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ABSTRACT

In this paper, a new pitch synchronous F0-algorithm
is described. The task of detecting pitch periods in the
speech signal is solved with a search for an optimal path
through a space of pitch period hypotheses. The search is
efficiently implemented by dynamic programming (DP).
The DP cost function is computed with an automatically
trained artificial neural network (ANN) which combines
the outputs of heuristic functions measuring the similar-
ity of adjacent period hypotheses. With this algorithm a
coarse error rate of 4,75% on a German speech database
is achieved. It outperforms the DPFO0 algorithm, which
itselfs outperforms two “conventional” algorithms.

1. INTRODUCTION

Pitch is an important prosodic parameters in speech. It
is used for marking e.g. focal accent, prosodic boundaries,
or sentence mood (see [4], [8]). In [1] e.g. the importance
of prosody and especially of pitch for spontaneous speech
was proven. Because of its importance, lots of algorithms
for pitch determination have already been developed (for
an overview see [2]), but none of them has proven to work
robustly and/or accurately for all possible circumstances.
In [2] two categories of pitch determination algorithms
are distinguished: short term algorithms compute a mean
pitch frequency per frame, supposing that pitch does not
change within short speech segments. In contrast to that,
the category of pitch synchronous (also called time do-
main) algorithms detect in the speech signal each pitch
period corresponding to the instant of glottal closure. In
general, the results of the pitch synchronous algorithms
are more accurate but usually less robust than the results
of the short term algorithms (cf. [2]).

The results of pitch synchronous F0-algorithms can be
used in different areas of speech processing, e.g. for the
analysis of micro prosody, for the detection of irregular
portions of speech (i.e. laryngealizations), and for pitch
synchronous based feature extraction. Moreover, there is
a strong interest on high—precision pitch period determi-
nation with respect to text—to—speech synthesis as e.g. for

the PSOLA technique (cf. [5]).

In this paper, a new pitch synchronous algorithm is pre-
sented. It interprets the search for the pitch periods as an
optimization problem. Instead of detecting single pitch
periods independently from the other periods in a voiced
speech segment an optimal path along pitch hypotheses
with respect to an ANN cost function, which can be au-
tomatically trained, is determined.

1This work was funded by the German Federal Ministry for
Education, Science, Research and Technology (BMBF) in the
framework of the Verbmobil Project under Grant 01 IV 102
H/0. The responsibility for the contents of this study lies with
the authors.
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Figure 1. lllustration of generating initial hypotheses.

2. THE ALGORITHM
2.1. Basic Idea

Visual inspection of speech signals show a more or less
periodic structure within voiced segments; they can be
divided into similar looking small pieces: the pitch peri-
ods. Because excitation is only quasi—periodic pitch peri-
ods are not exactly of the same shape; as the excitation
and the properties of the vocal cords and the vocal tract
are changing in time, even adjacent pitch periods look
more or less different. These differences are very small,
especially the length of neighboring pitch periods differs
usually by not more than 5 percent. For the determi-
nation of pitch periods, it makes no sense to search for
them in isolation, i.e. without considering their vicinity.
Thus, in the algorithm described here, the path through
a search space of pitch period hypotheses is determined,
which among other criteria has minimal differences be-
tween neighboring pitch periods. The search for the best
path is efficiently implemented by dynamic programming
(DP), an algorithm used for optimization problems, when
a monotonous cost function is provided. The cost func-
tion is computed by means of an artificial neural network
(ANN) that can be trained automatically and combines
the outputs of heuristic functions measuring the similarity
between adjacent pitch periods.

Following these ideas the PDDP algorithm (Pitch Detec-
tion with DP) has been developed. It is divided into 4
steps: after preprocessing the sampled speech signal, the
positive zero crossings for each voiced segment are deter-
mined, then the search space of pitch period hypotheses
is generated, and finally the best path is computed. The
period hypotheses along this path represent the sequence
of pitch periods within the voiced segment.

2.2. Preprocessing

In the preprocessing step the speech signal is normalized
to a mean value of zero and the voiced regions are deter-
mined by an external frame-based voiced/unvoiced deci-
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sion (frame length: 10ms) based on threshold relations
for zero-crossing rate, signal energy, and maximum sig-
nal amplitude [3]. To restrict the search space of period
hypotheses, for each voiced segment or optionally for the
whole utterance an overall pitch level & is estimated with
a common short term FO0-algorithm like AMDF (Average
magnitude difference function, cf. [6]) or DPF0 (Dynamic
Programming FO0, cf. [3]).

2.3. Detection and filtering of zero crossings

In PDDP a pitch period is defined as a speech segment be-
tween two positive zero crossings. Therefore, the positive
zero crossings have to be extracted from the signal rep-
resenting the starting points of possible period hypothe-
ses. Each starting point is provided with additional infor-
mation describing the “shape” of the signal between the
starting point and the subsequent positive zero crossing
(e.g. energy, length, mean, position and height of maxi-
mum and minimum). These attributes are needed for the
search in the space of period hypotheses (cf. section 2.4).
Idealiter, there is exactly one positive zero crossing per
pitch period, but factual, a pitch period of a speech sig-
nal low pass filtered with 6,4 kHz contains many positive
zero crossings. To accelerate the search, the zero cross-
ings that are for sure not a starting point of a pitch period
are therefore eliminated, following heuristic criteria that
were developed by preliminary investigations on a data-
base with reference period markers:

o If the distance to the preceding positive zero cross-
ing is smaller than a threshold depending on the
computed pitch level & and the maximum ampli-
tude is smaller than a threshold relative to the max-
imum amplitude within the whole frame, then the
zero crossing is not considered as a starting point
and eliminated.

o If the mean of the signal values inside one segment,
the region of speech between two adjacent positive
zero crossings, is negative and the mean of the suc-
ceeding segment is greater, then the zero crossing is
eliminated.

e Elimination of all positive zero crossings, the mean
of which is smaller than the mean of the preceding
positive zero crossing.

2.4. Search in the space of period hypotheses

Based on the list of positive zero crossing, the pitch level
estimate (@ and a parameter p (the permitted deviation
of the length of two adjacent periods), the search space
of period hypotheses for a voiced region is constructed.
Only pitch period hypotheses are allowed, the length of
whom is restricted to the interval [Imin, Imaz], where

Imin = W seconds (1)
100
1
Imae = W seconds (2)
100

The generation of the search space of period hypotheses
and the search itself is performed simultaneously. For a
start, every period hypothesis, whose starting point is not
later than L = Iq, from the first positive zero crossing
of the voiced segment is called an initial hypothesis (see
Figure 1; A denotes the latest endpoint of all initial hy-
potheses). Initial hypotheses have no predecessor and get
as initial minimal costs the value 0. This strategy can
cause problems especially for relatively short voiced seg-
ments: e.g. the period hypotheses (1) and (2) in Figure 1
are both ending at point A. Hypothesis (1) is an ini-
tial hypothesis with minimal cost 0 because its starting
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Figure 2. Possible predecessors for an actual pitch hypothe-
sis.

point lies within the interval L. Hypothesis (2) is a “nor-
mal” period hypothesis with costs usually greater than
zero. Thus, a continuation of the path for (1) is cheaper
than for (2); this means, that longer periods are prefered
which may lead to subharmonic errors. To avoid this ef-
fect, the so-called postinitial hypotheses are introduced,
which have minimal costs 0 and an optimal predecessor.
All postinitial hypotheses have their starting point later
than I = I;,q, from the first positive zero crossing of the
voiced segment and their endpoints are located not later
than point A, which is the latest endpoint of all initial
hypotheses.
For each hypotheses p there are a number of possible paths
Py, leading to it with & € PATH(p) the set of indices of
all paths to p. Each of them have the following form:
Pr = {pk0a~~'apkn(k)—lapkn(k)=13}' (3)
n(k) is the length in number of hypotheses of the path Py
and the last hypothesis in this path is the actual hypoth-
esis p. Each of the possible paths begins with an initial
hypothesis
Pr, € {Initial hypotheses} (4)

and

pkj,pkj+1Vj:0...n(k)—1 (5)
are adjacent pitch hypotheses as shown in Figure 2. The
costs C(Pr) of a path Py are given by

n(k)—1

C(P) = Y K(pkprig) (6)

=0

with a cost function K(.,.) which gets as its inputs two
pitch hypotheses. The path P; which minimizes the equa-
tion 6 is prominent under all possible paths. It contains
the best path through the space of hypotheses with re-
spect to a given cost function K(.,.). Supposing a mo-

notone cost function K the minimal costs C;

C, = kePIE%nH(p)C(Pk) (7)

can be efficiently calculated by the following recursion

C;= min (O] +K(v.p), (8)

vEPRE(p)

where PRE(p) is the set of possible predecessors of the
hypothesis p. Supposing the minimal costs to all pre-
decessors of p have been calculated before, the minimal
costs of a path to p can be determined by choosing the
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Figure 3. Calculation of the cost function K(p;,p;) with
ANN. The left group of elemental cost functions are the
comparative cost functions, the right group are the elemental
cost functions scoring a hypothesis itself.

best path inside all optimal paths through its predeces-
sors. The final pitch hypotheses are determined by back-
tracking along the path with the minimal costs ending not
more than /4, away from the end of the voiced segment.

2.5. Cost function

A prerequisite for a DP search is that the cost function
is monotonous. Because voiced speech is usually a quasi-
periodic signal with a high degree of vanability, it was
necessary to develop various cost functions for character-
izing the similarity of two adjacent period hypotheses. In
total a set of 14 so-called primitive cost functions was es-
tablished, partially based on the attributes assigned to the
zero crossings described prior. The primitive cost func-
tions can be divided into two groups:

1. m = 4 (see Figure 3) cost functions characterizing
a hypothesis itself (e.g. by examining the position of
the global maximum or minimum inside the hypoth-
esis)

2. k = 10 comparative cost functions, which describe
the similarity of two adjacent period hypotheses (e.g.
the nonlinear distance between two hypotheses cal-
culated by dynamic time warping)

The results of the primitive cost functions are the input
values for the ANN (see Figure 3), which combines them
into one single distance value.

3. EXPERIMENTS

To evaluate the effectivity of the PDDP algorithm two
error measures are defined

1. a frame based coarse error occurs if the average of all
the periods within the frame differs from the refer-
ence value by more than 30 Hz

2. the period error is measured by aligning the reference
period sequence and the recognized period sequence
counting the shifts; deletions and insertions according
to the reference period markers.

Preliminary investigations have shown that there is — as
expected — a strong coherence between these two error
measures. Thus, in the following only the coarse error
rate is given.

The training database consists of 4 utterances of a read
corpus with 1 male and 1 female speaker and in total 1611
reference periods in 11.88 seconds of voiced speech. The
evaluation database consists of 16 utterances of a sponta-
neous corpus recorded under different conditions from 2

| Scoring function | coarse error

normalized summation 41.0%
ANN linear activation 55%
ANN sigmoid activation 5.0%

Table 1. Coarse error rate for different scoring functions

[ p [ # hypotheses | coarse error

20 37707 11.0%
30 51179 8.9%
40 78934 5.7%
45 88886 4.8%
50 101434 5.0%
60 132134 6.3%
80 273438 13.0%

Table 2. Coarse error rate and number of hypotheses in the
search space for various values of the permitted deviation (p)

male and 2 female speakers, in total 1 minute of voiced
speech with 9 986 pitch periods. The databases were sam-
pled with 16kHz and a manual pitch period marking exists
for both.

Together with the information of the correct pitch periods
inside the training database a training set for the ANN is
constructed by calculating the values of the primitive cost
functions for each correct and false pitch sequence. Be-
cause the ANN used in this algorithm has only one output
node there is one target value computed for each decision.
The easiest method for this target value for the ANN is
to quantize it into two values: 0 for a correct sequence of
pitch hypotheses and 1 for false sequences. A sequence
of pitch hypotheses consists of two adjacent hypotheses,
they are called “correct” when both of them are contained
in the correct path of reference periods through the space
of pitch hypotheses, otherwise they are called “false”. A
problem of this quantization is the strict and somehow un-
realistic distinction between correct and false sequences,
because there is a continuum including e.g. “almost cor-
rect”. Therefore a second method to compute the target
values was developed, which uses a heuristic quantization
into six monotonous different values representing the cor-
rectness of the periods. We observed that when training
an ANN with one hidden layer the way to determine the
target values does not influence the results. The ANN
seems to be able to learn the coherence of the primitive
cost functions even with unrealistic target values.

The advantage of using an ANN for combining all 14 prim-
itive cost functions is shown in Table 1. The summation
of the (i, o) normalized primitive cost functions leads to
a coarse error rate of 41 percent. Instead, when using
a coordinate descend to get the best weights in a linear
combination of the cost functions an ANN with linear ac-
tivation was used. The coarse error rate of 5.5 percent was
about 10 percent worse than using an ANN with sigmoid
activation function. There seems to be a more complex
coherence than a linear one, so in further experiments
only ANNs with sigmoid activation functions are used.
The effect of filtering the positive zero crossings is shown
in Table 3; the influence of various values for the permit-
ted deviation p on the coarse error rate (with G estimated
from reference, cf. below) is illustrated in Table 2. With
the filtering the number of hypotheses (and therefore the

[ Mode | # hypotheses [ coarse err. |
With filtering 88886 4.8%
Without filtering 113532 4.8%

Table 3. Influence of the filtering of the positive zero crossing
on coarse error rate and number of hypotheses in the search
space (p = 45)



| Algorithm | coarse error |
PDDP with & from reference 4.8%
PDDP with & from AMDF 6.2%
PDDP with & from DPF0 5.3%
DPFO T1%

Table 4. Coarse error rate of the PDDP algorithm with
different methods for the estimation of &

[ Excitation [ coarse error |

regular 3.8%
irregular 16.4 %

Table 5. Coarse error rate in regular and irregular speech
parts

computational effort) can be reduced by 22 percent with-
out any effect on the coarse error rate. The optimum for
the permitted deviation p is approx. 45 percent, i.e. as-
suming that the deviation of adjacent periods is smaller
than 45 percent yields the best results. When this factor
is decreased the search space does not contain every cor-
rect pitch period, when it is increased even the subhar-
monic periods are contained in the path which are also
well scored by the developed cost functions. The PDDP
algorithm was also tested using different methods for es-
timating the pitch level & (see Table 4). Obviously the
best result (4.8 %) was achieved when using the manually
extracted reference pitch period markers for the estima-
tion of ¢ for an utterance. The worst result (6.2%) was
obtained when using the AMDF algorithm for computing

&. The use of the short term algorithm DPF0 [3] for esti-

mating & leads to a error rate of 5.3 % which is about 25 %
better than computing the pitch of the sentences with the
frame-based DPFO0 algorithm itself (7.1%).

Because pitch detection in irregular speech (laryngealiza-
tions) is known to be a very difficult task, the PDDP-
algorithm was additionally evaluated separately for reg-
ular and irregular portions of speech (see Table 5). For
all the data used here a handlabelling of the laryngealized
frames was available; 7.2 % of the voiced speech in the test
database was marked as laryngealized. The high error
rate of 16.43 % in irregular portions of speech may have
two main reasons: first, there was very few training data
available of pitch periods in irregular speech (too little
for a robust training of the ANN) and second, the search
space often did not contain the correct pitch periods due
to the very long periods and the great inter-period de-
viations that can often be observed in laryngealizations.
Other reasons for pitch detection errors even in regular
parts of speech are some incorrect manual pitch period
markers in the reference and the loss of pitch periods to-
wards the end of voiced segments due to the increasing
influence of unvoiced excitation.

Because the training material was very small, in further
preliminary experiments PDDP was used to collect more
training data with reference pitch periods in an easy and
efficient way. Pitch periods in laryngograms (which were
recorded in parallel to the speech signals) of 10 reread sen-
tences of the spontaneous VERBMOBIL-corpus [9] were
determined, supposing that the detection of pitch periods
in laryngograms is more robust than in speech signals.
The pitch periods determined in the laryngograms were
mapped onto the period hypotheses in the speech signals.
The periods determined in that way were then be used for
training the ANN instead of the handlabelled reference
periods. The same coarse error rate could be obtained,
although the new training material was not manually cor-
rected.

4. CONCLUSION

We have no possibilities to compare this PDDP with other
algorithms for pitch period detection. However, since it
improves even the coarse error rate of the short term algo-
rithm DPFO significantly (which itself outperforms other
well known short term algorithms as AMDF and Sen-
eff [7]), we can conclude to have developed a very ro-
bust algorithm. An analysis of the coarse errors showed
that 30 % of the errors were located at the end or at
the beginning of voiced segments, other errors occurred
in laryngealizations.

The method of collecting new training material only by
using the laryngogram as a basis for pitch detection and
by mapping these pitch periods onto the speech signal is
very encouraging. It is planned to use this method within
a bootstrap strategy. To avoid the effect of an erroneous
pitch reference for the construction of the training set,
currently the pitch periods are extracted manually for a
part of the VERBMOBIL-corpus.

In addition the use of the neural network cost function
used by this algorithm as an indicator for laryngealiza-
tions is evaluated and the optimization of the search
process with incorporation of a beam search algorithm
are examined.
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