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PHONETIC AND PROSODIC ANALYSIS OF SPEECH*

H. Niemann, E. N6th, E.G. Schukat—Talamazzini, A. Kieflling, R. Kompe, T. Kuhn,
S. Rieck

Lehrstuhl fiir Mustererkennung (Informatik 5), Universitat Erlangen-Niirnberg, Martensstr. 3
91058 Erlangen, F.R. of Germany

Abstract: In order to cope with the problems of spontaneous speech (including, for example,
hesitations and non-words) it is necessary to extract from the speech signal all information it
contains. Modeling of words by segmental units should be supported by suprasegmental units
since valuable information 1s represented in the prosody of an utterance. We present an approach
to flexible and efficient modeling of speech by segmental units and describe extraction and use of

suprasegmental information.
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INTRODUCTION

This paper presents an approach towards statistical modeling and use of segmental and
suprasegmental information in a speech signal. We treat the aspects of word recognition
and improvement of linguistic analysis by suprasegmental information.

Sect. 1 gives an account of acoustic-phonetic analysis in the ISADORA system for
word recognition. It will be demonstrated that it is general enough to also include prosodic
information. In Sect. 2 we present the extraction and utilization of prosodic cues. Results
are summarized in Sect. 3 and a conclusion and outlook are given in Sect. 4.

1 WORD RECOGNITION

1.1 Introductory Remarks

We use a statistical approach to word recognition based on hidden Markov Models (HMM).
Early work in recognition of isolated words and continuous speech is, for example, [3, 2, 12].
Recent work on continuous speech recognition is given, for example, in [6, 11, 13, 18, 20].

During word recognition it is tried to segment the speech signal into words and to
classify the words under the premise that they belong to a finite set of known words rep-
resented in a lexicon. Problems encountered are, for example, variations among speakers,
omission of phonemes and even syllables, background noise, speech pauses which may be
filled (e.g. by cough, “uh”) or unfilled and sometimes fairly long, erroneous transcription
of training sentences, and pronunciation variants caused by dialects.

A speaker utters a sequence w consisting of N words w; out of a given vocabulary W.
Depending on the application and the situation this may be, for example, an utterance to
be translated to another language or a question of a user to a speech understanding and
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dialog system. Acoustic evidence is defined by a set O of L observation symbols O;. They
may be, for example, a set of phones or in general of ‘labels’. Observed is a sequence o
of T acoustic units o; € 0. They may be, for example, feature vectors or automatically
assigned (soft or hard) labels.

The task of word recognition is to find the correct sequence of words uttered by the
user. In general the correct sequence can only be approximated and hence one tries to
find the most probable sequence given the observation. 1t is well known from statistical
decision theory that this approach minimizes the probability of error and in this sense it
is an optimal approach. Word recognition then aims at computing the sequence w* of
words having the property

: (Lol 0

YT Plo)
The numerator of this equation contains in the first term the acoustic evidence (P(o|w))
and in the second term the linguistic constraints (P(w)) which are represented in a lan-
guage model. The denominator does not affect the maximization because it is independent
of w; hence, it is ignored.

Parametric representation of the speech signal is by mel-cepstral coeflicients, differen-
tial coefficients, and energy.

1.2 The ISADORA Network

The intention behind the development of ISADORA (integrated system for automatic
decoding of observation sequences of real-valued arrays) was to have a system for ex-
perimenting with different speech recognition strategies in order to optimize recognition
performance. It provides cepstral feature extraction, hard or soft vector quantization,
discrete, continuous, or semi—continuous HMM, beam—search driven training and Viterbi
decoding, and a modeling capability encompassing phonetic units, morphemes, words,
syntactic constituents, sentences, finite-state grammars, and vocabularies.

In order to model a speech understanding task an inventory of basic HMM’s or A-
nodes or atoms is provided together with a set of model building operators which build
larger HMM’s from the atoms. The result of a model building operation is a new node
type. A model of a speech recognition task then is written in terms of a definition language
summarized in Figure 1.

The A—nodes are the elementary units in the network and consist of a dedicated
HMM representing the corresponding speech unit. They do not have any successors. An
example is the A—node ¢/£/°’ providing a model of the fricative phone ‘f’. Speech units
corresponding to A-nodes are represented by linear hidden Markov models. Linear HMM’s
are left—to—right and consist of a varying number of states, each state being connected to
itself and to its immediate successor. Any series of adjacent states can be tied, that is,
the probabilistic parameters controlling the state transitions and output distributions are
pooled. Because A-node HMM’s serve merely as starting points in acoustic modelling,
the choice of such a limited topology is acceptable. The present implementation allows
four different parametrizations of probability density functions (PDF’s) determining the
output behaviour of states, that is, the discrete PDF, the soft vector quantization version
of discrete PDF, the continuous density HMM, and the semi-continuous models or tied
mixtures.

An S—node defines the sequential concatenation of its successor nodes. This provides
the means to build, for example, words or compound words from smaller units. A P—node
represents a set of elements which are the successors of this node. It is realized by the



node type node name  successors remark
A: /t/ ; model of a speech unit
NO SUCCESSOTS
S: Bahn /b/ /a:/ /n/ ; define a word
S: Bahnhof Bahn Hof define a compound word
P: DIGIT null eins zwei ... neun | define digits 0...9
P: <NP> John Mary Lassie define proper nouns
S: <S> <NP> loves <NP> define a simple phrase
D: zwel /tsval/ /tswo:/ ; alternative pronunciations
R: DIGITS DIGIT ; define connected digits

Figure 1: Some examples of the different node types

V... U ... UM
UL .. Uj ... UM
exits
m S1 tll e tlj e th
v; S; t;;
VM SM 15741 . MM
——
entries transitions

Figure 2: Adjacency matrix; if node »; is an entry node, s; = 1, if there is a transition
from node v; to node v;, #;; = 1, if node v; is an exit node, u; =1

parallel connection of the successor nodes. We use the P-nodes, for example, to define the
elements of a lexicon or of a syntactic word category. A D—node also provides a parallel
connection of its successors as is done by the P-node, but it represents alternatives of the
speech unit. An R—node defines the arbitrary repetition of its unige successor node. It is
implemented by a feed—back loop. The F—node allows one to define a finite—state network
by appropriate interconnection of successor nodes. The interconnections are defined in an
adjacency matrix as shown in Figure 2.

To summarize, each node of an ISADORA network represents a particular concept in
the world of speech units. On the other hand, each node can be mapped to an acoustic
model in a standard way. The Markov models belonging to the A-type nodes are given
explicitly. The models corresponding to any other type of node are given implicitly and
can be constructed recursively from the acoustic models of their successor nodes. It
is guaranteed that the construction process will eventually halt when encountering the
predefined A-type models.

1.3 Subword Units

Three types of subword unit inventories were investigated in more detail: the context—
freezing units, the generalized triphones, and the polyphones.
The first approach towards phonetic modelling is to freeze the contextual variations of



Hannover

ha|no:|f6

/h/alno:|f6

haln/o:/|f6

ha|no:|f/6/

Figure 3: A representation of the word ‘Hannover’ by polyphones

speech into models for larger-than-phone sized units. These context-freezing units (CFU)
were described in [21]. For comparison purposes, we also implemented a word modelling
scheme based on context-dependent phone-like units, which is well-known as the general-
ized triphones approach [11].

Finally, the so-called polyphones [19] are phone-like units which generalize the well-
known concept of triphone units. In contrast to a triphone the context information of
which is restricted to one phone symbol on the left and one on the right, the core phone of a
polyphone may be surrounded by (in principle) arbitrarily large context. Furthermore, the
context items may also include suprasegmental markers like syllable, morpheme, or word
boundaries. Figure 3 demonstrates how words are represented by polyphones. Whole-word
models are included into the polyphone approach, too.

1.4 Decoding

For reasons of space we do not treat the training of HMM parameters. In priciple it
is a variant of Baum—Welch training. Two slightly different software packages for word
recognition are available. The first one is integrated into the ISADORA environment and
exploits the full flexibility offered by it. This means that word recognition is treated as
the instantiation of the relevant ISADORA concept and that new recognition tasks may
be defined at analysis time, for example, in order to use dialog step dependent vocabu-
laries. The second one is a separate software package. It takes parameters obtained from
ISADORA training, it can work with a stochastic bigram grammar, and in view of the
task domain it has a spelling mode; it is about a factor of 2.5 faster than the first package.
Both packages employ beam search. The second version achieves real-time performance
on an HP 735, using 1082 words and a bigram grammar with a perplexity of 111. When
using a language model for each category the corresponding lexicon has to be inserted.
Finally, to speed up word recognition a beam search algorithm is used. It prunes all states
whose score is sufficiently below that of the best scoring state.



2 PROSODY

2.1 Introductory Remarks

Prosody means properties of speech which refer not only to a phone, but to larger units,
e.g. a syllable, a phrase, or a whole utterance. Hence, prosodic features are also termed
suprasegmental features. The main perceptual parameters of prosody are pitch, loudness,
duration, and timbre with the acoustical correlates fundamental frequency Fy, energy,
length of a phone, and spectral characteristics, respectivley.

The main functions of intonation or prosody in speech and spoken dialogs are to
emphasize parts of a word (e.g. ‘it is impossible to get a cheaper flight”), to mark important
words in an utterance (e.g. ‘ICASSP 1997 will be in Munich’), to delimit (meaningful)
parts of an utterance (e.g. ‘the father, said the son, is ill” versus ‘the father said, the son
is ill’), and to differentiate the mood of an utterance (mainly: declarative or question).

Our interest is mainly the determination of sentence mood, focal accent (and thereby
focus), and boundaries within an utterance. Such boundaries can be caused by prosodical
phrasing or hesitations. It has been shown that prosodic information is an important cue
to indicate these properties of an utterance [23, 15].

The most important parameter carrying prosodical information is pitch [1, 15]. The
acoustical correlate of pitch is the fundamental frequency Fy. Hence, often the fundamental
frequency is used as the main or the only acoustic feature for prosodic analysis. This is
sufficient, for example, to distinguish interrogative and declarative sentences fairly reliably
— a problem which is important in spoken dialog systems. The fundamental frequency
Fy of voiced speech is determined by the frequency of the oscillating vocal cords. It has to
be estimated from the recorded speech signal; an algorithm for doing this is described in
Sect. 2.2 below. The fundamental frequency is undefinded for unvoiced speech. Problems
are caused by irregularities or laryngealizations which may cause, for example, a doubling
of the pitch period for about one or two periods.

Early work on prosody is reported, for example, in [7, 10, 17] and recent work is found,
for example, in [5, 16, 15, 24, 25].

2.2 Fundamental Frequency

Several algorithms have been proposed for the determination of fundamental frequency,
see for example [8]. A main drawback of them is that Fg is computed only locally without
taking into account information about other portions of the utterance. Therefore, these
methods usually work well in regular portions of speech, but often fail in irregular portions.
We developed a new algorithm for the determination of fundamental frequency contours
of speech signals. It is robust even when it encounters irregular portions of speech, and
performs well with telephone quality speech.

An overview of the algorithm is given in Figure 4. It was described in detail in [9].
The algorithm is based on the well-known observation that the frequency of the absolute
maximum of the short—time spectrum of a voiced speech frame is a harmonic of the
fundamental frequency; hence, this frequency divided by the fundamental frequency is
an integer. The problem then is to find the correct integer divisor of the frequency of
the absolute maximum. This problem is solved here by determining several candidate
values of the fundamental frequency and to select the (hopefully) correct ones by dynamic
programming (DP). It is assumed that changes in fundamental frequency between two
voiced frames usually are small. One target value per voiced region is estimated to guide
the DP search. The DP algorithm searches for the path minimizing the weighted sum
of the difference between consecutive candidates plus the distances of the candidates to



1. Preprocessing
Partition the digitized speech signal f; into frames r; of fixed size. The frames are numbered
consecutively by the index k € {0,1,..., K — 1}. For each wvoiced frame a value of Fy is to be
determined.
For each frame make a wvoiced/unvoiced decision; Adjacent voiced frames are grouped to a voiced
region V;. Fach voiced region is defined by an index tupel (/;,l.) which gives the frame number
of the beginning and end frame, respectively, of V;. Between two consecutive voiced regions there
is at least one unvoiced frame.
Compute the energy Ej per frame by the sum of squared amplitude values. A target value (see
below) of the fundamental frequency will be computed at a local maximum of Fj, within a voiced
region.

2. Short—time spectrum
Perform low-pass filtering of the speech signal with cut—off frequency of 1100 Hz. Perform a
downsampling of the speech signal at a ratio of 1:7 (16 kHz sampling frequency).
Define the sample values in an analysis window s, corresponding to a frame rg, by the sequence
of sample values in the three frames rp_1, 75, rt41-
For each analysis window of a voiced frame compute the absolute value of the shori—time spectrum
Sy, v=20,1,...,127.
The ezpected interval of fundamental frequency values is assumed to be Sp msn = 55 Hz, So mazr =

550 Hz.

3. Target values F{

FOR each voiced region V; (defined by the index tupel ({;,{.) and containing frames r; with
speech energy Ej) DO:

determine a frame r, for which a target value of the fundamental frequency is computed as
follows:

IF l.—L+1<5h

THEN |k = (I + 1.+ 1)/2

ELSE |select & such that Ey = maxep, 42,0, +211 8% }

Determine for this frame r, the fundamental frequency by two independent algorithms. This
value of the fundamental frequency is the target value F; of the voiced region Vj.

4. Fundamental frequency candidates
FOR all voiced regions V;, I =1,..., L DO:
compute an average target value F§ = %Zle F,.
FOR all frames 7y, k € [ls,(.], in voiced region V; DO:
determine the maximal value S, 4 and the frequency &4, of this value in the short—time
spectrum S, ; set the integer divisor n = &y / F}
five fundamental frequency candidates Flé,l,a of frame number & in voiced region number

[ are defined by Fy ;= {na_”;“j?), a=1,...,5}; a candidate is undefined if n+a—-3 <0
5. Fundamental frequency contour

FOR each voiced region V; DO:

compute the optimal path in the matrix of fundamental frequency candidates by dynamic

programming

the fundamental frequency contour is computed by tracing back the optimal path

Figure 4: The steps for computing the fundamental frequency

a local target value. The path obtained this way is considered to be the fundamental
frequency contour.

2.3 Sentence Mood

Our work in speech understanding and dialog treats the task domain of enquiries about
intercity train connections. The evaluation of typical dialogs showed that in many cases
the user repeats a departure or arrival time stated by the information officer. Repeating
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Figure 5: Fundamental frequency (gf) of, from left to right, a declarative, an interrogative,
and a continuation rise type sentence; regression line of the whole utterance (rg); and
regression line of the final voiced region (rgl)

the time may consist of the time in isolation, for example, *10.25” or ‘10.25 o’clock’ (in
German: “10 Uhr 257), or it may consist of the time plus some other remarks, for example,
‘yes, 10.251 or ‘was it 10.257". If the time is uttered in isolation, only the intonation
indicates whether the user confirms (declarative sentence mood) or asks for some type of
confirmation by the officer (interrogative mood). If the time is repeated together with
some other remarks, those can usually be used to determine the mood of the utterance;
in this case prosody could help to make the decision more reliable, but it is not the only
cue.

To get a quantitative idea of the importance of prosodic discrimination, we considered
107 information dialogs about train connections recorded in three different German cities.
In 92 of them the user asked for departure or arrival times. They contained 215 utterances
where the users articulated 227 clock times. In 99 cases, or in 46% out of the 227 clock
times, only intonation was relevant for the discrimination of the utterance mood. This
means that an average dialog contains two to three clock times (227/92 = 2.46); on
average, one clock time per dialog (99/92 = 1.07) or every second of the total clock times
(99/227 = 0.43) can only be understood correctly with the use of intonation.

The evaluation of the dialogs showed that in addition to the obvious utterance moods
‘declarative’” and ‘interrogative’ there is a third one, the ‘continuation rise’ type indicating
from the side of the user that (s)he is still listening or taking notes, but understood
everything. The following Figure 5 shows the fundamental frequency of a declarative
utterance, a question, and a continuation rise type. For the reasons given above the
utterances are clock times in isolation. Their length is about 2 sec. In addition the
regression line fitting the fundamental frequency of the whole utterance and the regression
line fitting only the last voiced region are given.

From the many heuristically conceivable features we selected after some preliminary
experiments the slope of the regression line (of the whole utterance), the difference between
the offset and the value of the regression line at the offset, the slope of the regression line of
the last voiced region, and the difference between the offset and the value of the regression
of the last voiced region at the offset.

A Bayes classifier with class—conditional normal probability density functions, full co-
variance matrices, and equal a priori probabilities was used in the classification experi-
ments.

2.4 Prosodic Phrase Boundaries

Another forthcoming use of prosodic information will be the classification of phrase bound-
aries. Based on the consistency of perception experiments with about 30 persons we



distinguish four types of boundaries:

B3 type boundary: those are boundaries between main and subordinate clause, between
an elliptic clause and a clause, or at a particle coordinating two clauses.

B2 type boundaries: those are boundaries between constituents, or at coordinating
particles between constituents.

B1 type boundaries: those are boundaries that belong to normal constituent boundaries
B2, but which are most likely not to be marked prosodically because they are either close
to a B3 boundary or to the beginning/end of the utterance.

B0 type boundary: every word boundary which is not B1, B2 or B3 is of type BO.

A set of prosodic features was computed at every word boundary which was obtained
from HMM word recognition. The features are the length of a pause, the normalized and
unnormalized duration of the syllable and syllable nucleus prior to the boundary, the mean
and the standard deviation of the duration of the phoneme class of the syllable nucleus, the
energy and the position relative to the boundary of the frame having the maximum energy
within the two syllables to the left and the right of the boundary, the average energy of
the two syllables to the left and right of the boundary, the linear regression coefficients of
the Fy contour computed over two and four syllables to the left and to the right of the
boundary, onset, minimum, maximum, and offset Fy and their positions in time relative
to the boundary, computed over two syllables to the left and right of the boundary.

3 RESULTS

Word Recognition

Tests of the above system were performed with the so called ‘ERBA’ sample of speech.
The training sample consists of about 11 hours of speech. It was produced from 31 female
and 48 male speakers who read 100 different utterances with 949 different words. Speaker—
independent recognition tests were performed with a test sample of 27 minutes of speech
from 1 female and 3 male speakers not contained in the training sample. The test sample
contained 162 different words. Recognition tests were performed with a lexicon of 1081
words. Partly a bigram language model with perplexity PPX = 111 and 95 categories
was used.

In Figure 6 detailed experimental results on different subword units are given. With
adequate settings the word accuracy is WA = 92.5% and sentence accuracy SA = 64%
(speaker—independent).

Fundamental Frequency

Fundamental frequency extraction was tested on two different German speech databases
(called databases A and B, which both were recorded at the Institut fiir Phonetik at
the Ludwig-Maximilian Universitdt, Miinchen). They contained minimal sentence pairs,
that is, pairs where mood and focus of the second sentence was determined by the first
(context ) sentence, and mood and focus of the second sentence could only be discriminated
by intonation. This design of the sentences resulted in high variations of Fy thus making
them interesting for testing the algorithm. For both databases the average difference
between the minimal and the maximal fundamental frequency within an utterance was
about 120 Hz. These values were computed on the automatically determined and hand-
corrected Fy contours. Database A consisted of 195 utterances from 7 speakers (4 male, 3
female). Database B consisted of 357 utterances from the speakers of database A except
one male speaker. With the algorithm for voiced/unvoiced decision mentioned above in
database A 333 sec of speech were classified as voiced, in database B 469 sec were classified



cutting nits number of Prx162 Pprx1081 Prx111
HMM PDF | Wa Sa | Wa  Sa | Wa  Sa
MonNo 101 185 | 87.1 42.8 | 79.4 184 | 83.2 51.3
BI 546 1243 | 89.6 49.0 | 82.1 28.0 | 91.9 61.0
TRrR1 1257 2872 | 91.6 54.0 | 82.4 28.0 | 92.1 60.5
right PENTA 2087 6704 | 91.6 b5b.5b | 83.4 32.8 | 91.7 60.5
PorLy 2385 5464 | 91.7 56.0 | 83.9 345 | 91.9 59.8
Pory+SyrL | 2801 6439 | 91.7 55.8 | 84.3 35.3 | 91.9 61.3
BI 560 1272 | 90.9 55.0 | 82.9 32.8 | 92.2 64.5
TRrR1 1246 2863 | 90.9 54.3 | 84.3 34.8 | 92.1 625
left PENTA 1925 4398 | 91.7 H56.8 | 85.0 36.2 | 92.2 63.3
PorLy 2612 7813 | 91.5 56.0 | 85.2 37.5 | 925 63.5
PorLy+SyL | 2790 6412 | 91.8 56.0 | 85.4 37.3 | 92.5 64.8
MonNo 308 2622 | 86.6 42.3 | 78.1 28.8 | 86.3 46.8
BI 753 3680 | 91.1 54.8 | 8.2 38.8|91.9 6238
TRrR1 1464 5309 | 92.0 H8.3 | 83.7 33.3 | 92.4 63.3
right+words || PENTA 2087 6704 | 92.1 58.5 | 8.1 36.0 | 92.4 63.5
PorLy 2574 7683 | 92.1 58.5 | 85.1 37.6 | 92.5 64.3
Pory+SyrL | 2991 8674 | 92.2 57.5 | 8.9 40.0 | 92.3 63.5
BI 767 3709 | 90.4 54.8 | 85.6 39.5 | 92.1 64.0
TRrR1 1453 5300 | 91.4 H7.3 | 85.2 38.3 | 92.4 64.0
left-+words PENTA 2130 6819 | 91.7 56.8 | 8.5 40.3 | 92.5 63.8
PorLy 2612 7813 | 91.8 58.0 | 85.6 40.5 | 92.5 64.0
Pory+SyrL | 2978 8628 | 92.0 58.3 | 85.9 39.3 | 925 63.8

Figure 6: Word accuracy WA and sentence accuracy SA for different inventories of subword
units

as voiced. Parameters and thresholds of the algorithm have been manually adjusted using
database A. Database B was only used for a final test.

Within our speech system Fgy contours will be used for determining the sentence mood
and focus of utterances as well as for phrase boundary detection. For these tasks it is
important to have a reliable fundamental frequency contour where the values do not have
to be very accurate. Hence we consider here only the so called coarse error rate [8]. A
coarse error occurs if the automatically determined Fy value and the reference value differ
by more than 30 Hz. The coarse error rates for frames and sentences are given in Figure 7.
The error rates were determined by comparing the automatically computed Fy contours
manually with contours produced by a mechanical pitch detector. If necessary an exact
reference value was determined from the signal and with perception tests. The fact that
the performance of our algorithm on database B is better than on the ‘training’ database
A is due to the greater number of laryngealizations in database A.

Sentence Mood

The experiments reported here are based on a sample of 30 declarative, 30 interrogative,
and 30 continuation rise utterances spoken by four speakers giving a total of 360 utterances.

At first a perception test was performed with 2 listeners in order to determine how
reliable a human listener can distinguish the three types of utterance. On average, 95.4%
of the declarative, 93.8% of the interrogative, and 85.8% of the continuation rise type



coarse error, frame coarse error, sentence

database DP | DP. | AMDF. | Seneff. DP DP. | AMDF,. | Seneff.
A 1.7 1.6 1.9 1.7 12.3 8.9 30.3 17.9
B 0.6 0.6 1.9 1.3 8.1 6.4 41.9 27.9

Figure 7: Percentage of frames and sentences with coarse errors (difference more than 30

Hz)

utterances were classified correctly by the two human listeners.

It became evident from the above experiments that in some cases the sentence mood
was not produced correctly. In addition, the determination of the fundamental frequency
Fy was wrong in some cases. For the classification experiments with the Bayes classifier
these erroneous utterances were eliminated from the sample. In total, 322 or 89.4% out
of 360 sentences were used in the classification experiments.

Among others, experiments of the type ‘leave-one-(speaker)-out’ were performed. The
average recognition rate when successively leaving out the four speakers is 86.5% if n = 1
and 87.5% if n = 2.

Prosodic Phrase Boundaries

A Gaussian classifier was trained on 6900 sentences with 74,000 word boundaries from
the ERBA sample and tested on 2100 sentences with 22,000 word boundaries from the
same sample. In first experiments we achieved an average recognition rate of 67%. Better
results can be obtained with a polynomial classifier as reported in [4]. The automatic
labeling of potential phrase boundaries is not yet integrated into our system. It should
enhance linguistic analysis.

4 CONCLUSION AND OUTLOOK

The paper described a powerful environment for acoustic—phonetic word modeling and
decoding of speech. A general phonetic context, determined automatically during training
by the frequency of occurrence of phonetic contexts is determined. Speaker—independent
recognition results were presented. Besides the acoustic—phonetic (segmental) information
the speech signal contains prosodic (suprasegmental) information which can be used, for
example, to determine the sentence mood and phrase boundaries. An algorithm for the
estimation of fundamental frequency was described and results of its performance and
its application to determination of sentence mood and phrase boundaries were presented.
The integration into a speech understanding and dialog system is described, for example,
in [14].

Presently, phonetic and prosodic (segmental and suprasegmental) information are eval-
uated and used in two seperate channels. We plan to investigate the joint exploitation in
order to make full use of the information contained in the speech signal.
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