
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Technical
Memo
TM-99-01

SMESPR/1.0

Matthias Fischmann

January 1999

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341





The Smes Client/Server Protocol (SMESPR/1.0)

Matthias Fischmann

DFKI-TM-99-01



This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research and Technology (FKZ ITWM-01IW809).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1999
This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.
ISSN 0946-0071



The Smes Client�Server Protocol �SMESPR�����

Matthias Fischmann �fischman�dfki�de�

January ��� ����

Abstract

smespr is a robust� e�cient� �exible and platform�language independent protocol that
allows the smes kernel to export its functionality over any sort of computer networks �in
particular TCP�IP�� It allows for results in di	erent formats �HTML�XML� SQL and plain
feature structures are available� others may be easily added� as well as for creating and
controlling graphical user interfaces from the interior of the smes world� Furthermore� any
sort of access or privacy policy can be plugged into the existing protocol very easily� A
prototype implementation is in use at the DFKI in several projects�

This article contains the documentation of smespr���� and out prototype implemen

tation�

� Introduction

The smes system developed in the paradime project ������ is a framework providing solutions
for a heterogenous set of linguistic analysis tasks� To make it available on multiple platforms
and in di�erent environments with minimal amount of changes in the kernel� it is convenient to
export the functionality over a network interface� This allows us to use the prototype written
in allegro common lisp� and incrementally recode it in C	C

� while the client software works
independently in perl	Tk� and Java��
smespr���� is a protocol designed for an arbitrary text processing system� that wants to
provide its functionality over a network� This suggests that a connected client is to submit a
query consisting of a text together with information about the desired kind of computation and
about the format of the result� For instance� a query could contain the information �invoke
the function parse�from�string on the sentence �Der Umsatz von Siemens wuchs im letzten
Quartal um �
 Prozent�� and return the result as an HTML fragment to be browsed in a web
client���
A session �the time between connection and disconnection of a client� basically consists of a
query�response loop� after the client has submitted a query� the server computes it� returns the
result� and then waits for the next query�
This paper documents the protocol and its prototype implementation consisting of a server
package for the franz lisp version of smes and a client with both shell facilities and a graph�
ical user interface �written in perl	Tk��� We provide a programmer�s manual� an abstract
speci�cation�

��� Contents of this paper

In section �� we will describe how our libaries are used to write perl clients and to build new lisp
server images that extend the basic functionality� To keep the system portable and language
independent� we provide an abstract speci�cation of the underlying protocol in section 
 that
is based on abstract network streams� Section � concludes the paper�

�Allegro CL is a product of Franz Inc�
�perl is a scripting language available from http���www�perl�org�
�Java is a registered trademark of Sun Microsystems� Inc�
�Although it is particularly designed for the smes framework� other related projects may bene�t from the

work we present here as well�
�The alpha�version of a java�client is provided with the prototype distribution as well� but it is still experi�

mental and we will not consider it here�

�



��� Acknowledgements

This paper and the corresponding implementation would not have been possible without the
e�orts of Peter Rullmann� who wrote most of the parac code� and the feedback of Thierry
Declerck� Judith Klein� Sven Schmeier� Markus Becker� Feiyu Xu� Christian Braun and others�
Most importantly� G�unter Neumann has come up with the idea of providing internet access to
the smes system in the �rst place� and was responsible for coordinating the design phase and
the integration of the network libraries into the smes kernel�
The ParaClient object makes use of the RecDescent Parser package by Damian Conway to
process the con�guration data�

� Using the paraserv libraries

Before we give a formal description� we will approach the problem from two sides� The next
section contains a tutorial on how to write perl scripts that contact a running smes server using
the ParaClient perl module�� Then� we give an introduction to setting up a new server with
the lisp package paraserv�

��� Writing Client Scripts in Perl

Before we start� make sure that you have the smespr���� prototype distribution installed on
your system and a public server is running somewhere in the net�
ParaClient is a perl class that encapsulates the job of maintaining the connection� generating
query strings and parsing the response to obtain the result� Initialization and opening the
connection is straight forward�

use ParaClient�

my �verbose � �����

� this is extremely noisy	 
 is a little more moderate	

my ��host� �port
 � ��limit	dfki	uni�sb	de�� �����
�

� or wherever your server is	

my �timeout � ���

� seconds	 this is the default value� so you could

� skip this	 on slow connections� it may be necessary

� to increase this to �� or even higher	

my �client � ParaClient��new��verbose� �host� �port� �timeout
�

if ��client��open�

 �

� 			 this your program			

� else �

die �connection to �host��port failed��

�

Next� we need to encode everything we know about the server method we want to invoke in a
method speci�cation string� In particular� the name of the method� the names and values of
the arguments� and the result type need to be �xed� Have a look at the following example�

�This module is used in the parac program coming with the distribution as well�

�



my �method � ��smes��fst�from�string

���fst 	 �np�star
 ��trace 	 t



��text�html�



��

The second list element represents the arguments passed to the method using a lisp�style asso�
ciation list� every argument is represented by a dotted lisp list mapping the keyword argument
name to its value �see �
� to learn more about dotted lists��
Taken a list of method speci�cations ms �every method will be invoked� in order of appearance
in the list� and a string �s containing the text in question� a query is submitted as follows�

if ��client��query��s� �ms
 � �
 �

� success� the server will now respond	

� 			

� else �

die �failed to submit query��

�

There are two levels of abstraction the response can be retrieved on� �i� if interested in the pure
result only� use response� �ii� in need of sophisticated control mechanism to obtain debug and
progress reports from the server during the computation� use the primitive commands readline
and readpackage�
To understand �ii�� it is necessary to know more about the protocol �rst� Therefore� we do
not talk about this option here� �i�� however� is powerful enough to obtain the result� all other
output coming from the server will be dumped to stderr �where you could read it by rebinding
STDERR�� This is how it works�

print STDERR ��n�reading response��n�n��

my �pkg � �client��response�
�

if �defined �pkg
 �

print STDERR ��n�done��n�n��

my �code � �pkg����code���

my �contents � �pkg����contents���

print STDOUT �contents�

� else �

die �could not read package��

�

The code cited in this section is contained in the sample program parascript coming with the
distribution�

��� Customizing the Lisp Server

To learn how to use the smes system� see the manual coming with the smes distribution�
The package paraserv �nickname ps� provides smespr���� compliant server functionality to
the allegro common lisp system �using the defsystem package developed by Mark Kantrowitz
in ������ It contains a function dump�server that creates a lisp image that can be run as a
server in the background� This means that creating a new server image is as easy as typing the
following line to the prompt of a lisp image containing the desired functionality�






�setf ps���specs�

���smes��morph�from�string �Morphology�

���trace �Debug Mode�

����lambda �x
 �not �member x ��t nil





��boolean








���text�plain� 	 nil






�smes��fst�from�string �Phrasal Chunker�

���fst �Select Subgrammar�

pp ����lambda �x
 �not �member x

�list �all�frags

�firmen�treiber

�main

�np�star





��menu ��all�frags 	 �All Subgrammars�


��firmen�treiber 	 �Company names�


��main 	 �NP and PP grammar�


��np�star 	 �NP��









���text�plain� 	 nil


��text�html� 	 ���smes��format�fst�from�x�to�html�string






			







Figure �� Description of the server methods of the prototype server�

�load�system ��paraserv��
 �dump�server


However� it is necessary to calibrate paraserv before we get there� The smes methods �or lisp
functions exported to the network� must be explicitely de�ned� and the overall behaviour of
the server �locations of log�les� verbosity� network ports etc�� might have to be adapted to
individual needs�

����� Describing Lisp Functions

ps���specs� describes the behaviour of the server� Before we de�ne the structure of this rather
complicated variable� have a look at a part of the standard server�s �specs� variable in �gure ��
There are two methods� one called morph�from�string and the other one fst�from�string�
For each method� a real name ��Morphology� or �Phrasal Chunker�� respectively�� description
of accepted parameters and the set of supported result types are mentioned�
In general� ps���specs� contains a list of arbitrary many method descriptions� Each description
is in turn a list that contains the following pieces of information �in this order��

� The name of the function to be declared as a smes method� This is a lisp symbol� the
package name defaults to ps�

� A string representing the external name of the method� This keeps the user away from
names like smes��scan�from�string� and gives him something like �Tokenizer� instead�

�



� A list of four element lists of the form �hkeyi hnamei htesti hkindi
� Each such list
represents a keyword argument that is passed to the function when it is called� It consists
of

� A keyword hkeyi�

� Some string hnamei containing the name passed to the user� �As with the user name
of the method� we want to hide unintuitive internal names from the smes user��

� A function htesti that checks whether the value provided to the keyword is acceptable�
Returns nil if an argument is acceptable� and some text or arbitrary lisp expression
that is interpreted as an error message otherwise�

� A list hkindi containing information to allow the client to build speci�c input widgets�
It may be one of the following�

� ��string hwidthi hheighti
� hwidthi and hheigthi describe the size a text �eld
should have that reads the argument value �this is a guideline and may be ignored
by the client� it just makes it easier to guess an appropriate size��

� ��menu �hlisp�itemi 	 hnamei
 			
� Again� we export a lisp object together
with ist user�visible name�

� ��boolean
� Does not need any arguments� It is syntactic sugar for ��menu �t

	 ��on��
 �nil 	 ��off��

�

� ��buttons �hlisp�itemi 	 hnamei
 			
� Same as �menu� but allows for mul�
tiple choices�

� An assoc list mapping the name of every legal result type to the function that generates
it� For instance� ���text�html�� 	 ��convert
 attaches the output type �text	html�
to the lisp function convert� This function will be called with �convert hraw�valuesi
huser�argsi
� where hraw�valuesi is the list of values returned by the smes method� and
huser�argsi is extracted from the query to allow the user calibrate the output function
depending on a particular needs arising during the session �see there��

If the function is set to nil� a �format nil ���S�� �car hresulti

 will be used instead
�this is generally used for �text	plain� type results��

����� Other Server Switches

Server switches allow calibration of the server behaviour concerning log�les� verbosity etc� They
are implemented using special variables� In particular� the following variables may be changed
by the user�

� �logfile�� Path and �lename of the �only� server log�le� Defaults to ��	log	paraserv�log��

� �server�image�name�� The name of the server image to be created by dump�server�
Defaults to ��	bin	paraserv��

� �verbosity�� The size of the debug trace produced in the log�le� � means silent �only
hard error messages are still dumped�� 
 dumps connection data and the current session
phase� � is moderately talkative� � quite unreasonable and �� dumps every query in full
and a lot more�

� �default�port� The socket port the server is listening on� ����� by default�

� �mail�errors�� List of error codes that cause the server to send a mail when occuring�
Defaults to nil�

� �mail�to�� �mail�from�� �mail�reply�to�� If a mail is sent� these header �eld entries
are used� They all default to ��smes�dfki	de�� and should probably be changed if you
change �mail�errors��

� �mail�subject�� Defaults to �� �����

� �protocol�version� ��SMESPR��	��� by default� This is interesting for future exten�
sions only�

�



��� Writing lisp functions that are smes methods

So far� we have have assumed that the smes methods already exist as lisp functions� and we
described how to export them� In this section� we de�ne the constraints such a lisp function
must satisfy to be sucessfully called by the server� Furthermore� we document the concepts of
sending output and debug information to the client�

����� Invocation

A kernel function that may be called by the server module must have the following form�

�name htexti �key� hval�i �key� hval�i 			


htexti is the corpus string extracted from the query� while hvalni are arbitrary lisp expressions�
All keywords are optional� If a keyword is not mentioned in the query� an apropriate default
value must be available�

����� Producing Output

smespr���� o�ers three ways for a smes kernel function to produce output�

� Write on stdout with ��format� This kind of output is directly sent to the client and
may appear in a window called �standard output�� or on the terminal�

� Return one or more values� These values are converted to the desired result type auto�
matically and sent to the client as the �nal result of a computation�

� Use ��send�package to send a user type package�

�send�package hnumberi hcontentsi


hnumberi tags the string hcontentsi to be of some particular meaning� Customized client
software may react by interpreting this string in the desired way �pop up or update a
progress bar� visualize partial results or the like�� It is an error for hnumberi to be ��
� or � �these package numbers are hard wired in the protocoll�� See section 
 for more
information about packages�

� The Protocol

This section contains a quasi�formal smespr���� speci�cation� We assume that� two parties�
namely the client C and the server S� already have initialized a bidirectional network stream
that can be used by both parties both for reading and writing� We regard the process of
establishing this stream as atomic� i� e� we do not care about the implementation here�
A session starts with the stream being established and ends with it being closed� It is split into
three phases� namely the handshake phase� the query phase� and the response phase� the latter
two subsumed under the name main loop�

��� Handshake and Entering the Main Loop

After the stream has been established� S initializes the session by generating a unique ID and
sending it over the stream as a line �a �x�a�terminated string�� This ID may be used for
matching S� log�le entries to error reports from the user for trouble shooting�
C sends an acknowledgement that contains three lines�

� An echo of the ID just received�

� The version of smespr she wishes to use for communication� This is currently SMESPR��	��

� A name of the authentication and	or encryptions protocol� This is NONE by default� since
we don�t care about security at the moment�

�



�query� �� �query�

�

�text 	 �bla grahg	

may be more than one line	

�


�methods 	

���fst�from�string

�

��fst 	 �main


��trace 	 t





��text�html� 	 nil





��fst�from�string

�

��fst 	 �firmen�treiber





��text�plain� 	 nil














Figure �� An example query�

If these three lines have been sent� S sends an ack package or an error �see section 
�
�� for
more information on packages�� After this initial acknowledgement� C and S may enter some
cryptographical conversation if desired� �By default� nothing happens here��
Finally� the session enters the mainloop� C submits a query �query phase� and receives a
response �response phase�� This may be iterated arbitrarily often� The session is terminated
by C closing the stream�

��� The Query Phase

Every query consists of a one�line header and a body� The header contains the number of lines
of the complete query� �See �gure � for an example��

QRY!HEADER ��� ��query� � NUM!OF!LINES � �query�� �x�a

We de�ne the strings going over the stream by means of BNF fragments� �quoted� words are
terminals �or just strings to be copied literally�� CAPITALIZED words are non�terminals to be
de�ned in more detail �if the de�nition is obvious as in the case of NUM OF LINES� it is omitted��
�
� and ��� are used as usual� STRING is a text enclosed in double quotes ������ Whitespaces
outside strings and Lisp syntax comments are ignored� All characters outside strings are case
insensitive� Furthermore� de�nitions from the common lisp standard �
� hold if this document
is ambigous or silent�
The body of a query contains a list of two�element dotted lists in lisp syntax �sometimes referred
to as assoc list� that are interpreted as key�value pairs�

QUERY ��� ��� ENTRY" �
�

ENTRY ��� ��� �text� �	� STRING �
�

# ��� �methods� �	� ��� EXP" �
� �
�

�



There are only two valid ENTRY types� namely �text� and �methods�� The �method� key
contains a non�empty list of EXPs each of which describes smes method invokation and contains
information about the output type�

EXP ��� ��� NAME ��� ARG� �
� TYP �
�

# ��� NAME NIL TYP �
�

NIL ��� �NIL� # ��
�

TYP ��� ��� T!NAM �
�

# ��� T!NAM �	� THING �
�

T!NAM ��� STRING

ARG ��� ��� KEY �	� VALUE �
�

For each EXP in a query� the server calls the lisp function NAME with the speci�ed ARGs as
keyword arguments� The syntax will be transformed into �SMES�NAME ��some text�� �key�
val� �key� val� 			��
CAUTION� arbitrary lisp expressions present a severe security gap� since lisp is powerful enough
to execute arbitrary code on the server host machine even when only parsing them� Implemen�
tors are encouraged to introduce proprietary restrictions that �t their server methods as tight
as possible�
T NAM contains the type of the response and THINGmay contain additional information in future
extensions� At the moment� it is always NIL� i� e� the �rst case of TYP always holds�
Supported result types are�

� ��text�plain��� yields the output of the kernel functions without any postprocessing�
This is obviously supported by all methods and should be the default value�

� ��text�html��� yields an HTML fragment that could be browsed when wrapped in a
header and a footer �the fragment starts and ends in the body of a well�formed HTML
document�� Might be unde�ned on some of the smes methods�

� ��application�x�sql��� this is a more sophisticated result�type� but it is still hard�
wired in the protocol to demonstrate the �exibility of the system� It returns a sequence
of SQL insert statements that can be fed into an SQL database� The types of the tables
used in the statements depend on the speci�ed method�

Implementors are free to introduce further result types� If C uses an extension S does not know
of� an error 
 is returned �see section 
�
�� below��
The query phase ends with S analysing the query� If satis�ed� an ack package is launched to
initialize the response phase� Otherwise� an error is signalled to reject the query� In this case�
it is C�s turn to submit a new query or to disconnect�

��� The Response Phase

What now follows is a sequence of stdout lines and packages that come from S to C� For each
method invokation� exactly one package of type � or � is launched to indicate its termination�
The response phase is terminated by an additional ack package� �This is redundant� but useful
to deal with internal server errors that make S miscount the number of method calls��
Standard output of smes methods is passed to C line by line as it comes into existence� It may
be forwarded to the client�s terminal� or browsed in a window� It usually contains progress
reports� incrementally obtained results� or debugging information�
Additionally� S can launch a package to provide more speci�c information like �nal results�
control expressions for a graphical user interface� or error messages that must be parsed by the
client�

�



The notion of packages has already been used extensively up to here� We will now de�ne it
properly�

����� Packages

Like a query� a package consists of a header and a body containing NUM OF LINES further lines�
Unlike a query� the header contains the package type in addition to the size of the body� There
are three prede�ned package types� error ���� result ���� and ack ���� Packages of higher type
are called user packages �

PKG!HEADER ��� ��package� � ID � � NUM!OF!LINES � �package�� �x�a

All other output that is sent over the connection from S to C must be blocked and bu�ered
until the package transmission is completed� Also� S must ensure that all lines not contained
in a package that match PKG HEADER actually are package headers� Standard output may have
to be �ltered not to contain such lines�
A detailed description of the three prede�ned package types follows�

� error� �

The �rst line of an error package starts with an error number� followed by a colon ����� or
�x�a�� a space ��x���� and a plain error message� There may be more lines containing
arbitrary text�

Prede�ned errors are

� unknown method METHOD

� illegal arguments for method METHOD� ARGS

� result type T NAM not supported by method METHOD

� internal error

� internal error in method METHOD

� internal error while converting result to type T NAM

� parse error �illegal query�

�� ID code YOURS di�ers from MINE

�� illegal protocol version VERSION

�� illegal authentication protocol PROTOCOL

�� unknown package type NUMBER

�� no connection

�� and �� are exceptions in that they are not producded by S but locally by C� Anyway�
they are useful enough to require every client to support them�

User de�ned errors have numbers greater than ���� and may be freely introduced by the
implementor� C has to handle unknown error messages in some reasonable way �return
the description� or the like��

� result� �

This package contains the �nal result of one method call� The value of the executed lisp
function is feed into the pretty printer function and the output �that is always a string
and of the chosen result type� is delivered by means of the result package�

Result packages are always returned in the order the method invokation requests are listed
in the query�

� ack� �

Usually� type � packages do not contain any particular information� They end initial
handshake and query	response phases� However� as they are ordinary packages� they may
very well be used for proprietary extensions �which are then simply ignored by standard
clients��

�



� De�ning new package types

New package types may be freely introduced at any time� If C does not know the type
of a received package� an error �� occurs�

��� Transmission of Service Information

The �specs� variable introduced in section � contains a certain amount of information that
is interesting for the client only� This information can be requested by C sending a special
one�line query consisting of the string ��configure��� This query causes the server to send a
single result package containing the information represented by �specs� in a slightly modi�ed
way�
This package is a proprietary extension of the prototype implementation� but might be added to
the standard in the future� For more details� consult the source code or just dump a con�gura�
tion package to a �le and look at it by hand �the di�erences to �specs� are rather super�cial��

� Conclusion

smespr is de�ned on a level of abstraction that leaves room for e cient implementations� by
allowing to choose an arbitrary stream model �TCP	IP sockets� the package oriented UDP	IP
protocol� etc��� This hopefully makes it useful not only for the prototype in lisp� but also for
industrial quality versions to come�
The stream model of our prototype is TCP	IP� although smespr is strictly package oriented�
and the package oriented UDP protocol is in general more e cient� This is because sock�
ets are more easy to write and maintain and �most importantly� available in virtually every
programming language that exists� and thus more �exible in the design and development phase�
On the other hand� this slows things down a little� We still don�t have any reliable information
on the e ciency of the system� We expect it to be easy to write fast implementations using
e cient network technology and programming languages� but the acl server seems to have a
constant connection and handshake cost of a few seconds� This is not as severe as one might
think� since smes is designed to perform expensive computations that take a much longer time�
However extensive benchmarks and optimizations must be considered next�

References

��� G� Neumann� R� Backofen� J� Baur� M� Becker� C� Braun� An information extraction core

system for real worl german text processing � in �th International Conference of Applied

Natural Language� p� ���!���� Washington� USA� �����

��� G� Neumann� G� Mazzini� Domain�adaptive Information Extraction� DFKI Report� to
appear�

�
� Guy L� Steele jr�� Common Lisp � The Language� �nd edition� digital press�

��



S
M

E
S

P
R

/1
.0

M
at

th
ia

s
F

is
ch

m
an

n

T
M

-9
9-

01
Te

ch
ni

ca
lM

em
o


