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DISCRIMINATIVE TRAINING FOR CONTINUOUS SPEECH RECOGNITION
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ABSTRACT

Discriminative training techniques for Hidden-Markov
Models were recently proposed and successfully applied for
automatic speech recognition. In this paper a discussion of
the Minimum Classification Error and the Maximum Mu-
tual Information objective is presented. An extended reesti-
mation formula is used for the HMM parameter update for
both objective functions. The discriminative training me-
thods were utilized in speaker independent phoneme reco-
gnition experiments and improved the phoneme recognition
rates for both discriminative training techniques.

1. INTRODUCTION

Recently discriminative training techniques for Hidden- Mar-

kov Models (HMM) were used successfully for automatic
speech recognition. They provide better performance com-
pared to Maximum Likelihood Estimation (MLE), since the
training is concentrated on the estimation of class bounda-
ries and not on parameters of assumed model distributi-
ons [1,12]. Although MLE and discriminative training are
theoretically equivalent (if sufficient classifier parameters
and enough training data exist and if Gaussian mixture
assumptions are appropriate) discriminative training tech-
niques provide better performance if these requirements are
not met [1,12]. A popular alternative to MLE is the Ma-
ximum Mutual Information (MMI) between the acoustic
observation and the decoded symbols [1,5,9,11,12]. This
criterion attempts to minimize the uncertainty about the
message, given the observed signal.

Another discriminative objective function is the Mini-
mum Classification Error (MCE), which approximates the
misclassification rate of the classifier [3,4,8,13,14]. The op-
timization of this error function is generally carried out by
the Generalized Probabilistic Descent (GPD) algorithm, a
gradient descent based optimization, and results in a clas-
sifier with minimum error probability [5,8]. In the paper
the different objective functions are compared by a uni-
form formalism. The optimization of the objective func-
tions is carried out by a gradient descent method for the
MCE [1,3,4,5,8,9,13,14] or an extended Baum-Welch (BW)
algorithm for MMI [9,10,11,12]. In the paper an extended
BW algorithm for the MCE criterion is presented, which is
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faster than a steepest descent based optimization and com-
plies with the constraints for HMM parameters. The dis-
criminative training techniques are used in phoneme reco-
gnition experiments with semicontinuous HMMs (SCHMM)
and improved the phoneme recognition rates of 5.3 points
up to 64.8 % for the MCE optimization.

2. DISCRIMINANT TRAINING TECHNIQUES
FOR SPEECH RECOGNITION

2.1. Minimum Classification Error

Minimum Classification Error (MCE) and Generalized Pro-
babilistic Descent (GPD) have been successfully applied to
speech recognition [3,4,8,13,14]. The MCE function is at-
tempting to approximate the misclassification rate of the
classifier and its optimization by the GPD algorithm results
in a classifier with minimum error [8]. Therefore a genera-
lized distance is used as a discriminance measure dc(X)
between the log score r.(X) = log(p(X|c)) of the correct
model ¢ and the scores rn(X) of the incorrect models for
the acoustic vector sequence X = {z1,...,z7} withn > 0
determining the utilized metric:
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The following smoothed ‘zero-one’ cost function L(c, X) is
‘counting’ the classification errors and hence approximating
the classifier error rate :

L(c, X) = l(d.(X)) with v > 0. (3)
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The MCE objective is based on the sigmoid function as a
function of the discriminance measure {(d.(X)). Optimiza-
tion of this continuous objective function with respect to
the parameters results in a minimum error classifier [8] and
is usually carried out by the GPD algorithm, a general gra-
dient descent optimization, which needs the gradient of the
error function with respect to the model scores:
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with Gn(X) = D Xl ? (5)
G (X)=-1 : m=c.
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The parameters of all HMM models n are updated,
using (4), which consists of a model-dependent weighting

term G,(X) and the derivative I'(d.(X)) of the sigmoid

function with respect to the misclassification measure dc(X).

It reaches its maximum when the scores of the models are
similar and misclassification is likely to occur. For different
scores the derivative of the sigmoid function declines rapidly
and the GPD training is concentrating on observations,
which are likely to be misclassified. In Figure 1 the MCE
objective function L(c, X) and the derivative I'(d.(X)) are
printed as functions of the score distance d.(X) for v = 1.
By the usage of the weights G(X) models with higher sco-
res, which are competitors in classification and therefore
have to be separated in training, are selected.

In (1) all alternatives of symbol ¢ for X are used. Cal-
culating all possible alternatives of sequences of symbols re-
quires an immense amount of computation power and there-
fore only the most probable sequence of words or sentences
are considered by a ‘N-best’ search [4]. In the training we
use all alternative symbols in the segmentation derived by
the correct transcription of the utterance to calculate the
misclassification measure (1).

The calculation of the scores r,(X) can be employed by
the Forward-Backward algorithm or a Viterbi decoder. In
this paper a Viterbi decoder, based on the most probable
state sequence Qn = {Qn1,..., @n7|Qnt € {gnm}}, is used
for the calculation of the scores r,,(X) = Z;‘r‘zl log p(x:|Qnt)
of HMM W, for the acoustic observation X = {z1,...,z7}.
Using tied-mixtures HMM, the likelihood p(z¢|gnm) of ob-
serving vector z: in state gn,, of HMM n is usually a mix-
ture of Gaussians, whereby the Gaussians are shared by all
states of all models (SCHMM) or are individually used by
states or models in continuous density HMMs. The opti-
mization of the MCE function requires the gradient with
respect to the state-specific observation density bnm:

8L(c, X)

S = Gn(0)I'(de(X))

1
2 ey ©

t:Qnt=qnm

The sum in (6) is considering all times when state gnm is
selected by the Viterbi decoder [13]. Similar equations for
the Forward-Backward algorithm can be derived.
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Figure 1: MCE objective function L(c, X) and derivative of

the sigmoid function I'(d:(X)) as functions of the misclas-
sification measure d.(X).

2.2. Maximum Mutual Information

Maximum Mutual Information (MMI) training of HMM
classifiers for speech recognition has recently been propo-
sed [1] and successfully applied [1,5,9,11,12]. It attempts
to maximize the probability of the correct symbol given
the training observation, by maximizing the mutual infor-
mation I(c, X) between the acoustic observation X and the
decoded symbol ¢, given the a-priori probability of the sym-
bols p(n) [1]. Using the log scores r,(X) of the models the
mutual information can be calculated similar to the MCE

function:
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The right side of (8) is very similar to the GPD misclas-
sification measure (1) for » = 1. In the denominator of
(8) the probability of the observation p(X) is computed as
average of the likelihoods over all possible symbols (inclu-
ding the correct symbol ¢), weighted by the model priors
p(n). The distance measure d.(X) in the MCE formulation
(1) is considering only incorrect models in the summation,
according to the utilized metric (n). Optimization of (8)
for a sequence of symbols results in the maximization of
the correct sequence of symbols ¢ vs all possible sequences
of symbols n. Therefore a sentence ‘N-best’ search [1,5,9]
or a general looped model [11,12] is employed to estimate
the likelihoods for alternative sequences of symbols. The
mutual information I(c, X) is related to the Maximum A-
Posteriori decoder, using the a-posteriori probability p(c|X)
of the correct symbol: logp(c|X) = I(¢, X) + log p(c).

Introducing the discriminance measure d.(X) (n = 1)
between the scores rn(X) of the models and assuming equal
a-priori probabilities for all N classes (p(n) = %) the mu-
tual information can be calculated by

I(c,X) = —log (e(dC(XHlog(N_l) + 1) + log(N). (9)

The negative mutual information —I(c, X) as a function of
the score distance d.(X) is printed in Figure 2 for N = 2.
To compare the maximization of the mutual information
to the MCE minimization the gradient with respect to the
model scores is calculated:

ol(c,X)

ara(X) G (X)) (do(X) 4+ log(N — 1)). (10)
The gradient (10) for the MMI training consists of the sig-
moid function I(d.(X) + log(N — 1)) with ¥ = 1 as func-
tion of the shifted distance d.(X) and the model-dependent
weighting terms G, (X) (7 = 1). Since the MMI objective
is maximized —I(c, X) and the sigmoid function for N = 2
are printed in Figure 2.

Comparing MMI and MCE objectives we see the MMI
functions are not symmetrical. For dc(X) <0 (i.e. the cor-
rect score r.(X) is higher than the averaged incorrect) both
error functions are similar, but for d.(X) > 0, indicating a
recognition error, the MMI objective I(c, X) is not boun-
ded. This behavior has some effects in learning, since the
gradient of the MCE function consists of the differentiated



sigmoid, while the MMI gradient is based on the sigmoid
function itself. MCE training is mainly concentrated on the
class boundaries, while the sigmoid function in (10) is put-
ting emphasis on extreme false classifications (d.(X) > 0).
This can cause problems in the training, which is highly
influenced by outlayers (e.g. due to incorrect labeling).

The maximization of the mutual information of tied-
mixtures HMM using the Viterbi algorithm requires the
gradient with respect to the state-specific observation den-
Sity bpm:
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whereby 4, is the Kronecker delta. In (11) a probabili-
stic interpretation of (10) is given, which consists of the
difference between the ‘desired’ and the actual a-posteriori
probability of symbol n. The required terms for the HMM
training with the Forward-Backward algorithm are presen-
ted in [11,12].
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Figure 2: Negative mutual information —I(c, X) and sig-
moid function !(d.(X)) as function of the distance d.(X)
for N = 2.

2.3. Optimization Techniques

Usually HMM learning is based on the Maximum Likeli-
hood principle, optimizing the likelihood of the observa-
tion by a very efficient parameter reestimation technique,
the Baum-Welch (BW) algorithm [3,7]. The optimization
of HMM parameters according to discriminative criteria
may be carried out with standard optimization techniques,
such as steepest descent or conjugate gradients [1,3,5,8,9,
13,14]. Since some HMM parameters A; are constrained
(e.g. Zi A; = 1), an additional parameter transformation
is required to meet the Lagrange conditions for the con-
straints [3,7,9,14].

In [6] an improved BW algorithm for the training of ra-
tional functions R(X) (e.g. I(¢,X)) was presented, which
was extended in [11,12] to continuous observation densities.
In speech recognition experiments this extended BW algo-
rithm showed improved convergence compared to gradient
descent training [9,11,12]. Recently the theoretical conditi-
ons for objective functions, optimized by (12), were relaxed
to general analytic functions [10] (e.g. L(c,X)). The reesti-
mation formula for parameter A; is very similar to the BW
growth-transformation [2]:
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Update formulas for special parameters, such as Gaussian
means, are printed in [11,12]. The growth-transformation

TP ()\i) can be reduced to the original BW transformation
T° (X)) (D =0): TP n) = ,B(D)TO()\i) +(1—-B(D))A; with
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The convergence of the growth-transformation 7'° (Ai) for
any analytic function is ensured with 0 < 8 < @(D) for
discrete observations [10]. Although for continuous obser-
vation densities only D — oo theoretically ensures conver-
gence [11], MMI training with

X =T (N)

(12)

(13)
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showed fast, but not strict monoton learning [9,11,12]. This
can be further improved by parameter smoothing, which we

used for the MMI and MCE training of SCHMMs:
TP (X)) = aB(D)T° (M) + (1 — aB(D))Ai.  (15)

The smoothing parameter a : {a|0 < a < 1} controls the
degree of parameter change, similar to the general step-size
in gradient descent, while the parameter dependent term
B(D) performs a data dependent control of the step-size.
According to [7,10], every smoothing parameter 0 < a < 1
in the original BW algorithm (D = 0 : T°();)) results in an
increasing likelihood, while for different objective functions
a is to be determined. Using (15) the new parameters \; are
restricted to meet the Lagrange conditions and the change
of parameters has a positive projection along the gradient
of R(X), which is a condition for the optimization of R(X).

3. EXPERIMENTS

MCE and the MMI training techniques were applied in
speaker-independent phoneme recognition experiments to
compare the convergence and performance of the different
discriminative approaches. About 7700 sentences from 67
speakers from a German database with continuous speech
(Phondat “Diphon™) were utilized for the training of 41
phoneme models with 3 to 6 states for each phoneme and
about 3300 sentences from 33 other speakers for the test.
The speech data were sampled at 16kHz, and a 256-point
FFT with Hamming window was calculated every 10ms to
compute the normalized loudness spectrum in 20 critical
(Bark-scaled) bands. The delta-loudness spectrum and the
total loudness together with the zero-crossing rate were ad-
ded as separate features to the SCHMM ‘soft’ vector quan-
tization. The individual features were processed in separate
codebooks with 256, 128 and 32 Gaussian pdfs with diago-
nal covariance matrices, derived from the LBG-clustering.

The SCHMMs are first optimized according to the MLE
principle by a Viterbi training algorithm. Phoneme reco-
gnition rates were evaluated within an automatically deter-
mined phoneme segmentation and resulted in a phoneme
recognition performance for the test data of 59.5 % for the
baseline system.



In the following optimization of the discriminative func-
tions the extended BW algorithm (12) was applied to re-
estimate the mixtures of the phoneme models. All phoneme
alternatives within the automatically derived phoneme seg-
mentation were used in the calculation of the discriminance
measure. According to (6), the mixtures of the correct and
of all competing models were updated to minimize the ob-
jective function. Best results were obtained in MCE optimi-
zation using the update equation (15) with a = 1.0, which
results in a stable learning and a phoneme recognition rate
of 64.8 % on the test set. For a = 0.3 objective function
and error rate were decreasing monotonously, but recogni-
tion performance within the 5 iterations was slightly worse

(62.9 %).

MMI training, using the extended BW algorithm, was
stable for a smoothing parameter a = 0.3, in which the
objective function and the recognition rate were increasing
monotonously. The MMI objective is less robust than the
MCE function and therefore requires smaller ‘step-sizes’.
62.0 % phoneme recognition rate were achieved by the MMI
optimization, which is an improvement of 2.5 points com-
pared to the ML baseline system. In these experiments
MCE training was more stable than MMI optimization and
resulted in higher phoneme recognition results.

Furthermore an alternative calculation of the discrimi-
nance measure based on the best phoneme sequence hypo-
thesis for the utterance was applied. Now the correct des-
cription versus the best hypothesis of the utterance, which
was derived by a looped phoneme model without a lexicon
or language model, was used to compute the objective func-
tion. Since both descriptions differ only in some parts of the
sentence, just these different segments were actually used in
discriminative training. Therefore only small parts of the
training data were used in the discriminative parameter re-
estimation process. Only MCE optimization was examined
for this technique, which resulted in minor improvements of
1.7 points to 61.2 % phoneme recognition rate within the
same number of iterations. Using ‘N-best’ alternative hy-
pothesis would improve this training scheme by generating
more competing hypotheses for the discriminative training.

4. CONCLUSIONS

In this paper a discussion of the MCE and the MMI ob-
jective was presented. For the HMM parameter update an
extended BW reestimation formula was suggested, which
can be used for both discriminative methods. It was ap-
plied in speaker independent phoneme recognition experi-
ments and improved the recognition rate about 5.3 points
from 59.5 % to 64.8 % for the MCE function. In our experi-
ments MCE training was more stable and resulted in better
performance than MMI learning under identical conditions.
Since the extended BW algorithm was only applied to HMM
mixture coefficients it will be used for MCE optimization
of pdf parameters in future, which will further improve the
performance of the decoder.

[10]

[11]

[12]

[13]

[14]

5. REFERENCES

L.Bahl, P.Brown, P.deSouza, R.Mercer, Mazimum
Mutual Information Estimation of Hidden Markov
Parameters for Speech Recognition, ICASSP 1986,
Tokyo, pp. 49-52, April 1986.

L.E.Baum, J.A.Eaton, An Inequality with Applicati-
ons to Statistical Prediction for Functions of Markov
Processes and to Model Ecology, Bull. Amer. Math.
Soc., vol. 73, pp. 360-363, 1967.

W.Chou, B.H.Juang, C.H.Lee, Segmental GPD Trai-
ning Of HMM Based Speech Recognizer, ICASSP
1992, San Francisco, pp. 473-476, March 1992.

W.Chou, C.H.Lee, B.H.Juang, Minimum Error Rate
Training Based On N-Best String Models, ICASSP
1993, Minneapolis, pp. 652-655, April 1993.

Y.L.Chow, Mazimum Mutual Information Estimation
Of HUM Parameters For Continuous Speech Reco-
gnition Using The N-Best Algorithm, ICASSP 1990,
Albuquerque, pp. 701-704, April 1990.

P.Gopalakrishnan, D.Kanevsky, A .Nadas,
D.Nahamoo, An Inequality for Rational Functions
with Applications to Some Statistical Estimation Pro-
blems, Trans. on Information Theory, vol. 37, no. 1,
pp. 107-113, July 1991.

S.E.Levinson, L.R.Rabiner, M.M.Sondhi, An Intro-
duction to the Application of the Theory of Proba-
bilistic Functions of a Markov Process to Automatic
Speech Recognition, Bell System Technical Journal,
vol. 62, no. 4, April 1983.

B.H.Juang, S.Katagiri, Discriminative Learning for
Minimum Error Classification, Trans. on Signal Pro-
cessing, vol. 40, no. 12, pp. 3043-3054, Dec. 1992.

S.Kapadia, V.Valtchev, S.Young, MMI Training For
Continuous Phoneme Recognition On The Timit Da-
tabase, ICASSP 1993, Minneapolis, pp. 491-494,
April 1993.

D.Kanevsky, A Generalization Of The Baum Al-
gorithm To Functions On Non-Linear Manifolds,
ICASSP 1995, Detroit, pp. 473-476, May 1995.

Y .Normandin, Hidden Markov Models, Mazimum
Mutual Information Estimation and the Speech Re-
cognition Problem, Ph.D. Thesis, McGill University,
Montreal, June 1991.

Y .Normandin, R.Cardin, R.DeMori, High-Perfor-
mance Connected Digit Recognition Using Mazximum
Mutual Information Estimation, Trans. on Speech

and Audio Processing, vol. 2, no. 2, pp. 299-311,
April 1994.

W. Reichl, P. Caspary, G. Ruske, A New Model-
Discriminant Training Algorithm For Hybrid NN-
HMM Systems, ICASSP 1994, Adelaide, pp. 677-680,
April 1994.

W.Reichl, G.Ruske, A Hybrid RBF-HMM System for
Continuous Speech Recognition, ICASSP 1995, De-
troit, pp. 3335-3338, May 1995.



	report-110-96_Part6.pdf
	report-110-96_Part5
	report-110-96_Part4
	report-110-96_Part3
	report-110-96_Part2
	report-110-96_Part1

