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Abstract 

This work describes the C implementation of the Relfun-Adapted WAM (RAWAM). 
The RAWAM is an abstract machine tailored to the relational-functional language Relfun, 
designed and implemented on the basis of the Warren Abstract Machine (WAM). Its goal is 
to replace an older LISP-implemented Relfun WAM by delivering comparable functionality 
at higher speed. The RAWAM implementation is introduced by reference to Hassan Ai:t­
Kaci's book "Warren's Abstract Machine: A Tutorial Reconstruction" , and the present 
work will emphasize the differences and extensions w.r.t. this book. These include an 
assembler, an optimizer, a rudimentary module system, a more flexible realization of the 
standard WAM memory layout , as well as Relfun-specific extensions for functional and 
relational builtins, sorts, generalised indexing, and a simple higher-order facility. The 
implementation of the RAWAM will be described in terms of pseudo code and schematic 
patterns for the data structures. A relational-functional benchmark revealed a speed-up 
factor of 20-30 of the RAWAM compared to the older WAM. 
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1 Introduction 

In this work we describe the C implementation of the Relfun-Adapted WAM (RAWAM). This 
implementation arose out of the author's attempt to understand the principles of the Warren's 
Abstract Machine ([War83], [War77], [GC96], [AK91]' [GLL085], [VR94], [MW88], [Rus92)). 
It came along with the question of how to increase the speed of the LISP-implemented abstract 
machines for our relational-functional programming language, ReI Fun ([BoI97)) . 
The RAWAM is now the first component of the RelFun implementation which is fully realized 
in a low-level language, and it succeeded in both, providing a clarified understanding of the 
WAM and an increased execution speed for RelFun programs, currently by a factor of 20 to 
30 compared to the fastest earlier implementations (the absolute speed of the RAWAM reaches 
approximately 350 KLIPS on an UltraSPARC hardware). However, RelFun's compiler was not 
designed to be high-level optimizing and also requires the RAWAM to support more extended 
features such as sorts. Moreover, the RAWAM's implementation is kept as portable as possible; 
so , e.g., no machine-dependent assumptions on the size of data structures were made. Further, 
the transition to an even lower-level native-code compilation has not yet been done; but for this 
the RAWAM can serve as an intermediate step. A good demonstration of RelFun 's enhanced 
speed and, incidentally, an important testbed for the RAWAM, is the implementation of the 
GeneTS genetic algorithm using methods of declarative programming in [Per97]. The GeneTS 
work couldn't have been done without such a fast enough execution model. 
RelFun utilizes several execution principles - besides the interpreter, there is a WAM, called 
GWAM, which originated from the work of Nystr0m ([Nys85)), and a functional abstract ma­
chine, LLAMA, both described in [Sin95] and [BEH+96]. RelFun's compilation logic mostly 
relies on the WAM part, so it was a natural choice to advance to a C implementation of the 
RelFun WAM. Indeed, the RAWAM's goal is to be a full replacement of the GWAM. 
The RAWAM system includes an assembler, a small optimizer, a rudimentary module system, a 
more flexible realization of the standard WAM memory layout, as well as many Relfun-specific 
extensions, an overview of which is given in subsection 3.3. 
The description that follows will base on Hassan Ait-Kaci's book "Warren's Abstract Machine: 
A Tutorial Reconstruction" ([AK91)) (while this book is out of print, an online postscript version 
for non-commercial use can be found at [AK95)). All features that hallmark the RAWAM are 
extensions to the WAM described therein. Along these lines, we will emphasize mainly the 
differences and extensions w.r.t. to this book. 
Because the RAWAM is so related to the WAM, we will try to describe its implementation in 
such a way that it can be easily enhanced and adapted to other logic programming systems. 
The description will be terms of abstract patterns for the data structures and pseudo code for 
parts of the RAWAM which are essential for describing the extensions w.r.t. the original WAM 
design. The source can be found at [Per] . 
The contents of this work will be as follows: Section 2 explains the notions used in the subsequent 
sections. Section 3 will give an overview for the whole RelFun system, how the RAWAM fits 
into it , and which RelFun features the RAWAM supports. Section 4 will give an overview of 
the structure of the RAWAM. Sections 5 to 7 describe structures relevant for all parts of the 
RAWAM. Section 8 describes the assembler for the RAWAM. Sections 9 to 11 reveal how the 
abstract machine is built. In appendix A we give a reference to some corrections to [AK91] and 
appendix B gives an overview of all implemented RAWAM instructions. Appendix C, finally, 
contains an actual session script that demonstrates some of the RAWAM's facilities and the 
general speedup compared to the GWAM. 
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2 Notions 

In the next sections data structures used in the implementation of the RAWAM will be descri­
bed. These are mainly C-structures or C-unions, often used for linked lists. The contents of a 
structure or union are schematically presented in boxes containing type and aim of each entry. 
E.g. structures are represented as: 

name of structure 
name type purpose 
name type purpose 

A union is similarly represented, but with a thick rim at the left side and the name of the union 
omitted: 

name type purpose 
name type purpose 

If a linked list is built from a structure, this is indicated by one or two arrows, when the list is 
singly or doubly linked, respectively: 

+--- --+ 
name type purpose name type purpose 

To give a concrete example, consider the data scheme: 

Indiv _entry 

--+ 
ctag tag E {FLO, INT, CON} 
hashref Hash_entry for ctag E {CON, STR} 
flonum double for ctag = INT 
intnum flonum for ctag = FLO 

This translates to the following C data structure: 

struct Indiv_entry 
{ 

struct Indiv_entry *next; 
tag ctag; 
union 

{ 

Hash_entry *hashref; 
long intnurn; 
float flonurn; 
} u; 

}; 

Further, we will give some pseudo code fragments of some pieces of the implementation. The 
syntax will be Algol-like and should be easy to understand. For pointer handling, the C '->' 
and '*' symbols will be used. 
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3 Overview 

The RAWAM can be regarded as an alternative emulator for the Relational-Functional Machine 
(RFM, [BEH+96]). It is designed as an alternative for the RFM system's WAM emulator, 
GWAM. GWAM itself is embedded into an integrative platform, called GAMA, which, as 
a part of the RFM, supports GWAM, as well as another abstract machine, called LLAMA 
(GAMA and LLAMA are in detail described in [Sin95]). 
Because the GAMA platform is not capable to maintain C-implemented programs, it cannot 
be used for the additional integration of the RAWAM. Therefore, the RAWAM is an execution 
environment of its own right; in fact , it must provide functionality not only of the GWAM, but 
also of the GAMA, and, by parts, of the LLAMA. The latter is because of the RFM's compilation 
logic which for efficiency reasons shifts some tasks from the GWAM to the LLAMA. 
Without respect to the LLAMA part, RFM decomposes into three large parts: 

• the RELFUN interpreter, 

• the RFM compiler, 

• the GAMA including the GWAM. 

The data flow between these components can be seen top-down: 

RelFun Interpreter 

RFM-

Compiler 

(~ ______________ G_A_M_A ____________ ~) 

GAMA gets its data - WAM or LL code of declarative RelFun programs - via the compiler from 
the interpreter, where the RelFun interpreter also can be seen as completely independent from 
the rest of the RFM. 
The RAWAM fits into this environment residing at the same level as the GAMA. This is realized 
by a switch that allows to use either of both components: 

RelFun Interpreter 

RFM-

Compiler 

0~Wih:h 

(~ ____ G_A_M_A ____ ~) (~ ____ R_A_W_A_M __ ~) 



3 OVERVIEW 7 

3.1 File Interface 

Because of simpleness and portability, the communication between the RelFun compiler and the 
RAWAM is realized through a simple file interface. The communication consists of mutually 
creation of semaphore files associated to RelFun and the RAWAM, respectively, and a data­
interchange file. The files are created as needed in the UNIX Itmpl directory. 

3.2 What RAWAM gets from the RFM Compiler 

The RAWAM communicates with the RFM via a file interface (see 3.1), where the contents are 
exchanged in a so-called interchange file, whose protocol distinguishes different types of data: 

1. queries 

2. more requests 

3. program code 

4. quit 

5. result data 

The first four are data created by the RFM part of RelFun, the fourth is the result data of the 
RAWAM. The RFM-generated data is distinguished by the tags _Q, ...M, _C, and -X, respectively. 
The file is build up as follows: 

1. A query, e.g., X fooCA,S) & +(A,3) , looks like this: 

'l. some content omitted 

The query consists of the tag _Q and WAM code for exactly one clause which is always called 
QUERY In, where n is the number of distinct variables that occur in the query. In our example 
n is two, corresponding to the variables X and A. 

2. This is a more request: 

M 

3. Program code consists of RelFun clauses transformed to WAM code by the RFM compiler, 
and is submitted to the RAWAM in the form 

1. the tag _C 

2. sort data (cf. subsection 3.2.1) 

3. an arbitrary number of WAM routines (cf. subsection 3.2.2) 

4. This causes the RAWAM to quit: 

X 
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3.2.1 Sort Data 

As mentioned above, sort data is contained in a LISP list and exactly of the format as described 
in [HaI95]. The structure of the sort data is given by the following grammar: 

sortdata 
sortspecification 

sortname 
subsumeslist 
subsumes*list 
individualslist 
individuals*list 

NIL I ( {sortspecification}+ ) 
( sortname subsumeslist subsumes*list 

individualslist individuals*list ) 
identifier 

SUBSUMES {identifier}* ) 
SUBSUMES* {identifier}* ) 
INDIVIDUALS {identifier}* 
INDIVIDUALS* {identifier}* ) 

For more details refer to subsection 8.2.1. 

3.2.2 WAM Routines 

The input for RAWAM reflects the list oriented data representation of the LISP-based RFM 
system. Consider for example the following RelFun function: 

nth([Firstl_J ,1) :& First. 
nth([~IRestJ,N) :& nth(Rest,l-(N)). 

nth selects and returns the n-th element of a list. Compilation yields: 

nth/2 

«set_index_number 1) 
(switch_on_term nil nil "label126" nil "label126") 
"label126" 
(set_index_number 2) 
(switch_on_term "label132" 2 2 2 "label127") 
"label132" 
(switch_on_constant 1 «(1 "label127")) 2) 
"label127" 
(try 1 2) 
(trust 2 2) 
1 

(get_constant 1 2) 
(get_list 1) 
(unify_x_variable 3) 
(unify_x_variable 4) 
(put_x_value 3 1) 
(proceed) 
2 
(allocate 1) 
(get_x_variable 3 2) 
(get_list 1 
(unify_x_variable 4) 
(unify_y_variable 1) 
(put_x_value 3 1) 
(cl-func 1- 1) 
(get_x_variable 2 1) 
(put_y_value 1 1) 
(deallocate) 
(execute nth/2) ) 

The structure is much like in [GLL085] and [AK91]' with small differences and extensions, 
respectively. We can highlight here some basic features of RFM-generated WAM code: 
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• All clauses of same name and arity (here nth with arity 2) are put together into one WAM 
routine labeled by narne/arity. 

• The routine itself is a list containing WAM instructions and labels. 

• The WAM instructions are represented as lists. The first element of a list is the instruction 
name and possible further elements denote the instruction's arguments such as, e.g., 
register numbers. 

• If the indexing option of the RFM compiler is set, the first group of instructions forms 
the indexing part (see B.1.6) , together with automatically generated indexing labels of 
the form "labeln" . 

• The actual WAM code for the clauses follows. Each WAM representation of a clause starts 
with a label which is just a number, starting from 0, ascending in the order in which the 
clauses occur in the RelFun source. 

• An extension to the standard WAM instruction set is the cl-func instruction for calling 
a LISP function; here 1- is called to decrement the contents of register Xl by one. 

The RFM system extends the basic WAM capabilities mostly not by adding additional in­
structions, but via WAM builtin functions. The only intrinsic extensions have been done in the 
indexing part and by calling LISP builtins via cl-func, cl-relf, cl-extra, and cl-pred. The 
RAWAM does currently not support this calling scheme. The most important LISP builtins, 
as arithmetics, are directly implemented as WAM commands without any calling indirection. 
For arithmetic commands see B.2.1; more special builtin reimplementations are denoted in the 
Special Commands paragraph of subsection B.2.2. These are substitutes for RFM builtin 
calls, e.g. (call type/2) is the same as the RAWAM instruction (type). 

3.3 Supported RelFun Language and Compiler Features 

We list now the capabilities of the RAWAM. 

3.3.1 Basic Instruction Set and Data Types 

The RAWAM supports all instructions given in Ai't-Kaci, except the set. . . instructions, 
because the RFM compilation knows and uses only their unify ... counterparts. 
Also, the ... _constant-type instructions have a slightly different semantics. This is because 
the RAWAM distinguishes three types of constants: alphanumeric, integer, and floating point 
(we exclude here the empty list []). So, a ... _constant-type instruction can have only alpha­
numeric arguments, and for integer, respectively floating point arguments there are correspon­
ding ... _int and ... _float instructions. For example, there exists not only a put-constant 
instruction, but there are also a put-int and a put~loat instruction. 
To execute RFM compiled programs, which know only ... _constant-type instructions, correct, 
the RAWAM assembler analyses the arguments of a ... _constant instruction and replaces it 
by the appropriate one. 

3.3.2 Generalized Indexing 

For the generalized indexing, as described in [Sin93), the RAWAM has, as the GWAM, an 
IX indexing register and provides the instructions set_index...number and swi tch_on_term...n, 
where the last one again is special, see appendix B.2.3 . 

3.3.3 Cut 

RAWAM is capable of handling two different types of cut operators, one being the Ai't-Kaci 
Y-Register cut, the other the GWAM cut which reserves a fixed slot on every stack frame. 
These two are distinguished by the occurence of either get-level or save_cut_pointer; if the 
former occurs in a clause, the cuts in the clause are assumed to be of the Ai't-Kaci type, and 
the RAWAM cut instruction will be used, and if the latter occurs, garna_cut will be used. 
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Notice, that there will be no memory gain by using only the Alt-Kaci type cut, the stack slot 
will always be used. 

3.3.4 Higher Order 

A restricted higher order can be done by the apply instruction. It expects in the Xl register 
the name of a WAM routine to be ca.lled and in the X2 register a list containing the arguments 
which have to be given to the function. Currently apply does not bind a free variable in Xl 
to a function's name. The Xl argument always hat to be bounded to some constant. 

3.3.5 Arithmetics 

The RAWAM supports various arithmetic and comparison commands. All of them are listed 
in appendix B.2.l. 

3.3.6 Types 

Types are implemented along the lines of the static sort model in [HaI95]. Builtin sorts are 
$numberp, $atomp, $symbolp, $stringp, $floatp, $integerp, $evenp,and $oddp. 

3.3.7 Extra Instructions 

The extra instructions are the ones listed in the appendices B.2.2 (paragraph Flow Control 
Instructions) and B.2.3. The first ones are used for simplified flow control and usually not 
generated by any compiler but inserted by the assembler at appropriate places. The latter ones 
are compounds of combinations of standard instructions which often occur and are executed 
faster than the single instructions would be; see subsection 8.3. 

4 G 10 bal Organisation 

The RAWAM's main loop branches in two different states of operation: first, assembling WAM 
code coming from RFM and second, executing an assembled program, i.e. working as an 
abstract ma.chine. The first part is a simple syntax-cruncher, transforming each RelFun clause 
into a byte code array; this is described in detail in section 8. The latter part is a bit more 
complicated. The topmost organisation structure consists of modules, described in section 
5. Everything which is contained in one module, is organized in the module's hash table; this 
concerns literal constants as well as names of structures and clauses. In particular, each clause's 
byte code is attached to its entry in the hash table. Schematically, we have some general module 
organisation: 
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Here the boxes denote a module and the arrows denote contextual dependences between them, 
see section 5. 
Each module has a hash table containing information for each literal found during the assemb­
ling process. In the simplest case, an entry in a hash table contains a symbol's name and arity. 
For sort specifiers, global variables, and clause names, additional data structures are created 
and linked by pointers. The execution scheme for clauses is as follows: as shown in the picture 
below, all clauses stored in the hash table have their own byte code array; in each call/execute 
or indexing instruction, a pointer is encoded. This pointer points to the very beginning of the 
byte code of the clause to be called. 
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If a query is given, the execution starts in the query's special byte code array, which is not 
contained in any hash table. The WAM P register, which is a pointer to byte code cells (of type 
Codecell *, see section 8.2), is set to the very first entry in this array. During execution, P is 
increased within the array, or set to a new array by call/execute commands. 
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5 Modules 

The RA WAM module system is intended to provide static scoping domains for RelFun programs. 
Names are once resolved during compilation of a new database and remain statically until a new 
database is compiled. For details see [HergS]. Currently, it is not possible to do backtracking 
across contexts; this is also a feature which the RFM compiler lacks. 

5.1 Using Modules 

void init_rnodules(void); 
Module *create_rnodule(char *narne); 
void set_rnodule_context(char *rnod, char *ctxt); 
static Module *find_rnodule(char *narne); 

There are currently four functions for using the RAWAM's module system as follows: 
ini t...modules must be used to initialize the module system. It creates a global hashing table 
in which references to the system's modules are maintained. The global variable Modules refers 
to this hash table. 
create...module enters a module into the global module-hash table and names it after the given 
argument. A reference to the new module is returned. 
set...module_context sets a module as context to another module. Both are refered by their 
names. 
f ind...module searches a module whose name is the given one in the hash table and returns it. 

5.2 Semantics of Modules 

A RAWAM module consists of the following data: 

1. the module name string, 

2. a linked list specifying the module's contexts, 

3. a hash table (see 6). 

Hence, the module's informations are stored in a structure which looks like this: 

Module 
----t 

name char * name of the module 
context Context its contexts 
hashtable hash_entry ** the module's hash table 

Because the Module structures are maintained by a global hash table, they are organized as 
linked list . 
A context looks like this: 

Context 

module I Module * I pointer to some module 

Context is a list of the modules describing the context of the module that it belongs to. 
Most of the semantics of the modules was already described in section 4. It remains to note 
that the structure of the context interdependencies of the modules are important in two places, 
which both use hashing: the assembling process and higher order calls via apply. 
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5.3 Standard Modules 

At startup the following modules are created: rawam-global, prelude, and workspace. 
workspace is the module where programs coming from the RFM compiler by default are com­
piled into. Its context is set to both, rawam-global and prelude. 
prelude contains some predefined WAM routines, such as member or tupof. Its context is at 
startup rawam-global. 
rawam-global should be set to the context of all modules. It contains names of important 
constants, such as true and false, which should be retrievable from each module. 

6 Hash Tables 

Associated to each module is a hash table. It is used to store all non-numeric symbols that 
occur during assembling of WAM programs. All data relevant for one symbol is put in a data 
structure of type Hash_entry which is built to form a linked list (see below). A hash table 
is an array of pointers to linked lists of Hash_entry structures. If the tokenizer (cf sect. 8.1) 
recognizes a symbol, a hash value is generated from its ASCII representation. This hash value 
determines a certain entry in the hash table array. Hash collision are avoided by appending a 
new symbol at the end of the linked list. 
If one symbol denotes several distinguished type of data, these are not necessarily stored sepa­
rately. This is only the case if it denotes function/structure names of different arity. E.g. if we 
consider the program 

a(X). 

aO :& a. 

then the symbol a occurs three times: as name of functions of arity 1 and 0, respectively, and 
as a constant name. All three of them are by the hashing function mapped onto the same array 
index in the hash table. But, there are only two distinct entries in the linked list for the symbol 
a. One is the entry for the function name all, the other for the function name a/O. Because a 
constant is fully represented by its name, it is possible to represent it for the later steps of the 
assembling process also by a/O, ignoring all other properties which may belong to the function 
symbol a/O. 
Now, the different types of symbols, which the RAWAM assembler recognizes, are: 

• Sort identifiers. 

• Labels, global labels of type pred/n as well as local labels which are strings of type 
"labeln" or numbers (also as strings). 

• Functors, which are constants associated to some arity. 

• Non-numeric constants, which are stored as structure functors with arity O. 

• Global labels are handled as if it would be a structure functor; they carry additional 
information about the function (see below). 

The contents of one hash table entry are: 

Hash_entry 

--+ 
name char * name of identifier 
arity short arity of identifier (if needed) 
stringconstant bool true, if name is string constant (" ... ") 
sort Sort base_entry * pointer to sort data 
coderef Codecell * pointer to WAM instructions 
domexc DomExcTag tag if name denotes exc/dom structure 
globalvar _data Heapcell * data for global variable's contents 
globalvar ...size long size of global variable's data in terms of heap cells 
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7 The Byte Code 

The byte code instructions are represented as elements whose type is a C-union Code cell which 
is capable to contain all possible data needed for byte code instructions: 

Codecell 
tags BYTE[4] standard byte code format for short instructions 
ctag tag for switch_on_constant 
hashref Hash_entry * reference to alphanumeric constant 
intnum long integer constant 
flonum float floating point constant 
coderef Codecell * jump destination 

Each RAWAM instruction consists of a sequence of these Code cells. The first Code cell of 
an instruction always uses the Codecell. tags entries. Codecell. tags [OJ contains the byte 
code (in the very sense of the word: a byte-sized number which encodes the instruction); 
Codecell. tags [lJ and Codecell. tags [2J contain possible X- and Y-register denoting num­
bers, and Codecell. tags [3] nearly always contains the number of Codecells which follow the 
first one. 
The only exceptions on the contents of Codecell. tags [3J are the swi tch_on_constant and 
swi tch_on_structure instructions, whose lengths may exceed the range of a byte-sized integer. 
Most instruction consist of only one Codecell. The exceptions are as follows, ordered by size: 

Two-Byte Instructions: 

• put_structure, get_structure, put_constant, get_constant, un ify_constant: use the 
Codecell. hashref entry of the second Codecell. 

• put_int, get_int, unify_int: use Codecell. intnum. 

• putJloat, getJloat, unify Jloat: use Codecell. flonum 

• try .Jlle_else, retry .Jlle_else, try, trust, call, execute: need precisely one jump 
destination as their second Codecell 

Six-Byte Instructions: The swi tch_on_term is of the form 

switch_on_term label1,labeI2,labeI3,labe14,labe15 

where labell, ... , label5 are some local labels or NIL. Therefore, swi tch_on_term needs six 
Code cells filled at the places Codecell. coderef. If NIL is given, the value there is set to zero. 
The labeln entries correspond in the given order for indexing of WAM data types floating point 
n'u.mber, integer number, alphanumeric constant, structure, and list, 

Variable-Byte Sized Instructions: 

• switch_on_structure: this instruction has, syntactically, the form 

switch_on_structure n,str1,label1, ... ,strn,labeln,labeln+1 

For this, swi tch_on_structure needs 2n + 3 Codecells, the first as usual, the second 
carries the value n in Code cell. intnum, the next 2n contain alternately first, a value in 
Code cell hashref, which denotes a structure identifier in a hash table (see below), and, 
second,a jump destination in Codecell. coderef. The last Codecell contains also a jump 
destination for the indexing cases that are not explicitely covered. This jump destination 
may also be zero, causing a failure. 

• swi tch_on_constant: this instruction has the form 

switch_on constant n,c1,label1, ... ,cn,labeln,labeln+1 
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switch_on_constant differs from that in [AK91] in the way that it distinguishes between 
integer, floating point, and alphanumeric constants; therefore it needs 3n + 3 Codecells, 
which are organized analogously to those for swi tch_on_structure; but the constant­
jump destination pairs are here represented by Code cell triples, whose first member 
uses Codecell. tag, which contains one of the values CON, FLO, or INT, denoting the 
type of the triple's middle element, being, consequently, in one of Code cell. hashref , 
Codecell. intnum, or Codecell. flonum. The third element of each triple then contains 
finally the jump destination. 

8 Generation of the Internal Program Representation 

The generation of the internal program representation proceeds in several - not necessarily 
disjoint - steps. The rough scheme is as follows: 
First, the incoming ASCII data is tokenized. The tokenized data is stored in a flexible list 
representation which allows easy manipulation. Simultaneously, jump destinations and labels 
are collected. Second, a pattern search is performed on this list which replaces groups of 
adjacent instructions by equivalent, single instructions. Third, the resulting list is transformed 
into a more rigid array representation and jump destinations are resolved. 

8.1 Tokenizer 

Token nexttoken(FILE *file, bool sortbase, Module *module)j 

The tokenizer is accessed via the routine nexttoken, which is called with three arguments: 

1. a FILE pointer pointing to the input file (see sects. 3.1,3.2), 

2. a boolean, whose value must be true, if the file pointer points into a sort base declaration 
part, 

3. a pointer to the current module. 

The tokenizer is basically a very simple DFA in the sense of, e.g., [ASU86]. If invoked by the 
assembler (cf. subsection 8.2), it scans the incoming (ASCII-)symbol stream until a valid token 
is recognized, or an invalid symbol sequence occurs. 
Valid tokens can be 

• global labels of the form name/arity (as, e.g., nth/2 in the example in subsection 3.2.2) 

• local labels inside of a WAM routine, which may be 1. integer numbers, or, 2. of the form 
"labelXXX" where XXX is some integer. 

• WAM commands of the form (name arg1, arg2, ... ), same as shown in appendix B. 

As mentioned in subsection 3.2.2, the commands in the RFM-generated WAM source are not 
necessarily mapped one-to-one to appropriate RAWAM instructions. So, e.g. get_constant 
is translated into one of get_constant, get_int, and getJloat, depending of the type of its 
arguments (note that getJlil is not incorporated into this transformation, so that it is not 
translated from get-constant [J, Xl). The instructions which are diversificated this way are: 
get_constant, put_constant, and unify_constant, just by replacing of the ... _constant 
suffix by ... Jloat or ... _into Together with this transformations, the switch_on_constant 
instruction is 'stretched' in the way that it gets two more argument positions for integer and 
floating point constants, which actually are filled with the same value as the by the constant 
argument given by the compiler has. 
Second, certain calls and executes, respectively, are replaced by RAWAM instructions, e.g. 
(call type 1) is replaced simply by the command (type). Analogously all commands in 
subsection B.2.2 are replacements of calls to former GWAM builtin routines with the same 
name. 
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Third, the GWAM commands cl-func, cl-pred, cl-relf, and cl-extra are replaced by 
RAWAM instructions named in spirit of their arguments. For instance, (cl-func + 3) is 
replaced by the instruction (addn 3), and (cl-func + 2) is replaced by (add2). The former 
adds the contents of the registers Xl, X 2 , and X3 and stores the result in Xl . The latter does 
the same for the registers Xl and X 2 . This concerns mainly the arithmetic commands, shown 
in the appendix B.2.2 . 
The tokenizer is context sensitive in the manner that it automatically determines which of the 
two supported cuts (cf. 3.3) to use by the occurence of either get_level or save_cut_pointer; 
if the former occurs in a clause, the cuts in the clause are assumed to be of the Ai"t-Kaci type, 
and the RAWAM cut instruction will be used, and if the latter occurs, gama_cut will be used. 
The tokenizer makes use of two sorts of data. The first data is a hash table for quickly re­
cognizing instructions from given strings and associating them with their byte code, which is 
used for both, assembling and program execution (this hash table is once and for all initialized 
during program startup by the contents of an array called wammconunands containing pairwise 
instruction names and corresponding byte code numbers). 
The second data are tokens. If a valid token is recognized, nexttoken will return the instructions 
data in a Token structure: 

Token 
command id token identifier 
reg1 short int first register argument 
reg2 short int second register argument 
codelength short * number of needed codecells 
intnum long integer value 
Honum double Hoat value 
hashref hashref * reference to some name 
string bool true if name denotes a string constant 
name char * name of constant identifier 
sublabel char * label identifier 
L char *[5] names of jump destinations for swi tch_on_term 
table indextable * table for indexing 

In detail : conunand contains an integer denoting the instruction's byte code, reg! and reg2 
contain numbers for registers. If the instruction needs only one register, always reg! is used. 
codelength contains the number of needed Code cells for the instruction. The first four entries 
usually represent the content of an instruction's first Codecell. 
intnum, flonum, and hashref contain a constant's value and the reference to its name, respec­
tively. When assembling WAM routines, alphanumeric constants are immediately stored by the 
tokenizer in the current module's hash table and are further referenced only via the reference 
there. If sort data is assembled, the constants are stored in the hash table by the assembler, 
not the tokenizer, because of the slightly different use of constants (see below). In this case, 
a reference to the constant's name string will be stored in name. Further information needed 
for the builtin sort stringp, is the distinction whether an alphanumeric constant is a string 
constant ( (something like this") or not. Then, string will have the value true. 
If a local label is found (e.g. as instruction's argument as for retry), its name is not put into 
a hash table, but given back as string in sublabel. Analogously, switch_on_term needs five 
labels as arguments. 
Last but not least, the indexing table is needed for the commands swi tch_on_constant and 
swi tch_on_structure; it is an array of entries of the following type: 

indextable 
ctag tag E {FLO, INT, CON} if Token.command = switch_on_constant 

E { STR} if Token.command = switch_on_structure 
he Hash_entry for ctag E {CON, STR} 
Honum double for ctag = INT 
intnum Honum for ctag = FLO 
label char * name of local label related to indexing entry 
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Here to each pair of constant, the constant, the type of the constant and the name of the label 
to jump to are put together. 

8.2 Assembler 

void getcode(FILE *file, Module *rnodule); 
void getquery(FILE *file, Module *rnodule); 
static void getsortbase(FILE *file, Module *rnodule); 

The assembler consists of three parts: 

• the function getcode for assembling a whole WAM program from a file 

• the function getsortbase for getting sortbase information from a WAM program 

• the function get query for getting a query 

Their arguments are always a reference to the input file and to the module into which all data 
have to be stored. 

8.2.1 getsortbase 

getsortbase parses the sort data coming from the RFM compiler. The sort data follows the 
grammar given in subsection 3.2.1, where the (SUBSUMES ... ) and the (INDIVIDUALS ... ) 
parts are ignored (these parts are artefacts from the sort processing in [HaI95] which contain 
only redundant data for our purposes). All not-ignored identifiers are stored in the given 
module's hash table. If a sortnarne of a sortspecification is stored in a module's hash table , 
a Sortbase_entry structure is created and a pointer is set in the sortnarnes Hash_entry. sort 
entry: 

Sortbase_entry 
hashref Hash_entry * back-pointer to corresponding hash table entry 
ctag ctag type of constant 
subsorts Subsumes_entry * subsumes sorts 
sortindividuals Indiv _entry * individuals of sort 

The first entry in the Sortbase_entry structure points back to its hash table reference; this 
is used for glb calculations. The second entry denotes the type of constant it was originally 
recognized, either as integer, fioating point, or alphanumeric. Note that a sort's name is always 
converted into a string. 
Sortbase_entry. subsorts and Sortbase_entry. sort individuals both are pointer to lin­
ked lists containing all subsumed sorts and individuals contained in the sort, respectively (see 
below). 
If a (SUBSUMES ... ) part is parsed, all occuring constants are put into the hash table (if they 
were not yet there) and their references are stored into a linked list of type subsume_entry, a 
pointer of which is stored into Sortbase_entry. subsorts: 

subsumes_entry 

hashref I Hash_entry * I reference to subsumed sort 

Allalogously, a (INDIVIDUALS ... ) part is parsed and the constants found there refered by a 
linked list of type Indiv_entry, being pointed to by Sortbase_entry.sortindividuals: 

Indiv _entry 

----+ 
ctag tag E {FLO, INT, CON} 
hashref Hash_entry for ctag E {CON, STR} 
fionum double for ctag = INT 
intnum fionum for ctag = FLO 

It is easy to see, that these data structures are only C-data structure copies of the corresponding 
LISP lists. 
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8.2.2 getcode and get query 

Codecell *writecode(Codeconstruct *first, long *count, jumptable_entry **je); 
subjumptable_entry *lookup_label(char *name); 
subjumptable_entry *enter_label(char *name); 
void cleansubjumptable(void); 
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Logically, getquery is a special case of getcode, because a query could be seen as a WAM 
program consisting of only one clause. So the two routines are splitted mainly for historical 
reasons. Further, getsortbase is used only by the function getcode at the very beginning for 
parsing sort data (see subsection 3.2.1). 
The processing scheme is as follows : the stream of tokens coming from the tokenizer is analyzed 
and transformed into separate linked lists of Code construct structures, one linked list for 
each WAM routine. After a WAM routine is completely read in and brought into this list 
representation, the next steps are a bit of optimization (cf. 8.3), resolving the jump addresses, 
and, at last, the list is transformed into a byte code array. 
The· intermediate linked lists representation consists of Code construct structures: 

Codeconstruct 
com Codecell represented Codecell 
pass 1 subjumptable_entry preliminary jump destination 
pass2 Codecell * associated address in Codecell array 

The first entry, Codeconstruct. com, is a prototype of the Codecell (i.e. bytecode instruction) 
which finally will be generated. In most cases, this prototype will not be altered. Execeptions 
are Codecells which will contain memory addresses which are not fixed in this state, as, e.g., 
jump destinations coming from call or indexing instructions. The other two entries are needed 
for the creation of the byte code and the resolving of jump destinations. 
The data created during the assembling are the following: 

• Hash table entries for each newly occuring symbol. 

This is already done by the tokenizer and shall not further be considered. 

• Linked Codeconstruct lists for each WAM routine which is assembled. 

• Linked subjumptable_entry lists (see below), keeping track of local jump destinations 
needed by indexing and backtracking. 

• Byte code arrays for each WAM routine. 

These are created for each WAM routine which is assembled. The first two are just for inter­
mediate use, where the byte code arrays are the very results of the assembling. 

• A linked jumptable_entry list which keeps track of each call and execute; it is used 
for resolving the global jumps. 

This data structure survives the assembling of single WAM routines and is used to insert the 
correct jump destinations into the byte code after all routines have been assembled. 
The pass 1 and pass2 entries of a Code construct are used as follows: if a label of a subroutine of 
a WAM routine is read, either direct as label or as an argument of an, e.g., indexing, instruction, 
this is stored in a hash table of subjumptable_entry structures: 

subjumptable_entry 
---+ 

name char * name of jump label 
passl Codeconstruct first Codeconstruct cell of routine which 

belongs to the label 
pass2 Codecell first Codecell of routine which belongs 

to the label 
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These are created with the enter -1abel function and retrieved with lookup-1abel. The func­
tion cleansubjumptable erases the actual contents of the table. If a Code construct refers 
to a certain label, being the first instruction after the label or belonging to an indexing or 
backtracking instruction, this hash table entry is stored in Codecell. pass1. If a sublabel is 
found as label and not as argument of an instruction, the Code cell structure of the first com­
mand following it is stored in subjurnptable_entry.passl to denote the entry point of this 
subroutine. 
Constructing the Code constructs is the first assembler pass (relatively to each WAM routine, 
of course). The second is to copy them into an array of Code cells (and filter out some garbage 
Code constructs which may be created sometimes). The Code constructs are not yet thrown 
away, but the Codeconstruct. pass2 entries are set to the corresponding Code constructs 
address. Also, the subjumptable_entry. pass2 entries can now be set to the appropriate 
Codecells. 
In a third pass, all the collected data. are used to update all references to local jump destinations 
in the routine's Code cell arrayl. 
Simultaneously, in this last pass, the occuring call and execute instructions are checked, and 
for each a jumptable_entry structure is created, which associates the instruction's argument 
with an entry in the hash table, which should denote another WAM routine's name: 

jumptable_entry 

coderef I Codecell I refer to a calls or executes Codecell 
hashref Hash_entry jump destination given by this label 

The linked list of jumptable_entry structures will not be used until the whole WAM program 
is read in. After that, the assembler steps through this list and copies the Hash_entrys coderef 
(cf. 6) value into the Code cell denoted by j urnptable_entry. coderef. In reminder of section 
4, this denotes just the first instruction of a WAM routine stored in a module's hash table. 

8.3 The Optimizer 

Codeconstruct *optirnize(Codeconstruct *code, long *count); 

The optimizer runs through the Code construct list of a WAM routine just before it is transfor­
med to a Code cell array. It tries to find groups of instructions which can be comprehended to a 
single instruction. The optimizer consists of one function whose arguments should be a pointer 
to the first Code construct structure of a WAM routine, as well as a pointer to an integer, in 
which the new number of the optimized list is returned. The function returns a pointer to the 
new list. 
The routine steps through the list and searches for sublists, according to the second column 
in the table in appendix B.2 .3 . If one is found, the sublist is removed and replaced by the 
appropriate single instruction as in B.2.3. Note, that optimize reuses the Codeconstructs 
rather than allocating new ones. This is important because at this stage the jump destinations 
are not yet resolved, and the corresponding data structures, described in the previous subsection, 
have to stay valid. 

9 WAM Registers 

The RAWAM supports different kinds of registers, which we classify as follows: 
There are registers for 

• temporary use, 

• permanent use, 

• program execution, 

1 note that a nil entry in a indexing instruction's are automatically filled with the address of the backtrack 
command. 
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• indexing, 

• time stamping, 

• and memory management. 

The first two correspond directly to the usual X- and Y-registers. The program execution 
registers are the known P and CP registers. The indexing register IX is completely the same as 
described in [Sin93] to support the generalized indexing scheme there. The time stamp register 
Timestamp holds the value needed for giving stack slots a unique mark to determine the order 
of creation, as described in 11.4.3. 
"Memory management" comprises here the usual H, HB, S, TR, E, B, and BO registers, as well 
as - we must now anticipate section 11 - all global values which are needed to handle the 
corresponding HST structures. These are: Heap, Stack, and Trail, pointing to the very first 
HST structure of the identically named memory area; CurrHHeap, CurrBStack, CurrSHeap, 
CurrBOStack, CurrEStack, and CurrHBHeap, to be read as, e.g., HST structure which manages 
the memory chunk where Currently the H register points into, belonging to the Stack; the 
analogous register for TR is, inconsequently, called CurrTrail. Then there are the registers 
HeapBot and HeapTop, which are set to CurrHHeap->low.heap and CurrHHeap->high.heap. 
Analogously SHeapBot, SHeapTop, TrailTop, StackTop, StackBot (topmost HST concerning E 
and B), BOStackBot, and BOStackTop. 
For detailed information about the latter classes of registers, see section 11. 

10 WAM Extensions 

10.1 WAM Data Types 

As in [AK91]' heap cells are tagged structures. Besides the standard heap cells with tags CON, 
STR, LIS, NIL, FUN, REF, there are three additional tags FLO, INT, and TYP. This is because 
of the fact that the RAWAM distinguishes three types of constants, namely integers, floating 
point numbers, and alphanumeric constants, and because the RAWAM supports a sorted type 
system. As a consequence, the semantics of CON and REF is slightly different. A CON-tagged 
heap cell contains only alphanumeric constants, and no integers or floating points. On the other 
hand, a REF tagged cell never contains a self reference; a free variable is denoted by TYP, and 
it eventually contains a reference to its type. All the other tags are the same as described in 
[AK91]. 

10.2 Sorts 

Heapcell *domexc(Heapcell *, Heapcell *) i 
Heapcell *exc_union(Heapcell *, Heapcell *)i 
Heapcell *intersect(Heapcell *, Heapcell *)i 
Heapcell *glb(Heapcell *, Heapcell *)i 
Heapcell *sort_to_dom(Sortbase_entry *)i 
Heapcell *sortglb(Sortbase_entry *, Sortbase_entry *)i 
void element_of(Heapcell *, Heapcell *)i 
Heapcell *intersectdombuiltin(Heapcell *, Hash_entry *)i 
Heapcell *intersectbuiltins(Hash_entry *, Hash_entry *)i 

The RAWAM supports, as the GWAM does, the static type model as described in [Hal95]. For 
this support the RAWAM design is changed as follows: 

1. There exists a new type of heap cells identified by the tag TYP, as described in subsection 
10.1. 

2. There is an additional command type, which expects a sort in register X 2 and calculates 
its glb with the contents of register Xl' 

3. The bind command has also been modified to calculate glb's. 
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We give here patterns for bind and type; see for documentation the comments inside and for 
Heapcell refer to subsection 11.2.1: 

II bind expects its left argument to be dereferenced, i.e <> REF and its right 
II argument to be TYP 

procedure bind(left Heapcell *, right Heapcell *) 

II arguments: 
II left reference to some heap cell 
II right: reference to some heap cell which must contain a TYP 

II non-nil heaptype means, this variable is typed: 

if right->u.heaptype <> 0 then 
begin 
if left->tags[O] = TYP then 
begin 
Trail_Var(left); 

II if left argument is a variable, 
II we may have to do sort calculations 

if left->u.heaptype <> 0 then II calculate glb 
left->u.heaptype glb(right->u.heaptype, left->u.heaptype); 

else 
left->u.heaptype 

Trail_Var(right); 
right = <REF, left>; 
return; 

end; 

right->u.heaptype; 

II if left argument is some constant, it may be contained in 
II the domain of the right: 

else if left->tags[O] CON or left->tags[O] INT or 
left->tags[O] = FLO then 

begin 
element_of (left , right->u.heaptype); 

if fail == true 
return; 

end; 

else 
begin 
fail = true; 
return; 

end; 
end; 

II in this case, left may have some type, copy it: 

else if left->tags[O] = TYP then 
begin 
Trail_Var(right); 
right->u.heaptype 

end; 
left->u.heaptype; 



10 WAM EXTENSIONS 

Trail_Var(right)j 

if left->tags[O] = TYP then 
left = <REF, right>j 

else 
*right 

end bindj 
*leftj 
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The semantics of the type instruction is to expect a variable or constant in the Xl register 
and a sort in the X 2 register, to compute the glb and to store the result in Xl, or to fail, if 
X I contains a constant and it is not in the domain of the sort. The instruction looks as follows : 

procedure type 
Deref(XReg(l), addr)j II dereference contents of Xl 

II Check, if X2 contains type or dom/exc: 

if X2->tags[0] = CON or (X2->tags[O] = STR and 
X2->u.heapref->u.hashref->domexc <> 0) then 

begin 

II do type calculations: 

if addr->tags[O] = TYP then 
begin 

I I if yes, then 

Trail_Var(addr) II variable must be saved 

if addr->u.heaptype 0 then 
begin 

II if addr contains no type, it gets 
II a copy, which must be on the 

*H = *X2j 
addr->u.heaptype Hj 
Inc_H(1) j 

endj 

II heap 

else II else compute glb 
addr->u.heaptype = glb(addr->u.heaptype, X2)j 

endj 

II if addr contains constant, glb is the question: 
II contained or not contained? 

else if addr->tags[O] = CON or addr->tags[O] 
addr->tags[O] = FLO then 

element_of (addr, X2)j 
endj 

II couldn't perform type calculation: 

else 
fail = truej 

II proceed: 

if fail = true then 
begin 

P = B[B[l]->intnum + 7]->coderefj 

INT or 
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fail false; 
end; 

else 
P P + 1; 

end type; 

There are several functions to implement the glb calculations. Here is a list (see also the 
beginning of this subsection): 

• glb is the general glb function which branches into the others. 

• domexc calculates the intersection of a dom and a exc sort. 

• excunion forms the union of two exts. 

• intersect intersects two doms. 

• sort_to_dom transforms a user-defined finite sort into a dom. 

• sortglb calculates the mgu of two user-defined sorts . 

• element-of checks if a constant is contained in a given sort. 

• intersectdombuiltin intersects a dom with a builtin sort. 

• intersectbuiltins intersects builtin sorts. 

Note that all functions except element-of and intersect built ins store their results on the 
heap. 

10.3 Higher Order 

The current higher order facilities are covered by the apply instruction. This instruction expects 
a constant in the Xl register and a list of arguments to be given to the constant in X2 . It does 
not work in the case that the Xl register contains a free variable. Here is the pattern: 

procedure apply 
Deref(Xl, addr); 

he = addr->u . hashref; 

if he 
fail 

else 
begin 

o then 
true; 

II dereference contents of Xl 

II get its reference in the hash table 

name = he->name; II get name of function to be called 
Deref(XReg(2) , list); II get list of arguments 

for(i 
{ 

1; list && Tag(list) == LIS; i++) II fill registers with arguments 

list list->u.heapref; 
*XReg(i) = *(list); 
list++; 
} 

he = lookup_proc(Current, name, i - 1); II find routine with given arity 

if he 
fail 

o then 
true; 
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else if he->coderef 
fail true; 

else 
begin 
if ArgumentlCP) 
cp = P + 1; 

BO = B; 
P = he->coderef; 
return; 

end 
end; 

II proceed: 

if fail = true then 
begin 

o then 

o then 

P = B[B[l]->intnum + 7]->coderef; 
fail = false; 

end; 

else 
P P + 1; 

end apply; 
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II *** see in text below 

II call routine 

*** : Note that the RFM compilers implementation of higher order calls works via a call (call 
apply/3 0) or (execute apply/3 0), so that the apply command has an additional parameter 
to update the CP register if it was called by call. If (apply 0) is used, this comes from 
(call ... ), else it comes from (execute ... ). 

11 Heap, Stack, Trail, PDL 

Memory areas needed for program execution are, as in [AK91)' the so-called Heap, Stack, Trail , 
and PDL. The first three are manipulated directly by the WAM instructions; the PDL is used 
indirectly as the recursion stack of the unify function and is therefore implemented implicitely 
by the C stack. 
In [AK91)' heap, stack, and trail are organized in the way so that they are located in one large, 
connected memory area, where heap , stack, and trail are exactly in this order, counted from 
the lower to the higher addresses. 
Unlike this , RAWAM organizes its memory in several smaller, position-independent memory 
units , which allows dynamic allocation of new memory, if necessary. Each data area is handled 
separately as a linked lists of memory blocks whose first element is accessed through the global 
pointer variables Heap, Stack, and Trail. These variables are pointers to the HST structure 
(Heap Stack Trail) : 

HST 
+---- ----+ 

size size_t size of memory block 
heap Heapcell pointer to low memory address 
stack Stackcell pointer to low memory address 
trail Trailcell pointer to low memory address 
heap Heapcell pointer to high memory address 
stack Stackcell pointer to high memory address 
trail Trailcell pointer to high memory address 
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The low entry points to the first element of an array of heap-/stack-/trail- cells, and high 
points one above the highest element of this array. It always holds that HST.low.stack + size 
== HST.high.stack, and for any address A, A points into the heap-/stack-/trail-memory block, 
iff HST.low.stack <= A < HST.high.stack (respectively, HST.low.heap, HST.low.trail etc.). 

11.1 General Handling of HST 

We give a quick reference of which general functions are implemented to deal with HST struc­
tures. The data type memtype here can take one of the values HEAP, STACK, or TRAIL; memtype 
is used for clean type distinction, so that the functions below know if to use the heap, stack, 
or trail entries within the HST. 

HST *init_hst(size_t size, memtype memtype) 

Initializes an HST structure consisting of one block and of size size. 

HST *new_hstchunk(size_t size, memtype memtype); 

Allocates and initializes one HST structure together with a memory block of size size. 

void remove_hstchunk(HST *h, memtype memtype); 

Given an HST structure within a linked list of HST structures, remove-.hstchunk removes this 
element out of the linked list. 

void cleanup_hst(HST *h, memtype memtype); 

Assumes that a linked HST lists starts with the HST given by the first argument and deallocates 
the whole linked list. 

HST *append_hstchunk(HST *h, size t size, memtype memtype); 

If h represents the beginning of a linked HST list, a new element for the given size size is 
appended to it. 

HST *insert_hstchunk(HST *hl, HST *ch); 

Assumes that hl is contained in a linked list and inserts ch immediately before hl. 

HST *insert_new_hstchunk(HST *h, size_t size, memtype memtype); 

Same as insert-.hstchunk, but allocates a new HST structure for the given size. 

HST *hfind_hstchunk(Heapcell *h), *sfind_hstchunk(Stackcell *s), 
*tfind_hstchunk(Trailcell *t); 

These functions return a pointer to the HST structure into whose memory h, s, or t respectively, 
points. These functions are specialized to search only in the HST lists belonging to heap, stack, 
or trail. 

HST *hrelfind_hstchunk(Heapcell *h, HST *hl); 

Searches and returns the HST structure in the linked list starting with hl into whose memory 
block h might point. 
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11.2 Heap 

11.2.1 Data 
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One heap HST memory unit is merely an array of Heapcell structures. The size of one HST 
memory unit is given by the global constant HEAP ...sIZE, and the maximal number of heap 
cells is given by the constant HEAP jiAX...sIZE (hence the maximum number of HST blocks for 
the heap can be HEAP jiAX...sIZE / HEAP ..sIZE). The current number of allocated heap cells is 
stored in the variable Heapsize, which is used to compare the current size of the heap with the 
maximum allowed. Heapcells can be of different types; each type differs by the kind of data it 
contains. A Heapcell has two entries: its tag and its value. There exist the following tags and 
data associated to them: 

• NONE if the Heapcell is unspecified 

• FLO Heapcell contains floating point number 

• INT Heapcell contains integer 

• CON Heapcell contains literal constant 

• STR Heapcell contains pointer to a WAM structure 

• LIS Heapcell contains pointer to list element 

• NIL Heapcell contains end of list symbol 

• TYP Heapcell contains free variable, respectively points to type data 

• FUN Heapcell contains functor symbol 

• REF Heapcell contains reference to another Heapcell 

The Heapcell is therefore defined by a C-structure having two entries, where the first entry 
contains the tag and the second the data. The first entry in principle would need only 4 bits, 
but because no efford is done for considering special data encoding, we have to stick to standard 
C data types; this means we need at least 1 byte, and if taken alignment within the structure 
implicitely into account, we easily arrive at 4 bytes. The data entry of a Heapcell now is 
realized by a appropriate union: 

Heapcell 
tags BYTE[4] tags[Q] holds type of heapcell, tags[1] .. tags[3] are not used yet 
flonum double floating point number 
intnum long int long integer number 
hashref Hash_entry * name of a constant (for FUN) 
stackref Stackcell * pointer to stack 
heapref Heapcell * pointer to heap (for REF, STR, LIS) 
heaptype Heapcell * pointer to type information (for TYP) 

11.2.2 Access 

The data used for manipulating and using the heap is encoded in several ways. First, the 
implementation specific memory restrictions are handled, as described before, by the global 
values/variable HEAP ..sIZE, HEAP jiAX...sIZE, Heapsize, and Heap. Second, the register set is 
extended from the usual H, HB, and S registers by the registers CurrHHeap, CurrSHeap, and 
CurrHBHeap. These are set to the HST memory blocks into which H, S, and HB, respectively, point. 
Further, the registers HeapBot and HeapTop are set to CurrHHeap->low. heap and CurrHHeap-> 
high.heap. Analogously, SHeapBot contains CurrSHeap->low.heap, and SHeapTop contains 
CurrSHeap->high.heap. 
One should notice, that all this registers formally are treated on the same level, but, in fact , the 
additional HST-related registers are only auxiliary registers for the standard registers H, S, and 
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HB. So it is convenient to provide access operations for the standard registers and encapsulate 
the use of the additional registers within these. 
For the heap, there are four such operations, Inc.Ji, Inc-.S, Set-.S, and Next.JiCell. 
Inc.Ji and Inc-.S are mostly identical, they are used for increasing the contents Hand S registers 
by a given number: 

procedure Inc_H(N integer) 

II arguments: 
II N : increment H by N heap cells 

if H + N < HeapTop then 
H H + N; 

else 
begin 

NN = N; 

II this is the uncritical case: 
II simply increase H 

II in this case the boundary of 
II the current HST block is reached 

II now it is to check, if we have to allocate a new entry in the 
II heaps HST list: 

if CurrHeap->next = 0 then 
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then II check for memory limit 
begin 

append_hstchunk(CurrHeap, HEAP_SIZE, HEAP); II allocate new HST 
Heapsize = Heapsize + HEAP_SIZE; II update allocated-memory index 

end; 

else 
begin 
fail = true; 
return; 

end; 

II no more memory -> fail 

II Now CurrHeap->next holds a valid HST structure 

CurrHeap = CurrHeap->next; 

II Now we handle the extreme case: if HEAP SIZE is set to some low 
II value, the increase N may need to extend the heap by some more HSTs 

while NN > HEAP_SIZE do 
begin 
if CurrHeap->next = 0 then 
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then 
begin 

append_hstchunk(CurrHeap, HEAP_SIZE, HEAP); 
Heapsize = Heapsize + HEAP_SIZE; 

end; 

else 
begin 
fail = true; 
return; 

end; 

CurrHeap = CurrHeap->next; 
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NN = NN - HEAP_SIZE; 
end; 

II now update all related registers: 

HeapBot = CurrHeap->low.heap; 
H = HeapBot + (N - (HeapTop - H)) 
HeapTop = CurrHeap->high.heap; 

end; 
end Inc_H; 
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Inc...s does the same for the S register as Inc..H for the H register does, except that the check 
at the very beginning has to take respect to the fact that S in general does not point to the 
topmost heap element. So we give here the pattern without further comments: 

procedure Inc_S(N integer) 

II arguments: 
II N : increment S by N heap cells 

if (SHeapBot <= S + N) and (S + N < SHeapTop) then 
S S + N; 

else 
begin 

NN N' , 

if CurrSHeap->next = 0 then 
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then 
begin 

append_hstchunk(CurrSHeap, HEAP_SIZE, HEAP); 
Heapsize = Heapsize + HEAP_SIZE; 

end; 

else 
begin 
fail = true; 
return; 

CurrSHeap = CurrSHeap->next; 

while NN > HEAP_SIZE do 
begin 
if CurrSHeap->next = 0 then 
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then 
begin 

append_hstchunk(CurrSHeap, HEAP_SIZE, HEAP); 
Heapsize = Heapsize + HEAP_SIZE; 

end; 

else 
begin 
fail = true; 
return; 

end; 

CurrSHeap CurrSHeap->next; 



11 HEAP, STACK, TRAIL, PDL 

NN = NN - HEAP_SIZE; 
end; 

SHeapBot = CurrSHeap->low.heap; 
S = SHeapBot + (N - (SHeapTop - S)) % HEAP_SIZE; 
SHeapTop = CurrSHeap->high.heap; 

end; 
end Inc_S; 

Set..s sets the S-register to a given register and updates the auxiliary registers: 

procedure Set_S(A : address) 

II arguments: 
II A set S to this address 
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hst hfind_hstchunk(A); II find the HST structure into whose memory 
II A points. 

if hst <> CurrSHeap then 
begin 

II if this differs, update the auxiliary 
II registers 

CurrSHeap = hst; 
SHeapBot hst->low.heap; 
SHeapTop = hst->high.heap; 

end; 

S = A; 
end Set_S; 

Next...HCell sets the argument HH to point to the Heapcell consecutive to the Heapcell H. H 
points into the memory block belonging to the HST CH. 

procedure Next_HCell(HC : address, CH : address, HH address) 

II arguments: 
II HC address to heap cell whose successor must be found 
II CH HST which contains HC 
II HH the result will be copied here 

if HC + 1 < CH->high.heap then II the easy case 
HH = HC + 1; 

else II boundary of HST memory reached 
begin 

II now it is to check, if we have to allocate a new entry in the 
II heaps HST list: 

if CH->next = 0 then II allocate new HST 
if Heapsize + HEAP_SIZE <= HEAP_MAX_SIZE then 
begin 

append_hstchunk(CH, HEAP_SIZE, HEAP); 
Heapsize = Heapsize + HEAP_SIZE; 

end; 

else 
begin 
fail = true; 
return; 

II no more memory -> fail 
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end; 

HH = CH->next->low.heap; 
end; 

end Next_HCell; 

11.3 Trail 
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II Set HH to the first new Heapcell 

The trail 's data is, as for the heap , represented by several types of data. There are the global 
values STACK~IZE and STACK..MALSIZE, determining the number of stack cells managed by 
the trail's HSTs and their maximal number; the trail's current size is determined by the global 
variable Trailsize. The HSTs are a linked list pointed to by the global variable Trail. The 
trailing register TR is as usual , and the trail's auxiliary registers are CurrTrail, holding the 
address of the HST into whose memory TR points, and TrailTop, pointing to the top address of 
this HST's memory. 

11.3.1 Trailcells 

To support RelFun's typed variables (see [HaI95]), RAWAM's trail is modified in the way that 
it is not an array of pointers Heapcells (or, more generically, as addresses of heap cells), but as 
array of pairs of pointers to Heapcells. One memory segment of a trail-HST structure looks 
like: 

Trail 
(Heapcell *) [2] couple of pointers to heap cells 
(Heapcell *) [2] ... 
... 
... 

11.3.2 Access 

In [AK91]' the trail is used by the WAM instructions via three routines: trail, unwind_trail, 
and tidy_trail. RAWAM supports only the first two, here called TraiLVar and Unwind_Trail, 
implemented as macros (as C substitute for inline functions) . TraiLVar works analogous to 
the corresponding pattern in [AK91]' but Unwind_Trail has to take care of the order in which 
it restores the free variables on the heap. This is important because of the sort unification, 
whose results are also stored in the trail, and which have to be recovered in reverse time order. 
However, Unwind_Trail solves this in a rather trivial way: restore the variables downwarts from 
the top of trail, instead of upwards. For the same reason, tidy_trail was modified to equate its 
efficiency benefits under this circumstances: nil. 
Here is the RAWAM-modified pattern for TraiLVar: 

procedure Trail_Var(T : address) 

II arguments: 
II T : variable which to trail 

II first, search the heap-HST T belongs to, it should be after CurrHBHeap: 

hst = CurrHBHeap; 

while hst <> 0 and not(T >= hst->low.heap and t < hst->high.heap) do 
hst = hst->next; 

II now check, if the variable has to trailed: 
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if ((hst = 0) and not(in(T,Current Stackframe) and T >= B)) 
or ((hst <> 0) and (T < HB)) then 

begin 
I I fill the 

(*TR) [0] 
(*TR) [1] 

topmost entry in the trail with the variable's data: 
T; 

= T->u.heaptype; 

II Try to increase TR or check if top of trail-HST is reached and allocate 
II new one if necessary: 

if TR < TrailTop - 1 then 
TR++; 

else 
begin 
if CurrTrail->next then 
if Trailsize + TRAIL_SIZE <= TRAIL_MAX_SIZE then 
begin 

append_hstchunk(CurrTrail, TRAIL_SIZE, TRAIL); 
Trailsize = Trailsize + TRAIL_SIZE; 

end; 

else 
begin 
fail = true; 
return; 

end; 

II update registers : 

CurrTrail = CurrTrail->next; 
TrailTop = CurrTrail->high . trail; 
TR = CurrTrail->low .trail 

end; 
end Trail_Var; 
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Unwind_Trail restores variables in the reverse order they were put onto the trail. In the simple 
case that all variables are contained in one HST memory block, this is straightforward. In the 
other case, several HST memory blocks may to have skipped. 

procedure Unwind_Trail(A) 

II arguments: 
II A : trail address up to which to unwind 

II easy case: simply loop through 

if (A < CurrTrail->high.trail) and 
(A >= CurrTrail->low.trail) then 

begin 
h = TR - 1; 

repeat 
*(*h)[O] = <TYP,(*h) [1]>; 
h = h - 1 

until h = A; 
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end 

II difficult case: restore all variables from the topmost trail HST. If 
II the number of variables to restore is significantly larger than 
II the size of the trail HST memory blocks, several of them may have to 
II be fully released. Finally, everything is reduced to the easy case 

else 
begin 
hh = A; 
trl = tfind_hstchunk(A); 
h = TR - 1; 

repeat 
*(*h)[O] = <TYP,(*h)[l]>; 
h = h - 1 

until h = CurrTrail->low.trail; 

II find chunk to reach 

II first, do entries in top HST block 

CurrTrail = CurrTrail->prev; II go to previous HST block 

while CurrTrail <> trl do II munge all intermediate HST blocks 
begin 

h = CurrTrail->high.trail - 1; 

while h >= Currtrail->low.trail do 
begin 
*(*h) [0] = <TYP,(*h) [1]>; 
end; 

CurrTrail 
end 

CurrTrail->prev 

h = CurrTrail->high.trail - 1; 

repeat 
*(*h) [0] = <TYP,(*h) [1]>; 
h = h - 1 

until h = A; 

II do last HST block 

II update remaining auxiliary registers: 

TrailTop = CurrTrail->high.trail 
end 

end Unwind_Trail; 

11.4 Stack 
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The stack contains choice point and environment frames, which are a bit enlarged, compared 
with [AK91]' for the need of our enhanced memory management. As for the Heap, for the 
full representation and use of the stack, we need several kinds of data. There are the fixed 
constants STACK....sIZE and STACK...MAX....sIZE determining the size of the memory belonging to 
one HST, and the maximum amount of memory which may be occupied by the stack; the global 
variables Stack and Stacksize denote the linked HST list and the number of currently allocated 
Stackcells. Further, besides the known E, B, and BO registers, there are some HST-valued 
registers associated to each of them: 
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• CurrStack contains a pointer to the HST into whose memory B currently points. The 
same do CurrBOStack and CurrEStack for BO and E . 

• StackBot and StackTop contain the lowest and highest memory addresses for the memory 
block of CurrStack. Same for BOStackBot, BOStackTop, and CurrBOStack. 

11.4.1 Layout 

The layout of a choice point is as follows: 

I Offset I Content 

0 Timestamp register 
1 number n of saved Y-registers 
2 Y-register 1 
... 
n + 1 Y -register n 

n+2 E register 
n+3 Curr EStack register 
n+4 CP register 
n+5 B register 
n+6 CurrStack register 
n+7 next clause in case of failure 
n+8 TR register 
n+9 H register 
n + 10 Curr Heap register 
n + 11 BO register 
n + 12 CurrTrail register 

Environment frame layout: 

I Offset Content 

0 Timestamp 
1 E register 
2 CP register 
3 BO register for cut 
4 Curr EStack register 
5 first Y-register 
... 
4+ m mth Y-register 

11.4.2 Stackcells 

A Stackcell can contain several kinds of data; there is no tagging needed, because there are 
fixed rules how stack slots are filled. Hence, a Stackcell is a union as follows: 

Stackcell 
reg Heapcell for X-registers 
stackref Stackcell * pointer to stack 
intnum unsigned long int long integer number 
coderef Codecell * pointer to program address 
hstref HST * pointer to memory segment 
trailref Trailcell * pointer to trail 
heapref Heapcell * pointer to heap 
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11.4.3 Timestamps 

To compare the creation time of environment frames and choice points, each of them has an 
additional slot for a time stamp, which is filled upon creation by the value of the Timestamp 
variable. This is a counter which is increased each time after initializing a stack structure and 
decreased after destroying the highest one. 
The following instructions/places are modified for using the time stamp: 

• the initialisation process of the query gets the very first entry 

• the commands trYJIle_else, retrYJIle_else, trustJIle_elseJail, try, retry, trust, 
exec, ret, ret_const, ret_int, retJloat, allocate, deallocate. 

The rules for the commands for manipulating Timestamp are as follows: 

1. allocate, tryJIle_else, and try create environments, respectively choice points, on top 
of the stack. So they copy the value of Timestamp into the time stamp slot and increase 
Timestamp by one. 

2. retry JIle_else, retry have to restore also Timestamp, which is set to the choice points 
time stamp plus one. 

3. The rest of these commands remove a choice point/environment frame. the new timestamp 
is set to max(timestamp(E), timestamp(B)) + 1, where E and B are the actual choice 
point/environment frame after the removal. 

11.4.4 Access 

Creating a stack frame is done via the function StackAlloc. There are two occasions where 
StackAlloc is called: for creating an environment or for creating a choice point. So, involved 
are the two of the registers Band E (and their auxiliary registers) for one of them refering to 
the current highest position on the stack and one of them being wanted to refer afterwards to 
the highest position. StackAlloc expects as arguments a pointer immediately after the highest 
stack frame, the HST where the topmost stack frame is contained (i.e. one of CurrStack and 
CurrEStack), the auxiliary HST register which may be updated, and the size of the stack frame 
to be allocated. It returns a reference to the allocated stack frame. 

function StackAlloc(M 
N 

address, CS : address, CSN : address, 
integer) : address 

I I arguments: 
II M address immediately after current stack frame 
II CS current highest stack HST 
II CSN stack HST which may be updated 
II N size of stack frame 
II S stack register to update 

II test if enough space is left in the current HST memory: 

if CS->high.stack - M > N then 
begin 

CSN = CS, 
return M; 

end; 

II if yes, then everything is ok 

II else, allocate new HST if needed and return reference to its low memory 
else 
begin 
if CS->next o then 



12 AUXILIARY ITEMS 

if Stacksize + max(STACK_SIZE, N) <= STACK_MAX_SIZE then 
begin 

append_hstchunk(CS, max (STACK_SIZE, N), STACK); 
Stacksize = Stacksize + STACK_SIZE; 

end; 

else 
begin 
fail = true; 
return; 

end; 

CSN = CS->next; 
return CSN->low.stack; 

end; 
end StackAlloc; 

12 Auxiliary Items 

12.1 Memory Management for Linked Lists 

Memory_Area *init_mem_area(size_t type, size t size, size t enlargement); 
void release_mem_area(Memory_Area **); 
void *get_memory(Memory_Area *); 
void release_memory(void *, Memory_Area *); 
void clear_mem_area(Memory_Area *); 
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Because of the frequent use of linked lists during the assembling process, there exist - somewhat 
experimental - memory management routines which are taylored to quickly re-use memory 
allocated for linked lists. The idea is, not to allocate new system memory for each new entry 
in a linked list, but to allocate a whole memory block at once, mark locations in it as a new 
list entry and release all at once, if the linked list is no longer needed. The main data structure 
here is the Memory...Area: 

Memory -.Area 

-----+ 
mem_blk BYTE * pointer to memory block 
first.1ree BYTE * pointer to next element to be allocated 
type size_t data type to be handled, "typed" by its size 
size size_t number of possible entries 
num.1ree size_t number of free entries 
enlargement size_t extend mem_blk memory by this amount if exceeded 

To handle a linked list via Memory...Areas, one has first to create the first Memory...Area with the 
function ini t..mem_area; its arguments are the type of entries in the list - which means its size 
-, the number of entries the Memory...Area can contain, and the size which an additional memory 
area will have, if the former number will be exceeded. For example, 

init_mem_area(sizeof(Codeconstruct), 2000, 500); 

initializes a Memory...Area for linked lists of type Codeconstruct (or some other of equivalent 
size, respectively) with a capacity of 2000 entries; if this is exceeded, additional Memory...Areas 
of 500 entries size will be appended. 
When using the linked list, calls to get..memory will allocate a new element of the specified 
memory area. getJOemory does it in the way, that it steps through all Memory...Area structures 
and returns the entry of the first free entry it finds. If it finds none, it calls ini tJOem_area to 
create a new Memory...Area and allocates its first entry. 
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release..1llernory searches for the Memory...Area where the specified list entry belongs to and 
releases it there. 
If a linked list is no longer used, it is reset by the function clear ..1lIern_area, which sets all 
Memory...Areas belonging to a memory area into an initial state. 
To completely get rid of a memory area, one has to use release..1llern_area. 

13 ConcI usions 

This work gave an almost complete description of the RAWAM and its implementation. Ho­
wever, there remain some un discussed and unfinished issues. The most important of these are 
the following: the unsufficient coupling of the RAWAM via the file system, the prototypical 
support of RelFun's module system, and the not yet completed adaption of the RAWAM to all 
of RelFun's features . 
While the first point is just a matter of taste, the latter ones were delayed because of the 
fact that they would require both, the extension of the RAWAM and the reworking of the 
whole RFM compiler. For instance, the compiler currently flattens the modules, so, in fact, the 
module system in the RAWAM is only used for the distinction of predefined and user-defined 
WAM routines. Further open questions with respect to the support of a full module system are 
(1) how to implement a compilation/assembling scheme that allows backtracking across module 
contexts and (2) to give proper foundations of higher-order logic within a module system. These 
points are discussed in [Her95] , [BLM94]. 
Summarizing, the RAWAM is well-suited and now well-enough described to be adapted to 
other logic programming languages; it is not only suited to work as an abstract machine, but 
its design also allows one further step: to reuse parts of it for generating C programs out of 
RelFun source, hence to provide native code for it (cf. [VR94]) . 
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A Some Corrections 

During the implementation of the RAWAM several errors contained in Alt-Kaci's original book 
[AK9lJ were found and corrected. We refrain here from describing these corrections in any 
detail, because there exists an official list of known bugs and their corrections. Since our 
independently found corrections completely agree with Alt-Kaci's, the current WAM version 
seems to be bug free. 
Alt-Kaci's list can be found at his homepage at 

http://www.isg.sfu.ca/-hak/docurnents/wamerraturn.txt 

B Overview: Supported WAM Instructions 

B.l Instructions as in Alt-Kaci's description of the WAM 

The RAWAM instructions in this appendix all have counterparts in the WAM description 
[AK9lJ, which are denoted in the second columns of the tables below. 

B.l.l Put instructions 

RA WAM instructions 
put..x-Yariable Xn,Xm put-variable Xn,Ai 
put_y_variable Yn,Xm put-variable Yn,Ai 
put..x_value Xn,Xm put_value Vn,Ai 
put_y_value Yn,Xm put_value Vn,Ai 
put_unsafe_value Yn,Xm put_unsafe_value Yn,Ai 
put_structure f ,Xn put_structure f ,Ai 
put_list Xn put-list Ai 
put_constant c,Xn put_constant c,Ai 
putJlil Xn put_constant O,Ai 
put_int i,Xn put_constant i,Ai 
put..:float r,Xn put_constant r,Ai 

B.l.2 Get instructions 

RAWAM instructions 
get..x-Yariable Xn,Xm get-Yariable Vn,Ai 
get_y-yariable Yn,Xm get_variable Vn,Ai 
get..x-Yalue Xn,Xm get_value Vn,Ai 
get_y-yalue Yn,Xm get-Yalue Vn,Ai 
get _structure f ,Xm get_structure f ,Ai 
get_list Xn get-list Ai 
get_constant c,Xm get_constant c,Ai 
getJlil Xn get_constant O,Ai 
get_int i,Xm get_constant i,Ai 
get..:float r,Xm get-constant r,Ai 
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B.1.3 Unify instructions 

RA WAM instructions 
unify..x3ariable Xn unify_variable V" 
unify_y_variable Y" unify_variable V" 
unify..x_value Xn unify_value Vn 
unify_y_value Y" unify_value Vn 
unify..x_locaLvalue Xn unify_value Vn 
unify_y_locaLvalue Yn unify_value Vn 
unify_constant c unify_constant c 
unifyJlil Xn unify _constant 0 
unify_int i unify _constant i 
unifyJloat r unify_constant r 
unify_void n unify_void n 

B.1.4 Control instructions 

RA WAM instructions 
allocate allocate 
deallocate deallocate 
call F,N call F,N 
execute F execute F 
proceed proceed 

B.1.5 Choice instructions 

RA WAM instructions 
try JIle_else L,n tryJlle_else L 
retrYJIle_else L retrYJlle_else L 
trustJlle_elseJail trustJlle 
try L,n try L 
retry L retry L 
trust L trust L 

B.1.6 Indexing instructions 

RA WAM instructions 
switch_on_term C,S,L,N,V switch_on_term V,C,L,S 
swi tch_on_constant N,T swi tch_on_constant N,T 
swi t ch_on_structure N,T swi tch_on_structure N,T 

B.1. 7 Cut instructions 

RAWAM instructions 
neck_cut neck_cut 
get-level Yn get-level Yn 
cut Yn cut Yn 
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B.2 Additional Instructions 

B.2.1 Arithmetics Instructions 

Instruction Description 
add2 adds contents of registers X I and X 2 

addn n adds contents of registers Xl to X Il 

sub2 subtracts contents of registers Xl and X 2 

subn n subtracts contents of registers Xl to X Il 

inc increases contents of register Xl by 1 
dec decreases contents of register X I by 1 
mu12 multiplies contents of registers Xland X 2 

muln n multiplies contents of registers Xl to Xn 
div2 divides contents of register Xl by X 2 

divn n divides contents of register Xl by X 2to Xn 
mod2 Xl modulo X 2 

modn n Xlmodulo X 2 .·· modulo Xn 
random generates random value between O ... {X I} - 1 if X I contains an 

integer, or between 0 ... {Xd if Xl contains a real number 
exp e{xt} 

expt {Xd{X2 } 

log In{Xd 
sqrt J{Xd 
abs I {Xd I 
signum o if {X d = 0, 1 if {X d > 0, -1 else 
sin sin{Xd 
cos cos{Xd 
tan tan{Xd 
asin arcsin{X1 } 

acos arccos{Xd 
at an arctan{X1 } 

pi 7r 

sinh sinh{X1 } 

cosh cosh{Xd 
tanh tanh{Xd 
asinh arcsinh{Xd 
acosh arccosh { Xl} 
atanh arctanh {X 1 } 

lt2 test if {Xd < {X2 } 

ltn n test if {Xd < ... < {Xn} 
le2 test if {Xd :S {X2 } 

len n test if {Xd :S ... :S {Xn} 
gt2 test if {Xd > {X2 } 

gtn n test if {Xd > ... > {Xn} 
ge2 test if {Xd ~ {X2 } 

gen n test if {Xd ~ ... ~ {Xn} 
eq2 test if {Xd = {X2 } 

eqn n test if {Xd = ... = {Xn} 
ne2 test if {Xd i- {X2 } 

nen n test if {Xd i- ... i- {Xn} 
min n min {Xd ... {Xn} 
max n max {Xd ... {Xn} 
stringst test if {Xd < {X2 } and {Xd, {X2 } contain strings or constants 
stringse test if {Xd <= {X2 } and {Xd, {X2 } contain strings or constants 
stringgt test if {Xd > {X2 } and {Xd, {X2 } contain strings or constants 
stringge test if {Xl} > = {X 2} and {Xl}, {X 2} contain strings or constants 
stringeq test if {Xd = {X2 } and {Xd, {X2 } contain strings or constants 
stringneq test if {Xd i- {X2 } and {Xd, {X2 } contain strings or constants 
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B.2.2 Miscellaneous Instructions 

Indexing Instructions 

Instruction Description 
set_indexJlumber n sets indexing register to Xn 

Alternative Cut Instructions 

Instruction Corresponds to 
save_cut_pointer geLlevel 
gama_cut cut 

Flow Control Instructions 

Instruction Description 
terminate terminates RAWAM execution of query 
failure terminates RAWAM execution and failures 
backtrack invokes backtracking 

Special Commands 

Instruction Description 
type sort unification 
apply t higher order calls 
11 calls to lisp light 
trueatom true if X I contains an atom 
nontrueatom true if Xl contains not an atom 
var true if X I contains a variable 
nonvar true if X I contains not a variable 

B.2.3 Integrating Instructions 

Instruction Substitution 
exec P deallocate 

execute P 
ret deallocate 

proceed 
ret_const put_constant c,X1 

deallocate 
proceed 

reLint put_int i,XI 

deallocate 
proceed 

ret..float puLfloat r,XI 

deallocate 
proceed 

proceed_const put_constant c,X I 

proceed 
proceed_int put_int i,XI 

proceed 
proceed..:f loat put..:float r,XI 

proceed 
switch_on_termJl n,C,S,L,N,V set_indexJlumber n 

switch_on_term C,S,L,N,V 
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C A Demo Script 

rfi-p> exec rawam 8, 
7, 

relfun 6, 
rfi-p> (,(,(,(,(,(,(,(,(, rawam.bat 4, 
rfi-p> (,(,(,(,(,(,(,(,(, test facilities and speed-up of the RAWAM 19, 
rfi-p> 1, 
rfi-p> miser-level 3 26, 
rfi-p> inter 24, 
rfi-p> destroy 3, 
rfi-p> sp 22, 
rfi-p> timermode on 2, 
(, timermode is on now. 14, 
rfi-p> 13, 
rfi-p> 1, 
rfi-p> (,(,(, First a suite of the serialise-demo and 19, 
rfi-p> (,(,(, comparison with the GWAM: 4, 
rfi-p> 6, 
rfi-p> (,(, pure functional version of serialise: 18, 
rfi-p> 5, 
rfi-p> consult funser 23, 
Reading file" . /funser.rfp" 17, 
rfi-p> listing 26, 
serialise(L) :k assign(L,table(L, [])). 24, 
assigneE] ,T) :k []. 3, 
assign([XIRest] ,T) :k tup(assoc(X,T) lassign(Rest,T)). 22, 
assoc(X, [[X,L] IRest]) !k L. 2, 
assoc(X, [[Y ,L] IRest]) :k assoc(X,Rest). 7, 
table([] ,T) :k T. 20, 
table ([X I Rest] ,T) : - memb(X, T) ! ktable (Rest, T) . 25, 
table ( [X I Rest] ,T) : k table (Rest, insert ( [X ,1] , T)) . 8, 
memb(X,[[X,L] IRest])!. 14, 
memb(X, [[Y,L] IRest]) :- memb(X,Rest). 13, 
insert( [X,L] , []) :k [[X,L]]. 10, 
insert([X,Ll], [[Y,L2] IRest]) :- 21, 

string«X,Y) !ktup(tup(Y,l+(L2)) linsert([X,Ll] ,Rest)). 9, 
insert([X,Ll], [[Y,L2] IRest]) :k 11, 

tup([Y,L2] linsert(tup(X,l+(Ll)),Rest)). 12, 
loop(X,l) serialise(X). 15, 
loop(X,N) :- serialise(X) k loop(X,l-(N)). 16, 
rfi-p> 17, 
rfi-p> (, try GWAM : 23, 
rfi-p> 5, 
rfi-p> ernul 18, 
Collecting modules for the emulator: 20, 
sortbase workspace 25, 
rfe-p> 21, 
rfe-p> compile 9, 
rfe-p> 15, 
rfe-p> (, first we look what it does: 16, 
rfe-p> 13, 
rfe-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s, 14, 
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m, 2, 
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d, 22, 
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t, 3, 
y ,u, i ,0, p] ) 24, 
[17, 26, 
23, 1, 
5, 19, 
18, 4, 
20, 6, 
25, 7, 
21, 8, 
9, 10, 
15, 11, 
16, 12, 
12, 17, 
11, 1, 
10, 26, 

42 
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24, 
3, 
22, 
2, 
14, 
13, 
19, 
4, 
6, 
7, 
8, 
10, 
11, 
12, 
23, 
5, 
18, 
20, 
25, 
21, 
9, 
15, 
16] 

'l. Internal run time : 2920 ticks (= 2 . 920000 sec) 
rfe-p> 
rfe-p> inter 
rfi-p> pauseO 
true 
'l. Internal run time: 0 ticks (= 0 .000000 sec) 
rfi-p> emul 
Collecting modules for the emulator: 
sortbase workspace 
rfe-p> 
rfe-p> 'l. now we force GWAM to need some time: 
rfe-p> 
rfe-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s, 
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h, 
n,m,j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x, 
z,a,s,d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j. 
k,l,w,e,r,t,y,u,i,o,p],10) 
true 
'l. Internal run time: 14390 ticks (= 14.390000 sec) 
rfe-p> 
rfe-p> 'l. and again: 
rfe-p> 
rfe-p> ori 
true 
'l. Internal run time: 16000 ticks (= 16.000000 sec) 
rfe-p> 
rfe-p> inter 
rfi-p> pauseO 
true 
'l. Internal run time: 0 ticks (= 0.000000 sec) 
rfi-p> emul 
Collecting modules for the emulator: 
sortbase workspace 
rfe-p> 
rfe-p> 'l. now try RAWAM: 
rfe-p> 
rfe-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> 'l. test, how much time the compilation of 
rfc-p> 'l. the query takes: 
rfc-p> 
rfc-p> something_which_does_not_exist([q,w,e,r,t,y,u,i, 
o,p,l,k,j,h,g,f,d,s,a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,X, 
c,v,b,g,t,y,h,n,m,j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,nJ 
b,v,c,x,z,a,s,d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g.h, 

j,k,l,w,e,r,t,y,u,i,o,pJ) 
unknown 

43 

'l. Internal run time: 124 ticks (= 0.124000 sec) 
rfc-p> 
rfc-p> 'l. subtract this time from the times below: 
rfc-p> 
rfc-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s, 
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m, 
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d, 
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t, 
y,u,i,o,p]) 
[17 , 
23, 
5, 

9, 
15, 
16] 

'l. some lines omitted here 

'l. Internal run time: 234 ticks (= 0.234000 sec) 
rfc-p> 
rfc-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z, 
x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,j,u, 
i,k,l,o,p,q,v,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g, 
h,j,k,l,q.a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,v,e,r,t,y,u, 
i,o,p] ,10) 
true 
'l. Internal run time: 584 ticks (= 0.584000 sec) 
rfc-p> 
rfc-p> ori 
true 
'l. Internal run time: 425 ticks (= 0.425000 sec) 
rfc-p> ori 
true 
'l. Internal run time : 508 ticks (= 0.508000 sec) 
rfc-p> 
rfc-p> 'l. Seen it? 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
'l. Internal run time: 0 ticks (= 0 . 000000 sec) 
rfi-p> 
rfi-p> destroy 
rfi-p> 
rfi-p> 'l. This is a relational version of serialise: 
rfi-p> 
rfi-p> consult relser 
Reading file "./relser.rfp" 
rfi-p> 
rfi-p> listing 
apprel( [] ,L, L) . 
apprel([HIR],L,[HIRI]) apprel(R,L,RI) . 
qsort [Cr] ([] , []) . 
qsort [Cr]( [X I YJ, R) :-

partition[Cr] (X,Y,Sm,Gr), 
qsort[Cr](Sm,Sm-sorted), 
qsort[Cr](Gr,Gr-sorted), 
apprel(Sm-sorted,[XIGr-sorted] ,R). 

partition[Cr] (X, [YIZ], [YISmaller] ,Greater) :­
Cr(Y,X),partition[Cr](X,Z,Smaller,Greater). 

partition[Cr] (X, [YIZ] ,Smaller, [YIGreater]) :­
Cr(X,Y),partition[Cr](X,Z,Smaller,Greater). 

partition[Cr] (X,[XIZ] ,Smaller,Greater) 
partition[Cr](X,Z,Smaller,Greater) . 

partition[Cr] (X, [], [], []). 
pairlists([XIL],[YIR],[[X,Y] IP]) pairlists(L,R,P) . 
pairlists ( [] , [] , [] ) . 
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24, 
3, 
22, 
2, 
14, 
13, 
19, 
4, 
6, 
7, 
8, 
10, 
11, 
12, 
23, 
5, 
18, 
20, 
25, 
21, 
9, 
15, 
16J 

'l. Internal run time: 2920 ticks (= 2.920000 sec) 
rfe-p> 
rfe-p> inter 
rfi-p> pauseO 
true 
'l. Internal run time : 0 ticks (= 0 .000000 sec) 
rfi-p> emul 
Collecting modules for the emulator: 
sortbase workspace 
rfe-p> 
rfe-p> 'l. now we force GWAM to need some time: 
rfe-p> 
rfe-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s, 
a , z,x , c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,h,g,t,y,h, 
n,rn,j,u,i,k,l,o,p.q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x, 
z,a,s,d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j, 
k,l,w,e,r,t,y,u,i,o,pJ ,10) 
true 
'l. Internal run time : 14390 ticks (= 14.390000 sec) 
rfe-p> 
rfe-p> 'l. and again : 
rfe-p> 
rfe-p> ori 
true 
'l. Internal run time : 16000 ticks (= 16.000000 sec) 
rfe-p> 
rfe-p> inter 
rfi-p> pauseO 
true 
'l. Internal run time : 0 ticks (= 0.000000 sec) 
rfi-p> emul 
Collecting modules for the emulator: 
sort base workspace 
rfe-p> 
rfe-p> 'l. now try RAWAM : 
rfe-p> 
rfe-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> 'l. test, how much time the compilation of 
rfc-p> 'l. the query takes : 
rfc-p> 
rfc-p> something_which_does_not_exist([q,w,e,r,t,y,u,i, 
o,p,l,k,j,h,g,f,d,s,a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,X, 
c,v,b,g,t,y,h,n,m,j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,nJ 
b,v,c,x,z,a,s,d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h, 

j,k,l,w,e,r,t,y,u,i,o,pJ) 
unknown 

43 

'l. Internal run time: 124 ticks (= 0 . 124000 sec) 
rfc-p> 
rfc-p> 'l. subtract this time from the times below: 
rfc-p> 
rfc-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s, 
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n ,m, 
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d, 
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t, 
y,u,i,o,pJ) 
[17, 
23, 
5, 

9, 
15, 
16J 

'l. some lines omitted here 

'l. Internal run time: 234 ticks (= 0.234000 sec) 
rfc-p> 
rfc-p> loop([q,w,e,r , t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z, 
x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,j,u, 
i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g, 
h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,y,u, 
i,0,pJ,10) 
true 
'l. Internal run time: 584 ticks (= 0.584000 sec) 
rfc-p> 
rfc-p> ori 
true 
'l. Internal run time: 425 ticks (= 0.425000 sec) 
rfc-p> ori 
true 
'l. Internal run time: 508 ticks (= 0 . 508000 sec) 
rfc-p> 
rfc-p> 'l. Seen it? 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
'l. Internal run time: 0 ticks (= 0.000000 sec) 
rfi-p> 
rfi-p> destroy 
rfi-p> 
rfi-p> 'l. This is a relational version of serialise: 
rfi-p> 
rfi-p> consult relser 
Reading file " .frelser.rfp" 
rfi-p> 
rfi-p> listing 
apprel( [J ,L, L) . 
apprel( [H I RJ ,L, [H I RIJ) apprel(R, L, RI) . 
qsort [CrJ ([J , [J) . 
qsort[CrJ([XIYJ ,R) :-

partition[CrJ(X,Y,Sm,Gr), 
qsort[CrJ(Sm,Sm-sorted), 
qsort[CrJ(Gr,Gr-sorted), 
apprel(Sm-sorted,[XIGr-sortedJ,R) . 

partition[CrJ (X, [YIZJ, [YISmallerJ ,Greater) :­
Cr(Y,X) ,partition[CrJ (X,Z,Smaller,Greater). 

partition[CrJ (X, [YIZJ ,Smaller, [YIGreaterJ) :­
Cr(X,Y) ,partition[CrJ (X,Z,Smaller,Greater). 

partition[CrJ (X, [XIZJ ,Smaller ,Greater) :-
partition[CrJ(X,Z,Smaller,Greater) . 

partition[CrJ (X, [J ,[J ,[J). 
pairlists([XILJ,[YIRJ,[[X,YJ IPJ) pairlists(L,R,P) . 
pairlists ([J , [] , [J) . 
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numbered([[X,NJ IRJ ,N) :- numbered(R,l+(N)). 
numbered ( [] ,N). 
before ([Xl, Y1J , [X2, Y2J) : - string< (Xl, X2) . 
serialise(L,R) :- pairlists(L,R,P),qsort[beforeJ(P,N), 

loop(X,l) 
loop(X,N) 
rfi-p> 
rfi-p> emul 

numbered(N,l). 
serialise(X,_) . 
serialise(X,_) k loop(X,l-(N)). 

Collecting modules for the emulator: 
sortbase workspace 
rfe-p> compile 
rfe-p> 
rfe-p> /. it does the same: 
rfe-p> 
rfe-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s, 
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m, 
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d, 
f,g,h,j,k,l,q.a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t, 
y,u,i,o,pJ ,R) 
true 
R=[17, 

23, 

9, 
15, 
16J 

/. some lines omitted 

/. Internal run time: 710 ticks (= 0 . 710000 sec) 
rfe-p> 
rfe-p> inter 
rf i -p> pause 0 
true 
/. Internal run time: 0 ticks (= 0.000000 sec) 
rfi-p> emul 
Collecting modules for the emulator: 
sortbase workspace 
rfe-p> 
rfe-p> /. do some work . . . 
rfe-p> 
rfe-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z, 
x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,j,u, 
i,k,l,o,p.q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g, 
h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,y,u, 
i,o,pJ ,10) 
true 
/. Internal run time: 5370 ticks (= 5.370000 sec) 
rfe-p> 
rfe-p> ori 
true 
/. Internal run time: 5410 ticks (= 5.410000 sec) 
rfe-p> 
rfe-p> inter 
rfi-p> pauseO 
true 
/. Internal run time: 10 ticks (= 0.010000 sec) 
rfi-p> 
rfi-p> /. now we switch to the RAWAM: 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> 
rfc-p> compile 
rfc-p> 
rfc-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s, 
a,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m, 
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j,u,i,k,l,o,p.q,w,e,r,t,y,u,i,o,p,rn,n,b,v,c,x,z,a 
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e 
y,u,i,o,pJ ,R) 
true 
R= [17, 

23, 

9, 
15, 
16J 

/. some lines omitted 

/. Internal run time: 257 ticks (= 0.257000 sec) 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
/. Internal run time : 0 ticks (= 0 .000000 sec) 
rfi-p> emuc 
Collecting modules for the emulator : 
sortbase workspace 
rfc-p> 
rfc-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a 
z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n, : 
j,u,i,k,l,o,p,q,w , e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a, 
d,f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w, 
r,t,y,u,i,o,pJ ,10) 
true 
/. Internal run time: 317 ticks (= 0.317000 sec) 
rfc-p> 
rfc-p> ori 
true 
/. Internal run time : 261 ticks (= 0 . 261000 sec) 
rfc-p> ori 
true 
/. Internal run time: 265 ticks (= 0 .265000 sec) 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
/. Internal run time : 0 ticks (= 0 . 000000 sec) 
rfi-p> 
rfi-p> destroy 
rfi-p> 
rfi-p> consult mixser 
Reading file ". /mixser . rfp" 
rfi-p> 
rfi-p> emul 
Collecting modules for the emulator : 
sortbase workspace 
rfe-p> compile 
rfe-p> 
rfe-p> serialise([q,w,e,r,t,y,u,i,o,p,l ,k,j,h,g,f,d 
a,z,x,c,v,b,n,m , a,s,d,f,r,e,v,q,z,x,c,v,b,g,t,y,h,n 
j,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s 
f,g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e , r 
y,u,i,o,pJ) 
[17 , 
23, 

9, 
15, 
16J 

/. Internal run time: 640 ticks (= 0.640000 sec) 
rfe-p> 
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,fe-p> inter 
,fi-p> pause() 
;rue 
r. Internal run time: 0 ticks (= 0.000000 sec) 
,f i -p> ernul 
;ollecting modules for the emulator: 
;ortbase workspace 
,fe-p> 
,fe-p> 'l. do some work ... 
,fe-p> 
:fe-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z, 
~JcJvJbJnJmJaJsJdJfJrJe,wJq,zJxJcJvJb,g,tJYJh,n,m,j,u, 

l,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g. 
l,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,y,u, 
L,o,pJ ,10) 
:rue 
~ Internal run time: 4900 ticks (= 4.900000 sec) 
:fe-p> 
:fe-p> ori 
:rue 
~ Internal run time: 4690 ticks (= 4.690000 sec) 
:fe-p> 
:fe-p> inter 
:fi-p> pause() 
:rue 
: Internal run time: 0 ticks (= 0 .000000 sec) 
·fi-p> 
·fi-p> 'l. now we switch to the RAWAM: 
·fi-p> 
·fi-p> emuc 
:ollecting modules for the emulator: 
:ortbase workspace 
'fc-p> 
'fc-p> compile 
'fc-p> 
'fc-p> serialise([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s, 
L,z,x,c,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m, 
,u,i,k,l,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d, 
.g,h,j,k,l,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t, 
,u, i, 0, pJ ) 
17, 
23, 

9, 
15, 
16J 
Internal run time: 212 ticks (= 0.212000 sec) 

fc-p> 
fc-p> inter 
fi-p> pauseO 
rue 
Internal run time: 0 ticks (= 0.000000 sec) 

fi-p> emuc 
'ollecting modules for the emulator : 
ortbase workspace 
fc-p> 
fc-p> loop([q,w,e,r,t,y,u,i,o,p,l,k,j,h,g,f,d,s,a,z,x, 
,v,b,n,m,a,s,d,f,r,e,w,q,z,x,c,v,b,g,t,y,h,n,m,j ,u,i,k , 
,o,p,q,w,e,r,t,y,u,i,o,p,m,n,b,v,c,x,z,a,s,d,f,g,h,j,k. 
,q,a,z,x,c,v,b,n,m,s,d,f,g,h,j,k,l,w,e,r,t,y,u,i,o,pJ ,10) 
rue 
Internal run time : 252 ticks (= 0.252000 sec) 

fc-p> 
fc-p> ori 
rue 
Internal run time: 246 ticks (= 0.246000 sec) 

fc-p> ori 
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true 
'l. Internal run time: 246 ticks (= 0.246000 sec) 
rfc-p> 
rfc-p> inter 
rfi-p> pause() 
true 
'l. Internal run time: 10 ticks (= 0 . 010000 sec) 
rfi-p> 
rfi-p> destroy 
rfi-p> timermode off 
'l. timermode is off now. 
rfi-p> 
rfi-p> 'l.'l.'l. Now we demonstrate a genetic algorithm 
rfi-p> 'l.'l.'l. optimizing the TSP: 
rfi-p> 
rfi-p> consult ts 
Reading file "./ts.rfp" 
rfi-p> 
rfi-p> 'l. We have a set of 16 cities, arranged 
rfi-p> 'l. in a 4x4-array: 
rfi-p> 
rfi-p> listing plan2 
plan2() :& 

rfi-p> 
rfi-p> 
true 
rfi-p> 

[0.0, 
0.0, 
1.0, 
0.0, 
2.0, 
0.0, 
3.0, 
0.0, 
0.0, 
1.0, 
1.0, 
1.0, 
2.0, 
1.0, 
3.0, 
1.0, 
0.0, 
2.0, 
1.0, 
2.0, 
2.0, 
2.0, 
3.0, 
2.0, 
0.0, 
3.0, 
1.0, 
3.0, 
2.0, 
3.0, 
3.0, 
3.0J . 

pause() 

rfi-p> 'l. we access the algorithm via a testing clause 
rfi-p> 
rfi-p> listing test 
test(Plan,Pop_size,Mut_rate,Cross_rate,Better_rate) 

Map .= generate_distmap(Plan) , 
Len .= l(length(Plan),2) & 
ts(init_pop(Pop_size,Len,Map,init_list(l,Len)) , 

rfi-p> 

Map, 
Mut_rate, 
Cross_rate, 
Better_rate) . 
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rfi-p> pauseO 
true 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> I. we use a population of 100 individuals, 
rfc-p> I. a mutation probability of 0.4, 
rfc-p> I. crossover probability of 0.1, 
rfc-p> I. and haploid genomes (1.0 = haploid, 
rfc-p> I. 0.0 = diploid) 
rfc-p> 
rfc-p> test(plan2(), 100, 0.4, 0.1, 1.0) 
[24.064495, [16,14,13,15,3,7,10,9,5,6,ll,2,l,4,8,12J ,32.93959J 
rfc-p> 
rfc-p> I. we see the first generation 
rfc-p> I. output is the length of the shortest path within 
rfc-p> I. the population, the path itself wrt . to order given 
rfc-p> I. in the map, and the average path length within the 
rfc-p> I. population 
rfc-p> I. we will do some more optimization steps: 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> 
rfc-p> test(plan2(), 100, 0.4, 0.1, 1.0) 
[25.877054,[3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,32.610477J 
rfc-p> more 
[25.877054, [3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,30.982065J 
rfc-p> more 
[25.877054,[3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,29.482859J 
rfc-p> more 
[25.877054,[3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,28 . 524343J 
rfc-p> more 
[25.877054,[3,16,12,7,6,10,9,15,ll,5,13,14,8,4,2,lJ ,27.671125J 
rfc-p> more 
[25.453745, [12,16,5,l,15,3,7,ll,14,13,10,9,6,2,4,8J ,26.751875J 
rfc-p> more 
[25.320328, [10,ll,15,6,5,7,2,l,9,14,12,16,8,4,3,13J ,26.09766J 
rfc-p> more 
[24.640985, [9,3,16,12,15,ll,5,13,14,10,6,7,8,4,2,lJ ,25.96922J 
rfc-p> more 
[22.714775,[10,ll,12,14,9,l,2,7,3,4,8,16,15,6,5,13J ,25.59918J 
rfc-p> more 
[22.714775,[10,ll,12,14,9,l,2,7,3,4,8,16,15,6,5,13J ,25 . 345667J 
rfc-p> more 
[22.472136,[3,7,6,10,9,15,ll,5,13,14,16,12,8,4,2,lJ ,25.245508J 
rfc-p> more 
[21 . 88635, [3,7,6,10,9,15,14,13,5,ll,16,12,8,4,2,lJ,24.59224J 
rfc-p> more 
[21.88635, [3,7,6,10,9,15,14,13,5,ll,16,12,8,4,2,lJ,24.03942J 
rfc-p> more 
[21 . 88635, [3,7,6,10,9,15,14,13,5,ll,16,12,8,4,2,lJ,23.624447J 
rfc-p> more 
[21 . 88635 , [3,7,6,10,9,15,14,13,5,ll,16,12,8,4,2,lJ,23.086266J 
rfc-p> more 
[21.162277,[3,7,6,10,ll,15,14,13,5,9,16,12,8,4,2,lJ ,22.551796J 
rfc-p> more 
[20.650282,[2,7,6,10,9,ll,5,13,14,15,16,12,8,4,3,lJ ,22.344046J 
rfc-p> more 
[20.650282, [2,7,6,10,9,ll,5,13,14,15,16,12,8,4,3,lJ ,22 .091103J 
rfc-p> more 
[20.650282, [2,7,6,10,9,ll,5,13,14,15,16,12,8,4,3,lJ ,21.942196J 
rfc-p> 
rfc-p> I. the optimum value is 16 length units 

rfc-p> 
rfc-p> 
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rfc-p> 1.1.1. now we test extensively the types : 
rfc-p> 
rfc-p> exec rawamtypes.bat 

relfun 
rfc-p> I. test types in the RAWAM 
rfc-p> I. this is a modification of typin.bat 
rfc-p> 
rfc-p> inter 
rfi-p> sp 
rfi-p> destroy 
rfi-p> destroy-sortbase 
rfi-p> 
rfi-p> az drinks(mary,pina-colada). 
rfi-p> az drinks (mary ,vodka-lemon) . 
rfi-p> az drinks (mary, orange-flip) . 
rfi-p> 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(mary,What) 
true 
What=pina-colada 
rfc-p> more 
true 
What=vodka-lemon 
rfc-p> more 
true 
What=orange-flip 
rfc-p> more 
unknown 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> destroy 
rfi-p> 
rfi-p> az drinks(mary,dom[pina-colada, 

vodka-lemon,orange-flipJ) . 
rfi-p> 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(mary,What) 
true 
What=dom[pina-colada,vodka-lemon,orange-flipJ 
rfc-p> 
rfc-p> drinks (mary, orange-flip) 
true 
rfc-p> 
rfc-p> drinks (mary ,whisky-sour) 
unknown 
rfc-p> 
rfc-p> drinks(mary,dom[pina-colada,vodka-lemon,banana-flip 
true 
rfc-p> 
rfc-p> drinks(mary,What), 

dom[pina-colada,vodka-lemon,banana-flipJ What 
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true 
What=dom[pina-colada,vodka-lemon) 
rfc-p> 
rfc-p> drinks(mary,What), 

dom[pina-colada,banana-flip) 
true 
What=$pina-colada 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 

What 

rfi-p> az drinks(john,exc[whisky-sour,vodka-lemon)). 
rfi-p> 
rfi -p> pause 0 
true 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(john,What) 
true 
What=exc [whisky-sour ,vodka-lemon) 
rfc-p> 
rfc-p> drinks(john,orange-flip) 
true 
rfc-p> 
rfc-p> drinks(john,whisky-sour) 
unknown 
rfc-p> 
rfc-p> drinks(john,dom[pina-colada,orange-flip)) 
true 
rfc-p> drinks(john,What), dom[pina-colada,orange-flip) 
true 
What=dom[pina-colada,orange-flip) 
rfc-p> 
rfc-p> drinks(john,dom[pina-colada,whisky-sour)) 
true 
rfc-p> drinks(john,What), dom[pina-colada,whisky-sour) 
true 
What=$pina-colada 
rfc-p> 
rfc-p> drinks(john,dom[whisky-sour,vodka-lemon)) 
unknown 
rfc-p> drinks(john,What), dom[whisky-sour,vodka-lemon) 
unknown 
rfc-p> 
rfc-p> drinks(mary,What), drinks(john,What) 
true 
What=dom[pina-colada, orange-flip) 
rfc-p> 
rfc-p> inter 
rfi-p> destroy 
rfi-p> 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> mcd sortbase 
Module : sortbase 
Context: 
rfi-p> 
rfi-p> az subsumes(cocktail,lightmix). 
rfi-p> az subsumes (cocktail ,heavymix) . 
rfi-p> 
rfi-p> az lightmix(pina-colada). 
rfi-p> az lightmix(vodka-lemon). 
rfi-p> az lightmix(orange-flip) . 
rfi-p> 
rfi-p> az heavymix(whisky-sour). 

What 

What 

What 
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rfi-p> az heavymix("bloody-mary, strong"). 
rfi-p> 
rfi-p> mcd 
Module: workspace 
Context: 
rfi-p> compile-sortbase 
rfi-p> 
rfi-p> pauseO 
true 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> $lightmix $cocktail 
$lightmix 
rfc-p> $heavymix $cocktail 
$heavymix 
rfc-p> $lightmix $heavymix 
unknown 
rfc-p> 
rfc-p> inter 
rfi-p> 
rfi-p> az drinks(mary,$lightmix) . 
rfi-p> 
rf i -p> pause 0 
true 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(mary,What) 
true 
What=$lightmix 
rfc-p> 
rfc-p> drinks (mary, orange-flip) 
true 
rfc-p> 
rfc-p> drinks(mary,whisky-sour) 
unknown 
rfc-p> 
rfc-p> drinks (mary , dom[pina-colada,vodka-lemon ,banana-flip 
true 
rfc-p> 
rfc-p> drinks(mary,What), 

dom[pina-colada,vodka-lemon,banana-flip) What 
true 
What=dom[pina-colada,vodka-lemon) 
rfc-p> 
rfc-p> inter 
rfi-p> 
rfi-p> az drinks(fred,vodka-lemon) . 
rfi-p> 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(fred,$lightmix) 
true 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> az drinks(sue,"Barbara's special green-mix"). 
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rfi-p> 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(sue,$atom) 
true 
rfc-p> drinks(sue,$numberp) 
unknown 
rfc-p> drinks(sue,$stringp) 
true 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> az drinks(jack,dom["Juan's drink" ,honey-liqueur, 

"Boston ward 8"]). 
rfi-p> 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator : 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(jack,What), $stringp .= What 
true 
What=dom [" Juan's drink", "Boston ward 8"] 
rfc-p> 
rfc-p> $stringp .= $heavymix 
"bloody-mary, strong" 
rfc-p> $symbolp .= $heavymix 
dom [whisky-sour, "bloody-mary, strong"] 
rfc-p> $numberp $heavymix 
unknown 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> az orders(laura,whisky-sour). 
rfi-p> az drinks(peter,bnd[M,dom[whisky-sour, 

rfi-p> 
rfi-p> pauseO 
true 
rfi-p> emuc 

"bloody-mary, strong"]]) :- orders(S,M). 

Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(peter,What) 
true 
What=whisky-sour 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> rx drinks(peter,bnd[M,dom[whisky-sour, 

"bloody-mary, strong"]]) :- orders(S,M). 
rfi-p> 
rfi-p> az drinks(steve,bnd[M,exc[whisky-sour,vodka-lemon]]) 

orders(S,M). 
rfi-p> 
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rfi-p> emuc 
Collecting modules for the emulator : 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(steve,What) 
unknown 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> az drinks(peter,bnd[M , $heavymix]) 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(peter,What) 
true 
What=whisky-sour 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> az drinks(adrian,bnd[M,$atom]) 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator : 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(adrian,What) 
true 
What=whisky-sour 
rfc-p> 
rfc-p> inter 
rfi-p> 
rfi-p> mcd sortbase 
Module: sortbase 
Context: 
rfi-p> 
rfi-p> az person(steve) . 
rfi-p> az person(john) . 
rfi-p> az person(mary). 
rfi-p> 
rfi-p> mcd 
Module: workspace 
Context: 
rfi-p> compile-sortbase 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator : 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> X [_], [mary] X 
true 
X=[mary] 
rfc-p> X 
unknown 
rfc-p> 
rfc-p> X 
true 
X=[mary] 
rfc-p> X 
unknown 
rfc-p> 
rfc-p> X 

X, [john] 

[dom[john,mary]] , [mary] 

[dom[john,mary]] , [mary] 

[exc[fred]], [mary] X 

orders(S,M). 

orders(S,M). 

X 

X 

X, [john] X 



C A DEMO SCRIPT 

true 
X= [mary] 
rfc-p> X [exc [fred]] , [mary] X, [john] 
unknown 
rfc-p> 
rfc-p> X [$person] , 
true 
X= [mary] 
rfc-p> X [$person], 
unknown 
rfc-p> 
rfc-p> X [$symbolp] , 
true 
X= [mary] 
rfc-p> X [$symbolp] , 
unknown 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 

[mary] 

[mary] 

[mary] 

[mary] 

rfi-p> az drinks(X,soft-drink) . 
rfi-p> 
rfi-p> emuc 

X 

X, 

X 

X, 

Collecting modules for the emulator : 
sortbase workspace 
rfc-p> compile 
rfc-p> 

[john] 

[j ohn] 

X 

X 

X 

rfc-p> drinks(steve,What) 
true 
What=soft-drink 
rfc-p> drinks(tweety,What) 
true 
What=soft-drink 
rfc-p> 
rfc-p> inter 
rfi-p> pauseO 
true 
rfi-p> 
rfi-p> style lisp 
rfi-l> 

49 

rfi-l> aO (sg (drinks $person _something)) 
rfi-l> 
rfi-l> style prolog 
rfi-p> 
rfi-p> emuc 
Collecting modules for the emulator: 
sortbase workspace 
rfc-p> compile 
rfc-p> 
rfc-p> drinks(steve,What) 
true 
What=soft-drink 
rfc-p> drinks(tweety,What) 
unknown 
rfc-p> 
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