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ABSTRACT

This paper describes a hybrid system for continuous speech

recognition consisting of a neural network (NN) and a hid-
den Markov model (HMM). The system is based on a multi-
layer perceptron, which approximates the a-posteriori prob-
ability of a sequence of states, derived from semi-continuous
hidden Markov models. The classification is based on a
total score for each hybrid model, attained from a Viterbi
search on the state probabilities. Due to the unintended dis-
crimination between the states in each model, a new train-
ing algorithm for the hybrid neural networks is presented.
The utilized error function approximates the misclassifica-
tion rate of the hybrid system. The discriminance between
the correct and the incorrect models is optimized during
the training by the ‘Generalized Probabilistic Descent Al-
gorithm’, resulting in a minimum classification error. No
explicit target values for the neural net output nodes are
used, as in the usual backpropagation algorithm with a
quadratic error function. In basic experiments up to 56 %
recognition rate were achieved on a vowel classification task
and up to 69 % on a consonant cluster classification task.

1. INTRODUCTION

Most current speech recognition approaches use a hidden
Markov model based system (HMM), consisting of a para-
metric production model for each particular speech segment
such as phonemes, syllables or words. These models de-
pend on some assumptions on the statistical independence
of the features and special pattern distributions, e.g. Gaus-
sian pdfs. Normally the individual HMMs are trained sepa-
rately by maximum likelihood estimation, or alternatively
discriminant training algorithms as e.g. maximum mutual
information optimization are used. Discriminant training is
useful, in cases where the training set is small.

Connectionist architectures have been successfully app-
lied for different classification tasks. Their learning algo-
rithms are inherently discriminative. Usually layered feed-
forward nets, called multilayer perceptrons (MLP), are em-
ployed. Since these neural nets are not able to handle the
dynamic distortion occurring in the speech process, a com-
bination with a DP algorithm for optimal time warping is
required. Using the backpropagation algorithm with a qua-
dratic error function results in an approximation of the a-
posteriori probability for the assigned class, conditioned by
the input of the net [1].

In most hybrid NN-HMM systems the target values for
the output nodes are derived from HMMs or from hand
labelled phonetic speech segments. Normally they consist
of fixed values for the ‘active’ state. This is the state an
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input vector is assigned to by the Viterbi alignment. In this
way the different states in each model are trained discrimi-
natively. Finally the neural net approximates a-posteriori
probabilities, which can be used as emission probabilities for
the underlying HMMs [1]. The output values of the neural
net are processed by the Viterbi algorithm to calculate a
score for each model within the boundaries of the phonetic
segment. This can be done by multiplying the probabili-
ties along the best sequence of states [1], [2]. In addition
transition probabilities between the states can be used.

Another approach for the calculation of the model scores
is to add an additional connectionist word unit, summing
up the values of the output nodes along the Viterbi path.
This method is used in [3] for a word level training with fixed
word targets (‘0.0” or ‘1.0°). Using the 1-stage DP algorithm
for the whole speech utterance, an optimal segmentation
and classification in a continuous speech recognition task is
achieved.

In this paper a new training method for hybrid NN-HMM
systems is proposed. An error function, which approximates
the misclassification rate of the hybrid system, is optimized
by the ‘Generalized Probabilistic Descent Algorithm’. This
is achieved iteratively by maximizing the discriminance bet-
ween the correct and the wrong models and results in a mi-
nimum error classifier [5]. Some results for two continuous
speech recognition experiments, a syllable based vowel and
consonant cluster task, using this model-discriminant trai-
ning algorithm are presented in the following.

2. THE HYBRID NN-HMM SYSTEM

For a continuous speech classification task with NV different
speech segments and fixed segment boundaries a hybrid NN-
HMM system, consisting of a multilayer perceptron and a
Viterbi algorithm, was employed. One hybrid model W, is
made up of 3 to 5 states gnm, as in the underlying HMM,
with m = 1,...,3,(4),(5) and » = 1,...,N. FEach state
gnm of each model is assigned to one output node O,.,, of the
neural net. The activation of the neurons is computed ac-
cording to the usual summing rule: O,,, = f (Zl anioi)

with the sigmoid transfer function f(a) = (1+ e_“)_1 . The
weight W,,..; connects the output node O,,, with the node
0; in the hidden layer. The nodes in the hidden layers work
in the same way as the output nodes do. The used neural
net is a multilayer perceptron with 1 or 2 hidden layers
and different numbers of neurons in the hidden layer(s).
The input layer consists of 1 or 5 consecutive frames of
the feature vector, which can be a combination of the 20-
dimensional Bark-scaled loudness spectrum, the total loud-
ness and the delta loudness spectrum. The features are
computed every 10 ms from the acoustical preprocessing.
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For the initial training of the MLP the usual backpropa-
gation algorithm with a quadratic error function was used.
The targets for the output nodes were derived from a semi-
continuous HMM (SCHMM) system for demi-syllable based
units [4]. The best path of the Viterbi algorithm in the (gi-
ven) correct model marks the sequence of ‘active’ states.
Along this sequence the targets for the corresponding out-
put nodes of the MLP were set to ‘0.95’. The targets for
the inactive states of the correct model were ‘0.5’ and for all
incorrect models ‘0.05’ [2]. Figure 1 shows the activations of
the output units and the sequence of states for the correct
and an incorrect model. Black boxes indicate activations
up to ‘1.0’ and white ones near ‘0.0°.
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Figure 1. Activations of the output units and the sequence of
states for the correct and an incorrect model

The outputs of the trained MLP approximate the a-
posteriori probability of the individual states of the hy-
brid system conditioned by the actual feature vector z; :
Opnm = P(gnm|xt) [1]. The output values of the neural net
are used by the Viterbi algorithm under consideration of the
best sequence of states @n = {Qn1,...,Q@n7|Qnt € {gnm}}
to calculate the total score g,(X) of the model W,, for a
feature vector sequence X = {z1,...,z7}.

gn(X)

[[0meu =] P(@ula) (1)
P(in,---,QnT|X) (2)

The total score is an approximation of the a-posteriori pro-
bability P(W,|X) of the model W,, under consideration of
only the best path. The classifier decides for the class ¢ with
the maximum score g.(X) = max,{gn(X)}. The classifica-
tion process is the same as for HMMs and can be connected
with the well known 1-stage DP algorithm or beam search
methods for continuous speech recognition purposes.

3. A NEW MODEL-DISCRIMINANT
TRAINING ALGORITHM FOR HYBRID
NN-HMM SYSTEMS

The explicit use of target values for the output nodes of
the net entails an unintended discriminance within the mo-
dels, because the neural net has to produce a ‘1’-output for
the ‘active’ node and ‘0’-outputs for the others. This is an
unnecessary condition and is difficult to achieve, especially
if similar feature vectors are assigned to different states in
the same model, e.g. if the same phonemes occur in the be-
ginning and the end of demi-syllable or word models. The
neural net is trained to approximate the target values on
the frame basis but the classifier is working on the model
scores. This discrepancy between the objective function du-
ring training and the decision function of the classifier leads
to good frame based recognition performance, but causes
problems in model-based recognition [1]. Furthermore, the
minimization of MSE doesn’t generally result in a minimum

error probability classifier [5]. Therefore we developed an
objective function which directly minimizes the decision er-
ror rate of the classifier without using explicit targets for the
MLP. Between fixed segment boundaries (¢t = 1,...,T) we
define, similar to [6] and [5], the misclassification measure
for the correct class ¢

3=

1 r
dc(X) = —TC(X) +10g m Z € n(X)n (3)

nyn#c

where r,(X) = log (gn(X)) = Z;‘r‘zl log (Ong,. (t)) is the
log score of the model n. A misclassification measure
dc(X) > 0 implies misclassification and dc(X) < 0 indica-
tes a correct decision. The misclassification measure makes
use of the L,-norm of the model scores g,. The positive
number 7 controls the number of incorrect models inclu-
ded in the training process. In the case of  — oo, only
the wrong model with the highest score is considered. The
misclassification measure is continuous with respect to the
classifier’s parameters and therefore suitable for a gradient-
type optimization algorithm. The following cost function
approximates the error rate of the classifier

L (X)) = 1o ()

with ¥ > 0. This is a smoothed zero-one cost function,
which ‘counts’ the classification errors. If dc(X) > 0 then
I. — 1 and no cost occurs (I, — 0) if d.(X) < 0. The opti-
mization of this objective function with respect to the para-
meters A of the MLP results in an optimal minimum error
classifier [5]. This optimization can be done iteratively by
the ‘Probabilistic Descent Algorithm’ [7]. The parameters
in the k-th iteration are updated according to the following
rule

Akt = Ak — UiV, Lo (A, X) (5)

where Uy is a positive-definite matrix (here the identity
matrix is used for Uk) and € is a small positive number,
controlling the step size. Each time a training segment X
is presented, the parameters (weights) of the MLP are ad-
justed proportionally to the negative gradient of the objec-
tive function. The gradient of the objective function with
respect to the weights of the MLP can be computed with
the chain rule. The convergence of the ‘Probabilistic Des-
cent Algorithm’ to the optimal Bayes classifier is ensured
with proper initialization and appropriate selection of the
learning step size €x [7], [5]. The partial derivative of the
cost function with respect to the misclassification measure

® 8l (d.(X))
8d.(X)

This derivative has its maximum in d.(X) = 0. In the
vicinity of this point the scores of the models are similar
and misclassification is likely to occur. If the model scores
are different the derivative of the sigmoid-function declines
rapidly, causing no further training. To compute the deri-
vative of the misclassification measure with respect to the
model scores the correct and the wrong models must be
distinguished.

= L1 - 1) (6)

dd.(X) _ 1

89:(X) B gC(X) (7)
ad.(X)y 1 gn(X)" 8)
8gn(X) 9n(X) D, 9n(X)7



The score of the model g»(X) consists of the product of
the output values along the Viterbi path (1). Therefore the
derivative of the score with respect to one specific output
node O, 1s

Ogn 8gn n
aogn,n: > ao,i,(t): > o,i(t) ®)

t:Qnt=qnm t:Qnt=qnm

The update rule (5) for the weight Wi.; of model n in
the output layer of the neural net requires the following
derivative

8l _ 8l ad > 8gn  Onm(t)
Wpmi  0d Ogn 80.m (t) OWomi
t:Qnt=qnm
= Y —Anm()ei(t) (10)
t:Qnt=qnm

Using ‘delta’-terms A,,,, similar to the usual ‘deltas’ in
the backpropagation algorithm, the structure of the equa-
tion remains the same. The ‘delta’-terms for the model-
discriminant training procedure are different for the correct
and incorrect models :

(1 = ) =2 (1 — Onm(t)) Vn#c

e 91
YI(1 = 1)(1 — Ocm(2)) n=c
(11)
In case of an incorrect class the ‘delta’-terms are weighted
by their contribution to the L,-norm in the misclassification
measure. Only incorrect models with high scores, which are
likely to be confused, are considered in the learning pro-
cess. The differentials of the error measure with respect to
the weights of the hidden layers are computed continuously
using the chain rule as in the backpropagation algorithm.
The model-discriminant training procedure leads to mini-
mum error classification without the utilization of targets.
It increases the score of the correct model and decreases
that of the others in the sense of a corrective training wit-
hout causing discriminance within the models. Hence only
‘active’ states along the optimal Viterbi alignment are con-
sidered in the training procedure as well as in the classi-
fication process. The remaining states and their attached
output nodes of the neural net are not trained by the lear-
ning process. The supervision and objective function works
on model level. It is possible to connect the models with
the Viterbi algorithm for training on word or sentence le-
vel. Like in HMMs, the model boundaries are then freely
aligned in training as well as in the recognition process.

Apm(t) =

4. EXPERIMENTS

In the performed continuous speech recognition experiments
a speaker independent database of 10 German speakers
(Phondat: ‘Berliner’-sentences) was used for training (data-
set I) and cross-validation (dataset II). Each speaker uttered
2 versions of 100 German sentences. We used the utterances
of 6 speakers for training and the remaining 4 speakers for
cross-validation. The generalization performance of the hy-
brid NN-HMM system was tested with a third independent
database (dataset IIT). This consists of another 2 versions
of different 100 German sentences, spoken by 6 of the 10
speakers (training and test speakers) from the first data-
base (Phondat: ‘Marburger’-sentences). After a 256-point
FFT with Hamming window the power spectrum was com-
bined in critical bands. Every 10 ms a Bark-scaled loudness
spectrum was computed, which was normalized to sum up

to one. Additional features, as the total loudness, the delta-
loudness spectrum and the zero-crossing rate of the signal,
were also used in the experiments.

In the first phase of the training the MLPs learn to repro-
duce the sequence of states provided by a semi-continuous
HMM system within fixed segment boundaries [4]. A mo-
dified MSE criterion was used in the standard backpropa-
gation Algorithm. In the next step the model-discriminant
training algorithm is used to adjust the weights of the MLPs
for minimum error classification. This training step is very
fast, only a few iterations are necessary, as compared to
the standard backpropagation training, which needs some
hundred iterations.

The syllable structure of speech has been successfully uti-
lized for the recognition of continuous German speech [8].
The HMM system is based on parts of syllables and uses
phonotactic constraints for the German language. The Ger-
man language can be described with 50 initial consonant
clusters (ICC), about 20 vowels and diphthongs (VOW) and
160 final consonant clusters (FCC), which are composed of
24 rudiments and 17 suffixes.

In the first experiment 17 vowels and diphthongs, occur-
ring in the databases, were trained. Long and short variants
of vowels were treated separately. The MLP consisted of 77
output nodes (states), different numbers of hidden layers
(one and two hidden layers) and 50 or 100 nodes in the
hidden layers. The input layer of the MLP net is made up
of a sliding window of several frames. Each frame consists
of different features derived from the acoustic processing.
In Table 1 the results of some experiments with the hy-
brid MLP-HMM system are summarized. The number of
neurons in the hidden layers are given in the first column.
In nets with one hidden layer we used 50 and 100 neurons
and in nets with two hidden layers we used 100 neurons in
the first and 50 neurons in the second hidden layer. The
next two columns of Table 1 show the rates of correctly
recognized vowels (VOW). In column 2 the results of the
hybrid system trained with a feature vector consisting of
the 20 dimensional loudness spectrum, the total loudness
and the zero crossing rate are printed. Here the MLP input
layer is made up of a sliding window of 5 consecutive frames
of the 22 dimensional feature vector and thus has a total
of 110 nodes. The results of the nets which additionally
utilize the delta-loudness spectrum are depicted in column
3. As the delta-loudness spectrum incorporates information
about the temporal process of the spectrum, no temporal
window in the input layer (1x42 neurons) was used. The
recognition rates for the training data - dataset I - are given
in the first lines for all the nets in Table 1. The results for
the cross reference test - dataset II - and the results for the
second test set - dataset III - are also illustrated.

For all 3 datasets the hybrid MLP-HMM system shows
good recognition rates in the vowel and diphthong (VOW)
experiments. These are about the same values as the results
of the semi-continuous HMMs, which work very well on
this task. The number of weights in the MLPs is between
6,000 and 14,000, which is considerably less as compared
to the number of parameters in the SCHMMSs. The results
of the more complex nets are not better than those of the
simpler nets with 50 neurons in the hidden layer. More
layers and neurons are apparently not advantageous for this
task. The MLP with 50 neurons in a single hidden layer
and an input layer of 42 neurons shows the best results.
About 58 % of the vowels and diphthongs in the training
and cross-validation database and 55.5 % in the test set are
correctly recognized by the hybrid system after the model-



No. Neurons Dataset
Hidden Layer || Input Layer

5x22 | 1x42
50 58.4 58.2 | I

56.4 | 57.9 | II
52.5 | 55.5 | III
100 55.8 | 57.2 |1

55.0 | 54.5 | II
50.3 | 54.3 | III

50,100 58.4 I
53.5 II
52.2 I11

Table 1. Vowel (VOW) recognition rates for different hybrid
MLP-HMM systems for the 3 datasets; all values in %

discriminant training. These results are about 6 % higher
for the training, 3 % higher for the cross-validation and 3 %
higher for the test data, as compared to the initial training
results.

In the second experiment 29 of the most frequent initial
consonant clusters (ICC) are modelled with different hybrid
systems. The MLPs for these hybrid systems consist of 120
output nodes and 50 or 100 nodes in the hidden layers. Ta-
ble 2 shows the results of the consonant cluster experiments
for the 3 datasets.

No. Neurons Dataset
Hidden Layer || Input Layer

5x22 | 1x42
50 80.0 79.0 | I

62.7 | 63.6 | II
64.8 | 65.1 | III
100 839 | 84.0 | I

65.8 | 64.5 | II
68.9 | 69.3 | III

50,100 79.5 I
61.0 II
61.8 I11

Table 2. Initial consonant cluster (ICC) recognition rates for
different hybrid MLP-HMM systems for the 3 datasets; all
values in %

The results for the hybrid MLP-HMM system on the in-
itial consonant cluster (ICC) task show some improvement
compared to the SCHMMs. The SCHMM recognition rates
for the training database are about 80 % and about 60 %
for the cross-validation and test datasets. The hybrid sy-
stems reach about 84 % for the training and about 66 %
to 69 % for the cross-validation and test datasets after the
model-discriminant training. The improvements, resulting
in this training algorithm, are up to 9 % for the training
and about 6 % for the cross-validation and test data. The
utilization of more neurons in the hidden layers is advan-
tageous for this task. More neurons enable the neural net
to form finer representations of the features for the different
initial consonant clusters. Using an additional hidden layer
is not of advantage for this task.

5. CONCLUSIONS

In this paper a new model-discriminant training algorithm
for hybrid NN-HMM systems was presented. On a frame

basis this learning method uses no targets for the neural
net. A model level supervision and objective function is
used for minimum classification error training. This model-
discriminant training algorithm was used in some basic ex-
periments with syllable based units. The hybrid NN-HMM
system showed very good performance on vowel and con-
sonant cluster tasks in continuous speech recognition. In
the future we plan to complete the syllable based inventory
with nets for the final consonant clusters to build a com-
plete hybrid speech recognition system. Furthermore we
want to include our hybrid models in a beam search fra-
mework to recognize sentences by obtaining the best word
chain or word lattice for the utterance.

This work has been partly carried out within the
ASL/VERBMOBIL project, which is supported by the Ger-
man BMFT.
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