auxiliary definitions to the computational model of Section 3. They
have been used with the standardmathO.zed mathl. zed and mathoz. zedfiles
as the prelude for type-checking with the ZTC tool [Xia95]. They define booleans, de-
clare several forward-referenced schemas, and introduce useful functions, such as the
conversion of arbitrary sequences from sets (anySequence), various projection func-
tions, and the summation of integers and floats (using the overloaded }_ notation).

B == Bool
[Branch, Signal]

toReal : Z — R
max: PR < R

—[X]
anySequence : PX < seq X [build sequence from buffer]

Vy:PX; x: X e 35,50 : seqX ® x € y & anySequence(y) = 517 (x) ™ 59

i AXB— A

7 :AXB—B

A, B, C]
i AXBXxC— A

m:AxBxC—B
T AXBxC—C

—[A,B,C, D]
T AXBXCxD— A
T, AXBxCxD—B
mAXBXCxD—C
Tl AXBxCxD-—D

S:PZ — Z [sum of set of integers]
S:PR—-R [sum of set of floats]

Vpz:PZ; z:ZeY(pz) =2 (z=0Apz=02)V
(Bzz:prez=(L(pz\{z2}) +22))

Vpr:PR, r-ReX(pr)=r< (r=00Apr=9)V
(Fro:prer=3(pr\{r})+r))

160



The following definition of exhead, extail, and annotationis to be inserted immediately
before the AProcessinf schema:

exhead, extail : Branch — seq InferenceState [access exceptions]
annotation : Branch < Signal [access annotations]

Vb : Branch e (b.exceptions = () = (exhead(b) = () A extail(b) = ())) A
(b.exceptions # ()) = (exhead(b) = (head(b.exceptions)) N\
extail(b) = tail(b.exceptions))
Vb : Branch e annotation( {b} |) = \U{c : b.premises U b.conclusio e c.annotation}

B Proofs of Some Propositions and Theorems

In the following, we present proofs and relevant lemmas for some of the propositions
and theorems stated in Sections 4 and 5. It should be noted that we do not take a general
theorem proving stance in which a possibly large semantical space is representatively
captured by means of, e.g., abstract consistency properties [Fit90]. Rather, we look
at HEC from a Logic Programming perspective that analyses the calculus in terms of
logic procedures and finite data structures, i.e., the closed terms given by the Herbrand
universe.

Proposition 4 (Existence of Infinite Sequences in ECJ) Let M be a minimal three-
valued (Herbrand) model for ECJ under I, A, DOM :

M =3 Comp(ECJ1 A ... AN ECJA N ECS3AA NI ADOM)A
CET AECK3 A ... A ECK5

For all C : Constant; n : N, it holds 0.5 € ranIP(C,n) if and only if there exists an
infinite sequence i : N; Uy, ..., Ujg : U such that IP(holds, 5)(Ui,, . .., U;s) = 0.5,
IP(happens, 3)(U,s, Uig, U;2) = 1, and Uiy 3 = IF(cons, 2)(U;s, U; 3).

Proof. Because of the completion, it is assured that for any predicate not mentioned
in axioms, facts, and constraints, the valuation under M must deliver 0. Furthermore,
constraints are not part of the completed program in the theoremhood view of integrity,
thus they cannot force undefined truth values provided the completed equivalence ax-
ioms by themselves are well-defined.

Thus, we first check that

0.5 & ran IP(=, 2) U ran IP(member, 2) U ran IP(flip, 2) U ran IP(<, 2)
Uran IP(happens, 3) U ran IP(out, 3)

in order to concentrate the investigation of undefinedness upon holds, clipped, initiates,
and terminates. The completed happens and < interpretations are either set to true in
A or stay false because of their completion.

The well-definedness of CET1 A CET2 A\ CET?3, thus =, provided an infinite alphabet
Constant follows from [Kun87, Mah88]. For flip now, the well-definedness is easy to
see, as it can be only derived over the equivalence ECJ3 and CET does not allow for

undefined = interpretations. Similarly, out is well-defined because of purely relying
on < (ECS3).

161



For member, we have to argue by induction over the ‘depth’ of the first argument, that
is, the number of recursive function applications which are needed to reach the entity
from IF(Constant,0) — due to our model being isomorphic to the finite Herbrand
trees, all entities can be reached this way in a bounded manner. For any depth of the
argument Uy such that IP(member, 2)(U;, U,) = 0.5, we could determine at least one
equation /P(=, 2)(U,, Us) = 0.5 where U, is an entity that is referred in the functional
reconstruction of U;. This contradicts with the well-definedness of =.

Hence, we know that IP(C,n)(U,...,U,) = 0.5 implies that C is ei-
ther holds, initiates, terminates, or clipped. Now suppose that either
IP(initiates, 6)(Uy, ..., Us) = 0.5 or IP(terminates, 6)(Uy, ..., Us) = 0.5. By the

completion, DOM is the only source to trace their definition by which there must be
some U] : U such that IP(holds, 5)(U1, Us, ..., Us) = 0.5 ().
Suppose now that IP(clipped, 6)(U, ..., Us) = 0.5. Because of the ECJ2 defini-
tion, there must exist U},..., U} : U such that IP(happens, UL UL} = 1,
Uy = IF(cons,2)(U}, Uy), and IP(terminates, 6)(Uy, Uy, Uy, US, Us, UY) = 0.5. Be-
cause of (i), there must be U} : U such that IP(holds, 5)(U", 0%, U, Uy, U ) =015,
Thus, for each IP(clipped, 6)(U,,...,Us) = 0.5, we find O U s L7 such
that it holds IP(holds, 5)(UY, ..., UY) = 0.5, IP(happens, 3L, UL, U3 = 1, and
Uz = IF(cons, 2)(UY, Us) (ii).
Suppose now that IP(holds,5)(U,,...,Us) = 0.5. Because of the ECJ1 defini-
tion, there must exist U},..., U, : U such that IP(happens, 3)(U}, Uy, Uy) = 1,
4 = IF(cons,2)(U}, Uy), and either IP(initiates, 6)(Uy, Uy, Uy, Uy, Uy, UY) = 0.5
or IP(clipped, 6)(Uy, U}, Us, Us, UL, U!) = 0.5.
Take the first case of IP(initiates, 6) (U, Uy, Uy, Uy, Uy, Ul) = 0.5. We know by (i)
that there exists a UY : U such that IP(holds,5)(U!, U, Uy, Uy, U] = 0.5. This
means that we find U7, ..., U : U such that it holds IP(happens, .U, Ulj=1,
U3 = IF(cons, 2)(UY, Us), and IP(holds, 5)(U", ..., U") = 0.5 (iii).
Take the second case of IP(clipped, 6)(U,, U, Us, Us, Us,Uj) = 0.5 and by (ii),
there exists UY,..., U : U such that it holds IP(holds, 5)(UY,...,U¥) = 0.5,
IP(happens, 3)(U§, Uy, UY) = 1, and UY = IF(cons, 2)(UZ, Us) (iv).
(1), (i1), (iii), and (iv) demonstrate that for anyIP(C,n)(Uy, ..., U,) = 0.5, there exists
some Uj,...,U; : U such that IP(holds, 5)(U), ..., Us) = 0.5. These arguments
combined show the proposition. O

Lemma 1 (Non-Members and Inequalities) Ler M be a first-order (Herbrand)
model of ECJ4 A\ CET. Letn : N, U1, Ur2,...,Un1,Uno ¢ U such that for all
1 < i < n, it holds Uiy = IF(cons, 2)(Uiz1,1, Ui—12). For any U' : U such that
IP(member,2)(U,U,5) =0 it follows that U # U; ; forall1 < i < n.

Proposition 5 (Three-Valued Minimal Models of ECJ) Any minimal three-valued
(Herbrand) model M of ECJ is already a two valued model of ECJ,

Proof. By induction on the size #A, we show that M cannot assign 0.5 to
any predicate. Suppose there exist C : Constant,n : N, U, ey Uy ¢ U gtich
that IP(C,n)(Uy,...,U,) = 0.5, then by Proposition 4, there exists an infi-
nite sequence U;;,...,U;s : U such that IP(holds, 5)(U;1,...,Uis) = 0.5,
IF(cons,2)(U;5,U;3) = i+1,3, and IP(happens, 3)(U;s, U;s, U;s) = 1.0. Then,
by the boundedness of A, there must be some i < #A such that U;5; = Usig.

162



Furthermore, since U5, U 3s,..., U;s, U;3 satisfy the conditions of Lemma 1, it
holds that IP(member,2)(U;s, U;3) = 1, for otherwise IP(=,2)(U;s, U15) = 0
contradicting with CET. Thus, by the second disjunct of the ECJ1 body evaluating to
0, we simplify 1P(holds, 5) (Ui 1, ..., Uis) = IP(=,2)(U;4, IF(1,0)) € {0,1} which
contradicts the undefinedness of /P(holds,5)(Uiy, . . ., U;s). a

Theorem 2 (Treatment of Worst Case in ECJ) Let M be the minimal (Herbrand)
model of ECJ:

M = Vholds(F, T, C,0,E) D holds(F, T, C,1,E)

Proof. In the following, let /F(0,0) = 0 and IF(1,0) = 1.

We show below that provided there is a IP(holds,5)(Ui, Uy, Us,1,Us) = 0
and IP(holds,5)(Uy, Us, Us,0,Us) = 1, then there would exist an infinite se-
quence i : N; U,...,U;s : U such that IP(cons, )(U,4, Usz) = Usrs,
IP(happens, 3)(Ui4, Uis, Uia) = 1, IP(holds,5)(Uiy, Ui, Uiz, 1,U;4) = 0 and
IP(holds, 5)(U;y, Uiz, Ui 3, 0, Ui 4) = 1. Because of #A being bounded, there must be
some k < #A such that IP(Member,2)(U, 4, U;3) = 1. Because of ECJ1, it holds then
IP(holds, 5)(U; 1, Uiz, Uiz, 1, U;s) = 1 and IP(holds,5)(Uiy, Uia, Uis,0,Uia) = 0
which derives the desired contradiction.

Now  suppose  [IP(initiates,6)(U,, Uy, Us, Ug, 1, Us) = 0 and
IP(initiates, 6)(Uy, Ua, Us, Uy, 0, Us) = 1. By the latter expression and DOMCAU,
there must me some U} : U such that IP(holds, 5)(UY, Us, Uy, 1, Us) = 0. Because of
the first expression, it must hold at the same time IP(holds, 5)(U}, Us, Uy, 0, Us) = 1
(i). The same can be stated for terminates (ii).

Now  suppose  IP(clipped,6)(Uy, Uy, Us, Us, 1, Us) = 0 and
IP(clipped, 6)(Uy, Uz, Us, Uy, 0, Us) = 1. By the latter, we know that there exist
Ui, ..., Uy Usuch that Uy = IF(Cons, 2)(Us, Us), IP(happens, 3)(Uy, Us, Us) = 1,

and IP(telmmaZes 6)(U,, Uy, Uy, Uy, 1, UY) = 0. Furthermore, by the ﬁrst statement,

its must hold that IP(terminates, 6)(U, Uy, Uy, Uy, 0, U') = 1

By (ii), there is U} : U such that IP(holds,5)(UY,U;, Uy, 1,U}) = 0 and
IP(holds, 5)(U", U;.,U,',,f), U)) = 1. Hence, we find U’” ..... UM . U such
that it holds Uy' = IF(Cons,2)(Us,Us), IP(happens,3)(Uy, Uf" G =
IP(holds, 5)(UY", Uy, Uy, 1, UY') = 0 and IP(holds, 5) (U, Uy, Uy, 0, UY') = 1 (iii).
Now suppose IP(holds, 5)(Uy, Us, Us, 1, Uy) = 0 and
IP(holds, 5)(Us, Ua, Us,0,U,) = 1. By the latter, we know that
there exist Uj,...,U; : U such that U, =  [F(Cons,2)(Us, U,),
IP(happens, 3)(Uy, Uy, Uy) = 1, IP(initiates, 6)(Uy, Uy, Us, Uy, 0,U7) = 1,
and furthermore IP(clipped,6)(U, U}, Uy, Us, 1,U;) = 0. Because of
the first, we know that either IP(initiates,6)(Us, Uy, Uy, Uy, 1,U}) = 0 or
IP(clipped, 6)(Uy, Uy, Us, Us, 0, Ug) = 1.

Take the first case, then by (i), there exists a Uy : U such that

IP(holds, 5)(U", Uy, U4, 0,UL) = 1 and IP(holds, 5)(U", Uy, Uy, 1, U}) = 0. Com-
prising the arguments, we got U/, ..., UY" : U such that U”’ 1~F(Cons,2)(U3, Us),
IP(happens, 3)(Uy, Uy, Uy) = 1, IP(holds,5)(UY, Uy, Uy, 1,Uf) = 0 and
IP(holds, 5)(U™, U0 0, V) = 1 (iv).

163



Take the second case, then by (iii), there exist Uy S5E 9l stich

that Uy = IF(Cons,2)(Us, Us), IP(happens, BLULE) e i g,
IP(holds, 5)(UY, Uy, Uy, 1, UY) = 0 and 1IP(holds,5)(UY, Uy, UY,0, U = 1.

Thus, ! we ‘have - U, .0 Us' such that UY & IF(Cons, 2)(U,, Us),
IP(happens, 3)(Uy', U, UY) = 1, 1P(holds, 5)(UY', Uy, U, 1,U") = 0, and
IP(holds, 5)(UY", UY', U¥',0, UY) = 1 (v).

Combining the cases (i) — (v) derives the contradictory infinite sequence. a

Proposition 6 (Existence of Infinite Sequences in HEC) Let M be a minimal three-
valued (Herbrand) model for HEC under I,A,DOM:

M =3 Comp(HEC1 A ... AN HEC5 A ECJ3 A ECJANA AT A DOM)N
CET N ECK3 N ECK4 ANHEC6 A ... A HEC12

For all C : Constant; n : N, it holds 0.5 € ran IP(C, n) if and only if there exists an
infinite sequence i : N; Uy y,...,U;g : U such that IP(holds, 7)(U;y, . .., U;7) = 0.5,
Ui+174 = IF(COI’lS, 2)(U,"6, U,-,4), and IP(happens, 5)(U,',6, U,',g, U,'72, U,"3, U,"'() =:1..0.

Proof. Similar to the proof of Proposition 4, we know that the predicates not mentioned
in the calculus and the basic predicates =, member, happens, < are well-defined.
We extend this straightforwardly to initially, dual, disjoint, decomposelnitially,
decomposeHolds, and decomposeMacro by checking I, DOMSAB, DOMAAB, HEC3
and HEC4. Thus, we can focus our analysis on holds, clipped, iclipped, and causes.
Suppose we are given IP(causes, 8)(U,, ..., Us) = 0.5, then by DOMCAU there must
exist Uy such that IP(holds, 7)(U', Us, . . ., Us) = 0.5 (i)

Now suppose that IP(clipped,7)(Ui,...,U;) = 0.5. Then we know by
HEC? that there exists Uj,...,Us : U such that IF(cons, 2)(Us, Uy) = UL,
IP(happens, 5)(U;, ..., U,, U;) = 1 (if it was 0, the clipped expression would evalu-
ate to 0) and such that IP(causes, 8)(Us, Ug, Uy, Uy, Us, Us, U, Us) = 0.5. By (i),
there is Uy : U such that IP(holds, 7)(UY, U}, UL, Us, Us,U;,U;) = 0.5. Hence
we know that there exist U{”,..., U : U such that Ug' = IF(cons,2)(Us, Uy),
IP(happens, 5)(UY", ..., U U;) =1 and P{holds, TH{UY , UL UL, UF, Us, U, Ur)
(i).

Now  suppose that IP(iclipped, 6)(Uy, ..., Us) = 0.5, Then
we know by HEC5 that there exist U,,..., Us : U such that
IF(cons,2)(Us,Us) = UL, IP(happens, SUEN,-..,UsUs) = 1, and

IP(causes, 8)(Us, U, Uy, Uy, UL, Uy, U, Us) = 0.5. By (i), there is a U} : U such that
IP(holds, 7)(UY, Uy, Uy, UL, Uy, U', Ug) = 0.5. Hence, there exist U eyttt sl
such that U = IF(cons,2)(Us, Us), IP(happens,5)(U",..., U/,Us) = 1 and
furthermore IP(holds, 7)(Uy', Uy', U, UY, Uy, Uy, Us) (iii).

Now suppose that we are given IP(holds, 7)(U, ..., U;) = 0.5. Then we know that
either the third or the second disjunct in HEC1 must be responsible for undefinedness.
Suppose the second disjunct to be undefined, then there is a Uy : U such that
IP(iclipped, 6)(Uy, Us, Uy, U', U, Us) = 0.5. By (iii), there are U”, . . ., Ug : U such
that Uy = IF(cons, 2)(Us, Us), IP(happens, 5)(U", . . ., Uy, U,) = 1, and furthermore

IP(holds, 7)(Ug, U3, Uy, UL, Uy, UY, Uy). This means that for any
IP(holds,7)(Uy,...,U;) = 0.5, we find Ulyoos U 1 U such that

164



U = IF(cons, 2)(Us, Us), IP(holds, 7)(U", ..., U") = 0.5, and

IP(happens, 5)(Ug', Ug', UY', Uy, UY') = 1 (iv).

Suppose the third disjunct to be undefined, then there is a Uj,U, : U such
that IP(clipped,7)(Uy, Uy, Us, Uy, Uy, Ug, Us) = 0.5. We know by (ii) that there
exist UY,...,Us : U such that IP(happens,5)(U!,..., U, Us) = 1 and such
that IP(holds, 7)(Uy, Uy, Uy, U, Us, Uy, Uy). Hence, there are LA sos il s
such that Uy’ = [IF(cons,2)(Us,Us), IP(holds,7)(UY",...,U¥) = 0.5, and
IP(happens, SY{Ug' ; U TS LR, USY) = 1, {v)

(1) = (v) furthermore show that for any IP(C,n)(Uy, ..., U,) = 0.5, there exists some
Uy, ..., U; : U such that IP(holds, 7) (U}, . .., U}) = 0.5. These arguments combined
show the proposition. O

Proposition 7 (Three-Valued Minimal Models of HEC) Any minimal three-valued
(Herbrand) model M of HEC is already a two valued model.

Proof. By induction over #A and #DOM. Suppose IP(C,n)(Uy,...,U,) = 0.5,
then by Proposition 6, there exists an infinite sequence i : N; U;y,...,Uig : U
such that IP(holds, 7)(U;, . . ., Uiz) = 0.5, Uip14 = IF(cons,2)(U;g, Ui4), and ei-
ther IP(happens,5)(U;g, U;s, Uiz, U;3, U;7) = 1.0.

Similar to the proof of Proposition 5 and using Proposition 1, there must be some
place k < #A such that the referred event U, g is already member of the causal chain
Uk, thus by HEC1, the holds expression must have been assigned a value from {0, 1}
from which we derive a contradiction. O

Theorem 5 (Treatment of Dual Fluents) Let M be the minimal (Herbrand) model of
HEC:

M = Vholds(F, Ty, Ts, C, 0, E, L) A Dual(F, F_) > —holds(F_, Ty, Ts, C, 0, E, L)

Proof. Suppose IP(dual, 2)(Uy, U}) = 1, IP(holds, 7)(Uy, Uy, Us, Uy, 0, Us, Ug) = 1,
and IP(holds,7)(U,, Uy, Us, Uy, 0,Us,Us) = 1. By HEC3, it holds
IP(dual,2)(U}, U;) = 1 such that we can exchange U, and U, without loss of
generalisation. By HEC1, we furthermore know that IP(<,2)(Us, Us) = 1 or

U, = Us.

By HEC1, there must be either [P(initially,2)(U,,Us) = 1 and
IP(iclipped,6)(Uy, Us, Us, 1,Us, Us) = 0 (a) or there exist Us,...,Uyq : U
such that 1P(l1ap1)ens,5)(U7, Ug,Ug,Um,Uﬁ) = M IP(<,2)(U10,U2) =
IP(causes, 8)(Us, Uy, Uy, Uyg, IF(Cons, 2)(Us, Uy), 0, Uz, Us) = 1, and

IP(clipped, 7)(Uy, Uy, Us, Uy, 1, Us, Us) = 0 (b). In case (b), U; must be furthermore
different from Us; because of HEC11. Because of TheO{em 4, we furthermore know
that IP(CCIMSES, 8)(Ug, Uy, Uy, Uy, IF(COIIS, 2)(U5, U4), 1, Uy, U(,) = 1

By HECI, there must be furthermore either IP(initially,2)(U},Us) = 1 and
IP(iclipped, 6)(U§,U3,U4,1,U5,U6) = 0 (a) or there exist Uy,..., U}y : U
such that IP(happens,5)(U;, Uy, Uy, Uy, Us) = 1, IP(L,2)(Uly, Us) = 1,
IP(causes, 8)(Us, Uy, Uy, Uy, IF(Cons, 2)(Us, Uy), 0, UL, Us) = 1, and

165



IP(clipped, T) (U}, Ub, Us, Uy, 1, Us, Us) = 0 (b). In case (b), U} must be fur-
thermore different from Us. Because of Theorem 4, we furthermore know that
IP(causes, 8)(Ug, U’ Uy, Uy, IF(Cons, 2)(Us, Uy), 1, Uy, Us) = 1.

Now let us consider case (a,a’). We then have IP(initially,2)(U}, Us) = 1,
IP(initially, 2)(U,,Us) = 1 and IP(dual,2)(U;,U;) = 1 which is inconsistent
(HEC12).

Now let us consider case (a,b’). Because of (b), we
can state that  IP(happens, 5)(U%, Uy, Uy, Uy, Us) = 1,
IP(=, 2)(UL, Us) = 0,  IP(dual,2)(Uy, U") = 1, and
IP(causes, 8)(Uy, U, Uy, Uy, IF(Cons, 2)(Us, Uy), 1, UL, Us) = 1. More-
over, we know that IP(<,2)(Us, Uy) = 0, because otherwise we would get

IP(<.2)(U'y, Us) = 0 (by HEC10, ECK3, and ECK4). Thus, the right hand-side
of HEC? is satisfied for which we derive IP(iclipped, 6)(U,, Us, Uy, 1, Us, Ug) = 1
(contradiction).

Now let us consider case (b.b’) and let us first suppose that IP(<, 2)(U1,, Us) = 0.
Then, because of (b), we state that it holds IP(happens, 5)(U%, U, Uy, Uy, Ug) = 1,

IP(=.2)(U%, Us) = 0.  IP(dual,2)(Uy, U}) = 1, and
1P(causes, 8)(U}, U, Uy, Uy, IF(Cons, 2)(Us, Uy), 1, Uy, Us) = 1. More-
over, we know that IP(<,2)(Us, Uy) = 0, because otherwise we would get

IP(<, 2)(Usg, Us) = 0 (by HEC10, ECK3, and ECK4). Then we can conclude by
HEC4 that IP(disjoint, 4)(Us, Us, U, Uy,y) = 0. Since the right-hand side of HEC? is
satisfied, we then derive IP(clipped, 7)(Uy, Uy, Us, Uy, 1, Us, Us) = 0 (contradiction).
Now let us finally consider case (b,b’) and let us suppose IP(<,2)(U},, Us) = 1.
By HEC10, ECK3, and ECK4, we derive that it must hold IP(<, 2)(Uj, Uyp) = 0 .
Moreover, because of (b), we can state that IP(happens, 5)(Uz, Us, Uy, Uyg, Us) = 1,

IP(=, 2)(Uz, Us) = 0,  IP(dual, 2)(U;, U)) = I, and
IP(causes, 8)(Us, Uy, Uy, Uyg, IF(Cons, 2)(Us, Uy), 1, Uz, Ug) = 1. More-
over, it holds that IP(<,2)(Us,Us) = 0, because otherwise we would get

IP(<,2)(Uyy, Us) = 0 (by HEC10, ECK3, and ECK4). Then we can conclude
by HEC4 that IP(disjoint, 4)(Uy, Us, Us, Usp) = 0. Since the right-hand side of HEC2
is satisfied, we derive IP(clipped, 7)(Uy, Uy, Us, Uy, 1, Us, Ug) = 0 (contradiction). O

Lemma 2 (Konig’s Lemma) Every infinite tree that is finitely branching must have
an infinite branch.

Proposition 10 (Termination) Let C : A — N> be a strictly monotonic cost function
on abducibles, i.e., A1 E As only if C(A1) > C(Ay) and Ay H A only if C(Aq) =
C(As). Then for any I, DOM; G, any search rule that never select disjuncts such that
C(H(F)) > k € N and any least-commitment computation rule that delays UNF until
all other steps including the unfolding of member literals are done, INDOM tpprc G
terminates.

Proof. We show that, supposed I/ A DOM tpjypc G does not terminate, then there must
be an infinite sequence of subsequently generated disjuncts each including a member
literal such that the first argument is determined and the terms in both of its arguments
are also referred to in the residue of the respective disjunct. The first arguments of

166



the member literals are building up an incremental causal chain and these literals must

have been rewritten to L.

For any state of the proof, each non-failure disjunct must have a finite set of constraints
which have been generated from the initially finite set of constraints in PIHEC. By the
bound restriction in selection and the definition of C, each non-failure disjunct must
furthermore have a finite residue including a finite set of referred time-points, too.
Because of Proposition 8, we know that the referred terms in such a residue must be
also present (modulo substitution) in the successor residues.

Under these conditions, the combination of subsequent SMP, EQU, FCT, CAS, FIR,
and PRP steps terminates. The crucial observation is that, due to the definition of
PIHEC, ‘firing’ of constraints (releasing a disjunct in the conclusion with variables
disjoint to the precondition), although possibly increasing the abducibles and propa-
gating into other constraints, diminishes the overall number of constraints that are able
to fire (where we reasonably expect PRP not to propagate the same information twice).

This is especially due to the constraints derived from —clipped goals not being able to
‘invent’ new time-points — the referred time-points have to be propagated from the
residue. Hence, in the worst case, a finite partial order is converted into a total order
which must terminate.

Hence, G must contain the original sources of an infinite proof due to unfolding. Since

the initial C = nil arguments are determined and because of least-commitment, the
respective C arguments of intermediate sub-goals will always refer to terms also ap-
pearing in the residue. In the following, we can regard the application of one UNF step
followed by exhaustive applications (finitely many) of {SMP, EQU, FCT, CAS, FIR,
and PRP} and of unfolding member (terminates because of the determinedness of 0)

as just a single ‘least-commitment step’ of IFF.

Since unfolding disjoint, dual, initially, decomposelnitially, and decomposeFIuent

does terminate, we can similarly to the proof of Proposition 6 trace the unfolding of the
crucial predicates holds, causes, clipped, iclipped in a tree of subsequent sets of holds

literals starting with the finite source goals in G. Each node of that tree corresponds to
a disjunct appearing during the proof which contains all holds literals of that node. All
successors to the node correspond to the successor disjuncts in the proof which have
been generated from their father using one least-commitment step.

A successor node must replace one of the holds literals by a number of other holds

predicates which enlarge the causal list of their father literal. Because of the third
disjunct in HEC1 and the least-commitment strategy, there exists for each successor
a corresponding member literal which has the causal list as argument and which must
have been rewritten to L.

This tree is finitely branching due to the definition of HEC and the finiteness of the in-

termediate residues. Each branch of the tree builds several causal chains only referring

to entities in the respective residue and at least one of the causal chains is incremented
in each successor. Because of the non-termination of the proof procedure, the tree must
be furthermore infinite.

Because of Proposition 2, we know that one branch in this tree must be infinite. Since

each of the nodes in this branch has a successor, the associated disjunct must have been

selected during the proof and therefore all the associated residues have a cost of less
than k.

167



Within this infinite branch, we can construct again an infinite tree which describes
the parallel extensions of the initial causal chains (ni/) within that branch. This tree
must be finitely branching, too, because of the finiteness of residues during the proof.
Furthermore, this tree must be infinite, for otherwise we could show that there is a
place in the selected infinite branch in which no causal chain would be extended.
Because of Proposition 2, again, there must be an infinite branch in this tree which
builds up an infinite causal chain associated with member literals carrying the inter-
mediate chains as their first argument and purely referring to entities from the residue.
These member literals must have been rewritten to L.

By the overall bound of the intermediate residues, we know that there must be some
place in this branch such that a referred entity in member is already part of the causal
list in which case member must have been rewritten to T, contradiction. O

168



References

[AC87]

[AGI6]

[A1184]

[And93]

[Asa99]

[AZ87]

[BD94]

|BFYS5]

[BFVI8]

[BGLM92]

[BHL95]

(BHWIS]

[BIP87]

P. E. Agre and D. Chapman. Pengi: an Implementation of a Theory
of Activity. In Proc. of AAAI-87, pages 268-272. Morgan Kauf-
mann, 1987.

K. Arnold and J. Gosling. The Java Programming Language. The
Java Series. Addison-Wesley, Reading, MA, USA, 1996.

J. FE. Allen. Towards a general theory of action and time. Artificial
Intelligence, 23:123-154, 1984.

J. R. Anderson. Rules of the mind. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1993.

M. Asada, editor. RoboCup-98: Robot World Cup 11, volume 1604
of Lecture Notes in Artificial Intelligence. 1999. to appear.

S. T. Allworth and R. N. Zobel. Introduction to Real-Time Software
Design. Macmillan, 1987.

M. Boddy and T. L. Dean. Deliberation scheduling for problem
solving in time-constrained environments. Artificial Intelligence,
1(67):245-285, 1994.

A. L. Blum and M. L. Furst. Fast planning through planning graph
analysis. In C. S. Mellish, editor, Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 166-1642,
Montreal, Canada, August 1995. Morgan Kaufmann.

H.-J. Burckert, K. Fischer, and G. Vierke. Transportation schedul-
ing with holonic mas — the teletruck approach. In Proceedings of the
Third International Conference on Practical Applications of Intelli-
gent Agents and Multiagents (PAAM’98), 1998.

A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. Contributions to
the semantics of open logic programs. In Proc. of the International
Conference on Fifth Generation Computer Systems, pages 570-580.
ICOT, 1992.

F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about
noisy sensors in the Situation Calculus. In Proc. IJCAI'95, pages
1933-1940, 1995.

H. D. Burkhard, M. Hannebauer, and J. Wendler. AT humboldt —
development, practice and theory. In RoboCup-97: Robot Soccer
World Cup I, volume 1395 of Lecture Notes in Artificial Intelligence,
pages 357-372. Springer, 1998.

M. E. Bratman, D. J. Israel, and M. E. Pollack. Toward an architec-
ture for resource-bounded agents. Technical report, Center for the
Study of Language and Information, SRI and Stanford, 1987.

169



[BKMS95]

[BLR92]

[BLSH95]

[Boh97]

[Boo91]

| Bow87]

[Bro86]

[Bro9t]

[BS&5]

IBS95]

(BT94]

[BT97]

(BWI6]

R. P. Bonasso, D. Kortenkamp, D. Miller, and M. Slack. Experi-
ments with an architecture for intelligent, reactive agents. In Intel-

ligent Agents I, Lecture Notes in Artificial Intelligence. Springer,
1995.

J. Bates, A. B. Loyall, and W. S. Reilly. Broad agents. SIGART
Bulletin, 2(4), August 1992.

B. Brunner, K. Landzettel, B.-M. Steinmetz, and G. Hirzinger. Tele-
sensor-programming: A task-directed programming approach tor
sensor-based space robots. In Proc. of the International Conference
on Advanced Robotics, 1995.

T. Bohnenberger. Eine Deduktive Wissensbasis fir die Agente-
narchitektur InteRRaP. Master’s thesis, Universitat des Saarlandes,
Saarbrucken, 1997.

G. Booch. Object-Oriented Design with Applications. Benjamin
cummings, Menlo Park CA, 1991.

C. M. Bowling, editor. Principles and Elements of Thought Con-
struction, Artificial Intelligence, and Cognitive Robotics Csy Pub,
1987.

R. A. Brooks. A robust layered control system for a mobile robot. In
IEEE Journal of Robotics and Automation, volume RA-2 (1), pages
14-23, April 1986.

R. A. Brooks. Intelligence without reason. Technical Report 1293,
MIT Al Laboratory, April 1991.

R. Brachman and J. Schmolze. An overview of the kl-one knowl-
edge representation system. Cognitive Science, 9(2):171-216, 1985.

R. Backofen and G. Smolka. A complete and recursive feature the-
ory. Theoretical Computer Science, 146(1-2):243-268, July 1995.

S. Bornscheuer and M. Thielscher. Representing concurrent actions
and solving conflicts. In B. Nebel and L. Dreschler-Fischer, edi-
tors, Proceedings of the German Annual Conference on Artificial
Intelligence (KI), volume 861 of LNAI, pages 16-27, Saarbricken,
Germany, September 1994. Springer.

S. Bornscheuer and M. Thielscher. Explicit and implicit indetermin-
ism: Reasoning about uncertain and contradictory specifications of
dynamic systems. Journal of Logic Programming, 31(1-3):}19~
155, 1997.

A. Burns and A. Wellings. Real-Time Systems and Their Program-
ming Languages (2nd edition). Addison-Wesley, 1996.

170



[CDTI91]

[CG86]

[CL89]

[CL90]

[CL94]

[CL95]

[Cla78]

[CLL93]

[CM&7]

[Col85]

[CP79]

[CR79]

[CY79]

[Dab93]

L. Console, D. Theseider Dupre, and P. Torasso. On the relationship
between abduction and deduction. Journal of Logic and Computa-
tion, 2(5):661-690, 1991.

K. L. Clark and S. Gregory. Parlog: Parallel programming in logic.
TOPLAS, 8(1):1-49, 1986.

L. Cavedon and J. W. Lloyd. A completeness theorem for sldnf
resolution. Journal of Logic Programming, 7:177-191, 1989.

P. R. Cohen and H. J. Levesque. Intention is choice with commit-
ment. Artificial Intelligence, 42(3):213-261, 1990.

S. Costantini and G. A. Lanzarone. A meta-logic programming lan-

guage. International Journal of Experimental and Theoretical Arti-
Jficial Intelligence, 6:239-287, 1994.

P.R. Cohen and H. J. Levesque. Communicative actions for artificial
agents. In V. Lesser, editor, Proc. of the 1st International Conference
on Multiagent Systems, pages 65-72. AAAI Press, 1995.

K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker,
editors, Logic and Databases, pages 293-322. Plenum press, New
York, 1978.

N. Carver, V. Lesser, and Q. Long. Resolving global inconsistency
in distributed sensor interpretation: Modeling agent interpretations
in DRESUN. In Proceedings of the 12th International Workshop
on Distributed Artificial Intelligence, pages 19-33, Hidden Valley,
Pennsylvania, May 1993.

W.F. Clocksin and C. S. Mellish. Programming in Prolog (3rd edi-
tion). Springer Verlag, 1987.

A. Colmerauer. Prolog in 10 figures. Communications of the ACM,
28(12):1296-1310, 1985.

P.R. Cohen and C. R. Perrault. Elements of a plan-based theory of
speech acts. Cognitive Science, 3(3):177-212, 1979.

E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Communi-
cations of the ACM, 22:281-283, 1979.

L. L. Constantin and E. Yourdon. Structured Design. Prentice-Hall,
Englewood Cliffs, NY, 1979.

V. G. Dabija. Deciding Whether to Plan to React. PhD thesis, Stan-
ford University, Department of Computer Science, December 1993.

171



[Dav96]

[DGKK98]

[DHS*88]

[dKLW98]

[DKT94]

[DL89]

[dL98]

[DP60]

[DS92]

[DSTI99]

[DVLV96]

[DW8S]

J. Davila. Reactive Pascal and the Event Calculus. In U. Siegmund
and M. Thielscher, editors, Proc. of the FAPR’96 Workshop on Rea-
soning about Actions and Planning in Complex Environments, vol-
ume 11 of Technical Report AIDA, 1996.

P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarn-
strom. TAL: Temporal action logics language speci-
fication and tutorial. Linkoping  Electronic Articles in
Computer and Information Science, 3(15), 1998. URL:
http://www.ep.liu.se/ea/cis/1998/015/

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf,
and F. Berthier. The constraint logic programming language chip.
In International Conference on FGCS, Tokyo, November 1988.

M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A Formal
Specification of dMars. In Intelligent Agents IV, volume 1365 of
Lecture Notes in Artificial Intelligence, pages 155-174. Springer,
1998.

B. Dunin-Keplicz and J. Treur. Compositional formal specification
of multi-agent systems. In Intelligent Agents, volume 890 of Lec-
ture Notes in Artificial Intelligence, pages 102-117. Springer, 1994.

E. H. Durfee and V. R. Lesser. Negotiating task decomposition and
allocation using partial global planning. In Distributed Artificial In-
telligence, Volume II, pages 229-244, San Mateo, CA, 1989. Mor-
gan Kaufmann Publishers, Inc.

M. d’Inverno and M. Luck. Engineering agentspeak(l): A formal
computational model. Journal of Logic and Computation, 8(3),
1998.

M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201-215, 1960.

M. Denecker and D. De Schreye. Sldnfa: An abductive procedure
for normal abductive programs. In Proc. of the International Confer-
ence and Symposion on Logic Programming, pages 686700, 1992.

P. Dell’ Acqua, F. Sadri, and F. Toni. Combining Introspection and
Communication with Rationality and Reactivity in Agents. Lecture
Notes in Artificial Intelligence. Springer, 1999. to appear.

L. Dorst, M. van Lambalgen, and F. Vorbraak, editors. Reasoning
with Uncertainty in Robotics, volume 1093 of Lecture Notes in Ar-
tificial Intelligence. Springer, 1996.

H. F. Durrant-Whyte. Integration, Coordination, and Control of
Multi-Sensor Robot Systems. Kluwer Academic Publishers, 1988.

172



[EHNO4]

[EHT96]

[EM88]

[EMO1]

[Esh88]

[Etz93]

[fAIS99]

[FDC87]

[Fer92]

[Fir92]

[Fis93a]

[Fis93b]

K. Erol, J. Hendler, and D. Nau. Htn planning: complexity and
expressivity. In Proc. of the 12th National Conference on Artifical
Intelligence (AAAI-94), volume 2, Seattle, Washington, 1994. AAAI
Press.

K. Eder, S. Holldobler, and M. Thielscher. An abstract machine for
reasoning about situations, actions, and causality. In R. Dyckhoff,
H. Herre, and P. Schroeder-Heister, editors, Proceedings of the In-
ternational Workshop on Extensions of Logic Programming (ELP),
volume 1050 of LNAI, pages 137-151, Leipzig, Germany, March
1996. Springer.

R. Engelmore and T. Morgan, editors.  Blackboard Systems.
Addison-Wesly, 1988.

C. Elsaesser and R. MacMillan. Representation and algorithms for
multi-agent adversarial planning. Technical report, The MITRE
Corporation, 1991.

K. Eshghi. Abductive planning with event calculus. In Proc. of the

Fifth International Conference on Logic Programming, pages 562—
578, 1988.

O. Etzioni. Intelligence without robots (a reply to brooks). Al Mag-
azine, December, 1993.

Institut fur Autonome Intelligente Systeme. Kurt — an
experimental robot platform for sewerage inspection, 1999.
URL: http://ais.gmd.de/BAR/KURTII.htm

N. S. Flann, T. G. Dietterich, and D. R. Corpron. Forward-chaining

logic programming with the atms. In Proc. of AAAI'87, pages 24—
29, 1987.

I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Ra-
tional, Mobile Agents. PhD thesis, Computer Laboratory, University
of Cambridge, UK,, 1992.

R. J. Firby. Building symbolic primitives with continuous control
routines. In Proc. of the 1st International Conference on Artifical
Intelligence Planning Systems, 1992.

K. Fischer. The rule-based multi-agent system magsy. In Proceed-
ings of the CKBS’92 Workshop. DAKE Centre, Keele University,
1993.

M. Fisher. Concurrent metatem — a language for modeling reactive
systems. In Parallel Architectures and Languages, volume 694 of
Lecture Notes in Computer Science. Springer-Verlag, 1993.

173



[Fit90]

[FK97]

[FKM*95]

[FMP95]

[FN71]

[For82]

[Fre96]

[fRuS99]

[Fun96]

[Gab96]

[Ger99]

[GHS"92]

M. Fitting. First Order Logic and Automated Theorem Proving.
Texts and Monographs in Computer Science. Springer Verlag, New
York, September 1990.

T. H. Fung and R. A. Kowalski. The IFF Proof Procedure for
Abductive Logic Programming. Journal of Logic Programming,
33(2):151-165, 1997.

K. Fischer, N. Kuhn, H. J. Miiller, J. P. Miiller, and M. Pischel. So-
phisticated and distributed: The transportation domain. In C. Castel-
franchi and J.-P. Miiller, editors, From Reaction to Cognition, vol-
ume 957 of Lecture Notes in Artificial Intelligence, pages 122-138.
Springer-Verlag, 1995.

K. Fischer, J. P. Miiller, and M. Pischel. Unifying control in a lay-
ered agent architecture. In Proceedings of the Ist Intl. Conference
on Multiagent Systems, San Francisco, 1995. AAAI Press/ The MIT
Press.

R. E. Fikes and N. J. Nilsson. Strips: A new approach to the appli-
cation of theorem proving to problem solving. Artifical Intelligence,
2(3/4):189-208, 1971.

C. L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19:17-37, 1982.

E. C. Freuder, editor. Principles and Practice of Constraint Pro-
gramming - CP’96, volume 1118 of Lecture Notes in Computer Sci-
ence, Cambridge, MA, USA, 1996. Springer.

Institut fir Robotik und Systemdynamik. Space robotics.
Deutsche Luft- wund Raumfahrtgesellschaft, DLR, 1999,
URL: www.robotic.dlr.de

T. H. Fung. Abduction by Deduction. PhD thesis, Imperial College,
London, 1996.

D. M. Gabbay. Labelled deductive systems : volume 1, volume 33
of Oxford logic guides. Clarendon Press, Oxford, 1996.

C. Gerber. Self-Adaptation and Scalability in Multi-Agent Societies
PhD thesis, Universitit des Saarlandes, Saarbriicken, 1999. to ap-
pear.

G. GroBle, S. Holldobler, J. Schneeberger, U. Sigmund, and
M. Thielscher.  Equational Logic Programming, Actions, and
Change. Technical Report AIDA-92-14, FG Intellektik, TH Darm-
stadt, 1992. Appeared in Proc. Joint International Conference and
Symposium on Logic Programming JICSLP’92.

174



[GL87]

[GL8S]

[GL93]

[GLRI1]

[Gol198]

[Goo76]

[Gre69]

[GRS88]

[GS86]

[GS88]

[GS90]

[GS96]

[GSV99]

M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning.
In Proc. of the 6th National Conference on Artificial Intelligence,
1987.

M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In R. A. Kowalski and K. Bowen, editors, Proceed-

ings 5™ International Conference on Logic Programming, pages
1070-1080, Cambridge, Massachusetts, 1988. MIT Press.

M. Gelfond and V. Lifschitz. Representing action and change by
logic programs. Journal of Logic Programming, 17(2,3, and 1):301—
322, 1993.

M. Gelfond, V. Lifschitz, and A. Rabinov. What are the limitations
of the situation calculus? In S. Boyer, editor, Automated Reasoning,

Essays in Honor of Woody Bledsoe, pages 167—-181. Kluwer Aca-
demic, 1991.

M. P. Golombek. The mars pathfinder mission and science results.
In Proc. of the 29th Lunar and Planetary Science Conference, 1998.

L. J. Good. Good Thinking. University of Minnesota Press, Min-
neapolis, 1976.

C. Green. Applications of Theorem Proving to Problem Solving. In
Proceedings of IJCAI’'69, 1969.

A. van Gelder, K. Ross, and J.S. Schlipf. Unfounded sets and well—
founded semantics for general logic programs. In Proceedings of
the 7" ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 221-230, 1988.

D. M. Gabbay and M. J. Sergot. Negation as inconsistency. Journal
of Logic Programming, 3(1):1-35, 1986.

M. Ginsberg and D. E. Smith. Reasoning about actions ii: The qual-
ification problem. Artificial Intelligence Journal, 35:311-342, 1988.

B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R. Cohen,
J. Morgan, and M. E. Pollack, editors, Intentions in Communication.
MIT Press, 1990.

A. Greveni and L. Schubert. Accelerating partial-order plan-
ners:some techniques for effective search control and pruning. Jour-
nal of Artificial Intelligence Research, 5:95-137, 1996.

C. Gerber, J. Siekmann, and G. Vierke. Flexible autonomy in
holonic multi-agent systems. InAAAI Spring Symposium on Agents
with Adjustable Autonomy, 1999.

175



[Gui95]

[Hal90]

[Hay87]

[HIBvdHCM98]

[Hen97]

[Her67]

[HJ90]

[HM90]

[Hoa69]

[Hol85]

[Hor86]

[HS90]

[HT96]

C. Guilfoyle. Vendors of intelligent agent technologies. In Agent
Software, pages 92-98. Unicom Seminars, Uxbridge, Middlesex,
1995.

A. Hall. Sevent myths of formal methods. IEEE Software, 7(5):11-
20, 1990.

L. Hayes, editor. Specification Case Studies. Prentice-Hall, London,
1987.

K. V. Hindricks, P. S. de Boer, W. van der Hoek, and J. J. Ch. Meyer.
A Formal Semantics for an Abstract Agent Programming Language.
In Intelligent Agents 1V, volume 1365 of Lecture Notes in Artifi-
cial Intelligence. Springer, 1998.

M. Henz. Objects for Concurrent Constraint Programming, volume
426 of The Kluwer International Series in Engineering and Com-
puter Science. Kluwer Academic Publishers, Boston, November
1957

J. Herbrand. Researches in the theory of demonstration. In J. van
Heijenoort, editor, From Frege to Gédel: A Source Book in Mathe-
matical Logic, pages 525-581. Harvard University Press, 1967.

S. Haridi and S. Janson. Kernel andorra prolog and its computa-
tional model. In Proc. of the 7th International Conference on Logic
Programming, 1990.

J. Y. Halpern and Y. O. Moses. Knowledge and Common Knowl-
edge in a Distributed Environment. Journal of the the ACM,
37(3):549-587, 1990.

C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576-580 and 583, 1969.

J. H. Holland. Properties of the bucket brigade algorithm. In J. J.
Grefenstette, editor, Proceedings of the First International Confer-
ence on Genetic Algorithms and Their Applications, 1985.

E. J. Horvitz. Reasoning about beliefs and actions under computa-
tional resource constraints. In Proc. of the 3rd Workshop on Uncer-
tainty in Artifical Intelligence, Philadelphia, PA, 1986.

S. Holldobler and J. Schneeberger. A new deductive approach to
planning. New Generation Computing, 8:225-244., 1990.

C. S. Herrmann and M. Thielscher. Reasoning about continuous pro-
cesses. In B. Clancey and D. Weld, editors, Proceedings of the AAAI
National Conference on Artificial Intelligence, pages 639-644, Port-
land, OR, August 1996. MIT Press.

176



[Hum96]

[HW96]

[JC97]

[JF98a]

[JF98b]

[JFB96a]

[JFB96D]

[JFH'99]

[JFS97]

[JG97]

[JG98]

R. Hummel. Uncertainty reasoning in object recognition by image
processing. In L. Dorst, M. van Lambalgen, and F. Vorbraak, editors,
Reasoning with Uncertainty in Robotics, volume 1093 of Lecture
Notes in Artificial Intelligence, pages 131-145, 1996.

M. Henz and J. Wiirtz. Using Oz for college time tabling. In
E.K.Burke and PRoss, editors, The Practice and Theory of Auto-
mated Time Tabling: The Selected Proceedings of the Ist Interna-
tional Conference on the Practice and Theory of Automated Time
Tabling, Edinburgh 1995, Lecture Notes in Computer Science, vol.
1153, pages 162-177, 1996.

H. Jager and T. Christaller. Dual dynamics: Designing behavior sys-
tems for autonomous robots. In Proceedings of AROB-97 (Artificial
Life and Robotics), pages 76-79, Beppu, Japan, 1997.

C. G. Jung and K. Fischer. A Layered Agent Calculus with Concur-
rent, Continuous Processes. In Intelligent Agents IV, volume 1365
of Lecture Notes in Artificial Intelligence, pages 245-258. Springer,
1998.

C. G. Jung and K. Fischer. Methodological comparison of agent
models. Technical Report RR-98-1, DFKI GmbH, Saarbnicken,
Germany, 1998.

C. G. Jung, K. Fischer, and A. Burt. Multi-agent planning using an
abductive event calculus. Technical Report RR-96-4, DFKI GmbH,
Saarbriicken, Germany, 1996.

C. G. Jung, K. Fischer, and A. Burt. Resolution, Constructive Nega-
tion, and Abduction over Finite Domains in Higher Order Con-
straint Programming. In Proceedings of the 1st DFKI Workshop on
Constraint-Based Problem Solving, Saarbriicken, Germany, 1996.
DFKI GmbH.

C. G. Jung, S. Franke, S. Hess, M. Kohlhase, and V. Sorge. Agent-
based integration of mathematical services. Journal of Universal
Computer Science, 5(3):156—-187, 1999.

C. G. Jung, K. Fischer, and S. Schacht. Distributed Cognitive Sys-
tems. Technical Report D-97-8, Saarbriicken, 1997.

C. G. Jung and C. Gerber. Towards the bounded optimal agent
society. In C. G. Jung, K. Fischer, and S. Schacht, editors, Dis-
tributed Cognitive Systems, number D-97-8 in DFKI Document,
Saarbriicken, 1997. DFKI GmbH.

C. G. Jung and C. Gerber. Resource management for boundedly
optimal agent societies. In Proceedings of the ECAI 98 Workshop

on Monitoring and Control of Real-Time Intelligent Systems, pages
23-28, 1998.

173



[JHKS98]

[JL87]

[JLG99a]

[JLG"99b]

[Jon80]

[Jon&6]

[Jun98a]

[Jun98b]

[Jun99a]

[Jun99b]

[KAK*97]

C. G. Jung, S. Hess, M. Kohlhase, and V. Sorge. An

implementation of distributed mathematical services. In
6th CALCULEMUS and TYPES Workshop,  Eindhoven,
Netherlands, July 13-15 1998. Electronic  Proceedings

http://www.win.tue.nl/math/dw/pp/calc/proceedin gs.html.

J. Jaffar and J. L. Lassez. Constraint logic programming. ACM
Principles of Programming Languages, pages 111-119, 1987.

C. G. Jung, J. Lind, and C. Gerber. Learning and adaptivity in intel-
ligent real-time systems (extended abstract). In Proceedings of the
International Conference on Autonomous Agents (A gents’99), 1999.

C. G. Jung, J. Lind, C. Gerber, M. Schillo, P. Funk, and A. Burt. An
architecture for co-habited virtual worlds. In C. Landauer and K. L.
Bellman, editors, Virtual Worlds and and Simulation Conference
(VWSIM’99), Simulation Series. The Society for Computer Simu-
lation International, 1999.

C. B. Jones. Software Development — A Rigorous Approach.
Prentice-Hall, London, 1980.

C. B. Jones.  Systematic Software Development using VDM.
Prentice-Hall, London, 1986.

C. G. Jung. On the Role of Computational Models for Specify-
ing Hybrid Agents. In Cybernetics And Systems’98 — Proceed-
ings of the 14th European Meeting on Cybernetics and System Re-
search, pages 749-754, Vienna, 1998. Austrian Society for Cyber-
netic Studies.

C. G. Jung. Situated abstraction planning by abductive temporal rea-
soning. In H. Prade, editor, Proc. of the 13th European Conference
on Artificial Intelligence ECAI’98, pages 383-387. Wiley, 1998.

C. G. Jung. Emergent mental attitudes in layered agents. In J. P.
Muller, M. P. Singh, and A. S. Rao, editors, Intelligent Agents V,
volume 1555 of Lecture Notes in Artificial Intelligence, pages 195-
211. Springer, 1999.

C. G. Jung. Layered, resource-adapting agents in the robocup sim-
ulation. In M. Asada and H. Kitano, editors, RoboCup-99: Robot
Soccer World Cup II, volume 1604 of Lecture Notes in Artificial In-
telligence. Springer, 1999. to appear.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa.
Robocup: The robot world cup initiative. In Proc. of The First In-
ternational Conference on Autonomous Agent (Agents-97), Marina
del Ray, 1997. The ACM Press.

178



[KGI1]

[Kha83]

[Kit99]

[KK71]

[KKT93]

[KKT98]

[KL96]

[KM97a]

[KM97b]

[Kow79]

[Kow95]

[KP88]

[KR87]

[KR90]

D. Kinny and M. P. Georgeff. Commitment and effectiveness of
situated agents. In Proc. of the Twelfth International Joint Con-
ference on Artificial Intelligence (IJCAI-91), pages 82-88, Sydney,
Australia, 1991.

O. Khatib. Dynamic control of manipulators in operational space.
In Sixth IFTOMM Congress on the Theory of Machines and Mecha-
nisms, December 1983.

H. Kitano. Robocup-rescue: Search and rescue for large scale dis-
asters as a domain for multi-agent research. In Proceedings of IEEE
Conference on Man, Systems, and Cybernetics (SMC-99), 1999.

R. A. Kowalski and D. Kuehner. Linear resolution with selection
function. Artificial Intelligence, 2:227-260, 1971.

A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Pro-
gramming. Journal of Logic and Computation, 2(6):719-770, 1993.

A. C. Kakas, R. A. Kowalski, and F. Toni. The Role of Abduction in
Logic Programming, volume 5, pages 235—324. Oxford University
Press, 1998.

L. P. Kaelbling and M. L. Littman. Reinforcement learning: A sur-
vey. Journal of Artificial Intelligence, 4:237 — 285, 1996.

A. C. Kakas and R. Miller. Reasoning about actions, narratives,
and ramifications. Electronic Transactions on Artificial Intelligence,
1(4):39-72, 1997.

A. C. Kakas and C. Mourlas. Aclp: Flexible solutions to com-
plex problems. In Proceedings of Logic Programming and Non-
monotonic Reasoning, 1997.

R. A. Kowalski. Logic for Problem Solving, volume 7 of Artifi-
cial Intelligence Series. Elsevier Science Publisher B.V. (North-
Holland), 1979.

R. A. Kowalski. Logic without model theory. In D. Gabbay, editor,
What is a logical system? Oxford University Press, 1995.

H. A. Kautz and E. P. Pednault. Planning and plan recognition.
AT&T Technical Journal, 67(1):25-40, 1988.

R. Krickhahn and B. Radig. Die Wissensreprisentationssprache
OPS5. Vieweg und Sohn, Braunschweig/Wiesbaden, 1987.

L. P. Kaelbling and S. J. Rosenschein. Action and planning in em-
bedded agents. In P. Maes, editor, Designing Autonomous Agents:
Theory and Practice from Biology to Engineering and Back, pages
35-48. MIT/Elsevier, 1990.

179



[KS86]

[KS94]

[KS96a]

[KS96b]

[KT93]

[KTS*98]

[KTW94]

[Kun87]

[KWH'93]

[Leh96]

[LFO7]

[LH92]

[Lin95]

R. A. Kowalski and M. Sergot. A logic-based calculus of events.
New Generation Computing, 4(1):67-95, 1986.

R. A. Kowalski and F. Sadri. The situation calculus and event calcu-
lus compared. In M. Bruynooghe, editor, Proceedings of the Inter-
national Logic Programming Symposium, pages 539—553, Ithaca,
New York, 1994. The MIT Press.

H. A. Kautz and B. Selman. Pushing the envelope: Planning, propo-
sitional logic, and stochastic search. In B. Clancey and D. Weld,
editors, Proceedings of the AAAI National Conference on Artificial
Intelligence, pages 1194-1201, Portland, OR, August 1996. MIT
Press.

R. A. Kowalski and F. Sadri. Towards a unified agent architecture
that combines rationality with reactivity. In D. Pedreschi and C.
Zaniolo, editors, Logic in Databases, volume 1154 of Lecture Notes
in Computer Science. Springer-Verlag, 1996.

K-Team. Khepera Users Manual. Lausanne, 1993.

H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Coradeschi, E. Osawa,
H. Matsubara, I. Noda, and M. Asada. The robocup synthetic agent
challenge. In RoboCup-97: Robot Soccer World Cup I, volume 1395
of Lecture Notes in Artificial Intelligence, pages 62-73. Springer,
1998.

R. A. Kowalski, F. Toni, and G. Wetzel. Towards a declarative and
efficient glass-box clp language. In N. Fuchs and G. Gottlob, editors,
Proc. of Logic Programming Workshop WLP’94, Zurich, 1994.

K. Kunen. Negation in Logic Programming. Journal of Logic Pro-
gramming, 4:231 — 245, 1987.

H. Kitano, B. Wah, L. Hunter, R. Oka, T. Yokoi, and W. Hahn. Grand
challenge ai applications. In Proc. of IJCAI'93, 1993.

G. Lehmann. Basisalgorithmen zur Situationserkennung in InteR-
RaP. Master’s thesis, Universitit des Saarlandes, Saarbriicken, 1996.

Y. Labrou and T. Finin. Semantics and conversations for an agent
communication language. In M. N. Huhns and M. P, Singh, editors,
Readings in Agents, pages 234-242. Morgan Kaufmann, 1997.

D. M. Lyons and A. J. Hendricks. A Practical Approach to Integrat-
ing Reaction and Deliberation. In Proceedings of the Ist Interna-
tional Conference on Artifical Intelligence Planning Systems, 1992.

F. Lin. Embracing causality in specifying the indirect effects of
actions. In C. S. Mellish, editor, Proceedings of the International
Conference on Artifical Intelligence, pages 1985-1991, Montreal,
Canada, August 1995. Morgan Kaufmann.

180



[Lin99]

[LLL*94]

[L1087]

[LMMSS8]

[LRLI97]

[LS95]

[Mac88]

[Mae90]

[Mah87]

[Mah88]

[Mar82]
[MCI1]

[McC58]

[McC63]

J.Lind. A Software Engineering Development Model for Multiagent
Systems. PhD thesis, Universitat des Saarlandes, Saarbriicken, 1999.

to appear.

Y. Lespérance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and
R. B. Scherl. A Logical Approach to High-Level Robot Program-
ming: A Progress Report. In B. Kuipers, editor, Control of the Phys-
ical World by Intelligent Systems: Papers from the '94 AAAI Fall
Symposium, pages 79-85, New Orleans, 1994.

J. W. Lloyd. Foundations of Logic Programming. 2nd ext. Edition.
Symbolic Computation. Springer, Berlin - Heidelberg - New York,
1987.

J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited.
In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 587-625. Morgan Kaufmann, 1988.

H. Levesque, R. Reiter, and Y. Lespérance. Golog: A logic pro-
gramming language for dynamic domains. Journal of Logic Pro-
gramming, 31:59-84, 1997.

F. Lin and Y. Shoham. Provably correct theories of action. Journal
of ACM, 42(2):293-320, 1995.

A. Mackworth. Encyclopedia of Al. John Wiley & Sons, 1988.

P. Maes, editor. Designing Autonomous Agents: Theory and Prac-
tice from Biology to Engineering and Back. MIT/Elsevier, 1990.

M. J. Maher. Logic semantics for a class of committed choice pro-
grams. In Proc. of the 4th International Conference on Logic Pro-
gramming. MIT Press, 1987.

M. J. Maher. Complete axiomatizations of the algebras of finite,
rational, and infinite trees. In Proc. of the 3rd Symposium on Logic
in Computer Science, pages 348-357, Edingburgh, 1988.

D. Marr. Vision. W. H. Freeman, San Francisco, California, 1982.

T. W. Malone and K. Crowston. Toward an interdisciplinary theory
of coordination. Technical report, 1991.

J. McCarthy. Programs with Common Sense. In Proceedings of the
Symposium on the Mechanization of Thought Processes, volume 1,
pages 77-84, London, November 1958.

J. McCarthy. Situations and Actions and Causal Laws. Stanford
Artificial Intelligence Project, Memo 2, 1963.

181



[McC85]

[Meh99]

[Mey88]

[MH69]

[Mil80]

[Mil92]

[Mis91]

[MM82]

[Mor98]

[MP9§]

[MRO5]

[MS92]

[Mul96]

[Miil99a]

J. McCarthy. Formalization of STRIPS in situation calculus. Techni-
cal report, Formal Reasoning Group, Department of Computer Sci-
ence, Stanford University, 1985.

M. Mehl. The Oz Virtual Machine - Records, Transients, and Deep
Guards. PhD thesis, Technische Fakultit der Universitit des Saar-
landes, 1999. submitted.

B. Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs NY, 1988.

J. McCarthy and P. J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence, 4:463—
502, 19609.

R. Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer, 1980.

R. Milner. Functions as processes. Journal of Mathematical Struc-
tures in Computer Science, 2(2):119-141, 1992.

L. Missiaen. Localized Abductive Planning with the Event Calculus.
PhD Dissertation, K.U. Leuven, Leuven, September 1991.

A. Martelli and U. Montanari. An efficient unification algorithm.
ACM TOPLAS, 4:258-282, 1982.

W. Morell. Steuerung kontinuierlichen verhaltens in einer hybri-
den agentenarchitektur. Master’s thesis, Universitit des Saarlandes,
1998.

M. Maher and J.-F. Puget, editors. Principles and Practice of Con-
straint Programming - CP’'98, volume 1520 of Lecture Notes in
Computer Science, Pisa, Italy, 1998. Springer.

U. Montanari and F. Rossi, editors. Principles and Practice of Con-
straint Programming CP’95, volume 976 of Lecture Notes in Com-
puter Science, Cassis, France, 1995. Springer.

M. Meier and J. Schimpf. An architecture for prolog extensions.
In Proceedings of the 3rd International Workshop on Extensions of
Logic Programming, Bologna, 1992.

J. P. Mtiller. The Design of Intelligent Agents: A Layered Approach,
volume 1177 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, December 1996.

J. P. Miiller. The right agent (architecture) to do the right thing. In
J. P. Miiller, M. P. Singh, and A. S. Rao, editors, Intelligent Agents
V— Proceedings of the Fifth International Workshop on Agent The-
ories, Architectures, and Languages (ATAL-98), Lecture Notes in
Artificial Intelligence. Springer-Verlag, Heidelberg, 1999.

182



[Miil99b]
[New90Q]

[Ni184]

[Nod95]

[NS76]

[Oes97]

[OI92]

[PA8O]

[Par72]

[Pet92]

[P1a99]

[PK94]

[Pro99]

[Rei78]

T. Muller. The Mozart Constraint Extension Manual, 1999.

A. Newell. Unified theories of cognition. Harvard University Press,
Cambridge, London, 1990.

N. J. Nilsson. Shakey the robot. Technical report, SRI Al Center,
April 1984.

I. Noda. Soccer server: a simulator for robocup. In JSAI Al-
Symposium 95: Special Session on RoboCup, December 1995.

A.Newell and H. A. Simon. Computer science as empirical enquiry:
Symbols and search. Communications of the ACM, 19(3):113-126,
1976.

B. Oestereich. Objekt-Orientierte Softwareentwicklung mit der Uni-
fied Modeling Language. Number ISBN 3-486-24319-5. R. Old-
enbourg Verlag, Munchen, 1997.

Y. Ohta and K. Inoue. A forward-chaining hypothetical reasoner
based on upside-down meta-interpretation. In Proc. of the Inter-

national Conference on Fifth Generation Computer Systems, pages
522-529. 1COT, 1992.

C. R. Perrault and J. F. Allen. A plan-based analysis of indirect

speech acts. American Journal of Computational Linguistics, 6(3—
4):167-182, December 80.

D. Parnas. On the criteria to be used in decomposing systems in
modules. Communications of the ACM, 6(33):636-651, 1972.

A. Pettorossi. Meta-programming in Logic, volume 649 of Lecture
Notes in Computer Science. Springer, 1992.

M. Piaggio. HEIR — a non-hierarchical hybrid architecture for in-
telligent robots. In J. P. Muller, M. P. Singh, and A. S. Rao, edi-
tors, Intelligent Agents V — Proceedings of the Fifth International
Workshop on Agent Theories, Architectures, and Languages (ATAL-
98), Lecture Notes in Artificial Intelligence. Springer-Verlag, Hei-
delberg, 1999.

D. Poole and K. Kanazawa. A decision-theoretic abductive basis for
planning. In Proc. AAAI Spring Symposium on Decision-Theoretic
Planning, 1994.

The NASA New Millenium Program. Deep space 1. NASA, 1999.
URL: http://nmp. jpl.nasa.gov/dsl/

J. Reichardt. Robots: Fact, Fiction, and Prediction. Penguin Books,
New York, 1978.



[Rei80]

[Rei91]

[Rei99]

[RGII1]

[RGY5]

[RNO5]

[Rob65]

[R0os96]

[RS95]

[RTM99]

[RW91]

(RZ94]

[Sac74]

[SanY4]

R. Reiter. A logic for default reasoning. Artificial Intelligence,
13:81-132, 1980.

R. Reiter. The frame problem in the situation calculus: A simple so-
lution (sometimes) and a completeness result for goal regression. In
V. Lifschitz, editor, Artificial Intelligence and Mathematical Theory
of Computation, pages 359-380. Academic Press, 1991.

R. Reiter. Knowledge in action:  Logical foundations
for describing and implementing dynamical systems.
URL: http://www.cs.toronto.edu/cogrobo/ 1999.

A. S. Rao and M. P. Georgeff. Modeling Agents Within a BDI-
Architecture. In R. Fikes and E. Sandewall, editors, Proc. of the
2rd International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR'91), pages 473-484, Cambridge, Mass.,
April 1991. Morgan Kaufmann.

A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice.
In Proceedings of the First Intl. Conference on Multiagent Systems,
San Francisco, 1995.

S. J. Russell and P. Norvig. Artificial Intelligence, A Modern Ap-
proach. Prentice Hall, 1995.

J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12:23-41, 1965.

M. Rosinus. Aladin: A language for designing interrap agents. Mas-
ter’s thesis, Universitat des Saarlandes, 1996.

S. J. Russell and D. Subramanian. Provably Bounded Optimal
Agents. Journal of Artificial Intelligence Research, 2, 1995.

T. Raines, M. Tambe, and S. Marsella. Towards automated team
analysis: A machine learning approach. In Proc. of RoboCup’99,
1999. to appear.

S. J. Russell and E. Wefald. Do the Right Thing. MIT Press, Cam-
bridge Mass, 1991.

J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing
Conventions for Automated Negotiation among Computers. MIT
Press, 1994.

E. D. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces.
Artificial Intelligence, 5:115-135, 1974.

E. Sandewall. Features and Fluents. The Representation of Knowl-
edge about Dynamical Systems. Oxford University Press, 1994,

184



[San97]

[Sar93]

[Sch98]

[Sea69]

[Sha87]

[Sha89]

[Sha90)]

[Sha9s)

[Sha96]

(Sha97a]

[Sha97b]

[Sha97c|

[Sho90]

[Sie89]

[Sim8&2]

(Sin91]

E. Sandewall. Logic-based modelling of goal-directed be-
haviour. Technical report, Linkoping University, 1997.
URL: http://www.ep.liu.se/ea/cis/1997/

V. A. Saraswat. Concurrent Constraint Programming. The MIT
Press, 1993.

R. Scheidhauer. Design, Implementierung und Evaluierung einer
virtuellen Maschine fiir Oz. PhD thesis, Universitat des Saarlandes,
Fachbereich Informatik, Saarbricken, Germany, December 1998.

J.R. Searle. Speech Acts. Cambridge University Press, 1969.

E. Shapiro, editor. Concurrent Prolog, Volume 1 and 2. MIT Press,
1987.

M. Shanahan. Prediction is deduction but explanation is abduction.
In Proceedings of the [JCAI 89, page 1055, 1989.

M. Shanahan. Representing continuous change in the event calculus.
In Proceedings of the ECAI 90, pages 589-603, August 1990.

M. Shanahan. A circumscriptive calculus of events. Artificial Intel-
ligence Journal, 77:249-284, 1995.

M. Shanahan. Robotics and the Common Sense Informatic Situa-
tion. In W. Wahlster, editor, Proceedings of the European Confer-
ence on Artificial Intelligence (ECAI’96), pages 684—688, 1996.

M. Shanahan. Event calculus planning revisited. In Proc. of the
Fourth European Conference on Planning, 1997.

M. Shanahan. Noise and the Common Sense Informatic Situation
for a Mobile Robot. In Proc. AAAL’96, pages 1098-1103, 1997.

M. Shanahan. Solving the Frame Problem: A Mathematical Investi-
gation of the Common Sense Law of Inertia. MIT Press, 1997.

Y. Shoham. Agent-oriented programming. Technical report, Stan-
ford University, 1990.

J. H. Siekmann. Unification theory. Journal of Symbolic Computa-
tion, 7:207-274, 1989.

H. A. Simon. Models of Bounded Rationality. MIT Press, Cam-
bridge, 1982.

M. P. Singh. Towards a formal theory of communication for mul-
tiagent systems. In Proc. of the 12th International Conference on
Artificial Intelligence, pages 69-74. Morgan Kaufmann, 1991.

185



(Smi80]

[Smo95]

[Smo97]

[Som92]

[SP96]

[Spi92]

[Sub94]

[SW86]

[SWOIg]

[Tel94]

[Thi97]

[Thi98]

[Thi99]

R. G. Smith. The contract net protocol: High-level communication
and control in a distributed problem solver. In/EEE Transaction on
Computers, number 12 in C-29, pages 11041113, 1980.

G. Smolka. The Oz Programming Model. In Jan van Leeuwen, ed-
itor, Computer Science Today, Lecture Notes in Computer Science,
vol. 1000, pages 324-343. Springer-Verlag, Berlin, 1995.

G. Smolka, editor. Principles and Practice of Constraint Program-
ming - CP’97, volume 1330 of Lecture Notes in Computer Science,
Linz, Austria, 1997. Springer.

I. Sommerville. Software Engineering. International Computer Sci-
ence Series. Addison-Wesley Publishing Company, 1992.

A. Sloman and R. Poli. SIM_AGENT: A toolkit for exploring agent
designs. In M. Wooldridge, J. P. Muller, and M. Tambe, editors,
Intelligent Agents — Proceedings of the 1995 Workshop on Agent
Theories, Architectures, and Languages (ATAL-95), volume 1037 of
Lecture Notes in Artificial Intelligence, pages 392-407. Springer-
Verlag, 1996.

M. Spivey. The Z notation (second edition). Prentice Hall Interna-
tional, Hempel Hempstead. England, 1992.

V. S. Subrahmanian. Amalgamating knowledge bases. ACM Trans-
actions on Database Systems, 19(2):291-331, 1994,

Stanfill and Waltz. Towards memory-based reasoning. Communica-
tions of the ACM, 29(12), 1986.

K. Schild and J. Wiirtz. Off-line scheduling of a real-time system. In
K. M. George, editor, Proceedings of the 1998 ACM Symposium on
Applied Computing, SAC9S, pages 29-38, Atlanta, Georgia, 1998.
ACM Press.

G. Tel. An Introduction to Distributed Algorithms. Cambridge Uni-
versity Press, 1994.

M. Thielscher. Ramification and causality. Artificial Intelligence,
89(1-2):317-364, 1997.

M. Thielscher. How (not) to minimize events. In A. G. Cohn, L. K.
Schubert, and S. C. Shapiro, editors, Proceedings of the Interna-
tional Conference on Principles of Knowledge Representation and
Reasoning (KR}, Trento, ltaly, June 1998. Morgan Kaufmann.

M. Thielscher. From Situation Calculus to Fluent Calculus: State
update axioms as a solution to the inferential frame problem. Artifi-
cial Intelligence Journal, 1999. (To appear).

186



[TK95]

[tTvHOE]

[Vang9]

[VEK76]

[Vie99]

[vM92]

[VNM44]

[Wal97]

[War83|

[Wel94]

[Wen99]

[WHR96|

[Wie99]

[Wir71]

F. Toni and R. A. Kowalski. Reduction of abductive logic pro-
grams to normal logic programs. In L. Sterling, editor, Proc. Inter-
national Conference on Logic Programming, pages 367-381. MIT
Press, 1995.

A. ten Tejje and F. van Harmelen. Characterising approximate
problem-solving: From partially fulfilled preconditions to partially
achieved functionality. In H. Prade, editor, Proc. of the 13th Bi-
ennial European Conference on Artificial Intelligence (ECAI'98),
pages 78-82, 1998.

A. VanGelder. The alternating fixpoint semantics of logic programs
with negation. In ACM Symposium of Principles of Database Sys-
tems, pages 1-10. Association for Computing Machinery, 1989.

M. H. van Emden and R. A. Kowalski. The semantics of predicate
logic as a programming language. Journal of the ACM, 23(4):733—
742, 1976.

G. Vierke. Cooperative and Competitive Resource and Tusk Allo-
cation in the Haulage Domain with a Holonic Multi-Agent System.
PhD thesis, Universitat des Saarlandes, Saarbriicken, 1999. to ap-
pear.

F. v. Martial. Coordinating Plans of Autonomous Agents, volume
610 of Lecture Notes in Artificial Intelligence. Springer, 1992.

J. von Neumann and O. Morgenstern. Theory of Games and Eco-
nomic Behavior. Princeton University Press, Princeton, 1944,

D. L. Waltz. Understanding Line Drawings of Scenes with Shadows,
pages 19-91. McGraw Hill, 197.

D. H. D. Warren. An abstract prolog instruction set. Technical re-
port, October 1983.

D. Weld. An introduction to least-commitment planning. A/ Muaga-
zine, 15(4):27-62, 1994,

A. Wenner. Hybride agenten und entscheidungsfindung in der teler-
obotik. Master’s thesis, Universitat des Saarlandes, Saarbrucken,
1999.

R. Washington and B. Hayes Roth. Incremental Abstraction Plan-
ning for Limited-Time Situations. InNew Directions in Al Planning,
pages 91-102. IOS press, 1996.

M. A. Wieczorek. The lunokhod memorial, 1999.

N. Wirth. Program development by stepwise refinement. Communi-
cations of the ACM, 4(14):221-227, 1971.

187



[Wir76]

[WJ95]

[Wo095]

[Wo0096]

| Wiir98)

[X1a95]

[ Yan90]

[Zi195]

N. Wirth. Systematic Programming: An Introduction. Prentice-Hall,
Englewood Cliffs, NY, 1976.

M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(2), 1995.

M. Wooldridge. This is myworld: The logic of an agent-oriented
testbed for dai. In M. Wooldridge and N. Jennings, editors, Intelli-
gent Agents: Theories, Architectures, and Languages, volume 890
of Lecture Notes in Artificial Intelligence, pages 160-178. Springer-
Verlag, 1995.

M. Wooldridge. Practical Reasoning with Procedural Knowledge: A
Logic of BDI Agents with Know-How. In Proceedings of the Inter-
national Conference on Formal and Applied Practical Reasoning.
Springer-Verlag, 1996.

J. Wirtz. Losen kombinatorischer Probleme mit Constraintpro-
grammierung in Oz. PhD thesis, Universitat des Saarlandes, Fach-
bereich Informatik, Saarbriicken, Germany, January 1998.

J. Xiaoping. ZTC: A Type Checker for Z Notation — user’s guide.
1995. ftp://ise.cs.depaul.edu/pub/ZTC.

Q. Yang. Formalizing planning knowledge for hierarchical planning.
Computational Intelligence, 6:12-24, 1990.

S. Zilberstein. Models of Bounded Rationality. InAAA/! Fall Sym-
posium on Rational Agency, Cambridge, Massachusetts, November
1995.

188



18yasi4 sney pue Bunp - ydoisuyn
liodey yoiessay
LO-1L0-HH sjuaby plgAH o 99d110e1d pue Aloayl



	RR-01-01-0.1-0002
	RR-01-01-0.2-0003
	RR-01-01-0.3-0004
	RR-01-01-0.4-0005
	RR-01-01-0.5-0006
	RR-01-01-0.6-0008
	RR-01-01-0.7-0009
	RR-01-01-0.8-0010
	RR-01-01-001-0011
	RR-01-01-002-0012
	RR-01-01-003-0013
	RR-01-01-004-0014
	RR-01-01-005-0015
	RR-01-01-006-0016
	RR-01-01-007-0017
	RR-01-01-008-0018
	RR-01-01-009-0019
	RR-01-01-010-0020
	RR-01-01-011-0021
	RR-01-01-012-0022
	RR-01-01-013-0023
	RR-01-01-014-0024
	RR-01-01-015-0025
	RR-01-01-016-0026
	RR-01-01-017-0027
	RR-01-01-018-0028
	RR-01-01-019-0029
	RR-01-01-020-0030
	RR-01-01-021-0031
	RR-01-01-022-0032
	RR-01-01-023-0033
	RR-01-01-024-0034
	RR-01-01-025-0035
	RR-01-01-026-0036
	RR-01-01-027-0037
	RR-01-01-028-0038
	RR-01-01-029-0039
	RR-01-01-030-0040
	RR-01-01-031-0041
	RR-01-01-032-0043
	RR-01-01-033-0044
	RR-01-01-034-0045
	RR-01-01-035-0046
	RR-01-01-036-0047
	RR-01-01-037-0048
	RR-01-01-038-0049
	RR-01-01-039-0050
	RR-01-01-040-0051
	RR-01-01-041-0052
	RR-01-01-042-0053
	RR-01-01-043-0054
	RR-01-01-044-0055
	RR-01-01-045-0056
	RR-01-01-046-0057
	RR-01-01-047-0058
	RR-01-01-048-0059
	RR-01-01-049-0060
	RR-01-01-050-0061
	RR-01-01-051-0062
	RR-01-01-052-0063
	RR-01-01-053-0064
	RR-01-01-054-0065
	RR-01-01-055-0066
	RR-01-01-056-0067
	RR-01-01-057-0068
	RR-01-01-058-0069
	RR-01-01-059-0070
	RR-01-01-060-0071
	RR-01-01-061-0001
	RR-01-01-062-0002
	RR-01-01-063-0003
	RR-01-01-064-0004
	RR-01-01-065-0005
	RR-01-01-066-0006
	RR-01-01-067-0007
	RR-01-01-068-0008
	RR-01-01-069-0009
	RR-01-01-070-0010
	RR-01-01-071-0011
	RR-01-01-072-0012
	RR-01-01-073-0013
	RR-01-01-074-0014
	RR-01-01-075-0015
	RR-01-01-076-0016
	RR-01-01-077-0017
	RR-01-01-078-0018
	RR-01-01-079-0019
	RR-01-01-080-0020
	RR-01-01-081-0021
	RR-01-01-082-0022
	RR-01-01-083-0023
	RR-01-01-084-0024
	RR-01-01-085-0025
	RR-01-01-086-0026
	RR-01-01-087-0027
	RR-01-01-088-0028
	RR-01-01-089-0029
	RR-01-01-090-0030
	RR-01-01-091-0031
	RR-01-01-092-0032
	RR-01-01-093-0033
	RR-01-01-094-0034
	RR-01-01-095-0035
	RR-01-01-096-0036
	RR-01-01-097-0038
	RR-01-01-098-0039
	RR-01-01-099-0040
	RR-01-01-100-0041
	RR-01-01-101-0042
	RR-01-01-102-0043
	RR-01-01-103-0044
	RR-01-01-104-0045
	RR-01-01-105-0046
	RR-01-01-106-0047
	RR-01-01-107-0048
	RR-01-01-108-0049
	RR-01-01-109-0050
	RR-01-01-110-0051
	RR-01-01-111-0052
	RR-01-01-112-0053
	RR-01-01-113-0054
	RR-01-01-114-0055
	RR-01-01-115-0056
	RR-01-01-116-0057
	RR-01-01-117-0058
	RR-01-01-118-0059
	RR-01-01-119-0060
	RR-01-01-120-0061
	RR-01-01-121-0062
	RR-01-01-122-0063
	RR-01-01-123-0064
	RR-01-01-124-0065
	RR-01-01-125-0066
	RR-01-01-126-0067
	RR-01-01-127-0068
	RR-01-01-128-0069
	RR-01-01-129-0070
	RR-01-01-130-0071
	RR-01-01-131-0072
	RR-01-01-132-0073
	RR-01-01-133-0074
	RR-01-01-134-0075
	RR-01-01-135-0076
	RR-01-01-136-0077
	RR-01-01-137-0078
	RR-01-01-138-0079
	RR-01-01-139-0080
	RR-01-01-140-0081
	RR-01-01-141-0082
	RR-01-01-142-0083
	RR-01-01-143-0084
	RR-01-01-144-0085
	RR-01-01-145-0086
	RR-01-01-146-0087
	RR-01-01-147-0088
	RR-01-01-148-0089
	RR-01-01-149-0090
	RR-01-01-150-0091
	RR-01-01-151-0092
	RR-01-01-152-0093
	RR-01-01-153-0095
	RR-01-01-154-0096
	RR-01-01-155-0097
	RR-01-01-156-0098
	RR-01-01-157-0099
	RR-01-01-158-0100
	RR-01-01-159-0101
	RR-01-01-160-0102
	RR-01-01-161-0103
	RR-01-01-162-0104
	RR-01-01-163-0105
	RR-01-01-164-0106
	RR-01-01-165-0107
	RR-01-01-166-0108
	RR-01-01-167-0109
	RR-01-01-168-0110
	RR-01-01-169-0111
	RR-01-01-170-0112
	RR-01-01-171-0113
	RR-01-01-172-0114
	RR-01-01-173-0115
	RR-01-01-174-0116
	RR-01-01-175-0117
	RR-01-01-176-0118
	RR-01-01-177-0119
	RR-01-01-178-0120
	RR-01-01-179-0121
	RR-01-01-180-0122
	RR-01-01-181-0123
	RR-01-01-182-0124
	RR-01-01-183-0125
	RR-01-01-184-0126
	RR-01-01-185-0127
	RR-01-01-186-0128
	RR-01-01-187-0129
	RR-01-01-188-0130
	RR-01-01-189-0131

