Deutsches Research
Forschungszentrum

'F n far Kanstliche RepOI’t
Intelligenz GmbH TM-98-05

Transportation Scheduling and Simulation in a
Railroad Scenario: A Multi-Agent Approach

Jurgen Lind and Klaus Fischer

German Research Center for Al (DFKI)
Im Stadtwald, B36
66123 Saarbrucken, Germany

{lind,kuf} @dfki.de

December 1998

Deutsches Forschungszentrum fur Kunstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
67608 Kaiserslautern, FRG 66123 Saarbriicken, FRG
Tel.: + 49 (631) 205-3211 Tel.: +49 (681) 302-5252
Fax: + 49 (631) 205-3210 Fax: + 49 (681) 302-5341
E-Mail: info@dfki.uni-kl.de E-Mail: info@dfki.de

WWW: http://www.dfki.de

Deutsches Forschungszentrum fur Kunstliche Intelligenz

DFKI GmbH

German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in
the field of innovative software technology based on Artificial Intelligence (Al) methods. DFKI
is focusing on the complete cycle of innovation — from world-class basic research and tech-
nology development through leading-edge demonstrators and prototypes to product functions
and commercialization.

Based in Kaiserslautern and Saarbriicken, the German Research Center for Artificial Intelli-
gence ranks among the important “Centers of Excellence” worldwide.

An important element of DFKI's mission is to move innovations as quickly as possible from the
lab into the marketplace. Only by maintaining research projects at the forefront of science can
DFKI have the strength to meet its technology transfer goals.

DFKI has about 115 full-time employees, including 95 research scientists with advanced de-
grees. There are also around 120 part-time research assistants.

Revenues for DFKI were about 24 million DM in 1997, half from government contract work and
half from commercial clients. The annual increase in contracts from commercial clients was
greater than 37% during the last three years.

At DFKI, all work is organized in the form of clearly focused research or development projects
with planned deliverables, various milestones, and a duration from several months up to three
years.

DFKI benefits from interaction with the faculty of the Universities of Saarbriicken and Kaisers-
lautern and in turn provides opportunities for research and Ph.D. thesis supervision to students
from these universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI's six research departments are directed by internationally recognized research scien-
tists:

[Information Management and Document Analysis (Director: Prof. A. Dengel)
[Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
(1 Deduction and Multiagent Systems (Director: Prof. J. Siekmann)

[Programming Systems (Director: Prof. G. Smolka)

[Language Technology (Director: Prof. H. Uszkoreit)

[Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wabhlster
Director

Transportation Scheduling and Simulation in a Railroad Scenario: A
Multi-Agent Approach

Jirgen Lind and Klaus Fischer

German Research Center for Al (DFKI)
Im Stadtwald, B36

66123 Saar br iicken, Ger many
{lind,kuf} @dfki.de

DFKI-TM-98-05

This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research, and Technology (FKZ ITW-).

(© Deutsches Forschungszentrum fur Kiinstliche Intelligenz 1998

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum fur Kiinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fiir Kiinstliche Intelligenz.

ISSN 0946-008X

Transportation Scheduling and Simulation in a
Railroad Scenario: A Multi-Agent Approach

Jiirgen Lind and Klaus Fischer

German Research Center for Al (DFKI)
Im Stadtwald, B36
66123 Saarbriicken, Germany
{lind, kuf}@dfki.de

December 15, 1998

1 Introduction

Efficient transportation — be it of persons or goods — is a key issue in todays indus-
trial world. Because of the immense amount of transportation tasks, it is necessary
to use the available resources most effectively. Thus, computer aided — or entirely
controlled — scheduling systems are key technologies in the forthcoming century.
Railroad freight haulage as it is performed today is depicted in Figure 1: a company
that wants to ship something via railroad to its customers delivers the freight to the
local freight center (usually a railroad station) where it is stored until enough freight
from other companies has arrived to justify a train to the regional freight center.
At the regional freight center, containers from other local freight centers that have
the same direction are assembled and sent to the next interregional freight center
where another re-assemblance process takes place. The decomposition of the trains
is achieved in reverse order.

interregional freight center

regional freight center

local freight center

Figure 1: Hierarchical freight haulage

This approach, however, has some serious drawbacks. First of all, the containers of
individual customers must wait at the local freight centers until enough freight is
delivered to make a train to the next local freight center profitable. Secondly, the
re-assemblance of trains in regional and interregional freight centers is a very time

consuming process that introduced additional delays in the producer-to-customer
route.

An alternative approach [Krummbheuer, 1997] to the classical freight haulage process
uses small railroad transportation modules (or simply modules, e.g. [Windhoff AG, 1996])
instead of complete trains. Whereas a normal train is made up of one railcar and
several freight cars, a transportation module is a unit of an engine and a storage area
with approximately the size of an individual freight car. When a company wants to
deliver some freight to a customer, it orders a transportation module at a local freight
center and loads its goods on this module. The module itself is then responsible to
find its way through the railroad network. The problem is now, that a location route
in a railroad network cannot be used by two independent modules at the same time,
i.e. either a route is blocked by a single module or two (or more) modules share a
route by hooking together at the beginning of a location route and splitting up af-
terwards. In order to use the underlying railroad infrastructure most efficiently, the
railroad modules should share as many location routes as possible.

The main advantage of this approach is that it avoids a central planning authority
that schedules all transportation modules. Instead, each module is responsible to
achieve its goal which is to deliver its freight to some destination node in the net-
work. Additionally, each module performs some local optimization of the network
throughput by sharing as many location routes with other modules as possible. The
local optimization process of all modules eventually leads to a high, though usu-
ally not optimal, degree of resource efficiency. Besides this major advantage, a de-
centralized approach implies less coupling operations during the train composition
process, a high degree of customer accessibility and lower costs because of the effec-
tive location route usage.

The coordination of the local optimization processes of many thousand modules in
a practical scenario is a computationally demanding process and requires a sophisti-
cated algorithmic framework. The major requirements towards a real-world system
are listed in the following paragraphs.

First of all, a scheduling system should be capable of dealing with an incomplete
problem specification. The classical operations research based approaches assume
that the entire problem specification is given at the systems start-up time. Unfortu-
nately, this assumption often does not hold in the real world! Transportation com-
panies usually receive customer tasks over time and not only at the beginning of the
planning process. Thus, the company cannot wait until all task specifications are
available, then start the planning process in order to find an optimal plan and finally
start to execute this plan. Instead, the company must overlap the planning process
based on the available data and plan execution monitoring. Incoming tasks must
then be integrated in the ongoing planning and execution process.

The second requirement is highly related to the first point and deals with the prob-
lem to establish a proper relation between the system and the real world it is sup-
posed to model. A prominent example for the gap between research and reality are
order dispatching systems for haulage companies: usually, the respective systems
try to compute optimal routes and schedules for the companies trucks, but they fail
to monitor the plan execution process and are thus not able to react to unforeseen
situations such as mechanical failure of trucks or traffic jams making it impossi-
ble to maintain the original schedule. An exception from this shortcomings is the
TELETRUCK system presented in [Biirckert et al., 1998] which uses a multi-agent ap-
proach for planning and monitoring of transportation tasks.

Finally, a system should not necessarily try to find an optimal solution for a given

problem. Although optimality is a desirable property of a solution, it is often the
case that the computational effort to find an optimal solution is too high for real-
istic problems. Thus, a mechanism that is capable of finding a rather good solu-
tion quickly and then improving this solution if sufficient time is available, is an al-
ternative to classical approaches. Algorithms of this type are usually referred to as
anytime-algorithms. The name stems from the fact, that these algorithms can be
aborted at any time and still yield a solution. The quality of the solution simply de-
pends on the resources assigned to the algorithm.

Figure 2 illustrates the basic idea: a solution that is 80% as good as the optimal so-
lution is found within a short computation time. Subsequently, this solution is im-
proved as long as computational resources are available, finally leading to the opti-
mal solution. Obviously, anytime algorithms are highly desirable if computational
resources are a critical factor — which is often the case in real world applications.

100

80 +

Aiend

Computation Time

Figure 2: Timeline of an anytime algorithm

This paper is organized as follows: Section 2 describes the problem to be solved and
the basic technical constraints to be maintained. We will then introduce some basic
mechanisms of agent-based problem solving and explain how these mechanisms are
used in our system. Afterwards, some remarks on the planning unit of our agents are
presented before we briefly describe the functional unit that monitors the execution
of the resulting plans. A conclusion summarizes the paper.

2 Problem Description

The overall goal of the system presented in this paper is to reduce the cost for a given
set of transportation tasks in a railroad network. Each task is specified as a tuple con-
sisting of the origin and the destination node, the earliest possible departure time
(EDT), the latest allowed arrival time (LAT) and an additional time stamp indicating
when the task is announced to the system. Thus, the set of tasks is not fully known
to the system at start-up time, new tasks arrive during the planning process and may
require a revision of the already assembled plan in order to reduce cost. A typical
time profile for incoming tasks is depicted in Figure 3: at start-up time, 2000 tasks
are known to the system; during the next 24 hours (=1440 minutes) additional tasks
arrive, summing up to a total of 5000 tasks at the end of the day.

A transportation task is served by a transportation module mentioned in Section 1,
we assume that each task can be served by a single module, i.e. there is no need to
hook two or more modules together to serve a single task. Vice versa, we assume
also that a module cannot serve more than one task at a time. All tasks occurring in
the system are transportation requests in a railroad network; in the current version

3

5000 -

4000 -

3000 4

2000

1000

0 1440

Figure 3: Task arrival time pro- Figure 4: An example railroad
file network

of the system, we use an abstracted map of the German railroad network with ap-
proximately 250 nodes and 350 links. In this paper, however, we use the seven node
network shown in Figure 4 to illustrate the basic ideas of our approach.

The net consists of several nodes connected via so-called location routes. The num-
bers on the routes in Figure 4 indicate the distance between two nodes connected
via a location route. Whenever a module serves a transportation task, it computes
the path from the origin to the destination node with a shortest path algorithm. The
module then rents the intermediate location routes for a certain time window from
the net manager. The time window for each location route is uniquely determined
by the earliest departure time and the latest arrival time of the transportation task.
When a location route is allocated by a certain module, the route is blocked for other
modules during this time interval. In order to reduce route blocking, however, two
or more modules can decide to share a particular location route.

Route sharing means, that two or more modules hook together at the beginning of
a location route (or of a sequence of consecutive routes) and split up afterwards.
Route sharing has two advantages: firstly, it enlarges the average utilization of loca-
tion routes because it enables more than one module to use a location route at the
same time. Secondly, the cost for renting a location route are reduced for an individ-
ual module by distributing the full cost among the participating modules.

To illustrate the idea of route sharing, consider the following example with two trans-
portation task 71 (B, I, 10,60, 0) and 7>(C, G, 11, 150,0). Let the cost function for a
location route be c¢(w, n) = %, i.e. the weight w of the route divided through number
n of modules using it simultaneously. Now, if the two modules serving the respective
tasks actindependently, the transportation costs for the first module are 35 units and
29 units for the second. If, on the other hand, the two modules decide to cooperate
and to share the common location route between node D and node E, the trans-
portation cost reduces to 29.5 and 23.5, respectively. The computational problem in
conjunction with location route sharing is to identify sets of tasks (i.e. their respec-
tive modules) that can share location routes. The limiting factors in this respect are
the compatibility of transportation paths and time windows.

In the course of this paper, we will refer to sets of cooperating modules as “unions”
where each union is determined by the participating modules. Thus, unions are-
meta level concepts; a union emerges when atleast two modules decide to cooperate

by sharing location routes and it ceases to exists when all modules within the union
have completed their respective tasks.

In this section, we have presented the requirements and goals of our system. In the
next section, we will introduce some basic ideas from the field of multi-agent sys-
tems and demonstrate, how these ideas can be instantiated in this scenario.

3 Agent-Oriented Problem Solving

Agent oriented problem solving is a programming paradigm based on autonomous
entities — the agents. Besides their autonomy, agents are supposed to react to changes
in their environment and to be capable of planning their actions in order to achieve
their goals. The field of multi-agent systems considers agent based systems with
more than one agent. In these systems, an additional agent capability gains impor-
tance — the ability to communicate and cooperate with other agents in the system.
Multi-agent systems are particularly well-suited for the scenario described in the
previous section because they allow a very natural mapping from the entities oc-
curring in the scenario to agents. At first glance, it seems very natural to model
the transportation modules introduced in the previous section as agents that pursue
their local goals. Doing this, however, results in a conceptual break when it comes
to modelling the coupling activities that are necessary for location route sharing.
Coupling two or more modules together to form a union requires an election pro-
cess in order to decide which module should represent the resulting union towards
the other unions. Additionally, this approach implies a high degree of intra-union
communication whenever the union leader wants to integrate a new module in the
existing union. To avoid these problems, we have decided to model the unions as the
agents in our system. Applying this scheme results in an important simplification of
the system design and the resulting implementation. Merging several unions into a
single union does no longer require an election a coordination process among the
participating modules as they are straightforwardly integrated in another existing
union. The roles of the participating unions (either master or slave) are determined
by the negotiation protocol. Whenever a new task is announced to the system, a
new union, consisting only of a single module, is created, we will sometimes refer to
unions with only one module as degenerated unions. The advantage of applying this
scheme is that we do not have to differentiate between modules and unions; every
active entity in the system is a union and that’s it!

Any agent cooperation within a multi-agent system is based on a negotiation pro-
cess during which the agents try to figure out a deal that results in mutual benefits
for them. The negotiation process amongst several agents is steered by so-called
cooperation protocols. These protocols tell the individual agents what messages to
expect from the peer agents or what messages to send to them, respectively. The two
protocols used in our system are the contract-net [Smith, 1980] protocol described
in Section 3.1 and the simulated trading [Bachem et al., 1992] protocol explained in
Section 3.2.

We have combined these protocols in our scheduling approach to achieve the afore-
mentioned properties (incrementality and anytime) in the following way: an initial
solution for the module schedule is obtained by running the contract-net protocol
whenever a new task is announced to the system. New tasks are incrementally in-
tegrated in the existing scheduling which guarantees, that always a solution for the
problem (as far as it is known to the system) exists. However, this solution may be

(and usually is) not optimal. In order to improve the quality of the existing solution,
the simulated trading protocol is run on the set of tasks (or the respective modules)
currently known to the system. Unfortunately, executing the simulated trading pro-
tocolis a computationally expensive operation and so it is executed only periodically
— either after a fixed number of new tasks has been added to the existing solution or
explicitly triggered by a user request.

In the following sections, we present the contract-net and simulated trading proto-
cols in detail.

3.1 Contract-Net Protocol

In the context of the contract-net protocol [Smith, 1980] depicted in Figure 5, there
are two types of participants: one manager and a group of bidders. The protocol
is initiated by the manager which sends a description of the task under considera-
tion to the bidders. Note, that “task” is a not transportation task mentioned earlier
but rather some abstract description of a problem to be solved. We will present the
instantiation of the general protocol to our scenario later.

After the bidders have received the task description, each of them computes a bid
that informs the manager about costs that will be charged if the task is assigned to
that particularbidder. After all bidders have submitted their bids to the manager, the
manager selects the bid that minimizes his cost and assigns the task to the respective
bidder (+) and rejects the offers of the other bidders (-).

O Manager: announce task
T
O O
By
R\ O /A Manager: collect bids
select best bid
/ - V \ inform bidders
O O O

O

Bidders: compute bid

Figure 5: Contract Net Protocol

In our system, this protocol is adopted by creating a new (degenerated) union when
a new task is announced to the system. The module in the union plans its path and
time constraints for the task and then the parent union initiates the contract-net
protocol as the manager and offers the modules plan to the other currently active
unions. These unions check if they contain one or more modules that are a poten-
tial sharing peers and if this is the case, they offer a sharing commitment to the new
union. The new union collects these offers and selects the one that has the largest
cost saving potential. It then transfers the module to the winning union and ceases
to exist because it does not contain other modules. If no union offers a sharing com-
mitment, the new union remains active as degenerated union.

3.2 Simulated Trading

The simulated trading protocol [Bachem et al., 1992] is an algorithm designed to im-
prove existing solutions, not to construct new solutions from scratch. In our case,

the input and the output of the protocol are valid schedules where the cost of the
output are always less or equal to the cost of the input. This is trivially true since the
output can always be the input if no cheaper schedule exists. However, this property
is nonetheless important because it guarantees, that the protocol can be aborted at
any time and still yield a valid solution. Furthermore, if the protocol is given enough
computation time, it is guaranteed to find the optimal solution. Now, how does this
work?

O O Q Agents: select actions
B S .
O Stockmanager: collect actions

/ V \ distribute actions
O O O Agents: select actions
S
B\\ ! //B

O Stockmanager: collect actions
distribute actions

Iterate

O Stockmanager: find trading match

v
o 6 20

Agents: execute actions

Figure 6: Simulated Trading

The protocol is initiated by a special agent, the stock manager. In the course of the
protocol execution, the agents (here called traders) perform several rounds of hypo-
thetical trading, i.e. the traders either choose to sell some of their goods or to buy
something from others. In our context, a sell operation corresponds to removing
a module from a union and a buy operation corresponds to integrating a module
in a union. Thus, the unions try to optimize their cost by exchanging unprofitable
modules with better ones. The decision which module to sell depends on a prob-
ability distribution induced by the potential cost reduction if the module was sold.
Vice versa, the decision to buy a module offered by another union depends on the
potential cost reduction if the module would be integrated in the union.

After the stock manager has collected the hypothetical sell and buy actions, it must
find a valid trading match in the set of actions. There a several validity requirements
for a trading match e. g. there must be no two buy actions on the same sell op-
eration, etc. Finding a trading match is a nontrivial task [Bachem et al., 1992] and
accounts for the computational complexity of the simulated trading protocol. If a
trading match is found, the stock manager informs the traders which actions must
be executed, i.e. which modules must be exchanged.

In this section, we have outlined some basic ideas of agent-oriented problem solv-
ing. In the next section, we will present the local planning algorithm of the unions.
The plan integration operator developed in there enables a union to find a module
schedule with a maximum number of location route sharings.

4 Local planning algorithm of unions

4.1 Notation and Datastructures

First of all, we introduce some basic notations and datastructures used in the subse-
quent detailed description of the algorithms implemented in our system.

Each of the m modules has a unique identification number i € {1,...,m} and is
denoted by M;. Furthermore, each union has a unique identification number j €
{1,...,k} as well. A union of » modules M;,,...M;, is written as U;>"". A plan

for an individual modules is a sequence of plan steps where each step consists of a
node identifier, a time window and a list of actions to be performed during that plan
step. Each of these actions is described by its type, the peer modules, its duration
and the time window ¢, ¢ during which it must be executed. Time windows used in
the module plans have a lower bound (1) and an upper bound (¢), location routes
between any two nodes in the network are written as sequence of node names, e. .g.
AB, BDET,

Each element of a plan be accessed via a dot notation scheme, list elements are ac-
cessed via their index number. For example let

[(Nodeld:At:10t:16 actions:nil)

(Nodeld:Ct:10t:16 actions:[(type:join peers:[My Ms] duration:4¢:11¢:15)])
(Nodeld:Dt:10t:16 actions:nil)]

be the plan of module M. Then we have M.A.t = 16 or M.C.actions.1.peers =[M,
Mg] .

4.2 Plan Integration operator

In this section, we will develop a plan integration operator for the plans of » dis-
tinct modules. Plan integration means, that the operator takes the » plans as input
and modifies these plans by inserting join and split actions such that the resulting »
plans imply a maximum degree of location route sharing. The integration operator
is used by the unions to decide whether they can integrate a new module in their set
of modules or not.

In the course of this section, we will use a rather simple example to illustrate the
basic ideas and to give the reader rough feeling for what is going on during the plan
integration process. In the example, we have two unions U{ and UZ with modules M,
and M, serving tasks T3 (A, F, 10, 60,0) and 75(C, &, 9,50, 0) respectively. Basically,
plan integration is achieved in five steps:

Find location route matches The first step in the plan integration operation is to
find an overlapping sequence of location routes in the plans. In the example, the
path of module M, is ABDEF and the path of module M, is CDFEG. Thus, the
two paths overlap in DE. If no overlapping is found, the plan integration process
is aborted. For n plans, the general overlap condition is Vi3j : overlap(M;, M;) # 0,
i.e. for each module, there must exist at least one sharing peer in the union.

Generate joint actions If the overlap condition holds, the next step in the plan in-
tegration process is to generate join and split actions for the respective plans. These
actions are referred to as joint actions because they require two modules to coordi-
nate the individual actions. In the example, the two modules join in node D and split

in node I, the actions to be inserted are therefore

M, .D.actions =[(type:join peers:[M,] ...)]
M,.D.actions =[(type:join peers:[M;] ...)]
M, .E.actions = [(type:split peers:[M,] ...)]
M;.E.actions = [(type:split peers:[M;] ...)]

Minimize number of joint actions The number of joint actions generated in the
previous step is not optimal because the generation process only considers the local
context of the action, i.e. only a single step in the plan. Due to prior actions of a
module, however, some actions are obsolete and can be eliminated. To illustrate
this situation, assume another Module M with task 7'(B, G, 10, 60, 0). Integrating the
three modules M;, M, and M, yields three overlappings

1. (My, M) = DE
2. (My,M)=BDE
3. (My,M)=DEG
resulting in three bilateral actions pairs
1. (My, M;): joinat D, splitat I/
2. (My,M): join at B, splitat I/
3. (M3, M): join at D, splitat G

This results in a generation of two join actions for module M, atnode D: one with M,
and one with M. These two actions can be reduced to a single action M;.D.actions =
[(type:join peers:[M;M] ...)] because M; and M are already linked due to their prior
join operation at node B. While this appears to be rather trivial in this context, this
is not the case in more complex plans where previous join and split actions must be
recursively traced for a large number of modules.

Specify joint action constraints In this step, the time windows of the newly gen-
erated actions are specified. The conditions that must hold in this respect are that
actions must take place within the time windows of the plan steps of the respective
modules and that the joint actions must take place simultaneously. In the example,
the resulting constraints are

M;.D.actions. 1.t = My.D.actions. 1.t = max(My.D.t, My.D.t)
M,.D.actions. 1.t = My.D.actions. 1.t = min(My.D.t, My.D.t)

Find action schedule In the last step of the plan integration process, the operator
must guarantee the existence of a schedule for all actions in each plan step of each
module. This means, that all actions occurring in a plan step must be serialized in a
way that the action executions do not overlap in time.

For example let M;.N.actions = [(type:join peers:[M;] duration:4t:10¢:30)

(type:join peers:[M;.] duration:4t:14t:34)]

be the plan step of module M; at node N. The time windows for the two actions are
shown in Figure 7, the task of this step in the plan integration process is to arrange

these actions within their respective time windows such that they do not overlap and
that they take place in the time interval given by cutting the action execution time
intervals. A valid schedule for the two actions is also shown in Figure 7.

time window action 1

! |
‘ |
| |
: ! . |
1 | | ' timewindow action 2
! ! ‘ !
! |
! |
! |

] action 1 example schedule
e action 2

| valid time range —

Figure 7: Action Scheduling

Note that, as one can see in Figure 7, usually multiple schedules for the actions exist.
However, the time windows of the actions are not committed to a particular schedule
because this implies an unnecessary restriction imposed at planning time. At plan-
ning time, it is sufficient to know that a schedule exists, concrete commitment to a
particular schedule are delayed until execution time giving the participating mod-
ules a maximum degree of flexibility. A delay of commitment until it is necessary is
called a least commitment strategy.

After these steps of the plan integration process have been successfully performed,
the output of the plan integration operator are » module plans that satisfy the over-
lap condition mentioned before. The execution of the resulting plan must now be
monitored in order to be able to react to plan deviations and to maintain the in-
tegrity constraints imposed by the plans.

5 Plan Execution Monitoring

Each union has a functional unit that monitors the plan execution process of the
modules in the union. The plan execution monitor (PEM) is the link between the
planning unit and the real world (or a simulation engine that simulates the real
world). The PEM controls the usage of location routes and the coupling activities
of the modules. To illustrate how plan execution monitoring works, recall the plan of
module M, from the example in the previous section:

[(Nodeld:Ct:9t:21 actions:nil)

(Nodeld:D t:20t:32 actions:[(type:join peers:[M] duration:4t:11¢:15)])

(Nodeld:E t:33 t:45 actions:[(type:split peers:[M;] duration:3¢:11¢:15)])

(Nodeld:G :38t:50 actions:nil)]

When the module starts to execute this plan at time ¢ = 9, it asks the PEM whether
the location route from C to D is available as it should be because it was allocated
at planning time. However, the route may not be available at execution time due to
external reasons, e.g. route blocking due to mechanical failure of another module
while using that particular route. It is the task of the PEM to communicate with the
net manager in order to check if the route is available or not. If the module is al-
lowed to use the route, it departs from node C'. When it arrives at node D, it issues a
coupling request to the PEM, indicating that it is waiting for module M, to join with
it. If module M, has already arrived at node D, the coupling action can start if M,

10

is not engaged in an ongoing coupling activity with another module. If M; has not
arrived yet or is currently engaged, the coupling action of M, is stalled. If M; does
not become available within the time interval specified in the join action of M;, M,
departs from D without coupling with M, because otherwise M, will miss its sched-
uled latest arrival time at the goal node. If the coupling activity can be completed as
itis scheduled, the two modules depart from D after the coupling is finished. When
they arrive at node F, the two modules inform the PEM of their parent union that
they want to split and after completing the split action they depart from node F for
their respective goal nodes.

This example is, again, highly simplified. If more than two modules are involved in
join or split actions additional plan integrity constraints must be satisfied. If, for ex-
ample, three modules M, M; M5 are coupled in this order and M, must split from M,
and M3, an additional join action between M; and M3 must be generated because
M, and M5 are supposed to remain coupled. However, no additional join action
is necessary if the original module order is M;M; Ms. The decision of whether to
generate additional coupling actions or not must be taken by the PEM upon plan
execution time, depending on the actual coupling order of the modules.

6 Conclusion

In this paper, we have presented a scheduling system that optimizes the usage of the
infrastructure in a railroad scenario. We have used a multi-agent approach for plan-
ning and plan execution monitoring in this real-time scenario because of the natural
link between the theoretical concepts and the scenario. An incremental planning ap-
proach that takes incomplete tasks specifications into account uses the contract net
protocol to obtained an initial plan. Then, a post-optimization of the initial solution
is achieved by means of the simulated trading protocol. The link between the agents
planning unit and the external world is drawn by the plan execution monitoring unit
of the agent that dynamically reacts to external events and that can initiate a revision
of the actual plan of the agent.

The system presented here is not only applicable in the context of freight haulage, it
can as well be used in a passenger transport scenario. Even scheduling of road trucks

can be of interest when new technologies in road freight haulage become available
1

References

[Bachem et al., 1992] Bachem, A., Hochstéttler, W., and Malich, M. (1992). Simulated
Trading: A New Approach For Solving Vehicle Routing Problems. Technical Report
92.125, Mathematisches Institut der Universitat zu Koln.

[Biirckert et al., 1998] Biirckert, H.-J., Fischer, K., and Vierke, G. (1998). Transporta-
tion scheduling with Holonic MAS, the TeleTruck approach. In Proc. PAAM98.

[Krummbheuer, 1997] Krummheuer, E. (1997). Ren-
dezvous und schnelle Sprinter. Verkehrsforum.
http://www.verkehrsforum.de/magazin/archiv/1.97/1.97_2.html.

“Zaubermittel gegen das Verkehrschaos?”, Axel Freyberg, FAZ vom 2.9.1998

11

[Smith, 1980] Smith, R. (1980). The contract net protocol: High-level communica-
tion and control in a distributed problem solver. IEEE Trans. on Computers.

[Windhoff AG, 1996] Windhoff AG (1996). CargoSprinter. http://www.windhoff.de
http://www.fortunecity.de/anlagen/atlantik/23/sprinter.htm.

12

P DIPY {4y ‘pull

>CMC\C®O _va_o_ul_nt_mmw €2T199

9ed ‘plemipels wj

A_v‘_n_h_v |V 10} 191ua) YydleasSay uewlas)

18Y9dsi4 snepy pue pui usbune
1oday yoseasay

G0-86-NL yoeouddy 1uaby-nN\ Vv :011eUSDS peodjiey B Ul uone|nwis pue Buljnpayoss uonelodsuel)

