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ABSTRACT

Prosodic boundary detection is important to disam-
biguate parsing, especially in spontaneous speech, where
elliptic sentences occur frequently. Word graphs are an
efficient interface between word recognition and parser.
Prosodic classification of word chains has been published
earlier. The adjustments necessary for applying these
classification techniques to word graphs are discussed in
this paper. When classifying a word hypothesis a set of
context words has to be determined appropriately. A
method has been developed to use stochastic language
models for prosodic classification. This as well has been
adopted for the use on word graphs. We also improved
the set of acoustic—prosodic features with which the recog-
nition errors were reduced by about 60% on the read
speech we were working on previously, now achieving 10%
error rate for 3 boundary classes and 5% for 2 accent
classes. Moving to spontaneous speech the recognition er-
ror increases significantly (e.g. 16% for a 2—class boundary
task). We show that even on word graphs the combina-
tion of language models which model a larger context with
acoustic—prosodic classifiers reduces the recognition error
by up to 50%.

1. INTRODUCTION

In automatic speech understanding systems prosody can
be used to disambiguate during syntactic analysis or se-
mantic interpretation [14] or it can be used to guide dialog
control [7, 6]. The research presented in this paper has
been conducted under the Verbmobil project (henceforth
VM, cf. [15]) which aims at automatic speech—to—speech
translation in appointment scheduling dialogs. Currently,
we concentrate our efforts in prosody on the recognition
of clause boundaries and of accentuated words.
The clause boundaries are used for disambiguation during
parsing. In general and in the VM corpora as well sponta-
neous speech contains many elliptic sentences. Thus, it is
very important to reduce the search space during parsing
by the means of prosodic clause boundaries. The following
sentence is a typical example taken from the VM corpora:
ja | zur Not | geht’s | auch | am Samstag |
The vertical bars indicate possible positions for clause
boundaries. In written language most of these bars can be
substituted by either comma, period or question mark. In
total there exist at least 36 different syntactically correct
alternatives for putting the punctuation marks. The fol-
lowing examples show two of these alternatives together
with a translation into English:
1. Ja? Zur Not geht’s? Auch am Samstag?

Really? It’s possible if necessary? Even on Saturday?
2. Ja. Zur Not. Geht’s auch am Samstag?

Yes. If necessary. Would Saturday be possible as well?
The position of the phrasal accent is used for disambigua-
tion as well. Consider the following example:

Dann mussten wir noch etnen Termin ausmachen.

1This work was funded by the German Federal Ministry of
Education, Science, Research and Technology (BMBF) in the
framework of the Verbmobil Project under Grants 01 IV 102
H/0 and 01 IV 102 F/4. The responsibility for the contents of
this study lies with the authors.
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If the phrase accent is on the particle ‘rnoch’, an appropri-
ate translation would be:

Then we need another meeting date.
The default position of the phrasal accent is, however, on
"Termin’ with the following translation:

Then we still need a meeting date.
In [10] the automatic detection of phrase boundaries has
been successfully used to rescore the n—best sentence hy-
potheses computed by a word recognizer, i.e. the quality
of the best sentence hypothesis has been improved by the
rescoring. In the VM project the interface between word
recognition and parsing is a word graph, which is a com-
pact representation of n—best word chains. The parser is
integrated in an A*-search for the best path in the word
graph [12]. In this way, parsing is very efficient, because
when using n—best word chains the same partial chains
have to be parsed repeatedly. The overhead for the A*-
search is neglectable. During the A*-search, the partial
parses are scored by combining the scores of the acoustic
models, a language model, and the prosody module [1].
Because the search space is very large the prosody module
cannot compute its scores based on the word chains un-
derlying partial parses, but it has to score the word graph
prior to the syntactic analysis.
First promising results concerning the use of prosodic
clause boundaries during parsing of word graphs have
been presented in [1] for a train time table inquiry task
using read speech. In this paper we will focus on the
implications of scoring word graphs vs. word chains. Ex-
perimental results are presented for the spontaneous VM
speech data.
The paper is organized as follows: Firstly, the speech data
is specified; secondly, the methods used in the experi-
ments are described including the training of the acoustic—
prosodic model, the algorithm for polygram—classification,
and scoring word graphs prosodically. Finally, experimen-
tal results are given.

2. MATERIAL
The ERBA material has already been described in [5, 2];

as in these studies 6,900 utterances were used for training
and 2,100 utterances were used for testing.

For VM there are 25 dialogs labelled prosodically. Out
of these we chose 22 for training (592 utterances, 32 dif-
ferent speakers, 71 minutes of speech, 9336 words), and
3 for testing (80 utterances, 4 different speakers). For
these 80 utterances word graphs of approx. 19 words per
spoken word (not counting non—verbals and pauses) were
generated with our word recognizer [13]. 48 of these word

graphs contained the spoken word chain®?. These make
up the test set for all VM evaluations described in this
paper (cf. Section 4.3)3. These 48 utterances consist of
237 seconds of speech, 520 words.

2The word accuracy for the VM data is in the order of 70%.
For the generation of these word graphs the bigram language
model for the word recognizer has been trained on and thus
restricted to the 80 test sentences. The acoustic models were
trained on a larger corpus.

3The recognition rates on the spoken word chain are of the
same order as in Section 5 when using leave—one—out mode for
training/testing.
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| | ERBA | VM |
B9 | not used

irregular boundary,
mostly hesitation
lengthening

B3 | sentence or clause
boundary

main phrase boundary

B2 | constituent boundary
prosodically marked

intermediate phrase
boundary

B1 | constituent boundary not used

not prosodically

marked

B0 | every other word every other word
boundary boundary

A4 | not used emphatic or

contrastive accent

A3 | sentence accent not used

(1 per B3 phrase)

A2 | primary phrase accent | primary phrase
(1 per B2 phrase) accent

A1l | secondary phrase secondary phrase
accent accent
(1 per B1 phrase)

A0 | unaccentuated

syllable

unaccentuated

syllable

Table 1. Definition of the prosodic labels

For VM the prosodic reference labels are based on per-
ceptive evaluation done by non-naive listeners [11]. For
ERBA they were created automatically based on rules us-
ing linguistic knowledge and expectations about prosodic
marking. Listening experiments showed a high agreement
with the automatically created labels [2]. Thus there is
a rough correspondence between the reference labels for
ERBA and VM. A list of all the labels is given in Ta-
ble 1. The VM test utterances contain 74 B3, 36 B2,
13 B9, and 349 B0 boundaries not counting the end of
utterances. They also contain 243 accentuated words.
Note, that the boundary labels are attached to word
boundaries and the accent labels to each of the syllables
in the spoken words.

3. ACOUSTIC-PROSODIC FEATURES

The computation of the features is based on a time align-
ment of the words on the phoneme level computed during
word recognition. For each syllable to be classified the fol-
lowing prosodic features were computed from the speech
signal for the syllable under consideration and for the six
syllables in the left and the right context:

e the normalized duration of the syllable nucleus [16]

e the FO minimum, maximum, onset, and offset and
the maximum energy and their positions on the time
axis relative to the position of the actual syllable

e the mean energy, and the mean FO

o flags indicating if the syllable carries the lexical word
accent or if it 1s in a word final position

Furthermore the following features were computed only
for the syllable under consideration:

o the length of the pause (if any) preceding or succeed-
ing the word containing the syllable

e the linear regression coefficients of the FO—contour
and the energy contour computed over different 15
windows to the left and to the right of the syllable

This yields a total of 242 features. The feature set proba-
bly contains useless or redundant features, but to our ex-
perience this does not hurt the classification performance
of the neural networks provided enough training data. In
[4] the contribution of different groups of features to the
classification results was investigated.

4. METHODS

4.1. Training of the acoustic—prosodic model

Multi-layer perceptrons (MLP) were trained using Quick-
propagation to classify the features described in Section 3.
Training 1s based on the time alignment of the spoken
word chain, which was computed with our hidden Markov
model (HMM) word recognizer [13]. For the experi-
ments on the VM data, MLPs with 40/20 nodes in the
first /second hidden layer were used. For ERBA, where
more training data is available, a MLP with 60/30 nodes
in the first/second hidden layer was used. The MLPs have
one output node per class.

For ERBA one MLP was trained to distinguish between
the six classes A0B01, A0B2, A0B3, A123B01, A123B2,
A123B3. All the 242 features described in Section 3 were
used as input. This MLP was used separately for bound-
ary and accent classification. In both cases the MLP out-
puts were added appropriately.

Since for VM much less training data was available, we
used different subsets of the prosodic features of Section 3,
and we trained separate MLPs for boundary and accent
classification: one MLP distinguishes between A0 and
A124, another between B0, B2, B3, and B9, and a third
one between B029 and B3.

In the following, we assume that the MLP computes a
posteriori probabilities. However, in order to balance for
the a priori probabilities of the different classes, during
training the MLP was presented with an equal number
of feature vectors from each class. Furthermore, the sum
of the MLP outputs was normalized to be equal to one,
though we observed that in most cases the sum is close to
one.

4.2. Polygram-—classification

In [5] we already showed that a combination of an
acoustic—prosodic classifier for phrase boundaries with a
stochastic language model improves the recognition rate.
At that time we worked on the spoken word chain. In the
following a modification of the language models is pro-
posed, so that they can be used for classification on the
basis of word graphs.

Let w; be a word out of a vocabulary where ¢ denotes the
position in the utterance; v; denotes a symbol out of a pre-
defined set V' of prosodic symbols. These can be for exam-
ple {B01, B2, B3}, {A01, A23} or a combination of both
{B01A01, B01A23,..., B3A23} depending on the specific
classification task (cf. Section 2). For example v; = B01

means that the " word in an utterance is succeeded by
the prosodic label B01 (i.e., no prosodic boundary), and

v; = A23 means that the ¢/ word is accentuated.
Ideally one would like to model the following a priori prob-
ability

P(wiviwzvz ... wnvpy,)

which 1s the probability for strings, where words and
prosodic labels alternate (m is the number of words in
the utterance).

In [5] we used a language model similar to this one to
score chains containing words and prosodic labels. In the
following, we are interested in the recognition of prosodic
classes given a (partial) word chain (which in the case of
word graphs is obtained from the best path through the
word hypothesis to be classified). When determining the
appropriate label to substitute v; the labels at positions
vi—xr and viyr are not known (k = 1,2,...). Thus, we
used the following probabilities:

P(w: ... wiviwig1 ... wy) = PP Pr (1)
where P, P,, and P, are defined as follows:

P = P(wi)P(wz|wy) ...  Plwi|wy ... wi—1) (2)
P, = P(viwi...w;) (3)
P = Pwigi|wr ... wiv;)

cooo Pluplwr o wiviwig o wme1) (4)



Terms like w; ... w; in P(vi|wy ... w;) are called history.
As usual in stochastic language modelling the history has
to be restricted to a certain length [8]. The stochastic
language model approach we used is the so called polygram
[13], where the histories have variable length depending
on the available training data. A maximum history length
can be defined.

For each word boundary in the training corpora of ERBA
and VM a sufficient number of context words (according
to the maximum history length) and the corresponding
prosodic reference label are extracted from the text cor-
pora and used to estimate the probabilities of the equa-
tions above by counting the frequencies (maximum likeli-
hood estimation) as usually done when training stochastic
language models. In fact, not the above probabilities are
used, but the words are put into categories. In the case of
ERBA only the names of train stations, days of the week,
month names, ordinal numbers, and cardinal numbers are
put into categories. All other 392 words are not grouped
into categories. In the case of VM all the 1186 words were
put into 150 categories.

We used the so trained polygrams for the classification of
prosodic labels. Given a word chain w;i ... w;...wm, the
appropriate prosodic class v} is determined by maximizing
the probability of equation 1:

*
v; = argmax P(wi...wiv;wiq1... W)
v; EV

Note, that the probability P; is independent of v; (equa-
tion 2). Thus this maximization (and »]) are indepen-
dent from P;. Note also, that v} does not only depend on
the left context (probability P,, equation 3) but also on
the words succeeding the word w; (probability Py, equa-
tion 4). In practice, the context is restricted to the maxi-
mum history length H; used during training of the poly-
gram:

vl = argmax P(Wi—g, ... Wi%Wit1 ... Wit ) (5)
v; EV

4.3. Prosodic scoring of word graphs

A word graph is a directed acyclic graph [9]. Each edge
corresponds to a word hypothesis which is attached with
the acoustic probabilities, the first and the last time
frame, and a time alignment of the underlying phoneme
sequence. The graph has a single start node (correspond-
ing to time frame 1) and a single end node (the last time
frame in the signal). Each path through the graph from
the start to the end node forms a sentence hypothesis.
Each edge in the graph lies on at least one such path. In
the following the term neighbors of a word hypothesis in
a graph refers to all its predecessor and successor edges.
With prosodic scoring of word graphs we mean in fact
the annotation of the word hypotheses in the graph with
the probabilities for the different prosodic classes. These
probabilities are used by the other modules (e.g. pars-
ing) of a speech understanding system. Note, that also
in the case of phrase boundaries we do not compute the
probability for a prosodic boundary located at a certain
node in the word graph, but for each of the word hy-
potheses in the graph the probability for a boundary be-
ing after this word is computed. This is important, since
the acoustic—prosodic features also include the duration
of syllable nuclei; these are most robustly obtained from
the time alignment of the phoneme sequence underlying a
word hypothesis computed with the word recognizer, and
these durations have to be normalized with respect to the
intrinsic phoneme duration.

The following steps have to be conducted for each word
hypothesis w;:

1. determine recursively appropriate neighbors of the
word hypothesis until a word chain w;_g ... w;4; is
built which contains enough syllables to compute the
acoustic—prosodic feature vector and where k > Hy,
> H;.

2. for each v; € V' and for each syllable s in the word
w; compute the probabilities

where

b Qu,
sv; T = A
' Zv,GV stl

Qsv;, = P(vi|ciS)P'f(wi_HL e WVIWig .. Wit EY)

Note, that in the case of boundaries only the word
final syllable is considered.

¢;s denotes the acoustic—prosodic feature vector, £ is a
weight for the combination of the acoustic—prosodic model
probability (P(v;|cic) computed by the MLP) and the lan-
guage model probability; its value has been determined
empirically. Different values were used for the different
classification experiments described in Section 5.

In the current implementation we just select the hypothe-
sis which is most probable according to the acoustic model
as the “appropriate” neighbor of w;. Note, that this is
suboptimal, because the context words may differ from
the spoken words. An exact solution would be a weighted
sum of all probabilities P.,, computed on the basis of all
the possible contexts. However, this does not seem to be
feasible under real-time constraints. As a trade—off the
neighbors could be determined on the basis of the best of
the paths through the graph which contain the hypothe-
sis w;. The best path could be determined efficiently with
dynamic programming using acoustic and language model
scores.

The duration of a syllable nucleus should be normalized
with respect to the average speaking rate, which is the
reciprocal of the average of the intrinsically normalized
phoneme durations [16]. The speaking rate has to be de-
termined on the basis of the word graph:

o the local speaking rate is determined on the neighbors
of word w;

o the global speaking rate is the average of the speaking
rates of all hypotheses in the graph weighted by their
acoustic scores.

All the experiments described below were obtained by us-
ing the global speaking rate, for which - compared to the
local speaking rate - slightly better results could be ob-
served for experiments based on the word chain; whereas
on word graphs the local speaking rate performs slightly
better.

The evaluation of the prosodic scores only makes sense on
the word graphs containing the spoken word chain:

1. score the word graph prosodically with the probabil-
ities P.,,. Note, that this is based on the best paths
through the hypotheses which may be different from
the spoken word chain

2. for each word contained in the (best) path corre-
sponding to the spoken word chain and in the case
of accent classification for each syllable in the word
determine the prosodic class with the largest proba-
bility P..; (i.e. the recognized class)

3. compare the recognized classes with the reference la-
bels and determine the recognition error

5. EXPERIMENTAL RESULTS

In Tables 2-5 the recognition rates for different experi-
ments on ERBA and VM are presented. LMy denotes the
polygram—classification as described in Section 4.2, where
h specifies the maximum context allowed during train-
ing of the polygram. LMyigram denotes the probabilities
P(vi|w;), i.e. no (suboptimal) context has been used. The
columns ‘word chain’ refer to experiments conducted on
the time alignment of the spoken word chain.

On ERBA we could improve the recognition rate for ac-
centuated vs. non—accentuated syllables with respect to
[4] from 88.7% to 94.9%. The results for the bound-
ary recognition are given in Table 2: using the MLP the
recognition rate could be improved from 75.7% to 90.3%
in comparison to [4]; the main improvement results from
the additional use of syllable nucleus durations of the con-
text. With the polygram classifier alone a recognition rate
of 99.3 could be achieved. This surprisingly good result



| | average | BOI [ B2 | B3 |
MLP 90.3 89.8 | 92.2 | 90.6
LM, 97.7 98.4 | 95.9 | 93.9
LM 99.3 99.6 | 98.4 | 99.4

Table 2. Recognition rates in percent for B01 vs. B2 vs. B3
on ERBA (word chains)

| | average [ BO [ B2 | B3 [ B9 |
MLP 60.6 59.1 ] 48.3 | 71.9 | 68.5
LM 82.1 95.9 | 11.4 | 59.6 | 28.1

Table 3. Recognition rates in percent for B01 vs. B2 vs. B3
vs. B9 on VM (word chains)

is at least partly caused by the rather restricted syntax of
the ERBA material.

Table 3 shows the recognition rates for the VM 4—class
boundary problem. The results seem not to be very good.
Probably, the main reason for this is the small amount of
available training data.

In Table 4 the recognition rates for accentuated vs. non—
accentuated syllables for VM are given. The performance
on word graphs is only slightly worse than on the word
chain.

Currently the syntactic analysis in VM is mostly inter-
ested in probabilities for B3 boundaries. Thus, we per-
formed a series of experiments the results of which are
presented in Table 5. Due to the suboptimal context de-
termined for each word hypothesis, the recognition rate
drops when switching from the word chain to word graphs.
Increasing the history size modeled by the polygram im-
proves the recognition rate, even in the case of word
graphs. Due to the sparse training data a history of more
than 2 symbols does not change the recognition rate. A
combination of both, acoustic—prosodic model (MLP) and
stochastic language model (polygram LM>) yields the best
recognition rate (91.7%).

We also tested on VM the MLP trained on ERBA. The
recognition rate for accents dropped by only 4%, while the
one for the B3 boundaries dropped by 17%. We believe
that this increase in error is mostly due to the differences
in intonation between read and spontaneous speech.

6. CONCLUSION

We showed that the prosodic scoring of word graphs is fea-
sible without a great reduction in recognition rate. Fur-
thermore, a method for combining acoustic—prosodic and
stochastic language model scores for prosodic classifica-
tion purposes has been successfully applied on the basis
of word graphs.

In preliminary parsing experiments performed by our col-
leagues at Siemens Munchen [3] on word graphs computed
on VM speech data, the parse time and the number of
parse trees could be decreased even more than reported
for the ERBA data [1] when using probabilities for B3
boundaries computed with the MLP described in this pa-
per.

The prosodic scores for all of the alternative classes of
interest are attached to the word hypotheses in the graph
and passed to the other modules (e.g. syntactic analysis,
semantic interpretation). They are supposed to use these
scores rather than a single class symbol.

In this paper we did not consider the classification of sen-
tence mood depending on the intonation contour. How-
ever, in the current version of our prosody module the
classifier described in [6] is used to compute the probabil-
ity for three different classes of sentence mood which is as
well attached to the word hypotheses in the graph.
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