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A HYBRID RBF-HMM SYSTEM FOR CONTINUOUS SPEECH RECOGNITION
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Arcisstr. 21, D-80290 Minchen, Germany

ABSTRACT

A hybrid system for continuous speech recognition, con-
sisting of a neural network with Radial Basis Functions and
Hidden Markov Models is described in this paper together
with discriminant training techniques. Initially the neural
net is trained to approximate a-posteriori probabilities of
single HMM states. These probabilities are used by the
Viterbi algorithm to calculate the total scores for the indi-
vidual hybrid phoneme models. The final training of the hy-
brid system is based on the ‘Minimum Classification Error’
objective function, which approximates the misclassifica-
tion rate of the hybrid classifier, and the ‘Generalized Pro-
babilistic Descent’ algorithm. The hybrid system was used
in continuous speech recognition experiments with phoneme
units and shows about 63.8% phoneme recognition rate in
a speaker-independent task.

1. INTRODUCTION

A hybrid system for continuous speech recognition, based
on a neural network (NN) with Radial Basis Functions
(RBFs) and Hidden Markov Models (HMMs), is presen-
ted in this paper. Neural networks show superior pattern
classification performance in static classification tasks due
to their discriminant learning algorithms, while the HMM
structure is able to cope with the temporal distortions in
speech, using the excellent temporal alignment properties of
the Viterbi algorithm. Therefore a hybrid NN-HMM system
is proposed to benefit from both advantages [1,2,3,5,8,11].

This hybrid NN-HMM system utilizes a neural net with
Radial Basis Functions to approximate a-posteriori proba-
bilities of HMM states. RBFs are chosen since initialization
of mean and range of the basis functions is possible by clu-
ster techniques, such as the LBG algorithm, and the fast
learning capabilities of RBF networks [6,7,9,10,11].

A two-phase discriminative training technique is used
to optimize the NN parameters. Initially the hybrid sy-
stem is trained by the backpropagation algorithm, optimi-
zing a mean squared error (MSE) function. This results
in an approximation of a-posteriori probabilities of HMM
states [1,10]. The total scores for the individual hybrid
RBF-HMM models are calculated by the Viterbi algorithm,

estimating Bayes probabilities of the models.
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In a second training phase the misclassification rate of
the hybrid classifier is approximated by the ‘Minimum Clas-
sification Error’ (MCE) objective function, which is finally
optimized by the ‘Generalized Probabilistic Descent’ (GPD)
algorithm and results in a classifier with minimum error
probability [4,8]. Discriminant training techniques provide
better performance as compared to Maximum Likelihood
Estimation (MLE), if not enough training data is available
or the modeling assumptions do no fit the data [2,11].

The performance of the hybrid RBF-HMM system is
reported for speaker independent speech recognition expe-
riments, where about 63.8% phoneme recognition rate was
achieved.

2. THE HYBRID RBF-HMM SYSTEM

The hybrid RBF-HMM system consists of a neural network
with Radial Basis Functions, estimating a-posteriori proba-
bilities p(gnm|X) for HMM states gnm, conditioned by the
acoustic input X [1,10]. To improve the approximation ca-
pabilities of the NN a context window in the input layer
of the NN can be incorporated [1,2,7,8]. These a-posteriori
probabilities are used as discriminant local probabilities in
discriminant HMMs [2].

One phoneme model W,, is made up of 4 to 6 states
gnm, which are assigned to the corresponding NN output
nodes Opm. The total score g,(X) of a first order Markov
model W,, for a feature vector sequence X = {z1,...,z7}
is calculated by the Viterbi algorithm, using the optimal

sequence of states Qn = {Qn1,..., Qn7|Qnt € {gnm}}:
T
9n(X) =[] Oqui(t) = P(Qn1,-..,Qnz|X). (1)
t=1

This total score is an approximation of the a-posteriori pro-
bability P(W,|X) of the model W, for the acoustic input

X, if only the optimal sequence of states is considered [8,2]:

P(Wa|X) P(Qn|X)P(Wn|Qn) (2)

gn(X)

Q

Q

The second factor in (2) is independent of the acoustic input
and reflects the structure of the models. It is assumed
P(Wa|Qni1,y...,Qnr) := 1 for all valid state sequences in
phoneme model W,,. Additional transition probabilities are
used in the Viterbi decoding, which are counted during the
segmentation of the training data in the individual states.
The scores g,(X) for the models estimate the a-posteriori
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probabilities of the models, which are the optimal discrimi-
nant measures according to Bayes theory. The 1-stage DP
algorithm can be utilized to achieve an optimal segmenta-
tion and classification in a continuous speech recognition
task.

The utilized neural network is a Radial Basis Func-
tion network, consisting of one layer of Radial Basis Func-
tions and additional layers of neurons with sigmoidal sum-
ming neurons. The purpose of the basis function layer is
a statistically based transformation of the features into a
high dimensional space [9], whereby the sigmoidal nodes
are used in the final transformation to calculate the requi-
red a-posteriori probabilities. The activations of the sigmoi-
dal neurons are computed according to the usual summing
rule: Opm, = f (Zl anioi), utilizing the sigmoid trans-
fer function f(a) = (1+ e_“)_l. The nonlinear sigmoidal
transformation in the output layer is needed for a better
approximation of the a-posteriori probabilities and the mi-
nimization of the classification error rate [7,2].

Each basis function ¢ computes the Mahalanobis di-
stance between the input vector Z and its mean r7;, using a
diagonal covariance matrix C;. The activation of the RBF
neuron ¢ is calculated by the exponentially weighted Maha-
lanobis distance:

0; = exp (——(.»z — ) TCN (@ - ﬁzi)> . (3)

This definition is similar to Gaussian functions, applied in
statistical methods such as HMMs. There mixtures of nor-
mal density functions are used to approximate multimodal
probability densities. In (3) a different normalization is
used, which limits the range of activation to 0 < 0; <1 and
makes the maximum value of o; independent of the cova-
riance matrix C;. Constant activations of RBF neurons are
located on ellipses in the feature space.

The basis function neurons in the hybrid RBF-HMM
system are organized in subnets for the different features,
which are derived every 10ms from the acoustic preproces-
sing. The subnetwork for the 20-dimensional Bark-scaled
loudness spectrum consists of 256 RBF nodes, the subnet
for the delta-loudness spectrum (20-dim.) of 128 RBF no-
des and the subnetwork for the total loudness of 16 RBF
nodes. Altogether this results in 400 Radial Basis Func-
tions for the hybrid system. Mean vectors and variances
of the basis functions are initialized by the LBG clustering
algorithm [7].

To calculate the a-posteriori probabilities of the states
P(gnm|X) a normalization of the basis function outputs is
needed. If Bayes’ rule is used and multimodal distributi-
ons of the features are estimated with Gaussian mixtures,
the Bayes probability for state gn,, can be expressed as
a mixture of a-posteriori probabilities p(¢|X) of the basis
functions:

P(gnm) D, P(X|i)p
p(X)

> panmli)p(ilX). (4)

If the a priori probabilities of the basis functions p(i) and
the determinants of the covariance matrices |C;| of the basis

(2lgnm)

p(gnml|X) =

functions are identical, the Bayes probability is approxima-
ted by the output nodes:

Z anl 04

By (5)

No sigmoidal transformation in the output nodes is needed
for the estimation of Bayes probabilities by mixtures of a-
posteriori probabilities of the basis functions.

In case of statistical independent features the Bayes pro-
babilities of the states are the product of the independent
calculated probabilities, conditioned by the individual fea-
tures [10]. This multiplication can be approximated by the
usage of the sigmoidal transfer function in the output no-
des. The nonlinear mapping is able to create the required
products of the individual Bayes probabilities, which can be
seen by a Taylor expansion of the sigmoidal mapping [2].
The output nodes of the RBF net are then computed by
the following equation:

P(gnm|X) = Onm =

O = Zzg";j“" O

The summation in (6) runs over all basis functions in all
subnets or codebooks (CB), whereas an individual norma-
lization of the basis function outputs to sum up to 1.0 for
each subnet is used.

The structure of the hybrid RBF-HMM system is simi-
lar to tied-mixture or semi-continuous HMMs (SCHMMs)
with separate codebooks for the individual features. The
RBF layer is working like SCHMM codebooks, but the nor-
malization for estimating a-posterioris of the RBFs is ad-
ded. The actual basis functions for the sigmoidal units are
the a-posterioris of the RBFs. These are used to form the
approximation of the required mapping. The weights of the
summing neurons resemble SCHMM mixture coeflicients,
but are not constrained to sum up to one. The sigmoidal
transfer function supports the computation of a-posteriori
probabilities [2] and is not common in HMMs. The sig-
moidal units sum up all the a-posteriori estimates from the
different codebooks (6), no explicit multiplication of proba-
bilities takes place. Additional layers with sigmoidal units
can be added to allow a more complex transformation by
the neural network. By the application of a context win-
dow in the neural net the processing of acoustic information
from more than one acoustic vector is possible, exploiting
correlations in the input data [2].

In contrary to MLE optimization for HMMs, NN trai-
ning procedures are inherently discriminative. Bayes pro-
babilities of all states and models are calculated simultane-
ously by the RBF network, while HMMs estimate separate
densities for the individual states or models. During trai-
ning all parameters of the hybrid system are updated by
the presentation of any utterance in the training data, in-
dependent of the class membership. Discriminant training
techniques estimate class boundaries and not the parame-
ters of assumed model distributions. Although both types
of training are theoretically equivalent (if sufficient classi-
fier parameters and enough training data exist, if Gaussian
mixture assumptions are appropriate and if a priori proba-
bilities are known) discriminant training techniques provide
better performance if these requirements are not met [11].

P(gnm|X) =



3. TRAINING OF THE HYBRID RBF-HMM
SYSTEM

The discriminative training of the hybrid system occurs in
two phases. In the bootstrap phase the usual backpro-
pagation algorithm is used to optimize a quadratic error
function (MSE). The parameters of the NN are updated
after the presentation of each pattern by a standard gradi-
ent descent rule and the optimization is stopped when the
performance for an independent test set decreases (cross-
validation) [2,7]. The target values for the output nodes of
the NN on frame level were assigned by state labels, de-
rived from the Viterbi decoding in SCHMMs [3,11,8]. The
basis function parameters are initialized by the LBG cluster
algorithm and kept fixed during training. A retraining of
the RBF means is difficult, due to the normalization of the
RBF layer. Every a-posteriori estimate of a RBF node is
very dependent on the outputs values of all other nodes in
his subnet and therefore the individual RBF nodes can’t be
treated separately. The a-posteriori estimates are also very
sensitive to variations in the means and variances of the
basis functions and hence retraining of these parameters is
likely to be instable.

The optimization of the MSE leads to an approximation
of a-posteriori probabilities of individual states, conditioned
by the actual feature vector x;: Opnm(t) = P(gnm|z:) [1,10].
The total scores are estimates of the a-posteriori probabili-
ties P(W,|X) for the models W, (2). The neural net is trai-
ned to reproduce the given sequence of states, which is deri-
ved from a Viterbi decoding in SCHMMSs. This sequence is
not guaranteed optimal for the classification, and hence an
embedded optimization for the hybrid models is utilized in
the second learning phase to minimize the phoneme error
rate [8]. The parameters from the MSE optimization are
used for initialization. The ‘Minimum Classification Error’
(MCE) objective function is used to approximate the mis-
classification rate of the hybrid classifier. The optimization
of this error function by the ‘Generalized Probabilistic Des-
cent’ (GPD) algorithm results in a classifier with minimum
error probability [4].

A generalized distance function is used as discriminance
measure between the log score r.(X) = log (g.(X)) of the
correct model ¢ and the log scores of the incorrect models

n=1...,N;n #c[4]:

n
ﬁ Z ern(X)n with n > 0.

nyn#c

d(X) = —r.(X)+log

(7)
A false decision results in d.(X) > 0, while d.(X) < 0
indicates a correct classification: g.(X) > gn(X);Vn # c.
The discriminance measure is continuous with respect to the
classifier’s parameters and therefore suitable for a gradient-
descent optimization. The following cost function is appro-
ximating the error rate of the classifier:

1

L (X)) = e

with v > 0. (8)
This is a smoothed ‘zero-one’ cost function, counting the
classification errors. The optimization of this objective func-
tion with respect to the parameters results in a minimum
error classifier [4].

The parameters of the hybrid RBF-HMM system are
adjusted proportionally to the negative gradient of the ob-
jective function (8). The training is concentrated on likely
confuseable phonemes, because the derivatives of cost and
discriminance measure disappear for secure classifications.
The error is back-propagated along the Viterbi alignment
into the NN by the successive use of the chain rule [8]. The
training algorithm can be used for the adaptation of weights
in the sigmoidal nodes and in principle for the update of
the means and variances of the basis functions. The con-
vergence of the GPD algorithm to the optimal Bayes clas-
sifier is ensured with proper initialization and appropriate
selection of the learning step size [4]. After the MCE-GPD
training the NN outputs can no longer be interpreted as pro-
babilities. No segmentation of the training data in states
is required within the phoneme models. The algorithm can
be extended to the embedded training of whole sentences
for known sequences of phonemes.

The basic idea of the MCE-GPD training algorithm,
which is normally used for HMM training [4], is similar
to the embedded time alignment in MS-TDNN [3] or the
‘Figure Of Merit’ training for the hybrid RBF-HMM word-
spotter in [5], but no fixed phoneme or word level targets are
used. In contrast to HMMs in the RBF-HMM a-posteriori
probability estimates are processed for the computation of
the model scores. Therefore the additional normalization
and the sigmoidal transfer functions are included in the
RBF net structure.

4. EXPERIMENTS

A database of 100 German speakers (Phondat “Diphon”-
database) was used for the speaker independent phoneme
recognition experiments. We applied about 7700 sentences
from 67 speakers for training and about 3300 sentences from
33 other speakers for the test of the hybrid RBF-HMM. The
speech data was sampled at 16kHz, and a 256-point FFT
with Hamming window was calculated every 10ms. The
power spectrum was combined in 20 critical bands. This
Bark-scaled loudness spectrum was normalized to sum up
to one. The total loudness and the delta-loudness spectrum
were added as separate features. Every feature is processed
by a separate subnet in the RBF layer. 41 phoneme mo-
dels (included silence) with 3 to 6 states were utilized and
resulted in a neural net with 169 output nodes (total no.
of HMM states). The targets for the initial MSE training
were provided by SCHMMs, delivering the required state
labels within fixed segment boundaries. In the first phase
the RBFs were trained to reproduce the sequence of states.
The MCE-GPD algorithm was used for the final optimiza-

tion of the phoneme error rate.

Phoneme recognition rates for training and test data of
different hybrid RBF systems are reported in table 1. In the
first line the results for a NN, consisting of one normalized
RBF-layer with 400 basis functions in three different sub-
nets and one output layer with 169 sigmoidal neurons, are
shown. No hidden layer and no context window was used
for the estimation of a-posteriori probabilities. 59.2% of the
phonemes in the independent test data are correctly classi-
fied after the MSE training, while the phoneme recognition
rate for the MCE-GPD trained system is 60.8%.



RBF MSE MCE-GPD
Context | Hid. Units || Train. | Test || Train. | Test
1 - 60.8 59.2 62.3 | 60.8
1 100 57.3 55.8 60.4 59.3
3 - 64.7 | 62.5 66.0 | 63.8

Table 1: Phoneme recognition rates for different hybrid
RBF-HMM systems; all values in %.

In line two the results for a NN with one additional
hidden layer of 100 sigmoidal units are depicted. The re-
cognition rates for both training procedures are inferior to
the net without hidden layer. This is mainly contributed
to the relatively small hidden layer with 100 nodes, which
acts like a bottleneck in computing the state probabilities.
The information from 400 RBF a-posteriori probabilities is
compressed in 100 hidden node scores and expanded to cal-
culate the 169 state probabilities. The number of trainable
parameters (weights) for this system is about 57,000 and
for the baseline system without hidden layer about 68,000.
The enhanced transformation capability from the hidden
layer was of no additional use for this task.

In a third experiment contextual information from the
adjacent feature vectors is used for the calculation of state
probabilities in the net. The output nodes refer to the a-
posteriori probabilities of the RBF nodes from 3 frames.
This expands the hidden layer to 1200 normalized scores
and results in about 203,000 trainable parameters. Since
the computing of the delta-loudness incorporates the pro-
cessing of five frames for every feature vector, the usage of
the 3 frame contextual window results in acoustic informa-
tion from 70ms in total. The phoneme recognition results
for this RBF net are printed in line three of table 1. 62.5%
of the phonemes in the test data are correctly classified af-
ter the MSE optimization and 63.8% after the MCE-GPD
training. The incorporation of contextual information in
the estimation of a-posterioris leads to some improvements
in performance.

The minimum error (MCE) training in the second op-
timization phase is started after no more increase in reco-
gnition performance on the test data for the MSE training
occurred. The optimization of the MCE objective func-
tion, which is more related to the classifier error rate than
the MSE, leads to some additional improvements in perfor-
mance. The best result (63.8%) for the RBF-HMM is achie-
ved, exploiting contextual information. SCHMMs with the
same number of prototypes and model structure were trai-
ned with MLE for comparison. The SCHMM phoneme re-
cognition rate for the training data is 58.5% and 57.9% for
the test data. The improvement of about 6% for the RBF-
HMM is attributed to the discriminative structure based on
Bayes probabilities, the discriminative learning techniques
and the incorporation of contextual input.

5. CONCLUSIONS

In this paper a hybrid NN-HMM system was presented. Ra-
dial Basis Functions were used in the neural network, be-
cause of the possibility for their good initialization and their
similarities to HMMs. Two objective functions were used
in the optimization of the NN parameters. The MSE trai-

ning needs information about the state distribution with-
in the models, while MCE-GPD minimization is based on
model error rate approximation and requires model level
supervision. The proposed RBF-HMM is similar to dis-
criminatively trained HMMs, but is based on a-posteriori
probability estimations. The hybrid system was used in
speaker independent phoneme recognition experiments and
shows good performance with 63.8% phoneme recognition
rate for test data from unknown speakers. Furthermore
our intention is to integrate this RBF-NN in a continuous
speech recognition system with a lexicon and a beam search
to obtain word and sentence recognition rates.
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