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NEURAL NETWORKS FOR NONLINEAR DISCRIMINANT ANALYSIS IN
CONTINUOUS SPEECH RECOGNITION

W. Reichl, S. Harengel, F. Wolfertstetter and G. Ruske

Institute for Human-Machine-Communication,
Munich University of Technology,
Arcisstr. 21, D-80290 Minchen, Germany

ABSTRACT

In this paper neural networks for Nonlinear Discrimi-
nant Analysis in continuous speech recognition are pre-
sented. Multilayer Perceptrons are used to estimate a-
posteriori probabilities for Hidden-Markov Model states,
which are the optimal discriminant features for the sepa-
ration of the HMM states. The a-posteriori probabilities
are transformed by a principal component analysis to calcu-
late the new features for semicontinuous HMMs, which are
trained by the known Maximum-Likelihood training. The
nonlinear discriminant transformation is used in speaker-
independent phoneme recognition experiments and compa-
red to the standard Linear Discriminant Analysis technique.

1. INTRODUCTION

In this paper a Nonlinear Discriminant Analysis (NDA) is
proposed, which uses neural networks (NN) to estimate a-
posteriori probabilities. The common Linear Discriminant
Analysis (LDA) is a well-known method for improving dis-
crimination properties and compressing information in sta-
tistical pattern classification [5]. It has been applied in au-
tomatic speech recognition (ASR) and was reported to im-
prove recognition performance in combination with Hidden-
Markov Models (HMM) [7]. This is mainly contributed
to the additional information in the contextual part of the
input vector, which is included in the new feature vector
after the transformation.

On the other hand neural networks were used successfully
in pattern classification tasks [3,12]. They are inherently
discriminative and yield estimates for a-posteriori proba-
bilities of the classes when trained appropriately [3,12,13].
The relation between neural networks and discriminant ana-
lysis was reported in [1,6,10,14]. In combination with the
HMM framework Multilayer Perceptrons (MLP) were suc-
cessfully applied to ASR in order to calculate a-posteriori
probabilities or likelihoods for HMM states [2,3,11].

In our Nonlinear Discriminant Analysis neural networks
are used to estimate a-posteriori probabilities, which are the
optimal discriminant features with respect to classification
[1,4,9]. These a-posteriori probabilities are further proces-
sed by a principal component analysis to reduce the dimen-
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sion of the new features [9]. This NDA transformation was
used in speaker-independent phoneme recognition experi-
ments with semicontinuous HMMs (SCHMM), optimized
by the Maximum Likelihood (ML) training. The phoneme
recognition results are compared to the performance of the
original features and the standard LDA method.

2. NEURAL NETWORKS FOR NONLINEAR
DISCRIMINANT ANALYSIS

Linear Discriminant Analysis techniques were successfully
applied to speech recognition [7]. The LDA is used to im-
prove discrimination and compresses information by a linear
transformation A of feature vector & into the new features ¥,
such that the class separability is maximum [5]. Therefore
a discriminant criterion, e.g. J = tr(S7"'S5), is maximized
in the transformed space § = AT(& — ), where St and
Sp are the total-class and between-class scatter matrices
and m is the center of the feature space [5]. In [7] speech
recognition experiments with several different definitions of
classes for the LDA were reported. Sub-phone units (HMM
states) resulted in the most effective improvements for a
continuous speech recognition task and will be used further
as classes for the discriminant analysis.

2.1. Nonlinear Discriminant Analysis

In extension to Linear Discriminant Analysis a Nonlinear
Discriminant Analysis was presented in [1,4,9]. The NDA
is based on a nonlinear transformation of the feature vec-
tors into a new feature space with maximum discrimination
between the classes. The optimal discriminant features, ma-
ximizing the discriminant criterion J, are the a-posteriori
functions p(C;|Z) for the K classes Cj,z = 1,---,K [4].
These features would be optimal for classification and are
incorporated in [3,11] directly in the Viterbi decoding with-
out further modeling assumptions. Principal component
analysis is employed for dimensionality reduction and decor-
relation of the a-posteriori feature space to obtain the final
feature vector for the HMM-classifier. The transformation
§ = UT (5 — §) reducing the dimension of the space of the
a-posteriori probabilities § = (p(C1|Z), - - - ,p(CK|:i"))T uses
the average of the a-posteriori probabilities § for all training
data and the matrix U. This matrix contains those eigen-
vectors of the covariance matrix in the p-space, correspon-
ding to large eigenvalues. The average of the a-posteriori
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probabilities for the training data results in the a prioris of
the classes p; = E{(p(C:|%)} = p(3).

The new features are computed by the nonlinear trans-
formation %(#) and are optimal with respect to the discri-
minant criterion J for the classification of the HMM states.
A linear approximation of the a-posteriori functions, mi-
nimizing a mean squared error, results in the same eigen-
equation, which is derived in the linear optimization of the
discriminant criterion J [5]. This means that LDA is the
linear approximation of NDA through the linear approxima-
tions of the Bayesian a-posteriori probabilities [9]. The pro-
posed NDA results in an optimized discriminant criterion,
since the nonlinear transformation capabilities of neural
networks yield an improved estimation of the a-posteriori
probabilities.

2.2. Neural Networks for Nonlinear Discriminant
Transformation

The relations between neural networks and linear and non-
linear discriminant analysis are examined in [1,6,10,14]. It
is shown that minimizing a mean squared error (MSE) cri-
terion with a l-out-of-K class/target coding at the output
of the neural network results in maximizing a discriminant
criterion similar to J in the space spanned by the outputs of
the hidden units of the MLP. Furthermore, the MSE optimi-
zation leads to estimates of the a-posteriori probabilities of
the classes conditioned by the acoustic vector Z [12,13]. The
NN output nodes o;(Z) are thus used in the proposed NDA
as a-posteriori probability approximations o;(%) =~ p(C;|%).
The optimal nonlinear features § with respect to the classes
are thus calculated by the following

§=U"(3(3) - 3(%)). (1)
The vector 5(Z) contains all estimates of a-posteriori pro-
babilities calculated by the neural net and 5(Z)) represents
their average for the whole training data. This new fea-
ture vector ¥ was used in our experiments in subsequent
SCHMMs for phoneme classification and was reduced to
the same dimensionality as the original features.

Hence the principal component analysis for dimension
reduction is a simple linear transformation it can be inte-
grated in the neural net by adding an additional layer of
linear neurons. Since we use Multilayer Perceptrons with
one hidden layer to estimate the a-posteriori probabilities,
the resulting neural network consists of two hidden layers
with sigmoid neurons and a final layer with linear summing
neurons.

In [3,11] the NN outputs are used directly as likeli-
hoods or a-posteriori probabilities for the phoneme model
states in the Viterbi search to approximate the a-posteriori
probabilities of the phoneme models; therefore no further
Gaussian distributions are needed to calculate state pro-
babilities. However, in our NDA approach the NNs are
utilized for the nonlinear transformation of the feature vec-
tor for subsequent SCHMMs, which consists of a full soft
vector-quantization with Gaussian distributions and addi-
tional mixture components. Similar hybrid NN-HMM sy-
stems were described in [2,8], however their NNs were not
designed to estimate class (i.e. HMM state’s) probabilities,
but were constructed to serve as special feature detectors
(e.g. place and manner of articulation).

3. EXPERIMENTS

For the evaluation of the NDA speaker-independent pho-
neme recognition experiments were carried out. Therefore
a database of 100 German speakers (Phondat “Diphon”-
database) was used. We applied about 7700 sentences from
67 speakers for the training of the neural network, the
computation of the principal component analysis and the
SCHMM training. The reported phoneme recognition re-
sults were calculated for the remaining 3300 sentences from
33 different speakers. The speech data were sampled at
16kHz and a 256-point FFT with Hamming window was
calculated every 10ms. The power spectrum was combined
in 20 critical (Bark-scaled) bands and normalized to sum up
to one. Together with the total loudness the 21-dimensional
feature vector in the the original space was constituted and
in some experiments the delta-loudness spectrum was ad-
ded, obtaining 41 dimensions. To compare the results of
the new transformed features to the original features the
reduced new feature vector was reduced to the same di-
mensionality (21 or 41).

3.1. Neural Network Training

The neural networks for the estimation of the a-posteriori
probabilities are Multilayer Perceptrons with one hidden
layer of neurons (50 or 100 neurons). The output layer con-
sists of 169 neurons, which is the total number of phoneme
model states. All neurons are using the known sigmoid
transfer function, except the additional linear neurons for
the dimension reduction by the principal component analy-
sis. The input layer of the neural net is made up of a sliding
window of 3 or 5 consecutive feature vectors. In some expe-
riments 5 vectors of loudness spectrum and total loudness
were used, which resulted in a total NDA transformation
from 5x21 to 21 dimensions. In further experiments the
delta-loudness spectrum was included in the input vector
and hence this is calculated in a contextual window too,
only 3 of the 41 dimensional vectors were used in the input
layer. The total NDA transformation is then mapping a
3x41 dimensional feature vector into a 41 dimensional space.

The training of the NN was performed by the Backpro-
pagation algorithm, optimizing a mean squared error ob-
jective function between the NN outputs and their targets.
These were chosen to 1.0 for the neuron of the correspon-
ding class and 0.0 for all other neurons. This target coding
scheme results in approximations of a-posteriori probabili-
ties. The accuracy of the probability estimates was deter-
mined by calculating a histogram of output value distribu-
tions. Fore this purpose the NN output values were parti-
tioned into 100 equal sized bins between 0.0 and 1.0. For
each input pattern the bin counts for all output nodes were
incremented. In addition, a second histogram counting only
the distribution of the output node of the correct class was
computed. If the outputs of the NN were approximations of
a-posteriori probabilities, the relative frequency of the cor-
rect output values to all output nodes would be expected to
be close to the corresponding center of the bins. Therefore
a plot of the relative frequencies for each bin versus the
bin centers should indicate a diagonal. In Figure 1 these
relative frequencies for the output neurons of a MLP with
100 hidden neurons are shown. The measured values for re-
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Figure 1: Relative frequency of correct class labeling by a
neural network.

lative frequencies of correct output values indicate a good
approximation of a-posteriori probabilities by the MLP. For
higher output values the MLP is slightly overestimating the
a-posteriori probabilities for the classes. For further verifi-
cation NN output values must sum to one for each pattern
and the averaged output of each node should equal the a
priori probability of the associated class. The MLP estima-
tes of the a-posteriori probabilities fulfill these requirements
with only small averaged errors and hence they are appro-
priately applied in the NDA transformation.

3.2. Phoneme Recognition Experiments

After the calculation of the NDA transformation the semi-
continuous HMMs for the phoneme recognition experiments
were trained. Therefore 41 phoneme models (including si-
lence) with 3 to 6 states were utilized in the SCHMMs.
These consist of a soft vector-quantization with 256 proto-
types and Gaussian pdfs with diagonal covariance matrices.
Model training is performed according to the Maximum Li-
kelihood principle using a Viterbi training algorithm based
on the most probable state sequence.

To compare the NDA derived features to the standard
LDA the linear transformation matrix A was determined
and SCHMM learning was run in the LDA space, too. The
LDA was operating on the same dimensions as NDA (5x21
to 21 and 3x41 to 41), using the same amount of context.
In Table 3.2 the phoneme recognition rates for the different
feature transformations are depicted. In column 1 the di-
mensions of the input vectors used for the transformation
are printed. Remember, the dimension of the transformed
feature space is identical to the original without context
window. In column 2 the results for the basis system with-
out transformation, using the original features, are prin-
ted. The numbers specifying the NDA columns indicate
the number of hidden neurons in the NN used for the NDA
transformation.

In these experiments identical conditions were kept and
no lexicon, language model or biphon probabilities were uti-
lized to examine only the performance of the new features
on the acoustic-phonetic decoding. The phoneme recogni-
tion rates were evaluated within an automatically determi-
ned phoneme segmentation.

input vec. || feature transformation

dim. without | LDA | NDA-50 | NDA-100
5x21 55.7 % | 58.0 % 58.0 % 58.6 %
3x41 574 % | 55.0 % 59.5 % 61.1 %

Table 1: SCHMM phoneme recognition rates for different
feature transformations.

In line 1 the improvements by LDA and NDA compared
to the original features and the influence of the number of
hidden neurons in the NN can be seen. Using the exten-
ded feature vector with delta loudness spectrum in line 2
causes problems in the LDA case, because in the new fea-
ture space much irrelevant information is preserved in the
41 dimensions after the relative moderate reduction from
123 dimensions. This was verified by an additional LDA
experiment with further reduction of the output space to
21 dimensions, which improves the LDA performance signi-
ficantly.

The NDA transformation of the feature space shows in-
creasing recognition rates for all cases. The usage of the
larger NN improves recognition rates up to 61.1 %, which
is 3.7 % higher than the baseline system using the same
features and identical number of parameters.

One important difference between LDA and NDA is de-
picted in Figure 2, where the normalized eigenvalues of the
final principal component analysis of the transformations
are shown. The decline of the normalized eigenvalues for
the LDA is much steeper than for the NDA. Using eigenvec-
tors corresponding to very small eigenvalues results in the
utilization of dimensions with small information for class
separation, such as in the LDA experiments.

In contrary the NDA is spreading class information over
all dimensions. An additional experiment using 82 dimen-
sions of the space spanned by the 169 class probabilities
further improved recognition rates to 63.5 %, indicating the
importance of all a-posteriori probabilities for classification.

axes

Figure 2: Normalized eigenvalues of LDA and NDA.

To improve phoneme recognition rate, biphon probabili-
ties exploiting the statistical dependencies between the pho-
nemes can be employed in the phonetic decoding. The in-
corporation of these phoneme transition probabilities, esti-
mated on the training data, results in 70.8 % correct pho-
neme recognition without transformation and 72.8 % using



NDA transformation and the same quite simple SCHMMs
with 256 prototype vectors. Better results would be expec-
ted for this task by more sophisticated HMMs (e.g. conti-
nuous density HMMs). Furthermore the NDA is not restric-
ted to phoneme recognition, and by the usage of a lexicon
and a language model improvements in word recognition
rates will be achieved.

4. CONCLUSIONS

A Nonlinear Discriminant Analysis was presented, which
is based on a-posteriori probabilities, estimated by neural
networks. We compared this nonlinear approach to the
common linear transformation and showed improvements
in phoneme recognition experiments of 3.7 points to 61.1
% without biphon probabilities and of 2.0 points to 72.8 %
incorporating biphon probabilities and the new nonlinearly
derived features. The amount of improvement is dependent
on the accuracy of the estimates of the Bayesian probabili-
ties, which was examined for the utilized neural networks.
Increasing the approximation capabilities of the NN will
lead to further improvements in recognition results and will
be examined together with a joint optimization of NN and
HMM by discriminant learning techniques.
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