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A Parallel Pull Engine

Christoph Endres

email� Christoph�Endres�dfki�de

April ����

Abstract

Internet agents require fast� concurrent access to many web pages� This service
should be stable� central� and easy to access independently from the actual imple�
mentation language� This paper describes the MultiHttpServer �MHS�� a parallel
pull engine implemented in Java with a TCP	IP interface for communication with
other programs� A second TCP	IP interface provides information for administra�
tion purposes� A simple con
g�
le allows application�oriented tuning of the Multi�
HttpServer� An optional JAVA�Servlet can remotely start up the MultiHttpServer
on demand�
The focus of this report is on a user oriented description of functionality and usage
of the system� Sample clients in several languages are discussed�

� Motivation

Internet Agents and Netbots usually deal with numerous information sources� e�g�
webpages� Downloading a page is a time consuming operation� On the other hand
it is desirable to collect all information required as fast as possible to produce an
acceptable runtime behaviour�
The idea of parallel pull is to save time by performing download tasks in parallel�
It has been successfully used in several applications developed in project PAN �see
www�dfki�de	�bauer	PAN	��
This memo is primarily intended as a reference for users of the MultiHttpServer�
In order to develop his own applications based on the MultiHttpServer� the user
should be either familiar with the implementation of TCP	IP clients or use one of
the sample clients presented later on�
The following sections describe the underlying idea� implementation details� the
speci
cation of the MultiHttpServer�s communication protocol� and some sample
applications�
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� Architecture of the MultiHttpServer

In this section I introduce the architecture of a single MultiHttpServer instance�
As discussed later it can be useful
depending on the required capacity
to have
several instances of a MultiHttpServer running� At the moment I focus on the single
server instance shown in Figure ��
It has two core components� a server module and several service modules� The
server accepts requests from clients� by using a TCP	IP interface� For every client
connection a service module is generated� The service module consists of two parts�
A Request Parsing module controls the dialog protocol with the client and a Request
Handler module executes the client�s request by accessing the World Wide Web
�WWW� in parallel�

� Stability Problems

Parallel execution of requests can be done in two di�erent ways� multithreading or
concurrent execution of processes� Both approaches are limited by the operating
system� Former versions of the MultiHttpServer used multithreading only� which
lead to stability problems when the maximum number of threads for one process was
reached� Therefore it was necessary to provide a mechanism for creating multiple
instances of the multithreaded MultiHttpServer and scheduling the queries� Still it
is important to keep in mind that no matter how clever the system resources are
used they will always be limited�

�In this paper I do not distinguish between a human user and a client application when using the

word client�
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� Scheduling and forking processes

The current version of the MultiHttpServer includes a scheduler which supervises all
running MultiHttpServer instances and schedules user queries� Before actually per�
forming his queries the user asks the scheduler which instance of theMultiHttpServer
he should use� The scheduler answers by telling the port number of the least busy
MultiHttpServer� The user then connects to this port and goes ahead with placing
his query�
The scheduler regularly �e�g� every three seconds� collects information from the
MultiHttpServers about their status �i�e� number of running threads�� If for any
reason a server does not answer anymore� the scheduler kills it and starts a new
one� In general� servers are created and killed depending on how busy the whole
parallel pull engine is� The information about how this generating and killing of
processes should be done is provided by a con
g�
le which the user should set up
to his requirements and system resources as described in Section ��
The architecture of the cooperation between the scheduler and the instances of the
MultiHttpServer is shown in Figure �� In order to establish a communication to
the MultiHttpServer� the user connects to the scheduler via TCP	IP� The scheduler
checks the capacities of all MultiHttpServer running� decides which one should han�
dle the user request� returns the port number� and disconnects the user� The user
then connects to the speci
ed port and runs the server protocol as described in the
following section�

� The server protocol

In this section I describe the protocol used for communication between the server
and the client� It can be used as a short reference for developers� Sample sessions

�



are shown in the next section�

� mode�� �one	all�
There are two di�erent modes for the server protocol� one and all� When
starting a session the 
rst thing one should do is specify the protocol mode to
be used�
Mode one means that only one of the pages requested is interesting� This is
useful if there are several URLs of webpages providing equivalent information�
e�g� three di�erent weather forecast information services�
In the one�mode� they are all requested� but the result of one of them is
su�cient and information from other sources no longer interesting� As soon
as one requested page returns� all other requests will be canceled and all other
running threads killed�

Information already received from other pages will get lost�
Mode all does not kill running threads autonomously� All of the requested
pages will be downloaded �unless killed using the kill�command�� This mode
is used if the information on the requested pages is not equivalent�
If no mode is speci
ed� mode all is used by default�

� get� �URL� ��timeout� ����
Request a URL� Timeout �in seconds� and additional parameters �in case the
requested URL is a cgi�script� can be speci
ed�
Examples�

� get� http�		www�dfki�de	
requests the webpage of DFKI� The information should be obtained no
matter how long it takes�

� get http�		www�microsoft�com	 �
requests the Microsoft webpage� If it takes more than � seconds to down�
load� the information is not interesting anymore�

� get� http�		www�info�edu	pplsearch�cgi �� �

rst�Arthur �
last�Rimbaud �
email� �
country�fr
�the ��� at the end of a line indicates that further parameter speci�cations
follow��

� get� http�		www�info�edu	pplsearch�cgi�
rst�Arthur�last�Rimbaud

Let us take a closer look at the last two examples� Both request the same page�
The 
rst one by specifying the parameters seperately� one in every line� The
parameters are concatenated and written on the URL connection� This is the
POST method of the HTTP protocol� The second example directly codes the
parameters in the request string using the GET method� Most CGI scripts
handle POST and GET methods in the same way if only a few parameters are
speci
ed� One of the main di�erences is that the POST method can handle
much longer parameter inputs� e�g� text�

�Please not that the colon is part of the command�
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A detailed description of those methods can be found in the HTTP speci
ca�
tion��

� authget� �URL� �timeout� �login� �password�
Get a password protected URL using speci
ed login and password�

� info� �URL�
Get available information about a requested URL�

� show� �URL�
Show the output of a requested URL �if available��

� kill� �URL�
Remove a no longer needed page or cancel downloading it�

� shortinfo
Get a short overview of the status of all requested pages�

� stack
Show the URLs of all requested pages�

� stacksize
Return the amount of requested pages�

� available
Return the amount of already received pages�

� rest
Return the addresses of pages still to be expected� i�e� all pages of the stack
besides those reaching timeout or not accessible for any other reason�

� more
Return the maximum amount of pages still to be expected�

� success
Return one URL of a received page� If there is no page available yet the return
value is �no��

� waitsuccess
Return one URL of a received page� Wait until a value can be returned�

� waitsuccess �timeout�
Return one URL of a received page� Wait up to �timeout� seconds for a
return value�

� status� �URL�
Show the status of a requested page� Return values are

� connecting

� connected

� receiving

� received

� timeout

� Error �errorcode�

�See www�w�c�org�
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� accesstrend� �URL�
Show the access trend of a requested page� Return values are

� increasing

� constant

� decreasing

� accessrate� �URL�
Show the access rate of a requested page in bytes per second�

� poud� �URL�
Percentage of unfetched data of a requested page� If the size of a page is
unknown� the return value is set to ���

� size� �URL�
Show the size of a requested page in bytes�

� help ��command��
help shows a general help including a list of all available commands� help
�command� explains the usage of �command��

� version
Display version and copyright information�

� bye
Terminate session and close TCP	IP connection�

� A sample session

This section shows an example of a MultiHttpServer session� After obtaining a
TCP	IP port number from the scheduler� the client connects to a MultiHttpServer
instance� At the beginning of a session� the server displays a prompt�

����������������������������������������������������������

� MultiHttpServer version ��� april �� �

� Christoph Endres� DFKI GmbH Christoph�Endres	dfki�de �

����������������������������������������������������������

Type 
help
 for more information

�Ok�

The client now requests three webpages�

get� http���www�dfki�de�

�Ok�

get� http���www�microsoft�com� �

�Ok�

get� http���www�whitehouse�gov� ��

�Ok�

Using the shortinfo�command� the client checks the current status of the pages he
requested�

�The size of a document is an optional header �eld in version ��� of HTTP�
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shortinfo

http���www�microsoft�com� timeout

http���www�dfki�de� received

http���www�whitehouse�gov� received

�Ok�

The success�command is now used by the client in order to obtain the URL of one
of the successfully received pages� The page is displayed using the show�command�

success

http���www�dfki�de�

�Ok�

show� http���www�dfki�de�


HTML�


HEAD�


TITLE�DFKI � WWW� New Version ��������
�TITLE�


�HEAD�


frameset cols�������� border�� frameborder�� framespacing���


frame src��dfkiweb�menu�htm� name��links� noresize�


frame src��dfkiweb�start�htm� name��rechts��


�frameset�


�HTML�

�Ok�

After obtaining the page� the client removes it from the server and then closes the
connection�

kill� http���www�dfki�de�

�Ok�

bye

bye

�Ok�

� Con�guration

The MultiHttpServer is con
gured by editing a con
g 
le� Here is an example�

�

� Configfile for the MultiHttpServer

�

� TCP�IP ports for administrator and user

� If no values are specified� the ports ���� and ���� are used by default�

Admin� ����

User� ����

� minimum and maximum instances of MultiHttpServer running in parallel

� If unspecified� a minimum of � and a maximum of �� is assumed�

�



Instancemin� �

Instancemax� �

� set critical value for the load of a MultiHttpServer instance�

� Unit is pages per server�

� Default value is ��

Load� �� pps

The values to be speci
ed so far are port numbers for administrator and user� a
minimal and maximal number of MultiHttpServer instances running concurrently�
and a critical value for the load of a server� The latter is used as an indicator for
creating new instances of MultiHttpServer at runtime�

	 Using the administrator port

By connecting to the administrator port some useful information about the status
of the system is provided� e�g� the number of MultiHttpServer�instances currently
running and the number of their threads�
Example�

��������������������������������������������������������

MultiHttpServer ���

�c� DFKI GmbH ����

running on serv�����

You are connecting from serv�����

Adminport is ����� userport is �����

From � up to � MHS instances can be created�

Critical load is ��

� instances running�

������ � connections� �� pages�

������ � connections� �� pages�

��������������������������������������������������������


 Start on demand

Using a servlet it is very easy to start up the MultiHttpServer on demand� A
JAVA�Servlet enabled Webserver is necessary� An application wanting to use the
MultiHttpServer simply creates a http�connection to the startMHS servlet� for in�
stance to�
http	

www�myserver�edu
startMHS�command�start�
The servlet starts the MultiHttpServer �in case it was not running yet� and returns
the number of the client port and the administrator port �which usually is not nec�
essary since one usually knows which ports one speci
ed in the con
g 
le��

	



�� Clients

Usually theMultiHttpServer is used by other programs� e�g� agents� and not directly
by a human user� In this section I provide sample code of how to write a client class
in di�erent languages and demonstrate its usage by a short example application�
Clients in other languages are under construction�

���� An Eclipse Prolog client

The following module speci
es an interface to the MultiHttpServer� It can be used
for the development of clients�

��

�� MultiHttpClient module

��

�� Wilken Schuetz� April ����

��

� define module and export public functions

�� module�multihttpclient�	

�� export open
connection���

set
mode�
�

get�
�

get���

wait
success�
�

show���

			

close
connection��	

�� begin
module�multihttpclient�	

� connect to Scheduler� obtain session port and open connection

open
connection�Host�UserPort�SessionStream���

socket�internet�stream�UserStream��

connect�Stream��Host�UserPort��

read�UserStream�SessionPort��

socket�internet�stream�SessionStream��

connect�SessionStream�Host�SessionPort��

skip
prompt�SessionStream�	

� skip the prompt

skip
prompt�Service���

repeat�

read
string�Service���n��
�String��

String���Ok����	

� set session mode	 unfortunately� �mode� is a reserved keyword in eclipse�

� so �set
mode� is used instead	






set
mode�Service� Mode���

concat
string���mode� ��Mode���n���Command��

write�Service� Command��

flush�Service����

read
string�Service���n��
���Ok���	

� request a page

get�Service�Page���

concat
string���get� ��Page���n���Command��

write�Service� Command��

flush�Service����

read
string�Service���n��
���Ok���	

� request a page with specified timeout

get�Service�Page�Timeout���

concat
string���get� ��Page�� ��Timeout���n���Command��

write�Service� Command��

flush�Service����

read
string�Service���n��
���Ok���	

� wait til one page was successfully obtained

wait
success�Service�URL���

write�Service� �waitsuccess�n���

flush�Service��

read
string�Service���n��
�URL����

read
string�Service���n��
���Ok���	

� show page

show�Service�URL�Content���

concat
string���show� ��URL���n���Command��

write�Service� Command��

flush�Service����

collect�Service�Content�	

collect�Service� Content� ��

read
string�Service���n��
�Line��

�Line � ��Ok�� ��

Content���

�

�Line � ��Error�� ��

���fail�

�

�collect�Service�Rest��

concat
strings�Line�Rest�Content�

�

�

�	

	

��



	

	

� close connection

close
connection�Service���

write�Service� �bye�n���

flush�Service����

read
string�Service���n��
��bye�����

read
string�Service���n��
���Ok���	

The usage of the client module is clari
ed in the following application example�
After opening a connection� the client requests several pages� waits for the 
rst page
to be received successfully� reads this page� and closes the connection�

���multihttpclient�	

�� use
module�multihttpclient�	

test�URL�Content���

open
connection��serv�
����
����Service��

set
mode�Service��one���

get�Service��http���www	dfki	de����

get�Service��http���www	microsoft	com������

get�Service��http���www	whitehouse	gov�������

wait
success�Service�URL��

show�Service�URL�Content��

close
connection�Service�	

���� A Java Client

In this section I present a JAVA client� Please note that although the JAVA Se�
curityManager does usually not allow applets to arbitrarily connect to sites on the
web� it is possible to obtain pages from a MultiHttpServer running on server side�
The following class speci
es the client�

import java	io	��

import java	net	��

�� The class Text is basically a Vector of Strings with some special features	

�� It is contained in the MultiHttpServer API	

import endres	util	Text�

public class MultiHttpClient �

Socket s�

BufferedReader in�

PrintWriter out�

�� class constructor

public MultiHttpClient�String host� int port� �

establishConnection�host�port��

�

��



�� establishing a connection�

�� get session port from scheduler� open session

void establishConnection�String host� int port� �

try �

Socket sock � new Socket�host�port��

BufferedReader input�

input � new BufferedReader�new InputStreamReader�sock	getInputStream�����

String number � input	readLine���

int sessionport � Integer	parseInt�number��

this	s � new Socket�host�sessionport��

this	in � new BufferedReader�new InputStreamReader�s	getInputStream�����

this	out � new PrintWriter�s	getOutputStream����

�

catch �IOException e� � �

�

�� IO functions read and write

public void write�String msg� �

out	println�msg��

out	flush���

�

public String read�� �

String line � ���

try �

while�line	length����� line � in	readLine���

�

catch �IOException e� � �

return line�

�

public void catchOk�� �

read���

�

�� skip promt at session start

public void skipPrompt�� �

String line�

while���line�read���	equals���Ok���� ��

�

�� main protocol starts here� get� mode� kill etc	

public void get�String url� �

write��get� ��url��

catchOk���

�

public void get�String url� int timeout� �

write��get� ��url�� ��timeout��

��



catchOk���

�

public void modeall�� �

write��mode� all���

catchOk���

�

public void modeone�� �

write��mode� one���

catchOk���

�

public void kill�String url� �

write��kill� ��url��

catchOk���

�

public String waitsuccess�� �

write��waitsuccess���

String ret � read���

catchOk���

return ret�

�

public void bye�� �

write��bye���

read���

catchOk���

�

public Text show�String url� �

Text ret � new Text���

String line�

write��show� ��url��

while���line�read���	equals���Ok���� ret	addLine�line��

return ret�

�

�

The following application uses the above client for requesting three pages and
displaying the 
rst one successfully received� After 
nishing this task� the time
elapsed is displayed in milliseconds�

import java	util	Date�

import endres	util	Text�

public class examplesession �

public static void main�String args��� �

new examplesession���

�

��



public examplesession�� �

Date d � new Date���

long start � d	getTime���

MultiHttpClient mhc � new MultiHttpClient��serv�
����
�����

mhc	skipPrompt���

mhc	modeone���

mhc	get��http���www	dfki	de����

mhc	get��http���www	microsoft	com������

mhc	get��http���www	whitehouse	gov������

String page � mhc	waitsuccess���

System	out	println��show���

Text t � mhc	show�page��

t	show�System	out��

mhc	kill�page��

mhc	bye���

System	out	println��Time elapsed� ���new Date��	getTime���start��� ms	���

�

�

���� A Perl � client

Here is a client for the MultiHttpServer written in the popular script language Perl ��
As in the previous sections� not the full functionality of the protocol is implemented
but can be added easily� since the interface functions do not di�er much�

�� MultiHttpClient

��

�� provided by Markus Meyer and Robert Wirth� april ��

package MultiHttpClient�

use Socket�

� constructor

sub new �

my �class � shift�

my �host � shift�

my �userport � shift�

my �self � ���

�self����host�� � �host�

�self����connected�� � ��

� request on userport

�iaddr � inet
aton��self����host��� or die �no host� �self����host����

�paddr � sockaddr
in��userport� �iaddr��

�proto � getprotobyname��tcp���

socket�PAGESOCK� PF
INET� SOCK
STREAM� �proto� or die �firstconn� ����

connect�PAGESOCK� �paddr� or die �connect� ����

select �PAGESOCK�� �� � ��

select �STDOUT�� �� � ��

� read from userport

�line � �PAGESOCK��

��



chop �line�

�self����PORT�� � �line�

close�PAGESOCK��

bless��self��class��

�

� connect for a session

sub connect �

my �self � shift�

�iaddr � inet
aton��self����host��� or die �no host� �self����host����

�paddr � sockaddr
in��self����PORT��� �iaddr��

�proto � getprotobyname��tcp���

socket�PAGESOCK� PF
INET� SOCK
STREAM� �proto� or die �mainconn� ����

connect�PAGESOCK� �paddr� or die �connect� ����

select �PAGESOCK�� �� � ��

select �STDOUT�� �� � ��

�self����connected�� � ��

�

� skip prompt

sub collect �

my �self � shift�

my �line�

�line � �PAGESOCK��

if ��defined �line�

�

exit ��

�

while��line  ��Ok���

�

�line � �PAGESOCK��

if ��defined �line�

�

exit ��

�

�

�

� set session mode

sub mode �

my �self � shift�

my �command � shift�

select PAGESOCK� �� � ��

print �mode� �command�n��

�line � �PAGESOCK��

chop �line�

return �line  ��Ok���

�

� request a page

��



sub get �

my �self � shift�

my �okline�

my �url � shift�

select �PAGESOCK�� �� � ��

print �get� �� �url� ��n��

print STDOUT �status� �� �url� � connecting			�n��

�okline � �PAGESOCK��

if ��defined �okline�

�

exit ��

�

�

� wait for success

sub waitsuccess �

my �self � shift�

my �okline�

my �address�

select �PAGESOCK�� �� � ��

print �waitsuccess�n��

�address � �PAGESOCK��

if ��defined �address�

�

exit ��

�

�okline � �PAGESOCK��

if ��defined �okline�

�

exit ��

�

return �address�

�

� show page

sub show �

my �self � shift�

my �line�

my �url � shift�

my �string � ���

select �PAGESOCK�� �� � ��

print �show� �� �url� ��n��

print STDOUT �status� �� �url� � receiving�n��

�line � �PAGESOCK��

if ��defined �line�

�

exit ��

�

while��line � ��Ok���

�

��



�string � �string 	 �line�

�line � �PAGESOCK��

if ��defined �line�

�

exit ��

�

�

return �string�

�

� kill page

sub kill �

my �self � shift�

my �okline�

my �url � shift�

select �PAGESOCK�� �� � ��

print �kill� �� �url� ��n��

print STDOUT �killing� �� �url� ��n��

�okline � �PAGESOCK��

if ��defined �okline�

�

exit ��

�

�

� send command for termination

sub bye �

my �self � shift�

my �okline�

my �anser�

select �PAGESOCK�� �� � ��

print �bye�n��

print STDOUT �bye�n��

�answer � �PAGESOCK��

if ��defined �answer�

�

exit ��

�

�okline � �PAGESOCK��

if ��defined �okline�

�

exit ��

�

�

��

Using the client described above� it is very simple to implement the following
small sample session� Please remember that it is necessary to put the location of
the Perl interpreter in the 
rst line�

���project�pan�perl!�bin�perl �w

��



� load module described above

use MultiHttpClient�

� define variables

my �client�

my �address�

my �content�

� session

�client � new MultiHttpClient��serv�
�����
������

�client��connect���

�client��collect���

�client��mode��one���

�client��get��http���www	dfki	de����

�client��get��http���www	microsoft	com����

�client��get��http���www	whitehouse	gov����

�address � �client��waitsuccess���

print STDOUT �address�

�content � �client��show��address��

print STDOUT �content�

�client��kill��address��

�client��bye���

A Soft� and Hardwarerequirements

The MultiHttpServer is written in JAVA� i�e� it is platform independent� So far�
it was tested under Solaris and Linux� but should run under any operating system
providing a JAVA Virtual Machine�

B Further Information

Further information can be obtained from the MultiHttpServer webpage�

http���www�dfki�de��bauer�PAN�mhs�
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