
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Technical
Memo
TM-99-04

The MultiHttpServer
A Parallel Pull Engine

Christoph Endres
email: Christoph.Endres@dfki.de

April 1999

Deutsches Forschungszentrum für Künstliche Intelligenz

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210
E-Mail: info@dfki.uni-kl.de

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341
E-Mail: info@dfki.de

WWW: http://www.dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz

DFKI GmbH
German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in the field of
innovative software technology based on Artificial Intelligence (AI) methods. DFKI is focusing on the
complete cycle of innovation — from world-class basic research and technology development through
leading-edge demonstrators and prototypes to product functions and commercialization.

Based in Kaiserslautern and Saarbrücken, the German Research Center for Artificial Intelligence ranks
among the important “Centers of Excellence” worldwide.

An important element of DFKI's mission is to move innovations as quickly as possible from the lab into
the marketplace. Only by maintaining research projects at the forefront of science can DFKI have the
strength to meet its technology transfer goals.

DFKI has 134 full-time employees, including 111 research scientists with advanced degrees. There are
also around 130 part-time research assistants.

Revenues of DFKI were about 28 million DM in 1998, originating from government contract work and
from commercial clients. The annual increase in contracts from commercial clients was greater than
37% during the last three years.

At DFKI, all work is organized in the form of clearly focused research or development projects with
planned deliverables, various milestones, and a duration from several months up to three years.

DFKI benefits from interaction with the faculty of the Universities of Saarbrücken and Kaiserslautern
and in turn provides opportunities for research and Ph.D. thesis supervision to students from these
universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI's five research departments are directed by internationally recognized research scientists:

Information Management and Document Analysis (Director: Prof. A. Dengel)
Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
Deduction and Multiagent Systems (Director: Prof. J. Siekmann)
Language Technology (Director: Prof. H. Uszkoreit)
Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop proceed-
ings), and final project reports. The aim is to make new results, ideas, and software available as quickly
as possible.

Prof. Wolfgang Wahlster
Director

The MultiHttpServer
A Parallel Pull Engine

Christoph Endres
email: Christoph.Endres@dfki.de

DFKI-TM-99-04

This work has been supported by a grant from The Federal Ministry of Education,
Science, Research, and Technology (FKZ ITW-9703).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1999

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to copy in
whole or part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of the Deutsche
Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledge-
ment of the authors and individual contributors to the work; all applicable portions of this copyright notice. Copy-
ing, reproducing, or republishing for any other purpose shall require a licence with payment of fee to Deutsches
Forschungszentrum für Künstliche Intelligenz.

ISSN 0946-0071

The MultiHttpServer

A Parallel Pull Engine

Christoph Endres

email� Christoph�Endres�dfki�de

April ����

Abstract

Internet agents require fast� concurrent access to many web pages� This service
should be stable� central� and easy to access independently from the actual imple�
mentation language� This paper describes the MultiHttpServer �MHS�� a parallel
pull engine implemented in Java with a TCP	IP interface for communication with
other programs� A second TCP	IP interface provides information for administra�
tion purposes� A simple con
g�
le allows application�oriented tuning of the Multi�
HttpServer� An optional JAVA�Servlet can remotely start up the MultiHttpServer
on demand�
The focus of this report is on a user oriented description of functionality and usage
of the system� Sample clients in several languages are discussed�

� Motivation

Internet Agents and Netbots usually deal with numerous information sources� e�g�
webpages� Downloading a page is a time consuming operation� On the other hand
it is desirable to collect all information required as fast as possible to produce an
acceptable runtime behaviour�
The idea of parallel pull is to save time by performing download tasks in parallel�
It has been successfully used in several applications developed in project PAN �see
www�dfki�de	�bauer	PAN	��
This memo is primarily intended as a reference for users of the MultiHttpServer�
In order to develop his own applications based on the MultiHttpServer� the user
should be either familiar with the implementation of TCP	IP clients or use one of
the sample clients presented later on�
The following sections describe the underlying idea� implementation details� the
speci
cation of the MultiHttpServer�s communication protocol� and some sample
applications�

�

W

W

W

MultiHttpServer

request

request

request

...

Request

Request

Request

Parsing

Parsing

Parsing

Request

Request

Request

Handler

Handler

Handler

...

server

Figure �� architecture of a single MultiHttpServer process

� Architecture of the MultiHttpServer

In this section I introduce the architecture of a single MultiHttpServer instance�
As discussed later it can be useful
depending on the required capacity
to have
several instances of a MultiHttpServer running� At the moment I focus on the single
server instance shown in Figure ��
It has two core components� a server module and several service modules� The
server accepts requests from clients� by using a TCP	IP interface� For every client
connection a service module is generated� The service module consists of two parts�
A Request Parsing module controls the dialog protocol with the client and a Request
Handler module executes the client�s request by accessing the World Wide Web
�WWW� in parallel�

� Stability Problems

Parallel execution of requests can be done in two di�erent ways� multithreading or
concurrent execution of processes� Both approaches are limited by the operating
system� Former versions of the MultiHttpServer used multithreading only� which
lead to stability problems when the maximum number of threads for one process was
reached� Therefore it was necessary to provide a mechanism for creating multiple
instances of the multithreaded MultiHttpServer and scheduling the queries� Still it
is important to keep in mind that no matter how clever the system resources are
used they will always be limited�

�In this paper I do not distinguish between a human user and a client application when using the

word client�

�

MultiHttpServer

request

port number

dialog

MultiHttpServer

MultiHttpServer

MultiHttpServer

MultiHttpServer

user scheduler

Figure �� Request Scheduling

� Scheduling and forking processes

The current version of the MultiHttpServer includes a scheduler which supervises all
running MultiHttpServer instances and schedules user queries� Before actually per�
forming his queries the user asks the scheduler which instance of theMultiHttpServer
he should use� The scheduler answers by telling the port number of the least busy
MultiHttpServer� The user then connects to this port and goes ahead with placing
his query�
The scheduler regularly �e�g� every three seconds� collects information from the
MultiHttpServers about their status �i�e� number of running threads�� If for any
reason a server does not answer anymore� the scheduler kills it and starts a new
one� In general� servers are created and killed depending on how busy the whole
parallel pull engine is� The information about how this generating and killing of
processes should be done is provided by a con
g�
le which the user should set up
to his requirements and system resources as described in Section ��
The architecture of the cooperation between the scheduler and the instances of the
MultiHttpServer is shown in Figure �� In order to establish a communication to
the MultiHttpServer� the user connects to the scheduler via TCP	IP� The scheduler
checks the capacities of all MultiHttpServer running� decides which one should han�
dle the user request� returns the port number� and disconnects the user� The user
then connects to the speci
ed port and runs the server protocol as described in the
following section�

� The server protocol

In this section I describe the protocol used for communication between the server
and the client� It can be used as a short reference for developers� Sample sessions

�

are shown in the next section�

� mode�� �one	all�
There are two di�erent modes for the server protocol� one and all� When
starting a session the
rst thing one should do is specify the protocol mode to
be used�
Mode one means that only one of the pages requested is interesting� This is
useful if there are several URLs of webpages providing equivalent information�
e�g� three di�erent weather forecast information services�
In the one�mode� they are all requested� but the result of one of them is
su�cient and information from other sources no longer interesting� As soon
as one requested page returns� all other requests will be canceled and all other
running threads killed�

Information already received from other pages will get lost�
Mode all does not kill running threads autonomously� All of the requested
pages will be downloaded �unless killed using the kill�command�� This mode
is used if the information on the requested pages is not equivalent�
If no mode is speci
ed� mode all is used by default�

� get� �URL� ��timeout� ����
Request a URL� Timeout �in seconds� and additional parameters �in case the
requested URL is a cgi�script� can be speci
ed�
Examples�

� get� http�		www�dfki�de	
requests the webpage of DFKI� The information should be obtained no
matter how long it takes�

� get http�		www�microsoft�com	 �
requests the Microsoft webpage� If it takes more than � seconds to down�
load� the information is not interesting anymore�

� get� http�		www�info�edu	pplsearch�cgi �� �

rst�Arthur �
last�Rimbaud �
email� �
country�fr
�the ��� at the end of a line indicates that further parameter speci�cations
follow��

� get� http�		www�info�edu	pplsearch�cgi�
rst�Arthur�last�Rimbaud

Let us take a closer look at the last two examples� Both request the same page�
The
rst one by specifying the parameters seperately� one in every line� The
parameters are concatenated and written on the URL connection� This is the
POST method of the HTTP protocol� The second example directly codes the
parameters in the request string using the GET method� Most CGI scripts
handle POST and GET methods in the same way if only a few parameters are
speci
ed� One of the main di�erences is that the POST method can handle
much longer parameter inputs� e�g� text�

�Please not that the colon is part of the command�

�

A detailed description of those methods can be found in the HTTP speci
ca�
tion��

� authget� �URL� �timeout� �login� �password�
Get a password protected URL using speci
ed login and password�

� info� �URL�
Get available information about a requested URL�

� show� �URL�
Show the output of a requested URL �if available��

� kill� �URL�
Remove a no longer needed page or cancel downloading it�

� shortinfo
Get a short overview of the status of all requested pages�

� stack
Show the URLs of all requested pages�

� stacksize
Return the amount of requested pages�

� available
Return the amount of already received pages�

� rest
Return the addresses of pages still to be expected� i�e� all pages of the stack
besides those reaching timeout or not accessible for any other reason�

� more
Return the maximum amount of pages still to be expected�

� success
Return one URL of a received page� If there is no page available yet the return
value is �no��

� waitsuccess
Return one URL of a received page� Wait until a value can be returned�

� waitsuccess �timeout�
Return one URL of a received page� Wait up to �timeout� seconds for a
return value�

� status� �URL�
Show the status of a requested page� Return values are

� connecting

� connected

� receiving

� received

� timeout

� Error �errorcode�

�See www�w�c�org�

�

� accesstrend� �URL�
Show the access trend of a requested page� Return values are

� increasing

� constant

� decreasing

� accessrate� �URL�
Show the access rate of a requested page in bytes per second�

� poud� �URL�
Percentage of unfetched data of a requested page� If the size of a page is
unknown� the return value is set to ���

� size� �URL�
Show the size of a requested page in bytes�

� help ��command��
help shows a general help including a list of all available commands� help
�command� explains the usage of �command��

� version
Display version and copyright information�

� bye
Terminate session and close TCP	IP connection�

� A sample session

This section shows an example of a MultiHttpServer session� After obtaining a
TCP	IP port number from the scheduler� the client connects to a MultiHttpServer
instance� At the beginning of a session� the server displays a prompt�

��

� MultiHttpServer version ��� april �� �

� Christoph Endres� DFKI GmbH Christoph�Endres	dfki�de �

��

Type
help
 for more information

�Ok�

The client now requests three webpages�

get� http���www�dfki�de�

�Ok�

get� http���www�microsoft�com� �

�Ok�

get� http���www�whitehouse�gov� ��

�Ok�

Using the shortinfo�command� the client checks the current status of the pages he
requested�

�The size of a document is an optional header �eld in version ��� of HTTP�

�

shortinfo

http���www�microsoft�com� timeout

http���www�dfki�de� received

http���www�whitehouse�gov� received

�Ok�

The success�command is now used by the client in order to obtain the URL of one
of the successfully received pages� The page is displayed using the show�command�

success

http���www�dfki�de�

�Ok�

show� http���www�dfki�de�

HTML�

HEAD�

TITLE�DFKI � WWW� New Version ��������
�TITLE�

�HEAD�

frameset cols�������� border�� frameborder�� framespacing���

frame src��dfkiweb�menu�htm� name��links� noresize�

frame src��dfkiweb�start�htm� name��rechts��

�frameset�

�HTML�

�Ok�

After obtaining the page� the client removes it from the server and then closes the
connection�

kill� http���www�dfki�de�

�Ok�

bye

bye

�Ok�

� Con�guration

The MultiHttpServer is con
gured by editing a con
g
le� Here is an example�

�

� Configfile for the MultiHttpServer

�

� TCP�IP ports for administrator and user

� If no values are specified� the ports ���� and ���� are used by default�

Admin� ����

User� ����

� minimum and maximum instances of MultiHttpServer running in parallel

� If unspecified� a minimum of � and a maximum of �� is assumed�

�

Instancemin� �

Instancemax� �

� set critical value for the load of a MultiHttpServer instance�

� Unit is pages per server�

� Default value is ��

Load� �� pps

The values to be speci
ed so far are port numbers for administrator and user� a
minimal and maximal number of MultiHttpServer instances running concurrently�
and a critical value for the load of a server� The latter is used as an indicator for
creating new instances of MultiHttpServer at runtime�

	 Using the administrator port

By connecting to the administrator port some useful information about the status
of the system is provided� e�g� the number of MultiHttpServer�instances currently
running and the number of their threads�
Example�

��

MultiHttpServer ���

�c� DFKI GmbH ����

running on serv�����

You are connecting from serv�����

Adminport is ����� userport is �����

From � up to � MHS instances can be created�

Critical load is ��

� instances running�

������ � connections� �� pages�

������ � connections� �� pages�

��

 Start on demand

Using a servlet it is very easy to start up the MultiHttpServer on demand� A
JAVA�Servlet enabled Webserver is necessary� An application wanting to use the
MultiHttpServer simply creates a http�connection to the startMHS servlet� for in�
stance to�
http	

www�myserver�edu
startMHS�command�start�
The servlet starts the MultiHttpServer �in case it was not running yet� and returns
the number of the client port and the administrator port �which usually is not nec�
essary since one usually knows which ports one speci
ed in the con
g
le��

	

�� Clients

Usually theMultiHttpServer is used by other programs� e�g� agents� and not directly
by a human user� In this section I provide sample code of how to write a client class
in di�erent languages and demonstrate its usage by a short example application�
Clients in other languages are under construction�

���� An Eclipse Prolog client

The following module speci
es an interface to the MultiHttpServer� It can be used
for the development of clients�

��

�� MultiHttpClient module

��

�� Wilken Schuetz� April ����

��

� define module and export public functions

�� module�multihttpclient�	

�� export open
connection���

set
mode�
�

get�
�

get���

wait
success�
�

show���

			

close
connection��	

�� begin
module�multihttpclient�	

� connect to Scheduler� obtain session port and open connection

open
connection�Host�UserPort�SessionStream���

socket�internet�stream�UserStream��

connect�Stream��Host�UserPort��

read�UserStream�SessionPort��

socket�internet�stream�SessionStream��

connect�SessionStream�Host�SessionPort��

skip
prompt�SessionStream�	

� skip the prompt

skip
prompt�Service���

repeat�

read
string�Service���n��
�String��

String���Ok����	

� set session mode	 unfortunately� �mode� is a reserved keyword in eclipse�

� so �set
mode� is used instead	

set
mode�Service� Mode���

concat
string���mode� ��Mode���n���Command��

write�Service� Command��

flush�Service����

read
string�Service���n��
���Ok���	

� request a page

get�Service�Page���

concat
string���get� ��Page���n���Command��

write�Service� Command��

flush�Service����

read
string�Service���n��
���Ok���	

� request a page with specified timeout

get�Service�Page�Timeout���

concat
string���get� ��Page�� ��Timeout���n���Command��

write�Service� Command��

flush�Service����

read
string�Service���n��
���Ok���	

� wait til one page was successfully obtained

wait
success�Service�URL���

write�Service� �waitsuccess�n���

flush�Service��

read
string�Service���n��
�URL����

read
string�Service���n��
���Ok���	

� show page

show�Service�URL�Content���

concat
string���show� ��URL���n���Command��

write�Service� Command��

flush�Service����

collect�Service�Content�	

collect�Service� Content� ��

read
string�Service���n��
�Line��

�Line � ��Ok�� ��

Content���

�

�Line � ��Error�� ��

���fail�

�

�collect�Service�Rest��

concat
strings�Line�Rest�Content�

�

�

�	

	

��

	

	

� close connection

close
connection�Service���

write�Service� �bye�n���

flush�Service����

read
string�Service���n��
��bye�����

read
string�Service���n��
���Ok���	

The usage of the client module is clari
ed in the following application example�
After opening a connection� the client requests several pages� waits for the
rst page
to be received successfully� reads this page� and closes the connection�

���multihttpclient�	

�� use
module�multihttpclient�	

test�URL�Content���

open
connection��serv�
����
����Service��

set
mode�Service��one���

get�Service��http���www	dfki	de����

get�Service��http���www	microsoft	com������

get�Service��http���www	whitehouse	gov�������

wait
success�Service�URL��

show�Service�URL�Content��

close
connection�Service�	

���� A Java Client

In this section I present a JAVA client� Please note that although the JAVA Se�
curityManager does usually not allow applets to arbitrarily connect to sites on the
web� it is possible to obtain pages from a MultiHttpServer running on server side�
The following class speci
es the client�

import java	io	��

import java	net	��

�� The class Text is basically a Vector of Strings with some special features	

�� It is contained in the MultiHttpServer API	

import endres	util	Text�

public class MultiHttpClient �

Socket s�

BufferedReader in�

PrintWriter out�

�� class constructor

public MultiHttpClient�String host� int port� �

establishConnection�host�port��

�

��

�� establishing a connection�

�� get session port from scheduler� open session

void establishConnection�String host� int port� �

try �

Socket sock � new Socket�host�port��

BufferedReader input�

input � new BufferedReader�new InputStreamReader�sock	getInputStream�����

String number � input	readLine���

int sessionport � Integer	parseInt�number��

this	s � new Socket�host�sessionport��

this	in � new BufferedReader�new InputStreamReader�s	getInputStream�����

this	out � new PrintWriter�s	getOutputStream����

�

catch �IOException e� � �

�

�� IO functions read and write

public void write�String msg� �

out	println�msg��

out	flush���

�

public String read�� �

String line � ���

try �

while�line	length����� line � in	readLine���

�

catch �IOException e� � �

return line�

�

public void catchOk�� �

read���

�

�� skip promt at session start

public void skipPrompt�� �

String line�

while���line�read���	equals���Ok���� ��

�

�� main protocol starts here� get� mode� kill etc	

public void get�String url� �

write��get� ��url��

catchOk���

�

public void get�String url� int timeout� �

write��get� ��url�� ��timeout��

��

catchOk���

�

public void modeall�� �

write��mode� all���

catchOk���

�

public void modeone�� �

write��mode� one���

catchOk���

�

public void kill�String url� �

write��kill� ��url��

catchOk���

�

public String waitsuccess�� �

write��waitsuccess���

String ret � read���

catchOk���

return ret�

�

public void bye�� �

write��bye���

read���

catchOk���

�

public Text show�String url� �

Text ret � new Text���

String line�

write��show� ��url��

while���line�read���	equals���Ok���� ret	addLine�line��

return ret�

�

�

The following application uses the above client for requesting three pages and
displaying the
rst one successfully received� After
nishing this task� the time
elapsed is displayed in milliseconds�

import java	util	Date�

import endres	util	Text�

public class examplesession �

public static void main�String args��� �

new examplesession���

�

��

public examplesession�� �

Date d � new Date���

long start � d	getTime���

MultiHttpClient mhc � new MultiHttpClient��serv�
����
�����

mhc	skipPrompt���

mhc	modeone���

mhc	get��http���www	dfki	de����

mhc	get��http���www	microsoft	com������

mhc	get��http���www	whitehouse	gov������

String page � mhc	waitsuccess���

System	out	println��show���

Text t � mhc	show�page��

t	show�System	out��

mhc	kill�page��

mhc	bye���

System	out	println��Time elapsed� ���new Date��	getTime���start��� ms	���

�

�

���� A Perl � client

Here is a client for the MultiHttpServer written in the popular script language Perl ��
As in the previous sections� not the full functionality of the protocol is implemented
but can be added easily� since the interface functions do not di�er much�

�� MultiHttpClient

��

�� provided by Markus Meyer and Robert Wirth� april ��

package MultiHttpClient�

use Socket�

� constructor

sub new �

my �class � shift�

my �host � shift�

my �userport � shift�

my �self � ���

�self����host�� � �host�

�self����connected�� � ��

� request on userport

�iaddr � inet
aton��self����host��� or die �no host� �self����host����

�paddr � sockaddr
in��userport� �iaddr��

�proto � getprotobyname��tcp���

socket�PAGESOCK� PF
INET� SOCK
STREAM� �proto� or die �firstconn� ����

connect�PAGESOCK� �paddr� or die �connect� ����

select �PAGESOCK�� �� � ��

select �STDOUT�� �� � ��

� read from userport

�line � �PAGESOCK��

��

chop �line�

�self����PORT�� � �line�

close�PAGESOCK��

bless��self��class��

�

� connect for a session

sub connect �

my �self � shift�

�iaddr � inet
aton��self����host��� or die �no host� �self����host����

�paddr � sockaddr
in��self����PORT��� �iaddr��

�proto � getprotobyname��tcp���

socket�PAGESOCK� PF
INET� SOCK
STREAM� �proto� or die �mainconn� ����

connect�PAGESOCK� �paddr� or die �connect� ����

select �PAGESOCK�� �� � ��

select �STDOUT�� �� � ��

�self����connected�� � ��

�

� skip prompt

sub collect �

my �self � shift�

my �line�

�line � �PAGESOCK��

if ��defined �line�

�

exit ��

�

while��line ��Ok���

�

�line � �PAGESOCK��

if ��defined �line�

�

exit ��

�

�

�

� set session mode

sub mode �

my �self � shift�

my �command � shift�

select PAGESOCK� �� � ��

print �mode� �command�n��

�line � �PAGESOCK��

chop �line�

return �line ��Ok���

�

� request a page

��

sub get �

my �self � shift�

my �okline�

my �url � shift�

select �PAGESOCK�� �� � ��

print �get� �� �url� ��n��

print STDOUT �status� �� �url� � connecting			�n��

�okline � �PAGESOCK��

if ��defined �okline�

�

exit ��

�

�

� wait for success

sub waitsuccess �

my �self � shift�

my �okline�

my �address�

select �PAGESOCK�� �� � ��

print �waitsuccess�n��

�address � �PAGESOCK��

if ��defined �address�

�

exit ��

�

�okline � �PAGESOCK��

if ��defined �okline�

�

exit ��

�

return �address�

�

� show page

sub show �

my �self � shift�

my �line�

my �url � shift�

my �string � ���

select �PAGESOCK�� �� � ��

print �show� �� �url� ��n��

print STDOUT �status� �� �url� � receiving�n��

�line � �PAGESOCK��

if ��defined �line�

�

exit ��

�

while��line � ��Ok���

�

��

�string � �string 	 �line�

�line � �PAGESOCK��

if ��defined �line�

�

exit ��

�

�

return �string�

�

� kill page

sub kill �

my �self � shift�

my �okline�

my �url � shift�

select �PAGESOCK�� �� � ��

print �kill� �� �url� ��n��

print STDOUT �killing� �� �url� ��n��

�okline � �PAGESOCK��

if ��defined �okline�

�

exit ��

�

�

� send command for termination

sub bye �

my �self � shift�

my �okline�

my �anser�

select �PAGESOCK�� �� � ��

print �bye�n��

print STDOUT �bye�n��

�answer � �PAGESOCK��

if ��defined �answer�

�

exit ��

�

�okline � �PAGESOCK��

if ��defined �okline�

�

exit ��

�

�

��

Using the client described above� it is very simple to implement the following
small sample session� Please remember that it is necessary to put the location of
the Perl interpreter in the
rst line�

���project�pan�perl!�bin�perl �w

��

� load module described above

use MultiHttpClient�

� define variables

my �client�

my �address�

my �content�

� session

�client � new MultiHttpClient��serv�
�����
������

�client��connect���

�client��collect���

�client��mode��one���

�client��get��http���www	dfki	de����

�client��get��http���www	microsoft	com����

�client��get��http���www	whitehouse	gov����

�address � �client��waitsuccess���

print STDOUT �address�

�content � �client��show��address��

print STDOUT �content�

�client��kill��address��

�client��bye���

A Soft� and Hardwarerequirements

The MultiHttpServer is written in JAVA� i�e� it is platform independent� So far�
it was tested under Solaris and Linux� but should run under any operating system
providing a JAVA Virtual Machine�

B Further Information

Further information can be obtained from the MultiHttpServer webpage�

http���www�dfki�de��bauer�PAN�mhs�

C Acknowledgements

I like to thank Mathias Bauer for encouraging me to write this paper� Dietmar
Dengler and Markus Meyer for interesting discussions on this matter� Wilken Sch�utz
for providing the Prolog client� and Markus Meyer and Robert Wirth for the Perl
� client�

�	

T
h

e
M

u
lt

iH
tt

p
S

er
ve

r
A

P
ar

al
le

lP
u

ll
E

n
g

in
e

C
h

ri
st

o
p

h
E

n
d

re
s

em
a
il
�
C
h
ri
st
o
p
h
�E
n
d
re
s�
d
fk
i�
d
e

T
M

-9
9-

04
Te

ch
ni

ca
lM

em
o

