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Abstract

In this paper, we will demonstrate how the Unified Modeling Language
(UML) can be used to describe agent interaction protocols. The approach
that is presented in this paper does not propose major enhancements or
completely new diagrams but instead it relies on existing UML elements
that are part of the standard. This conformity with the base UML is a major
advantage of the idea as it prevents a diversification of the UML into dif-
ferent potentially incompatible dialects. The practical use of the method is
demonstrated in the specification of a realistic agent interaction protocol.

1 Introduction

Interaction is one of the core concepts of Multiagent Systems as it lays out the
foundation for cooperative or competitive behavior among several autonomous
agents. Before interaction can take place, however, some technical and concep-
tual difficulties must be solved. Firstly, the agents must be able to understand
each other. This mutual understanding is achieved by relying of accepted for-
mal or informal standards where the de-facto standard of todays agent appli-
cations seems to be KQML (FININ AND FRITZSON, 1994), others can be found
in (BUSSMANN AND MÜLLER, 1993) or (FIPA, 1996). Secondly, the agents must
know which messages they can expect in a particular situation and what the are
supposed to do (e.g. sending a reply message) when a certain message arrives
(or does not arrive for a given period of time). This part of the interaction pro-
cess is controlled by interaction protocols (or simply protocols).
For an example of an interaction protocol, consider an English auction. There,
an auctioneer offers a product at a particular price to a group of bidders. Each
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of the bidders individually decides to accept that price or to decline the offer.
If one of the bidders accepts the current price, the auctioneer raises the price
by a fixed rate and asks the group of bidders again if any of them accepts the
new price. If this is the case, the price is raised again and the cycle repeats until
none of the bidders is willing to pay the current price. Then, the last bidder who
accepted the previous price is given the product.
In this example, we can identify the major elements of interaction protocols.
Firstly, we can distinguish the participating agents into several groups. In this
case, we have two groups: the auctioneer and the bidders. Each group has a
set of associated incoming and outgoing messages an internal functions that
decide about their next action. We will refer to the set of messages and be-
haviors that are associated with a group of agents as a role that can be played
by an agent. Please note that agents are not limited to a single role, e.g. the
auctioneer in the previous example can be a bidder in another auction at the
same time. The second important aspect of an interaction protocol besides the
participating roles is the temporal ordering of function evaluation and the mes-
sages that are exchanged. For example, it would not make sense or would be
impossible for the bidder to decide on an offer and to decline it before it has
even received the offer. Therefore, the interaction protocol determines the flow
of control within each role as well as between different roles.
It is precisely the dualism mentioned in the previous paragraph that makes pro-
tocol design a difficult task. There are not only role-internal aspects to consider
during the design process, but also external effect induced by the other roles.
Even worse, there is currently only little Software Engineering support for the
design of interaction protocols. A number of protocol specification languages
have been proposed ranging from specification languages for low level com-
munication protocols (THE INTERNATIONAL ORGANIZATION FOR STANDARDIZA-
TION, 1997), (HOLZMANN, 1991) up to high level specification languages for
multiagent applications (BURMEISTER ET AL., 1995), (KOLB, 1995). Up to now,
however, none – perhaps except for Estelle – of these languages has gained wide-
spread acceptance.
One reason for this lack of acceptance is probably the fact that the above lan-
guages all provide text-based representations for the interaction protocols. This
makes it hard, especially for complex protocols, to understand the flow of con-
trol within the protocol. An alternative for these text-based languages are there-
fore graphical languages that make the described protocols more accessible for
the reader. One of the currently most popular graphical design languages is
the UML (BOOCH ET AL., 1999). The UML combines various ideas from other
graphical design languages as well as some original ideas into a coherent frame-
work that allows the Software engineer to specify almost all aspects of a software
system. The key term in the last sentence, however, is “almost all” and it is –
among others – the field interaction protocols that is not treated adequately by
the UML.
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In (LIND, 2000) we have used the UML as a design tool and developed a way
to describe interaction diagrams using a standard diagram type provided by the
UML. Only minor changes to the proposed standard elements of this diagram
type were necessary to provide the required expressiveness. Thus, we use UML
activity diagrams that are enhanced by a concept that allows the modeling of
the message exchange process between the roles within an interaction proto-
col. The major advantage of this approach is that it does not introduce a com-
pletely new diagram type that is potentially difficult to learn and probably even
more difficult to establish in the UML community. Instead, we propose to use
an existing diagram type whose semantics can be quickly understood by any-
body familiar with the standard UML.

2 Related Work

In the previous section, we have already mentioned some protocol specification
languages that have been proposed. Estelle (THE INTERNATIONAL ORGANIZA-
TION FOR STANDARDIZATION, 1997), for example, is a specification language for
service description and system behavior in telecommunications that uses ex-
tended finite automata to describe the intended behavior. Extended finite state
machines are normal finite state machines plus (typed) variables. The state in
the finite state machine has a set of associated variables that can be queried
and/or manipulated in the transition specifications. In Estelle, a protocol is a
collection of several distinct automata where each automaton can have an ar-
bitrary number of interaction points with other automata. These interaction
points are called channels and they control the message exchange between dif-
ferent automata. Estelle is a very powerful language that was mainly developed
for the specification of low level protocols. It is therefore not directly suitable
for the use in multiagent applications.
The ������ (PHILIPPS AND LIND, 1999) protocol specification environment fea-
tures a specification language that is related to Estelle (THE INTERNATIONAL OR-
GANIZATION FOR STANDARDIZATION, 1997) and that is based on a similar com-
putational concept. However, due to the focus on multiagent specific aspects,
������ provides a more accessible interface to protocol design. The main tool of
the protocol environment is a compiler that generates Oz code (PROGRAMMING

SYSTEMS LAB, 1999) from a given protocol specification, a graphical notation
is currently not available. In the ������ environment, a protocol is defined by a
collection of roles where each of these roles is specified as an extended finite
state machine. The state machine transitions fire upon incoming messages;
messages can stem from other agents or from internal procedures. These in-
ternal procedures implement the connection to the application and allow for a
uniform modeling of internal and external communication.
The ZEUS development environment (NWANA ET AL., 1999) from British Tele-
com is a a design method and tool collection for the engineering of dis-
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tributed multiagent applications. The ZEUS tools all encompass the direct-
manipulation metaphor and allow the designer to use drag-and-drop technol-
ogy to assemble the application from pre-defined components. The tool-kit al-
lows the designer to specify models for different types of agents, for the orga-
nizational structure of agent societies and for negotiation models. The nego-
tiation models are either pre-defined or the can be build by the designer if no
appropriate pre-defined model is available for a particular task. In (COLLINS

AND NDUMU, 1998) a notation for role models is presented that originates from
UML class diagram notation and that contains also elements from UML interac-
tion diagrams (e.g. message sequencing). The ZEUS role models capture struc-
tural (static) relationships between roles as well as communicative acts that de-
scribe the dynamic aspects of inter-agent communication. The pre-defined role
models that are provided by the ZEUS environment include various protocols
from the trading domain as well as business processes such as supply chain
management.
As part of the AGENT UML in the FIPA standard, (BAUER ET AL., 1999) suggests
an extension of the UML by a completely new diagram type called protocol di-
agrams. These diagrams combine elements of UML interaction diagrams and
state diagrams to model the roles that can be played by an agent in the course
of interacting with other agents. The new diagram type allows for the specifi-
cation of multiple threads within an interaction protocol and supports protocol
nesting and protocol templates based on generic protocol descriptions.

3 UML Activity Diagrams

Activity diagrams in UML models provide a number of structural elements as
shown in in Figure 1 to describe algorithms in a flowchart like manner. To
this end, each computation is expressed in terms of states and the progression
through these states. In order to allow for a hierarchical modeling, the UML dis-
tinguishes between two classes of states. Action states are atomic entities that
cannot be decomposed and that relate to atomic statements in a programming
language, eg. variable assignment. Activity states, on the other hand, represent
a collection of atomic states and can thus be decomposed into these atomic
states. Furthermore, the execution of an activity can be interrupted between
any two subsequent states. In terms of programming languages, actions relate
to statements and activities relate to subroutines.
The states of an activity diagram are linked with each other through transitions
that indicate the control flow within the activity diagram. Each transition can
have a guard condition that controls the flow of control in that it only allows
a transition to fire if the guard condition is true. Because of the basic require-
ment that each transition must have at least one start and one end point, special
states are introduced that represent the beginning and the end of an activity di-
agram, respectively.
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Figure 1 Structural Elements of UML Activity Diagrams
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The control flow within an activity diagram is not necessarily linear, otherwise
it would be impossible to express anything other then trivial algorithms. There-
fore, branching elements that represent the decision points within a diagram
are provide. Each branching points stands for a boolean decision, i.e. the flow
of control can proceed along two different paths.
Many modern programming languages provide some notion for pseudo-
parallel program execution within a single operating system process. These
light-weight processes – usually referred to as “threads” – can be modeled in
UML activity diagrams by using two structural elements. A fork operation splits
a single thread of execution into two or more threads that are subsequently ex-
ecuted in parallel. Thus, a fork bar has one incoming transition and several out-
going transitions. In order to merge several of these parallel threads into a single
thread again, UML activity diagrams provide the join element. Thus, a join bar-
rier has several incoming transitions and only a single outgoing transition, it can
therefore be used to synchronize several parallel threads of execution. Note that
a join barrier waits until all incoming threads have arrived at the barrier before
proceeding with the single master thread.
Because of the fact that activity diagrams tend to become somewhat confusion
with growing in size, UML activity diagrams can contain so-called swimlanes
that are used to partition an activity diagram into several conceptually related
parts. Within an activity diagram, each swimlane must have a unique name and
each activity must belong to exactly one swimlane.
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Figure 2 Synchronization Point

���
����

���
�������

�
� �

� �

Timeout

4 Protocol Specification with Activity Diagrams

In this paper, we propose some slight modifications to the basic elements of
UML activity diagrams in order to make them usable to describe agent interac-
tion protocols. First of all, we will extend the idea of swimlanes as a means to
distinguish between conceptually related parts of an activity diagram. In our
interpretation, these swimlanes are interpreted as physically – as opposed to
conceptually – separated flows of control which we will refer to as Control Flow
Spaces in the rest of this paper. These control flow spaces are linked with each
other via explicit communication channels that manage the message exchange
between two connected spaces. The message exchange itself is modeled in syn-
chronization points that denote the sending and the reception of messages, re-
spectively. The graphical representation of a synchronization point is shown in
Figure 2 where ��� and ��� denote the the control flow of the sender and the
control flow of the receiver, respectively.
Each synchronization point has several incoming transitions out of which ex-
actly one must be labeled with the keyword ����. The other transitions are the
receivers of the respective message. Whenever the control flow of a receiver en-
ters a synchronization point, the receiver suspends until a message has been
delivered. This happens whenever the control flow of the sender reaches the
synchronization point. After the massage has been delivered, the control flow
of the sender and the control flow of the receivers resumes after the synchro-
nization point. In order to prevent the receivers from infinite blocking while
waiting for a message that never arrives, an additional timeout transition for
each receiver can be attached to the synchronization. Whenever the timeout is
reached and no message has been delivered, the control flow of the respective
receiver resumes at the state pointed to by the timeout transition.
A broader view of activity diagrams in conjuction with agent protocol specifica-
tion is shown in Figure 3. The round boxes indicate the control flow spaces that
are associated with each role within the agent interaction protocol. The control
flow of each of these roles is modeled using the structural elements that are pro-
vided by standard UML activity diagrams. However, the self-contained control
flow spaces are linked via a communication channel that holds one synchro-
nization point that links the activity diagrams of the different roles.
A very important feature of UML diagrams is that they provide a powerful struc-
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Figure 3 Extended Activity Diagram
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turing mechanism that can be used to make protocol mode readable. Since ac-
tivity states can represent complete automata, it is straightforward to use them
for macro definitions that can be used in interaction protocols. Figure 4 illus-
trates the idea. Figure 4 (a) shows an activity diagram for dispatching an incom-
ing message according to the message type. Using the UML rule that a state can
have several outgoing transitions that are labeled with conditional statements,
we can rewrite the shaded part of the original automaton that contains three
branching points into a single state as shown in 4 (b)1. Collapsing several states
into a single macro state has not only the advantage to make a diagram more
readable, it is also important that the macro state can be given a speaking name
that highlight its purpose. Furthermore, this mechanism can be used to embed
protocols into others, allowing for a hierarchical structuring, flexible combina-
tion and re-use of protocols.

5 Example

In order to illustrate the use of UML activity diagrams for interaction protocol
specification on a realistic example, recall the English Auction that was pre-
sented in th introductory section. In Figure 5, we have depicted an interaction
protocol that describes the course of actions and message exchanges within the
auction more formally.
The first step in the interaction design process is to identify the roles that inter-
act with each other. In the example, we have already identified the auctioneer
and the bidder as the participating roles. Now, we create a control flow space
that will later hold the finite automaton that describes the behavior of the agent
playing a particular role. It is usually a good idea to develop an initial version of
each automaton without considering the other automata, i.e. without switch-
ing back and forth between different automata. Thus, for the auctioneer, the
auction starts with an initialization of its internal data, e.g. with determining
the initial price of the product. Then, the auctioneer sends out a proposal to
the bidders and waits for the incoming replies. In order to make the example
more realistic, we assume that a bidder can indicate that the proposal was not
understood, e.g. because the bidder is not familiar with the ontology used. In
that case, the auctioneer simply ignores the message and continuous to wait
for further messages. If, on the other hand, the price is accepted by the bid-
der, the auctioneer raises the price according to a fixed rate and the cycle starts
from the beginning. In the offer is not accepted by the bidder, the auctioneer
continuous to wait for incoming replies until a fixed timeout. When the time-
out has expired and no bidder has accepted the offer, the product is given to
the last bidder that has accepted the price (if that price exceeds a previously de-
fined minimal acceptable price). Please note, that the CheckAnswer state uses

1Note that conditions on the outgoing transitions are abbreviated in the example.
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Figure 5 English Auction
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the macro mechanism explained earlier to dispatch the incoming messages.
Now that the behavior of the auctioneer has been fully specified, we can turn to
the bidder role. In the example, the bidder goes into a waiting loop as soon as
the protocol execution is started. It leaves this loop when it receives an offer pro-
posed by the auctioneer and checks whether to offered price is acceptable ac-
cording to its individual goals. If this is the case, the bidder sends out a positive
reply and re-iterates the waiting process. If the actual price is not acceptable,
the bidder waits for a message from the auctioneer that indicates if the bidder is
given the product or nor. Obviously, this can only happen when the bidder has
issued a positive reply during the auction. To avoid an infinite blocking of the
bidder, a timeout is applied to terminate the waiting process after a finite time.
The bidder that receives the positive acknowledgment from the auctioneer, on
the other hand, will immediately initiate the payment process to finally receive
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the product.
This small example should be sufficient to provide the reader with an impres-
sion on how to apply the suggested method to arbitrary agent interaction proto-
cols. The best way to see how the method works in practice is to pick an (prefer-
ably easy) protocol from the application domain of interest and then to simply
start right away with an iterative modeling process. The value of the diagrams
will then quickly become apparent.

6 Conclusion

In this paper, we have demonstrated how UML activity diagrams can be used
for the specification of agent interaction protocols. The suggested method uses
existing UML concepts as far as possible and requires only little additional el-
ements, therewith making it easy for UML users to understand the interac-
tion protocols without having to learn a completely new type of diagram. The
method that was explained in this paper has been used in practical situations
and has shown to be a valuable tool for modeling, understanding and commu-
nicating agent interaction protocols.
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