
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Technical
Memo
TM-98-07

The RAWAM: Relfun-Adapted WAM
Emulation in C

Markus Perling

December 1998

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRO
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210
E-Mail: info@dfki.uni-kl.de

WWW: http ://www.dfki.de

Stuhlsatzenhausweg 3
66123 Saarbriicken, FRO
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341
E-Mail: in fo@dfki.de

The RAWAM: Relfun-Adapted WAM
Emulation in C

Markus Perling

December 21, 1998

Abstract

This work describes the C implementation of the Relfun-Adapted WAM (RAWAM).
The RAWAM is an abstract machine tailored to the relational-functional language Relfun,
designed and implemented on the basis of the Warren Abstract Machine (WAM). Its goal is
to replace an older LISP-implemented Relfun WAM by delivering comparable functionality
at higher speed. The RAWAM implementation is introduced by reference to Hassan Ai:t­
Kaci's book "Warren's Abstract Machine: A Tutorial Reconstruction" , and the present
work will emphasize the differences and extensions w.r.t. this book. These include an
assembler, an optimizer, a rudimentary module system, a more flexible realization of the
standard WAM memory layout , as well as Relfun-specific extensions for functional and
relational builtins, sorts, generalised indexing, and a simple higher-order facility. The
implementation of the RAWAM will be described in terms of pseudo code and schematic
patterns for the data structures. A relational-functional benchmark revealed a speed-up
factor of 20-30 of the RAWAM compared to the older WAM.

CONTENTS

Contents

1 Introduction

2 Notions

3 Overview
3.1 File Interface
3.2 What RAWAM gets from the RFM Compiler

3.2.1 Sort Data
3.2.2 WAM Routines

3.3 Supported ReI Fun Language and Compiler Features
3.3 .1 Basic Instruction Set and Data Types
3.3.2 Generalized Indexing.
3.3.3 Cut
3.3.4 Higher Order
3.3.5 Arithmetics.
3.3.6 Types
3.3.7 Extra Instructions

4 Global Organisation

5 Modules
5.1 Using Modules
5.2 Semantics of Modules
5.3 Standard Modules

6 Hash Tables

7 The Byte Code

8 Generation of the Internal Program Representation
8.1 Tokenizer
8.2 Assembler

8.2.1 getsortbase
8.2 .2 get code and getquery

8.3 The Optimizer

9 WAM Registers

10 WAM Extensions
10.1 WAM Data Types
10.2 Sorts
10.3 Higher Order ...

11 Heap, Stack, Trail, PDL
11.1 General Handling of HST
11.2 Heap

11.2.1 Data.
11.2.2 Access

11.3 Trail
11. 3.1 1hilcells
11.3.2 Access .

11.4 Stack
11.4.1 Layout ..
11.4.2 Stackcells
11.4.3 Timestamps.
11.4.4 Access

2

4

5

6
7
7
8
8
9
9
9
9

10
10
10
10

10

12
12
12
13

13

14

15
15
17
17
18
19

19

20
20
20
23

24
25
26
26
26
30
30
30
32
33
33
34
34

CONTENTS 3

12 Auxiliary Items 35
12.1 Memory Management for Linked Lists 35

13 Conclusions 36

A Some Corrections 38

B Overview: Supported WAM Instructions 38
B.1 Instructions as in Alt-Kaci's description of the WAM 38

B.l.1 Put instructions 38
B.l.2 Get instructions 38
B.l.3 Unify instructions 38
B.l.4 Control instructions 39
B.l.5 Choice instructions 39
B.l.6 Indexing instructions 39
B.l.7 Cut instructions 39

B.2 Additional Instructions. . . . 40
B.2.1 Arithmetics Instructions 40
B.2 .2 Miscellaneous Instructions . 41
B.2.3 Integrating Instructions 41

C A Demo Script 42

1 INTRODUCTION 4

1 Introduction

In this work we describe the C implementation of the Relfun-Adapted WAM (RAWAM). This
implementation arose out of the author's attempt to understand the principles of the Warren's
Abstract Machine ([War83], [War77], [GC96], [AK91]' [GLL085], [VR94], [MW88], [Rus92)).
It came along with the question of how to increase the speed of the LISP-implemented abstract
machines for our relational-functional programming language, ReI Fun ([BoI97)) .
The RAWAM is now the first component of the RelFun implementation which is fully realized
in a low-level language, and it succeeded in both, providing a clarified understanding of the
WAM and an increased execution speed for RelFun programs, currently by a factor of 20 to
30 compared to the fastest earlier implementations (the absolute speed of the RAWAM reaches
approximately 350 KLIPS on an UltraSPARC hardware). However, RelFun's compiler was not
designed to be high-level optimizing and also requires the RAWAM to support more extended
features such as sorts. Moreover, the RAWAM's implementation is kept as portable as possible;
so , e.g., no machine-dependent assumptions on the size of data structures were made. Further,
the transition to an even lower-level native-code compilation has not yet been done; but for this
the RAWAM can serve as an intermediate step. A good demonstration of RelFun 's enhanced
speed and, incidentally, an important testbed for the RAWAM, is the implementation of the
GeneTS genetic algorithm using methods of declarative programming in [Per97]. The GeneTS
work couldn't have been done without such a fast enough execution model.
RelFun utilizes several execution principles - besides the interpreter, there is a WAM, called
GWAM, which originated from the work of Nystr0m ([Nys85)), and a functional abstract ma­
chine, LLAMA, both described in [Sin95] and [BEH+96]. RelFun's compilation logic mostly
relies on the WAM part, so it was a natural choice to advance to a C implementation of the
RelFun WAM. Indeed, the RAWAM's goal is to be a full replacement of the GWAM.
The RAWAM system includes an assembler, a small optimizer, a rudimentary module system, a
more flexible realization of the standard WAM memory layout, as well as many Relfun-specific
extensions, an overview of which is given in subsection 3.3.
The description that follows will base on Hassan Ait-Kaci's book "Warren's Abstract Machine:
A Tutorial Reconstruction" ([AK91)) (while this book is out of print, an online postscript version
for non-commercial use can be found at [AK95)). All features that hallmark the RAWAM are
extensions to the WAM described therein. Along these lines, we will emphasize mainly the
differences and extensions w.r.t. to this book.
Because the RAWAM is so related to the WAM, we will try to describe its implementation in
such a way that it can be easily enhanced and adapted to other logic programming systems.
The description will be terms of abstract patterns for the data structures and pseudo code for
parts of the RAWAM which are essential for describing the extensions w.r.t. the original WAM
design. The source can be found at [Per] .
The contents of this work will be as follows: Section 2 explains the notions used in the subsequent
sections. Section 3 will give an overview for the whole RelFun system, how the RAWAM fits
into it , and which RelFun features the RAWAM supports. Section 4 will give an overview of
the structure of the RAWAM. Sections 5 to 7 describe structures relevant for all parts of the
RAWAM. Section 8 describes the assembler for the RAWAM. Sections 9 to 11 reveal how the
abstract machine is built. In appendix A we give a reference to some corrections to [AK91] and
appendix B gives an overview of all implemented RAWAM instructions. Appendix C, finally,
contains an actual session script that demonstrates some of the RAWAM's facilities and the
general speedup compared to the GWAM.

2 NOTIONS 5

2 Notions

In the next sections data structures used in the implementation of the RAWAM will be descri­
bed. These are mainly C-structures or C-unions, often used for linked lists. The contents of a
structure or union are schematically presented in boxes containing type and aim of each entry.
E.g. structures are represented as:

name of structure
name type purpose
name type purpose

A union is similarly represented, but with a thick rim at the left side and the name of the union
omitted:

name type purpose
name type purpose

If a linked list is built from a structure, this is indicated by one or two arrows, when the list is
singly or doubly linked, respectively:

+--- --+
name type purpose name type purpose

To give a concrete example, consider the data scheme:

Indiv _entry

--+
ctag tag E {FLO, INT, CON}
hashref Hash_entry for ctag E {CON, STR}
flonum double for ctag = INT
intnum flonum for ctag = FLO

This translates to the following C data structure:

struct Indiv_entry
{

struct Indiv_entry *next;
tag ctag;
union

{

Hash_entry *hashref;
long intnurn;
float flonurn;
} u;

};

Further, we will give some pseudo code fragments of some pieces of the implementation. The
syntax will be Algol-like and should be easy to understand. For pointer handling, the C '->'
and '*' symbols will be used.

3 OVERVIEW 6

3 Overview

The RAWAM can be regarded as an alternative emulator for the Relational-Functional Machine
(RFM, [BEH+96]). It is designed as an alternative for the RFM system's WAM emulator,
GWAM. GWAM itself is embedded into an integrative platform, called GAMA, which, as
a part of the RFM, supports GWAM, as well as another abstract machine, called LLAMA
(GAMA and LLAMA are in detail described in [Sin95]).
Because the GAMA platform is not capable to maintain C-implemented programs, it cannot
be used for the additional integration of the RAWAM. Therefore, the RAWAM is an execution
environment of its own right; in fact , it must provide functionality not only of the GWAM, but
also of the GAMA, and, by parts, of the LLAMA. The latter is because of the RFM's compilation
logic which for efficiency reasons shifts some tasks from the GWAM to the LLAMA.
Without respect to the LLAMA part, RFM decomposes into three large parts:

• the RELFUN interpreter,

• the RFM compiler,

• the GAMA including the GWAM.

The data flow between these components can be seen top-down:

RelFun Interpreter

RFM-

Compiler

(~ ______________ G_A_M_A ____________ ~)

GAMA gets its data - WAM or LL code of declarative RelFun programs - via the compiler from
the interpreter, where the RelFun interpreter also can be seen as completely independent from
the rest of the RFM.
The RAWAM fits into this environment residing at the same level as the GAMA. This is realized
by a switch that allows to use either of both components:

RelFun Interpreter

RFM-

Compiler

0~Wih:h

(~ ____ G_A_M_A ____ ~) (~ ____ R_A_W_A_M __ ~)

3 OVERVIEW 7

3.1 File Interface

Because of simpleness and portability, the communication between the RelFun compiler and the
RAWAM is realized through a simple file interface. The communication consists of mutually
creation of semaphore files associated to RelFun and the RAWAM, respectively, and a data­
interchange file. The files are created as needed in the UNIX Itmpl directory.

3.2 What RAWAM gets from the RFM Compiler

The RAWAM communicates with the RFM via a file interface (see 3.1), where the contents are
exchanged in a so-called interchange file, whose protocol distinguishes different types of data:

1. queries

2. more requests

3. program code

4. quit

5. result data

The first four are data created by the RFM part of RelFun, the fourth is the result data of the
RAWAM. The RFM-generated data is distinguished by the tags _Q, ...M, _C, and -X, respectively.
The file is build up as follows:

1. A query, e.g., X fooCA,S) & +(A,3) , looks like this:

'l. some content omitted

The query consists of the tag _Q and WAM code for exactly one clause which is always called
QUERY In, where n is the number of distinct variables that occur in the query. In our example
n is two, corresponding to the variables X and A.

2. This is a more request:

M

3. Program code consists of RelFun clauses transformed to WAM code by the RFM compiler,
and is submitted to the RAWAM in the form

1. the tag _C

2. sort data (cf. subsection 3.2.1)

3. an arbitrary number of WAM routines (cf. subsection 3.2.2)

4. This causes the RAWAM to quit:

X

3 OVERVIEW 8

3.2.1 Sort Data

As mentioned above, sort data is contained in a LISP list and exactly of the format as described
in [HaI95]. The structure of the sort data is given by the following grammar:

sortdata
sortspecification

sortname
subsumeslist
subsumes*list
individualslist
individuals*list

NIL I ({sortspecification}+)
(sortname subsumeslist subsumes*list

individualslist individuals*list)
identifier

SUBSUMES {identifier}*)
SUBSUMES* {identifier}*)
INDIVIDUALS {identifier}*
INDIVIDUALS* {identifier}*)

For more details refer to subsection 8.2.1.

3.2.2 WAM Routines

The input for RAWAM reflects the list oriented data representation of the LISP-based RFM
system. Consider for example the following RelFun function:

nth([Firstl_J ,1) :& First.
nth([~IRestJ,N) :& nth(Rest,l-(N)).

nth selects and returns the n-th element of a list. Compilation yields:

nth/2

«set_index_number 1)
(switch_on_term nil nil "label126" nil "label126")
"label126"
(set_index_number 2)
(switch_on_term "label132" 2 2 2 "label127")
"label132"
(switch_on_constant 1 «(1 "label127")) 2)
"label127"
(try 1 2)
(trust 2 2)
1

(get_constant 1 2)
(get_list 1)
(unify_x_variable 3)
(unify_x_variable 4)
(put_x_value 3 1)
(proceed)
2
(allocate 1)
(get_x_variable 3 2)
(get_list 1
(unify_x_variable 4)
(unify_y_variable 1)
(put_x_value 3 1)
(cl-func 1- 1)
(get_x_variable 2 1)
(put_y_value 1 1)
(deallocate)
(execute nth/2))

The structure is much like in [GLL085] and [AK91]' with small differences and extensions,
respectively. We can highlight here some basic features of RFM-generated WAM code:

3 OVERVIEW 9

• All clauses of same name and arity (here nth with arity 2) are put together into one WAM
routine labeled by narne/arity.

• The routine itself is a list containing WAM instructions and labels.

• The WAM instructions are represented as lists. The first element of a list is the instruction
name and possible further elements denote the instruction's arguments such as, e.g.,
register numbers.

• If the indexing option of the RFM compiler is set, the first group of instructions forms
the indexing part (see B.1.6) , together with automatically generated indexing labels of
the form "labeln" .

• The actual WAM code for the clauses follows. Each WAM representation of a clause starts
with a label which is just a number, starting from 0, ascending in the order in which the
clauses occur in the RelFun source.

• An extension to the standard WAM instruction set is the cl-func instruction for calling
a LISP function; here 1- is called to decrement the contents of register Xl by one.

The RFM system extends the basic WAM capabilities mostly not by adding additional in­
structions, but via WAM builtin functions. The only intrinsic extensions have been done in the
indexing part and by calling LISP builtins via cl-func, cl-relf, cl-extra, and cl-pred. The
RAWAM does currently not support this calling scheme. The most important LISP builtins,
as arithmetics, are directly implemented as WAM commands without any calling indirection.
For arithmetic commands see B.2.1; more special builtin reimplementations are denoted in the
Special Commands paragraph of subsection B.2.2. These are substitutes for RFM builtin
calls, e.g. (call type/2) is the same as the RAWAM instruction (type).

3.3 Supported RelFun Language and Compiler Features

We list now the capabilities of the RAWAM.

3.3.1 Basic Instruction Set and Data Types

The RAWAM supports all instructions given in Ai't-Kaci, except the set. . . instructions,
because the RFM compilation knows and uses only their unify ... counterparts.
Also, the ... _constant-type instructions have a slightly different semantics. This is because
the RAWAM distinguishes three types of constants: alphanumeric, integer, and floating point
(we exclude here the empty list []). So, a ... _constant-type instruction can have only alpha­
numeric arguments, and for integer, respectively floating point arguments there are correspon­
ding ... _int and ... _float instructions. For example, there exists not only a put-constant
instruction, but there are also a put-int and a put~loat instruction.
To execute RFM compiled programs, which know only ... _constant-type instructions, correct,
the RAWAM assembler analyses the arguments of a ... _constant instruction and replaces it
by the appropriate one.

3.3.2 Generalized Indexing

For the generalized indexing, as described in [Sin93), the RAWAM has, as the GWAM, an
IX indexing register and provides the instructions set_index...number and swi tch_on_term...n,
where the last one again is special, see appendix B.2.3 .

3.3.3 Cut

RAWAM is capable of handling two different types of cut operators, one being the Ai't-Kaci
Y-Register cut, the other the GWAM cut which reserves a fixed slot on every stack frame.
These two are distinguished by the occurence of either get-level or save_cut_pointer; if the
former occurs in a clause, the cuts in the clause are assumed to be of the Ai't-Kaci type, and
the RAWAM cut instruction will be used, and if the latter occurs, garna_cut will be used.

4 GLOBAL ORGANISATION 10

Notice, that there will be no memory gain by using only the Alt-Kaci type cut, the stack slot
will always be used.

3.3.4 Higher Order

A restricted higher order can be done by the apply instruction. It expects in the Xl register
the name of a WAM routine to be ca.lled and in the X2 register a list containing the arguments
which have to be given to the function. Currently apply does not bind a free variable in Xl
to a function's name. The Xl argument always hat to be bounded to some constant.

3.3.5 Arithmetics

The RAWAM supports various arithmetic and comparison commands. All of them are listed
in appendix B.2.l.

3.3.6 Types

Types are implemented along the lines of the static sort model in [HaI95]. Builtin sorts are
$numberp, $atomp, $symbolp, $stringp, $floatp, $integerp, $evenp,and $oddp.

3.3.7 Extra Instructions

The extra instructions are the ones listed in the appendices B.2.2 (paragraph Flow Control
Instructions) and B.2.3. The first ones are used for simplified flow control and usually not
generated by any compiler but inserted by the assembler at appropriate places. The latter ones
are compounds of combinations of standard instructions which often occur and are executed
faster than the single instructions would be; see subsection 8.3.

4 G 10 bal Organisation

The RAWAM's main loop branches in two different states of operation: first, assembling WAM
code coming from RFM and second, executing an assembled program, i.e. working as an
abstract ma.chine. The first part is a simple syntax-cruncher, transforming each RelFun clause
into a byte code array; this is described in detail in section 8. The latter part is a bit more
complicated. The topmost organisation structure consists of modules, described in section
5. Everything which is contained in one module, is organized in the module's hash table; this
concerns literal constants as well as names of structures and clauses. In particular, each clause's
byte code is attached to its entry in the hash table. Schematically, we have some general module
organisation:

4 GLOBAL ORGANISATION 11

• • •

MuoJukl Mu,Juk .l

Hashllll'llc

Mn.Jul!!"

-------I.~ •••

Here the boxes denote a module and the arrows denote contextual dependences between them,
see section 5.
Each module has a hash table containing information for each literal found during the assemb­
ling process. In the simplest case, an entry in a hash table contains a symbol's name and arity.
For sort specifiers, global variables, and clause names, additional data structures are created
and linked by pointers. The execution scheme for clauses is as follows: as shown in the picture
below, all clauses stored in the hash table have their own byte code array; in each call/execute
or indexing instruction, a pointer is encoded. This pointer points to the very beginning of the
byte code of the clause to be called.

duu.~1 .. :lau.~l chnL~3

...
j

... ...
\

...

\ in'tl Mn"''''''r n""',,

/" I.)·_nw_

)Vf~
Ir)'_",,"_,,"-, 1\ "J_"k,_ .. 1M

"\ _. II~i_ .'

uo ll dM"~" ,\

.-
c~ 1I o.:l»uM 2 J L'1I lI d"u...,'\ Cil lldMWI< I

.I .- .-

~ "·UY-"1o<'_ .. b<-

~
.-

.. ~ .. II d",u ... I 0: .. 11 d l""" 2 .. .,.lId .. u. ... ,J. I--
.-

L'1I lIo.:lIIlIII<' .'

j
c~ 1I cI~u ... • 2

_.

V J V - -
- .-

If a query is given, the execution starts in the query's special byte code array, which is not
contained in any hash table. The WAM P register, which is a pointer to byte code cells (of type
Codecell *, see section 8.2), is set to the very first entry in this array. During execution, P is
increased within the array, or set to a new array by call/execute commands.

5 MODULES 12

5 Modules

The RA WAM module system is intended to provide static scoping domains for RelFun programs.
Names are once resolved during compilation of a new database and remain statically until a new
database is compiled. For details see [HergS]. Currently, it is not possible to do backtracking
across contexts; this is also a feature which the RFM compiler lacks.

5.1 Using Modules

void init_rnodules(void);
Module *create_rnodule(char *narne);
void set_rnodule_context(char *rnod, char *ctxt);
static Module *find_rnodule(char *narne);

There are currently four functions for using the RAWAM's module system as follows:
ini t...modules must be used to initialize the module system. It creates a global hashing table
in which references to the system's modules are maintained. The global variable Modules refers
to this hash table.
create...module enters a module into the global module-hash table and names it after the given
argument. A reference to the new module is returned.
set...module_context sets a module as context to another module. Both are refered by their
names.
f ind...module searches a module whose name is the given one in the hash table and returns it.

5.2 Semantics of Modules

A RAWAM module consists of the following data:

1. the module name string,

2. a linked list specifying the module's contexts,

3. a hash table (see 6).

Hence, the module's informations are stored in a structure which looks like this:

Module
----t

name char * name of the module
context Context its contexts
hashtable hash_entry ** the module's hash table

Because the Module structures are maintained by a global hash table, they are organized as
linked list .
A context looks like this:

Context

module I Module * I pointer to some module

Context is a list of the modules describing the context of the module that it belongs to.
Most of the semantics of the modules was already described in section 4. It remains to note
that the structure of the context interdependencies of the modules are important in two places,
which both use hashing: the assembling process and higher order calls via apply.

6 HASH TABLES 13

5.3 Standard Modules

At startup the following modules are created: rawam-global, prelude, and workspace.
workspace is the module where programs coming from the RFM compiler by default are com­
piled into. Its context is set to both, rawam-global and prelude.
prelude contains some predefined WAM routines, such as member or tupof. Its context is at
startup rawam-global.
rawam-global should be set to the context of all modules. It contains names of important
constants, such as true and false, which should be retrievable from each module.

6 Hash Tables

Associated to each module is a hash table. It is used to store all non-numeric symbols that
occur during assembling of WAM programs. All data relevant for one symbol is put in a data
structure of type Hash_entry which is built to form a linked list (see below). A hash table
is an array of pointers to linked lists of Hash_entry structures. If the tokenizer (cf sect. 8.1)
recognizes a symbol, a hash value is generated from its ASCII representation. This hash value
determines a certain entry in the hash table array. Hash collision are avoided by appending a
new symbol at the end of the linked list.
If one symbol denotes several distinguished type of data, these are not necessarily stored sepa­
rately. This is only the case if it denotes function/structure names of different arity. E.g. if we
consider the program

a(X).

aO :& a.

then the symbol a occurs three times: as name of functions of arity 1 and 0, respectively, and
as a constant name. All three of them are by the hashing function mapped onto the same array
index in the hash table. But, there are only two distinct entries in the linked list for the symbol
a. One is the entry for the function name all, the other for the function name a/O. Because a
constant is fully represented by its name, it is possible to represent it for the later steps of the
assembling process also by a/O, ignoring all other properties which may belong to the function
symbol a/O.
Now, the different types of symbols, which the RAWAM assembler recognizes, are:

• Sort identifiers.

• Labels, global labels of type pred/n as well as local labels which are strings of type
"labeln" or numbers (also as strings).

• Functors, which are constants associated to some arity.

• Non-numeric constants, which are stored as structure functors with arity O.

• Global labels are handled as if it would be a structure functor; they carry additional
information about the function (see below).

The contents of one hash table entry are:

Hash_entry

--+
name char * name of identifier
arity short arity of identifier (if needed)
stringconstant bool true, if name is string constant (" ... ")
sort Sort base_entry * pointer to sort data
coderef Codecell * pointer to WAM instructions
domexc DomExcTag tag if name denotes exc/dom structure
globalvar _data Heapcell * data for global variable's contents
globalvar ...size long size of global variable's data in terms of heap cells

7 THE BYTE CODE 14

7 The Byte Code

The byte code instructions are represented as elements whose type is a C-union Code cell which
is capable to contain all possible data needed for byte code instructions:

Codecell
tags BYTE[4] standard byte code format for short instructions
ctag tag for switch_on_constant
hashref Hash_entry * reference to alphanumeric constant
intnum long integer constant
flonum float floating point constant
coderef Codecell * jump destination

Each RAWAM instruction consists of a sequence of these Code cells. The first Code cell of
an instruction always uses the Codecell. tags entries. Codecell. tags [OJ contains the byte
code (in the very sense of the word: a byte-sized number which encodes the instruction);
Codecell. tags [lJ and Codecell. tags [2J contain possible X- and Y-register denoting num­
bers, and Codecell. tags [3] nearly always contains the number of Codecells which follow the
first one.
The only exceptions on the contents of Codecell. tags [3J are the swi tch_on_constant and
swi tch_on_structure instructions, whose lengths may exceed the range of a byte-sized integer.
Most instruction consist of only one Codecell. The exceptions are as follows, ordered by size:

Two-Byte Instructions:

• put_structure, get_structure, put_constant, get_constant, un ify_constant: use the
Codecell. hashref entry of the second Codecell.

• put_int, get_int, unify_int: use Codecell. intnum.

• putJloat, getJloat, unify Jloat: use Codecell. flonum

• try .Jlle_else, retry .Jlle_else, try, trust, call, execute: need precisely one jump
destination as their second Codecell

Six-Byte Instructions: The swi tch_on_term is of the form

switch_on_term label1,labeI2,labeI3,labe14,labe15

where labell, ... , label5 are some local labels or NIL. Therefore, swi tch_on_term needs six
Code cells filled at the places Codecell. coderef. If NIL is given, the value there is set to zero.
The labeln entries correspond in the given order for indexing of WAM data types floating point
n'u.mber, integer number, alphanumeric constant, structure, and list,

Variable-Byte Sized Instructions:

• switch_on_structure: this instruction has, syntactically, the form

switch_on_structure n,str1,label1, ... ,strn,labeln,labeln+1

For this, swi tch_on_structure needs 2n + 3 Codecells, the first as usual, the second
carries the value n in Code cell. intnum, the next 2n contain alternately first, a value in
Code cell hashref, which denotes a structure identifier in a hash table (see below), and,
second,a jump destination in Codecell. coderef. The last Codecell contains also a jump
destination for the indexing cases that are not explicitely covered. This jump destination
may also be zero, causing a failure.

• swi tch_on_constant: this instruction has the form

switch_on constant n,c1,label1, ... ,cn,labeln,labeln+1

8 GENERATION OF THE INTERNAL PROGRAM REPRESENTATION 15

switch_on_constant differs from that in [AK91] in the way that it distinguishes between
integer, floating point, and alphanumeric constants; therefore it needs 3n + 3 Codecells,
which are organized analogously to those for swi tch_on_structure; but the constant­
jump destination pairs are here represented by Code cell triples, whose first member
uses Codecell. tag, which contains one of the values CON, FLO, or INT, denoting the
type of the triple's middle element, being, consequently, in one of Code cell. hashref ,
Codecell. intnum, or Codecell. flonum. The third element of each triple then contains
finally the jump destination.

8 Generation of the Internal Program Representation

The generation of the internal program representation proceeds in several - not necessarily
disjoint - steps. The rough scheme is as follows:
First, the incoming ASCII data is tokenized. The tokenized data is stored in a flexible list
representation which allows easy manipulation. Simultaneously, jump destinations and labels
are collected. Second, a pattern search is performed on this list which replaces groups of
adjacent instructions by equivalent, single instructions. Third, the resulting list is transformed
into a more rigid array representation and jump destinations are resolved.

8.1 Tokenizer

Token nexttoken(FILE *file, bool sortbase, Module *module)j

The tokenizer is accessed via the routine nexttoken, which is called with three arguments:

1. a FILE pointer pointing to the input file (see sects. 3.1,3.2),

2. a boolean, whose value must be true, if the file pointer points into a sort base declaration
part,

3. a pointer to the current module.

The tokenizer is basically a very simple DFA in the sense of, e.g., [ASU86]. If invoked by the
assembler (cf. subsection 8.2), it scans the incoming (ASCII-)symbol stream until a valid token
is recognized, or an invalid symbol sequence occurs.
Valid tokens can be

• global labels of the form name/arity (as, e.g., nth/2 in the example in subsection 3.2.2)

• local labels inside of a WAM routine, which may be 1. integer numbers, or, 2. of the form
"labelXXX" where XXX is some integer.

• WAM commands of the form (name arg1, arg2, ...), same as shown in appendix B.

As mentioned in subsection 3.2.2, the commands in the RFM-generated WAM source are not
necessarily mapped one-to-one to appropriate RAWAM instructions. So, e.g. get_constant
is translated into one of get_constant, get_int, and getJloat, depending of the type of its
arguments (note that getJlil is not incorporated into this transformation, so that it is not
translated from get-constant [J, Xl). The instructions which are diversificated this way are:
get_constant, put_constant, and unify_constant, just by replacing of the ... _constant
suffix by ... Jloat or ... _into Together with this transformations, the switch_on_constant
instruction is 'stretched' in the way that it gets two more argument positions for integer and
floating point constants, which actually are filled with the same value as the by the constant
argument given by the compiler has.
Second, certain calls and executes, respectively, are replaced by RAWAM instructions, e.g.
(call type 1) is replaced simply by the command (type). Analogously all commands in
subsection B.2.2 are replacements of calls to former GWAM builtin routines with the same
name.

8 GENERATION OF THE INTERNAL PROGRAM REPRESENTATION 16

Third, the GWAM commands cl-func, cl-pred, cl-relf, and cl-extra are replaced by
RAWAM instructions named in spirit of their arguments. For instance, (cl-func + 3) is
replaced by the instruction (addn 3), and (cl-func + 2) is replaced by (add2). The former
adds the contents of the registers Xl, X 2 , and X3 and stores the result in Xl . The latter does
the same for the registers Xl and X 2 . This concerns mainly the arithmetic commands, shown
in the appendix B.2.2 .
The tokenizer is context sensitive in the manner that it automatically determines which of the
two supported cuts (cf. 3.3) to use by the occurence of either get_level or save_cut_pointer;
if the former occurs in a clause, the cuts in the clause are assumed to be of the Ai"t-Kaci type,
and the RAWAM cut instruction will be used, and if the latter occurs, gama_cut will be used.
The tokenizer makes use of two sorts of data. The first data is a hash table for quickly re­
cognizing instructions from given strings and associating them with their byte code, which is
used for both, assembling and program execution (this hash table is once and for all initialized
during program startup by the contents of an array called wammconunands containing pairwise
instruction names and corresponding byte code numbers).
The second data are tokens. If a valid token is recognized, nexttoken will return the instructions
data in a Token structure:

Token
command id token identifier
reg1 short int first register argument
reg2 short int second register argument
codelength short * number of needed codecells
intnum long integer value
Honum double Hoat value
hashref hashref * reference to some name
string bool true if name denotes a string constant
name char * name of constant identifier
sublabel char * label identifier
L char *[5] names of jump destinations for swi tch_on_term
table indextable * table for indexing

In detail : conunand contains an integer denoting the instruction's byte code, reg! and reg2
contain numbers for registers. If the instruction needs only one register, always reg! is used.
codelength contains the number of needed Code cells for the instruction. The first four entries
usually represent the content of an instruction's first Codecell.
intnum, flonum, and hashref contain a constant's value and the reference to its name, respec­
tively. When assembling WAM routines, alphanumeric constants are immediately stored by the
tokenizer in the current module's hash table and are further referenced only via the reference
there. If sort data is assembled, the constants are stored in the hash table by the assembler,
not the tokenizer, because of the slightly different use of constants (see below). In this case,
a reference to the constant's name string will be stored in name. Further information needed
for the builtin sort stringp, is the distinction whether an alphanumeric constant is a string
constant ((something like this") or not. Then, string will have the value true.
If a local label is found (e.g. as instruction's argument as for retry), its name is not put into
a hash table, but given back as string in sublabel. Analogously, switch_on_term needs five
labels as arguments.
Last but not least, the indexing table is needed for the commands swi tch_on_constant and
swi tch_on_structure; it is an array of entries of the following type:

indextable
ctag tag E {FLO, INT, CON} if Token.command = switch_on_constant

E { STR} if Token.command = switch_on_structure
he Hash_entry for ctag E {CON, STR}
Honum double for ctag = INT
intnum Honum for ctag = FLO
label char * name of local label related to indexing entry

8 GENERATION OF THE INTERNAL PROGRAM REPRESENTATION 17

Here to each pair of constant, the constant, the type of the constant and the name of the label
to jump to are put together.

8.2 Assembler

void getcode(FILE *file, Module *rnodule);
void getquery(FILE *file, Module *rnodule);
static void getsortbase(FILE *file, Module *rnodule);

The assembler consists of three parts:

• the function getcode for assembling a whole WAM program from a file

• the function getsortbase for getting sortbase information from a WAM program

• the function get query for getting a query

Their arguments are always a reference to the input file and to the module into which all data
have to be stored.

8.2.1 getsortbase

getsortbase parses the sort data coming from the RFM compiler. The sort data follows the
grammar given in subsection 3.2.1, where the (SUBSUMES ...) and the (INDIVIDUALS ...)
parts are ignored (these parts are artefacts from the sort processing in [HaI95] which contain
only redundant data for our purposes). All not-ignored identifiers are stored in the given
module's hash table. If a sortnarne of a sortspecification is stored in a module's hash table ,
a Sortbase_entry structure is created and a pointer is set in the sortnarnes Hash_entry. sort
entry:

Sortbase_entry
hashref Hash_entry * back-pointer to corresponding hash table entry
ctag ctag type of constant
subsorts Subsumes_entry * subsumes sorts
sortindividuals Indiv _entry * individuals of sort

The first entry in the Sortbase_entry structure points back to its hash table reference; this
is used for glb calculations. The second entry denotes the type of constant it was originally
recognized, either as integer, fioating point, or alphanumeric. Note that a sort's name is always
converted into a string.
Sortbase_entry. subsorts and Sortbase_entry. sort individuals both are pointer to lin­
ked lists containing all subsumed sorts and individuals contained in the sort, respectively (see
below).
If a (SUBSUMES ...) part is parsed, all occuring constants are put into the hash table (if they
were not yet there) and their references are stored into a linked list of type subsume_entry, a
pointer of which is stored into Sortbase_entry. subsorts:

subsumes_entry

hashref I Hash_entry * I reference to subsumed sort

Allalogously, a (INDIVIDUALS ...) part is parsed and the constants found there refered by a
linked list of type Indiv_entry, being pointed to by Sortbase_entry.sortindividuals:

Indiv _entry

----+
ctag tag E {FLO, INT, CON}
hashref Hash_entry for ctag E {CON, STR}
fionum double for ctag = INT
intnum fionum for ctag = FLO

It is easy to see, that these data structures are only C-data structure copies of the corresponding
LISP lists.

8 GENERATION OF THE INTERNAL PROGRAM REPRESENTATION

8.2.2 getcode and get query

Codecell *writecode(Codeconstruct *first, long *count, jumptable_entry **je);
subjumptable_entry *lookup_label(char *name);
subjumptable_entry *enter_label(char *name);
void cleansubjumptable(void);

18

Logically, getquery is a special case of getcode, because a query could be seen as a WAM
program consisting of only one clause. So the two routines are splitted mainly for historical
reasons. Further, getsortbase is used only by the function getcode at the very beginning for
parsing sort data (see subsection 3.2.1).
The processing scheme is as follows : the stream of tokens coming from the tokenizer is analyzed
and transformed into separate linked lists of Code construct structures, one linked list for
each WAM routine. After a WAM routine is completely read in and brought into this list
representation, the next steps are a bit of optimization (cf. 8.3), resolving the jump addresses,
and, at last, the list is transformed into a byte code array.
The· intermediate linked lists representation consists of Code construct structures:

Codeconstruct
com Codecell represented Codecell
pass 1 subjumptable_entry preliminary jump destination
pass2 Codecell * associated address in Codecell array

The first entry, Codeconstruct. com, is a prototype of the Codecell (i.e. bytecode instruction)
which finally will be generated. In most cases, this prototype will not be altered. Execeptions
are Codecells which will contain memory addresses which are not fixed in this state, as, e.g.,
jump destinations coming from call or indexing instructions. The other two entries are needed
for the creation of the byte code and the resolving of jump destinations.
The data created during the assembling are the following:

• Hash table entries for each newly occuring symbol.

This is already done by the tokenizer and shall not further be considered.

• Linked Codeconstruct lists for each WAM routine which is assembled.

• Linked subjumptable_entry lists (see below), keeping track of local jump destinations
needed by indexing and backtracking.

• Byte code arrays for each WAM routine.

These are created for each WAM routine which is assembled. The first two are just for inter­
mediate use, where the byte code arrays are the very results of the assembling.

• A linked jumptable_entry list which keeps track of each call and execute; it is used
for resolving the global jumps.

This data structure survives the assembling of single WAM routines and is used to insert the
correct jump destinations into the byte code after all routines have been assembled.
The pass 1 and pass2 entries of a Code construct are used as follows: if a label of a subroutine of
a WAM routine is read, either direct as label or as an argument of an, e.g., indexing, instruction,
this is stored in a hash table of subjumptable_entry structures:

subjumptable_entry
---+

name char * name of jump label
passl Codeconstruct first Codeconstruct cell of routine which

belongs to the label
pass2 Codecell first Codecell of routine which belongs

to the label

9 WAM REGISTERS 19

These are created with the enter -1abel function and retrieved with lookup-1abel. The func­
tion cleansubjumptable erases the actual contents of the table. If a Code construct refers
to a certain label, being the first instruction after the label or belonging to an indexing or
backtracking instruction, this hash table entry is stored in Codecell. pass1. If a sublabel is
found as label and not as argument of an instruction, the Code cell structure of the first com­
mand following it is stored in subjurnptable_entry.passl to denote the entry point of this
subroutine.
Constructing the Code constructs is the first assembler pass (relatively to each WAM routine,
of course). The second is to copy them into an array of Code cells (and filter out some garbage
Code constructs which may be created sometimes). The Code constructs are not yet thrown
away, but the Codeconstruct. pass2 entries are set to the corresponding Code constructs
address. Also, the subjumptable_entry. pass2 entries can now be set to the appropriate
Codecells.
In a third pass, all the collected data. are used to update all references to local jump destinations
in the routine's Code cell arrayl.
Simultaneously, in this last pass, the occuring call and execute instructions are checked, and
for each a jumptable_entry structure is created, which associates the instruction's argument
with an entry in the hash table, which should denote another WAM routine's name:

jumptable_entry

coderef I Codecell I refer to a calls or executes Codecell
hashref Hash_entry jump destination given by this label

The linked list of jumptable_entry structures will not be used until the whole WAM program
is read in. After that, the assembler steps through this list and copies the Hash_entrys coderef
(cf. 6) value into the Code cell denoted by j urnptable_entry. coderef. In reminder of section
4, this denotes just the first instruction of a WAM routine stored in a module's hash table.

8.3 The Optimizer

Codeconstruct *optirnize(Codeconstruct *code, long *count);

The optimizer runs through the Code construct list of a WAM routine just before it is transfor­
med to a Code cell array. It tries to find groups of instructions which can be comprehended to a
single instruction. The optimizer consists of one function whose arguments should be a pointer
to the first Code construct structure of a WAM routine, as well as a pointer to an integer, in
which the new number of the optimized list is returned. The function returns a pointer to the
new list.
The routine steps through the list and searches for sublists, according to the second column
in the table in appendix B.2 .3 . If one is found, the sublist is removed and replaced by the
appropriate single instruction as in B.2.3. Note, that optimize reuses the Codeconstructs
rather than allocating new ones. This is important because at this stage the jump destinations
are not yet resolved, and the corresponding data structures, described in the previous subsection,
have to stay valid.

9 WAM Registers

The RAWAM supports different kinds of registers, which we classify as follows:
There are registers for

• temporary use,

• permanent use,

• program execution,

1 note that a nil entry in a indexing instruction's are automatically filled with the address of the backtrack
command.

10 WAM EXTENSIONS 20

• indexing,

• time stamping,

• and memory management.

The first two correspond directly to the usual X- and Y-registers. The program execution
registers are the known P and CP registers. The indexing register IX is completely the same as
described in [Sin93] to support the generalized indexing scheme there. The time stamp register
Timestamp holds the value needed for giving stack slots a unique mark to determine the order
of creation, as described in 11.4.3.
"Memory management" comprises here the usual H, HB, S, TR, E, B, and BO registers, as well
as - we must now anticipate section 11 - all global values which are needed to handle the
corresponding HST structures. These are: Heap, Stack, and Trail, pointing to the very first
HST structure of the identically named memory area; CurrHHeap, CurrBStack, CurrSHeap,
CurrBOStack, CurrEStack, and CurrHBHeap, to be read as, e.g., HST structure which manages
the memory chunk where Currently the H register points into, belonging to the Stack; the
analogous register for TR is, inconsequently, called CurrTrail. Then there are the registers
HeapBot and HeapTop, which are set to CurrHHeap->low.heap and CurrHHeap->high.heap.
Analogously SHeapBot, SHeapTop, TrailTop, StackTop, StackBot (topmost HST concerning E
and B), BOStackBot, and BOStackTop.
For detailed information about the latter classes of registers, see section 11.

10 WAM Extensions

10.1 WAM Data Types

As in [AK91]' heap cells are tagged structures. Besides the standard heap cells with tags CON,
STR, LIS, NIL, FUN, REF, there are three additional tags FLO, INT, and TYP. This is because
of the fact that the RAWAM distinguishes three types of constants, namely integers, floating
point numbers, and alphanumeric constants, and because the RAWAM supports a sorted type
system. As a consequence, the semantics of CON and REF is slightly different. A CON-tagged
heap cell contains only alphanumeric constants, and no integers or floating points. On the other
hand, a REF tagged cell never contains a self reference; a free variable is denoted by TYP, and
it eventually contains a reference to its type. All the other tags are the same as described in
[AK91].

10.2 Sorts

Heapcell *domexc(Heapcell *, Heapcell *) i
Heapcell *exc_union(Heapcell *, Heapcell *)i
Heapcell *intersect(Heapcell *, Heapcell *)i
Heapcell *glb(Heapcell *, Heapcell *)i
Heapcell *sort_to_dom(Sortbase_entry *)i
Heapcell *sortglb(Sortbase_entry *, Sortbase_entry *)i
void element_of(Heapcell *, Heapcell *)i
Heapcell *intersectdombuiltin(Heapcell *, Hash_entry *)i
Heapcell *intersectbuiltins(Hash_entry *, Hash_entry *)i

The RAWAM supports, as the GWAM does, the static type model as described in [Hal95]. For
this support the RAWAM design is changed as follows:

1. There exists a new type of heap cells identified by the tag TYP, as described in subsection
10.1.

2. There is an additional command type, which expects a sort in register X 2 and calculates
its glb with the contents of register Xl'

3. The bind command has also been modified to calculate glb's.

10 WAM EXTENSIONS 21

We give here patterns for bind and type; see for documentation the comments inside and for
Heapcell refer to subsection 11.2.1:

II bind expects its left argument to be dereferenced, i.e <> REF and its right
II argument to be TYP

procedure bind(left Heapcell *, right Heapcell *)

II arguments:
II left reference to some heap cell
II right: reference to some heap cell which must contain a TYP

II non-nil heaptype means, this variable is typed:

if right->u.heaptype <> 0 then
begin
if left->tags[O] = TYP then
begin
Trail_Var(left);

II if left argument is a variable,
II we may have to do sort calculations

if left->u.heaptype <> 0 then II calculate glb
left->u.heaptype glb(right->u.heaptype, left->u.heaptype);

else
left->u.heaptype

Trail_Var(right);
right = <REF, left>;
return;

end;

right->u.heaptype;

II if left argument is some constant, it may be contained in
II the domain of the right:

else if left->tags[O] CON or left->tags[O] INT or
left->tags[O] = FLO then

begin
element_of (left , right->u.heaptype);

if fail == true
return;

end;

else
begin
fail = true;
return;

end;
end;

II in this case, left may have some type, copy it:

else if left->tags[O] = TYP then
begin
Trail_Var(right);
right->u.heaptype

end;
left->u.heaptype;

10 WAM EXTENSIONS

Trail_Var(right)j

if left->tags[O] = TYP then
left = <REF, right>j

else
*right

end bindj
*leftj

22

The semantics of the type instruction is to expect a variable or constant in the Xl register
and a sort in the X 2 register, to compute the glb and to store the result in Xl, or to fail, if
X I contains a constant and it is not in the domain of the sort. The instruction looks as follows :

procedure type
Deref(XReg(l), addr)j II dereference contents of Xl

II Check, if X2 contains type or dom/exc:

if X2->tags[0] = CON or (X2->tags[O] = STR and
X2->u.heapref->u.hashref->domexc <> 0) then

begin

II do type calculations:

if addr->tags[O] = TYP then
begin

I I if yes, then

Trail_Var(addr) II variable must be saved

if addr->u.heaptype 0 then
begin

II if addr contains no type, it gets
II a copy, which must be on the

*H = *X2j
addr->u.heaptype Hj
Inc_H(1) j

endj

II heap

else II else compute glb
addr->u.heaptype = glb(addr->u.heaptype, X2)j

endj

II if addr contains constant, glb is the question:
II contained or not contained?

else if addr->tags[O] = CON or addr->tags[O]
addr->tags[O] = FLO then

element_of (addr, X2)j
endj

II couldn't perform type calculation:

else
fail = truej

II proceed:

if fail = true then
begin

P = B[B[l]->intnum + 7]->coderefj

INT or

10 WAM EXTENSIONS 23

fail false;
end;

else
P P + 1;

end type;

There are several functions to implement the glb calculations. Here is a list (see also the
beginning of this subsection):

• glb is the general glb function which branches into the others.

• domexc calculates the intersection of a dom and a exc sort.

• excunion forms the union of two exts.

• intersect intersects two doms.

• sort_to_dom transforms a user-defined finite sort into a dom.

• sortglb calculates the mgu of two user-defined sorts .

• element-of checks if a constant is contained in a given sort.

• intersectdombuiltin intersects a dom with a builtin sort.

• intersectbuiltins intersects builtin sorts.

Note that all functions except element-of and intersect built ins store their results on the
heap.

10.3 Higher Order

The current higher order facilities are covered by the apply instruction. This instruction expects
a constant in the Xl register and a list of arguments to be given to the constant in X2 . It does
not work in the case that the Xl register contains a free variable. Here is the pattern:

procedure apply
Deref(Xl, addr);

he = addr->u . hashref;

if he
fail

else
begin

o then
true;

II dereference contents of Xl

II get its reference in the hash table

name = he->name; II get name of function to be called
Deref(XReg(2) , list); II get list of arguments

for(i
{

1; list && Tag(list) == LIS; i++) II fill registers with arguments

list list->u.heapref;
*XReg(i) = *(list);
list++;
}

he = lookup_proc(Current, name, i - 1); II find routine with given arity

if he
fail

o then
true;

11 HEAP, STACK, TRAIL, PDL

else if he->coderef
fail true;

else
begin
if ArgumentlCP)
cp = P + 1;

BO = B;
P = he->coderef;
return;

end
end;

II proceed:

if fail = true then
begin

o then

o then

P = B[B[l]->intnum + 7]->coderef;
fail = false;

end;

else
P P + 1;

end apply;

24

II *** see in text below

II call routine

*** : Note that the RFM compilers implementation of higher order calls works via a call (call
apply/3 0) or (execute apply/3 0), so that the apply command has an additional parameter
to update the CP register if it was called by call. If (apply 0) is used, this comes from
(call ...), else it comes from (execute ...).

11 Heap, Stack, Trail, PDL

Memory areas needed for program execution are, as in [AK91)' the so-called Heap, Stack, Trail ,
and PDL. The first three are manipulated directly by the WAM instructions; the PDL is used
indirectly as the recursion stack of the unify function and is therefore implemented implicitely
by the C stack.
In [AK91)' heap, stack, and trail are organized in the way so that they are located in one large,
connected memory area, where heap , stack, and trail are exactly in this order, counted from
the lower to the higher addresses.
Unlike this , RAWAM organizes its memory in several smaller, position-independent memory
units , which allows dynamic allocation of new memory, if necessary. Each data area is handled
separately as a linked lists of memory blocks whose first element is accessed through the global
pointer variables Heap, Stack, and Trail. These variables are pointers to the HST structure
(Heap Stack Trail) :

HST
+---- ----+

size size_t size of memory block
heap Heapcell pointer to low memory address
stack Stackcell pointer to low memory address
trail Trailcell pointer to low memory address
heap Heapcell pointer to high memory address
stack Stackcell pointer to high memory address
trail Trailcell pointer to high memory address

11 HEAP, STACK, TRAIL, PDL 25

The low entry points to the first element of an array of heap-/stack-/trail- cells, and high
points one above the highest element of this array. It always holds that HST.low.stack + size
== HST.high.stack, and for any address A, A points into the heap-/stack-/trail-memory block,
iff HST.low.stack <= A < HST.high.stack (respectively, HST.low.heap, HST.low.trail etc.).

11.1 General Handling of HST

We give a quick reference of which general functions are implemented to deal with HST struc­
tures. The data type memtype here can take one of the values HEAP, STACK, or TRAIL; memtype
is used for clean type distinction, so that the functions below know if to use the heap, stack,
or trail entries within the HST.

HST *init_hst(size_t size, memtype memtype)

Initializes an HST structure consisting of one block and of size size.

HST *new_hstchunk(size_t size, memtype memtype);

Allocates and initializes one HST structure together with a memory block of size size.

void remove_hstchunk(HST *h, memtype memtype);

Given an HST structure within a linked list of HST structures, remove-.hstchunk removes this
element out of the linked list.

void cleanup_hst(HST *h, memtype memtype);

Assumes that a linked HST lists starts with the HST given by the first argument and deallocates
the whole linked list.

HST *append_hstchunk(HST *h, size t size, memtype memtype);

If h represents the beginning of a linked HST list, a new element for the given size size is
appended to it.

HST *insert_hstchunk(HST *hl, HST *ch);

Assumes that hl is contained in a linked list and inserts ch immediately before hl.

HST *insert_new_hstchunk(HST *h, size_t size, memtype memtype);

Same as insert-.hstchunk, but allocates a new HST structure for the given size.

HST *hfind_hstchunk(Heapcell *h), *sfind_hstchunk(Stackcell *s),
*tfind_hstchunk(Trailcell *t);

These functions return a pointer to the HST structure into whose memory h, s, or t respectively,
points. These functions are specialized to search only in the HST lists belonging to heap, stack,
or trail.

HST *hrelfind_hstchunk(Heapcell *h, HST *hl);

Searches and returns the HST structure in the linked list starting with hl into whose memory
block h might point.

11 HEAP, STACK, TRAIL, PDL

11.2 Heap

11.2.1 Data

26

One heap HST memory unit is merely an array of Heapcell structures. The size of one HST
memory unit is given by the global constant HEAP ...sIZE, and the maximal number of heap
cells is given by the constant HEAP jiAX...sIZE (hence the maximum number of HST blocks for
the heap can be HEAP jiAX...sIZE / HEAP ..sIZE). The current number of allocated heap cells is
stored in the variable Heapsize, which is used to compare the current size of the heap with the
maximum allowed. Heapcells can be of different types; each type differs by the kind of data it
contains. A Heapcell has two entries: its tag and its value. There exist the following tags and
data associated to them:

• NONE if the Heapcell is unspecified

• FLO Heapcell contains floating point number

• INT Heapcell contains integer

• CON Heapcell contains literal constant

• STR Heapcell contains pointer to a WAM structure

• LIS Heapcell contains pointer to list element

• NIL Heapcell contains end of list symbol

• TYP Heapcell contains free variable, respectively points to type data

• FUN Heapcell contains functor symbol

• REF Heapcell contains reference to another Heapcell

The Heapcell is therefore defined by a C-structure having two entries, where the first entry
contains the tag and the second the data. The first entry in principle would need only 4 bits,
but because no efford is done for considering special data encoding, we have to stick to standard
C data types; this means we need at least 1 byte, and if taken alignment within the structure
implicitely into account, we easily arrive at 4 bytes. The data entry of a Heapcell now is
realized by a appropriate union:

Heapcell
tags BYTE[4] tags[Q] holds type of heapcell, tags[1] .. tags[3] are not used yet
flonum double floating point number
intnum long int long integer number
hashref Hash_entry * name of a constant (for FUN)
stackref Stackcell * pointer to stack
heapref Heapcell * pointer to heap (for REF, STR, LIS)
heaptype Heapcell * pointer to type information (for TYP)

11.2.2 Access

The data used for manipulating and using the heap is encoded in several ways. First, the
implementation specific memory restrictions are handled, as described before, by the global
values/variable HEAP ..sIZE, HEAP jiAX...sIZE, Heapsize, and Heap. Second, the register set is
extended from the usual H, HB, and S registers by the registers CurrHHeap, CurrSHeap, and
CurrHBHeap. These are set to the HST memory blocks into which H, S, and HB, respectively, point.
Further, the registers HeapBot and HeapTop are set to CurrHHeap->low. heap and CurrHHeap->
high.heap. Analogously, SHeapBot contains CurrSHeap->low.heap, and SHeapTop contains
CurrSHeap->high.heap.
One should notice, that all this registers formally are treated on the same level, but, in fact , the
additional HST-related registers are only auxiliary registers for the standard registers H, S, and

11 HEAP, STACK, TRAIL, PDL 27

HB. So it is convenient to provide access operations for the standard registers and encapsulate
the use of the additional registers within these.
For the heap, there are four such operations, Inc.Ji, Inc-.S, Set-.S, and Next.JiCell.
Inc.Ji and Inc-.S are mostly identical, they are used for increasing the contents Hand S registers
by a given number:

procedure Inc_H(N integer)

II arguments:
II N : increment H by N heap cells

if H + N < HeapTop then
H H + N;

else
begin

NN = N;

II this is the uncritical case:
II simply increase H

II in this case the boundary of
II the current HST block is reached

II now it is to check, if we have to allocate a new entry in the
II heaps HST list:

if CurrHeap->next = 0 then
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then II check for memory limit
begin

append_hstchunk(CurrHeap, HEAP_SIZE, HEAP); II allocate new HST
Heapsize = Heapsize + HEAP_SIZE; II update allocated-memory index

end;

else
begin
fail = true;
return;

end;

II no more memory -> fail

II Now CurrHeap->next holds a valid HST structure

CurrHeap = CurrHeap->next;

II Now we handle the extreme case: if HEAP SIZE is set to some low
II value, the increase N may need to extend the heap by some more HSTs

while NN > HEAP_SIZE do
begin
if CurrHeap->next = 0 then
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then
begin

append_hstchunk(CurrHeap, HEAP_SIZE, HEAP);
Heapsize = Heapsize + HEAP_SIZE;

end;

else
begin
fail = true;
return;

end;

CurrHeap = CurrHeap->next;

11 HEAP, STACK, TRAIL, PDL

NN = NN - HEAP_SIZE;
end;

II now update all related registers:

HeapBot = CurrHeap->low.heap;
H = HeapBot + (N - (HeapTop - H))
HeapTop = CurrHeap->high.heap;

end;
end Inc_H;

28

Inc...s does the same for the S register as Inc..H for the H register does, except that the check
at the very beginning has to take respect to the fact that S in general does not point to the
topmost heap element. So we give here the pattern without further comments:

procedure Inc_S(N integer)

II arguments:
II N : increment S by N heap cells

if (SHeapBot <= S + N) and (S + N < SHeapTop) then
S S + N;

else
begin

NN N' ,

if CurrSHeap->next = 0 then
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then
begin

append_hstchunk(CurrSHeap, HEAP_SIZE, HEAP);
Heapsize = Heapsize + HEAP_SIZE;

end;

else
begin
fail = true;
return;

CurrSHeap = CurrSHeap->next;

while NN > HEAP_SIZE do
begin
if CurrSHeap->next = 0 then
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then
begin

append_hstchunk(CurrSHeap, HEAP_SIZE, HEAP);
Heapsize = Heapsize + HEAP_SIZE;

end;

else
begin
fail = true;
return;

end;

CurrSHeap CurrSHeap->next;

11 HEAP, STACK, TRAIL, PDL

NN = NN - HEAP_SIZE;
end;

SHeapBot = CurrSHeap->low.heap;
S = SHeapBot + (N - (SHeapTop - S)) % HEAP_SIZE;
SHeapTop = CurrSHeap->high.heap;

end;
end Inc_S;

Set..s sets the S-register to a given register and updates the auxiliary registers:

procedure Set_S(A : address)

II arguments:
II A set S to this address

29

hst hfind_hstchunk(A); II find the HST structure into whose memory
II A points.

if hst <> CurrSHeap then
begin

II if this differs, update the auxiliary
II registers

CurrSHeap = hst;
SHeapBot hst->low.heap;
SHeapTop = hst->high.heap;

end;

S = A;
end Set_S;

Next...HCell sets the argument HH to point to the Heapcell consecutive to the Heapcell H. H
points into the memory block belonging to the HST CH.

procedure Next_HCell(HC : address, CH : address, HH address)

II arguments:
II HC address to heap cell whose successor must be found
II CH HST which contains HC
II HH the result will be copied here

if HC + 1 < CH->high.heap then II the easy case
HH = HC + 1;

else II boundary of HST memory reached
begin

II now it is to check, if we have to allocate a new entry in the
II heaps HST list:

if CH->next = 0 then II allocate new HST
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then
begin

append_hstchunk(CH, HEAP_SIZE, HEAP);
Heapsize = Heapsize + HEAP_SIZE;

end;

else
begin
fail = true;
return;

II no more memory -> fail

11 HEAP, STACK, TRAIL, PDL

end;

HH = CH->next->low.heap;
end;

end Next_HCell;

11.3 Trail

30

II Set HH to the first new Heapcell

The trail 's data is, as for the heap , represented by several types of data. There are the global
values STACK~IZE and STACK..MALSIZE, determining the number of stack cells managed by
the trail's HSTs and their maximal number; the trail's current size is determined by the global
variable Trailsize. The HSTs are a linked list pointed to by the global variable Trail. The
trailing register TR is as usual , and the trail's auxiliary registers are CurrTrail, holding the
address of the HST into whose memory TR points, and TrailTop, pointing to the top address of
this HST's memory.

11.3.1 Trailcells

To support RelFun's typed variables (see [HaI95]), RAWAM's trail is modified in the way that
it is not an array of pointers Heapcells (or, more generically, as addresses of heap cells), but as
array of pairs of pointers to Heapcells. One memory segment of a trail-HST structure looks
like:

Trail
(Heapcell *) [2] couple of pointers to heap cells
(Heapcell *) [2] ...
...
...

11.3.2 Access

In [AK91]' the trail is used by the WAM instructions via three routines: trail, unwind_trail,
and tidy_trail. RAWAM supports only the first two, here called TraiLVar and Unwind_Trail,
implemented as macros (as C substitute for inline functions) . TraiLVar works analogous to
the corresponding pattern in [AK91]' but Unwind_Trail has to take care of the order in which
it restores the free variables on the heap. This is important because of the sort unification,
whose results are also stored in the trail, and which have to be recovered in reverse time order.
However, Unwind_Trail solves this in a rather trivial way: restore the variables downwarts from
the top of trail, instead of upwards. For the same reason, tidy_trail was modified to equate its
efficiency benefits under this circumstances: nil.
Here is the RAWAM-modified pattern for TraiLVar:

procedure Trail_Var(T : address)

II arguments:
II T : variable which to trail

II first, search the heap-HST T belongs to, it should be after CurrHBHeap:

hst = CurrHBHeap;

while hst <> 0 and not(T >= hst->low.heap and t < hst->high.heap) do
hst = hst->next;

II now check, if the variable has to trailed:

11 HEAP, STACK, TRAIL, PDL

if ((hst = 0) and not(in(T,Current Stackframe) and T >= B))
or ((hst <> 0) and (T < HB)) then

begin
I I fill the

(*TR) [0]
(*TR) [1]

topmost entry in the trail with the variable's data:
T;

= T->u.heaptype;

II Try to increase TR or check if top of trail-HST is reached and allocate
II new one if necessary:

if TR < TrailTop - 1 then
TR++;

else
begin
if CurrTrail->next then
if Trailsize + TRAIL_SIZE <= TRAIL_MAX_SIZE then
begin

append_hstchunk(CurrTrail, TRAIL_SIZE, TRAIL);
Trailsize = Trailsize + TRAIL_SIZE;

end;

else
begin
fail = true;
return;

end;

II update registers :

CurrTrail = CurrTrail->next;
TrailTop = CurrTrail->high . trail;
TR = CurrTrail->low .trail

end;
end Trail_Var;

31

Unwind_Trail restores variables in the reverse order they were put onto the trail. In the simple
case that all variables are contained in one HST memory block, this is straightforward. In the
other case, several HST memory blocks may to have skipped.

procedure Unwind_Trail(A)

II arguments:
II A : trail address up to which to unwind

II easy case: simply loop through

if (A < CurrTrail->high.trail) and
(A >= CurrTrail->low.trail) then

begin
h = TR - 1;

repeat
*(*h)[O] = <TYP,(*h) [1]>;
h = h - 1

until h = A;

11 HEAP, STACK, TRAIL, PDL

end

II difficult case: restore all variables from the topmost trail HST. If
II the number of variables to restore is significantly larger than
II the size of the trail HST memory blocks, several of them may have to
II be fully released. Finally, everything is reduced to the easy case

else
begin
hh = A;
trl = tfind_hstchunk(A);
h = TR - 1;

repeat
*(*h)[O] = <TYP,(*h)[l]>;
h = h - 1

until h = CurrTrail->low.trail;

II find chunk to reach

II first, do entries in top HST block

CurrTrail = CurrTrail->prev; II go to previous HST block

while CurrTrail <> trl do II munge all intermediate HST blocks
begin

h = CurrTrail->high.trail - 1;

while h >= Currtrail->low.trail do
begin
*(*h) [0] = <TYP,(*h) [1]>;
end;

CurrTrail
end

CurrTrail->prev

h = CurrTrail->high.trail - 1;

repeat
*(*h) [0] = <TYP,(*h) [1]>;
h = h - 1

until h = A;

II do last HST block

II update remaining auxiliary registers:

TrailTop = CurrTrail->high.trail
end

end Unwind_Trail;

11.4 Stack

32

The stack contains choice point and environment frames, which are a bit enlarged, compared
with [AK91]' for the need of our enhanced memory management. As for the Heap, for the
full representation and use of the stack, we need several kinds of data. There are the fixed
constants STACK....sIZE and STACK...MAX....sIZE determining the size of the memory belonging to
one HST, and the maximum amount of memory which may be occupied by the stack; the global
variables Stack and Stacksize denote the linked HST list and the number of currently allocated
Stackcells. Further, besides the known E, B, and BO registers, there are some HST-valued
registers associated to each of them:

11 HEAP, STACK, TRAIL, PDL 33

• CurrStack contains a pointer to the HST into whose memory B currently points. The
same do CurrBOStack and CurrEStack for BO and E .

• StackBot and StackTop contain the lowest and highest memory addresses for the memory
block of CurrStack. Same for BOStackBot, BOStackTop, and CurrBOStack.

11.4.1 Layout

The layout of a choice point is as follows:

I Offset I Content

0 Timestamp register
1 number n of saved Y-registers
2 Y-register 1
...
n + 1 Y -register n

n+2 E register
n+3 Curr EStack register
n+4 CP register
n+5 B register
n+6 CurrStack register
n+7 next clause in case of failure
n+8 TR register
n+9 H register
n + 10 Curr Heap register
n + 11 BO register
n + 12 CurrTrail register

Environment frame layout:

I Offset Content

0 Timestamp
1 E register
2 CP register
3 BO register for cut
4 Curr EStack register
5 first Y-register
...
4+ m mth Y-register

11.4.2 Stackcells

A Stackcell can contain several kinds of data; there is no tagging needed, because there are
fixed rules how stack slots are filled. Hence, a Stackcell is a union as follows:

Stackcell
reg Heapcell for X-registers
stackref Stackcell * pointer to stack
intnum unsigned long int long integer number
coderef Codecell * pointer to program address
hstref HST * pointer to memory segment
trailref Trailcell * pointer to trail
heapref Heapcell * pointer to heap

11 HEAP, STACK, TRAIL, PDL 34

11.4.3 Timestamps

To compare the creation time of environment frames and choice points, each of them has an
additional slot for a time stamp, which is filled upon creation by the value of the Timestamp
variable. This is a counter which is increased each time after initializing a stack structure and
decreased after destroying the highest one.
The following instructions/places are modified for using the time stamp:

• the initialisation process of the query gets the very first entry

• the commands trYJIle_else, retrYJIle_else, trustJIle_elseJail, try, retry, trust,
exec, ret, ret_const, ret_int, retJloat, allocate, deallocate.

The rules for the commands for manipulating Timestamp are as follows:

1. allocate, tryJIle_else, and try create environments, respectively choice points, on top
of the stack. So they copy the value of Timestamp into the time stamp slot and increase
Timestamp by one.

2. retry JIle_else, retry have to restore also Timestamp, which is set to the choice points
time stamp plus one.

3. The rest of these commands remove a choice point/environment frame. the new timestamp
is set to max(timestamp(E), timestamp(B)) + 1, where E and B are the actual choice
point/environment frame after the removal.

11.4.4 Access

Creating a stack frame is done via the function StackAlloc. There are two occasions where
StackAlloc is called: for creating an environment or for creating a choice point. So, involved
are the two of the registers Band E (and their auxiliary registers) for one of them refering to
the current highest position on the stack and one of them being wanted to refer afterwards to
the highest position. StackAlloc expects as arguments a pointer immediately after the highest
stack frame, the HST where the topmost stack frame is contained (i.e. one of CurrStack and
CurrEStack), the auxiliary HST register which may be updated, and the size of the stack frame
to be allocated. It returns a reference to the allocated stack frame.

function StackAlloc(M
N

address, CS : address, CSN : address,
integer) : address

I I arguments:
II M address immediately after current stack frame
II CS current highest stack HST
II CSN stack HST which may be updated
II N size of stack frame
II S stack register to update

II test if enough space is left in the current HST memory:

if CS->high.stack - M > N then
begin

CSN = CS,
return M;

end;

II if yes, then everything is ok

II else, allocate new HST if needed and return reference to its low memory
else
begin
if CS->next o then

12 AUXILIARY ITEMS

if Stacksize + max(STACK_SIZE, N) <= STACK_MAX_SIZE then
begin

append_hstchunk(CS, max (STACK_SIZE, N), STACK);
Stacksize = Stacksize + STACK_SIZE;

end;

else
begin
fail = true;
return;

end;

CSN = CS->next;
return CSN->low.stack;

end;
end StackAlloc;

12 Auxiliary Items

12.1 Memory Management for Linked Lists

Memory_Area *init_mem_area(size_t type, size t size, size t enlargement);
void release_mem_area(Memory_Area **);
void *get_memory(Memory_Area *);
void release_memory(void *, Memory_Area *);
void clear_mem_area(Memory_Area *);

35

Because of the frequent use of linked lists during the assembling process, there exist - somewhat
experimental - memory management routines which are taylored to quickly re-use memory
allocated for linked lists. The idea is, not to allocate new system memory for each new entry
in a linked list, but to allocate a whole memory block at once, mark locations in it as a new
list entry and release all at once, if the linked list is no longer needed. The main data structure
here is the Memory...Area:

Memory -.Area

-----+
mem_blk BYTE * pointer to memory block
first.1ree BYTE * pointer to next element to be allocated
type size_t data type to be handled, "typed" by its size
size size_t number of possible entries
num.1ree size_t number of free entries
enlargement size_t extend mem_blk memory by this amount if exceeded

To handle a linked list via Memory...Areas, one has first to create the first Memory...Area with the
function ini t..mem_area; its arguments are the type of entries in the list - which means its size
-, the number of entries the Memory...Area can contain, and the size which an additional memory
area will have, if the former number will be exceeded. For example,

init_mem_area(sizeof(Codeconstruct), 2000, 500);

initializes a Memory...Area for linked lists of type Codeconstruct (or some other of equivalent
size, respectively) with a capacity of 2000 entries; if this is exceeded, additional Memory...Areas
of 500 entries size will be appended.
When using the linked list, calls to get..memory will allocate a new element of the specified
memory area. getJOemory does it in the way, that it steps through all Memory...Area structures
and returns the entry of the first free entry it finds. If it finds none, it calls ini tJOem_area to
create a new Memory...Area and allocates its first entry.

13 CONCLUSIONS 36

release..1llernory searches for the Memory...Area where the specified list entry belongs to and
releases it there.
If a linked list is no longer used, it is reset by the function clear ..1lIern_area, which sets all
Memory...Areas belonging to a memory area into an initial state.
To completely get rid of a memory area, one has to use release..1llern_area.

13 ConcI usions

This work gave an almost complete description of the RAWAM and its implementation. Ho­
wever, there remain some un discussed and unfinished issues. The most important of these are
the following: the unsufficient coupling of the RAWAM via the file system, the prototypical
support of RelFun's module system, and the not yet completed adaption of the RAWAM to all
of RelFun's features .
While the first point is just a matter of taste, the latter ones were delayed because of the
fact that they would require both, the extension of the RAWAM and the reworking of the
whole RFM compiler. For instance, the compiler currently flattens the modules, so, in fact, the
module system in the RAWAM is only used for the distinction of predefined and user-defined
WAM routines. Further open questions with respect to the support of a full module system are
(1) how to implement a compilation/assembling scheme that allows backtracking across module
contexts and (2) to give proper foundations of higher-order logic within a module system. These
points are discussed in [Her95] , [BLM94].
Summarizing, the RAWAM is well-suited and now well-enough described to be adapted to
other logic programming languages; it is not only suited to work as an abstract machine, but
its design also allows one further step: to reuse parts of it for generating C programs out of
RelFun source, hence to provide native code for it (cf. [VR94]) .

References

[AK91] Hassan Alt-Kaci. Warren's Abstract Machine: A Tutorial Reconstruction. The MIT
Press, Cambridge, Massachusetts, 1991.

[AK95] Hassan Alt-Kaci. List of known bugs for the book: Hassan Alt-Kaci, "Warren's
Abstract Machine: A Tutorial Reconstruction". http://www.isg.sfu.carhak , 1995.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers - Principles, Techni­
ques, and Tools. Addison-Wesley, 1986.

[BEH+96] Harold Boley, Klaus Elsbernd, Hans-Guenther Hein, Thomas Krause, Markus Per­
ling, Michael Sintek, and Werner Stein. RFM Manual: Compiling RELFUN into
the Relational/Functional Machine. Document D-91-03, DFKI GmbH, July 1996.
Third, Revised Edition.

[BLM94] Michele Bugliese, Evelina Lamma, and Paola Mello. Modularity in logic program­
ming. Journal of Logic Programming, 19/20:443-502,1994.

[BoI97] Harold Boley. A Relational-Functional Integration for Declarative Programming.
In Christian Freksa, Matthias Jantzen, and Rudiger Valk, editors, Foundations of
Computer Science: Potential - Theory - Cognition, number 1337 in LNCS, pages
351- 358. Springer-Verlag, Berlin, Heidelberg, 1997.

[GC96] Gopal Gupta and Mats Ca.rlsson, editors. The Journal of Logic Programming. Special
Issue: High-Performance Implementations of Logic Programming Systems. Elsevier
Science Inc., 1996.

[GLL085] John Gabriel, Tim Lindholm, E. L. Lusk, and R.A. Overbeek. A Tutorial on the
Warren Abstract Machine for Computational Logic. Report ANL-84-84, Argonne
National Laboratory, Argonne, Illinois 60439, June 1985.

REFERENCES 37

[HaI95] Victoria Hall. Integration von Sorten als ausgezeichnete taxonomische Priidikate in
eine relational-funktionale Sprache. Projektarbeit, March 1995.

[Her95] Michael Herfert. Deklarative statische und dynamische Softwaremodule. Master's
thesis, Fachbereich Informatik, Universitiit Kaiserslautern, 1995.

[MW88] David Maier and David S. Warren. Computing with Logic. The Benjamin/Cummings
Publishing Company, Inc., 1988.

[Nys85] Sven Olof Nystr0m. NyWam - A WAM Emulator Written in LISP, 1985.

[Per] Markus Perling. Rawam sources. http://www.dfki.uni-kl.de;-vega/relfun.html.

[Per97] Markus Perling. GeneTS: A Relational-Functional Genetic Algorithm for the Tra­
veling Salesman Problem. Technical Report TM-97-01, DFKI GmbH, August 1997.

[Rus92] David M. Russinoft". A verified Prolog compiler for the Warren abstract machine.
Journal of Logic Programming, 13(4):367-412, August 1992.

[Sin93] Michael Sintek. Indexing PROLOG Procedures into DAGs by Heuristic Classifica­
tion. Technical Report TM-93-05, DFKI GmbH, 1993.

[Sin95] Michael Sintek. FLIP: Functional-plus-Logic Programming on an Integrated Plat­
form. Master's thesis, Universitiit Kaiserslautern, 1995.

[VR94] Peter Van Roy. 1983-1993: The Wonder Years of Sequential Prolog Implementation.
The Journal of Logic Programming, 19,20:385-441,1994.

[War 77] D. H. D. Warren. Compiling Predicate Logic Programs. D.A .I. Research Report ,
University of Edinbourgh, 1977.

[War83] David H. D. Warren. An abstract prolog instruction set. Technical Note 309, SRI
International, Menlo Park, CA, October 1983.

A SOME CORRECTIONS 38

A Some Corrections

During the implementation of the RAWAM several errors contained in Alt-Kaci's original book
[AK9lJ were found and corrected. We refrain here from describing these corrections in any
detail, because there exists an official list of known bugs and their corrections. Since our
independently found corrections completely agree with Alt-Kaci's, the current WAM version
seems to be bug free.
Alt-Kaci's list can be found at his homepage at

http://www.isg.sfu.ca/-hak/docurnents/wamerraturn.txt

B Overview: Supported WAM Instructions

B.l Instructions as in Alt-Kaci's description of the WAM

The RAWAM instructions in this appendix all have counterparts in the WAM description
[AK9lJ, which are denoted in the second columns of the tables below.

B.l.l Put instructions

RA WAM instructions
put..x-Yariable Xn,Xm put-variable Xn,Ai
put_y_variable Yn,Xm put-variable Yn,Ai
put..x_value Xn,Xm put_value Vn,Ai
put_y_value Yn,Xm put_value Vn,Ai
put_unsafe_value Yn,Xm put_unsafe_value Yn,Ai
put_structure f ,Xn put_structure f ,Ai
put_list Xn put-list Ai
put_constant c,Xn put_constant c,Ai
putJlil Xn put_constant O,Ai
put_int i,Xn put_constant i,Ai
put..:float r,Xn put_constant r,Ai

B.l.2 Get instructions

RAWAM instructions
get..x-Yariable Xn,Xm get-Yariable Vn,Ai
get_y-yariable Yn,Xm get_variable Vn,Ai
get..x-Yalue Xn,Xm get_value Vn,Ai
get_y-yalue Yn,Xm get-Yalue Vn,Ai
get _structure f ,Xm get_structure f ,Ai
get_list Xn get-list Ai
get_constant c,Xm get_constant c,Ai
getJlil Xn get_constant O,Ai
get_int i,Xm get_constant i,Ai
get..:float r,Xm get-constant r,Ai

B OVERVIEW: SUPPORTED WAM INSTRUCTIONS 39

B.1.3 Unify instructions

RA WAM instructions
unify..x3ariable Xn unify_variable V"
unify_y_variable Y" unify_variable V"
unify..x_value Xn unify_value Vn
unify_y_value Y" unify_value Vn
unify..x_locaLvalue Xn unify_value Vn
unify_y_locaLvalue Yn unify_value Vn
unify_constant c unify_constant c
unifyJlil Xn unify _constant 0
unify_int i unify _constant i
unifyJloat r unify_constant r
unify_void n unify_void n

B.1.4 Control instructions

RA WAM instructions
allocate allocate
deallocate deallocate
call F,N call F,N
execute F execute F
proceed proceed

B.1.5 Choice instructions

RA WAM instructions
try JIle_else L,n tryJlle_else L
retrYJIle_else L retrYJlle_else L
trustJlle_elseJail trustJlle
try L,n try L
retry L retry L
trust L trust L

B.1.6 Indexing instructions

RA WAM instructions
switch_on_term C,S,L,N,V switch_on_term V,C,L,S
swi tch_on_constant N,T swi tch_on_constant N,T
swi t ch_on_structure N,T swi tch_on_structure N,T

B.1. 7 Cut instructions

RAWAM instructions
neck_cut neck_cut
get-level Yn get-level Yn
cut Yn cut Yn

B OVERVIEW: SUPPORTED WAM INSTRUCTIONS 40

B.2 Additional Instructions

B.2.1 Arithmetics Instructions

Instruction Description
add2 adds contents of registers X I and X 2

addn n adds contents of registers Xl to X Il

sub2 subtracts contents of registers Xl and X 2

subn n subtracts contents of registers Xl to X Il

inc increases contents of register Xl by 1
dec decreases contents of register X I by 1
mu12 multiplies contents of registers Xland X 2

muln n multiplies contents of registers Xl to Xn
div2 divides contents of register Xl by X 2

divn n divides contents of register Xl by X 2to Xn
mod2 Xl modulo X 2

modn n Xlmodulo X 2 .·· modulo Xn
random generates random value between O ... {X I} - 1 if X I contains an

integer, or between 0 ... {Xd if Xl contains a real number
exp e{xt}

expt {Xd{X2 }

log In{Xd
sqrt J{Xd
abs I {Xd I
signum o if {X d = 0, 1 if {X d > 0, -1 else
sin sin{Xd
cos cos{Xd
tan tan{Xd
asin arcsin{X1 }

acos arccos{Xd
at an arctan{X1 }

pi 7r

sinh sinh{X1 }

cosh cosh{Xd
tanh tanh{Xd
asinh arcsinh{Xd
acosh arccosh { Xl}
atanh arctanh {X 1 }

lt2 test if {Xd < {X2 }

ltn n test if {Xd < ... < {Xn}
le2 test if {Xd :S {X2 }

len n test if {Xd :S ... :S {Xn}
gt2 test if {Xd > {X2 }

gtn n test if {Xd > ... > {Xn}
ge2 test if {Xd ~ {X2 }

gen n test if {Xd ~ ... ~ {Xn}
eq2 test if {Xd = {X2 }

eqn n test if {Xd = ... = {Xn}
ne2 test if {Xd i- {X2 }

nen n test if {Xd i- ... i- {Xn}
min n min {Xd ... {Xn}
max n max {Xd ... {Xn}
stringst test if {Xd < {X2 } and {Xd, {X2 } contain strings or constants
stringse test if {Xd <= {X2 } and {Xd, {X2 } contain strings or constants
stringgt test if {Xd > {X2 } and {Xd, {X2 } contain strings or constants
stringge test if {Xl} > = {X 2} and {Xl}, {X 2} contain strings or constants
stringeq test if {Xd = {X2 } and {Xd, {X2 } contain strings or constants
stringneq test if {Xd i- {X2 } and {Xd, {X2 } contain strings or constants

B OVERVIEW: SUPPORTED WAM INSTRUCTIONS 41

B.2.2 Miscellaneous Instructions

Indexing Instructions

Instruction Description
set_indexJlumber n sets indexing register to Xn

Alternative Cut Instructions

Instruction Corresponds to
save_cut_pointer geLlevel
gama_cut cut

Flow Control Instructions

Instruction Description
terminate terminates RAWAM execution of query
failure terminates RAWAM execution and failures
backtrack invokes backtracking

Special Commands

Instruction Description
type sort unification
apply t higher order calls
11 calls to lisp light
trueatom true if X I contains an atom
nontrueatom true if Xl contains not an atom
var true if X I contains a variable
nonvar true if X I contains not a variable

B.2.3 Integrating Instructions

Instruction Substitution
exec P deallocate

execute P
ret deallocate

proceed
ret_const put_constant c,X1

deallocate
proceed

reLint put_int i,XI

deallocate
proceed

ret..float puLfloat r,XI

deallocate
proceed

proceed_const put_constant c,X I

proceed
proceed_int put_int i,XI

proceed
proceed..:f loat put..:float r,XI

proceed
switch_on_termJl n,C,S,L,N,V set_indexJlumber n

switch_on_term C,S,L,N,V

C A DEMO SCRIPT

C A Demo Script

rfi-p> exec rawam 8,
7,

relfun 6,
rfi-p> (,(,(,(,(,(,(,(,(, rawam.bat 4,
rfi-p> (,(,(,(,(,(,(,(,(, test facilities and speed-up of the RAWAM 19,
rfi-p> 1,
rfi-p> miser-level 3 26,
rfi-p> inter 24,
rfi-p> destroy 3,
rfi-p> sp 22,
rfi-p> timermode on 2,
(, timermode is on now. 14,
rfi-p> 13,
rfi-p> 1,
rfi-p> (,(,(, First a suite of the serialise-demo and 19,
rfi-p> (,(,(, comparison with the GWAM: 4,
rfi-p> 6,
rfi-p> (,(, pure functional version of serialise: 18,
rfi-p> 5,
rfi-p> consult funser 23,
Reading file" . /funser.rfp" 17,
rfi-p> listing 26,
serialise(L) :k assign(L,table(L, [])). 24,
assigneE] ,T) :k []. 3,
assign([XIRest] ,T) :k tup(assoc(X,T) lassign(Rest,T)). 22,
assoc(X, [[X,L] IRest]) !k L. 2,
assoc(X, [[Y ,L] IRest]) :k assoc(X,Rest). 7,
table([] ,T) :k T. 20,
table ([X I Rest] ,T) : - memb(X, T) ! ktable (Rest, T) . 25,
table ([X I Rest] ,T) : k table (Rest, insert ([X ,1] , T)) . 8,
memb(X,[[X,L] IRest])!. 14,
memb(X, [[Y,L] IRest]) :- memb(X,Rest). 13,
insert([X,L] , []) :k [[X,L]]. 10,
insert([X,Ll], [[Y,L2] IRest]) :- 21,

string«X,Y) !ktup(tup(Y,l+(L2)) linsert([X,Ll] ,Rest)). 9,
insert([X,Ll], [[Y,L2] IRest]) :k 11,

tup([Y,L2] linsert(tup(X,l+(Ll)),Rest)). 12,
loop(X,l) serialise(X). 15,
loop(X,N) :- serialise(X) k loop(X,l-(N)). 16,
rfi-p> 17,
rfi-p> (, try GWAM : 23,
rfi-p> 5,
rfi-p> ernul 18,
Collecting modules for the emulator: 20,
sortbase workspace 25,
rfe-p> 21,
rfe-p> compile 9,
rfe-p> 15,
rfe-p> (, first we look what it does: 16,
rfe-p> 13,
rfe-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s, 14,
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m, 2,
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d, 22,
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t, 3,
y ,u, i ,0, p]) 24,
[17, 26,
23, 1,
5, 19,
18, 4,
20, 6,
25, 7,
21, 8,
9, 10,
15, 11,
16, 12,
12, 17,
11, 1,
10, 26,

42

C A DEMO SCRIPT

24,
3,
22,
2,
14,
13,
19,
4,
6,
7,
8,
10,
11,
12,
23,
5,
18,
20,
25,
21,
9,
15,
16]

'l. Internal run time : 2920 ticks (= 2 . 920000 sec)
rfe-p>
rfe-p> inter
rfi-p> pauseO
true
'l. Internal run time: 0 ticks (= 0 .000000 sec)
rfi-p> emul
Collecting modules for the emulator:
sortbase workspace
rfe-p>
rfe-p> 'l. now we force GWAM to need some time:
rfe-p>
rfe-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,
n,m,j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,
z,a,s,d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j.
k,l,w,e,r,t,y,u,i,o,p],10)
true
'l. Internal run time: 14390 ticks (= 14.390000 sec)
rfe-p>
rfe-p> 'l. and again:
rfe-p>
rfe-p> ori
true
'l. Internal run time: 16000 ticks (= 16.000000 sec)
rfe-p>
rfe-p> inter
rfi-p> pauseO
true
'l. Internal run time: 0 ticks (= 0.000000 sec)
rfi-p> emul
Collecting modules for the emulator:
sortbase workspace
rfe-p>
rfe-p> 'l. now try RAWAM:
rfe-p>
rfe-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> 'l. test, how much time the compilation of
rfc-p> 'l. the query takes:
rfc-p>
rfc-p> something_which_does_not_exist([q,w,e,r,t,y,u,i,
o,p,l,k,j,h,g,f,d,s,a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,X,
c,v,b,g,t,y,h,n,m,j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,nJ
b,v,c,x,z,a,s,d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g.h,

j,k,l,w,e,r,t,y,u,i,o,pJ)
unknown

43

'l. Internal run time: 124 ticks (= 0.124000 sec)
rfc-p>
rfc-p> 'l. subtract this time from the times below:
rfc-p>
rfc-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,
y,u,i,o,p])
[17 ,
23,
5,

9,
15,
16]

'l. some lines omitted here

'l. Internal run time: 234 ticks (= 0.234000 sec)
rfc-p>
rfc-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z,
x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,j,u,
i,k,l,o,p,q,v,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g,
h,j,k,l,q.a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,v,e,r,t,y,u,
i,o,p] ,10)
true
'l. Internal run time: 584 ticks (= 0.584000 sec)
rfc-p>
rfc-p> ori
true
'l. Internal run time: 425 ticks (= 0.425000 sec)
rfc-p> ori
true
'l. Internal run time : 508 ticks (= 0.508000 sec)
rfc-p>
rfc-p> 'l. Seen it?
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
'l. Internal run time: 0 ticks (= 0 . 000000 sec)
rfi-p>
rfi-p> destroy
rfi-p>
rfi-p> 'l. This is a relational version of serialise:
rfi-p>
rfi-p> consult relser
Reading file "./relser.rfp"
rfi-p>
rfi-p> listing
apprel([] ,L, L) .
apprel([HIR],L,[HIRI]) apprel(R,L,RI) .
qsort [Cr] ([] , []) .
qsort [Cr]([X I YJ, R) :-

partition[Cr] (X,Y,Sm,Gr),
qsort[Cr](Sm,Sm-sorted),
qsort[Cr](Gr,Gr-sorted),
apprel(Sm-sorted,[XIGr-sorted] ,R).

partition[Cr] (X, [YIZ], [YISmaller] ,Greater) :­
Cr(Y,X),partition[Cr](X,Z,Smaller,Greater).

partition[Cr] (X, [YIZ] ,Smaller, [YIGreater]) :­
Cr(X,Y),partition[Cr](X,Z,Smaller,Greater).

partition[Cr] (X,[XIZ] ,Smaller,Greater)
partition[Cr](X,Z,Smaller,Greater) .

partition[Cr] (X, [], [], []).
pairlists([XIL],[YIR],[[X,Y] IP]) pairlists(L,R,P) .
pairlists ([] , [] , []) .

C A DEMO SCRIPT

24,
3,
22,
2,
14,
13,
19,
4,
6,
7,
8,
10,
11,
12,
23,
5,
18,
20,
25,
21,
9,
15,
16J

'l. Internal run time: 2920 ticks (= 2.920000 sec)
rfe-p>
rfe-p> inter
rfi-p> pauseO
true
'l. Internal run time : 0 ticks (= 0 .000000 sec)
rfi-p> emul
Collecting modules for the emulator:
sortbase workspace
rfe-p>
rfe-p> 'l. now we force GWAM to need some time:
rfe-p>
rfe-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,
a , z,x , c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,h,g,t,y,h,
n,rn,j,u,i,k,l,o,p.q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,
z,a,s,d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,
k,l,w,e,r,t,y,u,i,o,pJ ,10)
true
'l. Internal run time : 14390 ticks (= 14.390000 sec)
rfe-p>
rfe-p> 'l. and again :
rfe-p>
rfe-p> ori
true
'l. Internal run time : 16000 ticks (= 16.000000 sec)
rfe-p>
rfe-p> inter
rfi-p> pauseO
true
'l. Internal run time : 0 ticks (= 0.000000 sec)
rfi-p> emul
Collecting modules for the emulator:
sort base workspace
rfe-p>
rfe-p> 'l. now try RAWAM :
rfe-p>
rfe-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> 'l. test, how much time the compilation of
rfc-p> 'l. the query takes :
rfc-p>
rfc-p> something_which_does_not_exist([q,w,e,r,t,y,u,i,
o,p,l,k,j,h,g,f,d,s,a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,X,
c,v,b,g,t,y,h,n,m,j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,nJ
b,v,c,x,z,a,s,d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,

j,k,l,w,e,r,t,y,u,i,o,pJ)
unknown

43

'l. Internal run time: 124 ticks (= 0 . 124000 sec)
rfc-p>
rfc-p> 'l. subtract this time from the times below:
rfc-p>
rfc-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n ,m,
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,
y,u,i,o,pJ)
[17,
23,
5,

9,
15,
16J

'l. some lines omitted here

'l. Internal run time: 234 ticks (= 0.234000 sec)
rfc-p>
rfc-p> loop([q,w,e,r , t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z,
x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,j,u,
i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g,
h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,y,u,
i,0,pJ,10)
true
'l. Internal run time: 584 ticks (= 0.584000 sec)
rfc-p>
rfc-p> ori
true
'l. Internal run time: 425 ticks (= 0.425000 sec)
rfc-p> ori
true
'l. Internal run time: 508 ticks (= 0 . 508000 sec)
rfc-p>
rfc-p> 'l. Seen it?
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
'l. Internal run time: 0 ticks (= 0.000000 sec)
rfi-p>
rfi-p> destroy
rfi-p>
rfi-p> 'l. This is a relational version of serialise:
rfi-p>
rfi-p> consult relser
Reading file " .frelser.rfp"
rfi-p>
rfi-p> listing
apprel([J ,L, L) .
apprel([H I RJ ,L, [H I RIJ) apprel(R, L, RI) .
qsort [CrJ ([J , [J) .
qsort[CrJ([XIYJ ,R) :-

partition[CrJ(X,Y,Sm,Gr),
qsort[CrJ(Sm,Sm-sorted),
qsort[CrJ(Gr,Gr-sorted),
apprel(Sm-sorted,[XIGr-sortedJ,R) .

partition[CrJ (X, [YIZJ, [YISmallerJ ,Greater) :­
Cr(Y,X) ,partition[CrJ (X,Z,Smaller,Greater).

partition[CrJ (X, [YIZJ ,Smaller, [YIGreaterJ) :­
Cr(X,Y) ,partition[CrJ (X,Z,Smaller,Greater).

partition[CrJ (X, [XIZJ ,Smaller ,Greater) :-
partition[CrJ(X,Z,Smaller,Greater) .

partition[CrJ (X, [J ,[J ,[J).
pairlists([XILJ,[YIRJ,[[X,YJ IPJ) pairlists(L,R,P) .
pairlists ([J , [] , [J) .

C A DEMO SCRIPT

numbered([[X,NJ IRJ ,N) :- numbered(R,l+(N)).
numbered ([] ,N).
before ([Xl, Y1J , [X2, Y2J) : - string< (Xl, X2) .
serialise(L,R) :- pairlists(L,R,P),qsort[beforeJ(P,N),

loop(X,l)
loop(X,N)
rfi-p>
rfi-p> emul

numbered(N,l).
serialise(X,_) .
serialise(X,_) k loop(X,l-(N)).

Collecting modules for the emulator:
sortbase workspace
rfe-p> compile
rfe-p>
rfe-p> /. it does the same:
rfe-p>
rfe-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,
f,g,h,j,k,l,q.a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,
y,u,i,o,pJ ,R)
true
R=[17,

23,

9,
15,
16J

/. some lines omitted

/. Internal run time: 710 ticks (= 0 . 710000 sec)
rfe-p>
rfe-p> inter
rf i -p> pause 0
true
/. Internal run time: 0 ticks (= 0.000000 sec)
rfi-p> emul
Collecting modules for the emulator:
sortbase workspace
rfe-p>
rfe-p> /. do some work . . .
rfe-p>
rfe-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z,
x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,j,u,
i,k,l,o,p.q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g,
h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,y,u,
i,o,pJ ,10)
true
/. Internal run time: 5370 ticks (= 5.370000 sec)
rfe-p>
rfe-p> ori
true
/. Internal run time: 5410 ticks (= 5.410000 sec)
rfe-p>
rfe-p> inter
rfi-p> pauseO
true
/. Internal run time: 10 ticks (= 0.010000 sec)
rfi-p>
rfi-p> /. now we switch to the RAWAM:
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p>
rfc-p> compile
rfc-p>
rfc-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,

44

j,u,i,k,l,o,p.q,w,e,r,t,y,u,i,o,p,rn,n,b,v,c,x,z,a
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e
y,u,i,o,pJ ,R)
true
R= [17,

23,

9,
15,
16J

/. some lines omitted

/. Internal run time: 257 ticks (= 0.257000 sec)
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
/. Internal run time : 0 ticks (= 0 .000000 sec)
rfi-p> emuc
Collecting modules for the emulator :
sortbase workspace
rfc-p>
rfc-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a
z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n, :
j,u,i,k,l,o,p,q,w , e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,
d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,
r,t,y,u,i,o,pJ ,10)
true
/. Internal run time: 317 ticks (= 0.317000 sec)
rfc-p>
rfc-p> ori
true
/. Internal run time : 261 ticks (= 0 . 261000 sec)
rfc-p> ori
true
/. Internal run time: 265 ticks (= 0 .265000 sec)
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
/. Internal run time : 0 ticks (= 0 . 000000 sec)
rfi-p>
rfi-p> destroy
rfi-p>
rfi-p> consult mixser
Reading file ". /mixser . rfp"
rfi-p>
rfi-p> emul
Collecting modules for the emulator :
sortbase workspace
rfe-p> compile
rfe-p>
rfe-p> serialise([q,w,e,r,t,y,u,i,o,p,l ,k,j,h,g,f,d
a,z,x,c,v,b,n,m , a,s,d,f,r,e,v,q,z,x,c,v,b,g,t,y,h,n
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e , r
y,u,i,o,pJ)
[17 ,
23,

9,
15,
16J

/. Internal run time: 640 ticks (= 0.640000 sec)
rfe-p>

C A DEMO SCRIPT

,fe-p> inter
,fi-p> pause()
;rue
r. Internal run time: 0 ticks (= 0.000000 sec)
,f i -p> ernul
;ollecting modules for the emulator:
;ortbase workspace
,fe-p>
,fe-p> 'l. do some work ...
,fe-p>
:fe-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z,
~JcJvJbJnJmJaJsJdJfJrJe,wJq,zJxJcJvJb,g,tJYJh,n,m,j,u,

l,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g.
l,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,y,u,
L,o,pJ ,10)
:rue
~ Internal run time: 4900 ticks (= 4.900000 sec)
:fe-p>
:fe-p> ori
:rue
~ Internal run time: 4690 ticks (= 4.690000 sec)
:fe-p>
:fe-p> inter
:fi-p> pause()
:rue
: Internal run time: 0 ticks (= 0 .000000 sec)
·fi-p>
·fi-p> 'l. now we switch to the RAWAM:
·fi-p>
·fi-p> emuc
:ollecting modules for the emulator:
:ortbase workspace
'fc-p>
'fc-p> compile
'fc-p>
'fc-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,
L,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,
,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,
.g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,
,u, i, 0, pJ)
17,
23,

9,
15,
16J
Internal run time: 212 ticks (= 0.212000 sec)

fc-p>
fc-p> inter
fi-p> pauseO
rue
Internal run time: 0 ticks (= 0.000000 sec)

fi-p> emuc
'ollecting modules for the emulator :
ortbase workspace
fc-p>
fc-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z,x,
,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,j ,u,i,k ,
,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g,h,j,k.
,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,y,u,i,o,pJ ,10)
rue
Internal run time : 252 ticks (= 0.252000 sec)

fc-p>
fc-p> ori
rue
Internal run time: 246 ticks (= 0.246000 sec)

fc-p> ori

45

true
'l. Internal run time: 246 ticks (= 0.246000 sec)
rfc-p>
rfc-p> inter
rfi-p> pause()
true
'l. Internal run time: 10 ticks (= 0 . 010000 sec)
rfi-p>
rfi-p> destroy
rfi-p> timermode off
'l. timermode is off now.
rfi-p>
rfi-p> 'l.'l.'l. Now we demonstrate a genetic algorithm
rfi-p> 'l.'l.'l. optimizing the TSP:
rfi-p>
rfi-p> consult ts
Reading file "./ts.rfp"
rfi-p>
rfi-p> 'l. We have a set of 16 cities, arranged
rfi-p> 'l. in a 4x4-array:
rfi-p>
rfi-p> listing plan2
plan2() :&

rfi-p>
rfi-p>
true
rfi-p>

[0.0,
0.0,
1.0,
0.0,
2.0,
0.0,
3.0,
0.0,
0.0,
1.0,
1.0,
1.0,
2.0,
1.0,
3.0,
1.0,
0.0,
2.0,
1.0,
2.0,
2.0,
2.0,
3.0,
2.0,
0.0,
3.0,
1.0,
3.0,
2.0,
3.0,
3.0,
3.0J .

pause()

rfi-p> 'l. we access the algorithm via a testing clause
rfi-p>
rfi-p> listing test
test(Plan,Pop_size,Mut_rate,Cross_rate,Better_rate)

Map .= generate_distmap(Plan) ,
Len .= l(length(Plan),2) &
ts(init_pop(Pop_size,Len,Map,init_list(l,Len)) ,

rfi-p>

Map,
Mut_rate,
Cross_rate,
Better_rate) .

C A DEMO SCRIPT

rfi-p> pauseO
true
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> I. we use a population of 100 individuals,
rfc-p> I. a mutation probability of 0.4,
rfc-p> I. crossover probability of 0.1,
rfc-p> I. and haploid genomes (1.0 = haploid,
rfc-p> I. 0.0 = diploid)
rfc-p>
rfc-p> test(plan2(), 100, 0.4, 0.1, 1.0)
[24.064495, [16,14,13,15,3,7,10,9,5,6,ll,2,l,4,8,12J ,32.93959J
rfc-p>
rfc-p> I. we see the first generation
rfc-p> I. output is the length of the shortest path within
rfc-p> I. the population, the path itself wrt . to order given
rfc-p> I. in the map, and the average path length within the
rfc-p> I. population
rfc-p> I. we will do some more optimization steps:
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p>
rfc-p> test(plan2(), 100, 0.4, 0.1, 1.0)
[25.877054,[3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,32.610477J
rfc-p> more
[25.877054, [3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,30.982065J
rfc-p> more
[25.877054,[3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,29.482859J
rfc-p> more
[25.877054,[3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,28 . 524343J
rfc-p> more
[25.877054,[3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,27.671125J
rfc-p> more
[25.453745, [12,16,5,l,15,3,7,ll,14,13,10,9,6,2,4,8J ,26.751875J
rfc-p> more
[25.320328, [10,ll,15,6,5,7,2,l,9,14,12,16,8,4,3,13J ,26.09766J
rfc-p> more
[24.640985, [9,3,16,12,15,ll,5,13,14,10,6,7,8,4,2,lJ ,25.96922J
rfc-p> more
[22.714775,[10,ll,12,14,9,l,2,7,3,4,8,16,15,6,5,13J ,25.59918J
rfc-p> more
[22.714775,[10,ll,12,14,9,l,2,7,3,4,8,16,15,6,5,13J ,25 . 345667J
rfc-p> more
[22.472136,[3,7,6,10,9,15,ll,5,13,14,16,12,8,4,2,lJ ,25.245508J
rfc-p> more
[21 . 88635, [3,7,6,10,9,15,14,13,5,ll,16,12,8,4,2,lJ,24.59224J
rfc-p> more
[21.88635, [3,7,6,10,9,15,14,13,5,ll,16,12,8,4,2,lJ,24.03942J
rfc-p> more
[21 . 88635, [3,7,6,10,9,15,14,13,5,ll,16,12,8,4,2,lJ,23.624447J
rfc-p> more
[21 . 88635 , [3,7,6,10,9,15,14,13,5,ll,16,12,8,4,2,lJ,23.086266J
rfc-p> more
[21.162277,[3,7,6,10,ll,15,14,13,5,9,16,12,8,4,2,lJ ,22.551796J
rfc-p> more
[20.650282,[2,7,6,10,9,ll,5,13,14,15,16,12,8,4,3,lJ ,22.344046J
rfc-p> more
[20.650282, [2,7,6,10,9,ll,5,13,14,15,16,12,8,4,3,lJ ,22 .091103J
rfc-p> more
[20.650282, [2,7,6,10,9,ll,5,13,14,15,16,12,8,4,3,lJ ,21.942196J
rfc-p>
rfc-p> I. the optimum value is 16 length units

rfc-p>
rfc-p>

46

rfc-p> 1.1.1. now we test extensively the types :
rfc-p>
rfc-p> exec rawamtypes.bat

relfun
rfc-p> I. test types in the RAWAM
rfc-p> I. this is a modification of typin.bat
rfc-p>
rfc-p> inter
rfi-p> sp
rfi-p> destroy
rfi-p> destroy-sortbase
rfi-p>
rfi-p> az drinks(mary,pina-colada).
rfi-p> az drinks (mary ,vodka-lemon) .
rfi-p> az drinks (mary, orange-flip) .
rfi-p>
rfi-p> pauseO
true
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(mary,What)
true
What=pina-colada
rfc-p> more
true
What=vodka-lemon
rfc-p> more
true
What=orange-flip
rfc-p> more
unknown
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>
rfi-p> destroy
rfi-p>
rfi-p> az drinks(mary,dom[pina-colada,

vodka-lemon,orange-flipJ) .
rfi-p>
rfi-p> pauseO
true
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(mary,What)
true
What=dom[pina-colada,vodka-lemon,orange-flipJ
rfc-p>
rfc-p> drinks (mary, orange-flip)
true
rfc-p>
rfc-p> drinks (mary ,whisky-sour)
unknown
rfc-p>
rfc-p> drinks(mary,dom[pina-colada,vodka-lemon,banana-flip
true
rfc-p>
rfc-p> drinks(mary,What),

dom[pina-colada,vodka-lemon,banana-flipJ What

C A DEMO SCRIPT

true
What=dom[pina-colada,vodka-lemon)
rfc-p>
rfc-p> drinks(mary,What),

dom[pina-colada,banana-flip)
true
What=$pina-colada
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>

What

rfi-p> az drinks(john,exc[whisky-sour,vodka-lemon)).
rfi-p>
rfi -p> pause 0
true
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(john,What)
true
What=exc [whisky-sour ,vodka-lemon)
rfc-p>
rfc-p> drinks(john,orange-flip)
true
rfc-p>
rfc-p> drinks(john,whisky-sour)
unknown
rfc-p>
rfc-p> drinks(john,dom[pina-colada,orange-flip))
true
rfc-p> drinks(john,What), dom[pina-colada,orange-flip)
true
What=dom[pina-colada,orange-flip)
rfc-p>
rfc-p> drinks(john,dom[pina-colada,whisky-sour))
true
rfc-p> drinks(john,What), dom[pina-colada,whisky-sour)
true
What=$pina-colada
rfc-p>
rfc-p> drinks(john,dom[whisky-sour,vodka-lemon))
unknown
rfc-p> drinks(john,What), dom[whisky-sour,vodka-lemon)
unknown
rfc-p>
rfc-p> drinks(mary,What), drinks(john,What)
true
What=dom[pina-colada, orange-flip)
rfc-p>
rfc-p> inter
rfi-p> destroy
rfi-p>
rfi-p> pauseO
true
rfi-p>
rfi-p> mcd sortbase
Module : sortbase
Context:
rfi-p>
rfi-p> az subsumes(cocktail,lightmix).
rfi-p> az subsumes (cocktail ,heavymix) .
rfi-p>
rfi-p> az lightmix(pina-colada).
rfi-p> az lightmix(vodka-lemon).
rfi-p> az lightmix(orange-flip) .
rfi-p>
rfi-p> az heavymix(whisky-sour).

What

What

What

47

rfi-p> az heavymix("bloody-mary, strong").
rfi-p>
rfi-p> mcd
Module: workspace
Context:
rfi-p> compile-sortbase
rfi-p>
rfi-p> pauseO
true
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> $lightmix $cocktail
$lightmix
rfc-p> $heavymix $cocktail
$heavymix
rfc-p> $lightmix $heavymix
unknown
rfc-p>
rfc-p> inter
rfi-p>
rfi-p> az drinks(mary,$lightmix) .
rfi-p>
rf i -p> pause 0
true
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(mary,What)
true
What=$lightmix
rfc-p>
rfc-p> drinks (mary, orange-flip)
true
rfc-p>
rfc-p> drinks(mary,whisky-sour)
unknown
rfc-p>
rfc-p> drinks (mary , dom[pina-colada,vodka-lemon ,banana-flip
true
rfc-p>
rfc-p> drinks(mary,What),

dom[pina-colada,vodka-lemon,banana-flip) What
true
What=dom[pina-colada,vodka-lemon)
rfc-p>
rfc-p> inter
rfi-p>
rfi-p> az drinks(fred,vodka-lemon) .
rfi-p>
rfi-p> pauseO
true
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(fred,$lightmix)
true
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>
rfi-p> az drinks(sue,"Barbara's special green-mix").

C A DEMO SCRIPT

rfi-p>
rfi-p> pauseO
true
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(sue,$atom)
true
rfc-p> drinks(sue,$numberp)
unknown
rfc-p> drinks(sue,$stringp)
true
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>
rfi-p> az drinks(jack,dom["Juan's drink" ,honey-liqueur,

"Boston ward 8"]).
rfi-p>
rfi-p> pauseO
true
rfi-p>
rfi-p> emuc
Collecting modules for the emulator :
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(jack,What), $stringp .= What
true
What=dom [" Juan's drink", "Boston ward 8"]
rfc-p>
rfc-p> $stringp .= $heavymix
"bloody-mary, strong"
rfc-p> $symbolp .= $heavymix
dom [whisky-sour, "bloody-mary, strong"]
rfc-p> $numberp $heavymix
unknown
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>
rfi-p> az orders(laura,whisky-sour).
rfi-p> az drinks(peter,bnd[M,dom[whisky-sour,

rfi-p>
rfi-p> pauseO
true
rfi-p> emuc

"bloody-mary, strong"]]) :- orders(S,M).

Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(peter,What)
true
What=whisky-sour
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>
rfi-p> rx drinks(peter,bnd[M,dom[whisky-sour,

"bloody-mary, strong"]]) :- orders(S,M).
rfi-p>
rfi-p> az drinks(steve,bnd[M,exc[whisky-sour,vodka-lemon]])

orders(S,M).
rfi-p>

48

rfi-p> emuc
Collecting modules for the emulator :
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(steve,What)
unknown
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>
rfi-p> az drinks(peter,bnd[M , $heavymix])
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(peter,What)
true
What=whisky-sour
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>
rfi-p> az drinks(adrian,bnd[M,$atom])
rfi-p>
rfi-p> emuc
Collecting modules for the emulator :
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(adrian,What)
true
What=whisky-sour
rfc-p>
rfc-p> inter
rfi-p>
rfi-p> mcd sortbase
Module: sortbase
Context:
rfi-p>
rfi-p> az person(steve) .
rfi-p> az person(john) .
rfi-p> az person(mary).
rfi-p>
rfi-p> mcd
Module: workspace
Context:
rfi-p> compile-sortbase
rfi-p>
rfi-p> emuc
Collecting modules for the emulator :
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> X [_], [mary] X
true
X=[mary]
rfc-p> X
unknown
rfc-p>
rfc-p> X
true
X=[mary]
rfc-p> X
unknown
rfc-p>
rfc-p> X

X, [john]

[dom[john,mary]] , [mary]

[dom[john,mary]] , [mary]

[exc[fred]], [mary] X

orders(S,M).

orders(S,M).

X

X

X, [john] X

C A DEMO SCRIPT

true
X= [mary]
rfc-p> X [exc [fred]] , [mary] X, [john]
unknown
rfc-p>
rfc-p> X [$person] ,
true
X= [mary]
rfc-p> X [$person],
unknown
rfc-p>
rfc-p> X [$symbolp] ,
true
X= [mary]
rfc-p> X [$symbolp] ,
unknown
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>

[mary]

[mary]

[mary]

[mary]

rfi-p> az drinks(X,soft-drink) .
rfi-p>
rfi-p> emuc

X

X,

X

X,

Collecting modules for the emulator :
sortbase workspace
rfc-p> compile
rfc-p>

[john]

[j ohn]

X

X

X

rfc-p> drinks(steve,What)
true
What=soft-drink
rfc-p> drinks(tweety,What)
true
What=soft-drink
rfc-p>
rfc-p> inter
rfi-p> pauseO
true
rfi-p>
rfi-p> style lisp
rfi-l>

49

rfi-l> aO (sg (drinks $person _something))
rfi-l>
rfi-l> style prolog
rfi-p>
rfi-p> emuc
Collecting modules for the emulator:
sortbase workspace
rfc-p> compile
rfc-p>
rfc-p> drinks(steve,What)
true
What=soft-drink
rfc-p> drinks(tweety,What)
unknown
rfc-p>

	TM-98-07-001--0002
	TM-98-07-01--0003
	TM-98-07-02--0006
	TM-98-07-03--0007
	TM-98-07-04--0008
	TM-98-07-05--0009
	TM-98-07-06--0010
	TM-98-07-07--0011
	TM-98-07-08--0012
	TM-98-07-09--0013
	TM-98-07-10--0014
	TM-98-07-11--0015
	TM-98-07-12--0016
	TM-98-07-13--0017
	TM-98-07-14--0018
	TM-98-07-15--0019
	TM-98-07-16--0020
	TM-98-07-17--0021
	TM-98-07-18--0022
	TM-98-07-19--0023
	TM-98-07-20--0026
	TM-98-07-21--0027
	TM-98-07-22--0028
	TM-98-07-23--0029
	TM-98-07-24--0030
	TM-98-07-25--0031
	TM-98-07-26--0032
	TM-98-07-27--0033
	TM-98-07-28--0034
	TM-98-07-29--0035
	TM-98-07-30--0036
	TM-98-07-31--0037
	TM-98-07-32--0038
	TM-98-07-33--0039
	TM-98-07-34--0040
	TM-98-07-35--0041
	TM-98-07-36--0042
	TM-98-07-37--0043
	TM-98-07-38--0044
	TM-98-07-39--0045
	TM-98-07-40--0046
	TM-98-07-41--0047
	TM-98-07-42--0048
	TM-98-07-43--0001
	TM-98-07-43--0003
	TM-98-07-44--0050
	TM-98-07-45--0051
	TM-98-07-46--0052
	TM-98-07-47--0053
	TM-98-07-48--0054
	TM-98-07-49--0055

