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ABSTRACT

In written language, punctuation is used to separate main
and subordinate clause. In spoken language, ambiguities arise
due to missing punctuation, but clause boundaries are often
marked prosodically and can be used instead. We detect PCBs
(Prosodically marked Clause Boundaries) by using prosodic fea-
tures (duration, intonation, energy, and pause information) with
a neural network, achieving a recognition rate of 82%. PCBs
are integrated into our grammar using a special syntactic cat-
egory ‘break’ that can be used in the phrase-structure rules of
the grammar in a similar way as punctuation is used in gram-
mars for written language. Whereas punctuation in most cases
is obligatory, PCBs are sometimes optional. Moreover, they
can in principle occur everywhere in the sentence due e.g. to
hesitations or misrecognition. To cope with these problems we
tested two different approaches: A slightly modified parser for
word chains containing PCBs and a word graph parser that takes
the probabilities of PCBs into account. Tests were conducted
on a subset of infinitive subordinate clauses from a large speech
database containing sentences from the domain of train table
inquiries. The average number of syntactic derivations could be
reduced by about 70 % even when working on recognized word
graphs.

I. INTRODUCTION

Prosody is used to mark phrase boundaries while speaking. This
structures the utterance and helps the listener to understand and
disambiguate the meaning. To our knowledge so far nobody has
really integrated information about prosodic phrase boundaries
in automatic speech understanding systems. This paper presents
a first step towards this goal (for similar work cf. [11, 2]).

Two years ago we built a complete automatic speechunderstand-
ing (ASU) system consisting of a word recognizer, a parser, and
a module for semantic interpretation; the domain is train time
table inquiry [6]. Only utterances consisting of a single main
clause could be processed. Currently we are adapting this system
to the domain of appointment scheduling in the VERBMOBIL
project [12]. In a corpus of 50 VERBMOBIL dialogues about
70 % of the utterances contained more than a single sentence, cf.
[10]. In speech the boundary between two clauses is not marked
by punctuation as in written language and because of missing
punctuation the position of a boundary is quite often ambiguous.
For example consider two of the at least 36 different syntactic
parses for the potential VERBMOBIL utterance

“Ja zur Not.j Geht’s auch am Samstag?” vs.
“Ja zur Not geht’s auch am Samstag.”

The appropriate English translations are
“O.K., if necessary. Is Saturday possible as well?” vs.
“Well, if necessary, Saturday is possible as well.”

The possible boundary position is indicated by “j”. Note that

an utterance with the second interpretation can also be produced
with a rise at the end (signal for take over of the turn). In this case
only the PCB disambiguates between the two different seman-
tic meanings and pragmatic interpretations. Also, the missing
punctuation leads to a high amount of ambiguity and therefore
to a strong increase of computation time.

Thus we recently started on integrating a prosody module into
our ASU system. Input to the prosody module is a word graph
generated by the word recognizer (Section 3). For each word in
the word graph the probability that it is succeeded by a clause
boundary is computed. This information is intended to help the
parser reduce the number of ambiguities. Since in VERBMO-
BIL training databases for word recognizers and classifiers have
only been made available recently, we started our studies on the
train table inquiry domain. For this a training speech database
is available where utterances only consist of one main clause
and sometimes an additional subordinate clause. In the case of
infinitive subordinate clauses the boundary position is rather am-
biguous. We concentrated on such sentences, because we expect
speakers to mark the boundaries between main clause and sub-
ordinate clause prosodically similar to the boundaries between
two main clauses. For example in “Schaffe ich es j noch j heute j
um sechs Uhr j in Hamburg zu sein.” (word by word translation:
can I j still j today j at six o’clock j in Hamburg to be) there
are four possible boundary positions. If only the word chain is
given, four alternative parse trees are thus possible. The bound-
ary position decides whether the ‘can’ or the auxiliary verb ‘to
be’ is modified by the adverb and/or the PPs. Contrary to the
VERBMOBIL example given above, here the semantics is al-
most the same. However, disambiguating the syntax could also
speed up the parse process. This in turn could lead to the right
interpretation that would not have been found due to resource
limitations in the search without prosodic information.

In this paper we first present an overview of the speech data-
base (Section 2), the word recognizer (Section 3), the grammar
and the parser (Section 4), and the reference boundary markers
(Section 5), Then in Section 6 the classifier (an artificial neural
network) for the prosodic boundaries is characterized. In Sec-
tion 7 we describe how the linguistic grammar is extended so that
it “knows” about PCBs and how the hypotheses about bound-
aries computed by the prosody module can be integrated in an
A�–search in order to disambiguate the parsing. Experiments
with the extended parser were performed using the spoken word
chains (Section 8) and recognized word graphs (Section 9).

II. SPEECH DATABASE

The material we investigated is part of the German speech
database ERBA, “Erlanger Bahn Anfragen” (Erlangen train in-
quiries). A stochastic sentence generator was used based on
a context free grammar and 38 sentence templates to create a
large text corpus with utterances consisting of one sentence with
or without a subordinate clause and a short elliptic sentence.
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10,000 unique sentences were recorded in quiet office environ-
ments (100 untrained speakers, 100 utterances each) resulting
in a speech database of about 14 hours. The speakers were
given the word sequences with punctuation marks, but without
the prosodic phrase boundary markers. 69 speakers (25 female,
6,900 sentences) were used for training and 21 speakers (9 fe-
male, 2,100 sentences) for testing the word recognition module
as well as the classifier for the prosodic boundaries. For more
details concerning ERBA see [1].

The grammar described in Section 4 is only able to parse 4,480 of
the 10,000 spoken word chains, because e.g. it was not designed
to handle elliptic sentences. In the set of 4,480 sentences there
are 1,504 sentences with subordinate clauses (and thus with a
potential PCB), 272 of them being infinitive clauses (i.e. the
PCB could help disambiguate between the possible parses). As
mentioned above, the low percentage of interesting sentences
is due to the construction of the corpus and way higher for the
VERBMOBIL data. Due to technical problems only 242 of
these 272 sentences could be used in the experiments described
in Section 9. Note that about two third of these sentences were
in the training set for both the word recognizer and the classifier
for the PCBs. However, in the case of the PCB the recognition
rates of training and test set do not differ significantly.

III. WORD RECOGNIZER

The Daimler-Benz speech recognition system is based on semi-
continuous Hidden Markov Models (SCHMM) of subword units
(generalized triphones and functional words) [4, 5]. We use
13 normalized mel–based cepstral features with a centisecond
frame rate. Combinations of feature vectors from 9 adjacent
frames (dimension 117) are transformed by a linear transform
generated by linear discriminant analysis. This results in a 32
dimensional feature vector which implicitly includes temporal
dynamic effects. The multistage training procedure is described
in [4]. The output of our recognizer is a word hypotheses graph.

IV. GRAMMAR AND PARSER

We use a Trace and Unification Grammar (TUG) [3] and a
modification of the parsing algorithm of Tomita [9]. The basis of
a TUG is a context free grammar augmented with PATR-II-style
feature equations. The Tomita parser uses a graph-structured
stack as central data structure. After processing word wi the
top nodes of this stack keep track of all partial derivations for
w1...wi . In [8], a parsing-scheme for word graphs is presented
using this parser. It combines different knowledge sources when
searching the word graph for the spoken utterance: a TUG, a
statistical bigram model and the score of the acousticcomponent.
When searching the word graph partial sentence hypotheses are
organized as a tree. A graph-structured stack of the Tomita parser
is associated with each node. In the search an agenda of score-
ranked orders to extend a partial sentence hypothesis (hypo i =
hypo(w1,...,wi )) by a word wi�1 is processed: The best entry
is taken; if the associated graph-structured stack of the parser
can be extended by w i�1 new orders are inserted in the agenda
for combining the extended hypothesis hypo i�1 with the then
following words. Otherwise, no entries will be inserted. Thus,
the grammar makes hard decisions on whether a hypothesis is
accepted or not. The other two knowledge sources (the acoustic
and the bigram model) deliver scores which are combined to give
the score for an entry of the agenda:

score�hypoi & word� � score�hypoi� �
acoustic score�word��alpha� bigram score�wi� word��
‘score of optimal continuation�

Alpha is determined heuristically. Prior to parsing a Viterbi-like
backward pass computes the exact scores of optimal continua-
tions of partial sentence hypotheses(A�–search). After a certain
time has elapsed the search is abandoned.

V. REFERENCE BOUNDARY MARKERS

Prosodic phrase boundaries can be predicted quite accurately
using syntactic knowledge. Syntactic boundaries were therefore
marked in the context free grammar (Section 2) and included
in the sentence generation process with some context-sensitive
post-processing (cf. below: B1 boundaries). The text read by
the speakers did not contain these markers.

We distinguish four types of phrase boundaries: Boundary B3
is placed between elliptic clause and clause or between main
and subordinate clause, B2 is positioned between constituents
or at coordinating particles between constituents, B1 belongs
syntactically to the normal constituent boundary B2 but is most
certainly not marked prosodically because it is close to a B3
boundary or to the beginning/end of the utterance, and B0 is any
other word boundary that does not belong to B1, B2 , B3; for
more details see [1]. The following sentence shows examples
for these boundary types: “Guten Morgen B3 ich h ätte gerne B1
einen Zug B3 der München B2 zwischen sechs B2 und sieben
Uhr B1 verläßt” (word by word translation: “Good morning
B3 I would like B1 a train B3 that Munich B2 between six B2
and seven o’clock B1 leaves”. In the ERBA corpus, 62097 B0,
18657 B1, 22616 B2, and 3877 B3 boundaries are generated
automatically.

A perception experiment was conducted with “naive” listeners
[1]. It showed that there is a very high agreement between
the automatically generated reference boundaries and perceived
boundaries.

VI. AUTOMATIC BOUNDARY CLASSIFICATION

The classification of prosodic phrase boundaries is based on the
time alignment of the recognized/spoken words. For the final
syllable of each word prosodic features (duration, intonation,
intensity, and pause information) are computed; as for more
details, cf. [7]. There we reported an average error rate of
60% for the three classes B01, B2, and B3 using a Gaussian
classifier. Meanwhile we improved the recognition rate to 72%
with an improved feature set, modeling multi–modality, and
using multi–layer perceptrons (MLP).

The durational features highly depend on the underlying sylla-
ble. Thus when working on word graphs for each of the words
ending in the same node a different feature vector is computed as
input for the MLP. The probability for a PCB in a node depends
very much on the word under consideration and is computed
for each of the words separately. Our ASU system works in
bottom–up manner, i.e. first the word graph is computed for the
whole utterance, then the MLP computes likelihoods for PCBs,
and finally the word graph is parsed. Thus when computing the
likelihoods for the PCBs the syllables succeeding the final syl-
lable of a word are not known (or the likelihood would have to
be calculated for each of the potential successor words). There-
fore the length of a syllable to the right of the potential PCB is
defined as 200 msec for the computation of the F0 and intensity
features. In comparison to the recognition rate using the time
alignment of the best word chain this decreases the recognition
rate on the three classes by about 2%, i.e. 70% for the three
classes. For the two class problem B012 vs. B3 that is relevant
for this paper we currently have 82%. This MLP was used for
the experiments in Section 9. The experiments on the spoken
word chain (Section 8) were performed some time ago using an
older version of a Gaussian classifier with which a recognition
rate of 56% for the three classes was achieved.

VII. EXTENSION OF THE GRAMMAR AND THE
PARSER

We incorporated PCBs into grammar and parser in order to re-
duce the number of syntactic derivations and speed up parsing. In
written language, commas are used to separate two main clauses
and main and subordinate clause. Without punctuation marks,
sentences like the following are ambiguous (translation word by
word):
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Welche Möglichkeiten habe ich heute nach Hamburg zu kommen
which possibilities have I today to Hamburg to go

‘heute’ (‘today’) can modify the main clause or the subordinate
clause. In such cases PCBs can be used to replace punctuation.
In analogy to punctuation in written language, a special syntactic
category break for PCBs is introduced that can be used in the
phrase structure part of the grammar. E.g. the rule

INPUT � subclause-inf , main-clause
is modified to

INPUT � subclause-inf , break , main-clause .
A grammar with obligatory PCBs only includes the rules with
the break category, a grammar with optional PCBs includes
the rules with and without the break category. In [2] a simi-
lar approach was followed, but a special category was inserted
between every two adjacent symbols on the right hand side of
each grammar rule. In the average this resulted in an increase in
parsing time.
We implemented two basically different approaches. In the first
approach (see experiment E1 in Section 8) the input to the
parser is an ASCII-string that includes the probability of a PCB
between adjacent words:
welche 0.21 Möglichkeiten 0 habe 0.11 ich 0.14 nach 0.16 drei
0 Uhr 0 nach 0.01 Goslar 0.1 zu 0 kommen
which possibilities have I after three o’clock to Goslar to go

welche 0.23 Möglichkeiten 0.01 habe 0.11 ich 0.14 in 0.77
fünf 0.28 Wochen 0.02 von 0 Eberswalde 0.01 nach 0 Bo-
denwöhr Nord 0.82 über 0 Mannheim 0 zu 0 fahren
which possibilities have I in five weeks from Eberswalde to Bo-
denwöhr Nord via Mannheim to go

Using a threshold of 0.5 the probabilities are first transformed
into hard decisions yielding:

(1) welche Möglichkeiten habe ich nach drei Uhr nach Goslar
zu kommen

(2) welche Möglichkeiten habe ich in B3 fünf Wochen von Eber-
swalde nach Bodenwöhr Nord B3 über Mannheim zu fahren

(1) indicates that PCBs are not always produced or recognized
and according to (2) they can in principal be hypothesized every-
where in the sentence due e.g. to hesitations or misrecognition.
To account for (1) the parser uses a grammar with optional
PCBs and to account for additional PCBs as in (2) the parser
is slightly modified: In case of failure it skips the previously
consumed PCB and continues parsing from that point on. In (2)
the parser fails to consume the first B3 because infinitive subor-
dinate clauses can not start after a preposition. The first B3 is
skipped and the parser succeeds.
There can be several possibilities which PCBs to skip and which
to consume. One disadvantage of this approach is that the parser
does not choose the optimal possibility.
In the second approach (see experiments E2 and E3 in Section 8)
we use the word graph parser. Each hypothesisof the word graph
includes two additional scores, one for ‘a PCB is following’ and
the other for ‘no PCB is following’. The word graph parser has
been modified to take PCBs into account: After adding a word
wi�1 to a partial sentence hypothesis hypo i = hypo(w1,...,wi ) an
order for combining the new partial sentence hypothesishypo i�1
with a B3 (1) and orders for combining it with the then following
words (2) are inserted into the agenda. When adding B3 to a
hypothesis only orders for combining it with following words
(3) are inserted. The scoring function has been modified to take
the prosodic score into account:
score�hypoi & B3� � score�hypoi� � �1�
beta � PCB score�wi� � ‘score of optimal continuation�

score�hypoi&wi�1� � score�hypoi� � �2�
beta � no PCB score�wi� � acoustic score�wi�1� �
alpha � bigram score�wi� wi�1�� �
‘score of optimal continuation�

score�hypo�w1� ��� wi� B3� & wi�1� � �3�
score�hypo�w1� ��� wi� B3�� � acoustic score�wi�1� �

Table 1. Results for the spoken word chain
E0 E1 E2 E3

number of failed sentences
4480 sentences 0 0 71 206
1504 sentences 0 0 25 62
272 infinitive-
sentences 0 0 5 27

comparison for the 245 infinitive clauses
average number of
derivations 8.1 4.03 4.14 2.44
max number of
derivations 209 39 39 38
average runtime secs 8.06 4.31 4.59 4.04
max runtime 235.02 33.07 36.78 29.38

alpha � bigram score�wi� wi�1�� �
‘score of optimal continuation�

The exact scores of optimal continuations of partial sentence
hypotheses are determined using the best of the two prosodic
scores.

VIII. EXPERIMENTS USING THE SPOKEN WORD
CHAIN

In the following experiments the spoken word chain was used.
The probability of PCBs are inserted automatically between ad-
jacent words. The word chain can easily be transformed into a
word graph: Each word is assigned the acoustic score 0. When
searching on this word graph the bigram model is of no use and
the bigram score can be ignored, i.e. the score of a hypothesis is
the prosodic score. When using a grammar with optional PCBs
the word graph parser searches for the best PCBs within the sen-
tence that are accepted by the grammar, eventually omitting all
PCBs. When using a grammar with obligatory PCBs the word
graph parser is forced to decide where to place the boundary and
chooses the optimal position accepted by the grammar. It can
fail to parse the sentence in case a PCB is recognized with prob-
ability 1 at a position in the sentence where the grammar would
not allow any. When using a grammar with obligatory PCBs
it can also fail if PCBs are recognized with probability 0 at all
possible positions in the utterance.

In the following four experiments (E0 - E3) are compared:

E0: uses the original sentence parser and grammar and ignores
PCBs

E1: uses the modified sentence parser and grammar with op-
tional PCBs

E2: uses the modified word graph parser and grammar with
optional PCBs

E3: uses the modified word graph parser and grammar with
obligatory PCBs

In Table 1 the number of failed sentences, the average number of
derivations and runtime and the maximal number of derivations
and runtime are given for these four experiments and for the 245
sentences which could be processed successfully in all experi-
ments. As can be seen the average number of derivations and
runtime is reduced by about 50 % when incorporating PCBs as
hard decisions (E1). Taking into account the probability of PCBs
and using a grammar with optional PCBs (E2) results in a similar
improvement, though about 2 % (5 cases) of the sentences fail.
When forcing the parser to find the best position to place the
PCBs (E3) the average number of derivations is even reduced
by about 70 %, but the number of failed sentences increases to
10 % (27 cases). We hope that improving recognition rates for
PCBs will decrease the number of failed sentences.
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Table 2. Results for real word graphs
derivations runtime

without prosody
242 sentences - 13.74
145 correct 8.97 5.31

prosody 0.001
242 sentences - 14.35
144 + 0 correct 2.65 5.76

prosody 0.01
242 sentences - 14.15
143 + 1 correct 2.65 5.89

prosody 1
242 sentences - 17.29
142 + 1 correct 2.64 6.04

prosody 10
242 sentences - 21.99
86 + 4 correct 2.12 7.55

IX. EXPERIMENTS USING THE RECOGNIZED
WORD GRAPH

In these experiments prosodic scores were attached to the word
hypotheses of 242 word graphs for sentences with infinitive sub-
ordinate clauses. A grammar with obligatory PCBs was used.
A bigram model was trained on about 4500 ERBA-sentences
including the 242 sentences yielding a perplexity of 37 for the
242 sentences. In 173 cases the spoken word chain was included
in the word graph. Using no prosodic information 145 sentences
were correctly recognized, in 75 cases a different sentence was
accepted by the grammar (25 of these included the spoken word
chain) and in the remaining 22 cases the time limit was reached.
The prosodic score was included in the scoring-function with dif-
ferent factors: 0.001,0.01,1 and 10. Table 2 shows the average
number of syntactic derivations and the average runtime, the first
one only given for correctly recognized sentences. The number
of correct sentences when using prosodic information is given
as n1 + n2, n1 sentences being part of the 145 sentences which
were correctly recognized without using prosodic information.
(Note that runtimes of Table 1 and Table 2 can not be compared
because different machines were used). As can be seen the num-
ber of correctly recognized sentences decreases and the runtime
increases when the factor with which the prosodic information is
taken into account increases. Thus in these preliminary results
the prosodic information did not lead to an increase in sentence
recognition rate, but it helped to reduce the number of derivations
by about 70 %. Up to a weighting factor of 1 the reduction in
the recognition rate and the increase in the runtime are minute.

X. CONCLUSION

In this paper we presented a first step towards the use of prosodic
information during parsing. We showed that the number of
alternative parse trees can be reduced significantly (about 70 %).
However, so far it did not speed up the time needed for parsing
word graphs. On the one hand, we believe that there is still room
for improvement using other sets of features and improving the
so far not optimized time alignment of the words in the word
graph. On the other hand, when switching to spontaneousspeech
we will have to deal with hesitations and changes of speaking
rate within the same utterance. These phenomena must first be
modeled before we can hope for similar reduction factors.
Furthermore we intend to use prosodic boundary information
for resolving other types of ambiguities such as the attachment
of prepositional phrases, of appositions and of adverbials. Es-
pecially the attachment of prepositional phrases is rather am-
biguous without information about phrase boundaries; e.g. “I
saw the man with a telescope”, or “I want to take the train to
Munich”.
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