B erbmobil

Bundesministerium fiir
Bildung, Wissenschaft,
Forschung und Technologie

The ADT Package for the
Verbmobil Interface Term

Michael Dorna

Universitat Stuttgart

Vi

Report 104
July 1996

July 1996

Michael Dorna

Institut fiir Maschinelle Sprachverarbeitung
Universitat Stuttgart

Azenbergstrafie 12

D — 70174 Stuttgart

Tel.: (0711) 121 - 1363
Fax: (0711) 121 - 1366

Gehort zum Antragsabschnitt: 7 Formalismus

Die vorliegende Arbeit wurde im Rahmen des Verbundvorhabens Verbmobil
vom Bundesministerium fiir Bildung, Wissenschaft, Forschung und Technologie
(BMBF) unter dem Forderkennzeichen 01 IV 101 U gefordert. Die Verantwor-
tung fiir den Inhalt dieser Arbeit liegt bei dem Autor.

Abstract

This documentation describes an interface ADT called the “Verbmobil
Interface Term” (VIT) used in the “Verbmobil Forschungsprototyp” (FP)
in several software components. We present the contents of the VIT and the
ADT package for Prolog components of the FP. Among others the ADT
package can be used for creating, for manipulating, for printing and for
checking the contents of a VIT.

The edition of this documentation corresponds to version 1.6.2 of the ADT
package. An on-line HTML documentation is available via WWW at
http://www.ims.uni-stuttgart.de/projekte/verbmobil/vitADT.

\/erbmob/'/ Report 104

Contents

Introduction

1.1 The Verbmobil Background

1.2 The Verbmobil Interface Term
1.3 Multiple Information Levels of a VIT
1.4 Contents of VIT Slots

1.5 The Prolog Implementation

1.6 Overview.

Create and Fill the ADT
2.1 Introduction

2.2 Predicates

Access the ADT

3.1 Imtroduction
3.2 Accessing the Slots
3.3 Accessing the Terms

Copy and Delete Information
4.1 Introduction

4.2 Predicates

Check the VIT

5.1 Introduction
5.2 VIT Checkers
5.3 Error Handling
5.4 Information Checking
Printing

6.1 Introduction

6.2 Predicates

S = N U

12
12
12

14
14
14
15

18
18
18

20
20
20
21
22

The ADT Package for the Verbmobil Interface Term

7 Miscellaneous 27
7.1 Introduction 27
7.2 Predicates 27

References 30

A Getting and Installing the Software 31

B Usage 32
B.1 Using the Package, 32
B.2 Error Messages 32

C Module atom2term 33
C.1 Introduction 33
C.2 Predicates 33

D Built-in Semantic Lexicon Database 35

Index of Built-in Predicates 37

\/erbmob/'/ Report 104

1 Introduction

1.1 The Verbmobil Background

Verbmobil is one of the largest projects in the area of machine translation. The
main goal is a mobile translator for face-to-face dialogs, i.e. translation of spon-
taneous spoken language.

For the current implementation called “Verbmobil Forschungsprototyp” (FP)
there are about 25 software components' under development. All these com-
ponents run their own processes using channels for interprocess communication.
Hence, Verbmobil can be seen as a large software development project and also a
software engineering challenge.

We can distiguish the following parts of the FP. The front end includes components
like Speech Recognition and Prosodic Labeling. The ”language” part includes
components like Syntactic-Semantic Analysis, Semantic Evaluation, Transfer and
Generation. The back end includes components like Speech Synthesis and Speech
Output.

The ADT is used in a uniform way between almost every component in the lan-
guage part. Semantics play the crucial role in the language understanding and
translation process of the FP. Therefore, most of the information within the ADT
is concerned with semantics.

The main idea behind this approach is a single data structure for different “lan-
guage” components. This lean data structure is portable to different programming
languages used in the FP.

Christian Lieske, Joachim Quantz and myself started to define an ADT in Septem-
ber 1995 with the name Minimally Recursive Structure. In the meanwhile, a lot
more Verbmobil partners of Generation, Semantic Construction, Semantic Evalu-
ation, System Integration, Tempus and Aspect, and the Transfer were involved in
the designing and development of the now renamed ADT: the Verbmobil Interface
Term.

1.2 The Verbmobil Interface Term

As already mentioned, the VIT is used as a uniform data structure at the interfaces
between several software components of the Verbmobil Forschungsprototyp. These

'We distinguish between software components and modules: a component is realized as one
process which might include different software modules or control different modules which run
their own processes.

The ADT Package for the Verbmobil Interface Term

interfaces are between Semantic Construction and Semantic Evaluation, Semantic
Construction and Transfer as well as Transfer and Generation. The VIT is an
encoding of different linguistically motivated information produced and used in
the named components.

The contents of a VIT correspond to a segment (aka utterance) in a dialog turn.
This partitioning of turns enables the linguistic components to work incrementally.

The main contents of a VIT are semantic representations. On the other hand, in-
formation like morpho-syntax, syntactic tense, semantic sorts, scope and prosody
is also part of a VIT. This information is linked to semantics and can be used for
the computing semantic tense, for disambiguation of underspecified analyses, for
guiding semantic evaluation such as anaphora resolution and for many more.

There are different syntactic and semantic analysis modules realized in the FP
which are based on both different linguistic theories and different formalisms for
their implementation. At the interface to other components the syntax-semantic
components map their output into the common ADT. Because all parties agree
upon the interface, the differences are not transparent from outside.?

In a large project like Verbmobil data abstraction is an important basis for the par-
allel development of different components which should communicate with each
other in the end. From a software engineering perspective there are a lot argu-
ments for the VIT. Among them there are:

e Because there are abstract access and manipulation operations available the
data structures of the VIT can be changed with minor feedback on a software
component using it.

e We assume that this is the first time that the result of linguistic components
is checked using a kind of protocol. Language-specific on-line dictionaries
are used to insure the compatibility between components. A content checker
is used to test structural properties. It has been shown that this form of
protocol is well-suited for error detection in components with a rapidly grow-
ing linguistic coverage. Furthermore, the complex information produced by
linguistic components even make automatic output control necessary.

e The protocol can be used to define a quality rating, e.g. for correctness,
interpretability, etc. of the contents of a VIT. Such results are much better
and productive to improve a system than common, purely quantitative,
measures based on failure or success rates.

2The project partners which are responsible for semantics even agree on the semantic ana-
lyses at the interface. This allows for a very flexible switching between the linguistic analysis
components.

\/erbmob/'/ Report 104

e The single protocol serves as a common “language” for discussions. This
language can be “spoken” by people responsible for technical tasks only as

well as others with purely linguistic intentions.

1.3 Multiple Information Levels of a VIT

The contents of a VIT are filled into the following slots:

Slot Name

Description

Utterance 1D
Semantics
Main Label
Sorts
Discourse
Syntax

Tense and Aspect

Scope

Prosody
Groupings

a unique tag for a segment or utterance of a turn the rest
of the VIT belongs to;

a list of labeled conditions describing the possibly under-
specified semantic content of an utterance;

the label of the main semantic condition, i.e. the entry
point for traversing the semantic representation;

a list of sortal information for marker variables introduced
in labeled conditions;

a list of additional semantic information, e.g. discourse
roles for individuals introduced in labeled conditions;

a list of morpho-syntactic information, e.g. case and gender
of individuals;

a list of morpho-syntactic and semantic tense combined
with aspect information, e.g. used for computing surface
tense;

a list of scope and grouping constraints, e.g. used for un-
derspecified quantifier and operator scope representation;
a list of prosodic information like accents and mood;

a list of grouping constraints (belonging to Semantics).

A minimally recursive representation was chosen for efficient information access.
The list arguments are used because they are very easy to manipulate. In typical
AT languages such as Lisp and Prolog they are built-in and they can be ported
easily to other programming languages. In general, the list elements do not intro-
duce any further recursive embedding, i.e. the elements are like fixed arrays with
fields containing constants.

The ADT Package for the Verbmobil Interface Term

1.4 Contents of VIT Slots

In this section we describe the information which can be found in the slots of a
VIT. First, we list the terms,® and then we explain the possible argument bindings.

The Utterance ID slot is filled with a VIT identifier of the form
segment_description(ID, YesNo, LAtom)

ID is a unique Prolog atom for each VIT. YesNo is used to mark the last segment
of a turn. LAtom is a Prolog atom of the utterance the rest of VIT belongs to.
LAtom encodes a string using IATX conventions for German.

The contents of the Semantics slot are language specific. In general, it contains
terms of the form

Functor(Label, Arg2, ..., Argr).

called labeled conditions. The semantic entities are e.g. predicates, roles, operators,
and quantifiers. The first argument is always a unique identifier for such an
object. The semantic variables for labels and markers, such as events, states and
individuals, are skolemized with special constant symbols, e.g. 11 for a label and
i1 for a state.

The labeling of semantic conditions is very useful since the recursive embedding
of argument structure and operator scope, etc. is no longer syntactically repre-
sented in a recursive representation, but achieved through the interpretation of
additional labeling constraints. In this respect, label arguments act as pointers
to the corresponding arguments. Additionally, all these special constants can be
seen as pointers for adding or linking information within and between multiple
slots of the VIT.

The labeled conditions are all collected in databases, e.g. see [Heinecke et al.
(1996)] for the German database. For further description of the semantics together
with examples of VITs see [Bos et al. (1996)].

The information located in the rest of the slots is given in the following table:

3We describe the Prolog representations only. There exists others, e.g. in LISP.

\/erbmob/'/ Report 104

ta_aspect (Inst, Aspect)
ta_mood(Inst, TMood)
ta_tense(Inst, Tense)
tmod (Inst, TMod)
unbound (Label)

aspectual information
mood

surface tense
temporal modification
unbound argument

Info Description Slot Name
aktionsart (I, Art) Aktionsart information Tense and Aspect
cas(Inst, Case) syntactic case Syntax
ccom_plug(Hole,Label) SynSem scope resolution Scope

demontype (Inst, DType) type of a demonstrative Discourse
dialog_act(DialogAct) SemEval dialog act information | Discourse
dialog_phase(DialogPhase) | dialog phase Discourse
dir(Label, YesNo) (non)directional preposition Discourse
e_rel_r(Inst, Relation) Reichenbachian tense relation Tense and Aspect
eq(Label,Hole) Label is equal to Hole Scope
eval_plug(Hole,Label) SemEval scope resolution Scope
honor_inst (Inst) politeness marker (for Japanese) | Discourse
honor_rel (Label) politeness marker (for Japanese) | Discourse
gend(Inst, Gender) morpho-syntactic gender Syntax
leq(Label,Hole) scope/subordination constraint Scope

num(Inst, Number) morpho-syntactic number Syntax
pers(Inst, Person) person Syntax
prontype(I, PRef, PType) | type of a pronoun Discourse
pros_accent (Label) prosodic accent Prosody
pros_boundary (Label) prosodic (b3) marker Prosody
pros_mood (Label, PMood) prosodic mood Prosody
r_rel_s(Inst, Relation) Reichenbachian tense relation Tense and Aspect
sem_group(L, List0fLs) group of conditions Scope
syn_voice(Inst, Voice) voice information (for Japanese) | Syntax
s_concept (Inst, Sort) SemEval concept information Sorts
s_sort(Inst, Sort) sortal restriction Sorts

Tense and Aspect
Tense and Aspect
Tense and Aspect
Tense and Aspect
Scope

The argument values of the terms above and of the predicates described in the
next sections are given in the following table:

The ADT Package for the Verbmobil Interface Term

Argument Description or list of values

Art acc, ach, act, stat

Argx Hole, Inst, Label, Atom, or a Prolog list of the named Args

Aspect progr, nonprogr

Atom Prolog atomic

Case nom, gen, dat, acc

Check ground, shape

Class ambig, aux, disc, grad, mod, mood, noun, prep, pron, quant, verb

DialogAct Prolog atom

DialogPhase | Prolog atom

DType near, far, ident, spec

Functor Prolog functor

Gender fem, masc, neut

Hole or H Prolog atom starting with h or htfollowed by an unsigned integer

Info any valid term encoding information in a VIT

Inst or I Prolog atom starting with i or it followed by an unsigned integer

ID Prolog atomic

Label or L Prolog atom starting with 1 or 1t followed by an unsigned integer

Language de, en, jp

LAtom Prolog atom encoding a IATRX string

List0fLs Prolog list of Label elements

TMood ind, conj, imp

Number sg, pl

Person 1,2,3

PRef sp, he, sp_he, third, top

PType refl, std, refl_std, recip, imp, event, event_std, demon,
demon_event, zero (and intersent for Japanese)

PMood decl, prog, quest

Relation equal, overlap, follow, precede

SMood decl, imp, yng, ynq_imp, whq and ynq_decl (for Japanese)

SlotName ’Groupings’, ’Scope’, ’Tense and Aspect’, ’Main Label’,
’Prosody’, ’Discourse’, ’Semantics’, ’Sorts’, ’Utterance ID’,
’Syntax’

Sort sort expression: Sort;Sort or Sort&Sort or “Sort or Atom

TMod st_dist, st_equ, st_prec, st_perf, st_quant

Tense infin, plusq, perf, praet, pres, prespart, futI, futII (for Ger-
man and Japanese)
infin, pres, pastperf, past, future, futurepast, presperf (for
English)

Voice act, pass

VIT Verbmobil Interface Term (not necessarily ground)

YesNo yes, no

\/erbmob/'/ Report 104

1.5 The Prolog Implementation

In Prolog, the VIT is implemented as a term of arity 10 named vit. The name
and arity of this realization should be of no interest, if the access into the VIT is
always handled by the ADT package (or a similar abstraction). If this is the case,
we are not restricted to this implementation in future. As already pointed out, in
general, the information is encoded in lists. The elements are terms. This data
structure is very flexible in adding and removing information, i.e. the terms.

The input and output of each component dealing with the VIT has to make sure
the following properties:*

A VIT is (logical) variable free, i.e. all variables are skolemized.

A VIT contains only valid information, i.e. in general, lists of terms with
atomic arguments.

e The syntax of a term in a VIT is unique with respect to the slot it belongs to.
L[.e. the functor and arity are sufficient to uniquely determine the adequate
slot.

e There is only a fixed number of possible terms allowed in a VIT which are
restricted to a fixed number of possible argument values (enumerations) or
to specific types (e.g., integers).

For describing the predicates of the ADT package we use the “standard” notation
for call patterns (aka mode information):

+ the argument is expected to be instantiated (not necessarily ground) and
will not be changed during processing of the called predicate;

- the argument is expected to be a variable and will be bound during process-
ing of the called predicate;

? the argument can be instantiated when calling the predicate and/or will be
bound during processing of the called predicate.

The ADT package is realized as a Prolog module named vitADT which exports the
predicates described in the following sections. For further remarks on the usage
see appendix B.

40Of course, all partners are free to use any other representations within their components.

10

The ADT Package for the Verbmobil Interface Term

1.6 Overview

The rest of this documentation is organized as follows. In section 2 we present
the predicates for constructing a new VIT and filling it with information. In
section 3 and section 4 we outline predicates for information access and those for
deleting information, respectively. Section 5 informs about predicates for checking
VIT contents. In section 6 we show predicates for printing a VIT. Miscellaneous
predicates are described in section 7.

Appendix A explains how to get and install the ADT package and appendix B
shows how to use it. Appendix C introduces the term conversion pack-
age atom2term which is part of the ADT package distribution. Finally, ap-
pendix D sketches briefly the contents of the on-line dictionaries given by the
files vitSemLex.pl and vitValues.pl of the distribution.

For each predicate presented in this document we give the call pattern(s) and a
brief description sometimes including an example.

11

\/erbmob/'/ Report 104

2 Create and Fill the ADT

2.1 Introduction

With vitNew/1 a new VIT can be created, and with vitAdd/2 it can be filled
with content. In this case, the adding of information is realized by open ended
lists which should be closed finally using vitClose/1.

Once the open ended lists are closed vitAdd/3 can be used to add new information
to a VIT. vitAdd/3 takes a VIT, adds something and results a new VIT.

For rebuilding a given VIT which might be not compatible with the current format
vitRebuild/2 produces a new one.

The correct location for the information to be added is handled by the syn-
tax, i.e. by the form of a term the designated slot can be determined automati-
cally. The behaviour of vitAdd/{2,3} can be influenced using vitLazyCheck/0
or vitRegularCheck/0 (see section 5.4).

2.2 Predicates

vitNew(-VIT)

Generates a new VIT which can be filled, e.g. using vitAdd/2. At call time VIT
should be a variable.

Example:
| ?7- vitNew(VIT).

VIT = vit(_099,_100,_101,_102,_103,_104,_105,_106,_107,_108)

vitAdd (+Infos, ?7VIT)

Adds information to the contents of the a VIT. Infos can be a single Info or
a list of Info elements. An utterance id UID can be added using id(UID) for
Info. In the same way, the Main Label slot can be filled with a label Label
using main_label (Label). The behaviour of vitAdd/2 can be influenced using
vitLazyCheck/0 (see section 5.4).

Example:

| ?7- vitNew(VIT),
vitAdd(s_sort(il,top),VIT).

VIT = vit(_88,_89,_90,[s_sort(il,top)|_105]1,_92,_93,_94,_95,_96,_97)

12

The ADT Package for the Verbmobil Interface Term

vitAdd (+Info, +VIT, ?VIT)

Adds a single information Info to the contents of a VIT resulting a new or mod-
ified VIT. The behaviour of vitAdd/3 can be influenced using vitLazyCheck/0
(see section 5.4).

Example:
| ?7- vitNew(VIT),
vitAdd([id(xyz) ,main_label(11)],VIT),

vitClose(VIT),
vitAdd(s_sort(il,top),VIT,VIT1).

VIT = vit(xyz,[],11,01,01,01,00,00, 01, 1),
VIT1 = vit(xyz,[],11, [s_sort(il,top)],[1,01,01,01,01,[1)

vitClose (?VIT)
Closes the arguments of a VIT which may contain open ended lists.

Example:

| ?7- vitNew(VIT),
vitAdd(s_sort(il,top),VIT),
vitClose (VIT).

VIT = vit(_48,[],_50,[s_sort(il,top)],[1,0],[1,01,0],[1)

vitRebuild (+VIT,-VIT)

Produces a new VIT using the information found in a given VIT. The new one
may be different with respect to the location of information. Both VITs should
have arity 10 and should have the Utterance ID and Main Label slot at the same
argument position.

13

\/erbmob/'/ Report 104
3 Access the ADT

3.1 Introduction

In this section all predicates are listed which can be used to access the contents
of a VIT. We have divided these into two groups: the ones which access the slots
of a VIT and the ones which give direct access to the terms within the a VIT.

The slot access predicates have the form vit*(?VIT,?SlotContent) and can be
used to manipulate a slot directly. In general, the term access predicates have the
form vit*(+InstOrLabel,+VIT,?Value) taking an instance or label and a VIT
resulting a value, if the information is available. Otherwise, they fail.

3.2 Accessing the Slots

vitDiscourse(?VIT, ?Discourse)
Unifies Discourse with the Discourse slot of a VIT.
vitGroupings (?VIT, ?Groupings)
Unifies Groupings with the Groupings slot of a VIT.

vitID(?VIT, ?UtteranceID)
Unifies UtteranceID with the Utterance ID slot of a VIT.

vitMainLabel (?VIT, ?MainLabel)
Unifies MainLabel with the Main Label slot of a VIT.

vitProsody(?VIT, 7Prosody)
Unifies Prosody with the Prosody slot of a VIT.

vitScope (?VIT, 7Scope)
Unifies Scope with the Scope slot of a VIT.

vitSemantics(?VIT, ?Semantics)

Unifies Semantics with the Semantics slot of a VIT.

vitSorts(?VIT, ?Sorts)
Unifies Sorts with the Sorts slot of a VIT.

14

The ADT Package for the Verbmobil Interface Term

vitSyntax (?VIT, 7Syntax)
Unifies Syntax with the Syntax slot of a VIT.

vitTenseAspect (?VIT, 7TenseAspect)
Unifies TenseAspect with the Tense and Aspect slot of a VIT.

3.3 Accessing the Terms

Note: In general, the following predicates fail if the required information is not
part of the VIT used in a call.

vitAktionsart (+Inst, +VIT, 7Art)
Reports the Aktionsart value for a given instance.

vitAmbig(+VIT, -Ambiguities)

Reports all labeled conditions in the Semantics slot which belong to one of the
lexical ambiguity classes (see [Bos et al. (1996)]). Ambiguities is a list of such
conditions or [] if there are none.

vitAspect (+Inst, +VIT, 7Aspect)

Reports the aspect value for a given instance.

vitCase(+Inst, +VIT, ?Case)

Reports the case value for a given instance.

vitConcept (+Inst, +VIT, 7Concept)

Reports the concept value for a given instance.

vitDemonType (+Inst, +VIT, ?DType)

Reports the type of a demonstrative with instance Inst.

vitDialogAct (+VIT, ?7DialogAct)
Reports the the dialog act of a VIT.

vitDialogPhase (+VIT, ?DialogPhase)
Reports the the dialog phase of a VIT.

15

\/erbmob/'/ Report 104

vitDir(+Label, +VIT, 7YesNo)

Given the label of a preposition this predicate looks if it is marked directional
(YesNo = yes) or non-directional (YesNo = no).

vitEqual(?Label,+VIT,7Hole)

Checks if a label and a hole are marked as equal, i.e. the VIT contains an
eq(Label, Hole) term (backtrackable).

vitErelR(+Inst, +VIT, ?Relation)

Reports a tense relation for a given instance.

vitGroup(?Label,+VIT,-List0fLs)
Looks for a single grouping (backtrackable).

vitLabelInGroup(+Label,+VIT,-GroupLabel,-List0fLs)

Checks for a given label Label if it is a member of a ListOfLabels and requires
vitGroup (GroupLabel,VIT,List0fLabels).

vitMood (+Inst, +VIT, ?TMood)

Reports the (morpho-syntactic) mood value for a given instance (of a verb).

vitPerson(+Inst, +VIT, 7Person)

Reports the person value for a given instance.

vitPronType (+Inst, +VIT, ?PRef, ?PType)

Reports the reference and type of a pronoun with instance Inst.

vitProsAccent (+Label, +VIT)

Checks if there is a prosodic accent on the condition with label Label.

vitProsBound (+Label, +VIT)
Checks if there is a prosodic boundary on the condition with label Label.

vitProsMood (+Label, +VIT, 7PMood)

Reports the prosodic mood value of the condition with label Label.

vitRrelS(+Inst, +VIT, ?Relation)

Reports a tense relation for a given instance.

16

The ADT Package for the Verbmobil Interface Term

vitSegmentDesc(?VIT, 7ID, ?YesNo, ?LAtom)

Unifies a segment_description/3 term (see section 1.4).

vitSemEvalPlug(+Hole,+VIT,-Label)

Reports the plugging for a hole suggested by Semantic Evaluation. Checks for
eval_plug/2. If it is not available, it tests vitSynSemPlug(Hole,VIT,Label).

vitSentMood (+VIT, ?SMood)

Reports the sentence mood for a given VIT. SMood is the functor of the condi-
tion with label MainLabel and restricted to the sentence mood values given in
section 1.4.

vitSort (+Inst, +VIT, 7Sort)

Reports the sort value for a given instance.

vitSub0Ord (?Label,+VIT,?Hole)
Unifies with a subordination information leq(Label, Hole) (backtrackable).

vitSynGender (+Inst, +VIT, ?Gender)

Reports the (morpho-syntactic) gender value for a given instance.

vitSynNumber (+Inst, +VIT, ?Number)

Reports the (morpho-syntactic) number for a given instance.

vitSynSemPlug(+Hole,+VIT,-Label)

Reports the plugging for a hole suggested by Semantic Construction, e.g. based
on a syntactic analysis.

vitTMod (+Inst, +VIT, 7TMod)

Reports the temporal modifier value for a given instance.

vitTense(+Inst, +VIT, ?Tense)

Reports the (morpho-syntactic) tense value for a given instance.

vitVoice(+Inst, +VIT, ?Voice)

Reports the voice value for a given instance (of a Japanese verb).

17

\/erbmob/'/ Report 104
4 Copy and Delete Information

4.1 Introduction

vitCopy/2 makes a copy of a given VIT which shares no variables with the orig-
inal. vitDelete/3 deletes information in a given VIT. vitCopyAl1lBut/3 makes
a copy of a VIT without copying a specified slot.

4.2 Predicates

vitCopy (+VIT, -VIT)
Makes a copy of a VIT.
Example:

| ?- VIT = vit(A,[],B,[s_sort(il,top)],[1,0],01,01,00,0[D),
vitCopy (VIT,NewVIT) .

VIT = vit(A,[]1,B,[s_sort(il,top)],[1,[01,01,01,01,01),
NewVIT = vit(_8290,[1,_8292,[s_sort(il,top)]1,01,00,00,01,01,[1)

vitCopyAllBut (+Integer, ?VIT, ?VIT)

Makes a copy of all slots of a VIT without copying argument Integer. This pred-
icate should always be used in combination with vitSlotName/2 (see section 7).

Example:
| ?- VIT = vit(A,[1,B,[s_sort(il,top)],[1,01,01,01,01,01),

vitSlotName (’Sorts’,No),
vitCopyAllBut (No,VIT,NewVIT) .

No = 4

VIT = vit(A,[,B,[s_sort(il,top)],[1,01,00,00,01,01),
NewVIT = vit(A,[]1,B,_8300,[1,01,01,01,00,[1)

18

The ADT Package for the Verbmobil Interface Term

vitDelete(?Info, +VIT, ?VIT)

Deletes information from a given VIT, if it exists. Otherwise vitDelete/3 simply
unifies the output with the given VIT. Info cannot be a variable itself when call-
ing vitDelete/3 but can contain some. l.e. vitDelete/3 can be used for further
instantiating Info (not backtrackable).

Example:
| ?- vitDelete(s_sort(il,X),

vit(ul, [1,11, [s_sort(il,top)], 1,01, 01,00,00,0[1),
VIT).

X = top,
VIT = vit(ui,(]1,11,01,0,0,0,0,0,0D

19

\/erbmob/'/ Report 104

5 Check the VIT

5.1 Introduction

In this section all predicates are listed which can be used to check the VIT or
parts of it.

vitCheckFormat/1 checks a VIT syntactically whereas
vitCheckContent/1 does the same for dependencies between the pieces of in-
formation in a VIT. vitCheck/1 combines both predicates.

An error handler reports the results of the ADT checkers. The error reporting can
be toggled by vitReportErrors/0 (default) and vitDontReportErrors/0. The
error handler’s output can be redirected using vitErrorOutput/1 and reset to the
default output (user_error) by vitResetErrorOutput/0. The action after some
error(s) have been detected and reported can be chosen using vitIgnoreError/0
or vitFailOnError/0 (default).

vitLazyCheck/0 changes the behaviour of vitCheckFormat/1 and vitAdd/{2,3}
to be lazy with respect to the language specific parts of a VIT. This is important
when using information which is not known to the ADT package. The system will
report every detection of unknown information during processing but will not fail.
To switch off this mode use vitRegularCheck/0 (default).

Single information can be checked using vitValidInfo/{2,3} or
vitADT:validInfoCheck/3. The different types of arguments can be tested with
vitInst/1, vitLabel/1, and vitHole/1.

The language of the checker can be switched using vitSetLanguage/1. The cur-
rent language can be seen be using vitLanguage/1.

5.2 VIT Checkers

vitCheck (+VIT)
Combines vitCheckFormat/1 and vitCheckContent/1 (see below).

vitCheckFormat (+VIT)

Checks the syntax of the information in a given VIT. I.e. for each single Info the
compatibility with the semantic lexicon (e.g. argument frames for verbs) of the
current ADT language is checked and also the argument value ranges of the Info
terms.

20

The ADT Package for the Verbmobil Interface Term

vitCheckContent (+VIT)

Checks the dependencies between information in a given VIT. Currently, the
checking covers the following:

e unique concept/sort/tense/mood assignment to instances;
e existence of type information for pronouns and demonstratives;
e existence of (non-)directional information for prepositions;

e existence and uniqueness of leq/2, ccom_plug/2 and eval_plug/2 entries
for a hole;

e unique plugging for a single label,
e detection of cyclic groupings;
e missing groupings for group labels;

e existence of morpho-syntactic tense and mood for verbs.

Further checking for cycles and connections between information will be added in
future.

5.3 Error Handling

vitReportErrors

Reports all detected errors after checking (default).

vitDontReportErrors

Reports no errors even if some were detected during checking.

vitIgnoreError

Switches the checkers error handler to “ignore”, i.e. even if an error occured, the
checkers succeed (default).

21

\/erbmob/'/ Report 104

vitFailOnError

Switches the checkers error handler to “fail”, i.e. an error forces a failure.

vitErrorOutput (+File)

Redirects the checkers error output to a file or stream. File needs to be an
accessable and writeable file or a Prolog output stream. Default is user_error.

vitResetErrorQOutput

Switches error output to the default output, i.e. sets error output user_error.

5.4 Information Checking

vitLazyCheck

Using this mode vitCheckFormat/1 and vitAdd/{2,3} try to handle syntactically
unknown information.

vitRegularCheck

This mode assumes all information in a VIT to be known to the ADT package
(default).

vitSetLanguage (+Language)
Switches the ADT to a given language.
vitLanguage (?Language)

Reports current language setting.

vitValidInfo(+Info, +Check)
Same as vitValidInfo(Info, Check, _) (see below).

22

The ADT Package for the Verbmobil Interface Term

vitValidInfo(+Info, +Check, ?Slot)

Checks syntax of a given information and if it is valid for a slot. If Check ==
shape, only the form (functor and arity) of Info will be checked. In any other
case, a regular check will be performed assuming Info to be a valid instance.

Example:

| ?- vitValidInfo(s_sort(il,_),shape,S).
S = ’Sorts’
| ?- vitValidInfo(s_sort(il,top),ground,’Semantics’).

no
| ?- vitValidInfo(s_sort(il,top),ground,Slot).

Slot = ’Sorts’

vitADT:validInfoCheck(+Info,?Slot,-Code)

Reports checks for a given information Info. The valid slot for Info is unified
with Slot. Code is callable Prolog code for checking the arguments of an infor-
mation. This predicate is not exported by vitADT!

Example:

| ?- vitADT:validInfoCheck(pers(X,Y),Slot,Code).

Slot = ’Syntax’,
Code = vitInst(X),personValue(Y)
vitInst (+Inst)

Checks the syntax of an instance.

Example:

| ?7- vitInst(1l1).

no
| ?- vitInst(itl).

yes

23

\/erbmob/'/ Report 104

vitLabel (+Label)
Checks the syntax of a label.

vitHole (+Hole)
Checks the syntax of a hole.

24

The ADT Package for the Verbmobil Interface Term
6 Printing

6.1 Introduction

vitPrint/{1,2} pretty-print a VIT such that it can be used as a Prolog term
again.

6.2 Predicates

vitPrint (+VIT)
Pretty-prints a VIT (using current output stream).

Example:

vit(segment_description(tbltlbriul,yes,
’dann machen wir doch noch einen termin aus’),

[ausmachen(16,11), % Semantics
doch(19,h3),

termin(18,i2),

decl(17,h4),

arg1(16,i1,i3),

arg3(16,i1,i2),

noch_fadv_padv(15,115,h2),
ein_card_qua(14,i2,114,11,h1,1),
dann_laprep_padv(13,i1,h5,116,i4,h4,12,spec),
pron(112,i3)],
17, % Main Label
[s_sort(il,ment_communicat_poly), % Sorts
s_sort(i2,&(space_time,time_sit_poly)),

s_sort (i3, & (human,person))],

[dir(13,no0), % Discourse
prontype(i3,sp_he,std)],
[num(i3,pl), % Syntax

pers(i3,1),
gend(i2,masc),
num(i2,sg),
pers(i2,3),
cas(i2,acc),
cas(i3,nom)],

[ta_mood(il,ind), % Tense and Aspect
ta_tense(il,pres)],
[unbound(116), % Scope

unbound (115),
unbound (114),
leq(12,h4),
leq(12,h3),
leq(12,h2),
leq(12,h1),

25

\/erbmob/'/ Report 104

leq(19,h4),
leq(15,h4),
leq(14,h4),
ccom_plug(h5,19),
ccom_plug(h4,13),
ccom_plug(h3,15),
ccom_plug(h2,14),
ccom_plug(h1,12)],
[pros_mood(17,decl)], % Prosody
[sem_group(12, [16]), % Groupings
sem_group (11, [18])]
)

vitPrint (+Stream,+VIT)
Pretty-prints a VIT directing the output to a given stream.

26

The ADT Package for the Verbmobil Interface Term

7 Miscellaneous

7.1 Introduction

This part describes further predicates not covered by previous sections.
vitLabelCond/3 constructs or decomposes a labeled condition.

vitSlotName/2 can be used to list all slot names together with their argument
position in the current VIT implementation.

vitPredicate/3 and vitExistsPred/4 can be used to check for predicates.
vitExistsCond/3 can be used to check for any condition restricted by a class
and is similar to vitCondition/4.

vitInstInfo/3 can be used to collect all information about an instance.
vitDisambig/4 can be used to expand underspecified lexical items.

The ADT package can be initalized using vitInit/0 and the version can be
checked with vitVersion/1. The current ADT package settings are reported by
vitSettings/0.

7.2 Predicates

vitLabelCond (+LCond/-LCond, ?7Label, -Cond/+Cond)

Decomposes a given labeled condition LCond into a label Label and a condition
Cond or constructs LCond of Label and given Cond.

Example:

| ?- vitLabelCond (support(12,i1,15),L,C).

L
C

12,
support(il,15)

| ?- vitLabelCond(LC,L,support(il,15)).

LC = support(L,il,15)

27

\/erbmob/'/ Report 104

vitSlotName (?Name, ?Integer)

Name is a valid slot name and Integer its argument number in the current imple-
mentation (backtrackable).

Example:

| ?- vitSlotName(’Main Label’,I).

I =3

vitPredicate(+Condition,?Label,?Inst)

Succeeds if Condition is of VIT class verb, has base label Label and instance
Inst.

vitExistsPred(?Label,?Inst,+VIT,-Condition)

Succeeds if the given VIT contains a labeled condition Condition for which
vitPredicate(Condition,Label,Inst) holds. If Label or Inst are already
instantiated, vitExistsPred/4 is deterministic. Otherwise it is backtrackable,
i.e. can be used for look-up.

vitExistsCond(+Class,+VIT,?List0fArgs)

Matches the list ListOfArgs with the arguments of a condition which is of class
Class (for values of Class see section 1.4). The arity of the anonymous condition
has to be greater or equal to the length of ListOfArgs. The arguments are
matched from left to right.

vitCondition(?[Label,Arg2|Args],?Class,+VIT,?Cond)

Looks for a condition Cond with base label Label, second argument Arg2 and rest
of arguments Args in VIT (backtrackable). The search can be restricted by a given
class Class. Notice: No argX /3, X _arg/3, etc. and no elements of class aux
(like perf/3) will be matched!

vitInstInfo(+Inst,+VIT,-Infos)

Collects all information about an instance into a list of Attribute:Value pairs
for a given VIT.

28

The ADT Package for the Verbmobil Interface Term

vitAccessableLabels (+Label/?Label,?Label/+Label,+VIT)

Checks whether two labels are connected by a transitive closure > over labeled
conditions and scoping constraints (backtrackable). Given a label Labell/Label?2

this predicates enumerates all labels Label2/Labell for which Labell > Label2
holds. This closure is restricted by scopal islands given by modal verbs as well as
sentential complements.

vitDisambig(+Relation,+SemClass/PredName,+VITin,-VITout)
Given an underspecified semantic representation Relation, a specific semantic
class SemClass or predicate name PredName (for verbs) and a VIT, this predicate
produces a VIT in which the underspecification is replaced by an instance of the
specified class. Relation should be part of the given VIT, of course.

vitInit

Initializes the ADT package. vitInit/0 is called automatically during loading
the package.

vitVersion(?Version)

Reports the version of the ADT package in use.

vitSettings
Reports current settings such as error reporting, error output and language.

Example:

| ?- vitSettings.

%y VIT-ADT settings:

% vitRegularCheck

% vitIgnoreError

% vitReportErrors

% vitErrorOutput (user_error)
% vitLanguage (de)

29

\/erbmob/'/ Report 104

References

[Amtrup (1995)] Jan W. Amtrup. ICE - INTARC Communication Environment.
Users Guide and Reference Manual. Version 1.3. Verbmobil
Technisches Dokument 14, Universitat Hamburg, Oktober 1995.

[Bos et al. (1996)] Johan Bos, Markus Egg and Michael Schiehlen. Definition of
the Abstract Semantic Classes for the Verbmobil Forschungspro-
totyp 1.0. Draft of July 11, 1996. Available via WWW
http://coli.uni-sb.de/"vm/vm-internal/vitdocu.ps.gz
(access restricted to Verbmobil partners).

[CoLi (1996)] Karsten Worm (ed.). Japanese Semantic Database. Version of
July 23, 1996. Available via WWW
http://coli.uni-sb.de/ vm/vm-internal/vm-japan.html
(access restricted to Verbmobil partners).

[CSLI/DFKI/TAI/IBM/IMS/SES (1996)] Wolfgang Finkler (ed.) English Seman-
tic Database. Version 1.9 of July 23, 1996. Available via WWW
http://www.dfki.uni-sb.de/ " finkler/E-SEMDB.rdb (access
restricted to Verbmobil partners).

[Heinecke et al. (1996)]
Johannes Heinecke and Karsten Worm. Semantische Daten-
bank. Version 1.0, patch of July 24, 1996. Available via WWW
http://www.compling.hu-berlin.de/~vm/semdb/semdb-aktuell.gz
(access restricted to Verbmobil partners).

[Quintus Manual] Quintus Prolog User’s Manual. Quintus Prolog Release 3.2,
Quintus Corporation, Mountain View, California, 1995

30

The ADT Package for the Verbmobil Interface Term

A Getting and Installing the Software

The ADT package is available via anonymous ftp from the Verbmobil ftp-server
ftp.dfki.uni-sb.de at DFKI, Saarbriicken (access restricted to Verbmobil part-
ners). Then follow these steps:

ftp> cd EXCHANGE

ftp> bin

ftp> get vitADT1.6.2.tar.gz
Afterwards you have to unzip and untar the file at your local site, e.g. using

% gtar -zxf vitADT1.6.2.tar.gz
or

% unzip vitADT1.6.2.tar.gz; tar -xf vitADT1.6.2.tar

The distribution contains the following files:

README release notes (recent changes) and installation guide;
Makefile the makefile;

code/vitSemlex.pl the built-in semantic lexicon (see appendix D);
code/vitValues.pl value ranges of terms (see appendix D);

bin/vitADT.qof ADT package in module vitADT (with the semantic lexicon);
bin/atom2term.qof conversion of terms to atoms and vice versa (see appendix C);

doc/report-104-96.ps this document.

To install the software call
% make install

which copies vitADT.qof to $VM_HOME/etc/Vit_Adt. For a regular Verbmobil
Forschungsprototyp installation you should set the VM_HOME variable in Makefile
or the environment.

To run the software you neeed Quintus Prolog [Quintus Manual] Version 3.2 or
higher.

31

\/erbmob/'/ Report 104

B Usage

B.1 Using the Package

The name of the ADT package is vitADT.{pl,qof}. It is a usual library pack-
age which defines a module named vitADT. Hence it can be consulted like every
other Prolog file containing a module, e.g. by calling ensure_loaded (vitADT) or
use_module (vitADT, ListOfImportedPredicates).

If predicates of the ADT package are not imported into the current module,
predicate calls have to be prefixed with the module name vitADT, e.g. like
vitADT:vitPrint (VIT). If predicates are imported, the prefix can be omitted;
i.e. the same call may look like vitPrint (VIT).

B.2 Error Messages

The package produces error messages if the call patterns are violated. There
are two types of errors. Both types cause a predicate to fail. First, there are
instatiation errors: an argument was expected to be instatiated at call time. The
error looks like

! Instatiation error: <something> expected but <this> found
! Goal: vitADT:<goal>

The second type of errors are domain errors: an argument was instatiated with a
wrong argument type. Then the error message looks like

! Domain error: <something> expected but <this> found
! Goal: vitADT:<goal>

32

The ADT Package for the Verbmobil Interface Term

C Module atom2term

C.1 Introduction

The module atom2term exports predicates which can be used to convert terms to
atoms or strings (lists of character codes) and vice versa. These can be used to-
gether with ICE [Amtrup (1995)] if a Prolog component wants to use the message
type idl_string which is identical to a Prolog atomic.

A VIT has to be ground by definition, if a component sends or receives one
(see section 1.5). If a VIT is not variable-free calling term2atomic/2 or
term2string/2, numbervars/3 will be called. l.e. all variables will be instan-
tiated with *$VAR’ (Integer) terms. These ’$VAR’/1 might be invisible during
debugging because they look like regular variables!

C.2 Predicates

term2atomic (+Term, —-Atomic)

Converts a term Term to an atomic Atomic if necessary; inversion of
atomic2term/2.

Example:

| ?- term2atomic(term(argl(a),arg2(b)),A).

A = ’term(argl(a),arg2(b))’

atomic2term(+Atomic, -Term)

Converts an atomic Atomic to a term Term if necessary; inversion of
term2atomic/2.

Example:

| ?- atomic2term(’term(argl(a),arg2(b))’,T).

T = term(argl(a),arg2(b))

33

\/erbmob/'/ Report 104

term2string (+Term, -String)

Converts a term Term to a list of character codes String; inversion of
string2term/2.

Example:

| ?- term2string(term(argl(a),arg2(b)),A).
A = "term(argl(a),arg2(b))"

string2term(+String, -Term)

Converts a list of character codes String to a term Term; inversion of
term2string/2.

Example:

| ?- string2term("term(argl(a),arg2(b))",T).

T = term(argl(a),arg2(b))

34

The ADT Package for the Verbmobil Interface Term

D Built-in Semantic Lexicon Database

This ADT package contains the files vitSemLex.pl and vitValues.pl which
define an on-line database. Currently, there exists an on-line lexicon
for German (based on [Heinecke et al. (1996)]), for English (based on
[CSLI/DFKI/TIAI/IBM/IMS/SS (1996)]) and for Japanese (based on [CoLi
(1996)]). All three are based on the semantic class descriptions of [Bos et al.
(1996)] except for the changes and reductions mentioned below.

We give a brief description of the data which is part of the current ADT package.
The data was extracted of the named resources using UNIX shell scripts such as
awk, sed, etc. The result is mainly a reduction to relation names and semantic
classes. Hence it does not contain the whole information of the original, e.g. for
decomposition classes which are part of the German database. On the other hand,
we have changed some semantic classes and their names as follows:

old suffix | new name | VIT representation

iv argl R(L,I),argl(L,I,I1)

iv arg3 R(L,I),arg3(L,I,I1)

tv argl2 R(L,I),argl(L,I,I1),arg2(L,I,I2)

tv argl3 R(L,I),argl(L,I,I1),arg3(L,I,I2)

tv arg23 R(L,I),arg2(L,I,I1),arg3(L,I,I2)

dv argl23 R(L,I),argl(L,I,I11),arg2(L,I,I2),arg3(L,I,I3)
ipcv pcv_arg3 R(L,I),arg3(L,I,H)

pcv pcv_argl3 | R(L,I),argl(L,I,I1),arg3(L,I,H)

pcv pev.arg23 | R(L,I),arg2(L,I,I1),arg3(L,I,H)

dpcv pev_argl23 | R(L,I) ,argli(L,I,I1),arg2(L,I,I2),arg3(L,I,H)
coord coord_s R(L,LH,LH1)

coord coord_c R(L,I,LH,I1,L2,I2)

coord coord_2h R(L,I,H,I1,I2)

dra dra_conj R(L,I,H,H1)

dra dra_mod R(L,I,H)

sprep prep R(L,I,I1)

Some information was added manually which was not part of the databases,
e.g. this information was (still) forgotten. Contextual constrains such as grouping,
subordination, etc. are not part of this database. In general, these are the result
of a semantic construction process, i.e. that’s part of actions combined to phrase
structure rules.

35

\/erbmob/'/ Report 104

The database has the following form:

Language:vitSemLex (LabeledCondition,
SemanticClass,
Class,
ConditonCheckingCode,
Context0fCondition,
ContextCheckingCode,
SortalRestrictions) :- Goals.

As can be seen, the language Language defines a module in which a lexicon
vitSemLex/7 can be accessed.

The first argument is always a labeled condition LabeledCondition.

In general, the semantic class SemanticClass is given by [Bos et al. (1996)].
Exceptions are the named classes mentioned above.

The syntax checking code ConditonCheckingCode and ContextCheckingCode is
used, e.g., by vitCheckFormat/1. The callable predicates are either Prolog built-
in or library predicates, defined in vitValues.pl or already explained in previous
sections of this documentation.

The context list Context0fConditon is given by the class description. Together
with parts of the checking code like vitGroupLabel/1 this information is used in
vitCheckContent/1.

The list of sortal restrictions SortalRestrictions is extracted from the German
database. This information is not used in the ADT package.

Optional subgoals Goals are called when accessing a lexicon.

The vitValues.pl file contains predicates defining value ranges for designators
as described in [Bos et al. (1996)] or in the original databases.

36

Index

Language:vitSemLex/7......... 35
atomic2term/2................. 33
id/1 o 12
main label/1 12
segment_description/3......... 7
string2term/2................. 34
term2atomic/2................. 33
term2string/2................. 34
vitADT:validInfoCheck/3..... 23
vitAccessableLabels/3 29
VitAdd/2.......... 12
vitAdd/3. ... 13
vitAktionsart/3............... 15
vitAmbig/2l 15
vitAspect/3 15
vitCase/3.. ... 156
vitCheck/1, 20
vitCheckContent/1............ 21
vitCheckFormat/1 20
vitClose/1 ... 13
vitConcept/3.................. 15
vitCondition/4................ 28
VitCopy/2. oo 18
vitCopyAllBut/3............... 18
vitDelete/3 19
vitDemonType/3................ 15
vitDialogAct/2................ 15
vitDialogPhase/2 156
vitDir/3.......... 16
vitDisambig/4................. 29
vitDiscourse/2................ 14
vitDontReportErrors/0 21
vitEqual/3 16
vitErelR/3 16
vitErrorOutput/1 22
vitExistsCond/3............... 28
vitExistsPred/4............... 28

37

vitFailOnError/0 22
vitGroup/3 16
vitGroupings/2................ 14
vitHole/1...................... 24
VItID/2. . 14
vitIgnoreError/0 21
vitInit/0. ...l 29
vitInst/1............ 23
vitInstInfo/3................. 28
vitLabel/1 24
vitLabelCond/3................ 27
vitLabelInGroup/4............ 16
vitLanguage/1................. 22
vitLazyCheck/O0................ 22
vitMainLabel/2................ 14
vitMood/3...... .. 16
vitNew/1... ...t 12
vitPerson/3................... 16
vitPredicate/3................ 28
vitPrint/1 25
VitPrint/2 26
vitPronType/4................. 16
vitProsAccent/2............... 16
vitProsBound/2................ 16
vitProsMood/3................. 16
vitProsody/2.................. 14
vitRebuild/2.................. 13
vitRegularCheck/0............ 22
vitReportErrors/0............ 21
vitResetErrorOutput/0 22
VitRrelS/3 16
vitScope/2l 14
vitSegmentDesc/4 17
vitSemEvalPlug/3 17
vitSemantics/2................ 14
vitSentMood/2................. 17
vitSetLanguage/1 22

\/erbmob/'/ Report 104

vitSettings/0................. 29
vitSlotName/2................. 28
vitSort/3.. ... 17
vitSorts/2 ...l 14
vitSub0rd/3 ...l 17
vitSynGender/3................ 17
vitSynNumber/3................ 17
vitSynSemPlug/3............... 17
vitSyntax/2.......... 15
vitTMod/3. ... 17
vitTense/3couin. 17
vitTenseAspect/2 15
vitValidInfo/2................ 22
vitValidInfo/3................ 23
vitVersion/1.................. 29
vitVoice/3 ...t 17

38

