uuewnNap Jaiuno

SUISSE001 WLIOJIU[) YSnoayJ,
oday yoseasay UOIJRIOUSY) pUR FUISIRJ 98RNIURT [RINIRN

'0-96 surAro[IOU]

Eeutsrc]:hes t Research

orschungszentrum

fur Kinstliche RepOrt
Intelligenz GmbH 96-03

Interleaving
Natural Language Parsing and Generation

Through Uniform Processing

Gunter Neumann

March 1996

Deutsches Forschungszentrum fir Kinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
67608 Kaiserdautern, FRG 66123 Saarbriicken, FRG
Tel.: +49 (631) 205-3211 Tel.: + 49 (681) 302-5252

Fax: + 49 (631) 205-3210 Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
far
Kinstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fir
Kinstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit or-
ganization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema
Group, Siemens and Siemens-Nixdorf. Research projects conducted at the DFKI are funded
by the German Ministry of Education, Science, Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using Al methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

oooood

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry.
The DFKI hosts technology transfer workshops for shareholders and other interested groups
in order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers
at the end of the building-up phase.

Dr. Dr. D. Ruland
Director

Interleaving
Natural Language Parsing and Generation
Through Uniform Processing

Gunter Neumann

DFKI-96-03

This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research and Technology (FKZ ITWM-9403).

(© Deutsches Forschungszentrum fir Kunstliche Intelligenz 1996

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum fur Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fiir Kiinstliche Intelligenz.

ISSN 0946-008X

Interleaving
Natural Language Parsing and Generation

Through Uniform Processing

Glunter Neumann

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz GmbH
Stuhlsatzenhausweg 3
66123 Saarbriicken, Germany
neumann@dfki.uni-sb.de

Abstract

We present a new model of natural language processing in which natural lan-
guage parsing and generation are strongly interleaved tasks. Interleaving of parsing
and generation is important if we assume that natural language understanding and
production are not only performed in isolation but also can work together to obtain
subsentential interactions in text revision or dialog systems.

The core of the model is a new uniform agenda-driven tabular algorithm, called
UTA. Although uniformly defined, U/ T A is able to configure itself dynamically for
either parsing or generation, because it is fully driven by the structure of the actual
input—a string for parsing and a semantic expression for generation.

Efficient interleaving of parsing and generation is obtained through item shar-
ing between parsing and generation. This novel processing strategy facilitates
exchanging items (i.e., partial results) computed in one direction automatically to
the other direction as well.

The advantage of UTA in combination with the item sharing method is that we
are able to extend the use of memoization techniques even to the case of an inter-
leaved approach. In order to demonstrate UTA’s utility for developing high-level
performance methods, we present a new algorithm for incremental self-monitoring
during natural language production.

1 Introduction

In the area of natural language processing in recent years, there has been a strong
tendency towards reversible natural language grammars, i.e., the use of one and the same
grammar for grammatical analysis (parsing) and grammatical synthesis (generation) in
a natural language system.

The idea of representing grammatical knowledge only once and of using it for per-
forming both tasks seems to be quite plausible, and there are many arguments based on
practical and psychological considerations for adopting such a view (e.g., [Frazier, 1982;
Kempen and Hoenkamp, 1987; Jacobs, 1988; Shieber, 1988; Appelt, 1987; Alshawi
and Crouch, 1992; VanNoord, 1993; Ristad, 1993]). Recent developments in the area
of constraint-based grammar theories—due to their declarative and formal status—
demonstrate that grammar reversibility is in fact computationally feasible.

Nevertheless, in almost all large natural language systems in which parsing and
generation are considered in similar depth, different algorithms are used—even when
the same grammar is used.

At present, the first attempts are being made at uniform architectures which are
based on the paradigm of natural language processing as deduction [Pereira and Warren,
1983], [Shieber, 1988]. Here, grammatical processing is performed by means of the same
underlying deduction mechanism, which can be parameterised for the specific tasks at
hand.

Natural language processing based on a uniform deduction process has a formal ele-
gance and results in more compact systems. There is one further important advantage
that is of both theoretical and practical relevance: a uniform architecture offers the pos-
sibility of viewing parsing and generation as strongly interleaved tasks. Interleaving of
parsing and generation is important if we assume that natural language understanding
and production are not performed in isolation but rather can work together to obtain
a flexible use of language.! In particular this means

1. the use of one mode of operation for monitoring and controlling the other, and
2. the use of structures resulting from one direction directly in the other.

For example, during generation integrated parsing can be used to monitor the gen-
eration process and to cause some kind of revision, e.g., to reduce the risk of misun-
derstandings. Research on monitoring and revision strategies is a very prominent area
in cognitive science (cf. [Berg, 1986; Levelt, 1989]); however, currently there exists
no algorithmic model of such a behaviour. A uniform architecture can be an impor-
tant step in that direction. Further attractive applications for interleaved parsing and
generation are the exploration of highly interactive text-processing facilities such as
structure-editing operations, propagation of minimal grammatical changes [Wirén and

1We use the terms parsing and generation only for grammatical processing. Thus if we refer to the
whole task of language processing we use the terms understanding and production.

Rénnquist, 1993], grammar and style checkers, on-line translation, in which the target-
language text is generated in parallel with the source-language text [Somers et al., 1990],
and text revision [Vaughan and McDonald, 1986]. Interleaved parsing and generation
seems also promising for question-answering systems where question understanding and
answering is performed simultaneously [Robertson, 1994] and for bidirectional dialogue
systems [Levine, 1992].

Modelling such high-level performance methods on the basis of non-uniform ap-
proaches is problematic—if not impossible. For example, if two different grammars
and algorithms are in use then additional translation operations are necessary in order
for parsing and generation to exchange partial results. Since, this is a complex process
in itself, not even maintaining two specific grammars but also two different algorithms
will be a handicap for an interleaved approach.

Unfortunately, the currently proposed uniform architectures are too inflexible and
inefficient so that it seems unclear how an efficient task-oriented uniform model could
be achieved. An obvious problem is that different input structures are involved in each
direction—a string for parsing and a semantic expression for generation—which causes
a different traversal of the search space defined by the grammar. Even if this problem
were solved, it is not that obvious how a uniform model could re-use partial results
computed in one direction efficiently in the other direction for obtaining a practical
interleaved approach to parsing and generation.

The contribution of this work In this paper we present a novel uniform algorithm
(called UTA) for parsing and generation of constraint-based grammars that overcomes
these problems. The most interesting properties of UTA are:

1. a uniform data-driven processing strategy,
2. item sharing between parsing and generation, and

3. co-routine relationship between parsing and generation.

The first property means that parsing and generation are both realized by the single
program UTA but that it is able to configure itself dynamically for either parsing or
generation. The only essential parameter for UTA to adapt itself efficiently to either
the parsing or generation task is the feature that carries the input, hence we call it
the essential feature (Ef). This information suffices to define a data-driven selection
function (Ef determines the selection of the next right hand side element of a rule), and
a uniform chart mechanism (partial results are ordered according to the value of their
Ef).

Secondly, U TA extends the traditional usage of a chart by allowing for shared items
between parsing and generation: Partial results computed in one direction are auto-
matically made available for the other direction as well. Thus, if parsing and generation
work in tandem to solve some specific problem they are capable to exchange the result

of partial computations, which reduces the amount of unnecessary computations in
those cases. In other words, UTA extends the usage of a chart even for the case that
parsing and generation are strongly interleaved.

Interleaving of parsing and generation is realized using a co-routine processing
regime between both directions using a flexible agenda mechanism. Here, parsing and
generation are considered as specific instances of Y T.A. We call the different instances
parser and generator (but note, both are realized by the same algorithm). The only
differences are 1.) different values for the essential feature Ef, and 2.) each one has
its own private agenda. The agenda control—which is the same for both—is able to
co-routine between both directions in a fine-grained incremental manner. For example,
during parsing generation is called for a just analysed partial string. The result of
the generator may then influence parsing of next partial strings. Obviously, this com-
plex processing strategy benefits directly from the item sharing mechanism introduced
above. As another example, we show in detail how integrated parsing is used during
generation for incremental self-monitoring of the generation process. It will turn out
that such a complex process can be realized quite easily and efficiently using UTA’s
novel properties.

UTA as well as the incremental monitoring strategy have been fully implemented
in Common Lisp and CLOS and tested with constraint-based lexicalized grammars for
Dutch and German. It uses the powerful constraint-solver UDiNe which is capable of
dealing with distributed disjunctions over arbitrary structures, negative co-references,
and full negation [Backofen and Weyers, 1993].

Overview of the next sections In the next section we introduce the formal and lin-
guistic background on which our approach is based. Especially we introduce abstractly
the notions of reversible grammar and uniform algorithm, and introduce constraint logic
programming (CLP) as an appropriate means for establishing the computational basis
for uniform processing. In section 3 we describe in detail the new uniform tabular al-
gorithm and discuss shortly some of its properties in section 4. Section 5 then presents
the item sharing approach between parsing and generation. On the basis of UT.A and
item sharing we then present in section 6 interleaving of parsing and generation through
uniform processing and present in detail the novel incremental self-monitoring strategy.
We discuss the new approach by comparison with related work in section 7 and outline
future extensions.

2 Formal and Linguistic Background

2.1 A relational view on language

It is widely accepted to consider linguistic objects (i.e., words and phrases) as utterance-
meaning associations [Pollard and Sag, 1994]. Thus viewed, a grammar is a formal
statement of the relation between utterances of a natural language and representations

of their meanings in some logical or other artifical language, where such representations
are usually called logical forms [Shieber, 1993].

Adopting the simplified assumption that utterances are represented as strings of
words, the relationship can be defined more formally as a binary relation R between
objects of two different domains, i.e., R C S x LF', where S is the domain of strings
and LF' the domain of logical forms.

Parsing as well as generation can be thought of as a program P that is able to
enumerate all possible pairs of R for a given element either from the domain of strings
or from the domain of logical forms. More precisely, in the case of parsing P computes
{lfil(s,lf;} € R,i=1...n} and in the case of generation {s;|(s;,lf) € R,i=1...m}.
Thus, P is just a constructive realization of R, no matter whether P constructs R
during parsing only or during generation. Since P can construct R for both domains
we call P a reversible program and R a P-reversible relation, in order to emphasize that
P can construct R from both directions.

Clearly, up to now we have only assumed that R is a (recursively) enumerable
relation. As usual, we assume that the set S of the well-formed strings of a language is
enumerable. For a reversible program P this implies that it can enumerate R also from
the set LF. Furthermore, we also assume that at least S has an infinite cardinality,
so that R has to be defined by some finite recursive device, i.e., a grammar. If the
same grammar is used for defining both sets of R, we call this grammar a reversible
grammar.

Ambiguities during parsing Paraphrases during generation
S S1 s Sm

Figure 1: The relationship between ambiguities and paraphrases.

If a sentence s has been associated with more than one interpretation, say [fi ...l f,,
the relation R defined by G will contain pairs (s,lf1)...(s,lf,) and analogously for a
meaning representation [f we will get a set of pairs (s1,lf) ... (sm,Lf), of all possible
sentences that have the same interpretation. Accordingly, the sets are denoted as R(s)
or R(lf). The cardinality card(R(s)) of R(s) is defined as the degree of ambiguity of s
and the cardinality card(R(lf)) of R(lf) as the degree of paraphrasing of Lf.

Suppose that for some s there exists exactly one semantic expression [f, i.e.,
card(R(s)) = 1. Then, it is not valid to deduce that if generation is performed starting
with [f the resulting set R(If) is {s}. However, it is guaranteed that s € R(lf) (see

also figure 1).

Of course, this kind of “reversibility” is an intrinsic property of each relation. But,
if two separate grammars for parsing and generation are used in a natural language
system it has to be proven that they describe the same relation; otherwise it would
be possible that a sentence which is parse-able cannot be generated and vice versa.
Grammar reversibility is very important in practice because it ensures that ambiguous
structures and its paraphrases are interrelated. If this is not the case then important
aspects of performance like self-monitoring or generation of paraphrases in order to
disambiguate ambiguous sentences cannot be modelled properly (see section 6).

Thus viewed, understanding and generation are dual processes, in the sense that
each sentence which can be understood should also be producible and vice versa. This
kind of duality is naturally captured if reversible grammars are used.

2.2 Constraint-logic programming

Since the last decade a family of linguistic theories known under the term constraint-
based grammar theories play an important role within the field of natural language
processing, e.g., LFG[Bresnan, 1982], HPSG[Pollard and Sag, 1994].

In the last few years constraint-based formalisms have undergone a rigorous formal
investigation (consider for example [Shieber, 1989; Smolka, 1988; Smolka, 1992]). This
has led to a general characterisation of constraint-based formalisms where feature struc-
tures are considered to constitute a semantic domain and constraints are considered
syntactic representations of such ‘semantic structures’. This logical view has several
advantages. On the one hand, it has been possible to properly incorporate concepts like
disjunction or negation as part of the (syntactic) constraint language and to interpret
them relative to a given domain of feature structures (usually defined as graph-like or
tree-like structures). On the other hand it has been possible to combine constraint-
based formalisms with logic programming, which fits into a new research area known
under the term constraint logic programming (CLP) [Jaffar and Lassez, 1987].

In constraint logic programs basic components of a problem are stated as constraints
(i.e., the structure of the objects in question) and the problem as a whole is represented
by putting the various constraints together by means of rules (basically by means of
definite clauses). For example the following definite clause specification

sign(Xp) <
sign(Xy),
sign(Xa),
Xo syn cat = s,
X1 syn cat = np,
X9 syn cat = wp,
X1 syn agr = Xo syn agr

expresses that for a linguistic object to be classified as an s phrase it must be composed
of an object classified as an np and by an object classified as a vp and the agreement
information between np and vp must be the same. All objects that fulfill at least these
constraints are members of s objects. Note that there is no ordering presupposed for
np and vp as is the case for unification-based formalisms that rely on a context-free
backbone, e.g., [Shieber et al., 1983]. If such a restriction is required additional con-
straints have to be added to the rule, for instance that substrings have to be combined
by concatenation.

A general characterisation of CLP is given in [Hohfeld and Smolka, 1988]. Given a
constraint language £ and a set R of relation symbols, £ is extended conservatively to a
constraint language R (L) providing for relational atoms, the propositional connectives,
and quantification. In particular, they show how the properties of logic programming
carry over to a whole range of constraint-based formalisms, by abstracting away from
the actual constraint language in use.

Definite clauses A definite clause is an R(L)-constraint of the form:

P1,P2,.-- 7pn7¢_>q

where n > 0, p1,p2,...p, and ¢ are atoms and ¢ is an L-constraint. We call ¢ the
head of a clause and pi,p2,...p, its body. We may write a clause as g<p1,...,pn, @
or simply as g<—p. In case the head and the body of a clause are empty, we call the
clause an empty clause.

A definite clause specification is a set of definite clauses. Hohfeld and Smolka
show that important properties of conventional logic programs extend to definite clause
specifications, especially the existence of a unique minimal model for each interpretation
in L.

A goal is a possibly empty conjunction of R(L)-atoms and an L£-constraint written

as «pi,...,Pn, ¢ that is, a clause with an empty head (or consequent). An S-answer
to a goal with respect to a given definite specification S is a satisfiable constraint),
such that ¥—p1, ..., pn, ¢ is valid for every minimal model of S.

Operational semantics Hohfeld and Smolka provide a generalisation of the SLD-
resolution method known from standard logic programming (cf. [Lloyd, 1987]) to defi-
nite clauses in R(L).

The fundamental inference rule for definite clauses in R(L) is the following goal re-
duction rule (using a slightly different notation from that given in [Hohfeld and Smolka,
1988])

pla-"vp(f)v"'pnu(b:>p17"'7‘]17"'7‘]m7"'7pn7p

where p(Z) is the selected element of a goal and

p(j’)%QD .- '7Qm7¢

is a variant of a clause of a definite clause specification S and p is the result of unifying
¢ and 1) (which we also write as UNIFY(¢,1)).?

A proof of a goal g for a clause specification S is a sequence of goals G, G, ... where
each goal G;41 is derived from G; by applying goal reduction using a variant of a clause
of S and the last goal is the empty clause, where its associated constraint is said to be
the computed S-answer of the goal g. Hohfeld and Smolka show that answers computed
in that way are answers for the goal.

Constraint language The constraint language we will use is based on the defini-
tion of [Smolka, 1992]. Smolka provides us with a very expressive constraint language
including feature equation, conjunction, disjunction, negation, and existential quantifi-
cation. For the purpose of this work it suffices to use only a small subset of Smolka’s
constructions, namely feature equation and conjunction.?

We will not give a formal definition of the constraint language here since this has
already be done (see [Smolka, 1992; VanNoord, 1993]). Instead we directly make use of
the “Prolog-flavoured” matrix representation introduced by Van Noord as a readable
notation of £-constraints.* For example the following constraints on the variable Xj

Xo f1 f3=c,

Xo fo =Xo f1f3
are represented in matrix notation as follows (the variables X; and Xy are computed
during the computation of the basic constraint):

f1 Xl,Xg[f3 C]

fac
0

(1)
X
If variables occur only once in a matrix they are omitted. Furthermore, empty
feature structures will not been shown explicitly.
The feature structure encoding of the following list

ZNote, that we directly make use of the so called optimised goal reduction rule proven by [Hohfeld
and Smolka, 1988] for the general case.

3 Although we use only simple constructions in order to highlight the new results in a clean but
simple way, the generalisation of Hohfeld and Smolka’s scheme guarantees that the results of this thesis
also carry over to more complex constraint languages. Note further that the same subset has also been
used by [VanNoord, 1993] (for the same reasons).

“The only important thing to note here, that constraints are based on disjoint sets of variables, con-
stants, and features, as well as descriptor equations, where a descriptor is a (possible empty) sequence
of features starting with a variable or a constant. The semantics of L£-constraints is defined with respect
to the domain of feature graphs.

first a

first b
(2) .
rest first ¢
rest
rest end

will be written more readable using angled brackets as (a b ¢) . The empty list then
will be written as ().

We will also make use of the head/tail representation of lists known from Prolog.
Thus to explicitly represent the first element of a list from the rest we write (F'irst|Rest)
(e.g., (a, b, ¢) can also be written as (a|(b, ¢))). Using this notation the difference list
of the feature structure

first a
first b
dl
(3) rest lfirst c]
rest
rest X
el X

will be written as (a b ¢|X)-X , and the empty difference list as X-X .

2.3 Specification of grammatical knowledge in R(L)

A grammar G is specified as a definite clause specification where the literals of each
definite clause are unary relational atoms.® The general form of a grammar rule is as
follows:

P(J?o)th(Il) cee Qn(xn>7 ¢

Using our readable notation, a rule can also be represented as

p(fs0)q1(fs1) - qn(fsn)

where fs; is the feature structure representation of the corresponding variable ;.

Lezxical entries are represented as unit clauses, and grammar rules as non-unit claus-
es (defining non empty productions) as well as unit clauses (defining empty produc-
tions). Lexical entries and empty productions are distinguished using the boolean
feature LEX.

Relational atoms are assumed to denote possible constituents of a grammar, either
specifically (using for each possible constituent a specific symbol, like np, vp, pp) or
schematically by only using one symbol, e.g., sign. For example, the rule

Considering only unary atoms is not a general restriction since by means of reification we can
also express an n-ary atom r()?) in terms of constraints of a unary relation s(Y) using for example
the features REL and ARG; such that the relational symbol r is viewed as a constant bound to the
feature REL and each variable x; is bound to the corresponding feature ARG;. Thus r()?) would be
represented as follows: s(Y),Y rel = r,Yarg; = X;.

sign(fs1)sign(fsa), sign(fss)

expresses that a phrase is built from two phrases, no matter what they are (as long as we
do not consider the feature structure). Although the last rule seems to be useless, since
it does not say very much about the actual structure of an object, this kind of schematic
rule is very prominent in lexicalized grammars, since they allow the specification of
general combinatory rules, which are independent from individual words.

2.4 Parsing and generation under a CLP view

Considered under the CLP view, the parsing and generation problem consists of a goal
that has to be resolved with respect to a given grammar G, specified as a definite clause
specification. Parsing and generation differ with respect to the constraints specified for
the goal. Since for parsing we want to find the corresponding semantic expressions to
a particular string, we require that the constraints at least entail the representation
of the string in question, and analogously for generation we require that the semantic
expression for which possible strings should be computed is specified. For parsing the
feature that represents the string can be considered as an input variable and the feature
that represents the semantics found can be considered as the output variable, and vice
versa for generation. We will call the feature that represents the input the essential
feature, short Ef. For parsing we will assume that Ef is the path (PHON DL) and for
generation it is (SEM).

A parsing goal then can be defined as a goal of which the essential feature is
(PHON DL) and whose value is bound to the string in question.

Thus, the parsing problem for the string “heute erzahlt Peter Liigen” (“today, Peter
tells a lie”) would be

Sign([phon (heute, erzdhlt, Peter, ligen)-()])

and analogously we define a generation goal as a goal of which the essential feature is
(sEM) and whose value is bound to the semantic expression in question. For example
for the logical form “heute(erzahlen(Peter,Liigen))” (“today(to-tell(Peter,lie)”) would
be

mod heute
pred erzahlen
stgn{ sem arg argl[pred Peter])

arg?2 [pred Lﬁgen}

Note that in both cases further constraints may be added to restrict the possible
feature structures of found results, for example to be of a specific category, or that the

10

subcategorization list should be empty. Moreover, it would also be possible to specify
the entire syntactic information, for example in the case of generation, to perform some
grammar checking. However, what we at least require for parsing and generation is that
the value of the essential feature is instantiated.

Restricted parsing problem So far, we only have required that the value of the
essential feature should be instantiated. More precisely, we want our algorithm to
enumerate all possible feature structures that have a compatible value for the value of
essential feature. Thus if we want to parse a string, we want the feature structure of
that string and analogously for generation we want a feature structure of the input
semantics.

Van Noord [1993] has generalized this notation under the term p-parsing problem,
where parsing in this sense is the general notation for parsing of a string and generation
of a semantic expression. More formally, the p-parsing problem consists of a grammar
G and a goal ¢ such that <q(X), ¢.

An answer to a p-parsing problem is a solved constraint ¢ such that

e 1) is an answer g with respect to G; and
o [(¢/Xp)IF = [(v/Xp)]*

(where [(¢/Xp)]* is the subgraph found under the path p). In our terminology the
path p corresponds to the essential feature Ef. Thus we also use the term Ef-proof
problem to indicate that parsing and generation are proofs of goals in which the value
of the essential feature is instantiated.

3 UTA-A new Uniform Tabular Algorithm

We are now in a position to describe I/ T.A—a new uniform tabular algorithm for parsing
and generation with constraint-based grammars. UTA’s basic use is for parsing and
generation of grammatical structures. Beside this more traditional use of UTA its
whole new power emerges when it is used in such high-level processing strategies which
are based on a tight interaction or interleaving of parsing and generation. Thus, it is
important to describe UTA on a serious level of detail. We do this along the following
line:

e data-driven selection function
e uniform indexing mechanism
e agenda-based control

e item sharing between parsing and generation

11

The first idea is to use the same set of inference rules for parsing and generation
— basically we use the Earley deduction proof procedure as introduced in [Pereira and
Warren, 1983] — but to use a data-driven selection function, so that the element to
process next is determined on the basis of the current portion of the input (a string
or semantic expression). This enables us, for example, to obtain a left to right control
regime in the case of parsing and a semantic head driven regime in the case of generation
when processing the same grammar by means of the same underlying algorithm.

Secondly, a new uniform indexing mechanism for the retrieval of already completed
subgoals (i.e., lemmas) is presented, which can be parameterised with respect to the
information used for indexing lemmas. More precisely, in the case of parsing, lemmas
are indexed using string information and in the case of generation semantic information
is used to access lemmas. Using this mechanism we can benefit from a table-driven
view of generation, similar to that of parsing. For example, using a semantics-oriented
indexing mechanism during generation massive redundancies are avoided, because once
a phrase is generated, we are able to use it in a variety of places.

The uniform tabular algorithm is embedded into an agenda control mechanism,
such that new lemmas are first inserted into an agenda. Since lemmas are added to the
table according to their priority, we can easily model depth-first, breadth-first and even
preference-based strategies. This is even possible in the case of interleaved parsing and
generation.

Based on the uniform indexing mechanism we present a novel method of grammat-
ical processing which we call the item sharing method. The basic idea here is that
partial results computed during one direction (e.g., parsing) are automatically made
available for the other direction (e.g., generation), too. Since now items are shared by
both directions we call them shared items. We show how UTA is easily extended to
make use of shared items.

3.1 Data-driven selection function

The discussion of current approaches for parsing and generation can be summarised as
follows: parsing and generation, to be goal-directed, differ basically with respect to the
order in which the literals of the body of a clause are selected. For parsing, for example,
[Shieber, 1988; Gerdemann, 1991] have used the leftmost selection strategy, where for
generation [Shieber et al., 1990; Gerdemann, 1991] use the semantic-head first selection
function. The latter should be seen more precisely as a “preference-based” selection
function, since in the case a rule has no semantic head, the leftmost element is chosen,
or if two elements share the semantics with the mother node, the left one is selected.

However, it is very easy to combine these different strategies used in parsing and
generation, such that the selection function expresses a preference for goals with their
essential features instantiated (see section 2.4). If we abstract away from a concrete
essential feature by assuming that Ef is a variable, then we can define this selection
function more formally as follows:

12

i pi, the first element
SF(q < p1,P2,---+Di---Pn, Ef) = whose Ef is instantiated
1 otherwise

In order to use this selection function for parsing or generation we have to specify a
path that defines the essential feature (i.e., the phonological or semantic path). Since,
the value of this feature will be a string or semantic expression, this means that the
selection function prefers those goals which are instantiated with a string or semantic
expression. However, now, the grammar itself will be an important source of control,
since it defines how complex structure are compositionally crested. For example, if the
phonological information is expressed as difference lists and partial strings are combined
by string concatenation then the selection function SF “realises” a leftmost strategy.
Similarly, if all rules define a semantic head relation SF simulates the semantic head
first relation. These can both be true at the same time.

3.2 Uniform indexing mechanism

The purpose of the indexing mechanism employed by U7T.A is threefold:

1. avoiding of redundant recomputation by memoing clauses just analysed (i.e.,
parsed or generated)

2. splitting derived clause into equivalence classes so that necessary lookup opera-
tions are restricted only to an identifiable subset

3. using the same mechanism for both parsing and generation

The idea of memoing derived clauses as well as defining equivalence classes for
restricting lookup of possible candidates is not a new one (cf. [Earley, 1970; Pereira
and Warren, 1983; Kay, 1986]) although with primarily emphasize on parsing. However,
considering memoization under a strict uniform and interleaved perspective as followed
in this paper has not been described in the literature, to the best of my knowledge.5

For parsing, particular data structures have been developed for achieving efficient
processing, most notably the chart developed by [Kay, 1986] and the item set notation
developed by [Earley, 1970]. In both approaches the endpoints of a derived string
are explicitly used for indexing stored phrases. Unfortunately, we cannot use these
well-known approaches for generation directly, because the string is the output of a
generator, not the input, of course. For generation, once a phrase has been constructed,
we want be able to use it at various places.

SMartin Kay (p.c.) currently also investigates uniform indexing mechanisms for parsing and gener-
ation, but not under an interleaved perspective.

13

We now present an indexing mechanism that can be used in the same manner for
both parsing and generation. However, since we use the value of the essential feature
for determining the “content” of internal item sets, the item sets are ordered according
to the actual structure of the input. Note that only the selection function and this
indexing mechanism have to be parameterised. However, since the only parameter is
a certain feature and its value we have achieved a mazimal degree of uniformity for
parsing and generation under a task-oriented view.

The structure of items U7 A’s indexing mechanism is based on two data structures,
viz item and item set. An item records the current state of a derived clause. We have
to distinguish a clause whose body is not empty from one whose body is empty. The
latter will be called passive clause and the former active clause. In the same sense we
distinguish passive item from active item. An active item is a triple of the form:

(h<=bg...by; 1; idx)

where h<by...b, 1is an active clause, i (0 < ¢ < n) is the index of the selected
element in the body of the active clause, and idx is the value of the essential feature
of the selected element. The selected element is determined by applying the selection
function SF to the active clause.”

The general structure of a passive item is a triple of the form

(h; € idx)

where h is a passive clause, and idx the value of the essential feature of the head h.
€ indicates that since the body is empty no selected element can be determined, and
hence the selection function should not be applied.

For the representation of the start item (i.e., from which processing of a parsing or
generation query ¢ starts) we specify the goal statement ¢ as the negative literal of an
R(L)-atom that does not belong to the grammar or the lexicon. Thus the structure of
the start item is as follows (because ¢ is the only element of the body its index is 0):

(ans(fss)q(fss); 0; fss/Ef)

Thus, the index is either the string or semantic input in question. Note, that the
constraints fs, of ¢ are shared between ¢ and ans. Hence, the structure of a goal item
is as follows:

(ans(fsg); € fsg/Ef)

i.e., the goal item’s clause is passive. Because of the Ef-proof problem it yields that
[(fss/ENTE = [(fsy/Ef)]*. Consequently, the start item and the goal items have the
same index.

"As long as no misunderstandings are possible, we will use the terms “selected element” and “index
of selected element” in the same sense.

14

The structure of item sets The basic idea is to split the generated items into
equivalence classes and to connect these classes, so that each item can directly be
restricted to those items that belong to a particular equivalence class. We will call each
equivalence class an item set. The whole state set then consists of a set of item sets,
which we will call a chart.

We will use the index i¢dzx of an item as index for an item set. Note, that ¢dz equals
the value of essential value of selected element of the item’s clause (abbreviated as
VEF)).

We then require that for each item L in an item set I with index I'dz, that VEF(L,Ef)
must be the same as Idx. Remember, that for passive items, the essential feature’s value
is determined from the feature structure of the head element and for active items the
essential feature’s value is determined by the selected element.

More formally, we can define an item set I as a tuple (AL, PL, Idz), where PL is a
finite set of passive items and AL a finite set of active items such that:

V pli,pl; € PL : VEF(pl;, Ef) = VEF(plj, Ef) = Idx and

Voal;,al; € AL : VEF(SEL(al;), Ef) = VEF(SEL(al;), Ef) = Idx

Thus all items in one item set share one common property, namely that they are
compatible with respect to the value of the essential feature of one of their literals,
which is the head in the case of an passive clause, and the selected element in the case
of an active clause.

In this sense, an item set can be viewed as a kind of meeting place of active and
passive items, such that an active item looks for some passive item to resolve with, and
vice versa, that a passive item looks for an active item which it can resolve. However,
both are identical with respect to the value of their essential feature. If the result of
the reduction operation is a new item, this item will eventually be placed in another
item set.

It is important to note, that the different item sets are implicitly structured accord-
ing to the structure of the actual input. For example, if the phonological information
is represented as a list, then also the item sets are ordered in a list-like manner. If,
on the other side, a tree-like semantic representation is used in the grammar then the
structure of the item sets also bears a tree-like structure. This is due to the fact, that
the value of the essential feature is used for defining the indexes of the item sets.

3.3 Inference-rules

The control logic of UTA is a generalisation of the Earley deduction scheme as in-
troduced by [Pereira and Warren, 1983] (see also [Pereira and Shieber, 1987]). It is
similar to the one defined by [Shieber, 1988] with the notable distinction that we use a
dynamic selection function (where Shieber only uses the left-to-right selection function
for both parsing and generation) and that we use a fairly uniform indexing mechanism

15

(where Shieber only uses indexing efficiently for the case of parsing because his indexing
scheme is explicitly based on string positions). Furthermore our approach is the first
that makes use of shared items between parsing and generation (see section 5).

UTA operates on two sets of definite clauses, called the grammar and the chart. The
grammar just represents the grammar rules and lexical entries and remains fixed. They
are kept in two different data bases (called Rules and Lex respectively) for supporting
efficient retrieval. The chart on the other hand, will be continually augmented with
new derived clauses, i.e. lemmas. Whenever a new active lemma is added to one of the
chart’s item sets, one of its negative literals is selected by calling the selection function
SF, i.e., a selected element is determined on-line.

Following [Pereira and Warren, 1983] we make use of the following inference rules:
prediction and completion. Prediction is used to predict instantiations of grammar rules.
Completion will be performed by three inference rules, namely passive completion,
active completion, and scanning. In all three cases, passive clauses will be used to
reduce appropriate active clauses, where the scanning rule can be seen as a special
active completion rule in the sense, that it looks for passive clauses of the lexicon which
it uses to reduce the active clause in question.

Using the uniform indexing technique the inference rules can be described more
formally as follows. Note, that in each case a new item N¢ is deduced by an inference
rule two additional things will happen. First, a new empty item set I with the index
of N7 will be created in case it does not already exist. This means, that item sets are
created on-line. Second, Nt is not added to I, but to the agenda Agenda according to
some determined priority using the function PRIO. This means that a newly created
item set I remains empty until the agenda mechanism had chosen an item for insertion
into I.

Prediction Let (h<bg...b,; i; idx) be an active item Ai. Then

prediction(Ai) is:
For every rule R € Rules:
if ® = UNIFY(ABSTRACT(SEL(Ai)), HEAD(R)) and ® # fail then
with new lemma N[= ®[R] do
if BODY(N1) # € then
make new active item with Selem = SF(NI, Ef):
Ni = (Nl; Selem; Selem/Ef)
else
make new passive item:
Ni = (Nl; ¢; HEAD(NI)/Ef)
fi;
create item set IINppx (i) if it does not exist;
ADD-TASK-TO-AGENDA(Ni,PRIO(N7),Agenda)
od.

16

Here, the selected element of Ai and the rule’s head element (the left-hand-side
element) are unified and only if unification successed a new item will be created. Thus,
prediction deduces a new item on the basis of an instantiated rule. As known from
the work of [Shieber, 1985] prediction can lead to arbitrary numbers of consequents
through repeated application when used with a grammar with an infinite structured
nonterminal domain. In order to avoid such problems, prediction should be performed
with an abstraction of the selected element’s constraints (which is determined by the
function ABSTRACT).® Depending on the status of the new item’s clause (whether it is
empty or not) it is placed in a different item set.

Scanning Let (h<by...b,; i; idx) be an active item Ai. Then

scanning(Ai) is:
For every lexical entry L € Lex:
if & = UNIFY(SEL(A7), HEAD(L)) and ® # fail then
with reduced lemma Rl = ®[Ai — SEL(A7)] do
if BODY(RI) # € then
make new active item with Selem = SF(RI, Ef):
Ni = (Rl; Selem; Selem/Ef)
else
make new passive item:
Ni = (Rl; ¢; HEAD(RI)/Ef))

fi;

create item set Iinpex(ni) if it does not exist;

ADD-TASK-TO-AGENDA(Ni,PRIO(Ni),Agenda)

od.

Thus, if a lexical entry can be unified with the selected element of the active item
Ai then a new clause is constructed by deleting the unified element from the body of
Ai’s clause. Following [Pereira and Warren, 1983] we call this operation reduction.
The same will be performed for the two remaining completion rules, passive com-

pletion and active completion. Thus, by successive application of the completions rules
an active item can be transformed to a passive item for which reduction will no more
be possible.

Passive-completion Let (h; ¢; idr) be an passive item Pi. Then

8Here, we follow an approach similar to the one described in [Johnson and Dérre, 1995], by gener-
alising the value of only a small predefined set of constraints, namely those which are known to cause
termination problems. The advantage of our approach is that we are able to perform prediction with as
many constraints as possible from the selected element. In the parsing literature abstraction has been
introduced under the term restriction. More and detailed information on the definition and use of a
abstraction/restriction function during parsing see e.g., [Shieber, 1985], [Haas, 1989], and [Samuelsson,
1994]

17

p-completion(Pi) is:
For every active item Ai € L;4,:
if ® = UNIFY(SEL(Ai), h) and ® # fail then
with reduced lemma Rl = ®[Ai — SEL(A7)] do
if BODY(RI) # € then
make new active item with Selem = SF(RI, Ef):
Ni = (Rl; Selem; Selem/Ef)
else
make new passive item:
Ni = (Rl; e HEAD(RI)/Ef)
fi;
create item set IiNppx (i) if it does not exist;
ADD-TASK-TO-AGENDA(Ni,PRIO(Ni),Agenda)
od.
Thus, passive completion is only applied to active items which are in the same item
set as the passive item. In this sense, item sets are meeting places for resolvable active
and passive items. Finally, the definition of active completion is

Active-completion Let (h<=by...by; i; idx) be an active item Ai. Then

a-completion(Ai) is:
For every passive item Pi € [;g,:
if ® = UNIFY(SEL(A7),HEAD(CLAUSE(P7))) and ® # fail then
with reduced lemma Rl = ®[Ai — SEL(Ai)] do
if BODY(RI) # € then
make new active item with Selem = SF(RI, Ef):
Ni = (Rl; Selem; Selem/Ef)
else
make new passive item:
Ni = (Rl; ¢; HEAD(RIL)/Ef)
fi;
create item set IiNnpex(ni) if it does not exist;
ADD-TASK-TO-AGENDA(Ni,PRIO(N7),Agenda)
od.

3.4 Agenda-based control

The inference rules will be embedded in an agenda-based control regime along the line
of [Shieber, 1988]. An agenda consists of a list of tasks and a policy for managing it.
A task is simply an item. Whenever an inference rule creates a new item it is added as
a new task to the agenda and sorted according to the given priority function PrIO. If
the agenda chooses a task as the next item, and this item is not blocked, i.e., it is not

18

already a member of the designated item set, it is added to this item set. If we name
the agenda mechanism process and the query to prove G then

process(G, Ef) is:
make start item S% using G;
ADD-TASK-TO-AGENDA(S7,PRIO(S1),Agenda);
while NOT(EMPTY-AGENDA-P(Agenda)) do
let current task C't = GET-HIGHEST-PRIO-TASK(Agenda);
if ADD-1TEM(Ct) then do
if Ct is a goal item then
add C't to result list Res fi
APPLY-TASK(C't) od;od,;
if Res = () then return rejection
else return Res

fi.

where add-item(Item) is:
if =3I € [INDEX(1tem): I subsumes Item

then add Item to IINDEX(1tem)
fi.

and apply-task(Item) is:
if Item is passive then
P-COMPLETION(Item) else
A-COMPLETION(Item) else do
PREDICTION(Item);
SCANNING(Item)
od.

Note, that the selected current task Ct is removed from the agenda and that the
inference rules can create new items from it which are then inserted as new tasks to
the agenda. However, only a selected task will eventually be added to the chart. Thus,
the agenda serves as an temporary storage for new items before they are inserted into
the chart. The way, the agenda sorts new tasks depends on the priority assigned to
each newly created item. Hence, the priority function determines the search strategy,
e.g., depth-first, breadth-first or even best-first.

The function ADD-ITEM performs insertion of an item into the chart. The appropri-
ate item set is selected using the index of the new item. However, before the new item
is added to that item set, it is checked whether there exists already an element in that
item set which subsumes the new item. This test is known as the blocking test [Pereira
and Warren, 1983]. Although, we currently use the expensive subsumption operation
for performing this test, our uniform indexing mechanism makes it possible to apply
subsumption only on a small subset of all possible items already in the chart. Addition-
ally, the agenda mechanism also selects only those items which are currently considered

19

as relevant for one proof. This is important not only if we follow a best-first search
strategy but in particular when we are going to interleave parsing and generation.

The inference rules are called inside the function APPLY-TASK. If the current task
(or item) is passive then passive completion is applied. Otherwise active completion is
called. The reason why we only consider prediction and scanning if active completion
returns false (i.e., creates no new items) is that if active completion is successful this
means that for the selected element of the current active item there already exists a
derived phrase (made for the same substring or partial semantics) and hence, prediction
and scanning would be redundant.”

3.5 Parsing and generation with U7TA

In order to run UT.A for parsing or generation we only need to specify a query ¢ which
contains the input and the value of the essential feature Ef, i.e., the path to the input
string or the semantics. For parsing we choose the feature (PHON DL) and for generation
we choose the path (SEM).

Then parse(q) is:
PROCESS(q, (PHON DL)).

and generate(q) is:
PROCESS(q, (SEM)).

For the examples given in section 2.4 the call of PROCESS for parsing looks like
PROCESS(sign([phon (heute, erzdahlt, Peter, Ligen)-()]),
(heute, erzahlt, Peter, Ligen))

and for generation it looks like

mod heute mod heute
pred erzahlen pred erzahlen
PROCESS(sign(sem arg argl[pred Peter}), arg argl[pred Peter])

arg?2 [pred Lﬁgen} arg2 [pred Lﬁgen]

If we assume a grammar capable of processing these examples where strings are rep-
resented through concatenation and semantic expressions through predicate/argument

9We have not explicitly required that scanning should only be performed on terminal elements, i.e.,
active items, whose selected element belongs to a terminal category. The reason is, that in general
constraint-based grammars are under-specified in this respect. Of course, if a grammar explicitly
distinguishes between nonterminal and terminal elements (as it is the case for instance in LFG), we
can easily restrict the application of the scanning rule to terminal elements and the prediction rule to
nonterminal elements.

20

trees then the indices of the created item sets are for parsing (specified in the order
they are created during processing):

(heute, erzahlt, Peter, Ligen); (erzahlt, Peter, Ligen); (Peter, Liigen); (Liigen); ()

and for generation:

mod heute .
pred erzahlen

: argl[pred Peter] ; [pred Peter]; [pred Ldgen]
arg2 [pred Lﬁgen]

pred erzahlen

arg|argl|pred Peter}
arg2|pred Ldgen]

In Appendix A complete parsing and generation examples can be found.

4 Intermezzo: Some Properties of UTA

UTA is an straight-forward extension of the optimized general SLD-resolution rule
whose correctness is proven in [Hohfeld and Smolka, 1988]. It also inherits this property
(see [Neumann, 1994b] for more details).

Since UTA prefers in each deduction step those clauses whose selected element’s Ef
is instantiated it has a very strong goal-directed as well as data-oriented behaviour in
particular for the case of generation. The only relevant parameter our algorithm has
with respect to parsing and generation is the difference in input structures. Thus, we
are able to characterise parsing and generation in a fairly balanced way without the loss
of efficient properties. Hence, we avoid the complications or restrictions that [Shieber,
1988] and [Gerdemann, 1991] are confronted with, because of their “parsing oriented”
view of generation. In [Neumann, 1994b] we also show how TA is extended to han-
dle empty heads, which are used to describe verb second constructions in Germanic
languages like Dutch and German.

The uniform chart mechanism together with the agenda-based control supports
the implementation of methods that goes behind simple parsing and generation as we
will demonstrate in the next two sections. In particular the on-line creation supports
incremental processing for both parsing and generation, and even for the interleaved
approach. In the same spirit, the agenda mechanism supports integration of preference-
based strategies, e.g., along the lines of [Barnett, 1994] or [Erbach, 1995].

Summarizing, UT.A’s properties allow us to consider parsing and generation as the
same uniform process which is capable of efficiently controlling the space of possible
constructions in a task specific data-oriented manner.

21

5 Item Sharing between Parsing and Generation

We now present a new method for grammatical processing, namely the use of items pro-
duced in one direction (e.g., parsing) directly in the other direction (e.g., generation).
We will call this method item sharing between parsing and generation. If one assumes
that parsing and generation are to be performed in isolation, then such method seems
to be an overhead. However, in the next section we demonstrate that a strong inter-
leaving of parsing and generation is a necessary prerequisite for modelling high-level
performance strategies.

5.1 The basic idea

Assume that UTA is in the parsing mode. Then in each case a passive item is com-
puted we automatically make available this item also for the generation mode. Thus,
for example, if we are going to generate from the semantics of the parsed input we can
directly return the previously computed answer during parsing as a result of the genera-
tion mode (i.e., if we only consider one paraphrase). Moreover, if we perform generation
using a different semantics as the “parsed” one, but which is identical with respect to
some partial semantics structures (e.g., some arguments are semantically identical with
respect to the “parsed” semantics), then the generator also can “reuse” these partial
results determined through parsing. Clearly, this kind of processing makes only sense
if during parsing and generation the same grammar and the same basic processing
strategy is used.

The restriction of sharing only passive items is plausible for the following reasons.
Note that passive items have no selected element. Assume we are in the parsing mode.
Then, by means of the definition of item sets, the appropriate value for the index
slot for the generation mode can directly be determined on the basis of the semantic
information of the passive item. This guarantees that shared passive items produced
during the parsing mode are at their right places when they are used by the generation
mode.

On the other hand, for active items, in general the chosen selected elements during
parsing and generation will be different, and the essential feature of the other direction
will be un-instantiated. Therefore, it would not be possible to determine the right place
of an shared active item as it is the case for shared passive items.

On the basis of these observations, the structure of an item sharing approach for
UTA is as follows: We assume that U/7.A maintains two different agendas, one for the
parsing mode and one for generation. This is no overhead, because it allows us to order
the tasks of an agenda using, for instance, different preferences. Since item sets are
considered as equivalence classes, that are determined on the basis of the value of the
essential feature, we assume that parsing and generation have different item sets. Item
sets consist of active and passive items. Now, we require that passive items are shared
between the item sets determined during parsing and generation. This means, that

22

|

|

. |
Reversible Lexikon !
Grammar |

|

|

|

. Generation
Parsing UTA Mode
Mode
[Agendaparsing j [Agendageneration j
| 3
| Active Items Active Items :
! produced through pdegl]Jvaegr ;El’é)rtllgh !
| parsing E Passive Items] |
! I
! I
! I

Figure 2: The item sharing approach of UTA: During the different modes UT.A main-
tains different agendas and private active items for the different modes. However,
passive items are shared by both directions.

the parser and generator each have there own private active items but can operate on
the same set of passive items. Figure 2 illustrates the structure of the item sharing
approach.

5.2 Adaptation of the uniform tabular algorithm

In order to adapt UT.A for the item sharing method we extend the structure of an item
such that it contains different index slots idx for parsing and generation. Thus, we have

(L; t; idwy; idxg)

where L denotes the lemma of an item, i the (position of the) selected element. During
parsing the slot idz, is used and during generation the slot idz,.

23

If we are in one of the two possible directions, say parsing, then for active items
only the corresponding slot idz, is filled with the current value of the essential feature.
The slot 4dz, is unbound which will be denoted by using the symbol none. We will use
the notation phon(z) to denote the value of the essential feature used during parsing
and sem(z) to denote the value of the essential feature used during generation. Then
the general structure of active and passive items is as follows. In the case of parsing,
active items are of the form

(al; i; phon(i); none)
and for passive items we have
(pl; € phon(m); sem(m))

where al is an active lemma with selected element at position i in the body of al, phon(i)
is the index of the item set al is a member. pl is a passive item with no selected element,
and m the pointer to the head of the passive lemma. Note that in the case of passive
items, the value of the essential feature for both parsing and generation are determined
on the basis of the constraints of the passive lemma’s head. This is consistent with
respect to the definition of item sets. Analogously, for generation active items are of
the form
(al; i; none; sem(i))

and for passive items we have
(pl; € phon(m); sem(m))

Now the inference rules can easily be adapted to handle such item structures. First-
ly, UTA only considers one index slot, depending on the major mode, for example idz,
for parsing. If a new re-solved lemma (determined through prediction or completion) is
active, only udz, receives the value of the essential feature. The value of the generation
slot idx, is by default none. However, if a passive lemma pl is re-solved then also the
slot idx, receives a value determined on the basis of the essential feature specified for
this direction (i.e.,the value of the (SEM) path). This will simultaneously cause the
creation of an empty “generation” item set with the corresponding index idw,. If the
agenda mechanism selects pl for insertion into idx, at some point, then pl is simulta-
neously and destructively inserted into idx,, or in other words, pl points into idx, as
well as into idx,.

If we change the direction mode from parsing and generation and a new passive
item pl, is computed then before pl, is inserted into the agenda we check whether it is
a shared item by applying the blocking test. If this is the case then pl, is not added to
the agenda, since we know that it is already in the chart. This sort of processing is of
advantage if we use different preference strategies during parsing and generation since
it pretends that shared items will influence the determination of the preference values
of next tasks.

24

5.3 An object-oriented extension of UTA

In order to assign the correct value to the idz slot, UTA has to know in which mode
it is. To make this an automatic task &/7.A has been embedded in an object-oriented
environment. In this environment parsing and generation are defined as instances of
a class PROOF, and the control mechanism of the underlying object-oriented language
automatically will choose the right slot. The structure of the class PROOF is as follows:!°

(DEFCLASS PROOF ()
(NAME
RESULT-LIST
AGENDA
TASK-COUNTER
PRIO-FCT))

Parsing and generation are simply defined as subclasses of this class and instances
are created in the following way:

(MAKE-INSTANCE 'PARSE
:NAME 7 PARSING DIRECTION”
:AGENDA (MAKE-AGENDA)
:TASK-COUNTER 0
:PRIO-FCT # DEPTH-FIRST)

(MAKE-INSTANCE 'GENERATE
:NAME 7 GENERATION DIRECTION”
:AGENDA (MAKE-AGENDA)
:TASK-COUNTER 0
:PRIO-FCT # DEPTH-FIRST)

All functions (with the few exceptions given below) are defined as methods for the
class PROOF. This means, that the selection function, the inference rules, the uniform
indexing as well as the agenda mechanism are still the same, and implemented only
once. In some sense, this means that ¢/T.A only exists one time, but is used by the
two different instances. The advantage of using two different instances is that we can
easily maintain different agendas or can use specific priority functions for both instances.
Thus, our implementation directly mirrors the architecture of the item sharing approach
as shown in figure 2.

The only functions that are defined as specific methods for the parsing and gener-
ation classes are MAKE-ITEM and ADD-ITEM, and they differ only with respect to one

The object-oriented extension of UTA has been implemented in CLOS, the Common Lisp Object
System [Steele, 1990] (you might want to call UTA now UTA++). We therefore directly make use of
the CLOS-class definition, abbreviated where convenient. In [Keene, 1989] and [Winston and Horn,
1989] good introductions to CLOS can be found.

25

additional call of a function. For the case of MAKE-ITEM, we have to provide, that if a
new lemma is passive, we have to determine values for the slots of the direction that
is currently not active. And for the case of ADD-ITEM we additionally have to add the
new item to the corresponding item set (which has been created through MAKE-ITEM,
if the new lemma is passive) maintained by the inactive instance. Note that this does
not mean that the new item is copied, but that the parsing and generation instances
actually share this item (internally this means that Lisp provides two pointers to the
same internal object).

For illustration of the item sharing approach consider the parsing and generation
example given in Appendix A (see also figures 3 and 4). For example, when during
parsing the passive item for the partial string “mit Maria” is re-solved (in figure 3 it is
the item with task counter 15 and item number 13), then this will cause the creation
of an item set for generation with index “mit(Maria)”. Additionally a pointer to the
passive item 13 is established. In the item sharing approach the structure of the item
13 is:

15[pp; € mM; m(M)|13

Thus if we perform generation with the semantics “sehen(Peter,mit(Maria))” the “parsed”
passive item for “mit Maria” with semantics “mit(Maria)” can directly be used during
the generation mode.

6 Interleaving of Parsing and Generation

We are now describing how UTA together with the item sharing method is used for
realizing interleaving of parsing and generation. By this we mean that both work
together in a fine-grained incremental manner to solve some specific problem. We can
distinguish two principle ways of interleaving:

1. during natural language understanding, parsing is supported through interleaved
generation

2. during natural language production, generation is supported through interleaved
parsing

For example, during parsing of an utterance, generation can already take place for
the just parsed parts, by taking into account the parsing results at a very early time of
processing. In fact, [Wirén and Ronnquist, 1993] have argued that such a combined view
on parsing and generation—in particular following a uniform approach— are worth-
while for exploring highly interactive text-processing facilities such as structure-editing
operations, propagation of minimal grammatical changes, or on-line translations, in
which the target-language text is generated in parallel with the source-language text
[Somers et al., 1990]. Self-control of the parsing process through interleaved generation

26

is also important for handling under-specified or ill-formed input such that generation
is used to “guess” the missing parts or to perform some sort of repair (e.g., to “guess”
what the ill-formed utterance probably means). Clearly, additional knowledge-based
mechanisms are needed for realizing full functionality, so that interleaved parsing and
generation is only one step into that direction —however a substantial one.

During natural language production interleaved parsing is important to obtain
hearer-adaptable production of utterances. [Wahlster, 1991] has expressed this un-
der the term anticipation feedback loop AFL. The basic idea of the AFL model is the
use of the system’s natural language understanding part to anticipate the preferred
users’ interpretation of an utterance which the system plans to realize. In [Jameson
and Wahlster, 1982] a local AFL model is used for the generation of elliptical utterances.
Here, the basic claim is that anticipation of the way in which the user would be likely
to reconstruct a given utterance can help to ensure that the system’s utterances are
not so brief as to be ambiguous or misleading.

In psycholinguistic research a similar strategy is known under the term self-monitoring.
Here, there is no deny that people watch over what they are saying and how they are
saying it [Berg, 1986]. The basic task of monitoring is to gain information about
processing which is not necessarily obvious, i.e., a device is called for which this infor-
mation can be made available to the speaker or the hearer. It has often been argued
in cognitive psychology [Levelt, 1989] that it is highly desirable to find a mechanism
that is an integral and independently motivated part of the whole system and one
that performs the monitoring function by its own nature. Kempen has noted that
“...the addition of a monitor may contribute to the solution of practical and theoreti-
cal problems significantly. Take for example the above issue of one-way versus two-way
traffic between strategic and tactic components. Suppose the monitor can intercept the
linguistic output from the tactical component (preferably before the point of speech)
and feed it into a parser/understander. The latter evaluates the generator’s utterance
from relevant viewpoints and informs (via the monitor) the strategic component of its
diagnosis. This would establish the line of communication postulated by Danlos and
others without complicating the generator’s design — the parser is needed anyway.”
(cf. [Kempen, 1989], page 15).

In all of the above cited approaches parsing and generation are assumed to work
together on a very fine-grained level. In fact, if we can realize interleaving of parsing and
generation in such an incremental way the whole natural language system would achieve
an important degree of self-control. It is our conviction that system immanent self-
control is an important pre-requisite for achieving real flexible and adaptable natural
language systems—the core motivation of our uniform work.

6.1 Self-monitoring with reversible grammars

In order to prove the words by actions we are now describing in detail an incremental
method for performing self-monitoring and revision during natural language production.

27

The new approach we are going to present is based on and an improvement of a
non-incremental method presented in [Neumann and van Noord, 1992; Neumann and
van Noord, 1994]. The basic scientific motivation of this work can be summarized as
follows:

Since during generation the linguistic component is mainly guided by the
compositional structure of the semantic input, it cannot determine by itself
those particular combinations of partial strings of the whole utterance which
will lead to alternative derivations when the hearer is parsing this utterance.
This means that possible ambiguities are out of the generator’s view, and
will only arise during parsing.

For example, the following can happen. A message which is constructed precisely
enough to satisfy the conceptual component’s goal can be under-specified from the
linguistic component’s viewpoint. In particular, the generator can run into the risk of
being misunderstood because of the produced utterance’s ambiguity. We call this the
choice problem of paraphrases.

In order to handle this problem we present in the above cited articles a mechanism
which ensures that only non-ambiguous utterances are produced. This mechanism uses
the parsing component to monitor the generation component. The relevant communi-
cation between the two components is performed using derivation trees. The underlying
strategy is based on a comparison of the derivation trees obtained through generation
and parsing, where the ‘parsed trees’ are computed with the output string of the gen-
erator. These parsed trees are used as a ‘guide’ for re-generating the utterance: If the
parser yields several readings then each parsed tree is compared from the top down-
ward with the generation tree. For an detected ambiguous subtree the generator is
called with the semantics found at the root node of this subtree. The just described
mechanism only makes sense for systems in which a single grammar is used for both
parsing and generation.

We also described a variant of the monitoring strategy which can be used to para-
phrase a given input sentence (for interactive disambiguation) [Neumann and van No-
ord, 1994]. In this case, the generation component is used to guide the parsing sys-
tem. Again the proposed technique is possible only in the case of a single, reversible

graminar. 1

6.2 Incremental self-monitoring through uniform processing

The major drawback of the approach mentioned above is that monitoring of a generat-
ed string only takes place after the whole string has been computed—thus it’s degree of

UWojciech Skut (p.c.) has brought to my attention that the self-monitoring strategy has also been
very valuable during the writing of an HPSG-style grammar for German since it helped him to test and
compare the grammar’s degree of ambiguity and over-generation.

28

interleaving is restricted. However, a fundamental assumption of this non-incremental
version is that it is often possible to change an ambiguous utterance locally to obtain
an unambiguous utterance with the same meaning. Based on this local view it seems
plausible to integrate parsing and generation more tightly in the following way: Dur-
ing generation already produced partial strings are parsed to determine the degree of
ambiguity. If necessary an ambiguous partial string is revised in order to produce an
unambiguous paraphrase of that ambiguous partial string. The successive application
of this incremental generate, parse and revise technique will end up in an utterance
which is unambiguously as possible. Such a strategy works for an example like:

(4) Removing the folder with the system tools
can be very dangerous.

Here, the relevant ambiguity of the whole utterance is forced by the partial string
‘Removing the folder with the system tools’. This ambiguity can be solved by re-
stating the partial string, e.g., as ‘Removing the folder by means of the system tools’
independently from the rest of the string.

However, consider the ambiguous string ‘visiting relatives’ which can mean ‘relatives
who are visiting someone’ or ‘someone is visiting relatives’. If this string is part of the
utterance

(5) Visiting relatives can be boring.

then a local disambiguation of ‘visiting relatives’ is helpful in order to express the
meaning of the whole utterance clearly. But if this string is part of the utterance

(6) Visiting relatives are boring.

then it is not necessary to disambiguate ‘visiting relatives’ because the specific form of
the auxiliary forces the first reading ‘relatives who are visiting someone’.

This phenomenon is not only restricted on the phrasal level but occurs also on
lexical level. For example, ‘ball’ has at least two meanings, namely ‘social assembly for
dancing’ and ‘sphere used in games’. If this word occurs in the utterance

(7) During the ball I danced with a lot of people.

then the preposition ‘during’ forces the first meaning of ‘ball’. Therefore it is not
necessary to disambiguate ‘ball’ locally. But, for the utterance

(8) T know of no better ball.

‘ball’ cannot be disambiguated by means of grammatical relations of the utterance.

6.2.1 Basic problems of incremental monitoring

The problem is that the monitor must be dynamically configured during incremental
processing time of single utterances in order to decide

29

e when the test of ambiguity should take place and
e which partial strings should be revised?

Technically it is possible to check and revise each partial result of the generator.
But, without any control, the monitor would try to disambiguate each local ambiguity;
it is hard to imagine that the resulting generator would produce anything at all.

Clearly, an utterance can only be said to be (un)ambiguous with respect to a certain
context. The assumption is that usually an utterance which is not ambiguous with
respect to its context will remain unambiguous if it is part of a larger utterance.

It may be possible to restrict the context during the production of a partial ut-
terance to grammatical properties, e.g. to the information associated with the head
which selects the phrase dominating this partial utterance. Such an approach can be
integrated in head-driven generators of the type described in [Shieber et al., 1990].
For example, assume that for each recursive call to the generator the revised monitor
is called with an extra argument Head which is to be used as contextual information
when the embedded parser is called to test whether the string in question is ambiguous.
Thus, suppose we are to generate from the logical form during’(ball’).

A head-driven generator first produces the word during as the head. Next an NP
with logical form ball’ has to be generated. For this logical form the generator chooses
the word ball which is however ambiguous. For this partial utterance the monitor
is called, using the head information of during. However, being an argument of the
head during, only one of the readings of ball is possible. Therefore, the monitor
simply ‘confirms’ the choice of the generator. Thus, the assumption here is that this
ambiguity will be disambiguated later on by combining this string with its head. The
main problem of such an approach is that

e cither each ambiguous partial string has to be revised immediately or

e revision is delayed until the previous recursive call of the generator has been
finished.

In the first case the monitor would also revise irrelevant ambiguities. The latter
point would mean that revision can only be performed after the whole utterance has
been produced. But then such an incremental method would just simulate the non-
incremental method.

6.2.2 A look-back strategy

It seems to be more plausible to test the ambiguity of a partial string with respect
to already produced partial strings. Based on this idea the notation of context is
considered as follows: The context of a partial string o with constituent A is the string
[of the adjacent constituent B of A. Parsing is then performed on the “extended”
string Ba, to test whether this string leads to some ambiguity. If the “extended string”

30

is either not parse-able or is not ambiguous we conclude that the newly produced string
« does not force ambiguities in the current state of computation of generating the final
string.

For example suppose that an utterance with meaning ‘Remove the folder by means
of the system tools.” has to be produced. Furthermore, suppose that the partial string
‘Remove the folder’ has been generated using a rule ‘vp — v, np, pp’. Now, the result
of generating the pp is ‘with the system tools’. In order to check whether this string
is ambiguous ‘the folder’ is used as context and the string ‘the folder with the systems
tools’ is parsed. This string is parse-able if a rule e.g., ‘np — np, pp’ exists. If it is
parse-able then a source of ambiguity has been found, so that pp should be revised.
If revision is not possible, then revision of the previous chosen vp should take place.
However, if the rule ‘vp — v, pp, np’ had been chosen, and the currently produced
string is “the folder”, then the extended string to parse would be “with the system
tools the folder”. In this case, however, the string would not be parse-able. For the
monitoring strategy this means, that at this point of computation, no statement of
a possible ambiguity can be made, so the revision should not take place. In other
words, the newly produced string “the folder” does not cause a relevant ambiguity in
the current domain of locality spanned by the vp rule.

The proposed approach realizes a kind of look-back strategy, in the sense, that the
monitor looks back to already produced substrings, in order to test whether a new string
together with previous produced substrings causes ambiguity. For the method described
so far, we actually have made a look-back of one adjacent constituent. In principle,
however, it is possibly also to take into account the adjacent element of an adjacent
element, leading to a look-back(n) strategy. The degree of look-back used, directly
influences the degree of ambiguity we are going to consider. For example suppose we
have the following grammar (s, np, vp are non-terminals, the other symbols are terminal
elements):

1. s — npvp
2. vp — abcd
3. vp — anp

4. np — Xy

5. np — becd

Assume that we have first chosen the vp rule 2., and the newly generated element
is d (we assume a left-to-right scheduling). If we are following a look-back(1) strategy,
then we have to parse the string ‘cd’. This string, however, is not parse-able, so we do
not try to revise it at that point. However, if we would use look-back(2), the string
to parse would be ‘bed’. This string is parse-able, so there is the possibility of an
ambiguity.

We are now going to describe how the look-back strategy informally described above
is integrated with U/ TA in order to perform the desired incremental monitoring strategy.

31

Basically, we have to discuss the following questions:

1. How is the context determined and used for locating potential ambiguities?

2. How do we realize revision within U4 7T.A?

The first question is concerned with the problem of determining context. This
implies that we have to consider the possible different granulations the shape a context
can have. For example, does it make sense to consider only one word as context or
should it be better the string of complex constituents? This question will be considered
after having introduced how revision should take place, because activation of revision
is triggered after having determined a context, but it is possible to discuss revision by
just assuming that context has already been determined.

6.2.3 Performing revision within /TA

It turns out that performing revision during generation of an utterance using UTA is
not that difficult as it might be at a first glance.

Recall that UTA keeps track of partial (complete or incomplete) results using an
agenda and a chart. The agenda is used to maintain all newly created items before
they are added to the chart. The selection strategy used by the agenda determines
in which order the items are added to the chart. Following a depth-first strategy, for
instance, then only those items are considered that eventually can contribute to the
complete generation of the first possible utterance. All remaining alternative items are
only added to the chart in the case that additional paraphrases are requested, e.g.,
when all possible strings of a given semantic expression shall be computed.

If an item has been added to the chart, the different inference rules are applied
which eventually creates new items which are then added to the agenda. But note
that only those created items which have been added to the agenda will be considered
during further computation. By means of this “built-in” mechanism revision can be
performed as follows: Suppose that we have deduced a new passive item p. This means
that we have computed a new partial string. If p is added to the chart, by means of
passive completion it is checked whether p can reduce an active item a. Then, before
a is actually reduced using p it is checked whether p causes an ambiguity using an
appropriate context.

Only if no ambiguity can be determined, the reduction of a is performed and the
resulting new item is added to the agenda. On the other side, if an ambiguity is
recognized, then reduction will not be performed, and as a consequence no new item is
created. This implies for a, that reduction of its selected element will only be performed
if there is another alternative for p available on the agenda (or items which lead to the
computation of the alternative). However, this alternative item will automatically
be added to the chart by the agenda at some later point. In some sense, this kind of

32

processing means that the selected element has implicitly been marked, and the agenda
will choose an alternative item which corresponds to a selection of an alternative rule.

If no alternative for p can be deduced (i.e., either no further alternative exists, or no
unambiguous alternatives exist), then a will never be completed. However, this means
that the agenda automatically will add an alternative item of a (if present) to the chart,
which then might be combined with p. Note that this reduction would be performed
by active-completion, and hence, would reuse results of previously made computations.
If this is the case, the marker of p implicitly has been pushed one level up. Since, the
whole process is performed recursively, it might be the case that markers are pushed
implicitly up to the initial root node. However, in all cases, we can benefit from the
results of previously made computations.

We will use our pp-attachment example at that place to clarify the strategy. We
are assuming the following simple grammar:

1. s — npvp
2. vp — vnappp
3. vp — vVvppnp
4. np — detn
5. np — nppp
6. pp — Dprepnp

We assume that these rules are added to the agenda according to the order in which
they are specified in the grammar. Using a depth-first selection strategy for the agenda,
rule 2. is processed before 3. At some point the pp is produced, and will be used by
passive completion to reduce an instance of rule 2. However, before the pp of vp is
reduced, the string of the np is used as context for checking whether the pp causes
ambiguity. Therefore, we parse the string of np-pp, and actually detect an ambiguity.
For the pp, however, we have no further alternatives available on the agenda, so rule
2. cannot be reduced completely, i.e, for that rule the inference rules cannot create
items to put on the agenda. However, the agenda mechanism guarantees that rule
3. will be selected. Reducing rule 3. by means of active-completion will first use the
pp for reduction, assumed without ambiguity problems. Next the np should be used
for reduction. Before that, however, the string of pp-np is monitored, which however
cannot be parsed, and hence no revision is necessary. Thus, rule 3. will be reduced by
the np to give a completely reduced vp, which then is used for reduction of rule 1.

Based on the observations made above, we can adapt UT.A for performing revision
in the following way (assuming that we already know how to detect ambiguities in
the incremental mode, see next subsection): Revision should only take place if there
exists a passive item which can be used for reducing an active one. Thus, we only have
to consider revision for the completion rules active completion, scanning, and passive
completion.

In all three cases we add a further conditional statement around the body of the

33

for all loop, namely that the body should only be evaluated if revision is not requested.
For example, the passive completion rule is changed as follows (only the relevant parts
are expressed explicitly):

p-completion(Pi) is:
For every active item Ai € L;q,:
if ® = UNIFY(SEL(Ai), h) and ® # fail then
if NOT(AND (M onitor? ,REVISION-P(®[Ai],Pi))) then
with reduced lemma Rl = ®[Ai — SEL(Ai)] do

od

In the relevant part of the new code we have added a new condition which says that
the next operations (i.e., putting a just reduced active item on the agenda) will only
be performed if the monitor mode is switched on (which is done by using a global vari-
able Monitor?, whose boolean value indicates whether processing should be performed
with or without incremental monitoring) and if no revision has taken place, which is
determined the predicate REVISION-P.!?

In the same manner active completion and scanning are modified. The definition of
revision-p is as follows:

revision-p(Ai, Pi) is:
with FxtendedString = GET-CONTEXT(AZ, Pi,n);
if ExtendedString then
with ParsedResult = PARSE(EztendedString);
if AND(ParsedResult,AMBIGUOUS(Ai,ParsedResult))
then true else false fi
else false fi.

The function GET-CONTEXT determines the contextual information. If so, the parser
is called with the extended-string, built inside GET-CONTEXT, using a look-back of n,
which value is set globally. To be more precise, first a new string is computed on the
basis of the context and the passive item’s string, and then the parser is called. Only
if the parser successfully obtained one or more readings and if the result is ambiguous
should revision take place.

Note that the way U T.A maintains the agenda and the chart, the incremental method
“simulates” marking and revision of generated derivation trees as is done explicitly by
the non-incremental method. However, marking is done implicitly — it is just a side
effect of UTA by not creating items which could cause ambiguity problems. Further-
more, because monitoring is applied on intermediate results, it is actually performed

12Using a globally set flag to trigger incremental monitoring is useful if the flag can be switched off
in a kind of any-time mode. For example, if the overall system receives important time constraints and
if it is possible to change the value of Monitor? from true to false interactively, the remaining semantic
expression is generated without monitoring. We actually have implemented this any-time strategy.

34

incrementally.

6.2.4 Performing ambiguity checks within /7.A

We now turn our attention to the problem of testing whether a new partial produced
string causes ambiguity or not. To solve this problem, we have to specify how an
appropriate context is determined, how this context is used for parsing, and how the
result of parsing is analysed with respect to its ambiguity.

Determination of context The basic assumption behind the use of contextual in-
formation during the incremental monitoring strategy is that it only makes sense to
test whether a partial string, say «, is ambiguous with respect to a larger string which
entails a. Such a larger string will be built by means of concatenation of a and some
other already produced string, which we will call the contextual string of «.

Since revision will be performed before a passive item Pi is used for reduction of an
active item Az, this active item defines the domain of locality from which contextual
information can be determined. Completion will be performed if Pi and the selected
element of Ai can be unified. Therefore, only those elements of the body will be
considered as possible contextual strings, that have already been deduced as subgoals
of the active item.

Note that the call of the incremental monitoring mechanism, i.e., the call of REVISION-P
is performed in a completion rule before the new reduced item is computed but after
unification of the passive item with the selected element of the active item has been
done. This guarantees that monitoring is only performed on consistent structures. As
a side effect of unification, the derivation tree of the passive item is unified into the
derivation tree of the head of the lemma of the active item.'3

For example, assume that we have reduced the grammar rule vp<v,np,pp up to
the point where we only need to complete the pp in order to complete the vp. The
corresponding active item would be of form

(vp<pp; 0; VEF(0, Ef))

At that point the derivation tree represented as part of the constraints of vp is
(making use of useful abbreviations):

13We assume that derivation trees are represented as part of the head’s constraints of each rule and
lexical element using the feature DERIV. The internal structure of this feature consists of the features
LABEL which value is a constant that uniquely identifies this clause, and DTRS which value is a list of
the derivation trees of the elements of the body of a clause. Additionally, two features PHON and SEM
are used as pointers to the string and semantics of the clause, and are used as an interface for parsing
and generation. We are using this representation since completion causes the removal of the completed
elements from the body of a clause, so the elements of the body cannot be used directly. Thus, we will
determine the contextual string of a passive item on the basis of the derivation tree represented as part
of the constraints of a resolved active item.

35

rn up3 |
phon (remove,the, folder)-P
sem
rn vh rn np3
dtrs (|PEO® (remove)-P1 ’ phon (the, folder)-P2 ,Tree>
sem ... sem ...
dtrs () dtrs “its tree”

where the variable T'ree is a pointer to the derivation tree of the selected element pp,
which is still un-instantiated.

After successful unification of a passive item pp with the selected element, the value
of the variable T'ree in the above derivation tree is:

rn ppl
phon (with,the,tools)-P
sem

dtrs “its tree”

Now, we take this representation as the basis for determination of the contextual string
of the pp’s string “with the tools” making use of a look-back strategy as already infor-
mally described above.

The value of the DTRS feature is a sequence of the derivation trees of the corre-
sponding elements of the body. In this context, we will call the value of the DTRS
feature the sequence of sisters of the node represented by the clause’s head element.

Since we consider the sister nodes as totally ordered in a sequence, a look-back one
strategy (written as look-back(1)) of the selected element, is just the choice of its left or
right sister node. Thus, for the example above, we choose the node labelled np3. From
this derivation tree we choose the value of the STRING feature as contextual string.
Since, we assume that strings are represented as difference lists, it will be the case,
that the string of the root node of the derivation tree of np already entails the string
of pp. Thus, we can directly start parsing of this string, to test whether this string is
ambiguous.

Note that in the above example we have implicitly assumed, that the elements of
the body are processed in a left-to-right manner. Of course, in the case of generation
this is not the general case. It might be possible, that for example, the pp is completed
before the np is. In this case, we would have no (left) sister to be use-able as contextual
string for the pp, because the derivation tree of the np still needs to be constructed,
which means that the position of this derivation tree within the sequence of sisters is
still occupied by an un-instantiated variable. If this is the case, we conclude that for
the pp no statement about ambiguity can be made, and therefore, no revision should
take place. After the np has been completed, monitoring for the np will eventually take
place. But now, there is a choice point for the np either to choose its left or right sister
as the base of contextual information, or both.

36

We can directly generalise the informal description of a look-back(1) strategy to a
look-back(n) strategy, if we not only consider the left or right sister node of the selected
element as context but the sequence of the n left or right sisters of the selected element.
In order to do this we have to consider the following cases:

e one of the n sisters is un-instantiated, and

e there are less then n possible sister nodes to the left or right of the selected
element.

The first case means that there is a sister which derivation tree has still not been
computed. This means that we cannot determine the whole contextual string corre-
sponding to the n sisters, and we conclude that no contextual string exists. The second
case means that the whole set of left or right sisters of the selected element can be used
as contextual information by actually performing a look-back of less than n. In that
case we use the corresponding contextual string spanned by the sisters and use it for
the ambiguity check.

For a more readable definition of the look-back(n) strategy, we make use of the nota-

tion subseq(i, j), which is a subsequence of elements ranging from i to j. For example,
subseq(3,5) denotes the subsequence (c,d, e) of the sequence (a,b,c,d, e, f,g). Empty
production will be handled so that if the sequence contains the name of an empty pro-
duction we just skip this element. For example, if ¢ and b are empty productions, then
the sequences (a,c,a,b,d,e) and (c,d,e) are considered as being equal. The notation
“the string of subseq(i,j)” means the string built by a left to right concatenation of the
strings of the elements of the subsequence (modulo empty productions). We will say
that a “subseq(i, j)” is instantiated if for each element of the subsequence its derivation
tree is instantiated. Thus, the look-back(n) strategy can be expressed as follows:
Let (dy,...,dy) be the sequence of sisters of the derivation tree of a rule and let d; be
the derivation tree of the “unified” selected element of the rule, and « its string. Let
Il be the length of subseq(1,i — 1) and rl be the length of subseq(i + 1,m). If n > I
then let n be ll, and analogously let n be rl, if n > rl. Then,

o if subseq(i —n,i— 1) is instantiated but not subseq(i + 1,7+ n) then let 5 be the
string of subseq(i —n,i — 1); let Ba be the extended string;

o if subseq(i+ 1,7+ n) is instantiated but not subseq(i —n,i— 1) then let 5 be the
string of subseq(i + 1,7 4+ n); let a5 be the extended string;

o if subseq(i —n,i —1) and subseq(i + 1,i + n) are instantiated with strings 5 and
~ respectively then let Say be the extended string;

e otherwise, no contextual string exists, which is indicated by the boolean value
false.

37

This definition is used inside the function GET-CONTEXT (which is called inside
REVISION-P, see above) which receives as input an active and a passive item and returns
either an extended string or false, i.e.,

get-context(Ai, Pi,n) is:
with Dtrs = GET-DTRS(Ai);
with Lsisters = GET-LEFT-SISTERS(A#,LABEL(P1));
with Rsisters = GET-RIGHT-SISTERS(Ai,LABEL(P1));
“apply look-back(n) on lsisters and rsisters;”
if ExtendedString then
ExtendedString else false fi.

We first extract the sisters of the derivation tree of the active item Ai, i.e., the
value of the path (deriv,dtrs) of the constraints of the active item’s lemma’s head.
We then split this list into a left and right subsequence, where the passive item (which
corresponds to the unified selected element of A7) serves as the splitting point. Next,
we apply the look-back(n) strategy, and either return an extended string or false, if no
such exists.

Check ambiguity Next we call the parser (i.e., we run 4TA in the parsing mode),
whose task is to parse the extended string. If the extended string cannot be parsed,
we conclude that no revision is necessary, and the call of REVISION-P terminates with
false. However, if the parser returns one or more results (which corresponds to seman-
tic readings of the extended string), we apply the ambiguity check performed inside the
function AMBIGUOUS (see below). Only if a parsed result exists and the result is am-
biguous, REVISION-P returns true which will cause revision of the new string spanned
by the passive item.

The ambiguity check is performed as follows. First we delete all spurious ambigu-
ities, i.e., for a pair of derivation trees which have the same semantics we only retain
one.'* After this operation we may have either only one reading or a set of readings.
The latter case means that there are different possibilities to assign a meaning to the
extended string, therefore revision for the new string should take place.

The former case is a bit more complicated. Although this case means that the
extended string has been analysed as unambiguous (since we have obtained only one
result), it might be the case that this reading is the same as that of the semantic
expression of the active item’s lemma. In this case, we have just detected a spurious
ambiguity, and therefore revision should not take place. If on the other side, the
semantic expression is not equal to that of the active item, we have found an possible
ambiguity, and hence, revision should take place.

YMThe test for spurious ambiguity thus serves as a filter. Clearly, the current formulation of the test
might be to simple. However, in principle it is not difficult to exchange it with a more complex test as
long as the semantic representation of the grammar would support application of such a more complex
test.

38

The following description of the function AMBIGUOUS summaries the different cases:

ambiguous(ParsedResult, Ai) is:

with ReducedResult = “delete spurious ambiguities”;
if CARD(ReducedResult) > 1 then
true else

if SEM(ReducedResult) = SEM(Ai) then
false else true fi fi.

6.2.5 Using shared items during incremental monitoring

The main advantage of the incremental method using UTA described so far is that we
benefit from the use of the chart during the monitored generation strategy, because
also in that case we can reuse previously made computations. Since revision is auto-
matically performed by the agenda mechanism of U T.A (by not creating items for those
structures where an ambiguity as been detected), the main effort we have to spend
to realize monitoring is the parsing operation performed on extended strings. (The
determination of the contextual string is not a time critical operation.) We now show
how the incremental monitoring method can be made more efficient by making use of
the item sharing approach described in 5.

Recall that in the item sharing approach passive items that have been computed
in one direction can directly be used in the other. Following the method described
in 5 UTA maintains different agendas, item sets and active items for the parsing and
generation mode, but passive items are shared during both directions. The object-
oriented realization of the item sharing approach allows the parser (i.e. the parsing
mode of the uniform algorithm) to be chart-based even when it is called inside the
generator. Thus, if the parser is called via monitoring it can reuse previously self-made
results at any stage.

By use of the item sharing approach partial results (i.e., passive items) are continu-
ally made available for the other direction. However, this means that for both directions
it is the case that one direction can reuse results from the other directions. For example,
for the interleaved parsing mode this means that it can reuse results computed through
generation when making the ambiguity check. During this job, however, it can provide
results for the generator of which the generator can make use. This means, that parsing
results are used through generation and generation results are used through parsing in
an interleaved mode.

6.3 Properties of the incremental self-monitor

The incremental monitoring method can be seen as an additional restriction to UT.A
to keep track only those computed partial results which do not force ambiguities. Note
that monitoring is only triggered by the completion rules and will only be performed on

39

consistent structures. The effect of monitoring is that ¢/7T.A will only consider a subset
of possible answers, namely those which are un-ambiguous. If no un-ambiguous string
can be produced then the resulting set of answers is empty. However, if the algorithm
finds an answer then it is correct. In this sense the monitor just further constraints the
set of computable answers for a given semantic expression.

Degree of resolved ambiguity There are two parameters which influence the be-
haviour of the incremental monitoring strategy: the concrete value of n for the look-back
strategy and the degree of the nodes of a derivation tree, which corresponds with the
length of the right hand side of the rules. We will call this the branching factor of the
grammar. The maximal possible degree of a node will be denoted as mazimal branching
factor, and corresponds to the rule with the largest number of right-hand side elements
defined in a grammar.

Recall, that the variable n refers to the number of sisters of a selected element of
an active item which have to be considered as context. Suppose we have chosen 1 as
the value of n, i.e., we are following a look-back(1) strategy. Furthermore, assume we
have two grammars GG; and G which are weakly equivalent, and where the maximal
branching factor of G is 2 and that of G2 is some integer m greater than 2.

For G a look-back(l) strategy means, that in each case where the incremental
monitor mechanism is activated the newly determined extended string is identical with
the whole string of the constituent defined by the active item. The reason is that
when using a grammar defining binary rules, only when both elements of a rule have
been deduced, monitoring will take place; otherwise no contextual information would
be available. This implies, that all possible ambiguities will be detected and that if the
incremental monitor generates an utterance, then this utterance is unambiguous.

For G5 a look-back(1) strategy means in general, that only a substring of the string
defined by a constituent will be taken into account when building an extended string.
But then, it is possible, that not all possible ambiguities will be detected (see also
section 6.2.2). Consequently, this means that if the incremental monitor generates a
string, this string need not necessarily be unambiguous.

Putting both together, we obtain a different result (wrt. the degree of ambiguity
of a “monitored generated string”) using the same value of n, but on grammars which
only differ with respect to their maximal branching factor. Of course, if we want to
make sure that our algorithm behaves in the same way for grammars with different
maximal branching factor, i.e., if it is to guarantee that only unambiguous strings are
generated, then we have to choose the maximal branching factor of the grammar as the
value for n when performing the look-back strategy.

The discussion made above directly reveals the problem of determining the appro-
priate value for the look-back strategy. If we choose the maximal branching factor,
then we obtain unambiguous strings, for the price of high computational effort. On the
other side, if we choose a small value for n we reduce the effort but will eventually not

40

obtain an unambiguous string. Furthermore, it cannot be guaranteed that we actually
have considered all relevant ambiguities.

In order to compromise between computational effort and the degree of resolved
ambiguities, we have to consider some additional criterions, which are used to decide
whether an ambiguity check should be applied to a newly generated string. Assumed we
have such criterions they can easily be used during monitoring, such that during the call
of GET-CONTEXT this information is used firstly to check whether for the passive item
an ambiguity check should take place, and second on each sister “consumed” by the
look-back strategy the tests are applied. Only if the passive item and its sisters fulfill the
conditions expressed by these criterions an extended string will eventually be delivered.
This provides the possibility to restrict the application of the monitoring strategy, for
instance, on grammatical information. For example, it would be possible to restrict
monitoring only for maximal projections or only for those structures which are known
to cause ambiguities (e.g., pp-modifiers, coordinations). In our implementation we
have already built in mechanisms that can take into account such additional grammar
specific information. However it is a matter of future investigation (primarily on the
linguistic side) to achieve meaningful and realistic criterions.

User-driven control and any-time mode The incremental monitoring mechanism
has fully been implemented and integrated into 4TA. Although we currently do not
use preferences-based strategies we have paid attention to be as flexible as possible
with respect to this future extension. For example, if 4TA’s Prolog-like interactive
mode is activated during generation and parsing a user can choose which of the results
computed during parsing should be ignored for the ambiguity check. This way, the user
can interactively specify which reading she prefers.

Furthermore, it is possible to switch off and on the monitor interactively by just
changing the Boolean value of the global variable MONITOR? which is used to trigger
monitoring. In our current implementation, this can be done in combination with the
Prolog-like interactive mode. If the flag is switched off further generation is automati-
cally continued without monitoring. Using this mechanism it is possible to simulate an
any-time mode of the incremental method.

Limitations It should be clear that monitoring and revision involves more than the
avoidance of ambiguities. [Levelt, 1989] discusses also monitoring on the conceptual
level and monitoring with respect to social standards, lexical errors, loudness, precision
and others. Obviously, our approach is restricted in the sense that no changes to the
input logical form are made. If no alternative string can be generated then the planner
has to decide whether to utter the ambiguous structure or to provide an alternative
logical form.

During the process of generation of paraphrases it can happen that for some in-
terpretations no unambiguous paraphrases can be produced. Of course, it is possible

41

to provide the user only with the produced paraphrases. This is reasonable in the
case that she can find a good candidate. But if she says e.g., ‘none of these’ then the
paraphrasing algorithm is of no help in this particular situation.

Meteer [1990] makes a strict distinction between processes that can change decisions
that operate on intermediate levels of representation (optimizations) and others that
operate on produced text (revisions). Our strategy is an example of revision. Opti-
mizations are useful when changes have to be done during the initial generation process.
For example, in [Neumann and Finkler, 1990] an incremental and parallel grammatical
component is described that is able to handle under-specified input such that it detects
and requests missing but necessary grammatical information.

7 Discussion and Future Extensions

7.1 Related work

UTA can be seen as extension of Shieber’s uniform algorithm. It uses a dynamic
selection function (where Shieber only uses the left-most selection function for both
direction) and a truly uniform indexing mechanism (where Shieber handles indices effi-
ciently only during parsing). Gerdemann [1991] also presents an extension of Shieber’s
algorithm that tries to make efficient use of indexing during generation. However, his
degree of uniformity is restricted since he actually uses different indexing mechanisms
for parsing and generation.

UTA has a stronger goal-directed behaviour than the semantic head-driven algo-
rithm described in [Shieber et al., 1990], because it uses a semantic-oriented selection
for all rules of the grammar (where Shieber et al consider only a subset of the rules;
all other rules are processed in a simple left-to-right top-down manner). Furthermore,
they do not make use of a chart. Van Noord [1993] has extended this algorithm also
for head-corner parsing. A main problem with his approach is that it does not support
incremental processing.

The use of the essential feature Ef as the single parameter of UT.A is comparable
to Strzalkowski’s essential argument approach [Strzalkowski, 1994]. However, he uses
this information only off-line during grammar compilation in order to obtain specific
parsing and generation grammars.

In [Erbach, 1995] a uniform algorithm based on bottom-up Earley deduction is pre-
sented that makes use of a flexible indexing scheme, however only for the use of parsing.
Erbach’s approach is promising because he extends Earley deduction for application
of preference-based strategies. For that reason it seems interesting to combine his ap-
proach with that of 4/ TA. In [Johnson and Dérre, 1995] an Earley deduction mechanism
is presented that uses a mechanism which is able to coroutine between goals that de-
pend on each others’ partial solutions. However, they only consider parsing. Den [1994]
presents a chart-based algorithm based on Earley deduction that uses a similar agenda
mechanism as UTA, in particular he presents a cost-based abduction method used to

42

choose between alternative derivations. However, he only considers parsing, too.

Neither of the above mentioned approaches use shared items, basically because
they do not consider interleaving of parsing and generation. Most approaches that
consider an integrated approach can be found in the areas of artificial intelligence or
cognitive science, e.g., [Jameson and Wahlster, 1982], [Vaughan and McDonald, 1986],
[DeSmedt and Kempen, 1987], [Meteer and Shaked, 1988], [Levelt, 1989], [Wahlster
et al., 1991]. Neither of them however perform interleaving of parsing and generation
with an comparable degree of granularity, nor do they consider uniform processing and
item sharing.

7.2 Future extensions

Of course, the interleaved approach can be and should be extended and improved. Two
of many possible ways which we started to investigate are briefly considered now.

Explanation-based learning An important line of research will be the application
of explanation-based learning (EBL) to speed up processing. In [Neumann, 1994a] we
have described the application of EBL to efficient parsing of constraint-based grammars.
The idea is to generalize the derivations of training instances created by normal parsing
automatically and to use these generalized derivations (also called templates) during
the run-time mode of the system. In the case that a template can be instantiated
for a new input, no further grammatical analysis is necessary. The approach is not
restricted to the sentential level but can also be applied to arbitrary sub-sentential
phrases, i.e., it is possible to handle substrings of an input by templates. Therefore,
the EBL method can be interleaved straightforwardly with normal processing to get
back flexibility that otherwise would be lost. In the work mentioned above we have
shown how this interleaving is obtained by using an agenda-based Earley style parser.

With the existence of U T.A we are now in a position to adapt the same method also
to generation, and to interleave EBL and normal generation in the same way as we do
it for parsing. Moreover, we are also able to extend the item sharing approach to yield
a kind of template sharing approach—leading to reversible EBL.

Preferences Another very important line of future research will be the integration
of preference-based strategies.

We have mentioned several times the importance of preferences for natural language
processing and we have been careful to avoid obstacles to this important future direc-
tion. UTA’s agenda mechanism, for example, is already an important pre-requisition
for the incorporation of such strategies, since it allows processing of new items in any
order. Also the architecture of the item sharing approach has been designed to support
preference-based control.

The strategies described in [Uszkoreit, 1991] and [Barnett, 1994] seem to be suitable
candidates for the new uniform environment. The work described in [Uszkoreit, 1991]

43

is of importance since the approach focusses on the integration of preferences with the
feature system of a constraint-based grammar as an appropriate means for obtaining
plausible performance models. In [Barnett, 1994] a model is described that is able to
handle specific preferences for parsing and generation, as well as shared preferences.

It is reasonable to assume that both strategies (even together) can be integrat-
ed into the new uniform model. If so, it would also be possible to realize a sort of
preference-based monitoring strategy. We assume that the NLS in which the uniform
model is integrated maintains different preference spaces for parsing and generation.
Preference-based monitoring would then mean that the derivation of a produced ut-
terance is directed so that it is consistent with respect to the assumed preferences of
the interlocutor which have been used to direct parsing (clearly, this presumes that
the NLS has as its disposal a user and discourse model). For example, if both prefer
minimal-attachment of pp-modifiers then an utterance like “Remove the folder with
the system tools” (with meaning “Remove the folder by means of the system tools”)
would cause no revision.

8 Conclusion

We have developed a uniform computational model for natural language parsing and
generation. It is based on a novel uniform tabular algorithm called UTA for parsing
and generation from constraint-based grammars, and a new method of grammatical
processing called item sharing. On the basis of these methods we have shown how
an elegant but practical interleaving of parsing and generation is achieved by a novel
incremental monitoring algorithm that is used during natural language production.
These methods have been fully implemented in Common Lisp and CLOS.

Although uniformly defined UTA is fully driven by the structure of the actual
input—a string for parsing and a semantic expression for generation. Since the only
relevant parameter our algorithm has with respect to parsing and generation is the
difference in input structures, the basic differences between parsing and generation are
simply the different input structures. This seems to be trivial; however, our approach
is the first uniform algorithm that is able to adapt its behaviour dynamically to the
data, achieving a mazimal degree of uniformity of parsing and generation. None of the
current uniform approaches exhibit such a degree of uniformity.

There is evidence that comprehension and generation are not only inverse mappings,
but that they are related to each other also at the processing level. For example, the
human mechanism also involves some monitoring of the output and it is widely accepted
that this is performed by making use of the comprehension mechanism. However, it
has been an open question as to how such a behaviour can practically be realized in
computer systems. We have paid serious attention to that problem, and we obtained as
an answer that systematic pursuit of uniformity in natural language processing achieves
the necessary preconditions for a practical interleaving of parsing and generation.

44

A A Complete Parsing and Generation Example Run
with UTA

We will use the following grammar fragment to illustrate the behaviour of UT.A:!5

vp(Sem)<v(Sem) np pp
vp(Sem)<v(Sem) pp np
vp(Sem)<v(Sem) np
np(Sem)«n(Sem)
np(Sem)<np(Sem) pp
pp(Sem)<—p(Sem) np

The phrasal backbone of this grammar is context-free. Thus we implicitly assume
that strings are represented as difference lists which are simply concatenated. For
parsing we can assume that the value of Ef is bound to (PHON DL) and for generation
the value is bound to (SEMm).

The figure 3 illustrates how UTA processes the string “sieht Peter mit Maria”
(“sees Peter with Mary”) during her parsing mode, and figure 4 shows the trace of
the semantic expression “sehen(Peter,mit(Maria))” (“to_see(Peter,with(Mary))”). The
simple grammar used has the nice property, that for the string “sieht Peter mit Maria”
two readings “sehen(peter, mit(maria))” and “sehen(peter (mit(maria))” will be anal-
ysed and for the reading “sehen(peter, mit(maria))” the two strings “sieht Peter mit
Maria” and “sieht mit Maria Peter” are generated. Thus the example illustrates very
well how we can reuse completed structures in parsing as well as in generation.

5We do not claim that this fragment is linguistically adequate. Its sole function is to illustrate the
behaviour of the uniform indexing mechanism.

45

[ans;e;0]22
[vp;e;0]21

1[vp <V np pp;0;0]18
18[ans;e;0]16
17[vp;e;0]15

2[vp v np;0;0]2
O[ans <+—vp;0;0]1

22
21

19[vp <—np pp;0;1]19
16[np;e;1]14
8[np;e;1]7

7[np <n;0;1]6

4[np «np pp;0;1]5
5[np <n;0;1]4

3[vp «np;0;1]3

sPmMg

20[vp +pp;0;2]20
15[pp;e;2]13

10[pp «p np;0;2]9
9[np +pp;0;2]8

12[np <np pp;0;3]17
14[np; €;3]12

13[np <n;0;3]11
11[pp <np;0;3]10

Figure 3: A trace through parsing of the string “sieht Peter mit Maria”.
We assume that a lemma counter is used that enumerates the lemmas just created (starting
from 0) and that the agenda mechanism selects tasks in a depth-first manner. We also count the
items that have been placed in some item set starting by 1. The lemma counter will be attached
to an item as a prefix, and the item counter as its suffix. To make things more readable, we are
using only the initials of each word of the string. Thus “sPmM” abbreviates the string “sieht
Peter mit Maria”. The sequence in which item sets are created is indicated by using a counter
starting from 0. Thus the index of the initial item set is “sPmM,”. The counter will then be
used as an abbreviation for the item set indices in an item. We also show the status of the
agenda and the current selected task. We also show those items which represent alternatives
but are suspended in an extra row “Item of alternative”, to make the depth-first strategy more

readable.

PmM;

mMo

Agenda

0
1,2
1,3

1,4,5

1,4

1,6,7

1,6,8
1,6,9
1,6,10

1,6,11
1,6,12,13

1,6,12,14
1,6,12,15
1,6,12,16
1,6,12,17
1,6,12,18
1,6,12
1,6

19
20
21
22

CurrentTask

1 e ot W N O

o ®

10

11
13

14
15
16
17
18
12

19
20
21
22

46

Item of alternative

1[vp v np pp;0;0]

4[np <—np pp;0;1]

6[np «+np pp;0;1]

12[np <np pp;0;3]

First Result

Second Result

Agenda Current Task Item of alternative
19[ans;e;0]20
18[vp;e;0]19 0 0
L[vp «v,pp,np;0;0]16 1,2 2 1[vp +v,pp,np;0;0
15[ans;e;0]13 ? [vp PP0p;00]
14[vp;e;0]12
2[vp <—v,np,pp;0;0]2 1,3 3
Olans <vp;0;0]1 1,4,5 5 4[np <np,pp;0;1]
s(P,m(M))o
1,4,6 6
1,4,7 7
1,4,8 8
17[vp +np;0;1]18 1.4.9 9
.0 16[vp «pp,np;0;2]17 R
4[np <n 0;1]15 »1P;U; .
ﬁ{ng;m]?pp’ R 13[pp;€;2]11 1,4,10,11 11 10[np < np,pp;0;3]
5[np <n;0;1]4 8[pp «p,np;0;2]7
3[vp «np,pp;0;1]3 7lvp <pp;0;2]6 1,4,10,12 12
Py m(M)z 1,4,10,13 13
1,4,10,14 14
1,4,10,15 15 First paraphrase
1,4,10 10
1,4 4
10[np <np,pp;0;3]14 L)
12[np;e;3]10
11[np <+n;0;3]9 16 16
9[pp +np;0;3]8 17 17
Mgy 18 18
19 19 Second paraphrase

€

Figure 4: A trace through generation of “sehen(Peter,mit(Maria))”.

We make use of the abbreviations introduced in the previous figure 3. Thus “s(P,m(M))”
abbreviates the semantic expression “sehen(Peter, mit(Maria))”. We also assume that the
agenda control processes tasks in a depth-first manner. Note that we need to use the path
(SEM) as essential feature. This is the only requirement to let ZTA to run for generation in an
efficient manner. The selection function “simulates” the semantic-head first selection function,
although coincidentally in all cases the head element is located in leftmost position. The second
paraphrase is generated by reusing the PP “mit Maria” (item 13) and the NP “Peter” (item 6)
already computed during the generation of the first paraphrase. Since the item sets are indexed
by means of semantic information, there is no problem in placing these strings at different string
positions as for the first paraphrase. In this example, the item sets are created in sequentially
because of the depth-first strategy. If we had used a breadth-first strategy, the item sets Ip;
and I,,(pr), would have been created simultaneously.

47

References

[Alshawi and Crouch, 1992] H. Alshawi and R. Crouch. Monotonic semantic interpretation. In
30th Annual Meeting of the Association for Computational Linguistics, Newark, Delaware,
1992.

[Appelt, 1987] D. E. Appelt. Bidirectional grammars and the design of natural language gen-
eration systems. In Y. Wilks, editor, Theoretical Issues in Natural Language Processing-3,
pages 185-191. Hillsdale, N.J.: Erlbaum, 1987.

[Backofen and Weyers, 1993] R. Backofen and C. Weyers. UDiNe—A Feature Constraint Solver
with Distributed Disjunction and Classical Negation. Technical report, DFKI, Saarbriicken,
Germany, 1993. Forthcoming.

[Barnett, 1994] J. Barnett. Bi-directional preferences. In Tomek Strzalkowski, editor, Re-
versible Grammar in Natural Language Processing, pages 201-234. Kluwer, 1994.

[Berg, 1986] T. Berg. The problems of language control: Editing, monitoring and feedback.
Psychological Research, 48:133—144, 1986.

[Bresnan, 1982] J. Bresnan, editor. The Mental Representation of Grammatical Relations. MIT
Press, 1982.

[Den, 1994] Y. Den. Generalized chart algorithm: An efficient procedure for cost-based abduc-
tion. In 32th Annual Meeting of the Association for Computational Linguistics, New Mexico,
1994.

[DeSmedt and Kempen, 1987] K. DeSmedt and G. Kempen. Incremental sentence production,
self—correction and coordination. In G. Kempen, editor, Natural Language Generation, pages
365-376. Martinus Nijhoff, Dordrecht, 1987.

[Earley, 1970] J. Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94-102, 1970.

[Erbach, 1995] Gregor Erbach. Bottom-Up Earley Deduction for Preference-Driven Natural
Language Processing. PhD thesis, Universitit des Saarlandes, Germany, forthcoming 1995.

[Frazier, 1982] L. Frazier. Shared components of production and perception. In M. A. Arbib
et al., editor, Neural Models of Language Processes, pages 225-236. Academic Press, New
York, 1982.

[Gerdemann, 1991] D. D. Gerdemann. Parsing and Generation of Unification Grammars. PhD
thesis, University of Illinois, Cognitive Science, Technical Report CS-91-06, 1991.

[Haas, 1989] A. Haas. A parsing algorithm for unification grammars. Computational Linguis-
tics, 15(4):219-232, 1989.

[Hohfeld and Smolka, 1988] M. Hohfeld and G. Smolka. Definite relations over constraint lan-
guages. Technical Report Technical Report No. 53, LILOG IBM, Stuttgart, 1988.

[Jacobs, 1988] P. S. Jacobs. Achieving bidirectionality. In Proceedings of the 12th International
Conference on Computational Linguistics (COLING), pages 267-274, Budapest, 1988.

[Jaffar and Lassez, 1987] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming.
In Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Mu-
nich, Germany, pages 111-119. ACM, January 1987.

48

[Jameson and Wahlster, 1982] A. Jameson and W. Wahlster. User modelling in anaphora gen-
eration: Ellipsis and definite description. In Proceedings of teh 1982 FEuropean Conference
on Artificial Intelligence, pages 222227, Orsay, France, 1982.

[Johnson and Dérre, 1995] M. Johnson and J. Dérre. Memoization of coroutined constraints.
In 33th Annual Meeting of the Association for Computational Linguistics, Cambridge, 1995.

[Kay, 1986] M. Kay. Algorithm schemata and data structures in syntactic processing. In B. J.
Grosz, K. Sparck Jones, and B. L. Webber, editors, Natural Language Processing, pages
35-70. Kaufmann, Los Altos, CA, 1986.

[Keene, 1989] S. E. Keene. Object-Oriented Programming in COMMON LISP: A Programmer’s
Guide to CLOS. Addison-Wesley, Reading, MA, 1989.

[Kempen and Hoenkamp, 1987] G. Kempen and E. Hoenkamp. An incremental procedural
grammar for sentence formulation. Cognitive Science, 11:201-258, 1987.

[Kempen, 1989] G. Kempen. Language generation systems. In I. S. Batori, W. Lenders, and
W. Putschke, editors, Computational Linguistics - Computerlinguistik, pages 471-480. de
Gruyter, Berlin, 1989.

[Levelt, 1989] W. J. M. Levelt. Speaking: From Intention to Articulation. MIT Press, Cam-
bridge, Massachusetts, 1989.

[Levine, 1992] J. M. Levine. Pragma: A flexible bidirectional dialogue system. In AAAI-90,
pages 964-969, Boston, 1992.

[Lloyd, 1987] J. .W. Lloyd. Foundations of Logic Programming. Symbol Computation, Springer,
Berlin, New York, 1987.

[Meteer and Shaked, 1988] M. M. Meteer and V. Shaked. Strategies for effective paraphrasing.
In Proceedings of the 12th International Conference on Computational Linguistics (COL-
ING), Budapest, 1988.

[Meteer, 1990] M. M. Meteer. The Generation Gap — the problem of expressibility in text
planning. PhD thesis, University of Massachusetts, 1990.

[Neumann and Finkler, 1990] G. Neumann and W. Finkler. A head-driven approach to incre-
mental and parallel generation of syntactic structures. In Proceedings of the 15th International
Conference on Computational Linguistics (COLING), pages 288-293, Helsinki, 1990.

[Neumann and van Noord, 1992] G. Neumann and G. van Noord. Self-monitoring with re-
versible grammars. In Proceedings of the 14th International Conference on Computational
Linguistics (COLING), pages 700706, Nantes, 1992.

[Neumann and van Noord, 1994] G. Neumann and G. van Noord. Reversibility and self-
monitoring in natural language generation. In Tomek Strzalkowski, editor, Reversible Gram-
mar in Natural Language Processing, pages 59-96. Kluwer, 1994.

[Neumann, 1994a] G. Neumann. Application of explanation-based learning for efficient process-
ing of constraint-based grammars. In Proceedings of the Tenth IEEE Conference on Artifical
Intelligence for Applications, pages 208—215, San Antonio, Texas, March 1994.

[Neumann, 1994b] Giinter Neumann. A Uniform Computational Model for Natural Language
Parsing and Generation. PhD thesis, Universitit des Saarlandes, Germany, November 1994.

49

[Pereira and Shieber, 1987] F. C. N. Pereira and S. M. Shieber. Prolog and Natural Language
Analysis. Center for the Study of Language and Information Stanford, 1987.

[Pereira and Warren, 1983] F. C. N. Pereira and D. Warren. Parsing as deduction. In 21st
Annual Meeting of the Association for Computational Linguistics, Cambridge Massachusetts,
1983.

[Pollard and Sag, 1994] C. Pollard and I. M. Sag. Head-Driven Phrase Structure Grammar.
Center for the Study of Language and Information Stanford, 1994.

[Ristad, 1993] E. S. Ristad. The Language Complexity Game. MIT-Press, 1993.

[Robertson, 1994] S. P. Robertson. Tsunami: Simultaneous understanding, answering, and
memory interactions for questions. Cognitive Science, 18:51-85, 1994.

[Samuelsson, 1994] C. Samuelsson. Fast Natural-Language Parsing Using Ezplanation-Based
Learning. PhD thesis, Swedish Institute of Computer Science, Kista, Sweden, 1994.

[Shieber et al., 1983] S. M. Shieber, H. Uszkoreit, F. C. N. Pereira, J. Robinson, and M. Tyson.
The formalism and implementation of PATR-II. In B. J. Grosz and M. E. Stickel, editors,
Research on Interactive Acquisition and Use of Knowledge. SRI report, 1983.

[Shieber et al., 1990] S. M. Shieber, F. C. N. Pereira, G. van Noord, and R. C. Moore. Semantic-
head-driven generation. Computational Linguistics, 16(1), 1990.

[Shieber, 1985] S. M. Shieber. Using restriction to extend parsing algorithms for complex-
feature-based formalisms. In 23th Annual Meeting of the Association for Computational
Linguistics, Chicago, 1985.

[Shieber, 1988] S. M. Shieber. A uniform architecture for parsing and generation. In Proceedings
of the 12th International Conference on Computational Linguistics (COLING), Budapest,
1988.

[Shieber, 1989] S. M. Shieber. Parsing and Type Inference for Natural and Computer Lan-
guages. PhD thesis, Stanford University, SRI International Technical note 460, 1989.

[Shieber, 1993] S. M. Shieber. The problem of logical-form equivalence. Computational Lin-
guistics, 19:179-190, 1993.

[Smolka, 1988] G. Smolka. A feature logic with subsorts. Technical report, IBM Deutschland
GmbH, Germany, 1988. Lilog-Report 33.

[Smolka, 1992] G. Smolka. Feature constraint logics for unification grammars. The Journal of
Logic Programming, 12:51-87, 1992,

[Somers et al., 1990] H. Somers, J. Tsujii, and D. Jones. Machine translation without a source
text. In Proceedings of the 13th International Conference on Computational Linguistics
(COLING), volume 3, pages 271-276, Helsinki, 1990.

[Steele, 1990] G. L. Steele. Common LISP: The Language (Second Edition). Digital Press,
Burlington, MA, 1990.

[Strzalkowski, 1994] T. Strzalkowski. A general computational method for grammar inversion.
In Tomek Strzalkowski, editor, Reversible Grammar in Natural Language Processing, pages
175-199. Kluwer, 1994.

50

[Uszkoreit, 1991] H. Uszkoreit. Strategies for adding control information to declarative gram-
mars. In 29th Annual Meeting of the Association for Computational Linguistics, Berkeley,
1991.

[VanNoord, 1993] G. J. M. VanNoord. Reversibility in Natural Language Processing. PhD
thesis, University of Utrecht, The Netherlands, 1993.

[Vaughan and McDonald, 1986] M. M. Vaughan and D. D. McDonald. A model of revision in
natural language generation. In 24th Annual Meeting of the Association for Computational
Linguistics, pages 90-96, 1986.

[Wahlster et al., 1991] W. Wahlster, E. André, W. Graf, and T. Rist. Designing illustrated
texts: How language production is influenced by graphics generation. In Fifth Conference of
the European Chapter of the Association for Computational Linguistics, pages 8—14, Berlin,
1991.

[Wahlster, 1991] W. Wahlster. User and discourse models for multimodal communication. In
Intelligent user interfaces, chapter 3, pages 45—67. ACM Press, 1991.

[Winston and Horn, 1989] P. H. Winston and B. K. P. Horn. LISP: Third Edition. Addison-
Wesley, Reading, MA, 1989.

[Wirén and Ronnquist, 1993] Mats Wirén and Ralph Roénnquist. Fully Incremental Parsing. In
Proc. Third International Workshop on Parsing Technologies, Tilburg, the Netherlands and
Durbuy, Belgium, 1993.

51

