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Abstract

In this paper, we set up a unifying perspective of the individual con-
trol layers of the architecture INTERRAP for autonomous interacting agents.
INTERRAP is a pragmatic approach to designing complex dynamic agent
societies, e.g. for robotics [Miiller & Pischel 94a] and cooperative scheduling
applications [Fischer et al. 94]. It is based on three general functions describ-
ing how the actions an agent commits to are derived from its perception and
from its mental model: belief revision and abstraction, situation recognition
and goal activation, and planning and scheduling.

It is argued that each INTERRAP control layer — the behaviour-based lay-
er, the local planning layer, and the cooperative planning layer — can be de-
scribed by a combination of different instantiations of these control functions.
The basic structure of a control layer is defined. The individual functions and
their implementation in the different layers are outlined.

We demonstrate various options for the design of interacting agents with-
in this framework by means of an interacting robots application. The per-
formance of different agent types in a multiagent environment is empirically
evaluated by a series of experiments.

*The work presented in this paper has been supported by the German Ministry of Research
and Technology under grant ITW9104
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1 INTRODUCTION

The design of intelligent agents is an important research direction within multiagent
systems (MAS) [Bond & Gasser 88, Durfee & Rosenschein 94), where the behaviour
of a society of agents is described by modelling the individuals and their interactions
from a local, agent-based perspective. Thus, finding appropriate architectures for
these individuals is one of the fundamental research issues within agent design.

There are at least two major reasons for dealing with agent architectures: One is
to explain and to predict agent behaviour; this means to describe how the decisions
made by an agent are derived from its internal (mental) state and how this mental
state is affected by the agent’s perception. The second reason which goes beyond
the first one is to actually support the design of MAS. It deals with providing tools
and methodologies for designing computational agents and their interactions in an
implemented system.

A prominent example for architectures that are primarily driven by the former
reason are BDI'-style architectures [Bratman et al. 87, Rao & Georgeff 91], describ-
ing the internal state of an agent by several mental attitudes, namely beliefs, goals,
and intentions. BDI theories provide a clear conceptual model representing the
knowledge, the goals, and the commitments of an agent. However, they offer only
little guidance to determine how the agent actually makes decisions based on its
mental state, and have to be extended to actually support the design of resource-
bounded and goal-directed agents for practical applications.

In [Rao & Georgeff 92|, Rao and Georgeff have provided an abstract agent in-
terpreter operationalising the BDI theory by describing an agent by one processing
cycle. This cycle consists of the basic phases of option generation, deliberation,
state update, execution, and update of the event queue. The system’s reaction time
is bounded from below by the time taken to perform a cycle. Moreover, since the
individual processes within the cycle are monolithic, the architecture itself does not
optimally support reactivity in a sense that it does not provide mechanisms e.g. al-
lowing to recognise emergency situations in time. Rather, mechanisms for doing
that (for example priority-based situation checking) have to be defined within the
individual functions.

One way to overcome this problem is the use of layered agent architectures, that
have become an important direction in intelligent agent design over the past few
years (see e.g. [Brooks 86, Kaelbling 90, Ferguson 92, Firby 92, Lyons & Hendriks 92,
Dabija 93, Steiner et al. 93, Miiller & Pischel 94a, Miiller & Pischel 94c]). Layering
is a powerful concept for the design of resource-bounded agents. It combines a mod-
ular structure with a clear control methodology, and supports a natural modelling
of different levels of abstraction, responsiveness, and complexity of knowledge rep-
resentation and reasoning. However, a recent criticism of layered architectures has
been that they are mainly motivated by intuition, and that they are too complex
to allow the formal investigation of properties of agents and multiagent systems

!BDI = Belief, Desire, Intention



[Wooldridge & Jennings 95].

The agent architecture INTERRAP which is described in this paper aims at
combining the advantages of BDI-style architectures with those of layered ones. By
this combination, our goal is to provide an architecture that serves both to explain
agent behaviour and to support system design. INTERRAP adopts the mental cat-
egories used in BDI theory to describe an agent’s knowledge, its goals, and its state
of processing. It extends the work of [Rao & Georgeff 91, Rao & Georgeff 92] by
organising an agent’s state and control within a layered architecture. The problem-
solving capabilities of an agent are described hierarchically by a behaviour-based
layer, a local planning layer, and a cooperative planning layer. INTERRAP adopts
the BDI-model rather in a conceptual than in a strictly theoretical sense. Thus, this
paper does not provide a new theory for beliefs, desires, and intentions. The need
to develop an architecture which is suitable to build real applications has enforced
a more pragmatic perspective?.

Previous work [Miiller & Pischel 94a, Miiller & Pischel 94b] has described the
basic layered structure of the INTERRAP architecture and a first simple concept
and implementation of the individual control layers. In this paper, we present a
redesign of INTERRAP aimed to make the architecture easier to describe and to
make agents easier to analyse: the main part of the paper deals with the definition
of a uniform structure for the different control layers. This uniformity is based
on certain similarities of the processes running at the different layers: on the one
hand, local planning and cooperative planning certainly utilise different levels of
knowledge, but require rather similar techniques and algorithms; on the other hand,
reactivity and deliberation are rather two extremes in a broad spectrum of agent
behaviours than two really different paradigms.

Section 2 provides an overview of the architecture; the new uniform structure of
an INTERRAP control layer is presented. Issues of knowledge representation and
belief revision are discussed in Section 5. Section 6 describes a model for situation
recognition and goal activation. The implementation of planning and scheduling
in INTERRAP is outlined in Section 7. Section 8 provides an example for how
INTERRAP is used to design an application system. The performance of different
agent types is analysed in Section 9.

2 THE INTERRAP AGENT ARCHITECTURE

INTERRAP is an approach to modelling resource-bounded, interacting agents by
combining reactivity with goal-directed and cooperative behaviour. In this Section,
we present the basic concepts of the architecture.

2The abstract agent interpreter defined in [Rao & Georgeff 92] also uses BDI-theory in a con-
ceptual sense.



2.1 Overview

Figure 1 illustrates the overall structure of the architecture. INTERRAP describes
an agent as consisting of a world interface, a control unit, and a knowledge base
(KB). The control unit consists of three layers: the behaviour-based layer (BBL),
the local planning layer (LPL), and the cooperative planning layer (CPL). The
agent knowledge base is structured correspondingly in a world model, a mental
model, and a social model. The different layers correspond to different functional
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Figure 1: The INTERRAP Agent Architecture

levels of the agent. The purpose of the BBL is to allow the agent to react to certain
critical situations (by so-called reactor patterns of behaviour (PoB)), and to deal with
routine situations (using procedure PoB). Reactors are triggered by events recognised
from the world model that incorporates the agent’s object-level knowledge about its
environment. The LPL gives the agent the ability of longer-term deliberation. It
builds on world model information, but additionally uses the agent’s current goals
and local intentions maintained in the mental model part of the knowledge base, as
well as domain-dependent planning mechanisms available. The CPL finally extends
the planning functionality of an agent to joint plans, i.e. plans by and/or for multiple
agents that allow to resolve conflicts and to cooperate. Apart from world model and
mental model knowledge, the CPL uses information about other agents’ goals, skills,
and commitments stored in the social model of the knowledge base. The internal
structure of the control components will be explained in more detail in the following



sections of this paper.

In the following, let B, G, Z denote the set of beliefs, goals, and intentions,
respectively, and let P denote a set of perceived propositions. The INTERRAP
agent architecture implements three basic functions:

e BR : P x B — B is a belief revision and knowledge abstraction function,
mapping an agent’s current perception and its old beliefs into a set of new
beliefs.

e SG : BxG — @G is asituation recognition and goal activation function, deriving
new goals from the agent’s new beliefs and its current goals.

e PS:BxGxZw— Tisa planning and scheduling function, deriving a set of
new intentions (commitments to courses of action) based on the goals selected
by the function SG and the current intentional structure of the agent.

Table 1 illustrates how the functions defined above are distributed over the individual
modules. In the following sections, the implementation of the functions is presented

Layer BBL LPL CPL
Function
BR generation and abstraction of maintaining models
revision of beliefs local beliefs of other agents
(world model) (mental model) (social model)
SG activation recognition of recognition of
of situations requiring | situations requiring
reactor patterns local planning cooperative planning
PS reactor PoB: direct modifying local modifying joint
link from situations intentions; intentions;
to action sequences local planning cooperative planning

Table 1: The Basic Functions in the INTERRAP Control Hierarchy

in more detail.

2.2 The Control Layers

Viewed from a certain level of abstraction, the processes implemented at the different
layers of the INTERRAP architecture have many similarities in that they describe
different instantiations of the basic functions SG and PS. Based on this observation,
we present a uniform structure shared by each layer. Figure 2 shows the internal
structure of an INTERRAP control layer. Each layer ¢ € {B, L, C}?® consists of two
processes implementing the functions SG and PS; these interact with each other
and with processes from neighbour layers:

3Throughout this paper, we use the subscripts B for BBL, L for LPL, and C for CPL.



e The situation recognition and goal activation process SG; recognises
situations that are of interest for the respective layer; it results in the activation
of a goal.

e The planning and scheduling process PS; implements the mapping from
goals to intentions and thus, to actions. It receives as input goal-situation pairs
created by the SG component of the layer, and selects goals to be pursued as
new intentions, taking into account the current intention structure. Moreover,
it does the actual planning, i.e. the computation necessary to achieve these
goals.
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Figure 2: Structure of an INTERRAP Control Layer

The implementation of the two functions in INTERRAP is explained in more detail
in Sections 6 and 7.

2.3 The Flow of Control

The control flow and thus the behaviour of an INTERRAP agent emerges from
the interaction among the individual modules as illustrated in figure 2. The model
provides two basic protocols specifying the global flow of control®.

4Further more specialised protocols cannot be discussed here due to space restrictions.



Upward Activation Requests: If PS; is not competent for a situation S, it
sends an activation request containing the corresponding situation-goal pair
to SGjyq; there, the situation description is enhanced by additional knowledge
available to this component in order to produce a suitable goal description.
The result of processing S is reported back to PS;. This mechanism imple-
ments a competence-based control mechanism. It has been extended to allow
more flexible interaction between the local and cooperative planning layers.

Downward Commitment Posting: Planning and scheduling processes at differ-
ent layers coordinate their activities by communicating commitments. For
example, this allows the local planning component both to integrate partial
plans devised by the CPL layer in the course of a joint plan negotiation and
to take into account certain commitments made by the upper layer (integri-
ty constraints). Also the interface between the LPL and BBL component is
designed by the higher layer posting activation requests for patterns of be-
haviours. These requests are regarded as commitments made by the PSp
component as a consequence of the intentions derived in this process.

Based on these protocols, the possible problem-solving behaviour of an INTER-
RAP agent can be classified by three generic control paths: the reactive path, the
local planning path, and the cooperative planning path. Following the reactive path,
a class of emergency situations is recognised in SGg and directly dealt with using
reactor patterns (example: stop to avoid a collision). In the local planning path,
the LPL is activated to deal with more complex situations (example: planning a
transportation order), a plan is devised and executed by activating procedure pat-
terns. Finally, the cooperative planning path is triggered by the CPL; it involves
communication and coordination among agents (example: negotiate a joint plan for
resolving a blocking conflict).

3 THE LOADING DOCK APPLICATION

In this Section, we present the FORKS application, a MAS developed according
to the INTERRAP architecture. The FORKS system describes a MAS for an in-
teracting robots application, i.e. automated forklifts that have to carry out trans-
portation tasks in a loading dock. The implementation of FORKS as a computer
simulation running on UNIX workstations is based on the multiagent development
platform AGENDA [Fischer et al. 95]; in order to evaluate the concepts in a re-
al robot scenario, the FORKS+ system has been designed and implemented; it
constitutes an implementation of FORKS using real KHEPERA miniature robots
[Mondada et al. 93].

Figure 3 illustrates the structure of the loading dock. It is represented as a grid
of size m X n; each square ((4,j),t,7) can be of type t € {ground, truck, shelf} and
can be within region r € {parking_zone, hallway, truck_region, shelf region}. Squares
of type truck and shelf can additionally contain at most one box.
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Forklift agents occupy one square at a time; they have a range of perception (e.g.:
one square in front), can communicate with other forklifts and perform actions

a € A= {moveto(Dir), turnto(Dir), grasp_bozx, put_boz}, Dir € {n,e, s, w}.
Performing actions changes the state of the world:

e moveto(Dir) moves the agent to the next square in the direction denoted by
Dir. The action fails if the square in front of the agent is occupied. In the
FORKS+ system, the implementation of moveto is rather complex: an agent
may recognise that another agent is approaching only after it has already
started to perform the action. For this purpose, in FORKS+ moweto provides
means allowing the robot to move back by turning around to the previous
location and reporting failure of the action in order to guarantee its logical
atomicity.

In order to simplify the problem of computing the current position while
driving, the robot orients itself by following induction lines using infrared
floor sensors and a simple control algorithm. For a more detailed discussion
of aspects of behaviour-based control in the FORKS+ system, we refer to
[Miiller et al. 95].

e turnto(Dir) has the agent turn around to a direction specified by Dir; this
action is needed e.g. to turn to a shelf in order to search through it, when the
agent is located at a square neighbouring the shelf. Turnto always succeeds;

7



however, even this action is non-trivial in the real robot application, since it is
prone to the accumulation of deviations in direction; thus, from time to time,
the robot has to calibrate itself in order to avoid losing orientation.

e grasp_box is an action which succeeds if the agent is not holding a box, and
stands in front of a field of type ¢t € {truck, shelf} which is occupied by a box.
In this case, result of the action is that the box is no longer on the shelf/box,
but is held by the agent. In all other cases, the action fails. In FORKS+, the
robot is able to additionally check whether it is really holding the box after
having performed the grasp_bor command by means of a light barrier that is
integrated into the gripper.

e put_boz is the inverse action to grasp_box.

Agents receive orders to load or unload trucks; while performing their tasks, they
may run into conflicts with other agents. E.g., agents may block each other, i.e. one
agent may have the goal to move to a square occupied by another one, or two agents
may try to move to one square by the same time.

4 KNOWLEDGE REPRESENTATION

In this section, we will outline the basic knowledge representation (KR) mechanism
for INTERRAP agents which is provided by the AGENDA development environment
for multiagent system applications [Fischer et al. 95]; the system development layer
of AGENDA defines a set of basic reasoning mechanisms and the knowledge repre-
sentation model AK B®. Most parts of this Section are adopted from [Weiser 95].

4.1 AKB Representation Schema
The basic elements of the knowledge representation schema are the following:
e Concepts C, C4, C, ...
o Types T'.T1,T5,...
e Attributes A: C +— T
e Features F': C'— T
e Relations RC C; x Cy...x C,

Attributes A may have default values default(A) = k; features are attributes of a
concept that cannot be changed; init(F') = k denotes the initial value of a feature.
Apart from standard types such as integer, string, real, . . ., new types can be defined
by Oz [Henz et al. 93] procedures.

An AK B-schema declaration thus looks as follows:

5 Assertional Knowledge Base



[

concept(  name: ConceptName )

relation( name: RelationName
domain: ConceptName; # ... # Conceptname, )

attribute( name: AttributeName
concept: ConceptName
type: Type )

default( name: AttributeName
value: DefaultValue )

feature( name: FeatureName
concept: ConceptName
type: Type
init: Init )

]

4.2 AKB Interface Specification

The first class of functions which are offered by AK B are assertional functions which
are needed to modify the agent’s knowledge base (KB). In the following, X, Y denote
input variables, 7X, 7Y denote output variables, i.e. values returned by the function
call:

Asserting Beliefs

e createObject(?Id): returns a unique identification of a newly created object.
AK B is object-oriented in a sense that concept instances are represented as
Oz objects.

e enterConcept(Id Concept): creates an instance of a concept denoted by Concept
and binds it to the object identified by Id.

e enterRelation(IdList Rel): Defines an instance of a new relation denoted by
relation Rel among the concept instances denoted by the object identifiers in
IdList. The ordering of the members of IdList is meaningful; it corresponds to
their ordering in the relation.

o setValue(Id Attr NewVal), setValue(ld Attr NewVal ?0ldValue): assigns the
value denoted by NewVal to the attribute Attr of the concept instance denoted
by Id. SetValue with four arguments additionally returns the old attribute
value.



Retracting Beliefs

deleteObject(Id): delete an object that has been created before. Deleting an
object that is bound to a concept instance deletes the concept instance and
all instances of relations where this concept instance is a member.

deleteConcept(Id Concept): deletes the instance of Concept denoted by Id.

deleteRelation(IdList Rel): deletes the instance of relation Rel denoted by
IdList.

retract Value(Id Attr): removes the value for the attribute Attr of the concept
instance denoted by /d.

Information Retrieval

The second important class of interface functions are retrieval functions. They
are provide an access to the knowledge actually stored in the knowledge base. AK B
offers the following retrieval functions:

4.3

getConceptMembers(Concept ?IdList): Returns a list of all instances of Concept.

isConceptMemberP(Id Concept ?Bool): Returns true if the concept instance
denoted by Id is a member of Concept.

getRelationMembers(Rel ?ListOfldLists): Returns a list of list of concept in-
stances denoting all tuples that define relation Rel.

isRelationMemberP(IdList Rel ?Bool): ?Bool returns true if the tuple denoted
by IdList is a member of the relation Rel.

getRelationFiller(Rel k IdList,, ?IdList,): for an n-ary relation Rel, for 1 <
k < n, and for a list IdListy = {oy,...,0, 1) of concept instances with
|IdList,| = n — 1, getRelationFiller instantiates IdListy to

IdListy = {o|(01,...,0t-1,0,0k,...,0n_1) € Rel}.

getValue(Id AttrOrFeat ?Val): returns the value of an attribute or of a feature
of the concept instance denoted by Id.

Planned Extensions

AKB as presented in this Section provides a general and simple knowledge repre-
sentation formalism; future work will extend AK B in different directions.

Adding a deduction rule mechanism which allows e.g. to express background
theories and integrity constraints
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e Extending the KB specification to a full object-oriented knowledge base pro-
viding inheritance, specialisation and generalisation (is_a relation).

e Defining a transaction concept for AKB which allows the atomic execution
of a sequence of operations. This is especially important to synchronise the
knowledge base access by different control layers of the INTERRAP architec-
ture.

5 BELIEF REVISION AND KNOWLEDGE ABSTRAC-
TION

This section describes a simple mechanism how perception can be transformed into
belief; due to space limitations, we will not discuss belief abstraction, i.e. the deriva-
tion of more abstract or complex beliefs from simpler ones; for the belief revision
process, we will focus on the world model part of the agent knowledge base, since
this is most closely related to perception; mechanisms for revising the agent’s mental
and social model are beyond the scope of this paper.

In this paper, we assume that an agent perceives symbolic information; i.e. its
perception is specified in the same language as its beliefs. At this point, the process-
ing needed to obtain this level of representation is not considered. Furthermore, note
that the agent’s world model and its perception are represented as ground atomic
first-order formulae. Thus, the problem is reduced to maintaining consistency of the
world model, i.e. of the object-level beliefs an agent has about its environment. We
assume that perception is time-stamped and that time(p) denotes the time stamp
of a proposition p.

In general, we distinguish between two kinds of consistency, namely logical con-
sistency and semantic consistency:

Logical Consistency: We adopt an incomplete notion of logical consistency for
ground atomic formulae: for a proposition p and a set of atomic propositions ¥ we
define WLC(p, X) iff not(—p € £) (WLC = weakly logical consistent).

Semantic Consistency: A simple notion of semantic consistency is defined by
describing a finite set of domain-specific axioms specifying that in a certain domain
two facts in the world model are semantically inconsistent. A consistency axiom is
of the form

SI(p1,p2) < condy A condy A ... A condy,

where p; and p, are atomic first-order formulae. The conditions cond;, 1 < i < k
are inductively defined by first-order atomic formulae connected by the junctors —
and V. However, we require the variables V' used in cond; to be a subset of the
variables used in p; and py: V' C V,, UV,,. We do not allow recursion within
cond;. Furthermore, we require that S/ is only instantiated with ground atomic

11



formulae, i.e. with formulae q;, ¢o with 36,,60,.0,p1 = g1 N 0ps = ¢» for ground
matchings 6y, #,. These restrictions allow us to interpret the conditions cond; over
the Herbrand Universe.

The intuitive semantics of ST is that SI(py,pe) is true if believing p; is not
semantically consistent with believing p;. For example, a consistency axiom denoting
that it is not consistent to believe another robot to have two different locations at
the same time is:

SI(location(A, (X1,Y1), 01),location(B, (X2,Y3),0s)) +
AZB/\(Xl 75X2\/Y175Y2\/017502)/\
time(location(A, (X1,Y1),01)) = time(location(B, (X2, Ys),02)

Based on the set of consistency axioms with the above properties, a decision
method for the predicate ST can be defined. SI terminates since we do not allow
recursion and instantiation of the axiom with formulae containing variables. This is
important for the proof of proposition 1 (see below).

A Belief Revision Algorithm: Let agent a’s world model at time ¢t be WM, =
{q1,...,q.}. Let Pryy = {p1,...,pr} be the set of formulae perceived by a at time
t+1. Let WLC and ST be meta-predicates for checking weak logical and semantical
consistency as defined above. Then, a’s new beliefs WM, are computed by the
following function:

func BR(Pyy1, W M)

WMy = WM, /* initialise */
foreach p € Py /* process each new perceived fact */
if =WLC(p,WM;y,) then /* logically inconsistent */

WMy = WM U{p} — {-p}
else
if 3¢ € WM;41.51(p,q) then /* semantically inconsistent */
WMy = WM U{p} —{q}
else /* no inconsistency detected */
W Myp1 = WM U{p}
}

return W M4

The following properties of BR hold:

Proposition 1 Let ST be a terminating decision predicate for semantic consistency
as defined above. Then, function BR terminates for each finite input sets P and

WM.

12



Proof: Since P is finite, the foreach loop is performed only finitely often. To
show the termination of the body of the loop, we have to show that the predicates
WLC(pi;, WMye,) and SI(p;,q;) evaluate to true or false after a finite time. The
termination of W LC' is trivial since it only involves checking membership in set
W M., which is finite by our assumption. The termination of ST is true by our
assumption. O

Proposition 2 BR is correct in a sense that it returns a set WM' of new beliefs
that are weakly logically consistent and semantically consistent provided that the
nput set WM of beliefs is weakly logically and semantically consistent.

Proof: To show weak logical consistency, we have to prove that there is no propo-
sition p such that {p, =p} C W M,.,. By our assumption, the input set WM does
not contain such formulae. Assume that p € WM and —p € P. In this case, due
to line 7, W M., will contain —p. Analogously, for -p € WM and p € P, WM,
will contain p. This allows us to conclude that WM, is weakly logical consistent
in the case that P is weakly logical consistent.

Assume now that there is a proposition ¢ with {¢,~¢} C P. In this case, either
g will be selected by the foreach branch before —¢g, or vice versa. In the former case,
—q will overwrite ¢, whereas ¢ will overwrite —¢, in the latter. Therefore, W M,,.,, is
weakly logical consistent even if P is not.

Semantic consistency is ensured by the application of the predicate ST in line 9
of the function. If a proposition p € P is semantically inconsistent with a formula
q € WM with respect to the set of axioms C, ¢ will be replaced by p. Since WM
is assumed to be semantically consistent, so is W M,,.,. Semantic inconsistencies
within P are resolved as described in the case of logical inconsistencies, namely by
simple overwriting within the foreach loop. O

Note that BR is incomplete because the definition of W LC' does not include full
logical deduction. For instance, if {p,q} C P,y1,q9 Z —p but {p} = —gq, this type of
logical inconsistency cannot be recognised by BR. Inconsistencies in P;; itself are
resolved by BR depending on the order in which the p € P;,; are processed.

The reason for the simple knowledge representation and belief revision formalism
defined at the world model layer is efficiency. The world model represents the
dynamic environment of the agent; based on its world model, the agent has to
recognise critical situations such as threatening collisions very quickly and has to
react to it. Inconsistencies are resolved by the simple strategy of preferring beliefs
based on more recent information to older ones.

6 SITUATION RECOGNITION

Situations are described from the perspective of an individual agent. A situation S
is a set of formulae S = Sp U S, U S¢e with Sg C WM, S, € MM, and S C SM.
Thus, it describes a portion of the agent KB containing parts from its world model,
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its mental model, and its social model. The world model part (external context) of a
situation is a set of ground atomic formulae; the mental model part (mental context)
describes parts of the local intention structure of the agent, i.e. a set of goals and
intentions; the social model part (social context) describes belief about other agents
characterising a specific situation and parts of the agent’s joint intention structure.

Classes of situations are denoted by formulae in a first-order language L, so-
called situation descriptions. Situation descriptions provide patterns that can be
instantiated to situations. For each layer i within the INTERRAP hierarchy, a set
D; C 2° of situation descriptions is defined that are recognised by this layer. Let
T denote a set of time points. The semantics of the function SG; is defined by a
function OCC; : 2° x L x T — 25, OCC;i(XL, D;, t) = 8’ returns the subset S of
instantiations of a situation description D € D; which occur at time ¢, i.e. which

can be derived from the set of beliefs X! at time ¢. At layer 7, situations are mapped
to goals G € G;: fB;: Si — Gi. SG; 1 25 x T x 28 x 28 22°%2% ig defined as

SG(2L,,D;,G:) ¥ {(S,G)|3D € D;3G € G;.5 € OCCi(SL, D, 1) A G = B(S)}.

Differences between the control layers result from restrictions on the admissible
form of the set X! and from the implementation of OCC;. For the BBL, we have
¥t C WM. For the LPL, we have XY C WM U MM. Situation recognition in the
CPL may access the whole knowledge base: XL, C WM UMM U SM.

OCC3y is defined by OCCp(XY%,Dp,t) = S iff 3d € Dp : S = db for a ground
substitution #. This many-pattern, many-objects matching problem can be solved
e.g. by the RETE algorithm, allowing fast recognition of situations that have to dealt
with quickly at the behaviour-based layer. On the other hand, OCC}y and OCC¢
include checking whether the agent itself has a specific goal or an intention, or even
if other agents have certain goals or intentions. For OCC[ we assume that local
goals are also represented as ground formulae; moreover, we require that an agent
explicitly knows all its goals and intentions. In the case of OCC¢, however, more
complex, time-consuming deduction may be necessary e.g. in order to recognise other
agents’ goals, either through communication or through explicit goal recognition
techniques.

Situation recognition is an incremental process, i.e. partial situations may be
recognised at lower layers and complemented at higher layers. The SG; process
outputs pairs (S, G). A goal G is associated to each situation S recognised by SG;.
This pair characterises a new option to be pursued by the agent. It serves as an
input to the planning and scheduling process described in the sequel.

For a detailed example of the situation recognition process, we refer to Section
8.1 and to [Miiller 94a].

7 PLANNING AND SCHEDULING

According to figure 2, at any point in time, the planning and scheduling process
PS; of layer i may receive input from two possible sources: situation-goal pairs
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from the SG; process and commitment messages from the planning and scheduling
process PS; ;1 at the next higher layer. The output of PS; are situation-goal pairs
which are sent to SG;,; and commitments to PS; ;. PS; maintains an intention
structure which informally can be looked upon as the agent’s runtime stack, holding
the agent’s current goals G; and its intentions Z;, denoting its state of planning
and plan execution. Each situation—goal pair (S, G) received from SG; at time ¢t is
processed according to the following steps:

1. If layer ¢ is competent for (S,G), continue with step 2; otherwise send an
upward activation request request(do(S, G)) to SG;;1; RETURN

2. Add G to the set G;.

3. Select an element G’ € G; for being pursued next and devise a partial plan P’
for achieving G’ given the current intention structure Z;.

4. Compute the modified intention structure Z] and thus, the next commitment.

This procedure is basically the same for the planning and scheduling modules at
any layer; however, as is outlined in the sequel, the individual steps are implemented
in a different manner.

7.1 Competence

The competence-based control flow is a central feature of INTERRAP. Each layer can
deal with a set of situations, and is able to achieve a set of goals. The competence of
layer ¢ for a situation—goal pair (S, G) is decided by a predicate x5 : S X G — {0,1}.
The competence predicates for the individual layers are defined as follows:

x5(S,G) = 1 iff ex. a reactor PoB whose activation condition matches G.
x(S,G) = 1 iff ex. a single-agent plan p, that achieves G given start situation S.
xc (S, {G1,...,G,}) =1iff ex. a joint plan p; that achieves -, G; given S.

If x;(S,G) = 0 for a situation S and goal G, the layer is not competent for
this situation/goal; then, an upward activation request containing (S, G) is sent to
SGiyq, notifying this layer of the new situation. yp can be computed by a table
lookup with matching; thus, it is possible to make decisions quickly at the reactive
layer. However, trying to build a plan may be necessary in order to determine Yy,
and xc. These functions can be augmented by not only requiring the existence of
a plan, but also requiring a minimal quality of the plan based on a utility function
u: PLANS — IR (see [Haddawy & Hanks 90, Miiller 94b]). This is useful for an
agent in order to decide whether to start a cooperation in a certain situation because
there is only a poor local solution.
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7.2 Deciding What to Do

After a layer has decided to be competent for a situation, the actual planning pro-
cess starts resulting in a commitment, e.g. a decision to perform a certain action.
Again, this planning process differs throughout the INTERRAP layers: At the BBL,
patterns of behaviour provide direct hard-wired links from situations to compiled
plans that are executed; thus, they ensure high responsiveness of the system to
emergency situations. At the LPL, a single-agent planner is used to determine a
sequence of actions in order to achieve the goal. For example, the implementation
of the forklift robots in the loading dock application (see Section 8) is based on a
library with domain plans. Multiagent planning situations at the CPL are described
by an initial situation and by the goals of the agents involved in the planning pro-
cess. Cooperative planning therefore involves agreeing on a joint plan that satisfies
the goals of the agents ([Miiller & Pischel 94b] describe such a mechanism for the
loading-dock).

7.3 Execution

The execution of an action a by the PS; process of a layer i is done by posting
a commitment request (commit(a)) down to the planning and scheduling process
PS; ;. Commitments made by PS¢ to PSy, are partial single-agent plans which are
local projections of the joint plan negotiated among the agents. This partial plan
is scheduled into the current local intention structure (plan) of the agent. Com-
mitments made at the LPL, i.e. from PS; to PSpg, are activations of procedure
PoB determined to be executed. Finally, at the BBL, commitments result from the
actual execution of procedures. Procedures basically describe sequences of activa-
tions of primitive actions (or the sending of messages) which are available in the
agent’s world interface. Procedures are processed by a stepwise execution mecha-
nism [Miiller et al. 95]. Each execution step is a commitment to the execution of a
primitive action in the world interface.

8 EXAMPLE: DESIGNING MULTIAGENT SYSTEMS
USING INTERRAP

In this Section, we describe how the FORKS application presented in Section 3 has
been modelled using the theoretical framework presented so far. The models for
situation recognition and planning and scheduling defined above are instantiated by
the example of recognising and handling conflict situations.

8.1 Situation Recognition and Goal Activation

The situation recognition capability of an agent is distributed over the three lay-
ers BBL, LPL, and CPL, allowing fast recognition of emergency situations, and a
thorough classification of other situations, when more time is available.
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An example for an emergency situation to be recognised in the SGg module is
a threatening collision. It can be modelled by a situation description sd;:

sdy ={ location(self,(Xg,Ys), Og), status(self, moving),
perception(self, Og, ((X,Y), T, R), ~free((X,Y))}

Note that sd; is defined merely by the external context, i.e. without taking
into consideration knowledge about the agent’s goals. A second type of conflict
are blocking conflicts, which are defined by the fact that the agent is not moving,
but intends to move to a square that is occupied by another agent. A situation
description sd, for a mutual blocking conflict is:

8d2 =
{location(self, (Xs,Y5), Os), location(A, ((Xa,Ya), Os), /* external context */
opposed((Xs, Y;a Os)a (Xaa Yaa O(L))}U
{INTEN D(self, goto_landmark(X,, Y,)) }U /* mental context */
{BEL(a,INTEND(A, goto_landmark(Xs,Ys))} /* social context */

8.2 Planning and Scheduling

Once recognised, there are several different possibilities to deal with a conflict sit-
uation. These possible reactions are implemented in the agents’ PS processes. We
draw a distinction between three basic classes of mechanisms which can be directly
associated to the different INTERRAP control layers: behaviour-based, local plan-
ning, and cooperative planning mechanisms.

Behaviour-based mechanisms: This class of mechanisms has the Markov prop-
erty: the decision of an agent at an instant ¢; only depends on the state of the world
at time t; ;. Let A be a set of alternatives, G be a set of goals, g € G. Let WM,
denote the agents world model at time ¢. A behaviour-based decision algorithm is
defined as follows:

proc PSp
i=20;
init ([WM;, G;1);
repeat
i=1+ 1;
G; = update(G; 1, WM;); /* determine new goals */
g = select unsatisfied goal(G;); /* select one goal */

A = compute alternatives(A, g, WM;); /* compute alternatives */
for the goal */
next_action = F (A, g); /* commit to next action */
using decision function F */
try_execute(next_action);
forever

In the sequel, we define two classes of possible decision functions F:
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Definition 1 (Probabilistic Decision Function (PDF)) Let A be a non-empty
set of alternatives, G a set of goals; let f : Ax G — [0, 1] be a probability distribution
on A. Then a PDF is }—If(A, g) = a; with probability f(a;,g) for each a; € A. We
omit the superscript f for F in cases it is irrelevant.

An important special case of PDF are random decision functions:

Definition 2 (Random Decision Function (RDF)) A PDF F, = F/ is an
RDF iff f(a,g) = ‘—j“ for all a € A and for all g in definition 1.

The following proposition holds for the use of random decision functions in the
loading dock domain defined in Section 3:

Proposition 3 Let F, be an RDF, let A = {moveto(Dir), turnto(Dir), grasp_box,
put_box} be the set of alternatives as defined in Section 3 (non-deterministic case).
Let L be a finite grid of size n x m, let (X;,Y;) denote an arbitrary square in L.
Then:

1. An agent using F, as a decision function will reach each square (X,Y) that is
reachable from (X;,Y;) infinitely often.

2. For each (X,Y) # (X;,Y;), there is no finite upper bound on the mazimal
number of steps required to reach (X,Y) for the first time.

Proof: ad 1. The first part of proposition 3 follows directly from the random
walk theorem stated in [Chung 74].

ad 2. Let (X;,Y;), 1 < X; <n,1<Y; <m be the initial position of the agent.
Let (X,Y) # (X;,Y:), 1 <X <n,1<Y <m be an arbitrary square within grid L.
Let location(s) denote the access function to the agent’s physical location (X5, Ys)
in state s.

Assume that there ex. n € N which is an upper bound of steps required to reach
(X;,Y;) from (X,Y"). This means, for the length || of the biggest possible sequence
of actions a = (ay, as,...), a; € A denoting a sequence of state transitions

a a
S = S1... 85,

with location(so) = (X;,Y;), location(s,) = (X,Y), and location(s;) # (X,Y) for all
1 <1< n, we have |a| < n.

Now, we define a sequence [ of actions {b1, b, ..., by}, m > n and location(sy) =
(X;,Y;), location(s,,) = (X,Y), and location(s;) # (X,Y) for all 1 < i < m. We
will show that 3 exists for the set N' = {(X;,Y; — 1), (X;, Vi + 1), (X; — 1,Y)), (X; +
1,Y;)} of neighbour squares to (X;,Y;). This suffices to show that no finite lower
bound exists for any other square (X', Y”), since m’ > m actions will be required to
reach (X', Y"). We define 8 = (turnto(n), turnto(south), . .., moveto(D)), where the
turning sequence is repeated [§] times, and D denotes the direction corresponding

to each (X,Y) € . Obviously, |f| > n+1 > n.
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It remains to show that (3 is selected with a probability p(3) > 0. This holds
true because p(f3) = (‘—ju)‘ﬁ| > 0. From this, proposition 3 follows immediately. O

Note that proposition 3.1 does not hold for probabilistic decision functions in
general since we do not require f(a,_) # 0 for all a € A.

In the loading dock, the probability function f can be defined e.g. as:

[ 1 : a= grasp_box(B)
f(a, grasp_box(B)) = { 0 otherwise

0.5 : same_quadrant(Dir, L)
f (moveto(Dir), goto_landmark(L)) =< 0.2 : mneighbor_quadrant(Dir, L)
0.1 : otherwise.

Same_quadrant and neighbor_quadrant are predicates relating different squares
with respect to their relative location from the perspective of an agent (see figure
3.b). Function f defines a slight variation of a potential field method where the
agent is attracted by its goal region (in the example box B and landmark L), and
prefers options that let it proceed towards its goal. In Section 8.3 we show how
behaviour-based agents can be modelled using PDF and RDF.

Local planning mechanisms: This class of mechanisms uses a planning formal-
ism in order to determine the next action to be performed, taking into consideration
the agent’s current goals. For task planning, a hierarchical skeletal planner has
been implemented in the FORKS system (see [Miiller & Pischel 94a]). It decom-
poses goals into subgoals, until an executable procedure PoB is reached; in this case
a commitment is posted to the BBL. In FORKS, a path planner P is used on a
graph representation of the loading dock to determine the shortest paths between a
given square and the goal square®. If e.g. a blocking conflict is detected, P is run
again to determine a new path to the agent’s goal.

Cooperative mechanisms: Local planning mechanisms run into trouble in two
cases: Firstly, if the number of agents increases, blocking conflicts occur very of-
ten (see Section 9); thus, the effort of replanning becomes too big. Secondly, given
incomplete information, certain goal conflicts cannot be resolved by mere local re-
planning. Therefore, the PS¢ process contains cooperative planning facilities. Joint
plans for conflict resolution are generated and negotiated among the agents (see
Section 7 and [Miiller 94b, Miiller & Pischel 94b)).

8.3 Agent Design

The different mechanisms described in the above subsections can be combined by
the system designer to build a variety of agents having different types and different
properties. Thus, controlled experimentation is supported aimed at investigating

6We use Dijkstra’s algorithm with quadratic complexity.
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how the design of individual agents determines the behaviour of the MAS. In the
sequel, five exemplary agent types for the loading dock application are defined; they
are analysed empirically in Section 9.

The random walker (RWK): RWK is an agent that chooses its actions ran-
domly; i.e. it always uses the random decision function F,. In the case of RWK,
conflict resolution is done implicitly: if the agent selects an alternative that cannot
be carried out, execution will fail and the agent will continue selecting alternatives
randomly until it has found a solution (if one exists).

Behaviour-based agent with random conflict resolution (BCR): BCR per-
forms task planning using a PDF F, as defined above. To resolve blocking conflicts,
it shifts to random mode (using function F,) for n steps; after this, it uses function
F,, again. The advantage of randomness is that it allows to get out of local optima;
in practice, this has turned out useful to avoid livelocks.

Behaviour-based agent with heuristic conflict resolution (BCH): Similar
to BCR, BCH uses decision function F, for task planning; however, to resolve block-
ing conflicts, it employs a different strategy: if possible, it tries to dodge the other
agent instead of just moving randomly. Especially conflicts in the hallway region
can be resolved efficiently by this strategy.

Local planner with heuristic conflict resolution (LCH): LCH uses the hier-
archical skeletal planner described in [Miiller & Pischel 94a] for local task planning;
it employs the same heuristic conflict resolution strategy as BCH.

Local planner with cooperative conflict resolution (LCC): This agent type
has the same local planning behaviour as LCH; however, for resolving conflicts, it
combines local heuristics (for conflicts in hallway and truck regions) with coordina-
tion via joint plans (for conflicts in shelf regions).

9 EXPERIMENTAL RESULTS

In this section, the results of a series of experiments carried through for the loading
dock application are reported. The goal of these experiments was to evaluate the
behaviour of different types of INTERRAP agents and how they depend on different
internal and environmental parameters.

9.1 Description of the Experiments

The test series reported in this paper contains tests with homogeneous agent soci-
eties. We ran experiments with four, eight, and twelve forklift agents. These agents
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had to carry out randomly generated tasks in a loading dock of size 15 x 20 squares,
with six shelves and one truck. The topology of the loading dock (see figure 3.a)
ensures that any square of type ground is reachable from any other. The number of
tasks were 50 for four agents, 100 for eight agents, and 150 in the twelve-agent case.
Each experiment was repeated five times (for twelve agents) and ten times (for eight
and four agents), respectively, with the five agent types RWK, BCR, BCH, LCH,
and LCC. The focus of the experiment was to evaluate the system behaviour with
respect to the following questions:

e [s one of the described agent types or conflict resolution strategies dominant
for the FORKS application?

e How gracefully degrade the different types and strategies when the number of
agents is increased? How robust are they?

e How well do communication-based strategies compared to local ones?

9.2 Results

The main results of the experiments are illustrated by the diagrams 4.a - 4.d.

Absolute performance: Diagram 4.a shows the absolute performance for each
agent type as the average number of actions needed per task. There are two entries
for LCC: LCC1 only accounts for the number of physical actions (moves, turns,
gripper actions), whereas LCC2 adds the number of messages sent (one message
= one action). RWK performs worst in all experiments. The plan-based types
do somewhat better than the behaviour-based ones; especially LCC yields the best
results in terms of actions; however, the value of explicit coordination depends on

the cost of communication.

Conflict Efficiency: Diagram 4.b displays the the ratio of actions needed for
conflict resolution to the total number of actions. Since RWK does not explicitly
recognise conflicts, it is not included in this statistics. The main result to be noted
here is that LCC performs well for small agent societies, whereas it actually does not
increase conflict resolution efficiency for large agent societies, in comparison with
local methods.

Degradation: The factor of performance degradation d shown in figure 4.c for x
agents, v € {4,8,12} is computed as §(z) af % . %,
ratio (see below), #a(z) denotes the total number of actions, and #t(z) denotes the
total number of tasks in the x-agent experiment.

The performance of agent type RWK happens to be very insensitive to the size
of the agent society, whereas the performance of all other agent types degrades

considerably with a growing number of agents. A second interesting observation is

where p is the success
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a) Avg. #actions per task b) Percentage of Actions Spent for Conflict Resolution
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Figure 4: Experimental Results for the FORKS Application

that the behaviour-based agent types (except BCR”) tend to degrade more gracefully
than the more complex ones (LCH and LCC).

Robustness: Robustness is measured by the success ratio p, which is the ratio
of successfully finished tasks to the total number of tasks given to the agent. In
our experiments, there are three sources of failures. Failures due to local maxima,
deadlock situations caused by conflicts, and failures due to multiple conflicts that
could not be adequately recognised and handled by the agents. The main result
concerning robustness is that behaviour-based strategies tend to be more robust than

"The poor performance of BCR in the twelve agent case is due to a cascade effect resulting from
the fact that if there are many other agents around, while trying to resolve a conflict by performing
n steps random walk, the agent is very likely to run into a new conflict aso.
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plan-based, cooperative strategies. Randomness has been shown to be a powerful
tool for avoiding and resolving deadlocks. Note that the robustness results are a little
too optimistic, especially for LCC types, since the joint plan negotiation protocol
used in the experiment cannot handle deadlocks caused by multiple conflicts; thus,
if an agent runs into such a situation very early, it will is kept there for the rest of
the experiment. Since tasks are allocated dynamically, other agents will perform its
tasks; thus, the agent will report only one failed task. Currently, we are developing
a negotiation protocol that can cope with multiple conflicts.

10 DISCUSSION

In this paper, we identified three basic functions explaining the transformation from
what an agent perceives (its input) to what it does (its output): belief revision and
abstraction, situation recognition and goal activation, and planning and scheduling.
The individual control layers of the INTERRAP agent architecture were redefined
according to a new uniform structure based upon these functions. The main contri-
bution of the paper has been to provide a uniform control model allowing to express
reactivity, deliberation, and cooperation by defining different instantiations of three
general functions. The abstract architecture has provided a basis for the reimple-
mentation of INTERRAP using the Oz programming language [Henz et al. 93]. The
concepts have been evaluated by an interacting robots application, an automated
loading dock [Miiller & Pischel 94b| using KHEPERA miniature robots; empirical
results were presented showing how different options to design agents according to
the INTERRAP model affect the behaviour of the system these agents are in.

The focus of this paper has been on describing the structure of the individual
layers rather than on describing how they interact. The problem of coherence in
layered architectures, i.e. how the interaction between the different layers should be
designed in order to achieve coherent behaviour of the agent, is beyond the scope of
this paper. Some of its aspects have already been discussed in [Miiller et al. 95]; it
remains a subject for our future research.
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Agent Type RWK BCR BCH
# Agents 4 8 12 4 8 12 4 8 12
NO 50 100 150 50 100 150 50 100 150
SR in % 100 100 100 100 100 100 100 98.6 97.0
NA 53544 107839 166458 | 3932 15290 84004 | 3065 11259 27613
QDF 1 1.01 1.04 1 1.94 7.12 1 1.86 3.1
APT 1070.88 1078.39 1109.72 | 78.63 152.9 560.03 | 61.3 114.19 189.78
APC - - - 747 5657 54603 | 644 3941 12702
CRE in % - - - 0.19 0.37 0.65 0.21 0.35 0.46

Agent Type LCH LCC

# Agents 4 8 12 4 8 12

NO 50 100 150 50 100 150

SR in % 100 96.0 88.7 100 94.0 87.3

NA 2697 10611 28948 | 2541 7528 22032

QDF 1 2.05 4.03 1 1.58 3.31

APT 53.94 110.54 217.57 | 50.82 80.08 168.25

APC 378 3289 13027 | 356 2108 9914

CRE in % 0.19 0.31 0.45 0.14 0.28 0.45

NM - - - 356 4704 20052

MPT - - - 7.12  50.04 153.13

NMA - - - 2897 12232 42048

MAPT - - - 57.94 130.13 321.1

Table 2: Results for Homogeneous Agent Societies of Types RWK, BCR, BCH,
LCH, and LCC with 4, 8, and 12 Agents

A Table of Experimental Results

Table 2 displays the numerical results of the experiments with the five agent types
in the loading dock reported above. The legend for table 2 is as follows:

RWK:
BCR
BCH:
LCH:
LCC:
NT:

random walker
behaviour-based agent with random conflict resolution strategy
behaviour-based agent with heuristic conflict resolution strategy
local planner agent with heuristic conflict resolution strategy
local planner, cooperative conflict resolution strategy

SR:
NA:
APT:
APC:
CRE:
QDF:

# of tasks

success ratio

# of performed actions

# of actions per task

# of actions per conflict resolution

% of actions spend for conflict resolution
quality degradation factor
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NM:  # of messages sent

MPT: # of messages per task

NMA: Total # of actions + # of messages
MAPT: Actions plus messages per task

APT and MPT have been cgmputed by NgflS'R and N]g]-\gﬁ’ respectively. That
means that only successfully finished tasks have been taken into account for com-

puting these values.
The quality degradation factor QDF(x) for an z-agent experiment has been

computed by QDF(x) def % . %-
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