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Abstract

This paper describes new and improved techniques which help a unification-
based parser to process input efliciently and robustly. We show that com-
bining these methods leads to a speed-up in parsing time of more than an
order of magnitude. The methods are correct in the sense that none of
them rule out legal rule applications.

1 Introduction

This paper describes great number of useful techniques which help a unification-
based parser to process input efficiently and robustly. We present several new
methods and report improvements to existing techniques. The methods are cor-
rect in the sense that none of them rule out legal rule applications—neither will
we investigate statistical nor approximative methods. It is worth noting that
these methods are also parser-independent and neutral w.r.t. a given grammar
theory/formalism.

How can we gain reasonable efficiency in parsing with wide-coverage grammars
and lexicons with several thousand complex entries? Our belief is that there is
no single method which achieves this goal alone. Instead, we have to develop and
use a set of “cheap” filters which are correct in the above sense. As we indicate
in section 10, combining these methods leads to a speed-up in parsing time (and
reduction of space consumption) of more than an order of magnitude.

We have implemented our methods as extensions to a HPSG grammar develop-
ment environment (Uszkoreit et al. 1994) which employs a sophisticated typed
formalism (Krieger and Schéfer 1995) and an advanced agenda-based bottom-up
chart parser (Kiefer and Scherf 1996). A special runtime version of this system
is currently used in VERBMOBIL as the primary deep analysis component.!

In the next three sections, we report on transformations we have applied to the
knowledge base (grammar/lexicon) and on modifications in the core formalism

1VERBMOBIL (Wahlster 1993) deals with the translation of spontaneously spoken dialogues,
where only a minor part consists of “sentences” in a linguistic sense. Current languages are
English, German, and Japanese.



(unifier, type system). In section 5-8, we describe how a given parser can be
extended to quickly filter out possible rule applications before doing “expensive”
unification. After that, we show how to compute best partial analyses in order
to gain robustness. Finally, we present empirical results to demonstrate the
efficiency gain and discuss our plans for work in the near future. Within the
different sections, we refer to three corpora we have used to measure the effects
of our methods. The reference corpora for English, German, and Japanese consist
of 100-130 sample sentences.

2 Precompiling the Lexicon

Lexical entries in the development system are small templates that are loaded
and expanded on demand by the typed feature structure system. Thereafter, all
lexical rules are applied to the expanded feature structures. The results of these
two computations form the input of the analysis stage.

In order to save space and time in the runtime system, the expansion and the
application of lexical rules is now done offline. In addition, parts of the feature
structure are deleted, since they are only needed to restrict the application of
lexical rules (see also section 7 for a similar approach). For each stem, all results
are stored in compact form as one compiled LISP file, which allows to access and
load a requested entry rapidly with almost no restriction on the size of the lexicon.
Although load time is small (see table 1), the most frequently used entries are
cached in main memory, reducing effort in the lexicon stage to a minimum.
Morphological information is continued to be computed online, due to the signif-
icant increase of entries (a factor of 10 to 20 for German), which is not justifiable
considering the minimal computation time for this operation (only a few msec
per word).

German | English | Japanese
number of stems 4269 3754 1875
total space (MB) 44.1 40.5 10.1
space per stem (KB) 10.3 10.8 5.4
entries per stem 6 2.2 2.1
load time p. stem (msec) | 25.8 29.5 7.5

Figure 1: Space and time requirements.

3 Moving to Conjunctive Unification

It has often been argued that explicit disjunctions are inevitable for specifying
grammatical information adequately. We take a liberal stance here and note that
the original HPSG grammar development system mentioned in the introduction
even allows for distributed (or named) disjunctions in order to link particular



choices (Dorre and Eisele 1990). The popular assumption then is that these dis-
junctions are not only a nice descriptive mean but also allow more efficient pro-
cessing, since they obviate the need to expand to disjunctive normal form (DNF).
Unfortunately, we cannot validate this in VERBMOBIL for the large English, Ger-
man, and Japanese HPSG grammars written by different people. We note here
that the English grammar has been converted manually into a disjunction-free
form, allowing to optimize the performance of the resulting grammar.

Let us note a few things here to make our statement clear: (i) moving to DNF
but using the same unification engine (usually) does not lead to faster unification;
(ii) the ratio of the number of lexical entries/rules in the original grammar and
the DNFed grammar clearly depends on the ‘style’ of the grammar author, the
particular grammar theory, the number of disjunction alternatives, etc.; (iii) a lot
of disjunctive information can be easily put into the type hierarchy in case one
uses a typed grammar formalism; (iv) the context management for (distributed)
disjunctions causes an enormous overhead when compared to simple conjunctive
unification; (v) several lazy copying algorithms have been proposed for conjunc-
tive unification which clearly outclass a naive implementation.

Our hope was that even if we move automatically to DNF, the general amount
of disjunctions which cannot be put into the type hierarchy is so small that
the number of DNFed rules and lexical entries grows relatively slowly. Exactly
this was true for the German and Japanese grammars: we got 1.4-3Xx more
rules/lexical entries, but by moving to a sophisticated conjunctive unifier, we
obtained an overall speed-up of 2-5.2

4 Precompiling Type Unification

After having changed the unification engine, we saw that the type unification part
became a big factor: nearly 50% of the overall unification and copying time was
now due to the computation of the greatest lower bounds (GLBs). Although we
have used bit vectors in the grammar development system to efficiently compute
them online, the offline computation of the GLBs is of course superior.

The feasibility of the latter method depends on the number of types 7 of a
grammar. The English grammar employs 6000 types which results in 36,000,000
possible GLBs. Our experiments have shown, however, that only 0.5%—2% of
type unifications were successful and only these GLBs need to be entered into
the GLB table. We have used a hash table (and not a sparsely filled array) to
efficiently store and access the GLBs, employing a hash key function of arity 2.
Accessing an arbitrary GLB takes 0.008 msec, compared to 15 msec of ‘expensive’
bit vector computation a la Ait-Kaci et al. 1989 which also produces a lot of
memory garbage.® In order to access a unique GLB, we must require that the
type hierarchy is a lower semilattice (or bounded complete partial order). This is

2We use Rob Malouf’s (of CSLI, Stanford) improved version of Hideto Tomabechi’s quasi-
destructive graph unification algorithm (Tomabechi 1991). Compared with our original dis-
tributed disjunction unifier, the unification time decreased by a factor of 10-20, when using
conjunctive structures only.

3(Clearly, the bit-vector computed GLBs can also be cached, exactly what we did in 7DL;
see Krieger 1995.



often not the case, but this deficiency can be overcome either by computing the
missing types or by making the online table lookup more complex.

A naive implementation of the offline computation (compute the GLBs for T xT)
only works for small grammars. Since type unification is a commutative operation
(glb(s,t) = glb(t,s); s,t € T), we can improve the algorithm by computing only
glb(s,t). A second improvement is due to the following fact: if the GLB of s and
t is bottom, we do not have to compute the GLBs of subtypes for both s and ¢,
since they guarantee to fail (an efficient implementation of this observation must
enforce a topological ordering on 7). The final improvement separates the type
hierarchy into a family of maximal subsumption-incomparable sets, guaranteeing
that only types from the same set might unify. Even with these improvements,
the GLB computation of a specific grammar took 42 CPU hours, due to the
special ‘topology’ of the type hierarchy. Using the offline GLBs (together with
every method described here), we obtained a parsing speed-up of 1.5, compared
to the bit vector computation. By applying this method alone, the savings are
clearly more substantial, since a GLB failure is the only way to forbid a rule
application in the parser (we obtain a speed-up factor of more than 24 and 10
times less space consumption).

5 Precompiling Rule Filters

The aim of the methods described in this and the next section is to avoid fail-
ing unifications by applying cheap ‘filters’ (i.e., methods that are cheaper than
unification). The first filter we want to describe is a rule application filter. We
use this method for quite a while, and it has proven both efficient and easy to
employ.

Our rule application filter is a function that takes two rules and an argument
position and returns a boolean value that specifies if the second rule can be
unified into the given argument position of the first rule.

The conjunctive grammars have between 20 and 120 unary and binary rule
schemata. Since all rule schemata in our system bear a unique number, this
filter can be realized as a three dimensional boolean array, thus access costs are
minimized. These filters are computed offline in less than one minute and typi-
cally rule out 50% to 60% of the failing unifications during parsing, saving about
45% of the parsing time.

6 Avoiding Unification through Quick Checks

Our second filter utilizes the fact that at certain points in the feature structure,
unification fails more often than at others.* Since all substructures are typed,
type clashes can occur at every point in the feature structure. Checking the
most frequent failure points first and only then unifying saves a great amount of
processing time.

4This filter is an implementation of a method used by John Carroll in the LKB system.
Thanks to Stephan Oepen who provided the hint.



The method works as follows. First, there is an offline stage, where a modified
unification engine of the original grammar development system is used that does
not terminate unification after the first failure, but instead records all failures in a
global data structure. Using this modified system, a corpus is parsed to compute
the n paths with the highest failure counts. Exactly these paths will be used later
for filtering.

When an active chart item (i.e., a rule schema or a partly instantiated rule
schema) and a passive chart item are combined, the feature structure of the
passive item is unified into the substructure of the active item that corresponds
to the argument to be filled. For every parser item, we now build a vector of
n types by computing the type values of the substructures under the previously
determined paths (i.e., we establish pointers to the substructures to gain constant
access time). If the item is an active item, we start at the feature structure corre-
sponding to the next argument. If the item is passive (i.e., fully instantiated), the
computation starts at the root of its feature structure. The type corresponding
to the most frequently failing path is put into the first position of the vector, the
second-best into the second position, and so on. When an active item shall be
further instantiated with a passive item, the types in the two vectors are checked
for compatibility element by element. Only if this test succeeds for all vector
positions, unification is executed.

Clearly, when considering the number of paths used for this method, there is a
tradeoff between time savings by filtered unifications and the effort to create the
vectors and comparing them. Since type unification is computationally cheap as
described in section 4, the savings are substantial. At the moment, we use 13 to
22 paths for quick-check filtering. In connection with the rule application filter
(cf. section 5), the filter rate varies from over 94% to over 99%, hence almost
all failing unifications can be avoided. The parsing time relative to the system
with only rule application filtering is reduced by approx. 75%. According to Dan
Flickinger (p.c.), the filter rate in the LKB system which applies the quick-check
method alone, is up to 80%, using 40 paths however.

7 Reducing Feature Structure Size via Restric-
tors

The ‘category’ information that is attached to each chart item of the parser con-
sists of a single feature structure. Thus a rule is implemented by a feature struc-
ture where the daughters have to be unified into predetermined substructures.
Although this implementation is along the lines of HPSG, it has the drawback
that the tree structure that is already present in the chart items is duplicated in
the feature structures.

Since HPSG requires all relevant information to be contained in the SYNSEM
feature of the mother structure, the unnecessary daughters only increase the size
of the overall feature structure without constraining the search space. Due to the
Locality Principle of HPSG (Pollard and Sag 1987, p. 145ff), they can therefore
be legally removed in fully instantiated items. The situation is different for active
chart items since daughters can affect their siblings.



To be independent from a certain grammatical theory or implementation, we use
restrictors similar to Shieber 1985 as a flexible and easy-to-use specification to
perform this deletion. A positive restrictor is an automaton describing the paths
in a feature structure that will remain after restriction (the deletion operation),
whereas a negative restrictor specifies the parts to be deleted. Both kinds of
restrictors can be used in our system.

In addition to the removal of the tree structure, the grammar writer can specify
the restrictor further to remove features that are only used locally and do not
play a role in further derivation. This reduction in size results in a speed-up in
unification itself, but also in copying and memory management.

As already mentioned in section 2, there exists a second restrictor to get rid of
unnecessary parts of the lexical entries after lexicon processing. The speed gain
using the restrictors in parsing ranges from 30% for German to 45% for English.

8 Limiting the Number of Initial Chart Items

Since the number of lexical entries per stem has a direct impact on the number
of parsing hypotheses (in the worst case leads to an exponential increase), it
would be a good idea to have a cheap mechanism at hand that helps to limit
these initial items. The technique we have implemented is based on the following
observation: in order to contribute to a reading, certain items (concrete lexical
entries, but also classes of entries) require the existence of other items such that
the non-existence of one allows a safe deletion of the other (and vice versa). Note
that such a method operates in a much larger context (in fact, the whole chart)
as a local rule application filter or the quick-check method.

In German, for instance, prefix verbs require the right separable prefixes to be
present in the chart, but also a potential prefix requires its prefix verb (the same
holds for English verbs, requiring certain particles, as in come along, come across,
etc.). The method works as follows. In a preprocessing step, we first separate the
chart items which encode prefix verbs from those items which represent separable
prefixes. Since both specify the morphological form of the prefix, a set-exclusive-
or operation yields exactly the items which can be safely deleted from the chart.
Let us give some examples to see the usefulness of this method. In the sen-
tence Ich komme morgen (I (will) come tomorrow), komme maps onto 97 lexical
entries—remember, komme might encode prefix verbs such as ankommen (ar-
rive), zurickkommen (come back), etc. although here, none of the prefix verb
readings are valid, since the prefix is missing. Using the above method, only 8
of 97 lexical entries will remain in the chart. The sentence Ich komme morgen
an (I (will) arrive tomorrow) results in 8+7 entries for komme (8 entries for the
come reading and 7 entries for the arrive reading of komme) and 3 prepositional
readings plus 1 prefix entry for an. But in Der Mann wartet an der Tir (The
man is waiting at the door), only the three prepositional readings for an come
into play, since no prefix verb anwartet exists.

The parsing time for the second example goes down by a factor of 2.4; overall
savings w.r.t. our reference corpus is 17% of the parsing time (i.e., speed-up factor
of 1.2).



9 Computing Best Partial Analyses

Not only in speech parsing, we often find deficient, ungrammatical, or sponta-
neous input s.t. a traditional parser will not come up with an analysis. Contrary
to that, our approach focuses on partial analyses which are combined in a later
stage to form total analyses without giving up the correctness of the overall deep
grammar. But what is a partial analysis? Obviously a (sub)tree licensed by the
grammar which covers a continuous part of the input (i.e., a passive or inactive
parser edge). Not every passive edge is a good candidate since otherwise we would
end up with thousands of candidates. Our approach lies between these two ex-
tremes: computing a sequence of adjacent ‘best’ partial analyses which span the
whole input. The idea here is to view the set of passive edges as a directed graph
and to compute shortest paths w.r.t. a user-defined estimation function.

Since this graph is acyclic and topologically sorted, we have chosen the DAG-
shortest-path algorithm (Cormen et al. 1990) which runs in O(V + E). We have
modified this algorithm to cope with the needs we have encountered in speech
parsing: (i) one can use several start and end vertices (e.g., in case of n-best
chains or wordgraphs); (ii) all best shortest paths are returned (i.e., we obtain a
shortest-path subgraph); (iii) estimation and selection of the best edges is done
incrementally in case of n-best chains and time-critical applications (i.e., only
new passive edges entered into the chart are estimated and perhaps selected).
This approach has one important property: even if certain parts of the input
have not undergone any rule application, there are still lexical edges which help
to form a best path through the passive edges.

Let us give an example to see what the estimation function on edges (= trees)
might look like (this estimation is actually used in the German grammar):

e n-ary tree (n > 1) with utterance status (e.g., NPs, PPs): value 1
o lexical items: value 2

e otherwise: value oo

This approach does not always favor paths with longest edges as the example in
figure 2 shows—instead it prefers paths containing no lexical edges (where this is
possible) and there might be several such paths having the same cost. Longest
(sub)paths, however, can be obtained by employing an exponential estimation
function.

10 Conclusion and Further Work

The collection of methods described in this paper has enabled us to unite deep
linguistic analysis with speech processing. The overall speed-up compared to the
grammar development system is about a factor of 10 up to 25, depending on the
specific grammar. We note here that in the original system this measurement
was conducted by even using the rule application filter method, the restrictor
method, and a caching of bit-vector computed GLBs. Without these methods,
the speed gain is even more than two orders of magnitude.
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Figure 2: Computing best partial analyses. Note that the paths PR and QR are
chosen, but not ST, although § is the longest edge.

We now present some absolute timings to give an idea of the current systems’
performance. For a German test set of 153 sentences with an average sentence
length of 7.3, we get an overall parse time of 420 cpu seconds when computing
all results.> On average, there are 6.8 analyses, the first computed in 0.73 sec
(including lexicon access and morphological analysis) and the search space is
exhausted after 2.7 sec.

We believe to have shown that the combination of algorithmic methods together
with some discipline in grammar writing can lead to a practical high performance
analysis system even with large general grammars for different languages.

There is, however, scope for improvements. Removing unnecessary lexical items
can be generalized to other cases, and also to English and Japanese phenomena.
A detailed investigation of the quick-check method and its interaction with the
rule application filter is also planned for the near future. Since almost all failing
unifications are avoided through the use of filtering techniques, we will now focus
on methods which reduce the number of (successful) chart items that do not lead
to an analysis, for instance, context-free or regular approximations of the HPSG
grammars (e.g., Nederhof 1997).
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