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1 Introduction

Linear logic [Gir87] has become known as a very expressive formalism for reaso-
ning about action and change. During its rather rapid development linear logic
has found applications in logic programming [HM94, Mil96], modeling concurrent
computation [GGI1], planning [MTV91], and many others. The expressiveness
of linear logic, however, results in a high complexity. Propositional linear lo-
gic is undecidable and even the multiplicative fragment (MLL) is already N P-
complete [LW94]. The complexity of the multiplicative exponential fragment
(MELL) is still unknown.

Proof search in linear logic is difficult to automate. Girard’s sequent calcu-
lus [Gir87], although covering all of linear logic, contains too many redundancies
to be useful for efficient automatic proof search. Attempts to remove permuta-
bilities from sequent proofs [And92, GP94] and to add proof strategies [Tam94]
have provided significant improvements but some redundancies remain because
of the use of sequent calculi. Proof nets [DR89], on the other hand, can handle
only a fragment of the logic.

Matrix characterizations of logical validity, originally developed as foundation of
the connection method for classical logic [And81, Bib81, Bib87], avoid many kinds
of redundancies contained in sequent calculi and yield a very compact represen-
tation of the search space. They have successfully been extended to intuitioni-
stic and modal logics [Wal90] and serve as a basis for a uniform proof method
for classical and non-classical logics [OK96] as well as for a uniform method for
translating these matrix proofs into sequent proofs [SK96]. Resource management
similar to multiplicative linear logic is already addressed by the linear connection
method [Bib86]. Fronhdofer [Fro96] gives a matrix characterization of MLL which
can also capture some aspects of weakening and contraction but does not appear
to generalize any further. In [KMOS97] we have developed a matrix characte-
rization for MLL and have shown how to extend the uniform proof search and
translation procedures accordingly.

In this report we present a matrix characterization for the full multiplicative
exponential fragment including the constants 1 and L. This characterization
uses Andreoli’s focusing principle [And92] as one of its major design steps and
does not appear to share the limitations of the previous approaches.

Our approach includes a methodology for step-wisely developing such a charac-
terization. By introducing a series of intermediate calculi the development of a
matrix characterization for MELL becomes manageable. Each newly introduced
calculus adds one more condensing principle to the previous one and can be pro-
ven correct and complete with respect to it. We expect that this methodology
will generalize to further fragments of linear logic as well as to other logics.

In section 2 we give a brief introduction to MELL. We define the syntax of
MELL and give an intuitive explanation of the connectives. By adapting Smul-
lyan’s uniform notation to MELL we create a compact representation of a linear
logic sequent calculus. Based on the notion of multiplicities, i.e. an eager hand-
ling of contraction and a lazy handling of weakening, we present a dyadic and a
triadic calculus which condense the search space in section 3. These are auxiliary
calculi in the development of the matrix characterization. In section 4 we deve-



lop a calculus Xy which operates on positions in a formula tree instead of on
subformulas. In order to express the peculiarities of some connectives we insert
special positions into the formula tree. The matrix characterization is presented
in section 5. We define a notion of complementarity for MELL and prove it to
be sufficient and necessary for validity in MELL. The matrix characterization
allows us to reason about the existence of a sequent proof rather than concen-
trating on the construction of a specific proof, thus condensing the search space.
We conclude with some remarks on related work in section 6.

2 Multiplicative Exponential Linear Logic

Linear logic [Gir87] treats formulas like resources which disappear after their use
unless they are explicitly marked as reusable. From a proof theoretical point of
view, linear logic can be seen as the outcome of removing the structural rules for
contraction and weakening from the classical sequent calculus and re-introducing
them in a controlled manner. Linear negation * is involutive like classical ne-
gation. The two different traditions for writing the sequent rule for conjunction
result in two different conjunctions ® and & and two different disjunctions % and
@. The constant true splits up into 1 and T and false into | and 0. The unary
connectives 7 and ! mark formulas for a controlled application of weakening and
contraction. Quantifiers V and 3 can be added as usual.

Linear logic can be divided into the multiplicative, additive, and exponential
fragment. While in the multiplicative fragment resources are used exactly once,
resource sharing is enforced in the additive fragment. Exponentials mark formulas
as reusable. All fragments exist on their own right and can be combined freely.
The full power of linear logic comes from combining all of them.

In this section we give a brief introduction to linear logic. Throughout this report
we will focus on multiplicative exponential linear logic (MELL), the combination
of the multiplicative and exponential fragments, leaving the additive fragment
and the quantifiers out of consideration. *, ®, ®, —o, 1, 1, !, and ? are the
connectives of MELL.

In addition to Girard’s article [Gir87] general introductions to the syntax, seman-
tics, and proof theory of linear logic can be found in [Tro92, Gal91, Sce90, Lin92,
Ale94].

In subsection 2.1, we define the syntax of MELL and explain the meaning of
the logical connectives in subsection 2.2 on an intuitive level. A sequent calculus
for MELL is presented in subsection 2.3. The concept of multiplicities which
is fundamental to matrix characterizations is introduced in subsection 2.4. In
order to simplify meta-reasoning about calculi we adapt Smullyan’s uniform no-
tation to MELL and present a sequent calculus based on uniform notation in
subsection 2.5.

2.1 The Syntax of MELL

Definition 1 Formulas are defined recursively from a set P° of propositions.

1. Each A € PY is a formula.



2. 1 and L are formulas.

3. If F is a formula then F'* is a formula.

4. If Fy and F; are formulas then Fi®F; and F}® F, are formulas.
5. If F'is a formula then ?F and !F" are formulas.

The formulas P € P are called atomic. 1 and L are called constants.
The set of all MELL-formulas is denoted by wff.

L is the linear logic negation. A formula F* is pronounced nil F. 1 and L

are the multiplicative versions of true and false. They are pronounced one and
bottom. ® and B are the multiplicative variants of conjunction and disjunction.
A formula F;®F, is pronounced Fy tensor Fy and a formula F;% F5 is pronounced
Fy par F5. 7 and ! are the exponentials why-not and off-course.

As convention we use F', G, and H as meta-variables for formulas. A, B, and
C are used as meta-variables for atomic formulas. I" and A are used as meta-
variables for multi-sets of formulas. All meta-variables are used with indices as
well.

Definition 2 We define the set of subformulas of a given formula F' recursively.
1. F'is a subformula of F.
2. If G+, ?G, or |G is a subformula of F, so is G.
3. If G1®G5 or G1% (G5 is a subformula of F', so are G; and Gs.

If two formulas are syntactical identical then they are regarded as the same for-
mula. However, when considering subformulas we talk about occurrences of for-
mulas. Thus, two (occurrences of) subformulas are equal if they occur at the
same place in a formula (and are therefore also syntactical identical).

Definition 3 The major subformula of a formula F'+, ?7F, or |F is F'. The major
subformulas of a formula F1®F, or F1 % Fy are F; and F5.

We define suce; and succy as functions which yield the major subformulas of a
given formula, e.g. succ; (F1®F,) = Fy and succy(F1®F,) = Fy. sucey is undefined
for formulas F+, ?F, or !F. Both functions are undefined for atomic formulas
and for constants.

succ; and succy induce an ordering < on the subformulas of a formula. F' < G
shall hold if G is a major subformula of F, i.e. G = sucei(F) or G = succa(F).
We define < as the transitive closure of <.

A formula F' can be represented as a graph. We define the concept of a formula
tree. For each occurrence of a subformula of F' there is a corresponding node
in the tree. The edges connect subformulas with their major subformulas. Two
occurrences of a subformula are equal if they correspond to the same node in the
formula tree.



Example 4 F = (A®!A)® ?(A1) is a formula. The major subformulas of it are

suce (F) = A®!A and sucey(F) = ?(AL). Note that there are three different
occurrences of A within F'. The formula tree for F is depicted below.
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2.2 On the Meaning of the ME&LL-Connectives

Linear logic formulas should be understood as resources which can be produced
while others are consumed. A multi-set of formulas specifies a state in which
exactly those resources exist which are specified by the formulas in the multi-set.
Transitions from one state to another state are again specified by linear logic
formulas.

A formula F}—oF; specifies a transition during which F} is consumed while F;
is produced. A resource 1 can always be consumed without producing any other
formula. A resource L can always be constructed without consuming any other
formula. Thus, 1—oF" means that F' can be constructed without consuming any-
thing else, and, F'—o L means that F' can be consumed without producing any-
thing. Linear negation * expresses the difference between resources which are
consumed and resources which are produced, i.e. F*—o_l is equivalent to 1—oF
and 1—oF* is equivalent to F'—o_L. The production or consumption of a resource
1 ®F, means that both resources F; and F5, are produced or consumed, respec-
tively. A resource F1% F; is equivalent to Fit—oF, as well as to Fo"—oF,. A
resource !F' can be consumed as often as needed. It can be understood as a ma-
chine which produces copies of F'. To produce a resource !F' one must be able to
produce F' any number of times. Clearly, this can be achieved only by the use of
machines. An intuitive explanation of 7F is difficult. 7 is the dual to !.

2.3 A Sequent Calculus for MELL

Definition 5 A sequent is a pair (I'; A) of multi-sets of formulas. I' is the an-
tecedent and A is the succedent of the sequent. We usually denote a sequent by
I — A.

Informally, a sequent ' — A is valid if the formulas in A can be constructed
while all formulas in [' are used up during the construction.

A sequent calculus is composed of a set of sequent rules. Each sequent rule
consists of one conclusion and possibly multiple premises. Each premise as well
as the conclusion is a sequent. Formulas which occur in a premise but not in the
conclusion are called side formulas. A formula which occurs in the conclusion but
not in any premise and has the side formulas as subformulas is called principal
formula. All other formulas are the context of the rule. A rule which requires
that the context formulas in the conclusion are of a special kind is called context
sensitive.



A sequent calculus for MELL is depicted in table 1. The rules are divided
into four different groups, i.e. identity, negation, multiplicative fragment, and
exponential fragment. The principal formula of each rule in the left hand side
column lies in the antecedent. Therefore, these rules are called left rules. Likewise
the rules in the right hand side column are called right rules. The d, ¢, w, and p
in the rules for exponentials abbreviate dereliction, contraction, weakening, and
promotion. Note that the rules aziom, 1., 1,., and the promotion rules are
context sensitive. !I' and ?A in the promotion rules enforce that all context
formulas in the antecedent (succedent) have ! (7) as main connective.

The sequent calculus has a nice symmetry. Negation shifts a formula from the
antecedent into the succedent and vice versa (rules */ and *7). There are simi-
larities between the rules ®I[, 8 r, and —or, as well as between ®r, %[, and —ol.
Further, there are similarities between the rules for 1 and L as well as between 7
and !. These similarities will be exploited in subsection 2.5.

A derivation D is a tree where all edges are labeled with sequents and all inner
nodes are labeled with inference rule names. The sequents adjacent to such a
node must match the corresponding sequent rule. The root node must have only
one adjacent edge. The label of this edge is called the conclusion of D. The
sequents which are adjacent to a leaf node which is not labeled are the open goals
of D. A derivation without any open goals is a proof of the conclusion.

An inference rule can be applied forwards as well as backwards. If one has derived
all premises of a rule then one can conclude the conclusion by a forward inference.
If one wants to derive a sequent which matches the conclusion of an inference rule
then one can reduce that sequent into subgoals by a backward inference. Searching
for a proof of a sequent by forward inferences is called synthetic proof search. In
this approach one starts with axioms and tries to derive the sequent which shall
be proven. Analytic proof search is the orthogonal approach where search is
performed by backward inferences. Here, one starts with the sequent which shall
be proven and reduces it into subgoals until an axiom rule can be applied. In
this report we usually take the analytic point of view. When a sequent [' — A
is provable we sometimes write I' = A or being more precise - I' — A.

The calculus in table 1 incorporates no cut-rule. Cut-elimination for linear logic
has been proven in [Gir87]. The lack of a cut-rule ensures that all formulas which
occur in a derivation of a sequent S are sub-formulas of some formula in S.

Example 6 We want to prove the sequent — (A®!A)%2 7(A+). The only app-

licable rule is % r.
— (AQ!A), ?(AL)

s (A1A)3 7(AT)

Now we have a choice between ®r, d — 7, w — 7, and ¢ — 7. Though it will turn
out to be the wrong choice we decide to try ®r first.

— A,7(AY) — 1A
— (AR!A), 7(A*)

Xr

When applying the rule ®r one must decide on a partition of the context onto
the different branches. We decide to put the only context formula into the left
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hand branch. From the structure of the right hand branch we can already see
that this will never lead to an axiom rule. A different partition of the context
would not help. For the only other partition the left hand branch would not be
provable. Thus, ®r was not a good choice. The formula ?(A*) should be copied
first. Thus, we decide to backtrack and try ¢ — 7 instead. Now we are able to
complete the proof.

- axiom

A 4 awiom 4, AL 2_
A AL :z , —AAYH)
A An “ T TSha rah g '
T

s (A®!A), 7(AY), 7(A)
— (A®l4), 7(A1)

Remark 7 Compared to a sequent calculus for classical logic the calculus in
table 1 lacks rules for contraction and weakening for arbitrary formulas. The
rules w — !, w— 7, ¢— 1! and ¢ — 7 allow weakening and contraction only for
formulas which are marked with the appropriate exponential.

The constants incorporate already part of the power of weakening. The rules
1/ and Lr allow weakening for constants. This results in a similar behavior of
formulas 7F and L in the succedent if weakening is applied. The same relation
holds between formulas !F' and 1 in the antecedent.

Weakening and contraction are essential, i.e. there exist sequents (with expo-
nentials) which are valid but cannot be proven without using these rules. For
example, any proof of the sequent — (A®!A)% ?(AL) requires contraction. The
sequent — 1% 7A can only be proven if weakening is used.

If one looks at a sequent proof in which the contraction rule has been applied our
previously defined notion of an occurrence of a subformula does not seem to be
appropriate any more. Subformulas which allow the application of contraction
can be copied in a proof. After being duplicated the copies may be treated in
different ways, e.g. they may go into different branches of the derivation like
the copies of ?(A1) in example 6. It seems appropriate to consider the copies
as different occurrences of a subformula in the derivation. Thus, now we have
identified two different notions of occurrence of a formula — one for formula trees
and one for derivations. This difference becomes apparent in other sub-structural
logics like relevance logics as well. In the sequel we usually consider the later
notion and will explicitly mention if we use the first one.

2.4 Multiplicities

In subsection 2.3 it has been argued that weakening and contraction are essential.
However, in (analytic) proof search it seems rather difficult to decide when one
of these rules should be applied. Not to copy a formula might make any further
proof attempt fail as we have seen in example 6. However, there are no bounds
for the number of copies required. Thus, it is difficult to say how many copies
will suffice.



An application of a weakening rule deletes a formula from a sequent. While it
may be nice to deal with smaller objects in a proof the benefit does not seem to be
essential for subsequent rule applications. The context sensitive rules axiom, 1.,
1,., as well as the promotion rules p —! and p — 7 may require a prior application
of weakening. No other rule can become applicable by weakening. The rules
ariom, L., and 1., require all kinds of weakening, i.e. w — !, w — 7, 1l, and
L7, while the promotion rules require only weakening of constants. Thus, as we
will show later one may restrict the application of weakening rules to these cases.
Such rules should only be applied if an application of an axiom or promotion rule
follows immediately afterwards.

An application of a contraction rule duplicates a formula in a sequent. While it
may be nice to have more resources there is no restriction on the number of such
rule applications. Thus, one might apply contraction over and over again without
getting any closer to an axiom. However, if one does not apply contraction
before applying dereliction then the respective formula cannot be copied any
more. Similarly, if one does not apply contraction before a rule where the proof
branches then the respective formula moves into one branch but is not available
in the other one.

Other authors [And92, CHP96] enforce contraction in these critical cases which
guarantees that copies can be generated in both branches. Such a lazy handling
of copies is appropriate for sequent calculus proof search but is not required in
our approach where sequent calculi are developed only as intermediate steps and
are not intended for actual proof search. As it is common in matrix characte-
rizations we apply an eager approach. For each formula F' on which weakening
and contraction may be applied we assume an upper bound n on the number of
copies required. Under this assumption it suffices to apply contraction n times
as soon as F' occurs as an active formula in the derivation. From then on no
further applications of contraction for this formula need to be considered. For
this purpose we define multiplicities.

Since, in general, no upper bound for the number of copies can be calculated! one
can only try for a good guess. However, in proof search this is not a disadvantage
compared to the lazy approach. A multiplicity must in general not be guessed in
advance but can be modified during matrix based proof search.

Definition 8 A multiplicity function p returns for each occurrence of a signed
formula v a natural number n. n is then called the multiplicity of v.

This notion of multiplicity differs from the one defined in [Wal90] for modal
logics and intuitionistic logic. While Wallen’s notion of multiplicity is based on
occurrences in a formula tree our notion is based on occurrences in a proof. This
finer notion of multiplicity is required for a resource sensitive logic like linear
logic.

2.5 Uniform Notation for MELL

We want to prove properties of calculi. Most of the proofs about calculi will be
done by induction over the structure of proofs. A case distinction over all rules

! Already propositional linear logic is undecidable.[LMSS92]

10



(6 <F1®F2,—> <F193 F2,+> <F1—OF2,+>
sucey () (Fy,—) (F1, +) (F1,-)
succy(ar) (Fy, —) (Fy,+) (Fy,+)

ﬂ <F1®F2,+> <F199 FQ,—> <F1—OF2,—>
SUCCI(ﬁ) <F17 +> <F17 _> <F17 +>
SUCCQ(ﬁ) <F27+> <F27_> <F27_>

Table 2: Uniform notation for signed MELL formulas

of the calculus is needed in such proofs. Thus, we would benefit from a reduction
of the number of calculus rules. Smullyan’s uniform notation provides such a
reduction. It exploits the symmetries in a calculus and represents symmetrical
rules by one rule.

Definition 9 A signed formula (F,k) relates a formula F' to a polarity k €
{+,—}. F is also called the label of (F, k).

We adapt Smullyan’s uniform notation to MELL. In table 2 types from «, (3,
v, m, 0, T, w, and [it are assigned to signed formulas depending on their label
and their polarity. Atomic formulas A € P° have type lit. The association
of types corresponds to symmetries in the sequent calculus which were pointed
out in subsection 2.3. Two signed formulas are assigned the same type if their
corresponding sequent calculus rules are symmetrical. The definition of succ; and
succy is extended to signed formulas in the table. Note that the polarity switches
during the decomposition of formulas only when * or —o is applied.

We use ¢ and ¢ as meta-variables for signed formulas. «, 3, v, m, o, 7, and w
are used as meta-variables for signed formulas of the respective type. a is used
as meta-variable for atomic signed formulas. © and Y are used used as meta-
variables for multi-sets of signed formulas. «, 3, v, II, o, 7, and {2 are used as
meta-variables for multi-sets of signed formulas of the respective type. = is used
as meta-variable for sequences of signed formulas.

For a signed formula ¢ = (F, k) the functions lab and pol respectively return
the label and the polarity of ¢, i.e. lab(p) = F and pol(¢) = k. The functions
con and type respectively return the main connective and the type of a signed
formula.

Remark 10 Wallen [Wal90] distinguishes principal and secondary types. This
distinction is not required for the theory developed in this report. Our types
correspond to his primary types.

11



identity

axiom
)

(A, +), (A, —

multiplicative fragment

FT

T, sucer (@), sucea()

T, «

exponential fragment

T, sucey (v)
T,v

T
T

w

, vV

negation

T, suce (o)
T,0

T
T,w

W

Ty, suce () Yo, succe(f) 3
Tla T?a ﬁ

Table 3: A unary sequent calculus ¥} for MELL in uniform notation

Definition 11 A wunary sequent is a multi-set of signed formulas. We usually

denote a unary sequent by T.

The calculus in table 1 is reformulated in table 3 using unary sequents. Rules
which are similar in the original calculus melt into a single rule. Thus, the re-
sulting calculus becomes more compact which makes reasoning about the system
a lot easier since in inductive proofs less cases need to be considered. In ¥/ the
rules aziom, 7, and m are context sensitive.

Example 12 We prove the signed formula ¢ = ((A®!A4)% 7(AL), +) in X}. We
abbreviate the subformulas of F' as shown in the table.

lab(y) @
(Ax!A4)% ?(A%) | aq
AR!A Boo
A apoo
'A 001
A Qo010
?(AL) Vo1
At 0010
A 0100

@000, 0100

——— axiom
0010, @p100

/
aziom 20010, %10

!
a vV,
(000, 0010 M T
@000, Vo1 001, Vo1 3
!
500,’/017’/01
Boos Vo1
Q

Theorem 13 (Correctness/Completeness) There exists a proof for a for-
mula F' in the sequent calculus in table 1 if and only if there exists a proof for
the signed formula (F,+) in the unary calculus in table 3.
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Proof. The proof is simple and can be done by induction over the structure of
unary calculus proofs and proofs in .

Definition 14 A signed formula v is contracted in a proof P if the contraction
rule ¢ is applied on v in P.

Definition 15 A proof P for a sequent S is contraction normal if one of the
following conditions holds.

e P consists of an application of azxiom or 7.

e P results from a contraction normal proof P’ by application of one of the
rules o, w, a, v, or w.

e P results from contraction normal proofs P’ and P” for sequents S’ and S”
by application of the rule § with S" and S” as premises.

e P results from a contraction normal proof P’ for a sequent S’ by subsequent
applications of the rule ¢ on the same occurrence of a signed formula v in
S. Neither v nor any copy of v must be contracted in P’.

e S =v,m and P results from a contraction normal proof P’ by application
of the rule 7 and no formula v € v is contracted in P’.

Lemma 16 If there exists a proof P for a sequent S in ¥ then there exists a
contraction normal proof P’ for S.

Proof. This can be followed from the results in [GP94]. Applications of the
contraction rule can be moved towards the root in a proof.

3 Auxiliary Sequent Calculi

In this section we define the sequent calculi ¥, and ¥}. These calculi are interme-
diate steps on the way from the sequent calculus ¥ to a position calculus which
will be presented in section 4. 3!, and ¥} are closely related to Andreoli’s dyadic
calculus ¥y and triadic calculus X3 [And92]. % exploits Andreolis focusing prin-
ciple in order to condense the search space. However, they differ in the way rules
for the exponentials are handled. While Andreolis calculi use a lazy strategy for
contraction of generic formulas the calculi presented here use an eager strategy.
Lazy contraction seems to be a good choice when proof search is done in a se-
quent calculus. Eager contraction supports the introduction of multiplicities into
sequent calculus proof search. Multiplicities are a fundamental concept in matrix
characterizations. Nevertheless, in proof search based on matrix characterizations
lazy handling of multiplicities is still possible.

A dyadic calculus 3, and a triadic calculus X} are presented in section 3.1 and 3.2.
The calculi are proven to be sound and complete with respect to the sequent
calculus . In subsection 3.3 they are related to the work of Andreoli. Note
that the calculi presented in this section are introduced in order to prove facts
about them rather than to do proof search with these calculi. Thus, efficiency of
proof search in the calculi is not a major aspect.

13



identity negation

O : Y, sucei (o)

©: <A7 +>7 <A7 _> o O: T70
multiplicative fragment
_O: 1
0.7 O: T w v

O : T, sucey (@), suces ()
0:7,«

O : Ty, sucei(B)  Og : Ty, succy(5)
@17 @2 . Tla TZ? /8

exponential fragment

0, suce, (V)W) . T , O : sucey () -
©:1T,v O:m
focusing
O: 1,0 s
OQ,p: 7T

Table 4: A dyadic sequent calculus X, for MELL in uniform notation

3.1 A Dyadic Calculus

The dyadic calculus Y, incorporates a specific handling of formulas of type v.
Sequents are split into two zones where formulas in one of the zones originate
from v-type formulas only. Compared to the dyadic calculus in [And92], ¥}, ad-
ditionally introduces the notion of multiplicities, i.e. an eager handling of generic
formulas. Multiplicities are an essential ingredient of matrix characterizations.

Definition 17 A dyadic sequent S is a pair (0O, T) of multi-sets of signed formu-
las. Usually, we write © : T instead of (©,Y). © is called the unbounded zone
and T the bounded zone of S.

Definition 18 A multiplicity function pu for a dyadic sequent © : Y is a function
which returns a natural number (') for each signed subformula ¢’ of any signed
formula ¢ in © or T.

14



A sequent calculus for dyadic sequents is depicted in table 4. Derivations of a
dyadic sequent S are defined with respect to a fixed multiplicity function p for S.
The multiplicity function is important whenever the v-rule is applied. A signed
formula ¢ is derivable in X, if - : ¢ is derivable for some multiplicity .

Example 19 We prove the signed formula ¢ = ((A®!A4)® 7(AL), +) in X). We
abbreviate subformulas of ¢ as shown in the table.

lab(@) ¥ ———— aziom
T . !
(A®!A)3 7(A1) | ap 00010, G100
| K !
AR!A Boo  aviom " G00105Op1g
A 000 * 10000, 0100 o a focus
14 + 1 apoo, 0010 010 - #0010 T
! 7001 ——————— focus oo
A a 0010 - Qpo0 Op10 - 7001 3
0010 .
7(AL) Vo1, 9010, %10 * 00 Foo v
! » Y01 .
AL / -t Boo, Vo1
00105 919 oy
!
A 0100, A100

Except for the shift from unary to dyadic sequents there are a couple of differences
between ¥ and XJ.

e The rules aziom and 7 of ¥} can be applied even when the context is not
empty. Though, these formulas must be in the unbounded zone. Rules for
explicit weakening of v-type formulas are omitted in 3.

e The v rule of ¥, uses the notion of multiplicity. Thus, the rule for explicit
contraction is omitted in 3.

e While the 7 rule in ¥} requires all formulas in the context to be of type v
the 7 rule in X, requires all formulas of the context to be in the unbounded
zone. All formulas in the unbounded zone are copied to the premise.

e Y has an additional rule focus for moving a formula from the unbounded
zone into the bounded zone.

Remark 20 Note that formulas of type w and v are handled differently in X,
with respect to weakening. While w-type formulas are weakened by a separate
rule v-type formulas are weakened as members of the unbounded zone at the
axioms. Alternatives to this approach would be possible. An explicit weakening
rule could be introduced for the unbounded zone. Alternatively, w-type formulas
could be handled lazily in the rules 7 and aziom. The choice made will have an
impact on the resulting matrix characterization.

Lemma 21 If there exists a proof P for the dyadic sequent © : T then there
exists a proof P for the dyadic sequent ©,0' : T for any multi-set ©’ of signed
formulas.

Proof. The proof is by induction over the structure of P and is quite straightfor-
ward. The rules aziom and 7 allow an arbitrary set ©'. In all other rules each
element of ©' is propagated from the conclusion to one premise and the induction
hypothesis can be applied.
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Theorem 22 (Completeness) If there exists a proof P; in X} for a unary se-
quent S; = Y, vg such that any signed formula v € T is contracted in P; and that
v contains only signed formulas of type v which are not contracted in P; then
there exists a multiplicity po for which the dyadic sequent Sy = suce; (vz) : Y can
be derived in X2

Proof. Lemma 16 shows that we can restrict ourselves to the case where P; is a
contraction normal proof. We construct a multiplicity ps and a proof P, for Sy
by induction over the structure of P;.

Base case: Py consists only of a single rule application. Two cases need to be
distinguished.

i If Pl = { <A7+>7<Aa_> wriom then PQ = { ':<A7+>7(A7_> aziom'
oprlz{?T thenPZZ{FT.
Induction hypothesis: The theorem holds for any subproof P; of P;.

Induction step: We make a case distinction depending on the last rule application

in Pl.

T,Vz,0 suce1 (Vg):Y,0

P P}
o If Pl = T,Vz,succi (o) o then PQ = sucer (Vz):Y,sucei (0) o

e The cases where one of the rules o or 3 is applied as the last rule in P; can
be shown similarly.

P P
o If PI = { T,.Vs " then Pg = suce1 (Vg):Y

W
T, Vzw sucer (Vg):Tw

e The case where w is applied can be shown with the help of lemma 21.

) focus®

sucer (Vg),sucer (v):T

P, Py
o I[f P = Y, Vz,succi (v) then P, = suce1 (Vz):T,sucer (v
YVor

P P}
o If P = m - then Py = succy (Vg):sucey () -

Vem sucel (Ve):m
P; Py
o If P, = Y,V wntl o then Py, = sucer (Vg),sucer (v)*2(): 1 .
T, Ve succy (Ve):T v

with pa(v) =n+ 1 and pe(v') = ph(v') for any ' # v.
¢" abbreviates n subsequent applications of ¢ on the same formula.

In the above case distinction we have considered only the cases where the side
formulas of the last rule application in P; are not of type v or otherwise are
contracted in P;. In the case where side formulas of type v are not contracted in
P1 an additional application of v in P, is needed in order to move them into the

2Throughout this report for a multi-set of formulas © and a function f (like suce;) which is
defined on elements of @ we abbreviate the multi-set {f(e) | e € O} by f(O).
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unbounded zone. Besides this little difference the proof is identical to the one of
the case which has been shown above.

Theorem 23 (Correctness) Let ©F and ©, be multi-sets of signed formulas
which contain only positive and negative signed formulas respectively. If there
exists a proof P, in ¥, for a dyadic sequent S, = ©F,0, : T with multiplicity
po then there exists a proof P; in ¥} for the unary sequent S; = 70} ,!0,, 1.3

Proof. We construct a proof P; for S; by induction over the structure of the
proof P,. We show how the rule applied last in P, can be translated into a set
of ¥/ -rules. For applications of the rules w and ¢ we abbreviate a sequence of n
rule applications e.g. by w™. For brevity we sometimes leave n unspecified and
write e.g. w*.

Base case: Py consists only of a single rule application.

aziom

If — — — aziom th _ (A,+),(A,—) .
* P = {ofetani P {761*,!@;,<A,+>,<A,—>

=T

—_— T T «
o If P, = { of,05:T then P; = { o o 7 w*,
Induction hypothesis: The theorem holds for any subproof P} of Ps.
Induction step: We make a case distinction depending on the last rule application
in PQ.

o

Py Pi
o If PZ = @T,@;:T,succl(o) then PI = ?@T,!@;,T,succl(o)
Ztem2rn N,
01,0,:T,0 r0t,10,,T,0

e The cases where one of the rules a or 3 is applied as the last rule in Py can
be shown similarly.

v

Py
o if PZ = @T,@z_,succl(u)“Z(”):T

ot,e,: Ty
P
then if ps(v) > 0 then Py = < r0f 107, w2 .
rofto; Ty ¢
Pi
and if ps(v) = 0 then Py = of e, x
rof,107,Tv

™

P P
o If Py = 07,0, :sucer () i then P = 207,10, ,suce ()

o057 707,105 ,w
Py Py
o If P, = { ©f.0,:7(FT) then P, = o7 10, T (F,1)
T o (g Py oo e
07,05 ,(F,Tyr rof oy, 1, (1F,1)

3For a multi-set of formulas © and a unary connective ¢ (like ? or !) we abbreviate the
multi-set {{cF,k) | (F,k) € ©} by cO.
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3.2 A Triadic Calculus

The triadic calculus 3§ extends X, by the focusing principle. Under the focusing
principle a formula must be focused before it may be reduced. In order to focus a
formula no other formula must be focused. Once a formula is focused a sequence
of rule applications on that formula is enforced. Hence the focusing principle
considerably reduces the non-determinism in proof search.

Definition 24 Let ¢ be a signed formula, © and T be multi-sets of signed for-
mulas, and = be a sequence of signed formulas. Then the triple © : T f} = as well
as © : T |} ¢ are triadic sequents. © is called the unbounded zone, T the bounded
zone, and ¢ as well as = the focused zone.

Definition 25 A multiplicity function p for a triadic sequent © : T {t = or
© : T || ¢ is a function which returns a natural number for signed subformulas
of each signed formula in ©, T, =, and ¢.

The triadic sequent calculus is depicted in table 3.2. Derivations of a triadic
sequent S are defined with respect to a fixed multiplicity function p for S. The
multiplicity function is important whenever the rule v is applied. A signed for-
mula ¢ is derivable in ¥} if the sequent - : ¢ 1} - is derivable for some multiplicity

L.

Example 26 We prove the signed formula ¢ = ((A®!A4)% 7(AL), +) in X5. We
abbreviate subformulas of ¢ as shown in the table.

—————— aziom
- ; ':a00107a0100ﬂ'
-:4000,001001" ariom - defocus
Pttt . Ma,
defocus 001011@g100 .
lab(@) 2 “:a000TM@010 : —————— switch
1 -:a0004}@010 switch 7..(10010{}%100 ol
(A®14)% 2(AL) | ao Za000loor0 oo Toh,
-1a0000010 focus,
AR!A Boo T focus, oh 10-a0010 -
o10:60001) — defocus
A ————— defocus o
@000 0010:-11@000 ok 0910 MMaoo10
A T001 oor0:-Uagy SWHC 0)10:-Um001
T
A @0010 0010,001¢ 4800 focus,
0010,0h10" .
?(A-L) o1 010, ?10 Booft d@fOCU,S
1 / 0010,0010 1800
A 0010,0019 -
-:Boo,Yo1
, N6 N
A a01007a0100 o ]
switch
oOCUus
o) f 2

After a formula has been moved into the focused zone by an application of focus,
or focus, a couple of rule applications on that formula are enforced. After the
formula has been focused the zone is in synchronous mode ({}). The synchronous
mode enforces that exactly one formula is in the focused zone. This formula is
reduced if it is of type o, # or m. While the mode remains synchronous after
an application of o |} or 3 it switches to asynchronous mode when 7 is applied.
For all other types the only applicable rule is switch which enforces a switch into
asynchronous mode. In asynchronous mode a (possibly empty) list of formulas
is allowed in the focused zone. Formulas of type o, w, a, and v are reduced.
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tdentity

O: <A7 +>7 <A7 _> TT ' aziom

negation

©: T | sucei (o) ©: 7T 1 =, suce (o)
o150 °Y o 11z0 °f

multiplicative fragment

. O:TH= "
O:71- O:TH=Z,w

O: T 1 E, suce (), succe ()
O:TH=Z a

©1: Ty sucei (B) ©Og: Yol sucey() 5
@17@2 : T17T2 U ﬂ

exponential fragment

0, succ; (V)W) . T 4 = , O : - 1 sucey ()
O:THZv O:- |
focusing
0:7T 0:7T
0:7, = s 0:7 .
5T Tflr - defocus Wﬂz switch™*

* In focus, ¢ must not be of type lit or 7.
*ok In defocus ¢ must be of type lit, 7, 3, or .
x %% In switch ¢ must be of type lit, 7, w, a, or v.

Table 5: A triadic sequent calculus ¥4 for MELL in uniform notation
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Only an application of v moves the reduced formula into the unbounded zone.
Formulas of other types must be moved from the focused zone into the bounded
zone. When no formulas are left in the focused zone either one of the axiom
rules aziom, 7 or one of the focus rules may be applicable. That this principle of
rule application is complete was discovered by Andreoli [And92]. It is called the
focusing principle. ¥ differs from Andreolis triadic calculus mainly in the eager
handling of resources by multiplicities.

Since the focusing principle enforces a sequence of rule applications after a for-
mula has been focused less permutations of rule applications must be considered
in proof search. Thus, the representation of the search space is more compact
compared to a calculus like ¥}. The matrix characterization developed in this
report exploits the focusing principle. However, it yields a representation with
even less redundancies than a calculus like ¥4 can.

Lemma 27 (Inversion) Let ©, T be multi-sets of signed formulas and = be a
list of signed formulas.

L If © : Ty ) sucei (B), 21 and Oy @ Ty ) succy(F), Z2 can be derived in X
then so can ©1,09 : 11, Yo, B =1, Zo.

2. If ©: 7 9 ¢, = can be derived in ¥} then so can O, : T {} =.

3. If ©: T {} = can be derived in ¥} and = = Z'| i.e. the two sequences differ
only in the order of elements, then © : T {} =’ can be derived in ¥} as well.

Proof. The proofs of the inversion lemmas 1-3 are rather long. They can be
carried out along the same lines as the proofs of the inversion lemmas in [And92].

Theorem 28 (Completeness) If there exists a proof P, in X} for a dyadic
sequent Sy = O : T for a multiplicity po then there exists a multiplicity pz such
that the triadic sequent S3 = © : - f# T is derivable in 3}.4

Proof. We construct a proof Ps for S3 by induction over the structure of P,. For
applications of the rule defocus we abbreviate a sequence of n rule applications by
defocus™. For brevity we sometimes leave n unspecified and write e.g. defocus™.
Base case: P3 consists only of a single rule application.

azriom

If — { ST asiom ]y — O:(A,+4),(4, )1 .
i PZ { O:(A,+),(A,—) then P?) { —6:-ﬂ<A,+>,<A,—) defocus2

o if PZ - { o then P?) = { St ;efocus
N7

Induction hypothesis: We assume that the theorem holds for any subproof P} of
PZ-

Induction step: We make a case distinction depending on the last rule application
in Py. By lemma 27.3 we do not need to consider triadic sequents © : T {} =
where the main formula ¢ of the last rule application in P, does occur anywhere
within =. It is sufficient to consider the case where ¢ is at the end of =.

4Note that the in the first place Y is used as a multi-set of signed formulas but in the second
as a sequence. Lemma, 27.3 gives us the necessary freedom to do so.
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P} Pi
o If Py = ©:7,succi (0) o then P; = ©:'Y,succi(0) "

0:71,0 O:7T,0

e The case where one of the rules w, a, or v is applied as the last rule in Py can
be shown similarly. For the application of the v-rule we set u3(v) = pa(v).

Py Py
o If Pg = ©1:Y1,succi(B) ©2: Y9, succa () 5 then
©01,02:71,72,8
O1: - Ty, sucer () and Oy @ - To, sucez(F) can be derived by hypothesis.
From lemma 27.1 we conclude that ©,,0, : 8 {} T, T, is derivable. By
application of defocus we receive a proof for ©1, 04 : - 1} T1, 1o, .

Py
Py O:fysucer ()
o If PZ = { O:sucer () then P3 = W T .
or " o
O
P
o If P, = { O:T,p then
G focus

© : - T, is derivable by hypothesis. By lemma 27.2 we can conclude,
that ©,p : - T can be derived.

Theorem 29 (Correctness) If there exists a proof P; in Xf for a triadic se-
quent S3= O : Tt Z (or S3 = O: T || ) with multiplicity p3 then there exists
a proof Py in X, for the dyadic sequent Sy = © : T, = (or Sy = O : T, ) with
multiplicity ps.

Proof. We construct a proof P, for Sy by induction over the structure of P;. We
show how the rule applied last in P; can be translated into a set of ¥f-rules.
Base case: Py consists only of a single rule application.

o if P3 = {m aziom  then ’P2 — {m aziom
° 1f'P3: {@:Tﬂ~T thenPQZ {ET

Induction hypothesis: We assume that the theorem holds for any subproof P} of
Ps.
Induction step: We make a case distinction depending on the last rule application

in Pg.
Py P}
o If P3 = ©: Y succy (o) then PQ = ©:7,succi (o)
©:TYo v 0:7,0 ¢

e The cases where one of the rules o 1}, w, o, 3, v, or 7 is applied as the last
rule in P3 can be shown similarly.

Py P}
o If Py = { O: Ty then Py = { O:T,p )
@01 focusy 00T focus
Ps
O1: 7,
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e The cases where one of the rules defocus or switch is applied as the last rule
in P3 can be shown similarly.

3.3 Relation to Andreolis Work

Andreoli [And92] developed his triadic calculus as a foundation of the logic pro-
gramming language LinLog. His calculus is intended for actual proof search. The
dyadic calculus served as an intermediate step in the development of the triadic
calculus from an ordinary sequent calculus like the one in table 1.

Our calculi ¥}, and X§ are quite similar to Andreolis calculi. However, they are
not intended for proof search but both calculi serve as intermediate steps in the
development of a matrix characterization. For this purpose Andreolis calculi were
modified in some aspects. The most fundamental change is the introduction of
the notion of multiplicities, i.e. the eager handling of contraction. Besides that
the following adaptions have been made.

e In order to reduce the number of sequent rules an adaption of Smullyans
uniform notation to linear logic is used rather than a restriction to one-sided
sequents.

e The unbounded resources are distributed onto the premises when the S-rule
is applied. In Andreolis calculi they are copied to both premises.

e The axiom and 7 rule are modified.

One should note that Andreolis calculi cover all of first order linear logic while ¥,
and X} cover only propositional MELL. Using Andreolis results, an extension
to full linear logic would be possible. Nevertheless, in order to serve as a useful
intermediate step in the development of a matrix characterization for these frag-
ments further modifications to Andreolis calculi will be necessary. What proper
modifications would be is currently not known.

4 Position Calculus

The position calculus presented in this section is the last intermediate step in the
development of the matrix characterization. In this calculus sequents of positions
are the objects to be proven. Thus, positions play the role of signed formulas
in the previous section. Although positions might appear subtle at first sight
they simplify the proof of the characterization theorem in the subsequent section
tremendously. The difference between an occurrence of a subformula in a formula
and an occurrence in a derivation is reflected by the difference between the notion
of basic positions and the notion of positions.

In subsection 4.1 and 4.2 the concepts of basic position trees and position trees are
introduced. These trees are constructed from formula trees using a set of general
rewrite rules and a specific multiplicity. Position forests are defined in subsec-
tion 4.3. They are the fundamental syntactic concept since position sequents (in
subsection 4.4) and matrices (in section 5) are defined as position trees. A calcu-
lus for position sequents is presented in subsection 4.4 and is shown to be sound
and complete.
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4.1 Basic Position Trees

Definition 30 A basic position bp has a label lab(bp) € wff, a polarity pol(bp) €
position with type lit is called atomic.

Note that a signed formula can have a type from {«a, 3, v, 7,0, T, w, lit} only. The
additional types ¢™, M, ¢¥ and ¢¥ may be associated with basic positions.
Basic positions which have one of these types are called special basic positions.
In the sequel we will identify (non-special) basic positions and the corresponding
signed formulas.

We use bp as a meta-variable for basic position. a, 3, v, 7, o, T, w, oM, PYM, ¢,
and ¥¥ are used as meta-variables for basic positions of the respective type. a
is used as meta-variable for basic positions of type lit. o, B, v, 11, o, T, Q, ®M,
UM ®F and WP are used as meta-variables for multi-sets of basic positions of
the respective type.

The function con returns for a basic position bp the main connective of lab(bp).
sform(bp) = (lab(bp), pol(bp)) is the signed formula corresponding to bp.

Let V be a set of basic positions and E be a set of pairs of basic positions. For a
directed graph G, = (V, E)) where V' is the set of nodes and E is the set of edges
we define a couple of rewrite rules in figure 1. A rewrite rule R can be applied if a
subgraph matches the left hand side of the rule. The dotted arrows match edges
with the direction depicted or linear subgraphs which contain only nodes of type
o where all edges in the subgraph have the direction depicted. A special case are
the rewrite rules R, and R,. They can only be applied if a node of type [it or
7 has either no incoming adjacent edge or there is at most one incoming edge
which is adjacent to a linear subgraph which contains only o-type basic positions
and has no incoming edge. When a rewrite rule R is applied to a subgraph G’
then G' may be rewritten to the right hand side of R. Note that the rewrite rules
remove edges, insert special basic positions and edges but do not remove any
nodes. The label and polarity of an inserted node equals that of the successor
node, i.e. lab(¢p™) = lab(succ,(¢™)) and pol(¢™) = pol(succ,(¢™)). The only
exception are inserted nodes of type ¥ for which they equal the corresponding
value of the predecessor node. The rewrite rules are fundamental for the definition
of basic position trees.

The basic position tree for a signed formula ¢ is a directed tree T, = (V, E) where
the set of nodes V' is a set of basic positions. 7, originates from the formula tree
of ¢ where each node in the formula tree is understood as a basic position. In
order to construct the basic position tree 7, the rewrite rules in figure 1 must
be applied as long as any of them are applicable. From now on we will consider
basic position trees only rather than arbitrary graphs of basic positions.

The function succ; and succo are redefined for basic position trees such that for
a node v € V, sucei(v) and sucea(v) equal the left and right successor of wv,
respectively. The orderings < and < are defined from sucec; and succy like for
formulas, i.e. bp; < bps iff bps = succy (bpy) or bpy = sucea(bpy). < is the transitive
closure of <.
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Example 31 We explain the application of a rewrite rule at the example of the
rule RE. The formula tree for ((A®!A4)% ?(At), +) is displayed below. Signed
subformulas are abbreviated like in example 26.

@0

/\

2000 7001 °010
20010 20100

Boo is a successor of ag. There is no node in between the two nodes. Thus, the
subtree consisting of ag, [y, and the edge which links these nodes matches the
left hand side pattern of the rule Rg. The tree is rewritten to the tree depicted
below.

0 /\
/\ ol oor
Bgo vo1 l l
/\ l > Boo ©010
2000 T001 2010 /\ l
l l 2000 T001 20100
20010 20100

20010

This tree is neither a formula tree nor a position tree. The rewrite rules Rg ,
R7, and R are still applicable. After these rewrite rules have been applied the
following basic position tree results.

¢00 vo1
l
Boo ¢80
l
¥{do 001 2010
I l
#0%0  “8o1o 9100
.
@000 ¢bi10 #3700
20010 20100

The rewrite system in figure 1 separates layers of subformulas within a formula
tree. A rewrite rule Rg inserts special positions wherever a subformula of type
t; has a subformula of type t,. Thus, layers of type t; are separated from layers
of type t,. The rewrite system is confluent and Noetherian, i.e. the order of
rule applications does not matter and the insertion of positions will eventually
terminate.

Basic positions are a technique to identify different occurrences of a formula
within a formula tree. Theoretically, it is not essential how basic positions look
like and how they are assigned to the nodes of a tree as long as they have the
above properties. However, for technical reasons we define a specific denotation.
Basic positions are denoted by strings over {0, 1} which point into a basic position
tree. Let T, = (V, E') be a basic position tree. The denotation of a basic position
is assigned recursively to vertices from V. The root of 7, is denoted by ’0’. If
a vertex v with denotation 'p’ has one successor vertex v; in the tree then vy is
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Figure 1: Insertion of special positions for basic position trees
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denoted by ’p0’. If v has two successors v; and vs then vy is denoted by 'p0’ and
vy by 'p1’. In the sequel we will sometimes refer to positions by their denotation.
Note that we have used a similar numbering technique already in example 12.
Appending 0 to the position of a node with two successors results in the position
of the left successor and appending 1 in the position of the right successor. Thus,
the denotation of a basic position indicates the path from the root of a tree to a
specific node.

Example 32 The basic position tree for the formula ((A®!A)® ?7(AL), +) is de-
picted below. Each node of the tree is marked with the basic position. The
types and connectives for the basic positions are depicted in the table. Note,
that position 00010 has connective ! and not A.

bp Ptype ( bp) con(bp) | bp Ptype ( bp) con(bp) 0
0 a 3 00 oM ® e
000 | ® 0000 | pM A o+ i
00000 | ¢M A 000000 | [it A
0000 0001 0100

0001 b ! 00010 F !

. 00000 00010 01000
000100 | M A 0001000 | {7t A
o1 y ? 010 oF n 000000 000100 010000
0100 o 1 01000 ,‘pM A 0001000 0100000
010000 | M A 0100000 | {7t A

4.2 Position Trees

There is a one-to-one correspondence between non-special basic positions in a
position tree and occurrences of subformulas in a formula tree. In this subsection
we define the concept of positions as an analog to occurrences of subformulas
in a derivation. A position tree originates from a basic position tree by copying
subtrees with a root of type v according to a multiplicity function.

A position p has a label lab(p), a polarity pol(p), and a type Ptype(p) like a
basic position. We denote positions by strings over {0,1,0"} _py. Essentially,
denotations of positions equal that of basic positions where copies of v-positions
are distinguished by different exponents.

We use p as meta-variable for positions. «, 3, v, 7, o, T, w, oM, Y™, ¢*, and
P are used as meta-variables for positions of the respective type. a is used as
meta-variable for positions of type lit. «, 3, v, I, o, T, Q, ®M, WM &F and
UE are used as meta-variables for multi-sets of positions of the respective type.
= is used as meta-variable for lists of positions.

Definition 33 A multiplicity function p for positions is a function from positions
to natural numbers. For any position p, u(p) is called the multiplicity of p.

Remark 34 The difference between basic positions and positions is required
because of the resource sensitivity of linear logic. The positions in [Wal90] cor-
respond to our basic positions. The logics investigated there are not resource
sensitive. For a resource sensitive logic the notion of multiplicity must be based
on positions rather than on basic positions.
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Definition 35 Let 7, = (V}, E,) be a basic position tree and p be a multiplicity
function. We define the set of positions Pos for T, and p recursively. Each
position p is associated with a corresponding basic position bp(p).

e According to the denotation of basic positions the root of 7 is denoted by
0.

— 0 is a position in Pos with bp(0) = 0.
e Let p be a position in Pos with corresponding basic position bp(p).

— If Ptype(p) € {a, 3} then p0 and pl are positions in Pos with corre-
sponding basic positions bp(p0) = bp(p)0 and bp(pl) = bp(p)1.

— If Ptype(p) € {o, 7, o™, M ¥ ¥} then p0 is a position in Pos with
corresponding basic position bp(p0) = bp(p)0.

— If Ptype(p) = v then for every m < p(p) p0™ is a position in Pos with
corresponding basic position bp(p0™) = bp(p)0.

Definition 36 Let 7, be a basic position tree and p a multiplicity function. Let
V be the set of positions for 7, and u. Let E be a set of edges such that £ contains
an edge from position p to all positions p0, p1, and p0’ which are contained in V.
Then 7 = (V, E) is a position tree for 7, and p.

We define functions succ, succy, and succt for i € IN. If p has a left successor p0
in the position tree then suce;(p) = p0 holds. If p has a right successor pl in the
position tree then succy(p) = pl holds. If p has a successor p0® in the position
tree then succi(p) = p0’ holds. In all other cases the functions are undefined.
The functions lab, con, pol, type, and sform are defined with respect to basic
positions, i.e. lab(p) = lab(bp(p)), con(p) = con(bp(p)), pol(p) = pol(bp(p)),
Ptype(p) = Ptype(bp(p)), and sform(p) = sform(bp(p)).

Position trees can be represented graphically like basic position trees.

Example 37 The position tree for the formula ((A®!A)% 7(A+), +) and the mul-
tiplicity p with (01) = 2 is depicted in figure 2.

4.3 Position Forests

As formulas can be represented by formulas trees, sequents can be represented
by sequent forests, i.e. collections of formula trees. For each formula in a sequent
there exists a tree in the corresponding forest. Different zones in a sequent are
represented by different zones in the forest. For example, a sequent forest for a
dyadic sequent has one zone with formula trees from the unbounded zone and
one zone with formula trees from the bounded zone. Triadic sequents for signed
formulas require sequent forests with three zones.

Example 38 The sequent forest for the sequent og10,0p9 : - Tt Boo from exam-
ple 26 is depicted below.
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bp Ptype ( bp) con(bp)

0 @ 3

00 M ®

000 B ®

0000 oM A o~

00000 oM A Of oL

000000 lut A 000 otol  o10
0001 T ! 0000 0001 o100 01020
00010 »F ! 00000 ooilo o010t 00 010£00
000100 oM A 000000 000100 010}000 0103000
0001000 llt A 0001000 0100000 010%0000
01 v ?

010',0102 oF A

010%0,01020 0 €

010%00,010200 M A

010000,0102000 oM A

01010000,01020000 | [it A

Figure 2: A Position Tree (Example 37)

°010  » °p10 S Boo

| l N

7
20100 20100 2000 7001

20010

For a triadic sequent © : T ff Z or © : T |} ¢ we define the corresponding basic
position forest Fy. Like a triadic sequent the sequent forest F, has a mode from
{11, I}. Fp has an unbounded, a bounded, and a focused zone. For each formula
in ©, T, or = and for ¢ the corresponding basic position tree is added to the
respective zone. Then the basic position trees are modified at their roots by the
rewrite rules in figure 3. The exponent of a rewrite rule defines the zone in which
the rule can be applied. The rules R(;), R?, R?, and R¥ can be applied on trees
in the unbounded zone, bounded zone, focused zone (mode 1) and focused zone
(mode |}), respectively. Note that the rewrite rules RI and RZ require a node
of type o at the root of the pattern.

Example 39 The basic position forest for the sequent 0g19, 0y : - It Boo from
example 26 is depicted below.

#8510 S TR | 8000
| T
©0100 20100’ 'l)(%oo 70001
| | |
#37000 #8000’ #8000 ¥80o10
|
¥810000 ¥¥0000" 2000000000 #360100
l
20100000 a0100000" 20001000

A position forest is constructed from a basic position forest F, and a multiplicity
i. Fach tree in Fy is modified to a position tree by the transformation described
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Figure 3: Insertion of special positions for basic position sequents

in definition 35 and 36. The modifications by rewrite rules from figure 3 to the
roots of the trees are preserved.

Position forests will be the fundamental syntactic concept for the subsequent
subsections and sections. In the position calculus introduced in subsection 4.4
position forests are understood as sequents. In the presentation of the matrix
characterization position forests will be understood as matrices.

4.4 A Position Calculus

Definition 40 A position sequent is a position forest with three zones and a
mode from {1}, {}}.

Usually, we denote a tree by its root if the rest of the tree is obvious from the
context. Due to the definition of the rewrite rules, trees in the unbounded zone
always have a root of type ¢, trees in the bounded zone always have a root of
type ¢, trees in the focused zone always have a type from {a, v, 0,w, »"} when
the sequent is in asynchronous mode and have a root of type 3, 7, o, ¥M, or ¥
when the sequent is in synchronous mode.

A sequent calculus ¥j4s for position sequents is depicted in table 4.4. Note that,
derivations of a position sequent S are defined with respect to a fixed multiplicity
function p for S.

A close look at the position calculus reveals the motivation of the insertion of
special positions. When a triadic sequent is transformed into a position sequent,
the rewrite rules R? guarantee that each tree in the unbounded zone has a root
of type ¢¥ and the rewrite rules R]?r guarantee that each tree in the bounded
zone has a root of type ¢™.> These are hereditary properties, i.e. the rewrite

5The question mark represents any of a, 3, v, 7, 0, w, T, a for which a rewrite rule is defined.
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rules in figure 1 are defined so that in a position calculus derivation all sequents
have these properties. The insertion of a node of type ¢ by a rewrite rule R
expresses the potential of a subtree to move into the unbounded zone during a
derivation. Similarly, the insertion of a node of type ¢ by a rule expresses the
potential of subtrees to move into the bounded zone during a derivation.

For most rules in the position calculus there is a one-to-one correspondence to
a rule of the triadic calculus (depicted in table 3.2). However, there are subtle
differences. The 7 rule of the position calculus does not switch the mode of the
sequent. The mode is switched by the rules ¢ and ¥ only. The " rule
corresponds to the switch-rule of 5. A rewrite rule R guarantees that after a
node of type 7 always a node of type ¥ is inserted. Thus, the 7 rule together
with the 1% rule resemble the 7 rule of the triadic calculus. The reduction of
the 7 type formula and the switching of the mode are split into separate rule
applications. The 1 rule requires an empty bounded context.

Theorem 41 (Completeness) If there exists a proof P; in X} for a triadic
sequent S3 =0 : T Zor S3=0:7T | ¢ for a multiplicity 3 then there exists
a multiplicity g3 such that the corresponding position sequent Sj is derivable in
Epos.

Proof. We denote the position tree corresponding to a signed formula ¢ by .
The list of position trees corresponding to a list of signed formulas = is denoted
by =. We denote the multi-set of position trees corresponding to multi-sets of
signed formulas © and T by © and Y. The position sequent corresponding to
a triadic sequent Sy is denoted by S’ According to the definition of position
sequents S3 = ®F : ®M { = or S5 = ®F : ®M || & holds where = contains only
positions with type in {a, v, 0,w, ¢} and ¢ has a type in {3, 7,0, M ¥},

We construct a multiplicity i3 and a proof /?5; for 573 by induction over the struc-
ture of Ps.

Base cases:

o It Py = { aanon “m then S3 = 0 : (A, +), (A, =) - ¢} and ¢3!

occur at the roots of (A4, +) and (A, —) according to the rewrite rule R .
No other special position is inserted into the two trees. Ptype(¢})!) = lit =

Ptype(¢3"), lab(p)") = lab(¢y"), and pol(4)') # pol(dy"). The aziom rule
is applicable on .S5.
Po= {8 ol ot 1-

e The case where P3 consists only of one application of the 7 rule can be
shown similarly.

aziom

Induction hypothesis: The theorem holds for any subproof P5 of P;.
Induction step: We make a case distinction depending on the last rule application
in P3. Only the first case is shown in full detail.

Py ~

o If P3 = o:r|succy (o) then S; = ®F : &M || 0.
O:T|o u

Let S3 = ©: T | succi(o). We distinguish the following cases depending

on the type of suce;(0) and show that 5” = O:7 | suce, (6 (0).
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axiom*

OF . M || sucey (o OF : dM 1) 2, sucey (o
0 sen(o) 0 2 o)
OF DM o OF DM =0
B OF : M 4 =
OE  gM 4. T OF . M ) =, w
OF : M ) 2 suce, (o), sucey ()
O M =
O M || suce (B) OF : dN || sucey(B) 5
OF, @y 1, 03 I B
OF : M || suce () OF succt(v),. .. ,succ’f(y)(l/) LM =
m v
oL oM || 7 oL oM = v
OF : M || suce,(oF) ; OF : dM || sucei (¢M) I e
ocus ocus
O, g - oM - O &M, ) 1) i
QL oM oM 4 = oM OF : M 1 sucey (P o
ooV 2, gl @7 : o |
B suce, (¥F) N
Sy
* In aziom must hold Ptype(sucei(pM)) = lit = Ptype(sucey (¢p37)),

(o1
lab(¢1") = lab(¢3"), and pol(¢1") # pol(d}').
ok In 7 must hold Ptype(succ,(¢)) = 7.
%% In focus, must hold Ptype(succi(¢M)) & {lit, }.

Table 6: A position calculus Xy,s for MELL in uniform notation
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— If sucey(0) = a then §§ =0:7T| W with suce; (M) = «a according
to R?. The rewrite rule R? ensures that in S3 the position M occurs
between o and a.

— If sucey (o) = [ then S} = ©: Y | B. In S no position occurs between
o and f3.

— If succy(0) = v then §g = ©: 7T | M with suce, (™) = v according
to R¥. The rewrite rule R ensures that in Ss the position ¢ occurs
between o and v.

— If suce; (0) = 7 then ;= © : T L . In Ss no position occurs between
o and .

— If succy(0) = o then S, = © : T | 0. In S; no position occurs
between o and o'.

— If suce, (0) = w then S5 = O : T | M with suce; (™) = w according
to R”. The rewrite rule R” ensures that in S3 the position Y™ occurs
between o and w.

— If sucey(0) = 7 then S = 6:7 U M with suce, (v™) = ¢M and
suce (M) = 7 according to R?. This rewrite rule ensures that in Sj
the positions ¥ and ¢™ occur between o and 7.

— If succi(0) = a then S5 = O : T | M with suce, (™) = ¢M and
suce (¢") = a according to R?. This rewrite rule ensures that in Sj
the positions ¥ and ¢™ occur between o and a.

By induction hypothesis a proof 553 for §§, exists. We construct a proof for

S3 by an application of o |}.

~ _ P

Ps = O: T succel (3)
— == _ O U

©:To

The case where o {} is the last rule applied in P3 can be shown similarly.

The case where w is the last rule applied in Pj is trivial since no rewrite rule
inserts special positions at the root of a tree consisting just of an w-type
formula which is in the focused zone in mode 1.

Py -~
If Py = O:TE,succ (a),succ(a) then S3= ©: T &, a.
0:TN=E,« @
Let S3 = © : T ff =, sucei(a), sucey(a). According to the rewrite rules

R and R holds Sj = © : T ¢ 2, suce; (@), sucey(@). Thus, after an
application of « OI/I_V§3 the induction hypothesis can be applied.
— P
Ps = O:T(E,8uccy (a),5uccs (&)
O:T1E,a

P, Py
If Py = { ouYilsucci(B)  ©2:T2lsucca(B) then
_ U 01,02, Tl B
Sg = @1,@2 . TI;TZ U ﬂ Let Sg = @1 . Tl »U SUCCl(ﬁ) and Sé’ =
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Oy : Ty | suces(B). Accordmg to the rewrite rules R¥ and R*B holds

‘Si’), = 0: 11 suce (B) and S” = ‘T, succy (). Therefore, after an
application of 3 the induction hypothe51s can be applied.

_ P Pi

Ps = § &Tisucei(5) 6, albsuccy(d) 3

01,02:T1, T2

Py - -
If Pg = { @,S’U,CCI( )H(U) THE then Sg = @ : T ﬂ E,/Ij

v
0T,

Let S, = © succl( )M¥) Y 2. According to the rewrite rules R? and

RY holds S’ = 0, succl( D)) : T ft =. Therefore , after an application of

v the induction hypothesis can be applied.

_ Py

Ps = (:),succ%(ﬁ),...,succ’f('j)(ﬁ):fﬂi
—— v
O:TNE,p

P, o
1 P; = {@ then §,= &:- 7

O:-{r
Let S5 = © : - f) suce; (7). According to the rewrite rules R5 and R7 holds
S’ = O : T | sucei(sucey (7)) where sucei (7) = . Therefore, after an
application of 7 and 1" the induction hypothesis can be applied.
Ps
’?5; _ O:-fsucey (sucer (7)) WE
O:-lJsuce (7)
——— 7
o:|r
Py -~
If Ps = 0: 7y then S3 = ©,0: 7 9 -
50Tt focus,

Let S5 = ©: 7T || ¢. According to the rewrite rules R? and R?¥ holds

S’ = 0:7 I @. Therefore, after an application of focus,; the induction
hypothesis can be applied.

— P
Ps = O: Y suce (3
79, =, focus,
P; - -~
If P3 = { OTUs g s then S5 = ©: 71,01 -
CHY 2

The side condition of the focus, rule ensures that Ptype(p) ¢ {lit,7}. Let
S; = © : 7T | ¢ According to the rewrite rules R]T,r and RY holds
SN'{,, = 0:7 I @. Therefore, after an application of focus, the induction
hypothesis can be applied.
Ps
Ps = O: Y sucey (3
O: 1,31

focus1
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Py -~~~
If P3 = ToNE then S3= ©: 7T 1 Z, 5.
L P?) { gi#’Eﬂ; defOC'U/S €n 3 ﬂ 790

The side condition of the defocus rule ensures that Ptype(p) ¢ {lit, T, 3,7}.

Let S3 = ©: 71,9 f Z. According to the rewrite rules R7 and R? holds

St = O : :f, oM = and a position ¢ occurs at the root of @. Therefore,
after an application of ™ the induction hypothesis can be applied.

_ P
Py = 6152 o
O:TNE,5
3
o [f Py = oy . then S3=0:71 | .
R switce

The side condition of switch ensures that Ptype(p) € {lit, 7,w,a,v}. Let
5 =0 :7T f . According to the rewrite rules R? and R? holds S3 =

0:7 1, ¢ and a position 1™ occurs at the root of ¢. Therefore, after an
application of ﬁM the induction hypothesis can be applied.
Py

Ps = O:Tpsucc1(y) |

Theorem 42 (Correctness) If there exists a proof P in X5 for a position
sequent S = ®F : ®M f Zor § = ®F : ®M || ¢ for a multiplicity x4 then
there exists a multiplicity p3 such that the corresponding triadic sequent S5 =
sform(®F) : sform(®M) 1} sform(Z) or Sz = sform(®F) : sform(®M) | sform(yp)
is derivable in ¥f.

Proof. The proof can be carried out by induction on the structure of P. An
application of one of the rules aziom, o |}, o, 7, w, a, B3, v, ¥F, focus,, focus,,
oM, or M in P results in an application of the rule aziom, o ||, o I}, 7, w, a,
B, v, m, focus, , focus,, defocus, or switch, respectively in the proof Ps of S3. If
the rule 7 is the last rule applied in P then no corresponding rule application is
required in Pj.

5 A Matrix Characterization for MELL

A matrix characterization is a representation of the proof search space. Compared
to a search space representation by a sequent calculus matrix characterizations
can avoid many redundancies and are therefore better suited as a basis for au-
tomated proof search. Bibel distinguishes three kinds of redundancies which are
typical for sequent calculi but which can be avoided by a good matrix characte-
rization [Bib93]. These are notational redundancies, redundancies due to permu-
tabilities of rules, and redundancies due to irrelevant reductions of formulas.

Notational Redundancies
The top-level objects in sequent calculus proof search are sequents. In a naive im-
plementation of a sequent calculus based proof search, for every rule application
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large parts of the conclusion are copied from the conclusion to the premises wi-
thout change. This notational redundancy would cause a major overhead during
proof search. One might argue that the application of techniques like e.g. struc-
ture sharing circumvent these redundancies. However, using such techniques one
complicates the representation considerably. In matrix based proof search, nota-
tional redundancies need not be avoided explicitly since the formulation of the
search space representation is already free from these redundancies.

During sequent calculus proof search formulas are decomposed by the application
of rules in a stepwise manner until an axiom-rule becomes applicable. The reduc-
tion of a connective requires the application of a calculus rule. In matrix based
proof search formulas need not be decomposed. Proof search is driven by connec-
tions. Each connection corresponds roughly to the application of an axiom-rule
in the sequent calculus. In general, both, sequent based and matrix based proof
search require some sort of bookkeeping in order to make backtracking possible.
However, the bookkeeping in the sequent based approach must take the stepwise
decomposition of formulas into account while in the matrix based approach only
the axiom-rules need to be considered.

Permutabilities of Rules

If the order of two subsequently applied calculus rules is irrelevant for a proof
they are called permutable. For a sequent calculus some rules might be permutable
while others are not. Certain rules might be permutable in just one direction,
i.e. the application of one rule can be permuted towards the root of a proof tree if
the other rule has been applied before but not the other way round. The order of
non-permutable rules can be understood as the essential part of a sequent proof.
Permutabilities on the other hand cause an unnecessary non-determinism for
proof search since all possible orders of rule applications are considered. Different
techniques for removing such non-determinism from sequent calculus based proof
search have been developed. Andreoli’s focusing principle is one such technique.
However, a good matrix characterization captures only the essential parts of a
proof. This corresponds to the order of applications of non-permutable rules. No
elaborated techniques need to be employed in order to remove the permutabilities
from the search space because they do not occur in the representation.

Irrelevant Reductions

A very striking feature of matrix characterizations is the removal of irrelevant
reductions, i.e. reductions of formulas which do not take part in an axiom. Since
sequent calculus based proof search is connective-oriented such reductions must
be considered. Matrix based proof search is connection oriented. Because connec-
tions correspond to axioms, in general, irrelevant reductions are not considered
during matrix based proof search.

The matrix characterization for MELL presented in this section is a very com-
pact search space representation. Compared to a sequent calculus search space
representation (like by /) it avoids many redundancies. Since our matrix charac-
terization is based on Andreoli’s triadic calculus it is free from all permutabilities
which are removed by his focusing principle.
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Our matrix characterization for MELL is defined in a style which was first used
by Wallen for intuitionistic logic and modal logics [Wal90]. It is based on the ma-
trix characterization for multiplicative linear logic in [Man96] and [KMOS97] and
extends that characterization by multiplicative constants and by exponentials.
After the presentation of some fundamental concepts in subsection 5.1, the com-
plementarity of MELL matrices is defined in subsection 5.2. The correctness and
the completeness of the matrix characterization is demonstrated in section 5.3
and 5.4, respectively. The fundamental characterization theorem is stated in
section 5.5.

5.1 Fundamental Concepts

Definition 43 A matriz M is a position forest F with three zones and a mode
in {{,f1}. The multiplicity of M is defined as the multiplicity of F.

We use M as meta-variable for matrices.

The set of positions in a matrix M is denoted by Pos(M). Motivated by s, we
define some subsets of Pos(M). The set of aziom positions AzPos(M) contains
all positions with principal type 7 or lit. Axiom positions can take part in the rules
aziom and 7. The set of weakening positions WeakPos(M) contains all positions
with principal type w and all positions of type v with pu(r) = 0. Weakening
positions can be weakened explicitly by the rules w or v (for p(v) = 0). The set
of leaf positions is defined as LeafPos(M) = AzPos(M) U WeakPos(M). The
set B(M), M (M), IM (M), ¥ (M), and T¥(M) is the set of all positions in
Pos(M) of type 3, oM, M ¢¥ and ¥, respectively. The set of special positions
is defined as SpecPos(M) = @M (M)UTM (M)UDF(M)UTF(M). The functions
Pos, AzPos, WeakPos, LeafPos, 3, ®M, UM &F WP and SpecPos are applied
on matrices as well as on position trees.

Definition 44 A path is a set of positions. We define the set Paths(T) of paths
for a position tree 7 recursively.

1. The set P = {0} which contains the root of 7 is a path through 7.

2. If P U {a} is a path through 7 then P U {succ;(«), succa(a)} is a path
through 7.

3. If PU{p} is a path through 7 then P U {succ;(5)} and PU{succs(3)} are
paths through 7.

4. If PU{p} is a path through 7 and Ptype(p) € {o, 7, oM, M ¢¥ ¥} then
P U {succy(p)} is a path through 7.

5. If PU{v} is a path through 7 and u(v) > 0 then P U UK#(V){succﬁ(l/)} is
a path through 7. -

We extend the definition of Paths to sets of position trees. The set of paths
through a set of position trees Fy is defined recursively.

e If 7, = () then Paths(Fs) = 0.
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o If 7y, = {T} then Paths(F;) = Paths(T).

o If 7, = {7} UZF, with F, # 0 then
Paths(Fs) = { P, U Po| P, € Paths(T), Py € Paths(F})}.

We extend the definition of Paths to matrices. The set of paths through a matrix
is defined by

Paths(®” : M || o) = Paths(®” U @M U {p}) and
Paths(d” : &M ) — Paths(®” UM U )

We use P as a meta-variable for paths.

A path through M which is a subset of LeafPos(M) is called a path of leafs.
The set of paths of leafs through M is the subset of Paths(M) which contains
all paths of leafs through M. We denote the set of paths of leafs through M
by LPaths(M). Note that positions from LeafPos(M) are not deconstructed in
the recursive definition of paths. Thus, a path of leafs contains only irreducible
positions.

A comparison of the reduction rules in the definition of paths through a matrix
with Ypos-rules shows that there is a close relation between paths and sequents
in a derivation. Let S be a position sequent (i.e. a matrix) then for any X,s-
derivation of S and any position sequent S’ which occurs in that derivation there
is a path P through S which is a superset of S', i.e. S' C P.

Definition 45 A connection in a matrix M is a subset of LeafPos(M). A
connection is either a two-element set {pi,po} where p; and py are positions

with Ptype(pi) = lit = Ptype(ps), lab(p1) = lab(ps), and pol(p:) # pol(pa) or a
one-element set {p;} with Ptype(p,) = 7.

We use C' as a meta-variable for connections and C as a meta-variable for sets of
connections.

A connection C' is on a path P if C' C P holds, i.e. a connection is on a path if it
is contained in it. There is a correspondence between a connection and the main
positions in the application of an ariom or 7 rules in ¥,s. From the correspon-
dence between paths and sequents it becomes apparent that the existence of a
connection on a path P shows the potential of the sequents represented by P to
result in an axiom.

Definition 46 Let M be a matrix. A weakening map for M is a subset of
O (M) U WeakPos(M).

We use W as a meta-variable for weakening maps.

Intuitively, in the corresponding Ypys-proof the elements of a weakening map
are weakened explicitly by applications of w or v (positions of type w or v) or
implicitly in an application of aziom (positions of type ¢%).

Definition 47 Let M be a matrix. A prefix is a string s from (& (M) U

UM(M)URE(M)UTE(M))*. For any position p € Pos(M) we define its prefiz
pre v (p) by induction on the structure of p.
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e Base case (p = 0):

— If Ptype(0) = ¢, Ptype(0) = ™, Ptype(0) = ¢, or Ptype(0) = ¢*

then pre((0) = ¢, pre, (0) = ¥", prey (0) = ¢y, or pre, (0) = g,
respectively.

— If Ptype(0) ¢ {¢", 9", 9%, ¢"} then pre, (0) =e.
e Step case (p = p'i with i € {0,1} U<, 10™}):

— If Ptype(p) = oM, Ptype(p) = M, Ptype(p) = ¢¥, or Ptype(p) = ¢F
then prey(p) = prey (p')dy', prea(p) = prea(p) ), prey(p) =

pre(p') f, or prey,(p) = prey(p') f, respectively.

— If Ptype(p) ¢ {d™M, ™M, ¢¥ T} then pre,,(p) = pre,(p').

The prefix of a position p can be retrieved from the position tree by collecting all
special positions on the path from the root of the tree to p. If p; < p, holds for
two positions pi, ps € Pos(M) then pre,,(p;) is an initial substring of pre ,(ps).
We define a substring relation / such that for two strings ¢; and %, holds t; /t, iff
t is an initial substring of ty, e.g. pre (p1)Lpre r,(p2) holds.

Definition 48 A multiplicative prefix substitution is an idempotent mapping
oy 2 M — (@M U UM)* An exponential prefiv substitution is an idempotent
mapping op : ®F — (@M U VM U OF U UE)*. A multiplicative exponential prefix
substitution is an idempotent mapping oz : (PMUBF) — (PMUTM UPEYTE)*
such that the restriction of opp to ®M is a multiplicative prefix substitution and
that the restriction to ® is an exponential prefix substitution.

Assuming o, as the identity on positions from ¥ and ¥ we denote the
homomorphic extension of a prefix substitution oy to strings from (&M UM U
O U WE)* also by opyp.

In the sequel we refer to a multiplicative exponential prefix substitution oyg
simply by o. A prefix substitution substitutes elements from ® and ®% by
strings of special positions. Therefore, elements from ®" and ®F are called
variable special positions while elements from UM and UF are called constant
special positions.

5.2 Complementarity

Definition 49 A set of connections C spans a matrix M iff for every path P €
LPaths(M) there is a connection C' € C which is on P, i.e. C' C P.

Definition 50 Let M be a matrix. The pair (C, W) consisting of a set of connec-
tions C and a weakening map W is linear for M iff the following conditions are
satisfied:

e For any two connections C,Cy € C with C # Cy holds C; N Cy = ().

e For any position p in any connection C' € C holds for any predecessor ¢ of
p in M that ¢¥ ¢ W.

38



Definition 51 A pair (C, W) consisting of a set of connections C and a weakening
map W has the relevance property for P if for any p € LeafPos(M) one of the
following conditions holds.

e There is a connection C' € C with p € C.
e p € W (Thus, also p € WeakPos(M).).
e There is a ¢ € W which is a predecessor of p.

Definition 52 Let M be a matrix, C be a set of connections for M, and W
be a weakening map for M. The cardinality of the pair (C,VV) is defined as the
sum of the connections and the number of -type positions which are affected by
weakening.

card((C,W)) = |C| + Z 1B(6")].

pEew

Definition 53 Let M be a matrix, C be a set of connections for M, and W be
a weakening map for M. The pair (C, W) has the cardinality property for M if

card((C,W)) = B(M) + 1.

Definition 54 Let M be a matrix and Pos be the set of positions of M. A
prefix substitution o is admissible for M if the following condition is fulfilled.

e o results from unification, i.e. if puZo(pre,,(v)) for some v € SpecPos(M)
then pu = o(pre(u)).

Definition 55 Let M be a matrix. The pair (C, W) consisting of a set of connec-
tions C and a weakening map W is unifiable if there exists an admissible prefix
substitution o : (M (M) U ¥ (M)) — (@M (M) U IM (M) U PF (M) UTF(M))
such that the following conditions hold.

e For any connection C' € C holds Vpy,ps € C.o(pre(p1)) = o(prea(p2))-

e For any p' € (WnN WeakPos(M)) there is a connection C' € C such that for
p € C holds o(pre,(p'))Lo(pre (D).

e For any ¢¥ € (W N ®F) there is a connection C' € C such that for p € C
holds o (pre((¢")) = o (pre(p)).

If the conditions hold for an admissible prefix substitution o then o is called a
unifier for (C, W).

Note that in this setting the third condition is equivalent to that for some o
holds o (pre v (¢"))Lo(pre s (p)). The equivalence can be shown along the lines
mentioned in remark 20. We require the property as stated for technical reasons.
The proof of lemma 66 is simpler with this formulation.

Definition 56 A matrix M is complementary iff there are a set of connections
C, a weakening map W, and a string substitution ¢ such that the following
conditions are satisfied.
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C spans M.

e (C,W) is linear for M.
e (C,W) has the relevance property for M.
e (C,W) has the cardinality property for M.

e o is an unifier for (C,W).

If the conditions are satisfied for M, C, W, and ¢ then M is complementary for
C, W, and o.

The complementarity of a matrix ensures the existence of a corresponding 4s-
proof. Each requirement captures an essential aspect of such a proof. Thus, there
are relations between basic concepts in matrix proofs and Xy,s-proofs. Paths are
related to sequents. A connection on a path expresses the potential to close a
Ypos-branch by an application of aziom or 7 which involves the connected positi-
ons. A weakening map W contains all positions which are explicitly weakened by
the rules w and v (for u(v) = 0) or implicitly weakened in aziom and 7. The uni-
fiability of prefixes guarantees that connected positions can move into the same
Ypos-branch and that positions in W can be weakened in some branch. Linea-
rity and relevance resemble the lack of contraction and weakening for arbitrary
formulas, while cardinality expresses the absence of the rule of mingle depicted
below, i.e. a proof can only branch at the reduction of 3-type positions.

Fl — AI FQ — AQ
[Ty — AL Ay
Since complementarity captures the essential aspects of ¥ps-proofs but no unim-

portant technical details the search space is once more condensed. Problems like
e.g. context splitting at the reduction of S-type positions simply do not occur.

mingle

5.3 Correctness

The unifiability property requires that each position in a weakening map W is
related to some connection C' in a set of connections C. Possibly, a position p in
W is related to more than one connection. For the remainder of this subsection
we consider a relation where each p € W is related to exactly one connection in
C. Let AssSet(C) be the union of C' and the set of all positions in W which are
related to C'. A matrix can be seen as a collection of trees, i.e. a forest. We add
for each connection C additional edges to that graph which link all positions in
AssSet(C). We define a relation AssRel on trees of the matrix such that AssRel
holds for trees which are connected by connections. The relation is extended to
an equivalence relation. The equivalence classes of that relation correspond to
maximally connected subgraphs of the matrix.

Definition 57 Let M be a matrix, (C, W) be a pair consisting of a set of connec-
tions C and a weakening map W, and o be a prefix substitution. We define a
relation AssRel on position trees. Let 7; and 75 be position trees in M.

AssRel(Ty,T2) iff 3C € C.3py € Pos(Ti),p2 € Pos(Tz).p1,pe € AssSet(C)
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ﬁ'1 B'n_’—l
Figure 4: (-Chain

Let ~ be the reflexive transitive closure of AssRel. ~ is an equivalence relation. A
mazximally connected component in M is a non-empty set of position trees which
is an equivalence class of ~.

We define a function FCons which reduces a set of connections to the connections
of which all elements are within a certain forest.

Definition 58 Let F be a forest of position trees and C be a set of connections.
We define a function FCons by

FCons(F,C) = {CeC|VpeCpec Pos(F)} .

Remark 59 For the considerations which are carried out in the sequel, a defini-
tion of FCons by

FCons(F,C) = {C eC|Vpe AssSet(C).p € Pos(F)}
would be equivalent.

Definition 60 Let F be a forest of position trees and W be a weakening map.
We define a function FWeak by

FWeak(F, W) = {peW/|pec Pos(F)} .
The following two definitions are visualized in figure 4 and 5.

Definition 61 Let M be a matrix, C be a set of connections, and WV be a wea-
kening map. A (-chain for C and W in M is a sequence ((pi1, Po1), - - -» (Pins Pon))
such that for all p;; and p,; with p;; # p,; there is a C; € C with p;j,po; €
AssSet(C;) and such that for all p,j, p;j+1 there is a position §; € Pos(M) with
B;<po; and ;< p;j41 and there is no position p € Pos(M) with p<p,j, pLPijt1,
and 3;<p. Further, for all j;, jo with j;7#72 must hold C;, # Cj,.

Definition 62 Let M be a matrix, C be a set of connections, and VW be a
weakening map. A [-circle for C and W in M is a -chain ((pi1, Po1), - - -» (Pins Pon))
for which there is a position 3 € Pos(M) such that f<p,, and f<p;; and that
there is no position p € Pos(M) with p<p,j, p<Lpij+1, and [;<p.

Note that the existence of a [-circle and the existence of a unifier for M, C,
and W are mutually exclusive. If a (-circle exists for C and W in M then there
cannot be a unifier and vice versa.

41



-1 Bn—1"

Figure 5: 3-Circle

Lemma 63 Let M be a matrix, (C, W) be a pair consisting of a set of connec-
tions C and a weakening map VW, and o be a prefix substitution. We assume
that

e (C,W) is linear for M,
e (C,W) has the relevance property for M, and
e o is a unifier for (C, W).
For any maximally connected component F in M holds
B(F)| < [FCons(F,C)|+ Zyrew|B(67)|

Proof. We abbreviate FCons(F,C) by Cx and FWeak(F, W) by Wx. According
to definition 57, 58, and 60, (Cz, Ws) is linear and relevant for F. o is a unifier
for <C_7:, W]:> and F.

The proof of the lemma is by induction over the size of B(F).

Base case: |B(F)| =0

The proposition holds because F is not empty and because the relevance property
holds for Cx, Wy, and M, i.e. |Cx| > 0 and Tyecyy|B(¢F)| = 0.

Induction hypothesis: The lemma holds for |3(F)| < n + 1.

Step case: Assume that all roots in F have type (3 or are atomic. Otherwise, if
there is no root of type « or o the base case can be applied, and if there is a root
of type a or o this root can be removed yielding a forest F’ with fewer positions
for which linearity, relevance, and unifiability are fulfilled.

Choose a root § € Pos(F) which separates F into two maximally connected
components, i.e. the removal of 3 results in maximally connected components
F, and Fs. Such a root exists because otherwise there would be a circle which
contradicts the assumption that o is a unifier. Let C; = FCons(F,C), Cy =
FCons(F,,C), Wy = FWeak(Fy, W), and Wy = FWeak(F, W).

The following equations hold for F; and F.

BF) = IBFI)+IB(F)|+1 (1)
Crl = 1G] +1C.] (2)

Furthermore, one of the following two equations holds.

Sprews 1B(07)] = Sprew, 1B(0")] + Sprew, |B(6")] (3)
Serewy | B(07)] Sorew [B(@7)| + Sprew, |B(07)| + 1 (4)
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holds.
According to the induction hypothesis and the equations above the following
relations hold.

B(F) = |BF)|+IB(F)|+1
< G+ Egrew, [B(67)] — 1+
Cal + Egmem, [B(67) =1+ 1
= |Cl|+E¢EeW1|5(¢E)|+
Cal + Syrem,|B(67)] —
< Cx| + Sprew,1B(07)] — 1
< Cx| + Bprew, | B(0")]

Thus, the proposition holds for 3(F) = n.

Corollary 64 Let M be a matrix, (C, W) be a pair consisting of a set of connec-
tions C and a weakening map W, and o be a prefix substitution such that all
preconditions of theorem 63 hold and that (C, W) has the cardinality property
for M. Then there is exactly one connected component in M.

Definition 65 Let o : (®¥UDPM) — (¥ UTF UM UTM)* be a prefix substitu-
tion. Let o’ : (®¥ UPM) — (®F UTF UPM UTM)* such that for all ¢ € &F UM
holds o'(¢) = ¢. We define the grounded substitution o* for o by 0 = o' o 0.

Note that o2 equals o except for that all variables are removed from the images.
If o is a unifier for (C, W) then so is o*.

Lemma 66 Let M = ®F : &M || ¢)F be a matrix, (C, W) be a pair consisting of
a set of connections C and a weakening map W, and o be a grounded prefix subs-
titution such that all preconditions of corollary 64 hold. For any p € LeafPos(M)
there exists a string s such that o(pre ,(p)) = 1¥{.s holds.

Proof. We prove the lemma by contradiction.

Assume that the set Auz = {p € LeafPos(M)|3s.c(prey(p)) # ¥F.s} is not
empty.

Let F be the position forest of all trees in M with leafs in Auz. If one leaf of a
tree is in Aux then all leafs of that tree are in Auz due to the way in which special
positions occur in position trees. In a prefix, variable and constant positions
occur mutually alternatingly. Let F be the position forests which contains all
trees from M which are not in F.

By corollary 64 M has only one connected component. Thus, there is a tree T
in F with a position p € Pos(T) such that there is a tree 7’ in F with a position
p' € Pos(T") such that there is a connection C' € C with p,p' € AssSet(C). If
possible we choose T and p such that Ptype(p) € {lit,7}. Otherwise, we choose T,
p, T', and p' such that Ptype(p') € {lit, 7}. Due to the definition of connections
at least one of the two choices is possible.

We distinguish the two cases.

1. Ptype(p) € {lit, 7}
There is a string s such that ¢f.s = o(pre,(p'))Lo(pre,(p)) because of
the unifiability condition. This contradicts the choice of T.
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2. Ptype(p') € {lit, 7}
Let ¢ be the root of 7. Because of the unifiability condition there is
a string s such that o(¢) = o(prey(p))Lo(M)p’ = ¢F.s or there are
strings s, s, and a position 1 € ¥¥(M) U TM (M) such that o(¢).1).s =
o(pre(p))Lo(prey,(p')) = ¢F.s'. According to the way special positions
are inserted before positions of type w and v, this contradicts the choice of

T or the unifiability condition.

Due to the definition of prefix substitutions, a position of type ¥ may not occur
in the value of a position of type ¢ under o. Therefore, ® must be empty.

Definition 67 We define a function wgt which returns the weight of a matrix,
i.e. a natural number.

wgt(®F . M || F)=3" e @ruam) (2 % [Pos(9)]) + 2 % [Pos(F)| + 1
wgt(®F : M N Z) =374 gruen)(2 * [Pos(d)]) + 20,e=(2 * [Pos(p)| + 1)

An ordering <qt on matrices is defined by
M <yg M'iff  wgt(M) < wgt(M”).

Theorem 68 (Correctness) Let M be a matrix, C be a set of connections, W
be a weakening map, and o a string substitution. If M is complementary for C,
W, and o then a position calculus proof P exists for M.

Proof. We prove the theorem by Noetherian induction over the weight of matrices.
There is no base case. In the following considerations we assume o to be a
grounded substitution. As we pointed out earlier any unifier can be transformed
into a grounded one.

Induction hypothesis: We assume that the theorem holds for any matrix M’ with
M <wgt M.

Step case: We make a case distinction over the structure of M.

Recall from subsection 4.4 that for a matrix ®¥ : ®M ) = any position in = has
a type from {w, 0, o, v, '} and that for a matrix ® : ®M || p the position p has

a type from {o, 8,7, M ¥},

o M =dF .M 4.
We distinguish two cases.

1. For all ¢ € &M U (®¥ \ W) holds succi(p) € LeafPos(M).
Due to the way special positions are inserted holds ®¥ = () and for all
oM € ®M holds Ptype(suce,(¢™M)) € {lit,7}. Because of the relevance
property there is ¢ € ®M such that {succ,(¢)} € C or there are
M ol € ®M such that {sucei(p}!), sucei (¢))} € C.

If there is no ¢3' € ® with ¢’ ¢ C then the aziom rule is applicable
in the first case and the 7 rule in the second case.

Let us assume that there is a ¢’ € ®M with ¢! ¢ C. Because of the
relevance property this leads to a contradiction with the cardinality
condition:
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BM)+1 = 3 ny B(87) +1
< Z¢>Eewﬂ(¢E)+2-
<

card({(C, W))

2. There exists ¢ € @ U (¥ \ W) with suce(¢) ¢ LeafPos(M).

We determine a position ¢/ € ®M U (®F \ W). If o(¢p) = ¢ then we

take ¢’ = ¢. Otherwise, holds o(¢) = ¢.s for some ¢y € YF UM Due

to the insertion of special positions and the admissibility of o, there

is exactly one position p of type ¢¥ or ¢M with p < 1. We choose

¢ =p.

With our choice of ¢’ holds o(¢') = «.

We distinguish two cases:

— ¢ e dF\W

Let M' = ®F\ {¢'} : ®M || sucei(¢'). Then focus, can be
applied on M with premise M'. LPaths(M) = LPaths(M'),
LeafPos(M) = LeafPos(M'), B(M) = B(M') and for all p €
Pos(M') with p ¢ Pos(¢') holds pre,,(p) = preye(p). Since
o(¢') = e, o is a unifier for M" and (M, W). Therefore, M’ is

ocus|

P
complementary for C, W, and 0. P = { M ; is a proof for
M

M by induction hypothesis because wgt(M') = wgt(M) — 1.
— ¢ e oM
Let M' = ®% : M\ {¢'} || succi(¢'). Then focus, can be
applied on M with premise M'. LPaths(M) = LPaths(M'),
LeafPos(M) = LeafPos(M'), B(M) = B(M') and for all p €
Pos(M') with p ¢ Pos(¢') holds pre,,(p) = pre,u(p). Since
o(¢') = €, o is a unifier for M" and (M, W). Therefore, M’ is
complementary for C, W, and 0. P = i is a proof for
M

ocus9

M by induction hypothesis because wgt(M') = wgt(M) — 1.

e M =0 :0M = w
Let M' = ®F : @M 1} Z. Then the w rule can be applied on M with pre-
mise M'. LPaths(M) = LPaths(M'), LeafPos(M) = LeafPos(M') U {w},
B(M) = B(M’') and for all p € Pos(M’') holds pre,,(p) = pre s (p).
(C, W\ {w}) has the relevance property for M'. Therefore, M’ is com-
plementary for C, W\ {w}, and 0. P = % is a proof for M by

M
induction hypothesis because wgt(M') = wgt(M) — 3.

e M=30L:dM = 0
Let M' = ®F : ®M { = succi(0). Then the o {} rule can be applied
on M with premise M'. LPaths(M) = LPaths(M'), LeafPos(M) =
LeafPos(M'), B(M) = B(M') and for all p € Pos(M') holds pre,,(p) =

fPl
pre e (p). Therefore, M’ is complementary for C, W, and 0. P = § M’ ot
M
is a proof for M by induction hypothesis since wgt(M') = wgt(M) — 2.
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e M=030F:0M = «
Let M' = ®F : &M 4§ = suce; (@), succy(a). Then the « rule can be app-
lied on M with premise M'. LPaths(M) = LPaths(M'), LeafPos(M) =

LeafPos(M'), B(M) = B(M') and for all p € Pos(M’) holds pre,y,(p) =
P
prey (p). Therefore, M' is complementary for C, W, and 0. P = { M

[0}

M
is a proof for M by induction hypothesis because wgt(M') = wgt(M) — 1.

e M=03F:dM =, v
Let M’ = ®F succl(v), ..., succ"”)(v) : ®M {} =. Then rule v can be ap-
plied on M with premise M'. LPaths(M) = LPaths(M'), LeafPos(M) =
LeafPos(M'), B(M) = B(M’) and for all p € Pos(M') holds pre,,(p) =
'P/
pree (p). Therefore, M' is complementary for C, W, and 0. P = ¢ M
M
is a proof for M by induction hypothesis because wgt(M') = wgt(M) — 3.
o M=% oM { =, oM
Let M' = ®F : @M ¢M ¢ =, Then the ¢™ rule can be applied on M with
premise M’'. LPaths(M) = LPaths(M'), LeafPos(M) = LeafPos(M'),
B(M) = B(M') and for all p € Pos(M') holds pre,(p) = pre,u(p). The-
P
refore, M’ is complementary for C, W, and 0. P = M oM is a proof
M
for M by induction hypothesis because wgt(M') = wgt(M) — 1.

e M=3F:dM | o

Let M' = ®F : ®M || succ,(0). Then the o || rule can be applied on M with

premise M'. LPaths(M) = LPaths(M'), LeafPos(M) = LeafPos(M'),

B(M) = B(M') and for all p € Pos(M') holds pre,(p) = pre,u(p). The-
P

refore, M’ is complementary for C, W, and 0. P = ¢ M ol
M

for M by induction hypothesis because wgt(M') = wgt(M) — 2.

is a proof

e M=0F:0M ||
According to corollary 64, M has exactly one connected component. The
removal of 3 yields two connected components. M' = ®F : &M || suce, ()
and M" = ®F : ) || sucey(B) can be constructed for for suce; (3) = p; and
succa() = po such that each M’ and M" has one connected component,
PruUdy = dF FNdY =0, oY UPY = &M and M N DY = 0.
Let C; = FCons(M',C), Wy = FWeak(M', W), Co = FCons(M",C), and
Wy = FWeak(M" ,W).
The following equations hold.
cuc'=c,c'nC" =0, WUW'=W,and W nNW" =1.

The following properties hold.
— C' (C") spans M’ (M").
— {C",W') ((C",W")) is linear for M" (M").
— (C",W') ((C",W")) has the relevance property for M’ (M").
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— o is a unifier for M’ (M").
The following relations hold.
BM)[+ 1+ |BM")|+1

|BM)|+1

= [C] + Z4eew|B(0")]

> |+ Sgeenw|B(97)|+
IC"| + geenn|B(0")]

From lemma 63 we conclude with |C'] + Z4eeny [B(0F)| > |B(M')| + 1 and
IC"| + Zyeewn|B(¢")] > |B(M")] + 1 that the cardinality property holds
for C', W', M' as well as for C", W', M".

Therefore, M’ is complementary for C', W', and o and M" is complemen-

P
tary for C", W', ando. P= < M M

p is a proof for M by induction

M
hypothesis because wgt(M') < wgt(M) and wgt(M") < wgt(M).

M=0F:dM | 7

Let M’ = ®F : ®M || succ; (7). Then the 7 rule can be applied on M with

premise M'. LPaths(M) = LPaths(M'), LeafPos(M) = LeafPos(M'),

B(M) = B(M’) and for all p € Pos(M') holds pre,(p) = preu(p). The-
PI

refore, M' is complementary for C, W, and 0. P = { m' _ is a proof for

M
M by induction hypothesis because wgt(M') = wgt(M) — 2.

M = dF . M || yM

Let M' = ®F : ®M {4 succ;(¢¥M). Then the ™ rule can be applied
on M with premise M'. LPaths(M) = LPaths(M'), LeafPos(M) =
LeafPos(M'"), B(M) = B(M'’) and for all p € Pos(M') with p ¢ Pos(yp)
holds pre ,(p) = pre vy (p).

We construct a substitution o’ from o. ¢’ equals o except for that ¥ is
removed from all values. The prefixes of positions in M equal the prefixes

M except for that 1] is missing. Thus, ¢’ is a unifier for M’ and (C, W).
PI

Therefore, M’ is complementary for C, W, and o'. P = M oM is a
M

proof for M by induction hypothesis because wgt(M') = wgt(M) — 2.

M = F . M || F

Let M' = ®F : . f succ,(4)F). Then the ¥ rule can be applied on M with
premise M'. ®M is empty according to lemma 66. Thus, rule ¥ is appli-
cable. LPaths(M) = LPaths(M"), LeafPos(M) = LeafPos(M'), B(M) =
B(M') and for all p € Pos(M') with p ¢ Pos(¢F) holds pre,,(p) =
pre e (p).

We construct a substitution ¢’ from o. o equals o except for that ¥ is
removed from all values. The prefixes of positions in M equal the prefixes

M except for that 1f is missing. Thus, ¢’ is a unifier for M’ and (C, W).
P/

Therefore, M’ is complementary for C, W, and ¢'. P = M P is a
M

proof for M by induction hypothesis because wgt(M') = wgt(M) — 2.
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5.4 Completeness

We define functions ConSet, WeakMap, and red which respectively return a set
of connections, a weakening map, and a reduction ordering for a Xpys-proof of
a matrix M. From the reduction ordering a substitution can be constructed.
We show that M is complementary for the constructed set of connections, the
weakening map, and the substitution. Each requirement of complementarity is
demonstrated separately.

Definition 69 Let M be a matrix and P be a X)s-proof for M. We define a
function ConSet which calculates a set of connections for M from P by recursion
over the structure of P.

° C’onSet( OF:pM MY aziom ) = {{8U001(¢{\4)78U001(¢§4)}}

o ConSet (o= ) = {{succi(6))}}

e If the last rule applied in P is one of 0 ||, o 1}, w, a, v, T, focus,, focus,, ™,
M, ¢F )P then it has one premise. Let P’ be the corresponding subproof.
ConSet( P ) = ConSet( P")

e If the last rule applied in P is 3 then it has two premises. Let P’ and P”

be the corresponding subproofs.
ConSet( P ) = ConSet( P' ) U ConSet ( P" )

Definition 70 Let M be a matrix and P be a ¥Xps-calculus proof for M. We
define a function WeakMap which calculates a weakening map for M from P by
recursion over the structure of P.

o WeakMap ( o717 girg. ™ ) = ®F
o WeakMap ( P}y ) = @F

e If the last rule applied in P is one of o |}, o 1}, , 7, focus,, focus,, ¢™, ™M,
¢”, ¥ then it has one premise. Let P’ be the corresponding subproof.
WeakMap ( P ) = WeakMap ( P')

e If the last rule applied in P is w then it has one premise. Let P’ be the
corresponding subproof.

el ,
WeakMap | _27:2Y0= ) = WeakMap ( E ) U{w}

E. oM =
PE.dM N2 w F: TN

e If the last rule applied in P is v then it has one premise. Let P’ be the
corresponding subproof.

— If u(v) =0 then
/

Pl
WeakMap ( U= ) = WeakMap( e ) U {v}

SE.pMNE v

— If u(v) > 0 then WeakMap ( P ) = WeakMap ( P')
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e If the last rule applied in P has two premises with subproofs P’ and P”
then
WeakMap ( P ) = WeakMap ( P' ) U WeakMap ( P" )

Definition 71 Let M be a matrix and P be a Xj4s-calculus proof for M. We
define a function red which returns the ordering red(M) C SpecPos(M)? for P
by recursion over the structure of P.

Py red( @E:¢{\4 é\/[ﬂ“ aziom ) :w
. red(WT):(/)

e If the last rule applied in P is one of 0 |}, o 1, w, a, v, m, ¢M, or ¢¥ then
it has one premise. Let P’ be the corresponding subproof.

red (P ) =red (P")
o If M=o ¢F:dM . and M' = ®F : ®M || suce (¢F) then
P :
i (38 sy ) =red (B ) U(6E0) | € Specos( a0}

o If M =F:dM ¢M {. and M' = &F : &M || succy(¢]) then
P :
ot ( 3 sy ) =rea (T ) DA ) [ SpecPos( M),

o If M=o :dM | M and M' = ®F : ®M 1 suce, (M) then
P /
red ( %’ oM ) = red ( % ) J{(vM,p) | p € SpecPos(M')}.

o If M=0F:. || M and M' = ®F : . 1 suce; (¢F) then
i /
red ( %’ oF ) = red ( % ) J{(¢f,p) | p € SpecPos(M')}.

e If the last rule applied in P is 3 then it has two premises. Let P’ and P”
be the corresponding subproofs.
red (P ) =red (P )Ured ( P")

For any proof P the relation red(P) is irreflexive, antisymmetric, and transitive.
Thus, it is an ordering. Instead of (py,ps) € red(P) we also write p;Cpps. Cp
expresses the order in which special positions are reduced in P. Therefore, we
call Cp the reduction ordering of P.

Lemma 72 Let M be a matrix, P be a position calculus proof for M, and
p1,p2 € (VM(M) U T¥(M)) be positions in M with p; # p,. If there is a
position p € SpecPos(M) with p;Cpp and pyCpp then either piCpps or poCppy
holds.

Proof. 1f there is a position p with the above properties then p; and ps are redu-
ced in the same branch of P.

That op resembles a tree ordering is fundamental for the following definition
as well.
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Definition 73 We construct a mapping op : (®M (M) U SE(M)) — (M (M) U
UE(M))? from Cp. Let ¢ € (PM (M) U ®F(M)) be a variable special position
in M. We define op(¢) = Z =9y ... 4, if Z € (FM (M) U TF(M))* is a string
with the following properties. Since op resembles a tree ordering, Z always exists
and is unique.

sortedness For all i € {1,... ,n — 1} holds ¢;Cpth;i1.
prior reduction For alli € {1,... ,n} holds ;Cpo.
exclusivity For all p € SpecPos(M) holds p < ¢ = pCpify.

maximality For any ¢ € (M (M) U ¥¥(M)) which does not occur in Z with
W p¢ there is a p € SpecPos(M) with p < ¢ and YTpp.

op is idempotent by construction because it is a grounded prefix substitution.

Lemma 74 op is admissible for M.

Proof. Let v € SpecPos(M) with pulop(pre (v)). The proof is by contradiction.
Assume that pu # op(pre,(u)). If pulop(prer,(u)) then u occurs in p. This
violates sortedness or prior reduction. Thus, there is a position w € p (p = p'wp")
for which p'w/op(pre,(w)) does not hold. Let w be the first position in p with
this property. The existence of w violates sortedness, prior reduction, exclusivity,
or maximality. This contradiction implies that pu = op(pre,,(u)) holds.

5.4.1 The Spanning Property

Lemma 75 If P is an arbitrary position calculus proof for a matrix M then the
set of connections ConSet(P) spans M.

Proof. We prove the lemma by induction over the structure of P.
Base case: P consists only of a single rule application.

o If M =03 :¢pM ¢} - and P = { j aviom
then for all P € LPaths(M) holds succi (M), succ,(¢)') € P by defini-
tion 44. By definition 69 holds ConSet(P) = {{succ;(¢M), suce; (1)} }.
Thus, ConSet(P) spans M.

e The case where 7 is the last rule applied in P can be shown similarly.

Induction hypothesis: We assume that the lemma holds for any subproof P’ of P.
Induction step:

e If M = ®F : M f Z 0o, M = ®F : M f = succy(0), and P =
pl

M ot then the lemma holds by induction hypothesis since LPaths(M) =
M

LPaths(M') and ConSet(P) = ConSet(P’).

e The case where o |}, a, 7, focus,, focus,, ¢™, M or ¥ is the last rule
applied in P can be shown similarly.
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PI
eI M=03F .M 42w M=M= and P = {E
M

then for all paths P € LPaths(M) there is a path P’ € LPaths(M') with

P = P'"U{w}. Thus, the lemma follows from the induction hypothesis.

w

e The case where v is the last rule applied can be shown like the case for the
w rule if p(v) = 0 and like the case for the o {} rule if p(v) > 0.

e The case where (3 is the last rule applied is the most interesting one.
If M=o oF oM oM | 3, M = : M | suce, (),
P/ PI/
M" = &L+ ®M || sucey(f), and P = { MM, then for all
M

P € LPaths(M) holds by definition 69 either (Pos(3)NP) C Pos(succi(3))
or (Pos(8)NP) C Pos(sucez(3)). Without loss of generality we assume the
first case. Thus, there exists a path P’ € LPaths(M') such that P’ C P. By
induction hypothesis there is a connection C' € ConSet(P') with C' C P'.
Therefore, the lemma holds.

5.4.2 The Linearity Property

Lemma 76 If P is an arbitrary position calculus proof for a matrix M then
(ConSet(P), WeakMap(P)) is linear for M.

Proof. We prove the lemma by induction over the structure of P.

Base case: If P consists only of an application of one of the rules axiom or 7 then
the lemma follows from the construction of ConSet(P) and WeakMap(P). There
is only one connection in ConSet(P), and WeakMap(P) contains no predecessor
of a position in this connection.

Induction hypothesis: We assume that the lemma holds for any subproof P’ of P.
Induction step:

e Ifoneofo |, 01, a, m, focus,, focusy, oM, M, or 4¥ is the last rule applied
in P then the lemma holds by induction hypothesis. Any of these rules
has one premise. Let P’ be the corresponding subproof. By definition 69
holds ConSet(P) = ConSet(P') and by definition 70 holds WeakMap(P) =
WeakMap(P').

PI
o If P = { »”:0My= then the lemma holds by induction hypothesis since
L M= w N

ConSet(P) = ConSet(P') and WeakMap(P) = WeakMap(P') U {w}.

e The case where v is the last rule applied can be shown like the case for the
w rule if p(v) = 0 and like the case for the o |} rule if p(v) > 0.

o I[f M=0F oF : oM &) | B, M' = : &M || sucei (),

Pl PH
M" =8 : &M || succy(B), and P = { M M7 o then
M

WeakMap(P') C Pos(M'), WeakMap(P") C Pos(M"), and for any connec-
tion C' € ConSet(P') and for any connection C” € ConSet(P") holds
C" C Pos(M') and C" C Pos(M"). Since Pos(M') N Pos(M") = () the
lemma follows from the induction hypothesis.
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5.4.3 The Relevance Property

Lemma 77 If P is an arbitrary position calculus proof of a matrix M then
(ConSet(P), WeakMap(P)) has the relevance property for M.

Proof. We prove the lemma by induction over the structure of P.

Base case: If P consists only of an application of one of the rules aziom or 7 then
the lemma follows from the construction of ConSet(P) and WeakMap(P).
Induction hypothesis: We assume that the lemma holds for any subproof P’ of P.
Induction step:

e If one of o ||, o ), a, 7, focus,, focus,, ¢™, Y, or ¥ is the last rule
applied in P then the lemma holds by induction hypothesis. Any of these
rules has one premise. Let M’ be the premise and P’ be the corresponding
subproof. By definition 69 and definition 70 holds ConSet(P) = ConSet(P’)
and WeakMap(P) = WeakMap(P').

P
o If P = { e”:2M4= then the lemma holds by induction hypothesis
PE.dM N2 w
since ConSet(P) = ConSet(P'), WeakMap(P) = WeakMap(P') U {w}, and
LeafPos(M) = LeafPos(M’') U {w}.

e The case where v is the last rule applied can be shown like the case for the
w rule if p(v) = 0 and like the case for the o | rule if p(v) > 0.

o If M = @F oF . oM &) | g, M' = &F : &M || suce(8), M" = ®F :
Pl PH
OM || sucey(B), and P = { M M' , then ConSet(P) = ConSet(P') U
M
ConSet(P") and WeakMap(P) = WeakMap(P')U WeakMap(P"). Thus, the

lemma follows from the induction hypothesis.

5.4.4 The Cardinality Property

Lemma 78 Let P be an arbitrary position calculus proof for a matrix M then
(ConSet(P), WeakMap(P)) has the cardinality property for M.

Proof. We prove the lemma by induction over the structure of P.
Base case: P consists only of a single rule application.

® IfM:q)E {V[,¢év[ﬂ and P = {Haziom then

card({ConSet(P), WeakMap(P)))
= |ConSet(P)| +>_,»c WeakMap(P) 1B(67)]
L4 cor 1B160)
1+[B8(M)]

e The case where 7 is the last rule applied in P can be shown similarly.

Induction hypothesis: We assume that the lemma holds for any subproof P’ of P.
Induction step:
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e Ifoneof o ||, o), w, o, v, m, focus,, focus,, M, ™ or ¥ is the last rule
applied in P then the lemma holds by induction hypothesis. Any of these
rules has one premise. Let P’ be that premise and P’ be the corresponding
subproof. The following equations hold:

1B(M)] = |BM)]
| ConSet(P)| = |ConSet(P')|
quEe WeakMap(P) 1B(¢")| = Z¢Ee WeakMap(r' 1B(¢")]
o If M = @F oF . oM &) | g, M' = &F : &M || suce(8), M" = ®F :
Pl PH
O |} succy(B), and P = § M m" s then the lemma follows from the
M
induction hypothesis. The following equations hold:
1B(M)] = [BM)] +[B(M")| +1
| ConSet(P)| = |ConSet(P') U ConSet(P")|

Z¢Ee W@akMap(p) |/8(¢E)| = Z¢Ee WeakMap(P') |:8(¢E)|E
+ Z¢E€ WeakMap(pu) |/8(¢ )|

5.4.5 The Unifiability Property

Lemma 79 If P is an arbitrary Xpys-proof for a matrix M then op is a unifier
for the pair (ConSet(P), WeakMap(P)).

Proof. The admissibility of op follows from lemma 74. We prove the lemma by
induction over the structure of P.
Base Case: P consists only of a single rule application.

o Let M =®F:¢pM ¢ . and P = { 5 aviom
Then ConSet(P) = {{succ,(¢pM), succ, (¢d1)}}, WeakMap(P) = ®F, and
red(P) = 0. Thus, op(pre(sucei(¢)))) = op(pre(sucei(43'))) = € and
for all ¢¥ € ®¥ holds op(pre,,(¢¥)) = e.

e The case where 7 is the last rule applied in P can be shown similarly.

Induction hypothesis: We assume that the lemma holds for any subproof P’ of P.
Induction step:

!

e Let M =% :0M o, M' = & : DM ) succi(0), and P = {Eoﬂ.
M

Then ConSet(P) = ConSet(P'), WeakMap(P) = WeakMap(P'), red(P) =
red(P'), and op = opr. prey(succi(p)) = preyy(sucei(p)) holds for all
p € LeafPos(M) U ®¥(M).

e The case where one of 0 |}, a, 3, 7, or ¢M is the last rule applied in P can
be shown similarly.

e Let M=dF: M =, 0w, M' =¥ :dM ¢ E, andP:{Ew. Then
M
ConSet(P) = ConSet(P'), WeakMap(P) = WeakMap(P') U {w}, and

red(P) = red(P'). Therefore, op = opr. For all p € LeafPos(M) U ¥ (M)
with p # w holds pre, (sucei(p)) = prey(suce(p)) and for p = w holds
pre(sucei(p)) = e.
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e The case where v is the last rule applied in P can be shown like the case
for w for u(r) = 0 and like the case for o {} for pu(v) > 0.

o Let M = ®F oFf : &M .. M = & : M || sucei(¢f), and
Pl

P = {50y, Then Conset(P) = Conset(P'),  Weakap(P) =
M

WeakMap(P'), and red (P) = red(P")U{(¢¥,p) | p € SpecPos(M')}. For all
p € LeafPos(M)U®E (M) with p € Pos(¢F) holds pre v, (p) = ¢F.pre . (p)
and by definition 73 (prior reduction) op(¢pF.pre y(p)) = op(pre,y (p)).
For all p € LeafPos(M) U ®¥(M) with p ¢ Pos(¢¥) holds pre,(p) =
pre e (p) and op(pre o (p)) = op (prey (p)).
e The case where focus, is the last rule applied in P can be shown similarly.
o Let M = @F : oM || pM M = ®F : M { suce, (M), and P =
pl
{ % - Then ConSet(P) = ConSet(P'), WeakMap(P) = WeakMap(P'),
and red(P) = red(P') U {(vM,p) | p € SpecPos(M')}. For all p €
LeafPos(M) U ®F (M) with p € Pos(¢}) holds pre,(p) = M .pre . (p)
and op (M .pre . (p)) = vM.op(pre,u(p)). For all p € LeafPos(M) U

O (M) with p ¢ Pos(¢¥) holds pre,,(p) = pre,, (p) and op(pre,(p))
VM .opi(pre v (p)) by definition 73 (sortedness and maximality).

e The case where ¥ is the last rule applied in P can be shown similarly.

5.4.6 Completeness Theorem

Theorem 80 (Completeness) Let M be a matrix. If there exists a ¥ys-proof
P for M then M is complementary for ConSet(P), WeakMap(P), and op.

Proof. The theorem holds because of lemma 75, 76, 77, 78, and 79.

5.5 Characterization Theorem

The characterization theorem presented in this subsection implies that the vali-
dity of a formula and the complementarity of the corresponding matrix for some
multiplicity are equivalent. It can serve as a foundation for matrix based proof
search methods for MELL. The matrix characterization yields a condensed re-
presentation of the search space which can be exploited by efficient proof search
methods in the same way as for other logics [OK96]. A general proof method has
been extended uniformly to multiplicative linear logic, as shown in [KMOS97].
Along the same lines an extension to MELL is possible.

Theorem 81 (Characterization Theorem) A formula ¢ is valid in MELL
if and only if for some multiplicity the corresponding matrix is complementary.

Proof. The correctness follows from theorems 68, 42, 29, 23, and the correctness

of 3. Completeness follows from theorems 80, 41, 28, 22, and the completeness
of 3.
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Figure 6: Example Matrix and Prefixes of Leaf Positions

We illustrate the theorem by a matrix proof for our running example.

Example 82 Let M be the matrix for ¢ = ((A®!A4)8 ?(AL), +) from figure 6.

We choose C = {{aoooooooo, 00001020000}, {%00001000, 00001010000}}a W = (/), and
_ M M M M M E E
0= {%000\57 ¢0000000\¢00010200, %0000100\@/}00010100, %00101\1/)00000107

P000101000 \&> Phoo102 \¥000000s  Pooo102000 \E} -
Then M is complementary for C, W, and o. Consequently ¢ is valid in MELL.

6 Conclusion

A matrix characterization of logical validity has been presented for the full multi-
plicative exponential fragment of linear logic (MELL). It extends our characte-
rization for MLL [KMOS97] by the exponentials ? and ! and the multiplicative
constants 1 and L. Our extension, as pointed out in [Fro96], is by no means tri-
vial and goes beyond all existing matrix characterizations for fragments of linear
logic.

In the process a methodology has been outlined for developing matrix charac-
terizations from sequent calculi and for proving them correct and complete. It
introduces a series of intermediate calculi, which step-wisely remove redundancies
from sequent proofs while capturing their essential parts, and arrives at a matrix
characterization as the most compact representation for proof search.

If applied to modal or intuitionistic logics, this methodology would essentially lead
to Wallen‘s matrix characterization [Wal90]. In order to capture the resource sen-
sitivity of linear logic, however, several refinements have been introduced. The
notion of multiplicities is based on positions instead of basic positions. Diffe-
rent types of special positions are used. The novel concept of weakening maps
makes us able to deal with the aspects of resource management. In linear logic,
weakening can only be applied on certain formulas. A matrix proof must ensure
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that it is possible to weaken all positions which take not part in an axiom in the
corresponding sequent proofs. This is ensured by weakening maps together with
a modified unifiability requirement.

Fronhofer has developed matrix characterizations for various variations of the
multiplicative fragment of linear logic [Fro96]. Compared to his work for linear
logic our characterization captures additionally the multiplicative constants and
the controlled application of weakening and contraction. In fact, we are confident
that our methodology will extend to further fragments of linear logic as well as
to other resource sensitive logics, such as affine or relevant logics.

In the future we plan to extend our characterization to quantifiers, which again is
a non-trivial problem although much is known about them in other logics. Fur-
thermore, the development of matriz systems [MS97] as a general theory of matrix
characterizations has become possible. These systems include a uniform frame-
work for defining notions of complementarity and a methodology for supporting
the proof of characterization theorems.

The matrix characterization presented is a condensed representation of the search
space. In general, matrix characterizations are known as a foundation for efficient
proof search procedures for classical, modal and intuitionistic logics [OK96] and
MLL [KMOS97]. We expect that these proof procedures can now be extended
to MELL and a wide spectrum of other logics, as soon as our methodology has
led us to a matrix characterization for them.
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