
Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

Research
Report

RR-07-0 1

A Platform-Independent Model for Agents

Christian Hahn, Cristian Madrigal-Mora and Klaus Fischer

August 2007

Deutsches Forschungszentrum fOr KOnstliche Intelligenz
GmbH

Postraeh 20 80
0 -67608 Kaiscrslautcm
Tel. : + 49 (631) 205 7S-0
Fa,, : + 49 (63 1) 205 75-S03

Stuhl satzcnhaus\\,cg 3
D-66123 Saarbriickcn
Tel. : + 49 (68 1) 302-5151
Fa,,: + 49 (681) 302-5341

Robcrt-l-lookc-SlL 6
1)-28359 Bremen, Germany
Tel. : +49 (421) 218-64 I ()()
Fax: +49 (421) 218-64 150

E-t\.lail : info@dfki.dc W\V\V: http: \\'ww.dfki .dc

Deutsches Forschungszentrum fUr Kunstliche Intelligenz

DFKI GmbH
German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in
the field of innovative software technology based on Artificial Intelligence (AI) methods. DFKI
is focusing on the complete cycle of innovation - from world-class basic research and tech
nology development through leading-edge demonstrators and prototypes to product functions
and commercialization.

Based in Kaiserslautern, Saarbrucken and Bremen, the German Research Center for Artificial
Intelligence ranks among the important ''Centers of Excellence" worldwide.

An important element of DFKl's mission is to move innovathons as quickly as possible from
the lab into the marketplace. Only by maintaining research projects at the forefront of science
can DFKI have the strength to meet its technology transfer goals.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKl's research departments are directed by internationally recognized research scientists:

o Image Understanding and Pattern Recognition (Director : Prof. T. Breuel)

o Knowledge Management (Director : Prof. A. Dengel)
o Deduction and Multiagent Systems (Director : Prof. J. Siekmann)

o Language Technology (Director: Prof. H. Uszkoreit)

o Intelligent User Interfaces (Prof. Dr. Dr. h.c. mull. W. Wahlster)

o Institute for Information Systems at DFKI (Prof. Dr. P. Loos)

o Robotics (Prof. F. Kirchner)
o Safe and Secure Cognitive Systems (Prof. B. Krieg-Bruckner)

and the associated Center for Human Machine Interaction (Prof. Dr.-Ing. Detlef Zuhlke)

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wahlster
Director

A Platform-Independent Model for Agents

Christian Hahn, Cristian Madrigal-Mora and Klaus Fischer

DFKI -RR-07-01

This work has been supported by a grant from The Federal Ministry of Educa
tion, Science, Research, and Technology (FKZ ITW-012006).

© Deutsches Forschungszentrum fOr KOnstiiche Intelligenz 2007

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following : a notice that such copying is by per
mission of the Deutsche Forschungszentrum fOr KOnstiiche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr KOnstliche Intelligenz.

ISSN 0946-008X

A Platform-Independent Model for Agents

Christian Hahn, Cristian Madrigal-Mora and Klaus Fischer

August 29, 2007

Abstract. Various agent-oriented methodologies and metamoclels exist to describe mul
tiagen t. systems ([VIAS) in an abstract manner. Frequently, these frameworks specia li ze on
particular parts of the MAS ancl only few works have been invested to derive a common
s tandard izat ion . This limi ts t he impact of agent-related systems in cOlllme rc ial appli
cations. In t his paper , we present a metamodel for agent systems that abstract froll l

existing agent-oriented methodologies ancl platforms and could thus be ca lled platform
independent. T his metamodcl provides t he core lallguage t hat is used in our agent
oriented software development process t.hat conforms to the principles of Model-Driven
Developrnent (M OD) . Beside the domain-specific mode lling language, we fur t her provide
two model trans formations t hat allow to transform t he generated modeb into textual
code that ca ll be executed with JACK and JAD E.

1 Introduction

Agent-oriented software engineering (AOSE) i ~ rapidly emerging in response to urgent needs in
both software engineering and agent-based computing. VVhile these two di:;ciplines co-existed
without remarlulble interact ion until some years ago, today there is rich a nd frui t ful interaction
among them <;lnd various approaches a re available t hat bring together technique~ , concepts and
ideas from both sides.
Model-Driven Development (MDD) and Model-Driven Architecture (MDA) as its t he most
prominent ini tiat ive proposed by the Object Management Group (OMG) is a recent t rend
in the area of tioftware engineering [1]. Our aim is to translate t he basic ideas of MDD into
methodologies for t he design of agent-based systems and in doing so to contr ibute to bridge
t he ga.p between traditional software engineering approach and agent-based system design. To
ta ke t his one step further, we not only need to integrate MOD int.o the methodologies of agent
ba.::;ed system design but also demonstrate how such methodologies can be utilized in practical
development frameworks for agent-based system design. vVith respect to our objectives sOllle
basic questions arise:

Agent-or iented methodologies often do not rely on exist ing agent-based development toob,
i.e. they do not provide a straightforward interface for implementation.
Even if ex isting methodologies have different advantages when applied to pa.rticular prob
lems, usually a unique methodology cannot be applied to each problem without some (m i
nor) level of customization.
lvlA S implementation requires deep knowledge regarding technical details of agent archi tec
t ures, multiagent development tools, and agent concepts.

The question how to fill the gap between agent methodologies and agent-based development
tools leads to the development of a framework t hat (i) standardise the design , (ii) simplifies t he
implementation of agent systems and (ii) allows to integrate already existing agent frameworks
in to a si ngle tool box in order to increase the degree of uti lization in practice.
In t his paper, we show (i) how to build a platform-independent model for agents (P IM4Agents)
t hat abst ract from existing agent-based metamodels and platforms and (ii) how MDO can
be used to provide a st raightforward interface for implementation and t hus to simplify the
development with agent systems.
T he st ructure of this paper is as follows: Section 2 discusses t he very basics of model-driven
development. Followed by Section 3 that ill ustrates related work with respect to modeling

1

2

languages and agent-based metamodels. Section 4 t hen defin es and illustrates t he PI M4Agents
which is one of the core parts of QUI' work as it clearly defines t he syntax of our modeling language
that is defined wi thin this paper. Section 5 and 6 discuss the meat models for JACK and JADE,
foll owed by Section 7 t hat addresses the vertical mappings between the PIM4Agents on the
one side and JACK a nd JADE on the other. In Section 8, a platform-independent model for
service-oriented architectures (PIM4S0A) is discussed that serves as base for defin ing mappings
between the PIM4S0A and the PIM4Agents in Section 9. Section 10 addresses the technical
realizat ion with respect to model t ransformations. In Section 11 t he ma in contributions of this
paper are discussed followed by Section 12 that concludes t his paper.

2 Model-driven Development

MOD is gett ing more and more important for developing modern enterprise a pplications and
software systems. MOD frameworks defin e a model-driven approach to software development
in which visual modeling languages are used to integrate t he huge diversity of technologies
used in the development of soft,vare systems. As such, the MOO paradigm provides us wi t h a
better way of addressing and solving interoperability issues compared to earlier non-modeling
approaches [2].
The current state of the art in J\IIOO is much influenced by OMG 's ongoing standardizat ion
activities a round the MOA [1]. The MDA approach and its supporting standards allow the
realization and integration of one model on mul t iple platform-speci fic target mode\:;.
Beside t he level of abstraction, developing metamodels and model transformations describes
an important aspect in MDD. Metamodeling is a controversial topic which is currently critical
within Ol\IIG 's MDA initiat ive. A metamodel speci fies the concepts and their relationships for
the purpose of building and interpreting models and thus could be considered as model of a set
of models. Metamodels can be developed for describing different domains and different software
technology platforms. In its broadest sense, a metamodel is a model of a modeling languages .
The term meta means transcending or above, emphasizing the fact that a metamodel describes
a modeling language at a higher level of abstraction compared to the metamodel itself. 1b
understand the meaning of a metamodel, it is useful to understand t he difference between a
metamoclel and a model. vVhilst a metamodel is also a model, a metamodel has two main
distinguishing characteristics. Firstly, it must capt ure the essential features and properties of
the language that is being modelled . Thus, a metamodel should be capable of describing a lan
guage's concrete syntax . Secondly, a met amodel must be part of a metamodel architecture. All
metamodels can be described with a single metamodel, t he so-called meta-metamodel, that de
fines the key to metamodelling as it enables all modelling languages to be described in a unified
way. System development is fundamentally based on the use of languages to capture and relate
different aspects of t he problem domain. The benefit of metamodelling is its ability to describe
these languages in a unified way. This means that the languages can uniformly be managed and
manipulated and thus tackle the problem of language diversity. Anot her benefit is the ability to
define semantically rich languages that abstract from implementation speci fi c technologies and
instead focus on t he problem domain at hand. Using metamodels, many different abstractions
can be defined and combined to create new languages t hat are specifically tailored for a particu
lar a pplication domain. As a resul t , productivity is improved. The Meta Object Facili ty (lVrOF)
[3] is the common found at ion that provides the standard modeling and interchange constructs
for defining metamodels and could thus be considered as meta- metamodel.
An important aspect of MOO is the definition of model transformations, which allows auto
matically transformations of models. A model transformation is a transformation of one or
more source models to one or more target models, based on the metamodels of each of these
models. In other words the instances of one metamodel are mapped into instances of another
metamodeL Such t ransformat ions are defined by mapping rules where each of them describes
how one, or more elements in the source model should be t ransformed to the target model.
vVhen all mapping rules are applied , the mapping describes t he complete transformation from
the source model to the target modeL Thus, given (i) a source model and (ii) t he metamodels
of both t he source and the ta rget models and applying t he defined mappings, the target model
could automatically be generated .

3

~ IDA defines t hree main abstraction levels of a systcrn that supports a business-driven approach
to wftware development. From a top-down perspective it starts with a computation independent
model (elM) describing the context and requirements of t he software system. T he Clivi is
refined to a platform-independent model (PIM) which specifies software services and interfaces
required by the independent software technology platforms. The PIfiII is fur ther refined to a set
of platform-speci fi c models (PSMs) which describes the realbmtion of t he software systems wit h
respect to the chosen software technology platforms.

The MOF Query! View!Transfonnation (QVT) [4] provides a standard specification of a lan
guage sui table for querying and t ransforming models- matching and na.vigating source elements
to initialize ta rget elements- t hat a re represented according to a MOF(-based) metamodel. Bas
ing on source and target metamodels, a model transform at ion language enables t he soft\\ra re
dC\;cloper to match and navigate source elements in order to initialize t he ta rget models' ele
ments.
T he MDA ini tiat ive refe rs mainly to Object Oriented software development and proved to be
eH'ective in relevant a pplication domains. In our ongoing work , we offer a proposal on how
to exploi t the MDD ideas and techniques in AOSE. Beside the general benefit to improve (i)
quality by allowing to reuse models and mappings between models and (ii) software IlHlintain
ability by favoring a better consistency between models and code, we are especially interested
in exploring a framework that (i) establishes interoperability among various agent sy:;tems
and other information technologies, and (i i) ident ifies a core meta model tha.t unifies t he most.
COlTIlllOn agent-oriented concepts to increclSe the efficiency in developing agent-based software
a pplications.

f' 0. \,~ ____ _
Mttarnodel -

JackMM JadeMM

Symbols

D MetMlodd

Concept

Relltlonshlp

Correspondence

Fig. 1. T he overall picture: Prom a PIM metamodel d escribing service-oriented architectures (SOA) to
a platform-independent model for agents to miscellaneous agent-o riented metamodels,

To increase t he in teroperabili ty among agent systems, we follow t he approach illustrated in Fig.
1. T he core part of this framework is a platform-independent metamodel for agents systenlS
(called PIM4Agents) t hat can be used to model agent system in a very abstract manner without
focusing on platform-specific requirements. Basing on the PIM4Agents, we have developed
model t ransformations to various agent specific meta models on the PSM level t hat base on agent
platforms like for instance the Java Agent DEvelopment Framework [5] or JACK Intelligent
Agents [6] , T hese vertical model transformations allow to transform the abstract models that
con forms to the P IM4Agents to concrete code that conforms to t he agent-oriented platforms.
Beside developing PIJ\il to PSM transformations, we also specified horizontal t ransformations
between a platform-independent meta model for SOA (called PIM4S0A) and the PIM4Agents to
illustrate how lVl DD can be utilized for the deployment of agents in domain-specific environments
like SOA, Peer-to-Peer (P2P) or Grid systems. Furthermore, analyzing the proposed horizonta l

4

and vertical transformations allows liS to develop a unified metamodel and to decide which
concepts should be considered as extensions to meet the domain-speci fic requi rements.

3 Related Work

This section presents some related contributions with respect to agent oriented modelling ancl
MDA approaches in AOSE. We have separated this section into t hree parts discussing agent
modelling languages, agent metamodels, and MDD approaches in AOSE.

3.1 Modelling Languages

Unified Modelling Language (UML) is the de-facto standard industry language for speci
fying a nd designing software systems. UML addresses the modelling of architecture and des ign
aspects of software systems by providing language constructs for describing, software compo
nents, objects, data, interfaces, interactions, activities etc. UML now provides suppor t for a
wide variety of modelling domains, including real- time system modelling and is u:~ed more and
more in embedded systems.

Agent Modelling Language (AJ\'IL) is a semi-formal visual modeling language for specifying,
modeling and documenting systems that incorporate features drawn from MAS t heory ([7]). It
is specified a') an extension to UML 2.0 in accordance to the OMG 's major modeling frameworks
(e.g. UML). The ultimate objective of AML is to provide software engineers with a ready-to-use,
complete and highly ex pressive modeling language suitable for the development of commercial
software solutions based on multiagent technologies.

Agent UML (AUML) [8] extends UML sequence diagrams to specify agent interaction proto
cols by providing mecha nisms to define agent roles, agent lifelines (in teraction threads, which
can split into several lifelines and merge at some subsequent points using connectors like AND ,
OR or XOR), nested and interleaved protocols (patterns of interaction that can be reused with
guards and constraints), and extended semantics for UML messages (for instance, to indicate
t he associated communicative act, and whether messages are synchronous or not). Furthermore,
Bauer [9] proposed to extend UML class diagrams to agent class diagrams.

3.2 MAS Metamodels

Aalaadin [101 specifies one of the first developed metamodels for MAS. Based on the three main
concepts Agents, G7'OUpS and Roles, it takes an organisational-driven (i.e. st ructural relat ionship
between a set of agents) approach to build MAS. Agents are defined by their role they take on
inside an organisation and t he capabilities t hey offer.

Tropos [11] is founded on the idea of using the agent paradigm and related meta,list ic notions
during a ll phases of the development of software process. Tropos bases on the concepts of actor
and goal and strongly fo cuses on early requirements. It proposes the use of AgentUML for
detailed design and JACK Intelligent Agent as implementation plat form. As already mentioned ,
the main concept in Tropos is the concept of an Actm' that is capable of Plans which fulfill s a
Goal, i.e. a Soft Goal or HardGoal and uses Resources. The concept of an Agent inherits from
Actor and may play Roles. The Role again inheri ts from the Actor.

ADELFE [12] speci fies a methodology to develop adaptive MAS by concentrating on cooper
ative behaviour . The main concept of ADELFE is the Cooperative Agent which has Skills, Ap
t'it'udes, Characteristics, Comm·unications. Furthermore, the agent observes Cooperat-ion R-ules.

5

Gaia [13, 14] has been designed to explicitly model and represent the social aspects of open
agent systems, with particular attention to the social goals, socia l tasks or organizational rules.
The main concepts of Gaia are AgentType which is part of an 01:ganisation, collabon1.tes with
other AgentTypes, provides Se7~vices a nd plays several Roles. Additionally, a Role refers to Ac
ti'uities. The roles 'Initiator ' and 'Participant' act in a Communication that specifies a Pmtocol.

INGENIAS [15] provides both , a methodology and a set of tools to develop agent systems.
INC ENIAS distinguishes between five viewpoints: organisation viewpoint, agent viewpoint,
interaction viewpoint, tasks and goal viewpoint and environment viewpoint. T he main concept
of INGENIAS is the Organisation that contains a Workflow and Gro"ltp. A Workflow contains
Task that affects and consumes NfetalEntity and produces Interaction. A Group contains again
a Group and belongs to A pplication, Resource, Agent and Role.

PASSI (Process for Agent Societies Specification and Implementa t ion) [16] is an a.gent-based
methodology to design ~IIAS. The PASSI meta model [3] is organized in three different domains:
Solution domain, agency domain and problem domain. The solut ion domain covers the concepts
FIPA-Platf017Tl Agent, So'vice Description and F1PA-Platform Task. The agency domain covers
aspect like Agent that has a set of Roles that provide a Service and solve Tasks that includes
a set of Actions. Furthermore, the Role is connected to Cornm"ltnication that works on Agent
Interaction Pmtocols with a set of PerJormatives. The problem domain contains concepts like
Resource, Non Functional Aspects and ReQ'uirements that are connected with the Agent.

RICA (Role/ Interaction /Communicative Action) specifie!:! a metamoclel [17] that integrates
a~pect!:! of Agent Communication Languages (ACL) a nd organisational models on three different
layers: On the hrst layer, generic concepts of the system (e.g. agent , role and action types) are
!:! pecified , t he second includes social aspects like norms and institutions. The last layer speci fies
agent interactions via communicat ion.

3.3 Unified MAS Metamodel Proposal

A first attempt towards the development of a unified metamodel was described in [18] . This
meta model wa!:! developed by merging the metamodels of ADELF E, Gaia and PASST and thus
combines the strengths of each met amodel. For instance, the unified metamodel covers aspects
like (i) cooperat ive behaviour as described by t he ADELFE metamodel, (ii) organisat ional be
haviour as speci fied by the Gaia meta model and (iii) FIPA-complianl communication structures
as defined by t he PASS] metamodel.
A more recent approach towards a unified metamodel was discussed during an AOSE Technical
Forum Group meeting in Ljubljana. The attendees agreed on a !:!maller core part compared to
the first draft . In this meta model, the Agent participates in a Comm'unication a nd plays a Role
that has the ability to solve par ticular Tasks. Organisations also refer to Roles. The Cognitive
Agent is a specialisation of Agent as it is represented in an Environment.

3.4 Agent Platforms

Several plat forms already exist to implement agent systems. In t he following , we concentrate
on JACK! and .JADE2

JACK Intelligent Agents provides programming construct!:! and concepts for developing CO I11-

plex agent-oriented applications. It bases on the Beliefs, Desires and Intentions model [19]
and previous practical implementations of such systems (see [20]). The BDI agent model is an
event-driven execut ion model providing both reactive and proactive behaviour. In this nwdel,
an agent has certa in beliefs about the environment, desires to achieve, and pla ns describing

1 hl.tp://www.agentsoftware.com.au/
2 http://jade.tilab.com/

how to achieve certain activated goals. T he BDI architecture is recognised as one of more suc
cessfully implemented archi tecture for developing complex systems in dynamic and error-prone
environments (c f. [21]) .

JADE (.J ava Agent DEvelopment Framework) [5] provides programming concepts t hat simplify
the development of iVIAS as it complies to the FIPA specification by providing the necessary
com municat ion infrastructure. In contrast to JACK, it intentionally leaves open t he internal
agent architecture a nd necessary concepts. Instead , JADE focuses on communication which is
performed through message passing where each agent is equipped with an incoming message
box. Standard interaction protocols speci fied by FIPA such as FIPA-request or FIPA-query can
be used as standard templates to build an agent conversation.

3.5 Model-driven Development of MAS

Here we present some of t he effor ts that have been done to bring Model-Driven Development
practices in to MAS development.

The Malaca Agent Model [22] is an approach to agent- oriented design using MDA. T he Malaca
UML Profile provides the stereotypes and constrain ts necessary to create !vIalaca rnodels on
UML modelling tools. In t his MDA approach, the transformation is realised from aTROPOS
design model- as PIM- to a Ma laca !vlodel- as PSM.

Guessoum [23] proposes a ~'!DA- based approach for MAS to fill the gap between existing MAS
tools a nd agent-oriented rnethodologies and metamodels, respectively. This approach mainly
bases on separating the application logic (described in a PIt"I) from t he underlying technology
(described in a PSM). Basing on Meta-DIMA, a MDA-based MAS development process defin es
t he PIMs and PSMs by analysing the multiagent applications, defines a library of metamodels by
identifying the concepts used and designing the t ransformation rules to implement a metamoclel
from its descript ion. A first step has been done by defining a PSM for t he mul t iagent tool DIMA
and PIMs from PASSI and Aalaadin / PASSI [24] metamodels.

An update to INGENIAS presented in [25] introduces the INGEN IAS Development Kit (IDK),
as a way to provide MDD tools for MAS development. It presents the 10K .MAS .Moclel Editor,
a graphical tool for MAS model creation , and a modular approach to adapt the ed itor and
tools to new metamodels or target platforms. It also proposes that the model generation and
metamodel development should be performed in parallel with periodic consi:;tency checks to
allow feedback from one activity to t he other during the development.

T he Gaia2Jade Process [26] shows how systems designed following the GAl A methodology,
and it corresponding models, can be converted to JAD E for deployment. It proposes that the
implementation phase should be performed in four stages: communication protocol definition,
activities refinement, JADE behavior creation, and agent cla.r;ses construction. One relevant de
tail in the behavior creation is t hat GAIA roles a re transformed to 'high level' JADE behaviours,
which is a similar approach to the one presented here.

All the previously mentioned cont ribu t ions in this section, make valuable points for t he spec
ification and modelling tasks in agent systems. However, interoperability among varied agent
systems and especially among other technologies and domain-specific architectures is not ad
dressed in t hese works. However, works like [27] and [18] address interoperability wit hin agent
systems with completely diverging a pproaches. On one hand, the Generic Metamodel presented
in [271 proposes to have a basic, but complete (\V. r.t . the concepts t hat define MAS) metamodel,
allowing the generation of systems in different agent platforms. On the other hand, the Unified
lvlelamodel [18] presented in Section 3.3 presents some improvements over the original meta
models, but a lso raises some issues like the complexity of the methodology process to develop
systems using it and t he construction of tools for it. In t he following sections, we address t he
quest ion of how ivlDO could contribute to the interoperabili ty between domain-specific archi
tectures and agent platforms wit h an approach similar to [27] in t hat we t ry to set a compact
generic metamodel, but wi thin the MOD.

7

4 Platform Independent Model for Agents

One challenge in defining a platform independent model is to decide which concepts to include
and abtitract from the target execution plat form s (PSNb) that support the architectu ral :-;; ty le
of agent-based systems. Section 3.2 discusses several I'netamodeb for MAS. The only concept
a ll rnetamodels ha,ve in comlllon is the concept of an Agent. Some of them also focus on Role
a nd Communication/ interaction. From this discllssion, it is obviow:i to mention that findin g
platfonn-independent concepts for [viAS is a complex task. From QUI' point of view, a minimal
definition for an agent is that it is an entity t hat is capable o f acting in the environment. It
acts in an autonomous manner, i.e. t he agent has cont rol over its own behavior and reacts
on in ternal and external st imuli. A fur ther property is the abi li ty to communicate wit h other
agents. Additionally, the agent is capable of perceiving its environment. In the following sec
t ion , platform-independent concepts and t heir attributes are discussed that are necessary for
designing agents in a n adequate manner. In order to support an evolution of t his metamodel,
it is st ruct ured int·o several aspect each focusing on a specific view point o f a MAS.

I . Agent aspect describes single autonomous entities, the capa bilities they have to solve tasks
and t heir roles they play within t he MAS.

2. 01gan-lZat-ion aspect describes how single autonomous entities cooperate within the [viAS
and how complex organizational structures can be defined.

3. Interaction aspect describes how the interaction between autonomous entities or organiza
t ions takes place. Each interaction specifica t ion includes t he actors involved and in which
o rder messages are exchanged between t hese actors in a protocol-like manner.

4 . ilehav-lomnl aspect describes how pla ns are composed by complex control structures and
simple atomic tasks like sending a message and how informat ion flows between those con
structs.

Grouping modeling concepts in this manner allows t he metamodel evolution by adding (i)
new modeling concepts in the defined aspects, (ii) extending existing modeling concepts in t he
defin l.>(i aspects, or (iii) defining new modeling concepts for describing additional aspects of agent
systems (e.g. security) . In t he following, we discuss the four different aspect!:! in more detail and
relate each a.<;pect to a small example. This example covers a conference management system
(CivIS) t hat has already discussed by several authors (e.g. [28]) . "Ve assume t hat t he readers are
familiar with the process of submitting a paper to an international conference (e.g. AAtvIAS).
This process starts with a call lor papers (CFP) distributed by t he program committee (PC).
"Vhen receiving the CFP, authors f1ecide whether to submi t a paper. Tn case, authors subrnit
their pa rt icular paper to t he PC that assigns a submission number on it and informs the author
about this. After the deadline has passed , the PC distributes a ll received papers among t he P C
members that are in charge of providing a. rev iew for their ass igned papers that is sent back to
the PC. Considering a ll reviews, the PC decides on the accepted papers and sent a message to
the corresponding a uthors to inlorm them about acceptance or rejection. To keep t his example
simple, we mainly concentrate on the submission phase in the following.

4.1 Agent Metamodel

Fig. 2 depicts t he agent aspect of the PIM4Agents. T he metamodel is centered on the concept
of Agent , t he autonomous ent ity capable of acting in the environment. An Agent has access to a
set of Re.':iources from its surrounding E nvironment. These Resources may include information or
ontologies the Agent has access to. Furthermore, the Agent can perform particular DomainRoles
a nd Behaviours. The DomainRoles are similar to the Interaction Roles specializat ions of the Role
concept that requires a set of Capabilities. Furthermore, t he agent lTlay have certain Capabilities
that represent t he set of Behaviours the Agent can possess. It allows to group Behaviours t hat ,
conceptually, have a correspondence with regard to what they a llow the Agent to do. Like the
Agent , Roles could also refer to Capabilities in order to give it certain patterns of interaction
a nd behavior. Additionally, an Agent could be member in an Organisation that represents the
social structure agents can take part in.
Fig. 3 depicts the agent model with respect to our example. In t his example we mainly concen
trate on t he authors' side. "Ve have modeled t hree agents (Le. AuthorAgent l , AuthorAgent2

8

G Organsatm

+ membership

G OornainRole

+ performs

+ rolefiner

+ members 1. ...
G Agent

1 + agent 1

1

.. + reSCU'ce
+ resource

G Environment G Resource
•

+ has
G Capability

+ beh.aviOur + behavio..Jr
1

1. ... G BehaviolW

Fig. 2. The meta model reflec ting t he agent a.<;pect of the PIM4Agcnts.

+ performs

+ roleFillers
AuthorAgentl :

Agent

HandleCFP:
Behaviour

+ behaviour

AuthorCapabiNty :
Capability

AAMASAuthor :
DomainRole
+ performs

+ roleFiliers
AuthorAgent3 :

Agent

+ performs

+ roleFiliers
AuthorAgent2 :

Agent

Fig. 3. Agent model of the eMS.

and AuthorAgent3) that all perform the DomainRole AAl'vIASAut hor. This Role has a Capa
bili ty AuthorCapability t hat refers to a HandleCFP Behaviour. Details on this behavior are
addressed in Section 4.3.

4.2 Organization M etamodel

Fig. 4 depicts the organization aspect of t he PIM4Agents. The Organisation is a special kind of
Cooperation that also has the same characteristics of an Agent. Therefore , t he Organisation can
perform Roles and have Capabilities which can be performed by its members, be it Agents or
Organisations. T he multiple inheritance of the Organisation , from t ile Agent and the Cooperation,
also allows it to have its own interna l Protocol that specifies how the Organisation coordinates
its members. For t he purpose of interaction, DomainRoles are bound to InteractionRoles, where
an Interaction Role can be performed by several DomainRoles. This might be important in the
case t hat Protocols are used for different domains.
Fig. 5 depicts an organizat ional model t hat conforms to the organizational metamodel. In this
example, we modelled t he PC as an Organizat ion t hat requires the Inte ractionRoles PCChair
and PClVlember. Furthermore, the Organization PC includes several Agents like PCMemberA
gent2 and PCMemberAgent l that perform the DomainRole AAMASPCl'vIember and PCChair
t hat performs the DomainRole AAMASPCChair. T he AAl'vIASPCChair has a Capabili ty that
refers to a ReceiveS ubmission Behaviour , the AAMASPCMember has a Capability that refers
to a Review Behaviour. The DomainRole AAMASPCMember is bound to t he Inte ractionRole
PCMember, the DomainRole AAMASPCChair is bound to t he In te ract ionRole PCChair.

+ cooperation + uses

G Agent G Cooperation G Protocol G RoJe
1 1. • 1. • •

+ particpants

+ merrt>ers + requires ,.,
2. 1

G Organisation G InteractionRole
+ child

+ merrtJership

+ parent .7' SubRole

Fig. 4. The metamodel reflecting the organization aspect of the PIM4Agents.

Review :
iiii!iiiiiiL

, ... ~ PC
OrQi!1isatbl

~ .. ~
AAMAS PC :
~ae

.-~
+ rolaFes

. """,""
, ... ~

Fig. 5. Organization model of the eMS.

4.3 Be haviour Metamodel

9

Fig. 6 depicts the behavioral aspect of the PIM4Agents. The Behaviour refers to a set of Flows
that could be eit her of t he type Information Flow or Control Flow t hat are contained in the be
haviour description. Furthermore, the Behaviour contains a set of Steps that are linked to each
other via a Flow. In general , t he Control Flow describes in which order Steps are executed . The
Information Flow describes the order in which information Rows between Steps. Each Flow con
nects exactly two Steps. The concepts StructuredTask and Task are specializations of a Step , i.e.
they are again connected by a Flow. A Scope and Plan are further refinements of the Structured
Task. Both are connected to a Condition t hat mainly defines a set of facts (e.g. boolean values)
that are connected by a logical operator. The Plan for instance may refer (i) to a precondition
that has to be satisfied in order to execute the Plan and (ii) to a postcondition that defines the
state (the fact the should be valid) after t he Plan execution. Due to reason how elements in t he
behavioural viewpoint are st ructured, Plans could either be composed by more complex control
structures (i.e. Scope) or by simple atomic act ivities (i.e. Task).

The concepts that could be considered as Scope are depicted in Fig. 7. In a first step, we
distinguish between the sequential , iterative, and split order of execution. This is reRected by
the concepts Sequence , Split a nd Loop in Fig. 7. The Split is again structured into (i) a Parallel
concept that is further partitioned into ANDParallel and XORParallel and (ii) a Decision concept
that is fur ther partitioned into ORDecision , XORDecision , and ANDDecision. As a Scope call be
considered as specialization of StructuredTask and Step, each Scope can again include sub-scopes
to allow the definition of complex control structures.

to

G Controlflow G InformatlonFlow

+ flows + ftows
• G Fiow

+ outFlow
+ inFbw + steps G BehaviOl.

+ sink
1+ sa.Jrc~ 1..*

1 e fitep
1 '. G structured5tep

+ steps ..

e Taslt

•
+ condition + postconditiOn

G Scope G Comition '" * G Pian
+ prec~ndtidtl

Fig. 6. The metamodel re flecting t he behav iour aspec t of the PIM4Agents.

G Scope

G Sequence G Spiff G Loop

G XORParailei

G ParaIIeJ

G ANOParallel

G DecJsion

'"

G ORDecision G XORDecision

Fig. 7. T he specializat ions of a Scope.

G ANODecision

T he concepts that could be considered as atomic Tasks are depicted in Fig. 8. Specializations
are for instance Send Message and ReceiveMessage that both refer to a part icular Message , In
ternalTask that could be used to define code or internal statements like t he assignment of
variables, Wait to express t hat the Agent/ Organization is waiting to meet certain condition:; like
for instance a t ime out and InitiateProtocol to st art the referred Protocol.

F ig. 9 depicts t he HandleCFP Behaviour t hat was already mentioned in the context of t he
agent model in F ig. 3. T he HandleCFP Behaviour includes one Plan (i.e. HandleCFPPlan)
that could in principle be connected with other Plans on t his level via the ControlFlowln
st ance!. For t he sake of simplicity, we have not illustrated all Control Flows in Fig. 9. T he
HandleCFPPlan includes a Sequence HandleCFPSequence that could again be linked to other
control st ructures on the same level via the ControlF lowlnstance2. T his Sequence includes two
Steps, the ReceiveCFP ReceiveMessage ancl t he XORDecision vVritePaper that are connected
via the ControlFlowlnstance3. The XORDecision refers to a Condition Busy and includes two
Steps, an !nternalTask Relax (this path is chosen if the author is busy with other work that has
to be finished) a nd a Sequence WritePaperSequence. T his Sequence again contains two Steps,
an Interna lTask WritePa per (stands for t he process of writing t he paper) and a SubmitPaper
Send Message t hat refers to a Message SubmitPaper. T he Control Flow ControiFlowlntance4
connects both Steps.

11

I
e &or:~ I ~R.-.. tes_

1 1
+ tends + reactsTo

+ messagetype 1 + rnessagetype
1

e IntemaIT ask I I e InltlateProtocoi I
• I

+ trneout 1+ htlateProtocd

I ~~t I ej,ocoI I

Fig. 8. The specializations of a Task.

~" } ..- I_'~i

.- -.A ..] -=r"~ • ~ 1 --,c-

• ".~ . , IIIPS
~ ..- - ~]

Fig. 9. Behavior model for the HandleCFP Behavior in the eMS.

4.4 Interaction Metamodel

Fig. 10 depicts the interaction aspect of the PIM4Agents. The ability to communicate is one
of the core characteristics of agents and group of agents in MAS. A Protocol refers (i) to a set
of Interaction Roles (e.g. Buyer and Seller) that interact within the Protocol and (i) to a set of
MessageFlows that specify how the exchange of messages is proceed. The Interaction Role can
again refer to a set of InteractionRoles as child , meaning that the set of agents that perform
the parent InteractionRole is split into the child InteractionRoles. In general, the child Interac
tionRoles are determined at design time, but filled with the particular agents that perform this
role at run time.
A good example why to distinguish between parent and child InteractionRole is the Con
tract Net Protocol (291 (CNP). In the CNP, the initiator sends in the proposal stage either
an accept-proposal or a reject-proposal to the participant. The decision which message is
sent depends on the fact if the participant is considered as best bidder. If this is the case, this
participant gets an accept-proposal, otherwise a reject-proposal. This implicit distinction
between best bidder and remaining bidders could be done in the PIM4Agents explicit. The
participant would have two children Interaction Roles, i.e. BestBidder and RemainingBidders
that are filled at run-time. The MessageFlows again refer to a set of Interaction Roles that are
active in the current state, i.e. those Roles that send the specified Messages. Furthermore, it
specifies a join and fork operator which are both of the type MessageScope. A MessageScope
defines the Messages and their order how these arrive. In particular this means that Messages
are connected via a Sequence, Loop, Parallel, OR, XOR, and AND operator. Furthermore, the
MessageFlow refers to a TimeOut that specifies the latest point in time a Message should be sent.
Beside Messages that can be sent, the MessageFlow may also refer to Protocols that are initiated
at some specific point in time in the parent Protocol in order to execute nested Protocols.

12

(3i Message '"

+ messages

+ operations

«aufzahk.nJ» := Operations
o Sequence
o Loop
o ParaUe!
o XOR
o at
o AND

G TimeOut

+ joinTimeOut • + forkTimeOJt

1
~ '1 , .

1 G MessageScope ~
0 .. 1 11

0 .. 1

+ forkOperator + joinOperator

\ ' 1 •
G MessageFlow

1
+ messaQeflows

2,,*

+ messaoesplit

+ protOCc:M

1 '" 0 .. 1 .. \:.1 Protoco

+ bindinQ
1..* + active

,.. + parent .. G OomalnRole G InteractlonRole
1..* • 1

+ child + participCllt r

,::- subRole

Fig. 10. The metamodel reflecting the interaction aspect of the PIM4Agents .

.. ~
Fig.!!. Interaction model of the eMS.

Fig. 11 discusses the interaction model t hat covers the interaction between the authors and the
PC in t he submission phase. The CallForPapers Cooperation uses a Call ForPapers Protocol
and requires the InteractionRoles Author and PCCha ir. T he PCChair is active in the CFr
MessageFlow that refers via a CFP MessageScope to the CaliForPaper Message, whereas the
Aut hor is act ive in the MessageFlow Submit Paper that refers via a CFP rVlessageScope to a
CallForPaper Message and via a SubmitPaper MessageScope to a Submit Paper Message.

5 Metamodel for JACK

A vast number of frameworks and methodologies have been developed to foster t he software
based development of BOI agent architectures [30] and MAS [31,11 , 32- 34]. As mentioned in
Section 3.4 , JACK is a prominent example of a BDI implementat ion and is considered in
our approach as platform-specifi c execution environment. T he partial metamodel of JAC K
(JACKMM) is presented in t he following section.

13

5.1 Team M etamodel

The team metamodel speci fies and defines the structure of one or more entities that is formed
to achieve a set of desired objectives. A subset of t he metamoclel for t his aspect is presented in
Fig. 17.

<3 Re4lsonlnQMethod

G reamPlan

G NamedRoie

........,
+ p3Sts

G """'t

G leam

G Roie

l'

G Event
+ hancIes : sends

+ performs

+ POSts
1

1 1 1

G tapabiIIty

1., •

+ sends 1 . . •

Fig. 12. The team metamodel reflect ing the team aspect ill t he JACK fra mework.

An Agent is a component t hat can exh ibit reasoning behaviour under both proact ive (goal
directed) and reactive (event-driven) stimuli. When an Agent is instantiated , i t will wait unti l
it is given a goal to achieve or experiences an Event t hat it must respond to. When such a
goal or Event ar ises, i t determines what course of act ion it will take. The Team concept is a
specialization of Agent. It is a distinct reasoning ent ity which is characterized by t he Roles it
performs and the NamedRoles it requires others to perform. T he formation of a given Team is
achieved by attaching sub-teams capable of performing the NamedRoles required by the Team.
A Plan models procedural descriptions of what an Agent does to handle a given Event. All t he
action that an Agent takes is prescribed and described by the Agent's Plans. A TeamPlan speci fies
t he behaviour of a Team in reaction to a specific Event. As a specialization of Plan) a TeamPlan
also defines a set of steps specifying how a particular task is achieved by particular NamedRoles.
In order to coordinate t he Team's behaviour) TeamPlan provides addi t ional constructs like t he
team_achieve statement (for more details we refer to Section 5.2).Role definitions are a very
important concept to define a Team as those specify which messages- which are rather Events
t he role fillers a re able to react to and which messages they are likely to send. An Event presets
the type of stimuli a Team) Role) or TeamPlan reacts to or posts. JACK distinguishes between
(i) internal stimuli that are events the Agent /Team sends to itself, (ii) external stimuli that
are messages from other Agents, and (iii) motivations such as goals the Agent / Team may have.
The details on t he discussed concepts and t heir att ribu tes are given in Table 1.

5.2 Process Metamodel

T he process metamodel for JACKMM is presented in Fig. 13. It describes the process structure
and the available language constructs for process definition. The concept Process illustrates the
main part of the process aspect. It includes various occurrences of the type NodeBase which is an
abstract class from which each part icular node inherits. Furthermore) the Process comprehends
a set of Flows that define the control ftow between nodes. Each Flow has exactly one source
node and one sink node. A complete list of all process- related concepts is given in Table 2.

14

JACK'S Team elements

Concept Attributes Explanation

sends Events are identified that the Agent sends externally
to other Agents

Agent handles Events that the agent will attempt to respond to i
they arise by executing a Plan

uses Plan that the Agent can execute in reaction to an
Event

uses TeamPlan the Team executes when handling an
Event

Team performs Roles the Team performs itself to the outside
require NamedRoles the Team requires in order to solve the

requested task
Plan reasoningmethod defines methods that an Agent may execute when it

runs this Plan. Reasoning methods are different from
normal Java methods in that they execute as finite
state machines, and may succeed or fail, depending
on whether the Agent can complete each statement
that they contain. The top-level reasoning method is
called body

handles Events that trigger the execution of the Plan
posts Events that are posted within a Plan

TeamPlan uses Roles that are needed by the TeamPlan to solve the
assigned task

Role handles Events that are handled by a particular Role
posts Events that are posted by a particular Role

NamedRole type Role type that is referred by the N amedRole

Table 1. The Team vlewpomt of JACK.

6 Metamodel for JADE

The JADE agent platform [5] is a very popular platform with the MAS community, therefore
it was chosen as a relevant target platform to our MDD approach. This section presents a
partial view of a metamodel for this platform. It is important to mention that, since JADE is
implemented in Java, the Java language constructs (classes, interfaces, etc.) are also available,
but not covered in detail in this paper.

6.1 Core View of JADEMM

The JADE metamodel (JADEMM) presents the concepts and structures available in the JADE
API [35] and some minor extensions for mapping purposes. A reduced view of this core is shown
in Fig. 14.
The Agent represents the class jade.core.Agent from the JADE API. The software agent per
forms various tasks, including message passing and the scheduling and execution of multiple
concurrent activities. The Behaviour represents the codebase to all the actions that the agent
can perform. Since it is the base of the Behavior model, it is abstract and its children are the
ones that can actually be instantiated and executed. The Agent's knowledge is stored in an
Ontology, which contains application specific concepts that Agents can use in their messages.
It defines a vocabulary and relationships between the elements in this vocabulary. Correspond
ingly, the ConceptSchema is an expression that describes an entity with a complex structure
that can be defined in terms of Slots. The ACLMessage is the base for Agent communication. It
implements an ACL message compliant to the FIPA ACL Message Structure Specification [36]
and is parameterized though key:value pairs. In order to support Agent Organizations two con
cepts are introduced as an extension to the JADE API. The Organisation represents a generic
grouping of Agents, it enables a straightforward support of organizational structures from the
PIM4Agents. The Organisation also provides the codebase for further specialized Organisations,

15

JACK's process e le ments

Concepts E27Jlanat-ion Attributes

NodeBase abstract class that provides -
t he common attributes foc
node specia lizations

Process main process class that con- subprocesses: co llection of NodeBa.o:;es under this
tai ns a ll NodeBases and Flows Process

start : first NodeBase in the Process
flows: F lows t hat are needed to connect the spe-
cific NodeBases in the Process

F low concept to link NodeBases sink: refers to NodeBa,:>cs t hat are t he source of a
Flow
source: refers to Nod eBases that a re the s ink of a
Flow

ForkNode abstract class t lmt extends -
NodeBase for t he support 0

a lternative outputs
Para llel Node represents the parallel state- parallel Tasks: collection of tasks or proces.'5es that

ment node must be executed in parallel
PostNode posts a message to the same event: Event to be posted

Agent
Send Node scnds a message to the an- targetAgent: t he name of t he recipient agent for

other Agent t he sent Event
ReplyNode replies to a message received originalMessage: message to which the reply re-

by the Agent sponds
CodeNod e executes Java code within the code: Java code to be executed

Plan
DecisionNode represents an if-else decis ion condition: the cond ition to be evaluated in the

decis ion
Subta.,:>kNode executes another P la n as sub- eventToPost: the Event to be fired

task by posting an event
SubgraphNode executes a rea.<;;oning method subgraphNameAndArgs: t he name and arguments

a.<;; s ubpart of t he process for invoking the reasoning method
TestNode test a given condi t ion , if the condi t ion: t he condition to be evaluated

va lue of t he expression is un-
known to t he Agent a subtask
is fired by posting an Event

goalEventToPost: t he Event to be posted if the
value of t he evaluation is unknown to t he Agent

DetermineNode iterates t hrough a ll possible condition: t he condition to be evaluated.
va lues that satisfy a logical
condition until a goal subtask
us ing t hese values succeeds

goalEventToPost: t he goa l Event t hat t he Agent
executes for each set of values that sat isfy t he
binding condition.

AchieveNode asks the Agent to test a COI1- condition: the condition to be evaluated
dition a nd if it is not true, to
handle a goal Event

goalEventToPost: Event describing t he goa l t hat
the Agent must t ry to achieve

Insist Node similar to achieve, bu t ens ures
that t he condi t ion holds after
t he execut ion of the goal sub-
task

Maintain Node similar to SubtaskNode, bu t condition: the condition to be held
ensures t hat a condition is
held dur ing t he execut ion of
the subtask

eventOrReasonillg~vlethod: Evcnt t hat fires thc
subtask or reasoning method

T a ble 2. T he pl OCess elements of JACK

16

+ start

+
+ SLbprocesses

1

G Process

G ParaieITask

+ paraleiTasks

e Sen~ode

G ParaRelNode G PostNode

+ sri<

+ flows

+ so...rce
1

G Flow

G WaitForNode G MaintainNode

G CodeNode G ReplyNode

G DetermineNode

G DeclslonNode

G TestNode

G AchieveNode

G TeamAchleveNode G SUbtaskNode

G WaitForTImeou
tNode

G WaitForSentin
er<ode

G InsistNode

Fig. 13. The partial process metamodel reflecting the process aspect in the JACK framework .

such as holons for instance. The members of t he Organisations are characterized by Roles, which
describe ident ify the part they play within the Organization. For more details on the concepts
please refer to Table 3 and [351.

JADEMM Core elements

Concept Attributes Explanation

ontology representation of the Agent 's knowledge, necessary
for message processing using templates

Agent behaviours set of possible act ions that the Agent can execute
implements set of Roles implemented by the Agent
members Agents that take part in the Organisation

Organisation requires Roles the Oraganisation needs to achieve its tasks
Role sends Messages that the Role may send

receives Messages that the Role may rece ive
Ontology schemas Schemas that the ontology contains
ACLM=age per formative ACL performative that the mes::;age performs

Table 3. The core aspect of JADEMM

6.2 Behaviour View of JADEMM

The Behaviour, previously introduced in the core of JADEMM, represents any process or task
t hat can be executed by the Agent. It is an abstract class, but it is the base for various spe
cialized behaviour types. 'vVe mainly concentrate on two types of them: SimpleBehaviour and
CompositeBehaviour. These two types are abstract and provide the base class for add itional spe
cializations, simple or composite behaviors correspondingly. A small extension was added to the
hierarchy to represent the sending and reception of messages by the MessageReceiverBehaviour
and MessageSenderBehaviour. A partial view of the Behaviour hierarchy is depicted in Fig. 15

G ConceptSchema

•
G Ontology

+ ontology

+ slots
•

1 1
G ObjecfSchema

+ schernas + schema

1

•
1..'"

+ members
G Agent

1

G Siot

+ behaviOurs 1 + inlJlements

G BeJwlliour

G Organisation

1+ f8Q,Jires

+ receives

G Roie
1 + sends
•

G ACLMessage

Fig. 14. Partial view of the core of the JAD E metamodel

17

and a summarized description of the most relevant specializations in the behaviour hierarchy
i~ presented in Table 4.

JADEMM Behaviour e le ments

Par'ent Behaviour Behaviour Type Explanation

SirnpleBehaviour OneShotBehav iour represents an action tha t is pe rformed once only.
Cyclic Behaviour represents an action that is pe rformed indefinitely
ParallelBehaviour executes its children in parallel fru;hion , and concludes

when a predetermined number , a ll or any of its chil-
dren are done.

CompositeBehaviour FSMBehaviour is a serial behaviour that executes ih; children accord-
ing to a FSM defined by the user. More s pecifically
each child represents a state in the FSM.

Sequentia l Behaviour is a serial behaviour that executes its children in se-
quential order , and terminates when its last child has
ended .

Table 4. The BehavIour Aspect of JADEMM

7 Vertical Transformations

Model transformations are one of the key mechanism within MOD. Using code generation
templates, the model is transformed to executable code that may be opt ionally be merged with
manually written code. One or more model-to-model transformation steps may precede the
code generation. T hese model-ta-model transformations can be distinguished between vert ical
(between PIM and PSM) and horizontal (between PIM and PIM) mappings. T his section deals
with vertical mappings, i.e., how to map PIM-related concepts (defined by t he PIM4Agents
metamodel) to PSM-related concepts of JACKMM and JADEMM.
The mapping rules we are discussing in the following are defined on the basis of the source and
target metamodel, whereas the execution, i.e. the transformation of them is done on the source
and target models. T he mapping rules consist of (i) a head that defines which concepts from
the source metamodel are mapped to which concepts of the target metamodel and (ii) a body
that defines how the attribute's information of t he target metamodel is derived.

18

G MessageReceiYerDehaYiour G MessageSenderBehaviour'

e cydk ..
havtou< a WakerSe

ha e OneShotBe
havtou<

+ st..bbehavicus

SimpleAchieYeREI
G nitiator

G ParalelBehaYiolM' G SerialDehaY!our

G FSf'o1Beh.wIour G 8eqUentlalBehavtot..

G SimpleAchieveRERes --
G Loadefgehayjour

Fig. 15. Partial view of the behav ior hierarchy of the J ADE metamodel

e Tkker8e
havtou<

7.1 From PIM4Agents to JACKMM

In t his section we bring together the metamodels of t he PIM4Agents (see Section 4) and JACK
(see Section 5). Therefore, several basic mapping rules were defined that are listed in the
remainder of this section. The first rule covers the mapping from the organization a.'3pect (Le.
the concept Organization and its attribu tes) of the PIM4Agents to the team aspect of J ACKMM.
Therefore, we have defined the following mapping rule.

Model Mapping 1:

Head: PIM4Agents.Agent: Organisation ~ JAC J{MM.Team : Team

Body: The Behaviour that is used by t he Organisation is mapped to a set of TeamPlans
t he Team makes use of. T he order in which Plans are executed is only mapped for these
Plans in t he PIM4Agents t hat do not react on an incoming ~'lessage. As the execut ion
order in JACKM~vI is mainly predefined by the order in which Events are sent and
handled by the TeamPlans. Events a Team sends or handles are extracted from t he
organizationa l Protocol. T he Team performs and requires Roles that are specified by the
Organization's provided DomainRoles and required InteractionRoles. The body function
of this mapping rule is discussed by Table 5 in more detail.

T he source and target concepts of Mapping Rule 1 nicely corresponds to each other as both
(i) make use of a process that speci fies how their members are coordinated and (ii) require
and perform Roles, even if we dist inguish between DomainRoles and InteractionRoles in the
PIM4Agents. The only difference between both metamodels is the manner in which interactions
are defined. In general, t he interact ion in the PIM4Agents is defined by a Protocol whereas
JACKMM defines the interaction between ent ities in an event-driven manner without explicit ly
specifying a protocol. The mapping between the interaction aspect a nd t he event-driven manner
provided by JAC KM M is one of the more difficult mappings that is discussed in more detail
in Mapping Rule 4. T he second t ransformation rule deals with the mapping from t he agent
aspects of the PIM4Agents to the team aspect in JACK MM.

PlIVf4Agents.Agent: Organisation - JAC K /v[NI.Team: T eam

Tarye t Source MR
Team.performs DomainRoles that are performed by the Organization 7

Team.requires DomainRoles that are performed by the Organization 's mem bers 6
Team. handles collection of a ll Process' Messages that arc received by t he lnteraction- 4

Roles t he Organization 's DomainRoles are bound to
Team.send~ collect ion of all Process' Me;.<;ages that a rc sent by the Interact ionRoles 4

the Organization 's DomaillRoles arc bound to
Team. uses collect ion of a ll Steps t hat arc (i) contained in t he Organization's Be- 3

haviour a nd of t he type P lan
Team .ca pabi li ty Capabilities that a rc used by t he Organizations 5

Table 5. MapPll1g Rule 1 III deta IL

Mode l Mapping 2:

H ead: P [M 4Agents.Agent : Agent ~ J AC [(M M.Team : Tenm

Body: T he Behaviour that is used by t he Agent is mapped to a set of TeamPlans
t he Team makes us of. T he Protocol 's Messages t he Agent part icipates are mapped to
Events t hat are either handled or sent by the Team. Furthermore, the Team performs
t he Roles t hat a re defined by the InteractionRoles t he Agent's DomainRole is bound to
in t he PIM4Agents model. T he details of the mapping body are discussed by Table 6.

PI M4Agents.Agent. : Agent JA C f{!vf!vI.Team: T eam

Target SouTce MR
Team. performs DomainRoles that are performed by t he Agent 6
Team.requires - -
Team .handles collect ion of all Process' Messages that are received by t he Interaction- 4

Roles the Agent 's DomainRoles arc bound to
Team.sends collect ion of a ll Process' Messages that a re sent by Inte ractionRoles the 4

Agent 's DomainRoles are bound to
Team . uses collect ion or all Steps t hat are (i) conta ined in the Agent 's Behaviour 3

and (ii) or the type Plan
Team.capability Capabilities that are used by the Agent 5

Table 6. Mappmg Rule 2 and Its detalb.

19

At first glance t he concept Agent of JACKMM seems to be t he best match, but since an Agent
in t he PHvI4Agents references Roles, it is recommended to assign PIM4Agents.AgentAgent to a
Team in JACKMM as an Agent in t he JACKMM does not refer to any Roles (see Fig. 17). T he
main difference between Mapping Rule 2 and Mapping Rule 1 is the fact t hat when mapping an
Agent to a Team we instant iate an atomic Team which means t hat t he Team does not require any
Named Role to which tasks could be assigned in t he TeamPlan. \-Vhen mapping an Organization,
the Team requires a set of InteractionRoles that are performed by t he organizational members,
where a member could a lso be of t he type Organization.
T he t hird mapping rule covers t he mapping between t he behavioural aspect of the PIM4Agents
and t he process aspect of JACKMM.

Model Mapping 3:

H ead: PI M4Agents.Behaviour : Plan ~ J ACf{ M M.Team : Team Plan

20

Body: A TeamPlan uses a set of NamedRoles that are extracted from the Interaction
Roles an Organization/ Agent in the PI M4Agents requires. In fact, only a Cooperat ion
(and Organization that inherits from the Cooperation) requires In te ract ionRoles. So
that the set of Interact ionRoles an Agent requires would be empty. However, an atomic
Team should not require any NamedRole. The Conditions are mapped to t he trig
gering conditions in a TeamPlan. Addit ionally, the specializat ions of a Scope in t he
PIM4Agents are nearly mapped in a one-t(}-one fashion to the corresponding concepts
of the JAC KM M Process. The details of t he body are specified in Table 10.

PI'V/4Agents .Behaviaur: Behaviour - JAC KA1N[.Team: TearnPlan

Target Source MR
TeamPlan.uses InteractionRoles that are required by the Organization/Agent 6
TeamPlan.sent Messages that a re sent within a Protocol, i.e. Messages that are referred 4

by the P lan 's SendMessage
TeamPlan.handles Messages that are handled within a Protocol, i.e. Messages that are 4

referred by the Plan 's ReceiveMessage
Table 7. Mappmg Rule 3 and Its details .

Process m appings

Source Target I Explanations

Process Plan the first Step (start) inside a Behavior is not explicitly
represented in the PIM4Agents. Instead , we a re ma pping
the Step that has no ingoing Flow. The subprocesses and
flows are represented by the Pla n's flows and steps.

Flow Flow by connecting the NodeBases using Flows we can easily
represent a Sequence in the PIM4Agents

Parallel Node Parallel depending on the execution type (XOR, AND), we set
the condition of the ParalledNode to ANY or ALL

SendNode SendMessage the Event that is sent in the Send Node is used to instan-
tiate the corresponding Message in the P Ii\!l4Agents

CodeNode InternalTask statements inside an InternaITa.<;k are transformed to Co-
deNode

DecisionNode Decision the Condition in the PIM4Agents is mapped to t he con-
dition in JACKMM

Table 8. Mappmg between the PIM4Agents and JACKMM process parts .

A Behaviou r in the PIM4Agents consists of several Steps that are linked via a F low. A P lan
which is one frasible specializat ion of a Step- unions Scopes that define more complex control
structures and atomic Tasks like sending a Messages. As a specialization of Step, all three
concepts (Le. Plan, Scope and Task) refer to a set of incoming and outgoing Flows. How to
map the particular concepts of PIM4Agents is illustrated in Table 8. In principle, a mapping
ru le has to be defined for each of them. \Ve have chosen a simpli fied form of presentat ion since
those ru les are nearly mapped in an one-to-one manner.
The fourth mapping ru le defines how to map t he interaction aspect of the PIM4Agents that
describes how to specify the interaction in a protocol-driven manner to an event-d riven manner
as it is supported by JACKMM.

Model Mapping 4 :

H ead: PIM4Agents.lnteraction : M essage ~ JAC J(MM.Tearn : Event

Body: Each Message t hat is eit her part of a Protocol or is referred by an atomic Task
(i.e. SendMessage or ReceiveJ\'lessage) in a Plan is mapped to an Event in JAC KIvHvL
This is done independent of its type, i.e. whether the Message is sent / received in an
asynchronous or synchronous manner.

21

As mentioned in Section 4.4, JACK distinguishes between several different types of Events.
In the case of Mapping Rule 4 we mainly concentrate on MessageEvents. GoalEvents are not
covered as the PIM4Agents core does not yet present any goal-oriented concepts.

Model Mapping 5:

Head: PI M 4Agents .lntemclion : Capability ~ J AC I< M M.Team : Capability

Body: The Behavior that is lIsed by the Capability in the PlM4Agents is mapped to
the handled Capability's Plans in JACKMM. The Messages that are sent and received
within t he particular Behavior are mapped to Events that are sent a nd handled by t he
Capabili ty in JACK MM.

PlfI;f4Agents.lnteraction: Capability _ JACKfI;flll.Team: Capabili ty

Targ et Source MR

Capability. handles Messages that are handled within the Plans that are grouped by the 4
Capa bility in t he PIM4Agents

Capability.sends Messages that are sent within the Plans that are grouped by the Ca- 4
pability in the PIM4Agents

Capabili ty. posts -

Capability. uses Behaviour that is referred by the Capabili ty in the PIM4Agents 3
Table 9. Mappmg Rule 5 and Its details.

T he concept Capabili ty is used by the Agent and Role in the PIM4Agents to group a part icular
type of Behaviour. The manner in which the Capability is used in JAC K nicely corresponds
to t his. However, only the concepts Agent and Team refer to Capabilities, Roles do not have
a pointer to Capabilit ies in JACKMJlvI. To compensate this, we additionally have to introduce
Capabilit ies for those Agents and Teams that perform the particular Role in the PIM4Agents.

Mode l Mapping 6:

Head: PI!vI4Agents .Agent : InteractionRole ~ JACI<MM.Team: Role

Body: The concept Interact ionRole of the PIM4Agents is transformed to JACK-related
Roles a Team requires or performs.

Model Mapping 7:

Head: PIM4Agents.Agent : I n teractionRole ~ JAC J(MM.Team: NamedRole

Body: For each Interact ionRole that is specified within a Protocol a Role in JACKMM
is instantiated. T he NamedRole refers to t he particular Role that is int roduced by
Mapping Rule 6.

22

PI 1H4Agents.Agent: I nteractionRole - J AC 1< A'I AII.Team : Role

Target Sou7'ce MR
Role. handles Messages that are handled by the InterationRoles the corresponding 4

DomainRole is bound to
R.ole.posts Messages that are sent by the InterationRoles the corresponding Do- 4

main Role is bound to
Table 10. MapPlIlg Rule 6 and Its details .

The PIM4Agents distinguishes between two different role types. The DomainRole focu~es more
on t he Role a n Agent/Organizat ion is able to play within a certain domain. The TnteractionRole
focuses more on t he Role an Agent/Organization is able to play within a Cooperation. Conse
quently, a DomainRole could play more than one InteractionRoles and an InteractionRole cou ld
be played by several Agents/Organizat ions at the same t ime. The Doma inRoles that are bound
to the pa rt icular InteractionRoles are used as role fillers , i.e. they perform the Role to which
InteractionRole t hey a re bound. In JACK, the Roles required by a Team are rather represented
by role container objects, which include the Role objects as fill ers .

Model Mapping 8:

Head: PIM4Agents.Agent: Resow·ce ~ JAC I<MM.Team: NamedData

Body: Resources an Agent has access to in the pg'14Agents are mapped to NamedData
an Agent or Team uses. The NamedData concepts refers to so-called external classes
that are specified in e.g. Java.

7.2 Generated JACKMM models

In the previous section , we illustrated the bas ic ma pping rules used to transform PJM4Agents
models to JACK models. For t he purpose of demonstration , we relate t his model mapping to
the PIM4Agents models that were discussed in Section 4 and explain how t he generated JACK
models look like.
Fig. 16 depicts t he output model when applying the part icular mapping rules on the PHvl4Agents
model illustrated by Fig. 3. In particular , applying Mapping Rule 3 generates a TeamPlan Han
dleCF P that is referred by the Capability AuthorCapabi li ty that is inst antiated by applying
l'vlapping Rule 5. Furthermore, Mapping Rule 2 generates three Team instances (AuthorAgentl,
AuthorAgent2 and AuthorAgent3) that perform the same Role and make use of the same Ca
pability Aut horCapability. Finally, Mapping Rule 6 generates the Role instance Author.

+perfO"ms

AuttpAgentl .
run

Autl"or : Autror Agent2 :
Rde + perfO"ms TeaT!

+perfO"ms

+ capability

+eapablity HardeCFP:
TearTiiian

+capabity

Fig. 16. T he generated JAC K model that bases on the agent model illustrated in Fig. 3.

Fig. 17 depicts the output model when applying the part icular mapping rules on the PIM4Agents
model illustrated by Fig. 5. In particular , applying Mapping Rule 1 genera tes an instance of an

23

Organization called PC. The body of this mapping refers to a set of Capabilities that are gener
ated by applying Mapping Rule 5. Furt hermore, the PC Team requires a set of NamedRoles (i.e.
PC Member and PCChair) t hat a re generated by applying Mapping Rule 7. These NamedRoles
refer to the Roles PC Member and PCChair (Mapping Rule 6). Using Mapping Rule 2, we gen
erate the Teams PCIV[emherAgent2, PCMemberAgentl and PCChair that base on the agent
types in the PIM4Agents CMS model. The Teams PC Member Agent 1 and PCMemberAgent1
perform t he Role PCMember, whereas the PCChair performs t he PCChair Role. T he Team
PCChair has a Capabili ty PCChairCapability, the PCMemberAgentl and PCMemberAgent2
have a Capability PCMemberCapability. Both Capabili ties are instantiated by Mapping Rule 5.
T he PCMemberCapabi li ty uses a Behaviour Review, the PCChairCapability uses a Bahaviour
ReceiveSubmission (Mapping Rule 3).

PC : Role

+requires

+ performs
PC : Team

PCMember :
NamedRole

+type

PCMerrner :

+perforrns

PCMemberAgent2 ;
Team

Role
+performs

PCMerrtJerAgentl :
Team

+requires

PCChar:
NamedRole

type
PCChair :

RoO!

+pe,forms

PCCha. :
Team

Fig. 17. The generated JACK model that bases on the organization model illustrated in Fig. 5.

Fig. 18 depicts the output model when applying t he particular mapping rules on t he PIM4Agents
model illustrated in Fig. 9. In part icular Mapping Rule 3 is mainly responsible for the newly in
stant iated NodeBases in Fig. 18. T he first Step that is neither a Send Message (i.e. t he TeamPlan
handles th is Event) nor a Sequence (i.e. t his Step is implicitly illustrated by t he Flow concept in
JACKMM) is presented as start att ribute (i.e. DecisionNode WritePaper), the others are sub
processes. This DecisionNode is linked to the CodeN odes Relax and Write Paper via the Flow
Flowlnstance. Like the Steps, t he Flows are also included BodyReasoningMethod. Exemplarily,
this is shown by the 'flows' associaitions between the HandleCFPPlanBodyReasoning and the
Flowlnstance.

7.3 From PIM4Agents to JADEMM

T his section introduce t he mapping from the PIM4Agents concepts (Section 4) to t he JADEMM
concepts presented in Section 6 through various mapping rules. The list presented does not com
prehend all the necessary model mapping, but only the most relevant for a clear understanding
of how they are applied for the presented model mappings.

Model Mapping 9:

Head: PIM4Agents.Agent : Agent ~ JADEMM: Agent

Body: Every Agent in the PIM4Agents is mapped to a JADEMM:Agent. The details
of this mapping rule are summarized by Table 11.

T he PIM4Agents.Agent: Agent ~ JADEMM: Agent Mapping is fairly straight forward ,
given that the concepts correspond to one another in the use of behaviours, to carry actions;

24

+stat

FIowlnstance :
Fkiw

+Sl.bp"ocesses +sut::processes +S\.bprocesses

ReIa)(:
cOOiNOde

+SCU'ce

FIowlnstance2 :
Fkiw

WiZ'
+souce

FDwlnstance3 : -
Fig. 18. T he generated J ACK model t hat ba.o;;cs on t he behaviour model illustrated in F ig . 9.

P I Nl 4Agents.Agent : Agent ~ J A DEMM , Agent

Ta1yct Source MR
Agent. implements collection of DomainRoles that are perfo rmed by the Agent 12
Agent.behav iours collection of Behav iours t hat determine what t he Agent can do, ob- 14, 13

tained from t he Behav iors the Agent has and t he Capabili t ies the Agent
use

Agent.organizat ion collect ion of Organizations t hat t he Agent is a member of 10
Table 11. rvlode l Mappmg 9 m detail.

Roles, to represent responsibili t ies or compromises; and Organizations, to collaborate with other
Agents.

Mode l M a pping 10:

H ead : PI M4Agents.Agcn t : O"ganisation/Coopcmtion ~ J ADEM M : O,.ganisat·ion

Body: JADEMM. Organisation, an extension to t he J ADE API, allows to transform
PIJv!4Agents. Agent:Organisation/Cooperation in t he st raight forward fashion that is pre
sented in Table 12.

P / M4Agents .Agent : Organisation/Cooperation -;. J ADEM A1 : OTganisation

Target Source MR
Organisat ion/Cooperation .. collection of Agents or Organizations that form this Organiza- 9
members t ion , obtained from t he members of t his part icular Cooperat ion
Organisat ion/Cooperation .. collection of DomainRoles t hat t he organization needs for its 12
requires operation , obtained from all DomainRoles that arc bound to

the particula r InteraclionRole
Table 12. Model MaPPll1g 10 In detail.

T he concepts of a n Organizat ion or Cooperat ion in t he P IM4Agents are mapped d irect ly to
,JADEMM :Organisation, since t he concept in J ADE!vlM is a custom made extension to the
,JADE API, t herefore its properties are mainly mapped in a one-to-one fash ion. Alt hough t he
t ransfonnat ion itself is not complicated , ensuring that t he ' implementat ion/ runtime version' of

25

the Organisation performs the expected tasks requires some care at the technical programming
level. Currently, it is a quite simple implementation and will evolve as more scenarios impose
additional technical requirements on it.

Model Mapping 11:

Head: prM4Agents./nteraetion: PTatoeol ~ JADEMM: FSMBehavimu's

Body: The prM4Agents.lntemction:Protocol is decomposed into n JA DEMM. FSMBehaviour
types- one for each InteractionRole in the Protocol- whose execution order is deter
mined by the PIM4Agents.lnteraction:MessageFlow for corresponding Role. The details
for this mapping are shown in Table 15.

P l l\14Agent.s.lnteraction : PTotocol _ J ADEM M : FSlv! Behaviours

Ta1yet Source MR
FSMBehaviour.name the name of the FSMBehaviours is defilled by the concatenation of the

Protocol 's name, the InteractionRole's name a nd t he string 'Behaviour '
FSM Behaviour.children the chi ldren behaviours a re set by grouping the Protocol's Behaviours 12

according to Messages that are sent and reacted to with respect to the
Role's MessageFlow.

FSM Behaviour. transitions the transitions from one child to the next are set by linking the forkOI}-
era tor and joinOperator of a Mes.<;ageFlow for the corresponding Role.

Table 13. Model rvlappmg 11 III detai l.

As presented, rvlodel Mapping 11 is a much more complex mapping than the ones presented
so far. It basically does a collapse of the 'MessageFlow graph' and links t he Scopes that corre
spond to each MessageFlow in the PIM4Agents into a set of FS!vIBehaviours in the J ade!vIM ,
whose transitions depends on the graph's links. Which Scopes should go into the each of t he
FSMBehaviours depends on the InteractionRole in t he PIM4Agents to which they belong.

Model Mapping 12:

Head: prM4Agents .Agent: DomainRole ~ JADEMM: Role

Body: Every Role performed by an Agent is represented by an extension to the Jade
API which contains t he Role associated information, in particular the r.,llessages that
the Role sends and receives. A short explanat ion on the extraction of these message list
is shown in Table 14.

The Role transformation (Model r.,'lapping 12) also performs a collapse of the ' MessageFlow
graph" but in this case, it groups the incoming and outgoing Mes."ages found in the graph with
respect to t he InteractionRole. Additionally, the InteractionRoles are unified with the Domain
Roles through the DomainRole.binding property, therefore t here is only one Role concept in
JADEMM which models the Interaction and DomainRole concepts.

Model Mapping 13:

Head: P r M 4Agents.Behaviow· : Behaviour ~ J ADEM M : Sequential Behaviow'

Body: JADEMM.Behaviour is an abstract class, so the target for the transformation
of the Behaviour is actually the SequentiaIBehaviour in JADEMM.

26

P I }';f4Agents.Agent: DomainRole --+ JADEA;f/l;J: Role

Ta1'get Source MR

Role.sends in order to obtain t he messages to be sent by t he JADEMM: Role, we -
navigate t he rVlessageFlows of t he Protocol of t he associated I nter-
act ion Role (PIM4Agents .Agent :DomainRole.binding). MessageFlows
t hat possess a forkO perator value other t han null , define a message
to be sent by t.he Role.

R.ole. receives in a simila r fashion , in order to obtain t he messages to be received by t. he
Role in J ADEMM , we nav igate t he MessageFlows of the P rotocol of t he
associated InteractionRole (Pl?v[4Agents.Agcnt:DomainRole.bind ing).
MessageFlows that possess a join Operator value other than nu ll , define
a message to be sent by the Role.

Table 14. Model Mappmg 12 In detai l.

P I A14Agents. BehaviouT : Behaviour _ JADEA1M: Sequential B ehaviour·

Target Source IMR

Sequent iaIBehav iour. - t he children behav iours a re obtained from t he P lans in t he 15

child ren P IM4Agents, and t he order of t he children is determined by
t he Cont rolFlow defined in the part icular P la n

T a b le 15. Model MapplI1g 13 111 detaIl.

J\IIodel Mapping 13 represents t he general rule for mapping behaviours. In practice t here are sev
eral mapping rules for each particular specializat ion of Behaviour presented in t he PI M4 Agents.

Mode l M a pping 14:

H ead : P I M4Agents .Agent : Capability ~ JADEMM : Behavim,,·

Body: For every PI M4 Agents. Behaviour: Behaviour contained in t he P [M 4 Agents. Agent
:CapabiUty referenced , a JADEMM.Behaviou1" will be added to t he available behaviours
of t he Agent.

Mode l M a pping 15:

H ead: P I M4Ag ents.Behaviour : Scope ~ JAD EMM : CompositeBehaviou·"

Body: PfM4Agents.Behaviour:Scope is not t ransformed di rectly, for it is an abst ract
concept, nevertheless its subclasses are mapped to different CompositeBehaviours in the
J ADEMM in a somewhat straightforward manner. T he general details of t his mapping
are shown in Table 16.

In similar fashion to Mapping Rule 13, Mapping Rule 16 represents a series of specific rules for
t ransforming particular specialized types of Scopes. For example a Sequence in the rI M4Agents
is t ransformed in SequentialBehaviour or Parallel Behaviour in JADEMM.

Model M a pping 16:

H ead: P I M4Agents.Behaviour : Task ~ J ADEM M : OneShotBehaviour

Body: T he subclasses of t he Task concept are mapped into OneShotBehaviours in
J ADEMM wit h different J ava calls in t heir body corresponding to t he task required. In
the concrete cases of t he tasks ReceiveMessage a nd Sendtvlessage, they will be mapped
to a MessageReceiverBehaviour and a MessageSenderBehaviour correspondingly.

P [k/4Agen l s .BehaviOltT : S cope -- J ADEA4!v1 : Composi le B ehavio'UT

Target Sour"ce IMR

Compos ite Behaviour ,- if a Scope in the behavioural ru;pect of the PIM4Agents has 15, 16
chi ldren sub-scopes, the children behaviours are genera ted according to

t hese sub-scopes. The order of the children is determined by
t he outgoing and ingoing Flow of t his Scope. If there are no
sub-scopes are available , the children behaviours are generated
based on the Scope's Steps

Table 16. r.,.'[odei Mappmg 13 In detail.

Model Mapping 17:

Head: P I M4Agents .Agent: M essage ~ JADEMM: AC LMessage

Body: PIM4Agents.Agent:Message is transformed to a ACLMessage in JADEMM with
an INFORM performative as default. Depending on specific message types, other per
{'ormatives may be used.

Model Mapping 18:

Head: PI M4Agents.Agent: Resou1'ce ~ JadeMM: Concep/Schema

Body: PIM4Agents.Agent:Resources are transformed into ConceptSchema with t he
corresponding slots depending on t he resource.

7.4 Generated JADEMM models

[
AAMAs Author

: Role

+ implements + implements

Author Agent!
: Agent

+ implements

Author Agent
3: Agent

+behaviours +behaviours +behaviours

HandleCFP : Sequential Behaviour

Fig. 19. The Agent View of the Example in JADE tvlM

27

Fig. 19 presents the result of transforming Fig. 3. \Ve can see how tdodel Mapping 9 W'1.0;

applied to the PHvI4Agents.Agent :Agents to obtain a .JADEJ\H,,II:Agents. \Ve see t he Capabili t ies

28

PCMemberAgentl
: Agent

+ members

AAMAS PC : Role

+implements

PC : Organisation

+ members

PCMemberAgent2
: Agent

+ members

+behaviours.-behaviours + implements + implements

Review:
SequentialBehaviour

AAMAS PCMember
: Role

PCCha;r :
Agent

+behaviours

Fig. 20. The Orgall izat ion View of the Example in JA DEMM

disappear) but their behaviours are added to the corresponding Agents (rvfodeJ rvlapping 14).
Addi t iona lly, we can see how Model Mapping 12 was applied to the AAMAS_Author Role.
The t ransformed organization view from the example is presented in Fig. 20. Again, we see
the DomainRoles- AAMASPCMember, AAMASPCChair, and AAMASPC- trans formed in
JADEMM:Roles t hrough Model Mapping 12. Model Mapping 10 is t hen applied to PC to obtain
a JADEMM:Organisation. Once again the behaviours linked to the Capabili ty in P IM4Agents
are linked directly to the corresponding Agents through fvlodel Mapping 14. Additionally, Re
view and ReceiveSubmission are converted to JADEfvl i\ll: Sequent ial Behaviours by Model Map
ping 13.

CaforPmrs
• Q:gsO WiOn

+ requires

.. MAS PC
: ROle

+i'npIements + receives

PC : Organisaticrl + serw::ls

+behaviOus

caiForPaoersAuthorBehaviou
: FSMBeha\lbur

+ requres

AAMAS Author
: Role

+ sen:ls + receives

CalFcrPapersPCCharBehaViCU :
FSMBeha\lO..r

+ inpIements

+ rrplements

+~ts

+behavk:us

+behavJ:::llo1"s

+behavk:us

Fig. 21. The Interaction View of t he Example in JAD EMM

AuthorAgentl : Agent

AuthorAgent2 : Agent

AuthorA~t3 : Agent

The interaction for the 'Call For Papers' process in JADEMM is depicted in Fig. 21. Once more,
Agents are transformed by Model Mapping 9, DomainRoles by Model Mapping 12, and t he Or
ganisation by Model Mapping 10. The most relevant transformation in this view is the one of
the Protocol CaliFo rPapers. By t he a pplicat ion of Model Mapping 11 , t he InteractionRoles are
collapsed to t heir corresponding DomainRoles and the MessageFlow structure determines t he

29

contents of the output behaviours: CallForPapers /nitiatorBehaV'tOlLr a nd CallFo rPapersRespon
derBehaviour. T hese behaviours aTe liked to t he corresponding role filler Agents/Organisations.

HandleCFP:
SeguentialBehaviour

+children

HandieCFPPian :
SeguentialBehaviour

+children

+children
+children

ReceivePaper :
MessageReceiverBehaviour

EnCll.lCilTimeXORDecision
: FSMBehaviour

+ receives

CallFOfPaper : AClMessage +children
+children

Rela, :
OneSFiOtBei1aviour

WritePaperSeguence :
Seguentia!Behaviour

+children

WritePaper :
OneShotBehaviour

+chi!dren

+ sends
SubmitPaper : ACLMessage

Fig. 22. The HandleCFP Behaviour ill JadeMM

T he HandleCFP Behaviour is presented in is .JADE~ll ~ll form by Fig. 22. By t he application
of Model Mappings 13, 15, 16, the PI M4Agents model presented in Fig. 9 is t ransformed to
a JAD EMM model. HandleCFP, HandleCFPPlan, HandleCF PSequence and WritePaperSe
quenee are converted to Sequential Behaviours (Model fvlappings 13 and 15). T he XORDecision
is converted to a FSMBehaviour also by tvlodel Mapping 15. Finally, a ll Tasks- ReceiveCFP,
Relax, W,itePaper and SubmitPapcl'- are converted by Model ~'I apping 16.

8 Platform-Independent Model for Service-Oriented Architectures

Our proposed MDD a pproach allows to model agent systems using an abstract language t hat
is defined by the PlM4Agents metamodel that can finally be executed by JACK or .J ADE
using the model mappings we have defined in Section 7. T his is one important step toward
a domain specific language for agent systems. However , to integrate more application-oriented
models into our approach is one fur t her issue to make agent system more attract ive for industry
to adapt. With respect to this issue, we explored t he possibility of integrat ing service-oriented
architectures (SOA) into our r.,'IDD framework. Peer-to-Peer systems or grid systems are fur t her
attractive possibilities how to model modern information systems. In this paper, we base our
approach on a metamodel for SOA [3 71 (called PIM4S0A) which has been developed by IBM ,
the European Software Institute (ESI) and SINTEF. The PIM4S0A covers four important
aspects: service, process, information and quali ty of service.

30

Information: In t he context of virtual enterprises information represents one of t he most
important elements t hat need to be described. In fact t he other aspects ma nage or are
based on information elements.

Se rvice: Services are an abstract ion and an encapsulat ion of t he functionali ty provided by an
autonomous entity. fn general, SOAs are form ed by components provided by a system or a
set of systems to achieve a shared goal.

Process: Processes describe a set of interact ions among services in terms of messages exchange.
QoS: A sui table feature is t he description and the modelling of nOll -funct iona l aspects related

with t he services described.

8.1 Se rvice M etamodel

G ServicePrOYider o .1

0 .. 1 + behaviOLJ'

«auh ::iHln;J»
:: RoeType

o ReqJeSter
o Provriel
o other

. G BehlWiour

+ constr <lin ts·

+ colaroation
':1.. 1

G CoIabotation

+ roles
• + roles 1

G RoIe

0 .. 1

+ role
1+ I::o..n::IRoie

• + par ticipates

e CoIIaboratlonUse

+ sLbcolaro ations 1

+ """""
G RoIe8indinQ

Fig. 23. T he service metallloclel of the PIM4S0A .

This :-;ection describes the elements in t he service-oriented metarnodel t hat has t he objective of
describing service archi tectures. T hese archi tectures repre;ent t he fun ction ali ties provided by a
system or a set of systems to achieve a shared goal. These fun ctionali t ies could be represented
as a service or as a set of services. In t his work we emphasize the concept of collaborations to
address t he different levels of service description. In t his section we sketch out t he main compo
nents of t he service oriented metamodel. T he service aspect of t he PI M4S0A presents services
rnodelled as collaborat ions that specify a pattern of interact ion between t he participating roles.
A subset of t he metamodel fo r t his aspect is presented in Fig. 23.
A Collaboration represents a pattern of interaction between participating Roles. A binary Collab
oration specifies a service. A Collaboration definition contains a set of Roles (provider, requester)
and a set of Collaboration Uses. Eventually it could be related wi t h non-functional aspects. A
Collaboration is related with a registry where endpoints are specified.
A Collaboration Use represents the usage of Collaboration. In other words, a Collaboration Use is
the model element to represent a usage of a service. The Collaboration Use contains a reference
to t he endpoint pointing out the address. The concept RoleBinding relates a role with a usage of
a service. \Vhen we specify a Collaboration Use we need to ident ify which are the Roles involved
T his relationship is made between two Roles: one inside t he Collaboration Use and other inside
a Collaboration definition.
A Behaviour is an a bstract class for the specification of messages sequence wit hin a service.
T his element represents a super class connecting a service aspect with process a:;pect. A Servi
ceProvider speci~y an entity describing and specifying in its t urn services, roles and constraints.
ServiceProvider represents a service specification containing the specification of other services.
Non fun ctional aspects could also be added to specify quality aspects. A Message defines <.1,

31

chunk of information sent from one Role to other Role in a Collaboration. A Message is owned
by a specific Role.

8.2 Process Metamode l

(l Process

0, 1 I '+ ~ .

- GRow . M

G III!fN'low

.. steps
G s<.,

" + ,+
.. r'pJt • • .. rutPJt 1 ,

e Interaction
+ ~ce+!lrt l .

. . "'"
...

0,, \ .. type

G ltemType

+ JX'CcrdtO'l O" I

0,, 1
G _

.. parometa 0" .(CDI'lt .ll'lS

0 .. 1 a ltern

0 .. 1

.,~

Fig. 24. T he process flow of the PIM4S0A .

.. Steps
e~ .. G st~

~

G StructuredTasic

0 .. 1 .. soedfiutic:n

G TlmerSpedfk:atlon

Fig. 25. T he process elements of the PIM4S0A.

T he process elements of the PHv[4S0A metamodel are shown in Fig. 25. The process aspect
is closely linked to t he Service aspect, t he prima ry link being the abstract class Scope above,
which can be instantiated as a Process belonging to a ServiceProvider from t hat aspect.
The Process contains a set of Steps (generally Tasks), represent ing actions carried out by t he
Process. A Process consists of StructuredTasks (sub-processes) , Steps (atomic tasks and actions,
at t he PIM level), and Interactions/ Flows linking the Tasks together. These essent ially fall into
two categories , interactions with other ServiceProviders, or specialized actions requiring im
plementation beyond t he scope of t his model. For example, manual tasks to be processed by
humans, or extensive computat ion requiring platform specific code.
The Process also contains a set of Flows between these actions, wh ich may be specialized (Item
Flow) to indicate the transfer of specific data . This allows flexibili ty in t hat a business modeler
may choose to start by showing only cont rol flow, and later refine the model to include infor
mation. T his links in to the Item/ ltemType parts of the information aspect. Flows may diverge
or reconverge using Guard a nd Join specifications.
T he concept of a Scope is an abstract container for individual behavioural steps. This is sub
classed only by Process and StructuredTask (Process is the top level behavioural object , Struc
turedTask may be used to group related Steps in a subrout ine like manner.) A Step is a single

32

node in a. Process, such as making a deci:;ion or calling an external service. The specializat ion
of Step is Task. A Process implements a behaviour for a ServiceProvider, as a set of Tasks and
Decisions (Steps) linked by cont rol Hows (Flows), optionally including detail on the exchanged
messages / items.
A Task represents the low level building blocks of a process- t hese might be fo r example ca lls to
another service (which can be t ransformed largely automatically to an implementation platform,
wit h reference to the relevant Collaborations) or might require manual intervent ion- eit her in t he
form of ha nd coded functions, or huma n interaction wit h the process. An Interaction defines an
in terface for input or output flows on a Step. An Interaction can be considered as a ~et of Pins,
though it is not compulsory to refine t he model to this level (depending on aims of t he model).
If the Step is viewed as a service, t his is similar to the declaration of a Inethod/ function ill the
interface (specifying a set of parameters or a return value) .

Service aspect

Concept Attributes Explanation

Subcollaborations represent t he usage of other Collaborat ions
Constraints constrain a Collaborat ion by the spec ification of a Pro--

cess
Roles involved within t he Collaboration

Collaborat ion Nfa this clement sets up a link to quality of service model
defini t ion

Endpoint is spec ified at design t ime
Registry Item specify t he regist ry item associated with t he Collabora-

t ion
Provides specify t he provided item
]Vlessages specify the Messages re lated with t his Role

Collabora tion Use RoleType specifies the type of the Role. Basica lly a Role can be a
requester or a provider. If it is not none of t hem we can
specify it as 'other' and in t he property Other we specify
t he name

Other used for the specia l case where the role is neither a re-
quester nor a provider

RoleBinding Role represents a link to speci fic role within t he collaboration
definition of the current co llaborat ion use

BoundRole represents a link to specific role wit hin the current col-
laboration

Behaviour represents t he process
Participates conta ins a set of the collaboration uses

Service Provider Roles d efines the roles involved at this level
Nfa establishes the link to the quality of service model
QosCategory defines t he category in terms of quality of service
Type refers to the type of provider : Abst ract or Executable
Contains defines a set of items related with the rvlessage

ivlessage Type defines t he type of the items related with the Message
~llode differentiates Messages be tween regular (normal) or fault.

(exceptions)
Table 17. The selVlce aspects of the P liv14S0A.

9 Horizontal Transformations - From PIM4S0A to PIM4Agents

\Ve already showed how to map the PHvl4Agents metamodel to the JACK and JAD E metamod
els. \,Ve called t hese vertical t ransforma tions as t he part icula r metamodels are sit uated on differ
ent abstract ion levels. In this section , we discuss horizontal mappings between the PIM4S0A to
the PIM4Agents- that are both considered as platform-indepedent- to allow that SOA can be

33

deployed by agent systems. SOA ancl its corresponding metamodel (the rHv14S0A) cic:-;c l'ibes
IT system in a very abstract manner and t hus provide a nice opportuni ty to ill ustrate how
agent !':iystcms can be llsed in t hese kinds of environments in a model-driven development . By
compari ng t he rIrvl4S0 A and PHvl4Agents meta models, we de rive the following basic mapping
rules:

Mode l Mapping 19:

H ead: PI Al4S0A.Service: Collaboration ~ PIM4Agents. Agent: O"ganisation

Body: For each Collaboration '5 Behaviour we generate an organisational Behaviour.
Addi t ionally, each ServiceP rovider that part icipates in olle of the Collaboration Uses de
fines t he organisationa l members. T he Collaboration '8 Roles build t he Interact ionRoles.
T he Organisation requires a set of P rotocols t hat are derived by extracting t he message
exchange in t he Collaboration's or ServiceProviders's Behaviour.

PI M4S0A.Sel"v'ice : Collaboration - P I A14Agents.Agent : Organisation

TaTget Source MR
Organisation. requires Roles that are referred by the Collabora tion 24
Organisatioll.perfoms -
Organisation. behaviour Behaviour that. constrain ts the Collaborat ion in the PIM4S0A 2 1
Organisation .members ServiceProviders that participates in a Collaboration Use that refers to 20

this Collaboration
Ta b le 18. The body of Mappmg Rule 19 III details.

As Map ping Rule 19 nicely illustrates t he concept of a Colla boration in t he PI M4S0A corre
sponds to the concept of an Organization in t he PIM4Agents as both refer to roles, processes
that defi ne t heir Behaviour and ent ities (i.e. ServiceProvider or Agents) t hat in teract wit hin
those. However, t he Collaboration does not perform any Role, so we do not instantiated any
Dornain Role t hat is performed by t he Organization. However , t he concept Organization seems
to be t he best match. Alternatively, we could use t he concept of a Collaboration as it does
not perform any Domain Role. However , Collaborat ions in t he PIM4Agents do not refer to any
Behaviour which might be necessary to map the Collaboration 's Behaviour.

M o d e l M a pping 20:

H ead: PI M4S0A .Se.,.vice : Se.,.vicePwvide.,. ~ P I M4Agents.Agent : Agent

Body: For each of t he ServiceP rovider's Roles we generate an Agent's perJ01med Do
main Role. T he Behaviour is derived by extracting t he ServiceProvider's Behaviour. T he
Agent's memberships are derived by extracting all Cooperat ions t he particular Service
Provider part icipates in.

Again, t he concepts of t he ServiceP rovider can nicely be mapped to the corresponding concept
of Agent in t he PIl\'14Agents as the ServiceProvider performs a set of Roles, acts in accord a.nce
to some Behavio lil's and interacts wit h other ServiceP roviders wit hin a Collaborat ion.

Mode l Mapping 21:

H ead: PI M4S0A: P1"Ocess ~ PIM4Agents : B ehaviour

34

P /1\[4S0A.Service : SeTvicePl'ovider -----lo PI M4Agents .Agent : Agent

Target Source MR

Agent .perfoms collection of Roles a Service Provider performs 23
Agent. behaviour collect ion of the Behaviour that constraints the ServiceProvider 21
Agent.membership collection of the Collaboration Uses in which the ServiceProvicicr par - 19

ticipates and the Collaborat ions they refer
Aget lt .has -

Table 19. T he body of MapPlIlg Rule 20 111 deta lb.

Body: T he Process of t he PIM4S0A is split into several Behaviours of t he PIM4Agents.
For each Task in the PIM4S0A t hat refers to a Message in an outgoing Inte raction a
new Behaviour is instant iated in t he pglI4Agents. All Tasks that are connected via. t he
outgoi ng Flow- directly of indirectly (i.e. via a Task t hat does not send a J\'lessage) are
transformed to Plans in the PIM4Agents .

PIM4S0A: PTocess ----. P J M4Agents : Behaviour

Tmyet SOU1-ce Mil

Behaviour .steps Steps that are contained in the PIM4S0A.Process
Behaviour.flows Flows that are contained in the PIM4S0A .Process -

Table 20. T he body of MapplI1g Rule 21 111 deta ils.

The mappings between both process aspects is mainly st raight forward as the P IM4Agents
behaviour metamodels is more expressive.

Model Mapping 22:

H ead: PIM4 S0A.Se1'vice : M essage ~ PIM4Agents : Intemction: NIessage

Body: The rvlessages speci fied inside the Collaboration Uses a nd sent by t he correspond
ing ServiceP rovider 's Roles are ma pped to the Messages defining t he Protocol.

Mapping Rule 22 is a straightforward ma pping as t he Message concepts of the PIiVl4Agents is
kept in its core rather simple without referring to communicative acts (e.g. accept-proposal,
refu se, etc.) or message parameters (e.g. content, language, etc.). T hese specializations could
either be verbalized in fur ther extensions that cover the compliance with FIPA or wit hin the
vertical mappings for those agent-oriented platforms t hat deals with FIPA-com pliant concepts
(for instance .IADE).

Model Mapping 23:

H ead: PIM4 S0A.Se1'vice : Role ~ PIM4Agents .Agent: DomainRole

Body: Roles that are performed by Service Providers are mapped to DomainRoles. In
each Collaborat ion the Service Provider participates, its Roles are bound to Collabcr
rat ion's Roles. In Mapping Rule 24 these Collboration's Roles are mapped to Interac
t ionRoles. T he DomainRoles that are created by this Mapping Rule arc bound to t he
partictl lar Interact ion Roles.

Model Mapping 24:

H ead: P I M4S0A.Se'rvice : Role ~ PI M4Agents .Agent : Intemct-ionRole

Body: Roles to which ServiceProviders are bound to within a Colla borat ion are mapped
to InteractionRoles.

35

A Collaboration refers to a set of Colla boration Uses where each of them again refers to a
Collaborat ion. In fact, t he Collaborat ion Use links both Colla borat ions by binding t he parent
Collaborat ion's Role to the children Collaboration's Roles. Due to t his recursion in modelling
Collaborations, we do not t ranslate each Role in a Collaborat ion to an I nteract ion Role in the
PIM4Agents. In fact, for Roles that are bound to each ot her we introduce one Interact ionRole.

Model Mapping 25:

H ead: P [J1[4S0A.SeTvice : Collaboration ~ PIM4Agenis .Interaction : P'rotocol

Body: A Protocol describes t he message sequencing t hat is buil t by combining messages
that are sent in t he collaboration's collaborat ion uses. lvIore precisely, the collaboration 's
Role types~requeste r and provider- are mapped to t he Protocol's In te raction Roles,
t he Messages defined in t he Collaborat ion Uses are t ransformed to Protocol's Messages.
Table 21 prov ides more details with respect t.o t\'iapping Rule 25.

PI M4S0A.SeTvice : Collaboration - PI AI14Agents : Interact'ton : Protocol

Taryet Source MH

P rotocol.messageflows Messages and how these are sent between t he Roles within a Collabora- 22
t ion are extracted from t he Collaboration's Behaviour a nd mapped to
t he Me&>ages that a re referred by the MessageScope and t he Operatiolls
t hat defines in which manner those a re sent.

Protocol. part ici pa nts R.oles that a re used by t he Collaboration are selected to d efine t he 24
Interact ionRoles t hat participa tes in the Protocol
Table 21. 1 he body of MapPlIlg Rule 25 III det.a lis.

Mapping Rule 25 is one of the more complex t ransformations, as t he PI i\114Agents does not
provide any protocol-like viewpoint t.o define t.he ServiceProvider's interact ion. However, t his
does not mean t hat an in teract ion cannot. be described from a cent ralized viewpoint. A Collabo
rat ion's Behaviour could for instance be used to define the choreography's viewpoint. However,
the information needed to init.iate t he PIM4Agent 's Protocol needs t.o be ext.ract.ed from various
concepts.

Mode l Mapping 26:

H ead: P I M4S0 A.fnjonnation : Document ~ PIM4Agents. Agent : Resource

Body: T he information t hat is sent in Messages is defined by so-called Ent it ies in
t he information metamodel. T hese Ent it ies are part of Documents t hat a re mapped to
Resources in t he PIM4Agents a n Agent could have access to.

Documents mainly define how a service might look like in t he P UvI4S0A. At least t hey specify
t he service structure by defining Objects and their Attributes t hat t hen serve as input parame
ters to invoke particular services. T his information is used to generat.e Resources an Agent has
access to in t he PI M4 Agents. T he set of accessible Resources are part of t he Environment .
T his section illustrated how to integrate domain-speci fic applications into t he PI lVJ4Agents
using a MDD approach. We have discussed that a model mapping bet.ween t he PIM4S0A

36

and Pltd4Agents is rea lizable as t he Pl iVI4Agents is more expressive with respect to defining
in te ract ions and behaviour. T lms, PHvl4S0A models can be transformed to PEVI4Agents models
that can be executed by JACK or JADE by applying t he vertica l mappings discussed in Section
7.

10 Technical Realization

Now t hat the t ransforma t ions have been described, the details of how all these components
work together in or MDD approach to achieve interoperabili ty within agent platforms and other
technologics. First , there are some technical details that need to be addressed, such as the tools
and la nguages used to define and execute the metamodels ancl mappings. The Illctamodels
presented in Sections 4 and 4.4 \vere modeled originally in IB rvl's Rat ional Software J\'lodeler
a nd t he exported to Ecore, the meta model part of the Eclipse Modeling Fral'nework (EMF)
[38]. Bcore represents t he meta-metamodel on which our approach is based. Furthermore, t he
PIM4S0A meta model is also available in Ecore. For defining and executing t he model- to-model
t ransformations , the At las Tra,nsformation Language (ATL) [39, 40] was chosen , since it offers
a series of plugins and tools for the Eclipse Framework and supports EMF as source and ta rget
language, among many others. Once the I'nodel-to-model transformations have been performed,
the produced PSJ\ ls must be serialized to the particular programming language, i.e. JACKM M
models are transformed to JAC K Gcode whereas JADEMM models are directly transformed to
Java. In both ca.'3es the serializat ion is implemented using the IVIOFScriptlanguage [41], which
is currently a. candidate in the OMG RFP process on MOF Model-to-Text transformation.
In l\'IO FScript a set of serialization rules (i.e. templates) is created following the structure of t he
source MOF-based metamodel, i.e . .JACKMM or .JADEIVIM. This means that the information
regarding the concept itself as well as the references to ot her concepts arc extracted and assigned
to t he template 'S attributes.
For the seria lizat ion of JACKMM models, we create a template for t he concepts Event , Role,
Capability, NamedData, NamedRole, Agent , Plan , Team, NamedData and TeamPlan. For each
instance of the mentioned concepts in the JACKMM model, a new fil e is generated. For ex
ample, for each Team insta nce in t he .JACKMM Model the template creates a new file with
the extension gleam. Beside the templates for t he main concepts, we create a template t hat
generates a project Hie that contains a reference to all newly created JAC K fil es. By import ing
t he project file into the JACK development IDE, we imported all the other JAC K files t hat
could now be compiled to generate Java code that could execute t he .JACKMM model.
For the serializat ion of .JADEMM models, there wa.'S a possibili ty of using the EMF generated
.J a.va interfaces and implementat ion classes as serialization. However, some issues were found.
Since .Java does not support mul t iple inheritance and JADE requires t hat t he instance extend:;
from their own model- for exa.mple Agents should extend from jade.core.Agent , concepts that
inheri t from other concepts in the metamodels are not able to extend both an EMF clas:;
and a JADE class at the same time. Additiona lly, t he EiVIF property instanceClassName that
\VOlild allow an EMF class to be linked to a .Java class, is actually taken as a superinterface to
the interface t hat represents the desired concept. Given these issues, as previously mentioned, a
template- based ~vlOFScript serial iza tion was chosen to generate t he .Java code. Once this classes
are generated , they only need to be compiled a nd executed with the .JADE librarie:; loaded in
the classpath.

11 Discussion

T his paper presented a platform-independent model for agents together with a IVIDD approach
to develop iviAS. MDD can be considered as new paradigm to develop software systems as the
different stages with the softwa re development proces:; can be connected by defining mappings.
In t he context of agent-oriented software engineering, we have ident ified t he following advantage:;
that our approach offe rs:

The PIM4Agents defines an abstract language specifying a concrete syntax to design and
model agent systems. Furthermore, by defining model transform ations froIll PIM to PSM we

37

could provide a straight forward interface to implement t he genera ted PIJ\'[4Agents models
a nd thus we decreased t he knowledge that is required to implement MAS with respect to
technical details of agent architectures and MAS development tools .
MOD addresses interoperability issues between agent-oriented systems and other fields of
applications (e.g. Peer-t(}-Peer systems, \Veb services and service-oriented archi tectures
(SOA)) . In particular, when having an a pplication-oriented metamodel in accordance to
Ecore as met a- metamodel, we can easily define mappings to the PIM4Agents meta model
and lise the already exist ing vertical transformation s to execute t he a pplication with JAD E
or .l ACK. In t his paper, we have discussed the realization bas ing on a metamodel fo r SOAs.
T he presented vert ical and horizontal mappings show t hat it is pos."ible to have interoper
abili ty within different agent systems and technologies t hat are compliant/generated wit h
a model definition.

12 Conclusion

T his pa per presents a platform-independent model for agents (called PIM4Agents) t hat specifies
a clear syntax and semantic t hat defines how to develop agent systems. \Ve described t he core
concepts of the PIlVI4Agents in detail and discussed how t his metamodel could be used in a
MDD scenario to simply the generation of executable agent systems.
T he PIM 4Agents is divided into four viewpoints, i.e. agent viewpoint , organizat ion viewpoint,
interact ion viewpoint and behavioural viewpoint that allow to model the core characteristics of
agent systems.
F\ut hermore, t he met amodels for JACK and JADE-which could be considered as platform
specific frameworks to develop agent systems- were discussed. On t heir base vert ical t ransfor
mations from the PIM4Agents to JACK and JADE were defined t hat allow to provide a st ra ight
forward inte rface for implementation as the abstract descript ions basing on the PIM4Agents
language could be easily used to generate executable code.
Addit ionally, we described how to transfer service-oriented architectures- as one feasible ap
plication area- to t he PIM4Agents. Therefore , we illustrated (i) a platform-independent model
for SOA (PIM4S0A) and (i i) how the concepts of the PIM4S0A can be transformed to agent
oriented concepts described by t he PIM4Agents (horizontal mappings). This model description
in accordance to t he PIM4Agents t hen again be t ransformed to executable code by applying
the vertical mappings.

R eferences

1. Object J\·fanagement Group (OMG): MDA Guide Version 1.0.1, Document omg!03-06-01 , J une
2003, http)/www.omg.org/docs/omg/03-06-0I.pdf (June 2003)

2. D'Souza, D.: Model-Driven Architecture and Integrat ion - Opportunities and Challenges, Version
I. I, IGneticum. (2001)

3. Object Management Group (OMG): Meta Object Facili ty (MOF) 2.0 Core Specification , Document
ptc/04-1 0-15 , October 2004, http)/www.omg.org/does/pte/04-10-15.pdf (October 2004)

4. Object Management Group (OMG): Meta Object Facility (MOF') 2.0 Query/View/Transformation
Specification , Document ptc/05- 11-01 , November 2005, http://www .omg.org/ docs/ptc/05- 11-
Ol.pdf (November 2005)

5. Bellifemine, F'. , Poggi, A. , Rimassa, G.: J ADE - a FIPA-compliant agent framework. In : Proceedings
of the Pract ical Appl icat ions of Intelligent Agents . (1999)

6. AOS: J ACK In telligent Agents, The Agent Oriented Software Group (AOS) , http)/www .agent
software.com/shared/ home/ (2006)

7. Trencansky, I. , Cervenka, R .: Agent modeling language (AML): A comprehensive a pproach to
modeling mas. Informatica 29(4) (2005) 391- 400

8. Bauer, B. , Muller, J ., Odell , J.: Agent UM L: A formalism for specifying multi agent interaction. In :
Agent-O riented Software Engineering: First International \-Vorkshop, AOSE 2000. Lecture Notes
in Computer Science 1957, Springer-Verlag (2001) 91103

9. Ba uer , B.: UM L Class Diagrams revisited in the context of agent· based systems. In: Agent
Oriented Software Engineering II : Second International Workshop, AOSE 2001. Lecture Notesin
Computer Science 2222, Springer-Verlag (2002) 101118

38

10. Ferber , J ., Gutknecht , 0.: A meta-model for the analysis and des ign of o rga lli zatio ns ill mul l.i
agent. systems. In: Proceedings of the Third In ternat ional Conference on ~vlulti-Agenl. Systems
(ICMAS'98). (1998) 128- 135

11 . Bresciani , P. , Perini , A. , G iorgini , P. , Giunchiglia , F. , J.. ly lopouios, J .: TROPOS: All Agcnt-Oricntl.'d
Software Development !vlethodology. Journal of Autonomous Agents a nd Muitiagcnt Systems 8 (~3)

(2004)
12 . Picard , G. , G leizcs, M.P.: 8, The ADELFE rvlcthodology. In : !vlethodologies and Software Engi

neering for Agent Systems , The Agent-Oriented Softwa re Engineering Handbook. 1(luwer Academic
Publishers (2004)

13. Zambonelli , F. , Jennings, N., \Vooldridge, M.: Developing multiagent syst.ems: the Gaia method
ology. AC~vT Trammct ions on Software Engineering and tvlethodology 12(3) (2003) 417- 470

14. Wooldridge, M. , Jennings , N., Kinny, D.: T he Gaia methodology for agent-ori ent.ed analysis and
ck>sign. Autonomous Agents and Multi-Agent. Syst.ems 3(3) (2000) 285- 3 12

15. Pavn , .I. , Gmez-Sanz, J.: Agent oriented soft.ware engineering with INCEN IAS. In: Multi-Agent
Sys t.ems and Applicat.ions III , 3rd Internat ional Cent.ral and E<l.st.em European Conference OIl

Multi-Agent Systems, CEEMAS 2003. Lecture Not.es ill Comput.er Scicnce 269 I, Springer-Verlag
(2003) 394- 403

16. Cos.<;ent.ino , 11\.: From requirement.s t.o code with t.he PASSI methodology. In Henderson-Selle rs,
B. , C iorgini , P. , cds.: Agent-Oriented Methodologies , Hershey, PA , USA, Idea Group Inc. (2005)

17. Serrano , J .M. , Os.<;owski , S.: On the impact of agent communicat.ion language; 0 11 the imple
mentat ion of agent systems. In : Proceedings of the Eight. International Workshop C IA 2004 on
Cooperat. ive Tnformat ion Agents. Volume 3 191 of Lecture Notes ill COll'lpu te r Science. , Berlin et
a l. , Springer (2004) 92- 106

18. Bernon , C., Cossentino , M. , G leizes, M.P., Tl.lfci, P., Zambonelli , F.: A st.udy of some multi-agent
meta- models . In Odell , .I. , Giorgilli , P. , rvlliller , .1. , cds. : Agent.-O riented Software Engineering V:
5th International \Norkshop, AOSE 2004. Revised Selected Papers. Lect.ure Notes in COl'nputer
Science 3382 , Springer-Verlag (2005) 62- 77

19. Bratman , M.E. : In tentions, Plans , and Practical Reason, Cambridge, MA (1987)
20. I'luber , M.J .: JAM: a BDI-theoretic mobile agent a rchi tecture . In: Proceedings of t he T hird

International Conference on Autononlous Agents (Agents'99), Seat tle , USA (1999) 23G- 243
2 1. Georgeff, M., Pell , B. , Pollack, M. , Tambe, lVI. , vVooldridge, M.: The belief-desire-int.elltion model

of agency. In: Proceedings of Agents , Theories, Archi tectures and Languages. (1999)
22. Amor, M. , Fuentes, L., Vallecillo , A.: Bridging the Gap Between Agellt-Oriented Df'Sigll and

Implenlentation Using i\'lDA. In: Agent-Oriented Software Engineering (AOSE-20011). Number
3382 in Lecture Notes in Computer Science (2004) 93- 108

23. G uessoulll , Z. : MAS Meta-J\'loclels and MDA , AgentLillk III AOSE TFC2. On line at:
http: //www.pa.icar.cnr .it/cossen t. i no/ a I3tf2 / docs/
zahia...slovenia.pdf (2005)

24. Bemon, C. , Cossent ino, M., Gleizes, M. P., Turci , P., Zambonelli , F .: A study of some mul t i-agent
meta~models . In: Proceedings of the 5th International \Vorkshop O ll Agent-Oriented Software
Engineering (AOS E 2004). Number 3382 in Lecture Notes ill Computer Science, Berlin et a I. ,
Springer (2005) 62- 77

25. Pavon , J ., Gomez-Sanz, J . .1. , Fuentes, R.: Model Driven Development of Multi-Agent Systems. In
Rensink , A. , vVanner , J. , cds .: ECrdDA-F'A. Volume 4066 of Lecture Notes in Computer Scicnce.,
Sp,·inger (2006) 284- 298

26. Moraitis, P. , Spanoudakis , N.I.: T he Gaia2Jade Proce;s for Multi-Agent Systems Development.
Applied Artificial In telligence 20(2-4) (2006) 25 1- 273

27. Beydoun, G. , Gonzalez-Perez, C. , Low, C., Henderson~Sellers, B.: Synthesis of a generic MAS meta
model. In: SELMAS '05: Proceedings of the fourth international workshop on Software engineering
for large~scale multi~agent systems, New York, NY, USA, ACM Press (2005) 1- 5

28. Zambonelli , F. , J ennings, N. , Wooldridge, M.: Organizational rules as an abstraction for the analysis
and des ign of multi-agent systems. International Journal of Software Engineering and Knowk-dge
Engineering 11 (2001) 303- 328

29. Davis, R. , Smith , R.. : Negotiation as a metaphor for distributed problem solving . Artificial Intelli
gence 20 (1983) 63 109

30. Rao , A.S. , Georgeff, M.P.: BDI-agents: from theory to practice. In Lesser , V. , cd.: Proceedings
of the First IntI. Conference 011 Mult iagent Systems, San Francisco, AAAI Press/The MTT Press
(19%) 312- 319

31. Padgham , L. , Winikoff, M.: Promet heus: A Methodology for Developing Intelligent Agents. In
Giunchiglia , P. , Odell , J. , WeiG, G ., cds. : Agent-Oriented Software Engineering (AOSE-2002). Vol
ume 2585 of Lecture Notes in Computer Science. , Berlin et aI. , Springer (2002) 174- 185

39

32. Ccrvcnk.:'l., R. , Trencall!:iky , I. , Calisti, M. , Greenwood , D.A.P.: AML : Agent iVlodeling Language
Toward Indust ry-Grade Agent- Based Modeling. In : Agent-Oriented Software Engineering (AOSE-
2004). Number 3382 in Lecture Notes in Computer Science 3382, Berlin et aL, Springer (2004)
31- 46

33. Bauer, S. , Muller, J .P. , Odell , J.: Agent UM L: A Formalism for Specifying Mult iagent Software
Systems. In : Agent-Oriented Software Engineering (AOSE-2000), Berlin et al. , Springer (2001)
91-103

34 . Cheong, C. , Willikoff, M.: Hermes: A methodology for goal oriented agent interactions. In Dignu ITI,
F., Dignum, V., Koenig, S., Kraus , S., Singh, M.P. , Wooldridge, M. , eds.: International Conference
on Autonomous Agents and Muli tagent Systems (AAMAS-05), ACM (2005) 1l21~1l22

35. JADE project: J ADE Application Programmer Interface 3.4. 1 (November 2006)
36. FIPA, FIPA ACL Message Structm e Specification (fipaOOO6 \) . FIPA . (2001)
37. Benguria, G ., Larrucea, X. , Elvesreter, B. , Neple, T. , Beardsmore, A., Friess, M.: A platform

independent model for service oriented architectures. In: Proceedings of I- ESA Conference. (2006)
38. Budinsky, F., Steinberg, D. , Merks, E., Ellersick, R ., Grose , T.: Eclipse Modeling Framework.

Addison Wesley Professional (2003)
39. ATLAS Group, INRIA & LINA , University of Nantes: INRIA , ATL - The Atlas Transformation

Language Home Page, http://www.sciences.univ-nantes.fr/ lina/atl/ (2006)
40. Jouaul t , r ., Kurtev, I. : Transforming Models with ATL. In: rvIoDELS 2005, Montego Bay, J amaica.

(2005)
41. SINTEF ICT, MOFScript, http)/www.eclipse.org/gmt/ mofocript (2006)

A Platform-Independent Model for Agents RR-07-01
Research Report

Christian Hahn, Cristian Madrigal-Mora and Klaus Fischer

	rr-07-01-0001
	rr-07-01-0002
	rr-07-01-0003
	rr-07-01-0006
	rr-07-01-0007
	rr-07-01-0008
	rr-07-01-0009
	rr-07-01-0012
	rr-07-01-0013
	rr-07-01-0014
	rr-07-01-0015
	rr-07-01-0016
	rr-07-01-0017
	rr-07-01-0018
	rr-07-01-0019
	rr-07-01-0020
	rr-07-01-0021
	rr-07-01-0022
	rr-07-01-0023
	rr-07-01-0024
	rr-07-01-0025
	rr-07-01-0026
	rr-07-01-0027
	rr-07-01-0028
	rr-07-01-0029
	rr-07-01-0030
	rr-07-01-0031
	rr-07-01-0032
	rr-07-01-0033
	rr-07-01-0034
	rr-07-01-0035
	rr-07-01-0036
	rr-07-01-0037
	rr-07-01-0038
	rr-07-01-0039
	rr-07-01-0040
	rr-07-01-0041
	rr-07-01-0042
	rr-07-01-0043
	rr-07-01-0044
	rr-07-01-0045
	rr-07-01-0046
	rr-07-01-0047
	rr-07-01-0048

