
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Technical
Memo
TM-97-01

GeneTS: A Relational-Functional Genetic
Algorithm for the Traveling Salesman Problem

Markus Perling

August 1997

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research, and Technology (FKZ ITWM-4040).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1997
This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.
ISSN 0946-0071

GeneTS� A Relational�Functional Genetic Algorithm for

the Traveling Salesman Problem

Markus Perling

August �� ����

Abstract

This work demonstrates a use of the relational�functional language RelFun for specify�

ing and implementing genetic algorithms� Informal descriptions of the traveling salesman

problem and a solution strategy are given� From these a running RelFun application is

developed� whose most important parts are presented� This application achieves good

approximations to traveling salesman problems by using a genetic algorithm variant with

particularly tailored data representations� The feasibility of implementing sizable applica�

tions in RelFun is discussed�

�

CONTENTS �

Contents

� Introduction �

� The �Traveling Salesman� Problem and Genetic Algorithms �

��� The �Traveling Salesman� Problem �
��� A Bit of Genetics �
��� Genetic Algorithms and the Traveling Salesman �

� The Implementation in RelFun �

��� Preliminaries on RelFun � 	
��� How the Program Works �

��� The Data Structures� Using Structures and Lists � � � � � � � � � � � � � � � � � �

��� The Main Loop� Implementing Interaction via Nondeterminism � � � � � � � � � � ��
��� Individuals� Self
evaluating Data Structures ��
��� The Roadmap� Converting a Coordinate List into a Distance Table � � � � � � � � ��
��� The Population� Nested Lists and Structures ��
��	 The Mechanics of Reproduction� Selection via Probability � � � � � � � � � � � � � ��
��
 Mutation and Crossover ��

��
�� Mutation Operators� Parameterization via Higher
Order Constructors � � ��
��
�� Crossover� PMX ��

� Conclusions ��

A A Sample Trace of the �	
city Unit TSP ��

B The Complete GeneTS Source ��

� INTRODUCTION �

� Introduction

Important arguments for using declarative languages are the conciseness of program speci

�cations and support for e�cient high
level program development� RelFun is a declarative
programming language that integrates the relational and functional paradigms� and we want
to demonstrate how RelFun combines the bene�ts of languages only embodying one of these
concepts� Furthermore� we want to show the feasibility of implementing serious projects in
RelFun� Both is done by giving an informal algorithmic description of our GeneTS� application
and systematically developing it into a complete RelFun program�
GeneTS searches good solutions for the �traveling salesman� problem �TSP� using a genetic al

gorithm �GA�� We chose the TSP because it is well
known and constitutes a challenging testbed
for various optimization methods� as well as� like in our case� for programming paradigms� Also�
the combination of TSP and GA is a well
discussed subject in the literature� see� e�g�� �Mic
���
�Gol	
�� on which our discussion is based �also see �RS
���� therefore our program will be com

parable to many other implementations� We will not detail here any discussion whether our
application is an evolution program or a genetic algorithm �see also �Mic
���� it doesn�t use
binary coding like GA�s in their original de�nition� but it still uses string coding �or� lists��
therefore we will speak of a GA� For direct comparisons between GAs in di�erent declara

tive languages one will �nd many �although mostly experimental and therefore undocumented�
implementations in Prolog� Lisp� Ei�el� Scheme� and others in the WWW �for a Lisp imple

mentation refer to �Koz
����
For further reading about the TSP� we suggest a recent text� �JM
��� It discusses several
optimization methods applied to the TSP� including genetic algorithms� and can be used as
backlink to earlier references� For remarks on the origins of the TSP see chapter �� in �Mic
��
and the footnote at the beginning of �DFJ���� The latter text is also the earliest reference we
found� �it is shown that a tour across �
 US cities has the shortest road distance��
This work is divided into two main parts� section � informally describes the TSP and GAs�
section � successively presents the conversion to their RelFun representation� There are two
appendices� Appendix A contains a pictorial sample trace of GeneTS applied to a chessboard

like city map� where the optimization process is visualized as an increase of ordering towards
an optimal route� In appendix B one �nds the complete source of the GeneTS program�

� The �Traveling Salesman� Problem and Genetic Algo�

rithms

In this section an introduction to the basic concepts of applying genetic algorithms to the TSP
is given� Originally� the idea for the project came from �Gol	
�� and we will follow the language
used in this book� Later� our implementation was modi�ed to �t to chapter �� of �Mic
��� which
describes the application of evolutionary algorithms to the TSP�

��� The �Traveling Salesman� Problem

The general TSP is to plan� as for a salesperson� the shortest possible route between a number
of cities� We neglect most of the restrictions that in real situations must be taken into account
�e�g� there may not exist a connection from each city to every other�� and assume that the
following holds�

� each city is connected to every other city�

� each city has to be visited exactly once�

� the salesman�s tour starts and ends at the same city

�GENEtic Traveling Salesman
from Webster�s NewWorld Dictionary� ge � net n� �ME� � OFr� genette � Sp� gineta � Ar� jarnayt� �� any of
a genus �Genetta� of small	 spottet African animals related to the civet �� its fur

� THE �TRAVELING SALESMAN� PROBLEM AND GENETIC ALGORITHMS �

Using these assumptions� the heading �traveling salesman� should be interpreted generically
here� encompassing� e�g�� also the movement of a robot arm processing a circuit board�
The assumptions lead to a very simple model for the problem� a single tour� can be represented
by an enumeration of cities� by labeling each city with a number� a valid tour is expressed as a
permutation of the numbers �� � � � �m� if we consider m cities� E�g�

�� �� �� �� �� �

describes a tour starting at city number �� going across cities �� �� �� �� �� and ending at city
�� We assume that there exists a map of which the distances between each pair of cities can be
read o��
The search space for �nding the shortest path across m cities consists of all possible permu

tations of the numbers �� � � � �m and has therefore a size of �

�
�m � ���� the NP
hardness of

the TSP was proven in �GJ�
�� In order to still cope with this� we give up trying to �nd an
optimal solution� Thus� our task is to �nd a reasonably fast algorithm generating satisfying
approximations�

��� A Bit of Genetics

It is assumed that the reader is already a little familiar �e�g� senior class level� with a few
fundamental biological facts concerning evolutionary processes� therefore� the main purpose of
this subsection is to make our terms clear�
Writing down number sequences � like the routes above � brings the structure of chromosomes
to mind� single �letters� from a �nite alphabet �A�G�C�T in real chromosomes� the numbers
�� � � � �m in the TSP�� become stringed together� The elements of the alphabet don�t have any
meaning in their own� only their ordering within the chromosome has� An organism�s properties
will be determined by subsequences of these chromosomes� �genes�� whose speci�c contents are
called �alleles��
In most higher species� individuals possess two samples of each chromosome� one inherited from
each parent� we call this �diploidity�� in contrast to a �haploid� set of genomes� In a diploid
genome set� each of the duplicate genomes can make contributions to the individuals appearance�
but often only one of both is expressed� This depends on the allele of the corresponding gene�
and we call this �dominance� of one allele over another� or� in the opposite case� an allele is
�recessive� �one remembers here Mendel�s laws��
We distinguish between an organisms appearance� the �phenotype�� and its genetic information�
the �genotype�� because the phenotype of an organism is not fully determined by its genotype�
but as well is in�uenced by its environment� Also� recessive genomes belong to the genotype�
but not to the phenotype�
A measure for the success of an individual�s interaction with its environment� its ��tness�� is
the number of its descendants� the better an individual copes with the environment� the more
descendants it will have� A descendant inherits its properties from its parents� therefore the
scions of successful individuals with high probability will also be successful and themselves have
more descendants�
One can regard a whole population of individuals as an information pool� each individual�s genes
representing a set of informations about how to cope with the environment� Genes� and therefore
the information� of �tter individuals will spread statistically over the whole population during
the succession of generations� and information possessed by less �t individuals will gradually
get lost�
If genes within the population wouldn�t occasionally be altered� at last the whole population
would converge to consist of individuals being exact copies of the initially �ttest individual�
The alteration of an individuals genetic information is called �mutation�� For simplicity� we
regard here only two kinds of mutation mechanisms� on the one hand� genetic information of
an individual can be altered during its lifetime and� on the other hand� genetic informations of
two di�erent individuals can be exchanged during the mating process between the descendants
chromosomes� We call the last case �crossover��

�From now on	
tour� or a
route� will always abbreviate a salesperson�s journey�

� THE �TRAVELING SALESMAN� PROBLEM AND GENETIC ALGORITHMS �

��� Genetic Algorithms and the Traveling Salesman

Based on our informal depiction above� we describe our approach for solving the TSP� A more
formal model is developed� which will form the basis of our implementation�
The purpose of genetic algorithms is to simulate evolutionary processes and to apply them to
optimization tasks� Because of the observation that evolution in a changing environment leads
successively to well adapted organisms� the assumption is brought up that we can analogously
expect well �adapted� solutions� Roughly sketched� we generate a set of random quality so

lutions� and let an evolution
like process take place that adapts this set to our optimization
�environment��
First thing to do when employing a genetic algorithm� is to reformulate our optimization prob

lem so that it can be represented by a �xed
length sequence of parameters P � fg�� � � � � gng�
Then the optimization function is a function of these parameters� fE�x�� � � � � xm� � P � � � � �
P �� R� parametrized by an environment E that we regard to be �xed� If the optimization
function is applied to a chromosome� the �tness �see below� of an individual can be obtained�
For our TSP� we have the reformulation already done�

� P is the set of m cities to be visited� represented as numbers

� routes over these cities are taken as chromosome

� a chromosome consists of only one gene� whose alleles are any permutation of numbers
�� � � � �m� we speak from here analogously of genes� chromosomes� or sequences

� the environment E is a map that contains the distances between each pair of cities

� the optimization function fE is the route length that has to be minimized�

We regard here a diploid chromosome set� where an allele that represents a shorter tour will
dominate and is the only one to be taken into account to determine an individual�s �tness�
A descendant of two individuals is created by selecting randomly one chromosome from each
parent and combining them to a new individual�

Parents A�B�

A� �Chrom�A�Chrom�A�

B� �Chrom�B�Chrom�B�

�

Descendant�

�Chrom�B�Chrom�A�

An individuals life cycle is reduced to birth and procreation� So we have a straightforward
optimization scheme� we employ a discrete time measure and permit only non
overlapping
generations� each time interval represents an optimization step as follows�
Given a population of n members�

� select n� � times pairs of individuals out of the population and create n� � descendants

� calculate the �tness of each descendant

� form a new population from the n � � descendants and include additionally the �ttest
member of the previous population

� replace the old population with the new

� �nd the �ttest member of the new population and regard it as the actual optimization
result

The survival of a generation�s �ttest member is called �elitist� model and garantuees a monotone
descending sequence of optimization results� The essential of this optimization scheme is the �rst
step� because the �tness is strictly associated with the probability of being selected for mating
during one optimization cycle� We remain to a simple heuristics for obtaining an individual�s
�tness� the so
called roulette wheel selection� If the optimization function fE is applied to each
individual� �tnesses �values for each member of the population� fi� i � �� � � � � n� can be obtained�
The probability of being selected next time for mating is� pi �

fiP
n
j��

fj
� ��� ���

P
i pi � �� In

� THE �TRAVELING SALESMAN� PROBLEM AND GENETIC ALGORITHMS �

our TSP� a natural order within the population is given by the route length� We regard an
individual representing a shorter tour as �tter than an individual representing a longer tour�
Therefore� we get fi simply by calculating the inverse route length� For a tour length Li� the
�tness is fi �

�

Li
and the corresponding probabilities are pi �

�

Li
�
Pn

j��
�

Lj
��� � ��� ���

To select a parent� the probabilities are associated with disjunct subintervals of length �

Li
of

the interval I � ���
Pn

j��
�

Lj
�� If a random number within I is picked� it lies in a subinterval

from which the corresponding individual can be obtained�
For example� the population may consist of three individuals A�B�C� representing tours of length
��� �� and � length units and having �tnesses ���� ���� ���� They are mapped onto the interval
� � � � ��	�

� ��� ��� ��	

Interval of individual� A B C

If� for example� the random value ������ is generated� individual B is selected because the value
lies in the corresponding subinterval� One checks easily that the interval assignment correlates
directly to the individuals� reproduction probability�
Involved in the reproduction cycle are mutation operators� In adaption to the TSP� each of
them must be formulated to avoid the generation of dubletts within the chromosomes� We here
describe� by example� �ve operations in their appropriate adaption to our algorithm �changing
chromosome positions are underlined��

�� Swap two random positions within a chromosome�

Example�
Given a sequence

�� 	� �� �� ��� �� �� �� ��

becomes after mutation�

�� 	� �� �� ��� �� �� �� ��

�� Reversion of a chromosome�s subsequence�

Example�
Given a sequence

�� �� �� �� �� �� 	�
� �� ��

becomes after mutation�

�� �� �� 	� �� �� ��
� �� ��

�� Remove a random position and insert it at another position�

Example�
Given a sequence

�� 	� �� �� ��� �� �� �� ��

becomes after mutation�

�� 	� �� ��� �� �� �� �� ��

�� Remove a whole subsequence and insert it at another position�

Example�
Given a sequence

�� �� �� �� �� �� 	�
� �� ��

� THE �TRAVELING SALESMAN� PROBLEM AND GENETIC ALGORITHMS �

becomes after mutation�

�� �� �� �� 	� �� ��
� �� ��

�� Crossover between two chromosomes�

During the melting of two chromosomes subsequences are exchanged� Each subsequence must
have the same length and is reinserted at the same position in the partner chromosome�
To avoid double entries within a chromosome� we use the PMX �partially matched crossover�
algorithm� which works as follows�
Given a newly procreated individual�

�� choose randomly start and end positions

�� make copies of the subsequences within both of the individuals chromosomes� starting
and ending at the chosen positions

�� begin with the leftmost entry in the �rst chromosome�s original subsequence and compare
it� position by position� with the copy of the second chromosome�s subsequence� at each
position we have a tuple � the entry within the chromosome and the one within the copy
� that determines the values to be exchanged in the �rst chromosome� the same operation
is performed on the other chromosome�

The result is a new pair of chromosomes which have exactly exchanged their subsequences within
the chosen positions and are� eventually� modi�ed in another positions� For visualization� we
give an example�
Given two individuals consisting of the sequences

First� �� �� �� �� �� �� 	�
� �� ��

���
� 	� �� �� �� �� �� �� �

Second� �� �� �� �� �� 	� �� �� ���

�� �� �� �� �� �� �� 	�
� ��

A descendant could be procreated as combination of the �rst chromosomes of the individuals
in the order listed here�

�� �� �� �� �� �� 	�
� �� ��

�� �� �� �� �� 	� �� �� ���

If we decide to perform a crossover� the following happens�

�� select positions and corresponding subsequences�

�� �� �� �� �� �� 	�
� �� ��

�� �� �� �� �� 	� �� �� ���

�� make copies of the subsequences�

�� �� �

�� �� 	

�� start pairwise processing of the �rst chromosome with help of the copy of the second
chromosome �double underlined positions are processed in the next step� single underlined
positions are already modi�ed in previous steps��

�� �� ���� �� �� 	�
� �� ��

�� �� 	

� THE IMPLEMENTATION IN RELFUN 	

exchange � and ��

�� �� ���� �� �� 	�
� �� ��

�� �� 	

exchange � and ��

�� �� ���� �� �� 	�
� �� ��

�� �� 	

and� at last� exchange 	 and ��

�� �� ���� �� 	� ��
� �� ��

�� �� 	

Analogously the other chromosome is examined� and we get as result�

�� �� �� �� �� 	� ��
� �� ��

	� �� �� �� �� �� �� �� ���

One sees that positions � to � are exactly swapped and that there must be taken care to
avoid dublets� so that follow
up modi�cations take place at other locations�

� The Implementation in RelFun

��� Preliminaries on RelFun

RelFun is a tight relational
functional integration� it cross
extends Horn relations and call
by

value functions just enough to yield a uni�ed operator concept� as follows� ��� Horn relations are
extended to return the truth
value true� ��� Functions are extended to allow non
deterministic
and non
ground calls� this implies� e�g�� that functions can be inverted� RelFun possesses many
additional concepts� like higher
order operators and sorts� of which not all will be required here
�for further reading see �Bol
���� For the TSP application we restrict ourselves to a mostly pure
RelFun style� this allows comparisons with languages supporting di�erent paradigms�
RelFun�s syntax is Prolog
like in the sense that programs written in Datalog are also in correct
RelFun syntax and have the same behaviour� however� for the full pure Prolog subset of RelFun
there are di�erences� e�g� structures are written with ����
brackets� the Prolog is primitive
in RelFun is written as ��� and RelFun builtins� such as ��� �quotient�� are always written in
pre�x notation� Some readers will be familiar with RelFun�s capabilities common with Prolog
such as lists and variables�
For further understanding� we note some syntactical remarks�

� First� we have facts� which are the same as in Prolog�

op�arg�� � � � ��

� We also have Prolog
like rules�

op�arg�� � � � � �� cnd�� � � � � cndn �

� Unconditional equations return the value of the �
preceded expression�

op�arg�� � � � � �� exp �

� Conditional equations return the � exp value if all cndi succeed�

op�arg�� � � � � �� cnd�� � � � � cndn � exp �

The �rst two kinds of operator de�nitions� implicitely returning true� can be regarded as special
cases of the latter two�

� THE IMPLEMENTATION IN RELFUN

� A cut ��� can be joined with the neck symbol �	
 or 	���

op�arg�� � � � � �� cnd�� � � � �
op�arg�� � � � � �� exp �

Furthermore� active function calls must be distinguished from passive structures� whose argu

ments become not evaluated� Syntactically� structures are written like function calls except that
they use square brackets instead of parantheses� Structures are uni�ed like Prolog structures�
but function calls become �rst evaluated� then uni�ed�
Analogously� a list can be active or passive� Passive lists simply use square brackets� active lists
are generated via the primitive tup����� function�
The user interacts with the RelFun system making queries and requesting� Prolog
like� an
arbitrary number of solutions� the demand for further solutions is called more
request�
Further concepts will be explained at the places they occur�

��� How the Program Works

Given the scheme presented in section �� we now want to implement it in RelFun� In summary�
the program should initialize a starting population and iterate by delivering successively new
populations�
In our implementation� the user can specify the following parameters�

�� a list of coordinates for an arbitrary number of cities

�� the size of the population

�� the probability that an individual�s genes mutate during its life cycle

�� the probability for a crossover during a mating

�� a probability value that allows scaling between haploid and diploid chromosomes

The �rst four parameters should be clear� probabilites are always values between � and ��
inclusively� The last parameter determines the probability for the selection of the dominant
chromosome during mating to become part of a descendant� If this value is �� a diploid popula

tion is simulated� what means� the �tness is determined exclusively by the individuals� dominant
chromosomes� but with a probability of �� each of an individual�s chromosomes may be in

herited� If the value is �� the recessive chromosomes are totally ignored and only the dominant
ones become inherited�
Initialization consists simply of generating a set of size n of individuals with random properties�
After that� the iteration is as straightforward as described in ����

��� The Data Structures� Using Structures and Lists

The structure of a population is summarized by the following BNF
like grammar�

population 		� �individual
individual
���
individual�

individual 		� indiv�route�length
chrom
route�length
chrom�

chrom 		� ��
�
�
�
����
n� or permutated entries

route�length 		� number

The semantics is�

� the population is represented by a list of arbitrary size

� a single member of the population is a structure indiv�����

� indiv����� contains an individual�s two chromosomes together with the corresponding
route lengths� the entries are ordered� s�t� always the shorter route and its length are at
the �rst positions

� THE IMPLEMENTATION IN RELFUN ��

��� The Main Loop� Implementing Interaction via Nondeterminism

The program was devised to visually trace the successive generations of our population� after
each reproduction cycle the current optimization results will be printed� The kernel function of
our application works therefore tail
recursively and consists of two clauses� the �rst returns the
best member of the population so far� and the second� invoked by backtracking� creates a new
generation and calls itself with this new population� The user interacts by giving successive
more
requests until a satisfactory optimization has been reached�
The source shows this in greater detail�

ts�Pop
�
�
�
�� 	

indiv�BestLength
BestRoute
�
�� �� select�best�Pop
nth�Pop
���

� tup�BestLength
BestRoute
��sum�Pop�
len�Pop����

ts�Pop
Map
Mut�rate
Cross�rate
Better�rate� 	

New�pop �� next�generation�Pop
Map
Mut�rate
Cross�rate
Better�rate�

� ts�New�pop
Map
Mut�rate
Cross�rate
Better�rate��

The function�s �rst argument is the population� the second the table of distances between the
cities� the other arguments will be explained below�
The �rst clause makes use of the utility functions select best and sum�� select best scans
the whole population exactly once and returns the individual whose �rst entry contains the
shortest route� ts returns the result of select best and the population�s average route length�
In practice� the ts function is best called via a testing function� which automatically generates
a population of a desired size and the distances table�

test�Plan
Pop�size
Mut�rate
Cross�rate
Better�rate� 	

Map �� generate�distmap�Plan�

Len �� ��len�Plan�
��

� ts�init�pop�Pop�size
Len
Map
init�list��
Len��

Map
Mut�rate
Cross�rate
Better�rate��

Its arguments are a list of city coordinates� the demanded size of the population� the muta

tion rate� the crossover rate� and a weight parameter for scaling between haploid and diploid
genomes� which is described in detail below� The test function generates the distance table
using generate distmap and the coordinates table delivered by plan�

plan��� 	� �

����
����
����
����
����
����
����
����
����
����

��� � some further lines containing coordinates are omitted

����
����
����
����
����
����
����
����
����
������

init list��
Len� generates a list containing the numbers � to Len� init pop creates the
initial population of the demanded size�

��	 Individuals� Self
evaluating Data Structures

A useful programming technique in RelFun is giving passive structures and active function calls
the same �constructor and function� name� An example in the TSP application is the name
indiv� If we use it as a constructor for a passive data structure� we cannot rest function calls
into its argument positions� However� we can de�ne a function of the same name that will just
evaluate to its own call �with its call
by
value arguments recursively evaluated� as a passive
structure ��

indiv�L�
R�
L�
R�� 	� indiv�L�
R�
L�
R���

Now� one can� e�g�� more elegantly write indiv���A
B�
X
Y
Z� instead of W �� ��A
B�

indiv�W
X
Y
Z� and nevertheless get a data structure�

�also	 � and len are builtin�	 and user�de�ned utility functions	 respectively� division and length of a list
�similarly	 tup����� to tup����� or	 shortened	 �����

� THE IMPLEMENTATION IN RELFUN ��

��� The Roadmap� Converting a Coordinate List into a Distance Ta

ble

We use an utility function to convert a list of coordinate tuples into a coordinate table�

generate�distmap�Tab� 	� generate�distmap��Tab
Tab��

generate�distmap����
�� 	� ���

generate�distmap���X
Y�Rest�
T� 	�

tup�generate�distmap��X
Y
T� � generate�distmap��Rest
T���

generate�distmap��X
Y
��� 	� ���

generate�distmap��X
Y
�X�
Y��Rest�� 	�

tup�sqrt�����
�X
X��

�X
X���
��
�Y
Y��

�Y
Y����� �

generate�distmap��X
Y
Rest���

generate distmap gets as argument a list containing an even number of real numbers and does
some calculating for returning a list of equal
length lists �the table� containing the distances
between all cities� The i
th entry in the j
th lists contains the distance between cities i and j�

��� The Population� Nested Lists and Structures

A valid initial population of given size N is generated by init pop�

init�pop��
�
�
�� 	� ���

init�pop�N
Len
Map
Ori�template� 	

Chrom� �� randomize�list�Ori�template
Len�

Chrom� �� randomize�list�Ori�template
Len�

� tup�make�order�indiv�route�length�Chrom�
Map�
Chrom�

route�length�Chrom�
Map�
Chrom���

� init�pop��
�N�
Len
Map
Ori�template���

Its arguments are the demanded size of the population� the length of an individual� the roadmap
and a template list that has to be randomized� In the context of the TSP application� this is
usually a list containing the numbers �� � � � � N � First� two chromosomes are generated with
randomize list�

randomize�list���
�� 	� ���

randomize�list�List
N� 	

NN �� ���random�N��
 � select an element from pattern

Elem �� nth�List
NN�

NewList �� kill�nth�List
NN� � remove this element from pattern

� tup�Elem�randomize�list�NewList
�
�N���� � continue with rest

Then� a list is returned with the new individual as head and a recursively generated rest�
make order returns a dominance
ordered individual�

��
 The Mechanics of Reproduction� Selection via Probability

Now we describe the central part of the optimization process� As seen in ��� this is the function
next generation�

next�generation�Population
Map
Mut�rate
Cross�rate
Better�rate� 	

H �� select�best�Population
nth�Population
���
 � step �

Temp�pop �� mutate�Population
Map
Mut�rate�
 � step �

Probability�range �� probability�range�Temp�pop�
 � step �

indiv��
Test
�
�� �� H � for determing the number of cities

� tup�H�mate�Temp�pop
Map
len�Temp�pop�
 � step � � �

Cross�rate
Better�rate
Probability�range

len�Test����

� THE IMPLEMENTATION IN RELFUN ��

The arguments are the last actual population� the road map and the probability arguments
passed through from the ts
function� The function works in �ve steps �corresponding to the
comments in the source��

�� the �ttest member of the population is searched

�� a temporary population is generated from the original population by performing mutations

�� from these temporary population the interval for the roulette wheel selection� as described
in ���� is determined

�� using this interval for selection� a partial new generation is created from the temporary
population by performing mating and crossover

�� joining the resulting partial population with the �ttest member of the previous generation
gives the �nal population

Mating is performed by the function mate�

mate��
�
�
�
�
�
�� 	� ���

mate�Population
Map
N
Cross�rate
Better�rate
Probability�range
Length� 	

P� �� select�parent�Population
Probability�range�
 � step �

P� �� select�parent�Population
Probability�range�

indiv��
R�
�
R�� �� mix�P�
P�
Better�rate�
 � step �

�R�new
R�new� �� cross�over��R�
R��
Cross�rate
Length�
 � step �

LR� �� route�length�R�new
Map�
 � step �

LR� �� route�length�R�new
Map�

� tup�indiv�LR�
R�new
LR�
R�new�

� mate�Population
Map
�
�N�
Cross�rate

Better�rate
Probability�range
Length���

mate works recursively and procreates a new individual n � � times �the best member of the
preceding generation must be saved� and the population shall remain of constant size�� The
creation of one individual again happens in four steps�

�� select two parents� using the interval generated in next generation�

�� create a new individual by selecting a chromosome out of each parent� this is done by the
function mix �see below�

�� perform crossover on this individual �see ��
���

�� determine the �tness of the resulting individual

The individual generated in this way is added to the list that will be returned as the new
population�
The mixing of chromosomes is done by a mix function�

mix�indiv�L�
R�
�
��
indiv�L�
R�
�
��
Better�rate� 	

��random�����
Better�rate�

� make�order�indiv�L�
R�
L�
R����

mix�indiv�L�
P�
�
��
P�
�� 	
 ���
random���� � make�order�mix���L�
P��
P����

mix�indiv��
�
L�
P��
P�
�� 	� make�order�mix���L�
P��
P����

mix���L�
P��
indiv�L�
P�
�
��� 	
 ���
random���� � indiv�L�
P�
L�
P���

mix���L�
P��
indiv��
�
L�
P��� 	� indiv�L�
P�
L�
P���

The parameters of mix are the two individuals to mate and the parameter Better rate� which
should be a value between � and �� Better rate is implemented to allow scaling between a
haploid and a diploid genome set� in mix a random value� is generated and dependent on this

�If the argument of the builtin random is a non�negative real r	 it returns a random value between
 and r�
if the argument is a non�negative integer n	 a value between
 and n � � is generated�

� THE IMPLEMENTATION IN RELFUN ��

value� either the �rst �and therefore better� genomes of each individual are put together� or in
mix�� the chromosomes are randomly picked� If Better rate equals �� a diploid population
is simulated� and if Better rate equals �� a haploid population is simulated� in this case the
mating mechanism degenerates to a selection of possible crossover partners�

��� Mutation and Crossover

Both mutation and crossover alter information that is contained within the population� but
each of them taking place at di�erent times� We have taken into account several possible ways
mutation can happen� but only one possibility of crossover� Therefore� two di�erent ways of
implementation were chosen� for mutation� the use of higher
order constructors is demonstrated�
whereas crossover is implemented �rst
order as usual�

��
�� Mutation Operators� Parameterization via Higher
Order Constructors

As shown above� the mutation is performed by the function mutate� It is called by next generation

and returns� for intermediate use� a population with mutated members� mutate is recursively
de�ned� it separates the �rst individual from the rest of the population and performs randomly
selected mutations on one of its chromosomes� The result is returned as a list� whose head is
the �possibly� mutated version of this individual and whose tail is recursively generated in the
same way� until the population is completely processed�

mutate���
�
�� 	� ���

mutate��First�Rest�
Map
Rate� 	

P �� random�����

��P
Rate�

� tup�mutate��First
Map� � mutate�Rest
Map
Rate���

mutate��First�Rest�
Map
Rate� 	� tup�First�mutate�Rest
Map
Rate���

mutate��indiv��
Better
L
Worse�
Map� 	

��random���
��

Select �� random����

NewBetter �� mechanism�Select��Better� � call of mutation operator

� make�order�indiv�route�length�NewBetter
Map�
NewBetter
L
Worse���

mutate��indiv�L
Better
�
Worse�
Map� 	

Select �� random����

NewWorse �� mechanism�Select��Worse� � call of mutation operator

� make�order�indiv�L
Better
route�length�NewWorse
Map�
NewWorse���

First� a random number is generated and tested against the user
given mutation rate� If the
test succeeds� the function mutate� is called with the �rst member of the population and
the roadmap as arguments� mutate� picks� via random� one of the individual�s chromosomes
and selects� also by random� a mutation operator mechanism����� At this point one notices
a di�erent calling scheme� the head functor is no longer an atom but a structure �whose
parameters don�t necessarily need be instantiated�� This allows a syntactical distinction of
function parametrization and ordinary function arguments� The random number is selected
from the range � to
� there are at most �� possible mutation operators that are taken into
account�
The mechanism function here supports four mutation operators� which are parametrized by the
numbers � to � �which� as shown above� can be generated by the random number generator��
An additional clause is added with free constructor parameters whose task is to catch calls to
unde�ned clauses� So the number of supported mutation operators has only to be known at
the place where they are de�ned�
We discuss here two of the mutation operators�

mechanism����Route� 	
 � reversion

Length �� len�Route�

Pos� �� ���random�Length��

� THE IMPLEMENTATION IN RELFUN ��

Pos� �� ���random�Length��

� reverse�sublist�Route
Pos�
Pos���

mechanism����Route� 	� Route�

mechanism����Route� 	
 ��� � swap two ids
 rest of clause omitted here

mechanism����Route� 	
 ��� � replace id
 rest of clause omitted here

mechanism����Route� 	
 � replace subsequence

Length �� len�Route�

P� �� ��random��
�Length��
��
 P� �� ��random��
�Length��
��

Pos� �� min�P�
P��
 Pos� �� max�P�
P��

Head �� get�sublist�Route
�
�
�Pos���

Tail �� get�sublist�Route
Pos�
Length�

Middle �� get�sublist�Route
Pos�
�
�Pos���

HT �� uni�Head
Tail�

L �� len�HT�
 Pos �� ��random��
�L��
��

H �� get�sublist�HT
�
�
�Pos��
 T �� get�sublist�HT
Pos
L�

� uni�H
uni�Middle
T���

mechanism����Route� 	� Route�

mechanism�N��Route� 	
 NN �� mod�N
�� � mechanism�NN��Route��

The �rst is the reversion operator that selects two random positions within a chromosome and
reverses the corresponding sublists� The second also selects a sublist� cuts it out� selects a new
position within the remaining list� and inserts the cut out sublist at this position ��

��
�� Crossover� PMX

Crossover is performed by the function cross over� It follows exactly the scheme presented in
section ����

cross�over��P�
P��
Rate
Length� 	

P �� random�����

��P
Rate�

� cross�over��P�
P�
���random�Length��
���random�Length����

cross�over��P�
P��
�
�� 	� �P�
P���

cross�over��P�
P�
Pos�
Pos�� 	

��Pos�
Pos��

� cross�over��P�
P�
Pos�
Pos���

cross�over��P�
P�
Pos�
Pos�� 	

Sub� �� get�sublist�P�
Pos�
Pos��

Sub� �� get�sublist�P�
Pos�
Pos��

� tup�map�subseq�P�
Sub�
Pos��
map�subseq�P�
Sub�
Pos����

cross over �rst generates a random value and checks it against the user
given mutation
probability� If the random value is higher� cross over acts as the identity operator� Else�
cross over� is invoked with the sequences on which to perform crossover and two random
positions as arguments� cross over� selects� via the utility function get sublist� the corre

sponding subsequences and calls the function map subseq� which does the swapping�

map�subseq�L
��
�� 	� L�

map�subseq�L
�First�Rest�
Pos� 	

NewPos �� get�pos�L
First�

� map�subseq�swap�elements�L
Pos
NewPos�
Rest
���Pos���

�len� length of list	 uni� union of lists

� CONCLUSIONS ��

� Conclusions

The source parts explained in the body of this paper constitute approximately �� percent of our
completely implemented GeneTS application� which consists of about ��� lines of program code�
The omitted code parts are either the ones explicitely mentioned in the text or ordinary auxiliary
routines� Our experience with similar C implementations of genetic algorithms indicate a factor
of � to � in reduction of program size�
Through the development of GeneTS we showed that serious projects can be realised in RelFun
�Appendix A�� while bene�tting considerably from RelFun�s high
levelness �Appendix B�� Of
course� GAs are not a common RelFun application� Because RelFun does not possess any array
data type� GA
typical array
like operations have to be simulated with lists� Therefore� the
e�ciency of GeneTS currently does not compete with implementations in imperative languages
like C� functional list manipulation in such cases is less e�cient than in
place array updates�
This behavior may lead to further optimization considerations towards in
place updates for lists
along the lines of �HB	�� CH
�� in our �WAM
�compiler and emulator combination�
In further work� GeneTS can serve as prototype for a more generalized GA mechanism� Rel

Fun�s higher
order capabilities� which we have not used here� can� combined with head
operator
parameterization� support the implementation of classes of mutation� crossover and other op

erators� which can be instantiated by specifying top
level parameters�

References

�BEH�
�� Harold Boley� Klaus Elsbernd� Hans
Guenther Hein� Thomas Krause� Markus Per

ling� q Michael Sintek� and Werner Stein� RFM Manual� Compiling RELFUN into
the Relational!Functional Machine� Document D

�
��� DFKI GmbH� July �

��
Third� Revised Edition�

�Bol
�� Harold Boley� Extended Logic
plus
Functional Programming� In Lars
Henrik Eriks

son� Lars Halln"as� and Peter Schroeder
Heister� editors� Proceedings of the �nd In�
ternational Workshop on Extensions of Logic Programming� ELP ���� Stockholm
����� volume �
� of LNAI� Springer� �

��

�CH
�� Chih
Ping Chen and Paul Hudak� Rolling Your Own Mutable MADT # A Con

nection Between Linear Types and Monads� In Conference Record of POPL ��	

The ��th ACM SIGPLAN�SIGACT Symposium on Principles of Programming Lan�
guages� pages ������ Paris� January �� � ��� �

�� ACM Press�

�DFJ��� G� Dantzig� R� Fulkerson� and S� Johnson� Solution of a Large Scale Traveling
Salesman Problem� Operations Research� ���
������ �
���

�GJ�
� M� Garey and D� Johnson� Computers and Intractability� W�H� Freeman� San
Francisco� �
�
�

�Gol	
� David E� Goldberg� Genetic Algorithms in Search� Optimization� and Machine
Learning� Addison Wesley� �
	
�

�HB	�� Paul Hudak and Adriene Bloss� The Aggregate Update Problem in Functional
Programming Languages� In Conference Record of the Twelfth ACM Symposium on
Principles of Programming Languages� pages �������� New Orleans� January �
	��
�ACM��

�HB	�� P� Hudak and A� Bloss� Avoiding Copying in Functional and Logic Programming
Languages� In Conference record of the ��th ACM Symposium on Principles of
Programming Languages �POPL
� pages �������� �
	��

�HK��� M� Held and R� M� Karp� The traveling salesman problem and minimum spanning
trees� Operations Research� �	����	������ �
���

REFERENCES ��

�JM
�� David S� Johnson and Lyle A� McGeoch� The traveling salesman problem� a case
study� In E� Aarts and J�K� Lenstra� editors� Local Search in Combinatorial Opti�
mization� pages �������� John Wiley � Sons� �

��

�Koz
�� John R� Koza� Genetic programming
 On the programming of computers by means
of natural selection� MIT Press� Cambridge� Mass�� �

��

�Mic
�� Zbigniew Michalewicz� Genetic Algorithms � Data Structures � Evolution Pro�
grams� Springer Verlag� �

��

�Per
�� Markus Perling� RAWAM
 A Relfun Adapted WAM� Technical report� Universit"at
Kaiserslautern� perling$dfki�uni
kl�de� �

��

�RS
�� N� J� Radcli�e and P� D� Surry� Fitness Variance of Formae and Performance Predic

tion� In Whitley� L� D� and Vose� M�D�� editor� Foundations of Genetic Algorithms
III� Morgan Kaufmann Publishers� �

��

A A SAMPLE TRACE OF THE ��	CITY UNIT TSP ��

A A Sample Trace of the �	�city Unit TSP

We will give an example trace of the optimizing process by considering a chessboard
like ar

rangement of �� cities whose respective distances to their cartesian neighbors are � lenght unit
each�

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1u

1
u

It can be easily seen that the shortest route is �� length units� since the distance between two
neighboring cities in all rows and columns is exactly one length unit� Therefore� an optimal
tour consists exclusively of horizontal and vertical route segments� The optimization process
will become visible by decreasing an original �perturbation� towards a regularly shaped tour�
In other words� after each step that generates a better solution than the previous one� there are
less tour sections going transversely or overleaping any cities�
First� we begin with a random population�

rfc
p� test�plan���
���
���
���
����

����������
��
�
�
�
�
��
�
�
��
��
��
��
��
�
�
���
��������

The arguments to the test function are the plan corresponding to the set of cities illustrated
above� a population size of ��� individuals� mutation and crossover probability of ��� and ����
respectively� and the value ��� indicates a complete haploid genome set� The �rst result is
the length of the shortest path within this population of ���
� length units� the average route
length of the population of ����� units� and the shortest route� The generated solution here is
the best one out of a completely random set of possible solutions�

The �rst city of the generated route is city �� here marked with a circle� One sees that this
tour is far from being optimal� Now three optimization steps are invoked�

rfc
p� more

����������
��
�
�
�
�
��
�
�
��
��
��
��
��
�
�
���
����������

rfc
p� more

����������
��
�
�
�
�
��
�
�
��
��
��
��
��
�
�
���
����������

rfc
p� more

����������
���
�
�
�
�
�
�
�
�
��
��
��
��
�
��
���
����������

In each step the average route lenght is decreased� the third step evaluates an individual rep

resenting a shorter tour than the �ttest one of the �rst generation�

A A SAMPLE TRACE OF THE ��	CITY UNIT TSP �	

The result is slightly better� but still contains unnecessary indirections� We will leave the next
� improvements uncommented�

rfc
p� more

����������
���
�
�
�
�
�
�
�
�
��
��
��
��
�
��
���
���������

rfc
p� more

����������
���
�
�
�
�
�
�
�
��
��
��
�
��
�
��
���
����������

rfc
p� more

����������
���
��
�
�
�
��
�
�
�
��
�
��
��
�
�
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
��
��
��
��
�
�
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
��
��
��
��
�
�
���
���������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
��
��
��
��
�
�
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
��
��
��
��
�
�
���
����������

A A SAMPLE TRACE OF THE ��	CITY UNIT TSP �

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
��
��
��
��
�
�
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
��
��
��
��
�
�
���
����������

This solution looks� compared to the initial solution� considerably more regular�

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
��
��
��
��
�
�
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
��
��
��
��
�
�
���
��������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
��
��
��
��
�
�
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
��
��
�
�
��
��
��
�
�
�
��
����������

rfc
p� more

����������
���
��
�
�
�
��
��
�
�
��
��
��
�
�
�
��
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

Here� we can recognize� what later will be characteristical for the whole population� the route
is divided into a lower and an upper half that are only connected by two tour segments between

A A SAMPLE TRACE OF THE ��	CITY UNIT TSP ��

cities
 and �� and cities � and 	� respectively�

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

In this result� a tour improvement is achieved by a more optimal course in the upper half�

Compared with the previous result� we observe that the only change in the chromosome was
the replacement of city � from position � to position ��

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

Here� the lower half was optimized�

The overleap of city � seems to be a common genetic defect to the most individuals in the
population� Because we have now a result near to the optimum� it takes some more steps until
an individual accumulates enough rearrangements of its genetic information compatible with
the achieved optimization results�

rfc
p� more

A A SAMPLE TRACE OF THE ��	CITY UNIT TSP ��

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
���������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
���������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

Now the overleap of city � has vanished and we have found an almost well
formed tour across
the �� cities�

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

����������
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

rfc
p� more

�����
���
��
�
�
�
�
�
�
�
�
�
��
��
��
��
���
����������

The last result leads to an optimal tour� It di�ers from the previous one by replacing city �
from position � to position ��

A A SAMPLE TRACE OF THE ��	CITY UNIT TSP ��

Our program has found one of the symmetrically equivalent optimal tours� re�ecting our choice
of a city map that can be connected by a regularly shaped route�

B THE COMPLETE GENETS SOURCE ��

B The Complete GeneTS Source

��� ts�rfp � find a nearly optimal solution of the

��� traveling salesman problem using a genetic algorithm

��� the algorithm uses a population of user�defined size	

��� each individual possesses a diploid genome set
 each

��� representing a tour through all cities	

��� the phenotype of an individual is represented by the

��� shorter tour� Each new generation is forme by random

��� selection and mixing of parents and their genomes

��� HOW TO USE�

��� �� the program needs an ENORMOUS amount of memory

��� allocate as many memory cells as you can

���
� type test�pln
p
q
r�
 where pl is a map of

��� coordinate pairs
 n is an integer
 p
q
r values

��� between � and �	

��� n is the population size

��� p the probability for each individual that a

��� mutation takes place

��� q the probability for a crossover during a mating

��� r determines the probability for the selection

��� of the better of an individuals chromosomes

��� for mating

��� �� the length of the shortest route
 the route

��� itself and the average route length of the

��� whole population is printed	 results will

��� be successively generated by �more� requests

�������� test function

test�Plan
Pop�size
Mut�rate
Cross�rate
Better�rate� ��

Map �� generate�distmap�Plan�

Len �� ��len�Plan�

�

� ts�init�pop�Pop�size
Len
Map
init�list��
Len��

Map
Mut�rate
Cross�rate
Better�rate��

plan��� �� �

����
����
�
��
����
����
�
��
����
�
��
����
����

����
����
����
����
�
��
����
����
����
����
����

����
����
����
����
�
��
����
�
��
����
����
����

����
����
����
����
����
����
����
����
����
����

�
��
����
����
�
��
����
����
�
��
����
����
����

����
����
����
����
����
����
����
����
����

�����

plan
�� �� �

���
���
���
���

��
���
���
���

���
���
���
���

��
���
���
���

���

��
���

��

��

��
���

��

���
���
���
���

��
���
���
�����

�������� main function

�� generates subsequently new generations and prints

�� the shortest tour
 its length
 and the average

�� tour length of the population

ts�Pop
�
�
�
�� ��

indiv�BestLength
BestRoute
�
��

�� select�best�Pop
nth�Pop
���

� tup�BestLength
BestRoute
��sum�Pop�
len�Pop����

ts�Pop
Map
Mut�rate
Cross�rate
Better�rate� ��

New�pop �� next�generation�Pop
Map
Mut�rate

Cross�rate
Better�rate�

� ts�New�pop
Map
Mut�rate
Cross�rate
Better�rate��

�������� activation function for a passive structure

indiv�L�
R�
L

R
� �� indiv�L�
R�
L

R
��

�������� initialization routines

�� generates from a N�element sequence of

�� coordinate pairs a N�N tableau of distances

�� between each coordinate tuple using

�� euclidean metrics

generate�distmap�Tab� �� generate�distmap��Tab
Tab��

generate�distmap����
�� �� ���

generate�distmap���X
Y�Rest�
T� ��

tup�generate�distmap
�X
Y
T� �

generate�distmap��Rest
T���

generate�distmap
�X
Y
��� �� ���

generate�distmap
�X
Y
�X�
Y��Rest�� ��

tup�sqrt�������X
X��
��X
X���
����Y
Y��
��Y
Y�����

� generate�distmap
�X
Y
Rest���

�� initialize a whole population of size Indnum and

�� a genome length of Indsize

�� structure of an individual� indiv�L�
Chr�
L

Chr
�

�� L�
L
 are the lengths of the tours represented by

�� the chromosomes Chr� and Chr
� The shorter tour

�� is always at the first place�

init�pop��
�
�
�� �� ���

init�pop�N
Len
Map
Ori�template� ��

Chrom� �� randomize�list�Ori�template
Len�

Chrom
 �� randomize�list�Ori�template
Len�

� tup�make�order�

indiv�route�length�Chrom�
Map�
Chrom�

route�length�Chrom

Map�
Chrom
��

� init�pop����N�
Len
Map
Ori�template���

�� randomizing a list

randomize�list���
�� �� ���

randomize�list�List
N� ��

NN �� ���random�N��

Elem �� nth�List
NN�

NewList �� kill�nth�List
NN�

� tup�Elem�randomize�list�NewList
���N����

�������� generator of successive populations

�� saves the fittest member of the older generation

�� ��elitist variant�� and generates N � � new members�

�� This process involves all mechanisms like mutation

�� and crossover�

next�generation�Population
Map
Mut�rate

Cross�rate
Better�rate� ��

H �� select�best�Population
nth�Population
���

Temp�pop �� mutate�Population
Map
Mut�rate�

Probability�range �� probability�range�Temp�pop�

indiv��
Test
�
�� �� H

� tup�H�mate�Temp�pop

B THE COMPLETE GENETS SOURCE ��

Map

len�Temp�pop�

Cross�rate

Better�rate

Probability�range

len�Test����

�� selects for each individual of a population randomly

�� a mutation operator and applicates it to the

�� genome
 respectively to the route� the resulting

�� possibly permutated
 routes are merged to a new

�� population

mutate���
�
�� �� ���

mutate��First�Rest�
Map
Rate� ��

P �� random�����

��P
Rate�

� tup�mutate��First
Map� �

mutate�Rest
Map
Rate���

mutate��First�Rest�
Map
Rate� ��

tup�First�mutate�Rest
Map
Rate���

mutate��indiv��
Better
L
Worse�
Map� ��

��random�
�
��

Select �� random����

NewBetter �� mechanism�Select��Better�

� make�order�indiv�route�length�NewBetter
Map�

NewBetter
L
Worse���

mutate��indiv�L
Better
�
Worse�
Map� ��

Select �� random����

NewWorse �� mechanism�Select��Worse�

� make�order�indiv�L
Better

route�length�NewWorse
Map�
NewWorse���

�� performs the reproduction cycle of the population�

�� The new population is generated by successive

�� selection of pairs of individuals and exchanging

�� the genome sequences� As an additional mutation

�� operator the crossover mechanism is invoked�

mate��
�
�
�
�
�
�� �� ���

mate�Population
Map
N
Cross�rate
Better�rate

Probability�range
Length� ��

P� �� select�parent�Population
Probability�range�

P
 �� select�parent�Population
Probability�range�

indiv��
R�
�
R
� �� mix�P�
P

Better�rate�

�R�new
R
new�

�� cross�over��R�
R
�
Cross�rate
Length�

LR� �� route�length�R�new
Map�

LR
 �� route�length�R
new
Map�

� tup�indiv�LR�
R�new
LR

R
new� �

mate�Population
Map
���N�
Cross�rate

Better�rate
Probability�range
Length���

�� selects subsequences out of two routes at the

�� same position and exchanges them

cross�over��P�
P
�
Rate
Length� ��

P �� random�����

��P
Rate�

� cross�over��P�
P

���random�Length��

���random�Length����

cross�over��P�
P
�
�
�� �� �P�
P
��

cross�over��P�
P

Pos�
Pos
� ��

��Pos

Pos��

� cross�over��P�
P

Pos

Pos���

cross�over��P�
P

Pos�
Pos
� ��

Sub� �� get�sublist�P�
Pos�
Pos
�

Sub
 �� get�sublist�P

Pos�
Pos
�

� tup�map�subseq�P

Sub�
Pos��

map�subseq�P�
Sub

Pos����

�� returns the sum of all probability weights	

�� to select a certain individual out of the population

�� each is assigned to an interval� the size of the

�� intervall is ��� times the reciprocal of the length

�� of the phenotypical route� all intervals can

�� be thought subsequential ordered on the real axis

�� beginning at �� the larger the interval the more

�� likely the random number generator will

�� generate a value within the interval so that

�� the individual will be selected�

�� annotation� possibly the reciprocal is not the

�� most perfect weighting
 there may be weights

�� that prefer the fitter individuals
 but this would

�� be unnecessarily complicated

probability�range���� �� ��

probability�range��indiv�L
�
�
���Rest�� ��

��probability�range�Rest�
�����
L���

�� selects an individual out of the population using

�� the interval returned by probability�range

�� �see there�

select�parent�Pop
Range� �� P �� random�Range�

� select�parent��Pop
P
���

select�parent���I�
�
�� �� I�

select�parent���indiv�L�
R�
X
Y����
P
Offset� ��

���P
��Offset
�����
L���� � indiv�L�
R�
X
Y��

select�parent���indiv�L
�
�
���Rest�
P
Offset� ��

select�parent��Rest
P
��Offset
�����
L����

�� mixes randomly the genome pair of two individuals

�� means� two lists
 each with two elements
 are mixed

mix�indiv�L�
R�
�
��
indiv�L

R

�
��
Better�rate� ��

���random�����
Better�rate�

� make�order�indiv�L�
R�
L

R
���

mix�indiv�L�
P�
�
��
P

�� �� ���
random�
��

� make�order�mix���L�
P��
P
���

mix�indiv��
�
L�
P��
P

�� ��

make�order�mix���L�
P��
P
���

mix���L�
P��
indiv�L

P

�
��� �� ���
random�
��

� indiv�L�
P�
L

P
��

mix���L�
P��
indiv��
�
L

P
�� �� indiv�L�
P�
L

P
��

�������� common utility functions

�� mutation operators

�� operator �� reversion of a whole sequence

�� operator �� swapping of two ids

�� operator
� placing an id at an another position

�� operator �� placing a whole subsequence at

�� an another position

�� operator N� catching of operator numbers bigger

�� than
 and mapping them to the first two

mechanism����Route� ��

Length �� len�Route�

Pos� �� ���random�Length��

B THE COMPLETE GENETS SOURCE ��

Pos
 �� ���random�Length��

� reverse�sublist�Route
Pos�
Pos
��

mechanism����Route� �� Route�

mechanism����Route� ��

Length �� len�Route�

Pos� �� ���random�Length��

Pos
 �� ���random�Length��

� swap�elements�Route
Pos�
Pos
��

mechanism����Route� �� Route�

mechanism�
��Route� ��

Length �� len�Route�

Pos� �� ���random�Length��

Pos
 �� ���random�Length��

� insertion�Route
Pos�
Pos
��

mechanism�
��Route� �� Route�

mechanism����Route� ��

Length �� len�Route�

P� �� ��random����Length��

�

P
 �� ��random����Length��

�

Pos� �� min�P�
P
�

Pos
 �� max�P�
P
�

Head �� get�sublist�Route
�
���Pos���

Tail �� get�sublist�Route
Pos

Length�

Middle �� get�sublist�Route
Pos�
���Pos
��

HT �� uni�Head
Tail�

L �� len�HT�

Pos �� ��random����L��

�

H �� get�sublist�HT
�
���Pos��

T �� get�sublist�HT
Pos
L�

� uni�H
uni�Middle
T���

mechanism����Route� �� Route�

mechanism�N��Route� �� NN �� mod�N
��

� mechanism�NN��Route��

�� changes the order within a genome in the way

�� that the shorter route is the first element	

�� the shorter route represents also the phenotype

�� therefore only one of the genomes has to be

�� tested to determine the fitness of an indivdual

make�order�indiv�L�
R�
L

R
�� ��

��L

L��

� indiv�L

R

L�
R���

make�order�X� �� X�

�� computes the length of a route from a given

�� table which is a
�dimensual array of

�� real�numbers whose entries are the distances

�� from one city to another

route�length��First�Rest�
Map� ��

route�length��First
�First�Rest�
Map��

route�length��F
�A�
Map� �� nth�nth�Map
A�
F��

route�length��F
�A
B�Rest�
Map� ��

��nth�nth�Map
A�
B�
route�length��F
�B�Rest�
Map���

�� selects the individual which represents

�� the shortest route out of the whole population

select�best���
Best� �� � Best�

select�best��indiv�L�
R�
L

R
��Rest�

indiv�L�
R�
L�
R��� ��

��L�
L��

 � select�best�Rest
indiv�L�
R�
L

R
���

select�best����Rest�
Best� �� � select�best�Rest
Best��

�� returns the sum of all route lengths in a population

sum���� �� ��

sum��indiv�L
�
�
���Rest�� �� ��L
sum�Rest���

�� embeds a sublist in a list and eliminates duplicates

map�subseq�L
��
�� �� L�

map�subseq�L
�First�Rest�
Pos� ��

NewPos �� get�pos�L
First�

� map�subseq�swap�elements�L
Pos
NewPos�

Rest
���Pos���

�������� general utility functions

�� reversion of a sublist from element no� Pos� to Pos

reverse�sublist�List
Pos�
Pos
� �� !�Pos�
Pos
�

� reverse�sublist��List
Pos

Pos���

reverse�sublist�List
Pos�
Pos
� ��

reverse�sublist��List
Pos�
Pos
��

reverse�sublist��List
�
�� �� List�

reverse�sublist��List
�
Pos
� ��

reverse�sublist
�List
��
Pos
��

reverse�sublist���First�Rest�
Pos�
Pos
� ��

tup�First�reverse�sublist��Rest
���Pos��
���Pos
����

reverse�sublist
�R
List
�� �� uni�List
R��

reverse�sublist
��First�Rest�
L
N� ��

reverse�sublist
�Rest
�First�L�
���N���

�� returns the union of two lists

uni���
L
� �� L
�

uni��First�Rest�
L
� �� tup�First�uni�Rest
L
���

�� returns nth element of a list

nth��First���
�� �� First�

nth����Rest�
N� �� nth�Rest
���N���

�� returns length of a list

len���� �� ��

len����Rest�� �� ��len�Rest�
���

�� initializes list of length Begin � End

�� with integer values Begin ��� End

init�list�End
End� �� �End��

init�list�Begin
End� ��

tup�Begin � init�list����Begin�
End���

�� replaces element of a list at position Pos

�� with Elem

replace�elem����Rest�
�
Elem� �� �Elem�Rest��

replace�elem��First�Rest�
Pos
Elem� ��

tup�First�replace�elem�Rest
���Pos�
Elem���

B THE COMPLETE GENETS SOURCE ��

�� swaps two elements of a list

�� at positions Pos� and Pos

swap�elements�List
Pos�
Pos
� ��

A �� nth�List
Pos��

B �� nth�List
Pos
�

L �� replace�elem�List
Pos�
B�

� replace�elem�L
Pos

A��

�� removes element at position Pos� and

�� inserts it at position Pos

insertion�List
Pos�
Pos
� ��

!�Pos

Pos��

� insertion��List
Pos�
Pos
��

insertion�List
Pos�
Pos
� �� insertion
�List
Pos�
Pos
��

insertion��List
Pos�
Pos
� ��

Elem �� nth�List
Pos��

NewList �� kill�nth�List
Pos��

� insert�NewList
Elem
���Pos
���

insertion
�List
Pos�
Pos
� ��

Elem �� nth�List
Pos��

NewList �� kill�nth�List
Pos��

� insert�NewList
Elem
Pos
��

�� returns list without nth element

kill�nth����Rest�
�� �� Rest�

kill�nth��First�Rest�
N� ��

tup�First�kill�nth�Rest
���N����

�� returns subsequence of a list from

�� position Pos� to pos� Pos

get�sublist�L
�
Pos
� �� get�sublist��L
Pos
��

get�sublist��First�Rest�
Pos�
Pos
� ��

get�sublist�Rest
���Pos��
���Pos
���

get�sublist���First���
�� �� �First��

get�sublist���First�Rest�
Pos
� ��

tup�First � get�sublist��Rest
���Pos
����

�� returns position of an element in a list

get�pos��First���
First� �� ��

get�pos����Rest�
E� �� ���get�pos�Rest
E���

�� inserts element into list at nth position

insert��First�Rest�
Elem
�� �� �Elem
First�Rest��

insert��First�Rest�
Elem
N� ��

tup�First�insert�Rest
Elem
���N����

G
en

eT
S

:
A

R
el

at
io

n
al

-F
u

n
ct

io
n

al
G

en
et

ic
A

lg
o

ri
th

m
fo

r
th

e
Tr

av
el

in
g

S
al

es
m

an
P

ro
b

le
m

M
ar

ku
s

P
er

lin
g

T
M

-9
7-

01
Te

ch
ni

ca
lM

em
o

