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Knowledge-Based Disambiguation for Machine Translation

Abstract

The resolution of ambiguities is one of the central problems for Ma-
chine Translation. In this paper we propose a knowledge-based approach to
disambiguation which uses Description Logics (DL) as representation for-
malism. We present the process of anaphora resolution implemented in the
Machine Translation system FAST and show how the DL system BACK is used
to support disambiguation.

The disambiguation strategy uses factors representing syntactic, seman-
tic, and conceptual constraints with different weights to choose the most
adequate antecedent candidate. We show how these factors can be declar-
atively represented as defaults in BACK. Disambiguation is then achieved
by determining the interpretation that yields a qualitatively minimal num-
ber of exceptions to the defaults, and can thus be formalized as exception
minimization.

1 Introduction

Ambiguity is a notorious problem for Natural Language Processing (NLP). In
general, an NL expression is called ambiguous if it has more than one formal
representation or interpretation. Ambiguity is thus a relative notion, which de-
pends on the representation formalism used to represent the interpretations of NL

expressions. In the context of Machine Translation (MT) ambiguities in the source
language (SL) have to be resolved if the interpretations of an expression yield
varying expressions in the target language (TL).

Within the MT project KIT-FAST, which started in 1985, a particular problem
of disambiguation, namely the interpretation of anaphoric relations, was inves-
tigated in detail. The FAST system includes three levels of representation (see
Figure 1). The first level represents surface syntactic structures based on GPSG
[Gazdar et al. 85]. The second level is called Functor-Argument Structure (FAS).
It can best be described as an abstract syntax with additional semantic features and
is used for the transfer process. The third level uses the knowledge representation
system KIT-BACK and contains information on discourse referents and conceptual
knowledge.

The disambiguation strategy chosen in the FAST project is to use syntactic,
semantic, and conceptual information to determine the antecedent from a set of
antecedent candidates. To do so, factors with different weights are used to encode
the different constraints relevant for disambiguation. We have shown elsewhere
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Figure 1: The architecture of the MT system KIT-FAST.

that this strategy is also appropriate for handling lexical and structural ambiguities
[Schmitz, Quantz 93]. There are two main characteristics of our approach to
disambiguation:

1. In general, the information needed for disambiguation is of rather heteroge-
neous nature and comprises, for example, syntactic, semantic, conceptual,
and encyclopedic information.

2. In most cases, disambiguation has to rely on partial, i.e. uncertain informa-
tion. Therefore the factors used to determine the preferred interpretation
cannot be modeled as strict constraints but are rather preference rules in the
sense of [Jackendoff 83] or defaults with different degree of relevance.

In Section 3 we show in detail, how anaphora resolution is obtained in the FAST

system by evaluating a set of factors modeling different kinds of information.
Since one of these factors takes into account information on discourse referents
and conceptual knowledge represented in the BACK system, we use the next section
to give a brief introduction into knowledge representation with BACK.
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At the end of Section 3 we sketch how this knowledge-based approach to
disambiguation can be extended by modeling also the syntactic and semantic
factors in BACK. In doing so we take into account the above characteristics in a
declarative and formally well-founded way and obtain interpretation by exception
minimization (see [Quantz 93] for details).

2 Knowledge Representation with BACK

The knowldege representation system KIT-BACK has been developed in three ESPRIT

projects, starting in 1985. It belongs to a family of systems which use a Description
Logic (DL) as representation language.

DL can be seen as a formal elaboration of the ideas underlying Semantic
Networks, e.g., [Quillian 68], and Frames, e.g., [Minsky 75]. Both representation
languages share the idea of a hierarchically organized knowledge structure in which
information is inherited from general concepts or frames to more specific ones.
They also provide means for an internal structuring of concepts or frames which
leads to horizontal connections: frames contain slots whose fillers are known to be
instances of other frames; concepts contain properties that are modeled by links
leading to other concepts.

In the second half of the 1970’s representation languages from the area of
semantic networks, frames, or scripts were seriously attacked in a number of
papers for their apparent lack of formal rigor, for example in [Woods 75] and
[Hayes 77]. The key issue was the relationship between knowledge representation
and formal logic. Brachman endorsed the logic-oriented view on knowledge
representation in his early papers on semantic networks. In [Brachman 79] he
examined in detail, what the constructs used in semantic networks were supposed
to represent. As a result he presented a collection of so-called epistemological
primitives, which were supposed to be application-independent and became the
basic language constructs of KL-ONE.

An overview over the basic features of the KL-ONE formalism circulated in the
beginning of the 1980’s and was finally published in [Brachman, Schmolze 85].
In the following years, several DL systems, such as BACK [Hoppe et al. 93], CLAS-
SIC [Brachman et al. 91], or LOOM [MacGregor 91] were developed incorporating
different dialects, which are nevertheless similar with respect to the underlying
representation philosophy. In addition to these practice-oriented implementa-
tions, thorough theoretical investigations yielded numerous results concerning
decidability, tractability, and proof theory (cf., for example, [Donini et al. 91]
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and [Royer, Quantz 92]). Unfortunately, there is some terminological confusion
concerning the appropriate name for this paradigm of knowledge representation—
besides description logics the names KL-ONE alike systems, hybrid representation
systems, term subsumption systems, concept logics, and terminological logics can
be found in the literature.

The basic difference between DL on the one hand and Semantic Networks
or Frames on the other, concerns the attitude towards theoretical foundations
and towards the question of what is constitutive for a representation formalism.
According to DL philosophy, a representation formalism should have a formal
syntax, a formal semantics, a proof theory, and efficient inference algorithms.

In DL one typically distinguishes between terms and objects as basic language
entities from which two kinds of formulae can be formed: subsumptions and
descriptions. There are two special kinds of subsumptions which are used in a
DL modeling, namely definitions and rules (a sample modeling is given below).
A definition has the form t

n
:� t and expresses that the name t

n
is used as an

abbreviation for the term t. There is also the possibility of introducing primitive
terms by giving only necessary but not sufficient conditions (t

n
:� t). All DLs

provide two types of terms, namely concepts (unary predicates) and roles (binary
predicates), but they differ with respect to the term-forming operators they contain.
Common term-forming operators are conjunction, disjunction, or negation, as well
as composition and inversion for roles [Quantz 90], and quantified restrictions for
concepts [Quantz 92b]. In a description, an object is described as being an instance
of a concept (o :: c), or as being related to another object by a role (o1 :: r:o2).
Rules have the form c1 �� c2 and stipulate that each instance of the concept c1 is
also an instance of the concept c2. Some DLs also support the modeling of defaults
c1� c2.

The following list contains the syntax of the DL constructs used in this paper.
Note that we use the concrete syntax of BACK V5 [Hoppe et al. 93] rather than the
abstract syntax used in theoretical papers. Note also that tn stands for term-names,
n for natural numbers, and � for formulae.

t � c� r� tn
c � anything� nothing� c1 & c2 � not(c) � r:o � all(r,c) � r1 = r2

atleast(n,r) � atmost(n,r) � the(r,c) � some(r,c) � exactly(n,r)
r � domain(c) � range(c) � r1 & r2 � inv(r) � r1.r2

� � t
n

:� t � t1 :� t2 � c1 �� c2 � o :: c � c1� c2

For this language a modeltheoretic semantics can be given where a model M of
a set of DL formulae Γ is a pair hD�Ii. I maps concepts into subsets of D, roles
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into subsets of D �D, and object-names injectively into D, in accordance with
the following equations (we use r�d� to denote fe : hd� ei � rg):

��anything��I � D

��nothing��I � �

��t1&t2��
I � ��t1��

I � ��t2��
I

��not�c���I � D n ��c��I

��r : o��I � fd � D : ��o��I � ��r��I�d�g

��all�r� c���I � fd � D : ��r��I�d� � ��c��Ig

��r1 � r2��
I � fd � D : ��r1��

I�d� � ��r2��
I�d�g

��atleast�n� r���I � fd � D : j��r��I�d�j � ng

��atmost�n� r���I � fd � D : j��r��I�d�j � ng

��domain�c���I � ��c��I �D

��range�c���I � D � ��c��I

��inv�r���I � fhd� ei � D �D : he� di � ��r��Ig

��r1�r2��
I � ��r1��

I 	 ��r2��
I

Note that some DLs support special roles called features: roles are interpreted as
general relations, whereas features are functional roles, i.e. each object can have
at most one filler for a feature.

The concept-forming operators exactly, the and some can then be defined as
macros:

exactly�n� r� def
� atleast(n,r)&atmost(n,r)

the�r� c� def
� exactly(1,r)&all(r,c)

some�r� c� def
� atleast�1� r & range(c)�

Satisfaction of formulae is defined as follows (a semantics for defaults is given in
[Quantz, Royer 92]):

M j� t1 :� t2 iff ��t1��
I � ��t2��

I

M j� t
n

:� t iff ��t
n
��I � ��t��I

M j� c1 �� c2 iff ��c1��
I � ��c2��

I

M j� o :: c iff ��o��I � ��c��I

A structure M is a model of a formula � iff M j� �; it is a model of a set of
formulae Γ iff it is a model of every formula in Γ. A formula � is entailed by a set
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toxiplant toxipharm biograin

chemical
company

chemical
 product

biological
  product     all

 produces

company product
    1..in 

produces

     1..1 

produces

chemoplant

    1..in produces

conc_1high risk 
company

Figure 2: The network representation of the sample domain model. ‘conc 1’
abbreviates
the concept some(produces,chemical product). The plain arrows indicate sub-
sumption, the dashed arrow stands for a rule, the jagged one denotes disjointness.
Note that some of the arrows are only implicitly given by the modeling.

of formulae Γ (written Γ j� �) iff every structure which is a model of Γ is also a
model of �.

To see the connection between this theoretical characterization of DL and prac-
tical applications of DL systems, let us briefly consider a sample domain modeling.
A domain modeling contains information about a particular domain and comprises
a terminology, a set of rules, and a set of descriptions. In the terminology the tech-
nical terms used in the domain are defined, the rules model additional constraints
holding in the domain, and the descriptions contain information about individual
objects. In the highly simplified domain modeling below, whose network repre-
sentation is shown in Figure 2 one role and six concepts are defined, five of which
are primitive (only necessary, but no sufficient conditions are given). Furthermore,
the modeling contains one rule and four object descriptions.
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product :� anything
chemical product :� product
biological product :� product & not(chemical product)
produces :� range(anything)
company :� some(produces,product)
high risk company :� company
chemical company :� company & all(produces,chemical product)
some(produces,chemical product)

�� high risk company
toxipharm :: chemical product
biograin :: biological product
chemoplant :: chemical company
toxiplant :: atmost(1,produces) & produces:toxipharm

In DL, such a modeling is regarded as a set of formulae Γ. Given the formal
semantics of a DL, such a set of formulae will entail other formulae, i.e., there is an
entailment relation Γ j� �. Now the service provided by DL systems is basically
to answer queries as to whether some formula � is entailed by a modeling Γ. The
following types of queries can be answered by a DL system like BACK:


 Γ j� t1 :� t2

Is a term t1 more specific than a term t2, i.e., is t1 subsumed by t2? In the
sample modeling, the concept ‘chemical company’ is subsumed by ‘high
risk company’, i.e., every chemical company is a high risk company.


 Γ j� t1 & t2 :� nothing
Are two terms t1 and t2 incompatible or disjoint? In the sample modeling,
the concepts ‘chemical product’ and ‘biological product’ are disjoint, i.e.,
no object can be both a chemical and a biological product.


 Γ j� o :: c
Is an object o an instance of concept c (object classification)? In the sample
modeling, ‘toxiplant’ is recognized as a ‘chemical company’.


 Γ j� o1 :: r:o2

Are two objects o1,o2 related by a role r, i.e., is o2 a role-filler for r at o1? In
the sample modeling, ‘toxipharm’ is a role-filler for the role ‘produces’ at
‘toxiplant’.
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 Γ j� X :: c
Which objects are instances of a concept c (retrieval)? In the sample mod-
eling, ‘chemoplant’ and ‘toxiplant’ are retrieved as instances of the concept
‘high risk company’.


 Γ � fo :: cg j� �
Is a description o :: c inconsistent with the modeling (consistency check)?
With respect to the sample modeling, ‘biograin’ cannot be produced by
‘chemoplant’, i.e. the description ‘chemoplant :: produces:biograin’ is re-
jected as inconsistent by the system.

In the following section we show how a domain modeling containing information
about semantic roles and selectional restrictions is used in the FAST project. We
also indicate how BACK can be used to model syntactic information. In principle, it
is possible to model arbitrary information such as syntactic, semantic, conceptual,
or encyclopedic information with DL.

3 Disambiguation in MT

In this section we present some of the results obtained in the MT project FAST. In
its last phase (1990-1992) the project took initial steps towards dealing with inter-
sentential phenomena by addressing the problem of how to interprete anaphoric
relations in texts. The scope of investigation was confined to anaphoric pronouns
– defined as relating to an element in the text – in contrast to deictic pronouns
whose referents are determined by the situational context. It was further confined
to personal and possessive pronouns referring to objects, neglecting pronouns re-
ferring to events. An anaphor can relate to its antecedent in different ways like
part-whole, identity of sense, or identity of reference [Quantz 92a]. In the work
described here only referential identity was taken into account, i.e. only identity
anaphora were treated.

The interpretation of anaphoric personal and possessive pronouns is obviously
relevant for machine translation.

(1) a. Fortgeschrittene Systeme erkennen die Information in der Form,
in der sie1 generiert wird. Sie2 integrieren sie3 in das gespeicherte
Wissen.

b. Advanced systems perceive information in the form in which it is
generated. They integrate it into the stored knowledge.

8
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The German personal pronoun ‘sie’ is ambiguous between feminine singular and
feminine, masculine, or neuter plural. The translation of the pronoun depends
on the translation of the antecedent with respect to number and gender. The
antecedent of ‘sie’1 in example (1) is ‘Information’, the adequate translation is
‘it’, since the English ‘information’ is neuter singular. The antecedent of ‘sie2’
is ‘Systeme’, in English ‘systems’, which is plural, thus the translation of ‘sie2’
should be ‘they’. ‘sie3’ is coreferential with ‘sie1’. (A detailed description of the
disambiguation process is given below.)

The disambiguation of ‘sie3’ demonstrates that both structural information and
information concerning the contents of the utterance play a role in solving the am-
biguity. The antecedent candidates for ‘sie3’ are ‘Systeme’, ‘Information’, ‘Form’,
‘sie1’, the relative pronoun ‘der’, ‘sie2’ and ‘Wissen’. On account of the binding
principle ‘sie2’ is excluded as the antecedent of ‘sie3’. For a detailed description
of our formulation of the binding principle cf. [Preuß et al. 92]. In this case it
suffices to know that our version of the binding principle works on information
expressed in terms of the Functor-Argument-Structure (FAS, see below). It states
that all neighboring arguments in an FAS tree are excluded as antecedents. Since
‘sie2’ and ‘sie3’ are neighboring arguments, ‘sie2’ is excluded. This is clearly
structural information. Due to referential information we can eliminate ‘Systeme’
from the list of candidates; since ‘sie2’ and ‘Systeme’ are coreferential, ‘Systeme’
is also out of the question as an antecedent for ‘sie3’.

We therefore define both anaphor and antecedent as complex items consisting
of the discourse referent they relate to and the structural position they occur in.

It seems crucial to us that on the one hand structural information and on
the other hand information concerning the contents of the text contributes to the
interpretation of anaphoric pronouns. This is reflected in the architecture of the
FAST system. The structural aspects of the text and its referential aspects are
represented seperately. In our view anaphoric relations suggest two perspectives
on the information conveyed by a text: on the one hand, there is information in
its sequential structure, on the other, there are predications about the referents.
Therefore, in the FAST system there exist both a structural and a referential text
representation.

The structural text representation contains information about:


 functor-argument relations (of e.g. nouns, verbs and adjectives),


 semantic roles of arguments like ‘agent’, ‘affected’, ‘attribuand’, ‘associ-
ated’, ‘location’, ‘aim’ [Steiner et al. 88],

9
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 the thematic structure of a sentence in the spirit of the Prague School
[Sgall et al. 73],


 semantic features that express local or temporal conceptualization as known
from cognitive grammar [Zelinsky-Wibbelt 88],


 and anaphoric relations represented by coindexation.

This information is represented by the Functor-Argument-Structure (FAS). It can
be regarded as an abstract syntax with additional semantic features that represents
the functional structure of sentences. It abstracts from redundant information that
is needed in the surface syntax in order to formulate well-formedness conditions
like e.g. agreement features within verbal or nominal phrases. For details of
the FAS cf. [Hauenschild, Umbach 88] and [Busemann, Hauenschild 89]. Figure 3
shows a sample FAS representation (only the features that are relevant for anaphora
resolution are represented in the figure).

In the current version of the model the structural text representation consists
of a list of FAS structures of sentences. Information about textual coherence
is conveyed by coindexation of coreferential phrases. A next step could be to
integrate more information about the structure of the text by not only collecting
several subsequent sentences into a larger information unit, but also representing
the relations holding between these units (cf. [Grosz, Sidner 86]).

The referential text representation contains parts of the contents of the text,
at present the discourse referents and the semantic relations holding between
them. Coreferential expressions are represented by a single discourse referent.
The descriptions are made on the basis of partial information about the semantic
contents of the lexemes. This information is modeled in terms of DL concepts.
Up to now it comprises the semantic type of a lexeme, its semantic roles, and
information about the semantic types of its role-fillers (selectional restrictions). A
sample representation of the DL concepts modeled in BACK is given below. Figure 4
shows the descriptions for the sentence represented in Figure 3.

As mentioned above, our twofold text representation enables us to dis-
tinguish two aspects of anaphoric expressions (for a similar proposal see
[LuperFoy, Rich 90]):

1. their position in the linguistic structure and what other linguistic expression
they relate to. The structural aspect of the anaphoric relation is expressed
via coindexation in the structural text representation.

10
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sie sie

integrieren

fas

clausefin

clause
ref:uc_1

illoc

assertion

fin

pres_ind

v_pred

conf:ag_af
them:2
ref:uc_1
voice:active

term

role:agent
them:1
ref:uc_2

term

role:affected
them:3
ref:uc_3

term

role:location
them:4
ref:uc_4

  in das gespeicherte 
         Wissen

Figure 3: Structural (FAS) representation for ‘Sie integrieren sie in das gespeicherte
Wissen.’ (English: ‘They integrate it into the stored knowledge.’) ‘fas’ is the
root node of a FAS structure; ‘illoc’ (illocution) expresses whether the sentence is
an assertion, an order, or a question; ‘clausefin’ represents a finite clause; ‘fin’
contains information about tense and mood; ‘v pred’ represents a verbal functor
(the leftmost daughter always denotes the functor); the feature ‘them’ represents
the thematic structure of a sentence; the feature ‘ref’ expresses the link to objects
in the referential text representation (see Figure 4).
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agent location

affected

uc_2

(Systeme)

uc_3

(Information)

uc_4

(Wissen)

uc_1

(integrieren)

Figure 4: Simplified referential representation for ‘Sie integrieren sie in das gespei-
cherte Wissen.’ The objects uc 2 and uc 3 were introduced by the preceding
sentence ‘Fortgeschrittene Systeme erkennen die Information in der Form, in
der sie generiert wird.’ The arrows denote roles, e.g. ‘Systeme’ is the agent of
‘integrieren’.

2. the kind of relation between discourse referents that is introduced by the
anaphoric expression (like identity of sense, identity of reference, part-
whole-relation, cf. [Quantz 92a]). This aspect is expressed in the referential
representation of the text.

Factors for anaphora resolution

Most linguistic approaches to the interpretation of anaphoric expressions, like
Chomsky’s binding principles or Reinhart’s c-command [Reinhart 83], propose
a treatment on the basis of purely syntactic information. The problem is that
these approaches cannot explain all cases of anaphoric binding. To cope with the
problematic cases, the description of the binding mechanism was recently more
and more elaborated, taking into account “discourse based” information like point
of view [Pollard, Sag 93] or the notion of internal perspective [Engdahl 91].

Besides the linguistic approaches to anaphora there are AI approaches which
are based upon semantic information, background knowledge [Hobbs 78] and the
notion of focus [Bosch 88].

In 1983 Hauenschild and Pause bridged the gap between the linguistic and AI
approaches by proposing a framework for anaphora resolution based on syntactic,
semantic and conceptual information (cf. [Hauenschild, Pause 83]). The FAST

approach to anaphora resolution started from this framework. We formalized and
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integrated the following factors into a disambiguation system:

Agreement: An antecedent candidate that does not agree with the anaphor with
respect to person, number and gender is regarded as very poor.

Binding: A candidate that does not fulfill the binding principle as described in
[Preuß et al. 92] is regarded as very poor.

Proximity: Structurally close antecedent candidates are preferred.

Subject preference: The subject is preferred.

Topic preference: The topic is preferred.

Negative preference for free adjuncts: Free adjuncts are regarded as very poor.

Identity of roles: Candidates that fill the same semantic role as the anaphor are
preferred.

Conceptual consistency: The antecedent has to be compatible with the selec-
tional restrictions that derive from the predications on the anaphor.

These factors are implemented as preference rules with different weights that
express the influence each factor has in the process of anaphora resolution. Based
on these factors we implemented a scoring device that determines the intended
antecedent by adding up the different positive or negative scores of the factors
for each candidate. We demonstrate with example (1) how anaphora resolution
works.

(1) a. Fortgeschrittene Systeme erkennen die Information in der Form,
in der sie1 generiert wird. Sie2 integrieren sie3 in das gespeicherte
Wissen.

b. Advanced systems perceive information in the form in which it is
generated. They integrate it into the stored knowledge.

The tables in Figures 5 to 7 show how each antecedent candidate is scored by each
factor. The different scores of the factors are the result of empirical investigations.
Some of the factors, i.e. agreement, binding and discourse, give such a high nega-
tive score that they might be compared to strict constraints. The main difference is
that in situations where all candidates gain high negative scores on account of one
of these factors, there still might be one candidate which reached a better score

13
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factors antecedent candidates
system information form relpron

agreement -1000 0 0 0
binding 0 0 0 0
proximity 80 80 0 0
subject 60 0 0 0
topic 20 0 0 0
role identity 0 80 0 0
free adjunct 0 0 -70 -70
discourse 0 0 0 0
sum -840 160 -70 -70

Figure 5: Disambiguation of ‘sie1’.

compared to the other candidates. In Figure 5 ‘information’ is the best antecedent
since it does not gain a high negative score due to one of the constraint-like factors,
and furthermore it gains positive scores on account of the proximity factor and the
role identity factor (both the personal pronoun and the antecedent fill the affected
role).

In the disambiguation process of ‘sie2’ (Figure 6) most factors are in favor of
‘system’ as antecedent. In this example the discourse factor gives a high negative
score to all candidates except ‘system’. The discourse factor implies a test on
conceptual consistency. Although even inconsistent propositions can lead to a
more or less coherent text, we start from the working hypothesis that the texts
we want to translate are consistent, i.e. we suppose our texts not to contain any
contradictions. This can be exploited in the process of anaphora resolution, since
the predications on the anaphor should be compatible with the predications made
on the intended antecent. To test this consistency, a sophisticated representation
of the semantics of both lexemes and whole phrases enriched by rules concerning
encyclopedic facts would be necessary.

As a starting point we decided to model selectional restrictions by using the
term language of the BACK system. The personal pronoun ‘sie2’ fills the agent role
of the verb ‘integrieren’.The semantics of ‘integrieren’ states that the agent role
has to be filled by a potential-agent-object. The anaphora resolution process has
to look up which of the candidates do not meet this condition. Thus all candidates
except ‘system’ are ruled out.

14
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factors antecedent candidates
system information form sie1 relpron sie3 wissen

agreement 0 -1000 -1000 -1000 -1000 0 -1000
binding 0 0 0 0 0 -1000 0
proximity 40 40 40 20 20 0 0
subject 60 0 0 60 0 0 0
topic 20 0 0 0 0 0 0
role identity 80 0 0 0 0 0 0
free adjunct 0 0 -70 0 -70 0 -70
discourse 0 -1000 -1000 -1000 -1000 -1000 -1000
sum 200 -1960 -2030 -1920 -2050 -2000 -2070

Figure 6: Disambiguation of ‘sie2’.

The information needed to perform tasks like these is represented by means
of the BACK system. In this case the disambiguation relies on the following
information:

event :� anything
agent-affected-event :� event & exactly(1,affected) &

the(agent,potential-agent-object)
integrieren :� agent-affected-event
systeme :� potential-agent-object

The value restriction ‘the(agent,potential-agent-object)’ expresses that the filler of
the ‘agent’ role has to be a ‘potential-agent-object’.

Though the anaphora resolution implemented in the FAST system performs quite
successfully, there is one major shortcoming: the factors used in the resolution
process are not represented declaratively, but are rather contained in the scoring
device. This is in contrast to the general philosophy of using declarative formalisms
such as GPSG, FAS, and BACK to represent the information of the different levels.
In the remainder of this section we will show a declarative reformulation of the
above factors in terms of DL. We think that such a declarative representation is
highly desirable. See [Kay et al. 91] for some of the benefits of declarativity.
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factors antecedent candidates
system information form sie1 relpron sie2 wissen

agreement 0 0 0 0 0 0 -1000
binding -1000 0 0 0 0 -1000 0
proximity 40 40 40 20 20 0 0
subject 60 0 0 60 0 60 0
topic 20 0 0 0 0 20 0
role identity 0 80 0 80 0 0 0
free adjunct 0 0 -70 0 -70 0 -70
discourse 0 0 0 0 0 0 0
sum -880 120 - 30 160 -50 -920 -1070

Figure 7: Disambiguation of ‘sie3’.

DL Based Disambiguation

The factors used for anaphora resolution can be modeled declaratively as follows
(to keep the presentation simple we omit the factors for binding and proximity):

�1 : anaphor � num = ant.num&gen = ant.gen

�2 : anaphor � the�ant� subject�

�3 : anaphor � the�ant� topic�

�4 : anaphor � sem-role � ant.sem-role

�5 : anaphor � the�ant� non-adjunct�

Let us briefly explain this modeling. We assume a concept ‘anaphor’, which is used
to describe anaphoric phrases. Note that we do only consider pronominal identity
anaphora here. In order to handle other types of anaphora, such as substitution
anaphora, contiguity anaphora, or bound anaphora [Quantz 92a], a finer grained
modeling is necessary.

We further assume that anaphoric phrases have a feature ‘ant’, whose filler is
the antecedent phrase. The default �1 thus models agreement: usually an anaphor
agrees with its antecedent wrt number and gender. The defaults �2 and �3 capture
the fact that subjects and topics are preferred antecedent candidates of an anaphor.
Similarily, �5 expresses a negative preference for adjuncts, which is modeled
here as a preference for non-adjuncts. Finally, �4 says that usually anaphor and
antecedent fill the same semantic role.
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To illustrate how such a DL modeling can be used for anaphora resolution, we
will briefly address two further issues. First, we show how the concepts and roles
used in the above modeling (e.g. ‘subject’ or ‘sem-role’) are modeled themselves.
Then we explain how disambiguation can be achieved by minimizing exceptions
to defaults.

The concepts and roles used in the above modeling describe linguistic signs,
i.e. phrases or words, their syntactic properties, and the relations between them. In
other words, the domain we are modeling is the domain of linguistic signs and the
terminology we have to represent is the linguistic terminology. In the following
we will use the basic terminology from Head-Driven Phrase Structure Grammar
(HPSG) [Pollard, Sag 87], since this formalism is declarative to a large degree and
relies on a typed feature logic which is very similar to the general format of DL

[Carpenter 92].
According to HPSG a phrase is a linguistic sign which is composed of other

linguistic signs, i.e. its constituents. Since the constituent structure is usually
represented in a phrase structure tree, in which the constituents are the daughters
of the overall phrase, the role used to describe the constituent relation is called
‘dtrs’. In HPSG one distinguishes different kinds of daughters, such as head-
daughters, complement-daughters and adjunct-daughters. The most important
way of constructing a phrase consists in the combination of a head-daughter with
its arguments or complements. For example, each verb has a specific valency,
i.e., it takes a certain number of complements, which have to be of a certain type.
Consider a simplified lexical entry for the German verb ‘integrieren’:

integrieren :� v & the(arg1,np & cas:nom) &
the(arg2,np & cas:acc) &
the(agent,potential-agent) &
agent = arg1 & affected = arg2

This lexical entry stipulates that the phrase being the first argument of ‘integrieren’
must be an NP with nominative case, whereas the second argument is an NP with
accusative case. Furthermore, the phrase filling the ‘agent’ role must be a potential
agent. Finally, the syntactic arguments are mapped to the semantic roles: the first
argument is the agent, the second argument the affected.

In Figure 8 we have shown the DL representation of a phrase structure tree
for the sentence ‘sie integrieren sie’ (‘they integrate it’). We have four signs,
one being the overall sentence ‘uc 4’, the other three being the words occurring
in the sentence. The arrows between these signs are the roles existing between
them—the dashed arrows signify that these roles can be computed by the system.
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uc_3 (sie)uc_1 (sie) uc_2 (integrieren) 

arg1 arg2

affectedagens

head−dtr

comp−dtrscomp−dtrs

has−subject

uc_4

Figure 8: DL representation of ‘sie integieren sie’.

To see how the filler for the role ‘has-subject’ can be computed consider the
following modeling:

has-subject :� domain(s) & head-dtr.arg1
has-topic :� dtrs & domain(s) & range(top:+)
subject :� atleast(1,inv(has-subject))
topic :� atleast(1,inv(has-topic))
non-adjunct :� atmost(0,inv(adjunct-dtr))
atleast(1,inv(agent)) �� sem-role:ag
atleast(1,inv(affected)) �� sem-role:af

The role ‘has-subject’ is defined as relating a sign which is a sentence with the
filler at the role ‘arg1’ at its head daughter. The role ‘has-topic’ is defined as
relating a sign which is a sentence with those of its daughters that have the value
‘+’ for the feature ‘top’.

Given these roles we say that a sign is a subject iff it occurs at some other sign
as the filler for the role ‘has-subject’ (an analogous definition is given for ‘topic’).
Non-Adjuncts are those signs which do not occur as fillers of the role ‘adjunct-dtr’.
Finally, if a sign occurs as an agent (affected) at some other sign, its value for the
feature ‘sem-role’ is ‘ag’ (‘af’).

For the signs ‘uc 1’ and ‘uc 3’ in Figure 8 we therefore obtain the following
descriptions:

uc 1 :: subject & topic & non-adjunct & sem-role:ag
uc 3 :: non-adjunct & sem-role:af
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Part of this information follows immediately from the above modeling and the
information about the phrase structure shown in Figure 8. To compute that ‘uc 1’
is a ‘topic’ and that ‘uc 1’ and ‘uc 3’ are ‘non-adjuncts’ some additional constraints
not shown in the modeling are taken into account. We are currently implementing
a DL-based parser for an HPSG fragment of German, which uses the modeling
sketched above.

Note finally that the information about ‘uc 1’ and ‘uc 3’ can immediately be
used to evaluate the defaults representing the factors needed for anaphora resolu-
tion. As can be seen from our sample sentences, in most cases each antecedent
candidates violates some of the defaults, and the preferred antecedent can be de-
termined by comparing the sets of violated defaults. The basic idea is to choose
the intepretation which yields a qualitatively minimal number of exceptions (see
[Quantz 93] for details).

4 Conclusion

We have presented the basic ideas of Description Logics (DL) and shown how
the DL system BACK is used in the process of anaphora resolution in the Machine
Translation system FAST. So far this disambiguation process uses factors which are
not explicitly represented but rather are contained in the procedures of the scoring
device. To obtain a declarative representation of these factors, we proposed to
view them as preference rules and to model them as defaults in BACK. In doing so
we represented syntactic, semantic, and encyclopedic knowledge as DL formulae.

We regard the logical framework presented here as a formal foundation for
developing NL systems. The major benefit of a homogeneous treatment of different
levels of information in a single representation formalism is that interdependencies
between the levels can be modeled in a straightforward manner. We regard
this as a necessary prerequisite for studying the interplay of the factors guiding
disambiguation, which is so far only poorly understood. Once we know more
about the contextual factors guiding disambiguation and their interplay, we might
decide to replace the uniform representation system by several components which
efficiently perform the inferences most needed on each level.
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