Forschungszentrum

fur Kunstliche Report
Intelligenz GmbH RR-98-01

) 4 Deutsches Research

Methodological Comparison of Agent Models

Christoph G. Jung and Klaus Fischer

October 1998

Deutsches Forschungszentrum fur Kunstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
67608 Kaiserdautern, FRG 66123 Saarbriicken, FRG
Tel.: + 49 (631) 205-3211 Tel.: + 49 (681) 302-5252
Fax: + 49 (631) 205-3210 Fax: + 49 (681) 302-5341
E-Mail: info@dfki.uni-kl.de E-Mail: info@dfki.de

WWW: http://www.dfki.de

Deutsches Forschungszentrum fur Kunstliche Intelligenz

DFKI GmbH

German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in
the field of innovative software technology based on Atrtificial Intelligence (Al) methods. DFKI
is focusing on the complete cycle of innovation — from world-class basic research and tech-
nology development through leading-edge demonstrators and prototypes to product functions
and commercialization.

Based in Kaiserslautern and Saarbriicken, the German Research Center for Artificial Intelli-
gence ranks among the important “Centers of Excellence” worldwide.

An important element of DFKI’'s mission is to move innovations as quickly as possible from the
lab into the marketplace. Only by maintaining research projects at the forefront of science can
DFKI have the strength to meet its technology transfer goals.

DFKI has about 115 full-time employees, including 95 research scientists with advanced de-
grees. There are also around 120 part-time research assistants.

Revenues for DFKI were about 24 million DM in 1997, half from government contract work and
half from commercial clients. The annual increase in contracts from commercial clients was
greater than 37% during the last three years.

At DFKI, all work is organized in the form of clearly focused research or development projects
with planned deliverables, various milestones, and a duration from several months up to three
years.

DFKI benefits from interaction with the faculty of the Universities of Saarbriicken and Kaisers-
lautern and in turn provides opportunities for research and Ph.D. thesis supervision to students
from these universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wabhlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI's six research departments are directed by internationally recognized research scien-
tists:

Information Management and Document Analysis (Director: Prof. A. Dengel)
Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
Deduction and Multiagent Systems (Director: Prof. J. Siekmann)
Programming Systems (Director: Prof. G. Smolka)

Language Technology (Director: Prof. H. Uszkoreit)

Intelligent User Interfaces (Director: Prof. W. Wahlster)

oo oopo

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wabhlster
Director

M ethodological Comparison of Agent Models

Christoph G. Jung and Klaus Fischer

DFKI-RR-98-01

This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research, and Technology (FKZ ITW-95004).

(©) Deutsches Forschungszentrum fiir Kiinstliche Intelligenz 1998

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission
to copy in whole or part without payment of fee is granted for nonprofit educational and research pur-
poses provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Deutsche Forschungszentrum fiir Kiinstliche Intelligenz, Kaiserslautern, Federal
Republic of Germany; an acknowledgement of the authors and individual contributors to the work; all
applicable portions of this copyright notice. Copying, reproducing, or republishing for any other purpose
shall require a licence with payment of fee to Deutsches Forschungszentrum fiir Kiinstliche Intelligenz.

ISSN 0946-008X

Methodological Comparison of Agent Models

Christoph G. Jung*and Klaus Fischer
GK Kogwiss. & MAS Group, FB Informatik

Universitat des Saarlandes & DFKI GmbH
Im Stadtwald, D-66123 Saarbriicken, Germany
{jung,kuf}@dfki.de

April 1998

*supported by a grant from the “Deutsche Forschungsgemeinschaft” (DFG).

1

Abstract

Hybrid agent architectures comprise the radical change of paradigms in Al over
the past decades by reconciling the different styles of reactive, deliberative, even
social systems. They have been successfully applied to a range of complex real-
world domains. Due to their originally informal background, a verification of
design goals in derived implementations, theoretical foundations, and a detailed
comparison with other agent models have not yet been obvious. The present
work proposes a formal methodology to bridge the gap between theoretical and
practical aspects especially of hybrid designs, such as the layered INTERRAP.
The employed, connected stages of specification, i.e., architecture, computatio-
nal model, theory, proof calculus, and implementation, also provide a yet uni-
que framework for comparing heterogeneous agent models including unified and
logic-based ones. Based on recent work on INTERRAP, we demonstrate that
this methodology allows to compare state-of-the-art designs from robotics, Al,
computer science, and cognitive science with respect to a spectrum of inherent
properties along the two dimensions of abstraction and declarativity. This sup-
ports our claim that INTERRAP is a coherent and advanced account of layered
agency including goal-oriented abstraction planning in on-line interaction with
reactive skills and social reasoning. We also derive particular research issues to
guide the future development of INTERRAP.

Contents

1

2

A Methodology for (Hybrid) Agents

INTERRAP: Theory and Practice of Hybrid Agents

2.1 The INTERRAP Architecture
2.2 The COOP computational model
2.3 The Hierarchical Event Calculus: Theory, Proof Calculus
2.4 Implementation Lo
2.5 Bottom Lineo o

INTERRAP versus Reactive, Unified Models

3.1 Layered Competences: The Subsumption Architecture
3.1.1 Architecture
3.1.2 Computational Model
3.1.3 Theory, Proof Calculus
3.1.4 Implementation
3.1.5 Bottom Line

3.2 Belief, Desire, Intention: dMARS
3.2.1 Architecture
3.2.2 Proof Calculus, Computational Model
3.23 Theory
3.2.4 Implementation
3.25 Bottom Line.

3.3 Agent-Oriented Programming: AgentO0
3.3.1 Architecture
3.3.2 Computational Model
3.3.3 Theory, Proof Calculus
3.3.4 Implementation
3.3.5 Bottom Line.

3.4 A Unified Agent Logic: ALP
3.4.1 Architecture
3.4.2 Theory
3.4.3 Proof Calculus, Computational Model
3.4.4 Implementation

10
10
12
13
14
14

3.4.5 Bottom Line oo
3.5 Reactive, Unified Agent Models: Bottom Line

4 InteRRaP versus Deliberative, Cognitive Al
4.1 Planning and Machine Learning: PRODIGY
4.1.1 Architecture
4.1.2 Theory, Proof Procedure, Computational Model
4.1.3 Implementation
4.14 Bottom Line o o
4.2 Heuristic Search: SOAR
4.2.1 Architectureo
4.2.2 Computational Model
4.2.3 Theory, Proof Calculus
4.2.4 Implementation
4.25 Bottom Line o
4.3 The Adaptive Control of Thought: ACT-R
4.3.1 Architectureo
4.3.2 Computational Model
4.3.3 Theory, Proof Procedure
4.3.4 Implementation
4.3.5 Bottom Line Lo
4.4 Deliberative, Cognitive Al: Bottom Line

5 InteRRaP versus other Hybrid Models
5.1 Deliberation and Reactivity: 3T
5.1.1 Architecture L
5.1.2 Computational Model
5.1.3 Theory, Proof Calculus
5.1.4 Implementation
5.1.5 Bottom Line,
5.2 An Agent Toolkit: DESIRE
5.2.1 Architecture
5.2.2 Computational Model
5.2.3 Theory, Proof Calculus
5.2.4 Implementation
5.2.5 Bottom Line o oo
5.3 Hybrid Models: Bottom Line

6 Conclusion

29
29
30
30
31
31
31
31
32
32
33
33
33
34
34
35
35
35
35

37
37
38
38
39
39
40
40
40
41
42
42
42
43

44

Chapter 1

A Methodology for (Hybrid)
Agents

Today, the application areas for autonomous and intelligent agent technology
open up enormously. Especially demanding real-world domains, such as (tele-)
robotics, flexible manufacturing, transport telematics, as well as upcoming virtual
worlds, such as global information networking, and interactive movies, require
broad agents. These are agents that solve a range of cognitive problems, from
reactive behaviour and deliberative tasking up to social interaction, in a practical
manner!.

Hybrid systems are systems that integrate different functionalities of sepa-
rate modules by rather pragmatic and operational interaction patterns. They are
especially successful in constructing broad agents. INTERRAP [28], for example,
models the smooth transition from sub-symbolic reactivity, over symbolic delibe-
ration up to social reasoning by layering, i.e., by defining a hierarchical control
structure between these modules. Such descriptions are straightforwardly done in
an architectural manner. Since this informal method of specification introduces
very crude and abstract concepts, the space of possible implementations does not
necessarily reflect the original aim, such as the practical integration of reactivity
and deliberation in the case of the INTERRAP.

On the other hand, formal and declarative languages are used in the tradition
of theories of rationality. For example, [33, 31] build on earlier work in tempo-
ral and epistemic logics. [26] rely on the power of first-order logic augmented
with abduction as a declarative representational and inferential basis for a uni-
fied agent. Similar to the purely architectural approach, the conceptual level

!The term broad agent is due to [2]. He claims that synthetic characters, for example, should
rather exhibit a range of ‘shallow’ cognitive abilities than a particular ability exceedingly well.
Our definition of broad in contrast is derived from the bounded rationality paradigm: the
broad agent is required to exhibit a range of cognitive abilities in an approximately optimal
manner. Approximately, because depending on environmental and computational constraints,
these agents trade-off decision quality versus computation and interaction cost.

Theory Architecture
*Fluent Representation * Horiz. Modularisation
abstract | *Time Representation andynteraction gy
+Action Representation opiciiiodulansaton
\ -Basic Axioms and Interaction
Proof Calculus Computational Model
« Inference *Basic Complexity
* Incompl. Inform. «Concurrency
» Dynamics *Encapsulation
« Decision Making «Communication
Capabilities \
y Implementation
Platforms
concrete Method
«Concurrency
. |
declarative operational

Figure 1.1: The Design Space of Agents

of logic-based agents remains too abstract to derive concrete and practical pro-
grams. Straight implementations of corresponding proof calculi, although being
promoted by Logic Programming (LP)[24], are either not feasible or build on a
restricted expressivity. Of course, there are subtle differences between theories for
specifying the agent’s computation and theories for describing agent behaviour.
In a normative setting such as the present report presumes, we could however
regard the agent as a proof procedure for a restricted part of a descriptive theory
making general statements about its state. Operational considerations to ‘make
the theory run’ are however seldom part of the corresponding agent model.

Both approaches to agent design are thus rather complementary. Both types
of specifications either lack declarative (in the architectural case) or operational
(in the theoretical case) aspects which makes them hard to compare. Further-
more, both do not address important implementation issues. Thus, a formal
methodology that connects theoretical and practical aspects of agent design is
desirable. Such a methodology furthermore helps to set up a well-understood
collection of design methods and their realisation in programs.

We have depicted the relations between specification languages as we assi-
milate them in Figure 1.1. Basically, we recognise two independent dimensi-
ons of specification, namely the degree of abstraction and the declarativity of
the described concepts. The hereby spawned space of design identifies the pu-
rely architectural attempt as a rather operational and abstract enterprise while
the complementary theoretical issues focus on declarative definitions. Further-
more, implementations are the most operational and concrete agent descriptions.
Although they are a too low-level medium of research, their connection to the
higher-level specifications is nevertheless extremely important. This has been

often neglected in the past; even LP cannot fully realise this connection.

As Figure 1.1 suggests and as we have argued in [20], the point of concern is to
find an operational extension to the stage of a proof calculus that explicitly cap-
tures the practical features of, e.g., hybrid systems: concurrent and encapsulated
inference, partial inconsistency, non-monotonic behaviour, explicit communica-
tion, and meta-control. We call such an extension a computational model, inspired
by the calculi developed in formal programming methods [18]. Standardised spe-
cification languages, such as Z [35], are used to describe state and operation of
an agent abstract machine [22, 20] that embraces an injected logic and its infe-
rence principle. In combination with the proof calculus, computational models
complete the ‘methodological puzzle’ because they are sufficiently:

e abstract to formally connect to both theories and architectures,
e concrete to derive concise implementations,
e declarative to verify the theoretical design, and

e operational to capture practical considerations.

Interestingly, such a complete methodology does also provide a reasonable
framework for the comparison of heterogeneous agent models. By investigating
specification languages and thus specification properties along the two dimensions
of abstraction and declarativity, it is possible to identify detailed criteria of design
across models. This has not been trivial before and, often, overview papers have
treated models from different backgrounds separately, such as those from robotics,
Artificial Intelligence (AI), Distributed Artificial Intelligence (DAI), computer
science, and cognitive science. In contrast, our categorisation into specification
stages (architecture, theory, computational model, proof calculus, and implementa-
tion) merges these various research threads and highlights particular similarities
and differences. These stages are necessarily overlapping because there should
be intimate, formal connections (see Figure 1.1) to comprise a consistent over-
all model. This implies that a particular issue attributed to a certain stage has
impact to other design options on other stages. Although many models lack a
complete characterisation, appropriate properties can thus be inferred. In the
following, we like to discuss a reasonable assignment of such detailed properties
to the proposed stages of specification.

Architecture Its architecture characterises the agent by modularisation, i.e.,
the identification of functional roles, and by the (structured) interactions
between these modules. Modularisation could be hierarchically structured,
if modules are able to control subordinate modules. This is called horizontal
modularisation?.

2Horizontal modularisation is often used equivalent to layering. We will elaborate in this
report that layering in INTERRAP, for example, is a special form of horizontal modularisation
building on meta-control.

Equally ‘privileged’ modules servicing each other are introduced by vertical
modularisation. Hereby, the direction of services determines the flow of
computation, thus the flexibility of the architecture.

Computational Model Being an abstract machine for the agent, the compu-
tational model explores operational ingredients, such as the encapsulation,
i.e., the granularity of state and computation, into processes. Encapsulation
often follows the architectural modularisation and determines the degree of
independence and thus possible inconsistencies between states.

Encapsulation is also relevant for obtaining concurrency in which the overall
behaviour of the agent is composed out of the rather independent and inter-
leaved behaviour of separate processes. Fully independent concurrency runs
asynchronously which supports responsiveness and flexibility. This is not
to say that non-concurrent computational models could not exhibit inter-
active behaviour. To gain a similar degree of responsiveness, however, the
agent programmer has to add additional interaction and scheduling mecha-
nisms into the domain-dependent part of the agent. A good computational
model, however, integrates those facilities required in most domains, thus
eases the programmer’s task.

Process communication is responsible to transfer computational results bet-
ween encapsulated computations, thus incarnating the module interactions
or services. We distinguish explicit forms of communication, such as direc-
ted signals and undirected events. Shared memory, for example by logical
data structures, is an implicit form of process communication. Horizontal
interactions are modelled by influencing computation and communication
of subordinate processes.

Similar to concurrency, the transmission of information either follows an
asynchronous or a synchronous scheme. The paths of transmission between
encapsulated processes can be either determined in advance (static) or being
dynamic which leaves the choice of destination to the processes themselves.
Unsafe communication models the loss of information.

In the context of computation, design options with particular advantages
and drawbacks are to choose between complex® and simple procedures as
the basic building blocks. Complex system behaviour can be both modelled
by a single, complex procedure as by the interaction of separate simple

3 Complex results denote long-term structures out of primitive system operations whose
composition produces an optimal answer. Generally, the corresponding procedures turn out
to be complex, too, in the sense that their amount of computation increases exponentially in
problem size. Simple results are therefore regarded as primitive measures that maximise the
system’s performance just for the next, single step. Often, they can be computed using fairly
un-demanding, therefore simple procedures.

ones. Optimality is easier to achieve with a monolithic approach, whereas
robustness and flexibility favourite distribution.

Theory As aforementioned, our methodology proposes the computational model
to embrace computations that are interpreted as inferences of a single or
separate agent logics. Of course, this interpretation is mainly relevant for
the ‘symbolic’, cognitive facilities of the agent.

The theoretical investigation of their possible states therefore reveals repre-
sentational issues: are facts (fluents) used to describe environmental situa-
tions (sub-symbolic, symbolic), to denote the ‘mental’ state of other agents
(epistemic) or even reflect inner-agent circumstances (auto-epistemic)? Is
there a notion of time? Is time explicitly present or rather implicit within
other representations? What is the underlying model of time ? How are
primitive actions encoded? Is there the ability to describe macro actions?

Similarly, theory also captures the declarative part of the inference of co-
gnitive processes, thus the basic axioms with which the agent reasons about
facts, time, and actions. Here, we distinguish between situation-based
approaches whose reasoning focusses on representing situations and plan-
based approaches that rather explore temporal structures between actions.

Proof Calculus A proof calculus transfers declarative considerations of the
theory into a computational recipe by means of possible inference steps.
Perhaps a minor aspect as mostly being satisfied is to investigate sound-
ness and completeness in the agent context.

It seems more important to highlight the inherent inference principle, such
as deduction or abduction. For example, its coherent treatment of incom-
plete knowledge (restricted perception, dynamic changes, inconsistencies),
renders abduction a reasonable basis for situated agents as well as for par-
ticular modules within the situated agent. In a deductive setting, this is
not to be reached without particular non-monotonic extensions. These ex-
tensions typically do not cover all of those aspects of situatedness.

Theory and underlying proof calculus form the basic decision making ca-
pability of the agent. Traditionally, such planning procedures are charac-
terised by the temporal horizon that their decisions are based on: present-
oriented approaches use the current situation of the agent to select actions
to be performed first. Often, these approaches tend to be myopic since
turning down the role of the ultimate goal of the plan. In contrast, future-
oriented planning rather uses goal-subgoal relations to build a plan from its
tail. It however tends to stick with future, irrelevant details before coming
to the currently executable decision. Abstraction planning is an interme-
diate form of both approaches in which abstract decisions (macro-operators)
quickly connect the ultimate goal to the current situation.

Implementation For reasons of concreteness and operationalisation, the im-
plementation stage is not an appropriate medium for comparison. It is
nevertheless enlightening to observe the range of platforms that a model
is successfully applied to according to the conciseness of its higher-level
specification.

Implementations can be derived in different ways from a high-level speci-
fication. Mostly, they are loosely coupled, i.e., the high-level specification
illustrates the principles somehow turned into source code. On the other
hand, formal approaches allow to directly translate at least parts of the
code from well-defined relations between high-level languages and the im-
plementation language.

A particular point of interest is the final realisation of concurrency. Often,
a left-open function in the specification for scheduling computation is not
chosen until this stage of design but could have great impact onto the agent’s
behaviour.

Our proposed full-range methodology has been especially developed in the
context of the layered INTERRAP [28] agent architecture. Thus it is one of the
first models for which all specification stages have been instantiated. In Chapter
2, we will comprise these results and demonstrate the applicability of the metho-
dology to this practical agent framework while retaining a clear categorisation of
properties. In particular, the architectural extensions (Section 2.1) to the origi-
nal publication [28] lead to the definition of the COOP machine (Section 2.2), a
computational model that reflects the architectural design in the form of concur-
rent and continuous (sub-)cognitive processes. These processes are then uniquely
described in Section 2.3 as sub-languages of coherent theory of time and action
under-pinned with an abductive proof calculus. From both the proof calculus
and the computational model, a well-defined implementation (Section 2.4) can
be derived.

Since the description of INTERRAP covers the complete space of specification,
it is an excellent tool for comparing various agent approaches from very different
scientific backgrounds, such as robotics, AI, DAI, computer science, and cognitive
science.

For example, Chapter 3 discusses similarities and differences to the sub-
symbolic Subsumption agents of [5] (Section 3.1). We also explore reactive re-
asoning in unified agent models in Section 3.2 (dMars of [16, 9]), Section 3.3
(Agent0 of [33]) and Section 3.4 (ALP agents of [26]). With respect to their
reactive schemes (and also the INTERRAP Behaviour Based Layer — BBL) , we
find INTERRAP to enrich the myopic decision making into a more deliberative,
goal-oriented scheme.

Deliberative, cognitive agent frameworks, such as PRODIGY [7] (Section 4.1),
SOAR [29] (Section 4.2), and ACT-R [1] (Section:4.3) are discussed in Chapter

4. In this context, INTERRAP is unique with its independent, reactive core
that is nevertheless steadily interacting with situated planning in local and so-
cial settings. We also state that the up-to-date deliberative models emphasise
the adaptiveness of reasoning, a perspective that extends the role of layering in
INTERRAP.

Finally, we investigate other hybrid architectures (Section 5.1: 3T [4]) and
generic toolkits (Section 5.2: DESIRE [10]) in Chapter 5. This comparison also
supports our claim of INTERRAP being an advanced model of hybrid agents
due to a coherent and reasonable principle of layering and a fully-instantiated
methodology ranging from a flexible, theoretical perspective down to a practical
implementation.

Due to their heterogeneous origins, the compared models focus on particular
parts of the specification space, such as architectural or theoretical questions.
Therefore, we have chosen to rely on the most specific, ‘official’ instance of the
models, for example the Event Calculus (EC) based agents of [8] in the case of
the more general Abductive Logic Programming (ALP) agents of [26]. Most of
the lacking specification properties can be inferred from these descriptions, such
as the representational issues of a (possible) theory. As it is not straightforward
to suppose a common logic behind every aspect of computation, we focus these
investigations on symbolic, cognitive decision making abilities, thus planning.

Finally, Chapter 6 concludes to a complete overview of the investigated speci-
fication properties. Indeed, this characterisation inherent to our methodological
attempt turns out to identify a collection of independent design features used
across different threads of research. Although there are numerous other papers
that give thorough overviews to agent design, see, e.g., [38, 28], such a result has
not yet been presented, because we do not stick with scientific backgrounds and
the applied notion of agency.

Chapter 2

INTERRAP: Theory and Practice
of Hybrid Agents

This chapter instantiates the proposed methodology for (hybrid) agent design
with the INTERRAP agent model that originally started as an architectural en-
terprise [28] towards the integration of reactive, deliberative, and even social ca-
pabilities in DAI. Up to now, INTERRAPis applied to robotic domains, such as
an automated loading dock, transport telematics, and virtual-world applications
such a telerobotics and interactive simulation.

In Section 2.1, we recognise that INTERRAP takes a hybrid, layered approach,
i.e., the incorporation of these capabilities as separate, horizontal modules. The
absence of a formal specification and thus the open space of implementations has
led to the definition of a computational model [22, 20] that reflects the architec-
tural design, but ties the framework to a unique abstract machine (Section 2.2).
Indeed, the approach taken herein further splits up the reactive, deliberative, and
social capabilities into separate (sub-)cognitive processes with a flexible commu-
nication structure. Each of those processes is then regarded as a special sub-logic
of a unified theory (Section 2.3). In Section 2.4, the relation of its proof calculus
and the computational model to a logical host language is described.

2.1 The INTERRAP Architecture

As a hybrid attempt, [28] employs the device of modularisation to integrate the
originally complementary perspectives of reactive, situated agents , e.g., [5], with
deliberative reasoning agents, e.g., [11]. Additionally, the proposed architectural
solution, INTERR AP, caters for social capabilities, an aspect that is often neglec-
ted in single-agent designs. Indeed, these three modules interact in a very subtle
manner. They are regarded as layers stacked on top of one another (Figure 2.1).
Each layer in turn implements a vertical chain from knowledge update and goal
activation (SG), into decision making and plan execution (PS). The PS module

10

[Soci i World
Kn%Nalseedge Social Planning Layer Iord
social -
e [1€ o C_Ps D

reconfigure

—>

(Local Planning Layer

5o [[P

reconfigure . <4—
9 § perceive

Environment

o

(Behaviour Based L ayer
world

A

update

> compute
[:::] state

Figure 2.1: The INTERRAP Architecture

is not only feeded with goals and situations, but also reports its decisions and
actions back. These vertical modules operate on a particular level of abstraction
that is characteristic for each layer.

The most concrete level is implemented by the behaviour-based layer (BBL)
that applies procedural knowledge, or so-called patterns of behaviour, to install
a fast feedback loop with the environment. On top of this reactive module, the
local planning layer (LPL) reasons (plans) about symbolic goals and hypothetical
states of the world. Its decisions or primitive actions influence the reactive,
underlying module in order to obey the more abstract goals.

[22] argues that this is a form of meta-reasoning. A plan is not just an
abstraction of behaviour pattern activation. It merely represents a temporally
structured series of configuration constraints to the whole BBL module. These
configurations include the parameterisation of behaviour patterns as well as their
(de-)activation. An example from the automated loading dock is the ability of
forklift agents to deliberately shut off collision avoidance facilities in the BBL
while approaching a particular object to manipulate.

Similarly, the relation between social reasoning and local reasoning can be
characterised as a meta-object relationship. Negotiating with other agents invol-
ves speech acts that have the state of the local planning module (the knowledge,
the goals, the plans) as their topic and, e.g., a commitment results into reconfigu-
ring the LPL accordingly (adopting or removing knowledge and goals; changing
a plan; etc.).

11

exception
handling .
| sequential
] process state
m m transition
: ’
signal , shared, logical
@ data structure
I
1
1
L/\J process L/J

Figure 2.2: COOP: Concurrent, Continuous Processes

2.2 The COOP computational model

INTERRAP has given rise to several implementations on different platforms. In
the first implementation the BBL was implemented with a forward chaining rule
interpreter and the two higher layers LPL and SPL in PROLOG. Because of the
use of two different programming languages the separation of the BBL and the
two higher layers was rather strict. This led to the idea to implement INTERRAP
in a uniform manner using the high-level programming language Oz. However,
the first approach of doing so had problems to realise the original design goals of
rational and reactive behaviour, especially in demanding robotic domains. This
has been due to the fact that concurrency has been applied per layer which
diminished the responsiveness of the BBL with respect to the former, production
rule system.

[22, 20], attribute this circumstance to a more general problem of purely ar-
chitecturally as well as of purely theoretically driven specification: both are too
abstract to define a concrete implementation space. We therefore proposed to set
up an intermediate stage of specifying computational models as an appropriate
device for bridging this gap. The COOP model provides such a basis for InteR-
RaP in form of a term rewriting calculus [22] and in form of a Z specification [20]
and introduces a higher degree of concurrency throughout the architecture, but
especially for the BBL.

There are sophisticated constructs in operating systems and modern program-
ming languages, such as those based on processes and signals (Fig. 2.2), that can
be used to encapsulate the inferences within an agent. Thus, a process can be seen
as sequential state transition whose state corresponds to a restricted logical sub-
language and whose transition relation implements a well-defined, corresponding
subset of the proof procedure. Processes compute continuously in an asynchro-
nously concurrent, fair manner. A critical computation, such as an inference
based on incomplete knowledge, is shielded by a stack of exception handlers.

12

K Desire Decision WIF
| l Makin
SPL SocialDesire SocialPlanner C|aIPIan

Forward Perception

LPL LocalDesire L ocalPlanner LocaIPIan
Backward Action

BBL Reflex Behaviour

Figure 2.3: INTERRAP: Processes and Control

Asynchronous signals that are dynamically routed indicate explicit, exceptio-
nal situations which require immediate reactions, such as revision of inference.
Exception handling mechanisms designed for concurrent settings determine an
appropriate continuation state for the computation. Because signals contain [o-
gical formulae to be incorporated into the processes’ state, the processes refer to
shared memory which establishes an additional, implicit form of communication.

In keeping with the architecture, Figure 2.3 does not model the agent as
a heterogeneous mixture of such processes communicating directly. Instead, we
introduce the component as an additional control process that encapsulates other
inferences like a membrane. This membrane controls the activation of fresh,
internal computations and serves as a fast relays and filter for every incoming
and outgoing signal. Components either contain special services, such as the
world interface (WIF) and the knowledge base (KB) do, or they represent a layer
(BBL, LPL, and SPL).

2.3 The Hierarchical Event Calculus: Theory,
Proof Calculus

Originally, Event Calculus [27] (EC) reasoning has been used as an LP approach
to specify and implement the planning processes in INTERRAP [23]. Solving
the classical frame problem in an efficient manner by a special axiomatisation
of strict inertia, the EC is a flexible base for complex reasoning about partially-
ordered plans. Following [26, 8] that identifies different styles of computation
of definitions and implications in a single logic, it has soon become clear that
indeed all processes, including the simple ones, such as reflexes, desires, and
behaviour execution, within all three layers of INTERRAP, could be described as
special instances of this advanced theory of fluents, time, and action. Hereby, the

13

represented fluents either denote sub-symbolic sensor data, symbolic and abstract
knowledge, and even social knowledge about other agents and the agent’s own
computations on a deeper layer.

Especially for specifying planning, however, an abduction principle for hypo-
thesising about incomplete knowledge, especially about the future and the agent‘s
own options has to be applied [13]. A respective proof calculus for Abductive
Logic Programming (ALP) has been developed in [15] and can be used to des-
cribe situated processes. On the one hand, this includes an on-line interface to
the process shell of COOP that copes with additional knowledge and dynamic
changes. On the other hand, this includes the treatment of user-defined plan
hierarchies as heuristics and as a means for providing timely, partial solutions in
goal-oriented planning. The latter requirement is attacked by extending the EC
to the Hierarchical Event Calculus (HEC) [21] that handles explicit abstraction
hierarchies of plans. Several issues had to be revisited, such as how to model du-
ration and how macro-operators can be expressed. The respective decomposition
of macros covers sequential, concurrent and disjunctive composition. It covers
loops and also test actions: These are actions that allow to delay decisions from
planning time to plan execution time. Finally, particular strategies are developed
that ensure completeness and a reasonable behaviour of the overall proof calculus.

2.4 Implementation

Interestingly, ALP can be mapped onto another, practical form of logic pro-
gramming, namely Constraint-Logic Programming (CLP) in which basic logical
formulae, or constraints, can represent hypothesised information about the world.
A unifying perspective to both forms of LP has been given by [36]. This observa-
tion makes it possible to translate HEC into an equivalent, executable constraint
program, for example, in Oz [34] core code. Adding appropriate constructs to im-
plement the operational strategies and the computational model around (search
machine, threads, exception handling, object-orientation) straightforwardly deri-
ves the hybrid agent implementation from the specification.

2.5 Bottom Line

In this section, we have demonstrated the power of the proposed methodological
attempt by exploring the complete specification space for the practical, hybrid
agent design INTERRAP. On an abstract level, this has comprised the operatio-
nal modularisation of functions in the architectural design and the declarative
theory behind the computations within those modules. Using proof calculus and
computational model, these considerations are connected to concrete and practi-
cal implementation techniques. The particular features that we have highlighted

14

on all these stages could now be compared to those of other approaches from
heterogeneous backgrounds.

Some work that we could not mention here due to space constraints reconciles
the logic-based, symbolic reasoning with utilitarian reasoning inspired by decision
theory. Extending the ideas of [30] to EC based calculi, a decision-theoretic
planning approach can be gathered. We will elaborate in a later chapter the
importance of such a research for the layered architecture that we propose.

With respect to layering, [17] elaborates the meta-object relationship in IN-
TERRAP and defines the configuration possibilities of the super-layer also to
cover computational (time, space) and environmental aspects or resources (tools,
fuel, workspace) that are to be assigned to the subordinate computations. Indeed,
we regard the control as present in current INTERRAP to be a resource-adaptive
scheme. Changing resources in the environment or in the computation device
influence the quality of the actually executed decisions, e.g., if the environment
becomes more calm, it is more likely that the deliberative module can timely in-
fluence the fast decisions of the reactive module and vice versa. This is however
implicitly encoded in the model. A more elaborate notion of reconfiguration shifts
the resource-adaptive into an advanced resource-adapting scheme where resources
are explicitly represent and reasoned about. Finally, resource-adapted systems
have already compiled these resource decisions implicitly into their computations.

15

Chapter 3

INTERRAP versus Reactive,
Unified Models

In the eighties, a radical shift of paradigm has been initiated by researchers dis-
content with the latency of the yet pursued deliberative, symbolic intelligence.
Coming mainly from a robotic background, they have argued that situated intel-
ligence could not be modelled via abstract, monolithic computations but rather
emerges from the interplay of comparably simple mechanisms that do not employ
representation and reasoning at all. Hybrid architectures, such as INTERRAP,
try to reconcile both complementary perspectives of intelligence. A compari-
son with the prominent architecture of sub-symbolic robotics, the Subsumption
architecture [5], therefore gives much insight into the impact of modular integra-
tion. Furthermore, it is a first proof of concept in order to our methodological
categorisation to be generally applicable.

As a parallel thread, a more complete methodological extension to logic pro-
gramming in particular, or symbolic reasoning in general, is provided by unified
agent models. These are models that describe the agent as a more or less monoli-
thic, but declarative state and its computation as a single, rational inference. As
we will recognise in the following, those models are much more in the tradition of
reactive reasoning than of deliberative planning. They have no immediate analog
in the hybrid INTERRAP scheme which makes them an interesting subject of
comparison and a further milestone for a clean methodological description.

3.1 Layered Competences: The Subsumption Ar-
chitecture

[5] describes an architecture for situated and embedded robotic applications that
sets on the power of emergent, sub-symbolic computations arranged to the well-
known Subsumption architecture. Being opposed to the traditional deliberative
AT approach, it abolishes the use of any representation and symbolic reasoning

16

(‘Let the world be its own model.”). Although INTERRAP insists on the ma-
nipulation of symbols, architectural and computational properties have much in
common.

3.1.1 Architecture

The principle of layering, or horizontal modularisation, has been indeed first ana-
lysed in detail within the Subsumption architecture. [5] proposed this structure
as an alternative to the purely vertical organisation found in many system be-
fore. In his argumentation, he offers a horizontal separation of functionalities
that get more and more complex (they subsume the lower functions) the higher
they are stacked. Emergent complexity is gathered by constructing circuits of
domain-dependent modules (unidirectional interaction, but feedback loops are
allowed) with comparably less power to a static network. Higher layers inhibit
or suppress the output of the lower modules and thus frequently influence their
communication. Nevertheless, the lower ones stay active and still contribute to
the overall behaviour.

Layering has then become a standard technique also in hybrid agent research,
although with a slightly different flavour. In the Subsumption sense, layers re-
present an optional, more capable flow of computation through the agent. Their
‘final’ decisions have basically the same status and are arbitrated in between. In
contrast, a lower layer in INTERRAP, such as the BBL, does indeed implement
all the functionality of the agent. To be guided towards exhibiting a specific,
rational function, it is, however, monitored, reasoned about, and reconfigured by
its super-layer (the LPL, e.g., by shutting off an avoid-collision reflex). It is thus
not subsumed, but supported by its super-layer. Layers do no more stand in
competition, but in a structured, cooperative relation with their super-layers.

Besides the clear horizontal separation into the reactive, deliberative, and
social part, INTERRAP furthermore introduces a common vertical structure for
every layer. In the Subsumption architecture, both choices are domain-dependent
and focus on reactive contents. In a later publication [6], Brooks recognises some
reconfiguring, deliberative account, e.g., in path-planning. Still, he abandons any
central, absolute representation and complex reasoning.

3.1.2 Computational Model

At the more concrete stage of formal machines, we recognise that the (simple)
augmented finite state machines building Brooks’ modules can be mapped to the
(possibly complex) continuous process transitions within INTERRAP. Since [5]
does not explicitly determine a class of functions (linear, polynomial, no side-
effects, etc.) to be embedded into the state machine, the reverse direction would
not be impossible — although not in the original spirit. Similarly, a concurrent

17

evaluation of the Subsumption agent model is not given in detail, but clearly
envisaged.

The communication links that build the static network of Subsumption mo-
dules find an analog in the signal-based mechanisms in INTERRAP. INTERRAP,
however, does not model loss of signals due to limited buffers. Rather, it extends
the possible communication paths as being dynamically encoded into process
interaction.

In the light of purely simple, reactive state machines of the Subsumption
architecture, a shared memory model is not necessary. This eases the possibility
of distribution, i.e., spreading the computations to a cluster of parallel computing
devices. Control of communication (inhibition and suppression versus the control
process) is available in both computational models; control of computation only
in INTERRAP and derived versions of Subsumption.

3.1.3 Theory, Proof Calculus

It may be blaspheming to look for theoretical, thus representational issues in
the case of the Subsumption architecture that explicitly denies these sources.
Though, it is important for specification purposes that the employed data struc-
tures have a particular meaning to the designer of the system. In the case of
the INTERRAP BBL, data contains rather analogue symbols, e.g., the fact that
infrared-sensor four has reading 235.12. Subsequently, we identify computations
on this level as specific inferences, e.g., we interpret sensor fusion as a deduc-
tive process including some arithmetics. Therefore, it is justified to compare the
granularity of representations rather than to abolish the terminology at all. Ac-
cordingly, we identify states in the Subsumption architecture and the BBL of
INTERRAP as sub-symbolic data. Symbolic representations as in the LPL and
epistemic informations as in the SPL are not present in Brooks-style agents.

3.1.4 Implementation

Because [5] stays vague about the evaluation of his modular network, he puts
the burden of reasonable concurrent or even simultaneous interpretation onto the
final, pragmatically derived implementations. Its description matches hypothesi-
sed implementations with a serialised stepping of state machines or modules. If
the embedded, domain-dependent functions are not well-behaving this would re-
sult in an unfair, not responsive scheme. Its description does also match existing,
fair and asynchronous agent machines on host computers and even hardware-
oriented, parallel computations on-board of robots.

The choice of the implementation basis and its domain-dependent instantia-
tion does however have a great impact onto the behaviour of the Subsumption
agent: in combination with unsafe communication, there is no prediction possible
from the computational model as described in [5]. Therefore, such considerations

18

are already part of the domain-independent computational model of INTERRAP.
Any implementation which satisfies it should guarantee responsiveness. Even dis-
tributing the shared memory model to parallel processors or between host and
robot has become straightforward due to recent developments in transparent dis-
tributed computing.

3.1.5 Bottom Line

We have argued that the layered design of INTERRAP shares similarities with
Brooks’ ideas and incorporates much of its features in a more advanced and de-
liberative setting. The question of when to call a data structure a representation
and when a computation an inference remains a point of discussion. However,
Brooks [6] accuses hybrid architectures as simply shifting the horizon of delibe-
rative Al by a limited amount of complexity. We have objected that layering in
INTERRAP does not mean to incrementally add subsuming facilities in Brooks’
sense, but to introduce another meta-level of control and configuration. This
certainly goes beyond a simple shift of horizon.

3.2 Belief, Desire, Intention: dMARS

Rather than to abolish symbolic, logical methods in situated agent design, there
have been many attempts to specify some form of unified, reactive reasoning
as an alternative. Unified hereby relates to the common paradigm of agents
being a single, rational inference upon a consistent, logical state. The perhaps
most successful agent model that has evolved from this background bases on the
Procedural Reasoning System [16]. This model has a mature theoretical back-
ground by means of the well-established Belief, Desire, Intention (BDI) tradition
[31]. It boils down into a widely applied (work-flow management, combat simu-
lation, air traffic control) implementation basis, AMARS, that has been recently
formalised in terms of a Z specification [9]. With respect to the methodology that
we have proposed, dMARS is yet the most complete DAI approach to agent de-
sign, because the BDI theory uncovers to be a description of the overall behaviour
of agents, whereas INTERRAP yet focusses on the decision making processes wi-
thin.

3.2.1 Architecture

The PRS architecture [16] as a unified enterprise excludes horizontal modulari-
sation. Any reasoning is done on a single object-level, thus control has to be
performed implicitly. Nevertheless, the applied, famous vertical modularisation
has been adopted by INTERRAP in each layer: the perception of the agent

19

(events) update a knowledge base (belief) in which situation patterns can be re-
cognised. These patterns are closely linked to goal (desire) activation. Decision
making or planning transforms these goals into changed intentions or plans that
are executed afterwards.

While INTERRAP puts much computational efforts into decision making on
its upper two layers, PRS exhibits a tight, simple coupling of plans with goals.
This amounts to a unidirectional cycle of computation. While in INTERRAP
failure handling, dynamic changes, thus immediate feedback from plan execution
to planning and goal activation is possible, PRS simulates this by feeding inter-
nal events into the perception of the next cycle. The control inherent in internal
events is however merged into object-level decisions and thus also reactively rea-
soned about.

Although the BDI theory explicitly caters for multi-agent scenarios, we do
not find a relevant, dedicated part of the architecture. Similarly to control of
computation, it is not straightforward to put social decisions into a single object-
level reasoning because negotiations reflect the computation and state within
agents. Flexible interaction in a heterogeneous environment thus cannot be easily
encoded into flat decisions that mix ‘physical’ actions with speech acts.

3.2.2 Proof Calculus, Computational Model

[9] provides an operational AMARS interpreter for PRS. Using the Z specification
language, a concise definition of the agent’s state and its inference cycle is given.

The related process-level of the INTERRAP specification in contrast models
the agent as a number of encapsulated, concurrent process cycles. For the mono-
lithic state of AMARS, explicit communication between modules therefore plays a
subordinate role and relies on shared memory and the already discussed internal
events. Internal events have a similar state as perceived data and are thus not
directed.

The inferential aspect of AMARS covers a simple (complexity-bounded), re-
active deduction within modules. Bounded complexity turns down the role of
concurrency between modules. At least for flexible reorientation in intentions, or
plans, competition and concurrency is however important. Although its BDI cy-
cle appears to be serialised, dAMARS’ open selection functions, e.g., for processing
events, activating plans, selecting plans, and selecting branches in plans, are able
to express asynchronous concurrency per plan. This is however not an explicit
constraint onto the selection functions.

In fact, the structure of decisions in dMARS agents are pretty much precom-
piled into the plan library that is annotated with goals and activation conditions.
This resembles the reflex-based activation and execution of patterns of behaviour
in the behaviour-based layer of INTERRAP. If building more rational dAMARS
agents for complex environments, the designer has to put a lot of effort into ana-
lysing the domain and possible situations for gaining a ‘working’ set of plans.

20

Deliberative, goal-oriented planning as in the INTERRAP LPL has the ability to
flexibly recombine the designers knowledge at run-time. Not every situation thus
has to be analysed at design time. Furthermore, abstraction planning appears to
be a trade-off between both approaches. It applies as much predesigned decisions
as possible, but within a goal-oriented framework.

The stringent decisions of AMARS furthermore diminish the possibilities of
treating incomplete knowledge. Although dynamic changes are matched against
the maintenance conditions of active plans, the ultimate reasons for setting up
the plan are not checked. This leads to a highly non-monotonic behaviour in
the light of negative activation conditions. In INTERRAP , the planning pro-
cess itself is responsible for checking his hypothesised intentions against new or
completed data. Non-monotonicity coherently comes through committing to par-
ticular hypotheses with respect to the agent’s own behaviour.

In dMARS, limited computational control is possible by using the stated
annotation features in combination with internal events, such as asserting or
retracting facts from the knowledge base.

3.2.3 Theory

The BDI theory [31] is deliberately taken (and tried to be established by formal
proof) as the rational basis for AMARS. We have argued that, although it should
be seen as a way of describing AMARS agents behaviour from an observer’s point
of view, any such description can be used to specify its computation in an abstract
way. Thus, we expect a restricted, well-defined subset of BDI to be incarnated by
dMARS. Indeed, many concepts from the (modal) theory have been grounded in
dMARS, such as a situation-based representation scheme with implicit, discrete
time.

[37] discusses the theoretical foundations of a plan library or recipes for the
agent. The expressivity of such plan includes sequential and concurrent compo-
sition, loops, test actions and disjunctive branching. While tests and branches
are merged into a conditional construct, the actual dMARS system has no con-
current composition. This has to be emulated by an internal event spawning
another plan. Activation conditions and maintenance conditions in dMARS in-
troduce some notion of precondition and effect.

Especially conditionals play an important role for AIMARS agents. They allow
for run-time decisions otherwise not to encode into the activation conditions of
plans without full planning capabilities. By the way, test actions are also reasona-
ble in a more goal-oriented setting, since they cope with a limited, predictable in-
determinism in the environment. For treating unlimited, complex environments,
a flexible planning approach is still not to be replaced.

We have noticed the gap between the (auto-)epistemic basis of BDI and its
realisation in AMARS: knowledge as being present in the social model of INTER-
RAP agents has to be explicitly reified in programming dMARS agents. This

21

widely excludes the possibility of accessing active goals or plans in reasoning. We
suppose this facility, however, as an important basis for any social activity of
agents.

3.2.4 Implementation

The C implementation of AMARS against which [9] has been checked is an effi-
cient and widely used agent framework that has been applied, e.g., in sophisti-
cated air traffic control. The straight choice of depth-first selection rules in the
implementation favourites persistent decisions but turns down the role of compe-
ting intentions. In order to gain flexible reorientation of the agent, this requires
a careful design of the plan libraries taking these (implicit) operational decisions
in account.

3.2.5 Bottom Line

The dMARS model shows a tight, complete methodological unity including an ad-
vanced theoretical background and very efficient and widely used implementation.
This makes it a good evaluation partner for hybrid agents, such as InteRRaP.
We have made clear that in our opinion, future-oriented planning capabilities
and the thereupon based reflection of social reasoning are necessary features of
flexible agents that should be traded off against undoubtedly required reactive
reasoning. Concurrency as being emphasised by INTERRAP is an important
concept to mediate between different, possibly conflicting motivations.

Nevertheless, the unified dMARS model only restricts the full-blown BDI
theory, it does not violate against its constraints. This makes it likely to finally
bridge the formal gap. In INTERRAP, we have not yet addressed how a theory
for the complete agent model looks like, rather what comprises a theory of its
embedded computations. In Chapter 6, we discuss the possibility of using BDI
also for specifying a layered agent with encapsulated inferences.

3.3 Agent-Oriented Programming: Agent0

Using the intelligent agent paradigm of Al as an extension to object-oriented pro-
gramming has been impressively motivated by the Agent-Oriented Programming
(AOP) framework of [33]. Agentification hereby means the enhancement of tra-
ditional applications in order to coordinate their services and inter-operate with
humans. Mental states, such as believes, commitments, and capabilities as well
as speech acts provide the ingredients for a methodological attempt quite similar
to dMARS. It is a restricted form of logic-based reasoning according to an over-
all, but not yet connected theory that led to the Agent0 language and interpreter

22

applied in collective robotics and information management. It focusses on social
aspects of agency and therefore connects to the SPL in INTERRAP.

3.3.1 Architecture

Similar to the dAMARS case, the architecture of the Agent0 interpreter is a cycle-
oriented, unified model. Incoming perception, especially speech acts, and internal
events provoke a change in knowledge which is intimately coupled with some
fresh and some retracted commitments to other agents or to the agent itself.
Commitments or intentions ate executed according to the system time are and the
next cycle is initiated. These steps are elaborated in a serialised, unidirectional
manner.

Goals or motivations are not given any status in the architecture. The decision
making immediately bases on belief, thus the current situation. By identifying
goals as a particular part of the agent’s state that steadily influences the decision
making over subsequent cycles of computation, dMars or INTERRAP are able
to introduce persistence in behaviour. The lack of any such representation is a
heavy drawback to Shoham’s design and simply prohibits any dynamic adaption
of long-term intentions.

Since Agent0 interfaces an embedded application and accesses its state and
services, we however identify an additional horizontal modularisation in which the
application is treated like a monolithic state and the Agent0 interpreter comprises
its social capabilities. This is a simple form of meta-control, because Agent0 has
introspection into the application state and reconfigures it by invoking services.

Internal deliberation, however, is seen as a special case of social reasoning,
i.e., a decision is a commitment to oneself, and therefore no separate layer as in
the InteRRaP model is introduced. This has severe implications: decisions or
commitments are bound to speech acts from the outside; Agent0 agents are not
pro-active because of changes in their own mental state.

3.3.2 Computational Model

The basic computational building blocks in Agent0 are simple rules and primitive
(one-step) commitments. Since there is no conflict resolution of commitment rules
and since all active commitments are performed, this is a form of synchronous
concurrency: each cycle of the agent synchronises their simultaneous activity.

Dynamic communication between these data structures in Agent0 is done over
logical variables (shared memory) and over performing private actions (events)
in order to update the mental state.

Events also allow a limited amount of control in Agent0. For example, RE-
FRAINing permits certain actions to be used as commitments in the future. How
to reactivate these, is however not clear. A possibility is to encode switching the

23

activity of commitments into the belief structure and their precondition annotati-
ons, the so-called capabilities. In any case, REFRAIN as an object-level decision
is only to be triggered by social interaction (see before). Additionally, the Agent0
agent cannot retract a choice that it has made without external, social trigger!.
Control of (internal) communication is not supported in Agent0.

3.3.3 Theory, Proof Calculus

Decision making in Agent0 immediately connects believes with commitments by
means of deductive rules. It is thus comparable with the present-oriented acti-
vation of plans in dMars or the reflex-based behaviour activation in InteRRaP.
The commitments in Shoham’s framework are primitive, except a binary condi-
tional. Although they are annotated with a point-based time representation and
so-called capability conditions, it is not possible to construct and reason about
complex structured decisions.

Based on its (auto-)epistemic representations, a predefined interpretation of
speech acts is applied. Due to the lack of goals, this restricts Agent0 especially for
the envisaged social settings: Apart from standardisation and portability, non-
benevolent settings contain agents that are able to easily deceive the standard
Agent0. The argument is similar, if not more important, than in the dMARS
case: future-oriented planing capabilities are necessary for the agent to decide
at run time about the current situation that the designer cannot completely
predetermine in advance.

Furthermore, situatedness plays a minor role in Agent0) agents. Decisions
based on incomplete knowledge, especially obsolete ones due to a changed en-
vironment, cannot be retracted in Agent0. Also, there is no goal, or effect to
be established by the commitment from which we could infer its being obsolete.
Combined with limited control facilities, careless domain axiomatisations render
Agent0 agents into extremely inconsistent behaviour. While temporary conflicts
between encapsulated processes in INTERRAP are a feature, to this extent, it is
certainly an undesirable property.

3.3.4 Implementation

Being a very concise language and interpreter, Agent(is easily implementable
from an algorithmic point of view on many platforms, such as Unix systems in
Common Lisp and Prolog. The idea is to augment a large spectrum of standard
applications with the facilities of mental state and communication. This is more
a softbot perspective, whereas InteRRaP certainly addresses both a physical and
virtual existence of agents.

1Unless we assume that an agent can send UNREQUEST messages to itself !

24

3.3.5 Bottom Line

Agent0 is undoubtedly a path-setting experiment in the effectiveness of reactive
reasoning in social, but benevolent settings. We have shown that competitive, he-
terogeneous settings as they are more and more developing in the global network
question these ad-hoc solutions: persistent behaviour requires long-term goals
and control facilities, situatedness requires treatment of incomplete and dynamic
knowledge, negotiation requires flexible reasoning mechanisms and complex in-
tentional structures. Nevertheless, having the standard AgentO interpretations
as ‘defaults’ in the SPL of INTERRAP combines the best of both worlds.

3.4 A Unified Agent Logic: ALP

The previous examples of unified agents looked at their theoretical model from an
observer’s view. In [25, 26], Kowalski and Sadri extend the perspective of Logic
Programming, i.e., the straightforward implementation of declarative problem
solving via logical inference engines, towards reactive situated agents. Abduc-
tion is taken as the basis for dealing with incomplete knowledge, hypothesised
decisions, and dynamic changes to the environment. Their logic furthermore
integrates two different styles of computation resembling reactive and more de-
liberative schemes. [8] instantiates these Abductive Logic Programming (ALP)?
agents by incorporating Event Calculus (EC) [27] axioms to gather a programma-
ble framework that reasons about fluents, time, and actions and that is exemplary
applied in reactive databases and simulated elevator control.

3.4.1 Architecture

[25] proposes the use of meta-programming to describe the role of situatedness for
logical agents. Dynamic changes in the environment force the agent to interrupt
its reasoning in order to gather and integrate new data. Situatedness also requires
early reactions from the agent, i.e., to perform actions and thus commit to certain
open choices, before knowing the exact consequences. The construction of a
logical proof in order to predict future developments has thus to be interleaved
with interfacing the environment. A meta-cycle thus injects new data, commits
to certain choices, and resumes the proof procedure for a bounded number of
cycles.

Layering on the lower levels of INTERRAP incarnates the deliberative control
of reactive object-level reasoning in a subordinate inference engine. In ALP,
the deliberative and reactive facilities of the agent are both merged into the
object-level. The meta-predicate itself makes simple and fixed decisions. Thus we

?In fact, Kowalski and Sadri do not propose any acronym for their model. We have chosen
ALP for reasons of simplicity.

25

distinguish between a resource-adaptive scheme in INTERRAP, while ALP agents
follow a resource-adapted scheme: the designer has put the static allocation of
resources into the meta-level. Social issues are not mentioned in Kowalski’s work.

In ALP agents, we do also find no vertical modularisation: the functional roles
within the object-logic cannot be easily assigned to particular logical formulae
(goal, constraint, definition).

3.4.2 Theory

[26] resides to first-order logic as the general representational and reasoning de-
vice. By discussing the different, operational styles behind equivalence definitions
and integrity constraints, they are able to demonstrate deliberative (backwards
reasoning) and reactive (forward reasoning) abilities within a single logic. There-
fore, this logic is also suitable to comprise a general theory for the encapsulated
inferences in a hybrid setting, such as INTERRAP.

On top, [8] sets up an appropriate notion of fluents, time, and actions by
incorporating EC [27] into this framework. The flexibility of this event- or plan-
centred axiomatisation of strict inertia has also been recognised in our own rese-
arch [23, 21] and thus been taken over to INTERRAP.

Both [8] and [21] provide a variant of the original EC to deal with macro-
actions: time is modelled in intervals and actions decompose into partially-
ordered substructures. The logical framework hereby supports sequential, con-
current, disjunctive, and recursive decomposition. With the EC, even test-actions
can be formalised. While both approaches annotate actions with preconditions,
[8] does not incorporate traditional effect axioms, such as conditional effects as
present in [21]. This has implications to the decision making capabilities of the
agent.

3.4.3 Proof Calculus, Computational Model

In combination with an abductive proof calculus, such as proposed by [26, 15],
the result of [8] is thus not an abstraction planning algorithm as in INTERRAP,
but a present-oriented, reactive plan decomposition much like in AMARS.

Abduction hereby solves the second aspect of situatedness: the treatment of
incomplete knowledge, especially with respect to the agent’s own future deci-
sions. A consistent set of hypotheses about the dynamic state of the world is
constructed as a by-product of the (possibly complex) inference. Therefore, the
basic mechanisms to adjust these assumption against new information from the
environment (injected by the meta-interface) are already present.

ALP agents are unified agents. Their inference is not encapsulated, thus
communicates over logical variables (shared memory). Concurrency nevertheless
comes in a very fine-grained manner: strategies of an abductive theorem pro-
ver need much operational knowledge to mediate between the integration of new

26

information, decision making, and plan execution. For example, such a strat-
egy could emulate the encapsulation, communication, and exception handling in
INTERRAP. But this is not part of the ALP specification as in our hybrid case.

With respect to strategic behaviour in decision making, we have investigated
preference structures that allow to reasonable abstraction planning (partial solu-
tions, reorientation, complete) with HEC. Davila [8] argues that for his reactive
framework, each utility measure can be incorporated into an appropriate goal-
ordering that is executed with a depth first strategy. Other considerations are
left to the open (fairness required) domain-dependent choice of proof strategies.

We allow the deliberation processes to make decisions about the (de-)activation
and parameterisation of subordinated reactive processes. This is a cooperative,
structured interaction. Unless the fixed influence of the meta-level, control is not
to be found in ALP agents due to rather co-existing, competing deliberation and
reactivity.

3.4.4 Implementation

Davila’s agents are implemented by specifying the abductive meta-interpreter and
object-level rules in depth-first Prolog. Similarly, InteRRaP relies on an imple-
mentation base with a logical background. However, since this constraint-based
platform is related to abductive reasoning, there is no expensive re-implementation
of a meta-interpreter, rather a translation into a constraint program and search
engine®. Instead, more effort is put into realising the operational parts of the
computational model.

3.4.5 Bottom Line

The migration of the ideas from ALP into INTERRAP has been one of the corner
stones that inspired our methodology. As such, it brings unified, logical agents
and hybrid agents closer together. We have discussed that, to a certain extent, the
hybrid setting if INTERRAP makes operational considerations of ALP explicit
in the computational model. On the other hand, layering facilities goes beyond
a simple object-level integration and co-existence of computational styles. It
rather combines with the situatedness aspect of resource-adaptive architectures.
The lack of goal-oriented planning in Davila’s work has also been recognised by
[32]. We agree with his argumentation that the additional annotation of macro-
actions with conditional effects allows to integrate the best of both the reactive
planning and the backwards planning worlds.

3For specific simple processes in INTERRAP, it is even possible to omit any search at all

27

3.5 Reactive, Unified Agent Models: Bottom
Line

A common problem for all reactive agent models that we have discussed in the
present, chapter is their lack of future-oriented, goal-based planning facilities. In
general, goals are an important means to enforce persistence in behaviour. A
flexible reorientation of long-term intentions additionally requires the analysis
of dependencies in their structure. This is important for complex domains that
cannot be fully covered by predesigned plan hierarchies. Especially, social, non-
benevolent settings exhibit this property. Therefore, this aspect is either turned
down or solved with ad-hoc measures by the presented reactive models.

The unified agent perspective also has to face a perhaps more general pro-
blem as it sacrifices many computational aspects for the sake of declarativity and
conciseness:

Broad and situated agents are agents that exhibit a variety of cognitive abili-
ties, including navigation, tasking, and social interaction. They are faced with a
wide range of goals on various levels of abstraction to be represented and to be
mediated in between. In this context, unified agent descriptions tend to overload
by relying on a single state and a corresponding, rational computation. It is
an overload for the agent’s designer or instructor that has the burden of fussily
modelling interactions based on the most primitive level of abstraction. Subse-
quently, it is a particular overload for any (not only reactive) applied reasoning
procedure bombarded with a vast amount of heterogeneous information.

Here, Agent0 is one extreme that does not care about these interactions and
thus results into floundering behaviour. dAMARS provides the other pole by try-
ing to be as persistent as possible, thus to dive into a particular goal. ALP
agents, although in principle capable, do not speak out the operational needs to
mediate this trade-off. We think that this mediation should be a form of layering
(deliberative) facilities in a cooperative, supervising setting.

28

Chapter 4

InteRRaP versus Deliberative,
Cognitive Al

Euphoria of early Al research, such as Shakey [11], had soon been replaced by the
frustration of the inherent complexity in the applied symbolic reasoning, especi-
ally in planning. In the last chapter, we have presented approaches that for that
purpose either abolished representation or focussed on restricted, reactive forms
of reasoning. Basic research in understanding the reasons for intractability, for-
mulating alternatives, and especially in controlling expensive computations has
also been continued in various, separate fields of AI. Along the separate maturing
of these foundations such as in planning and in machine learning, it has soon be-
come evident that a long-term Al programme should envisage their re-integration
into possibly complete architectures for intelligence, such as PRODIGY [7].

Adaptive control of computation is also a topic in the complementary enter-
prise of cognitive science. The different evaluation criteria of agents from soft-
ware engineering and from cognitive architectures, efficiency versus adequacy,
naturally lead to diverging designs. Nevertheless, when it comes to the inve-
stigation of cognitive abilities that perform efficiently in a given environment,
a common methodology appears. This allows software engineers to take over
solutions worked out as adequate models of human cognition as well as it lets
cognitive scientists employ the latest technological advances in order to explain
their observations. Thus, a comparison of INTERRAP with established cognitive
architectures, such as SOAR [29] and ACT-R [1] is useful.

4.1 Planning and Machine Learning: PRODIGY

The PRODIGY [7] architecture has been the first approach to integrate various
machine learning techniques with a state-of-the-art planning approach. Although
not primarily thought of as a situated agent model, later work on believable
agents in virtual environments [3] use the PRODIGY architecture as its delibera-

29

tive back-bone. Since [3] slightly switches the focus of research, we have decided
to rather compare PRODIGY and INTERRAP immediately. Since PRODIGY’s
various learning facilities have wide-spread roots, our theoretical comparison fo-
cusses on the deliberative, planning part.

4.1.1 Architecture

Due to the quite orthogonal research goals of PRODIGY and INTERRAP , the
applied modularisation follows a totally different scheme at the first sight. PRO-
DIGY separates the planning component from various learning modules each of
which operates on specific aspects (domain axiomatisation, search control, qua-
lity control) of the planners data structures and parameterisations. Because these
aspects are quite independent, an interaction between the learning modules hap-
pens completely over the planner.

Hereby, the interplay of planning and learning can be seen as a meta-object
relationship, or even as a layered approach. The learning component monitors
the computation and the data structures of the planner and reconfigures them ac-
cording to meta-inferences. This reconfiguration, however, has a different flavour
than in INTERRAP: domain knowledge, action representations, etc. are not sub-
ject of influence. Furthermore the control of computation via deliberation is an
on-line, resource-adaptive trade-off between efficiency and quality. PRODIGY’s
learning components do not deliberate (adapt) on-line, but compile their decisions
down into the planner which is thus turned into a resource-adapted system.

4.1.2 Theory, Proof Procedure, Computational Model

PRODIGY’s algorithmic planning approach bases on a partial-order, hierarchical
representation of plans annotated with preconditions and effects. As planning in
INTERRAP, a strong criterion for solution plans is applied, i.e., all linearisati-
ons of a partially ordered plan have to be solutions in the linear sense. Where
PRODIGY insists on fully instantiated operators, HEC can treat partially instan-
tiated, but constrained parameters. Both use a backward chaining technique to
connect the ultimate goal to the current situation. Explicit time is only available
in INTERRAP while being implicit in PRODIGY’s plans.

In addition, PRODIGY’s planner keeps a second possibility of reasoning: si-
mulating the execution of the linear head-plan derives a new initial situation and
is a form of present-oriented linear planning. This is not immediately represen-
table in (purely plan-based) HEC. It resembles however the ability of executing
partial (abstract) solutions in the LPL. Reconfigurations of the BBL in turn influ-
ence the the state of the on-line search machine. There is however no backtracking
available, if the environment is not reversible.

Dynamic facilities, besides efficient planning, are not the focus of PRODIGY.
Thus reactive computations, concurrency, control of communication, signalling

30

and on-line facilities do not play any role. However, incomplete knowledge with
respect to the domain and action axiomatisation does. For that purpose, we
could describe the inference capabilities of the learning modules as an inductive
inference being able to construct rules from monitoring the planner. These are
rules that are based on a transparent access to all the planner’s data (glass-
box representation), thus an introspective kind of auto-epistemic knowledge. In
INTERRAP, goals and plans of the LPL, for example, are accessible from the
SPL.

4.1.3 Implementation

PRODIGY has been implemented in LISP. Its modularisation made it possible to
reuse much of the learning and planning techniques in totally different settings,
such as in the TOK agent model of [3]. The focus of learning and planning, but,
are not on-line, reactive settings.

4.1.4 Bottom Line

The orthogonal aims of PRODIGY and INTERRAP demonstrate a further, yet
far away milestone: the integrated, situated agent with on-line learning capabi-
lities. For example, this could include explanation-based learning that enhances
INTERRAP for compiling deliberative plans into purely reactive behaviour pat-
terns. This could include learning the effects of actions and the domain concepts
while being embedded into a new environment. This could also include the lear-
ning of utility of computations in order to optimise resource-allocations in the
envisaged resource-adapting INTERRAP. Vice versa, using PRODIGY as a mo-
dule for implementing reactive agents, in contrast, seems to be the wrong way.

4.2 Heuristic Search: SOAR

The SOAR (State, Operator, Result) [29] architecture is a cognitive architec-
ture that is widely used in cognitive modelling as well as in sophisticated agent
applications, such as combat simulations. A reason for its success is certainly
the combination of heuristic problem solving with impasse-driven learning that
adapts its in-principle intelligence into a reactive and efficient system.

4.2.1 Architecture

A first, horizontal modularisation can be stated in SOAR by separating the in-
terface to the environment from the actual deliberative problem solving. The
interface consists of independent perception and motor modules that interact
with the problem solving part. In INTERRAP some of these functionalities are

31

to be found in the world interface. It is, however, proposed to move as much as
possible of procedural knowledge up to the BBL in order to be controllable by
the LPL.

Secondly, the problem solving part of SOAR can again be horizontally struc-
tured according to nested problem spaces. Each problem space is elaborated as
a search process that is driven by a production system. This rule-based module
generates options and preferences for the next decision based on current situation
and goal. The gathered options are then resolved in a subsequent decision and
execution step.

Whenever resolution is not possible, a new sub-problem space is generated
on top of the current one to find a solution to the conflict. This solution is af-
terwards incorporated as a learned data structure into the memory. Thus we
could speak of additional layers in the Subsumption sense: the functionality of
the higher problem space subsumes the lower problem space; the higher layer is
called as a service and its decisions are afterwards integrated, much as in the ori-
ginal, activation-commitment design of INTERRAP. Because the impasse-driven
problem solution is automatically compiled into chunks, or learned facts, we also
find a control aspect in SOAR. Because the subordinate problem is however not
meat-reasoned about, we regard this as a resource-adaptive form of control. Since
SOAR is not a multi-agent framework, social reasoning is not addressed.

4.2.2 Computational Model

Perception, action and problem solving in SOAR run concurrently and commu-
nicate over shared memory. Although SOAR applies a monolithic cycle, there is
nevertheless a concurrency between competing production rules in the generation
of options. There is no traditional conflict resolution of active rules. Neverthe-
less, their concurrency is synchronous being synchronised by subsequent decision
cycles. Communication between rules happens over instantiation of variables,
thus a shared memory.

The production system module as a part of the decision cycle is already a
(not-bounded) complex computation that is nevertheless implemented by simple
rules. This is due to decisions waiting until this deductive process is stable.
Serialisation of computation is also to be found in nesting problem spaces: until
the nested space has not solved its problem, its ancestor is halted.

Control of computation is encoded into explicit control rules (heuristics, pre-
ferences) that are compiled from the nested search spaces into the object-level
knowledge.

4.2.3 Theory, Proof Calculus

The deliberative capabilities of SOAR are derived from present-based planning
approaches of traditional AI. Thus it relies on a situational, symbolic represen-

32

tation of facts. Primitive actions are encoded with preconditions and effects to
instantaneously change a situation. Time is not explicitly represented.

However, it is not a blind situation-based search that builds the decision
making of SOAR. The selection of possible actions is driven by the deductive
production rule process which constrains the number of possibilities to explore.
Although the present-oriented scheme provides some reactive account, this is not
speculatively used to trigger external actions as by the interplay of LPL and BBL
of INTERRAP. Only the primary problem space, while active, is able to perform
uniquely determined interactions with perception and motor modules. Thus on-
line reactivity in SOAR comes completely out of learned knowledge. Incomplete
knowledge is not a topic.

4.2.4 Implementation

SOAR has been implemented on various platforms, from which the most recent C
version has gained a lot attention due to its performance. The applied, sophisti-
cated algorithmics to, e.g., implement the pattern matching in production rules,
managed to handle huge rule databases. The simulation of combat pilots using
SOAR also supports the claim that this is one of the most efficiently implemented
platforms in agent design.

4.2.5 Bottom Line

The SOAR approach to adaptive deliberative intelligence is close to the PRO-
DIGY claim: control knowledge and heuristics render a complex problem solving
tractable for situated intelligence. While the specific form of learning in SOAR is
certainly of interest on symbolic levels, such as the SPL and LPL in INTERRAP,
we doubt whether this approach will also succeed in the fine-grained control of
robots. This is because rapid learning has to be supported by an appropriate
initial knowledge provided by the agent designer. Without the right abstracti-
ons, such as sub-symbolic patterns of behaviour, complex plan structures, and
social representations this is not easy to encode into a single object-level system,
especially into rules that mix action proposals with preferences.

4.3 The Adaptive Control of Thought: ACT-R

ACT-R (Adaptive Control of Thought with Rational Analysis) [1] started out as
an integrating framework of a model of human memory (the Human Associative
Memory HAM Theory) and a production system as a procedural, cognitive pro-
blem solving machinery. Those theories have then been complemented by the
rational analysis approach that adapts the computation of memory and produc-
tion system to a specific setting. Beneath a cognitive modelling tool, i.e., a basis

33

for making predictions on specific axiomatisations of agents, it is used as a user
modelling tool, e.g., for predicting failures in tutoring students.

4.3.1 Architecture

The ACT architecture can be separated into three building blocks. There is the
associative memory model containing and activating the declarative knowledge
of the agent. There follows (vertically) the production system computing upon
the procedural knowledge of the agent, constructing goals, accessing the me-
mory, and making decisions. And on top of both, the rational analysis level uses
parameterisations of the underlying representations in order to influence their
computational behaviour.

Memory and production system build up a single layer where from the per-
ceptually updated (activated) belief of the agent, goals are activated on a stack in
order to trigger production activity. This activity results in producing sub-goals,
changing the internal status, and performing external actions. This computation
is however reflected and controlled by a (learning) meta-level that (on-line) as-
signs activities, rule weights, match times, and finally computation time to the
different underlying parts. Because rational analysis is in a steady flow, we obtain
a resource-adaptive system.

4.3.2 Computational Model

ACT-R is described as a complete cycle of the architecture, ranging from pro-
pagation of activity in the memory, matching of production rules, selection of
a production rule, and execution of the action-part of the rule. The possibly
complex processes of INTERRAP could thus be compared to the independent,
simple production rules that are, in a first step, instantiated concurrently from
each other. Shared memory is thus an important form of communication, while
the action part of the rules could also contain internal events, such as subgoal ac-
tivation, that trigger computations afterwards. The following conflict resolution,
however, synchronises and chooses exactly one instantiated rule to influence the
state of the system.

An outstanding property of ACT-R is this resolution being dependent on
the matching time that is simulated from the parameters of the already done
instantiations. Thus by changing parameters, a direct control of computation is
possible. Nevertheless, this control happens posthum after instantiations have
been made. INTERRAP and its upcoming resource-adaptive descendants use the
influence from the upper layer to prune the amount of computation in advance
based on predictions.

34

4.3.3 Theory, Proof Procedure

Frame-based knowledge structures and production rules comprise such as those in
the ACT-R model a special form of deductive, situation-based reasoning. While
the knowledge structures in ACT omit any time or epistemic representation, the
production rules implicitly encode goal-oriented action selection by annotating
goals with actions and subgoal structures. Complex actions are not provided
in ACT. Nevertheless, primitive actions are executed while building up the goal
stack. This contains some deliberative elements, but results in an overall myopic
decision quite similar to behaviour patterns in INTERRAP’s BBL. Incomplete
knowledge and dynamic, on-line facilities are not present in ACT.

Analogy-driven learning, a special method to derive new object-level rules,
and the decision-theoretic representations and inferences in the rational analysis
are not immediately comparable to INTERRAP. Rational analysis turns out to
have a reasonably backed foundation in terms of utility and probability. We have
already discussed that there is some work on integrating INTERRAP’s long-
term, symbolic reasoning with utilitarian. Unless a resource-adapting scheme
is developed, the ‘predictions’ used in the LPL and the SPL however base on
absolute, fixed knowledge, not adjustable likeliness.

4.3.4 Implementation

The ACT-R implementation is available in Lisp, thus on a wide-spread platform.
For specific purposes, Lisp functions can be integrated to build an appropriate
interface to an application. In contrast to SOAR, reactive applications are not
envisaged.

4.3.5 Bottom Line

Although the currently research resource-adapting focus of INTERRAP fits quite
nicely with the adaptive control of thought paradigm, INTERRAP extends the
two-level picture of simple meta-reasoning and complex object reasoning into its
three-layered social-local-reactive distinction. We have to learn from ACT-R that
control of computation is strictly coupled with treatment of uncertainty.

4.4 Deliberative, Cognitive Al: Bottom Line

The common centre of interest of all these presented deliberative or cognitive ar-
chitectures is the adaptivity of the agent to its environment and its computational
device. The claim of INTERRAP is here that dynamic environments require a
steady adaption, thus explicit on-line representation and reasoning in the form
of planning and social reflection. The distinction into object-level (external) de-
cision making and meta-level off-line precompilation of computational control is

35

thus not made in favour of the three-layered on-line scheme. It will be one of
the future milestones to integrate both perspectives into a single architecture;
the ACT-R rational analysis seems to be the most promising representation to
be reconciled with symbolic reasoning for that purpose.

36

Chapter 5

InteRRaP versus other Hybrid
Models

As a mainly pragmatic attempt to reconcile the separate advances made in sub-
symbolic, reactive systems, such the Subsumption architecture [5], and in deli-
berative planning systems, such as PRODIGY [7], hybrid architectures employ
the principle of integration by modularisation. Similar to INTERRAP, the 3T
[4] architecture, for example, builds on a three-layered scheme of reactive skills,
task networks, and planning to provide robots with high-level, goal-oriented be-
haviour. We have also discussed that recent efforts in formalising hybrid agents,
such as our computational model for INTERRAP, allow a deeper understanding
of their respective foundations and possibilities. Thus, the general, compositional
agent specification toolkit DESIRE [10] also has seemingly a close relation to our
framework.

5.1 Deliberation and Reactivity: 3T

Layered, hybrid architectures have been especially a product of advanced ro-
botics research. Although sub-symbolic methods [5] provide a robust, low-level
control of autonomous, situated agents, it has been soon recognised that they are
unable to express higher-level, goal-oriented behaviour beyond navigation and
manipulation. On the other hand, purely deliberative planning approaches, such
as PRODIGY [7], are not suitable to perform on-line tasks in dynamic, unpre-
dictable environments. The three-layered (or rather tiered) 3T architecture [4]
introduces a common frame for reactive skills, task networks, and planning that
has been especially designed for various multi-robot platforms. We will see, how
this background imposes some differences to INTERRAP.

37

5.1.1 Architecture

As its name suggests, 3T is also a three-levelled architecture. However, the
three horizontal levels of deliberative planning (the Adversarial Planner [12]),
of sequencing (Reactive Action Packages [14]), and of reactive skills [39] do not
fit exactly with the INTERRAP categories. The deliberative 3T functionality of
adversarial planning can be found on the INTERRAP SPL and LPL. The roles
of RAP’s and skills are however distributed to both the deliberative and reactive
layers in INTERRAP.

This is due to 3T’s separation into layers being purely based on time, task,
bandwidth and modifiability scales. For example, the reactive skills normally
operate immediately on-board of robots while sequencing is located remotely
on a host computer. Therefore, 3T does not introduce a coherent horizontal
interaction: RAP’s are indeed a reconfiguring force by controlling activation and
deactivation of the reactive skills. On the other hand, planning and sequencing
layer follow a subsumption scheme in which the decisions of the planner simply
decompose into RAP’s.

In INTERRAP, both planning and the decomposition (execution) of plans
is located in the LPL. The basic operators herein control the computation and
communication of the BBL in which patterns of behaviour are both procedural
knowledge as a kind of low-level RAP’s and reactive skills. This design decision
flexibilises goal-oriented influence that is herein to reason about sequencing faci-
lities. This decision also flexibilises reactive modelling as being more expressive
and controllable by the deliberative facilities. We have already discussed in Sec-
tion 3.1 that although INTERRAP is a coherent, shared-memory model, there are
consistent scheme for distributing its processing over several computing devices.

Particular features of the AP planner cater for multi-agent settings, such as
synchronisation of joint plans and reasoning about how to prevent other agents’
interference. In the light of a concise theory of planning, these features are indeed
higher-level features merged in a fixed manner into the deliberative object-level.
In a general setting, a complete social level to mediate and talk about the local
deliberation is necessary.

Turning to the vertical modularisation, we find that the lower two tiers of
3T do not distinguish between functions such as knowledge base, goal activation,
decision making, and execution. Only the planning level switches between a
planning and execution mode.

5.1.2 Computational Model

3T integrates three, rather separately developed systems (AP, RAP’s, and re-
active skills) thus three different, though related computational models for each
of the tiers. The analog to the encapsulated processes in INTERRAP are the
planner, each RAP, and each reactive skill. Communication is done by exchan-

38

ging data structures within each tier and signalling between the tiers. Between
arbitrary INTERRAP processes, both types of communication are available ac-
cording to the different needs of communication (input-output versus exceptional
situation).

Accordingly, concurrency varies with tiers. The skill tier is customisable to
exhibit either synchronous skill functions (steadily triggered one-shot functions)
or asynchronous skill processes (continuously running processes). The communi-
cation structure is, similar to the Subsumption architecture, fixed, and control is
devoted purely to (de-)activation of skills.

On the independent RAP tier, we find RAP’s to encode concurrent activity in
a similar, dynamic manner than the INTERRAP processes do. They are simply
invoked by the third, independent layer in its execution mode that is mutually
switched with the planning mode.

5.1.3 Theory, Proof Calculus

Adversarial planning in 3T and the INTERRAP HEC-based planner share a hier-
archical, non-linear planning approach. This planning operates on precondition
and effect representations of the underlying reactive facilities to form long-term
decisions. In contrast to the concurrent planning and execution scheme of IN-
TERRAP, AP switches between both modes, thus planning is a rather off-line
procedure under complete and static knowledge. AP introduces however some
features that are typically interesting in multi-agent domains.

The synchronised execution of actions is a construct that implicitly covers
negotiation and coordination actions. In INTERRAP, these actions are explicitly
inserted and reasoned about by the SPL as being highly dependent on the social
setting.

AP also features the so-called counterplanning mode to plan for actions that
support the integrity of persistence links and the additional annotation of actions
with during conditions. We do also argue here that this is certainly a higher-order
feature that requires reasoning about the top-level plan on the SPL. Furthermore,
protocol reasoning and execution is not easily to mix with object-level decision
making.

5.1.4 Implementation

3T is intended to run on various robotic platforms. The two upper tiers are
implemented in LISP and run on a host computer whereas the skill manager and
its reactive skills are to be ported to the different on-board facilities of robots.
INTERRAP focusses on an integrated, transformable implementation from the
formal specification and heavily relies on a homogeneous, logical implementation
base completely running on a host. Experiments with INTERRAP have shown,
that its reactive core exhibits a latency of ca. 100 ms and is able to implement

39

navigation and tasking facilities in an automated loading dock scenario with
Khepera robots.

Bonasso and Kortenkamp report on their applications requiring a time scale
in the millisecond range in order to guarantee functioning. Furthermore, certain
applications like robot vision require a high bandwidth of data to be handled by
the skills. This would be certainly not transmittable to a host computer.

An alternative for INTERRAP is to set on the power of distributed computing
in order to export certain reactive features onto the on-board computer without
loosing a shared-memory model. Tests with extending the role of the world-
interface accordingly have proven successful, but a clean, layered perspective
requires deliberative access to these functionalities.

5.1.5 Bottom Line

Different applications enforce different design decisions and notions, especially
in layered architectures. We nevertheless think that the meta-object separation
of deliberative and reactive facilities is a new, and coherent extension to hybrid
agent design. For demanding robotic applications, we should however investigate
possibilities of distributed computing in order to make the clean specification
able to cope with, e.g., robot vision. 3T’s adversarial planning incorporates yet
unique multi-agent features that we propose to be better described by a separate
meta-deliberative, or social layer.

5.2 An Agent Toolkit: DESIRE

The last station of our comparative tour through agent design does not investi-
gate a specific model, but the generic agent construction toolkit, DESIRE [10].
DESIRE has been developed out of a compositional software engineering per-
spective, thus shares a similar methodological background as we have proposed
for INTERRAP. Building blocks of a DESIRE computational model are logical
components or modules to be concatenated via semantic links and to be grouped
to higher-level structures. This process is supported by a graphical user inter-
face and an automated animation facility. A straightforward way of comparing
both approaches is thus to map INTERRAP onto the DESIRE concepts which
uncovers subtle incompatibilities.

5.2.1 Architecture

Being a generic framework for compositional agents, DESIRE does not come with
a specific architecture, but provides basic horizontal and vertical modularisation
facilities. Vertically, semantic links connect the state of object-level components
in a directed manner. These semantic links consist of transmitting information,

40

requesting information, or setting up computations. They are also available in
a horizontal form transporting meta-data, such as information about particular
properties of a component’s state or reconfigurations to a subordinate computa-
tion.

Thus the INTERRAP architecture, i.e, the external interface of the agent,
the inner-layer processing (processes=modules), the composition of processes to
a layer (layer=higher-level module), and the meta-object relationship between
layers is expressible by component structures and specific forms of semantic links.

DESIRE distinguishes 9 different types of semantic links with particular im-
pact onto the receiving module. This possibility is however not closely linked
to the deductive, monotonic inference in components: strategic and operational
ingredients are not subject of change, only the state of the component (chan-
ging knowledge or goals). An advanced, resource-adapting perspective such as
INTERRAP proposes is thus not straightforward to model.

5.2.2 Computational Model

Similar to INTERRAP, the basic inference processes, thus the primitive com-
ponents of DESIRE, encapsulate logical inference engines. Their dynamic crea-
tion and interplay, however, poses a problem for DESIRE that assumes a fixed
set of components and semantic links during the lifetime of the agent. Therefore
all possible INTERRAP process instances and their interactions would have to
be specified in advance. (De-)activation would have to be encoded into the state
of components and the type of semantic links; this turns out to be a complicated
enterprise.

Similarly, semantical links are the only medium of communication to explicitly
transmit snapshots of the logical state of one component into the state of another
component. They are thus signals. A complete update of component states based
on these signals is a (possibly) concurrent, but synchronised step in the transition
of the agent. This update is followed by a (possibly) concurrent, synchronous
inference within each component.

INTERRAP’s communication facilities go beyond that scheme. Signals are
asynchronously concurrent also to the independent computation of processes.
Furthermore, immediate and implicit information exchange comes through the
shared memory model and the shared logical data structures applied. This form of
communication is the standard input-output scheme for computations. INTER-
RAP signals rather indicate exceptional changes in state and are transmitted in
a controlled (via the layer) manner.

To get this mechanism in concordance with DESIRE, we could introduce the
signal queues of each INTERRAP process as additional components. Once shared
logical data is available, two semantic links could then transmit mutual compu-
tation results. What seems to be not possible, however, is that semantic links
are added on the fly according to the dynamic process communication structure

41

in INTERRAP. Again, specifying the space of all possible semantic links and
controlling their (de-)activation seems to be not feasible.

5.2.3 Theory, Proof Calculus

The overall theory of a compositional specification in DESIRE is rather a des-
criptive, observer’s point of view. The monotonic inferences within the agent,
however, each employ their own theoretical framework to be encapsulated. Se-
mantic links therefore have to ‘translate’ between syntactical units and enforce
non-monotonic behaviour. Although this allows a general, on-line agent skeleton
and multi-agent structures with (auto-)epistemic representations (due to meta-
links), it is the non-trivial task of the concrete specification to insert a reasonable
treatment of incomplete and dynamically changing knowledge.

A coherent theory across components that is based on a more flexible inference
principle, such as the combination of HEC and abduction in INTERRAP, would
flexibilise the expressivity of DESIRE. Much of the designer’s work with respect
to coping with non-monotonic influence could be consistently dealt with in the
semantic links. Furthermore, such notions as fluents, time, and action are central
to any reasoning within the agent. As argued before, these considerations are
important for any situated agent model and domain, thus should be part of the
domain-independent part, here of the agent toolkit.

5.2.4 Implementation

DESIRE supports the implementation of agents by animating the compositional
skeletons from the formal specification. This animation is rather thought of as
testing the specified models before implementing them manually. In INTERRAP,
we have also defined such a transition for the hybrid process shell. In addition,
also the inner-process inferences are mapped onto a correct and practical imple-
mentation.

5.2.5 Bottom Line

At the beginning, we were quite confident to discover a strong relationship bet-
ween the generic DESIRE model and our concrete INTERRAP model since rely-
ing on a quite similar methodology. We have however shown that due to subtle
incompatibilities, the most feasible possibility for modelling INTERRAP agents
with DESIRE is to specify large parts of the layered agent in form of single,
monolithic components, such as the complete inner-layer processing. On the one
hand, DESIRE introduces an interesting categorisation of interactions between
modules in the form of semantics links. This could be used to complete the com-
putational model of INTERRAP with respect to different modes of control. On
the other hand, we propose the use of a single, coherent theory and an underlying,

42

situated inference principle within components as a highly important extension
of DESIRE in order to be more flexible and useful.

5.3 Hybrid Models: Bottom Line

It has been surprising to see that INTERRAP uses quite different concepts to
other, more pragmatically oriented hybrid models, such as 3T and DESIRE.
While particular aspects of those approaches (counterplanning, categorisation of
interactions) promise to be fruitful extensions to INTERRAP, we are convinced
in our approach being one of the most matured, hybrid models available. A
coherent way of describing layered reasoning, a coherent theoretical background
based on situated inference, and a formal specification strongly connected to
implementation platforms are the features that we suppose are the benefits of a
clear methodology and its instantiation to a specific agent model.

43

Chapter 6

Conclusion

The present report proposes a full-range methodological approach for specify-
ing (hybrid) agents. The role of computational models has been emphasised as
being the missing link between abstract, high-level conceptualisations and con-
crete implementations, between declarative, theoretical considerations and the
operational, architectural ones.

We have demonstrated the power of the proposed methodological attempt by
exploring the complete specification space for the practical, hybrid agent design
INTERRAP. On the abstract level, we were able to describe modularisation and
interaction issues in the context of layering. We did also address representational
and inferential issues with respect to the inherent decision making. Using a situa-
ted, abductive proof calculus and a computational model highlights concurrency
and communication between (sub-)cognitive processes, these considerations are
connected to concrete and practical implementation techniques, here a logical
host platform.

The particular specification properties attributed to all these stages are iden-
tified by the dimensions of abstraction and declarativity. They could also be
investigated across models from heterogeneous backgrounds, with different aims,
and also different applications. Figure 6 lists the variety of models that we have
taken to compare with INTERRAP. A particular result of this investigation is
that the dedicated specification properties appear to be rather independent wi-
thin a particular stage, i.e., such features are to be found across the models. But
as we have also seen in this report, there are correlations between the application
of particular designs on connected specification stages, such as the coincidence
of high modularisation and concurrency. This identifies a collection of associated
model features which build a methodological core for future agent design.

In the remainder of the concluding chapter, we would like to comprise the
investigated properties across the different models. Hereby, we especially focus
on the perspective that INTERRAP takes on the particular specification stages
and how the future development of INTERRAP could gain from overtaking results
from the compared models.

44

Model : Design Goals i Background i Applications
InteRRaP Integration of Reactivity DAI Robotics, Transport
(Miiller et al, 96) and (Social) Deliberation Telematics
Subsumption Robust and Reactive Robotics Robotics
(Brooks, 86) Robot Control
dMARS Reactive, Rational DAI i.a., Workflow Management,
(Georgeff et al, 87) Planning Combat Simulation,
Air Traffic Control
Agent0 Agent-Oriented Al Robotics, Information
(Shoham, 91) Programming Management
ALP Unifying Reactive and Al Reactive Databases,
(Kowalski et al, 96) Deliberative Inferences Elevator Control
PRODIGY Integrating Planning and Al Synthetic Characters
(Carbonell et al, 91) Machine Learning
SOAR Cognitive Architecture Cognitive i.a., Cognitive Modelling,
(Newell, 91) with Heuristic Search Science Air Combat Simulation
ACT-R Resource-Adapting Cognitive i.a., Cognitive Modelling,
(Anderson, 93) Cognitive Architecture Science Tutoring
3T Intergration of Reactivity | Robotics Robotics
(Bonasso et al, 95) and Deliberation
DESIRE Agent Specification Computer -
(Keplicz et al, 94) Toolkit Science

Figure 6.1: Goals and Backgrounds of the Compared Agent Models

45

Architecture Horizontal Horizontal Vertical Vertical o
Interaction Modularisation Modularisation Interaction uw

InteRRaP Resource-Adaptive Reactivity, K, G, D, E Bidirectional m
Meta-Control Deliberation K, G, D, E Bidirectional ﬂ

Social Reasoning K,G,D, E Bidirectional |=

Subsumption Subsumption Domain-Dep. Domain-Dep. Unidirectional m@
(Reactivity) (Feedback) |2

dMARS No Reactive Reasoning K, GD, E Unidirectional =
Agent(Simple Application No No .m
Meta-Control Social Reasoning K, D, E Unidirectional m

ALP Resource-Adapted Inference No No ﬂ
Meta-Control Interface No No -

PRODIGY Resource-Adapting Planning No No g
Meta-Control Learning Modules | Domain, Search, No =

Quality m

SOAR Subsumption Interface Perception, Motor No Aln
(Resource-Adaptive | Problem Spaces KG, DE Unidirectional |8

Meta-Control) h_,_v

ACT-R Resource-Adapting | Production System K, GDE Unidirectional Ga
Meta-Control Rational Analysis No No 2

3T Simple Meta Reactive Skills No Unidirectional nm
Control (Feedback) |2

Subsumption Sequencer No Bidirectional m

Planning KGD, E Bidirectional |2

DESIRE Simple Model-Dep. Model-Dep. Unidirectional H

Meta-Control

(Feedback)

Figure 6.2: Comparison of Architecture

46

The architectural overview is to be found in Figure 6. As aforementioned, we
have categorised the models according to horizontal modularisation and interac-
tion, and for each horizontal module, its vertical structure. Hereby, the letters K,
G, D, E stand for the functional roles of Knowledge, Goal Activation, Decision
Making, and (Plan) Execution. A module called KG, for example, integrates
both functions at once. The direction of interaction indicates whether a vertical
structure implements a monolithic cycle with unidirectional control flow, whether
feedback is allowed, or whether it exhibits a flexible bidirectional scheme.

Following the argumentation of [6], horizontal modularisation is a technique
to enable agent designs for dealing with multiple, heterogeneous goals on various
levels of abstraction. Unified, monolithic models, in contrast, have problems to
flexibly mediate between these goals the more restrictive the agent is in its ver-
tical computation cycle. Thus modularisation is a means to make the necessary,
operational considerations explicit.

We have distinguished horizontal modularisation into subsuming forms, such
as in the Subsumption architecture, and into meta-forms, such as in INTERRAP.
Subsumption regards a layer as an optional computation path through the agent.
Herein, ‘final’ decisions of layers have basically the same status and are arbitra-
ted in between. In contrast, a lower layer in INTERRAP, such as the BBL, does
indeed implement all the functionality of the agent. To be guided towards exhi-
biting a specific, rational function, it is, however, monitored, reasoned about, and
reconfigured by its super-layer (the LPL, e.g., by shutting off an avoid-collision
reflex). It is thus not subsumed, but supported by its super-layer. Layers do no
more stand in competition, but in a structured, cooperative relation with their
super-layers. The combination of this notion as a resource-adaptive influence and
the relationship of social and local reasoning makes INTERRAP unique.

The lesson to learn from deliberative, or cognitive architectures as presented in
Section 4 is to envisage a more elaborate form of resource-adapting intelligence in
INTERRAP. Learning representations and control rules is one aspect. Currently
we focus on on-line, utilitarian guide of computation to be integrated into our
paradigm of layering as control.

Turning to the respective computational models (Figure 6) it is to note that
besides INTERRAP, dMARS, ALP, and DESIRE, such a model is not formally
defined. Concurrency is available in most models (Exception: PRODIGY) but in
different forms. Especially the cycle-oriented unified models AMARS and Agent0
focus this aspect around selecting active plans out of simple decision procedures.

Complex planning, however, needs a more asynchronous decoupling also from
other computations to retain responsiveness. We have argued that encapsulation
and concurrency are reasonable tools to allow for dynamical reorientation in
computation. On the other hand, sequential or depth-first strategies are of course
a more persistent, but non-responsive form of scheduling activities. Agent0) and
dMARS show that both extremes are a burden for the agent programmer to
set up reasonable decisions. A controlled form of concurrency as in INTERRAP

47

Computational Concurrency Encapsulation Communication Control Basic
Model Complexity
InteRRaP Asynchronous, | Within Modules Asyn, Safe, Dyn, Communication and | Simple and
Within Modules and Modules Signals and Computation Complex
Shared Memory
Subsumption Implement.-Dep. Modules Asyn, Unsafe, Stat Communication Simple
Per Module Signals
dMARS Asynchronous No Syn, Safe, Dyn (Computation) Simple
Per Plan Events and
Shared Memory
Agent(Synchronous No Syn, Safe, Dyn (Computation) Simple
Per Rule and Events and
Commitment Shared Memory
ALP Asynchronous Modules Shared Memory, Dyn Computation Simple and
Within Modules Complex
PRODIGY No Modules Shared Memory, Dyn Computation Complex
SOAR Async (Interf.) Perc. , Motor Shared Memory, Computation Simple and
Synchronous, Problem Spaces Dyn Complex
Per Production
ACT-R Synchronous No Syn, Safe, Dyn Computation Simple
Per Production Events and
Shared Memory
3T Asynchronous Modules Asyn, Safe, Stat Computation Simple and
Within Modules Signals and Complex
Shared Memory
DESIRE Model-Dep. Modules Safe, Stat Computation Model-Dep.
Per Module Signals

Figure 6.3: Comparison of Computational Model

48

should be the conclusion to draw from this discussion.

The application of directed signals or undirected events relates to the vertical
interactions as described by the architectural comparison. Signals are reasonable
for bidirectional feedback whereas events (a kind of inner perception) are applied
in unified, single-level models to influence the belief and goal structure from
within the plan execution. We have made clear that there are different needs for
communication and that accordingly, different means of information transmission
in the form of explicit signals (exceptional situations) and shared memory (input-
output) is reasonable.

As already discussed in Section 5.2, the expected similarities between DE-
SIRE and INTERRAP turned into subtle incompatibilities, such as the control of
communication that is only to be found in the Subsumption architecture and IN-
TERRAP. Similarly, control of computation is treated in most single-level models
by using internal events. On the other hand, DESIRE introduces a clean cate-
gorisation of module or process interactions, a feature which could also enhance
the INTERRAP computational model.

In Figure 6, we have comprised the theoretical background of the agent mo-
dels. We have focussed on the deliberative capabilities if they rely on different
theories, such as the decision-theoretic rational analysis of ACT-R on top of the
production system. Brook’s agent model does of course not fit at all into this
scheme because denying any such aspect.

Coinciding with their application in multi-agent settings, architectures with
a (possible) social module do also apply an (auto-)epistemic level of representing
situations. Time, in contrast, is always an important notion for any agent whether
implicitly encoded into relations of situations and actions or whether explicitly
present, in the form of intervals or time-points. Explicit representations of time
are subject of reasoning. If we imagine domains in which scheduling decisions is
an important facility for the agent, explicit representations turn out to be more
flexible.

It is also interesting to find that reactive reasoning does not restrict to situation-
based representations. The ALP agents of Section 3.4 are an example for this
claim. Nevertheless, among the other models, reactive reasoning coincides with
situation-based and deliberative planning with plan-based representations.

For doing reactive reasoning it is especially relevant to build up abstract
macro-decisions which decompose into more primitive actions. Conditionals her-
eby play an important role since putting certain decision making features into
the execution module. Both macro representations and conditionals are howe-
ver also important for deliberative planning approaches, such as INTERRAP and
PRODIGY, since allowing for more reactive behaviour (abstract connection from
goal to current situation) and the treatment bounded indeterminism.

For the present report, we have regarded descriptive and specifying theories
to be equivalent. Indeed, the theoretical framework that we yet have established
for INTERRAP turns out to cover just inner-process inferences. In the light of a

49

o

g

Theory : Facts, Fluents i Time i Action Annotation i Macro Actions Reasoning m
InteRRaP Subsymbolic Explicit Preconditions S, Co, D, Plan-Based |2
Symbolic Interval-Based cond. Effects T, L m

(Auto-)Epistemic =

Subsumption Subsymbolic No No No No ﬂ
dMARS Symbolic Implicit Preconditions S, C, Situation-Based |2
Point-Based (Effects) L m

Agent(Symbolic Explicit Preconditions C Situation-Based S
(Auto-)Epistemic | Point-Based =

ALP Symbolic Explicit Preconditions S, Co, D, Plan-Based |&
Interval-Based T, L m

PRODIGY Symbolic Implicit Preconditions S, Co, D, Plan- and S
Auto-epistemic | Interval-Based cond. Effects L Situation-Based |||

SOAR Symbolic Implicit Preconditions No Situation-Based [©
Point-Based Effects .m

ACT-R Symbolic No (Effects) No Situation-Based .m
3T Subsymbolic Explicit Preconditions S, Co, D, Plan-Based and m
Symbolic Interval-Based | During Conditions T, L, Sy Situation-Based S

Effects =

DESIRE Symbolic Model-Dep. Model-Dep. Model-Dep. Model-Dep. |
(Auto-)epistemic W

5]

S=

Conditional

Loop, C=

Test Actions, L=

Synchronous Comp., T=

Sy=

Figure 6.4: Comparison of Theory

20

theory of hybrid agents, we however need some more advanced framework that
also covers modularisation and encapsulation. Where this is already available for
single-module, unified models such as AMARS following the BDI [31] theory, we
currently try to set up a Hybrid BDI model [19] as a structured conglomerate of
traditionally rational layer agents.

The properties of the Proof Calculus (Figure 6) are strongly coupled with the
theoretical considerations: where a complex reasoning about plans is envisaged,
the inference runs a future-oriented planning procedure.

In the case of PRODIGY, the planner furthermore is able to complement
this with a present-oriented ‘simulated execution’. In INTERRAP, a similar,
but situated effect is introduced by abstract operators solutions being already
executed and thus triggering changes in the reactive layer.

Pure present-oriented plan decomposition puts the burden of a reasonable
plan library to the agent programmer. The analysis of a complex domain, espe-
cially for social settings, is not straightforward. Thus a mixed strategy between
using as much designer knowledge in the form of abstract operators as possible
and exhibiting as much planning, goal-oriented facilities as necessary favourites
future-oriented abstraction planning approaches as in INTERRAP. Resolving de-
pendencies between possibly conflicting intentions is furthermore an important
feature of persistent, but flexible agent behaviour.

We see that abduction is especially useful for describing any situated reasoning
faced with incomplete knowledge about facts and future decisions. Deductive
frameworks have to treat this in a non-monotonic way which often implies non-
retractable decisions. This is especially true for the generic toolkit DESTRE. Since
inner-module theory and proof calculus are not part of the model-independent
framework, the use of an appropriate inference principle is necessary.

A special status can be assigned to the learning facilities of PRODIGY: they
can be partially attributed to inductive reasoning on top of the domain and plan
representation, thus they deal with incomplete domain and action axiomatisation.
This is a yet unique feature.

Finally we turn to the relevant implementation issues which we have identified
as the landscape of available language platforms, the relation to the higher-level
specifications, and the realisation of concurrency. We see that in particular,
reactive implementations for robotics are done in C and ported to or even realised
by robot hardware.

For the applicability of INTERRAP to more advanced robotic settings than
the automated loading dock, we have seen that distributing computation simu-
lateneously on several computing devices is a necessary enterprise. The latest
developments in distributed logical programming provide the transparent tool
to nevertheless keep the shared-memory model. More operational considerati-
ons, but, have to be made in order to minimise network overhead by that design
decision.

We do also recognise that some implementations heavily restrict the expres-

ol

Proof Calculus || Inference Incomplete On-line Decision/
Knowledge Facilities Planning
InteRRaP Abduction | Action Occurence Yes Future-oriented
Abstraction Planning
Subsumption - - - -
dMARS Deduction No Yes Present-Oriented
Plan Decomposition
Agent0 Deduction No Yes (no retract) Present-Oriented
Action Selection
ALP Abduction | Action Occurence Yes Present-Oriented
Plan Decomposition
PRODIGY - - No Future- and
(Induction) (Action and Present-Oriented
Domain Axioms) Abstraction Planning
SOAR Deduction No Yes Present-Oriented
Planning
ACT-R Deduction No Yes (no retract) Future-Oriented
Action Selection
3T - No Yes Future-Oriented
Planning
DESIRE Deduction Model-Dep. Model-Dep. Model-Dep.

Figure 6.5: Comparison of Proof Calculus

52

Implementation Host Relation to Implementation of
Platform Specification Concurrency
InteRRaP Oz, (Java) formally derived fair, asynchronous
Subsumption Lisp, Hardware derived synchronous to parallel
dMARS C formally derived depth-first
Agent0 C derived fair, synchronous
ALP Prolog formally derived depth-first
PRODIGY Lisp loosely coupled No
SOAR C loosely coupled fair, synchronous
ACT-R Lisp loosely coupled fair, synchronous
3T C, Hardware loosely coupled fair, asynchronous
DESIRE Animation part. formally derived Model-Dep.

Figure 6.6: Comparison of Implementation

23

sivity of their computational model by rendering concurrency unfair. As afore-
mentioned, depth-first approaches in selection introduce a persistent behaviour
but tend to stick the agent’s decisions. A reasonably weighted, fair approach is
therefore advisable.

Formal derivations of implementations are tightly related to formal computa-
tional models of proof calculi which are only provided by INTERRAP, dMARS,
ALP, and DESIRE. Where the algorithmic issues are presented in detail, a loose
relation of implementation and specification is to be tolerated, however.

o4

Bibliography

1]

2]

(6]

7]

[10]

J. R. Anderson. Rules of the mind. Lawrence Erlbaum Associates, Hilldsdale,
NJ, 1993.

Joseph Bates, A. Bryan Loyall, and W. Scott Reilly. Broad agents. SIGART
Bulletin, 2(4), August 1992.

J. Blythe and W. S. Reilly. Integrating reactive and deliberative planning
for agents. Technical Report CMU-CS-93-155, Carnegie Mellon University,
1993.

R. P. Bonasso, D. Kortenkamp, D. Miller, and M. Slack. Experiments with an
architecture for intelligent, reactive agents. In Intelligent Agents II, Lecture
Notes in Artificial Intelligence. Springer, 1995.

Rodney A. Brooks. A robust layered control system for a mobile robot. In
IEEE Journal of Robotics and Automation, volume RA-2 (1), pages 14-23,
April 1986.

Rodney A. Brooks. Intelligence without reason. Technical Report 1293, MIT
AT Laboratory, April 1991.

J. G. Carbonell, C. A. Knoblock, and S Minton. PRODIGY: An integrated
architecture for planning and learning. In Architectures for Intelligence.
Lawrence Erlbaum Associate, 1991.

J. Davila. Reactive Pascal and the Event Calculus. In U. Siegmund and
M. Thielscher, editors, Proceedings of the FAPR’96 Workshop on Reasoning
about Actions and Planning in Complexr Environments, volume 11 of Tech-
nical Report AIDA, June 1996.

M. d’Inverno, D .Kinny, M. Luck, and M. Wooldridge. A Formal Specifica-
tion of dmars. In Intelligent Agents IV, volume 1365 of Lecture Notes in Ar-
tificial Intelligence. Springer, 1998.

B. Dunin-Keplicz and J. Treur. Compositional formal specification of multi-
agent systems. In Intelligent Agents, volume 890 of Lecture Notes in Artifi-
cial Intelligence, pages 102—117. Springer, 1994.

95

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

N. J. Nilsson (ed.). Shakey the robot. Technical report, SRI AT Center, April
1984.

C. Elsaesser and R. MacMillan. Representation and algorithms for multi-
agent adversarial planning. Technical report, The MITRE Corporation,
1991.

K. Eshghi. Abductive planning with event calculus. In Proceedings of the
Fifth International Conference on Logic Programming, pages 562-578, 1988.

R. James Firby. Task networks for controlling continuous processes. In Pro-
ceedings of the 2nd International Conference on Artifical Intelligence Plan-
ning Systems, 1994.

T. H. Fung and R.Kowalski. The IFF Proof Procedure for Abductive Logic
Programming. Journal of Logic Programming, 1997. in press.

M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In
Proceedings of the 6th National Conference on Artificial Intelligence, 1987.

C. Gerber and C. G. Jung. Towards the bounded optimal agent society. In
C. G. Jung, K. Fischer, and S. Schacht, editors, Distributed Cognitive Sy-
stems, number D-97-8 in DFKI Document, Saarbriicken, 1997. DFKI GmbH.

C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, (12):576—580 and 583, 1969.

C. G. Jung. Emergent mental attitudes in layered agents. In Proceedings
of the 5th International Workshop on Agent Theories, Architectures, and
Languages ATAL’98, 1998. to appear.

C. G. Jung. On the Role of Computational Models for Specificying Hybrid
Agents. In Cybernetics And Systems’98, Vienna, 1998. Austrian Society for
Cybernetic Studies.

C. G. Jung. Situated abstraction planning by abductive temporal reasoning.
In Proceedings of the 13th European Conference on Artificial Intelligence
ECAI’98, 1998. to appear.

C. G. Jung and K. Fischer. A Layered Agent Calculus with Concurrent,
Continuous Processes. In Intelligent Agents IV, volume 1365 of Lecture No-
tes in Artificial Intelligence. Springer, 1998.

C. G. Jung, K. Fischer, and A. Burt. Multiagent Planning using an Abductive
FEvent Calculus. Number RR-96-4 in DFKI Research Report. DFKI GmbH,
Saarbriicken, Germany, 1996.

26

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

R. Kowalski. Logic for Problem Solving, volume 7 of Artificial Intelligence
Series. Elsevier Science Publisher B.V. (North-Holland), 1979.

R. Kowalski. Using meta-logic to reconcile reactive with rational agents. In
K. Apt and F. Turini, editors, Meta-Logic and Logic Programming, pages
227-242. MIT Press, 1995.

R. Kowalski and F. Sadri. Towards a unified agent architecture that combines
rationality with reactivity. In D. Pedreschi and C. Zaniolo, editors, Logic
in Databases, volume 1154 of Lecture Notes in Computer Science. Springer-
Verlag, 1996.

R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67-95, 1986.

J. P. Miller. The Design of Intelligent Agents: A Layered Approach, volume
1177 of Lecture Notes in Artificial Intelligence. Springer-Verlag, December
1996.

A. Newell. Unified theories of cognition. Harvard University Press, Cam-
bridge, London, 1990.

D. Poole and K. Kanazawa. A decision-theoretic abductive basis for plan-
ning. 1994.

A. S. Rao and M. P. Georgeff. Modeling Agents Within a BDI-Architecture.
In R. Fikes and E. Sandewall, editors, Proc. of the 2rd International Con-

ference on Principles of Knowledge Representation and Reasoning (KR’91),
pages 473-484, Cambridge, Mass., April 1991. Morgan Kaufmann.

M. Shanahan. Planning and event calculus revisited. In Proceedings of
FEuropean Conference on Planning Systems, 1997.

Y. Shoham. Agent-oriented programming. Technical report, Stanford Uni-
versity, 1990.

G. Smolka. The Oz Programming Model. In Jan van Leeuwen, editor,
Computer Science Today, Lecture Notes in Computer Science, vol. 1000,
pages 324-343. Springer-Verlag, Berlin, 1995.

M. Spivey. The Z notation (second edition). Prentice Hall International,
Hempel Hempstead, England, 1992.

G. Wetzel. A unifying framework for abductive and constraint logic pro-
gramming. In Proceedings of the 12th Workshop on Logic Programming
(WLP’97). LMU Miinchen, September 1997.

o7

[37] M. Wooldridge. Practical Reasoning with Procedural Knowledge: A Logic of
BDI Agents with Know-How. In Proceedings of the International Conference
on Formal and Applied Practical Reasoning. Springer-Verlag, 1996.

[38] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2), 1995.

[39] S. T. Yu, M. Slack, and D. P. Miller. A streamlined software environment, for
situated skills. In Proceedings of the AIAA/NASA Conference on Intelligent
Robots in Field, Factory, Service, and Space (CIRFFSS’94, 1994.

28

18Y9osi4 snepy pue Bung ‘o ydoisuyd
l0odoy Yyoseasay
"0-86-4Y S|9pO 1uaby Jo uosiredwo) [ea1bojopoylaN

