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The Smes Client�Server Protocol �SMESPR�����

Matthias Fischmann �fischman�dfki�de�

January ��� ����

Abstract

smespr is a robust� e�cient� �exible and platform�language independent protocol that
allows the smes kernel to export its functionality over any sort of computer networks �in
particular TCP�IP�� It allows for results in di	erent formats �HTML�XML� SQL and plain
feature structures are available� others may be easily added� as well as for creating and
controlling graphical user interfaces from the interior of the smes world� Furthermore� any
sort of access or privacy policy can be plugged into the existing protocol very easily� A
prototype implementation is in use at the DFKI in several projects�

This article contains the documentation of smespr���� and out prototype implemen

tation�

� Introduction

The smes system developed in the paradime project ������ is a framework providing solutions
for a heterogenous set of linguistic analysis tasks� To make it available on multiple platforms
and in di�erent environments with minimal amount of changes in the kernel� it is convenient to
export the functionality over a network interface� This allows us to use the prototype written
in allegro common lisp� and incrementally recode it in C	C

� while the client software works
independently in perl	Tk� and Java��
smespr���� is a protocol designed for an arbitrary text processing system� that wants to
provide its functionality over a network� This suggests that a connected client is to submit a
query consisting of a text together with information about the desired kind of computation and
about the format of the result� For instance� a query could contain the information �invoke
the function parse�from�string on the sentence �Der Umsatz von Siemens wuchs im letzten
Quartal um �
 Prozent�� and return the result as an HTML fragment to be browsed in a web
client���
A session �the time between connection and disconnection of a client� basically consists of a
query�response loop� after the client has submitted a query� the server computes it� returns the
result� and then waits for the next query�
This paper documents the protocol and its prototype implementation consisting of a server
package for the franz lisp version of smes and a client with both shell facilities and a graph�
ical user interface �written in perl	Tk��� We provide a programmer�s manual� an abstract
speci�cation�

��� Contents of this paper

In section �� we will describe how our libaries are used to write perl clients and to build new lisp
server images that extend the basic functionality� To keep the system portable and language
independent� we provide an abstract speci�cation of the underlying protocol in section 
 that
is based on abstract network streams� Section � concludes the paper�

�Allegro CL is a product of Franz Inc�
�perl is a scripting language available from http���www�perl�org�
�Java is a registered trademark of Sun Microsystems� Inc�
�Although it is particularly designed for the smes framework� other related projects may bene�t from the

work we present here as well�
�The alpha�version of a java�client is provided with the prototype distribution as well� but it is still experi�

mental and we will not consider it here�
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� Using the paraserv libraries

Before we give a formal description� we will approach the problem from two sides� The next
section contains a tutorial on how to write perl scripts that contact a running smes server using
the ParaClient perl module�� Then� we give an introduction to setting up a new server with
the lisp package paraserv�

��� Writing Client Scripts in Perl

Before we start� make sure that you have the smespr���� prototype distribution installed on
your system and a public server is running somewhere in the net�
ParaClient is a perl class that encapsulates the job of maintaining the connection� generating
query strings and parsing the response to obtain the result� Initialization and opening the
connection is straight forward�

use ParaClient�

my �verbose � �����

� this is extremely noisy	 
 is a little more moderate	

my ��host� �port
 � ��limit	dfki	uni�sb	de�� �����
�

� or wherever your server is	

my �timeout � ���

� seconds	 this is the default value� so you could

� skip this	 on slow connections� it may be necessary

� to increase this to �� or even higher	

my �client � ParaClient��new��verbose� �host� �port� �timeout
�

if ��client��open�

 �

� 			 this your program			

� else �

die �connection to �host��port failed��

�

Next� we need to encode everything we know about the server method we want to invoke in a
method speci�cation string� In particular� the name of the method� the names and values of
the arguments� and the result type need to be �xed� Have a look at the following example�

�This module is used in the parac program coming with the distribution as well�

�



my �method � ��smes��fst�from�string

���fst 	 �np�star
 ��trace 	 t



��text�html�



��

The second list element represents the arguments passed to the method using a lisp�style asso�
ciation list� every argument is represented by a dotted lisp list mapping the keyword argument
name to its value �see �
� to learn more about dotted lists��
Taken a list of method speci�cations ms �every method will be invoked� in order of appearance
in the list� and a string �s containing the text in question� a query is submitted as follows�

if ��client��query��s� �ms
 � �
 �

� success� the server will now respond	

� 			

� else �

die �failed to submit query��

�

There are two levels of abstraction the response can be retrieved on� �i� if interested in the pure
result only� use response� �ii� in need of sophisticated control mechanism to obtain debug and
progress reports from the server during the computation� use the primitive commands readline
and readpackage�
To understand �ii�� it is necessary to know more about the protocol �rst� Therefore� we do
not talk about this option here� �i�� however� is powerful enough to obtain the result� all other
output coming from the server will be dumped to stderr �where you could read it by rebinding
STDERR�� This is how it works�

print STDERR ��n�reading response��n�n��

my �pkg � �client��response�
�

if �defined �pkg
 �

print STDERR ��n�done��n�n��

my �code � �pkg����code���

my �contents � �pkg����contents���

print STDOUT �contents�

� else �

die �could not read package��

�

The code cited in this section is contained in the sample program parascript coming with the
distribution�

��� Customizing the Lisp Server

To learn how to use the smes system� see the manual coming with the smes distribution�
The package paraserv �nickname ps� provides smespr���� compliant server functionality to
the allegro common lisp system �using the defsystem package developed by Mark Kantrowitz
in ������ It contains a function dump�server that creates a lisp image that can be run as a
server in the background� This means that creating a new server image is as easy as typing the
following line to the prompt of a lisp image containing the desired functionality�






�setf ps���specs�

���smes��morph�from�string �Morphology�

���trace �Debug Mode�

����lambda �x
 �not �member x ��t nil





��boolean








���text�plain� 	 nil






�smes��fst�from�string �Phrasal Chunker�

���fst �Select Subgrammar�

pp ����lambda �x
 �not �member x

�list �all�frags

�firmen�treiber

�main

�np�star





��menu ��all�frags 	 �All Subgrammars�


��firmen�treiber 	 �Company names�


��main 	 �NP and PP grammar�


��np�star 	 �NP��









���text�plain� 	 nil


��text�html� 	 ���smes��format�fst�from�x�to�html�string






			







Figure �� Description of the server methods of the prototype server�

�load�system ��paraserv��
 �dump�server


However� it is necessary to calibrate paraserv before we get there� The smes methods �or lisp
functions exported to the network� must be explicitely de�ned� and the overall behaviour of
the server �locations of log�les� verbosity� network ports etc�� might have to be adapted to
individual needs�

����� Describing Lisp Functions

ps���specs� describes the behaviour of the server� Before we de�ne the structure of this rather
complicated variable� have a look at a part of the standard server�s �specs� variable in �gure ��
There are two methods� one called morph�from�string and the other one fst�from�string�
For each method� a real name ��Morphology� or �Phrasal Chunker�� respectively�� description
of accepted parameters and the set of supported result types are mentioned�
In general� ps���specs� contains a list of arbitrary many method descriptions� Each description
is in turn a list that contains the following pieces of information �in this order��

� The name of the function to be declared as a smes method� This is a lisp symbol� the
package name defaults to ps�

� A string representing the external name of the method� This keeps the user away from
names like smes��scan�from�string� and gives him something like �Tokenizer� instead�

�



� A list of four element lists of the form �hkeyi hnamei htesti hkindi
� Each such list
represents a keyword argument that is passed to the function when it is called� It consists
of

� A keyword hkeyi�

� Some string hnamei containing the name passed to the user� �As with the user name
of the method� we want to hide unintuitive internal names from the smes user��

� A function htesti that checks whether the value provided to the keyword is acceptable�
Returns nil if an argument is acceptable� and some text or arbitrary lisp expression
that is interpreted as an error message otherwise�

� A list hkindi containing information to allow the client to build speci�c input widgets�
It may be one of the following�

� ��string hwidthi hheighti
� hwidthi and hheigthi describe the size a text �eld
should have that reads the argument value �this is a guideline and may be ignored
by the client� it just makes it easier to guess an appropriate size��

� ��menu �hlisp�itemi 	 hnamei
 			
� Again� we export a lisp object together
with ist user�visible name�

� ��boolean
� Does not need any arguments� It is syntactic sugar for ��menu �t

	 ��on��
 �nil 	 ��off��

�

� ��buttons �hlisp�itemi 	 hnamei
 			
� Same as �menu� but allows for mul�
tiple choices�

� An assoc list mapping the name of every legal result type to the function that generates
it� For instance� ���text�html�� 	 ��convert
 attaches the output type �text	html�
to the lisp function convert� This function will be called with �convert hraw�valuesi
huser�argsi
� where hraw�valuesi is the list of values returned by the smes method� and
huser�argsi is extracted from the query to allow the user calibrate the output function
depending on a particular needs arising during the session �see there��

If the function is set to nil� a �format nil ���S�� �car hresulti

 will be used instead
�this is generally used for �text	plain� type results��

����� Other Server Switches

Server switches allow calibration of the server behaviour concerning log�les� verbosity etc� They
are implemented using special variables� In particular� the following variables may be changed
by the user�

� �logfile�� Path and �lename of the �only� server log�le� Defaults to ��	log	paraserv�log��

� �server�image�name�� The name of the server image to be created by dump�server�
Defaults to ��	bin	paraserv��

� �verbosity�� The size of the debug trace produced in the log�le� � means silent �only
hard error messages are still dumped�� 
 dumps connection data and the current session
phase� � is moderately talkative� � quite unreasonable and �� dumps every query in full
and a lot more�

� �default�port� The socket port the server is listening on� ����� by default�

� �mail�errors�� List of error codes that cause the server to send a mail when occuring�
Defaults to nil�

� �mail�to�� �mail�from�� �mail�reply�to�� If a mail is sent� these header �eld entries
are used� They all default to ��smes�dfki	de�� and should probably be changed if you
change �mail�errors��

� �mail�subject�� Defaults to �� �����

� �protocol�version� ��SMESPR��	��� by default� This is interesting for future exten�
sions only�

�



��� Writing lisp functions that are smes methods

So far� we have have assumed that the smes methods already exist as lisp functions� and we
described how to export them� In this section� we de�ne the constraints such a lisp function
must satisfy to be sucessfully called by the server� Furthermore� we document the concepts of
sending output and debug information to the client�

����� Invocation

A kernel function that may be called by the server module must have the following form�

�name htexti �key� hval�i �key� hval�i 			


htexti is the corpus string extracted from the query� while hvalni are arbitrary lisp expressions�
All keywords are optional� If a keyword is not mentioned in the query� an apropriate default
value must be available�

����� Producing Output

smespr���� o�ers three ways for a smes kernel function to produce output�

� Write on stdout with ��format� This kind of output is directly sent to the client and
may appear in a window called �standard output�� or on the terminal�

� Return one or more values� These values are converted to the desired result type auto�
matically and sent to the client as the �nal result of a computation�

� Use ��send�package to send a user type package�

�send�package hnumberi hcontentsi


hnumberi tags the string hcontentsi to be of some particular meaning� Customized client
software may react by interpreting this string in the desired way �pop up or update a
progress bar� visualize partial results or the like�� It is an error for hnumberi to be ��
� or � �these package numbers are hard wired in the protocoll�� See section 
 for more
information about packages�

� The Protocol

This section contains a quasi�formal smespr���� speci�cation� We assume that� two parties�
namely the client C and the server S� already have initialized a bidirectional network stream
that can be used by both parties both for reading and writing� We regard the process of
establishing this stream as atomic� i� e� we do not care about the implementation here�
A session starts with the stream being established and ends with it being closed� It is split into
three phases� namely the handshake phase� the query phase� and the response phase� the latter
two subsumed under the name main loop�

��� Handshake and Entering the Main Loop

After the stream has been established� S initializes the session by generating a unique ID and
sending it over the stream as a line �a �x�a�terminated string�� This ID may be used for
matching S� log�le entries to error reports from the user for trouble shooting�
C sends an acknowledgement that contains three lines�

� An echo of the ID just received�

� The version of smespr she wishes to use for communication� This is currently SMESPR��	��

� A name of the authentication and	or encryptions protocol� This is NONE by default� since
we don�t care about security at the moment�

�



�query� �� �query�

�

�text 	 �bla grahg	

may be more than one line	

�


�methods 	

���fst�from�string

�

��fst 	 �main


��trace 	 t





��text�html� 	 nil





��fst�from�string

�

��fst 	 �firmen�treiber





��text�plain� 	 nil














Figure �� An example query�

If these three lines have been sent� S sends an ack package or an error �see section 
�
�� for
more information on packages�� After this initial acknowledgement� C and S may enter some
cryptographical conversation if desired� �By default� nothing happens here��
Finally� the session enters the mainloop� C submits a query �query phase� and receives a
response �response phase�� This may be iterated arbitrarily often� The session is terminated
by C closing the stream�

��� The Query Phase

Every query consists of a one�line header and a body� The header contains the number of lines
of the complete query� �See �gure � for an example��

QRY!HEADER ��� ��query� � NUM!OF!LINES � �query�� �x�a

We de�ne the strings going over the stream by means of BNF fragments� �quoted� words are
terminals �or just strings to be copied literally�� CAPITALIZED words are non�terminals to be
de�ned in more detail �if the de�nition is obvious as in the case of NUM OF LINES� it is omitted��
�
� and ��� are used as usual� STRING is a text enclosed in double quotes ������ Whitespaces
outside strings and Lisp syntax comments are ignored� All characters outside strings are case
insensitive� Furthermore� de�nitions from the common lisp standard �
� hold if this document
is ambigous or silent�
The body of a query contains a list of two�element dotted lists in lisp syntax �sometimes referred
to as assoc list� that are interpreted as key�value pairs�

QUERY ��� ��� ENTRY" �
�

ENTRY ��� ��� �text� �	� STRING �
�

# ��� �methods� �	� ��� EXP" �
� �
�

�



There are only two valid ENTRY types� namely �text� and �methods�� The �method� key
contains a non�empty list of EXPs each of which describes smes method invokation and contains
information about the output type�

EXP ��� ��� NAME ��� ARG� �
� TYP �
�

# ��� NAME NIL TYP �
�

NIL ��� �NIL� # ��
�

TYP ��� ��� T!NAM �
�

# ��� T!NAM �	� THING �
�

T!NAM ��� STRING

ARG ��� ��� KEY �	� VALUE �
�

For each EXP in a query� the server calls the lisp function NAME with the speci�ed ARGs as
keyword arguments� The syntax will be transformed into �SMES�NAME ��some text�� �key�
val� �key� val� 			��
CAUTION� arbitrary lisp expressions present a severe security gap� since lisp is powerful enough
to execute arbitrary code on the server host machine even when only parsing them� Implemen�
tors are encouraged to introduce proprietary restrictions that �t their server methods as tight
as possible�
T NAM contains the type of the response and THINGmay contain additional information in future
extensions� At the moment� it is always NIL� i� e� the �rst case of TYP always holds�
Supported result types are�

� ��text�plain��� yields the output of the kernel functions without any postprocessing�
This is obviously supported by all methods and should be the default value�

� ��text�html��� yields an HTML fragment that could be browsed when wrapped in a
header and a footer �the fragment starts and ends in the body of a well�formed HTML
document�� Might be unde�ned on some of the smes methods�

� ��application�x�sql��� this is a more sophisticated result�type� but it is still hard�
wired in the protocol to demonstrate the �exibility of the system� It returns a sequence
of SQL insert statements that can be fed into an SQL database� The types of the tables
used in the statements depend on the speci�ed method�

Implementors are free to introduce further result types� If C uses an extension S does not know
of� an error 
 is returned �see section 
�
�� below��
The query phase ends with S analysing the query� If satis�ed� an ack package is launched to
initialize the response phase� Otherwise� an error is signalled to reject the query� In this case�
it is C�s turn to submit a new query or to disconnect�

��� The Response Phase

What now follows is a sequence of stdout lines and packages that come from S to C� For each
method invokation� exactly one package of type � or � is launched to indicate its termination�
The response phase is terminated by an additional ack package� �This is redundant� but useful
to deal with internal server errors that make S miscount the number of method calls��
Standard output of smes methods is passed to C line by line as it comes into existence� It may
be forwarded to the client�s terminal� or browsed in a window� It usually contains progress
reports� incrementally obtained results� or debugging information�
Additionally� S can launch a package to provide more speci�c information like �nal results�
control expressions for a graphical user interface� or error messages that must be parsed by the
client�

�



The notion of packages has already been used extensively up to here� We will now de�ne it
properly�

����� Packages

Like a query� a package consists of a header and a body containing NUM OF LINES further lines�
Unlike a query� the header contains the package type in addition to the size of the body� There
are three prede�ned package types� error ���� result ���� and ack ���� Packages of higher type
are called user packages �

PKG!HEADER ��� ��package� � ID � � NUM!OF!LINES � �package�� �x�a

All other output that is sent over the connection from S to C must be blocked and bu�ered
until the package transmission is completed� Also� S must ensure that all lines not contained
in a package that match PKG HEADER actually are package headers� Standard output may have
to be �ltered not to contain such lines�
A detailed description of the three prede�ned package types follows�

� error� �

The �rst line of an error package starts with an error number� followed by a colon ����� or
�x�a�� a space ��x���� and a plain error message� There may be more lines containing
arbitrary text�

Prede�ned errors are

� unknown method METHOD

� illegal arguments for method METHOD� ARGS

� result type T NAM not supported by method METHOD

� internal error

� internal error in method METHOD

� internal error while converting result to type T NAM

� parse error �illegal query�

�� ID code YOURS di�ers from MINE

�� illegal protocol version VERSION

�� illegal authentication protocol PROTOCOL

�� unknown package type NUMBER

�� no connection

�� and �� are exceptions in that they are not producded by S but locally by C� Anyway�
they are useful enough to require every client to support them�

User de�ned errors have numbers greater than ���� and may be freely introduced by the
implementor� C has to handle unknown error messages in some reasonable way �return
the description� or the like��

� result� �

This package contains the �nal result of one method call� The value of the executed lisp
function is feed into the pretty printer function and the output �that is always a string
and of the chosen result type� is delivered by means of the result package�

Result packages are always returned in the order the method invokation requests are listed
in the query�

� ack� �

Usually� type � packages do not contain any particular information� They end initial
handshake and query	response phases� However� as they are ordinary packages� they may
very well be used for proprietary extensions �which are then simply ignored by standard
clients��

�



� De�ning new package types

New package types may be freely introduced at any time� If C does not know the type
of a received package� an error �� occurs�

��� Transmission of Service Information

The �specs� variable introduced in section � contains a certain amount of information that
is interesting for the client only� This information can be requested by C sending a special
one�line query consisting of the string ��configure��� This query causes the server to send a
single result package containing the information represented by �specs� in a slightly modi�ed
way�
This package is a proprietary extension of the prototype implementation� but might be added to
the standard in the future� For more details� consult the source code or just dump a con�gura�
tion package to a �le and look at it by hand �the di�erences to �specs� are rather super�cial��

� Conclusion

smespr is de�ned on a level of abstraction that leaves room for e cient implementations� by
allowing to choose an arbitrary stream model �TCP	IP sockets� the package oriented UDP	IP
protocol� etc��� This hopefully makes it useful not only for the prototype in lisp� but also for
industrial quality versions to come�
The stream model of our prototype is TCP	IP� although smespr is strictly package oriented�
and the package oriented UDP protocol is in general more e cient� This is because sock�
ets are more easy to write and maintain and �most importantly� available in virtually every
programming language that exists� and thus more �exible in the design and development phase�
On the other hand� this slows things down a little� We still don�t have any reliable information
on the e ciency of the system� We expect it to be easy to write fast implementations using
e cient network technology and programming languages� but the acl server seems to have a
constant connection and handshake cost of a few seconds� This is not as severe as one might
think� since smes is designed to perform expensive computations that take a much longer time�
However extensive benchmarks and optimizations must be considered next�
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